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Abstract

Statistical inference under order restrictions is an important field in sta

tistical science and has. been studied and practiced widely. The utilization of

the lWsumption of monotonicity increases the efficiency of statist.ical inference

procedures. This can be found in the literature such as Ayer, Brunk, Ewing,

Reid and Silverman (1955), Robertson and Wright (1974), Barlow and Ub

haya (1971), Lee (1981), Kelly (1989), Korn (1982), Schoenfeld (1986), Hayter

(1990) and Lee (1996). In Chapter 2, we review some fundamental thoories

about the order restricted statistical inference including isotonic regression and

test of a simply ordered hypothesis.

In Chapter 3, we study a max-min interval procedure, a modification of

Thkcy's stuclenti7.ed range technique, to conl:itruct simultaneous confidence iu

tervals for pairwise comparisons of response means by utilizing the prior knowl

edge of the monotonicity of the means. The improvement of the proposed

max-min interval procedure is substantial

The one-sided simultaneous confidence lower bound is studied in Chapter

4. We investigate the incomplete optimization problem of maximizing simul

taneous lower bounds for nonnegative contrasts considered by Marcus (HI78).

Significant improvements over Marcus' (1978) results, including a necessary

and sufficient conditio!! for the optimal solution and an efficient computation

algorithm to compute the optimal lower bounds, are made

In Chapter 5, we introduce a one-sided multiple comparison test (OMCT)

for testing the homogeneity of the means against the simple order alternative.



It gives sharper one-sided simultaneous confidence lower bounds_ This OMCT

approach compares favorably with Hayter's (1990) and Marclls' (1978) ap

proaches and it may be comparable to the least signilicant difference approach.

The simultaneous statistical inference for responsc means with a control

is considered in Chapter 6, An orthant test statistic is introduced. With

the prior knowledge that the response means are monotone, a more efficient

simultaneous confidence lower bouud can be inverted from this test to detect

the difference between response means alld the control mean. An algorithm to

compute the optimal lower bOllud is included.

In Chapter 7, we demonstrate that the stepwise test procedure based on

likelihood ratio test is a more efficient test procedure for dete<:ting the mini·

mum efficient dose in dose-response studies.
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Chapter 1

Introduction

Order restricted statistical inference has been researched and practiced for

the last 50 years. Many types of problems arc concerned with identifying

meaningful structure in real world situations. Structure involving orderings

and inequalities ha.~ many useful applications. For example, the probability of a

particular response may increase with the treatment level; a regression function

may be Ilondecreasingj the failure ratc of a component may increase as it ages;

or the treatment respouse may stochastically dominate the controL Hundreds

of research papers have been published 011 this topic and many of them can

be traced through the bibliographies of two hooks: Barlow, Bartholomew,

Bremller and Brunk (1972), and Robertson, Wright and Dykstra (1988).

Utilizing the prior knowledge of ordering, including the ordering of pa

rameters, the ordering of distribution functions, and other related COIl\ltraints

can increase the efficicncy of statistical inference procedures. The incorpora

tion of this prior knowledge into estimation makes the estimates superior to

the ordinary one. For example, the isotonic regression (sec definition 1.3.3

in Robertsoll, Wright and Dykstra 1988) can reduce the total square error



(Ayer, Brank, Ewing, Reid and Silverman 195~) and the rna..... imum absolute

error (Robertson and Wright '974, Barlow and Ubhaya 1971). The reduc

tion of mean square error for the normal means problem with a simple order

was deduced by Lee (198J). Lee (1988) also observed that this property docs

not hold, in general, for partial order restrictions. Furthermore, Kelly (1989)

showed that the isotonic regression estimator ofthe normal mean is superior to

the ordinary one under any nonconstant loss which is a nondecreasing function

of absolute error.

It is also a common view that a more powerful test can be obtained by

taking the additional knowledge into account. For example, considering a one

sided alternative leads to more powerful tests. But caution should be taken 1.0

interpret the rr.sult from such a test. In particular, without prior knowledge

that strongly supports the assumption of one-sidedness, it may be misleading

to interpret the rejcction of the null hypothesis as evidence supporting the

alternative hypothesis.

The classical likelihood ratio test (LRT), which is denoted by X~l or EJ"
for testing the equality of partially ordered means from several normal popu-

lations was first proposed by Bartholomew (1959a, 1959b, 1961a, }961b). It

is known to possess generally superior operating characteristics to those of its

competitors (Robertson, Wright and Dykstra 1988). Tests for identifying the

structures with order restrictions often require good estimates under inequnl-

ity constraints. However, difficulties ill computing the restrictcd maximum

likelihood cstimates and determining the null distribution of the test statistics

make the LRT difficult to implement ill many instances. Therefore, the al>-



proximations to these distributions are of cOllsidcrable interest. Bartholomew

(1959a, 1959b) proposed a two-moment Chi-square approximation for the null

distribution of X~I' Siskind (1976) and Grove (1980) conjectured that the

null distributions of LRT would not be sensitive to moderate variations in

the weights and this has been investigated by Robertson and Wright (1983),

and Wright and Tran (1985) for the simple order and the simple tree order.

Another approach has been to obtain sharp upper and lower bounds on the

tail probabilities for the LRT. These bounds, which give the most extreme

I>ossible error for the equal weights approximation, were studied by Roberison

and Wright (1982), Wright and Tran (1985), and Lee, Robertson and Wright

(1993).

Several other researchers, including Abelson and Tukey (1963), Hogg (1965),

Schaafsma and Smid (1966), and more recently Snidjers (1979), considered the

tests based on contrasts. One advantage of these tests is that the contrast

statistic is normally distributed with easily computed mean and variance un-

der both the null and alternative hypotheses. Such a contrast test is easily

shown to be uniformly most powerful for alternatives in a certain direction.

Consequently it is very powerful in some subregion of the alternative hypoth

esis and less powerful in other directions. While the LRT is llot most powerful

at any particular point, it mailltaiJls a more uniform power over all the alter-

native regions. The aforementioned cOlltrast tests can not compete with the

LRT in general. The multiple contrast test is another approach that may be

comparable to the LRT. Dunnett's test (1955) for testing against a simple tree

alternative is surely the best known and most widely used. Van Eeden (1958)



and Williams (1971, 1972) proposed ad hoc tests. The properties of the ad hoc

tests have also been shown to be generally inferior to those of the LRT (Chase

1974, Robertson and Wegman 1978). Mukerjcc, Robertson and Wright (1987)

introduced the multiple contrast tcst based Oil orthogonal contrasts. And most

recently, McDermott (1999) proposed a class of tests based on an orthant ap

proximation which can be viewed as generalizations of the orthogonal contrasts

test proposed by Mukerjee, Robertson and Wright (1987).

Significant contributions have been made in the literature for testing ho

mogeneity against ordered alternatives. But confidence interval procedures

involving order restrictions have been somewhat slow in developing. The pi

oneering work in the development of simultaneous confidence intervals for re

stricted settings was made by Bohrer (1967) and Bohrer and Francis (1972).

Bohrer (1967) showed how the usual simultancous two-sided Scheffc bounds

on all linear functions of certain parameters can be sharpened if attention is

restricted to only linear combinations of normal means whose coefficients are

known to be nOllnegative. Bohrer and Francis (1972) described simultane

ous one-sided confidence bounds ill this restricted setting. Marcus and Pcritz

(1976) also developed methodology for finding simultaneous confidence inter

vals for linear combinations of normal lIleans with certain restrictions on the

coefficients. Marcus (1978) was able to improve Bohrer and Francis bounds

when prior information is available on the parameters. The evaluation of

the improved simultaneous confidence lower bound is a concave programming

problem. Deriving a computation algorithm to search for an optimal solution

to this concave programming problem is a new and challenging work and has



not received much attention. Kuhn-Tucker equivalence theorem (Kuhn and

Tucker 1951) will help us to resolve the difficulties and the application of this

theorem will be discussed in detail in this thesis.

Simultaneous statistical inference received interest after the de\'cIopment of

research on multiple comparisons and simultaneous confidence intervals. The

fundamental contributions by Tukey and Scheffe on this area can be found in

the monograph by ),1iller (1981). Berk and Marcus (1996) studied simultaneous

inference for partially ordered means. Other simultaneous inference procedures

can be obtained in Hochberg and Tamhane (1987) and Hsu (1996). In this

thesis OUf interest will focus 011 simultaneous statistical inferences with order

restrictions.

It is of considerable interest to study the monotone regression curvcs with

independent normal errors. In the d05e-respousc studies, we usually 3S!iume

the dose-response mean P1 = I(x;), i = 1, ... , k, is a monotone, noudecreasing

fuuction of the dose level x" The prior knowledge of monotonicity of regression

eun-es can be used to increase the efficiency of the ma;'(imulIl likelihood esti-

mate as shown by Lee (1981). Kom (1982), Schoenfeld (1986) and Lee (1996)

all sought confidence intervals for each individual mean Pi by incorporating

this monotDnicity. The generalized studentized maximum modulus procedure

by Lft! (1996) gains llluch over the Sclleffe-type procedure by Schoenfeld (1986)

and the studentizcd maximuIlI IlIodulus by Kuru (1982). Hayter (1990) pro

posed the olle-sided studentizcd range test (OSRT) to construct a one-sided

simultaneous confidence lower bound for the pairwisc mean comparison Pi ~ jJ;

for the balanced one-way analysis of variance model. Hayter (1992) generalized



the OSRT procedure to an unbalanced model with three populations. How to

detect the difference between the monotone nondecreasing means efficiently is

the main subject which will be pursued in this thesis.

In Chapter 2, we introduce some basic concepts in order restricted infer

ence. Section 2.1 consists of the definition of a simple order, isotonic regression

for a simple order restriction and the algorithms to obtain the isotonic regres-

sion. In Section 2.2, the likelihood ratio tests for testing the simply ordered

alternative and their relationship with the linear contrasts are given. In Section

2.3, some results about interval estimation of the simply ordered parameters

are introduced. The Kuhn-TUcker equivalence theorem, which will be used in

Chapter 4 and Chapter 6, is given in Section 2.4.

In Chapter 3, the two-sided simultaneous inference will be studied. A sim-

pie novel procedure that modifies Tukey's studentized rallgc technique is pro

posed to construct simultaneous confidence intervals for pairwise comparisons

of means by utilizing the prior knowledge of the monotonicity of the response

curve. The lIew procedure is a substantial improvement over its predecessor.

In Chapter 4, we will study the problem considered by Marcus (1978).

She introduced the optimization problem of maximizing simultaneous lower

bounds for nonnegative contrasts L:~:l n;CiI-l;, L~=j niCe; :::: O,j = 2, ... , k and

L:~=l niCe; = 0 with the prior knowledge that 1-11 ::; JLz:S ... :S 1-110. However, her

result is incomplete. We will propose a necessary and sufficient condition for

the optimal solution and an efficient computation algorithm to compute the

optimal lower bounds for pairwise comparisons and nonnegative contrasts

In Chapter 5, a lIew simple one-sided multiple comparison test (OMCT)



is introduced to test the null hypothesis Ho : III = IJ'1 = ... = Ilt. against the

alternative hypothesis HI : Pol ~ IJ'1 ~ ... ~ Pot.· It can be used to construct

the efficient one-sided simultaneous confidence lower bounds for pairwise com

parisons and nonnegative contrasts. It is advantageous in categorizing dosage

lc\'CIs. This OMCf approach compares famrably with Hayter's (1990) and

Marcus' (1978) approaches and it may be comparable to the least significant

difference approach.

In Chapter 6, we will consider the simultaneous statistical inference with a

zero-dose control. An orthant test statistic is introduced. Its power compares

favorably with other prOC<ldures. With the prior knowledge that the dose-

response curve is monotone, a more efficient simultancous confidence lower

bonnd can be inverted from this test to detect the difference between the dose

response mean and the zero dose control mean. An algorithm to compute the

optimal lower bound is also included.

In Chapter 7, we will study the stepwise procedure for detecting the min

imum efficiellt dose when the control mean and dose-response means satisfy

the simple order Po ~ Pol ~ •. ~ Pot.. Likelihood ratio test and multiple com

parison tests are considered. It will be shown by a simulation study that LRT

is a more efficient test procedure.

In Chapter 8, we will gh'e a brief summary of the studies in this thesis.



Chapter 2

Order Restricted Statistical
Inference

2.1 Maximum Likelihood Estimate Under Or
der Restrictions

2.1.1 Simple Order

Let X be a finite set {X\,X2, .. ,Xk}. A binary relation "::" on X is a simple

order on X if

1. it is reflexive: x::x for x EX;

2. it is transitive: x,y,z E X,I:: V,V:: z imply x:; z;

3. it is antisymmetric; x, y E X, x :: y, y j x imply x = Yj

4. every two clements are compamble: x, y E X implies either x :: y or y :: x.

A simple order on the finite set X is in the form of Xl ::; X2 j ... ::

Xk. A binary relation:: is a partial order if it is reflexive, transitive, and



antisymmetric, but there may be noncomparable clements. The simple tree

order: Xl :::; Xi, i = 2, ... , k, is an example of a partial order.

The simple order is one of the most important orders and has many useful

applications. This will be evidcnt throughout this thesis.

2.1.2 Isotonic Regression with a Simple Order Restric
tion

Let X be a finite set {Xl, X:z, ... , x,d with a simple order Xl :::; X:z :::; .•• :::; Xk'

Then a real valued function f on X is isotonic if f(xd:5 f(x:z) :5 ... :5 f(Xk)'

Lct 9 be a givcn function on X and w a given positive functioll on X. An

isotonic fUllction g' on X is called an isotonic rcgressioll of 9 with weight w if

and only if it minimizes

in the class of all isotonic functions on X.

Supprn;c 9 and w arc fUllctions defined on X, set

Av(s,t) = I:: ',w(X;)9(Xi)
E,.. w(x,)

for s :5 t. Av(s, t) depends all g, this will not be made explicit in the notation.

Theorem 2.1.1 The isotonic regression of 9 is given by

min max Av(s,t)
i9=:O k1 =:O.9

i~~nk ~~t Av(s, t)
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(Roberuon, Wright and Dykstra, 1988)

Theorem 2.1.2 If {s : g'(x.) = c} = {i,i + 1, .. ,j}, then c = Av(i,j).

(Thl.S.5 Rollertson, Wright and Dykstra, 1988)

Theorem 2.1.2 reduces the problem of computing g' to finding the scts

on which gO is constant (i.e. its level sets). The calculation of g', given g,

the weight w, and the simple order on X, can be accomplished via quadratic

progranlming. An extensive literature on methods for computing quadratic

programming solutions for such a problem exists. A number of algorithms haw

been proposed for computing the isotonic regression. We will introduce two of

them in the next subsection that have been used extensively, namely the pool-

adjacent-violators algorithm (PAVA) and the minimum lower sets algorithm.

The utilization of thc simple order information in estimation makes the es-

timates superior to the ordinary onc. Lee (1981) shows that mean square error

is reduced for cvery individual mean by using the order restricted maximum

likelihood estimate (1\'!LE) of the simply ordered normal means. Kelly (1989)

obtained an even stronger result that the absolute error of each component

of the isotonic regression estimator is stochastically smallcr than that of the

usual estimator.

2.1.3 Algorithms for Isotonic Regression for a Simple
Order

Pool-Adjacent- Violators algorithm (PAVA)



II

The PAVA starts with g. If 9 is isotonic then g' = g. Otherwise, there

must exist a subscript i,2 :5 i :S k, such that g(xi_d > 9(X;). These two

values arc then replaced by their weighted average, namely, Av(i - 1, i) =

[g(Xi_l)W(x;_d+g(x;)w(x;)Jj[W(X;_I)+W(X;)] and their weights by W(Xi_l) +

w(x;). If this new set of k - 1 values is isotonic, then g'(Xi_l} = 9'(X;) =

AV(l - I, i) and g*(Xj) = .q(Xj) otherwise. If this new set of values is not

isotonic, then this process is repeated Ilsing the new values and lIew weights

until an isotonic set of values is obtained. The value of g*(x;) is the weighted

average over the block in which Xi is contained.

Minimum lower sets algorithm

A subset L of X is called a lower set with respect to the simple order :;

if y ELand x j y imply x E L. A subset U of X is called an upper set if

x E U and x j y imply y E U. A subset B of X is a level set if and only if

there exists a lower set L and an upper set U such that B = L (I U. There are

exactly k Ilouempty lower sets and exactly k nonempty upper sets. The set

X is both a lower set. and an upper set. The other lower sets are sets of the

form {Xl,X2, ... ,xi},i = 1,2, .. ,k - 1, and the upper ~ts are sets of the form

{Xi,Xi+h .. ,x.t},i = 2, ...,k.

Set

g'(X;) = Av(l,i J } = min{Av(l,j)' 1.$ j.$ k} for i = 1,2, ... ,i l .

Now consider the averages of the sets {i] + 1, ... , i} for all i l < i .$ k and set
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This process is continued until g'(Xk} is determined

2.2 Test of a Simply Ordered Hypothesis

Many of the methods of statistical inference arc derived from the problem of

comparing several normal populations. It is often useful to begin the analysis

by testing the null hypothesis that the means arc equal. However, in appli

cations, a researcher may believe a priQri that the means arc simply ordered.

When this is so, it would be expected that more powerful tests could be de

vised. In this section, the likelihood ratio tests (LRTs) for homogeneity of

normal means with a simpLe order restricted alternative are introduced. If the

simple order imposed on the alternative is in question, olle may wish to test

this order restriction as the null hypothesis with an unrestricted alternative.

The LRTs in this setting are also given in this section. In the meantime, we

will demonstrate the relationship between the LRT functions and the class of

linear functions of the sample means.

Let X = {l, 2, ... , k} and assume that the simple order ~ is defined on X.

Let p..; oe the meau of a normal population with varianceo-? for i = 1, ... ,k. We

denote the mean vector by /l = (/l] , .. , I~d/. We are interested ill the following

hypotheses

Ha /l] =1-'2="'=l-'k,

H]:!J.I :51-'2:5···:5/lk,

and

H 2 : no restrictions on the means.
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Suppose that Y; is the mean of a random sample of size Tli from a normal pop

ulation with unknown mean Pi and variance of the form u1 = a;u2 with the

at being known positive constants and suppose that the samples arc indepen

dent. Under Ho, the MLE of lJi, i = I, .. OJ k, is given by i), = L~=l w;Y;/ I:~=11IJi

with Wi = nda;. Under HI, the maximum likelihood estimate (MLE) of 11 is

IJ" = (Iii, "0' /J;), the isotonic regression of Y = (VI, "'j Yk) with weight vector

W = (WI. wz, ""Wk) and the simple order j which determines HI' The unre

stricted MLE of /-I is Y, Let 82 be an estimator of (72 which is independent

of Y with VS2 /(72 ,.... X~ with /I = L~=I Tli - k > 0 (X~ denotes a Chi.square

variable with v degrees of freedom).

Consider testing Ho versus HI - Ho, the LRT rejects Ho for large values of

where

SOl = xh~~(v)'

,
X~I = ~Wi(Pi - {J.)2/a2,.
X~2 = trWi(Y; -/Ji)2/a2,

(2.1)

(2.2)

(2.3)

and Q(v) = vs2/a2. If a2 is known, X~] is the LRT for testing Ho versus

H1 ~Ho.

The LRT of HI versus H2 - H] rejects H] for large values of

3 12 = Qr:)2/v '

and Xi2 is the LRT for testing H 1 versus H2 - H 1 when a 2 is known.

(2.4)

Let Ps(l, k; w) denote the level probability that there are exactly l distinct

values (levels) for the MLE pO satisfying the simple order j when No is true.
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The Ps(l, k; w)'s depend on the sample sizes and the population variances

through the weights Wi. Let 1 :S: m :;; k and let Bil 8 2 , .. " Bm be a partition

of X where B j = {ij _ 1 + 1,ij _ 1 + 2, ... ,ij },j = 1, ... ,m(io = 0). Let em!:.

be the collection of all the possible decompositions (811 8 2, H" Bm ) of X. Set

WB; = LiEBjW;,CB; = i j - i j _ l and w(Bj ) = (W;;_,H,Wi;_,+2, •.• ,Wij)' For

a given decomposition, define:::::" on {1,2, ... ,m} by i -:::.' j if i :S: j. Let

Ps(m,mj WB" WB" ..• , WB".) be the probability of m levels with the simple

order :s' and the weight vector (WB" WB., ..• , WBm ) and let Ps{l,Cu;;w(Bj »)

be the probability of aile level with the simple order::; and the weight vector

Theorem 2.2.1 For m E {2, 3, .. ,k - I},

Ps(m,k;w) = L Ps(m,m;Wn"WB1 • H,Wn"J,D_.Ps (1,C8 .;W(B;)).
{lJl,8~,... ,B",)EC.... '

(Robertson, Wright and Dybtm, 1988)

The above theorem provides a recursive formula for calculating Ps(l, kj w)j

however, it can be tedious to use. When the weights are equal, Ps(l, k; w) is

denoted by Ps(l, k) and it. can be obtained by the following theorem.

Theorem 2.2.2

Ps(l,k) = i
P.~(k,k) == ~

"nd

PS(l,k)=ips(l-l,k-l)+k~lpS(I,k-l) for i=2,3, ... ,k-1.



15

(Robertson, Wright and Dykstra, 1988)

Numerical values of Ps(l, k) arc givcn in Table A.lO (Robertson, Wright and

Dykstra 1988). Robertson and Wright (1983) have shown that Ps(l,kiW) are

robust to small deviations in the weights and give an approximation for these

mixing coefficients for unequal weights. The null distributions of :\'51' xL SOl

and 5 12 are given by the following theorem which is equivalent to the corollary

of Theorem 2.3.1 by Robertson, Wright and Dykstra (1988).

Theorem 2.2.3 For /.I. E Ho, v a positive integer and N = L~=l ".

,
P[X~I;?: c] = ~Ps(l,k;w)P[xf_l?: c)

H

P[X~2 ?: c] =~ Ps(l, kj w)Plx~_1 ?: c]

k c(N-I)
P[SOI ?: c] = t; Ps(l, k; w)P[FI_1,N_I?: v(l _ 1) ]

k-l C

P[SI2?: c] = ~Ps(l,k;w)P[F.t_I.,,::: k"=l]

for anye > O.

For the case in which the weights arc equal, i.e., WI = ... = Wb thc critical

values for thc above tests arc given in Table A.4, k6 and A.7 of Robertson,

Wright and Dykstra (1988).

Hogg (1965) discussed thc relationship between the likelihood ratio function

and the class of lincar functions of the sample mcan Y,. Without Joss of

generality, we assumc that L:~=I Tile; = 0 and L:~=1 n;q = 1 for the linear

contrast L:~=1 n;e;'Y" and the k populations have an cqual known variance q2.
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Suppose that 11,1 :S }12 :S ... :5 /-Ik The following result was given by Hogg

(1965).

Theorem 2.2.4 (H099! 1965)

subject to c; satisfie.~ the simple order Il.!I !Ji. The maximum is attained at

The results discussed in this section can be generalized to the other partial

orders (see Robertson, Wright and Dykstra, 1988).

2.3 Interval Estimations

The piOlHx:ring work in the development of simultaneous confidence intervals

for restricted settings was carried out by Bohrer (1967), with further refine

ments found in Bohrer and Francis (1972). Schdfe (1959) provided a method

of constructing confidence bounds on a linear function

These bounds are based on samples y(x) (observed values of L~=l {JiXi) which

are normally distributed with mean f(x). Bohrer (1967) gave sharper COll-

fidence bounds for a linear function of nonnegative arguments by extending

Scheffe's (1959) confidence bounds. In particular, assume tl>rh, ...'/h, the

lea.;;t squar~ estimator of 131, 13z, ... ,13k, are independent normal random vari-

abIes with respective means 131,132, ... ,13k and known variances (]~, aJ, ... ,ai.
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Let X+ ;;:; {x : Xi 2': Q for 1:5 i :5 k}, Bohrer (1967) proposed the following

100(1 - a)% simultaneous confidence intervals for L:~=l fJjI;,

where c is determined by

The table values c = c(a, k) were given by Bohrer (1967). For large k, the si

multaneous confidence bounds for I:f=l f3jX; whell x is restricted to the positive

orthant are up to 30 percent shorter than Scheffe's (1959) bound. Bohrer and

Francis (1972) extcuded the above development to the case when Ph h, ...,~t
arc !lot independent and gave one-sided simultaneous confidence bounds for

I:~=I(J;Xi

Marcus and Pefitz (1976) employed the critical point d" of Bartholomew's

LRT (19593, 1959b, 1961a) for the simple order altcrnat.ivc to construct the

one-sided simultancousconfidcnce lower bound for monotone contrasts I:~=l n;c;J.';

where I:~] flie; = 0 and Cl :5 C2 :5 ... :5 Ck. Assume that Y" i = 1, ... , k, are

normal random variables with mean 1-'; and variance (j2/n; where (j2 is known.

The lower bound for L~=l n;e;fl.i is of the form

If the means fl.; are simply ordered, i.e., It] :5 1"2 :5 ... :5 I-tk, the lower bound

for the monotone contrast I:~=l H;Cjfl.i can be improved to. .
max{t;n;e;f'; - (jd,,(t;n;cDI/2} (2.6)
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subject to Er=lll;C;,/Li:5 L:~=l nicjJ.tj,C;,:5 Ci+l,L:~=l 1ljC; = O,/J.l $112:5···::;

!J./i;. Further work on simultaneous confidence intervals for the class of mono-

tone contrasts can he found in Williams (1977) and Marcus (1982)

Marcus (1978) studied the one-sided simultaneous confidence lower bound

for morc general nonnegative contrasts. The nonnegative contrast L:~=l n;c;J..ft,

where L:~=j 7l;C; ;:: a,i = 2, "'j k, and L~=l nic; = 0, includes the monotone

contrasts and all types of pairwise mean comparisons: IJ.j - 11-;, I :5 i < j ::;: k.

The confidence lower bounds for nonnegative contrasts by Marcus (1978) were

given by . .
tin;CjY; _od<>(~n;q)1/2

where d" is the positive square root of the critical value for X~2 (sec Section

2.2). With the simple order restriction on treatment means, the lower bound

for the nonnegative contrast l:~=1 njcjj.tj can be improved to. .
max{{;n;c;f'; - ud,,((;n;q)I/2} (2.7)

subject to l:~:1 H;C;I-li ~ l:~=l n;cjl-l., l:~=l n;c; = 0, l:~=i njC; ~ 0, j = 2, .. , k,

and 1-11 ~ Jl2 'S ... ~ I-It·

"Vhen the treatment means are monotone, the ordered pairwise mean com-

parison lJi - Il;, 1 ~ i < j 'S k, is of particular intcrest. It can be used to

deterlllille whether Ili is larger than 14.. Par the equal sample size case, Hayter

(1990) proposed an cfficicnt om.....sided simultaneous confidence lower bound for

(2.8)
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where hk,a,v is defined by

when J-Il "" J-I'l = , .. = !-tk. Some critical values hk,ll,v were given by Hayter

(1990). If 0 is known, s is replaced by (7 and hk,a,'X> is used. Furthermore, the

one-sided lower bound for nonnegative contrasts L~=l Ci1-l1 call be formulated

~c;f~ - ~ 1e;lshk,o,,,!(2y'n).

Hayter(1992) generalizes the above lower bounds ill (2.8) to the unequal sam-

pie size cases for three ordered normal means. Dy the similar discussion as

t.Iarcus and refitz (1976), and Marcus (1978), incorporating the simple or-

Jer restriction on J1-i improves the lower bounds for pairwise comparisons and

nonnegative contrasts.

Kart! (1982) studied confidence bands for monotone dose-response curves,

With the assumption that the response means arc monotone nondecreasing,

the 100(1 - a)% simultancous confidencc intervals for IJ;'S were given by

where 1nk,l' is the upper 0' point of the studentized maximum modulus distri-

billion with parameters k and II (Miller 1981). Both Schoenfeld (1986) and

Lee (1996) sought confidence intervals for each individual mean IJi by incorpo-

rating the mOllotonicity of the response means. The generalized studcntized

maximum modulus procedure by Lec (1996) gains much over the Scheffe-type

procedure by Schoenfeld (1986) and the studenti7,ed maximum modulus by

Korn (1982).
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2.4 Kuhn-Thcker Conditions

The evaluation of the improved simultaneous confidence lower bounds such as

in (2.6) and (2.7) is a maximization problem subject to a mixture of equality

and inequality constraints. Particularly, let x be an n x 1 vector and H(x) be

an m x 1 vector whose components hI (x), .. , h",(x) arc differentiable concave

functions for x ;:::: O. Let g(x) be a differentiable concave function for x ?: 0

as well. The Kuhn-Tucker equivalence theorem will enable us to find an XO

that maximizes g(x) COllstrained by H(x) ?: 0 and x ;:::: O. A vector x is

said to be feasible if x satisfies all the constraints. The optimal value of

the problem is the maximum of g(x) over the sets of feasible points. Those

feasible points which attain the optimal value are called optimal solutions. Let

fb(x, u) = g(x) + u'H(x). Let [ttl" and [~]" denote the partial derivatives

evaluated at a particular point x" and u", respectively.

Theorem 2.4.1 (Equivalence theorem) Let hl(x), .. ,hm(x),g(x) be con

cave as well as differentiable for x :::: O. Let fb(x, u) = g(x)+u'H(x). Then x"

is a solution that maximizes g(x) constrained by H(x) :::: 0 and x :::: 0 if and

only if x" and some u" satisfy the following conditions:

(1) [£;,-l":::;o,[£!,-jdx" =O,x"::::0;

(2) [~I":::: 0, [~I'" u" = 0, u" 2: 0.

(Theorem:J Kuhn-Tucker 1951)

Simple modifications arc admitted when the constraints H(x) ?: 0, x ?: 0

arc changed to the following three ca:;es:
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Case 1: H(x) ~ O.

Here, llsing tjJ(x, u) = g(x) + u'H(x) defined for all x and constrained only

by u;:>: 0, olle must replace condition (1) by

(1') [J'tJ·~O

Case 2: H(x) = 0, x 2': O.

