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Abstract

Statistical inference under order restrictions is an important field in sta-
tistical science and has been studied and practiced widely. The utilization of
the assumption of monotonicity increases the efficiency of statistical inference
procedures. This can be found in the literature such as Ayer, Brunk, Ewing,
Reid and Silverman (1955), Robertson and Wright (1974), Barlow and Ub-
haya (1971), Lee (1981), Kelly (1989), Korn (1982), Schoenfeld (1986), Hayter
(1990) and Lee (1996). In Chapter 2, we review some fundamental theories
about the order restricted statistical inference including isotonic regression and
test of a simply ordered hypothesis.

In Chapter 3, we study a max-min interval procedure, a modification of
Tukey’s studentized range technique, to construct simultaneous confidence in-
tervals for pairwise comparisons of response means by utilizing the prior knowl-
edge of the monotonicity of the means. The improvement of the proposed
max-min interval procedure is substantial.

The one-sided simultancous confidence lower bound is studied in Chapter

4. We investigate the i I imization problem of maximizing simul-
taneous lower bounds for nonnegative contrasts considered by Marcus (1978).
Significant improvements over Marcus’ (1978) results, including a necessary
and sufficient condition for the optimal solution and an efficient computation
algorithm to compute the optimal lower bounds, are made.

In Chapter 5, we introduce a one-sided multiple comparison test (OMCT)

for testing the homogeneity of the means against the simple order alternative.

i



It gives sharper one-sided simultancous confidence lower bounds. This OMCT
approach compares favorably with Hayter’s (1990) and Marcus’ (1978) ap-

proaches and it may be ble to the least si

approach.

The simultaneous statistical inference for response means with a control
is considered in Chapter 6. An orthant test statistic is introduced. With
the prior knowledge that the response means are monotone, a more efficient
simultaneous confidence lower bound can be inverted from this test to detect
the difference between response means and the control mean. An algorithm to
compute the optimal lower bound is included.

In Chapter 7, we demonstrate that the stepwise test procedure based on
likelihood ratio test is a more efficient test procedure for detecting the mini-

mum efficient dose in dose-response studies.
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Chapter 1

Introduction

Order restricted statistical inference has been researched and practiced for
the last 50 years. Many types of problems are concerned with identifying
meaningful structure in real world situations. Structure involving orderings
and inequalities has many useful applications. For example, the probability of a
particular response may increase with the treatment level; a regression function
may be nondecreasing; the failure rate of a component may increase as it ages;
or the treatment response may stochastically dominate the control. Hundreds
of research papers have been published on this topic and many of them can
be traced through the bibliographies of two books: Barlow, Bartholomew,
Bremner and Brunk (1972), and Robertson, Wright and Dykstra (1988).
Utilizing the prior knowledge of ordering, including the ordering of pa-
rameters, the ordering of distribution functions, and other related constraints
can increase the efficiency of statistical inference procedures. The incorpora-

tion of this prior k into esti ion makes the esti superior to

the ordinary one. For example, the isotonic regression (see definition 1.3.3

in Robertson, Wright and Dykstra 1988) can reduce the total square error



(Ayer, Brunk, Ewing, Reid and Silverman 1955) and the maximum absolute
error (Robertson and Wright 1974, Barlow and Ubhaya 1971). The reduc-
tion of mean square error for the normal means problem with a simple order
was deduced by Lee (1981). Lee (1988) also observed that this property does
not hold, in general, for partial order restrictions. Furthermore, Kelly (1989)
showed that the isotonic regression estimator of the normal mean is superior to
the ordinary one under any nonconstant loss which is a nondecreasing function
of absolute error.

It is also a common view that a more powerful test can be obtained by
taking the additional knowledge into account. For example, considering a one-
sided alternative leads to more powerful tests. But caution should be taken to

interpret, the result from such a test. In particular, without prior knowledge

that strongly supports the ion of d it may be misleadi

to interpret the rejection of the null hypothesis as evidence supporting the
alternative hypothesis.

The classical likelihood ratio test (LRT), which is denoted by %3, or B3,
for testing the equality of partially ordered means from several normal popu-
lations was first proposed by Bartholomew (1959a, 1959b, 1961a, 1961b). It
is known to possess generally superior operating characteristics to those of its
competitors (Robertson, Wright and Dykstra 1988). Tests for identifying the
structures with order restrictions often require good estimates under inequal-

ity constraints. However, di ies in ing the restricted maximum

and ining the null distribution of the test statistics

make the LRT difficult to implement in many instances. Therefore, the ap-



proximations to these distributions are of considerable interest. Bartholomew

(1959a, 1959b) proposed a t it Chi-square imation for the null

distribution of ¥%,. Siskind (1976) and Grove (1980) conjectured that the
null distributions of LRT would not be sensitive to moderate variations in
the weights and this has been investigated by Robertson and Wright (1983),
and Wright and Tran (1985) for the simple order and the simple tree order.
Another approach has been to obtain sharp upper and lower bounds on the
tail probabilities for the LRT. These bounds, which give the most extreme
possible error for the equal weights approximation, were studied by Robertson
and Wright (1982), Wright and Tran (1985), and Lee, Robertson and Wright
(1993).

