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Abstract

Neonicotinoids are a class of insecticides recently developed as more environmentally

friendly alternatives to traditional organophosphate, carbamate, and pyrethroid in-

secticides. Through continuously expanding global use of neonicotinoids, they have

become the most widely use insecticides. In addition, there are increasing concerns

regarding their use, particularly regarding their effects on pollinating and aquatic

species. Regulatory agencies are beginning the phase-out and restriction of neonicoti-

noid insecticides in Europe and North America.

This research details the development of a comprehensive method of analysis for

neonicotinoid insecticides in aqueous environmental matrices. Analytical methods are

developed for routine, high-throughput, quantitative measurements of neonicotinoids;

and new sampling, extraction, and pre-concentration techniques are examined.

By combining UHPLC with a simpler method and superficially porous column

technology, the elution program for the six neonicotinoids of interest is reduced from

a literature average of 9 minutes, to just 2.7 minutes for baseline separation. Addi-

tionally, tandem mass spectrometry is used to lower instrumental limits of detection.

Separation and extraction procedures can be eliminated entirely through the adap-

tation of TDU-DART-MS, methods for which were developed and optimized for the

neonicotinoids. Finally, the novel MIP-SPE procedure is used with high sensitivity

to selectively extract neonicotinoids of interest from environmental matrices. Method
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detection limits are lowered to fall between 0.1 and 1 ng L-1, and local waterways are

shown to demonstrate a presence of neonicotinoids while using this method.
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Chapter 1

Introduction

1.1 Overview

Better methods for the determination of neonicotinoid insecticides in environmen-

tal samples is an important area of research amongst environmental and analytical

chemists. As the use of neonicotinoids continues to expand on a global scale, so too

do the potential effects on pollinators and other non-mammalian species. Since their

initial development and sale, regulatory agencies are growing increasingly concerned

with their use. In order to better map their distribution, persistence, and effects

on environmental systems, better methods of analysis are needed to improve sample

throughput, limits of detection, and selectivity.

1.1.1 Introduction to Neonicotinoids

Neonicotinoids are a class of insecticides whose development began in the early 1990s

as a more environmentally friendly alternative to widely used organophosphate and

methyl carbamate insecticides.1 Prior to their introduction, the market for insecticides

was dominated primarily by organophosphates (43%), pyrethroids (18%), and carba-

1



mates (16%).2 Beginning in the 1960s, organophosphate insecticides were drawing

increased attention as having detrimental effects on avian species. Shortly following

this, concerns arose regarding their continued use and potential effects on mammalian

populations, including humans.3,4 Increasing demand for more targeted insecticides

with minimal environmental damage and undesirable side effects grew, leading to the

collaborative synthesis and patenting of imidacloprid by Shell and Bayer CropScience

in 1991.1 Following the release of imidacloprid, the class of neonicotinoids has ex-

panded considerably to include acetamiprid, clothianidin, dinotefuran, nitenpyram,

thiacloprid, and thiamethoxam.1,5–7 Together, these seven neonicotinoid insecticides

account for more than 25% global insecticides sales by volume,8 and were reported to

be used in more than 120 countries worldwide in 2008.9 Their usage has expanded as

well, to include agricultural, domestic, and veterinary applications.10

1.1.2 Pharmacology

Imidacloprid was first synthesized in 1991 by Elbert and Overbech.5 While aqueous

tobacco extract had been used previously, it was found to be largely non-targeted

and ineffective as an insecticide. The neonicotinoids are all derived from the lead

structure nithiazine (Figure 1.1), which was found to have some low level, but non-

targeted insecticidal activity, as well as moderate toxicity towards mammals. 1

Through the addition of functionalities to a para-chloropyridine moiety, pharma-

cological active compounds are established, to target those insects which feed on the

root systems, stems, and leaves of agricultural crops.11 Structurally distinct from all

other classes of insecticides, neonicotinoids are designed for enhanced binding within

the pocket of the nicotinic acetylcholine receptor (nAChR), by inclusion of an elec-

tronegative nitro or cyano group on the pharmacologically active chain. The majority

of other insecticides inhibit the functionality of acetylchloline esterase. In mammals,

2
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the electronegative moiety is metabolized into a protonated or oxidized version of the

neonicotinoid, which does not effectively bind within the nAChR, greatly reducing

the toxicity in mammals. In contrast to lower mammalian toxicity, insects have an

additional cationic amino acid found within their nAChR. This allows for the elec-

tronegative neonicotinoid species to more strongly coordinate within the receptor,

making for a potent and highly targeted insecticide.12 Additionally, vertabrates have

a lower number of nACh receptors capable of binding to neonicotinoids than insects,

making the insecticides particularly useful at targeting specific species.10 Upon expo-

sure to neonicotinoids, the nAChR is stimulated, and high enough concentrations in

insects can induce paralysis, leading to respiratory arrest and death.13

1.1.3 Uses and Applications of Neonicotinoids

The primary use of neonicotinoids is in the treatment of agricultural crops for piercing

and sucking insects. These insects include aphids, whiteflies, planthoppers, thrips,

micro lepidoptera, and coleopteran pests.2 One of the reasons the neonicotinoids are

exceptionally effective towards these pests is their mode of deployment in agricultural

fields. As opposed to spraying crops like in the application of organophosphates,

pyrethroids, and carbamates; neonicotinoids are primarily deployed as seed coatings. 14

By treating the seeds of agricultural crops with neonicotinoids prior to planting, the

neonicotinoids will become distributed throughout the root system, stem, and leaves

of the plants as the plants grow.15 This follows an increasing trend towards precision

agriculture in North America, where farmers are able to ensure pesticide is treating

every plant, while also reducing environmental impact through a reduction of spraying

applications.2,16 Neonicotinoids can also be applied by addition to crop irrigation

systems, again minimizing environmental impacts through spraying the insecticides.

In addition to agricultural treatments, the use of neonicotinoids has expanded to
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include a variety of additional applications. These include treatment of household

pests, including ants, houseflies, and cockroaches; as well as veterinary applications,

such as the treatment of flees.1,2,8,11,17

1.1.4 Structure, Synthesis, and Physical Properties

Neonicotinoid insecticides can be divided into three groups based on their sim-

ilarities in the structure of the pharmacologically active site. These categories

are the N -nitroguanidines (imidacloprid, nitenpyram, clothianidin, dinotefuran), N -

cyanoamidines (acetamiprid, thiacloprid), and N -nitromethylamines (thiamethoxam)

(Figure 1.1). The N -nitroguanidines include four of the neonicotinoids and account for

the majority of the market for neonicotinoids. All neonicotinoids contain a chloride-

substituted 5 or 6 membered nitrogen-containing aromatic ring, onto which a cyclic or

acyclic pharmacophore side chain is attached.1 This unique class of structure amongst

insecticides allows them to effectively bind within the nAChR of insects. Imidacloprid,

the first synthesized, was found to be incredibly effective towards a variety of pests.

It was designed to fit into the nACh receptor in insects, through functionalization of

a nitromethylene precursor. All other neonicotinoids are based on this function, with

modifications made to the pharmacological active site depending on desired treatment

application and pests targeted1,13

As the primary application method in agricultural settings is through seed coat-

ings, it was designed to be highly water soluble, and resistant to the influence of rain

and sun when found within plants. It is resistant to photo-degradation, yet decom-

poses by photolysis and hydrolysis when found outside treated species, as a means of

minimizing environmental distribution.13 The molecular weight of the neonicotinoids

ranges from 222 to 291 g mol-1, with log P values between -0.66 and 1.26 (Table

1.1).12,18 The relatively low log P values indicate a strong affinity towards water, as

5



Table 1.1: Physical data for the neonicotinoid insecticides including molecular weight,
logP values, solubilities, and half-lives.

Neonicotinoid Molecular Weight Solubility log(P) Half-life Half-life
(mg/L) (Photolysis (aq))(Days) (Water-Sediment)(Days)

Acetamiprid 222 2 950 0.80 34 Stable
Clothianidin 249 340 0.70 0.1 56.4
Imidacloprid 255 610 0.57 0.2 Stable
Nitenpyram 270 590 000 -0.66 Stable Stable
Thiacloprid 252 184 1.26 Stable 28
Thiamethoxam 291 4 100 -0.13 2.7 40

expected. The solubilities of the neonicotinoids in water ranges from 184 to 590 000

mg L-1.12 They have varying half lives in the envrionment with decomposition pri-

marily through aqueous photolysis. The half lives for the neonicotinoids vary from a

minimum of 0.1 days to stable, indicating the compound is resistant to degradation.

Although the relatively short half-life by aqueous photolysis is desirable, a challenge

is presented in their analysis, caused by the relatively short photolytic half-life in

aqueous systems. Care must be taken to avoid exposure to light while the neoni-

cotinoids are stored or sampled in the aqueous phase. In contrast to their aqueous

photo-degradation, neonicotinoids show long or immeasurable half-lives when they

are found in the sediment, or in plants. The fastest degrading compound, thiacloprid,

has a half-life of 28 days, while most other neonicotinoids have half-lives measured in

months or years.18 This data is presented in Table 1.1.

1.1.5 Environmental Persistence

Due to the relatively long half-lives, resistance to degradation, and affinity for water,

neonicotinoids have been found to be highly persistent in the environment. Studies of

soil in agricultural areas treated with insecticides suggest that only 6% to 20% of the

applied treatment is absorbed by the crops.19 While neonicotinoids are marketed as

precision agricultural products, up to 90% of the active ingredient is distributed in the

soil, air, and water of the surrounding area. A study which investigated spring snow
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melt runoff in the Canadian prairie region found concentrations of thiamethoxam as

high as 14 mg L-1 in as many as 91% of samples collected.20

1.1.6 Concerns Regarding the Continued Use of Neonicoti-

noids

Neonicotinoids are popular and since their introduction in the early 1990’s have grown

to be the most widely used insecticides in the world as of 2012.1 However, continued

and widespread use of neonicotinoid insecticides is suggested as a significant contrib-

utor to declining populations of pollinating species, particularly honeybees. In addi-

tion, they are suspected as having detrimental effects on aquatic and avian species.19,21

There have been numerous studies published on the effects of neonicotinoids on bees,

with results ranging from little demonstrated effect, to results which demonstrate a

direct link between neonicotinoid use and colony collapse disorder.8,21–27 The true

effects of neonicotinoids on pollinating species remains an area of active discussion in

the scientific community. The general consensus is that the neonicotinoids do have

a demonstrated negative impact on pollinating species, however the extent of these

effects remains an area of active research. In addition to research, the use of neon-

icotinoids has become a public phenomenon, as media outlets have begun reporting

on the effects of neonicotinoids, and public concern regarding their use is climbing.

1.1.7 Bees and Pollinators

With the demand for fruit, vegetables, and grain increasing with a growing popula-

tion, the drive to maximize crop production becomes an area of great importance in

agriculture. While the use of neonicotinoids remains an important part of minimizing

losses due to pests,2 the role played by pollinators in crop production can often be
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overlooked. Bees and other pollinators play a key role in the production of many

staple food crops. A study of 107 global crops for direct human use indicated that

honeybees and wild pollinators were valuable in ensuring crop production and high

yield for 35 crops, and 12 crops were entirely dependent on pollination by honeybees.28

Additionally, the study found that some flowering crops, such as strawberries, were

only fully developed in the presence of both honeybees and wild bees, which provide

the necessary pollination for reproduction. Bees are one of the only pollinators to

actively gather significant amounts of pollen, moving it between plants.26 While some

studies indicate the contribution of bees towards the crop yield for any particular crop

is negligible when compared with other wild insects,29 other studies indicate that the

presence of bees is critical to the successful pollination and production of fruit from

crops.30 There remains a contentious debate in the scientific community regarding the

true effects of bees versus other pollinators on wild crops, however, a consensus has

been reached that neonicotinoids appear to have a negative impact on bees, and bee

populations; and that pollinators are important in the continued production of world

crops.19,23,24,26,28,31

1.1.8 Effects of Neonicotinoids on Bees

In bees, certain subsets of neonicotinoids such as thiamethoxam and acetamiprid

which contain N-cyano moities are classified as nearly non-toxic, while others are

classified as extremely harmful.11 Imidacloprid, the first neonicotinoid, is categorized

as highly toxic to bees. Both the neonicotinoid and its metabolites are known to

have detrimental effects on the population of bees.32 Imidacloprid and its metabolites

bind irreversibly to the nAChRs, which in bees, are involved in higher-order neuronal

processes.32 These primarily include olfactory learning, and communication; however

the presence of neonicotinoids in these receptors has also demonstrated negative ef-
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fects on navigation, learning, food collection, longevity, and resistance to disease. 21,32

Through careful examination of molecular recognition sites in bees and other in-

vertebrates, researchers have identified two types of nAChRs, labelled nAChR1 and

nAChR2. Certain neonicotinoids target nAChR1, while most target nAChR2.33 It

is the combination of multiple binding sites for neonicotinoids, as well as multiple

biological metabolites of the neonicotinoids, that leads to their potency, particularly

in bees.

Examining the concentrations of neonicotinoids found in pollen, nectar, leaves,

and honey highlights the broader issue of continued use of neonicotinoids. Concen-

trations of neonicotinoids in crops have generally been found at concentrations that

if ingested, would be above the LD50 for neonicotinoids for bees, which range from

0.007 to 0.06 µg bee-1.16,20,24,34,35 The contamination of pollen and honey products

with neonicotinoids is also indicative of the exposure of bees to the insecticides.24

Additionally, the mechanism of seed treatment, widely accepted as environmentally

friendly, has recently drawn increasing criticism, as up to 90% of the applied seed

treatment is lost to the environment, carried away in water or as dust, to which bees

are readily exposed.19,22

Honeybees also have demonstrated an affinity for neonicotinoid treated crops.

In a study by Kessler et al., bees were shown to prefer sucrose solutions contain-

ing the neonicotinoid imidacloprid and thiamethoxam.36 In the study, researchers

realized that bees were unable to detect the presence of neonicotinoids imidaclo-

prid, thiamethoxam, or clothianidin; and no adverse effects were initially observed at

field-level concentrations, however the nAChR was observed to be functionally mildly

inhibited.36

As wild bees and honey bees have shown different metabolic pathways and rates

towards neonicotinoid insecticides, this further complicates the studies regarding the
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true and complete effects of neonicotinoids on bees.31,37 Additionally, it remains nearly

impossible to replicate true field conditions, and accurate environmental distribution

in laboratory tests.

1.2 Existing Methods of Analysis for Neonicoti-

noids

As neonicotinoids remain a growing regulatory concern, research towards new meth-

ods for their analysis becomes increasingly important. Neonicotinoids are present

in a wide variety of matrices, including soil, plants, leaves, pollen, honey, produce,

waterways, and dust.1,2,9,11,16,18,20,34,35,38 Analytical methods need to be robust and

high-throughput, yet selective for neonicotinoids, as many of these matrices are com-

plex, containing other insecticides, herbicides, and environmental contaminants. To

date, there exist a limited number of methods that are moderately effective for ex-

tracting and pre-concentrating neonicotinoids from environmental matrices, but do

suffer from some significant drawbacks. The most widely used method is the Quick

and Easy, Cheap, Effective, Rugged and Safe (QuEChERs) method for pesticide ex-

traction.39 The other routine method is direct liquid-liquid microextraction.34 Both

methods are often followed by a variety of analytical techniques including liquid or gas

chromatography, with photo-diode array or tandem mass spectrometry detection. 34,35

1.2.1 Solid Phase Extraction

Perhaps the oldest method of analysis for pesticides is solid phase extraction (SPE).40

Solid phase extraction usually uses cartridges filled with selective sorbent onto which

analytes bind under appropriate loading conditions. For example, using a C-18 reverse

phase sorbent, analytes such as caffeine will bind under aqueous conditions. These
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bound analytes can later be eluted using organic solvents. The advantage of using

SPE is its ability to pre-concentrate and clean up analytes from matrices. This allows

for lower limits of detection, as large volumes of low concentration sample can be

pre-concentrated on the cartridge and later eluted with only a few mLs of solvent.

While useful for a variety of analysis, SPE cartridges are not selective enough for

the exclusive analysis of neonicotinoids. The most common sorbents for pesticide

analysis, C18 and primary-secondary amine (PSA), select for a wide array of pesticides

including organophosphates, carbamates, and pyrethroids, as well as neonicotinoids.40

1.2.2 Direct Liquid-Liquid Microextraction

DLLME is an analytical technique first developed in 2006 by Rezaee et al.41 In this

technique, small scale liquid-liquid extractions are performed, which depend on an-

alyte affinity for one solvent over another. This technique is primarily suited to the

analysis of organic molecules in water. However, since neonicotinoids are highly polar,

water-soluble molecules, DLLME may not be the optimal choice for their analysis.

While some methods have used DLLME for neonicotinoid analysis, with limited suc-

cess, most methods make use of the QuEChERs dispersive-SPE procedure, which is

far more robust and reliable than DLLME.42

1.2.3 QuEChERs Method

The QuEChERs method is a widely adapted technique for the analysis of a variety

of pesticide residues in a large number of matrices. It is considered the most widely

used method for pesticide residue analysis in industry and environmental monitoring

applications, and is validated both in Europe as EN 15662:2008 and the United States

as AOAC 2007.39 QuEChERs is used to extract neonicotinoids, organophosphates,

carbamates, and other insecticides, as well as a variety of herbicides from a range
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Figure 1.2: Simplified flowchart for the QuEChERs EN 15662 procedure illustrating
the extensive sample preparation process.

of matrices including fruits, vegetables, honey, pollen, and soil. Due to its range

of applications, it is widely considered the standard method for pesticide residue

analysis.39,43 The method, while useful for analysis in a wide variety of matrices, and

for an array of pesticides, has a number of drawbacks. Due to its limited selectivity,

instilled due to the capability to assay all pesticides in a sample, LC or GC methods

can be more complicated and lengthy, needing to separate the analytes of interest as

well as all non-targeted analytes present in the matrix. Additionally, the QuEChERs

method can be time consuming and costly. There are a large number of steps which

are capable of introducing error in the method, as well as extending the analysis

time (Figure 1.2). Pre-fabricated QuEChERs kits are readily available, however,

at the time of writing, these can cost up to $7 per sample. While highly useful

for broad pesticide residue analysis, more selective sample preparation methods for

neonicotinoids could reduce analysis time and cost.