Here, using ljJ(x, u) = g(x) + u'H(x) defined for all u and constrained only

by x 2: 0, one must replace condition (2) by

(£") [~lo=O

Ca.~e 3: H(x) = O.

Here, using f(x, u) = g(x) + u' H(x) defined for all x and u without con

straints, one must replace conditions (1) and (2) by (1') and (2'). This corre-

sponds to the customary usc of the method of Lagrange multipliers.



Chapter 3

Max-Min Multiple Comparison
Procedure

The effects of a drug or a toxin arc estimated by an experiment in which in-

creasing doses Xl, Xt, .. , Xk aTC givell to k groups of animals and the response

Y;j of the jth animal in the ith group is observed. It is frequently of interest to

lise simultaneous confidence intervals for pairwise differences of dose-response

means to assess the significance of dose levels. If a parametric family of dose

response curves is hypothesized, then the parameters and the curve can be

estimated from the data using a nonlinear regression. A confidence region

calculated for these parameters yields confidence bands for pairwise compar

isons of the dose-response curves in a straightforward manner. But in most

environmental toxicology applications, the response at lower doses is of in

tcrest and no parametric dose-response model is assumed to hold in general.

In these applications, thc rcsponse mcan p; can he estimated by the sample

mean f; at various doses. Assuming normality of the response data, simul

talll~lUS confidence intervals for pairwise mean differences can be constructed

22
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using the stuJcntizcd range technique. The simultaneous confidence interval

estimation procedures for successive comparisons of ordered treatment effects

were studied by Lee and Spurrier (1995) and Lin, Miwa and Hayter (2000).

In this chapter we propose a max-min technique to compare pairwise mean

differences. The procedure given in Section 3.1 is a modification of the stu

dentized range technique and it can be Ilsed when the dose-response curve is

isotonic. OUf max-min multiple comparison procedure is an improvement over

Tukcy's technique since our technique utilizes the prior knowledge of mono

tonicity. This improvement ClLn be found in an example given in Section 3.2

and its expected gains are given in Section 3.3. A discussion is presented ill

Section 3.4.

3.1 Model-Free Confidence Intervals

3.1.1 Max-Min Simultaneous Confidence Intervals

The dose-responsc curve y = f(x) is to be estimated from k independent

samples Yo!> Yo2, . . , Yo" taken at increasing dose level Xi, i = 1,2, .. , k. The

l~j are independent normal random variables with mean j.l.i = !(x,) and with all

equal unknown variance (72. If a parametric model for f(x) is lIot hypothesized,

then f(x;) can be estimated by the means Y; = L:j=l Yoj/n of the responses

at the dose levels Xi' The ll~lIal model-free approach to form the 100(1 - a)%

simultaneous confidence interval for the pairwise mean differences j.l.j - IJi is

given by
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where v = k(n-l),s2 = LJ(Y;j-'fi?/v and q~." is the upper 1000: percentage

point of the studenti'i::cd range test with parameters k and /I (see Miller 1981).

If the dose-response CUr\"C f(x) is known to be monotone nondecrcasing,

then the isotonic regression offers natural estimates of the /.li = f(xi) and

it can be computed from the sample mean Y; by the pool-adjacent-violators

algorithm (see Section 2.1). Under the assumption that the regression functiOIl

is monotone nondecreasing, for any 1 :$. j, [' ~ i, m 2::: j, m' :5 i, we have that

Note that it is possible that /' :5 I. Therefore, I-lj - /.li will be bounded from

below by the lower confidence bOllnd for PI - J1-1' and from above by the upper

confidence bound for /.lm - j.tm" One may have another set of confidence interval

When /(x) is known to be nondecreasing, the following 100(1 - a)% simulta-

neous improved confidence intervals are proposed:

These simultaneous confidence intervals are not derived from the estimated

isotonic regre~ion. They are derived from the sample means by utilizing the

monotone assumption on f(x). We have just shown that any nondecreasing

sequence /Joi satisfying (3.1) will satisfy (3.2). On the other hand, it is obvious

that the nOlldecreasing sequence /Joi satisfying (3.2) will automatically satisfy

(3.1). Thus, the simultaneous confidence intervals (3.2) for pairwise differences
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of the true dose-responsc means have all exact 1 - 0' coverage probability.

The above modified procedure applies when f(x} is known to be monotone

nondecreasing. A computation procedure to find the lower bounds and the

upper bounds of (3.2) will be illustrated in the next section.

Utilizing the one-sided studentized range test, Hayter (1990) constructed a

one-sided 100(1 - 0)% simultancous confidence lower bound for iJ-j ~ fl-i,j > i.

By the similar discussion as Marcus (1982), a conservative 100(1 - a)% two-

sided confidence interval can be obtained as follows:

'Pj - f; - h~:v2-Jn -:::: Iij -IJ; ~ Yj - Y; + hr:v2-Jn'
where the critical value h~~ for one-sided studentizcd range test statistic was

tabled by Haytcr(1990) for Q' = .10, .05, .01. The improved confidence interval

under the assumption of monotonicity is

d!J.~/Y, - Y,I ~ h~:~2~) :5lJj ~J1;:5 m~~~\9(Ym - Ym • +h~:~2~). (3.3)

For a fixed Ct, we can sec that q~,~ < h~:; for any positive integers kand

v. Therefore, the max-min confidence interval (3.2) by studentized range test

is always shorter than the confidence interval (3.3) by one-sided studentizcd

range test.

3.1.2 Unequal Sample Size Case

Let Y; be the sample mean of n; observations on the ith dose level. A mod-

ification of Thkey's simultaneons confidence intervals can be obtained from

the conservative property of the Tukey-Kramer multiple comparison proce

dure. Hayter (1984) showed that if ni arc unequal, simultaneous confidence
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intervals (3.1) can be modified by replacing '7.: by {!(~ + ~)}t in the confi

dence interval for IJj - 11-;, and the coverage probability is at least 1 -a: , that is

P{I(Yj-Y;)-(ltj-lJill:sq~,,,s ~(~+k), forall l:Si,l:S k};::>:l-o,

with the degrees offrcL'<iom II = L~=I ni-k > O. The lOO(I-o)%simultaneous

confidence intervals for p.j - 11-; are given by

_~ III __ ~"
Y; - Y; -qt,,,S -(-+ -):S Ilj -p.;:S lj - Y;+q:'"s -,(-+-). (3.4)

2~ ~ ~ ~

If j(x) is monotone nOlldecreasillg , the 100(1 - 0)% max-min simultaneolls
confidence inl.crvals for I-Jj - Ilj, 1 :S i < j :S k arc

The simultaneous confidence intervals (3.4) and (3.5) are analogues of (3.I)

and (3.2), respectively, when sample sizes are unequal. They are conservative

because their coverage probability is at. least 1- 0:. A FORTRAN program for

computing the max-min simultaneous confidence interval (3.5) is given in the

Appendices.

Hayter (1984) also noted that if interest is restricted to pairwise compar-

isons of the means, the Tukey-Kramer procedure (3.4) will provide shorter

iutcrvals thau SchdfC's procedure and the classical Bonferroni's procedure.

Thereforc, the max-min simultaneous confidence interval procedure is good in

comparing pairwise means under the monotone assumption.
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3.2 A Numerical Example

For illustration, we consider the data, given in Table 3.1, from a binding in

hibition <W;3Y which was described fully by Kanowith-Klein, Vitetta, Korn

and Ashman (1979). For each dilution of antiserum, the number of roset.tes

formed was counted and compared to the number of rosettes formed with no

antiserum present. The analysis here proceeds conditionally on the numbers

of rosettes formed with no antiserum present. The percentage inhibitions can

be taken to be statistically independent (see Korn 1982). In this set of data,

there are k = 9 different dilutions of Olle antiserum.

For the 24 observations in Table 3.1, the pooled p-stimate of the variance, 82,

is 86.48 with 15 degrees of fret.-'(\om. The 90% 1\tkey's simultaneous confidence

intervals of J1j - 11j, 1 :$ i < j :$ 9, calculated according to (3.4), are provided

in Table 3,2 with the upper percentage point qg;l~ = 4.52. If i' < I, tIle Thkey's

lowcr bound can be found iu the bottom half of the table, whereas if i' > i

the valucs arc the negatives of the top half of the table with the indices I'

and I interchanged. The 90% max-min simnltaneous confidence intervals can

be compute<J using the values in Table 3.2. To compute the max-min lower

bound, we change the sign on each value of the upper bounds in Table 3.2.

For example, in row 5 and column 6, the value 17.94 is Thkey's upper bound

for 116 -Il~; hencc -17.94 is Tukey's lower bound for 11~ -Ilf>. The max-miu

lower bound for J~.~ - {l4 is the maximum of the values of the first 5 rows in

columns 4 to 9. That value is -17,94 whieh is 1\lkey's lower bOllnd for Il~ -Ilf>.

The 90% max-min simultancous confidence intervals for {lj -/J1, 1 :$ i < j :::: 9,
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calculated according to (3,5), arc provided in Table 3.3. The notation -17.94'

is used in Table 3.3 to indicate that the max-min lower hound for IJ5 - /14 is

:.:ero from our prior knowledge and the value -17.94 indicates the lower bound

computed by (3.5). The max-min upper bound for Itj - J,Ji is the minimum of

the values of the first i rows ill columns j to 9. The max-min upper bound for

1J.5 - /-14 is 20.80, which is Tukey's upper bound of 1J.6 - /.14,

In general, by utilildng the prior knowledge of order relationship on /-li,

Tukey's simultancous lower bound and upper bound can be improved by the

max-min tcchnique. For example, the 90% ma.x-min simultam:ous confidence

interval of 1J.9 - J.l.2 is (0.48, 55.22); however, the corresponding Tukey's simul-

tallcous confidence interval is (-4.22, 55.22). One may not conclude a signif

icant difference between level 2 and level 9 using Tukey's procedure but this

difference call be detccted by the proposed max-min procedure. Comparing

the max-min confidence intervals (Table 3.3) with Tukey's confidence intervals

(Table 3.2), 25 of the 36 lower bounds had considerable improvements, as did

14 of the 36 upper bounds.

The confidence interval (3.3) obtained by Hayter's one-sided studentizcd

range test can also be generalized to the unequal sample size case. The critical

value is replaced by h~S~.R = 4.68, with the sample size n = (2,2,4,2,3,3,2,4,2).

Comparing this to the critical \'alue q~;i~ = 4.52, we realize that the two-sided

confidence bound constructed by one-sided test is less efficient than the one

obtained by two-sided test.

For this example, the critical values (coefficients of the pooled variance

s~ ) of Tnkey's, ScheffD's and Bonferroni's procedure are q8;IUIZ =
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3.20, j8iiffi = 4.12 and tYsOOl4 = 3.57, respectively. Tukcy's procedure yields

the shortest confidence intervals for !J;-,J,i,j > i, therefore, since the max-min

procedure is an improvement over Tukey's procedure, the max-min simultane

ous coufidence intervals are effective for pairwise comparisons of the means.

3.3 Expected Gains of Max-Min Confidence
Bounds

We shall consider the equal sample size case. The results for unequal sample

size case follow similarly. The 100(1 - a)% Thkey's simultaneous confidence

intervals for It; - Jli,i:$ j, are

The expected lower and upper bounds are

and

respectively.

Let

and
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be the max-min lower hound and the max-min upper bound for (3.2). The

expected ma.x-min lower bound is

E(Lij ) E{fJ~~?;;jYtl- Y,,)} - qk,Y J:i
E(ry~ VII) - E(';;l~? Ya) - qk,,,~) .

The expected gain, denoted by .9;j(L), of Lij over Tukcy's lower bound is

The distributions of max/l:::;j(Y/l -Iii) and minn'2;i(Y" - Pi) can be obtained in

a straightforward manner, but the compllLations of their expected values are

very complicated. Since the gain is nOllnegative, the expected gain is always

nonnegative. Similarly, we obtain the expected gain, denoted by 9;j(U), of Vij

over Thkey's upper bound as

The gains 9ii(L) and %(U) are illustrated by the regression curve /Ai =

f(Xi) with J,Ll = ... = lit = jJ and PH! = ... = IJ.k = IJ. + 6. We restrict OUf

study to pairwise comparisons of 11j -/-4. with i :5 t and j > t. Without loss of

generality, we may assume that u/..jii = 1. The expected gain 9ij(U) in (3.7)

becomes

where Zi:" is the ith smallest order statistic in a random sample of size n from

N(O, 1). The exact expected gain 9ij(L) is difficult to compute. However, its
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bound can be obtained as follows. We have that

Therefore,

(3.8)

The lower bounds of (3.8) are given in Table 3.4 for the case of k = 9, t = 3.

They can be computed using the mean of normal order statistics (see Arnold,

Balakrishnan and Nagaraja 1992). The largest lower bound for 9;j{L) is /19-/l1

and the smallest lower bound for 9ij(L) is zero, located at 934{L). The further

apart the indices i and j are from the meau change point t, the larger the gain.

The expected gain, 9ij(U), of Vi; over Thkey's upper bound can also he fonnd

in Table 3.4 by replacing i and j by 4 ~ i and 13 - j, respectively. On the other

hand, the expected ma.'(-min confidence lower bOllnd can be rewritten as

E(L;;) ~ 6 - (ql,. J:! -q;;(L)).

As IJS2 /(72 has a Chi-square distribution with v degrees of freedom, we have

E(s) ~fooo ,jW2"/2~(~)Wl-le-lfdW

(JJ2f(~)/JVf(:::)[00 ~lv~-le-fdw
2 2 Jo 2"r-f(~)

av'2r("; 1)/v\:;r(~)
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Whenever the size of the shift <5 exceeds qk,,,~ - 9ij(L), one would expect

to detect a change in mean around t by the max-min simultaneous confidence

lower bounds.

3.4 Discussion

The proposed modification of Tukey's studcnti'lcd range technique is a simple

and effective method to construct simultaneous confidence intervals for pair

wise differences in monotone dose-response curves. As suggested by Schcffc

(1953), if we arc interested exclusively in the difference J.'j - Pi, j t i, when

all Yo have the same variance and all pairs fj - Y; have the same covariance,

Tukcy's method will yield shorter simultaneous confidence intervals. Hence,

the max-min simultanoous confidence intervals can be applied specifically for

pairwise mean differences under the monotonic assumption. For the equal

sample size case, the max~min simultaneous confidence intervals have an exact

1 - 0: coverage probability.

The max-min simultancous confidence hounds can also be used to detect

the range of the change point for normal variables. This approach is effective

for detecting flj - fl. when i and j arc not adjacent indices.



Table 3.1: Inhibition of Rosctte Formation
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Level L0910 dilution
3.519
3.114
2.778
2.399
2.000
1.399
1.000
0.699
0.301

Percentage inhibition
-12,5
12,27

14,18,25,36
44,46

44,45,46
27,33,56

38,40
32,43,50,54

43,47
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Table 3.2: 90% Tukey's Simultaneous Confidence Intervals (or IJJ - ~Ij > i

Upper bound
2 3 4 5 6 7 8 9 iii

52.72 52.49 78.22 75.63 69.30 72.22 73.99 78.22 1
-6.72 29.49 55.22 52.63 46.30 49.22 50.99 55.22 2
1.01 -21.99 47.49 44.45 38.12 41.49 42.52 47.49 3

18.78 44.22 -3.99 27.13 20.80 23.72 25.49 29.72 4
21.37 -1.63 -0.95 -27.13 17.94 21.13 22.45 27.13 5

6 15.03 -7.97 -7.28 -33.47 -30.60 27.47 28.78 33.47 6
7 12.78 -10.22 -9.99 -35.72 -33.13 -26.80 31.49 35.72 7
8 22.51 -0.49 0.48 -25.99 -22.95 -16.62 -19.99 25.99 8
9 18.78 -4.22 -3.99 -29.72 -27.13 -20.80 -23.72 -25.49

iIi 1 2 3 4 5 6 7 8
Lower bound
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Table 3.3: 90% Max·t...lin Simultaneous Confidence Intervals for Jlj -/-4.,j > 'i

Upper bound
2 3 4 5 6 7 8 9 iIi

52.49 52.49 69.30 69.30 69.30 72.22 73.99 78.22 1
-6.72' 29.49 46.30 46.30 46.30 49.22 50.99 55.22 2
1.01 -21.99' 38.12 38.12 38.12 41.49 42.52 47.49 3
18.78 -3.99' -3.99' 20.80 20.80 23.72 25.49 29.72 4

5 21.37 -0.9[;' -0.95' -17.94' 17.94 21.13 22.45 27,13 5
6 21.37 -0.95' -0.95' -17.94' -17.94' 21.13 22.45 27.13 6
7 21.37 -0.95' -0.95' -17.94' -17.94' -17.94' 22.45 27.13 7

8 22.51 0.48 0.48 -16.62' -16.62' -16.6Z' -19.99' 25.99 8
9 22.51 0.48 0.48 -16.62' -16.62' -16.62' -19.99' -22.45'

j/i 1 2 3 4 5 6 7 8
Lower bound



Table 3.4: Lower Bounds E(Zj_l;j_l) ~ E(ZH_;+d When t = 3, k = 9

i\j 4 5 6 7 8 9
1 0.85 1.41 1.69 1.88 2.01 2.11
2 0.56 Ll3 lAl 1.59 1.73 1.83
3 0.00 0.56 0.85 1.03 1.16 1.27

36



Chapter 4

Simultaneous Confidence Lower
Bounds

The regression curve y = f(x) is to be estimated from the observations

Yil, Yi2, "0' Y,.., collected at the quant.itative level Xi, i = 1,2, ... , k. Let Y;j be

independent norlllal variates with means Pi = f(x;) and a common variance 0
2

,

where Iii are monotone nondecreasing. We arc interested in the one-sided con

fidence lower bounds for the pairwise comparisons P-j - /1>, 1 ::; i < j ::; k, and

nonnegative linear combinations of pairwise comparisons (nonnegative con

trasts). The development of simultaneous confidence bounds for restricted

settings was first carried 0111. by Bohrer (1967) and Bohrer and Francis (1972).

By usc of the likelihood ratio statistic, Marcus and Peritz (1976) obtained onc

sided simultaneous confidence intervals for monotone contrasts L:~""l n;c;J.t;, for

which L:~l niC; = 0 and Cl ::; C:l ::; ... ::; Ct· Their results subsume those of

Bohrer and Francis (1972). Howeyer, apart from Ilk -Ill> nonc of the ordered

pairwise comparisons IJj - IJ; arc monotone contrasts. Marcus (1978) stud

ied the confidence lower bounds for the nonncgative contrasts, which includc

37
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monotone contrasts and pairwise comparisons, when the common variance q'l

is known.

If several treatlllent mealls are to be compared with onc another and the

experimenter has a reason to believe that the treatment means are simply or-

dered, then this order assumption can improve confidence bounds. The usc of

prior knowledge that the regressioll curve is monotone, IJl :s: 1J2 :s: ... ~ i-lt, to

sharpen confidence hounds first appeared in Marcus and Pcritz (1976). The

technique can also be found ill Marcus (1978), Korn (1982), Schoenfeld (l986),

Hayter (1990) and Lee (1996). Marcus (1978) studied the improved simulta-

noous confidence lower bounds for nonnegative contrasts while utilizing prior

knowledge of the mon010llicity of the means 11i. This illlpro\'OO lower bound

is the solution to an optimization problem of maximizing the simultaneous

confidence lower bounds. However, Marcus' results are incomplete.

In this chapter, 'A"e imprt)\'C significantly over the results of Marcus (1978).

In Section 4.1, we provide a necessary and sufficient condition for the solu

tion to the optimization problem of maximizing simultaneous confidence loy."er

bounds. An efficient computation algorithm for the ilDprO\~ one-sided confi

dence lower bounds ofpairwisc comparisons and nonnegative contrasts is given

in Section 4.2. A numerical example illustrating the algorithm is given in Sec·

tioll 4.3. Sectioll 4.4 contains all technical results and a couclusion is included

in Sectiou 4.5
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4.1 The Optimization Problem

4.1.1 Simultaneous Confidence Lower Bounds

For the monotone nondccrcasing regression means IJ-j, the class of monotone

contrasts is defined as L~=l 7liCi/Ji where C;_I SCi, i = 2, "'j k. The class of

nOllllegative contrasts is defined by L~:I 7liCiIJi = E~;l E1=Hl )"ij(/J.j - JL;)

with )"j ;:: 0, which is a nonnegative linear combination of Ilj - !Ji, i < j.

The coefficient CJ, ... , Ct can be rewritten as c t 0, where tne partial order

c:; c' is defined by E~=.i+lnic.: S E~=j+l njc;,j = 1, ...,k-l, and E~=lniC; =

2::=1 niC; = O. Monotone contrasts arc special cases of nonnegative contrasts.

Example 4.1.1 Let k = 5, fl, = n for i = 1, ... , 5. /'5 - (1'1 + 1J.2)/2 i.s a

monotone contro.~t. However, /)4 - JJ-3 is a nmmcgafivc contrast but not a

monotone contrast.

As 1I0t all pairwise mean differences are monotone contrasts while they are

nonnegative contrasts, it will be of considerable interest to construct one-sided

simultaneous confidence lower bounds for pairwise comparisons fl.j - ~;, 1 :S

'i < j :S k, and nonnegative linear combinations of pairwise comparisons.

A 100(1-a)% one-sided simultaneous confidence bound for the nonnegative

contrast L:~=l niC;t~ is denoted by. . .
l(~lIiC;11i) = ~nicif'; - ia5(~ni(;DI/2, (4.1)

where Y; = L:j~1 Y;j/1I<, 52 = LiJ(Y;j - f';)2/V with v = L~=1 n; - k > 0,

and ia will be given below. Marcus (1978) studied the case when 0- is known,
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and some of the criticaJ values in can be found there. As a special case, the

100(1 - 0)% Qne-sided simultaneous confidence lower bound for ~j - f-I.i is

4.1.2 The Critical Value to

The critical value ta is the solution to the equation:. . .
p,,{~niC;lJi::: ~nic.:Yj - i"S(~71iC,)1/2,VC t O} = 1- 0'.

The left-hand side can be rewritten as

PI'{max:t fl;C,(Y; -lli)/SCtniCf)I/2 ::; to}
~EN ;=1 ;=1, .

PI'=O{I~'W~niCiY;/s(~nic~)1/2::; tn }.
PI'=O{L n iJli

2 j s2::; ~}

and the last identity follows a similar argument as in Hogg (1965) where IJQ =
(IJ.~, ···,ILk) is the weighted least square proj~'<:tion of (fl, ... ,Yk ) onto N =

{c: c t O,E~=lnici = O} with weights nl.n2, ... ,nk· The statistic S8l =

L~=l n;f-I.f2/52 has the same distribution as the statistic 512 in (2.4) in Section

2.2 when /1 =0 and its critical value ~ can be found in Table A.7 of Robertson,

Wright and Dykstra (1988).

4.1.3 The Optimization Problem

The monOlone nondccreasing property of regression curves can be used to

improve the confidence lower bound for L~=l n;ciJJ-;· If /16 -1~1 ?: JJ-s -/JI, then
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the simultaneous confidence lower hound for 14 - ILl is hounded from below by

that for JJs -Ill. Dy Abel's method of summation, L:~"'1 l1;C;jJi :s; L~=I n;cjl1;

for ali/l = (J.tJ, ... , /ik), J.ll :=::; 1J2 ::; ... :::; Ilk, if and only if c :::5 c'. The improved

confidence lower bound for :L~=1 tlici{li is denoted by

, ,
L(trnici/li) = o~~.I(EniC;Jti)' (43)

It can be shown that 58j > ~ if and only if there exists a c, C ~ 0, such that

1(L:~"'1 HiCi/li} > O. The latter indicates that there are differences between the

dose levels, in particular, Ilk - III > O. In this chapter, we shall restrict OUf

attention to the case 1(L:~=1 n,C;lJi) > 0 for some c t O. The following theorem

establishes a necessary and sufficient condition for an optimal solution to (4.3)

and its proof is found in Section 4.4.

Theorem 4.1.1 Given a contrll3t :L~=l nic; lJi where IJI ::; ... ::; P-k, let aj =

:L~=Hln;c;,j=I,,,.,k-l,alldletZ={j<k aj=O} Letc"besuch

that a :::::; CO :::::; c', let aj = :L~",j+l n;cf, let R = {j < k : aj = aj > O} and

S = {j < k: aj = 0,0; > OJ. Let p,q alld r be three consecutive indices in

RUSUZU{O,k,k+l}(q -I O,k+ 1). Let Tipq = :LJ"'P+lnj,Cpq = (a:~a~)jTipq

alld }-:-pq = :LJ",p+l njfj/nM· The c" maximizes 1(:L~=1 n;C;Jl;) = :L~"'I n;CjY,

l"s(:L~=1niq)1{2 subject to 0:::::; c:::::; c' ij and only ij

cj=cpq+b(fj-Ypq ), ijp < j::; q, (4.4)

Cqr-Cpq ::;b(Yqr-Y".,), if qE R, (4.5)

cq,-Cpq ?:b(Yq,-Ypq ), if q E S, (4.6)



where

,
SSW = L: L: n,(fj - YJHI)z < ~S2,

q j"'pH
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(4.7)

(4.8)

Remark: For the case SSW =0, the optimization problem (4.3) is reduced

to minimizing L:~=l nic? subject to 0 j c j c'. The optimal solution CD is

determined by R :2 {j < k : fj < 'Pj+1> aj > O} and S :2 {j < k : Vi > YHI

and a; > OJ. An index j such that Vj = fj+l and aj > 0 shall have the value

cj=c'J+[ ifO~cOjc·.

From the discussion following (4.9) in Section 4.4, it suffices to consider

the case that Z =0 in the remainder of this chapter. Marcus (1978) proposed

a method to compute the solution for a particular partition R, Sand T =
{I, ... , k - I} - (R uS). Part of the results of Lemma 4.4.2 ill Section 4.4,

including (4.10), (4.13) and (4.14), were given by Marcus (1978). The formulas

(4.4), (4.7) and (4.8) in Theorem 4.1.1 arc respectively their simplifications.

However, which partition yields thE:! optimal solution is ullf(!SolvE:!d by Marcus

(1978). Theorem 4.l.t provides a necessary and sufficient condition for the

optimal solution. These are the two significant improvements over those of

Marcus (1978). Furthermore, we make another improvement by providing an

efficient computation algorithm as below.

4.2 Stepwise Optimal Partition Algorithm

When L(L~:1 7liCil-ti) > 0, the feasible partition is the one with nonempty R.

It. has as many as 3k - 1 - 2.1:-1 choices. This is a very large numbcr even for
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a moderate k. For example, when k = 6, there arc 211 feasible partitions.

Hence, it is important to have an efficient algorithm. This section provides an

efficient algorithm to identify the optimal partitions (R;, 5 i , Ti ). For a given

Y;j,i = 1, ... ,k,j = 1, ... ,ni, each partition (R;,Si, T;) is optimal for a different

range of confidence level 1 - 0, starting from the lowest level and continuing

until a desired level is reached

Algorithm

In each step, lel p,g and r be three consecutive indices in R;USjUZU{O,k, k+

I}.

(O) Let ai. = l:J"'''Hnjc;,h = l, ... ,k -1. Set i = O,Ro = {j < k: fj <

fJ+J,uj > O},So = {j < k: fj > f'j+ha; > O} and To = 0 (for thccasc

that Yj = Yj+l for some j, see Remark after Theorem 4.1.1 for the initial

partition Ro, So and To)·

Let aq = a; if q E Ro,(lq = 0 if q E So,ao = 0 and ak = O. Let Cpq =
(aq_1 - oq)/nq, f~pq = Yq, 'Ipq = nq,q = 1, .. , k. Let Ao = E:=l npq C2pq and

Bo=O.

(i) Let 8n = sup{(Cqr - i"q)/(Yq>" - Ypq ) < 8;_1 : Yqr f- Ypq,q E 11.; US;} and

the restriction of 8._ 1 applies to i ?: 1 only.

(ii) For i?: 1, let . .
<:In = sup{(ai.-aq- L njCpq)/1 L nj(fj-Ypq )] < 8;_1 : h E T;,p < h < q}.

j=II+1 j=II+1
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(iii) Let Ji = max{8.. ,cnl and ti = (B; + A/mLn/s. If io :5 ti, the optimal

partition is R;,Si and Ti . Otherwise, go to Step (iv) if Ji = Ji1 and Step

(v) iriS; = 8n

(iv) If the supremum of di isobtaincd at q E Rt, define R;+1 = R;-{q), SHI =

5 i and THI = Tiu{q}. If the supremum of OJ is obtained at q E Si, define

R;+l = R;, Si+l = S; - {q}, Ti+l = Tiu{q}. Let.6. = (Ypq - Y",,)2/{n;i +

n;/). Let Ai+1 = Ai - 8rt:. and BH ] = B; + A. Replace i = i + 1. Go

to Step (i).

(v) If the supremum of J; is obtained at h = T;,p < h < q, define R;+1 =

RiU{h},Si+l = 5i , Ti+l = Ti-{h}. Let all = ah,6. = (Yph-Yhq)2/(n~l+

n/;ql),Ai+1= Ai +Jlt. and BH1 = B;-.6... Replace i = i+l. Goto Step

(i)

Remark: For pairwise comparison IJ.j - IJ-i, skip Step (ii) and Step (v).

4.3 A Numerical Example

116 = n = 10 and s/.jii = 3.6. The 100(1 - 0:)% simultaneous confidence

lower bound L(-PI +0.35/12 -0.35Jl3+ 14) can be computed as follows. Here

a' = (1,0.65,1,1,1)' and a = (a),a2' ... ,a~)'.

(0) The initial partition is Ro = {1,3,4},So = {2,5} and To = 0 We have

a = (I,O,I,I,O)',nc = (-I,I,-I,O,I,O)',Yp_l,p = Yp,np_I,p = 1lp,p =
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1, .o,k. Therefore,

00 = 001 = sup{~, ~,~,~,~} = 1/20

Since Ao = 2/5 and Bo = SSW = 0, we have to = 1.11. The Ro,So and

To form the optimal partit.ion for confidence level up to 20.9%.