Several other researchers, including Abelson and Tukey (1963), Hogg (1965),
Schaafsma and Smid (1966), and more recently Snidjers (1979), considered the
tests based on contrasts. One advantage of these tests is that the contrast
statistic is normally distributed with easily computed mean and variance un-
der both the null and alternative hypotheses. Such a contrast test is easily
shown to be uniformly most powerful for alternatives in a certain direction.
Consequently it is very powerful in some subregion of the alternative hypoth-
esis and less powerful in other directions. While the LRT is not most powerful
at any particular point, it maintains a more uniform power over all the alter-
native regions. The aforementioned contrast tests can not compete with the
LRT in general. The multiple contrast test is another approach that may be
comparable to the LRT. Dunnett’s test (1955) for testing against a simple tree

alternative is surely the best known and most widely used. Van Eeden (1958)



and Williams (1971, 1972) proposed ad hoc tests. The properties of the ad hoc
tests have also been shown to be generally inferior to those of the LRT (Chase
1974, Robertson and Wegman 1978). Mukerjee, Robertson and Wright (1987)
introduced the multiple contrast test based on orthogonal contrasts. And most
recently, McDermott (1999) proposed a class of tests based on an orthant ap-
proximation which can be viewed as generalizations of the orthogonal contrasts
test proposed by Mukerjee, Robertson and Wright (1987).

Significant contributions have been made in the literature for testing ho-
mogeneity against ordered alternatives. But confidence interval procedures
involving order restrictions have been somewhat slow in developing. The pi-

oneering work in the d P! of si

d intervals for re-

stricted settings was made by Bohrer (1967) and Bohrer and Francis (1972).
Bohrer (1967) showed how the usual simultancous two-sided Scheffé bounds
on all linear functions of certain parameters can be sharpened if attention is

d to only linear of normal means whose coefficients are

known to be nonnegative. Bohrer and Francis (1972) described simultane-
ous one-sided confidence bounds in this restricted setting. Marcus and Peritz

(1976) also D hodology for finding simul: d inter-

vals for linear combinations of normal means with certain restrictions on the
coefficients. Marcus (1978) was able to improve Bohrer and Francis bounds
when prior information is available on the parameters. The evaluation of
the improved simultaneous confidence lower bound is a concave programming
problem. Deriving a computation algorithm to search for an optimal solution

to this concave programming problem is a new and challenging work and has



not received much attention. Kuhn-Tucker equivalence theorem (Kuhn and
Tucker 1951) will help us to resolve the difficulties and the application of this
theorem will be discussed in detail in this thesis.

Simultaneous statistical inference received interest after the development of

research on multiple i and simul fid intervals. The

fundamental contributions by Tukey and Scheffé on this area can be found in
the monograph by Miller (1981). Berk and Marcus (1996) studied simultaneous
inference for partially ordered means. Other simultaneous inference procedures
can be obtained in Hochberg and Tamhane (1987) and Hsu (1996). In this
thesis our interest will focus on simultaneous statistical inferences with order
restrictions.

It is of considerable interest to study the monotone regression curves with
independent normal errors. In the dose-response studies, we usually assume
the dose-response mean y; = f(z;),i = 1,...,k, is a monotone, nondecreasing

function of the dose level z;. The prior knowledge of icity of

curves can be used to increase the efficiency of the maximum likelihood esti-
mate as shown by Lee (1981). Korn (1982), Schoenfeld (1986) and Lee (1996)
all sought confidence intervals for each individual mean p; by incorporating
this icity. The i ized i modulus

by Lee (1996) gains much over the Scheffé-typ dure by Schoenfeld (1986)
and the studentized maximum modulus by Korn (1982). Hayter (1990) pro-
posed the one-sided studentized range test (OSRT) to construct a one-sided
simultaneous confidence lower bound for the pairwise mean comparison u; —

for the balanced one-way analysis of variance model. Hayter (1992) generalized



the OSRT procedure to an unbalanced model with three populations. How to

detect the diffe between the means efficiently is

the main subject which will be pursued in this thesis.

In Chapter 2, we introduce some basic concepts in order restricted infer-
ence. Section 2.1 consists of the definition of a simple order, isotonic regression
for a simple order restriction and the algorithms to obtain the isotonic regres-
sion. In Section 2.2, the likelihood ratio tests for testing the simply ordered
alternative and their relationship with the linear contrasts are given. In Section
2.3, some results about interval estimation of the simply ordered parameters
are introduced. The Kuhn-Tucker equivalence theorem, which will be used in
Chapter 4 and Chapter 6, is given in Section 2.4.

In Chapter 3, the two-sided simultaneous inference will be studied. A sim-
ple novel procedure that modifies Tukey’s studentized range technique is pro-
posed to construct simultaneous confidence intervals for pairwise comparisons
of means by utilizing the prior knowledge of the monotonicity of the response

curve. The new is a P over its

In Chapter 4, we will study the problem considered by Marcus (1978).

She i duced the optimization problem of imizing si lower

bounds for nonnegative contrasts Y5, nicip, Yh; nic; > 0,5

¥ ni¢; = 0 with the prior knowledge that py < 1 < -+ < ptx. However, her
result is incomplete. We will propose a necessary and sufficient condition for
the optimal solution and an efficient computation algorithm to compute the
optimal lower bounds for pairwise comparisons and nonnegative contrasts.

In Chapter 5, a new simple one-sided multiple comparison test (OMCT)



is introduced to test the null hypothesis Hy : iy = jip = --- = 15 against the
alternative hypothesis H, : p; < pp < --- < p. It can be used to construct
the efficient one-sided simultaneous confidence lower bounds for pairwise com-

parisons and ive contrasts. It is in izing dosage

levels. This OMCT approach compares favorably with Hayter’s (1990) and
Marcus’ (1978) approaches and it may be comparable to the least significant
difference approach.

