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ABSTRACT 

 

The chemical reactions between steel and a corrosive environment cause severe corrosion, which 

has become a significant concern for the oil and gas industry due to the increase in the number of 

oil field shutdowns and equipment failures as the exploration of sour oil fields has considerably 

increased in the last decade. This research studies the effect of the hydrogen sulphide (H2S) 

environment on 13% chromium stainless steel, one of the most commonly used corrosion resistant 

alloy in the oil industry for sour oil fields containing hydrogen sulphide.  The corrosion behaviour, 

including corrosion rates, the effect of environmental conditions and the formation of protective 

films, were examined during the study. A series of experiments was performed using the 

conventional electrochemical method to study the effects of temperature, pH and immersion time 

on the corrosion behaviour of 13% chromium stainless steel in the H2S environment. Corrosion 

behaviour was monitored using the polarisation resistance technique. A scanning electron 

microscope (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) was used to 

conduct morphological characterization and X-ray diffraction (XRD) was used to study the crystal 

structure of corrosion products. This study shows that each environmental parameter has a 

significant impact on corrosion behaviour. 
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1. INTRODUCTION 

1.1 OVERVIEW 

Oil and gas exploration in highly corrosive environments has significantly increased in recent 

years, making hydrogen sulphide (H2S) corrosion an important topic of research after several 

pipeline failures and due to the safety risks associated with this dangerous gas. Compared to the 

number of studies on carbon dioxide (CO2) corrosion, there is a limited amount of experimental 

work available on hydrogen sulphide (H2S) corrosion, due to the difficulty in working with 

hydrogen sulphide gas [1]. Corrosion resistance alloys (CRA) are used in the H2S environment 

due to the passive film formation along with the self-repair nature of those passive films, but these 

CRA started corroding once these passive layers stopped forming efficiently [2]. The internal 

corrosion of the corrosion resistant alloys is controlled by environmental parameters such as 

temperature, pH value, the concentration of H2S in the environment and its immersion time. A 

minute change in any of these parameters can cause severe corrosion, causing catastrophic 

damages leading to the shutdown of the oilfields. The formation and growth of corrosive films on 

the steel surface are directly dependent on these environmental parameters. In some extreme 

conditions, the formed corrosion film is not sufficient to protect the underlying steel, which 

initiates localized corrosion with high corrosion rates, and very little research has been done related 

H2S corrosion in the oil industry [3][4].  

Another corrosion concern in the industry is the transportation of the oil and gas. Supply of oil and 

gas in huge volumes are being done by pipelines since many decades, as a reliable and economical 

method. To achieve the requirements for oil and gas, these pipelines run hundreds of kilometers 

and corrosion makes it difficult to maintain the integrity of such large networks. This transportation 

is commonly in multiphase form, which contains gases such as CO2, H2S, and a few other particles 
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in the transmission pipelines, these gases and particles will accelerate the corrosion rate of the 

pipeline [5]. The corrosion cost has increased to by millions of dollars in recent years [6]. 

1.2 RESEARCH OBJECTIVE 

This research aims to understand the electrochemical behaviour of the most commonly used 

corrosion resistant alloy (CRA) in H2S environments, which is 13% chromium stainless steel. This 

study includes the corrosion behaviour with the changes in environmental parameters, corrosion 

rates for different conditions, the growth of sulphide films under each condition and the impact of 

these protective films. This goal will be achieved by investigating a steel sample placed in an 

electrochemical cell with different experimental parameters and analyzing the sample after specific 

immersion times using the polarisation resistance technique. The morphological properties and 

crystalline phase structure of the sample are examined by scanning electron microscope (SEM) 

installed with energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). 

1.3 ORGANISATION OF THESIS 

This thesis is organized into six chapters which include Introduction, Literature review, 

Experimental details, Results and discussions, Conclusion and Future works. 

Chapter 1: Introduction, introduces the background and current problems in the oil and gas industry 

regarding H2S corrosion, the objective of this research and its organization. 

Chapter 2: Instrumentation, describes the instruments used in this research work, such as the 

Potentiostat, SEM, EDS and XRD. 
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Chapter 3: Literature Review, reviews oil fields’ exploration and encountering of corrosive gases, 

the corrosion problems in the sour oil fields and currently used corrosion resistant alloys. The 

techniques and methods used to conduct the experiments are also discussed. 

Chapter 4: Experimental details, introduces the experimental setup, the bath preparation, the 

electrochemical setup and various parameters used to conduct different experiments. 

Chapter 5: Results and discussion, focuses on the results obtained by experiments and the analysis 

of a sample using various techniques and equipments. It also discusses the obtained results in the 

form of discussion. 

Chapter 6:  Conclusion, summarises the results of this research and draws a major conclusion from 

the obtained findings. 

Chapter 7: Future work, suggests the way to further this research work and its findings. 
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2 INSTRUMENTATION 

In this research, the instruments needed for the experimentation and characterization of samples 

include the Potentiostat, Scanning Electron Microscope (SEM), Energy Dispersive X-ray 

Spectroscopy (EDS) and X-ray diffraction (XRD). 

2.1 POTENTIOSTAT 

A potentiostat is a simple device that depends on operational amplifiers to maintain a desired 

potential difference between two electrodes (working and reference electrodes) immersed in a 

solution while recording the electrical current that flows between them. Usually, a third electrode 

(counter electrode) is added to the system to isolate the electrode used as a potential reference 

(reference electrode) from the charge transfer reaction. The potentiostat applies a voltage and 

records the current response that is characteristic of the test’s sample [7]. 

The counter electrode (CE) (also known as an auxiliary electrode), is an electrode which is used 

to close the current circuit in the electrochemical cell. It is typically made of an inert material (e.g. 

Pt, Au, graphite, glassy carbon) and generally, it does not contribute to the electrochemical 

reaction.  Since the current is flowing between the WE and the CE, the total surface area of the CE 

should be higher than the area of the WE. Therefore, it will not be a limiting factor in the kinetics 

of the electrochemical process under examination [8]. 

The reference electrode (RE) is an electrode with a stable and well-known electrode potential and 

is used as a point of reference in the electrochemical cell for the potential control and measurement. 

The high stability of the RE potential is usually attained by retaining a redox system with constant 

concentrations of each participant of the redox reaction [9]. The current flow through the RE is 
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Figure 2.2.1 Sample image of Scanning electron microscope (SEM image of Iron sulphide layer). 

kept close to zero, attained by using the CE to close the current circuit in the cell together with a 

high input impedance on the electrometer (>100 GOhm). 

The working electrode (WE) is the electrode in an electrochemical system on which the reaction 

of attention is taking place. Regular WE can be made of inert materials such as gold (Au), silver 

(Ag), platinum (Pt), glassy carbon (GC) and mercury (Hg) drop and film electrodes. For corrosion 

applications, the material of the WE is the material under investigation.  The size and shape of the 

WE can also differ, depending on the application [10], [11]. 

2.2 SCANNING ELECTRON MICROSCOPE (SEM)  

Scanning Electron Microscope is used to study the morphological characterization of the corrosion 

product formed on the steel surface. It shows a magnified image of the corrosion product, 

providing key insights about the corrosion film and its thickness. 
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Figure 2.3.1. Sample image of EDS showing composition of Iron sulphide layer formed on the steel 

surface. 