(1) SiIlce 00 = 1/20 is obtained at q = 2 E So, define the partition III =
{1,3,4},Sl = {5} and T1 = {2}. We have a = (1,1-20b,1,1,O)'.ln

this step we have that

81 = max{sup (I60'O, ~,~),sup(~)} = 1/40.

Since A = 80, Al = 1/5 and B I = 80, we have tl = 1.76. The partition

is optimal for confidence level ranging from 20.9% to 52.9%.

(2) Sillce 01 = 1/40 is obtained at q = 4 E nl> define the partition R2 =
{1,3},52 = {5} and T2 = {2,4}. We have a = (1,1 - 20b, 1, ~ + 20b,D)'

and

62 = max{sup(~,ik, ~),sup(~)} = 7/400.

Since A = 80, A2 = 3/20 and 8 2 = 160, we have t 2 = 2.24. The partition

is opt.imal for confidence level ranging from 52.9% to 74.7%.

(3) Since 02 = 7/400isobtainoo atq = 2 E T2 , define R3 = {l,2,3},S3 = {5}

and T3 = {4}. We have a = (1,0.65, 1,! + 20b,O)' and

03 = max{sup(~, 2~O)'sUP(-Io)} = 1/80.

Since 6. = 80, A3 = 349/2000 and B3 = 80, we have t3 = 3.04. The

partition is optimal for confidence level ranging from 74.7% to 94.1%.
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(4) Since 03 = 1/80 is obtained at q = 5 E 83, define J4 = {1,2,3},S~ = 0

and T1 := {4,5}. 'Nc havea= (1,O.65,1,~+¥b,t- ~b)' and

Since 6 = 320/3, At = 947/6000 and B4 = 560/3, we have t4 = 3.33.

The partition is optimal for confidence level ranging from 94.1% to 96.9%.

(5) Since 04 = 9/800 is obtained at q = 1 E f4, define Rs = {2,3},Ss = 0

and n = {1,4,5}. We have ts = 3.91. The partition is optimal for

confidence level ranging from 96.9% to 99.3%.

(6) Since Os = 41/5200 is obtained at q = 3 E 14, define ~ = {2}, 56 = 0

and Til = {J,3,4,5}. We have t6 = 4.33. The partition is optimal for

confidence level ranging from 99.3% to 99.8%. Note that the p-value for

the test statistic SOl is 0.002.

When a = 0.05, the critical value ~_~,6.~ with k = 6 and I' = 54 is 3.116.

The 95% simllltauCOllsconfidence lower bound L(-I-'l +0.35Jl2-0.351J3+1J6) =
5.06 can be obtained at Step (4) with

ncO = (-1,0.35, -0.35, 0.252, 0.738, 0.010)'.

If we are interested 95% simultanCQUS confidcnce lower bound for the

pairwise comparison 1J.6 - IJl, Step (0) remains the same as above. In Step

(1), we have 01 = max{ik-,O,:fo,k} = 1/40. However, Al = 1/5,81 =
SO,tl = 1.76 remain also the same as in Step (1). But in Step (2), we have

02 = max{~,~, s'o} = 1180, A2 = 3/20, 8 2 = 160 and t2 = 2.94. Therefore,
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the R2 , T2 and 52 form the optimal partition for confidence level between 20.9%

and 92.7%. In Step (3) we have that RJ = {l,3},SJ = 0 and T3 = {2,4,5}.

Since 053 = max{'ffi;,dio} = 1/100,6. = 320/3,A3 = 2/15,83 = 800/3 and

t3 = 3.51. The R3 , T3 and 83 form the optimal partition for confidence level

between 92.7% and 98.0%. The 95% simultaneous confidence lower bound

for /11; - /-LI is 5.17 with nc" = (-1,0.232,-0.232,0.256,0.720,0.024)'. Since

J1-6 - P·l > -P.l + O.35J.lZ - 0.35113 + J.lfj, it follows that £(/-16 - iii) = 5.17 is

bounded from below by L(-j.ll +O.35/-L2 - 0.35}13 + /J6) = 5.06.

4.4 Technical Results

4.4.1 Derivation of the Optimal Solution

Consider the transformations Xi = Y;+l - f;, Si = Ii.+! - 1-1-1, ai = I:~=i+l 7ljCj'

Then X 1,X2 , ..• ,Xk _ 1 arc normally distributed with means 8, and covariance

and aij = 0 if Ii - il > 1. Note that L~=I n;C;Jl; = L~':l a;,);. Let X =
(XltX:z, .. , X k _ 1)', the optimization problem (4.3) becomes the problem

.-.
o~~.l(~ 0;,);) = o~~~.{a'X - t"s(a'Ea)lj2}. (4.9)

If aj = 0, so is a; and the corrcsponding tcrms 011 the right-hand side of

(4.9) vanish. Without loss of gcncrality wc may assume aj > 0 for each

i = 1, ... ,k - 1.

LetaO be a vector such that 0 .:::; a°':::; a' and let R = {i: 0 < aj =ai},S =

{i : aj = 0) and T = {i : 0 < aj < an. Then aO and a' can be partitioned

as aO= [a~,a~,4J' and a' = la~,a~,a.j:l'. The matrix L and the vector X
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arc partitioned likewise, A necessary and sufficient condition for the optimal

solution to he attained at a" is given by Lemma 4.4.2 which is another version

of Theorem 4.1.1. We will introduce Lemma 4.4.1 first, which will be used in

the proof of Lemma 4.4.2.

Lemma 4.4.1 The junction f(x) = (X':BX)l/2 i5 convex.

Proof. It suffices to prove that the Hessian matrix (~) is positive semi

definite (Rockafcllar }972). By taking the derivatives of the function

f(x) = (X'EX)"/2 = (L~:>';jX;Xj)I/2,
, ,

we have that

and

For any k x I vector y,

I: I:Y'"'iY'; fix) - I:I:(I: y,a,.x.HI: Yiai'x,)/ f'(x)
; j ; j • I

I: I:y,a'iY'; fix) - (I: I: y,""x.HI: I: x,a"y,l/ f'(x)
; • I j

[(x'Ex)(y'Ey) - (x'Ey)'I/I'(x).

Let x = E"12x and y = E1/ 2y, then by the Cauchy-Schwarz inequality

(x'Ex)(y'Ey) - (X'Ey)2 = (x'x)(Y'y) - (X'y)2 ~ 0

o
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Lemma 4.4.2 The maximum of I(L~;11 G,o:l,) subject to 0 ::;: a ::;: a' is attained

at a" 1/ and only if a O satisfies

(4.10)

(4.11)

(4.12)

(4.13)

where

(4.14)

Proof. Consider the optimization problem

,-,
maximize l(~ aill,) .subject to O:S a:5 a'. (4.15)

By Lemma 4.4.1, I(Ef;11 aA) is concave. Let ¢J(a, uj = a'X -las(a'Ea)l/2 +

n'(a' - a) and let ~ denote the partial derivatives evaluated at the point

(aO, nO). By the Kuhn·Tucker L'quivalence theorem (Kuhn and Tucker 1951),

a" is the solution to the problem (4.15) if and only if

(ii) a' - a" :::: 0, (a' - a")'u" = 0 and \1" :::: O.

It is trivial that (i) and (ii) are equivalent to

a~'h =u'R:::: O, (4.16)
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~:SUs=O>

a~ =u;'=O,
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(4.17)

(4.18)

where u has the same partition, U = (u'ntll'S,U'T]'. The objcctive function

teEt:} aiD;) can be written as

.-,
l(~ a;6,) = a'Rxn + a~Xs + 4Xr - (tos)e(a)1 /2

where c(a) = a'Ea. The identity (4.18) is

a~l~ = XT - tos(Erra~ + ~'RaHJlc(aO)1/2 = O. (4.19)

It £0110\\'5 that a~ =-EriE7'H8n+c{aO)I/2(i"s)-IE7+XT. But

e(aO) aj/ERR8 R+ 2ai/ERTaT + :4Errar
8 R'EHR 8 R+ 2aR'ERTI-ET}E-rR8R+ c(aO)If'2(ios)-IEr}.xrJ

+1-Eri-Ern8R + c(aO)If2(i..s)-'ET}.xr I'ErrI-ET}ETR8R

+c(a")'!2(i"s)-IE7+xT]

a~ERRaR - a~ERTEriETRaR + XTET+XTc{aO)(t;~)-l.

a~ERItTan + x;.EriXTc(aO)(~8')-I.

Hence

Let b = c(ao)'/'j{l.. s). Theil it has the same expressiou as (4.14) and expres

sion (4.19) becomes (4.10). The inequalities (4.16) and (4.17) arc, respectively,

a~I'k = X R - b- 1(ERRan + ERr3r) ~ 0
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and

~ = X s - b-l{}~SRaR + Bsrar):5 0

and they arc (4.11) and (4.12), respectively.

For the case when T is empty, (4.10) does not apply. (4.11) and (4.12) are

reduced to

and

This completes the proof.

4.4.2 Computation and Proof of Theorem 4.1.1

o

The following lemmas will be used to simplify the computation. The transfor

mations in Section 4.4.1 will be used here. Let Y = [YI, ... , }'.l:I'. Theil X = AY

where A = [aijhk~l)xk is snch that Q.;. = -1,0.;"+1 = 1,ui.i = 0 otherwise.

Lemma 4.4.3 The inverse matrix of E has the follounng expression: E- 1 =

[aii],oij = oji =~, iii:5 j < k.

Proof. It is trivial that EI/ = (~). Assume E- 1 = (aii) holds for k. For the

case k + 1, we have t.hat
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with El1 = [uijh-I)X(k-l},E21 = [0, ··,O,-;!;]lX(k-l), and 1:22 = r!; +~.
It is trivial that

where En .l = En-E21EllIE12. By the assumption we have that £21£111£12 =
O"k~l,k-l/n~ = iio,k_1HA:!(nIilok) = iio,k-d(nkT~k), and hence 2:.:;\ = iiUknk+l/iio.k+l =

uk/;:. It follows that

(_l)(_~)~knk+1Eil1et_1
HI< nO,k+l

ii(}~nk+l [ai,k-l) = ~[iillink+d = Io-it ]
nknO,k+l nO,k+!

where ek_1 = [0, .. ,0,1];"'(1<_1) and

ii~iijk + ~nk+l ~~jnk
not nO,k+! nl; nOt

_ ~ (flQ,H1iijk + 1l.ojn k+d
nO.t1lll,k+l

_ ~ (iiOkrljk + nk+lnjk + nojnk+d
nO/;1l{),kH

_ ~ nOknj,k+l = ~iij,k+l = (1ij.

nOt'llo,kH no,HI

o

Lemma 4.4.4 The vector r;-lx and the quadmtic form X'E-1X have the

following expression3: [E-lX]i = iioi(YOk - Yo;) and X'E-1X = E~=l n;(Y; 

YOIY'
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Proof. By L€mma 4.4.3

.~.

[E-1X]. La·jXj
j=1

t~ii;k(fj+I_Yj)+ ~ ~njk(Yj+l_Yj).
j=1 11Qk j=Hl 11Qk

By Abel's method of summation, E~=o a.-b. = E~~l(at - a.-+tl E;=o bl +

ap Er=<> bt , we have that

HI •

Lnjfj = L(yj - Yj+t}iioj + Y;+11lo,HI,
j=1 j=1

and
k k-l

L Ujfj = L (fj ~ YHdiiij + Ykflik ·
j:i+l j=i+l

It follows that

I:n'Oj(yj+l - fj) = nlliYHI - t njYj ,
j:1 j=1

and

Hence

.~.
L iijk(Yj+l-fj)

j=HI

.~.
L (fj+l - Yj)(nik - nij)

j='+1
,~.

iiik(Yk - Y;+I) + L {fj - YHdft'j
j=;+1.

L njYj - nikY;+I.
j:HI

~(iiOiY;+1 ~ EniYj) +~(t njfj-fi.kY;+d
nok j=l 1l()k j=HI

fi~ii;k (Y;k - f~o;) = Tioi(YOk - Y'o;)
no,
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Let B = A'L-IX. Then we have that B1 = nl(Y1 - Yok),B; = nOi-l(Yok 

YIli _ 1) - floi(YOk - Y()j) = nj(Y; ~ Yok),i = 2, .. " k - 1, and

H

BI: no,k-ICYok - f~O,k-d = nO,k_IVOI: - L: njYj
j=1

no,k_IVOI: + nkYk - nOkYOJ; = nk(Yk - Yo..).

This completes the proof. o

Let Q = RuS = {rj,1"2, ... ,rl_d, letT; = {ri_l + 1, ... ,Tj-l} ifri_l +1 ~

Tj - 1 and let T = {t\,t2, ... ,tk_ l } = T1 UT2 U· ·UT, with the conventions

TO = 0 and 1"1 = k. Note that T; is an empty set 0 if 1";_1 and Tj are consccutive

integers and Ru S uT = {I,···, k - I}. Let p, q and r be three cOllsL'Cutive

indices in Q U {O,k} (q i= 0, k). \\le shall denote q = rj E Q. If i = 1 then

p = 1";_1 = 0; if i = I - 1 then r = 1"Hl = k. Let 1l" be the permutation

~ ~ ( 1

"
k -1 )
tl:_1

and let r be the corresponding elemelltary operation matrix which permutes

rows according to 11", i,e.,

Note that

o ]o

~o1i



Erq = [ET ", ··,Errl_ll, ~>" = [0,.;, .. ,E~,r;I' and

{

Enq = [O,"',O,-l/nq] if T;#0,
ET;+lq=[-l/nq+l,O, ... ,O] if Ti+1 i-0,
E~Jq = 0 otherwise.
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(4.20)

From Lemma 4.4.3, we have [E'I}dop =~ if P < 0' :::; f3 < q and

[ET'~JT<+,1Dil=~ if q < 0' :::; fJ < r. Therefore,

(4.21)

Lemma 4.4.5 Let EQQ-T = BQQ - EQTE7+ErQ = [Tii], then Tqq = ~ +

t.;, Tqr = rrq = - t.; and Tij = 0 othcnmse.

Proof. By (4.20) and (4.21), we have that

T qq [BQq ~ EqrETiErQlqq

..!.- +~ _ 2. n~,q_1 _ ~ii~+l.T

n q nq+l nq npq nq+l n""

2.(1 _ ii~,q-J) +~(1 _ n!+l.T)
nq npq nq+\ nqr
1 1

-:;-+-::-;
npq nip'

Tqr = [BQQ - EqrEriErQ]qr =-~ =-~ if r = q + 1;
nq+\ nqr

Tqr=(_~)n_q+l =_~ if r>q+l.
n q+\ nqr nqr

It is trivial that [EQQ - EQTEr}ErQ]<>il = 0 if 0:,/3 arc not consecutive indices

in Q. This completes the proof. o
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Let iii = a; if i E R and iii = 0 if i E S. The expression (4.10) call be

rewritten as

(4.22)

By the fact that r::r}XT = HET,IT'XTJ',"" (E1i!/jXTl )']' and by Lemma 4.4.4,

[ET;~;XT;]j = fipj(YJHI - Ypj ), p < j < q. Therefore,

By (4.22), the left-hand sides of the inequalities (4,11) and (4.12) call be com-

bined as

where

Yq+\-Yq

+ {O, "0,0, n~:l , n~l ,n~::,r .,,~, 0, .. ,O)XT

f~qT - Ypq

and [EQQ:raQ]q = (aq - iir)/nqr - (tip - aq)/ilptr

Therefore, (4.11) and (4.12) become, respectively,

and

Proof of Tileorem 4.1.1
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From (4.22), we have that

._(a" )_( 1,_, ) - b ( 0 )
a~ - aT - - ET}.E-rQ aq + E;+XT '

By the inverse permutation, \\'e have that aO = ria:. The optimal coefficient

ncO = A'ao is expressed as

ncO = AT' ( -E~~Q ) aq + bA'r' ( r:Jxr )

The k x (1-1) matrix [AT' ( -E"t~Q )1 can be evaluated as:

{
-r; if p < j ::; q,'( [I-I) R; po. .fA r -E.,-;-p:qQ ]j; = r.; If q < ! :-::: r
o otherwIse.

The first term of (4.26) is

(4.26)

[A'f' ( "'~l~ ) ilqJj = ~(ap - aq) = njew if p < j::; q (4.27)
-"'rT"-"I'Q npq

The second term of (4.26) can be evaluated as

[A'r' ( EJXT )J.i = nj(Vj - Ypq ), if P < j ::; q. (4.28)

By (4.26), (4.27) and (4.28), the identity (4.10) is equivalent to (4.4). By (4.24)

and (4.25),

Cqr-c"q::; b(Yqr- Ypq) if q E H;

cqr-cpq:::>:b(Yqr-Ypq) if qES

By Lemma 4.4.4, XyE7+X'l' = Lq LJ,=pH nj{fj-Ypq )2. Note that a~LRR,TaR=

iiQLQQ.Tflo = L q npq(f!pq. Thi~ completes the proof. 0
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4.4.3 Justification of the Algorithm

The following proofs arc derived frOIll Theorem 4.1.1 as well a~ (4.23), (4.24)

and (4.25).

Let J4J 2 {j < k: fj < Y,+t,a; > O},So;> {j < k: Y; > Y;+llaj > O} and

letp, q and r be three consecutive indices in F41uSoU{O, k, k+l}(q oF 0, k+ 1).

Theil Y, = Ypq if P < j $ q and hence SSW = O. By Theorem 4.Ll, the

optimal solution CO is the one such that c:j =Cw, p < j :5 q, if

where b = cr;'1npq~)1/2/{i<>s). The above inequality is equivalent to io :5

too = A~/2slfJo. Confidence lower bound (4.3) is solved for confidence level up

to 1 - 0'0'

Let n..,S; and T; be the optimal partition satisfying (4.4), (4.5), (4.6) and

(4.7) of Theorem 4.1.1 for a given io < t",(o: > 0';). We shall show that

Si;> SH1. Let q E 5 i +l have an immediate predecessor p and an immediate

successor r respectively in R;+1 U 5;+1 U {O,k}. Then by (4.25), we have that

for any b(a), 0 < b(a) :5 0;,

Suppose that q E T;_ From (4.23), we have that for any b(a:) > 0;

a~[b(a)l (nqriip+npqaT)!npr + b(a:)iipqnqT(yqT - Ypq )!71pr

a~(o;) + [b(a) - o;]npqiiqr(Yqr - Ypq)!npr. (4.29)
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Since a~(6;) = 0, a~[b(a)1 ':::: 0 for any b(a) > OJ. This contradicts that q E 7';.

It follows that S;"2 5H1 .

As the confidence level I -Q: (and hence ta) increases, the optimal partition

holds until either

(I) i" :$; to, and there exists a q E R; so that R;+J = R; - {q}, 8Hl = S; and

Ti+l = T; U {q} is the optimal partition for to> to;! or

(II) to ::; t", and there exists a q E $; so that R~+l = R;, 8 i +l = S; - {q} and

Ti+l = T; U {q} is the optimal partition for to> to;. or

(Ill) t" < to, and there exists aj eT; so that R;+l = R;U{j},SHI =8; and

Ti+1 =T; - {j} is [he optimal partition for to:?: to,.

We shall prove the Case (I) only and the proofs for the Case (II) and (III)

follow similarly.

Let q E R; have an immediate predecessor p and an immediate successor r

respectively in R;U$;U{O, k}. For t,,::; to" we have that tJ2(o:) = A;/(~s2_B;}

wh~re

and

Then

(4.30)
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Fori" > t,,;. we have that b2 (a) = Ai+l/(~S2_Bi+d where AH1 = A;-c;6

and B;+1 = Bi + 6. with

It follows that liITlo....".,_ b(a) = 8, and the coefficient b(a) is a continuous,

increasing function oro.

Dy (4.4), when b(a) = '" we have that

where e}i) denotes the optimal solution for the partition R;, S; and Ii. By

(4.30),

where c",. = (npqi:.pq+ii"..Cvr)/(nP'/+n",.) and Ypr = (iipqYpq+nqrYqr)!(npq+nq,.).

It follows that

Let (4.4) hold for the partition R;+1, Si+l and Ii+! when b(a) < Oi. Then

for each h E T'+i, except h = q, and hence the inequality holds for b ill the

neighborhood of Jil Oi+! < b(o) < OJ. Since q E R;, the last inequality becomes
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an identity when h = q. By the fact that Yq, >~" 0 < E1"'Q+l njc1i+l}(a) <

E}=q+\ njcj for OJ+! < b(o:) < Qi.

By the assumption that lSi is determined by q E R;, (4.5) holds for each

hE !l;+\ for 0;+1 < b(o:) < OJ with the exception of h = p or h = To Suppose

that 1J E Ri with an immediate predecessor m in R;, U S, U {O,k}. Then

By (4.31),

Therefore, (4.5) holds for the partition RH1,Si+l and T;+I when 6'H < b(o:) <

OJ. The proof for the case h = r and the case (4.6) follows similarly For

fa> t", we have that

Therefore, (4.7) holds for the new partition. Since each optimal partition R;, Si

and T; holds for a specific range of 1 - cr, ai < &(0:) < Oi_l1 the algorithm will

terminate after a finite number of steps.

For pairwise comparisons J.lk - Ill, we have that a; = 1, i = 1,2, "'j k - I.

Let q E fliH have all immediate predecessor p and all immediate successor

r respcctively in Rt+l uSi +! U {O,k} Then by (4.24), we have that for any

&(0:):5 6;,

YqT - Ypq ;:': [(1 - iip)jftpq + (1 - iirljiiqTl/b(a) ;:.: O.

Suppose that q E T;. We also have (4.29) holds for any b(a) > Oi. Since
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a:(o,) = 1, a~[b(o)] 2:: 1 for any b(a) > 6,. This contradicts that q E Ti . It.

follows that R; 2 !l;+l' 0

4.5 Conclusion

The usc of prior knowledge that the regression curve is monotolle, 11] ~ 1J.2 :5:

... ::; !J.k, can sharpen confidence bounds. The 100(1 - a)% simultaneous

confidence lower bound in the numerical example in Section 4.3 for /16 - 11] is

-1.86 without the prior knowledge and it is 5.17 with the prior knowledge.

Incorporating the prior knowledge of monotonicity, :-.1arcus (1978) studied

the optimal lower bound for the nonnegative contrasts when the common vari

ance a is known and her method requires computation of a large number of

feasible partitions when R is nonempty. Our algoritlJm in Sedion 4.2 simplifies

the computations. At each step of the algorithm, an optimal partition is found

for all optimal solution with a different confidence coefficient until a desired

level of I - 0: is reached. The algorithm terminates after a finite number of

steps.

Theorem 4.1.1, which employs the Kuhn-Thcker equivalence theorem, is

the key to the optimization problem and the proposed algorithm. This ap

proach call also be applied to other optimization problems involving ordered

restrictions.



Chapter 5

A One-Sided Multiple
Comparison Procedure

Marcus (1978) obtained explicit one-sided simultaneous confidence intervals

for monotone contrast.<> and nonnegative contrasts. The most recent improve-

roenLS were made by Hayter (1990) which were shown to compare well with its

predecessors. The purpose of this chapter is to develop a more efficient interval

estimation procedure for ordered pair......ise mean differences and nonnegati\'e

contrasts. In Section S.l aOn(~..sided multiple comparison test (OMCT) statis

tic is introduced. The upper percentage points of iloS distribution are tabled for

tail probabilities a = .10,.05, and .01. The power comparisons are made with

the other test procedures. In Section 5.2, a procedure is propa;cd to construct

one-sided simultaneous confidence lower bounds. This approach makes use of

the distribution of the one-sided multiple comparison test statistic. Simula

tion studies to compare the probabilities of detecting the differences of dosage

levels by Hayter's (1990) one-sided studentized range test (OSRT) to those by

the OMCf are included in Section 5.3. Our method is more efficient when

63
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the number of dosage levels is four or morc. The efficiency of the OMCT

procedure ill some occasions may exceed that of the least significant difference

(LSD) procedure - a one-sided t-test with the critical value t~. The extension

of the OMCT procedure to two-sided simultaneous confidence intervals is dis-

cussed in Section 5.4. Illustrated is all application to the data of a binding

inllibition assay given ill Section 5.5. The proofs of the theorems arc given in

Section 5.6 and a conclusion is included in Section 5.7.

5.1 A One-Sided Multiple Comparison Test

5.1.1 A One-Sided Multiple Comparison Test

The dose-response curve y = f(x) is to be estimated from the observations

til> Yn , "'j lin, collected at dose level Xi, i = 1,2, ... , k. Let Y;) be independent

normal variates with means 111 = f(xd and a common unknown variance ff2.

We are considering the problem of testing the null hypothesis Ho : /1.1 =
... = IJk against the alternative hypothesis HI : J.Jl :S ... :S J.Jk with at least one

strict inequality. The following one-sided multiple comparison test statistic is

proposed We reject the nuJl hypothesis Ho if

(5.1)

is large, where Y; = 'Lj~1 Y;jfni,?". = 'Li=.niY;/'Li=Tn;,S2 = 'LiJ(Y;j

y;)2f('L~=1n; - k). Its critical value l~,k,,, is defined by

Po ( max fr•• - Ypq < to ) = 1 - 0' (5.2)
o ISI>SQ<TS'9SV(L}=.nj)-I+(Ll:

p n,l-1 - o.k,,, ,
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when the means are equal, i.e., /AI = .. = I~k, where v = E~=l n; - k > 0 is

the degrees of freedom for S2. For the equal sample size case, we shall use the

notation It,,,

There arc many special cases of the Q.\1CT statistic described by (5.2)

fOllnd in the literature. They include Hayter's (1990) OSRT, Hayter's (1992)

modified OSRT when r = sand p = q, and Hirotsu, Kuriki and Hayter's (1992)

maximum t method when s = k, r = q+l and p = 1. The type of contrast used

here is a comparison of !J" to J.lvq which includes Heimerl contrasts, reverse

Helmert contrasts and step contrasts (see Tamhanc, Hochberg and Dunnelt

1996). It is of particular interest when neighboring dosage levels have similar

responses. The calculation of the critical point l~,k." is discussed in Section

5.1.2.

A simulation study is conducted to compare the powers of LRT, OSRT and

O:\1CT. Thc powcrs arc simulated at the 5% level of significance for k = 4,6

and 9, nl = 112 = ... = nk = n, 6 = 1,2,3,4 and (j2/n = 1 where the non

centrality parameter is 6 2 = Ef;1 n.(lti -Itlk)2 with Itlk = Ef"'l niltd E~"'I 11;.

Two kinds of configurations are considered: Case T, a linear regression func-

tion; and Case 1/, a step regression function with a jump at a midpoint. The

results are provided in Table 5.1 with 1,000,000 replications. The powers of

the OMCT arc much higher than thosc of thc OSRT, particularly at large k

and for Case [/. They are lower than those of the LRT. Thcse powers are

the probabilities of detecting the difference between Itk and /11, Both LRT

and OSRT havc larger I)OwerS along the linear regression curve than the step

regression function. However, the OMCT has an identical power over the two
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regression curves. The advantage of the OMCT over the LRT is that it de-

tccts the difference between jjj and /-Ii and is used to construct simultaneous

confidence lower bounds for multiple comparisons. The proof fOf the following

theorem is given in Section 5.6.

Theorem 5.1.1 The OMCT statistic given in (5.1) is consistent and unbi-

a.soo. Its power junction

P ( y.. - YN > I") (5.3)
I" l:Sp~~~:5':5kSJC£j""rnj)-1 + (E1=p n;)-1 - n,t,"

is monotone increasing in P'2 ~ lAb ", Ilk -IJI:-l with an infimum 0' attainable

wilen 11 E Ho.

5.1.2 Calculation of the Critical Points

The acceptance region of Ute OMCT statistic for a fixed S is a olle-sided poly

hedron in k - 1 dimensional Euclidean space bounded by (1:~2) hYPCfI)lanes.

When k = 3 and nt = 712 = n3, the probability (5.2) can be evaluated by

LOO

{8Pp(X :0:; l~,,,s/o, Y:O:; 0) - 311l(1~,,,slo)}f(s) ds,

where I(s) is the density of a random variable (o/y'V)(X~)! and X, Yare

two standardized bivariate normal random variables having a correlation cocf-

ficient p = - tan(1r/12)111 +tan2(1r/12l]1/2, One may evaluate the percentiles

of the OMCT statistic by numerical integrations of k dimensions such a.<; Genz

(1992). For higher dimensional cases, the polyhedrons are very complicated
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and the accuracy of the numerical quadrature of the acceptance region is ques

tionable. A Monte Carlo method is used to simulate the percentiles of the

OMCT statistic. A FORTRAN program to calculate l~,k.~ is given in the Ap

pendices. The result is provided in Table 5,2 for the equal sample size case

with 0' = .1,.05, and .01, k = 3,4,5,6,7,8,9,10,12,15,20, and degrees of

freedom 11 = 5,10,15,20,25,30,40,60, (Xl. The accuracy employed is that the

simulated tail probabilities have errors no more than 0.01.

For the unequal sample size case, the critical value will depend on the

sample size ratios ndnl(2 $ i s: k), as well as k, 1/, and a. If sample sizes do

not vary much, the critical value l~,,, for the equal sample size case can be used

to approximate the value of l~,*,.,. When k = 9 and n = (2,2,4,2,3,3,2,4,2),

we have that 1;~.15 = 3.52 which is very close to 19~5 = 3.53; when k = 7 and

n = (8,4,4,4,4,4,4), we have that 1;~.25 = 3.12 which is also very close to

17~h = 3,11. Even for the case of a large variation in sample sizes, say n =
(2,2,10,2,6,13,6,1,2), the critical value l~,l{' = 3.44 does not differ greatly

from the equal weight case 19~~5 = 3.53. This illustrates the robustness of the

OMCT to sample size variation, by using Table 5.2 in testing the hypothesis

Ho against HI and in interval estimation.