The QuEChERs method has a significant limitation in that it is not optimized for

the analysis of neonicotinoids. Its ability to non-selectively target pesticides reduces

the number of potential binding sites for neonicotinoids in the dSPE step, as well as

its pre-concentration ability for neonicotinoids. This potentially leads to enhanced

matrix effects when monitoring for neonicotinoids only.

1.2.4 Liquid Chromatography

Liquid chromatography is a widely used analytical technique for aqueous analysis. It

is the most widely used analytical technique for the analysis of neonicotinoids. There
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are numerous methods which make use of liquid chromatography coupled to either a

photo-diode array or tandem mass spectrometer for quantitative analysis. 34,35,40,42,44–48

The majority of existing methods make use of a C18 reverse phase column and HPLC,

which is capable of achieving complete separation of six to eight neonicotinoids in an

average of 11 minutes, with method run times varying between 9 and 17 minutes. All

of these existing methods make use of a gradient elution program, and many of them

use a complex buffering system, which are likely both relics of previous methods. As

neonicotinoids are a relatively new class of interest to analytical chemistry, litera-

ture methods have been developed rapidly for fast publication. This is most easily

achieved by adaptation of existing methods for compounds of similar size, solubility,

and polarity.

Existing methods have the potential to be improved through careful method de-

velopment. The use of isocratic elution programs is preferred, as there is no column

equilibration time between runs, which greatly improves sample throughput. Buffer-

ing can be eliminated as the neonicotinoids should all be singly protonated in solutions

with a pH less than 5. Additionally, the use of ultra high performance liquid chro-

matography (UHPLC) has significant advantages. UHPLC can use lower flow rates

at higher column back-pressures. This is a consequence of using smaller particles to

improve separations and reduce peak widths. The smaller particle size provides higher

theoretical plates in shorter column lengths compared with HPLC columns by reduc-

ing the multi-path and mass transfer factors in broadening. The smaller particles

require higher pressures to maintain the linear velocities seen with HPLC.

Separation timescales can potentially be improved further through the use of su-

perficially porous column technology. Superficially porous columns have solid core

particles, onto which the active reverse phase stationary substrate is grafted. For ex-

ample, C18 chains can be grafted onto solid particles. This type of column technology
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is widely considered to possess significant advantage over porous silica based particle

columns. They typically allow for increased flow rates at reduced pressures, which is

highly useful in separating analytes of interest. While superficially porous columns

were initially designed to improve HPLC separations, they have since been designed

for advanced UHPLC applications. This combination of the two technologies allows

for significantly improved separation capabilities at reduced backpressures, leading to

narrower peaks.

1.2.5 Photo-diode Array Detectors

Photo-diode-arrays (PDAs) are versatile detectors for a wide variety of molecules.

They are routinely coupled to chromatography instrumentation as a first choice for

reproducible and robust detection. While they are less sensitive to lower concen-

trations, and less selective than mass spectrometry methods, they can be a useful

alternative provided the method is designed to accommodate their disadvantages.

In a typical PDA detector, light covering the UV and visible spectrum is shone

through a flow cell, placed at the outlet of a chromatography column. The light is

usually absorbed by compounds passing through the flow cell, which causes changes

in the number of photons of various wavelengths detected by the photo-diode array. 49

Unlike UV/Vis spectrophotometers, a photo-diode array is capable of detecting indi-

vidual wavelengths over a range of concentrations simultaneously, which can be used

to improve selectivity and sensitivity. One drawback however, is that the light emitted

from the lamp source is only estimated by the detector, as no light is passed to a ref-

erence cell. This means that the results are susceptible to baseline drift, and changes

in sensitivity as the lamp ages.49 However, the technique remains highly useful, par-

ticularly because the reproducability is often superior to that of mass spectrometry,

unless complex and costly standardization is applied.
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Table 1.2: Maximum UV absorbance wavelength for neonicotinoids

Neonicotinoid λmax (nm)
Acetamiprid 245
Clothianidin 266
Imidacloprid 269
Nitenpyram 268
Thiacloprid 242
Thiamethoxam 251

As neonicotinoids are all UV absorptive compounds at different wavelengths (Table

1.2), they are readily detectable with a PDA detector. Due to the limited selectivity

of this method, care must be taken to identify individual standards for the analytes of

interest, and match their retention times in a multistandard sample. Methods which

use PDA for detection need to be pre-concentrated above the LOD, which is higher

than that of mass spectrometry methods. Its simplicity and reproducability makes

it a useful choice for routine, high-throughput analysis with minimal maintenance or

instrument upkeep for a large number of samples, dependant on the efficacy of the

extraction, concentration, and clean-up method.

1.3 Mass Spectrometry

In MS, ions are generated in a source then separated by mass-to-charge ratio (m/z)

in a field. Ions of interest are selected through manipulation of these potentials and

are passed to a detector. Detection is performed by one of two methods. Most

mass analysis techniques such as time-of-flight, and quadrupoles utilize an electron

multiplier, where ions hitting the detector produce a DC current, which is amplified

to produce a signal. The other type of detection makes use of a time-domain image

current, where ions oscillate in proximity to the detector, but no physical contact is

made. The time domain can be converted to a frequency domain, where frequency is
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dictated by m/z. This research utilizes multiple types of mass spectrometric detection,

as well as numerous ionization and mass selection techniques.

1.3.1 Atmospheric Ionization

Prior to the introduction of atmospheric ionization techniques, mass spectrometry was

primarily limited to electron or chemical ionization.50 Beginning with atmospheric

pressure chemical ionization (APCI), the use of atmospheric ionization techniques

including electrospray ionization (ESI), have grown substantially. There are a handful

of other techniques such as direct atmospheric photoionization (DAPPI), however

these other ionization techniques have not seen the same level of adaptation as ESI,

and APCI.

Nearly all methods for analysis of neonicotinoids utilize electrospray ionization,

as it couples easily with liquid chromatographic techniques and is effective for the

ionization of polar molecules.40,44,46,47 There are only a few methods for neonicotinoid

analysis published that make use of ambient ionization such as desorption electrospray

ionization (DESI),51–53 and no published methods exist for the analysis of neonicoti-

noids using direct analysis in real time (DART) ionization at the time of writing.

Electrospray Ionization

ESI works by the solvent, which contains analytes of interest, passing through a

charged needle which forms a Taylor cone at its tip. Ions are generated through two

models: the charge residue model, or ion evaporation model.54 For both models, it

is the solvent that is charged by the electric potential applied to the spray needle,

the charged solvent then ionizes analytes. In the charge residue model, small charged

droplets of analyte undergo radial evaporation in the transfer from Taylor cone to

mass spectrometer inlet. By the time the analyte reaches the mass spectrometer
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inlet, the solvent has evaporated, leaving a residue of charge on the analyte. The ion

evaporation model differs, as the high positive charge in the solvent droplets forces

the ejection of charged analytes to reduce the overall charge on the droplet. While it

has been theorized that charge-residue occurs primarily with larger molecules, and ion

evaporation with smaller molecules, in reality, both charge-residue and ion evaporation

likely work in tandem to produce charged analytes for analysis.54

Desorption Electrospray Ionization

DESI is a relatively new ionization technique introduced in 2004.55 It is similar to

electrospray ionization, however has a different geometry and sample introduction

method. As opposed to ESI, where the sample in contained within the solvent, in

DESI, the sample (usually a solid or liquid on a fixed or adjustable stage) is sprayed

using DESI-generated charged solvent droplets, and the resulting secondary droplets

are redirected into the mass spectrometer. This allows for direct sampling on a va-

riety of matrices, particularly solids, with no complex sample preparation. Previous

methods have used DESI to perform direct analysis of neonicotinoids within plant

material, including direct analysis of leaves and flowers.52

Due to the similarities between ESI and DESI, many of the method parameters

from ESI are transferable to DESI, including spray voltage, flow rates, and inlet

temperatures. However, there are additional parameters that must be optimized.

The majority of these parameters are geometric parameters, including angle of spray,

distance from spray tip to surface, and distance and angle from the surface to the

mass spectrometer inlet. Also of importance is selecting an appropriate spray solvent

so that the sample becomes saturated with solvent, allowing for efficient extraction

of analytes from the surrounding matrix. Often times, additives will be used to

encourage analyte protonation or extraction efficiency.55,56
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Direct Analysis in Real Time

DART is another example of an atmospheric ionization technique; however, it is sig-

nificantly different from APCI, ESI, or DESI. DART was first published in 2005, one

year following DESI.57 DART utilizes a metastable species to induce ion formation.

Carrier gasses such as helium, argon, or neon, are excited using an electrical potential

to produce metastable species. The metastable species flows through a gated poten-

tial, which removes charged molecules. Both positive and negative ions are produced

simultaneously by DART. In positive ionization mode, the metastable gas species

reacts with atmospheric water to produce protonated water clusters. These water

clusters then transfer charge to analytes of interest. Protonated analytes are then

drawn into the mass spectrometer inlet. An external vacuum pump is used to create

the additional vacuum required to draw large numbers of gas phase ions into the mass

spectrometer.

Ionization mechanism for DART in the positive mode

He(2 3S) + H2O −−→ H2O+· + He(1 1S) + e–

H2O+· + H2O −−→ H3O+· + OH·

H3O+· + nH2O −−→ [(H2O)nH]+

[(H2O)nH]+ + M −−→ MH+ + nH2O

DART is arguably more useful for routine analysis of larger samples when compared

with DESI. There are far fewer adjustable parameters, which allows for rapid method

optimization. Additionally, the parameters are more easily defined and reproducible

when running samples. Parameters for DART include metastable gas temperature,

ion grid voltage, type of metastable species, and the optional use of dopants. The

metastable species selected is dependent on the ionization potential of the analyte of
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interest. The choice of metastable species can lead to selectivity amongst analytes,

where ionization energies of the metastable species below that of the background will

lead to a reduction of background or matrix ions in the mass spectrometer. The use

of dopants in the metastable gas stream is also interesting. For example, the addition

of DCM vapour in the metastable species produces [M+Cl], and ammonia vapour

produces [M+NH4].58 It is worth noting that DART is a soft ionization technique,

producing only [M+H] or [M-H] mass spectrum peaks with minimal to no fragmen-

tation.57,58

1.3.2 Mass Detection

Throughout this project, three types of mass detection were used for the analysis

of neonicotinoids. Fourier-transform ion cyclotron resonance (FTICR), quadrupole

time of flight (QTOF), and triple quadrupole (QqQ) mass analyzers were used. Both

FTICR and QTOF detection offer high resolution mass spactra for accurate detection

of compounds of interest in complex matrices. Due to the high-resolution, they can

perform accurate mass determination of the neonicotinoids of interest, and can per-

form non-targeted analysis of environmental samples, which is useful in examining the

matrix of samples of interest. By identifying key matrix components, the efficacy of

the developed methods in this research can be examined for their ability to selectively

extract and detect neonicotinoids over other insecticides.

1.3.3 Tandem Mass Spectrometry

The most used technique for detection of neonicotinoids in this research is tandem MS.

Tandem MS is chosen for its selectivity and excellent detection limits. In this work,

the MS/MS is accomplished using three quadrupoles in tandem. This configuration is

capable of performing a number of mass spectrometric experiments, including product
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ion scans, precursor ion scans, neutral loss scans, and selected reaction monitoring

(SRM). In SRM, ions of interest are selected in the first quadrupole, fragmented

in the second quadrupole, and the fragment ions selected and detected in the third

quadrupole. This minimizes matrix effects by selecting only the ions of interest, and

viewing only the product of their fragmentation. Using SRM can often lower the limits

of detection by full orders of magnitude compared to single quadrupole systems, which

is often necessary to achieve envrionmentally-relevant sensitivity.

1.4 Molecularly Imprinted Polymers

Molecularly imprinted polymers (MIPs) are analyte recognition materials. Rigid poly-

mer frameworks are formed by of co-polymerized monomers and cross-linkers. Tem-

plate molecules are added at the time of polymerization and later removed, leaving a

porous polymer structure, capable of selectively binding targeted molecules of inter-

est. MIPs can be fabricated in a variety of formats, including bulk polymer, thin-film,

and grafted onto solid supports such as silica. Each format has unique advantages

and disadvantages, which will be discussed in this section.

1.4.1 An Overview of Molecularly Imprinted Polymers

Fabrication of molecularly polymers is a relatively simple, yet highly tunable process.

MIPs are formed by free-radical polymerization of a pre-polymer complex (PPC)

containing template or pseudo-template, monomer, cross-linker, free-radical initiator,

and solvent system. The solvent system is often referred to as porogen due to its

significant impact on formation of the pore structure.59–62 Each of these factors can

be modified to tailor the function of the resultant MIP.

All MIPs are synthesized by polymerization of a solid structure around a template
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Figure 1.3: Illustration of the MIP templating process, showing an analyte (red)
reversibly binding within the porous polymer structure (yellow).

or pseudo-template molecule (Figure 1.3). The template binds to the polymer either

through ionic (non-covalent MIPs) or hydrogen bonding or π-π interactions (cova-

lent MIPs). The majority of MIPs for non-metal analysis utilize the non-covalent

approach, or a semi-covalent complexation between the template and the functional

monomer.59,62 This type of approach focuses on a strongly bonded polymer back-

bone, with an easily removable template or analyte binding site. The presence of the

removable template ensures the appropriate functional groups in the polymer back-

bone are oriented such that the MIP has pores of appropriate size and functionality

to selectively bind target analytes over the matrix. While the analyte itself may be

used as the template molecule, this presents certain issues, such as template bleed-

ing. This occurs when quantitative template removal is not achieved, resulting in

artificially high concentrations and false positives. This is often avoided with the use

of a pseudo-template molecule, which resembles the target analyte in both size and

functional groups. The use of a pseudo-template retains the selective action of the

MIP, while eliminating the problems associated with template bleeding, allowing for

more accurate results.59–62

The monomer provides the majority of functionality to the polymer. Typically,

vinyl-terminated monomer units are used in conjunction with an appropriate cross-

linker molecule, which provides the rigid structure of the polymer.60 The monomer
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units are selected with the target analyte in mind. Where the binding is expected

to occur through hydrogen bonding, monomers with hydrogen-bonding capabilities

through carbonyl or hydroxy groups are selected. These typically include methacrylic

acid (MAA) or 2-hydroxyethyl methacrylate (HEMA). Where the analyte lacks hy-

drogen bonding capabilities, π-π interactions can be favoured by selecting monomers

with cyclic-aromatic units such as styrene or 2-vinyl pyridine (2-VP).59,60 Cross-linkers

are used to join monomer units together, which allows for control of pore sizes and

provides increased rigidity to the polymer, allowing the pore structure to be retained

in the absence of the porogen.

Perhaps one of the most important aspects of the PPC is the choice of porogen.

The porogen is responsible for the formation of pore structure in the polymer, and

is responsible for driving template-monomer interactions during fabrication, as well

as is primarily responsible for driving the binding of the analyte into the polymer.

The porogen must be carefully selected prior to polymerization. Template-monomer

interaction is crucial to the formation of a functional MIP.60 Solvent systems must be

chosen to favour this interaction in the pre-polymer complex, before the polymeriza-

tion begins. Aprotic or low-polarity solvents favour hydrogen-bonding interactions,

while the presence of water in the solvent system favours a more hydrophilic polymer,

which is useful for environmental sampling, where the matrix is primarily aqueous.

The functionality of any MIP is dependent on the appropriate selection of a ratio

between the template, monomer, cross-linker, and porogen. Once an appropriate for-

mulation is chosen, polymerization is achieved either through thermally-initiated free-

radical initiators such as 2,2’-azobisisobutryonitrile (AIBN), or by UV initiated free-

radical photoinitiators such as 2,2-dimethoxy-2-phenylacetophenone (DMPA). 59–61,63

Thermal or photo-initiation is selected primarily on type of polymer fabricated and

the ease of initiation.
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1.4.2 MIP Formats and Fabrication

MIPs can be fabricated using numerous different methods, producing a variety of

polymer types useful in different applications. Traditionally, MIPs are fabricated in

a simple bulk polymer format.59,61 This is the most widely used and well understood

fabrication procedure for MIPs.59,61 Using this method, the PPC is placed in a closed

vial and using thermal free radical initiation, polymerization is accomplished in an oil

bath over 12–24 hours.60–62 The density, porosity, and pore structure are controllable

by the ratio of porogen to all other PPC components. A higher ratio of porogen

dilutes the PPC components, resulting in smaller, closely packed MIP particles, while

lower ratios of porogen forms more rigid MIPs with complex pore structure.

