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Abstract

Airborne sensor aiming can be achieved with a fixed sensor using the manoeuvra-

bility of an aircraft. Such a method offers advantages in potential sensor coverage

and reduced payload complexity. Without use of a gimbal, an aircraft can be made

more robust and sensor aiming is limited only by the aircraft flight capabilities.

A novel method is developed and demonstrated for performing sensor aiming with

a fixed-wing aircraft. A creative mathematical framework is presented for both a 3D

path following controller and a method to seamlessly achieve sensor aiming while

minimizing path deviation. A simulation environment is developed based on a fit-for-

purpose aircraft model identified from live flight testing and the control algorithms

are validated.

Flight test data is presented demonstrating efficacy of the 3D path following con-

troller. These demonstrations also serve to validate the aircraft modelling approach

taken during controller development.

Two application examples involving airborne radar aiming for detect and avoid

and gimbal-less ground target tracking are used to illustrate the sensor aiming method.

The proposed sensor aiming methodology is both practical and feasible as supported

by results. The proposed method is applicable to both unmanned and manned air-

craft. Future work involving the concept of manoeuvrable sensors is proposed in the

conclusion.
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Chapter 1

Introduction

Unmanned Aerial Vehicles (UAVs) have become widely deployed with recreational,

commercial/industrial, and military users. Being unmanned, sensors are required

for the operation and control of the aircraft, with additional sensors often included

for data collection. Several of these additional sensors require motion in addition to

that which can be achieved fixed to the airframe, i.e. gimbaling. Examples include

cameras, lidar, or radar, which all normally feature one or more additional axes of

motion to collect data.

Considering UAVs as airborne sensors in the context of data collection, the sensor

motion can be divided into two main components: flight motion relative to the Earth;

and sensor motion relative to the airframe. Flight motion involves manoeuvring the

aircraft along the flight path which is chosen to survey an area and comprises the main

focus of the mission plan. Sensor motion relative to the airframe may include motion

compensation (smoothing), panning, tilting, or scanning and is not necessarily part

of the flight plan. This is most commonly achieved with a gimbal mechanism. Sensor
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motion relative to the airframe is usually independent of the flight motion to follow

the flight path.

Path following (PF) is the high-level basis of flight motion in this context. To

retain altitude, an aircraft must maintain a minimum airspeed and therefore is in

constant motion towards a target position. The path can be defined as a sequence of

target positions in space. PF refers to the tracking of such a sequence by a vehicle,

without temporal constraints. This is in contrast to trajectory following in space

which requires tracking of a sequence of positions at specified times. At a lower

level, the PF control objectives are mapped to the control surfaces which also effect

a change on the attitude of the aircraft.

Sensor aiming (SA) involves aligning the sensor field of view (FOV) within a spec-

ified orientation, for a given position, for data collection purposes. Conventionally,

SA is achieved by combining flight motion with sensor motion relative to the airframe

(normally using a gimbal) such that the two are independent.

Sensor motion relative to the airframe poses a considerable design challenge, par-

ticularly for small UAVs. Mechanical gimbals increase the payload weight and elec-

trical requirements. Gimbals themselves are susceptible to environmental effects such

as water or freezing, or malfunction. The airframe can occlude the sensor in some

orientations unless it protrudes from the fuselage, which can affect the aerodynam-

ics. Sensor FOV can also be enhanced optically or electronically, but not without

drawbacks in reduced precision and increased complexity.

SA can be achieved for a sensor in a fixed orientation relative to the airframe by

augmenting the flight motion. This reduces or eliminates the need for mechanization

and FOV constraints. The primary drawback is compromised PF performance as the
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aircraft accommodates the additional motion requirements. Secondarily, SA using

aircraft attitude is limited to a finite duration, due to flight safety. Therefore, SA

and PF objectives must be combined when using the gimbal-less approach.

Sensors deployed via UAV require fulfilment of a variety of requirements to achieve

the sensory task. For example, target detection, classification, and/or tracking require

a specific time-on-target. These requirements define whether it is acceptable to have

interruption in sensor coverage and thus whether SA is practically achieved by the

airframe alone.

The concept of combining flight and sensor motion to achieve SA is applicable

to both fixed-wing and multi-rotor aircraft; in this thesis, fixed-wing aircraft are the

platform considered due to their manoeuvrability characteristics. In comparison to

multi-rotor aircraft, fixed-wing aircraft allow an order of magnitude increase in range,

payload capacity, and efficiency. The primary drawbacks of fixed-wing aircraft are

their difficulty to launch, recover, and hold position. These issues can be overcome

by design and training, thus making the fixed-wing platform viable for manoeuvring-

based SA.

1.1 Problem Statement

Airborne sensors often require additional motion beyond PF to achieve SA. Achieving

this additional motion with a gimbal mechanism involves additional weight, complex-

ity, and is inherently limited in performance. For most small UAVs, the inclusion of

an aiming system is prohibitive unless the airframe is specifically designed for that

purpose. The problem can be stated as:
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“UAVs can benefit from improved sensing capability and reduced payload

complexity by performing sensor aiming without the use of a gimbal.”

The proposed solution involves combining aircraft motion via automatic control

methods to facilitate SA with a fixed orientation sensor. While intuitively feasible,

implementation details and performance metrics remain unexplored in the current

state of the art.

1.2 Technical Challenges

The technical challenges of the proposed solution include:

• design of a flight controller that can achieve the motions required for SA.

• integrating PF with SA such that both can be achieved smoothly and with

minimum error.

• development of a simulation model and test platform to design & validate the

controller.

Separation of PF and SA controllers allows each to be independently designed,

which is appropriate for initial development and, as such, is the decided approach.

Tight integration of control using a path planning approach is a viable alternative

design that offers potential advantages in minimization of path error and control effort

but involves far greater complexity in operation.
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Figure 1.1: Flight control system block diagram indicating publication.

1.3 Contributions

The original contributions of this thesis are shown with the subscripts A and B in

Figure 1.1. The subscripts A and B refer to two journal papers produced from this

work. Paper A is titled “Attitude-based Path Following for Fixed-Wing UAVs” and

Paper B is titled “Manoeuvre-based Sensor Aiming for Fixed-Wing UAVs”. These

completed papers are pending acceptance for publication.

Contributions in each area are as follows:

1. SA provides a control methodology (Section 3.4) for smoothly integrating SA

motion with PF. Example applications examine implementation details and

demonstrate capability (Section 4.7.2).

2. PF using aircraft attitude as an intermediate control variable is uniquely com-

patible with SA. A creative PF method is proposed which reduces the 3D prob-

lem to a regulation problem in 2D (Section 3.3).

5



3. Simulation is used to design and validate the controllers. A fit-for-purpose air-

craft model structure is proposed which captures aircraft dynamics sufficiently

to constrain the kinematic problem and obtain realistic results (Section 4.2).

The aircraft model is shown to be identifiable from open-loop flight data with

good (80+ %) fit1.

4. Flight test results are presented for the PF controller (Section 5.2.4), demon-

strating stable operation with control gains from simulation, thus providing

additional validation of the modelling approach.

Chapter 2 provides a review of relevant literature and additional background infor-

mation. Flight control theory as applicable to the PF and SA problems is presented

in Chapter 3. Chapter 4 describes the modelling and simulation framework, as well

as several simulation results for the PF and SA controllers. Flight test results are

provided in Chapter 5, with a description of the UAV platform. Conclusions are

made in Chapter 6 discussing applicability of these methods in other fields such as

autonomous underwater vehicles (AUVs).

1Model fit is calculated from the identification data as:

(

1−
∣

∣

∣

actual − predicted

actual

∣

∣

∣

)

× 100%.
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Chapter 2

Background & Related Work

A review of the literature shows that few academic papers have been written on

the topic of using aircraft motion to achieve SA explicitly. However, in the growing

field of UAV research, many airborne sensing applications are being developed for

recreational, commercial, and academic use. Aircraft control and simulation, which

are relatively well-developed fields for manned aircraft, are also seeing new and ex-

panded research via UAVs. The literature reviewed as applicable to this thesis can be

grouped according to the following sections: sensor aiming, path following, aircraft

control methods, aircraft simulation, and UAV flight testing. Each area is discussed

in the sections below.

2.1 Sensor Aiming

Most UAV flights can be considered data collection missions in which the overall

track is chosen to aid the sensor in covering the data range of interest. In this sense,

these UAV operations are intended to increase sensor coverage. Recently, multi-rotor
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aircraft have rapidly gained popularity in both recreational and academic use. Most

often these aircraft are used to obtain aerial photography, which can be interpreted as

an example of sensor aiding wherein the camera FOV is extended by simply changing

its position.

A quad-rotor aircraft with tilting motors that can achieve attitudes up to 90◦ is

described in [41]. One intended application of their method is to enhance the field of

view available to a camera mounted on the platform. Multi-rotor aircraft are normally

under-actuated systems with four control inputs but operating in 6-DOF (degrees of

freedom). For this reason, it is not possible to achieve all attitudes without inducing

unwanted translational motion. A flight test of a quad-rotor with tilting propellers as

a solution to the actuation problem is described in [43]. Using this method, they are

able to achieve fully actuated control over the attitude without inducing translational

motion. These specific applications require a specialized platform which effectively

negates the benefits of gimbal-less operation, namely reduced payload and airframe

simplification.