The OMCT statistic ill (5.1) is bonnded from below by OSRI/..J2 =
max,$j(fj - Y;)/S(2/n)I/2, with critical value h~..,/.j2, and is bounded from

above by a statistic which has the same distribution as .;s; (see Section

4.1.2). It follows that their corresponding critical values have the relationship
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for the equal sample size case. When k is small, the differences arc relatively

small. The difference ['t,,, - h'k,.JJ2 is a monotone-increasing function of k and

a monotone-decreasing function of /I and 0:' and these differences are provided

in Table 5.3. For a = .05, the difference lies between .04 at k = 3, II = 00 and

.34 at k = 12,1'=5 with values .05 at k=3,v=5 and .23 at k= 12,v= 00.

The pattcru orthe difference jSf;:; -['t,,, is similar to that of [f,v - h'k..J.;2,

and these differences, provided in Table 5.4, are much larger. For k = 9, II = 15

and a: = .05, 19~5 -100;5/.;2 = .21 and~-19~~5 = .65.

The ratios ht,,,(J2t1Ilk,,, urc provided in Table 5.5. These ratios are

almost identical for each fixed k and they are monotone decreasing in k from

.98 at k = 3 to .93 at k = 12. The ratios l't,,,/ jSf;;;, arc provided in Table

5.6. These ratios are monotolle decreasing in k from .99 at k = 3 to .79 at

k = 12. They arc also mOllotolle decreasing in a and monotonc increasing ill

5.2 One-Sided Simultaneous Confidence Lower
Bounds

5.2.1 One-Sided Simultaneous Confidence Lower Bounds

Lct Jl-.. = E:=r niJl-dE:=r ni and /.Ipq = Ef=p 1ltJl-dEf",p n. be the mean re

sponses at thc dosage levels from r to s and from p to q respectively, where

I :5 p :5 q < r :5 s :5 k. We are interested in one-sided simultanCQus

confidence lower bounds for /1." - ILpq without assuming that Jl-l :5 Jl-2 :5

... :5 J.!.i:. The numerator of the OMCT statistic in (5.2) can be replaccd

by (f'".. - f~pq) - (/!.. - ILpq). The exact 100(1 - 0')% simultanCQus one-sided
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confidence lower bounds for /Jr, - Il-pq are as follows:

(5.4)

Let Ipqr.(Yj be the simultaneous confidence lower bound in (5.4). The positive

value of lpqr.CY) indicates that the mean response at the dosage level from r to

s is significantly higher than the one from p to q. The simultaneous confidence

lower bounds for }J" - 1Jpq include special cases of pairwise mean differences

Pj - Jli,i < j, when p= q = i,r = s = j. That is

Il-j - Pi::: Y, - Y; -1~,k,,,SJnj-l + ni~l. (5.5)

Remark: One may be interested in a contrast which is a nonnegative linear

combination of the ones ill (5.4). For example, when k = 4 the linear contrast

has an expression

The OMCT in (5.2) may be generalized by including such a linear contrast.

The corresponding critical value is larger than l~,.l:,v' However, the increment

due to the linear contrast is almost negligible. For the equal sample si:l:e case,

it is no more than 0.002 when 0' = 0.1 and no morc than 0.004 when 0' = 0.05

or 0.01.

5.2.2 Efficiency of Confidence Lower Bounds

We consider the case that .,.2 is known (i.e" " = 00) and the sample sizes

are equal. The height of the confidence lower bound (i.e., the distance the
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confidence lower bound extends below the difference }.lr. - IJ.pq) given in (5A)

islt,oouJ(s-r+l) l+(q_p+l) l/.,fti. TheconfidCllcclowcrboulldsob

tained by Marcus (1978, cq.(16)] and Hayter [1990, eq.(lA)] are similar to tho.se

given in (5.4)exceptthcirheightsareo~J(s -r + 1) 1 + (q p+ I)-11ft

and ah'k,ool.fii, respcctively. The ratio of the height of the OMCT confidence

lower bound to the height of the confidence lower bound givcn by Marcus

(1978) is lk,oo/~. These ratios can be found in the last three rows of

Table 5.6 and they lie between .99 when k = 3 and .80 when k = 12. There

fore, the OMCT procedure is more efficient than MarClls' (1978) procedure for

comparing IJ-r. to J.<pq

The ratio of the height of the OSRT confidence lower bound to the height

of the OMCT confidence lower bound is

m=h'k,fX>/{I'k,,,,,)(s-r+1)-I+(q-p+l) l}.

Since It,,, > h{"jv'2, for ordered pairwise differences, i.e., s = r,q = p,

the height of the OSRT confidence lower bound is shorter than that of the

OMCT. But for morc complicated contrasts, the converse is true. Some nu-

merical evaluations of Rk arc provided in Table 5.7 for 0: = .05 and k =

3,4,5,6,7,8,9,10,12. Four types of contrasts are considered, pairwise differ-

ences J.'j - p.; and three more complicated compariSOtlS I-'j - J.'i,Hl, Pj -/-';.H2 and

I-'j-IJ -l-'i,;+I' For complicated comparisons, the heights of the OMCT confi

dence lower bounds are shorter thall those of the OSRT as one would expect.

The reduction of the height of the OMCT confidence lower bound relative to

that of the OSRT confidence lower bound can reach 27%. Hayter(1990) tabu-
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lated the ratios of its height to that of Marcus (1978), h~,oo/[.j?{;:.{(s ~ r +

1}-1 + (q _ p+ l)-I}l/zJ. These ratios are considerably smaller than the oues

in Table 5.7. For instance, when k = 8 these ratios are .822, .949, 1.006, 1.162

(see Hayter, 1990) as compared to .943, 1.0S9, 1.155, 1.333 listed in Table

5.7. The OMCT procedure has the highest relative efficiency over the OSRT

in detecting the difference between 11,34 and JJ12. The OSRT, a Tukey-type, is

efficient for pairwise comparisons, Marcus' (1978) procedure, a Schelfe-type,

attains shorter bounds for morc complicated contrasts and the OMCT, the

one in between, has both advantages. Simultaneous confidence lower bounds

can be sharpened substantially when we utilize the prior knowledge of the

monotone regression curve as in the next section.

5.3 One-Sided Simultaneous Confidence Lower
Bounds for Monotone Dose-Response Means

5.3.1 One-Sided Simultaneous Confidence Lower Bounds
for Monotone Dose-Response Means

Simultaneous confidence lower bounds for pairwise mean differences flj-/li, i <

j, are of great interest to experimenters. For a monotone nondecreasing reo

gression curve IJ; = f(x;).

ifi:Sp:S q < r:S s:S j. It follows from (5.4) that
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The 100(1- 0)% OMCT simultaneous confidence lower bound for Ilj - Pi is

(5.6)

It is noted that the sample means Y;, Y;+h .", V; have been used to construct

the lower bouml (5.6). The lower bound Ivqr6(Y) which maximizes (5.6) occurs

011 p :s;: q < r :5 s with large combined sample sizes 2::;r 71-; and Lfoop 11.<, and

a large difference f'r8 - Ypq . It is trivial that for 1 :5 p:5 q < r::; s.$ k,

if p' :5 q' < r' ::; ~,P:5 p',q:5 1',r' :5 r, s' :5 s. From (5.4), the lOO{l - 0)%

OMCT simultaneous confidence lower bound for IJ.. - IJpq is

Let Lpqr.(Y) he the simultancous confidence lower bound in (5.7). By the as

sumption of the monotone regression curve, Pi - J1-i is bounded from below by

zero, so is IJ.r. - IJ-1H/" A FORTRAN program for computing the OMCT simul-

tancolls lower bounds is given in the Appendices. For monotone dose-response

curves, our primary interest lies in whether one can detect the diffcrcnce be-

tween IJ.j and /-Ii or the difference between jJ." and jJ.pq. If the answer is affirma

tive, then our interest will focus 011 the value of the lower bOUlld. We can apply

(5.6) and (5.7) to construct OMCT simultaneous cOlLfideucp. lower bounds for

any nonnegative contrasts as discussed in Section 5.2.1. The improvcmcnt

of the simultaneous confidence lower bounds for l1.j - Ii.; and jJ." - jJ.pq whilc

utilizing the assumption of the monotonc regression curve can also be found



73

in Marcus (1978) and Hayter (1990). Marcus' (1978) simultaneous confidence

lower bound is not as efficient as that of the OMCT.

These simultaneous confidence lower bounds arc not derived from the es-

limatcd isotonic regression, but result from the sample means by utilizing the

isotonic assumption on f(x). Any monotone nondccreasing regression curve

which satisfies (5.4) will satisfy (5.7). The coverage probability of these simul

taneous confidence lower bounds (5.7) is at least 1 - (t as demonstrated by the

following theorem. Its proof is provided in Section 5.6

Theorem 5.3.1 Let the simultaneous confidence level be defined by

Then C(Jl) i.'i partially ordered by IJ in the sense that C(/-,) :5 C(/I) if Jli+l -Itt :::;

Vi+l - Vi. Therefore,

infj.lI~"''S'" C(/l) = Po(Lpq..(y) :5 0, for all p:5 q < r :::; s) = J - 0'

and the infimum is attainable when p, E Ho.

In the next two subsections, we investigate the behavior of the OMCT

and the OSRT procedures under monotone regression curves using simulation

studies. For simplicity, the studies arc restricted to the equal sample size case

with 0'= .05 and 0 2 /71 = 1.

5.3.2 Pairwise Comparisons

In this subscction, we will study whether the procedures will be able to detect

the difference between IJ, and lJi at a confidence level 1 - 0'.
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The OMCT crit.ical value lr,~ is larger than h~.,J.j2 for every k, 1/ and fro

Hence the lower bound of OSRT for J,ti+! - lJ.i is larger than that of 01ICT.

However, the situation for J1-j -}1-; with j -i ;::: 3 could be quite different. For ex

ample, if we are interested in the confidence lower bound for 114-/J.h the OMCT

procedure will compare the confidence lower bound of 1-14 - III not only with

those of J,!2-llj, Ita -ILl, 113 - Jt,z, 1'4 -p,z, 1-l4 -/L3 as does the OSRT, but also with

the confidence lower bounds of !-Vl3-J.!.1, /134 -ttl, !J-24-/ll, /-13-/-112, /-14 -jJI2, /.131-

1112, P4 - PIl, /134 - licl and 1J4 - 1V13· Furthermore, the height of the OMCf

confidence lower bound for ILr, -11P'l> Ir,,,uJ(s r + 1) 1 + (q P + 1) 1/.jii,

is shorter than the corresponding height of the OSRT if r < s or p < q as

shown in Table 5.7.

The OMCT confidence lower bound on f(xj) - f(Xi),j > i, will substan

tially improve the OSRT confidence lower hound when j - i is large. The

situation in which the OMCT bounds arc most advantageous is when there

exist p,q,T,S with i:::; p < q < r < s:::; j such that f(x,) = ... = f(xq )

and f{xrl = ... = f(x,l. The situation in which the OMCT bounds are less

advantageous is when f(Xi+l) - f(x;) ~ 6, i = 1, ... , k - 1 for a large positive J.

A simulation study is conducted to compare the efficiency of the new

procedure to that of thc OSRT procedure. The 95% simultaneous confi-

dence lower bounds are computed by generating 1,000,000 sets of normal vari

atcs. The percentages of detecting the difference between level j and level

i are computed for the two procedures. Two cases arc considered, the lin-

ear rcgression function, /1; = 6i for Case I and the step regression function

Jll = ... = Jl[k/2l = O,/L[k/21+1 = ... = ilk = J for the Case II. The results for
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comparing I-!j to It; are provided in Table 5.8.

By (5.5) and equation (1.2) in Hayter (1990), the probabilit.y of detect-

ing the difference between Ili and fl-l without the assumption of the mono

tone regression curve is <t>[(JLj - jLd/V2 - Ci:o,s"",] where 1> is the distribution

function of a standard normal random variable and Ci:~~ = hf.~/J2 for the

OSRT and Ck~~ = lj,~~ for the OMCT. The probabilities in Table 5.8 are

considerably larger than those obtained without the assumption. Consider

the comparison of IJ-k and !J.l. For Case I and t::. = 4 we have .907 ver

sus 4>(20jv'35 - h6n:"",jv'2} = .772 and .947 versus 4'>(20/-.135 -16~~) = .729

when k = 6; .822 versus 1>(16/v'30 - h9o;.,/V2) = .507 and .924 versus

4>(16jJ30 - 19~;') = .429 when k = 9. For Case II and t::. = 4 we have

.881 versus <1>(4/,,13- hi;o;,/v'2) = .373 and .947 versus 4>(4jJ3-19~) = .333

when k = 6, and .784 versus <J>(6j.jjQ - h~~j..J2) = .157 and .922 versus

<I>(6jJiO -l9~;') = .115 when k = 9. The increase in probability by the OSRT

is due to thc cxtra e) - I comparisons. The gain by the OMCT is much

larger. It is due to the extra (k~2) - 1 comparisons, and to the inequality

For Casc f and D. = 4, the right hand side of (5.8) is P[11256(Y) > 0] =

<J>(32jV70 -l6~~) = .854 when k = 6 and it is P[ll379(Y) > 0] = <I>(12jJW

19~~) = .756 when k = 9. For Ca.~e If and !::l. = 4, it is P[113~6(Y) > 0] =

4>(4 - l6~0<l) = .891 when k = 6 and it is P[11~59(Y) > 0] = 1:>(4 - 19~) =

.816 when k = 9. These probabilities P[II"ll"'(Y) > 0] calculated without the

monotonc regression curve assumption are the lower bounds for the probability
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of detecting the difference between Pk and ~l by the OMCT procedure. It is

noted that for Case I I, J1j - J1-i = 0 if i < j :5 [k/2] and the difference Iii - /Ai

is a constant ifi:5 [k/2] < j. The increase in the probabilities P[Liijj(Y) > 0]

in j is due to the assumption of a monotone regression curve.

These probabilities for comparing tJ.k to Jil arc the same as the pov.-ers

of the two tests in Table 5.1 when t. = 4. Therefore, the probabilities of

detecting the difference between ilk and /AI can be found in Table 5.1 for

k = 4,6, and 9, A = 1,2,3,4 with the linear regression function or the step

regression function. The OMCT procedure has higher probahilitiesof detecting

the difference between Ilk and IJI than the OSIIT procedure. The improvement

increases for large k.

The OSRT procedure is more efficient than the OMCT procedure in de-

lL'cting thc difference between I~~ and IJI but less efficient for comparing IJk

and /1-1. Table 5.8 indicates that for a fixed i, when the probability is small or

j is small, the OSRT is morc efficient and when the probability is large or j is

large, the OMCT is more efficient. When the difference /1-j - IJI is detectable,

the OMCT should normally be used. For Case I, the ]inear regression, the

probability of detecting the difference between /1-j and /1-i, i < j, is the same

as the probability between J~j-i+l and /1-1. For Case II, the step regression

function, the probability of detecting the difference betwccn /1-k-; and /1-j is the

same as the probability between !Jk-j and 1-4 for i + j < k when k = 9 and

the probability of detecting the difference between /1-k+l-' and /1-j is the same

as the probability between /1-k+!-j and I-'t for i + j :S k when k = 6.

The OMCT procedure Illay perform favorably against the least signif-
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icant difference (LSD) procedure. The probability of detecting the differ-

cnce between Itj and /-Ii by the latter procedure at 95% confidence level is

<P[(Jlj - /-li)/..J2 - 1.6451. We oiY.;erved that the probabilities for the OMCT

procedure may exceed the corresponding LSD procedure, They include the

comparisons of !J-S-/-lllfl.6-/-l2,jJ.fj-/-'\ when Cl. = 3A6,/-I5-JJi>1-I6-J.~I, !JS-jt2

and Jt6 -1J.2 when Cl. = 4 in Case II at k = 6 and /-19 - /-ll in Case 1 at k = 9,

!J.9 - /-13 in Case I J at k = 9. This superiority will also be seen in the numerical

example in Sectioll 5.5.

Also included in Table 5.8 are regression functions with Ll = 2.16 and

Cl. = 3.46 respectively when k = 6. They are part of the regression functions

of Case I and Case II respectively when k = 9 and t::. = 4. For Case /, the

probabilities for the case k = 6 and f::,. = 2.16 are larger than the corresponding

ones for the case k = 9 and to = 4. This is because the former usc the

critical values hi;~"", = 3.725 and li;~ = 2.77, while the latter use the values

h9~~ = 4.107 and 19~~ = 3.09. Similar results hold true for Case II, but

comparisons are made hetween JLj - tLi when k = 6 and fLj+1 - I~i+l when

k = 9. One may also compare the results of the same type of the regression

curve with two different to's when k = 6.

It is of interest to compare the mean heights of simultaneous confidcnce

lower bounds when the probability of detecting the difference between fLj and

Jl; is high by both procedures. The probability that both the OMCT and

the OSRT can detect the difference in the means indicates that both proce

dures succeed in detecting the difference in /-Ij and fLi simultaneously. The
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mean height is the distance between the lower bound and IJj - 1-';. OUf prior

knowledge of the monotone regression curve indicates that It; 2: /.l; if j > i.

Therefore, the simultaneous confidence lower bound for Jlj - /l; is always nOIl

negative and it is positive if there is a significant difference between /f.j and J..li

at a confidence level 1 - o. The mean heights of 95% simultaneous confidence

lower bounds for Pi - /-Ii by the OMCT and the OSRT procedures arc pro

vided in Table 5,!) for the case that the probability of detecting the difference

between IJj and IJj by both procedures is at least 60%.

Comparing these probabilities with the corresponding ones in Table 5.8,

it can be seen that these probabilities arc less than the ones obtained by the

OSRT by no lIlorc than .015, but they are less than the ones by the OMCT by

at least .044 if k = 6 and .106 if k = 9. The OMCT mean heights are smaller

than their counterparts of the OSRT. The larger the difference between j and i,

the larger the difference will be between the two mean heights. The reduction

in the mean height by the OMCT over that of OSRT can be as large as .24

(13.5%). The Pittman efficiency for the mean height is the ratio of squared

mean heights as stated in Schoenfeld (1986). The ratio of the OSRT mean

height squared compared to that of the O:\1CT can reach 106% for the linear

regression curve and 124% for the step regression function when k = 6. It

can reach 113% for linear regression curve and 134% for the step regression

curve when k = 9. The OMCT procedure is generally preferable to the OSRT

procedure when k is large and the dose-response curve increases moderately.
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5.3.3 Comparing Two Categories of Dosage Levels

By (5.4) and equation (1.4) in Hayter (1990), the probability of detecting

the difference between a mean response }j" of the dosage levels from r to s

and a mean response IJ.pq of the dosage levels from p to q without the as-

sumption of the monotone regression curve is cIl[(JL•• - JLpq)/IiCIl - 1i:~~1 for

the OMCT procedure and 't>[(lJr. - JLw - hi:~c>o)/IICIlI for the OSRT proce

dure where IICl12 = (r - s + It! + (q - P + I)-I, If allY of the two cate-

gorics mnsists of more than one dosage level then the former probability is

larger than the latter. The difference may be quite large. For example, when

k = 9,4>(}189 - }1\2 -19~;') = .697 and <l>(IJ89 -1J12 - h9~;') = .311 for Case I,

and they are .338 and .077 respectively for OMCT and OSRT for Case ll. A

simulation study is conducted to investigatc th.eir behaviors when the regres

sion curve is monotone. Three types of comparisons, Itj - {ll~, {lj - IJI3 and

/Jj-lJ - it12, arc considered for k = 6 and 9 for Case I, the linear regression

curve, and Case I J, the step regression function, when t:. = 4. The results are

provided in Table 5.10.

The probabilities arc much larger than the ones without the monotone

assumption, particularly when k = 9, Case J 1, and by the OMCT proce

dure. The OMCT procedure performs overwhelmingly better than the OSRT

procedure except for the few occasions when probabilities arc extremely low.

The difference in probabilities can be as large as .283. These probabilities are

bounded from above by the corresponding ones for itj - itl in Table 5.8, and the

probabilities by the OMCT are uniformly closer to their upper bounds than
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the ones by the OSRT. They are bounded from below by the corresponding

probabilities for IJ.j ~ J1'l,JJ.j -/-13 and IJ.j-1 - /L2 respectively in Table 5.10 for

the three types of comparisons.

The probability of detecting the difl'erCllcc between Jlrs and I1pq by the

QMCT may exceoo the OtiC by the LSD. For the step regression fUllction in

Ca.<;c I I, they include the comparisons of 1-'5 - /112, /-16 - 1-112, 1J6 - 1J13 when

k = 6, and }J.7 - /.112, Jig - 1-'12,1-'9 - 1l12, Jl7 - Jl13, lIs - IJ-13, IJ-g - 1113, /-178 - J,J12

and /JS9 - 1~12 whell k = 9.

When the probability of detecting the difference between IJ" and IJ.pq is at

least 60% by both OMCT and OSRT, the meau heights of their simultaneous

confidence lower bounds were computed. The results arc provided in Table

5.11. Comparing these probabilities with the corresponding ones in Table

5.10, it is found that these probahilities are less than the ones by the OSRT

by no more than .008, but they arc less t.han the ones by the OMCT by at.

least .092. The mean heights of 95% simultaneous confidence lower bound by

the OMCT arc uniformly shorter than those by the aSRT. The reduction in

mean height by the OMCT over the OSRT can be as large as .37(12.9%). The

Pittman efficiency for the mean height of the OSRT compared to that of the

OMCT can reach 133% for the linear regression curve and 139% for the step

regression curve when k = 6; and they are 132% and 144% respectively, when

k=9
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5.4 Extension to Simultaneous Confidence In
tervals

The ideas behind the multiple comparison procedure can aLso be used to con-

struct simultancous confidence intervals. An extension of the OMCT procedure

to simultaneous confidence interval is as follows. The test statistic

1Y,,-l'MI
M = l=:::P5~~95kSJ(L:j=.nj)-1 + (E!="n;) 1

is used. Let m~,k," be the critical value of M. The exact 100(1 - 0:)% simul

taneous confidence intervals for the multiple comparison /lr, - /11"1 are

:S /J..,-Ilpq

Y" - YP'/ + m~,k,vS (~~>j)-I + d:>.)-I.
;=p

The 100(1-0')% simultaneous confidence intervals for Ilj-Pi by Tukey.Kramer

(TK) procedure are

P{lJ.j - J-li E IV, - Y; ±qk,,,S ~(~ + ~)1;1:S i,j:S k} 2:: 1 - (\', (5.9)

where qt,,, is the critical value of the studcntizcd range statistic (see Hayter

1986). It also can be generalized to more complicated nonnegative contrasts.

If the common variance (12 is knowil and the sample sizes arc equal, the

ratio of the mean lengths (i.e, the difference of the confidence upper bound and

the confidence lower bound) of the generalized OMCT confidence intervals and

TK confidence intervals is

m~,~,fX)J(8-r+l) 1+(q-p+lj-l/qf,fX)'
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When k = 9, we study the same four types of contrasts 11j -lli,llj-lli,i+l,IJ,

f-l'i,i+2 and }Jj_1J - Pi,;+! as in Section 5,2.2. The corresponding ratios arc

provided in Table 5.12. The more complicated the contrasts are, the more

reduction we obtain by the generalized OMCT procedure.

If we utilize the prior knowledge that 1(1 ::; 1JI1 ::: .•• ::; J.1.J" the 100(1- 0')%

simultaneous confidence intervals for JLj - Iii, 1 ::; i < j :::; k, can be improved

(i:nj)-I + d:ni)-l}
j",p

S /-Ii -J.t;

::; p~q::::rrJr:Sr9{YT.-Ypq+m~,k,>'S (tnj)-l+ctni)~l}.

As ill Section 5.3, the 100(1 - a)% simultane<lUs confidence intervals for the
multiple comparisons /-lr. - 11,1"1 are

.' ,
(L n j)-l+(L::,,;j-I)
j;r' ;",p'

The critical value m~.k,,, is a little larger than the corresponding j~,k"" For

example m~·.~~15 = 3.82, where n = (2,2,4,2,3,3,2,4,2), whereas l~',~~l~ = 3.52.

One may usc a conservative two-sided simultaneous confidence interval pro-

eedure a.s in Berk and ~"arclls (1996),

.' ,
P{j.lr.-/lpqEYc.-Ypq±l~:;."S (Lnj)-I+(Ln;)-1}2:1-a. (5.10)

j=c' ;=p'
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By comparing the table values 1~',~~15 = 3.52 and m~',~~15 = 3.40, we can see

our generalized OMCT approach is more efficient.

5.5 A Numerical Example

The data given in Table 3.1 from a binding inhibition assay which was described

fully by Kanowith-Klein, Vitctta, Korn, and Ashman (1979) will be studied

here. In this set of data, there arc k = 9 different dilutions of one antiserum

and 24 observations were made. The pooled estimate of variance, 8 2 , is 86.48

with /I = 15 degrees of freedom. To test the null hypothesis Ho ; J.ll = .. = Ji9

against all alternatives, the usual overall F-test statistic is F = 7.40 and it

has a p-va]ue 0.0005. The null hypothesis is rejected and the means JlI,"', 1-0

acc not all equal

The behavior of these means without the assumption of monotone regres

sion curve is of considerable interest. The scatterplot in Figure 5.1 indicates

that there arc no differences among the six levels, level 4, 5, 6, 7, 8 and 9, of

high doses. The upper percentage points arc l;.~,l~ = 3.52 and l~.~.l~ = 3.11.

Hayter's OSRT procedurr. applies only to the equal sample size case. One call

generalize it by nsing the statistic

with critical values h~.~.Jf' = 4.68 and h~.~.l~ = 4.13. Both procedures detcct

the differr.nce between the group of levels 1, 2, and 3 and the group of levels

4, 5, 6, 7, 8, aud 9. The 95% OMCT simultaneous confidence lower bound for
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/.119- J.l13 is 13.20 while the COlTcs!)onding OSRT simultaneous confidence lower

bound is 2.09, a difference of 11.11. The OMCT also detects the difference

between the group of levels 2 and 3 and the group of levels 4, 5, 6, 7, 8 and 9,

while the OSRT fails to do so. The 95% OMCT simultaneous confidence lower

bound for /149 - /-123 is 5.33. Furthermore, the OMCT detects the difference

between levelland the group of levels 2 and 3, but again the OSRT fails

to do so. The 90% OMCT simultaneous confidence lower bound for ~3 -

/-11 is 1.89. Marcus' simultaneous confidence lower bound can be computed

similarly as (5.4) with l~,k,,, replaced by~, where JSi~~n,9,15 = 4.16

and JSi~~n,9,15 = 3.69. Marcus' simultancous confidence lower bounds arc

always less efficient than those of the OMCT.

Consider the one-sided test of Ho : /-l-l = ... = ~9 against HI : p.\ :0:::

... :0::: 1J.9 with at least aile strict inequality. The OSRT test statistic is H =

max\~i<j~* v'2(Yj - Y;}/(SJ1/flj + 1/n;), with the maximum occurring at i =

1 and j = 8 and its value is v'2(Ys- Yd/(S.j1/2 + 1/4) = 8.47. The p-vallle is

0.0003. Utilizing the OMCT statistic (5.1), the maximum of the test statistic

L = maxl~p~q<r9~k(Y.. - ?M)/[S.jCL;~rnj)-1 + (Ll~pni)-ll occurs at p =
J,q = 3, r = 4 and s = 9 and its value is (Y49 - Y13)/(S.j1/16 + 1/8) = 6.80.

Its corresponding p-value is 0.0001. The value of the LRT test statistic is

54.16 with p-vallle 0.0000. The null hypothesis is rejected at significant level

Of = 0.05 by all three tests. The LRT is the best, and the OMCT procedure is

more powerfnl than the OSRT.

From the scatterplot in Figure 5.1, one can see that percentage inhibition is

monotone in the levels of dilution. Dased on a monotone regression curve, the
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95% OMCT simultaneous confidence lower bounds for 11j - Pi, i < j, i = 1,2,3,

and those of OSRT and Marcus' (1978) max Fn arc provided ill Table 5.14.

There arc no significant differences between allY two levels of the high dosage

categories, levels 4 to 9.

It is found that the OMCT is the most efficient test in comparing Ilj to Jli.

The differences IJs - /l2, /.Is - JJ3 and /-19 - PJ can be detected by the OMCT

procedure, while they failed to be detected by the OSRT and Marcus' (1978)

procedures. However, the difference P3 - J1-1 can be detected by the OSRT, but

neither the OMCT nor Marcus' (1978) procedures could detect this difference.

It is noted that the OMCT simultaneous confidence lower bounds are larger

than those of Marcus (1978). The latter is a Scheffe-type procedure which is

known to he less efficient for pairwise comparisons.

The efficiency of the OMCT simultaneous confidence lower bounds can also

be examined by comparing to the LSD one-sided confidence lower hounds.

The OMCT simultaneous confidence lower bound for 1~7 - J-l"1 is 3.18, which is

the simultaneous confidence lower bound for J.t45 - J-l"13 without the monotone

assumption, while thc LSD confidence lower bound for /PI - 1~"1 is -g - Y2 

t?~fJ5S/~ = 3.20. The OMCT simultaneous confidence lower bound in

this case is approximately the same as the corresponding LSD confidence lower

bound.

The Ot.ICT procedure indicates that in general the dilution levels can be

classified into a low inhibition percentage category (levell) ,a high inhibition

percentage category (level 4, 5, 6, 7, 8, and 9) and an in-between inhibition

percentage category (level 2 and 3). However, there is no significant difference
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between the means of the six levels in the high inhibition percentage category

and there is also no significant difference between the means of the two levels

within the in-between percentage category.

With the monotone assumption, the generalized OMCT simultaneous con

fidence intervals for the numerical example is given in Table 5.15 where the

critical poillt m?'~lS = 3.82. The 95% generalized OMCT simultaneous confi

dence intervals for pairwise mean differences also show the difference in high

dose levels from the low and in-between dose levels. In addition, the difference

between the low dose level and in-between level can not be detected by the

lower bound of contrast /NlJ - Jl-l which is -3.51. However, the lower bounds

for 1-119 - 112J and 1-149 - /-113 are 3.99 and 11.99 respectively. The differences

between the high dose levels and low, in-between dose levels arc dctcctable by

the generalized Or..'ICT procedure as well.