In Chapter 6, we will consider the simultaneous statistical inference with a
zero-dose control. An orthant test statistic is introduced. Its power compares
favorably with other procedures. With the prior knowledge that the dose-
response curve is monotone, a more efficient simultaneous confidence lower
bound can be inverted from this test to detect the difference between the dose
response mean and the zero dose control mean. An algorithm to compute the
optimal lower bound is also included.

In Chapter 7, we will study the stepwise procedure for detecting the min-
imum efficient dose when the control mean and dose-response means satisfy
the simple order g < py < -+ < . Likelihood ratio test and multiple com-
parison tests are considered. It will be shown by a simulation study that LRT
is a more efficient test procedure.

In Chapter 8, we will give a brief summary of the studies in this thesis.



Chapter 2

Order Restricted Statistical
Inference

2.1 Maximum Likelihood Estimate Under Or-
der Restrictions

2.1.1 Simple Order

Let X be a finite set {1, %2,...,x}. A binary relation " <" on X is a simple

order on X if

1. it is reflezive: z < z for z € X;

2. it is transitive: z,y,z € X,z < y,y <z imply z < z;

3. it is antisymmetric: z,y € X,z 2 y,y 2 2 imply z = y;

4. every two elements are comparable: z,y € X implies either z < y or y < z.

A simple order on the finite set X is in the form of z; X @, < --- <

zx. A binary relation < is a partial order if it is reflexive, transitive, and



antisymmetric, but there may be noncomparable clements. The simple trce
order: @ =< ;i = 2,..., k, is an example of a partial order.
The simple order is one of the most important orders and has many useful

applications. This will be evident throughout this thesis.
2.1.2 Isotonic Regression with a Simple Order Restric-
tion

Let X be a finite set {z1,23,..., %} with a simple order 2, < 7 < - < 7.
< fl=)-

Let g be a given function on X and w a given positive function on X. An

Then a real valued function f on X is isotonic if (1) < f(z2) <

isotonic function g* on X is called an isotonic regression of g with weight w if

and only if it minimizes
&
Yloai) ~ f(@fPw(z)
=t

in the class of all isotonic functions on X.

Suppose g and w are functions defined on X, set

A= wa

for s < t. Av(s,t) depends on g, this will not be made explicit in the notation.
Theorem 2.1.1 The isotonic regression of g is given by

g (z) = p;ggﬂgg/lv(s,t)

= max min Av(s,1)
1<3%3 stk

min max Av(s,t)
i<i<k1<s%

= min max Av(s,t)
o e,



(Robertson, Wright and Dykstra, 1988)

Theorem 2.1.2 If {s : ¢*(z,) = ¢} = {i,i + L,....j}, then ¢ = Av(i, ).
(Th1.8.5 Robertson, Wright and Dykstra, 1988)

Theorem 2.1.2 reduces the problem of computing g* to finding the sets
on which g* is constant (i.c. its level sets). The calculation of g*, given g,
the weight w, and the simple order on X, can be accomplished via quadratic
programming. An extensive literature on methods for computing quadratic

programming solutions for such a problem exists. A number of algorithms have

been proposed for ing the isotonic ion. We will introduce two of
them in the next subsection that have been used extensively, namely the pool-
adjacent-violators algorithm (PAVA) and the minimum lower sets algorithm.
The utilization of the simple order information in estimation makes the es-
timates superior to the ordinary one. Lee (1981) shows that mean square error
is reduced for every individual mean by using the order restricted maximum
likelihood estimate (MLE) of the simply ordered normal means. Kelly (1989)
obtained an even stronger result that the absolute error of each component

of the isotonic i i is i smaller than that of the

usual estimator.

2.1.3 Algorithms for Isotonic Regression for a Simple
Order

Pool-Adjacent-Violators algorithm (PAVA)



The PAVA starts with g. If g is isotonic then g* = g. Otherwise, there
must exist a subscript i,2 < i < k, such that g(z;_;) > g(z;). These two
values are then replaced by their weighted average, namely, Av(i — 1,7) =
[9(@i1)w(zir) + (@) w(w:)]/[w(zi1) +w(xs)] and their weights by w(zi-1) +
w(z;). Tf this new set of k — 1 values is isotonic, then g*(z,_1) = g°(z;) =
Av(i — 1,i) and g*(z;) = g(x;) otherwise. If this new set of values is not
isotonic, then this process is repeated using the new values and new weights
until an isotonic set of values is obtained. The value of g*(z;) is the weighted

average over the block in which z; is contained.

Minimum lower sets algorithm

A subset L of X is called a lower set with respect to the simple order <
ify € Landz < yimply ¢ € L. A subset U of X is called an upper set if
z€Uand o <yimply y € U. A subset B of X is a level set if and only if
there exists a lower set L and an upper set U such that B = LN U. There are
exactly k nonempty lower sets and exactly k nonempty upper sets. The set
X is both a lower set and an upper set. The other lower sets are sets of the

form {21, 23, .., 2}

k — 1, and the upper sets are sets of the form

{i T, o T},

Set.
g°(@:) = Av(l,i) = min{Av(1,7) : 1 < <k} for i=1,2,...i1
Now consider the averages of the sets {i; + 1,...,i} for all 4y < i < k and set

9 (2:) = Av(ir+1,i5) = min{Av(is+1,) 1y < j < K} for i =ir+1,i142, ., ia.



This process is continued until g*(z) is determined.