Trajectory planning for a UAV to complete coverage of a target using a fixed FOV

sensor is described in [8]. Their approach focuses on trajectory planning to guarantee

coverage within a minimum completion time. An interesting aspect is the consider-

ation of aircraft thrust required to achieve climb rates. A 3-DOF gimbal is assumed

for the sensor aiming. Another paper considering sensor coverage is [10], which con-

siders groups of vehicles as mobile, tunable sensors. A theoretical approach is taken

to guarantee sensor coverage, again assuming that a pan-tilt gimbal is available for

sensor aiming.

An area related to SA is the concept of dynamic PF. Broadly speaking, these can
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both be considered part of a class of problems where the UAV must remain aligned

in a specified direction. Due to the sensor requirement to track and provide a path

for the aircraft to follow, the target must normally be kept within the view of the

sensor. A method of road following where the path is generated on-the-fly is described

in [19]. The control is accomplished using a conventional attitude stabilization loop

and a geometric approach to the PF problem. The camera is fixed with respect to

the airframe, but consideration is not given to explicitly controlling aircraft attitude

to keep the road in view. Rather, the strategy is to keep the roadway in view by

minimizing aircraft bank angle, which is achieved by reducing controller gain, sac-

rificing performance. Road detection and tracking for a UAV is also described in

[55]. A multi-rotor with gimbaled camera is used mainly to collect video data for

post-processing, the methods of which are the primary focus. Again, explicit control

aircraft attitude to assist data collection is not considered.

2.2 Path Following

PF is addressed in the literature for many applications of autonomy in robotics.

Pioneering work in PF for the case of wheeled robots can be found in [37] and [44].

Fundamental guidance principles of path-following are addressed in [7]. Their paper

uses a kinematics-based approach to address the PF problem and prove convergence

for feasible paths.

A survey paper on PF methods for fixed-wing UAVs is conducted in [48]. The

authors of the paper implement several PF methods and compare their performance

in simulation. These range from the simplest case of waypoint following to more ad-
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vanced optimal control-based and non-linear methods. Waypoint following had the

worst performance in terms of minimizing path deviation, while the non-linear meth-

ods proved the best at reducing cross-track error. All algorithms considered in the

survey paper are designed for 2D applications. The 2D limitation prohibits imple-

mentation of high-performance PF, as required, for example, in collision avoidance.

A UAV PF method in 3D is described in [29]. Similar to the method presented

in this thesis, a coordinate frame tangent to the path is used to develop a control

law to guide the aircraft. The results provided consider only large scale paths at a

single altitude, which are essentially 2D. Also, the method intrinsically couples the

PF kinematics with desired attitude, in contrast to the method developed in this

thesis which decouples these two aspects of control. This may come at some cost to

performance but offers advantages in modularity of design and ability to implement

new behaviours. A PF algorithm for a fixed-wing UAV in wind is described in [2].

They explicitly consider roll and path angle constraints to demonstrate straight line

and orbiting paths, for which the control laws are explicitly derived to guarantee

convergence.

A PF method for a vertical take off and landing (VTOL) quad-rotor is described

in [39]. Their paper describes a control method using attitude as an intermediate

control variable, which is similar to the method used in this thesis. However, no

specific application is discussed and the separation of attitude control is for design

purposes.

Model predictive control (MPC) is used for UAV guidance by [20]. An aircraft

model is used to predict the trajectory using a known guidance law and optimize

the control parameters to improve path adherence. Their approach shows very good
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results in simulation but is difficult to implement in practice. As such, no flight

test results are provided. Similarly, MPC is used to track a linear trajectory in 2D

by [30]. Results from hardware in-the-loop (HIL) simulation show good results in

reducing path overshoot, but again flight test implementation is not done.

Path following using vector fields is addressed for wheeled non-holonomic robots

in [31]. Their recent paper demonstrates promising results versus cross-track PF

methods. An extension to 3D is suggested using the intersection of two planes which

may be useful for UAV guidance.

2.3 Aircraft Control

Control system theory has been applied to aircraft in a variety of forms. An aircraft is

a non-linear, coupled, multiple-input multiple-output (MIMO) system. Conventional

controllers are based on proportional-integral-derivative (PID) loops and individual

tuning of each loop, an effective method that is difficult to tune due to the number

of coupled parameters that must be chosen.

A typical flight controller consists of an attitude stabilization inner loop that uses

the ailerons, elevator, and rudder to regulate roll, pitch, and yaw angles, respectively.

The outer loop in a conventional flight controller uses thrust, pitch, and a combination

of bank angle and rudder to control altitude, airspeed, and horizontal turn rate,

respectively. This is the approach used in [38].

A survey of advanced flight control theory and application is conducted in [56].

One modern design approach is linear quadratic optimal control [34], which is well

known in control theory. This method seeks to minimize a quadratic cost function
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with a set of linear differential equations. This method has been applied in the

aerospace industry to develop control systems for several aircraft. To counter dis-

turbances and modelling inaccuracy encountered in flight controller design, several

methods of robust control design are applied by engineers. These methods include

H∞ control and µ-Synthesis [15] and are used to guarantee stability and performance

throughout the entire flight envelope. Another non-linear controller design method

is feedback linearization [47]. This method applies a linear transformation of the

control input to obtain a linear mapping between the input and output. Related to

feedback linearization is the application of quantitative feedback theory [24] which

considers uncertainty in the plant model with quantitative performance requirements

in controller design. These methods were used in development of control systems

for production aircraft until adaptive control began to be used. Adaptive refers to

the ability to allow for the controller parameters to adjust according to the current

operating state of the plant, reducing the need for gain scheduling [25].

Dynamic inversion [46] is one of the feedback linearization approaches that is

widely used in aircraft control. It is particularly useful for controller design when the

operating condition is highly non-linear. Design of a full envelope decoupled linear

flight controller using this method is described in [45]. They utilize several of the

discussed aspects of controller design to achieve the full result. This is indicative of

the piece-wise approach often taken in aircraft controller design. Due to the complex

nature of the dynamics it is difficult to design a full controller based on a single design

approach, but a combination of methods can be applied to adapt the controller to

the desired flight envelope such as [1].

Most of these modern controllers are intended to reduce the number of param-
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eters required for manual tuning and allowing for performance specification. These

approaches to flight controller design tightly couple the attitude and overall velocity

vector control. In contrast, the aircraft attitude can be controlled separately. This is

addressed for a quad-rotor aircraft in [49], for example. The attitude control problem

is approached explicitly for spacecraft applications in [53], from which the attitude

control law used in this thesis builds upon.

2.4 Aircraft Simulation

Development of an accurate aircraft model is required both for control system devel-

opment and for validation and testing of the developed system. Like control design,

many methods and models exist for aircraft simulation. While some models are pro-

prietary, open-source models such as JSBsim have received widespread acceptance.

However, models like JSBsim are complex, cumbersome, and contain many features

unnecessary for controller design. Several commercial and open source simulators for

unmanned aircraft are surveyed in [11], finding that it is no longer necessary to develop

a simulator from scratch and resources can instead be put towards other research ef-

forts. Despite this conclusion, it may still be necessary to develop a simplified aircraft

model from scratch or derive one from a more complex model to design the required

control relationships to achieve the specific requirements of the proposed problem.

The aircraft equations of motion (EOM) are derived using a conceptual approach in

[54], which is helpful in understanding the coupling in terms of aerodynamics and

deriving an appropriate control relationship.

A modelling approach for lift similar to that used in this thesis is described in [16].
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Linearized dynamics are used in the longitudinal axes to parameterize angle of attack

characteristics such that system identification methods can be applied. This thesis

uses a similar approach but without considering angle of attack directly, instead using

lift acceleration and body frame vertical velocity.

A survey paper on system identification methods for UAVs provides a clear overview

of the process in [23]. System identification for an Ultra Stik model aircraft using

frequency domain methods is given in [14]. The applicability of the method is demon-

strated for control systems research.

A comprehensive textbook on aircraft mechanics [42] describes the development

of an aircraft simulator based on 6-DOF EOM. The basic method involves using

a set of linearized aerodynamics which are used in conjunction with the kinematic

EOM as the basis of the simulator. This textbook method is only applicable to small

deviations from the trim condition for which the linearized aerodynamic assumptions

hold. The parameterization of the kinematic EOM has much theoretical overlap with

attitude state observer design.

2.5 UAV Flight Testing

Several academic papers have been published regarding the development of UAV

platforms. Many of the fixed-wing UAVs are a decade old and most contemporary

research is being done using multi-rotor aircraft, however some fixed-wing aircraft

platforms continue to be developed.

A description of a pioneering fixed-wing UAV platform is given in [17]. The air-

frame is purpose-built using a conventional control surface arrangement. The platform
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is equipped with a high-end inertial measurement unit (IMU) and custom software,

now obsolete. Another early UAV platform is the Georgia Tech GTmax described in

a conference paper [26]. The UAV is a large conventional helicopter design based on

an industrial helicopter with a high payload capacity and several sensor packages. A

real-time operating system (RTOS) is used to implement the flight software.

A small fixed-wing UAV platform is described in [3]. Again, a purpose-built

airframe is used with custom software for the autopilot functions. The paper presents

AHRS results but without an independent measurement.

A UAV platform for evaluating loss of control accidents in commercial flight is

described in [27]. The airframe is a 5.5% scale model of a generic airliner. Their

system is extensively designed to provide a platform for scale model-based testing.

The Berkeley UAV software architecture and platform are described in [50]. Their

platform is similar to that described in the thesis as it is an off-the-shelf (OTS) air-

frame using a commercially available autopilot. Custom RTOS software was created

to augment the autopilot capability. A more recent paper describing a fully au-

tonomous multi-rotor UAV is in [52]. Their approach follows the trend in using OTS

modular multi-rotor platforms with customized autopilot and sensor packages.