5.6 Proof of Theorem 5.1.1 and Theorem 5.3.1

Proof of Theorem 5.3.1:

It suffices to consider the case that

IIi = /-li,i = 1,2, ... ,t and IIi = /-li+o,i = t+ 1, .. ,k

for an index t, 1 s: t < k, and for an arbitrary positive real number J. Let

X Il ... , XI: iJave identical dil:;tribut,ioms a.;; Yi, ... , Yk and let xl = Xi,i = 1, ... ,t,

Xf = Xi + 0, i = t + 1, ..., k. For each p s: q < r ~ s, let 'Y = (llr • - IIpq ) 

(/-I•• - /-1M)' We shall establish that

(5.11)
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It follows that

and bence

C(v) P(vn - IJpq :2: Lpqr,(X6) for all 1::; P.:5 q < r :5 s::; k)

2': P(f./T. - lIP'! :2: Lpqr.(X) for all 1::; P :5 q < r ::; s :::; k)

P(/l,•• -/lpq:2: LJ"lI"'(Y) for all 1 :5p$ q < r:5 s:::: k)

The inequality (5.11) is implied by

(5.12)

for all rI:s q' < r':5 s' with p:S p',q $. q',.':5 r,s':S s. This is because

Lpqr.(X6
) - Lpqr.(X) = "'5P''5q'<r,rr:~.,qy.r''5r [1"'1'<,.,(5;6)

- P'5P''5q,<,}r.~.,q'5q'.r''5r 1p'(r"'(X)

l""""ro.n(X'd) - pY'5q'<r'~.~.,q:::q',r''5r 1p'q'r'reX)

:S lI'OWrOIO(.X6)-lP<l'lOro•• (X)

:S P5"''5q'<r'T.~.,q$q',rl$)1p'q'r",(X6) -1P'q'r"'{X)]

where Po :S qo < TO :S So are such that

Consider the following fOllr cases.



(I) t < por s:S: t:

Here, "'( = (vr • - v",,) - (Pr. - p".) = 0 and so does

(II) p::; t < q:

Here, "'( = (v•• - vpq ) - (JJ" - JJpq) = 0 - 2f:.:~~; 0 =~o

If t < rI then Ip'q' ....,(Xdj - Ip'q'''',{X) = O:S: 'Y.

Otherwisc,rI:S: t and

Howc\·cr,

E;;n;::; E:",;n.::;~
L,:;n; E1:;n. Eo:,n.

and (5.12) is satisfied.

(III) q::; t < r:

Here, "'( = (v•• - v",,) - (p,.. - p.,..) = o. It is trivial that

and hence (5.12) is satisfied.

(IV) r~t<s:

Here, 'Y = (/I•• - vPQ) - (Jt.. - J1-pq) = ~:::~~;6. If t < II, then

lp'(...,.(X4) = Ip'(... ,.{R") + Ef;t+l ni o.
E,=... n,

88
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However,

~?~:ln~; ~ Ei~::ln~; :; Li:::~7
and (5.12) is satisfied. Otherwise, 5' :; t in which case 1p'q'rl.,(X6) =

1,;q'r"'(X) and this completes the proof.

Proof of Theorem 5.1.1:

By the proof of Theorem 5.3.1,

o

~.(j.t"' -/LJXI ~ p::oP''f:q'<rIT.~.,qy,rl-:;rlp'q'r'.,(f~) for all 1::; p:5 q < r:5 s:s: k)

Pv(vr• - 1/1"1;::': p'£p'Y<r'T.~ •.q'Sq'.r'$r 1p'q'r,.,(X
6

) for all 1 -::; p:5 q < r:5 s:S k)

if lJi+1 - 1-'; :S /1.+1 - /Ii, i = 1, ... , k - 1. Since the event on the left hand side

of the above inequality is equivalent to the event

under the monotone nondecreasing regression function, and that event is equiv-

alent to the event

the mOllotonicity of the power function (5.3) is established. Consequently,

infP.( max Yr.-Ypq >l~k)
.. .. l$p$q<r'S.'Sk SJ('r:.i~r' nj) 1 + (2::r=,' nil l - .,1'

P ( max fro - 91"1 > [" )
lfo 1$p$q<r9$k SJ(Ej",r njl 1+ (E~"",lIi)-1 - n,k,v

a
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and the tcst is unbiased.

Let t:,. = maxl$p:>q<r$.$k aJ(L;_.::;~:~L:_~n;)_I' If f.J E HI - H o then

there exist p::; q < r :::; 8 such that qJ(L;;_.:;;-,ji+~Lr_.n;) I > 0 and hence

t. > O. Since the one-sided t-test

Y.. -Ypq >c
SJC'LJ=, nj)-l + (L;?",pn;)-l

is consistent, so is our OMCT statistic.

5.7 Conclusion

o

If experimenters ha\"c a prior reason to believe that the regression curve is

monotone nOlldecreasing, then a test procedure can be chosen to have good

power properties under this ordered alternative. The inversion of the test pro-

cedure results in a set of simultaneous confidence intervals for various contrasts

of the means (Hayter 1990).

The multiple comparison procedure proposed in this chapter is a simple

and effective method for constructing one-sided simultaneous confidence lower

bounds for multiple comparisons. The OMCT simultaneous confidence lower

bounds are compared favorably to those of the OSRT simultaneous confidence

lower bounds as the latter does not fully utilize all the observed information.

When differences between the means IJ, :S ... :S J~j are small, it is advantageous

to use weighted average means L:~=, no Yo'! '[;~=, no in the inference procedure,

sec Wright (1982). The OMCT procedure is most advantagL'Ous when the

regression curve f(x) does not increase rapidly in one or more intervals of

dosage levels. Without the prior knowledge of the monotonicity of the response
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curves, the OMCT lower bound is the most effective method to categorize the

dosage levels into different response groups as shown in the above numerical

example. Applied to the dose-response curves, the OMCT procedure tends

to have sharper confidence lower bounds than the OSRT procedure for the

pairwise mean differences IJj -/li whell j - i is large. It must be stressed that

these confidence lower bounds are valid only when the ordering is specified

prior to observations of the data and hence is independent of the data.
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Table 5.1: The Powers of the OMCT, the OSRT and the LRT at a = 0.05 and

k 4 k 6 k 9
Confi,li\:uration " OSRT OMCT LRT OSRT OMCT LRT OSRT OMCT LRT

1 .173 .186 .239 .143 .163 .234 .121 .144 230
I" 2 .455 .487 ,594 .365 .428 ,586 .289 .377 .578

a .785 .814 .885 .679 .758 .879 .561 .702 874
4 .957 .967 .985 .907 .947 .983 .822 .924 .983

.167 .184 ,212 .138 ,162 .200 .U7 .143 .192
/I' .440 .489 .545 .350 429 .515 .276 .379 .493

.161 .814 .856 .647 .758 .832 .529 .703 812

.945 967 979 .881 .947 .972 .784 .922 .966

<> I: (I, 2, 3, 4)t!.fVS for k = 4, (1,2,3,4,5,6)l::..jJ35J2 for k = 6
and (1,2,3,4,5,6, 7, 8, 9)6./V60 for k = 9.

b II: (0,0,1,1)6. for k=4, (0,0,0, 1, 1,1)t::.j..J312 for k= 6
and (0,0,0,0,1,1,1,1,1)6./J2019 for k = 9.
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Table 5.2" Upper Percentage Points for One-Sided Multiple Comparison Test

k
3 4 5 6 7 8 9 10 12 15 20

5 .10 2.20 2.65 3.00 3.27 3.49 3.68 3.86 400 4.25 4.55 4.92

.05 2.79 3.30 3.69 4.01 4.25 4.47 4.68 4.83 5.11 5.46 5.88

.01 4.36 5.02 5.54 5.97 6.29 6.60 6.89 7.10 7.49 7.96 8.55

10 .10 1.98 2.35 2.63 2.84 3.01 3.16 3.29 3.41 3.60 3.83 4.12

.05 2.42 2.81 3.09 3.31 3.49 3.65 3.79 3.91 4.11 4.36 4.66

.01 3.41 3.83 4.15 4.40 4.61 4.78 4.93 5.08 5.30 5.59 5.95

15 .10 1.91 2.26 2.51 2.71 2.87 3.01 3.13 3.23 3.41 3.62 3.87
.05 2.32 2.66 2.91 3.11 3.28 3.42 3.53 3.64 3.82 4.04 4.31

.01 3.16 3.51 3.78 400 4.16 4.31 4.44 4.55 4.75 4.99 5.25

20 .10 1.88 2.22 2.46 2.65 2.81 2.93 3.05 3.15 3.32 3.51 3.76

.05 2.27 2.59 2.83 3.03 3.18 3.30 3.42 3.52 3.69 3.89 4.14

.01 3.05 3.38 3.63 3.8\ 3.97 4.10 4.21 4.32 4.50 4.70 4.97

25 .10 L86 2.20 2.43 2.62 2.77 2.89 3.00 3.10 3.26 3.45 3.69

.05 2.23 2.56 2.79 2.97 3.11 3.24 3.35 3.45 3.61 3.80 4.04

.01 2.99 3.30 3.54 3.70 3.84 3.98 4.09 4.19 4.35 4.55 4.79

30 .10 1.85 2.18 2.41 2.59 2.74 2.86 2.93 3.06 3.22 3.41 3.64

.05 2.20 2.53 2.76 2.94 3.08 3.20 3.30 3.40 3.56 3.74 3.97

.01 2.95 3.24 3.47 3.64 3.79 3.90 4.00 4.11 4.25 4.44 4.67

40 .10 1.84 2.16 2.39 2.56 2.71 2.83 2.93 3.03 3.18 3.36 3.58

.05 2.19 2.50 2.73 2.89 3.03 3.15 3.25 3.34 3.49 3.67 3.89

.01 2.90 3.18 3.40 3.56 3.69 3.81 3.91 3.99 4.15 4.32 4.53

60 .10 1.83 2.14 2.36 2.54 2.68 2.79 2.90 2.98 3.13 3.31 3.52
.05 2.17 2.47 2.69 2.85 2.99 3.10 3.20 3.28 3.43 3.60 3.81
.01 2.84 3.12 3.32 3.48 3.61 3.72 3.81 3.89 4.03 4.20 4.40

.10 \.80 2.10 2.32 2.48 2.61 2.72 2.82 2.90 3.04 3.21 3.41

05 2.12 2.41 2.61 2.77 2.90 3.00 3.09 3.17 3.31 3.46 3.65

.01 2.75 3.01 3.19 3.30 3.44 3.55 3.63 3.70 3.82 3.96 4.14
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Table 5.3: Differences of Upper Percentage Points Between OMCT and
OSRT/V2

k
3 4 6 7 8 9 10 12

5 .10 .05 .08 .13 .16 .18 .20 .24 .25 .28
.05 .05 .10 .15 .20 .22 .25 .W .30 .34
.01 .09 .15 .22 .29 31 36 .43 .44 .49

10 .10 04 .07 .11 .14 16 18 .20 .22 .24
.05 .05 .10 .13 .16 .18 21 .23 .25 .28
.01 .07 .13 .18 .22 25 27 .29 .32 .36

15 .10 .03 .07 .10 13 .15 .17 .19 .20 .24
.05 .05 .09 .12 .15 .18 .20 .21 .23 .26
.01 .06 .11 .15 .20 21 .24 .26 .28 .32

20 .10 .03 .07 10 .13 .15 .16 .19 .20 23
.05 .05 .08 .11 .15 .17 .18 .21 .22 .25
.01 .06 .11 .16 18 .21 .23 .24 .27 .W

25 .10 .03 .08 .10 .13 .15 .17 .18 .20 .23
.05 .04 .09 .12 .14 .16 .18 20 22 .25
.01 .07 .11 .16 .17 .19 .22 24 26 .29

30 .10 .03 .07 10 .12 .15 .16 .18 .19 .22
.05 03 .08 .12 .15 .17 18 .19 .22 .25
.01 .07 .10 .15 .17 21 .22 .23 .27 .28

'" .10 .04 .07 .10 .12 .15 .17 .18 .20 .22
.05 .04 .08 .12 .14 .16 .18 .20 .21 .24
.01 .07 .10 .15 .17 .19 .22 .23 .24 .28

60 .10 .04 .07 .10 .13 15 .16 .18 .19 .21
.05 .05 08 12 .14 16 .18 20 .21 .23
01 .05 .10 .13 .16 .19 .21 .22 .24 .26

.10 .04 .07 .10 .12 .14 .15 .17 .18 .21

.05 .04 .08 .11 .14 .16 .17 .19 .20 .23

.01 .06 .10 .13 .15 .17 .20 .22 .23 .25
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Table 5.4: Differences of Upper Percentage Points Between~ and O:vtCT

k
3 , 5 6 7 8 9 10 12

.10 .01 .09 19 .32 .46 60 .74 .90 1.20

.05 .02 .11 .23 .36 .54 .71 .87 L07 lA3

.01 .03 .17 .34 .55 .81 101 1.21 1.54 2.07

10 .10 .01 .08 .1' .27 39 .51 .63 .75 .99
.05 02 .08 .18 .30 .13 .56 .69 83 l.ll
.01 .02 .11 .23 .38 .53 .71 .88 L03 1.39

15 .10 .02 .08 .1' .26 .37 .47 .59 .70 .93
.05 .01 .08 .18 .29 .00 .52 .65 .77 1.02
.01 .02 .11 .21 .34 .48 .62 .76 .91 1.20

20 .10 02 .07 .1' 25 35 .07 .57 .68 .89
.05 01 .09 .18 27 .38 .51 .62 .73 96
.01 .02 .10 .19 32 .45 .58 .72 .84 1.10

30 .10 .02 .07 .15 .25 .34 .45 .55 .66 .87
.05 .03 .08 .16 .26 .37 .48 .'0 .70 .92
.01 .02 .10 .19 30 Al .54 .67 .77 1.03

40 .10 .01 .07 .15 .24 .34 A' .54 .64 .85
.05 .02 .08 .15 .26 .37 .47 .58 .69 .90
.01 .01 .11 .18 .29 Al .52 .64 .76 .98

60 .10 .01 .07 .15 .23 .33 A' .53 .64 .84
.05 .01 .08 .15 .26 .35 .46 .56 .67 87
.01 .02 .09 .19 .29 39 .50 .62 .73 95

.10 .01 .07 .14 .23 .33 .42 .52 .62 .81

.05 .02 .07 .16 .25 .34 .44 .54 .64 .83

.01 .02 .08 .17 .30 .37 .16 .57 .67 .87
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Table 5.5: Ratios of Upper Percentage Points of OSRT/../2 to OMCT

k
3 4 5 6 7 8 9 10 12

.10 .978 .970 .958 .952 .949 .945 .938 .937 .932

.05 .981 .9(19 .958 .949 .948 .943 .937 .936 .934

.01 .980 .969 .960 .952 .951 .945 .938 .938 .934

10 .10 .979 .968 .957 .951 .948 944 .940 .936 .932
.05 .980 .965 .957 .951 .947 .942 .938 .936 .932
.01 .979 .967 .957 .951 .945 .943 .941 .936 .935

15 .10 .983 .969 .960 .952 .948 .942 .938 .937 .931
.05 .977 .967 .960 .953 .946 .942 .941 .937 .933
.91 .981 .970 .959 .950 .949 .944 .941 .939 .933

20 .10 .982 .967 .959 .952 .945 .944 .938 .935 .930
.05 .977 .969 .960 .949 .945 943 939 .936 .932
01 980 .967 .956 .952 .947 .944 .942 .938 .932

25 .10 .983 .965 .959 .950 .945 .943 .939 .935 .931
.05 .982 965 958 951 .949 .943 .940 .936 .932
.01 .978 .967 .955 .954 .951 .944 .941 .937 .933

30 .10 982 .967 .959 .952 .946 .943 .939 .937 .932
.05 .987 .967 .957 .950 .946 .943 .941 .936 .931
.01 .977 .969 .958 .952 .946 .945 .942 .935 .935

40 .10 990 .967 .957 .953 .945 .941 .939 .934 .930
.05 .981 .967 .955 .952 .947 .943 .940 .937 .933
01 977 .968 .957 .952 .949 .944 .940 .939 .932

60 10 978 .967 .959 950 945 .943 938 .936 .932
.05 979 .966 .956 951 .945 .942 .938 .936 .932
.01 .981 968 .960 .953 .948 .943 .941 .939 .935

.10 979 967 .956 .951 .947 .943 .938 .937 .932

.05 982 .967 .959 951 .945 .943 .940 .937 .931

.01 .980 .966 .958 .962 .950 .942 .940 .939 .935
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Table 5.6: Ratios of Upper Percentage Points of OMCT to .JSl2

k
3 4 5 6 7 8 9 10 12

.10 .997 .967 .941 .912 .884 .859 .839 .817 .780

.05 .993 .969 .942 .917 .887 862 .843 819 .781

.01 .994 .968 .942 916 .886 .863 .845 .821 .784

10 .10 .994 .968 .943 .914 .886 .862 .840 .821 .784
.05 .993 .972 .944 .9Hi .889 .866 .845 .825 .787
.01 .993 .971 .947 .921 .896 .871 .849 .831 .793

15 .10 .991 .968 .939 .913 .887 864 .842 821 786
.05 .996 .969 .941 .915 .892 .869 .845 .825 .790
.01 .992 .969 .945 .923 .896 .874 .853 .833 .800

20 .10 .991 .969 .940 .913 .890 .863 .843 .823 .788
.05 .996 .968 .942 .919 .893 .867 .847 828 .793
.01 .993 .972 .949 .922 .899 .876 .854 .836 803

30 .10 .991 .969 .940 .913 .889 .864 .843 .823 .788
.05 .986 .970 .944 .919 .893 .869 .847 .829 .795
.01 .995 .970 .948 .923 .902 .877 .856 .841 .804

40 .10 .993 .969 .942 .913 .890 .866 .843 .826 .790
.05 .992 .970 .947 .917 .892 .870 .847 830 .795
.01 .995 .966 .949 .924 .900 .880 .8'" 840 .809

60 .10 .996 .969 .940 .916 .891 .865 846 824 .789
05 .994 .970 .946 .918 .895 .871 .851 .830 .797
.01 .991 .971 .947 .924 .902 .881 .861 .842 .809

.10 .995 .969 .943 .915 .888 .865 .845 .825 .790

.05 .991 .970 .943 .918 .896 .872 .851 832 .800

.01 .993 .973 .949 .917 .902 .885 .865 847 .814
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Table 5.7: Ilatios of the Height of the OSRT Simultaneous Lower Bound to
the Height of the OMCT Simultaneous Lower Bound for Various Contrast C
and 0:' '= .05

k
C 3 4 5 6 7 8 9 10 12

"; '" .982 967 .959 .951 .945 .943 .940 .937 .931

Jlj-/-li,i+! 1.133 1.116 1.107 1.098 1.091 1.089 1.085 1.082 1.075

J.lj - J.Li,i+2 NA 1.184 1.174 1.165 1.157 1.155 1.151 1.147 1.140

jlj_lj-ilii+l NA 1.367 1.356 1.345 1.336 1.333 1.329 1.325 1.316
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Table 5.8: Probabilities of Detecting the Difference Betwccn I-'j and I-'i by 95%
One-Sided Simultaneous Confidence Lower Bounds

i1 i j
2 3 4 5 6

6 I 2.16 1 OSRT .012 .046 .118 240 .412
OMCT .008 .040 .120 .269 .482

1 OSRT .025 .128 .364 .680 .907
OMCT .018 .116 .380 .734 .947

II 3.46 1 OSRT .004 .012 .436 .624 .727
OMCT .003 .009 436 .707 .831

2 OSRT 004 .354 .524 .624
OMCT .003 .340 .579 .707

1 OSRT .004 912 620 .8IJ2 .881
OMCT .003 009 .624 .872 .947

2 aSRT .004 .530 713 .802
OMCT .003 .518 .772 .872

9 I 1 OSRT .006 .024 .067 .151 285 .465 659 .822
OMCT .003 .018 .062 .161 .334 .564 782 .924

II 1 OSRT .002 .005 .010 .372 .554 .663 .734 .784
QMCT .001 .004 .008 .361 .655 .805 .881 .922

2 OSRT .002 .005 .320 .487 .592 .663 715
OMCT 001 .004 .303 .569 .720 805 .856

3 OSRT .002 .253 .394 ,487 .555 .605
OMCT .001 .225 .436 .569 .655 .713
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Table 5.9: Probabilities of Detecting the Difference by Both OMCT and OSRT
and Their Mean Heights of 95% One-Sided Simultaneous Confidence Lower
Bounds for /J.j - I~i when A = 4

Mean Heigllt
Contrast Probability OSRT OMCT

", ", .903 3.17 3.08

1J.6-llcI.,/-l5-!-J.1 .665 3.00 2.97
p,g-p" .818 3.09 2.91

1-l9-/l1.,!J.8-JjI .646 2.90 2.79

II Jl6-j.ll .878 1.97 1.77
/i(i-jJ.Z,/-I5-!J.l .796 2.19 2.06

/-l5-J.l2 .702 2.38 2.31
}J-9-/)1 .780 1.78 1.54
/18-/11 .728 1.87 1.66

!J.9-/i2 .707 1.91 1.72

1-18 -p,z,Iv, -1./1 .654 1.99 1.82
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Tablc 5.10: Probabilities of Detecting the Difference IJ.r. -11pq by 95% One-
Sided Simultaneous Confidence Lower llounds for Various Comparisons when
6=4

Comparison k I' J
4 5 6

"' "" 6 I OSRT .204 .525 .838
OMCT .294 .676 .933

II OSRT .576 766 .853
OMCT .6<)7 .865 .943

9 l OSRT .031 .087 .195 .363 569 .763
OMCT .042 .130 297 .531 .763 .916

II OSIIT .006 343 520 .629 .703 .756
OMCT .006 .350 .646 .799 .877 .920

/-lj-/-ln 6 I OSIIT 080 .337 .707
OMCT .136 .534 .887

II OSIIT .500 .694 .793
OMCT .568 .844 .934

9 I OSIIT .0lJ .044 .122 .262 .462 .678
OMCT .016 079 .227 .462 .717 .896

II OSIIT .002 .305 .473 .582 .657 .712
OMCT .002 .328 .627 .787 .869 .914

/-lj-lj-/-l12 6 l OSIIT .068 .330 .722
OMCT 208 .613 .915

II OSIIT .051 679 .820
OMCT .149 .851 .940

9 l OSIIT .009 .039 .115 .257 .463 .685
OMCT .025 .101 .263 .501 .743 .908

II OSRT 002 .035 .416 .576 .670 .734
OMCT .003 .087 .627 .793 .874 .918
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Table S.lI: Probabilities of Detecting the Difference by Both OMCT and
OSIIT and Their Mean Heights of 95% One-Sided Simultaneous Confidence
Lower Bounds for jJu - {lpq when tl. = 4

Mean Height
Contrast Probability OSRT OMCT

", "" .836 3.07 2.80

tl6 -/~13 .704 2.91 2.66
"'56-/112 .721 2.93 2.54
/-19 -/-112 760 2.95 2.67

IJ.g -P.13 .674 2.87 2.56
}189-J1]2 .683 2.87 2.50

1I /-15 -1112 .761 2.28 2.10

!JoG -/112 .851 2.07 1.81

/15 -/-113 691 2.42 2.19

/16-1113 .792 2.23 1.90
/J4S-/J12 .676 2.45 2.17

/-156-/-112 .818 2.18 1.85

/1,7-/1'12 .621 2.04 1.84

I-la -}112 .698 1.93 1.68
jl'9-ll 12 .753 1.84 1.56

11s-11,13 653 2.00 1.72

/-0-1113 .709 1.92 1.60
/178-/J12 666 1.98 1.70

!Jag-1l12 731 1.89 1.58
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Table 5.12: Ratio of the Heights of the OMCT Simultaneous Lower Bounds
to the Heights of the TK Simultaneous Lower Bounds for Various Contrast C
with a = .05

k
C 3 4 5 6 7 8 10 12 15 20

P, p, 1.020 1.035 1.045 1.053 1.058 1.062 1.068 1.074 1.079 1.084
Jlj -/1;,;+1 0.883 0.897 0.905 0.912 0.916 0.920 0.925 0.930 0.935 0.938

J1j - J.li,i+2 0.833 0.845 0.853 0.860 0.864 0.868 0.872 0.877 0.881 0.885
J-tj-lj ~fi1.i+l 0.721 0.732 0.739 0.744 0.748 0.751 0.755 0.759 0.763 0.766
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Table 5.13: The 95% max Fn, OMCT and OSRT Simultaneolls Confidence
Lower Bounds for J.lj - 1Ji, i < j

4 6 7 8 9
maxFn ," 9.79 16.11 16.31 16A1 18.18 18.79
OSRT n 0.10 17.73 20.41 20.41 20.41 21.60 21.60
OMCT 15.77 21.11 21.11 21.11 21.47 21.95

ma."(Fn 0.38 0.69 2.72 3.40
OSRT
OMCT 3.18 3.18 3.18 4.74 5.33

maxFn
OSRT
OMCT

An represents tiJe difference can 1I0t be detccted

n n
0.91 1.45
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Table 5.14: 95% Two-Sided OMCT Simultaneous Confidence Intervals for
Ilj-IJ[,l ~i <j:S 9

Upper Bound
2 3 4 5 6 7 8 9 Hi

1 54.51 57.51 72.02 72.02 72.02 74.96 77.34 84.02 1
2 -12.52 34.51 49.02 49.02 49.02 51.96 54.34 61.02 2
3 -3.51 -27.01 38.01 38.05 38.12 40.56 43.34 52.01 3
4 12.98 -6.01 -9.01 23.52 23.52 26.46 28.84 35.52 4
5 18.78 1.49 -2.08 -32.43 16,25 18.63 21.34 29.72 5
6 18.78 1.49 -2.08 -32.17 -35.34 18.51 21.34 29.72 6
7 18.78 1.56 -2.08 -28.67 -31.84 -32.10 21.28 29.72 7
8 19.36 3.38 -0.68 -17.88 -17.88 -17.88 -25.01 29.14 8
9 19.86 3.99 -0.11 -15.41 -15.48 -15.48 -23,17 -30.51

iii 1 2 3 4 5 6 7 8
Lower bOllnd



Figure 5.1: Scatterplot of ~he Data of Binding Inhibition Assay
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Chapter 6

Simultaneous Statistical
Inference with a Control

6.1 Introduction

In drug development ~tudie5, several increasing dose levels of a substance arc

usually compared with the zero-dose control to investigate the effect of the

substance. For this purpose, a dose-response experiment is often conducted

in which the doses of the substance under consideration arc administered to

separate groups of subjects. There arc many applications when the dose

respollse curve is monotone. OUf first concern is whether there exists one

response mean which is better than the zero-dose control mean. If so, we

will be interested in identifying the lowest dose level that produces a desirable

effect over that of the zero-dose control.

Specifically, we l:I.Sliume that we have the responses Y;j(i = 0,1, ... ,k,j =

1, ... ,n.) from k dose levels and a control (i = 0). The sample means Yo, ... , YA:

arc normally distributed with means /-Ii and variances 02/ni. For our first

concern, as we know that the response means J"i, i = I, .. , k, are at least as

107
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effective as the control mean 14J, and a natural strategy in the statistical anal

ysis is to test the hypothesis Ho : itO = 1J1 = .. = IJk against the one-sided

alternative that at least one rcsponse mean 11-; is better thall the control, i.e.,

Hr : /JQ :5: J.li, i = 1, ..., k, with at least one inequality. This one-sided alterna

tive is a well known simple tree order restriction. A variety of test procedures

have been proposed and the majority are based on one or more contrasts among

the sample means. The best known is Dunnett's (1955) multiple comparison

procedure. Dunnett's approach has the advantage of providing confidence lim

it/; for the differences between the response mean and the control mean, but

the case of unequal sample sizes prC\'cnts the use of the existing table values of

Dunnett's test statistic. There is no basic theoretical reason requiring the num

ber of observatiolls in each of k + 1 dose levels to be equal. In fact, it would

be more appealing to allow the control to have more observations than the

other k dose levels. An alternative to Dunnett's test is the likelihood ratio test

(LRT) by Bartholowew (1959a, 1959b, 1961a, 1961 b). As the null distribution

of the LRT also depends on the sample sizes, implementing this test is diffi

cult in practice. Abelson and Tukey (1963) and Schaafsma and Smid (196G)

developed the single contrast tests with high power at the center of the alter

native region but a very low power at the edge of this region that is generally

far below that of the LRT (Robertsoll, Wright and Dykstra 1988). Mukcrjce,

Robertson and Wright (1987) proposed a family of orthogonal contrasts which

includes Dunnett's and the aforementioned single contrast as special cases.

Tang and l,in (1997) proposed a LRT based on all orthant approximation and

the generalizations of the orthogonal contrast test of Mukerjee, Robertson and
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Wright (1987) was recently studied by McDermott (1999).

Usually, a more rc~tricti\·e order, a simple order, is considered in dose

response studies when prior knowledge indicates that the response means are

monotone lIondccreasillg with the dose ltwcls and are at least as effective as

the control, i.e. HI : P.o ::; ILl :S ... :5 J1.k· The related tests of equality of Ii<

against H l can be found in Section 2.2. For the monotone dose-response means,

we are also interested in identifying the dose level i such that any other dose

lcvcb higher Ulan i will be more efficacious than the control simultaneously.

The difference of the response mean with that of the control is evaluated by

the interval estimate. With the monotone assumption, the lower bound for

J-tj - /-IQ will be nonnegative. A positive lower bound for ~j - lJ.o indicates

that the response mean ~j is larger than the control meall J1-o. By the LRT

statistic for thc simple order alternativc, Marcus and Peritz (1976) obtained

cxplicit one-sided simultanoous confidence intervals for monotone contrasts,

L~=l) 1I;Ci/-Li, for which L:~",o niCj = 0 and Co :$. Cl :$. .. :$. Ct. Utilizing the

propcrties of the dual cone of the simple order cone, Marcus (1978) studied

the confidence lower bounds for nonnegative combinations of pairwise mean

comparisons with the application to both the simple order and the simple tree

ordering assumptions. Berk and Marcus (1996) gave a review of the work of

the simultanoous bounds for partially ordered means.