Although less prevalent in the literature, MIPs can be fabricated in numerous

other formats including thin-films, as coatings on stir-bars, and as solid-phase mi-

croextraction (SPME) fibres.63–65 The adaptability of MIPs to differing substrates is

highly useful, allowing for sampling of a complex array of analytes and matrices. For

example, the thin-film variety can be used for direct sampling in aqueous environ-

ments of PAHs, pesticides, pharmaceuticals, and more.63 MIPs as SPE sorbents are

routinely used as superior alternatives to the universal C18-SPE cartridges, demon-

strating improved selectivity of analytes in complex matrices, as well as impressive

pre-concentration and clean-up capabilities.59–62

1.4.3 MIPs as an SPE Sorbent

As previously mentioned, the most common and widely adapted use of MIPs is as

a sorbent for solid phase extraction. MIP-SPEs have consistently demonstrated im-

provements in selectivity, sample cleanup, and pre-concentration ability compared

with more extractive sorbents such as reverse phase C18 or polymeric reversed phase
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Figure 1.4: Simple sampling procedure for extraction and pre-concentration of ana-
lytes from aqueous matrices.

substrates.60–62 Since the active sites are designed selectively for analytes of interest,

the MIP-SPE should retain and pre-concentrate the target analytes, while the ma-

trix components are virtually unretained. Previous work in this area has focused on

the analysis of pharmaceuticals and their metabolites in wastewater effluent. It has

been determined that MIPs as SPE sorbents were highly effective at selective uptake

and analysis of targets such as ibuprofen, metformin, and bisphenol A.66 MIP-SPEs

typically utilize the traditional method of packing the SPE cartridges, and involve

multiple steps including cartridge preparation, sample loading, washing, and elution

(Figure 1.4)

Preparation of MIPs for use as an SPE sorbent can be referred to as the fabrica-

tion of bulk MIP. This process is largely understood, however, can be time-consuming,

requiring several steps for preparation.66 Additionally, many procedures require the

grinding and sieving of the bulk phase, which results in reduced yield, higher waste
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product, and destroyed pore structure in the MIP. A number of different polymeriza-

tion strageties have been tried as a means of generating uniform particle size. These

include grafting the MIP onto solid supports such as silica or nanoparticles, precip-

itation polymerization, or reversible addition fragmentation chain transfer (RAFT)

polymerization.59–62 Each of these methods have their advantages and disadvantages,

however an in-depth analysis of polymerization methods is not the focus of this re-

search.

1.4.4 Thin-Film MIPs

Perhaps one of the most unique fabrication procedures for MIPs is the thin-film va-

riety. MIPs are fabricated on functionalized glass slides,63 or as surface coatings on

stir bars, nanorods, and SPME fibres.64,65,67,68 The thin-film format has some advan-

tages over SPE. The primary advantage is the simplified sampling procedure typically

found when using thin-film MIPs. For example, on a glass slide, the thin-film MIPs

may be deployed directly into environmental samples, eliminating the need for sample

collection and transport. This is particularly useful, as large volumes of sample are

required for SPE MIPs, however with thin-film MIPs, sampling can be performed

in-situ. Another improvement over SPE MIPs is the simplified fabrication process.

As shown in Figure 1.5, fabrication of thin-film MIPs can be performed with fewer

materials, and on a much shorter timeline than SPE bulk-phase MIPs.63

There are however a number of drawbacks when using thin-film MIPs that need

to be overcome before they are widely adopted. The thin layer of polymer may show

less porosity than their SPE counterparts, as well as fewer binding sites, meaning

the thin-film MIP will reach capacity sooner than the MIP-SPE per unit mass. In

this regard, the MIP-SPE has the potential to reach lower detection limits, as it is

capable of pre-concentrating more analyte from a sample. Additionally, the fabrication
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Figure 1.5: Illustrated fabrication procedure for thin-film molecularly imprinted poly-
mers

procedure must be optimized for each system. The synthesis of MIP-SPEs is more

widely understood than that of the thin-film MIPs, and typically has more success

than the thin-film variety.59,60,62,64,65

1.4.5 Analysis and Measurement of MIPs

The success of imprinting and the performance of MIPs can be assessed using a

variety of criteria. There are three factors which are widely used as indicators of

the performance of MIPs: imprinting factor (IF) (Equation 1.1), mass loading, and

pre-concentration factor. The imprinting factor is a measure of the concentration

of analyte in the MIP relative to that of a non-imprinted polymer (NIP).59 NIPs

are fabricated using a pre-polymerization complex which is identical to that of the

MIP in the absence of a template or pseudo-template molecule. In theory, the NIP

should bind no analyte of interest, as the pore structure does not possess the specific
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binding pockets for the analytes of interest. However, there will always be some

surface adsorption of analytes onto the polymer. The imprinting factor accounts for

non-targeted uptake of analytes by the polymer itself, and provides a measure of how

effective the MIP is at binding the analytes.

IF = CMIP

CNIP
(1.1)

The mass loading is a measurement of mass of analyte per mass of polymer. This

is a useful metric as it provides an indication of the efficiency of the polymer, as well

as can provide isotherm data to determine the maximum concentration of analyte

that can be loaded into the MIP.59 The pre-concentration factor is a highly useful

metric for measuring the performance of MIPs. It can indicate how well the material

concentrates the analyte from a given matrix, and is related to the sorption capacity

and the affinity of the analyte for the solid phase.

1.4.6 MIPs for the Analysis of Neonicotinoids

At the time of writing, only one publication was identified as using MIPs for the anal-

ysis of neonicotinoids. An SPE based MIP method was developed for the analysis of

imidacloprid in environmental samples.69 Much of the current focus on MIP devel-

opment is directed towards the analysis of the organophosphorus pesticides.70,71 This

indicates that the development of MIPs for pesticide analysis lags behind regulatory

standards, and that there is a significant market for the development of an MIP that

could selectively target the full class of neonicotinoids. As the neonicotinoids all con-

tain the p-chloropyridine subunit, as well as a pharmacological active chain containing

multiple hydrogen bond donors and acceptors, they should show success with MIPs

designed to target either π-π or hydrogen bonding interactions. Their high polarity
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and solubility mean they are difficult to extract from aqueous samples using other

methods, which is where MIPs could have an advantage.

1.4.7 Neonicotinoid MIPs Compared with Other Methods

With the advancement of mass spectrometers, many analytical methods use direct in-

jection coupled with liquid chromatography and tandem mass spectrometry for analy-

sis of environmental contaminants. MIPs need to demonstrate significant advantages

over the direct injection method by pre-concentrating the analyte and cleaning the

matrix, allowing for far lower limits of detection to be reached.

The most widely used method for analysis of neonicotinoids is the QuEChERs dis-

persive SPE method.39,43,47 While this method has been successful for their analysis,

there are a number of improvements that could be made by the adaptation of MIPs.

QuEChERs is not a selective method; it was designed for non-specific analysis of pes-

ticides in envrionmental samples.39 This means that all pesticides should be isolated

and detectable, including organophosphates, carbamates, and neonicotinoids, as well

as any other herbicides or insecticides that might be present. While this could be use-

ful for non-targeted screening, it means the method is not optimized to one specific

class of pesticide, and thus will demonstrate decreased efficiency of extraction and

pre-concentration across all compounds.39 The introduction of MIPs could solve this

issue by providing a highly selective method of analysis, which eliminates the contam-

ination of non-targeted insecticides and herbicides from the method. This allows for

more accurate concentration determination, as the binding sites will not be saturated

with undesired compounds, as well as better sample cleanup from complex matrices.

With a cleaner sample, analytical methods can be made higher-throughput, as for

example, only 7 neonicotinoids would need to be separated during a chromatographic

run, compared with up to 60 pesticides in other methods.43

28



1.4.8 Direct Analysis of MIPs

Perhaps one of the primary advantages of using MIPs as opposed to other methods

like SPE, QuEChERs, or SPME, is the capability to perform direct analysis on the

MIP. While this can only be performed using the thin-film format of MIPs, it is

a highly useful technique, particularly for the screening of analytes in environmental

samples. Thin-film MIPs can be analyzed directly by DESI and DART. Both ambient

ionization methods can be used to perform surface analysis of the thin-films. With

DESI, the electrospray saturates the surface of the MIP, which extracts any analytes

of interest, ionizes them, and introduces them into the mass spectrometer. With

DART, the high temperature metastable gas causes thermal desorption of analytes

from the thin-film surface, the analytes are then ionized and introduced into the mass

spectrometer. DESI has the additional capability of generating a mass spectrometric

map of analyte concentration across the polymer, which is useful in indicating the

homogeneity of analyte uptake within the polymer. Each ambient ionization has its

advantages. DESI is more suited to larger, polar analytes, while DART is better suited

to small non-polar, thermally stable analytes. Additionally, DART has the ability to

sample more of the polymer surface (Figure 1.6), which provides a more accurate

representation of the concentration of analyte within the entire polymer. However,

the high temperature of DART ionization can potentially lead to decomposition of

the analytes or the polymer itself.

1.4.9 Extractive Techniques

While ambient ionization techniques are highly useful, they have the significant lim-

itation of providing only semi-quantitative analysis. Due to their inability to fully

desorb all analytes of interest, these techniques cannot be used for highly precise or
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Figure 1.6: Schematic comparision of the sampling capabilities of DESI compared to
DART for thin-film MIPs

accurate determination of concentrations of analytes of interest in real samples. To

achieve the highest quality quantitative analysis, the analyte must be extracted from

the MIP and injected into an LC or GC system. This is true of both bulk and thin-

film MIP varieties. Extraction is usually accomplished by exposing the polymer to

a suitable solvent system, typically an organic solvent containing some acid, which

breaks the interactions between the analyte and active site in the MIP. The solvent

can then be evaporated and the analyte reconstituted in an appropriate solvent with

addition of an internal standard to improve the analytical data quality in instrumental

analysis.

1.5 Objectives

The main goal of this work is to develop of a MIP for the analysis of six neonicotinoid

insecticides: acetamiprid, clothianidin, imidacloprid, nitenpyram, thiacloprid, and
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thiamethoxam. These six neonicotinoids are representative of the current insecticide

market and are facing increased regulatory control and restriction in Europe and

North America. It is believed this work is the first of its kind, and will advance

the environmental detection of neonicotinoids through the use of high-throughput

methods and ultra-trace analysis. The ancillary goals of this work are development of

instrumental analytical methods for the detection and quantification of neonicotinoids,

development of MIPs as sorbents for solid phase extraction, and investigations into

thin-film MIPs coupled to ambient ionization methods, including DESI and DART,

for fast screening of neonicotinoids in environmental samples.

A UHPLC method will be developed and coupled to both a photo-diode array

detector and tandem mass spectrometry. This method will be used in evaluating each

MIP formulation. Through the use of advanced column technologies, such as superfi-

cially porous columns, and careful method optimizations, the UHPLC method should

provide high-throughput analysis with short run times. The use of a PDA detec-

tor offers cheap and readily available detection, while the tandem mass spectrometry

method allows for lower limits of detection and more comprehensive, targeted analysis.

As neonicotinoids are facing increased regulatory control throughout Europe and

North America, reliable methods of analysis are needed for better understanding of

environmental distribution of neonicotinoids, particularly in waterways. At the time

of writing, no work is known to incorporate an MIP for use as an SPE sorbent for

the analysis of neonicotinoids. As bulk phase MIPs are typically easier to synthesize

and validate, this is a logical first step towards fabrication of MIPs for neonicotinoids.

The results from the MIP-SPEs developed will be validated against the widely used

QuEChERs method. The QuEChERs method will be performed in-house using the

same standards as used for the SPE method. Both methods will be applied to real-

world samples and results compared.
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Finally, thin-film MIPs will be fabricated using a pre-polymerization complex sim-

ilar to that of the SPE-MIPs for neonicotinoids. These will be analyzed using both

DESI and DART, from which conclusions can be drawn for the use of both ambi-

ent ionization techniques for the analysis of MIPs in thin-film formats. The thin-film

MIPs for neonicotinoids will be compared to the SPE variant, and will be tested using

real environmental samples.
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Chapter 2

Materials

2.1 Chemicals, Reagents, and Comsumables

Neonicotinoids were sourced from two suppliers. Acetamiprid, imidacloprid, and thia-

cloprid were purchased from Sigma-Aldrich (Oakville, ON, Canada), and clothianidin,

nitenpyram, and thiamethoxam were purchased from Toronto Research Chemicals

(Toronto, ON, Canada). All neonicotinoids were guaranteed at a minimum of 99.5%

purity.

Solvents for liquid chromatography (acetonitrile, methanol, and water) were pur-

chased from Fisher Scientific (Hampton, NH, U.S.A.), and were of Optima grade.

Solvent additives included formic acid, purchased from Sigma-Aldrich, and acetic

acid, purchased from Fisher Scientific. Both were of chromatography grade.

Samples were prepared in either distilled/deionized water (available within the

lab), methanol ACS reagent grade (Sigma-Aldrich), or acetonitrile ACS reagent grade

(Sigma-Aldrich).

Reagents for polymerization reactions including methacrylic acid (MAA),

2-hydroxy ethyl methacrylate (HEMA), acrylamide (ACC), ethylene glycol
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dimethacrylate (EGDMA), 2,2’-azobisisobutryonirile (AIBN), 2-dimethoxy-2-

phenylacetophenone (DMPA), and 3-(trimethoxysilyl)-propylmethacrylate were

purchased from Sigma Aldrich. ACS reagent grade toluene was purchased from ACP

chemicals (Toronto, ON), and 1-octanol was purchased from Fisher Scientific.

For the QuEChERs method, bulk-phase SPE sorbents C18 and primary secondary

amine (PSA) were extracted from manufactured SPE cartridges purchased from Cana-

dian Life Science (Peterborough, ON, Canada). Sodium chloride was purchased from

ACP chemicals. Buffering salts trisodium citrate dihydrate, disodium hydrogencitrate

sesquihydrate, and magnesium sulfate were purchased from Sigma-Alrdich.

2.2 Instrumentation

Chromatographic separations were performed using a Waters H-class UPLC system

equipped with a quaternary solvent pump, PDA detector, active column pre-heater,

and autosampler (Waters, Mississauga, ON, Canada). The majority of analysis was

performed on a Waters Xevo TQS tandem mass spectrometer interfaced with a Waters

Z-spray ESI source.

Also available was a Prosolia DESI ion source (Prosolia, Indianapolis, IN, U.S.A.),

and through a collaboration with the Ontario Ministry of the Environment (MOE)

an Ionsense DART-SVP source (Ionsense, Saugus, MA, U.S.A.), a Varian 901-MS

FTICR with linear ion trap (Varian), and Waters G2-XS Q-TOF mass spectrometer.

2.2.1 UHPLC-PDA

For chromatographic separations, which is a large focus of this work, a Waters H-class

UHPLC with quaternary solvent manager, auto-sampler, active column pre-heater,

photodiode array detector, and sample compartment temperature controller was used.
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An elution program was used which consisted of a binary solvent system with an

isocratic elution. Solvent A was water (LC grade) containing 0.1% formic acid, and

solvent B was acetonitrile (LC grade) containing 0.1% formic acid. The optimized

isocratic elution program consisted of 68% A and 32% B. The mobile phase flow rate

was set at 0.350 mL min-1, with the column heated at 30 ◦C to maintain consistency

between separations. Samples were warmed to room temperature before being placed

in the auto-sampler, maintained at 20 ◦C. An injection volume of 2.000 µL was used

for all samples.

The photo-diode array detector was set to monitor wavelengths between 210 and

400 nm. Neonicotinoid standards were individually analyzed to determine retention

times and maximum absorbance wavelength. A multistandard was run following this

to confirm baseline separation for all analytes. The total run time varied between 1.8

and 4 minutes, depending on the column stationary phase used.

C18 1.7µm Column Parameters

The C18 reverse phase column was provided by Waters. Column dimensions were 2.1

mm diameter, 50 mm in length. The particle size was 1.7 µm.

Halo 2.7 Column Parameters

The Halo series of columns were supplied by Canadian Life Science. Column dimen-

sions were 2.1 mm in diameter and 100 mm in length. The stationary phase consisted

of a 1.7 µm fused core with 0.5 µm porous layer giving a total particle size of 2.7 µm

solid particles, onto which C18 was grafted.
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Isosceles Column Parameters

The majority of separations and analyses were performed using a Canadian Life Sci-

ence C18 Isosceles column. This is a superficially porous column similar to the Halo

column with 1.7 µm solid core and 0.5 µm coating giving total particle size of 2.7 µm.

Column dimensions were 2.1 mm diameter by 100 mm length. To protect the ana-

lytical performance a 0.5 µm column filter was fitted between the column pre-heater

and analytical column.

2.2.2 Mass Spectrometry

During this research, various mass spectrometric techniques were used for the analysis

of the neonicotinoids. For ionization, ESI, DESI, and DART were used, and for

detection, FTICR, tandem MS, and Q-TOF were used.

Electrospray Ionization

For UHPLC experiments, the ESI source was operated in positive mode. Capillary

voltage was set at 3.00 kV, with a cone voltage of 15 V and source offset of 50 V.

Nitrogen nebulizing gas desolvation temperature was set at 300 ◦C with a flow rate

of 800 mL hr-1. For CID for MRM argon collision gas was used at a flow rate of 0.15

mL min-1. The source temperature was set at 150 ◦C.

Intellistart is a software package provided by Waters which allows for rapid method

optimization of mass spectrometric parameters for individual compounds. Standards

(1 mg L-1) were directly injected into the ESI source, and Intellistart was used to

determine optimal collision energy, cone voltage, and fragmentation pathways (Table

2.1).
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Tandem MS Parameters

Mass spectra were collected in MS scanning mode between 50 and 500 m/z units,

in addition to individual MRM experiments for the six neonicotinoids, based on the

results obtained from the Intellistart method (Table 2.1) Each MRM experiment ex-

amined two fragmentation pathways for a single neonicotinoid, and data was collected

in agreement with the neonicotinoids elution from the LC method to maximize points

per peak. Data was extracted using MassLynx 4.2 by integrating chromatographic

peak areas for the MRM experiments.

Table 2.1: Intellistart-determined optimal ESI parameters for analysis of the six se-
lected neonicotinoids by tandem-MS using MRM

Neonicotinoid MRM1 MRM2 Coll. E1 Coll. E2 Cone Voltage
Acetamiprid 223 → 126 223 → 56 14.0 eV 20.0 eV 2.00 V
Clothianidin 250 → 169 250 → 132 16.0 eV 12.0 eV 10.00 V
Imidacloprid 256 → 209 256 → 175 16.0 eV 20.0 eV 28.00 V
Nitenpyram 271 → 130 271 → 126 12.0 eV 28.0 eV 2.00 V
Thiacloprid 253 → 132 253 → 90 20.0 eV 38.0 eV 2.00 V
Thiamethoxam 292 → 211 292 → 181 12.0 eV 22.0 eV 8.00 V

Direct Analysis in Real Time

The DART ionization source has relatively few optimizations when compared with

other ambient methods such as DESI. The two main variables with this ionization

source are the temperature of the metastable gas, which can vary between 200 and

550 ◦C, and the distance between the metastable gas source and mass spectrometer

inlet.