A more recent development of a fixed-wing UAV platform is described in [4]. Their

approach uses a modified Pixhawk autopilot and a hobby-grade airframe which is

similar to the UAV platform developed in this thesis. However, their chosen airframe

is much lighter and less manoeuvrable than this aircraft, due to their application

which is harvesting wind energy using an aircraft tether.
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Chapter 3

Flight Control

Figure 3.1: Flight control system block diagram.

In this chapter, the theoretical background is presented for the development of

the PF and SA controllers. Figure 3.1 shows a block diagram of the complete flight

control system. First, several preliminary concepts relevant to the controller develop-

ment are presented, including coordinate frames, rotation representations, and state
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observation. The PF controller theory is then presented. Finally, SA is defined and

the integration with PF is described.

3.1 Contributions

The SA and PF controllers (Sections 3.4 & 3.3, respectively) constitute original work

in concept of operation and implementation, including the time-varying weighting

function used to integrate the control objectives (Section 3.4.1). A combination of

theory involving rotations, quaternions, geometry, and kinematics is applied to create

a solution to the proposed problem. The attitude control component of PF and AHRS

(Section 3.2.5) are adaptations based on the work of others, referenced appropriately.

3.2 Preliminaries

This section introduces the coordinate frames, notation conventions, and background

for uncommon mathematical concepts. Much of the notation that follows is borrowed

from [18].

3.2.1 Coordinate frames

There are three distinct coordinate frames of interest:

• Earth-fixed, or North-East-Down (NED), frame {n}

• Path-fixed frame {p}

• Body-fixed frame {b}
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These coordinate frames are illustrated in Figure 3.2.

xb

yb

zb

xp

yp

zp

On

xn

yn

zn

Figure 3.2: Diagram illustrating the relationship between coordinate frames.

The Earth-fixed frame {n} has the origin fixed at a point on the Earth’s surface

designated as zero. It is assumed that this is an inertial reference frame and the

curvature of the Earth is insignificant given the magnitude of motions and operational

range. The path-fixed frame {p} is a moving frame with an origin defined at the

point along the path perpendicularly nearest to the current position of the aircraft.

It is aligned with the xp-axis coincident with the forward tangent of the path at the

current index, yp-axis parallel to the horizontal plane of the Earth-fixed coordinate

frame, and zp-axis downward, forming a right hand coordinate system. The body

frame {b} has its origin at the centre of gravity (CG) of the aircraft, with the xb-axis

aligned forward along the fuselage within the plane of symmetry, yb-axis normal to the

plane of symmetry in the direction of the right wing, and zb-axis aligned downward
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vertical within the plane of symmetry, forming a right hand coordinate system.

3.2.2 Quaternions vs. Euler angles

Aircraft attitude, or orientation, is normally described in terms of Euler angles1,

which use three angles to describe a rotation in three-dimensional space. Specifically,

Euler angles using the zyx order of rotations can be represented as Θ = [φ, θ, ψ]⊤ ∈

S3 where S3 is the set comprising a sphere in three dimensions. Euler angles, as

described, are undefined at θ = ±90◦. This singularity, known as gimbal lock, is

an inherent drawback of a minimum parameterization of attitude [33]. This issue is

solved by inclusion of at least one additional redundant parameter to define attitude.

Redundancy introduces another drawback in that the parameters are now constrained,

i.e. no longer independent. However, there is no alternative if a universal attitude

representation is required, as is normally the case with aircraft.

Quaternions are a four parameter extension of complex numbers first introduced

by Hamilton in 1843 [21]. Quaternions obey a fundamental algebra that makes their

use both elegant and practical as a parameterization of rotation. Quaternions are

defined in matrix form as:

q = [η, ε⊤]⊤, ε = [ε0, ε1, ε2]
⊤ (3.1)

where η ∈ R is the scalar part and ε ∈ R3 is the vector part of the quaternion.

For rotations, these parameters are related to an axis-angle representation. A unit

1Proper Euler angles involve two non-consecutive rotations about the same axis, whereas the

aerospace convention follows zyx order, termed Tait-Bryan angles. The term Euler angles can still

be used for familiarity if the order of rotations is specified.
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quaternion q describes a rotation β about an axis γ as:

q = [cos(
β

2
),γ⊤ sin(

β

2
)]⊤. (3.2)

Rotation operations used extensively in this thesis rely on quaternion multiplica-

tion, normalization, and inversion as described in [9]. Quaternion multiplication is

non-commutative and defined as:

q21 = q2 ⊗ q1 =







η2η1 − ε⊤2 ε1

ε2η1 + (η2I3×3 + [ε2×])ε1






(3.3)

where ⊗ is the quaternion multiplication operator and [ε×] is the skew-symmetric

matrix:

[ε×] = −[ε×]⊤ =















0 −ε2 ε1

ε2 0 −ε0

−ε1 ε0 0















. (3.4)

Quaternion normalization, or norm, is defined as ‖q‖ =
√

η2 + ε20 + ε21 + ε22.

When describing rotations, quaternions are constrained with ‖q‖ = 1. The inverse of

a quaternion is defined as q−1 = q∗/‖q‖ where q∗ is the conjugate of the quaternion

q∗ = [η,−ε⊤]⊤. In the unit norm case, the inverse is equal to the conjugate of the

quaternion.

The kinematics of the quaternion are defined by:
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q̇ =
1

2
Wq (3.5)

where

W =





















0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0





















(3.6)

and ωx, ωy, and ωz are the components of ω.

If the orientation of the rate vector, ω, remains fixed over the update interval, the

above equation can be discretized using the matrix exponential as:

qk = exp

[

1

2

∫ tk

tk−1

W dt

]

qk−1 (3.7)

and the integral can be rewritten as:

∫ tk

tk−1

W dt = Σ =





















0 −σx −σy −σz

σx 0 σz −σy

σy −σz 0 σx

σz σy −σx 0





















(3.8)

where σ = ∆tω, ∆t being the discretization time interval, which gives
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qk = exp

(

Σ

2

)

qk−1. (3.9)

While quaternions are used for most internal calculation, Euler angles are used

when presenting data and defining small relative rotations. Euler angles are preferred

versus quaternions in these cases because of their familiarity and independent nature.

3.2.3 Vector quantities

The kinematic state of the aircraft is described by the following vectors:

η =







pn
b/n

qnb






, ν =







vb
b/n

ωb
b/n






(3.10)

where pn
b/n = [xn, yn, zn]

⊤ ∈ R3 refers to the position of {b} with respect to {n} repre-

sented in {n} and R3 is the Euclidean space in three dimensions, qnb = [η, ε0, ε1, ε2]
⊤ ∈

Q indicates the quaternion representation of a rotation from {n} to {b} and Q is the

set of unit quaternions, and ν = [u, v, w, p, q, r]⊤ ∈ R6 represents the linear and

angular velocities in the body-fixed frame of reference.

3.2.4 Rotations

Transformations between coordinate frames {b} to {n} are fundamentally achieved

using the rotation matrix Rn
b ∈ SO(3):

vn
b/n = Rn

b (qnb)v
b
b/n (3.11)
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where Rn
b represents the rotation matrix from {b} to {n} and SO(3) refers to the

special orthogonal group in three dimensions. This implies the properties R ∈ R3, R

is orthogonal, and detR = 1. The properties of the rotation matrix are such that

the inverse rotation is equal to the transpose. Therefore, the rotation matrix from

{n} to {b} is Rb
n = Rn

b
⊤. The rotation matrix is composed from the quaternion state

parameters by:

Rn
b (qnb) = I3×3 + 2η[ε×]+ [ε×]2. (3.12)

A compound rotation can be decomposed as a quaternion multiplication: q21 =

q2 ⊗ q1 where q21 is rotation q1 followed by rotation q2. The difference between

rotations q21 and q1 is q2 = q21 ⊗ q−1
1 .

3.2.5 State Estimation

A fundamental aspect of flight control involves state estimation. Knowledge of the

aircraft attitude is crucial to successful control, but presents a significant challenge

due to the absence of an accurate absolute measurement. As a solution, a filtered

solution for attitude estimation, or AHRS, is normally employed to combine multiple

measurement sources. As covered in Chapter 2, this area has been widely researched.

Most attitude filters employ some form of Kalman filter [28] to combine measure-

ments from multiple sources to create an attitude estimate. A non-linear implemen-

tation of the Kalman filter is required to accommodate the attitude kinematics. The
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standard is the extended Kalman filter (EKF) which uses a linearization of dynamics

about the current state estimate in its calculation [5].

A fundamental problem exists between the choice of attitude representation and

Kalman filter solution [12]. The Kalman filter requires unconstrained variables to

operate, a condition only met by minimum parameterizations of attitude such as

Euler angles, which suffer from singularity of representation. Constraints imposed by

redundant parameterizations such as quaternions are not considered by the Kalman

filter equations. This problem is addressed and a work-around solution termed the

multiplicative extended Kalman filter (MEKF) is presented in [35].

The MEKF estimates the attitude error between the measurement and the true

attitude using a minimum unconstrained parameterization of attitude. The true

attitude is then equal to the quaternion product of the error quaternion and a reference

quaternion:

q = δq(a)⊗ qref . (3.13)

The state estimation variable a can be chosen as the Euler angle representation

of the rotation between the reference quaternion and the true attitude q. The MEKF

equations are now presented for clarity and completeness.