SEM takes images by scanning the surface with a high beam of electrons. These electrons interact 

with the atoms in the steel and send back various signals. These signals contain key morphological 

and qualitative composition information of the sample’s surface which generate high-resolution 

images known as SEM images [12]. 

The sample must be electrically conductive to be operational with the SEM equipment. 

2.3 ENERGY DISPERSIVE X-RAY SPECTROSCOPY (EDS) 

Energy dispersive X-ray spectroscopy, also known as EDS. It is mostly equipped with SEM and 

is a tool for compositional analysis of the sample’s surface along with the SEM image. 

During this analysis, a high beam of charged electrons or an X-ray beam is bombarded on the 

sample surface. This bombardment displaces the inner shell electrons at the focus point and excites 

them to the outer shell, emitting back rays which are measured using a spectrometer, resulting in 

the compositional information of the focused sample as shown in figure 2.3.1. 
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Figure 2.4.1 XRD pattern of a corrosion sample. 

The principle of this method is that each element has a unique atomic structure corresponding to 

the X-ray emission spectrum which helps in identification of the element and its quantitative 

analysis. This sometimes makes it difficult to accurately identify and analyze the sample surface 

[13]. 

2.4 X-RAY DIFFRACTION (XRD) 

X-ray diffraction (XRD) is used for characterization of the composition of the sample surface and 

to identify its crystal structure and phase. 
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During this procedure, X-ray beams generated from different angles are focused on the sample 

surface. When the X-ray encounters the unique crystal structure on the sample, it becomes 

diffracted, making an XRD pattern. This unknown pattern is then compared in the database with 

similar peaks, which can determine the phase and crystal structure of the sample surface[13]. 
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3 LITERATURE REVIEW 

3.1 SOUR OIL FIELD EXPLORATION 

The exploration of sour oil and gas fields has significantly increased throughout the world, 

especially in an extremely corrosive oil field, including production and transportation, has become 

a significant concern to the industry due to corrosive environments in sour fields, which cause 

material damage and continuous shutdowns [14].  

Safety standards call attention to the danger of exposure to harmful gases, mainly hydrogen 

sulphide (H2S) present in this type of oil fields. Gases found in sour oil fields are detrimental to 

humans. With H2S gas, a low concentration of 10 ppm is sufficient to cause stress in human beings, 

and a concentration of 250ppm quickly leads to death [15].    

In sour oil production fields, elemental sulphur deposition appears in the fields with high H2S 

concentration. H2S is more soluble in the aqueous state compared to other gases found in sour oil 

fields. This solid elemental sulphur contacts the steel in the aqueous state, causing severe corrosion 

damage to the pipelines. Sour oil corrosion damage has become a major issue in the industry and 

researchers are still uncertain about the corrosion mechanism of sour oil fields [16], [17]. 

3.2 CORROSION PROBLEMS IN SOUR OIL FIELD EXPLORATION 

The harmful gases causing severe corrosion problems in sour oil fields are naturally occurring 

components of oil and gas and are impenetrable in the rocks during the geothermal changes over 

an extended period. The corrosion in sour oil fields is a source of problems for production, 

including reduced material strength, equipment failures, leakages and changes in the surface 

properties [18]. H2S leads to embrittlement of carbon steel; forms of embrittlement caused by H2S 
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are hydrogen induced cracking (HIC), sulphide stress cracking (SSC), and stress-oriented 

hydrogen induced cracking (SOHIC). 

Hydrogen-Induced Cracking (HIC): In this type of embrittlement, hydrogen is absorbed from the 

aqueous environment, leaving traces of hydrogen on the steel surface which develops pressure and 

starts to crack the steel surface. 

Sulphide Stress Cracking (SSC): The environmental H2S diffuses hydrogen through a chemical 

reaction and attacks the stress-induced areas of the steel surface such as the welded joints. The 

chemically released hydrogen starts to form on the stressed areas of the steel surface, initiating 

cracks and embrittlement in a direction perpendicular to the stress. 

Stress-Oriented Hydrogen Induced Cracking (SOHIC): This is typically a combination of HIC 

and SSC, where cracks form perpendicularly to the stress, with a combination of hydrogen induced 

cracks on the base metal surface [19][20]. 

3.3 CORROSION RESISTANT ALLOYS USED IN SOUR OIL FIELDS 

EXPLORATION 

In a harsh corrosion environment, the low alloy tubular steel has to be changed after a certain 

period due to the corrosion of steel in extreme environmental conditions, especially with high 

temperatures. This practice is costly to the oil and gas industry.  

The finished product of a chemical reaction in an H2S aqueous medium on the steel surface is 

written as: 

H2S + Fe  FeS +H2 
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Therefore, the corrosive H2S media in contact with steel form different corrosive layers of the iron 

and sulphur anionic surface [21]. These corrosion products have a catastrophic effect on the low 

alloy steel over a period. Therefore, to minimize the expenses, an alternative has been used to 

counter the corrosion of the low alloy steel. The corrosion resistant alloys (CRA) were 

recommended for tubular use in sour oil fields, they perform slightly better than flat alloy steel due 

to the improved chemical composition. The CRA show improvement in withstanding the severe 

corrosion in different environmental conditions.  

The alloys satisfactory for the H2S environment are the steels with high contents of chromium 

(Cr), molybdenum (Mo) or nickel (Ni). These alloys resist different types of corrosion in sour 

conditions compared to flat alloy steels. The detailed outline for the selection of corrosion resistant 

alloys in the H2S environment is recommended in part 3 of NACE MRO175/ISO1516-3[22], [23], 

[24]. 

3.4 HYDROGEN SULFIDE (H2S) 

Hydrogen sulphide (H2S) is a colourless, toxic and highly flammable gas with the odour of rotten 

eggs. It occurs naturally in different environments such as sewers, volcanoes, oil and gas and in 

some water wells. Human exposure to H2S gas may cause a severe headache, nausea, eye irritation 

and insomnia. Exposure to high concentrations can cause loss of consciousness and eventually, 

death due to respiratory paralysis [25], [26], [27]. 

The detection of H2S is enabled by the sensor using different techniques. A risky manual method 

to detect H2S is by exposing a paper soaked in lead acetate to the area, the presence of H2S turns 

the paper black. The most common in-situ H2S sensor are the thermal conductivity detectors, flame 

photometric detectors and sulphur chemiluminescence detectors [28]. 
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3.4.1 HYDROGEN SULPHIDE CORROSION 

Several studies have been conducted to study H2S corrosion in oil pipelines and the reaction 

between hydrogen sulphide (H2S) and water (H2O) is complicated.  

The stability of different H2S corrosion products or the sulphur species (S2- or HS-) is dependent 

on environmental conditions such as temperature, pH and concentration of H2S. In an H2S 

environment, the different types of corrosion products commonly formed are Mackinawite, 

Pyrrhotite, Troilite, Pyrite, Greigite and Marcasite.[29], [14].  

This chemically deposited iron sulphide layer (FexSy) on the steel surface limits further corrosion 

by protecting the steel from exposure to the H2S environment. The first iron sulphide product to 

form is Mackinawite, a fragile product due to its sulphur deficiency, and with an increase of 

immersion time, mackinawite break and leads to an increase of the corrosion rate and later, the 

formation of stable corrosion products[30]. 