For method optimization for the individual standards, the DART source was

placed in-line with the mass spectrometer inlet at a distance of 2.1 cm (Figure 2.1a).

Samples were introduced using a melting point capillary dipped in the standard so-

lution. The temperature was varied at 50 ◦C increments to determine the optimal

37



desorption temperature for sample analysis.

For analysis of MIPs, the DART source was placed at a 135◦ angle to the mass

spectrometer inlet (Figure 2.1b). The polymers on glass slides were then introduced

into the metastable gas stream using a linear rail. This allowed for sampling across

the surface of the polymer.

For quantitative analysis, a custom built thermal-desorption unit (TDU) was

placed in-line between the DART ionization source and mass spectrometer inlet (Fig-

ure 2.1c) The TDU consisted of a Variac controlled heating element placed under

an aluminium sampling surface contained within a metal box. The TDU had the

capacity to heat between 50 and 220 ◦C. All samples were desorbed at the maxi-

mum temperature of 220 ◦C. Ceramic tubes were placed at either end, which allowed

for contact between the ceramic output of the metastable gas from the DART source,

and the ceramic input of the mass spectrometer. Samples were introduced on a folded

piece of aluminium foil by spotting known volumes alongside an injection standard

and placing the foil inside the TDU. This allowed for quantitative sample desorption

and ionization into the mass spectrometer.

FTICR Parameters

For detection and method optimization of DART ionization for neonicotinoids, a single

quadrupole ion trap - FTICR was used at the Ontario Ministry of the Environment.

Mass spectra were collected between 150 and 800 m/z. An average of 5 scans per

sample were completed with a dataset size of 2048 k, magnetic field strength of 9.4

tesla, ion trap exit-time of 10 seconds, and transient duration of 3 seconds. The cone

voltage was set at 45 V.
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(a)

(b)

(c)

Figure 2.1: Illustration of DART sampling by (a) in-line sample introduction, (b)
thin-film MIP sampling, and (c) sampling using the TDU.

39



Quadrupole Time-of-Flight Parameters

The Q-TOF mass spectrometer was used with the DART ion source set to acquire

spectra between 50 and 1000 m/z units in high-resolution. Spectra were collected

continuously as sample was introduced. This produced peaks of high ion intensity

corresponding to the presence of sample in the ionization source. These peaks were

then integrated using extracted ion data to determine the peak area corresponding

to compounds of interest. To ensure accuracy, the exact masses were corrected by

calibration against the known mass of a siloxane contaminant.

2.3 Sample Preparation

Stock neonicotinoid solutions were prepared at levels between 80 and 300 mg L-1

by dissolution of the solid compounds in acetonitrile. These were stored in amber

bottles at 2 ◦C for up to one month, after which the compounds demonstrated signs

of degradation. Working standard solutions and spike solutions were prepared by

dilution from these stock solutions as needed. Diluted working standards were stored

at room temperature for up to 48 hours.

River water taken from a local river downstream of an agricultural area was used to

analyze the efficacy of the QuEChERs method, two different SPE procedures, as well

as direct injection methods. Canadian honey (Compliments brand) was purchased and

used as a matrix for the QuEChERs method. Both river water and honey were spiked

using appropriate working standards to perform spike and recovery and standard

addition experiments.
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2.4 Instrument Method Validation

All instrumental methods were examined using typical method validation parameters.

Linearity of the method was examined over a range of concentrations. The methods

were also examined for reproducability, limits of detection, sensitivity, and selectivity.

2.4.1 LC-PDA Validation

For the photo-diode array detector, a calibration curve was constructed using stan-

dards at 14 levels (50, 100, 150, 200, 250, 500, 750, 1000, 1500, 2000, 2500, 3000,

4000, and 5000 µg L-1). Linear regression was performed to determine the coefficient

of determination (R2) as a measurement of linearity. Limits of detection and quan-

tification were estimated by injecting decreasing concentrations of standards until no

chromatographic peaks were observed. Limits of detection were later quantified by

running 9 replicate samples at 20 µg L-1. The limit of detection was then defined as

three times the standard deviation of the blank-subtracted peaks from the replicate

samples, divided by the slope of the regression line. Limits of quantification were

defined using the same equation, replacing 3σ with 10σ.

MDL = 3σ
m

(2.1)

Reproducability of the method was determined by running replicate samples on

the same day, and on multiple days, and calculating variation in instrument response,

in terms of peak area, retention time, and maximum wavelength.

2.4.2 LC-MS/MS Validation

Method validation parameters for the LC-MS/MS method are similar to those used

to validate the LC-PDA method. The notable exception is the construction of the
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calibration curve. For examination of range and linearity, a calibration curve was

constructed from neonicotinoid standards at 19 levels including 0, 0.5, 1, 5, 10, 15,

20, 40, 60, 80, 100, 200, 400, 600, 800, 1000, 1500, 2000, and 2500 µg L-1. Limits of

detection were determined by running 9 replicates at 5 µg L-1.

2.4.3 TDU-DART-QTOF Validation

The method for TDU-DART-QTOF was validated by constructing a calibration curve

at 9 levels (0, 0.5, 1, 5, 10, 50, 125, 250, and 500 µg L-1). This range of concentrations,

when injected to the TDU-DART system at 7 µL volume corresponds to between 3.5

and 3500 pg of analyte.

2.5 Overview of MIP Fabrication

MIPs are formed by radical polymerization of a PPC containing cross-linker, monomer,

solvent (porogen), template or pseudo-template, and either a thermal or UV induced

radical initiator. The formulation can be adjusted to suit various applications, includ-

ing the thin-film and bulk polymer formats. In general, the template and monomer

are dissolved in the solvent, which allows for template-monomer interactions to oc-

cur. To this mixture, the cross-linker is added, complexing with the template and

monomer. Finally, a free-radical initiator is added and polymerization induced for a

specific time, resulting in a solid polymer. The volume of solvent relative to other

polymer components as well as the polarity, and hydrogen bonding capacity in the

solvent work in tandem to govern the resultant polymer structure.
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2.5.1 Pre-polymerization Complex

For detection of neonicotinoid insecticides, the pre-polymerization complex is formed

as follows. The monomer can be any molecule that contains at least one hydrogen

bonding site, and a vinyl terminated moiety. The most common monomer used in

this research is acrylamide, however methacrylic acid has also been used successfully.

The cross-linker is an ether-based linker with vinyl-terminated moieties, which al-

low for incorporation with the monomer. In the case of these MIPs, ethylene glycol

dimethacrylate (EGDMA) is used exclusively. The majority of the MIPs were fab-

ricated using 2-chloropyridine-4-carboxylic acid as the template. Other templates

tested included nitenpyram, thiamethoxam, and nicotine. The molecular structures

for the molecules contained in the PPC are given in Figure 2.2.

2.5.2 Thermal Polymerization

Thermally-initiated polymerization is accomplished through the use of 2,2-azobis-

isobutyronitrile (AIBN) as the free-radical initiator. A catalytic amount of AIBN is

added to the PPC and the solution capped and placed in an oil bath at 65 ◦C for 24

h with stirring. After 24 h, the bulk polymer could be scraped from the vial as an

opaque white powder.

2.5.3 UV Polymerization

Photo-initiated polymerization is accomplished using 2-dimethoxy-2-phenyl acetophe-

none (DMPA) as the free-radical initiator. Similarly to the thermally initiated poly-

merization, a catalytic amount of DMPA is added to the PPC, the solution degassed,

then placed under a UV light at wavelength 265 nm for 30 minutes. Provided the

PPC containing initiator is free of oxygen, either in a closed vial or under a micro-
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Figure 2.2: Components of the pre-polymerization complex including (a) monomer
methacrylic acid, (b) cross-linker ethylene glycol dimethacrylate, (c) template 2-
chloropyridine-4-carboxylic acid, (d) thermal initiator AIBN, and (e) photoinitiator
DMPA
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scope cover slide, polymerization results in an opaque white polymer affixed to the

glass microscope slide.

2.6 MIP-SPE Fabrication

MIP for use as an SPE sorbent was fabricated using a modified sol-gel preparation

method. A functionalized silica gel is synthesized containing vinyl functional groups

onto which the MIP can be grafted. The schematic for this process is shown in Figure

2.3.

Figure 2.3: Synthesis of MIPs for use as an SPE sorbent

2.6.1 SiO2 Preparation

The first step in the preparation of MIP-SPEs is the synthesis of the substrate. This

provides necessary rigidity to the polymer so that it can be placed under vacuum.

50 mL of 2M HCl is combined with 10 mL of tetraethylorthosilicate (TEOS) slowly
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over 10 minutes. This mixture is stirred for 1 hour at 50 ◦C. Following this, 2.6 mL

of derivitizing agent 3-tri(methoxysilyl)propyl methacrylate is added dropwise. The

resultant solution is stirred overnight at 80 ◦C. Following this, the functionalized silica

is washed using ethanol, separated by centrifuge (5 min at 5000 rpm), and dried at 40
◦C. The product, hereafter referred to as 3TMSPM-SiO2, is stored either in an oven

at 40 ◦C or in a desiccator.

2.6.2 MIP Grafting

In a glass scintillation vial, pre-polymerization complex consisting of a molar ratio of

60:9:2.5:1 of EGDMA:acrylamide:template:initiator is combined with an appropriate

amount of solvent and vortexed for complete dissolution. In a separate vial, previously

synthesized 3TMSPM-SiO2 is weighed in a ratio of 1.6 g per 10 mL porogen. The two

vials are combined with stirring and polymerization is carried out overnight in an oil

bath at 65 ◦C. The resultant gel is not dried in an oven, but may be used after drying

under atmospheric conditions.

2.7 Thin-Film MIP Fabrication

The fabrication procedure for thin-film MIPs varies significantly from the MIP-SPE

format. Glass microscope slides are functionalized using the same derivitizing agent

used in the MIP-SPE fabrication. Microscope slides are cut to 2.2 cm square size

and placed in a solution of 2% v/v 3-(trimethoxysilyl)propyl methacrylate overnight.

A PPC containing template, monomer, cross-linker, and solvent in a molar ratio of

1:4:20:200 along with DMPA photo-initiator at a catalytic concentration is degassed

in a glass vial. 8 µL of this PPC is then deposited on a functionalized glass slide and

covered with a micro glass cover slide. UV initiation is then carried out by placing
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the slide under a UV light source emitting at wavelength 265 nm.72

2.8 QuEChERs Procedure

A modified QuEChERs procedure was adopted for analysis of both spiked honey and

river water samples during the course of this research. Into a 50 mL centrifuge tube:

2.4 g MgSO4, 0.6 g trisodium citrate dihydrate, 0.6 g NaCl, and 0.3 g disodium hy-

drogencitrate sesquihydrate were weighed. To this, a 6 mL sample of either honey or

water was added, and diluted to 12 mL total volume with acetonitrile.73 Any analyte

spikes for spike and recovery were performed at this point, accounting for a total vol-

ume of 12 mL. These centrifuge tubes were shaken for 1 minute, and then centrifuged

for 5 minutes at 3500 rpm. Following this, a 1 mL aliquot of the supernatant was

added to a 15 mL centrifuge tube containing 30 mg C18, 30 mg PSA, and 90 mg

MgSO4. This tube was vortexed and centrifuged for 5 minutes at 5000 rpm. Finally,

600 µL of supernatant, plus an appropriate internal standard spike was diluted to a

total volume of 2 mL for injection to the LC system.

2.9 Sampling

Various sampling techniques were utilized for analysis of neonicotinoid insecticides.

Samples primarily consisted of spiked distilled water, river water samples, and honey

and diluted honey. Samples were analyzed for the presence of neonicotinoids by

extraction using commercial C18 cartridges, the modified QuEChERs method, the

MIP-SPEs, or by direct LC injection; direct injection was not carried out for honey

samples.
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2.9.1 C18-SPE

The C18 SPE cartridges (Canadian Life Science) were used for environmental sam-

pling as per the manufacturer’s instructions, as follows. The cartridges were condi-

tioned twice with 5 mL of methanol, and washed twice with 5 mL water before the

sample was introduced. The sample was then loaded onto the column at a rate of ap-

proximately 1.2 mL min-1 using a vacuum manifold, with suction continued following

loading until the sorbent was dry. Samples were eluted with 3 mL of methanol into

a 5-mL volumetric flask, spiked with internal standard, and diluted to volume. An

aliquot of this sample was injected onto the LC column.

Either 25 or 100 mL aqueous samples were used for analysis by the C18 SPE

method. Calibration curves were constructed by spiking 100 mL of distilled water

with an appropriate amount of neonicotinoid multistandard solution to obtain an

8-point calibration curve ranging from 0 to 2000 ng L-1.

2.9.2 QuEChERs

Samples for the QuEChERs method were analyzed using a modified method outlined

above. 6-mL samples of spiked distilled water, river water, or honey were used. A

calibration curve was constructed using standard addition spikes of neonicotinoid

multistandard solution between 0 and 1000 µg L-1.

2.9.3 MIP-SPE

Approximately 0.5 g of the MIP bulk phase was packed into a standard SPE cartridge

and compressed using a glass frit. The SPE cartridges were then conditioned by

washing under vacuum twice with 5 mL of 1:1 acetonitrile:water containing 2% acetic

acid, and twice with 5 mL distilled water to remove any traces of acid. The cartridges
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Figure 2.4: Illustrated sampling procedure for analysis of neonicotinoids by SPE-MIP

were not allowed to dry during the conditioning procedure.

Once conditioned, aqueous sample was loaded at a flow rate of approximately 2 mL

min-1. The analytes retained on the cartridge were eluted using 3 mL of HPLC grade

1:1 acetonitrile:water containing 1% HPLC grade acetic acid into a 5 mL volumetric

flask, spiked with an appropriate amount of internal standard, and made to volume

using 1:1 acetonitrile:water. An aliquot of this solution was then subjected to analysis

using the method developed earlier in this project. The use of MIP-SPEs for sampling

is illustrated in Figure 2.4

The performance of the MIP-SPEs was validated by constructing both a low con-

centration range, and high concentration range calibration curve. The high concen-

tration curve was constructed at 8 levels between 0.1 ng L-1 and 100 ug L-1. The

low concentration curve was constructed at 8 levels between 0 and 2000 ng L-1. All

samples were spiked distilled water with 100 mL volume loaded for each. Masses of

polymer were obtained to determine mass loading of the polymer. Limits of detection
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were determined by running 5 replicates loaded at 0.5 ng L-1, taking the standard

deviation multiplied by three, and dividing this value by the slope of the regression

equation. Polymer breakthrough was analyzed by running a 1 mg L-1 solution at 100

mL volume through cartridges loaded with a decreasing polymer mass, to determine

at which mass loading volume, no more analyte could be retained. Also examined

were analyte retention, analyte extraction, and percent recovery.

2.9.4 Thin-Film MIP

Fabricated thin-film MIPs were placed in a petri dish and rinsed with 50 mL of 9:1

methanol:acetic acid for 1 hour, followed by 50 mL of 100% methanol for one hour.

Following this conditioning phase, the MIPs were exposed to aqueous samples for

a 2-hour upload period. The aqueous samples were primarily neonicotinoid spiked

distilled water, at a volume of 50 mL, into which 3 thin-film MIP slides were placed.

After completion of upload, the thin-film MIPs were analyzed directly by DART

ionization, or extracted for analysis by LC. For direct analysis, the thin-films were

placed directly in front of the ionization source, according to method procedures

described previously. For extraction, individual slides were placed in a beaker with

5 mL of 1% acetic acid in methanol for 1 hour with stirring. The extract solution

containing neonicotinoids was dried by rotary evaporation, and reconstituted in 1:1

acetonitrile:water for injection into the LC system. Analysis was performed using the

LC method outlined previously with either PDA or MS/MS detection.

2.10 Environmental Monitoring and Applications

To verify the applicability and use of the MIP-SPE phase, an environmental study

was conducted, using the MIP-SPE cartridges to examine concentrations of neoni-
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cotinoids in local waterways. In collaboration with the City of St. John’s, a water

table distribution map was obtained, and the Waterford river, and its in-flows were

selected as the optimal monitoring site. As shown in Figure 2.5, 11 sampling sites

were selected for this study. The sampling sites were divided as follows: samples 7

through 11 were designated as upstream, and samples 1 through 6 were designated as

downstream. For the upstream samples, samples 7 and 9 were taken from an urban,

heavily populated area, and are expected to contain minimal to no neonicotinoids.

Sample 8 was taken from a river which collects the runoff from agricultural fields.

Samples 7-9 are combined downstream at sample site 5. Sample 10 and 11 were taken

from the same river, which feeds sample 6 downstream. Sample 10 was taken down-

stream from sample 11, which was taken from a heavily agricultural area, however the

waterway is not designated as agricultural runoff. For downstream samples, sample 5,

fed from samples 7-9, and samples 6, fed from samples 10-11 were collected. Samples

5 and 6 are combined into one river, from which samples 1-4 was collected. Sample

1 was collected at the outflow of this river, sample 2 in the geographic centre of this

river, and samples 3 and 4 collected at the same site, near the location where all

upstream samples are combined.

All samples were collected in 500 mL amber sampling bottles. All bottles were

purchased new, certified clean, and rinsed 3 times at the sampling site prior to collec-

tion. Samples were all collected on the same day, during a period of snow-melt runoff,

where water levels were determined to be elevated. Samples were stored at 2 ◦C for

3 days prior to analysis.

For analysis, SPE cartridges were packed with approximately 1 g of the 3-TMSPM-

SiO2-MIP bulk phase. 100 mL of sample was passed through the cartridge following

pre-conditioning, and eluted with 3 mL of 1% acetic acid in 1:1 acetonitrile:water.

Concentration was determined using existing calibration curves constructed using
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spiked water samples extracted with the MIP SPE cartridges.