The filter is initialized with a state covariance P ∈ R6×6, process noise covari-

ance Q ∈ R6×6, and measurement noise covariance R ∈ R6×6, assuming two vector

measurements are made (normally gravity and magnetic north). The state vector is

defined as x ≡ [a⊤,µ⊤

ω ]
⊤ ∈ R6 where µω is the angular rate sensor bias vector as
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described by the sensor model in Equation 4.4. For convenience, the state covariance

matrix can be partitioned into 3× 3 attitude, correlation, and bias matrices as:

P ≡







Pa Pc

P⊤

c Pb






. (3.14)

The MEKF procedure begins by predicting the state using the angular rate mea-

surements. Equation 3.9 is used with ωref = ω̃b
b/n − µω as the angular rate input to

update the reference attitude qref . The state covariance matrix P is then predicted

in discrete time using:

P−

k = Pk−1 +∆t
(

FP + PF⊤ +GQG⊤
)

(3.15)

where the linearizations F and G are:

F (t) ≡







∂f

∂a

∂f

∂µω

03×3 03×3






=







−[ωref×] −I3×3

03×3 03×3






(3.16)

and

G(t) ≡







∂f

∂w1

∂f

∂w2

03×3 I3×3






=







−I3×3 03×3

03×3 I3×3






, (3.17)

where f(x, t) = µ̃ω − µω −w1 − ωref × a.

The Kalman gain is calculated using:
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K =







P−

a

P−

c
⊤






H⊤

a

(

HaP
−

a H⊤

a +R
)−1

(3.18)

where Ha ≡
∂h

∂z

∣

∣

∣

∣

ẑ
b
b/n

[ẑb
b/n×] is a linearization of the measurement function2 and z

is a concatenation of vector measurements representing an absolute observation of

gravity and magnetic north in the body frame. Since the vector measurements are

made directly,
∂h

∂z

∣

∣

∣

∣

ẑ
b
b/n

= I3×3. The superscript − indicates the a priori estimates

before the measurement update occurs.

The state estimate and state covariance matrix are updated using:

x̂+ = x̂− +K
(

z̃b
b/n − h(ẑb

b/n)−Haâ
−
)

(3.19)

and

P+ = P− −KHa[P
−

a ,P
−

c ] (3.20)

where the superscript + indicates a posteriori estimates proceeding from the inclusion

of the observation.

Finally, the error estimate state information is transferred to the reference quater-

nion using Equation 3.13 and the error state a explicitly reset to zero before moving

on to the next iteration.

2The portion of the measurement sensitivity matrix relating to the bias estimates is zero because

the measurement does not depend explicitly on these biases.
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3.3 Path Following

Figure 3.3: PF component of flight control system block diagram.

The objective of the PF controller is to guide the aircraft along a prescribed path

in space. Figure 3.3 highlights the PF components of the overall flight control system

block diagram. The PF control strategy can be divided into four steps:

1. Locating the current index k of position along the desired path.

2. Calculation of relative position of the aircraft in a plane orthogonal to the path’s

tangent at the current index.

3. Mapping relative position to a desired attitude in a negative feedback arrange-

ment, comprising the control law for the outer loop.

4. Mapping of desired attitude to control surface deflections, comprising the con-

trol law for the inner loop.
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The current index k of aircraft position along the path is found using Algorithm3

1. This algorithm is called during each iteration of the control loop to update the

current progress along the path. It compares the Euclidean distance between the

current step of the path vector and the next, updating the path index and previous

distance if less. The algorithm considers only a local segment of the path for each

update to avoid problems due to overlapping paths.

Algorithm 1 Locating the index along the path vector.

prev dist← ‖pn
b/n − pn

d/n[k]‖

while prev dist > ‖pn
b/n − pn

d/n[k + 1]‖ do

prev dist← ‖pn
b/n − pn

d/n[k + 1]‖
k ← k + 1

end while

Using the current index, relative position within the path frame is found using:

p
p
b/p = Rn

p (qnp[k])
⊤(pn

b/n − pn
p/n[k]) (3.21)

where Rn
p indicates the rotation matrix from path-fixed frame to Earth-fixed frame

and qnp indicates the quaternion representation of rotation from Earth-fixed to path-

fixed frames.

Desired attitude with respect to the path using an Euler angle parameterization

is calculated using:

Θpd = KPFp
p
b/p (3.22)

3In this algorithm and throughout this thesis, ‖p‖ refers to the Euclidean norm
√

a2
x
+ a2

y
+ a2

z
,

where ax, ay, az are the elements of a vector p.
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where the gain matrix KPF ∈ R3×3 relates each axis of relative position to a corre-

sponding relative attitude in three axes.

Desired attitude Θpd is relative to the path attitude qnp and is with respect to

the Earth-fixed frame using:

qnd = qnp[k]⊗ qpd (3.23)

where qpd = q(Θpd).

The inner loop attitude controller [53] torques are found using:

q̃ = q−1
nb ⊗ qnd (3.24)

and

τ̃ = kpε̃+ kvω
b
b/n (3.25)

where q̃ = [η̃, ε̃] and τ̃ is the vector of body frame torques.

The control surface deflections are allocated from the torques using the inversion

of the rotational model input matrix B−1
r from Equation 4.1:

δ = kbB
−1
r τ̃ . (3.26)
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Constants kp, kv, and kb are proportional, rate damping, and overall gain parame-

ters, respectively. The values are determined using conventional PD tuning methods:

kp = 3, kv = 1, and kb = 15.

3.4 Sensor Aiming

Figure 3.4: SA component of flight control system block diagram.

The objective of SA is to bring the aircraft into a specified orientation (or attitude)

such that a sensor measurement can be made. Figure 3.4 contains a block diagram

highlighting the SA component of the flight control system. The two main aspects of

the SA controller involve a time-varying weighting function used to transition from

PF to SA and the generation of setpoints defining each SA event.
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3.4.1 Time-Varying Weighting Function

Integration of the SA setpoint with the PF controller is accomplished by a time-

varying weighting function. The weighting function is intended to blend the SA and

PF setpoints such that the transition is smooth between modes and disruption of the

flight is reduced. Therefore, the choice of function is arbitrary and can be used as a

tuning parameter to affect performance. Figure 3.5 illustrates a typical logistic curve

[40] that can be used to transition between modes.

−10 −5 0 5 10
x

0.0

0.5

1.0

f(x
)

Figure 3.5: General normalized logistic curve.

The general equation for the normalized logistic function is:

f(x) =
(

1 + e−κ(x−x0)
)−1

(3.27)
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where parameters κ and x0 define the slope of the transition and midpoint bias,

respectively. Therefore, the response can be shaped by selecting parameters to provide

an appropriate transition. Time differences are used as the basis for the input to the

logistic function as the primary factor in both SA duration and PF error. Position can

be translated into time if the trajectory of the aircraft is known or can be estimated.

Let ηt0 be the state of the aircraft at time t0. The SA objective on approach is

to bring the state of the aircraft to ηtf at time tf . To minimize the path deviation,

ηt0 → ηtf shall be reachable within minimum duration ts = tf − tr, where tr is

the transition time where full SA duration begins. Time ts can be calculated under

closed-loop control, with full control effort towards SA attitude.

The closed-loop attitude control and rotational dynamics are highly non-linear

and therefore difficult to solve in closed form, so a deterministic simulation using the

rotational aircraft model and attitude controller is used to compute ts. A tolerance

θt is applied to the scalar part of the quaternion difference between the current and

desired attitude at tf as a termination criterion. Time ts defines the transition time

tr ≡ tf − ts on approach for the weighting function. Once time tf is reached, the

setpoint is restored to PF on return. From this logic, the approaching weighting

function can be written:

Λa(t) =
(

1 + e−
1

2
((t−tr)−2

−10)
)−1

. (3.28)

The transition point to return to PF is tf , which is immediately after the SA

objective has been achieved. Thus, the returning weighting function can be written:
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Λr(t) =
(

1 + e−
1

2
((t−tf )

−2
−10)
)−1

(3.29)

where t indicates the time of calculation, 1/2 is a scale factor, and −10 is a midpoint

bias used to favour PF when an SA event is not immediate. To make the transition

duration sufficiently short, the inverse square difference of the times is used as the

argument to the logistic function.

These time-varying weighting functions are used before and after the duration ts

of full SA. The weighting variable λs where {λs ∈ R | 0 ≤ λs ≤ 1} is thus assigned

according to the logic outlined in Algorithm 2. This algorithm defines an overall

non-linear, time-varying weighting function used to transition between PF and SA.

That is, a different logistic function argument is used while approaching and returning

from a SA event, which is characterized by the duration ts. The SA event itself is

characterized by a required aiming duration pre-determined by the aircraft model.

An example of the time-varying weighting function in use is shown in Figure 4.19.

Algorithm 2 Assign SA weighting based on setpoint timing.

if tf − t < tr then
λs ← 1

else if t < tr then
λs ← Λa(t)

else
λs ← Λr(t)

end if

Due to the non-linear, intermittent nature of the SA problem, a conventional

optimization approach is not appropriate. An approach such as linear-quadratic reg-
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ulation (LQR) would attempt to minimize some path deviation, while accommodating

some sensor aiming, but resulting in the full pursuit of neither.

Attitude is the aspect of the state controlled directly by the inner loop controller.

The weighting variable is used to blend the PF attitude with the SA attitude to

avoid abrupt changes in setpoint. The resulting intermediate attitude qu is used as

the input to the inner loop and is determined as follows.