The dissolution of iron sulphide for the film formation can be explained as [31]: 

H2S         HS- + H+  

HS-         H+ + S2- 

Fe + H2S + H2O   FeHS-
ad + H3O

+  

FeHS-
ad                   FeHS++ 2e- 

FeHS+                  FeS1-x
  + xHS- + (1-x)H+ 

FeHS+ +  H3O
+  Fe2+ + H2S + H2O  

Fe2+ + H2S         FeS + 2H+ 
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Fe2+ + 2HS-         Fe(HS)2 

3.4.2 EFFECT OF TEMPERATURE 

Temperature has a direct impact on the formation of corrosion products, which in turn changes the 

rate of corrosion and type of corrosion associated with a change in temperature. The impact of 

temperature has a severe effect over a short period and over long exposure, the temperature does 

not have an enormous effect on the H2S corrosion. The behaviour of corrosion is directly dependent 

on iron sulphide formation [32]. An increase in temperature up to 80ᴼC can increases the rate of 

deposition on the steel surface [33]. 

3.4.3 EFFECT OF pH 

The passive nature and the type of iron sulphide mineral formation are significantly dependent on 

the pH value. At lower pH values such as pH2, the solubility of iron sulphide phases increase, 

which dissolves iron and sulphide has a minimal effect on the precipitation on the steel surface. 

However, with the rise in pH values such as a pH (3-5), the formation of iron sulphide passive 

films increases on the steel surface, which inhibits the effect of H2S [34]. 

3.4.4 EFFECT OF H2S CONCENTRATION                                                                                      

The concentration of H2S has an immense effect on the corrosion behaviour of metal. In 

environments with higher H2S concentration, the passive layers of iron sulphide films are loosely 

packed, and the formation of blisters leads to a decrease in the protective ability of the passive film 

[35]. 
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3.4.5 EFFECT OF IMMERSION TIME 

The efficacy of a protective barrier of corrosion products in the H2S environment depends on the 

immersion time. As the immersion time increases, the passivation decreases, resulting in weak 

adherence of the corrosion film to the steel surface. With an increase in immersion time, the passive 

layer starts to break, which in turn exposes the surface of the steel to the harsh environment [36], 

[37].  

3.5 CORROSION PRODUCT LAYER IN H2S ENVIRONMENT 

The rate of corrosion is highly dependent on the type of corrosion product formed on the steel 

surface. The rate of film formation of the corrosive products and the precipitation rate of these 

films depend on several factors, most importantly on the concentration of H2S and the pH of the 

environment; different films can be formed based on their composition. The protective nature of 

these films determines the rate of corrosion in the metal [38]. 

Corrosion product formed in the H2S environment are minerals of iron sulphide (FeS). These iron 

sulphide films develop either due to precipitation or by direct chemical reaction between the sour 

environment and iron (Fe)[35], [39]. 

The formation of FeS by precipitation: 

Fe2+ (aq) +HS-
(aq) ⇄ FeS (s) + H+

(aq) 

FeS formed by direct chemical reaction 

Fe(s) + H2S(g)   FeS (s) +H2(g) 

The different types of FeS films to form on the surface as corrosion products depend on the 

surrounding environmental conditions. There are six different types of  naturally occurring FeS 
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minerals: mackinawite (Fe1+xS), pyrrhotite (Fe1-xS), greigite (Fe3S4), smythite (Fe9S11), marcasite 

(FeS2), and pyrite (FeS2)  [40].  

Mackinawite: Mackinawite is a sulphur deficient iron sulphide. The formula for mackinawite is 

Fe1+xS where ‘x’ ranges between 0.057 to 0.064. Mackinwaite has a two-dimensional stacked FeS 

structure, and it is the first corrosion product to form in low H2S concentrations as it is 

thermodynamically unstable and can be converted to other FeS minerals with the addition of 

sulphur content [40], [41]. 

Pyrrhotite: Pyrrhotite is an iron deficient iron sulphide. The formula for pyrrhotite is Fe1-xS. It is 

also called Troilite [42]. 

Greigite: Greigite is named after a mineralogist, Joseph W. Greig. The formula for Greigite is 

Fe3S4. It is isostructural, and it is ferromagnetic and semi-conductive [43], [44]. 

Marcasite: This is also called white iron pyrite. The formula of marcasite is FeS2 and has an 

unstable crystalline structure which tends to change with the changes in the environment [13].  

Pyrite: Pyrite has a cubic crystal structure and is also called fool’s gold. Its formula is FeS2 and 

forms with a high content of sulphur. The structure of pyrite is found to be stable compared to 

other H2S minerals. 

When these protective films start to break from the surface of the steel, localized corrosion starts 

to occur, which forms permanent anodic and cathodic sites on the surface [45], [46]. 

Environmental conditions such as temperature, pH, elemental sulphur, flow etc. play a significant 

role in these processes and some research suggests chlorine ions influence the localized corrosion 

in H2S systems [47].  Despite a great deal of research, the mechanism of H2S corrosion is 

inadequately understood. 
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3.6 ELECTROCHEMICAL METHODS 

3.6.1 GALVANIC CORROSION 

Galvanic corrosion occurs between two different metals in an electrochemically active medium. 

In galvanic corrosion, the more noble metal becomes cathodic and starts to corrode the less noble 

metal, especially in a corrosive environment. Mostly, galvanic corrosion is even and localized at 

junctions, depending on the type of alloy and the corrosive medium. If the protective film is not 

formed, the corrosion will be severe and becomes chemically difficult.  

When two metals are connected electrically in a corrosive medium, the difference between their 

corrosion potential will cause the corrosion to initiate both oxidation and reduction processes. 

Corrosion potential can determine the nobility of the metal. Hence, the metal which is less noble 

will become more anodic, and the metal which is nobler will be cathodic, forming a galvanic series 

based on the nobility of the metal. The metal placed at the opposite ends of the galvanic series will 

have very high corrosion rate, as one metal is very anodic, and the other metal is very cathodic. 

The anodic metal will be electrochemically corroded in the corrosive medium by chemical 

reactions, wear and migration of ions from the less noble metal towards the more noble metal; by 

this transfer of ions, the more noble metal will become more protective against corrosion in the 

corrosive medium. To measure the current galvanic current between two dissimilar metals, a zero 

resistance ammeter (ZRA) is used [48]. 

3.6.2 LINEAR POLARISATION RESISTANCE 

Linear polarisation resistance (LPR) is an electrochemical method to determine the reactions in an 

electrolytic solution. Corrosion rates and the exchange of current densities can be specified in an 

electrochemical experiment using LPR.  
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Figure 3.6.2.1 Linear Polarisation Resistance curve. 

The term ‘polarising the electrode’ is used in an open circuit when the potential of an electrode is 

changed from its original value. In this polarisation of an electrode in the electrochemical reaction, 

the flow of current takes place starting from the surface of an electrode. This current flow is 

controlled by the kinetics of the reaction and the reactant’s diffusion. 

 

 

  

 

 

 

 

 

 

 

 

In an open circuit, the equilibrium between the two electrochemical reactions controls the open 

circuit potential (OCP) when an electrode undergoes uniform corrosion. 