2.2 Test of a Simply Ordered Hypothesis

Many of the methods of statistical inference are derived from the problem of
comparing several normal populations. It is often useful to begin the analysis
by testing the null hypothesis that the means are equal. However, in appli-
cations, a researcher may believe a priori that the means are simply ordered.
When this is so, it would be expected that more powerful tests could be de-
vised. In this section, the likelihood ratio tests (LRTs) for homogeneity of
normal means with a simple order restricted alternative are introduced. If the
simple order imposed on the alternative is in question, one may wish to test
this order restriction as the null hypothesis with an unrestricted alternative.
The LRTs in this setting are also given in this section. In the meantime, we
will demonstrate the relationship between the LRT functions and the class of
linear functions of the sample means.

Let X = {1,2,...,k} and assume that the simple order < is defined on X.

Let i; be the mean of a normal population with variance o2 for i = 1, ..., k. We
denote the mean vector by y1 = (ju1, ..., j1)'. We are interested in the following
hypotheses

Ho:p=pz=""=p,

Hyip Spp <ooe <y

H,: no restrictions on the means.
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Suppose that ¥; is the mean of a random sample of size n; from a normal pop-
ulation with unknown mean g; and variance of the form o? = a;0? with the
a; being known positive constants and suppose that the samples are indepen-
dent. Under Hy, the MLE of j;,i = 1,..., k, is given by i = $5, w;¥s/ T w;
with w; = n;/a;. Under Hy, the maximum likelihood estimate (MLE) of i is
* = (uf, ..., ui), the isotonic regression of ¥ = (¥i,..., ¥;) with weight vector
w = (wy, wy, .., ws) and the simple order < which determines Hy. The unre-
stricted MLE of 4 is Y. Let s? be an estimator of 0% which is independent
of ¥ with v52/0% ~ X with v = £, n; — k > 0 (x2 denotes a Chi-square
variable with v degrees of freedom).

Consider testing Hy versus H; — Hy, the LRT rejects Hy for large values of

2
Spp = ——. 2.1
o) @l
where

x

X = Do wiluyy — )/, 22
k 2

X2 = S wil¥i = i)/, (23)

i=1

and Q(v) = vs?/o®. If o? is known, X3, is the LRT for testing Hy versus
H, — H.
The LRT of H; versus Hy — H, rejects Hy for large values of

X
5= G (2.4)
and ¥2, is the LRT for testing H, versus Hy — Hy when o? is known.
Let Ps(l, k; w) denote the level probability that there are exactly [ distinct

values (levels) for the MLE yu* satisfying the simple order < when Hy is true.
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The Ps(l,k;w)’s depend on the sample sizes and the population variances
through the weights w;. Let 1 < m < k and let B, By, ..., B be a partition
of X where B; = {ij1 +1,ij01 +2,...,3;},5 = 1,..,m(ip = 0). Let Lo
be the collection of all the possible decompositions (By, By, ..., By) of X. Set

Wg, = ien; wi, Cp, = 1,

i = ij-1 and W(B;) = (Wi,_y1,Wi;_ 142,y w;;). For

a given decomposition, define <’ on {1,2,..,m} by i <" jif i < j. Let
Ps(m,m; Wp,,Wg,, ..., Wg,) be the probability of m levels with the simple
order < and the weight vector (Wa,, Wa,, ..., Wa,,) and let Ps(1, C,; w(B;))
be the probability of one level with the simple order < and the weight vector
w(B;).
Theorem 2.2.1 Form € {2,3,...k -1},
m

Ps(m, kyw) = Ps(m,m; Wy, W, ..., Wa,,) T Ps(1, Ca; w(BY).-

{B1.By, B} Lok i=1

(Robertson, Wright and Dykstra, 1988)

The above theorem provides a recursive formula for calculating Ps(l, k; w);
however, it can be tedious to use. When the weights are equal, Ps(l, k; w) is

denoted by Ps(l, k) and it can be obtained by the following theorem.

Theorem 2.2.2

PR =3
Po(k, k) = %
and
Ps(lk) = 2Ps(l - Lk -1+ EZ Pyl k= 1) for i=23,. k1.

k k



(Robertson, Wright and Dykstra, 1988)

Numerical values of Ps({, k) are given in Table A.10 (Robertson, Wright and
Dykstra 1988). Robertson and Wright (1983) have shown that Ps(l, k; w) are
robust to small deviations in the weights and give an approximation for these
mixing coefficients for unequal weights. The null distributions of X3, X2, So:
and S, are given by the following theorem which is equivalent to the corollary

of Theorem 2.3.1 by Robertson, Wright and Dykstra (1988).
Theorem 2.2.3 For yi € Hy, v a positive integer and N = £5_, n;

k.
P[> = Ps(l,k;w)P[xi_, 2 d]
=2

ko1
Pl > d =Y Ps(lkiw)Plxi > ¢
=1

k i
Plsin > = 3 (L )P > =l

k=1
P[Siz > =Y Ps(l, kW) P[Fe-ip >
pt

Jor any ¢ > 0.

For the case in which the weights are equal, i.e., w; = - - - = wy, the critical
values for the above tests are given in Table A.4, A.6 and A.7 of Robertson,
Wright and Dykstra (1988).

Hogg (1965) discussed the relationship between the likelihood ratio function
and the class of linear functions of the sample mean ¥;. Without loss of
generality, we assume that Y% mie; = 0 and 5, mi? = 1 for the linear

contrast S5, nic;;, and the k populations have an equal known variance o2,



16

Suppose that gy < i < -+ < sy The following result was given by Hogg
(1965).