Figure 2.5: Map of sampling locations for neonicotinoids along the Waterford river
and selected inflow rivers
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Chapter 3

Results and Discussion

This thesis focuses on three specific aspects, which when combined, allow for complete

examination of environmental samples for the analysis of neonicotinoids. The devel-

opment of appropriate instrumental techniques and method was the first objective,

and is critically important for both sample analysis, and validation of extraction and

pre-concentration methods. Two different methods were developed for the analysis of

neonicotinoids: an LC method using either PDA or MS/MS detection, and a DART

method, using a high-resolution Q-TOF MS for detection. Both methods provide

different advantages, which will be discussed further in this chapter.

Following the development, validation, and optimization of appropriate analytical

methods, work began on the fabrication of a molecularly imprinted polymer which

could be used to extract, pre-concentrate, and clean-up the matrix in environmental

samples suspected to contain neonicotinoids. The MIP phase was used primarily as

a packing for SPE cartridges, and results from the MIP-SPE were validated against

commercial C18 cartridges, as well as the industry-standard QuEChERs method for

pesticide analysis.

Finally, the MIP-SPE phase was tested using real environmental samples. River
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water samples were spiked with neonicotinoid solution to obtain percent recovery val-

ues, which were compared to various other methods including C18 SPE, QuEChERs,

and direct aqueous injection. Samples were also collected along a local river, both up-

stream and downstream of agricultural areas, including river inflows and outflows, and

analyzed for the presence of neonicotinoids using the validated MIP-SPE cartridges.

3.1 Liquid Chromatography

Previous methods for neonicotinoid separation by LC are either complex, or inefficient.

Most methods take an average of 9 minutes to complete one separation, and utilize

complex buffering systems or gradients, which are often relics of past methods adapted

to the separation of neonicotinoids. Here, a novel and simplified method is proposed

using UHPLC with a superficially porous column, allowing for far faster separations.

3.1.1 Method Development

Method development was completed using individual standards of each neonicotinoid

plus internal standard nicotine, and a multistandard solution, all at 2 mg L-1 concen-

tration. Starting with a high organic content in the mobile phase (strong solvent),

individual standards were injected to determine their retention times and elution

order. Following this, the percentage of aqueous phase in the solvent system was

increased until sufficient separation was achieved for all neonicotinoids plus internal

standard. Following this, adjustments were made to flow rate and column temper-

ature to shorten the method run time, while maintaining baseline separation. The

final parameters for the isosceles column included a flow rate of 0.350 mL min-1, with

column temperature of 30 ◦C. A solvent composition of 68% aqueous and 32% or-

ganic were used, where the aqueous phase was water with 1% formic acid, and the
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Table 3.1: Column comparison results including experimentally determined plate
counts and capacity factors

Column Nitenpyram Thiamethoxam Clothianidin Imidacloprid Acetamiprid Thiacloprid

Waters C18 Plate Count 3281.7 340.2 53.4 900.0 1650.6 1259.7
k’ 0.0025 0.2738 0.9288 1.5688 1.9963 2.6713

Isosceles 2.7 Plate Count 243.0 865.1 560.1 2020.7 892.3 6434.8
k’ 0.06562 0.3672 0.6641 0.8438 0.9953 1.8828

Halo 2.7 Plate Count 2081.8 1909.0 2898.9 1722.6 2978.7 1496.8
k’ 0.0683 0.3523 0.6238 0.7952 0.9492 1.7635

organic phase was acetonitrile also with 1% formic acid. As each neonicotinoid has

a dissociable pKa value greater than 5, the introduction of formic acid in the mobile

phase ensures complete protonation of the non-ionized neutral form.

3.1.2 Column Analysis

Three columns were available for this analysis. Each column was a C18 reverse phase

column, however they differed in the stationary phase fabrication and endcapping.

Theoretical plate count was calculated using equation 3.1, where tr is the retention

time and W is the peak width at baseline, for each analyte peak, and averaged to

determine an approximate plate count for the column. The capacity factor of each

compound was also calculated using equation 3.2, where tr is the retention time of

the analyte and t0 is the retention time of the solvent peak. Full results are shown in

Table 3.1.

N = 16( tr
W

)2 (3.1)

k′ = (tr − t0)
(t0)

(3.2)

For method development, a Waters C18 column was used. This column had di-

mensions 2.1 × 50 mm, with a particle size of 1.7 µm. The particles were solid and
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fully-porous, as opposed to the superficially porous particles found in the two other

columns. Baseline separation of the six neonicotinoids was achieved in 3 minutes with

Gaussian peak shape (Figure 3.1a). Calculation of the average theoretical plate count

gave a result of 1248, which is lower than the other two columns, both having slightly

higher numbers of theoretical plates. The backpressure averaged 4200 psi during the

separation, which is again higher than the superficially porous columns, but under-

standable given the smaller particle size. However, despite some drawbacks compared

to superficially porous columns, baseline separation of the six neonicotinoids in under

3 minutes demonstrates significant advantages over all literature methods at the time

of writing, which average 9 minutes in length. The isocratic elution program is also

a significant advantage, as no time is required for system equilibration between runs,

allowing for direct injection following elution of the last compound.

The Halo column provided by Canadian Life Science demonstrates significant ad-

vantages over the Waters C18 column. The Halo column has dimensions of 2.1 × 100

mm, with a 2.7 µm particle size. The use of a superficially porous column allows for

faster separations. More uniform and narrow pore distribution in the column, as illus-

trated by the manufacturers allows for shorter diffusion paths, and a narrower range

of paths (related to the multipath term in the van Deemter equation) and therefore

narrower peak widths compared to fully porous systems. The lower multi-path broad-

ening and better mass transfer leads to superior resolving power and greater number

of theoretical plates when applied to the van Deemter equation (Equation 3.3). 74 This

is demonstrated experimentally by running the same separation and comparing the

results to the Waters column. There is an increased plate count from 1248 to 2181

plates simply by changing the stationary phase to a superficially porous one. Another

advantage is reduced backpressure. The backpressure at 0.300 mL min-1, the same

flow rate as the Waters column, decreased from an average of 4200 to 2500 psi. When
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the flow rate was increased to 0.400 mL min-1, the backpressure averaged at 3500

psi during the run. The superficially porous columns allows both for faster separa-

tions at increased flow rates, and longer column and instrument lifetimes by running

methods at lower backpressure. The lower pressures required to achieve a suitable

separation also means a HPLC can be used rather than the less common UHPLC

instrumentation.

H = A+B/u+ (Cs + Cm) (3.3)

Canadian Life Science provided a prototype column, the Isosceles C18 reversed

phase. Column dimensions were 2.1 × 100 mm, with a particle size of 2.7 µm. The

stationary phase in this column is also a superficially porous solid-core type, however

the difference between this column and the Halo column is in the end-capping of the

C18 phase. The Isosceles column is fabricated with a proprietary end-capping designed

to prolong column life and improve reproducibility for separations. Experimental

calculations of theoretical plate count indicated a lower plate count than the Halo

column, but still significantly higher than the Waters column. The capacity factor for

nitenpyram, the first eluting analyte, in the Isosceles column is similar to that of the

Halo column, and both are improved when compared with the Waters column. The

Isosceles column was selected for all further analysis and validation studies, while it did

have slightly lower separation efficiency than the Halo column, it promised improved

reproducibility in terms of retention time and peak shape, as well as column life. A

comparison of the results from all three columns is shown in Figure 3.1 a,b, and c.

In Figure 3.1 it is clear there is an advantage to using the superficially porous

columns over the Waters column. Both the Halo and Isosceles columns afford narrower

peak widths, and faster baseline separation. As these results were obtained using
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Figure 3.1: Comparison of LC columns used in this research. Chromatographic peaks:
A: nitenpyram, B: thiamethoxam, C: clothianidin, D: imidacloprid, E: acetamiprid,
F: thiacloprid
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Table 3.2: Reproducability of the optimized LC method, examining changes in reten-
tion time and peak area

Neonicotinoid Retention Time %RSD Absorbance Peak Area %RSD
(n=7) (95% CI) in Retention Time (n = 7) 2 mg L-1 in Peak Area

Nitenpyram 0.676 ± 0.007 0.81% 79605 0.45%
Thiamethoxam 0.866 ± 0.017 1.55% 50960 0.56%
Clothianidin 1.048 ± 0.032 2.47% 51646 1.03%
Imidacloprid 1.158 ± 0.032 2.24% 82459 0.58%
Acetamiprid 1.256 ± 0.035 2.22% 43693 0.25%
Thiacloprid 1.802 ± 0.075 3.34% 44320 0.25%

a PDA detector, it is expected to see a fronting solvent peak. Due to the high

water solubility of nitenpyram, the first eluting peak, the solvent and analyte peaks

often overlap, with nitenpyram showing no retention as shown in 3.1a. However, the

superficially porous columns are able to offer additional separation, which causes the

appearance of a peak before the nitenpyram (A) peak.

3.1.3 Optimized LC Parameters

The Isosceles C18 column required some further optimizations to take full advantage

of the separation capability and column efficiency. The flow rate was increased from

0.300 mL min-1 to 0.350 mL min-1 to both sharpen peaks and decrease run time.

The mobile phase ratio was adjusted from 70% aqueous to 68% aqueous. Although

this appears to be a small change, due to the precise nature of UHPLC this results

in a significant change in retention time and capacity factor. The 2% reduction in

aqueous content results in improved separation. These two adjustments allowed for

adequate separation in under 2 minutes, and baseline separation in 2.7 minutes, the

latter of which was used for routine analysis of all samples. A comparison of retention

times and peak areas using the same standard and method over multiple runs during

the same, and on different days was performed to establish the reproducibility of the

method. Results from this experiment are shown in Table 3.2.
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Table 3.3: Method validation parameters for the optimized LC-PDA method

Neonicotinoid Regression Equation R2 LOD (µg L-1) LOQ
Nitenpyram y = 1090x + 16442 0.9997 1.907 6.358
Thiamethoxam y = 1120x + 26654 0.9996 4.800 15.999
Clothianidin y = 680x + 8768 0.9995 3.576 11.920
Imidacloprid y = 695x + 9041 0.9998 3.173 10.578
Acetamiprid y = 306x + 1937 0.9997 9.368 31.225
Thiacloprid y = 426x - 2352 0.9997 6.008 20.027

3.2 Photo-Diode Array Detection

The maximum wavelength for all neonicotinoids ranged between 215 and 280 nm.

Even in complex environmental matrices, or honey extracts each neonicotinoid had

a unique maximum absorbance wavelength and there were no spectra interferences

from the matrix, allowing for baseline separation and good detection of each neoni-

cotinoid in all samples. The advantage of using a PDA method for detection is the

high level of reproducibility and low cost of use. PDA is a significantly cheaper and

easier instrument to run compared to mass spectrometric methods, requiring only re-

placement and calibration of a new lamp once or twice a year, and minimal parameter

optimization such as slit width, maximum wavelength, and reference wavelength. The

selectivity for neonicotinoids, ease of use, and low cost make PDA detection highly

useful for the routine analysis. Limits of detection, while higher than mass spectrom-

etry, remain environmentally relevant, ranging between 1.91 and 9.37 µg L-1 (Table

3.3). Limits of detection were calculated using three times the standard deviation

of 9 replicate samples at 20 µg L-1 over the slope of the linear regression line. The

linear regression line indicated high linearity for all neonicotinoids, with regression

coefficient R2 greater than 0.9990 for all analytes, as shown in Figure 3.2 and Table

3.3.
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Figure 3.2: LC-PDA calibration curve from 50 - 5000 µg L-1 for neonicotinoid stan-
dards. n=3. A: nitenpyram, B: thiamethoxam, C: clothianidin, D: imidacloprid, E:
acetamiprid, F: thiacloprid
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3.3 Tandem MS Method Validation

Intellistart was used to determine appropriate fragmentation patterns, cone voltage,

and collision energy for the six neonicotinoids of interest. Intellistart examines sam-

ples for the presence of analytes based on an input of molecular formula. By rapidly

adjusting mass spectrometric parameters including cone voltage, collision energy,

source temperature, desolvation temperature, atmospheric pressure ionization (API)

gas pressures, collision gas pressures and more; then using an algorithm to calculate

optimal parameters for each analyte of interest, this program allows for rapid method

development, reducing what might be days of careful tuning of the mass spectrometer

to minutes.

Adding MS detection based on the Intellistart optimization to the UHPLC method

development with the PDA, which is unchanged, allows for highly efficient monitoring

of neonicotinoids. The PDA results are used to confirm the chromatographic peaks in

the MS results. By monitoring the MRM transitions corresponding to the neonicoti-

noids of interest only when they are eluting from the column, as opposed to collecting

data on 6 MRM channels simultaneously, the sensitivity of the instrument is greatly

increased. This allows for more points per peak to be collected, an optimization

demonstrated in Figure 3.3.

As shown in Figure 3.4, some neonicotinoids have isobaric fragments when an-

alyzed by MRM. This presents challenges when ambient ionization techniques such

as DESI or DART are used, as it becomes difficult to distinguish which fragments

correspond to which precursor ions. This issue is overcome with the use of separatory

methods such as chromatography, or high-resolution mass spectrometry, which will

be discussed later.

The tandem mass spectrometry method lowered limits of detection as compared

to the PDA detection method. Limits of detection were determined using three times
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Figure 3.3: LC-MS/MS MRM chromatograms highlighting the selectivity of the MRM
method compared to a total ion chromatogram. A: nitenpyram, B: thiamethoxam,
C: clothianidin, D: imidacloprid, E: acetamiprid, F: thiacloprid, N: nicotine internal
standard

the standard deviation of 9 replicate samples at 2 µg L-1. Limits of detection ranged

from 0.19 to 0.37 µg L-1. The regression coefficient R2 remained above 0.990 for all

analytes, although the variance in the signals were slightly higher than with the PDA

yielding slightly poorer fit to the linear model. As expected, the relative standard

deviation in replicate standards was also slightly increased in comparison to the PDA

method, which is expected due to the higher signal variability in mass spectrome-

try compared to absorbance measurements. Full results for method validation of the

MS/MS detection method are given in Table 3.4. The MS/MS method is highly sen-

sitive, by examining two product ions of a single precursor, and accounting for elution

results from the separation and PDA method, there is a high probability that the only

compounds being detected are the analytes of interest. This is particularly useful for

examining complex matrices, or performing direct aqueous injection of environmental

samples.

63



NCl

N

CH3

N
H

CH3

CN

NCl

CH2
+

NCl

N S

N
CN

NCl

CH2
+

Acetamiprid (m/z 223)

Thiacloprid (m/z 253)

m/z 126

m/z 126

Figure 3.4: Illustration of potential isobaric fragments at m/z 126 for thiacloprid and
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Table 3.4: Method validation parameters for the optimized LC-MS/MS method

Neonicotinoid Regression Equation R2 LOD (µg L-1) %RSD in Regression
Nitenpyram y = 2586x + 20248 0.9997 0.203 1.31%
Thiamethoxam y = 3077x + 14927 0.9998 0.366 2.21%
Clothianidin y = 1348x + 9828 0.9997 0.195 2.06%
Imidacloprid y = 4704x + 59998 0.9979 0.211 1.72%
Acetamiprid y = 7963x + 172799 0.9980 0.284 0.95%
Thiacloprid y = 7648x + 129362 0.9989 0.359 1.83%
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3.4 Direct Analysis in Real Time

Through a collaboration with the Ontario Ministry of the Environment, a DART

method was able to be developed for the analysis of neonicotinoids. DART is a type

of ambient ionization which provides a direct sampling to analysis workflow, removing

time-consuming sample processing, extraction, and concentration steps. The DART

ion source was operated in positive mode, which as discussed previously generates

protonated water clusters that subsequently transfer charge to analytes of interest,

producing only [M+H]+ analyte peaks in the MS. A number of experiments were

performed to optimize the relatively simple source, including investigating the effects

of metastable species temperature, solvent doping, and different metastable species.

Optimization for neonicotinoids was performed using an FTICR, before switching to

a Q-TOF for quantitative analysis.

3.4.1 DART-FTICR

A series of experiments were performed to optimize a DART method for neonicotinoid

analysis. The majority of optimizations were performed using high-concentration

standards on a quadrupole ion trap FTICR instrument, due to availability. The

FTICR was configured to collect spectra from pulses of trapped ions every 5 seconds,

the ions were trapped for 5 seconds in the quadrupole ion trap, then released into the

FTICR where they were quickly excited and an image current domain collected on

the frequency by which they precessed to the centre of the instrument. This occurred

over 800 ms. Due to the age of the instrument, limits of detection were estimated at

5 mg L-1. While not capable of performing low concentration environmental analysis,

it did provide an opportunity to examine the capabilities of the DART ionization

source, and its capability for ionization of neonicotinoids.
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3.4.2 Temperature Optimization

One of the only user-variable parameters related to DART ionization is the tempera-

ture of the metastable species. An increased temperature corresponds to an increased

production of metastable species, and the generation of more ions from analytes.

However, if the temperature is too high, it can cause thermal degradation of the an-

alytes, or the sampling substrate. To optimize this critical parameter with DART,

high-concentration standards of each of the six neonicotinoids were introduced on a

glass melting point capillary, and their ion counts recorded using FTICR. As shown in

Figure 3.5, there is a region of high ion counts between 300 and 350 ◦C for all analytes.

Below these temperatures, not enough of the analyte is ionized, due to the lack of

energetically favourable metastable species. Above these temperatures, it is possible

that thermal degradation of the neonicotinoids occurred, as the peak corresponding

to the ion count of [M+H]+ was reduced, while some potential fragmentation peaks

increased in ion count.