 

When the OCP has equal cathodic and anodic potentials, it is called a mixed potential, and the 

value of the current for any reaction is called the corrosion current (Icorr).  
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𝐼 = 𝐼𝑐𝑜𝑟𝑟 (𝑒
2.303(𝐸−𝐸𝑜𝑐𝑝)

𝛽𝑎 − 𝑒
2.303(𝐸−𝐸𝑜𝑐𝑝)

𝛽𝑐 )     

 

where:  

I = measured current (amperes) 

Icorr – corrosion current (amperes) 

Eocp – Open circuit potential (volts) 

βa – Anodic beta coefficient (volts/decade) 

βc – Cathodic beta coefficient (volts/decade) 

 

If a small signal is applied, the above equation can be written as: 

𝐼𝑐𝑜𝑟𝑟 =
𝛽𝑎𝛽𝑐

2.303(𝛽𝑎 + 𝛽𝑐)
∗

1

𝑅𝑝
 

 

where: 

Rp = Polarisation resistance 

Once Tafel constants are known, Icorr can be calculated, which is used to calculate the corrosion 

rate. 

 

 



 

19 

 

3.6.3 POTENTIODYNAMIC POLARISATION TECHNIQUE  

Potentiodynamic polarisation is a technique to measure the polarization resistance in which the 

rate of electrode potential is varied by the application of a current through the electrolyte. This 

technique is used in the polarization of metal specimen for testing the corrosion. 

In Potentiodynamic experiments, the current represents the rate with which the anodic and cathodic 

reactions are taking place on the working electrode (WE), and cathodic currents are considered to 

be negative, and anodic currents to be positive. In general, the current is expressed in terms of the 

current per unit area of the WE, or the current density. It is noticeable that in an Evans diagram (a 

plot of E vs log (I)) the complete current density values are plotted it means that, both anodic and 

cathodic currents are plotted as positive values. 

Anodic Scan: 

 

 Figure 3.6.3.1 Anodic polarization for stainless steel  



 

20 

 

A standard schematic anodic scan for stainless steel as shown in Figure 3.6.3.1 The scan rate starts 

from point1 and progress in the positive potential direction until the termination at point 2. The 

OCP is located at point A. At this potential summation of anodic and cathodic reaction rates on 

the electrode surface is zero. The region B is the active region. Point C is known as passivation 

potential, and as the applied potential increases above this value then the current density is seen to 

be decreased with increasing potential (region D) until a low passive current density is attained 

(passive region-region E). Once the potential has reached a suitably positive value (point F, termed 

as break-even point), the applied current rapidly increases (region G). This increase in current is 

due to several phenomena, depending on the alloy/environment combinations. 

 

Cathodic Scan: 

 

Figure 3.6.3.2 Cathodic polarization scan for stainless steel 
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A standard schematic cathodic scan for stainless steel as shown in Figure 3.6.3.2. The potential is 

varied from point1 and progress in the negative potential direction until the termination at point 2. 

The OCP is located at point A be determined by the pH and concentration of dissolved oxygen in 

the solution, region B may represent the oxygen reduction reaction. Further, decrease in the applied 

potential result in no change in the reaction rate, and thus the measured current remained the same 

(region C). In the end, the applied potential becomes appropriately negative for another cathodic 

reaction to becomes effective such as demonstrated at point D. As the potential and driving force 

becomes very large, this reaction may become dominant as illustrated at point E [38], [64].  
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4 EXPERIMENTAL SETUP 

4.1 EXPERIMENTAL DETAILS 

This research aims to study and analyze the behaviour of 13% Chromium stainless steel in the 

presence of an H2S environment in different conditions like pH value, temperature and immersion 

time. 

Table 4.1.1 Experimental parameters 

Material (Steel Substrate) 13% Chromium stainless steel 

Temperature 40ᴼC to 80ᴼC 

pH 2 to 6 

Immersion time 24 Hrs. to 72 Hrs. 

 

According to NACE MRO175/ISO 15156, the corrosion resistant stainless steel used in the H2S 

environment should have a chromium content of 10.5% or more. Therefore, conventional stainless 

steel with 13% chromium grade 420 has been selected for the experimental work. 

Table 4.1.2 The chemical composition of the specimen 

Elements Weight% 

Carbon 0.027 

Chromium 12 

Manganese 0.22 

Silicon 0.3 

Phosphorous 0.014 
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Sulphur 0.0035 

Vanadium 0.041 

Iron Balance 

 

A conventional three-electrode glass cell setup was used for measuring corrosion rates at different 

parameters using the polarisation resistance technique, for which a small specimen of steel was 

used as the working electrode (WE), a graphite rod was used as a counter electrode (CE), and 

Ag/AgCl/4MKClsat was used as a reference electrode (RE). 

The working electrode was prepared by machining the 13% chromium steel sample to a cylindrical 

sample piece of sthe approximate dimension of 1cm length and 1cm diameter. Prior to placing the 

working electrode into the chemical bath, the working electrode specimen was grinded using 

sandpaper of grit sizes P220, P320, P400, P600 and micron 6 after which the specimen was 

immediately cleaned using de-ionized water and dried.  

Due to safety concerns associated with H2S gas, an alternative approach which mimics H2S gas 

was used. The chemical bath used in this alternative approach deposits thin films of iron sulphide, 

exactly as occurs with real H2S gas [37], [49]. The reagents listed below were mixed with specified 

concentrations to make the chemical bath. 

Table 4.1.3 Bath compositions for the corrosion film formation on the steel substrate 

S.No. Chemical reagents Chemical formula Concentrations 

1 Iron Chloride (Tetra-hydrate) FeCl2.4H2O 0.15M 

2 Thioacetamide CH3CSNH2 2M 
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3 Urea CH4N2O 1M 

 

The process of making this chemical bath involves three reagents, i.e. Iron (II) Chloride (0.15M), 

Urea (1M) and Thioacetamide (2M). Each reagent has to be mixed with de-ionized water, making 

three different solutions, and each solution has to be stirred at a speed of 350 rpm for approximately 

30 minutes.  

 

 

 

 

 

 

These three solutions were mixed and stirred for 2 hours at a speed of 350 rpm so that a 

homogenous electrolyte solution was achieved. The reaction mechanism involves the release of 

iron and sulphur ions, which help in the deposition of the iron sulphide (FeS) layer on the working 

electrode. 

 

 

 

 

 

 

Figure 4.1.1 Iron (II) 

Chloride solution 

Figure 4.1.3. 

Thioacetamide Solution 
Figure 4.1.2. Urea Solution 
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4.2 THE POURBAIX DIAGRAM OF THE CHEMICAL BATH 

 

 

 

 

 

 

 

 

 

 

Figure.4.2.1 Pourbaix diagram for steel substrate immersed in a chemical bath. 

 

The Pourbaix diagram is a map for showing the conditions of solution oxidizing power (potential) 

and acidity or alkalinity (pH) for the various possible phases that are stable in an aqueous 

electrochemical system. Boundary lines (a and b) on the diagram dividing areas of stability for 

different phases are derived from the Nernst equation. Potential/pH in some cases is adjusted to 

prevent corrosion thermodynamically. The Pourbaix diagram shows the reactions and reaction 

products that will be present when equilibrium has been attained if all appropriate reactions have 

been included. There are three zones with different colours shown in the Figure 4.2.1. The grey 

colour represents the immune system of the bath solution from potential (E vs SHE) equal to -2.5V 

to -0.5V at pH 0 to 14 in which the iron (Fe) metal is formed below the line “a” which is 

electrolyzed cathodically. The green colour represents the stable region of the bath solution from 

potential (E vs SHE) equal to -0.5V to 1.75V in which the passive layer is formed from pH 5.0 to 

9.5. The yellow colour represents the corrosive system of the bath solution from potential (E vs 
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SHE) equal to 0.25V to 2.0V in which Fe+3 ions are formed from pH 0 to 2 and Fe(O4)
-2 is formed 

above line “b” which is electrolyzed anodically to form oxygen gas.  