The quaternion difference between the SA attitude qs and PF attitude qnd is:

qds = qs ⊗ q−1
nd (3.30)

which can be decomposed using Equation 3.2 to:

qds = [cos(
βds
2
),γ⊤

ds sin(
βds
2
)]⊤. (3.31)

According to Euler’s rotation theorem [32], a rotation βds about an axis defined

by vector γds describes the difference between qs and qnd. Scaling βds by λs provides

a weighted blending of the two rotations that can be converted back to quaternion

form and applied to the PF attitude. Therefore, the intermediate attitude is:

qu = [cos(
βdsλs
2

),γ⊤

ds sin(
βdsλs
2

)]⊤ ⊗ qnd. (3.32)
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3.4.2 Setpoint Generation

Each SA event is defined based on the specific requirements of the mission. Defining

the SA setpoint involves at least five parameters: time, position, orientation, and

the rates of change of position and orientation. The rates of change of position

and orientation can be assumed to be small under automatic control. Therefore, in

practice, two parameters can be used to define the setpoint: time (or position), and

orientation. The events must be sufficiently decoupled by time segmentation such

that PF can still be achieved. This spacing depends on the dynamics of the aircraft

and the magnitude of the attitude change required for the SA event.

A typical UAV application may involve aerial surveillance of a fixed or moving

point on the ground using a camera or other sensor. This aiming is normally achieved

using a gimbal mounted underneath the aircraft fuselage. However, a gimbal-less

solution is possible using the SA method described.

If a UAV were equipped with a fixed downward-facing sensor facing along the zb

axis of the aircraft, the sensor could be aimed by altering the aircraft attitude towards

a target. For a general aircraft path, it is only intermittently possible to alter the

attitude for SA. Therefore, the SA events are defined periodically. The derivation of

the SA attitude for ground target tracking follows.

Euler angles are used to keep the following derivation intuitive. Euler angles

are valid in this application because the attitude change will be less than 90◦. The

rotation matrix from Euler angles is [22]:
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Rn
b =















cosψ cos θ cosψ sin θ sinφ− sinψ cosφ sinψ sinφ+ cosψ cosφ sin θ

sinψ cos θ cosψ cosφ+ sinφ sin θ sinψ sin θ sinψ cosφ− cosψ sinφ

− sin θ cos θ sinφ cos θ cosφ















(3.33)

which can be used in the relationship between the global and body-relative position:

pb
b/t = Rn

b
⊤pn

b/t, (3.34)

where the subscript t indicates the target.

Letting pb
b/t = [0, 0, ‖pn

b/t‖]
⊤ and using the current heading for ψ, the pitch and

roll angles are:

θ = arctan

(

x cosψ + y sinψ

z

)

φ = arctan

(

x sinψ + y cosψ

x cosψ sin θ + y sinψ sin θ + z cos θ

), (3.35)

which can be converted back to quaternion form for inclusion as a SA event.
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Chapter 4

Modelling & Simulation

Figure 4.1: Simulation component of flight control system block diagram.

This chapter describes the aircraft modelling approach, simulation environment,

and associated simulation results. Figure 4.1 contains the flight control system block

diagram with the blocks used in simulation highlighted. System identification results

are shown for the aircraft model from open loop test data. Aspects of simulation

37



design including assumptions, sensor modelling, and environmental modelling are

discussed. Simulation results are presented demonstrating the PF and SA controllers.

Two example applications are considered for SA: radar aiming for air-to-air target

detection and gimbal-less ground target aiming.

4.1 Contributions

The aircraft modelling approach is developed specifically for the control system de-

velopment in this thesis. This fit-for-purpose model is designed to be used within a

simulation environment created to test the PF and SA controllers.

4.2 Aircraft Model

The modelling approach developed is intended to sufficiently capture the aircraft dy-

namics such that a control system can be accurately developed. Within this context,

the model should capture dynamics essential to describe manoeuvring characteristics

but not necessarily all aerodynamic effects considered in a traditional flight model.

Additionally, the model structure must be amenable to application of system identi-

fication methods. This is due to use of live flight tests versus structured aerodynamic

testing such as that conducted in a wind tunnel facility.

The model is separated into two parts: rotational and lift. The rotational model

is intended to capture rotational dynamics in body frame and is based on first-order

responses in each axis with cross-coupling parameters. This is a lumped parameteri-

zation capturing control surface response, moment generation, and rotational inertia.
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The lift model is based on a second-order parameterization relating pitch rate and

lift. The lift model assumes operation within the linear region of the lift curve. This

approach is convenient as it avoids explicit calculation of angle of attack, which is

difficult to measure in practice.

The structure of the rotational model is:

ω̇b
b/n = Arω

b
b/n + Brδ

=















ad0 0 ac0

ac1 ad1 ac2

ac3 0 ad2















ωb
b/n +















bd0 0 bc0

0 bd1 0

0 0 bd2















δ

(4.1)

where some elements of the input matrix have been assumed zero based on physical

layout of the airframe and longitudinal-lateral coupling and control surface arrange-

ment [42].

The vector ωb
b/n = [p, q, r]⊤ represents angular velocities in roll, pitch, and yaw, re-

spectively, which are the outputs of the model. The vector δ = [δa, δe, δr]
⊤ represents

control surface deflections of the ailerons, elevator, and rudder, respectively.

The lift model structure is:







Ż

ẇ






= Al







Z

w






+ Blq

=







az0 az1

az2 0













Z

w






+







bz0

0






q

(4.2)
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where some parameters have been set to zero based on the assumption that body-

frame vertical velocity is the integration of lift acceleration and there is no feed-

forward from pitch rate.

The states in this model include the vertical lift force Z and vertical component of

velocity w, both in body frame. The input is pitch rate q. This structure is based on

the relationships between Z, angle of attack α, and q. In the linear range of the lift

curve, Z ∝ α. The time rate of change of angle of attack α̇ can be approximated by

q. Therefore, Ż can be approximated by q scaled by a constant that can be defined

as a system identification parameter. The second-order term w, the integration of Z,

is used to capture the inherent damping due to lift.

4.2.1 System Identification

The model parameters are identified from flight test data using MATLAB system

identification toolbox. The flight from which the data is taken is detailed in Sec-

tion 5.2.2. The model structures are provided as grey-box models. This reduces the

number of free parameters to be estimated, thereby reducing ambiguity in fit. The

identified parameter values for the rotational model is summarized in Table 4.1. The

diagonal parameters are estimated individually to provide initial values before iden-

tifying cross-coupling parameters. The identified parameters for the lift model are

summarized in Table 4.2. All identified parameters are intended for a fixed forward

speed of 25 ms−1, which was the mean airspeed during the identification segments.

Figure 4.2 contains an excerpt of the validation data in roll. The output from the

identified model follows the flight data closely (92.0% fit to estimation data).
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Table 4.1: Identified parameters for rotational model.

Parameter Value
ad0 -9.067
ad1 -7.777
ad2 -3.323
ac0 4.856
ac1 0.3163
ac2 -0.3101
ac3 -1.201

Parameter Value
bd0 -2.406
bd1 -1.068
bd2 -0.8684
bc0 0.3442

Table 4.2: Identified parameters for lift model.

Parameter Value
az0 -6.578
az1 0.03833
az2 2.667
bz0 -18.14
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Figure 4.2: Flight data and single axis model output in roll.
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Figure 4.3: Flight data and single axis model output in pitch.

Figure 4.3 contains an excerpt of the validation data in pitch. Again, the single

axis model in pitch matches the flight data closely (92.8% fit).

Validation data and yaw axis model output is shown in Figure 4.4. The yaw axis

exhibits more coupling behaviour versus roll and pitch. Also, the single axis yaw

model can only provide an output when a rudder input is supplied. During such

times, the model output for yaw rate is reasonably accurate (84.1% fit).

The output of the three axis coupled model with another segment of validation

data is shown in Figure 4.5. Model fits have improved in roll and pitch by including the

identified coupling parameters. The yaw axis is more susceptible to wind disturbance

and, during the data collection, winds were light and variable in direction. As such,

there are additional un-modeled variations in yaw versus the other axes. However, the

inclusion of the roll coupling parameter improves the overall model accuracy (93.8%
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Figure 4.4: Flight data and single axis model output in yaw.
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Figure 4.5: Flight data for validation segment containing all three rotational axes.
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fit), particularly when no rudder input is being applied.
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Figure 4.6: Validation flight data with lift model output.

The vertical acceleration output of the lift model during a segment of validation

data is shown in Figure 4.6. As the vertical velocity in the body frame is explicitly

calculated in simulation and, as such, is not relevant as an estimated quantity. Rather,

the effect of this velocity on lift (i.e., damping) is required. Model estimate of vertical

acceleration during the validation segment is reasonably accurate (80.8% fit). This

model is used primarily to capture the dynamics of the banked turn.
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4.3 Simulation

The simulation is non-linear 6-DOF and used for controller development using iden-

tified models for angular velocity and lift with a fixed forward speed. The aircraft

is thus treated as a point mass subject to gravity and the following assumptions are

made:

1. Rotational and lift dynamics are with respect to a fixed forward speed which

can be maintained by appropriate control of thrust.

2. Rotational response due to control surface deflection is independent of attitude.

3. Side slip effects are sufficiently captured by the lumped-parameter model.

The primary intent of modelling lift is to capture horizontal motion when perform-

ing a banked turn and to penalize the system for attitudes that do not support proper

lift versus gravity. Side slip effects are not explicitly modeled, however these effects

are less significant for a straight shoulder wing aircraft as is considered throughout

this thesis.