In this chapter, we will propose a new procedure which outperforms its

predecessors and is invariant with respect to sample sizes. In Section G.2, we

introduce a simultaneous inference procedure that will be used in our study. In

Section 6.3, a new test statistic will be presented and power comparisons are
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conducted In Section 6.4, a one-sided optimal simultaneous confidence lower

bound for pairwise mean differences IJ-j - tJo is proposed. Also included are an

algorithm to compute this optimal simultaneous lower bound and a numerical

example. Technical results can be found in Section 6.5. A discussion is given

in Section 6.6.

6.2 Simultaneous Inference Procedure

Let /)0,/).1, ",p/< be dose-response means at dose level i with level 0 as the

control. We assume that jJ{) :::; iii :::; ... :5 IJ-k. In order to identify the minimum

dose level which has a desirable effect, we consider the null hypothesis Ho :

I~o = 1J.1 = ... = 1Ji< against the alternative hypothesis lh : J1fJ :5 III :5 .. ::5 /-I"

with at least one strict inequality. If Ho is rejected, we conclude that that

1-1* > /-10, It is of considerable interest to idelltify the smallest dose level j such

that 11, > 1Jo, r ::::: j, simultaneously. For example, when the response means

satisfy IJo = 1-11 = Jl2 < 113 .:5 1-14, one would like to identify simultaneously

1-13 > IJo and 1-14 > 1-10. This can be achieved by simultaneous tests and the

simultaneous confidence lower bound for I-li - 1Jo·

6.2.1 Dunnett's Procedure

Dunnett (1955) proposoo the tcst statistic

for testing Ho against Hr : IJo .:5 Jl;., i = 1, ... , k with at least one strict inequal

ity, where 052 = L;,j(Y;i ~ Yi.?/1/ and 1/ = L~",on; - (k + 1) > O. The critical
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value for DJ: is denoted by do.,k.... J£ No is rejected for large values of DJ=> one

concludes that there exists a Ic\-el i :5 k such that p.; > IJO. Incorporating the

prior knowledge that Po, 11.. "'J III are monotone, one would also conclude that

Ilk. > lAo· The smallest lc\-el j such that JJr > 1JO for allY r ~ j can be found

b}' testing HOi: Jlo = Jll = ... = IJj against ":j: Po:5 jt,(i = 1, ...• j) with at

least one strict inequality, j = 1, ..., k, simultaneously. As Vj has the property

that D1 :5 D2 :5 ... :::; Dk , if Dj > do,k.~ where

olle rejects Ho; and concludes that JJr > J.!.j for all r ~ j. With the assumption

that 1JO :5 J.ll :5 ... :5 Jll. the one.sidcd simultaneous confidence lower bound

for Il, - IJo is constructed as

L"(pj -Ito) =rn~{Y; - }'o - d..,l,..s(no l + ni1)1f2}. (6.1)

:'\ote that £"(1J; -IJO) > 0 implies L"(JJr - /-&0) > 0 for any" ;:- j. Furthermore,

for a given 0", L"(/Jj - Po) > 0 is equivalent to Dj > d..,k,.

6.2.2 Modified Likelihood Ratio Test for the Simple Tree
Alternative

An excellent alternative to DUllnett's procedure is the modified likelihood ratio

tcst (MUIT) considered by Wright (1988) for testing Ho against H~l. The

MLRT Ttl rejects flo for large values of.
T;t = {~71.. (tJit - f1.;)1/ S2)l/2

where Ii. = E~",on;9;/E~",oni is the MLE of the common population mean

under Hoand Il: '{i = O, ... ,j) arc the restricted MLE of JJi'S under the simple
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tree order alternative. For the simple tree altemative, Thompson's minimum-

violator algorithm provides a cOllvenient method for computing the estimate

/Ii (Thompson 1962). Hogg (1965) discussed the relationship between the

likelihood ratio function and the class of linear functions of the sample mean

Y;. It follows that . .
T;t = ~~{~njCiY;/(s2~ni?;)1/2}.

If Ho is rejected for large values of r:" one concludes that Ilk > 11-0. By testing

HOi against Htj simultaneously, we conclude IJ.j > 1-/0 if H Oj is rejected. That

is,if , ,
Tt =~~{~ n;c;Y;/(s2 t; nic?)1/2} > t~l,k,,,,

where t~l,k,,, is the critical value for Ttl, Since rr ::5 r;t :$ ... ::5 Tt, olle

concludes that I-'r > 11-0 for all r 2: j. The simultaneous confidence lower

bOllnd for Iii ~ JJo is constructed as

, ,
U

t
(l1i - Po) = C<)::;c;,E~:"~"':5I';-f'<I {~n;c;fi - t~t.k,vS(~n;cnl/2}. (6.2)

We have noticed that the test procedures by D;; and Tt are designed

to test the homogencity of the response means against the simple tree order

altcrnative, howcver they do not fully utilize the prior knowledge that J1-i, i =
0, ... , k, are monotone Ilondecreasing.

6.2.3 Modified Likelihood Ratio Test for the Simple Or
der Alternative

Wright (1988) also proposed the MLRT r:o to test Hoagainst H l : J1-o.'S J1-l .'S

... .'S J1-k with at least one strict inequality. The null hypothesis Ho is rejected
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for large values of

Tr = {~n,(Jt:" _ jj;?/S2}1{2.

Here flr(i = 0,_ .,k) are the restricted MLE of lJi uuder the simple order

alternative which can be computed by the pool-adjacent--violator algorithm

(see Section 2.1). In a similar manner as Ttl, the statistic T;o can be Cormatted

Let t~), ... be the critical value of rr and let

j jTr = ~~t:;{~nic;f;/(s2 ~niq)I/2},

where C j = {c E RHI : L~"'OniC; = 0, eo :5 c, :s:; •.. :5 Cj>Cj+l = ... = C/o: =
OJ. When rr > t~~J:,,,, olle rejects HOi in favor of HIj : IJ.o :S J-t\ :5 .. :5 /Jj

with at least one strict inequality. Notc that rr fails to satisfy the property

that Tt ::; rr :s ... :5 Tko. In order to make a simultaneous inference, one

applies the BOnfcrroni inequality so that HOj is rejected if rr > t~/kJ,V" The

corresponding simultaneous confidence lower bound for Jlj - 110 is

6.3 Orthant Test

The hypothesis H Oj : Ilo = III = ... = Il.j satisfies HOI :J H 02 :J ... :J Hot

where Ho = Hok . Consider the rejection region Rj = {y; Tj ~ t} for the test

of Hoj . If the test statistic Tj is monotone nondccreasing, then the rejection
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region for the union-intersection testaf No is R = UJ=IRj which is {y TI;::: t}.

The test statistic for testing Ho is TI; = maxl:0:Sk Tj . The Dunnett's test DI; =

maxl::::;::>.k Dj and the MLRT Ttl = maxl:::;;:S/; T;t are both union-intersection

tests; however, TtO is not. 111 the following subsection, we will propose a new

test statistic which is a union-intersection test based on Tr.
6.3.1 Orthant Test Statistic

Consider the union-intersection test based on the statistic Tr and the rejection

region for testing No against HI is {y: maxl:09 Tj" 2:: c}. Therefore, we have

max T~I)
l:Sj:Sk J

. ,
Il~t{k ~~{t; n;c;Y;/(s2~ niCnl

/2}. ,
max {:Ln;C;Yo/(s2L:n;cnl/2}.

~E0"_lC; ;=0 ;=0

However, the set U1=lCj is not convex, hence it is difficult to compute its

critical value. Let .
Ok = {eE Rk+ 1

: ~niC; =O,Co :5 COl :5 ... :5 Cod

where Coj = l:i",o nic./ l:~",o ni. The convex set 0" is an orthant. It is also

known as upper-starshapcd (Robertson, Wright and Dykstra 1988).

Lemma 6.3.1 The set 0" is a convex hull of U1"'1 Cj .

Proof. Lct x = [ZO, ... , x,,]' and y = [Yo• ... , y,,]' be two vectors in 0" and

z= [Zo,···,z"J'= >.x +(1-"\)y whereO:5 -':5 1. LetxOj = l:1",onix;{l:i",oni'

iJOj = l:i",o niY;/ l:!=o 1l.i and Zoj = r:1",0 n;z;{ r:t.o n;. It is trivial that

Zo,i-I = -'XO.i_l + (1 ~ -')Yo,i-I



115

:$ AxOi + (1 - ')YOi

and hence Ok is convex It is obvious that C j C Ok,j = I, ... , k. Let

co(u~=ICj) denote the convex hull of u1=IC), Therefore, we have Ok ::>

co(U1=ICj). On the other hand, the generators of the set Ok are {C.}i=I,.... ,k

where c; = [-noJ-I' ... , ~noJ-I' njl, 0, ... ,OJ' with the jth entry ei) = nil and

o

Lot . .
1': = ~~{EniciY;j(s2En;c?)1/2}.

The T: is a modified union-intersection tcst statistic obtained by fully utilizing

the prior knowledge /-10 :$ /-II :$ ... :::; J.tk' The 1': is slightly greater than the

union-intersection test statistic maxI$j$k rr; however, the difference is small.

For example, when v = 00, the upper 5% critical points for r: are 2.057, 2.331

and 2.549 for k = 2,3 and 4, respectively. They arc the upper critical points

of the statistic max19SkTr at the levels 4.9%, 4.6% and 4.1%, respectively

The statistic r: call be formatted as.
r: q;lIiJ.tf2js2}1/2

{t lI,no.H [max(O, Y; - YO.i-1W j s2}1/2
i=1 1lOi

where J.t" = (/-I~, ..,J.t~) is the weighted least square projection of (Yo, .. , Yk)

outo Ok with the weights 1l(),nl, ... ,lIk, and YOj = Ei=onoY;jEi=otl,. The

derivation of the last equality is sccn in Section u.S. The statistic r: is used to
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test Ho against Hf I~o::: POI :S ... :S ilok with at least one strict inequality,

where {tOi = Ef",o lIi/-!i/ 2::"'0 fl,. One rejects Ho ill favor of Hf if T: > t~,k,~.

Define

where .
OJ = {c E RH1

~niC; = O,eo:S Col:::"':S Coj,Cj+) = ... = Ck = OJ.

The statistic TJ has the property that Tf :S T!f :S ... :5 TZ- It will be demon

strated in Section 6.3.3 that this lIew test statistic is more powerful than the

aforementioned test statistics for tC'>ting HOj against H lj . The simultaneous

confidence lower bound for pairwise mean difference /-Ij - Ilo corresponding to

T: will be discussed in Section 6.4

6.3.2 The Null Distribution of T:'

The critical value t~,k,~ for T: is given by. .
Pp.{~~~1tic;(f~ -ll;)fs(~niCf)I/2:s t:,k,<,,"IP, E R.t+l} = I-a. (6.4)

The left hand side can be rewril,ten as. .
PO{~~8~~nic;Y;/s(~njcf)1/2:$ t~.k",}.
po{~n;iJ~2Is2:$ (t~,k,.,)2}.

The p-value of Tf = to is given by

.+' ( k ) "P(Tk ~ to) =~ I-I 2-
k p(FI_l,v ~ l=1)' (6.5)
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while the corresponding one for rt' = tot is given by

k+1 t,l
P(T;t;?: t,l):= ~ P.,(l,k + l;w)P(Fi_I,I';::: 1=1) (6.6)

(Wright 1988) where w = two, WI, ... , Wt]' with Wi = n;ja2 and p.t(l, k + 1; w)

denotes the level probability that there are exactly 1 distinct values (levels)

for the MLE satisfying the simple tree order (Robertson, Wright and Dykstra

1988). The Pd(l, k + 1; w)'s depend on the sample sizes and the population

variances throngh the weights W;. Robertson, Wright and Dykstra (1988)

discllssed that P,I(l, k+ I; w)'s converge to the binomial probabilities C~l)(~).t

with k trials and the probability of success equals 1/2 when the weight at the

control Wo ----t 00.

On the other hand, the p-V'dIIlC ofTr = eo has the same format as (6.6) ex

cept that one replaces P,,(l,k+ l;w) by Ps(l,k+ l;w) which denotes the level

probability for the simple order restriction (sec Section 2.2). Robertson and

Volright (1982) discllssed that Ps(l, k + 1; w)'s converge to the binomial prob

abilities with k trials and probability of success equal to 1/2 for a particular

sequence w. These particular limiting distributions of rr and Tt' correspond

to that of Tt Thereforc, Tt: will have the same distribution as the limiting

distribution of Tt' and Tr, where Tt' ::; Tt ::; Ttl. The critical value of t~,k,l'

can bc found in Table A.9 whcll Wo = 00 by Robertson, Wright and Dysktra

(1988).

6.3.3 Power Comparisons

The power functions of simultaneous tests for null hypotheses HOj 1-10 =

/-II = ... = /-Ij against H 1j : 1If) ::; Itl ::; ... ::; IJ-j with at least olle strict
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inequality are studied for Dj , rj" (with BOllferroni inequality applied), Tj' and

Tj,j = 1, ."j k. For simplicity, we consider the equal sample size case no = n

with a 2(n = 1,0' = 0.05. In dose-response studies, the logistic function is one

of the most popular dose-response curves. The logistic function considered

here is f(x) = E{1 ~ [i + (XIC)5]-I} where x is the dose level and f(x) is

the corresponding dose-response mean with 1(5) fixed at 4 (Ruberg 1995). We

study five cases with C = 1.5,2.0,2.5,3.0,3.5.

As Dunnett's tcst Dj , Tj' and the llCW proposed test Tl have the property

that D l :5: D2 :5 ... ::; Dk, rt' :5 r;t :s ... :5 rtl and Ii' :5 r; :5 ... :5 Tt,

they can be used to detect the difference between IJj and Ito. However, as the

statistic rj" does not satisfy Ti°:S Tr:5 ... :5 Tr, we apply the Bonferroni

inequality to obtain a conservative simultaneous test such that we reject HOj in

favor of Hlj for large values of Tr. With the prior assumption of monotonicity,

if HOj is rejected, the lower bound for 11j - IJo will be positive. The power for

testing HOj against H lj is actually the probability of obtaining the pooitive

simultancous lower bound for Ilj ~ jJ.{). The simulation results for k = 5 are

given in Table 6.1

Table 6.1 indicates that if there are significant differellces between the dose

levels and the <:ero-dose control level, the orthant test statistic Tj is much more

powerful in detecting this difference than the other three procedures. When

C = 2.5, the orthant test TJ has the largest power among the four tCSts for

detecting the differences between Ilj and Ilo for j = 3,4 and 5. Even though

Dj and rr have larger powers to detect the differences between Ilj and IJo for

j = I and 2, they gain little over the orthant test statistic. The maximum



119

gains of the statistic Tl over Dj , Tr and T;t are ]1.7%, 4.4% and 10.9%;

however, the maximum gains of the statistics Dj and Tj" over Tj are only

3.1% and 1.6%, respectively. Similar rcsults apply in the other four cases. In

general, when the probabilities to detect the significant difference between IJj

and /4) by the four procedures arc all above 50%, the gains of the orthant test

statistic Tj over the other three tests Dj , Tr and Tl can reach 15.0%,7.8%

and 10.8%, respectively. When the difference between the dose-response mean

and the control mean is detected, the new statistic TJ is the onc to usc.

6.4 Simultaneous Confidence Lower Bounds for
Pairwise Mean Differences

6.4.1 The Optimization Problem

In order to assess the size of the difference between the response mean at

level j and the 1.ero-dose control mean, one needs to construct a corresponding

simultanoous confidence lower bound. According to (6.4), a 100(1 - 0:')% si-

multaneous confidence lower bound for Voj - Ito can be inverted by the orthant

test and is given by

For more general contrasts, I:~=OniC;Vo;,c = (r-{l,CI"",Ck) E Ok, the 100(1-

a)% simultaneous confidence lower bound can be constructed as
, . ,

l(~ n;Ci}Ji) = f,; 1l;c;Y; - t~,k,"S(~ n;q)1 /2. (6.8)

If one rejects Ho, there exists at least one contrast L~=o niC;/Ji that has a

positive lower bound. Specifically, if 7'l > t~,k,,,, one rejects HOj in favor
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of HI; and there exists a contrast Lf",o n;C;JJi ::; J~j - /Jo, c E OJ such that

1(1::=0 ll;C;P;) > o. It suffices to consider the confidence lower bound for /lk-i-/<J

under the assumption J.IO :5 1J1 :5 ... ::; JLt· The result for Jlj - 14J follows

similarly. The lower bound for J.I.< - 11-0 can be improved to.
LO(JLk - 11o} = max l(Ln,C;/Ji)' (6.9)

"EO.:~::::.on;";"'SjJ.-"o i=O

The positive lower bound for ILk - Po indicates the difference between the

dose level k and the control. We have the following lemma and its proof is

straightforward

Lemma 6.4.1 Tk > t~,k." if and only if LO(Pk - Il{)) > O.

We shall restrict our attention to the case l(E~=o 1l.,C;JL;) > 0 for some c E

0 .. , i.e., when T: > t~,.l:,,,. The value of the lower bound U(/Lk -/Jo) indicates

the size of the difference between 11-.. and /-10- We can assess a minimum dosage

level which has the desired difference from the zero-dose control mean.

Let nP'/ = r.:~=p ni if p :5 q and npq = 0 if P > q. The evaluation of

the lower bound L"(ltk - Ito) in (6.9) is an optimization problem. In order

to solve this rather complicated concave programming problem and seek an

efficient algorithm to compute this improved lower bonnd, we consider the

transformation z; = Y; - YO,i_I,Oi = Jli - Jl.o,i_l,ai = no,i-ln;(Co - Co,i_d/llo;,

Then Zt> ..• , Zk are normally distributed with means 0, and covariance matrix

0-22: = 0-2[a'il where ai' = nO:;_1 + n;-l, aij = 0 if i to j and r.:~=o n,CoIJ-i =

L:~=l a;o,. Let A = [O"i] with 0';) = 11o,i_l/noJ_l if i :5 j, and 0 otherwise.

The constraint c E Ok, i.e, COJ-l :5 Cj(j = 1, ... , k}, is equivalent to ai :? O.
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III addition, with the prior knowledge PfJ ::5 PI .::; .. , :5 JJ-k, the constraint

L:~=o njc;/t; ::; It.. - /10 is equivalent to L:J=i njcj :5 1, i = 1, ... , k, which can

also be shown equivalent to L:J=;ajflO,i_J/nOJ_l :S 1. Let a = [at, .. ,ak]'. The

problem (6.9) becomes

where 1 = {I, 1, ... , l]i:X]' Let a" be the optimal solution to the problem (6.10).

Note that a" has the following property:

Lemma 6.4.2 Suppose that the mllX1mum oflU:~=l (JiJi) subjed loa ~ 0, Aa:5

1 is attained at a", then z; :5 0 implies that at = O.

Proof. Suppose there exists Zj < 0 alld aj > O. Let dj = 0 and d; = at if i 1=- j.

Then we have

and

Therefore,

k k k k

~ a~zi - t~,k"'S(~ (J°f17;;)112 < ~ d;z; - t~.k,~s(E d~ajj)1/2

which contradicts the assumption. The proof is complete. o

Let w = two> WI,' . " Wi]' be the vector of weights where W; = n;fTl<lk(i =

0,1, ..., k). If x = [xo, XI, ... , xkl' and y = [Yo, Yl, ... , Ykl' are in R k+1, then the
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inner product and the norm are defined respectively by.
< x,y >w= £;W;X;y;.

Ilxll~ = t;w;x;.
Letei= [-no.Ll' ··,-no:L1,1I,-1,0, ··,OJ'witheii=ni-l. Let P(YIOt) be

the vector v E Ok minimizing IIY - vllw . It can be shown that P(YIOk) can

be expressed by I:~=l < Y,Cj >;t e';lIeill~ where c+ = max{c,O}. Lemma

6.4.2 gnarantees that Y and P(YIOk) will lead to the same optimal lower

bound for lJ.k - /-10.

Let R = {i: a. > a, [Aa]. = I},S = {i: aj = a,IAa]. < I} and T = {i:

a; > 0, [Aa]; < I} where the notation [Aa]; denotes the ith component of the

vector Aa. Since [Aal; = tli+(Tl(I,i_d1l(li)[Aa]Hi> a; = 0 implies that [Aal; < 1.

Therefore, R,S and T form a partition of fl, .. "k}. Let a = [aI, ... ,0..\:]', Z =

[z" ... ,Zt]' and 1 be partitioned as a = [a'H,a'S,a'T)"Z = [Z'n,Z's,Z'rj' and

1 = [I~, I!,>, IT]'. The same partition applies to A and E. A necessary and

sufficient condition for the optimal solution to (6.10) is given by the following

theorem.

Theorem 6.4.1 The maximum of 1(l:~=1 a;c;) subject to a 2: 0, Aa :S 1 is

attained at aO if and only if aO satisfies
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(6.14)

where b = (adEaO)112/(t~,k,~s) and l:::.r,R = ~'1' + A'RTA'R~ERRAii.1ART'

When T = 0, (6.11) does not apply and (6.12) becomes all = ARkIn.

Proof. Consider the problem

(615)

Let ~(a, u) = 1(l:~"'1 aiJ;}+u'(l-Aa) and let -i!o denote the partial derivatives

evaluated at the point a" and uC
• It can be shown that IO::~=l (LiOi) is concave.

By the Kuhn-Tucker equivalence theorem (Kuhn and Tucker 1951), a" is the

solution to the problem in (6.15) if and only if

(i) ~::; 0, (-§!o)'a" = 0 and a"::: 0,

(ii) 1 - Aa" 2: 0, (1 - Aa")'u" = 0 and u" ::: o.

Let a" be the optimal solution and let u have the same partition u = [U' R, u'5, u'TI'.

Therefore, ¢(a, u) can be written as

¢(a,u) = a'uZn+a'sZS+a'Tbr

Condition (ii) implies that Un ::: 0, Us = 0, and Or = O. Condition (i) becomes
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and

:~> = ZT - b-1Urra~, - A~a·un = 0,

where b = (adEaop/2/(t~,k,,,S).

It follows that

The condition [Aa]; = 1 for any i E R is equivalent to

The last two identities lead to the expressions (6.11) and (6.12), while the last

two inequalities are equivalent to expressions (6.13) and (6.14). 0

H call be shown that. if l(L~=l ai8i) > 0, then R is not all empty set.

6.4.2 Simplified Formulas

The computation for 11.° and t.he conditions in Theorem 6.4.1 can be simpli-

fied. Let R = {Tl, ... ,Tm } with the cOllvention TO = 0 and Tm+l = k + 1

and let t,p and q be three consecutive indices in R U CO, k + I}. Let 7 p,q =
IIp ,q_J!(1l{I,p_11l0,q_l) with the convention Tp,HI = nO:~~l and TO,p =: O. Let

Tp,q,S = LJ:~jtS(noJ-l - fiQ}) with the cOllvention that TO~~,S =: O. Note that
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if there does not CJtist an)' index i, P < i < q such that i E S, then 7,..,,s =T,..

for P 1- O,q i- k + L Let '1,..,.s = E1;::;~..its(nj/l1oj)zi with tbe convention that

~",.s == O. The expressions (6.11) and (6.12) become

at = (n,/1loi){Tp,q'r;;,s +b(no.._Iz, -fJ,,,.s1";~,s)}, for p 5 i < q and i E TuR.

(6.16)

Conditions (6.13) alld (6.14) become

aod

respectively. The coefficient. b can be obtained by.
b' = L ~"T;:,sI{(t:,t....S)2 - L: (n,.-no.._i/Ilo;)Z? + :E 11;..,,sT;';,s}' (6.19)

,ER i:l,iES ~H.

The constraint IAaj :S I becomes

The simplified formulas (6.16) to (6.20) detennine whether the partition

R, Sand T is optimal. The number of feasible partitions for H,S and T is

at _ 2k , a large number even for a moderate k. It is important to have an

efficient algorithm to compute the optimal confidence lower bound for !J.k - /-10-

The following algorithm provides optimal partit.ions n, Sand T for diffcrent

confidence lcvel 1 - Ct, st.arting from 1 - p, where p is the p-valuc of the test.

statisticT;.
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6.4.3 Computation Algorithm

\Vithout loss of generality, it suffices to consider the optimal lower bound for

Ilk - jj{). For simplicity, we use t", to denote the critical value t~,k,~ in the

remainder of this chapter. Let to = {l::~;l "':;-1 [max(O, y. - Yo,i_df/s2 }1/1
.

If to 2': to, we have U(l1k - 110) = O. We assume that to > to_

(0) Let M = maxl:SiSk L:1;; 1\iP(YIO.t);. The initial c~O) = n;P(?IOk);/M, i =
a,l, .. o,k. Let HI = {i: [Aa(Ol]; = I:1",injC}O} = I},S! = {i: a;O) =

clO) -4~L = O} and T 1 = {l, ... ,k} - (R I US I
). Sct,. = 1.

(1) Let p and q be consecutive indices in nr
. Compute

br = min{b > 0: [Aa(r)]. = 1 or a~r} = O,i E T'"},

,
t T = {L T;,qTp~~,s·/b~+ L (njTloJ-dnoj)z;- L T/:,q,S.Tp~~,S.}1/2/8.

j;lJI!S' pER"

If to > t T , stop. Otherwise, go to the next step.

(2) If there exists an index hE T r such that b = br and [Aa(r)]h = 1, define

RT+l = RT U {h},BT+\ = Br and 1""+1 = 1"" - {II}. On the other hand,

if there exists an index h E 1"" such that b = bTl and arl = 0, define

RT+l = ff, BrH = BT U {h} and 1""+1 = T'" - {h}. Set r =T+ 1, go to

step (1).
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6.4.4 Application of the Algorithm

and 82 = 35.4. The computation of L"(~s - J1fJ) is illustrated as follows:

(0) Since Y = (2,4,0,10,14,12) ¢ Ok, the projection P{?IDk) is (-6, -4,

-5,3,7,5). Compute to = n:::f==l tl,:::_, [ma.x(O, Y; - Yo,i_df/szp/2 =
5.21. The p-value of the test statistic T: is 0.0002. We have M =

maxi L:1=;nj P(f'IO)j = 90. The initial c(O) = (-ft, -A-, -A, ft' E' ftl.

(1) Set r = 1 and nl = {3},St = {2} and T 1 = {1,4,5}. Compute

all) = (6&,0, i-9b, ~ + 12&, ~).

Wehaveb\ =min{fs,~,:16}= :ft and t\ = 2.40. ThcRI,SI and T 1 form

the optimal partition for confidence level betwccn 99.98% and 87.8%.

(2) Since b1 = 1/36 occurs at the index h = 4 such that [Aa(1)]4 = 1, define

R2 = {3,4},S2 = {2} and T2 = {1,5}. Compute

a(2) = (6b, o,~, ~ + ¥b, ~ - 6b).

We have ~ = min{ h, ~} = A and t2 "'" 1.11. The partition is optimal

for confidence level between 87.8% and 38,7%.

(3) Since ~ "'" 1/12 occurs at the index h "'" 5 such that at2
) = 0, dcfine

R3 = {3,4},S3 = {2,5} and T 3 "'" {l}. Compute

a(3) = (6/),0,~, 1,0).
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We have b3 = ~ and t3 = 0.92. The partition is optimal for confidence

level betwccn 38.7% and 30.0%.

(4) Since &3 = 1/9 occurs at the index II = 1 such that [Aa(3Jh = 1, define

.rr = (1,3,4},S4 = {2,5} and 1'" = 0. The partition is optimal for

confidence level less thau 30.0%.

When Ct = 0.05, the critical value with k = 5 and v = 30 is t,05 = 2.88. The

95% simultaneous confidence lower bound L"(J1-5 - J.lo) = 4.91 can be obtained

at Step (1) with nc" = (-0.077, -0.034, -0.056, 0.012, 0.099, 0.056)'.

Similarly, we have L"(/11 - 1-/0) = 4.30 and £"(113 - tLo) = 0.09. Comparing

to the Dunnett's procedure, with the critical value d.OM,30 = 2.33 we note that

demonstrates that lower bounds obtained by the new procedure arc sharper

than those of Dunnett's.

6.5 Technical Results

6.5.1 Simplification of the Optimal Solution

The following lemma will be used to simplify the computation procedure and

its proof is straightforward.

Lemma 6.5.1 The inverse matrix of I + ww' is 1- ,\ww' where w is a k xl

vector and the scalar ,\ = (1 +w'W)-I.

Proof. We will show when..\ = 1/(1 + w'w), (I + w'w)(1 - '\w'w) = J

(l + w'w)(I - '\w'w) = J - AW'W + w'w - ,\w'ww'w
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1+ (->'+ 1- >.ww')w'w

= l.

It completes the proof. o

Let R = {rl' ... ,r",} with the convention TO = 0 and TmH = k + 1 and let

t,P and q be three consecutive indices in R U {O, k + I}. Then we have that

if Ti =rj =P;
if T;=p,Tj=qj

otherwise.

Therefore, [ARkIn)" = 1lo,p_lT",q. We also have

where vp is a column vector with entries vpi = nO,p-l!nu,i-loP < i < q,i E T.

Therefore,

with the convention (700 == O. Then

Err + A'RTA'~~EnnARkAK1'
o
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where Ep = [Oij] with TJ < i,i < q,i,j E T.