3.4.3 Solvent Doping

Another interesting experiment was investigation of the capabilities of solvent dop-

ing with the DART source.75 By exposing a small quantity of solvent, either DCM

or ammonia, to the stream of metastable species, the solvent vapours should form

adducts with analytes of interest. To test this, 3 – 5 mL of DCM was placed in

a small vial directly below the stream of metastable species so that solvent vapours

might be ionized. Using a standard of thiacloprid, introduced on a glass melting point

capillary, the spectrum was collected using FTICR, and examined for the presence

of chlorine adducts. It was determined, as shown in Figure 3.6, that the presence of

DCM vapour in the metastable stream caused a reduction in ion count for [M+H]+

66



Figure 3.5: DART-FTICR temperature optimization to maximize ion count for each
of the six neonicotinoids. A: nitenpyram, B: thiamethoxam, C: clothianidin, D: imi-
dacloprid, E: acetamiprid, F: thiacloprid

from 80 for m/z 253 to just 2.5 for m/z 253, and the appearance of a new [M+Cl]+

peak. While solvent doping was not used for further analysis of neonicotinoids, it does

provide useful insight into methods of improving selectivity and sensitivity of DART.

3.4.4 Metastable Species Variations

One of the interesting aspects of the underlying mechanism behind DART ionization,

is in the generation of metastable species, and ions. As was outlined in the intro-

ductory chapter, in positive mode, DART generates protonated water clusters using

metastable species which interact with atmospheric water to generate H+. The abil-

ity to generate these protonated water clusters, and in general, the ability to ionize

analytes of interest, is largely dependent on the ionization energy of the metastable

species, and the ionization potential of the analytes. Helium, the most commonly

used metastable species, has an ionization energy of 26.4 eV,76 and is therefore capa-

67



Figure 3.6: The mass spectrum demonstrating the effects of solvent doping on the ion-
ization mechanism of DART. A: DCM solvent vapours introduced into the metastable
species, B: routine DART ionization
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ble of ionizing most analytes. Argon however, has an ionization energy of only 11.55

eV,77 which is less than the ionization potential of water, at 12.60 eV. This means

that argon is unable to generate the required protons or ions. When the metastable

species was switched from helium to argon, the selectivity in ionization was observed

experimentally, with no ions produced while using argon as the metastable species.

An interesting result from this experiment, was the ability to utilize the metastable

source gas to selectively ionize analytes dependant on their ionization potential. For

example, when nitrogen was used as the metastable species, with an ionization energy

of 14.50 eV,78 it was able to ionize 3 of the 6 neonicotinoids. Likely those neonicoti-

noids with ionization potentials less than that of nitrogen. In addition, the ion counts

were significantly higher than those from the helium metastable species, due to a

reduction of background interferences entering the FTICR. This suggests that selec-

tive ionization could be performed by matching an appropriate metastable source gas

with the ionization potential of analytes. While the results using the other metastable

species were interesting, helium was used for further analysis of neonicotinoids.

3.4.5 Sampling with DART and TDU-DART

Sampling with DART is relatively straightforward, however does present with some

issues for routine analysis. Unlike DESI, which has many geometric parameters which

can be optimized, DART can sample at an angle of 180◦ to the mass spectrometer

inlet, or 135◦ to the mass spectrometer inlet, as shown in Figures 2.1a and 2.1b. The

180◦ angle is useful for method development using droplets of standard on melting

point capillaries, while the 135◦ angle is useful for analysis of solid substrates, such as

thin-film MIPs. Both these sampling methods have issues with reproducibility, due to

the method of sample introduction. It becomes challenging to introduce the sample in

a reproducible way, or at a reproducible volume, leading to large %RSD values. While
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this is adequate for screening methods and method optimization, the error in sample

introduction is unacceptable for quantitative analysis of analytes. To overcome this,

the TDU-DART concept is employed. By placing the sample inside a TDU, heated at

220 ◦C, then ionized by the DART, quantitative ionization and transfer to the mass

spectrometer can be achieved.

Analytes of interest are spotted in known volume on an aluminium substrate and

placed into the heated, custom-built TDU. The temperature of the TDU is variable,

however anything below the maximum temperature of 220 ◦C did not show improve-

ment in ionization efficiency, and the maximum temperature was selected to ensure

the maximum thermal desorption of analytes from the substrate was achieved. It is

possible that better results could be achieved at increased temperatures, but due to

limitations of the TDU, it was determined that the maximum achievable temperature

should provide consistent desorption of analytes, reducing sampling error. By being

able to dispense a known sample volume, and ensure it is consistently thermally des-

orbed in an enclosed system, the sample introduction and ionization mechanism is

made more reproducible. For these quantitative experiments, a Waters Q-TOF mass

spectrometer was used, which still provided highly accurate m/z measurements with

lower limits of detection than the FTICR.

Accurate Mass Measurements

The high mass resolution of the Q-TOF gave accurate mass determinations for the

neonicotinoids, which agreed well with the theoretical masses (Table 3.5). All spectra

for the neonicotinoids, shown in Figure 3.7, were fairly clean, with limited background

noise. All neonicotinoids peaks appeared with at least 5× the ion intensity of the

surrounding background spectra, and the characteristic chlorine isotopic 3:1 ratio was

observable for all neonicotinoids.
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Figure 3.7: Mass spectrum measured by TDU-DART-QTOF-MS of 6 neonicotinoids
at 0.5 mg L-1.A: nitenpyram, B: thiamethoxam, C: clothianidin, D: imidacloprid, E:
acetamiprid, F: thiacloprid
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Table 3.5: Comparison of theoretical calculated masses and actual mass measurements
by DART-Q-TOF for the six neonicotinoids of interest

Neonicotinoid Formula Theoretical [M+H]+ Measured [M+H]+
Nitenpyram C11H11ClN4H+ 271.0962 / 273.0935 271.0945 / 273.0900
Thiamethoxam C8H10ClN5O3SH+ 292.0271 / 294.0242 292.0268 / 294.0239
Clothianidin C6N5H8SO2ClH+ 250.0165 / 252.0136 250.0160 / 252.0127
Imidacloprid C9H10ClN5O2H+ 256.0601 / 258.0574 256.0592 / 258.0564
Acetamiprid C10H11ClN4H+ 223.0750 / 225.0723 223.0732 / 225.0896
Thiacloprid C10H9ClN4SH+ 253.0315 / 255.0723 253.0296 / 255.0257

Calibration Curve

As a direct result of the quantitative nature of the TDU-DARTmethod, it was possible

to construct a calibration curve using neonicotinoid standards ranging from 0.1 – 500

µg L-1. A known volume of standard was dispensed on the aluminum substrate, dried,

and an injection standard of N -nitrosodimentylamine (NDMA) was added in known

volume and concentration, with the solvent allowed to evaporate before placing the

substrate inside the TDU. By continuously collecting spectra, and introducing the

sample-containing substrate at regular intervals, a chronogram was generated, where

the peaks for the extracted ions of interest correspond to increased ion intensity as a

result of introduction of sample into the TDU (Figure 3.8). Using this method, data

for a 9-point calibration curve was collected in just 15 minutes. The peak area from

the extracted ion chronograms was integrated and normalized against the injection

standard and used for the calibration curve (Figure 3.9).

The calibration curve for the TDU-DART method, shown in Figure 3.9, indicates

good linearity and reproducibility for neonicotinoids, particularly for an ambient at-

mospheric ionization technique. The regression coefficients were greater than 0.990 for

all analytes, which corresponds well with those from the LC-MS/MS method. Limits

of detection were higher than both the LC-PDA and LC-MS/MS methods, however

this is to be expected, as the method requires much more optimization. For example,
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Figure 3.8: Chronogram of a 0.5 mg L-1 neonicotinoid multistandard collected by
TDU-DART-QTOF-MS (A) showing the extracted ion chronogram for imidacloprid
(B), and subsequent peak integration (C).
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Figure 3.9: Calibration curve of neonicotinoid standards collected by TDU-DART-
QTOF-MS, injection standard NDMA at 0.5 mg L-1. A: nitenpyram, B: thi-
amethoxam, C: clothianidin, D: imidacloprid, E: acetamiprid, F: thiacloprid
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Table 3.6: Method validation parameters for the TDU-DART-QTOF-MS method for
neonicotinoid analysis

Neonicotinoid Regression Equation %RSD in Regression R2 LOD (pg analyte)
Nitenpyram y = 3.996x - 28.9 36.0% 0.9906 0.438
Thiamethoxam y = 0.682x - 4.11 5.97% 0.9964 0.434
Clothianidin y = 0.487x - 1.08 27.4% 0.9989 0.480
Imidacloprid y = 2.257x - 15.4 22.4% 0.9952 0.693
Acetamiprid y = 2.392x - 2.90 7/43% 0.9947 0.409
Thiacloprid y = 1.937x + 1.25 21.8% 0.9989 0.206

spectra and data were collected using a total ion chromatogram mode; limits of de-

tection could be improved through the use of tandem mass spectrometry and MRM.

Unfortunately, there was not enough time available to develop an MS/MS method

on the Q-TOF. Limits of detection were found to be between 29.4 and 98.9 ug L-1.

However, when these are expressed in terms of mass loading, the LOD ranges from

0.206 to 0.693 pg per sample (Table 3.6). While higher than methods that use sepa-

rations and tandem mass spectrometry, this demonstrates a good result for a simple

high-throughput method that can be applied to a variety of substrates and sampling

matrices.

3.5 QuEChERs

For a number of years, the QuEChERs method has been the industry standard for

pesticide residue analysis in environmental samples. It is applicable to produce, vege-

tation, water, honey, and various other consumer products which may have been con-

taminated with pesticides. It has been validated in the European Union as method EN

15662 and in the United States as method AOAC 2007. In this research, a modified

QuEChERs method is used for the examination of river water and honey samples.

The difference between the modified QuEChERs method, and method EN 15662,

which forms the basis for the modified method, is the sample dilution step. In the
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Table 3.7: QuEChERs results for neonicotinoid extraction from spiked honey samples

Neonicotinoid Regression Equation %RSD in Regression R2 LOD (µg L-1) %Recovery
Nitenpyram y = 5.528E-05x + 1.7E-03 6.44% 0.9942 0.711 58.6%
Thiamethoxam y = 1.552E-04x + 5.6E-03 4.84% 0.9888 5.07 13.4%
Clothianidin y = 1.589E-04x + 4.8E-03 5.36% 0.9913 0.714 34.6%
Imidacloprid y = 2.672E-04x - 8.8E-03 10.5% 0.9818 0.775 71.4%
Acetamiprid y = 5.421E-04x + 1.6E02 6.73% 0.9910 0.206 6.73%
Thiacloprid y = 7.465xE-02x + 2.11E-02 7.28% 0.9912 0.449 35.6%

EN 15662 method, samples are first added to the centrifuge tube, and diluted with

10 mL of water. In the modified method, developed for the analysis of honey and

water, samples are added to the centrifuge tube. Honey samples were further diluted

with 6 mL of water before continueing with the EN 15662 procedure of adding 6 mL

of acetonitrile, buffer salts, and MgSO4 for drying.

3.5.1 Honey Samples

Honey samples (6.0 g) were spiked with various concentrations of neonicotinoid multi-

standard and extracted using the QuEChERs method. A matrix-matched calibration

curve was constructed and the method examined for linearity, reproducibility, limits

of detection, and percent recovery of analytes. The previously validated LC-MS/MS

method was used for the analysis of extracts.

The calibration curve for the QuEChERs honey extracts is shown in Figure 3.10.

It indicates good linearity and moderate reproducibility for neonicotinoids analysis

over a range of concentrations from 0 – 1000 µg L-1. Only 5 points were used due to

the time-consuming and complex nature of performing the extraction, which requires

numerous weighings, centrifuging, vortexing, and transferring steps. Each sample

requires approximately 30 minutes of labour-intensive preparation.

Limits of detection for the QuECheRs method were good (Table 3.7), indicating

the method is applicable to spiked samples, and standard addition could be used for

analysis of pesticides in honey, however, the method does not demonstrate signifi-
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Figure 3.10: Calibration curve for the QuEChERs method. Data points were ex-
tracted using the method, spiking relevant concentrations in honey. A: nitenpyram,
B: thiamethoxam, C: clothianidin, D: imidacloprid, E: acetamiprid, F: thiacloprid

cant pre-concentration of analytes. In addition, limits of detection are higher than

those achieved using direct injection methods, which are goverend by the instrument

LOD. With percent recovery values varying between 13 and 71%, the method ap-

pears to be non-ideal for the analysis of neonicotinoids. It is possible both that there

is competitive absorption and high levels of matrix components in the complex honey

matrix causing ion suppression, or that not all neonicotinoids are being extracted by

the method. The QuEChERs method makes use of dispersive-SPE, which involves

placing the bulk SPE phase in a centrifuge tube and extracting the neonicotinoids

into acetonitrile. The analysis of river water extracts by QuEChERs will be further

investigated later.

Results from the QuEChERs method highlight a need for faster, more reliable

methods of analysis for neonicotinoids. The limited selectivity, combined with the

limited pre-concentration capability of the method does not allow for analysis of

dilute solutions, such as environmental river water or agricultural runoff. Method

detection limits for environmental samples must be lower than those achievable by
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the QuEChERs method, to allow for regulatory analysis of neonicotinoids.

3.6 Solid Phase Extraction

As a means of validation, as well as improving those results from the QuEChERs

method, solid phase extraction was run using a commercial C18 reverse phase car-

tridge. C18 was selected due to availability and universal extraction capability of

small, organic molecules. All SPE results were analyzed using the previously devel-

oped LC-MS/MS method for neonicotinoids.

3.6.1 Initial Testing

An important factor in developing an SPE method, is to examine the extraction

capability of the cartridges. Ideally, the cartridge should retain 100% of the analyte as

the liquid-sample matrix passes through, and should be capable of pre-concentrating

the analyte by reducing a large sample volume to a few mLs of solvent. Also of

importance is the ability to selectively extract only those analytes of interest, which

simplifies further separation methods such as LC or GC, and simplifies the mass

spectrometric analysis.

To test the retentive capabilities of the C18 SPE cartridges, three concentrations

of neonicotinoid standard in 100 mL of water were loaded onto the cartridges. The

extracts were collected and analyzed by LC-MS/MS. The effluent from the first load-

ing of the cartridge, hereafter referred to as flow-through was collected, and passed

through another C18 cartridge to assess breakthrough. Comparisons between the

extract concentration and flow-through concentrations allowed for an estimate of the

percent of analyte which passed through the cartridge. Results from these experiments

are shown in Table 3.8. For concentrations of 1, 5, and 10 µg L-1 loaded onto the C18
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Table 3.8: Initial test of the C18 SPE method demonstrating its capabilities in analyte
retention, % recovery, pre-concentration capability, and reprodicability.

Neonicotinoid Pre-concentration Factor % Recovery % RSD
Nitenpyram 17.69 99.1 19.9
Thiamethoxam 14.16 99.6 74.2
Clothianidin 16.29 99.6 43.4
Imidacloprid 14.36 99.7 58.2
Acetamiprid 19.65 99.8 18.9
Thiacloprid 16.92 99.8 45.5

SPE cartridges, greater than 99.6% of analytes were retained for all neonicotinoids.

The pre-concentration factor (PCF) for the cartridge was determined by compar-

ing the concentration of extract calculated using a standard calibration curve linear

regression with the concentration loaded onto the cartridge. An average PCF was

taken from the pre-concentration factor determined for each concentration level. The

PCF for the C18 cartridges was determined to range from 14.2 to 19.7 for the neoni-

cotinoids, as shown in Table 3.8. As 100 mL of sample was loaded onto the cartridge

and eluted in 5 mLs, the expected PCF is 20. When the results from PCF are com-

pared against % recovery values it becomes clear that the C18-SPE cartridges are not

ideal for neonicotinoid analysis. Due to the limited sensitivity and selectivity of the

cartridge, it is possible that some of the binding sites are occupied by other analytes

present in the matrix, or that not all neonicotinoids are being efficiently extracted

by the cartridge. It is hypothesized that a more selective SPE phase could improve

efficiency of the extraction, as well as increase the pre-concentration factor.

3.6.2 C18-SPE Validation

The C18-SPE method was assessed for the typical method-validation parameters of

linearity, range, reproducibility, and limits of detection. An 8-point calibration curve

was constructed at levels 0, 1, 5, 10, 100, 500, 1000, and 2000 ng L-1. Using SPE
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Table 3.9: Regression parameters and method detection limits for the C18 SPE
method

Neonicotinoid Regression Equation R2 LOD (ng L-1)
Nitenpyram y = 2.106E-06x + 8.1E-05 0.99676 1.229
Thiamethoxam y = 4.498E-06x + 8.7E-06 0.99997 2.591
Clothianidin y = 9.257E-06x + 7.4E-06 0.99997 3.802
Imidacloprid y = 2.359E-05x - 7.6E-05 0.99975 2.776
Acetamiprid y = 3.637E-05x + 5.5E-05 0.99997 0.998
Thiacloprid y = 4.768E-05x + 2.2E-04 0.99997 5.788

and its pre-concentration capabilities necessitates an order of magnitude reduction

in the concentration range, relative to the instrumental method, where the concen-

tration of standards is in the µg L-1 range. This range of concentrations represents

an environmentally applicable range for the analysis of river waters, and agricultural

run-off. For all analysis, an internal standard of nicotine at 500 µg L-1 is added prior

to sample injection. As shown in Table 3.9, the regression coefficients for all neon-

icotinoid curves are very good. The nitenpyram curve has a regression coefficient

of 0.996, while the other 5 neonicotinoid curves have regression coefficient values of

0.999 or better. Method detection limits for the C18-SPE method ranged between 1.0

and 5.8 ng L-1, which demonstrates excellent applicability to environmental analysis

of dilute river samples. However, it is possible that these results could be further

improved with a more selective phase for detection of neonicotinoids specifically, as

the universal nature of a C18-SPE cartridge allows for many matrix components to

be pre-concentrated from the samples, which could potentially cause ion suppression

of the neonicotinoids signal.

3.7 Molecularly Imprinted Polymers

In an effort to improve selectivity, extractive capabilities, and pre-concentration of

analytes from environmental matrices, MIPs were fabricated with affinity for neoni-
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cotinoid insecticides. There are two mechanisms of fabrication, bulk fabrication for

use as an SPE sorbent, and thin-film fabrication for direct sampling to analysis work-

flow. While some work has been completed on thin-film fabrication for use with DART

ambient ionization, the focus of this research is on MIPs for use as an SPE sorbent.