Theorem 2.2.4 (Hogg, 1965)
k. k
Vi = {max }onieYi/ (0* 3o mich)' 1} (25)
= =

subject to ¢; satisfies the simple order as p;. The mazimum is attained at

¢ = (uf = )/ Theamalsf = )2

The results discussed in this section can be generalized to the other partial
orders (see Robertson, Wright and Dykstra, 1988).
2.3 Interval Estimations

The pioneering work in the development of simul dence intervals

for restricted settings was carried out by Bohrer (1967), with further refine-
ments found in Bohrer and Francis (1972). Scheffé (1959) provided a method

of constructing confidence bounds on a linear function
k
f(x)=px =Y Bizi.
i=1

These bounds are based on samples y(x) (observed values of T%, fiz;) which
are normally distributed with mean f(x). Bohrer (1967) gave sharper con-

fidence bounds for a linear function of i by

Scheffé’s (1959) confidence bounds. In particular, assume B, Bay ... Biy the
least squares estimator of By, By, ..., Bk, are independent normal random vari-

ables with respective means By, By, ..., B and known variances 0%, 03, ..., o2
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Let X* = {x:a; >0 for 1< i< k}, Bohrer (1967) proposed the following
100(1 — @)% simultaneous confidence intervals for =5, Bz,
k. £k ko k
3 Biwi— (X kot < Y fias < Y B + oY a2a?) 2
= =1 = = =
where ¢ is determined by
k
Z () (E<APN <A =1-a
=
The table values ¢ = c(a, k) were given by Bohrer (1967). For large k, the si-
multancous confidence bounds for T£_, fiz; when x is restricted to the positive
orthant are up to 30 percent shorter than Scheffé’s (1959) bound. Bohrer and
Francis (1972) extended the above development to the case when £y, B, ..., B

are not i
Thy B

Marcus and Peritz (1976) employed the critical point d, of Bartholomew’s

and gave ided si bounds for

LRT (1959, 1959b, 1961a) for the simple order alternative to construct the

ided simul fid, lower bound for trasts S5 nici
where S5 nic; = 0 and ¢; < ¢ < +++ < . Assume that ¥;,i = 1, ..., k, are
normal random variables with mean y; and variance 2/n; where o is known.

The lower bound for S5, nicip; is of the form
£ "
3 niei¥i — oda(3 nic?)2
= =

If the means y; are simply ordered, i.e., 1 < ptg < -+ < g, the lower bound

for the monotone contrast Y5, nyc;p; can be improved to

max{i nic;Y; — od, (i nic?)V/?} (2.6)
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subject to T, nicipss < Shiy maci iy & < coqr, Dy mici =0, Spp < - <
s Further work on simultaneous confidence intervals for the class of mono-
tone contrasts can be found in Williams (1977) and Marcus (1982)

Marcus (1978) studied the one-sided simultaneous confidence lower bound
for more general nonnegative contrasts. The nonnegative contrast S, ncifsi,
where S¥ i > 0,5 = 2,...,k, and &, nie; = 0, includes the monotone
contrasts and all types of pairwise mean comparisons: f1j — pi, 1 <i < j < k.
The confidence lower bounds for nonnegative contrasts by Marcus (1978) were
given by

3 .k

Y nie¥i — oda(Yonic))'?

= =
where d, is the positive square root of the critical value for ¥2, (see Section
2.2). With the simple order restriction on treatment means, the lower bound

for the nonnegative contrast Ef:, n;c; g can be improved to

max(i nie;¥i— udﬂ(i nic)?} (2.7)
= =

subject to $A, et < Ty mact s, TE mic = 0,58 mic; > 0,5 =
and gy < pip < -0 < e

‘When the treatment means are monotone, the ordered pairwise mean com-
parison fi; — i, 1 < i < j < k, is of particular interest. It can be used to
determine whether y; is larger than y;. For the equal sample size case, Hayter
(1990) proposed an efficient one-sided simultaneous confidence lower bound for
Hj = pi s

Y; = Y= shiau/vi, (2.8)
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where hy,q, is defined by

Pu{ max (V; = V)/(s/V/) 2 hea} =

185555k
when = piz = -+ = . Some critical values hya, were given by Hayter
(1990). If o is known, s is replaced by o and hyap0 is used. Furthermore, the
one-sided lower bound for nonnegative contrasts -5, ci; can be formulated

as

=

= 3 el (2.

Hayter(1992) generalizes the above lower bounds in (2.8) to the unequal sam-

ple size cases for three ordered normal means. By the similar discussion as
Marcus and Peritz (1976), and Marcus (1978), incorporating the simple or-
der restriction on y; improves the lower bounds for pairwise comparisons and
nonnegative contrasts.

Korn (1982) studied confidence bands for d ponse curves.