We find (E" + oppvpV'p)-1 by Lemma 6.5.1 as follows. Rewriting Ep +

where w p = Ui.{,2r.;1/2Vp. Then w'pwp = O"ppV'pE;l yp = 7;~+lTp+l,q.S and

(1 + w'pWp)-1 = 71',1'+17;:,5' Hence, we have that

[E;l _ (1 + w'pw"t1r.;I(O"ppvpv'p)E;l]ij

n'7:;:-16;; - {7"p'P+1Tp~:'S(no.~~:ni)-1(T;~+lno,LnoJ-d(no:~~nj )-l}

1li7:-16;j - T,,~:,S ':~~j

where Oii = 1 alld 6;j = 0 for i f:- j. Also we have

[

q,.,.v""<>,,,_,T,,,,< ]
lA' A,-I", A-' ] _ o"T,vr,l'lon_I Tr,.r1

f(l' RI/; ....RR RR 1 /1 j - :

O,,,,r,,, v,,,,Tlor... Tr... ,rmH J

for p < j < q,j E T. Hence,

.-,
(nino,i-tlnOi)Tp,qTp-~+lnO.:_l - T;:,s(n;/tl{);)Tp,qT;;+l L: {nj/(nojnoJ_d}

]",p+lJ(.S
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We have

[ZT - A'KrA'R~ZRI' = [Z'ro - ZroV'rOl .. , Z/,,,, - zr... Vi.... ]

where Z, = [Zj]' for p < j < IJ with the convention Zo := 0, then

H
(ni'l{),i_dnOi)Z; - T;'~.s(n;/no;) L (njfnoj)zj

j=fJ+1jES

.-,
~{(nino,i_tlnoi)(11Q,p_dn(l,i_d - Tp~:,s(n;/1l(lj)nOJl_l L ni/(noj1l()j-d}zp

j=p+lj~S

H

(n;/1toi){tl{),i_1Z; - 7;::,5 L (nj/nfJjh - no,p-I(1- Tp+l,q,STp~:.S)Zp}
j=,,+l,j~S

.-,
(n;/noi){no,i_IZj - ';':,5 L (/l.jjnOj)Zj -1liJ,p_1Tp,p+1T;;,SZp}

j=p+lJ~S

H

(n;jnOi){no,i_1Z; - Tp~:,S L (n)/noj)Zj}
j=pJf.S

(1l;/nOi){nO,i_1Z; - Tp~:,sTJp,q,S}.

It follows that

For any pER,

a; [Afik1u - AH.kAK~·a~·lp
.-,

nO,p_ITp,q - L (no,p_J!noj_l)aj
:i=p+IJ~S

.-,
nO,p_1T",q - L: (no,p-dnoJ-d{(njlnoj)(Tp,qTp~:,s + b(nO,j_1Zj -1}p,Q,STp~:,S)]}

j=p+ljf.S

nO,p_1Tp,o{1- r;';,STp+l,q,S} + bnO,p_l {(npjnOp)zp - T/r>.o,s +rp~:,sTp+l,q,Sf}p,q,s}
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That is, (6.21) applies to all i E RuT. Therefore, (6.16) follows.

For A'~k(ZR - b-1ERRa'k), ifp = Til we have

if P 2: T2, we have

[A'"~~(ZR - b~lERRa'k)]p

-(1lQ,1_J!no,p_l)[Zt - b-lnod(nt1l0,I_da~1 + zp - b-1nOp/(npllO,p_da;

By the convention TO.q =: 0 and TO~:,S == 0, the condition (6.13) becomes

for all pER.

Let t',p' and q' also be three consecutive indices in R. Consider the condi-

tion Aa :$; 1, for any p :0:; i < q, we llave. .
[Aa"]; LO'ijUj = :L(no,i-dnoJ-daj

]"" F"

q-l q'-l

L (1l{I,i-J!1l<lJ-daj + L L (no,i-d lI\l.j-daj
j=iJ'l-S p'>i,p'ERj=plJf.S

H

L (1l\),H/llQJ_l){(njlnoj)[Tp,qTp~;,S + b(Tl{),j_tzj -1'/p,Q,sr;;,s)]}
j=iJf.S
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,-,
+ L: :L (no,i_l/nOj_d{(ni/noj)[Tp',q'T;,~.S + b(noj_1Zj - '1P',q',ST;;,~,S)]}

P'>i,p'Ellj=p'j'f.S

l1.o,i-l {Tp,qT;~.STi,q,S+ In}i,q,S - inIv,q,STp~:,STi.q.S + L TrI,q'}
p'>i,P'ER

Tl(J,i-l {Tp,qTp~:,STi.q,S+ Tq,k+l + b(1/i,q,S - Tp~:,sl1p,q,sTi,q,s)}.

The condition Aa ::; 1 becomes

If i E R, (6,23) is all equality, otherwise, it. is an inequality.

The condition (6.14) can be simplified as follows. For any p < i < q, i E 5,

[A'RSAii.1(ZR - b-1ERRa'k)]i

L(no,p'_!/nO,i_l)[A R1(ZR - b-1ERRa'k)]",
P'<;

L(71(l,p'-dno,;-dno~_I{T;.~,S1JP',q',s - Ti}s'1t',p',s + b-l(-Tp',q'T;,~,S + TI',p'Ti;-.~,s)}
p'<i

b-1no}_1 { :L TP'."T;,~,S - L Tp',q'T;;,~,S}
q'=r"r), .. ,p (:r"r., .,q

-no,Ld L T;;.~,sl1P',q',S - L: T;.~.S1/p'.q',S}
q'=r.,"'__ ',p (=n,r), ,q

-no.LTp~Lq{b-ITp,q - t"/",q,s}·

The condition (6.14) becomes for any i E S

(6.24)

Furthermore,

,
L (n;fnOi)2{Tp,~T;':,s + b(llil,i_IZi -1)p,q,ST;':,s)}2nQi /(niT4l,i_d

i=l,i;!S
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.
L (n;f1loi?T;,qTp~:,sno;f(nino,i~tl

i=I,i<,!5.
+b2 L (n;/nOi)2(no.,_IZi - ""p,q,ST;:;.S)21l{);/(ni1lo,i_d

j"'1,iq:5.
+2b L (n;/nOi)2Tp,qT;;,S(nO,i_1Zi -1/p,q.STp~:,S)n(}i/(1l>no,i~d

;=1,;;"5

,-.
L: {T;,qTp~;,STp,q,S + Ii L (ninU,i_J/flo;)Z;

p=ro,,··,r.. i=p,i;"S

H

+b2
f/:,9,ST;;,S L n;/(no,i_lno;) - 2Il1/I',q,57;::,5 L (n;/1l()j)z;}

'=1',i'5 ;=v,iIlS
,-.

L {r;IlT;::s + b2[ L (nino,i_J!nOi)Z; -l1:,q,srp~:,s]}'
p=ro,.··,r.. ;=/1,';"5

Note the cross product term I:~l (n;/I1o;)2Tp,qT;:.s(no,i_lZ;-flp,Q,srp-1,s)2no;/(ni11<l,i_l)

is equal to l.ero. Since b = {aOlEaO)I{2(ta s}-I, we have.
b2

= LT;.qTp~:,S/{(t<>s? - L (llinO,i_J/no;)Z; + L 1J;.q,STp~:,S}· (6.25)
pER ;=I,illS pER

6.5.2 Justification of the Algorithm

(A.) The RI,SI and T 1 form an optimal solution.

First we shall show n1 = {p},S' = {i z;:5 O} = {i ; a~O) = ~O) 

li:L = O} and T I = {i : Zi > O,i =J. p} is the optimal solution. Let At =

:L1=PJi/:S' 7lj P(YIOk)j = 11Q,p~1 :L1=PJi/:S' (nj/fIQ,j_!lZj. For i #- P we have. .
LnjP(YIOk)j = nO,;_l L (7lj/1I0,j_I)Zj < At.
j=. j=i,ji/:S'

For Tp,k+l = l/7l(J,p_I,1]p,k+!,sl = :L1=pJi/:S,(nj/1IQ,j-l)Zj = MTp,k+1 and

Tp,HI,S' = t (~-~):5~ - ~ < Tp,k+I,
j=pJi/:S' 1l0,j_1 110j 110,1'_1 1IQk
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Vo'C have

where to = {EJ=o Ilj P('910.tlJ} 1/2/8 = (Z+'E-l Z+)1/2/ s.

Consider 10 - ( < t .. < to, as

we have M- 1 < b < {M 2 + (k - 2tO)/(T;.k+IT;~+I,SI)}-IIZ. We denote the

right hand side of the inequality as M- 1 + 6.

Ifi E T',i < p, we havea!O) = (lli/no;)no.i_1Zib > O. Fori E R1uTI,i?: p,

a~O) ~(T,,.t+lT,-l+1,sl +b(no.;_I; - '1p,l+',5,T;1+1,s')}

~{no"_lz.;b- (bM -1)T"HfT,-1+1,s') > O.

Consider the condition An ~ 1, for the index PERI, v,'e have.
[Aa(O)!, L no#_la~oJ /1'10.1-1,-,.

E (no,,_J!no,j_I)(nj/noj)noj_tzjb
j"",Jf.SI.
- L (1lo,f>-J!11oJ-d(ni!rloj)(bM - I)TP.k+1T;'~+1,Sl

j=,,4(5

71G.,_I'" ....+l,S,b - TlO,p-1T,,l<+I,S' (bAI - l)T",.Io+I'TP~:+I,SI

= I.
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For i > p, when b = 111- 1
, we have

,
[Aa(Ol]i = L: (no,i_drlOJ_d(nj/noj)ll-o,j_1Zj b

j",jJj!S',
- L: (no,i_l!1lo,j_d(nj/nOj)(bM -l)Tp,k+lTp~:+l,SI < 1

j=i,itcS'

Hencc, [AalOl]; < 1 if M- I < b < M- 1 + J.

For i < p, when b = M- 1 , we have

H
[Aa(O)]i L: (no,,_J!nOJ_l)ajO) + 71Q,i_J!no,p_dAa(O)]p

j=;J~!;'

H
L (no,,_l!no,j_d(nj/noj)no,j_lzjb + no,i-dno,p-l

j=,,fj!S'

< I.

Thus, [Aa(O)]; < 1 if AI-I < b < M- I + o.

For condition (6.13), we have

The above inequality is also equivalent to the condition (6.14). Therefore, the

initial R', 51 and TI satisfy the sufficient and necessary condition in Theorem

6.4.1.

(B.) We will show that R:+ l ;2 Rr and 5 r+1 ;2 sr.

Let t,P and q be three consecutive indices in R:. We prove sr ~ 5.+1 first.

Let j E S' and p < j < q. Then by (6.24), we have that
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Therefore,

Hence we have

Suppose that at Step r + l,j E r+ l
, from (6.21), we have

::5 (nj/nW){T",qTp:~.S'"+l - Tp,qT;:;,sr+,(no,,_lZj -1]p,q,S·+lT;:;,S.+,)-l

'(no,j_1Zj - !7I>,q,SH'T;':,sr+')}

This contradicts that j E rr+l. It follows that S' C;;;; 5TH .

Let p E H', from (6.22), we have that

Suppose that at Step r + I, l' E yr+l and without loss of generality we assume

that sr = sr+l. By [Aa"]" < 1 and (6.23), we have

Mult.iplying it by -7;:,$" we have

Also assume t E n;+l, by
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and
,-.

[AaO]1 = L (110,t_tlnOJ_daj + (no,t_dno,p_d[Aa"]p,
jo=l,jtS'

we have that

That is

H

L 110J_l (T1:dn Oj){ Tt,qTI~ql,S" + b(no,j_1Zj - 11l,q,srTt~q~S')}
j=loitcS'

TI.qTI~ql,sr Tt,p,S' + b(7Jt,p,s' - 7J1,q,S"TI~q~S' Tt,p,S') > Tj,p.

Therefore, we have

Summing the inequalities (6.27) and (6.28), we have

which contradicts (6.26). It follows that nr ~ RHI.

Therefore, the algorithm terminates at no morc than k steps

Let n',s' and T' be the optimal partition satisfying (6.11) - (6.14) of

Theorem 6.5.1 for a given t" > t, where iT corresponds to the confidence level

0,. As Q decreases, the optimal solution holds at to ::: tT until either

(1) there exists apE r so that RTH = ff u {p}, $TH = S' and 'PH =
1" - {p} is the optimal partition for to < tr , or
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(II) there exists an h E 1" so that Rr+l = RT, 5 TH = S" U {h} and 1""+1 =

1" - {h} is the optimal partition for to < tT •

(C.) Continuity of b.

AT = L T;~.srT:,q'
p'=ro,.·.,r",

and
;-.

BT = L { L (n;l1i),i-J!1lj)j)zf -1J},q',srTp-;1Y}'
p'oo,o•... ,r'" ;=p',i,.5·

For Ca8C (I), we assume t < P < q and t,q E R:'. Then, by [Aa]p < 1 and

(6.23), we have

For ta < tT , we have that Ir(cr) = Ar+l/(t~s2 - Br+1) where AT+! = AT - b~t.

and BTH = Dr + 6 with

Firstly, we will show that AT+! = AT - b~A. As A r +l = AT - (71~q~S,7lq

Tp~,S.T;,q - T;';'~srTt~p), then we only need to show that

By (6.29), we show that
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and

are equal.

By 1)1,1',1; = 1)I,q,5 - 1/".q,S and 71,q,5 = TI,p,S + T",q,S, the expression (6.32) can

be rewritten and expanded as

Consider the coefficient for IJlq,s' ill the expression (6.31). By TI,p = 71,q -

7",q, we have

which is the saine as the coefficient for 1Jr,Q,S" in the expression (6.32). Similarly,

the corresponding coefficients for TJ~,q,s. and 2'1t,q,5''71',1,5' in (6.31) and (6.32)
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are equal, that is (6.30) is proven. However,

~= Ar-b~t:. = Ar-b~tl =b2

s2t: _ BTH s2t: - B, - t:. Ar/b; _ t:. r'

It follows that lillla...."._ b(a) = br' Hence, the coefficient b(a) is a continuous

function of 0:.

For Case (II), we assume p < h < q and p, q E K. By the condition a~ < 0,

we have AT+! = AT - b~Ll and B.+ 1 = Be - t:. where

and

Note that Tp,q,sr+l = Tp,q,ST +nh!(no.h-ll1.oh), tI",q,S'+1 = 7/",q,5' + (nh!noh)zh and

7",q,5'+1 = Tp,q,S' - n/l/(no,h-lnoh). Therefore, we have

Next, we show that

That is,
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should be equal. The expression (6.33) is equivalent to

Z~T;,qT;;.S'+ITp~~,S' (TlAno,II_l/nOh) + 1/~,q,s.T;;,ST-t1 n"/(UO,h_11l(1h)r;';,sr r;,'1

+ 2'1p,q'S'Zh(nhlnOh)T;;,S'+lTp~;,s·T;,q.

The expression (6.34) is equivalent to

{(n"no,h_d1lM.)zl- T/;'9,S,Tp~:,S' + [1]1','1,5- - (nh/noh)Zh]2Tp~;,S'+l}(Tp,qT;':,ST)2

{[(nh1lo,h_J!niJ/.) + (nh!nOh?T;:,s,-t,]zl + '1;,'1,5.(-7;;,5< +7;;,5-+')

-21/p,q,STZh(n,,/nOh)T;:.ST-tl}(7",'1";;:,5.)2

+zl{(nh1lo,h_l/1lfJh) + (nh/no,,)2Tp~:.S'+1}Tp~;,s.T;,q

-21/",'1';;' Z/I (nil / noh) Tp~:,S'+l Tp~;,S' 7;,'1

'7;,'1,5' T;:,S''''nlL/ (nO,II_11l<Ih)7;';,5.7;,'1

+ZlT,,~;.srT:,qT;:.sr+l {(nllno,h_l!no,,)Tp,'I,sr+I + (nh/nOh)2}

-21]P,q,S"Zh(nh/nOh)T;:.ST+ITp~:,S,T:,q

71;,'1,5' Tp~:,S'+l nll/(no,h-l1lQh)r;;,.". r;,q

- 2T/p,q,s' Zh (nh/no" )rp~:,S'+1 r;:;,5'T;,q

+T/;,q,S'"rp~:,S.+' nh / (11o,h_1 no,,)r;:;,S' T;,q

+Z~Tp~:,S' T;,qTp~:,S'+l (n"no,h_1 / no,,)

Therefore, expressions (6.33) and (6.34) are equal. By a similar discussion as

Case (I), we prove that b(a) is a continuous function of a for Case (II). This

completes the proof,
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6.6 Discussion

If several dose response means are compared with the control mean and the

experimenter has a prior knowledge that the responsc means are monotone

nondecreasing, a test procedure is available that has good properties under

this simple order alternative, hence improving confidence bounds. The orthant

test T: introduced in this article is an effective method for testing the equality

of the response means against the simple order alternative and constructing

onc-~idt'd simultaneous confidence lower bounds for JJj - /J.o. The proposed

test is easy to implement and its IJ-value is a mixture of F tail probabilities.

Furthermore, an effkient algorithm is given to compute the confidence lower

bound.
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Table 6.1: Probabilities (in Percentage) of Detecting the Difference Bet.....een
I1j and P.o for k = 5,u = 0.05, v = 00

C j
I 2 3 4 5

1.5 Dj 2.9 52.7 78.4 87.6 91.9

Tt 0.4 34.5 73.8 89.2 95.2

Tr 2.3 50.5 81.3 91.3 95.2
Tj 0.8 45.3 82.1 93.6 97.5

2.0 D, 1.6 21.5 64.3 82.1 89.4
Tt 0.2 10.3 57.7 85.5 94.9
Tr 1.2 19.7 66.9 87.9 95.0
Tj 0.4 16.2 68.5 91.1 97.4

2.5 Dj 1.4 7.4 45.3 74.3 86.3

Tt 0.2 2.3 36.3 78.9 94.3

Tr 1.1 5.9 45.1 81.6 94.2
Tj 0.3 4.3 47.2 86.0 96.9

3.0 Dj 1.3 4.1 25.2 633 82.7
Tt 01 1.0 17.3 67.2 92.6

Tr 1.0 3.0 23.4 70.1 92.3
Tj 0.3 1.9 25.2 76.4 95.9

3.5 Dj 1.3 3.1 13.3 50.5 79.3

Tt 01 0.7 7.5 52.2 90.4

Tr 1.0 2.3 11.1 54.8 89.8
Ti 0.3 1.4 12.0 62.6 94.3



Chapter 7

A Stepwise Multiple Test
Procedure

We continue to COtlsider the problem of identifying the lowest dose level for

which the mean response differs from the zero dose level in the dose-response

studies. Ruberg (1989) referred to this dose as the minimum effective dose

(MED). However, test procedures only find the minimum detectable dose (MOD).

In dose-response studies, the response means itl' ... , Pk corrcsJlond to increas

ing doses of a substance and J.lQ corresponds to the zero dose. It is desirable

for a method to not declare a lower dose to be efficacious if it does not de-

clare a higher dose to be efficacious. This can be achieved by testing the

null hypothesis Hoj : J./,j = PD,i = l, ... ,j, against the alternative hypothesis

1ft] : I~i ::: IJ.o,i = 1, ... ,j, with at least olle strict inequality in a stepwise

fashion starting from j = k, continuing only whilc HOj is rejcctcd. Tamhanc,

Hochberg and Dunnett (1996) studied various stepwise procedures including

Williams' (197l) procedure and a class of stepwise procedures based on con-

trasts. Only Williams' proccdure utilized the mOllotollicity assumption of the

145
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response means. The stepwise confidence intervals based on a pairwise t test

statistic can be found in Hsu and Berger (1999), and they used a fundamentally

different confidence set-based justification by partitioning the parameter space

naturally and using the principle that exactly olle member of the partition

contains the true parameter.

By incorporating the assumption that jJf) ::; PI ::; ... .s: i-'k> we will consider

both likelihood ratio test and multiple comparison tests in a stepwise proce--

dure in this chapter. It will he demonstrated by a simulation study that the

prior knowledge of a monotone trend will provide us with more efficient test

procedures. In Section 7.1, the stepwise testing procedure will be proposed.

The simulation study to compare the probabilities of detecting the MDD are

given in Section 7.2.

7.1 A Stepwise Test Procedure

Denote a set of increasing dose levels by 0, 1, 2, ... , k, where 0 corresponds to

the zero dose level. Consider a one-way layout setting in which n, experimental

ullit~ are tested at the ith dose level, i = 0, I, ..., k. We assume that all

observations Y;j are mutually independent with Y;j "-' N(I1i, (12), i = 0, 1, ... , k

and j = 1,2, ... , n,. Let f; "" N(IJ" 0'
2/11;), i = 0, 1, ... , k, be the sample means,

and lct S2 = L:~=o L:j~l (Y'j - 9;)2 Iv be an unbiased estimate of the common

variance (12 based on v = I:~=01Ii - (k + 1) > 0 degrees of freedom and

distributed as u2x~/v, independent of the f;. For simplicity, we restrict our

study to the ea;;e when sample Si1.es of the non-zero dose levels are the same.

We assume that the common sample size is n.
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Suppose that a larger JLi indicates a bettcr average response and the rc-

sponse means are monotone nondccrcasing. We define MED as the minimum

dose i such that J1-i > fk,. The problem of identifying the MED is reformatted

as a sequence of hypothesis testing problems:

lIOj :/IO =/lt ="'=p..j VS H1j "fk,:5IJI:5 ... :SJ.l.j'

If j' is the smallest value for which HOi is rejected, then the Fth dose is

identified to be the MED, that is MED = j'. As previously mentioned, the

MED found is simply the lowest dose that differs significantly from the zero

dose. In this sense, the hypothesis testing procedures do not really identify

the MED; rather, we find the so-called MOD.

Suppose that H Oj is rejected for large values of the test statistic Tjl with

critical value caJ,v' Under a one-way model, the stepwise method to detect

the MDD takes the following form (Tamhanc, Hochberg and Dunnett 1996):

Step 1:

IfTk >c",k,v,

then assert /l-k > JJ-o and go to Step 2;

else assert that there is no dose level which is significantly better than the

zero dose level and stop.

Step 2:

IfTk _ 1 > C",k_l,v,

then assert /l-k-l > Po and go to Step 3;

else assert MDD = k and stop.
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Step k:

then assert PI> J.lfJ and go to Step k + 1;

else assert MOD"" 2 and stop.

Step k + 1:

Assert that every dose level is significantly better than the zero dose level

and stop.

Let step j (1 :S j :S k + 1) be the step at which the stepwise method stops.

If j > 1, then the stepwise method declares dose k - j +2, ""j k to be efficacious.

If j < k + 1, then the stepwise method fails to declare doses I, ... , k - j + 1 to

be efficacious.

We consider this stepwise test based on the following testing procedures:

(i) DR Procedure (Hsu and Berger 1999):

Lot

which is the pairwise t tcst.

(ii) Willi(.lm.~' Procedures

Williams' (1971, 1972) procedure does not lise the fi's as the estimates

of the Pi'S; instead, it uses the isotonic estimates (see Section 2.1):
,

p.; = m~~ii~t~nk~Yj/(t-s+ l),i = 1, ..,k.

The test statistic proposed by Williams (1971) is
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Williams (1971,1977) discussed another test statistic

to test Ho} against HI} where

,
J1;' =' J~~;;~~~.EYj/(t - 8 + 1), i = 0, 1, .. , k.

When (J is known, MarCllS (1976) gave the exact upper 5% and 1%

quantiles for k = 2, ... ,5 and estimated upper 5% and 1% quantiles for

k = 6, .. OJ 11. Williams (1977) tabled the approximate critical values of

WPl for different degrees of freedom. The approximate critical values

given by Williams (1977) will result in a slight decrease in the true size

and power of the test. We will use the tablc values given by Marcus

(1976) for the simulation study.

For the procedures studied below, we suppose that

, ,
Tj = (noC{)jYo+ ~nC;iY;)/{s2(nocgj + ~nqj)I/1}.

(iii) Linear Contrast Procedure (Rom, Costello and Council 1994)

The general form of the linear contrasts is

{

-j i=O;

Cjj= ~-lJ+2 ::~'~·i~:.. ,k.

(iv) Helmer! Contrast.s (R.uberg 1989)

The jth Helmert contrast compares the jth dose response mean with the

average of all the lower dose response means (including the zero dose)
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It is defined by
i = O,l, ... ,j -1;
1=);

i=j+ I, .. o,k.

(v) Reverse Helmerl Contrasts

The jth reverse Hclmert contrast compares the average of the first j dose

response means with the zero dose response mean. It is defined by

{

-j i~O;

Gij = 1 ~:: 1, ... ,j;
o t-J + I, ..o,k.

(vi) LRT for simple order altematiTle

The likelihood ratio t.est

s _ {no(lio' - fl)2 + I:~-l71(tit' - il)2}/u2

01 - {t!<l(Yo tio')z+L:~:ln(Y;-ti")2}/(va2)+Q(v)/1l

for testing the homogeneity of the response means against the simple

order alternative (see Section 2.1) is considered, where ji = z::;~=o Y;/(k +

1) and Q(II) = 1152/172. As SOl utilizes the mOllotonicity assumption of

the response means, it is a more powerful test statistic for testing against

the simple order altr.rnativc.

7.2 A Simulation Study

The simulation studies are conducted to compare the behavior of the stepwise

method based on the LRT with DR method and the methods based on linear

contrasts (denoted by LIN), Hehnert contrasts, reverse Helmert contrasts and

Williams' tests WPl (denoted by WI) and WFl (denoted by WII). Without loss
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of generality, a common sample size n is assumed for eaeh dose level including

the zero dose and!lo is fixed at O. The number of the nOll-zero dose levels (k)

is fixed at 5, the degrees of freedom (1/) is fixed at 6, the error rate 0' is 0.05

and (1/..;n = 1 for all the simulations. The five logistic functions that have

been studied in Section 6.3 arc considered. For each case, 10,000 iterations

were made.

The probability of detecting the difference between J-lj and I4J is the per

centage that HOi was rejected in a stepwise fashion as described in Section 7.l.

The methods based on Helmert and Reverse Helmert contrasts have much

lower probabilities to detect the difference between J-lj and I4J than the other

test procedures for most of the cases studied. For example, in Case 2, the

probability of successfully detecting the difference between !i5 and !io is only

52.2% by the method based on Helmert contrasts, and is 71.1% by the method

based Of) reverse Helmert contrasts. However, the probabilities of successfully

detecting the difference betwccn !Js and Po by the other five procedures are

all above 80%. Hence, normally we will not use the test procedures based on

Hclmcrt and Reverse Helmert contrasts when the dose-response curve is ap

proximately a logistic function. The simulation results excluding Helmert and

reverse Helmert methods are given in Table 7.1. From Table 7.1, we can see

that the LRT method, which has high probabilities of detecting !i; and I-IfJ for

all the cases, compares favorably to the other methods. The maximum gains

of the LRT method over the DR method, WI, WIl and the method based

on linear contrasts can reach 24.2%, 20.9%, 20.7% and 7.6%, respectively.

For the aforementioned stepwise tcsting procedufCs, only Williams' tests and
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LRT take the prior knowledge that jJ.() :5 ~l ::; ••• :::; /-II: into account. Since

Williams' methods have low probabilities of detecting the difference J~j - J.4J,

they arc not recommended. The LRT is generally the best procedure which

determines MOD for monotone dose-response curves without a high risk to

make an incorrect decision.
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Table 7.1: Probabilities (in percent.age) of Det.ecting the Difference Between
Ilj and 1J.fJ by Five Stepwise Procedures for k = 5, v = 6 and ex =0.05

C j Method
DR WI WII LIN LRT

1.5 5 80.5 84.5 81.8 94.9 96.6
70.3 78.4 75.0 91.3 93.6
63.6 72.1 67.8 84.9 88.0
52.6 56.9 51.1 63.0 69.2
8.6 8.8 5.2 8.6 9.0

2.0 80.5 83.2 82.1 96.6 96.9
69.6 75.3 73.4 91.9 92.6
59.5 63.4 60.8 78.8 81.1
31.8 31.5 27.0 35.5 41.8
5.2 5.5 3.1 5.2 5.8

2.5 80.5 81.6 81.5 96.7 96.9
67.9 70.4 69.4 89.1 89.8
49.8 49.7 47.4 61.4 66.9
14.3 14.0 11.3 15.6 19.5
3.2 3.8 2.1 3.2 4.4

3.0 80.5 79.8 80.7 95.8 96.1
63.7 63.0 63.2 81.2 83.9
34.3 32.5 30.7 39.2 46.8

7.8 7.8 6.1 8.7 11.7
2.3 2.9 1.6 2.2 3.5

3.5 80.5 78.3 79.9 94.0 95.3
56.7 53.9 54.7 68.8 74.3
20.8 19.4 17.5 23.4 30.4
49 5.6 43 5.6 8.7
1.8 2.4 1.3 I.7 3.0



Chapter 8

Summary

The problem of identifying the differences among the monotone dOSL'-response

means is considered extensively in this thesis. If several response means are to

compared with one another and the prior knowledge indicates that the response

means are simply ordered, then better inference procedures can be chosen to

detect the differences among the means. QlIr study focuses all the iJlterpreta~

tion of the tcsting hypotheses, 011 the duality of simultaneous confidence lower

bounds and 011 the constrained optimization problems. InterV'dl estimation

for the response mean differences has received much atiention in our study.

Four different approaches to construct efficient simultaneous bounds for linear

contrasts of the respouse means arc proposed.

The max-min multiple comparison procedure takes the advantage of Tukey's

procedure, which is effective to give upper and lower bounds for pairwise mean

differences. The extp.llded OMCT procedure discussed in Section 5.4 may in

general give shorter confidence intervals for pairwise comparisons I-Jj - p.;,j > i

than the max-min procedure when j - i is large.

Marcus' results (1978) are significantly improved by giving a necessary and

154
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sullicient condition for the optimal solution and an easy computational algo

rithm to search for the improved lower bound for nOllnegative contrasts. The

approach is a good way to obtain bounds; however, its corresponding statistic

SOl is not useful for testing the homogeneity against the simple order alter

native. The OMCT approach is an intuitive, simple procedure to categorized

the dosage levels. It is more efficient than O$RT as well as Marcus (1978)

when the response means does not increase rapidly in one or morc intervals of

the dosage levels. This also suggests that if the differences among the means

/1-; ~ ..• ~ 11j are small, it is advantageous to usc weighted average lTleans

2:1;0 no ?,,/ L,1=" n" in the inference procedures. The OMCT is not a good

testing procedure in comparison to LRT 501. However, the latter can only

provide the lower bound for the pairwise difference P.k - fl.-I' While the OMCT

can deal with any pairwise comparisons.

With the assumption of simple ordering of response means in dose-responsc

studies, lllany analyses commence with an interest to discover the lowest dose

(MED) of which the response mean is lllore efficacious than the control mean.

We propose a more efficient test statistic, orthant test, by fully utilizing the

prior knowledge P.O :5 It] :5 ... :5 Pk to test H Oj against "Ij simultaneously.