A series of experiments at different parameters was conducted in this study. These parameters are 

detailed in Table 4.4. 

Table 4.2.1 List of the conditions for experimental parameters 

Test No. pH Temperature ᴼC Immersion time 

(Hours) 

1 2 40 24 

2 2 40 48 

3 2 40 72 

4 2 50 24 

5 2 70 24 

6 3 40 24 

7 3 40 48 

8 3 70 24 

9 3 70 48 

10 4 80 24 

11 4 80 24 

12 5 60 24 

13 5 80 24 

14 5 80 48 

15 5 80 72 
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16 6 50 24 

17 6 50 48 

 

For each test, the desired parameters were used to conduct the experiment, the pH of the electrolyte 

solution was adjusted by drop-wise addition of Hydrochloric acid (HCl), and temperatures were 

maintained on a laboratory hot plate for the respective immersion times. 

Electrochemical measurements were performed using a potentiostat (Ivium Compactact 

Potentiostat) monitoring system connected to a computer for data acquisition and also connected 

to a three-electrode glass cell set up by applying potential to record the generated readings. The 

potential range for polarisation resistance technique measurements was from -0.03 V to +0.03 V 

at a scan rate of 0.125 mV/s.  

4.3 SURFACE MORPHOLOGY OBSERVATION AND CORROSION PRODUCT 

ANALYSIS 

After the completion of the electrochemical investigation, samples were taken for morphological 

and crystal structure characterization. Morphological characterization was done using an FEI MLA 

650F Scanning Electron Microscope (SEM) for the high-resolution surface, the Scanning Electron 

Microscope (SEM) was running at 15 kV, low vacuum mode and images were acquired using a 

Back-scattered Electron detector (BSED). Bruker Xflash SSD X-ray detectors (EDS) were used 

for the elementary chemical analysis of the corrosion products. The crystal structure of the 

corrosion products was characterized by X-ray diffraction (XRD) using a Rigaku Ultima IV X-ray 

diffractometer with a copper X-ray source (Cu-K-α radiation) operating at 40kV and 44mA and a 

scintillation counter detector. 
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5 RESULTS AND DISCUSSION 

5.1 EFFECT OF TEMPERATURE ON THE CORROSION BEHAVIOUR OF 13% 

CHROMIUM STAINLESS STEEL 

The polarisation resistance is a useful technique to evaluate and measure the electrochemical 

behaviour and corrosion rate of stainless steel. It monitors the relationship between 

electrochemical potential and current generated between electrically charged electrodes in a bath 

solution to calculate the corrosion rate. The corrosion current density (Icorr), corrosion potential 

(Ecorr) and anodic and cathodic Tafel slopes (βa and βc) were calculated from the intercept on the 

Tafel slope by the extrapolation process and obtained with reference to saturated silver and silver 

chloride with potassium chloride as a salt bridge (Ag/AgCl/4MKClsat) electrode.  

The corrosive activity of steel in a corrosive solution is directly related to the corrosion potentials. 

Structural morphologies, chemical and phase compositions of the samples are directly related to 

the corrosion resistance of the steel [50]. Below, graphs are the set of experiments showing the 

corrosion behaviour, corrosion rate and effect of temperature using polarisation technique. 

 

 

 

 

 

 

Figure 5.1.1. Polarisation curves of 13% Chromium Stainless steel at different temperatures: 

40ᴼC & 50ᴼC at pH2. 
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The polarisation curves of 13% chromium stainless steel at 40ᴼC and 50ᴼC at pH 2 and an 

immersion time of 24 hours are shown in Figure 5.1.1. The corrosion current density (Icorr) at 50ᴼC  

is 3.34 x 10-5 A/cm2 whereas the corrosion current density (Icorr) of the sample corroded at 40ᴼC is 

1.092 x 10-4 A/cm2 and there is also a considerable difference in the potential of both parameters. 

This means that the sample corroded at 50ᴼC possess a lower corrosion current (Icorr) value than 

the sample corroded at 40ᴼC. As is known, the corrosion film formation behaves as a protective 

barrier, limiting the growth of the corrosion product and preventing the underlying steel from 

further corrosion [51], [52]. Moreover, an increase in temperature leads to an increase in the 

corrosion rate, this statement is not satisfied in this case. Figure 5.1.1 shows that the sample at 

40ᴼC corrodes more than the sample at 50ᴼC; this is because of the diffusion of species in the 

chemical solution at 50ᴼC, in the bath solution has a slow rate of film formation compared to the 

rate of corrosion. Another case for lower temperature to have a higher corrosion rate occurs when 

the corrosion products have a weak adherence to the steel, causing it to detach and expose the steel 

surface to the corrosive environment [37]. 

 

 

 

 

 

 

 

 

 

Figure 5.1.2. Polarisation curves of 13% Chromium Stainless steel at different temperatures: 

50ᴼC & 70ᴼC at pH2. 
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In Figure 5.1.2, the polarisation curves of 13% chromium stainless steel at 50ᴼC and 70ᴼC at pH 

2 and an immersion time of 24 hours are shown. The corrosion current density (Icorr) at 70ᴼC  is 

5.711 x 10-5 A/cm2 whereas, the corrosion current density  (Icorr) of the sample corroded at 50ᴼC 

is 3.34 x 10-5 A/cm2. Therefore, the sample corroded at 70ᴼC possesses a higher ICorr value than 

the sample at 50ᴼC. The formation of FeS films acts as a protective barrier, forming faster at a 

lower temperature and the growth of corrosion product hinders the steel from further 

corrosion[38]. At a higher temperature, the diffusion of ions takes places more quickly and 

generates weak passive layer on the metals. Furthermore, there is an increase in the flow of the 

positive charge from the anodic (oxidation) site toward the cathodic (reduction) site, affecting the 

dissolution of the steel surface, indicating that the 13% Cr. stainless steel corrodes faster at a higher 

temperature. 

 

 

 

 

 

 

Figure 5.1.3. Polarisation curves of 13% Chromium Stainless steel at different temperatures: 

40ᴼC & 70ᴼC at pH3. 

 

In Figure 5.1.3, the polarisation curves of 13% chromium stainless steel at 40ᴼC and 70ᴼC at pH 

3 and an immersion time of 24 hours are shown. The corrosion current density (Icorr) at 70ᴼC  is 
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7.048 x 10-5 A/cm2; however, the corrosion current density of the sample corroded at 40ᴼC is 2.189 

x 10-6 A/cm2. Therefore, the sample corroded at 40ᴼC possess a lower Icorr value than the sample 

at 70ᴼC. The formation of FeS films as the passive layer has an impact on the rate of corrosion, 

the film forms faster at a lower temperature and the growth of corrosion product limits the steel 

from further corrosion[38]. At a higher temperature, the chemical reactivity within the corrosive 

solution increases, which exposes the direct metal surface to the corrosive environment. this also 

leads to increase in the migration of the charges and the dissolution of the steel surface, implying 

that the 13% Cr. stainless steel corrodes faster at a high temperature. 