With the assumption that the response means are monotone nondecreasing,
the 100(1 — a)% simultaneous confidence intervals for 1;’s were given by
max{¥; — mys/ v/} < pi < r;gig\{Y, + m s/ v/},

where my,, is the upper a point of the studentized maximum modulus distri-
bution with parameters & and v (Miller 1981). Both Schoenfeld (1986) and
Lee (1996) sought confidence intervals for each individual mean y; by incorpo-
rating the monotonicity of the response means. The generalized studentized
maximum modulus procedure by Lee (1996) gains much over the Scheffé-type
procedure by Schoenfeld (1986) and the studentized maximum modulus by

Korn (1982).
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2.4 Kuhn-Tucker Conditions

The evaluation of the improved simultancous confidence lower bounds such as
in (2.6) and (2.7) is a maximization problem subject to a mixture of equality
and inequality constraints. Particularly, let x be an n x 1 vector and H(x) be

an m x 1 vector whose components s (x

-, h(x) are differentiable concave
functions for x > 0. Let g(x) be a differentiable concave function for x > 0
as well. The Kuhn-Tucker equivalence theorem will enable us to find an x°
that maximizes g(x) constrained by H(x) > 0 and x > 0. A vector x is
said to be feasible if x satisfies all the constraints. The optimal value of
the problem is the maximum of g(x) over the sets of feasible points. Those
feasible points which attain the optimal value are called optimal solutions. Let
#(x,u) = g(x) + WH(x). Let [§2]° and [gg]" denote the partial derivatives

evaluated at a particular point x? and u, respectively.

Theorem 2.4.1 (Equivalence theorem) Let hi(x), ..., hm(x), g(x) be con-
cave as well as differentiable for x > 0. Let ¢(x,u) = g(x) +u'H(x). Then x°
is a solution that magimizes g(x) constrained by H(x) > 0 and x > 0 if and

only if x° and some u° satisfy the following conditions:
(1) [32F <0,[2)e"=0,x"2>0;
(2) [321°20,[&] v =0,u" >0.

(Theorem 3 Kuhn-Tucker 1951)

Simple modifications are admitted when the constraints H(x) > 0,x > 0

are changed to the following three cases:
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Case 1: H(x) > 0.

Here, using ¢(x, u) = g(x) +u'H(x) defined for all x and constrained only
by u > 0, one must replace condition (1) by

) (21 =o

Case 2: H(x) = 0,x > 0.

Here, using ¢(x, u) = g(x) + u'H(x) defined for all u and constrained only
by x > 0, one must replace condition (2) by

) el =0

Case 3: H(x) = 0.

Here, using ¢(x,u) = g(x) + u'H(x) defined for all x and u without con-

straints, one must replace conditions (1) and (2) by (1) and (2°). This corre-

sponds to the customary use of the method of Lagrange multipliers.



Chapter 3

Max-Min Multiple Comparison
Procedure

The effects of a drug or a toxin are estimated by an experiment in which in-
creasing doses z1, Ty, .. ., 7 are given to & groups of animals and the response
Y;; of the jth animal in the ith group is observed. It is frequently of interest to
use simultaneous confidence intervals for pairwise differences of dose-response
means to assess the significance of dose levels. If a parametric family of dose-
response curves is hypothesized, then the parameters and the curve can be

estimated from the data using a nonlinear regression. A confidence region

for these yields bands for pairwise compar-

isons of the dose-response curves in a straightforward manner. But in most

the response at lower doses is of in-
terest and no parametric dose-response model is assumed to hold in general.
In these applications, the response mean Ji; can be estimated by the sample
mean Y; at various doses. Assuming normality of the response data, simul-

taneous confidence intervals for pairwise mean differences can be constructed

22
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using the studentized range technique. The simul lence interval

estimation for i i of ordered effects

were studied by Lee and Spurrier (1995) and Liu, Miwa and Hayter (2000).
In this chapter we propose a max-min technique to compare pairwise mean
differences. The procedure given in Section 3.1 is a modification of the stu-
dentized range technique and it can be used when the dose-response curve is
isotonic. Our max-min multiple comparison procedure is an improvement over
Tukey’s technique since our technique utilizes the prior knowledge of mono-
tonicity. This improvement can be found in an example given in Section 3.2
and its expected gains are given in Section 3.3. A discussion is presented in

Section 3.4.

3.1 Model-Free Confidence Intervals
3.1.1 Max-Min Simultaneous Confidence Intervals

The dose-response curve y = f(z) is to be estimated from k independent
samples ¥;1, Yo, ..., Y, taken at increasing dose level 2,7 = 1,2,...,k. The
¥,y are independent normal random variables with mean ji; = f (z;) and with an
equal unknown variance o2, If a parametric model for £(z) is not hypothesized,
then f(z;) can be estimated by the means ¥; = X7, Yi;/n of the responses
at the dose levels z;. The usual model-free approach to form the 100(1 — a)%
simultancous confidence interval for the pairwise mean differences u; — i is

given by

s

Vi-Yi-qg,=<suw—-msY-Yi+q, (3.1)

Sl
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where v = k(n—1), s> = ¥, ;(Y;;~ ¥:)?/v and ¢, is the upper 100 percentage
point of the studentized range test with parameters k and v (see Miller 1981).

If the dose-response curve f(z) is known to be monotone nondecreasing,
then the isotonic regression offers natural estimates of the p; = f(z;) and
it can be computed from the sample mean Y; by the pool-adjacent-violators
algorithm (see Section 2.1). Under the assumption that the regression function

is monotone nondecreasing, for any | < j,I' > i,m > j,m’ < i, we have that
= g S = S =

Note that it is possible that I < I. Therefore, p; — yi; will be bounded from
below by the lower confidence bound for 1 — pur and from above by the upper

confidence bound for f,— fipy. One may have another set of confidence interval

s B

Vi—Ye—qt,—= <=1 S V= Yo + ¢,

When f(z) is known to be nondecreasing, the following 100(1 — @)% simulta-

neous improved confidence intervals are proposed:

s

max (Y, — Yo — ¢
ts;,vz‘( L

s s s
<pi—-m< mg;{gg(ym =Y +aqf, (3.2)

These simultaneous confidence intervals are not derived from the estimated
isotonic regression. They are derived from the sample means by utilizing the
monotone assumption on f(z). We have just shown that any nondecreasing

sequence yi; satisfying (3.1) will satisfy (3.2). On the other hand, it is obvious

that the nondecreasing sequence pi; satisfying (3.2) will satisfy

(3.1). Thus, the simultaneous confidence intervals (3.2) for pairwise differences
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of the true dose-response means have an exact 1 — o coverage probability.
The above modified procedure applies when f(x) is known to be monotone
nondecreasing. A computation procedure to find the lower bounds and the
upper bounds of (3.2) will be illustrated in the next section.