3.7.1 Bulk MIP Fabrication

By using a pseudo-template similar in structure and functionality to neonicotinoids

during the development of the cross-linked polymer network, it is theorized that pore

structures form with suitable structure, size, and functionality for binding neoni-

cotinoids. Bulk molecularly imprinted polymers are fabricated using a thermal free-

radical initiator. The first step in their fabrication is selecting a monomer which

interacts strongly enough with the template, along with a solvent system that will

not disrupt its complexation. The monomer, acrylamide, was selected as it is ex-

pected to provide relatively strong interactions with the pharmacophore functionality

of the neonicotinoids through hydrogen-bonding. Acryalmide can also interact with

the chloro-substituted aromatic ring present on all neonicotinoids. The combination

of the template and monomer in an aprotic solvent creates favourable conditions

for these hydrogen-bonding interactions to occur before the addition of other pre-

polymerization components. Once the mixture has been sufficiently stirred, cross-

linker EGDMA is added. Finally, the initiator is added directly before placing the

sealed pre-polymerization complex in an oil bath to thermally activate the AIBN and

induce polymerization.

Polymerization occurs by vinyl-terminated carbon-carbon bond formation between

the functional monomer, acrylamide, and cross-linker. The presence of the carbonyl

groups on the acrylamide allow for free-radical initiation, and free-radical chain poly-

merization provides propagation. The cross-linker interacts with the monomer allow-
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ing for pores to be developed with sufficient rigidity, maintaining structure when the

template is removed. Figure 3.11 depicts a proposed structure for the formation of

polymer surrounding a template molecule, imidacloprid. In this figure, multiple free-

radical pathways from differently initiated molecules combining to form a complete

bulk polymer are illustrated. Each potential radical pathway is depicted using unique

colours, joined by carbon-carbon bonds (orange in colour). This figure presents a

theorized formation of a pore with an MIP surrounding a template molecule. The

template molecule can then be removed from the polymer with a solvent system that

can interrupt the monomer-template interactions. In this case, acetonitrile with 0.5

% acetic acid disrupts the hydrogen bonding interactions to remove the template.

The initial attempts to fabricate the bulk-phase MIP, presented an issue regarding

the structural rigidity of the polymer. It was determined that under the vacuum of

the SPE manifold, the polymer, with delicate pore structure, collapsed, which blocked

solvent flow through the MIP. The collapse of the pore structure resulted in non-

ideal analyte retention and low solvent flow rate. These challenges were overcome by

grafting the MIP onto a solid support structure.

3.7.2 Grafted MIPs

To overcome the challenges of the soft polymer matrix, MIPs were fabricated on a

silica sub-structure using a modified sol-gel procedure, outlined in Figure 3.12. This

procedure is similar to, but modified from that by Kia et al.79 In this procedure,

silica gel was synthesized by acid hydrolyzed polymerization of tetraethylorthosilicate,

which resulted in a white gelatinous silica network. Typically, sol-gel methods dry

this gel before use, or aerogel can be created by super-critically drying the silica gel.

Instead, this method functionalizes the silica gel by attaching vinyl substituents, used

for grafting the polymer to the silica substrate.
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Figure 3.11: Proposed self-assembly of a structure for the formation of a molecu-
larly imprinted polymer, highlighting potential hydrogen-bonding sites between the
template (imidacloprid) and monomer/cross-linker co-polymer.
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Tetraethylorthosilicate
2M	HCl
1	h

3-(trimethoxysilyl)propyl-
methacrylate

80	°C
4	h

3-TMSPM
+
PPC

3-TMSPM-SiO2

65	°C
4	h

Figure 3.12: Illustrated simplified MIP grafting procedure to incorporate the modified
silica and pre-polymerization complex (PPC).

The reaction to produce the vinyl-modified silica network has a measured 96%

yield with minimal unreacted starting material. The yield was determined using

mass of resultant gel compared with total mass of starting materials. The modified

silica, hereafter referred to as 3-TMSPM-SiO2 indicitative of the functionalization of

the SiO2 network with 3-(trimethoxysilyl)propyl methacrylate, was then dried and

ground to appropriate particle size before use as a solid support structure for the

MIP. The pre-polymerization complex is created identically to the fabrication of bulk

MIPs. This allows for most bulk MIP polymerization methods to be adopted to this

modified sol-gel procedure, which is potentially useful for improving performance of

many other MIP formulations. The primary difference between the bulk polymer-

ization method and grafting method is the inclusion of the particulate solid support

3-TMSPM-SiO2 in the pre-polymerization complex. Due to the free-radical polymer

formation mechanism of vinyl-terminated chain-growth polymerization as illustrated
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previously in Figure 3.13, the mechanism readily incorporates the vinyl-modified silica

network as part of the polymer.

Through experimentation, the incorporation of the polymer synthesis with the

silica gel substrate lead to far superior MIPs in terms of performance for pressurized

flow through column applications. The flow rate when the grafted MIP was used

as packing for SPE was improved compared with the MIP only bulk polymer, and

was self-regulating respect to flow, achieving an appropriate flow rate for SPE at 0.6

atm of pressure without manipulation of the manifold valves. This bounded flow

rate (for low pressure systems like SPE) is likely due to the small and reproducible

particle size and pore structure. This alone greatly simplifies the SPE process by

making it easier to establish an appropriate flow rate for sample loading and analyte

elution. The silica-grafted MIP, referred to as 3-TMSPM-SiO2-MIP, was packed into

6 mL SPE cartridges between 2 glass frits. As the MIP is fabricated as a gel and

contains residual porogen from the radical synthesis, the polymers were weighed after

drying under vacuum following removal and elution of the analytes to determine mass

loading. While this residual porogen does not impact analysis, and is eluted during

cartridge conditioning, it is simpler to pack the MIP as a gel rather than drying the

phase before use.

3.7.3 3-TMSPM-SiO2-MIP Validation

The silica-grafted MIPs were validated against a commercial C18 SPE cartridge for

their performance, examining pre-concentration factor, selectivity, analyte retention,

percent recovery, range, linearity, and limits of detection. As the selectivity, and there-

fore the MIP performance is dependant largely on the template molecule, two tem-

plates were used: 2-chloropyridine-4-acetic acid (2CP4A), and nitenpyram. 2CP4A

was selected as it is a potential useful pseudo-template for all neonicotinoids. It has
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Figure 3.13: Proposed structure of an imidacloprid-containing MIP pore, indicating
how the vinyl-modified silica (3-TMSPM-SiO2) can incorporate into the structure of
the MIP. Different colours indicate differently initiated free-radical polymerizations.
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the bulky 2-chloropyridine structure, as well as a hydrogen-bond donor/acceptor in

a para position to the chlorine, similar to the pharmacophore of all neonicotinoids.

Nitenpyram was chosen to examine the potential highly selective capability of the

MIP to selectively uptake individual neonicotinoids.

Pseudo-templates are preferred in MIP fabrication due to the effects of template

bleeding. It is unlikely that all template will be removed during the acid washing

step; this residual template could be eluted with the sample. If the template is a

neonicotinoid or other environmental contaminant, it could appear at elevated con-

centrations, which would invalidate the results for that particular analyte. While

templates that match the analyte should provide better results and higher selectivity,

they have some significant disadvantages. All method validation studies were per-

formed using 2CP4A as the pseudo-template, and nitenpyram was used selectively to

demonstrate the potential selective power of the MIP-SPE method.

To determine the retentive capabilities of the MIP phase, 100 mL of a multistan-

dard solution at 10 µg L-1 were loaded onto the MIP-SPE cartridge. The eluate was

collected and passed through a second MIP-SPE cartridge, similar to the experiment

performed for the C18 cartridge. Like the C18 cartridge, the retention was excel-

lent, with greater than 99.2% retention up to 100 µg L-1. There was an issue with

nitenpyram however, where only 81.5% of the analyte was retained. It is possible

that the significantly different structure and increased water solubility of nitenpyram

from the other 5 neonicotinoids causes reduced extraction performance of the MIP

when 2CP4A is used as a pseudo-template. When nitenpyram is used as a template

molecule, the retention of nitenpyram during a routine extraction of sample increases

to 99.6%, however it is also possible that this increased result is due to template

bleeding. It should be noted that 2CP4A is present in all sample elutions from the

2CP4A-MIP-SPE cartridge, evidence of the template not being fully removed from
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Table 3.10: Results from the silica grafted 2CP4A-MIP-SPE cartridges showing
the performance capabilities in terms of analyte retention, reproducability, and pre-
concentration factor

Neonicotinoid % Analyte Retention Pre-concentration Factor %RSD (n=9)
Nitenpyram 81.5% 6.56 7.34%
Thiamethoxam 99.2% 15.2 7.86%
Clothianidin 100.0% 15.9 5.03%
Imidacloprid 100.0% 13.9 6.09%
Acetamiprid 100.0% 18.5 2.42%
Thiacloprid 100.0% 15.8 5.70%

the cartridge during pre-conditioning steps. Results from the initial tests are shown

in Table 3.10.

A test of the MIP-SPEs for pre-concentration capability places them nearly on-

par with the commercial C18 variant, with PCFs ranging from 13.8 to 18.5, with

approximately 5% variation relative to the C18 cartridges. PCFs were again calculated

by comparison of eluted analyte to a standard calibration curve to determine the

concentration of analyte eluted. The exception again is nitenpyram, with a PCF

of only 6.6, indicating lower overall performance for this analyte, while the other

analytes are performing as expected with an expected PCF of 20. Changing the

template from 2CP4A to nitenpyram dramatically improved the performance of the

MIP-SPEs, outperforming the C18 cartridges in terms of pre-concentration factor for

all 6 neonicotinoids. PCFs ranged between 39.3 and 89.9 for the six neonicotinoids

using nitenpyram as a template molecule (Table 3.11). It is possible that due to

increased mass of polymer in the cartridge or the complex pore structure which allows

for more neonicotinoids to be adsorbed by the SPE phase relative to the C18, as well as

the increased sensitivity from the nitenpyram template leads to an increase of the PCF

above the expected 20. This suggests that not all analyte is retained on the C18 and

2CP4A-MIP SPE as previously theorized. This also further highlights the importance

of an appropriate template. The disadvantage here however, is the concentration of
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Table 3.11: Examination of three templates to improve the pre-concentration factor
and analyte retention, and by extension, performance of the SPE-MIPs

Template 2CP4A Nitenpyram Thiamethoxam
PCF %Ret. PCF %Ret. PCF %Ret

Nitenpyram 6.56 26.8% 89.9 24.3% 2.78 61.4%
Thiamethoxam 15.2 92.3% 51.8 95.6% 820.5 53.0%
Clothianidin 15.9 100% 41.7 100% 22.6 100%
Imidacloprid 13.9 100% 37.6 100% 23.7 100 %
Acetamiprid 18.5 100% 39.3 100% 28.9 100%
Thiacloprid 15.8 100% 41.6 100% 20/4 100%

Table 3.12: Method validation study for the SPE MIP procedure, including method
detection limits and regression parameters

Neonicotinoid Regression Equation R2 %RSD (n=3) LOD (ng L-1) LOQ (ng L-1)
Nitenpyram y = 3.770E-07x + 7.7E-05 0.9623 25.6% 1.961 6.535
Thiamethoxam y = 2.862E-06x + 1.8E-04 0.9636 4.24% 0.987 3.261
Clothianidin y = 1.047E-05x - 1.4E-04 0.9954 2.22% 0.081 0.271
Imidacloprid y = 2.626E-05x - 5.0E-04 0.9882 2.21% 0.102 0.339
Acetamiprid y = 4.048E-05x - 4.1E-04 0.9962 3.49% 0.276 0.919
Thiacloprid y = 4.974E-05x - 1.3E-03 0.9934 1.51% 0.170 0.568

nitenpyram in the flow-through and extract was significantly higher than the other

5 neonicotinoids. With the flow-through concentration being 600× that of the other

neonicotinoids. While performance is improved with an analyte matched template, it

is necessary to use a template that does not have an environmental presence to avoid

false positive results.

A calibration curve was constructed for the 2CP4A MIP-SPE cartridges, matching

the 8 levels that were used for the C18 validation study. Concentrations of 0, 1, 5,

10, 100, 500, 1000, and 2000 ng L-1 were loaded onto the MIP-SPE cartridges at a

volume of 100 mL. The extracts were analyzed using the previously developed LC-

MS/MS method for the presence of the six neonicotinoids of interest. Results from

this calibration curve are shown in Table 3.12.

The 2CP4A-SPE-MIPs demonstrate similar results to the commercial C18-SPE

cartridges. The method detection limits range between 0.08 and 1.96 ng L-1, which is
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Figure 3.14: Calibration curve for MIPs used as solid phase extraction sorbents for
the selective detection of neonicotinoids. A: nitenpyram, B: thiamethoxam, C: cloth-
ianidin, D: imidacloprid, E: acetamiprid, F: thiacloprid

well below the detection limits required for regulatory environmental analysis, and sig-

nificantly lower than those achieved using the C18-SPE method. The lower method

detection limits are likely a result of increased selectivity for analytes of interest,

excluding more matrix components, which can improve signal-to-noise thereby en-

hancing instrument response. While the 2CP4A-MIP-SPE results do not fit a linear

regression as well as the commercial C18 cartridges, the results are still very good,

with regression coefficients greater than 0.96 for all analytes. The calibration curves

for the 2CP4A-SPE-MIPs are shown in Figure 3.14. As with the pre-concentration

factor and analyte retention studies, the method is underperforming for nitenpyram,

having the lowest slope and response of the neonicotinoids.

Comparing the results of the 2CP4A templated SPE-MIPs to those templated

using nitenpyram, there is clearly a need to find a better template molecule, which
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will provide the high selectivity for neonicotinoids as demonstrated by the nitenpyram

MIP-SPEs, but is not a concern for environmental analysis.

3.8 Thin-Film MIPs with DART

The other fabrication method for molecularly imprinted polymers of interest in the

work presented here is the thin-film format. The advantage of fabricating MIP films

on a solid substrate such as a glass slide, is the ability to take the polymer directly

to the sampling site and extract the target analytes directly from water without need

for additional equipment such as vacuum manifolds and pumps. This eliminates the

need for transporting the sample to a lab for analysis. Another important feature

is the ability to directly sample from the thin-film polymer using ambient ionization

techniques such as DESI or DART.

Previous work on thin-film MIPs for neonicotinoids indicated a need for improve-

ment of their performance, as they were only able to uptake thiacloprid, while other

neonicotinoids demonstrated no significant mass loading on the polymer. For this

reason, the project initially focused on MIP-SPEs, which may then be transferred to

a thin-film format. Nevertheless, it is important to mention thin-film MIPs, as they

were used to demonstrate the applicability of the DART ambient ionization method

for neonicotinoids.

As mentioned in the introduction, DART can be used for sampling in three con-

figurations: 180◦ to the mass spectrometer inlet, 135◦ to the mass spectrometer inlet,

or using the thermal desorption unit, previously described. Although the thin-film

MIPs on microscope slides were too large to fit in the TDU, they were sampled using

the 135◦ configuration. By placing the MIPs on a linear rail, and passing them in

front of the metastable gas source, mass spectra could be collected. The mass spec-
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Figure 3.15: Thermal degradation of MIP components as the temperature of the
metastable source increases.

tra collected using the Q-TOF MS indicated only the presence of thiacloprid from

thin-film MIPs that were exposed to 1 mg L-1 of multistandard neonicotinoid solu-

tion for 2 hours. This suggests only thiacloprid is binding to the polymer, which is

consistent with previous lab studies. This does effectively demonstrate the capability

of the DART method to thermally desorb and ionize analytes from the polymer, and

also provided a unique opportunity to study the potential thermal degradation of the

polymer. As shown in Figure 3.15, as the temperature of the metastable species was

increased, the ion count of individual polymer components: monomer methacrylic

acid, and cross-linker ethylene glycol dimethacrylate; remained consistent, suggesting

no thermal degradation of the polymer under temperatures of up to 550 ◦C. This is

a promising finding for future studies, since the stability of the polymer at high tem-

peratures is confirmed, suggesting the polymer matrix will not lead to interferences

upon direct interrogation with the DART source
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3.9 Environmental Analysis using SPE-MIPs, C18

SPE, QuEChERs, and Direct Injection

To demonstrate the applicability of the MIPs as well as compare their performance to

existing analytical methods, river samples were analyzed using each of the methods

validated in this work thus far. 2CP4A-MIP-SPEs, C18-SPE cartridges, the QuECh-

ERs procedure for pesticide extraction, and direct injection of filtered river sample

into the LC-MS/MS instrument. The percent recovery of a spiked sample, and the

pre-concentration factors for each of the methods were examined.

3.9.1 Direct Injection

The primary regulatory method of analysis for neonicotinoids used by the Ontario

MOECC is direct injection of filtered environmental samples. This is widely viewed

as the fastest method for regulatory analysis of neonicotinoids, due to the absence

of sample preparation, extraction, or pre-concentration steps. However, there are

many perceived disadvantages of this method. By neglecting to perform extraction

steps, the matrix interferences are plentiful, and could potentially interfere with the

complete ionization of the analytes of interest. Additionally, this method requires the

use of a highly sensitive triple quadrupole instrument to achieve the necessary limits

of detection, which is an instrument not readily available in many laboratories.