5.2 CORROSION RATE WITH RESPECT TO THE CHANGE IN TEMPERATURE   

 

 

 

 

 

 

 

 

 

Figure 5.2.1. Corrosion rates measured at different temperatures having the same pH and 

immersion time. 
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Figure 5.2.1 shows the corrosion rates at 40ᴼC, 50ᴼC and 70ᴼC with the same immersion time and 

pH values. An elevated rate of corrosion is observed with the increase in temperature. The 

corrosion rate recorded by the potentiostat using the polarisation resistance technique at pH2 and 

50ᴼC is 0.3616mmpy, whereas the corrosion rate recorded at pH2 and 70ᴼC is 0.6014 mmpy. 

which occurs due to increased reactivity in the electrolytic solution at a high temperature, causing 

the polarisation of ions [19].  

5.3 EFFECT OF PH VALUE ON THE CORROSION BEHAVIOUR OF 13% 

CHROMIUM STAINLESS STEEL 

The graphs below are the set of experiments showing the corrosion behaviour, corrosion rate and 

the effect of pH. 

 

 

 

 

 

 

 

 

 

Figure 5.3.1 Polarisation curves of 13% Chromium Stainless steel at different pH: 2 and 3 at 

40ᴼC. 

The pH value of the solution has an enormous impact on the composition of the corrosion products 

and their passive nature. At a lower pH, the solubility of the solution is very high, which makes 
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the precipitation of iron sulphide (FeS) difficult on the steel surfaces [53]. Due to this, the passive 

layer formation is minimal or weak, which increases the corrosion rate. This can also be explained 

by the increased corrosion current density (Icorr). Figure 5.3.1 shows the polarisation curves of 13% 

chromium stainless steel at pH 2 and pH 3 at 40ᴼC and an immersion time of 24 hours. A lower 

pH 2 value has a corrosion current density (Icorr) of  1.092 x 10-4 A/cm2, whereas the corrosion 

current density (Icorr) of the sample at higher pH 3 is 2.189 x 10-6 A/cm2. Therefore, the sample at 

pH 2 corrodes more than the sample at pH 3. 

  

 

 

 

 

 

 

Figure 5.3.2. Polarisation curves of 13% Chromium Stainless steel at different pH: 2 and 3 at 

70ᴼC. 

In the experimental case above, a significantly higher temperature was used. The electrolytic 

solution was set at the parameters of 70ᴼC, pH 2, 3 and an immersion time of 24 hours. This 

particular experimental case shows the correlation between pH value and the corrosion rate. In 

Figure 5.3.2, the corrosion current density (Icorr) at pH 2 is 5.711 x 10-5 A/cm2, whereas the 

corrosion current density (Icorr) at pH 3 is 7.048 x 10-5, which means that the particular case of the 
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sample at pH 3 is more corroded than the sample at pH 2 and 70ᴼC. This indicates that at pH 3, 

the dissolution of  chemical species in the solution has formed a fragile passive layer which has 

easily detached from the steel surface, exposing the underlying steel in the highly corrosive 

environment [52], [54].   

 

 

 

 

 

 

 

 

 

Figure 5.3.3. Polarisation curves of 13% Chromium Stainless steel at different pH: 4 and 5 at 

80ᴼC. 

In above case, the experimental comparison is between pH 4 and pH 5. The parameters are a 

temperature of 80ᴼC, pH of 4, 5 and immersion time of 24 hours. The corrosion current density 

(Icorr) recorded at pH 4 is 7.431 x 10-4 A/cm2 and the corrosion current density (Icorr) at pH 5 is 

3.543 x 10-4 A/cm2. This demonstrates that the corrosion rate of the steel sample at pH 4 is higher 

than for the sample at pH 5. The inhibitive effect due to the formation of iron sulphide layers 

occurs mostly between pH 3 to pH 5 [14] which explains the corrosion behaviour more precisely 

at these pH values. 
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5.4 CORROSION RATE WITH RESPECT TO THE CHANGE IN PH VALUE  

 

 

 

 

 

 

 

 

  

Figure 5.4.1. Corrosion rates measured at different pH values having the same temperature, 

immersion time. 

 

Figure 5.4.1 shows the corrosion rates calculated at different pH values, i.e. pH2, pH3, pH4, pH5 

with the same temperature. The corrosion rate decreases with the increase in pH value. The 

corrosion rate recorded by the potentiostat using the polarisation resistance technique at pH2 and 

40ᴼC is 0.361mmpy, whereas the corrosion rate recorded at pH3 40ᴼC is 0.1072mmpy. The past 

research reports that when the pH value is decreased, the corrosive film becomes de-passivated, 

which results in an unprotected steel surface [55],[51],[56],[57] in the H2S environment, which 

rapidly changes the corrosion reactivity, as seen in Figure 5.4.1. 
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5.5 EFFECT OF IMMERSION TIME ON THE CORROSION BEHAVIOUR OF 13% 

CHROMIUM STAINLESS STEEL  

 

 

 

 

 

 

 

Figure 5.5.1. Polarisation curves of 13% Chromium Stainless steel at different immersion times: 

24 hours and 48 hours at pH2, 40ᴼC. 

 

In this case, the experimental parameters are at a temperature of 40ᴼC and pH 2 with a change in 

the immersion time from 0 to 24 hours and 24 to 48 hours. Figure 5.5.1 shows that the corrosion 

rate of an immersion time of 24 hours is slightly higher than the rate at 48 hours. The corrosion 

current density (Icorr) is 1.092 x 10-4 A/cm2  at 24 hours, which is lower than the corrosion current 

density (Icorr) of 3.339 x 10-5 A/cm2 at 48 hours. 

The Figure 5.5.2 shows the results for experimental parameters of a temperature 40ᴼC and pH 3 

with a change in immersion time from 0 to 24 hours and 24 to 48 hours. Figure 5.5.2 shows the 

analysis of the effect of immersion time with an increase in pH value. The corrosion rates are 

different for both immersion times, which can be explained by the weakly formed passive layer 

[58]. 
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Figure 5.5.2. Polarisation curves of 13% Chromium Stainless steel at different immersion times: 

24 hours and 48 hours at pH3, 40ᴼC. 

 

As the immersion time increases, the weak, passive layer starts to break, due to fast chemical 

reactions. This results in the longer immersion time having a higher corrosion rate than the 

experiment with a shorter immersion time.  

The corrosion current density (Icorr) for an immersion time of 24 hours is 2.189 x 10-6 A/cm2. 

However, the corrosion current density (Icorr) at 48 hours is 1.1018 x 10-5 A/cm2. This means that 

the corrosion rate of the sample at the immersion time of 24 hours is higher compared to the 

corroded sample at 48 hours when the pH is increased.  

In this particular case, the impact of the pH value can be seen as the immersion time changes. 
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Figure 5.5.3. Polarisation curves of 13% Chromium Stainless steel at different immersion times: 

24 hours and 48 hours at pH3, 80ᴼC. 