Utilizing the one-sided studentized range test, Hayter (1990) constructed a
one-sided 100(1 — )% simultancous confidence lower bound for ji; — jii, j > i.
By the similar discussion as Marcus (1982), a conservative 100(1 — )% two-

sided confidence interval can be obtained as follows:

where the critical value h{/? for one-sided studentized range test statistic was
tabled by Hayter(1990) for o = .10,.05,.01. The improved confidence interval

under the assumption of monotonicity is

(% — B — B2 } Spi—m < min_ (Vo= T+ h222). (3.3)

m2jmii

For a fixed a, we can sce that gf, < hf’ for any positive integers & and
v. Therefore, the max-min confidence interval (3.2) by studentized range test
is always shorter than the confidence interval (3.3) by one-sided studentized

range test.

3.1.2 Unequal Sample Size Case

Let ¥; be the sample mean of n; observations on the ith dose level. A mod-
ification of Tukey’s simultancous confidence intervals can be obtained from
the conservative property of the Tukey-Kramer multiple comparison proce-

dure. Hayter (1984) showed that if n are unequal, simultaneous confidence
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intervals (3.1) can be modified by replacing 2= by {1(& + 1)} in the confi-

dence interval for ; — 11;, and the coverage probability is at least 1—a, that is

forall 1<i,j<k}>1-aq

If () is monotone nondecreasing , the 100(1 — @)% max-min simultancous

confidence intervals for ji; — i, 1 < i < j < k are

1 o
<= < min {Vn—Votqg,s

Yi-Yi—q
e (T G\ S T mjm’ <i

<50

The simultaneous confidence intervals (3.4) and (3.5) are analogues of (3.1)
and (3.2), respectively, when sample sizes are unequal. They are conservative
because their coverage probability is at least 1 — . A FORTRAN program for

the max-min simul d

interval (3.5) is given in the
Appendices.

Hayter (1984) also noted that if interest is restricted to pairwise compar-
isons of the means, the Tukey-Kramer procedure (3.4) will provide shorter

intervals than Scheffé’s procedure and the classical Bonferroni’s procedure.

Therefore, the max-min simul ds interval d

is good in

comparing pairwise means under the monotone assumption.
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3.2 A Numerical Example

For illustration, we consider the data, given in Table 3.1, from a binding in-
hibition assay which was described fully by Kanowith-Klein, Vitetta, Korn
and Ashman (1979). For each dilution of antiserum, the number of rosettes
formed was counted and compared to the number of rosettes formed with no
antiserum present. The analysis here proceeds conditionally on the numbers
of rosettes formed with no antiserum present. The percentage inhibitions can
be taken to be statistically independent (see Korn 1982). In this set of data,
there are k = 9 different dilutions of one antiserum.

For the 24 observations in Table 3.1, the pooled estimate of the variance, s?,
is 86.48 with 15 degrees of freedom. The 90% Tukey’s simultaneous confidence
intervals of j; — p;, 1 < i < j < 9, calculated according to (3.4), are provided
in Table 3.2 with the upper percentage point g}19 = 4.52. If I' < , the Tukey’s
lower bound can be found in the bottom half of the table, whereas if I' > |
the values are the negatives of the top half of the table with the indices I'
and [ interchanged. The 90% max-min simultaneous confidence intervals can
be computed using the values in Table 3.2. To compute the max-min lower
bound, we change the sign on each value of the upper bounds in Table 3.2.
For example, in row 5 and column 6, the value 17.94 is Tukey’s upper bound
for pg — ps; hence -17.94 is Tukey’s lower bound for 5 — 5. The max-min
lower bound for yz5 — ju4 is the maximum of the values of the first 5 rows in
columns 4 to 9. That value is -17.94 which is Tukey’s lower bound for 5 — 6.

The 90% max-min simultaneous confidence intervals for j; —1;,1 <@ < j <9,
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calculated according to (3.5), are provided in Table 3.3. The notation —17.94*
is used in Table 3.3 to indicate that the max-min lower bound for y5 — pg is
zero from our prior knowledge and the value -17.94 indicates the lower bound
computed by (3.5). The max-min upper bound for j1; — 4 is the minimum of
the values of the first 7 rows in columns j to 9. The max-min upper bound for
s — pq is 20.80, which is Tukey’s upper bound of ps — pu4.

In general, by utilizing the prior knowledge of order relationship on p;,
Tukey’s simultaneous lower bound and upper bound can be improved by the
max-min technique. For example, the 90% max-min simultaneous confidence
interval of jig — iz is (0.48, 55.22); however, the corresponding Tukey’s simul-
taneous confidence interval is (-4.22, 55.22). One may not conclude a signif-
icant difference between level 2 and level 9 using Tukey’s procedure but this
difference can be detected by the proposed max-min procedure. Comparing
the max-min confidence intervals (Table 3.3) with Tukey’s confidence intervals
(Table 3.2), 25 of the 36 lower bounds had considerable improvements, as did
14 of the 36 upper bounds.