The minimum effcct dosage can be identified by simultaneous lower bounds

for pairwisc difference betwccll fl.-j - p.o. This procedure could not give the

bounds for general pairwise comparisons IJ.j - I~;, i f. O. Stepwise multiple

testing procedure studied in Chapter 7 is another approach to identify this

MED.

Tbe most challenging part of this thesis is the study on the constrained
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confidence bound thl'ougll deriving an efficient computational algorithm. It

is a new field in order restricted statistical inference. The approach used in

Chapter 4 and 6 can be applied to other constrained optimization problems.
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Appendices: Fortran77 Programs

L Program for Computing the Max-Min Simultaneous Confidence Intervals:

c· .. ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••2001/01/151HUMIN.FORC" HAIN
e·
C" Purpose:
C .. To compute the max-min ISimultaneous
C .. confidents interval.

e·
C.. Variables:

e. L

e·
e·
e. u

e. y
e·
e. 5

INVS

e·

e·
e.

e.
C. TEKP

e·
e·

- Constant
- Constant

The number of the populations
- One dimenaioll array

Y(I) is the sample mean of the rtb population.
- One dimenlSion array

S(I) i8 the sample size of the rth population
- One dilllension array

Store temporary data
- ODe dimension array

C .. IHVS(I) is the invBrI8 of S(I)

C" VlR - Pooled vuiance
C.. CVQ - The critical value of the liItudentized range
e.. telt

- Tvo dilll8Illlioll array
- L(I,J) ia the 1IlU:-m.in simultaneous confidence

lover bound
- Tva dimension array
- U(I,J) is the lIlU-min simultaneous confidence

upper bound

e·
e·
e.

c····················································· .
INTEGER B
PARAMETER (B • 20)

INTEGER K
REAL Y(B), TEMP(B), S(B), IMVS(B), C{B,B), CL(B,B)
REAL CU(B,B), N
REAL U(B.B), L(B,B). VAR, CVQ
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OPEN (UNIT-2, FILE-'data.in' , STATUS-'OLO')
OPEN (UNIT-3, FILE·'data.out'. STATUS-'UNKNOWN')

R.EAD (2,_) K
DO 10 I .. I, K

READ (2,_) reI)

TEMPO) .. YO)

10 CONTINUE
READ (2,.) CVQ. VAR

CLOSE(2)

WRITE(3,_) , Finish inputting observations'
WRITE(3,.) (YO) • I- I,K)
WRITE{3,.) CVQ, VAR

OPEN (UNIT" 4, FILE" 'size.in', STATUS" 'OLD')
DO 151-1, K

READ(4,.) SO)
INVS(I)-1/S(I)

15 CONTINUE
CLOSE(4)

WRITE(3,.) 'Finishing inputting the sample sh:e'
WRITE(3,150) (SO), 1- 1, K)

DO 20 I" 1, K
0030 J .. 1, K

CO,J) .. Y(I) - TEMP(J)
N .. CVQ.VAR..O.S*(O.S.(INVS(I) + INVS(J»)"O.5
CL(I,J) .. eel,J) - N

CUe!,J) .. eel,J) + N
30 CONTINUE
20 CONTINUE

Write(3,_) 'Mean difference'
Write(3,200) «CO,J), J-l, K), r- 1, K)

DO 40 r- 1, K
0050 j-l, K

L(I,J) -CL(I,J)



U(I,J) - CU(I,J)

DO 60 11- 1, I
0070 H-J, K

IF (M. HE. N) THEN
IF ( CL(H,H) .GT. L(I,J»

L(I,J) - CLOl.,N)
ENOIF

ELSE
GO TO 70

ENDIF

70 CONTINUE
60 CONTINUE

DO 80 M- I, K
DO 90 H- l,J

IF (H. NE. N) THEN
IF ( CU(I1,N) .LT. U(I,J) )

U(I,J) .. CU(M,N)
ENOIF

ELSE
GO TO 90

ENOIF

90 CONTINUE
80 CONTINUE

50 CONTINUE
40 CONTINUE

WRITE(3,*) 'calculation end'

WRITE(3,*) 'Max-min LOller Bound is'
WRITE(3,200) «L(I,J), J-l, K), I-l,K)

WRITE(3,*) 'Max-min Upper Bound is'
WRITE (3 ,200) «(U(I,J), J-l, K), 1..1 ,K)

159



150 FOIUlAT(Sl, IF6.2)
200 FORIIAT(51. 9F8.3)

CLOSE(3)

STOP
END

160
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2. Program for Simulating the OMCT Critical Values:

c .
1998/08/27/

To generate the critical value for the OHCT
statistic

Variables:

Purpose:

ISEED - Seed of the intrinsic uniform random generator, ..
usually a very large integer

Q - Generated sample variance
K - NUlllber of population levels
OF - Degrees of freedom
CHI - Generated Chi-square statistic
NIT - Number of iteration
S - One di,mension array

Sample size of each level
- Tva dimension array

A(I,J) is the mean of the observation from level.
I to level J

- One diemnsion array
Generated standard normal radom variable

- One dimension array
Tentative critical point

- One dimension array
Percentage of the oller statistic greater than
the tentative critical point C

SN - Two dimension array
SN(I,J) is the S\lJl'l of the sample size from
levelItoJ

liS - Tllo dimension array
liS{I,J) is the inverse of SN(I,J)

C· A

C.. MAIN
C.
C.
C.
C.
C.

c·
c·
C·
C.
C.
C.

C·
C·
C.
C.
C.

c.
C.

C' Z

C'
C. C
C.
C. p

C'
C'
C.

C'
C.
C.
C.
C.

C ~ Subroutines: NORH01, CHISQ
C ~.~ •• ~••••••• ~.~••••~~~~~~~~~~~~.~~•••~~.~~~••••~.~.~.~.~•• ~

INTEGER.
R.EAL
R.EAL

OF, ISEED. K, NIT
Q. S1, U, AV. SN(20,20), liS{20,20). F. T
Z(20), A(20,20) , P(30). C(30). CHI. S(10)



OPEN(S, FILEa'ldLdat', STATUS-'OW')
OPEN(6, FILE-'ldf.out', STATUS"'UNKHOWN')

READ(S,.) ISEED, NIT, K, OF
WRlTE(6, 130) ISEED, NIT, K, OF

READ(S,.) (S(I), I"1,K)
WRITE(6,140) (SO), I"1,K)

DO 10 I .. 1, 30
READ(S,·,END-200) C(I)

10 CONTINUE

200 CLOSEtS)

DO 20 I" 1, 30
pm "0.
CONTINUE

DO 110 IT a 1, NIT

CALL NoRMOl(ISEED, K, Z)

CALL CHISQOSEED, OF, CHI)

Q .. CHI/OF

DO 50 I .. 1, K

AV"O.
J·r
SN(I,I-l) -0.

40 AV .. AV + Z(J).S(J)"0.5
SHO,J) aSN(I,J-l) +S(J)
A(I,J)"AV/SN(I,J)

IF (J .CE. K) GO TO 50
J .. J+1

GO TO 40

50
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DO 90 IP • 1, K-l

0080 IQ • IP, K-l
Sl-A(IP,IQ)
wS(IP,IQ)-1./SN(IP.IQ)

DO 70 IR • IQ+l, K
DO 60 IS • IR, K

WS(IR,IS) • 1./SN(IR,IS)
F - WS(IP,IQ) + WS(IR,IS)
F - SQRT(F)
U - (A(IR, IS) - SO/F
U • U/SQRT{Q)
IF (U .GT. T) THEN

T - U
END IF

60 CONTINUE
70 CONTINUE

80 CONTINUE
90 CONTINUE

r-o
100 I • 1+1

IF ( T .LT. C(I)) GO TO 110
P(I) ·P(I)+l
IF (I .GE. 30) GO TO 110
GO TO 100

110 CONTINUE

001201-1,30
p(l) • P(I)/NIT

120 CONTINUE

130 FORMAT{4II01)

WRITE(6, 140) (C(I) , I - 1, 10)
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iiRITE(6, 150) (P(I), I .. 1, 10)

WRITE(6, 140) (e(l), I" 11, 20)
WRITE(6, 150) (P(I) , I .. 11, 20)
WRITE(6, 140) (C(I) , I .. 21,30)
WRITE(6, 150) (PO), I" 21, 30)

140 FORKAT(lOF8.3/)
150 FORMAT(lOF8.5/f)

CLOSE(6)

STOP
END

C .. SUBRDIITINE N0Rl101

c·

Seed of the intrinsic uniform random
generator, usually a very large integer

Total sample size
One dimensional array
array size (N+ 1)

N

DZl

C .. Purpose
C .. Generate a sample from a standard normal distribution._
C.

C .. Variables:
C .. ISEED
C.
C.

C·
C.
C.
C .. Subroutines:
c .

SUBROUTHIE
INTEGER
REAL
REAL

NORHOl(ISEED,K,Z)

ISEED, K
2(20), U(20)
WA, liB, we, WPIE

C ......generate K+l plHludo-ran numbers trom U(O,i)
C

WA .. RAH(ISE£D)

DO 200 I .. 1, K+l
WA .. RAN(ISEED)

00 WHILE (WA .LE. 1.£-5 .OR. W! .GE. 1.-1.E-5)
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WA .. RAN(ISEED)

END DO
UO) • WA

200 CONTINUE

c··.· •• transform U(O,1) to standard normal (Box-muller)
C

\riPIE" ACaS(-1.)

DO 300 1-1, K, 2
WA - SQRT(-2.*LOG(U(I»)

WB - COS(2.*WIE*U{I+l)
we .. SIN(2.*WPIE-U{I+l)
Z(I)-WA*\IB
Z(I+l) .. WA_we

300 CONTINUE

IlETURN
END

c··· · .
C" SUBROUTINE CHrSQ 1998/07/20/
c·
C" Purpose: To generate the Chi-square random variables
C.
C.
c •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

SUBROUTINE
INTEGER
REAL
REAL
CHI-O.

CHISQ(ISEED, OF, CHI)

ISEED • OF
Z, CHI, U(300), WCHI(300)
WD, WE, \riPIE

c
C ......generate K+l pseudo-ran numbers from U(0,1)
C
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M .. INT{DF/2)

WD .. RAN(ISEED)
DO 1000 I .. 1, M+2

\r{[) .. RAN{ISEED)

DO WHILE OW .LE. 1.£-5 .OR. WD .GE. 1.-1.£-5)
WD .. RAN(ISEED)

END 00
U(I) .. 1JD

1000 CONTINUE

Cu****tranform U(O,O to Chi-square 'lith 2df
C

DO 2000 I" 1, M
CHI .. CHI -2.*LOG(U(I)

CONTINUE

IF (HOD(DF,2) .EQ. 1) TIfEN
WPIE .. ACOS(-1.)
WD .. SQRT(-2 ••LOG(U(M+1))

WE .. COS(2.*\rIPIE*U(M+2»
Z .. WO-WE
CHI-CHI + Z**2

ENDIF

RETIffiN
END
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3. Program for Computing the OMCT Simultaneous Lower Bounds:

c.·..··········.···············..······················ .e. Program LBOMCT.! 1998/08/27
e.
e. Purpose : Construct the OKeT simultaneous 101ler bounds ..
e.
e'
e'
e' B CODstant

e' STO Pooled standard deviation

e' eVL The OKeT critical value

e' V One dimension array

e· Y(I) is the sample mean of the rth population ..
e. One dimension array
e. S(I) is the sMlple size of the rth population
e. YS Tvo dimension array
e· YS(I,J) is the sum of observations from rth
e. to Jth population
e. Tva dimension array
e· YaO,J) is the mean of the obsevation from

e' Ith to Jth population

e' WS Tva dimension array

e' lriS(I,J) is the sum of the sample size from

e· rth to Jth population

e· LL Two dimension array
e. The OKCT lower bound

INTEGER
PARAMETER

INTEGER
REAL
REAL
REAL

B

(S"20)

K
Y{B), YS(O:B,B), YB(B,B), S(B)
L{B,B), LL(B,B), LLT{B,B), WS{O,B,B), WK(B)
D, CVL, STD

OPEN(2, FILE-'par.dat', STATUS-'OLO')
READ(2,*) K, CVL, STn
READ(2,*) (Y{I) , I-I, K)
READ(2,*) (S{I), I-I, K)

CLOSE(2)
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OPEN(3, FILE-'test.dat' • STATUS·'UNKNOWN')
WRlTE(3,*) K, CVL
WRITE(3,*) (YO), I-1,K)
WRITE(3,*) (5(1), I-l,K)

DO 10 IP .. I, K
YS(IP,IP) .. Y(IP).S(IP)
WS(IP,IP) .. SUP)
YB(IP,IP) .. yoP)

10 CONTINUE

DO 12 IP" I, K-l
DO 13 IQ" IP... t ,K

YS(IQ,IP) -YS(IQ-l,IP)+Y(IQ)*S(IQ)
WS(IQ,IP) .. iiS{IQ-l,IP) ... S(IQ)
YB(IQ,IP) '" YS{IQ,IP)!WS(IQ,IP)

13 CONTINUE
12 CONTINUE

DO 20 IS- 2 , K
DO 30 IP'" I, 15-1

LL(IS, IP) .. -1.DES

DO 40 IQ .. IP, 15-1
0050 IR'" IQ+l, IS

0" srn*cvt*O'/WS{IQ, IP)+ l./WS(IS, IR»uO.5
L(IR, IQ) .. YB(IS, IR) - YB(IQ, IP) - 0

IF (L(IR,IQ) .GT. LL(IS, IP» THEN
LL(IS. IP) .. L(IR,IQ)
LLT(IS,IP) .. LL(IS,IP)

ENDIF

50

'0

CONTINUE
CONTINUE
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30 CONTINUE
20 CONTINUE

DO 300 IS· 2, K
DO 400 IP"'l, 15-1

DO 500 Itl .. IP, 15-1
DO 600 IR· IQ+l, IS

IF ( LLT(IR, ttl) .GT. LL(IS, IP» THEN
U.. (IS, IP) .. LLT(IR. IQ)

600 CONTINUE
500 CONTINUE

400 CONTINUE

300 CONTINUE

WRITE{3,.) 'DKer lower bound'
WRITE(3,90) «LL(I,J), J- 1, K), r.. 1, K)

90 FORMAT(SX, 9F8.2)

CLOSE(3)

STOP
END



170

References

Abelson, R. P and Tukey, J. W. (1963), "Efficient Utilization of Non-Numerical

Information in Quantitative Analysis: General Theory and the Case of

the Simple Order," The Annals of Mathematical Stahs/ics, 34, 1347-

1369.

Arnold, B. C., Balakrishnan, N. and Nagaraja, H. N. (1992), A First Course

in Order Stati$tics. London: John Wiley.

Aycr, M., Brunk, H. D., Ewing, G. M., Reid, W. T. and Silverman, E. (1955),

"An Empirical Distribution Function with Incomplete Information," The

Annals of Mathematical Stati.5tics, 26, 641-647.

Barlow, R. E. and Ubhaya, V. A. (1971), "Isotonic Approximation," in J. S.

Rustagi (ed.), Optimizing Methods in Statistics, Academic Press, New

York.

Barlow, R. E., Bartholomew, D. J., Bremner, J. M. and Brunk, H. D. (1972),

Statistical Inference under Order Restrictions, John Wiley and Sons,

London.

Bartholomew, D.J. (1959a), "A Test of Homogeneity of Ordered Alterna

tives," Biometrika, 46, 36-48.

Bartholomew, D.J. (1959b), "A Test of Homogeneity of Ordered Alternatives

II," Biometrika, 46,328-335.



171

Bart.holomcw, D.J. (1961a), "A Test of Homogeneity of Means Under Re

stricted Alternatives," Journal of the Royal Statistical Society, Ser. B,

23,239-281.

Bartholomew, D.J. (1961b), "Ordered Tests in the Analysis of Variance,"

Biometrika, 48, 325-332

I3erk, R. and Marcus, R. (1996), "Dual Cones, Dual Norms, and Simulta

neous Inference for Partially Ordered Means," Journal of the American

Statistical Association, 91, 318-328.

Bohrer, R. (1967), "On Sharpening Scheffe's Bounds," Journal of the Royal

Statistical Society, Ser. fl, 29, 110-114.

Bohrer, R. and Francis, G. K. (1972)," Sharp One-Sided Confidence Bounds

Over Positive Regions," The Annals of Mathematical Statistics, 43,1541-

1548.

Chase, G. R. (1974), "On Testing for Ordered Alternatives with Increased

Sample Size for a Controlt Biometrika, 61, 569-578.

Dunnett, C. W. (1955), "A Multiple Comparisons Procedure for Comparing

Several Treatment with a Control," JOlJrtlol 0/ the American Stati3tical

Association, 50, 1096-1121.

Eden, C. Van (1958), "Testing and Estimating Ordered Parameters of Prob

ability Distributions," Doctoral Dissertation, University of Amsterdam,

Studentendrukkerij Poortpers, Amsterdam.



172

Gem:, A.(1992), "Numerical Computation of Multivariate Normal Probabili

Lies," Journal of Computational and Graphical Statistics, I, 141-149.

Grove, D. M. (1980)," A Test of Independence Against a Class of Ordered Al

ternatives in a 2xC Contingency Table", Journal of American Statistical

Association, 75, 454-459.

Hayter, A. .I. (1984)," A Proofofthc Conjecture that the Thkey-Kramcr Mul-

tiple Comparisons Procedure is Conservative," The Annals oj Statistics,

12,61-75.

Hayter, A. J. (1990), " A One-Sided Studcntized Range Test for Testing

Against a Simple Ordered Alternative," Journal of the American Statis

tical Association, 85, 778-785.

Hayter, A. J. (1992), "Multiple Comparisons of ThrC() Ordered Normal Means

for Unbalanced Models," Computational Statistics and Data Analysis, 13,

153-162.

Hirotsu, C., Kuriki, S., and Hayter, A. J. (1992), "Multiple Comparison Pro

cedures Based On the Maximal Component of Cumulative Chi-Squared

Statistic," Biometrika, 79, 381-392.

Hochberg, Y. and Tamhane, A. C. (1987), Multiple Comparison Procedures.

Wiley, New York.

Hogg, R. V. (1965), "On Models and Hypotheses with Restricted Alterna

tives," Journal of the American Statistical Association, 60, 1153-1162.



173

HSIl, J. C., and Berger, R. L. (1999), "Stepwise Confidence Intervals With

out Multiplicity Adjustment for Dose-Response and Toxicity Studies,"

Joumal of the American Statistical Association, 94, 468-482.

Kanowith-Klcin, S" Vitetla, E. S. , Korn, E. L. and Ashman R. F. (1979),

"Antigen-induced Changes in the Proportion of Antigen-binding Cells

Expressing IgM, IgG, and IgD receptors," Journal oj Immunology, 122,

2349-2355.

Kelly, R. E. (1989), "Stochastic Reduction of Loss in Estimating Normal

Means by Isotonic Regression," The Annals of Statistics, 17, 937-940

Korn, E. L. (1982), " Confidence Bands for Isotonic Dose-Response Curves,"

Applied Statistics, 31, 59-63.

Kuhn, H. \V. and Tucker, A. W. (1951), " Nonlinear Programming," 2nd

Berkeley Symposium., Math Statist. Probab. (UlIiversity of California

Press, Berkeley), 481-492.

Lee, C. C. (1981), "The Quadratic Loss of Isotonic Regression under Normal

ity," The AlI7lal,~ of Statistics, 9, 686-668

Lee, C. C. (1988), "Quadratic Loss of Order Restricted Estimators for Treat

ment Means with a Control," The Annals of Statistics, 16, 751-758,

Lee, C. C., Robertson, T, and Wright, F, T. (1993), "Bounds on Distribu

tions Arising in Order Restricted Inferences with Restricted Weights,"

Biometrika, 80, 405-416.



174

Lee, C. C. (1996), "On Estimation for MOllotone Dose-Response Curves",

Joumal of the American Statistical Associat'ion, 91, 1110-1119

Lee, R. E. and Spurrier, J. (1995), "Successive Comparisons between ordered

Treatments," Journal of Statistical PlanninN and Inference, 43, 323-330.

Lin, W., Miwa, T. and Hayter, A. J. (2000), "Simultaneous Confidence In-

teIval Estimation for Successive Comparisons of Ordered Treatment Ef

fects," Journal of Statistical Planning and Inference, 88, 75-86

Marcus, R. (1976), "The Powers of Some Tests of the Equality of Normal

Means Against an Ordered Alternative," Biometrika, 63, 177-183.

Marcus, R. and Pcritz, E. (1976), " Some Simultaneous Confidence Bounds

in Normal Models With Restricted Alternatives," Journal of the Royal

Statistical Society, Ser. B, 38, 157-165.

Marcus, R. (1978), " Further Results on Simultaneous Confidencc Bounds

in Normal Models With Rc5trictcd Alternatives," Communications in

Statl.qlics, Part A - Theory and Methods, A7, 573-590.

Marcus, R. (1982), "Some Results on Simultancous Confidence Intervals for

Monotone Contrasts in One-way ANOVA model," Communications in

Statistics, Part A - TIleory and Methods, 11, 615-622.

Miller, R. G., Jr. (1981), Simultaneous Stati.~tical Inference, 2nd cdn. New

York: Springer-Verlag.



175

Mukerjee, H., Robertson, T. and Wright, F. T. (1987), ~Comparison of Sev

eral Treatments with a Control Using Mult.iplc Contrasts," Journal of

the American Statistical Association, 82, 902-910.

McDermott, M. P. (1999), "Generalized Orthogonal Contrast Tests for hOo

mogeneity of Ordered Means," The Canadian Journal of Statistic,'), 27,

457-470

Robertson, T. and Wegman, E. J. (1978), "Likelihood Ratio Tests for Order

Restrictions in Exponential Families," The Anna13 of Statistics, 6, 485·

505.

Robertson, T. and Wright, F. T. (1974), "A Norm Reducing Property for

Isotollizcd Cauchy Mean Values FUnctions," The Annals of Stati3tics, 2,

1302-1307.

Robertson, T. and Wright, F. T. (1982), "Bounds on Mixtures of Distribu

tions Arising in Order Restricted Inference," The Annals of stahstics,

10,302-306.

Robertson, T. and Wright, F. T. (1983), "On Approximation of the level

Probabilities and Associated Distributions in Order Restricted Infer-

ence," Biometrika, 70, 597-606.

Robertson, T., Wright, F. T. and Dykstra, R. L. (1988) Order Restricted

Statistical Inference. Chichester, U.K.: John Wiley.

Rockafellar, R. T. (1972) Convex Analysis. Princeton, New Jersey.



176

Rom. D. M., Costello, R. J. and Counell, L. T. (1994), "On Closed Test Pro-

cedures for Dose-Response Analysis," Statistics in Medicine, 13, 1583-

1596.

Ruberg, S. J. (1989), "Contrasts for Identifying the Minimum Effective Dose,"

Journal of the American Statistical A.~sociati()n, 84, 816-822.

Ruberg, S. J. (1995), "Dose Response Studies II. Analysis and Interpreta

tion", Journal of Biopharmaceutical Statistics, 5(1), 15-42.

Schaafsma, W. and Smid, L. J. (1966), "Most Stringent Somewhere Most

Powerful Test Against Alternatives Restricted by a Number of Linear

Inequalities," The Annals of Mathematical Statistics, 37, 1161-1172.

Scheffe, H. (1959), "A Method for Judging All Contrasts in the Analysis of

Variance," Biometrika, 40, 87-104.

Schoenfeld, D. A. (1986), " Confidence Bounds for Normal Means Under Or

der Restrictions, With Applications to Dose-Response Curves, Toxicol

ogy Experiments, and Low-Dose Extrapolation," Journal of the Ameri

can Statistical Association, 81, 186-195.

Siskind (1976), "Approximate Probability Integrals and Critical Values for

Bartholomew's Tcst for Ordered Means," Biometrika, 63, 647-654.

Snidjers, T. (1979), Asymptotic Optimality Theory for Testing Problems with

Restricted Alternatives, Mathmematisch Centrum, Amsterdam.



177

Tamhanc, A,C., Hochberg, Y., and Dunnett, C.W. (1996), "Multiple Testing

Procedures for Dose Finding," Biometrics, 52, 21-37.

Tang, D. and Lin, S. P. (1997), "An Approximate Likelihood Ratio Test for

Comparing Several Treatments to a Control", Journal oj the American

Statistical Association, 92 1155-1162.

Thompson, W. A. Jr. (1962), "The Problem of Negative Estimates of Vari

ance Components", The Annals of Mathematical Statistics, 33, 273-289

Tsu, J. C. (1996), Multiple Comparisons: Theory and Methods, London:

Chapman and HalL

William~, D, A. (1971), "A Test for Difference Between Treatment means

When Several Dose Levels are Compared with a Zero Dose Control,"

Biometrics, 27,103-117.

Williams, D. A. (1972), "The Comparison of Several Dose Levels with a Zero

Dose Control," Biometrics, 28, 519-531.

Williams, D. A. (1977), "Some Inference Procedures for Monotonically Or

dered Normal Means," Biometrika, 64, 9-14.

Wright, F. T. (1982), "Monotone Regression Estimates for Grouped Obser

vations," The Annals of Statist1cs, 10, 278-286

Wright, F. T. and Tran, T. (1985), " Approximating the Level Probabilities

in Order Restricted Inference: The Simple Tree Ordering," Biometrika,

72,429-439



178

Wright, F. T. (1988), "The One-way Analysis of Variance with Ordered AI·

teruatives: A Modification of Bartholomew's f:l Test", The Canadian

)ou"lol of Statistics, 16, 75-85.










	0001_Cover
	0002_Inside Cover
	0003_Blank Page
	0004_Blank Page
	0005_Copyright Information
	0007_Title Page
	0008_Abstract
	0009_Abstract iii
	0010_Acknowledgements
	0011_Table of Contents
	0012_Table of Contents vi
	0013_Table of Contents vii
	0014_Table of Contents viii
	0015_List of Tables
	0016_List of Tables x
	0017_List of Figures
	0018_Chapter 1 - Page 1
	0019_Page 2
	0020_Page 3
	0021_Page 4
	0022_Page 5
	0023_Page 6
	0024_Page 7
	0025_Chapter 2 - Page 8
	0026_Page 9
	0027_Page 10
	0028_Page 11
	0029_Page 12
	0030_Page 13
	0031_Page 14
	0032_Page 15
	0033_Page 16
	0034_Page 17
	0035_Page 18
	0036_Page 19
	0037_Page 20
	0038_Page 21
	0039_Chapter 3 - Page 22
	0040_Page 23
	0041_Page 24
	0042_Page 25
	0043_Page 26
	0044_Page 27
	0045_Page 28
	0046_Page 29
	0047_Page 30
	0048_Page 31
	0049_Page 32
	0050_Page 33
	0051_Page 34
	0052_Page 35
	0053_Page 36
	0054_Chapter 4 - Page 37
	0055_Page 38
	0056_Page 39
	0057_Page 40
	0058_Page 41
	0059_Page 42
	0060_Page 43
	0061_Page 44
	0062_Page 45
	0063_Page 46
	0064_Page 47
	0065_Page 48
	0066_Page 49
	0067_Page 50
	0068_Page 51
	0069_Page 52
	0070_Page 53
	0071_Page 54
	0072_Page 55
	0073_Page 56
	0074_Page 57
	0075_Page 58
	0076_Page 59
	0077_Page 60
	0078_Page 61
	0079_Page 62
	0080_Chapter 5 - Page 63
	0081_Page 64
	0082_Page 65
	0083_Page 66
	0084_Page 67
	0085_Page 68
	0086_Page 69
	0087_Page 70
	0088_Page 71
	0089_Page 72
	0090_Page 73
	0091_Page 74
	0092_Page 75
	0093_Page 76
	0094_Page 77
	0095_Page 78
	0096_Page 79
	0097_Page 80
	0098_Page 81
	0099_Page 82
	0100_Page 83
	0101_Page 84
	0102_Page 85
	0103_Page 86
	0104_Page 87
	0105_Page 88
	0106_Page 89
	0107_Page 90
	0108_Page 91
	0109_Page 92
	0110_Page 93
	0111_Page 94
	0112_Page 95
	0113_Page 96
	0114_Page 97
	0115_Page 98
	0116_Page 99
	0117_Page 100
	0118_Page 101
	0119_Page 102
	0120_Page 103
	0121_Page 104
	0122_Page 105
	0123_Page 106
	0124_Chapter 6 - Page 107
	0125_Page 108
	0126_Page 109
	0127_Page 110
	0128_Page 111
	0129_Page 112
	0130_Page 113
	0131_Page 114
	0132_Page 115
	0133_Page 116
	0134_Page 117
	0135_Page 118
	0136_Page 119
	0137_Page 120
	0138_Page 121
	0139_Page 122
	0140_Page 123
	0141_Page 124
	0142_Page 125
	0143_Page 126
	0144_Page 127
	0145_Page 128
	0146_Page 129
	0147_Page 130
	0148_Page 131
	0149_Page 132
	0150_Page 133
	0151_Page 134
	0152_Page 135
	0153_Page 136
	0154_Page 137
	0155_Page 138
	0156_Page 139
	0157_Page 140
	0158_Page 141
	0159_Page 142
	0160_Page 143
	0161_Page 144
	0162_Chapter 7 - Page 145
	0163_Page 146
	0164_Page 147
	0165_Page 148
	0166_Page 149
	0167_Page 150
	0168_Page 151
	0169_Page 152
	0170_Page 153
	0171_Chapter 8 - Page 154
	0172_Page 155
	0173_Page 156
	0174_Appendices
	0175_Page 158
	0176_Page 159
	0177_Page 160
	0178_Page 161
	0179_Page 162
	0180_Page 163
	0181_Page 164
	0182_Page 165
	0183_Page 166
	0184_Page 167
	0185_Page 168
	0186_Page 169
	0187_References
	0188_Page 171
	0189_Page 172
	0190_Page 173
	0191_Page 174
	0192_Page 175
	0193_Page 176
	0194_Page 177
	0195_Page 178
	0196_Blank Page
	0197_Blank Page
	0198_Inside Back Cover
	0199_Back Cover