Attitude of the aircraft is stored as a quaternion qnb and updated according to

Equation 3.9 [51]. Position of the aircraft is stored as pn
b/n and updated using:

ṗn
b/n = Rn

b (Θnb)v
b
b/n. (4.3)

Figure 4.7 shows a block diagram of the simulation. The simulation equations are

discretized and evaluated at a fixed time-step of ∆t = 1/50 seconds. Similarly, the

PF and SA controllers are implemented in the simulation in discrete time.

45



Figure 4.7: Simulation block diagram.

The simulation is implemented in Python using an object-oriented approach. The

autopilot and AHRS are implemented as objects to manage their own states. The

autopilot class receives the aircraft state estimate from the AHRS which is analogous

to reality. A main simulation loop calls the autopilot with the current path infor-

mation to determine the required control surface deflections. SA operates in parallel

to the PF control and the attitude weighting changes based on the SA event timing.

Figure 4.8 contains a software sequence diagram describing the implementation of the

simulation.

Each simulation begins by defining the pre-determined path for the given scenario.

The aircraft state is initialized at the beginning of the path and a controller and AHRS

instance is created. At each time-step, simulation gets the most recent control surface

deflections from the controller instance and updates the aircraft state according to

the previously described simulation equations. The simulation continues until either
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the maximum duration has elapsed or the end of the pre-determined path is reached.

Figure 4.8: Software sequence diagram of the simulation.

4.4 Inertial Sensor Model

The inertial sensor model is defined by:

s̃(t) = s(t) + µ(t) + w1(t)

µ̇(t) = w2(t)

(4.4)

where s̃(t) is the sensor output, s(t) is the true quantity being measured, µ(t) is a

sensor bias modeled as a random walk, and w1(t), w2(t) are white Gaussian noise
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processes. This model is used both for generating the simulated sensor signals and in

the AHRS for estimating the bias.

4.5 AHRS

The MEKF-based AHRS presented in Chapter 3 is used in the simulation for attitude

feedback in control. The introduced sensor model is used to generate random noise

and bias upon the angular rate measurements. Two vector measurements, gravity

and magnetic north, are used by the AHRS to determine absolute attitude. These

measurements are also subject to random noise in the simulation.
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Figure 4.9: Roll angle and roll rate bias estimation segment.

Successful AHRS operation can be determined by observing the convergence on
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the angular rate bias. While this is more difficult in reality, as the bias is not always

known, in simulation the bias is generated and can be recorded for comparison. Figure

4.9 shows a segment of roll angle estimation with roll rate bias being estimated by

the filter. The bias estimate converges on the actual bias at a rate dependent on

the filter covariances. The initial filter values are set to zero for these tests, but in

practice these would be bias estimates from previous testing, and as such the filter

bias covariance would be selected based on the bias stability characteristics of the

sensor.
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Figure 4.10: Pitch angle and pitch rate bias estimation segment.

Figures 4.10 and 4.11 contain pitch and yaw angle estimation segments, respec-

tively, and their associated bias estimations. Again, the bias estimate converges on

the actual bias and as it does so, the attitude estimate improves.
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Figure 4.11: Yaw angle and yaw rate bias estimation segment.

4.6 Environmental Disturbance

The environmental disturbances modeled in simulation include gravity and wind, in-

tended to demonstrate the controller capability against constant disturbances. Grav-

itational acceleration is applied versus lift in the simulation update step during the

velocity and position calculation.

Wind is modeled as a constant velocity acting in the horizontal plane. The wind

vector w = [wx, wy, 0]
⊤ is summed with the aircraft velocity during the position

update.

In the simulation, the wind is randomly generated as:

w = N(0, σ2)
wd

‖wd‖
(4.5)
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where N(µ, σ2) represents the standard normal distribution with mean µ and vari-

ance σ2 and wd = [N(0, 1), N(0, 1), 0]⊤ is the randomized wind direction vector. A

standard deviation of σ = 5 m/s is used in all simulation cases.

4.7 Results

Simulation results for various PF and SA scenarios are now presented. Each scenario

is run in simulation 40 times1 under various wind conditions.

4.7.1 Path Following

Three scenarios are considered for evaluative manoeuvres for PF in simulation:

1. A horizontal manoeuvre along a semi-circular path.

2. A vertical manoeuvre along a semi-circular path.

3. A helical manoeuvre consisting of several climbing horizontal circles.

The horizontal manoeuvre is a typical approach for UAV guidance and also typical

of intruder or obstacle avoidance. It demonstrates a left and right turn as well as a

period of sustained turning. Aircraft trajectory for the horizontal scenario is shown in

Figure 4.12. Attitude of the aircraft throughout the trajectory is drawn periodically

using symbols showing the banked turns.

1Number of simulations was chosen to be 40 based on execution time versus settling of mean

error results, which were found to be within 50% in 20 runs.
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Figure 4.12: Simulated trajectory for horizontal manoeuvre.

Path error for the horizontal manoeuvre is shown in Figure 4.13. The path error

is represented in the path frame with respect to the arc length. Therefore, it is the

positional offset of the aircraft in the plane normal to the path versus distance along

path. Controlling by feedback results in an inherently reactive response and this is

clearly shown as a spike in position error during the two sharp turns. An inherent

offset is also present during the overall sustained turn and the response is shown to

settle on this value.

Vertical avoidance is of particular advantage to UAVs because the risk of ground

collision is less urgent versus manned aircraft. Figure 4.14 shows a downward vertical

manoeuvre. Due to the strategy of the PF control, the aircraft is pitched to achieve

the descent and re-ascent, which demonstrates the applicability to high-performance

manoeuvres.
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Figure 4.13: Path error for horizontal manoeuvre.
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Figure 4.14: Simulated trajectory for vertical manoeuvre.
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Path error for the vertical manoeuvre is shown in Figure 4.15. Similarly to the

horizontal case, reactive errors are seen during the two sharp turns. It should be

noted that the success of using an aggressive pitch angle to climb depends on the

availability of excess thrust, as is typical in small UAVs.
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Figure 4.15: Path error for vertical manoeuvre.

Simulation of a helical manoeuvre is used to evaluate the ability of the PF control

method to accommodate a changing 3D path. The resulting trajectory is shown in

Figure 4.16.

Path error for the helical manoeuvre is shown in Figure 4.17. Due to the constantly

changing path and absence of feed-forward compensation, the controller settles on an

offset. Similarly to the vertical manoeuvre, sufficient thrust is required.

The deficiency of feedback control for PF is notable in each scenario. Due to the

reactive nature of the controller, it is impossible to track a changing path without
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Figure 4.16: Simulated trajectory for helical manoeuvre.
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Figure 4.17: Path error for helical manoeuvre.
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error. Despite this, the controller maintains a relatively small error throughout the

manoeuvre. Path error statistics for each PF scenario are summarized in Table 4.3.

Table 4.3: Path error statistics for PF scenarios over 40 runs.

Manoeuvre yp (RMS) (m) zp (RMS) (m)
Horizontal 0.848 0.588
Vertical 0.562 1.567
Helical 0.479 0.489

4.7.2 Sensor Aiming

Two scenarios were considered for SA simulations: radar aiming and ground target

aiming. These scenarios demonstrate the practical application of manoeuvre-based

SA to provide a control-based solution to an otherwise physically challenging problem.

4.7.2.1 Radar aiming

In the field of non-cooperative detect-and-avoid (DAA) for UAVs, air-to-air radar

is a key sensor for detecting intruder aircraft. For this purpose, modified airborne

weather radar are a possible solution. These are small and light enough to be flown

on a UAV, and could be reduced further if a tilt gimbal was not required.

A typical airborne weather radar has a plate antenna on a horizontal panning

mechanism mounted at the front of the aircraft in an electromagnetically transparent

nose cone. The radar scans forward of the aircraft across a swept angle as illustrated

in Figure 4.18. A manual tilt control allows the radar FOV to be directed upward or

downward, which is used for weather detection. Additionally, some radar units can

stabilize roll and pitch if connected to the aircraft AHRS output.
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Figure 4.18: Illustration of weather radar beam geometry.

Assume that an airborne weather radar is being used for DAA, with manual tilt

set level with the aircraft body axes, and stabilization disabled. The radar beam

dimensions are φr = 7.8◦ both vertical and horizontal. Sweep angle is φs = 120◦ or

±60◦ with respect to the xb axis. If an intruder is detected at a range of 10 km,

the heading angle to target can be determined relatively precisely from the radar

sweep. However, the vertical uncertainty of the target is ±685 m. By periodically

rotating (or tilting) the aircraft about an axis perpendicular to the bearing to target

and horizontal to the ground, the vertical uncertainty can be reduced.

Algorithm 3 describes how the SA controller can be used to improve the vertical

target resolution of the radar. The set operators ∩ and \ refer to set intersection and

set difference operations, respectively. Target size is a virtual concept representing the

apparent region containing the target. That is, the region containing the estimated

target and current radar return are compared to reduce the uncertainty in target

position. As information about the target is gained, the apparent target size can be
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Algorithm 3 Radar-based vertical target resolution.

Require: initial target detection
target size← current fov
while target alt range > vertical tol do

radarScan()
if targetInCurrentFOV() then

target size← target size ∩ current fov
else

target size← target size \ current fov
end if
if midpoint(target size) > midpoint(current fov) then

tilt angle← 0.5 ∗ range(target size)
else

tilt angle← −0.5 ∗ range(target size)
end if
tiltAircraft(tilt angle)
target alt range← angle2Altitude(target size)

end while

refined and compared to the maximum allowable uncertainty.