 

The parameters used in the experiment above are a temperature of 80ᴼC and pH 3 with a change 

in the immersion time from 0 to 24 hours and 24 to 48 hours. Figure 5.5.3 shows the corrosion rate 

for both immersion times has a slight difference despite the increase in temperature. This can be 

explained by the breaking of the passive FeS layer. The passive layer starts to break with an 

increased chemical reaction as time increases [36]. This results in the immersion time of 48 hours 

having a higher corrosion rate compared to the experiment at an immersion time of 24 hours. The 

corrosion current density (Icorr) for the immersion time of 24 hours is 7.431 x 10-4 A/cm2, whereas 

the corrosion current density (Icorr) at 48 hours is 8.514 x 10-4 A/cm2. This means the corrosion rate 

of the sample at an immersion time of 48 hours is higher, compared to the corroded sample at 24 

hours, when the temperature is increased. In this particular case, the effect of temperature can also 

be seen along with the change of immersion time. 
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5.6 CORROSION RATE WITH RESPECT TO THE CHANGE IN IMMERSION 

TIME 

 

 

 

 

 

 

 

 

Figure 5.6.1. Corrosion rates measured at different immersion times having the same 

temperature and pH value. 

 

Figure 5.6.1 shows the corrosion rates calculated at the different immersion times of 24hours, 

48hours and 72hours with the same pH values and temperatures. The corrosion rate changes 

significantly with an increase in immersion time. The corrosion rate recorded by the potentiostat 

using polarisation resistance method at 24hours of immersion time and pH2 at 40ᴼC is 1.217 

mmpy, and then it is observed that the corrosion rate is decreased at 48hours, pH2 and 40ᴼC, 

resulting in corrosion rate of 0.361mmpy. The corrosion rate is observed to increase again to 1.221 

mmpy with further increase in immersion time of 72hours, pH2 and 40ᴼC. When the steel sample 

is first immersed in the electrolytic solution, the steel surface starts reacting chemically to the 

solution, causing it to corrode and with an initial increase in immersion time, the passive layer 



 

40 

 

begins to form on the steel surface. The passive layer acts as a barrier between the steel and 

electrolytic solution, resulting in a decrease in corrosion rate, but when the immersion time is 

further increased, the passive layer starts depassivating, due to which the corrosion rate increases 

even more, as seen in Figure 5.6.1[59]. 
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5.7 SCANNING ELECTRON MICROSCOPE (SEM) AND ENERGY DISPERSIVE X-

RAY SPECTROSCOPY (EDS) 

The SEM analysis was conducted to study the morphological characterization of the corrosion 

products in different H2S environmental conditions. Figure 5.7.1(a) shows the SEM image of an 

original uncorroded sample. EDS analysis has determined the composition of the substrate, which 

matches the chemical composition of steel reported in Table 4.2.  

S.N. Smith (2002) reported that the sequential resistance of corrosion products, mainly FeS, 

formed in the H2S environment are as follows: Mackinawite < Troilite < Pyrrohotite < Pyrite [60]. 
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Figure 5.7.1 SEM images and EDS analysis of the corrosion products formed on the steel 

surface for (a) Orginal uncorroded sample. (b) pH 2, 50ᴼC, 24 hours. (c) pH 2, 70ᴼC, 24 hours. 

The corroded sample at pH 2, 50ᴼC and 24 hours is shown in Figure 5.7.1(b). The magnified SEM 

image shows the layer of pyrite and iron sulphide (FeS) films on the steel surface. The thick 

corrosion layer observed in the SEM image is cracked, due to the diffusion of the electrochemical 

reaction at a high temperature[61]. The EDS analysis in Figure 5.7.1 (b1) shows that a high amount 

of sulphur has lead to the formation of a thick corrosion layer. 

In Figure 5.7.1(c) the sample was corroded at a higher temperature of 70ᴼC at pH 2 for 24 hours. 

The SEM images show the loose and rough formation of corrosion film due to the increased 

reactivity in the chemical bath at a significantly high temperature and lower pH. The EDS analysis 

in Figure 5.7.1(c1) shows a higher amount of sulphur.  

Comparing Figure 5.7.1(b) at 50ᴼC and Figure 5.7.1(c) at 70ᴼC, it can be seen from Figure 5.7.1(c) 

that the changes in temperature in the chemical reaction affect corrosion film formation. Both SEM 

images demonstrate that a higher temperature prevents the creation of the passive layer, due to the 

high reactivity in the electrochemical bath. 
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Figure 5.7.2 SEM images and EDS analysis of the corrosion products formed on the steel 

surface for (d) pH 3, 40ᴼC, 48 hours. (e) pH 3, 70ᴼC, 48 hours. (f) pH 4, 80ᴼC, 48 hours. 
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Figure 5.7.2(d) shows the SEM image of a corroded sample at pH 3, 40ᴼC and 48 hours. In the 

scanning electron microscope (SEM) image it can be seen that the steel surface is consistently 

covered with a thick corrosion layer, which is also called corrosion protective film. EDS analysis 

records the least amount of sulphur contents in the corrosion layer. As explained previously, at a 

lower temperature and higher pH the corrosion sample is easily passivated, which prevents the 

steel from further corrosion [62]. 

In this sample, the temperature is increased from 40ᴼC to 70ᴼC. The corroded sample at pH 3, 

70ᴼC and 48 hours shown in Figure 5.7.2(e), the magnified SEM image shows the breaking of the 

thick corrosion layer along with the loose blister of the corrosion layer on the right side of the 

image. Although there is a high volume of the precipitated corrosion layer on the surface, the 

increase in temperature starts peeling off the deposited layer, exposing the steel to the harsh 

environment, which quickly accelerates the corrosion rate [63]. The EDS analysis in figure 5.7.2 

(e1) shows high amounts of sulphur and iron contents. 

In Figure 5.7.2(f) the sample is corroded at a temperature of 80ᴼC at pH 4, 48 hours. The SEM 

images show a fragile layer of corrosion film, due to the increased reactivity in the chemical bath 

due to the change in temperature. The EDS analysis shown in figure 5.7.2(f1) confirms higher 

amounts of sulphur.  

Comparing Figure 5.7.2(d) at 40ᴼC and Figure 5.7.1(e) at 70ᴼC, it can be seen from figure 5.7.1(e) 

that the temperature influences the rate of the chemical reaction and its effect on the formation of 

corrosion film. Both SEM images demonstrate that the corrosion layers are loosely packed at a 

higher temperature with a rough distribution on the steel surface. 
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Figure 5.7.3 SEM images and EDS analysis of the corrosion products formed on the steel 

surface for (g) pH 5, 80ᴼC, 48 hours. (h) pH 6, 50ᴼC, 24 hours. (i) pH 6, 50ᴼC, 48 hours. 
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Figure 5.7.3(g) shows the SEM image of a corroded sample at pH 5, 80ᴼC and 48 hours. The SEM 

image shows a high volume of precipitation of the corrosion layer on the steel surface.  

As the pH values increase, the corrosion product becomes insoluble in the chemical bath, which 

also increases the rate of precipitation on the passive layer observed on the steel surface, which 

limits the corrosion reactivity [36]. Therefore, in Figure 5.7.3(g1) the EDS analysis shows a 

significant amount of sulphur content in the corrosion layer.  