For the direct injection UHPLC-MS/MS analysis 3 mL of river water spiked at

10 µg L-1 was filtered, spiked with internal standard nicotine, and diluted to 5 mL

total volume. 2 µL of this was injected into the LC-MS/MS system, and analyzed

using the previously developed method. While all neonicotinoids were detected, the

dilution which occurs during the addition of internal standard makes this method

less than ideal, with limits of detection matching the instrument limits of detection
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Table 3.13: Results of direct aqueous injection of filtered and spiked river water
samples into the LC-MS/MS system

Neonicotinoid Calibration Range Spiked Concentration (µg L-1) %Recovery %RSD (n=3)
Nitenpyram 0 - 40 µg L-1 10 µg L-1 83.3% 6.29%
Thiamethoxam 0 - 40 µg L-1 10 µg L-1 24.8% 7.15%
Clothianidin 0 - 40 µg L-1 10 µg L-1 123.6% 8.44%
Imidacloprid 0 - 40 µg L-1 10 µg L-1 97.3% 6.28%
Acetamiprid 0 - 40 µg L-1 10 µg L-1 57.1% 6.85%
Thiacloprid 0 - 40 µg L-1 10 µg L-1 83.3% 11.4%

which range between 0.21 and 0.37 µg L-1, previously determined. Due to the lack

of analyte preconcentration, slight dilution, and potential for high matrix effects, the

MDLs for direct injection are expected to be higher than instrumental LODs, but

were not calculated as direct injection is not the focus of this research. Results for

concentrations determined using the direct injection method are given in Table 3.13.

Concentrations determined by direct aqueous injection ranged from 2.4 to 12.4

µg L-1, giving percent recoveries between 24 and 123%. While this range is large, it

does demonstrate variation among analytes, and given the large error associated with

direct injection, is as expected. This does highlight a need for a more selective and less

error prone method of analysis. This method, while easy, is limited by the instrument

limits of detection, and can therefore only be used for environmental analysis where

the concentration is greater than 1.5 µg L-1, or by a standard addition method, which

creates additional sample preparation.

3.9.2 QuEChERs of River Water

The QuEChERs method outlined previously for honey analysis was adapted for the

analysis of river water. Spiked river water was extracted using the modified procedure,

and results analyzed using the previously developed LC-MS/MS method. The method

was largely ineffective at extracting neonicotinoids from river water, possibly due to

the higher than normal aqueous content of the sample. As QuEChERs is typically

94



Table 3.14: Results from QuEChERs-extracted spiked river water samples

Neonicotinoid Calibration Range Spiked Concentration (µg L-1) %Recovery %RSD (n=3)
Nitenpyram 0 - 1000 µg L-1 10 µg L-1 54.7% 2.55%
Thiamethoxam 0 - 1000 µg L-1 10 µg L-1 188.4% 21.7%
Clothianidin 0 - 1000 µg L-1 10 µg L-1 87.6% 3.14%
Imidacloprid 0 - 1000 µg L-1 10 µg L-1 122.0% 1.41%
Acetamiprid 0 - 1000 µg L-1 10 µg L-1 72.8% 0.90%
Thiacloprid 0 - 1000 µg L-1 10 µg L-1 51.7% 3.22%

used for homogenized solid samples, pollen, or honey analysis, the introduction of 6

mL of water potentially overpowered the effects of drying agent MgSO4, resulting in

inefficient extraction of neonicotinoids from the sample. However, thiamethoxam did

show 90% recovery, which was good compared to other analytes, which showed less

than 30% recovery. Where the recoveries are greater than 100% it is possible that

neonicotinoids are being detected in the samples of river water. This is the case for

imidacloprid and thiamethoxam, which are often used together for crop treatments.

Full results from the QuEChERs method for river water samples are shown in Table

3.14.

It is possible that due to the applicability of the QuEChERs method to a number

of samples and analytes, that there is competition for binding sites on the extractive

phase between neonicotinoids and the vast array of other matrix compounds. It is

also possible that since neonicotinoids were developed after the introduction of the

QuEChERs method, the method is not well suited towards their analysis. Perhaps

more modifications of the method are needed to improve selectivity and efficiency for

neonicotinoids.

3.9.3 C18 River Analysis

Using the commercial C18-SPE cartridges, spiked river water samples were tested for

percent recovery, selectivity, and pre-concentration factor. River samples spiked with
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Table 3.15: Results from spiked river water samples extracted by the C18 SPE
method, previously developed and validated

Neonicotinoid Calibration Range Spiked Concentration (µg L-1) %Recovery %RSD (n=3) PCF
Nitenpyram 0.1 - 10 µg L-1 10 µg L-1 < MDL 0.19% -
Thiamethoxam 0.1 - 10 µg L-1 10 µg L-1 13.0% 3.13% 7.23
Clothianidin 0.1 - 10 µg L-1 10 µg L-1 31.1% 3.88% 6.64
Imidacloprid 0.1 - 10 µg L-1 10 µg L-1 21.3% 4.21% 6.36
Acetamiprid 0.1 - 10 µg L-1 10 µg L-1 31.7% 0.93% 6.67
Thiacloprid 0.1 - 10 µg L-1 10 µg L-1 42.8% 4.15% 3.87

10 µg L-1 of neonicotinoid multistandard were loaded onto the C18-SPE cartridges at

a volume of 100 mL. The concentration determined from the extracts was calculated

using the previously developed C18 calibration curves, as well as the calibration curves

of standards injected directly to determine a percent recovery of the analytes and

pre-concentration factors. Results demonstrated the C18-SPE method to be superior

to the QuEChERs method, which is to some extent unexpected, as QuEChERs is

developed exclusively for the analysis of pesticide residues, however SPE is typically

intended to be used for preconcentration from water. The C18-SPE method was able

to pre-concentrate the spiked river samples by 4 to 7 times, giving concentrations

between 38 and 72 µg L-1, when results were extrapolated from a standard-based

calibration. These PCFs are superior to the QuEChERs method for both river and

honey analysis, which did not demonstrate any significant pre-concentration ability,

however the PCFs for the SPE method are lower than expected (20), suggesting less

than 100 % extraction efficiency. Full results are given in Table 3.15.

Percent recoveries were generally lower than those determined using the direct

injection method. However, there was significantly less variation amongst the per-

cent recoveries of the six neonicotinoids, indicating an improvement in selectivity for

the neonicotinoids, or a reduction of matrix interferences by using a sample cleanup

step. Recoveries ranged from 0 to 43%. The only analyte to have poor recovery was

nitenpyram, which had concentrations below the MDL. This is interesting, as this
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neonicotinoid also demonstrated problems with binding to the cartridge when using

the MIP-SPE method. This low performance is again potentially due to its higher

water solubility relative to the other neonicotinoids. The significant advantage of

using this method, or the SPE-MIP method over direct aqueous injection, is the abil-

ity to clean up and preconcentrate the analyte from the complex river matrix. This

lowers method detection limits to the ng L-1 range, which is far more applicable for

environmental analysis.

3.9.4 MIP River Analysis

The goal of the MIP-SPE phase is to extract analytes from spiked river water with

better percent recovery, selectivity, and efficiency than the commercial C18 cartridge.

To test this, the same river spiked with 10 µg L-1 neonicotinoid multistandard was

loaded onto the 2CP4A-MIP-SPE cartridges at a volume of 100 mL. Concentrations

obtained from the extract were calculated using an external standard-based calibration

curve, and a calibration curve constructed using the 2CP4A-MIP-SPEs, to provide

pre-concentration factors and mass loading, as well as percent recovery, respectively.

The 2CP4A-MIP-SPEs demonstrated increased selectivity for neonicotinoids com-

pared with the C18 cartridge. When concentration of neonicotinoids was calculated

using the standard-based calibration curve, the concentration of neonicotinoids de-

tected ranged from 75 to 87 µg L-1, indicating a pre-concentration of 7 to 9 times,

greater than the 4 to 7 times pre-concentration obtained while using the C18-SPE

cartridges. However, in following the trend of the earlier results for the MIP-SPEs,

nitenpyram is underperforming, with a concentration of 35 µg L-1, indicating a pre-

concentration factor of only 3.5 times. Results for the river water analysis by MIP-

SPEs are shown in Table 3.16.

Percent recoveries for the 2CP4A-MIP-SPE extracted river water samples were
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Table 3.16: Results from spiked river water samples extracted by the 2CP4A-MIP-
SPE method, previously developed and validated

Neonicotinoid Calibration Range Spiked Concentration (µg L-1) %Recovery %RSD (n=3) PCF
Nitenpyram 0.01 - 100 µg L-1 10 µg L-1 41.4% 9.62% 1.77
Thiamethoxam 0.01 - 100 µg L-1 10 µg L-1 32.5% 4.20% 8.67
Clothianidin 0.01 - 100 µg L-1 10 µg L-1 33.6% 7.21% 8.10
Imidacloprid 0.01 - 100 µg L-1 10 µg L-1 19.2% 14.1% 8.07
Acetamiprid 0.01 - 100 µg L-1 10 µg L-1 44.3% 6.03% 8.11
Thiacloprid 0.01 - 100 µg L-1 10 µg L-1 30.2% 9.74% 7.51

slightly higher than those extracted using the C18 SPE method. For both methods,

a method blank was subtracted prior to calculating % recovery. Concentrations de-

termined from an external calibration of MIP-SPE extracted neonicotinoid standards

in water ranged from 1.9 to 4.4 µg L-1. Giving 19 to 44% recoveries of neonicoti-

noids. While not as high as expected for a selective SPE phase, the recoveries were

generally on par, or higher than those of the C18-SPE cartridges, indicating improved

selectivity for neonicotinoids. It is hypothesized that by using a more appropriate tem-

plate molecule in the MIP, these percent recoveries could be significantly improved.

Interestingly, the nitenpyram recovery at 19%, while lower than all other analytes,

is performing better than its C18-SPE counterpart. Pre-concentration factors were

increased for all analytes excepting nitenpyram when compared to the C18-SPE car-

tridges.

3.10 Environmental Sampling

To demonstrate the performance of the MIP-SPEs, an environmental monitoring cam-

paign was undertaken along local waterways. The goal of this study was to determine

if there was any correlation between agricultural activities, and presence of neonicoti-

noids in the surrounding rivers. As expected, the concentrations of neonicotinoids

in river water were in the low ng L-1 range, direct aqueous injection did not allow
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for detection of any neonicotinoids, however, the MIP-SPE phase, with its method

detection limits ranging from 0.08 to 1.96 ng L-1, could potentially be highly useful

in examining low-level concentrations.

Eleven sampling sites were chosen along a local river basin for this experiment,

shown in Figure 3.16. Control sites 07, 09, and 11 were located upstream of all agri-

cultural activity, and were not expected to indicate the presence of any neonicotinoids.

Site 08 was taken from a waterway which is sourced directly from agricultural run-off,

and connects downstream of sites 07 and 09. Site 08 was expected to have elevated

concentrations of neonicotinoids. Sites 10 and 06 were taken downstream of site 11,

after the river passes through a heavy agricultural area, and also were expected to

have elevated concentrations of neonicotinoids. Site 06 is downstream of site 10, and

is fed by many isolated fresh water sources, and was expected to have reduced con-

centrations of neonicotinoids compared to site 10 due to dilution. Site 05 was taken

downstream of 07, 08, and 09. It was expected to have a reduced concentration of

neonicotinoids as compared to site 08, due to dilution of the river from isolated fresh

water sources, and expected to be free of neonicotinoids. Finally, sites 04, 03, 02, and

01 are taken at different locations along the same river, which is fed from all previous

sampling locations. Sampling sites 04 and 03 are at the top of the river, and sample

02 and 01 are downstream. 04 and 03 are taken from the same location, to examine

potential errors in the method.

Results shown in Table 3.17 are largely as expected. Nitenpyram presented with

elevated concentrations in all sampling sites, with concentrations calculated between

317 and 1473 ng L-1. As the river samples were analyzed using the nitenpyram-MIP-

SPE, due to its enhanced sensitivity and selectivity for neonicotinoids relative to the

2CP4A-MIP-SPE, it is expected that template bleeding may occur causing false pos-

itive results. It was decided that nitenpyram would be discounted from the results.
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Figure 3.16: Illustrated diagram of sampling locations along a local waterway with
concentrations of neonicotinoids as determined by applying unspiked river samples to
the SPE-MIP method.
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Table 3.17: Concentrations of neonicotinoids determined along a local waterway using
the validated SPE-MIP method. All concentrations in ng L-1.

Site Acetamiprid Clothianadin Thiacloprid Imidacloprid Nitenpyram Thiamethoxam
River 01 92.6 11.4 107.9 58.6 465.2 ND
River 02 < LOD < LOD < LOD < LOD 1473 ND
River 03 < LOD < LOD < LOD < LOD 687.1 ND
River 04 19.6 < LOD 33.8 12.8 606.1 ND
River 05 < LOD < LOD < LOD < LOD 415.9 ND
River 06 59.4 7.31 37.8 33.6 498.9 ND
River 07 9.66 < LOD 1.97 < LOD 316.9 ND
River 08 106.9 < LOD 74.9 33.3 958.2 ND
River 09 < LOD < LOD < LOD < LOD 1280 ND
River 10 276.1 23.5 276.2 151.2 351.9 ND
River 11 < LOD < LOD < LOD < LOD 578.7 ND

Thiamethoxam was not detected in any samples. As expected, the control sites 11 and

09 had no detectable concentration of neonicotinoids. At control site 07, neonicoti-

noids were detected at 9.66 ng L-1 of acetamiprid and 1.97 ng L-1 of thiacloprid. As

acetamiprid and thiacloprid are often used in tandem for crop treatment, it is likely

that this site could contain some neonicotinoids. Sites 08 and 10 indicated elevated

levels of all neonicotinoids, as expected due to their source of agricultural industrial

areas. Similarly, sites 06 and 05 had reduced concentrations of neonicotinoids due

to dilution of the river by isolated fresh water sources, as was expected. Site 05 had

no detectable concentration of neonicotinoids. Site 04 had detectable, but low levels

of neonicotinoids, however site 03 did not. As these were at the same location, the

results indicate it is possible that at lower concentrations there is more error in the

method. Site 02 showed no measurable presence of neonicotinoids. Site 01, which was

downstream of 02 had elevated concentrations. It could be possible that the sampling

location for site 02 was from stagnant water, rather than the higher-current area, caus-

ing no detectable concentrations of neonicotinoids. Or that site 01, located next to

an outflow pipe of unknown origin, had an increased concentration of neonicotinoids

arising from a source feeding into the drainage outfall.

The results from this study indicate that it is possible to use the MIP-SPE phase to
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correlate agricultural run-off with neonicotinoid concentrations along a local waterway,

however, further validation of the material is required before this can be used for

regulatory routine analysis. Additionally, thiamethoxam was not detected in any

samples, which was not expected. As thiamethoxam and clothianidin are usually

used in tandem for crop treatment, the presence of clothianidin should also indicate

the presence of thiamethoxam. It is possible that thiamethoxam has degraded before

sampling.

Previous literature surveys of neonicotinoids in waterways have detection limits of

neonicotinoids in water between 2 and 7 ng L-1 while loading 100 mL of sample.80 This

is comparable to the results from the MIP-SPE phase, which achieved MDLs below

1 ng L-1 with the same sample loading volume. There are currently no regulatory

maximum residue limits for neonicotinoids in Canadian or U.S. waterways, but it is

expected that the low MDLs achieved in this research will help contribute to better

environmental analysis.

Despite certain drawbacks and unexpected results, this experiment is a nice con-

clusion to the project. It demonstrates the achievements made in developing the

MIP-SPE phase thus far, and highlights the direction the project needs to take in the

future. It has demonstrated, as proof-of-concept, the capability of the MIP phase to

detect low levels of neonicotinoids from complex environmental matrices, and corre-

lates this data to expected concentrations based on geographical information. It has

also demonstrated that the MIP is useful for improving regulatory-driven analysis of

neonicotinoids, which is currently performed by direct injection, and limited by the

instrument limits of detection. This methodology demonstrates the ability to decrease

the method detection limits from µg L-1 to low ng L-1 range, with potentially lower

LODs with further optimization of the MIP formula.
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Chapter 4

Conclusions and Future Work

4.1 Conclusions

Through careful examination of the drawbacks of existing sampling and instrumental

methods, this project has demonstrated the ability of a MIP-SPE phase coupled with a

simplified LC-MS/MS method to achieve lower detection limits, enhanced sensitivity,

faster analyte throughput, and ease of use for the analysis of neonicotinoids.

The LC method has been improved compared to literature methods by reducing

method run times, and eliminating complex gradient elutions and buffering systems.

This was achieved by switching from HPLC to advanced UHPLC instrumentation,

and by using superficially porous column technologies. Analysis was performed using

MS/MS with MRM to lower detection limits compared to PDA and single quadrupole

MS detectors. In addition, a direct sampling method, TDU-DART-MS, was demon-

strated as proof of principle for faster analytical throughput.

Literature sampling techniques of direct injection, C18-SPE, and QuEChERs were

examined for their efficacy in extracting neonicotinoids from river water samples.

The drawbacks of these methods were identified and a novel MIP for neonicotinoids
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was fabricated to combat these issues. The MIP, fabricated using a modified sol-

gel procedure demonstrated lower MDLs than existing methods, achieved through

enhanced selectivity and sensitivity for neonicotinoids.

Using the MIP-SPE, in combination with the optimized LC-MS/MS method, an

environmental study of a local river basin was performed which demonstrated the

presence of neonicotinoids in the environment. This study also demonstrated the ca-

pability of the MIP-SPE phase to outperform literature sampling techniques, making

them potentially useful for routine, regulatory analysis.

4.2 Future Work

Using a more appropriate pseudo-template could potentially enhance the performance

of the MIP-SPEs, and this is something that will need to be investigated further.

Immediate future work for this project involves the completion of additional sam-

pling along the river basin to further demonstrate the performance of the MIPs. An

expansion on the template studies will be necessary to enhance the capability of the

MIPs, allowing for the detection of more neonicotinoids while minimizing template

bleeding. The DART method can also be expanded to perform analysis on the silica-

grafted MIP phase directly.

Longer term goals include fabrication of this formulation on a solid substrate, such

as a glass microscope slide, for direct environmental sampling, as well as testing for

shelf-life, reconstitution capability, reusability and potential competitive interactions

with other environmental analytes such as the organophosphates or carbamates, to

determine the selectivity for neonicotinoids relative to these insecticides.
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