Considering the radar detection scenario, a test case can be defined for the SA

algorithm. Let the radar horizontal scan rate be 48◦s−1, which gives a mean time

to complete a scan of 2.5 s. This interval defines the periodicity of the SA events,

with a tilt angle of ±7.8/2◦ at an arbitrary heading to target within the radar hori-

zontal sweep. These tilt angles represent the worst-case attitude change required by

Algorithm 3. The aircraft is assumed to be flying along a straight line path.

Figure 4.19 shows the aircraft attitude and SA weighting during a simulation of

the scenario. As each SA event approaches, the weighting variable (Section 3.4.1)

increases towards 1 which represents full SA attitude setpoint. As such, the aircraft

attitude is controlled towards the setpoint composed of the required tilt angle. There-

fore, the attitudes at times 7.5, 10.0, and 12.5 s represent the SA event objectives.

According to Algorithm 3, the tilt angle will alternate as observed in the figure.
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Figure 4.19: Attitude and SA weighting during a segment of the radar aiming ma-

noeuvre.
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Figure 4.20: Path error segment for radar aiming manoeuvre.
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Figure 4.20 contains the path error during this segment. Once each SA event

has passed, the weighting variable tends toward 0, representing full PF attitude, and

returns to the path. It is observed that pitch changes result in a much larger path

error versus roll, which is expected. Therefore, it is more costly from a PF perspective

to require SA pitch changes. Figure 4.21 contains the 3D trajectory for the manoeuvre

segment.
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Figure 4.21: Simulated trajectory segment for radar aiming manoeuvre.

The radar aiming scenario was run 40 times in simulation with random target

headings and winds. The SA and PF error statistics over these simulations are shown

in Table 4.4. The SA attitude error refers to the absolute angular difference between

the actual attitude and the SA event setpoint, at the time required. 47.4% of time

was dedicated to SA in this scenario during the execution of the aiming manoeuvre.
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The overall time spent on SA for the entire mission is less, as it is only used during

DAA events.

Table 4.4: Error statistics for radar aiming scenario over 40 runs.

Metric Mean σ

SA attitude error (deg) 0.792 0.369
yp (RMS) (m) 1.497 -
zp (RMS) (m) 1.518 -

4.7.2.2 Ground target aiming

The second SA scenario is the application of the ground target aiming discussed in

Section 3.4. This scenario is intended to demonstrate how a fixed orientation sensor

could be pointed towards a ground target without a gimbal.
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Figure 4.22: Simulated trajectory for loitering figure eight manoeuvre.
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A loitering figure eight path at an altitude of 1000 m is used to keep the aircraft

above the target at the origin while providing a variety of attitudes to demonstrate

the SA controller. The SA events occur periodically with an interval of 5 s. Equation

3.35 gives the roll and pitch angles used to define the SA attitude at each event,

assuming the sensor orientation is along the zb axis of the aircraft.

Figure 4.22 illustrates the simulated trajectory for the figure eight manoeuvre.

Small deviations from the flight path are visible during each SA event. Path error is

shown in Figure 4.23 for this segment. It can be observed that SA events requiring

pitch result in the greatest deviation from the path.
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Figure 4.23: Path error for loitering figure eight manoeuvre.

To visualize the efficacy of the SA controller to achieve ground target aiming,

the intersection of the zb axis with the z = 0 plane at each SA event was recorded.

This was done for each SA event over 40 simulation runs with random wind. The
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intersection points are plotted in Figure 4.24. The performance of the SA controller

is consistent with the attitude tolerance, sensor noise, and wind disturbance. At an

altitude of 1000 m, 1◦ of attitude error results in 17 m of target error in the z = 0

plane.
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Figure 4.24: SA targets in z = 0 plane for loitering figure eight manoeuvre.

Statistics from this scenario over 40 runs are shown in Table 4.5. The z = 0 plane

means show a bias which is due to the figure eight pattern and asymmetry of SA

events that is consistent between runs. The RMS path error is also shown, which

is greater than the other PF cases due to the combination of a complex path and

SA demands. The time spent on SA for this dedicated mission is 48.2% of the total

time, which is approaching the maximum time that can be spent performing SA while

adhering to the PF requirement. This maximum time depends on a variety of factors,

including path and SA attitude requirements, aircraft performance, and frequency of
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SA events. Overall, it is shown that the UAV is able to achieve both PF and SA

requirements using the proposed controller.

Table 4.5: Error statistics for ground target aiming scenario over 40 runs.

Metric Mean σ

z = 0 plane x (m) -5.34 11.46
z = 0 plane y (m) 7.51 12.27

z = 0 plane
√

x2 + y2 (m) 16.95 8.91
SA attitude error (deg) 2.42 1.29
yp (RMS) (m) 3.15 -
zp (RMS) (m) 5.38 -
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Chapter 5

Flight Testing

Figure 5.1: Aircraft component of flight control system block diagram.

This chapter describes the development of the UAV test platform, autopilot hard-

ware, and flight test results. Figure 5.1 contains the flight control system block

diagram with the components relevant to flight testing highlighted. Aircraft construc-

tion, outfitting, autopilot modification, and piloting was performed by the author.
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5.1 Aircraft

The UAV platform is based on a Giant Big Stik 1:60 scale model aircraft with electric

propulsion. The advantages of this airframe include:

• highly manoeuvrable.

• able to accommodate a payload of 4.5 kg.

• easily repairable for minor damage due to wood construction.

• large enough to possess inertia to resist wind disturbances.

• relatively low cost.

Figure 5.2: Giant Big Stik model aircraft configured as UAV.

The disadvantages of the airframe include: a pulling thrust configuration which

restricts the use of forward facing sensors, and a fuselage compartment that requires
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wing removal for access. This airframe has been used extensively by Memorial Uni-

versity’s UAV research team.

Figure 5.2 shows a photograph of the UAV on manual landing approach. A con-

ventional control surface arrangement and excess thrust availability allow the aircraft

to be operated with a relatively short runway and under cross-wind conditions. Max-

imum take-off weight is approximately 14 kg including 4.5 kg of additional payload

capacity beyond frame and batteries. Dimensions of the aircraft are 2 m in wingspan

by 1.4 m in length.

The electric motor can supply up to 2,700 W of power, which is in excess of

the airframe requirement. Propulsion batteries are four 5-cell lithium polymer with

5,000 mAh capacity. They are connected series-parallel to provide 10-cell 10,000 mAh

capacity. At half throttle, the aircraft has an approximate airspeed of 25 ms−1 and

draws approximately 75 A of current. This gives a practical maximum range of 24

km with a flying time of 16 minutes.

Figure 5.3 shows a photograph of the fuselage compartment with avionics compo-

nents labelled. A Pixhawk autopilot module [36] forms the basis for the flight control

hardware. The autopilot uses an external global positioning system (GPS) and mag-

netic compass module with an integrated antenna. A 915 MHz two-way radio link is

used for ground station telemetry and a 2.4 GHz remote control (RC) radio receiver

is used for manual control input. The UAV is also equipped with an Analog Devices

ADIS16488 IMU with dedicated power supply and data logging. Autopilot power is

from a 3-cell lithium polymer with 1,300 mAh capacity and a nickel-metal hydride

battery pack for servo power. The avionics system is shown as a block diagram in

Figure 5.4.
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Figure 5.3: Labelled photograph of fuselage compartment showing avionics compo-

nents.

Figure 5.4: Block diagram of avionics system.
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5.1.1 Autopilot

The Pixhawk autopilot module is used for this UAV. The open source ArduPilot

project software can be installed on this hardware platform. ArduPlane is the fixed-

wing version of the generic ArduPilot autopilot software. This software provides a

variety of functions, but for controls research and development there are several key

features:

• All hardware interfacing is handled by the autopilot software. Variables are

accessible via a hardware abstraction layer (HAL), allowing the code to be

applicable to multiple hardware configurations.

• Telemetry is available and can be customized to provide signals of interest to

the ground control station (GCS).

• Data logging is modular with multiple sample rates for many variables. Data

can be converted in post-processing to a number of formats for analysis.

• The RC interface is handled by the software and the ability to pass through

RC inputs during automatic flight is implemented. This allows the autopilot to

operate at the trim condition and to provide manual disturbance input when

required.

• Autopilot mode switching is achieved by assigning an RC channel controlled by

a switch to various modes. Individual modes can then be modified in the source

code to provide custom functionality.

The ArduPilot is open source and being actively maintained as of this writing.

A disadvantage of the project is a lack of detailed technical documentation on the
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implementation of the low-level autopilot functions. However, implementation of

advanced control algorithms is possible with included mathematics libraries. The

availability of matrix and quaternion calculations via the ArduPilot libraries allow

rapid development of advanced control algorithms on an embedded platform. For

the implementation of the PF algorithm, both the low-level attitude controller and

guidance loops were replaced. The code was modified inside the attitude stabilization

loop to override the normal control function and implement the PF and attitude

controllers.

Control functions for the PF controller had to be “hard coded” in the firmware

because there is no interface to configure the controller in this experimental state.

Switching to PF mode is achieved by assigning one of the auxiliary RC channels to a

mode switch on the transmitter and associating this channel with the autopilot mode

in the software. Once the signal is received to begin PF mode, the current altitude

and heading are used as a reference to begin the PF segment. During initial testing,

software errors resulted in erratic flight and the mode switch was used to quickly

return to manual flight to recover the aircraft. Fortunately, no collision occurred

during any of the flight tests.

5.2 Flight tests

The flight tests were conducted at a recreational flying field located at the Witless

Bay Line on the Avalon Peninsula, Newfoundland, Canada (47◦ 20′ 26.16′′ N, 53◦ 0′

48.96′′ W).