In this sample, the pH value is increased from pH 5 to pH6 with a decrease in temperature. The 

corroded sample at pH 6, 50ᴼC and 24 hours is shown in Figure 5.7.3(h). The magnified SEM 

image shows a well-formed corrosion layer with higher precipitation; this is due to a high pH value 

and lowered temperature, which increases the precipitation of the corrosion product on the steel 

surface and limits the reaction between the electrolytic solution and the corrosion product. The 

EDS analysis in Figure 5.7.3 (h1) shows a large amount of sulphur and iron precipitation on the 

sample surface. 

In this sample, the immersion time is increased from 24 hours to 48 hours. Figure 5.7.3(i)  shows 

the sample corroded at a temperature of 50ᴼC at pH 6 and 48 hours. The SEM image shows that a  

thick layer of corrosion film has formed on the surface. Increase in immersion time decreases the 

chemical reactivity between the corrosive film and the chemical bath. It allows further 

precipitation and formation of the passive layer. The EDS analysis is shown in Figure 5.7.3(i1) 

shows the chemical composition of the corrosion products, which have a significant amount of 

sulphur and iron.  
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Comparing between Figure 5.7.3(g), Figure 5.7.3(h) and Figure 5.7.3(i), it is observed that when 

there is an increase in pH value or an increase in the immersion time, the volume of precipitation 

of the corrosion product on the steel surface also increases, forming a thick corrosion layer. 
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5.8 X-RAY DIFFRACTION (XRD)  

The corrosion products formed on the steel surface are characterized using X-ray diffraction 

(XRD). The crystal phase characterization of the corrosion products identifies the peaks. Different 

databases are used, such as Powdered diffraction files (PDF), RDB Minerals and the International 

Centre for Diffraction database (ICDD). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8.1. XRD analysis of the corrosion product formed on the steel surface at: (a) 40°C, 

pH2 and 24 hours, (b) 40°C,  pH2 and 48 hours, (c) 40°C, pH2 and 72 hours, (d) 70°C, pH2 and 

24 hours. 
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In Figure 5.8.1(a) the peaks are matched by the PDF #[00-006-0696]. Identifying the iron (Fe) as 

a body centred cubic (BCC) structure, XRD peaks in the figure 5.8.1(b) match the PDF # [00-016-

0713] identifying the corrosion product as Greigite (Fe3S4) with a cubic crystal structure; this 

suggests that the corroded sample after an increase in the immersion time, formed a corrosion 

product on the steel surface. In Figure 5.8.1(c) the peaks are identified as iron (Fe) [00-006-0696] 

as the cubic crystal structure, pyrite (FeS2) [00-042-1340] as the cubic structure and iron sulphide 

(FeS) [0-065-1984] as the orthorhombic crystal structure.  

In Figure 5.8.1(d), the corrosion products formed on the steel surface are identified as iron sulphide 

(FeS) [98-001-1763], iron (Fe) [00-006-0696] and pyrite (FeS2) [98-002-0637]. These corrosion 

products are minerals of iron sulphide (FeS) which have been precipitated on the steel surface in 

various H2S environmental parameters [3], [60]. 

In Figure 5.8.2(e), the XRD characterization has identified the peaks of corrosive product film on 

the steel surface as iron (Fe) [00-006-0696] with a cubic crystal structure and pyrrhotite (Fe7S8) 

[98-000-1338] with a monoclinic crystal system. 

Figure 5.8.2(f) has a database-matched finding of the corrosion products as iron (Fe) [98-001-

7162] and greigite (Fe3S4) [98-00-1180]. Both minerals are formed as cubic crystal structures 

along with a less amount of iron sulphide (FeS) [98-001-1762]. 

However, in Figure 5.8.2(g), the deposited corrosive products are pyrite (FeS2) [98-002-0637] and 

iron (Fe) [98-001-9692] and also in Figure 5.8.2(h) iron sulphide and pyrite formed on the steel 

substrate is also known as fool’s gold (FeS2) [00-0042-1340]. 
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Figure 5.8.2. XRD analysis of the corrosion product formed on the steel surface at: (e) 70°C, 

pH3 and 72 hours, (f) 80°C, pH4 and 48 hours, (g) 80°C, pH5 and 72 hours, (h) 50°C, pH6 and 

24 hours. 

 

This characterization demonstrates that the change in parameters such as temperature, pH and 

immersion time has a significant impact on the corrosion behaviour. The mechanism of passive 

layer formation results in the growth of different FeS minerals. 
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6 CONCLUSION 

The results of this work are important findings with respect to the corrosion behaviour in sour 

environments. 

• In an H2S environment, the corrosion rate increases with the increase in temperature but 

after 70ᴼC the effect of temperature lessens. 

• The corrosion rates decrease with an increase in the pH value and the pH of the 

environment has a huge impact on the corrosion rate and the formation of protective films 

on the steel surface. 

• For a short period of time the corrosion rates decrease with an increase in immersion 

time, but over an extended period the protective layer becomes weak and starts to corrode 

the steel beneath the protective film  

• The formation of a film on a steel surface is dependent on the pH and temperature of the 

environment. Lower temperature and higher pH form thick and uniform protective films 

which eventually decrease the corrosion rate and protect the steel from exposure to the 

corrosive media. 

• Different types of oxides formed on the surface have different effects on the corrosive 

resistivity of the steel and the formation of stable oxides lowers the rate of corrosion. 
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7 FUTURE WORK AND RECOMMENDATIONS 

This thesis has many limitations due to the safety concerns associated with the H2S gas and the 

lab’s suitability. 

• Further research is needed to enhance the findings using H2S gas with better provisions for 

safety. 

• The concentration of H2S should also be considered for the development of this research. 

• Corrosion behaviour at a very high temperature is still unclear, and more research is needed 

for better understanding of corrosion behaviour with elevated temperatures. 

• The experimental time in this thesis is a maximum of 72 hours, which could be increased 

in future research work. 

• Study of each FeS oxide is needed to study the growth mechanism of protective films. 
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APPENDIX 

 

 

 

 

 

 

 

 

 

 

SEM image of the experimental sample at conditions; temperature 50ᴼC, pH 6 and Immersion 

time of 24 hours. 

 

 

 

 

 

 

 

 

 

 

 

  

SEM image of the experimental sample at conditions; temperature 40ᴼC, pH 2 and Immersion 

time of 72 hours. 
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XRD analysis of the corrosion product formed on the steel surface at: 70°C, pH2 and 24 hours. 

 

 

 

 

 

 

 

 

 

 

 

 

 

XRD analysis of the corrosion product formed on the steel surface at: 50°C, pH6 and 48 hours. 
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Phase information of the corrosion product formed on the steel surface during XRD (IRON (Fe), 

PDF# 98-001-9698). 
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Phase information of the corrosion product formed on the steel surface during XRD (IRON 

SULPHIDE (FeS), PDF# 03-065-1894). 
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Phase information of the corrosion product formed on the steel surface during XRD (PYRITE 

(FeS2), PDF# 00-042-1340). 
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Phase information of the corrosion product formed on the steel surface during XRD (GREIGITE 

(Fe3S4), PDF# 00-016-0713). 
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Phase information of the corrosion product formed on the steel surface during XRD 

(PYRRHOTITE (Fe7S8), PDF# 98-000-1338).  