Table 5.1 provides a summary of the main flight tests conducted. Each test is
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Table 5.1: Flight test summary.

Date Airframe Purpose
Nov 26, 2016 EPP-FPV AHRS Validation
Sep 25, 2017 Giant Big Stik UAV System identification data collection
Nov 26, 2017 Giant Big Stik UAV Attitude controller tuning
Dec 6, 2017 Giant Big Stik UAV PF controller testing

described in more detail in the following sections.

5.2.1 AHRS Validation

The first flight test was conducted with a low-cost first person view aircraft to validate

the ArduPlane AHRS with an absolute measurement of attitude to determine whether

the on-board AHRS was suitable to use for PF controller implementation and data

collection. The flight track is shown in Figure 5.5.

N

Metres

0 25 50

Figure 5.5: Flight track on Nov 26, 2016 with EPP-FPV.

Horizon detection was used to estimate the absolute roll angle of the aircraft.

Therefore, a front facing camera was installed in the nose of the aircraft to record

video during flight. Figure 5.6 shows a frame from the video collected during the

71



flight.

Figure 5.6: Video frame showing horizon detection.

A machine vision-based approach to horizon detection using a Hough transform

in OpenCV [6], [13] was used with the appropriate parameters. Detection of straight

line segments with a minimum length more than half the width of the image gave

consistent results for the horizon. An overlay of the automatically detected line is

visible in the video frame. Review of the video with overlay shows accurate results

except when the horizon was not visible due to excessive pitching of the aircraft.

Figure 5.7 shows the roll angle comparison during a segment of flight data. The

horizon-based roll signal has been shifted to align time and orientation offsets. Gaps

in the horizon based roll estimate represent failed horizon detection during image

processing. AHRS roll estimate very closely matches the absolute roll angle measure-

ment. It is assumed that accuracy is similar in pitch1 and therefore the AHRS results

1Previous experience with AHRS development indicates that roll angle is usually more problem-

atic due to the centripetal acceleration term during banked turns. Aside from this, AHRS pitch and

roll calculations are structurally similar.
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Figure 5.7: Comparison of roll angles from AHRS and horizon detection.

are deemed to be reliable.

5.2.2 System Identification Flight

A manual flight test was conducted to collect open-loop flight data for system iden-

tification on September 25, 2017. The flight track is shown in Figure 5.8.

The test manoeuvres included several 400 m length circuits at approximately 100

m altitude. A constant throttle was applied to maintain an average airspeed of 25

ms−1. Oscillatory inputs were applied with each control surface (aileron, elevator,

and rudder) to evoke a system response suitable for system identification. Sufficient

data was collected to allow both identification and validation segments of data which

was detailed in Section 4.2.1.

73



N

Metres

0 50 100

Figure 5.8: Flight track from Sep 25, 2017 with GBS UAV.

5.2.3 Attitude Controller Tuning

Several validation flight tests were conducted at the Witless Bay Line field to ensure

the function of the airframe, radio control link, safety override, and inner stabilization

control loop. Figure 5.9 shows the flight track during one of the stabilization tuning

tests with the segment under automatic control in bold.

Attitude controller tuning giving the desired response was within an order of

magnitude from the gains chosen in simulation. From practical experience, a model

that can be used to estimate tunings within this range is desirable for control system

development. Therefore, the model is deemed accurate for control simulation.

5.2.4 Path Following

The PF controller was implemented in the ArduPilot software and downloaded to the

Pixhawk autopilot. A straight line path was used to demonstrate the controller due

to the difficulty involved in programming a more complex path. Manual control is
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Figure 5.9: Flight track from Nov 26, 2017 with GBS UAV.

used for takeoff and landing, with a controller switch programmed to toggle between

manual and autopilot modes. When the switch is activated, PF along a straight line

begins at the current altitude and heading.
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Figure 5.10: Flight track from Dec 6, 2017 with GBS UAV.

Figure 5.10 shows the PF algorithm being demonstrated several times. The bold
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segments represent automatic flight. Figure 5.11 shows the attitude and trajectory

of the aircraft during one of the PF segments.

North (m)−100 0 100 200 300

East (m)

−300
−200

−100
0

100

Down (m
)

−300

−200

−100

0

100

Figure 5.11: Trajectory for straight path flight test.

Path error for the straight line segment is shown in Figure 5.12. It is observed

that the controller is under-damped which results in oscillation about the position set-

point, yet is stable. Aircraft motion during the PF segment shows controller response

dominating versus disturbances and therefore, with adequate tuning, the response

can be improved.

The straight line PF was tested three times during the flight. The path error

statistics are summarized in Table 5.2. Given the level of effort required to conduct a

single flight, it was difficult to fully tune the controller and demonstrate more complex

PF segments. However, the path errors for the three segments conducted demonstrate
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Figure 5.12: Path error for straight path flight test.

a successful controller developed with a fit-for-purpose aircraft model in simulation.

Table 5.2: Path error statistics for PF test segments.

Segment yp (RMS) (m) zp (RMS) (m)
Test 1 4.33 2.73
Test 2 3.57 2.45
Test 3 4.44 2.65
Average 4.11 2.65
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Chapter 6

Conclusions

This thesis describes a solution to SA for UAVs from theory to experimentally verified

simulation. A 3D PF algorithm is developed which uses aircraft attitude as an in-

termediate control variable. A method for merging SA requirements with PF control

is proposed, explicitly using aircraft attitude to perform gimbal-less SA for the first

time.

A unique aircraft modelling approach is taken to create a fit-for-purpose model

from recorded flight data suitable for use in simulation and control system design.

The simulation results demonstrate the success of the PF controller to guide the

aircraft along a prescribed path using a generalized approach. SA simulations show

the applicability of the controller to achieve sensor aiming without the use of a gimbal.

The modelling and simulating approach is verified with a flight test demonstration

of the PF controller. The controller tuning from simulation gave a stable response in

actual flight, which justifies the aircraft modelling approach.

The main contribution of this thesis is the SA flight controller. This controller is
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shown to be capable of eliminating the need for electronic gimbals for cases where an

intermittent and limited duration time-on-target is acceptable. By fixing the sensor

to the airframe, a more reliable, efficient, and cost-effective sensing platform can be

deployed. Depending on the PF objectives, the path deviations required for SA can

be accepted to justify these advantages.

The development of the SA flight controller in this thesis covers the complete

design cycle from initial concept, theoretical design, modelling, simulation, and flight

testing. Several iterations were performed from flight testing to model identification

to simulation, resulting in a refined overall solution.

A B A,B

Figure 6.1: Contributions towards manoeuvrable sensor concept.
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Figure 6.1 contains a diagram illustrating the major contributions of the current

thesis beneath the future possibility of manoeuvrable sensors. The subscripts A and

B refer to the publications as discussed in Section 1.3. The theoretical basis serves

as the root of the development of applications leading to new concepts regarding

unmanned vehicles.

Together, the PF and SA controllers form a type of dynamic path planning method

that incorporates both vehicle and sensor tracking requirements. By allocating these

requirements to path planning, the design of the vehicle and sensor can be simplified.

Path planning has the capacity to incorporate additional requirements such as DAA,

terrain tracking, obstacle avoidance, and dynamic seeking.

The concept of a simplified vehicle/sensor combination can be used to make

smaller, more robust systems. For example, a small fixed-wing UAV could be de-

signed with a fixed camera embedded inside the airframe with a lens flush to the

fuselage. By manoeuvring the aircraft appropriately, the camera could capture im-

ages from any conceivable angle or position, despite having no moving parts in the

sensor assembly. The SA concept is also applicable to both manned and unmanned

aircraft.

Considering the design paradigm of blending vehicle and sensor, the underwater

environment is an obvious pursuit. Due to the harsh nature of the environment,

eliminating the requirement for a gimbal mechanism or reducing sensor protrusion

is beneficial to the design of a vehicle. In addition, isolation in the underwater en-

vironment encourages simplification of the vehicle design to reduce the likelihood of

malfunction.

All of the concepts presented in this thesis are directly applicable to AUVs with
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minimal changes. A similar dynamic modeling approach can be taken with AUVs

using system identification data from manoeuvring data. The PF controller can be

modified in the control law relating positional offset error to desired attitude, to

suit the AUV. Due to the differences in control surface arrangement in AUVs ver-

sus aircraft, attitude control must be allocated appropriately from the body torques

specified by the attitude controller. Another difference between AUVs and aircraft

involves buoyancy, which for AUVs allows depth control without reliance on lift. This

makes AUVs more flexible to perform SA attitude changes without significant path

departure.

Despite the adequacy of the developed SA flight controller, the ideal method in-

volves an MPC-like approach wherein the future path is predicted and optimized

with constraints. Such a predictive method could be used to combine the PF and

SA requirements without a weighting function but by imposing state constraints on

the future prediction. However, due to the multivariate nature of the 6-DOF path

planning problem, MPC implementation is formidable. The non-linearity of the dy-

namics to be predicted and optimized results in a complex mathematical formulation

difficult to solve.

Future work involves incorporating such a predictive method, perhaps in a reduced

dimensionality, to improve the intelligence of PF and SA combination. For example,

the desired sensor attitude may coincide with a PF attitude that tracks a desirable

path, or vice versa. Currently, the proposed controller is not intelligent in this way,

and such an outcome would be due to chance. Another aspect of future work involves

using the manoeuvrable sensor concept to design a vehicle specifically intended for

SA applications, such as a small fixed-wing UAV with a fixed camera.
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