The confidence interval (3.3) obtained by Hayter’s one-sided studentized
range test can also be generalized to the unequal sample size case. The critical
value is replaced by 1393, = 4.68, with the samplesizen = (2,2,4,2,3,3,2,4,2).
Comparing this to the critical value gg1§ = 4.52, we realize that the two-sided
confidence bound constructed by one-sided test is less efficient than the one
obtained by two-sided test.

For this example, the critical values (coefficients of the pooled variance

sy/Z+ ) of Tukey's, Scheffé’s and Bonferronis procedure are ¢§1%/v/2 =
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3.20, \/BFSIY = 4.12 and #014 = 3.57, respectively. Tukey’s procedure yields
the shortest confidence intervals for ji; — 1, j > i, therefore, since the max-min
procedure is an improvement over Tukey’s procedure, the max-min simultane-

ous confidence intervals are effective for pairwise comparisons of the means.

3.3 Expected Gains of Max-Min Confidence
Bounds

We shall consider the equal sample size case. The results for unequal sample
size case follow similarly. The 100(1 — )% Tukey’s simultaneous confidence

intervals for p; — p;,1 < j, are

s

;- Yi-ag, H-Fitd

The expected lower and upper bounds are

o B(s)
i = pi — qk,v%v

and
=t qk“,y%,
respectively.
Let
Ly = max (Vs — Yo —qi, .
and

. s
Uy = min (Vs Yo+ 4,
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be the max-min lower bound and the max-min upper bound for (3.2). The

expected max-min lower bound is

By = Bl (- Yo} - 2
= Blgg¥s) - EminTo) - 2, 2.

The expected gain, denoted by gi;(L), of Li; over Tukey's lower bound is
94(L) = B{max(¥y - uy)} - B{min(¥a — p)}- (36)

The distributions of maxs<; (Vs — ;) and mingss(¥a — ) can be obtained in
a straightforward manner, but the computations of their expected values are
very complicated. Since the gain is nonnegative, the expected gain is always
nonnegative. Similarly, we obtain the expected gain, denoted by g;;(U), of Uy;

over Tukey's upper bound as
94(U) = B{max(Yo — u)} = B{min(¥s - p;)}- @3.7)

The gains gi;(L) and gi;(U) are illustrated by the regression curve j; =
fla;) with gy = -+ = py = pand peyy = -+ = py = p+ 6. We restrict our
study to pairwise comparisons of j1; — p; with i < ¢ and j > . Without loss of
generality, we may assume that o/y/n = 1. The expected gain g;(U) in (3.7)
becomes

95(U) = BE(Zis) = BE(Zva—j11),
where Z;, is the ith smallest order statistic in a random sample of size n from

N(0,1). The exact expected gain g;;(L) is difficult to compute. However, its
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bound can be obtained as follows. We have that

Bluax(%s - 1)} > B (Vs = )} = B(Zj-15-0)

t<p<j
and
E(xg.o?a —m)} < E{gﬂig‘(ffa — )} = E(Zy-is1)-
Therefore,

(L) 2 B(Zj-t5-1) = E(Zra-i1)- (338)
The lower bounds of (3.8) are given in Table 3.4 for the case of £ = 9,¢ = 3.
They can be computed using the mean of normal order statistics (see Arnold,
Balakrishnan and Nagaraja 1992). The largest lower bound for g;;(L) is 1o — 1
and the smallest lower bound for g;;(L) is zero, located at gas(L). The further
apart the indices i and 7 are from the mean change point #, the larger the gain.
The expected gain, g;;(U), of Us; over Tukey’s upper bound can also be found
in Table 3.4 by replacing i and j by 4—i and 13— j, respectively. On the other

hand, the expected max-min confidence lower bound can be rewritten as
o E(s)
E(Ly) =6 - {qk,uW - gi(L)}-
As vs?/o? has a Chi-square distribution with v degrees of freedom, we have

_ 2 [, 1 %1 -%
B = WA \/mwr(%)w i

_ v+1 vy e 1 e
= VA HVI) [ P AL
v+1

= VA VIT().
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Whenever the size of the shift 6 exceeds g2, %2 — g;;(L), one would expect
to detect a change in mean around ¢ by the max-min simultaneous confidence

lower bounds.

3.4 Discussion

The proposed modification of Tukey’s studentized range technique is a simple
and effective method to construct simultaneous confidence intervals for pair-

wise differences in monotone dose-response curves. As suggested by Scheffé

(1953), if we are i 1 exclusively in the diffe 15 — iy J # 1, when
all ¥; have the same variance and all pairs ¥; — ¥; have the same covariance,
Tukey’s method will yield shorter simultaneous confidence intervals. Hence,

the max-min simultaneous confidence intervals can be applied specifically for

pairwise mean under the i ion. For the equal
sample size case, the max-min simultaneous confidence intervals have an exact
1 — a coverage probability.

The max-min simultancous confidence bounds can also be used to detect

the range of the change point for normal variables. This approach is effective

for detecting p; — i when i and j are not adjacent indices.



Table 3.1: Inhibition of Rosette Formation

Level Logy dilution Percentage inhibition

1 3.519 -12,5

2 3.114 12, 27

3 2.778 14, 18, 25, 36
4 2.399 44, 46

5 2.000 44, 45, 46
6 1.399 27, 33, 56
7 1.000 38, 40

8 0.699 32, 43, 50, 54
9 0.301 43, 47




Table 3.2: 90% Tukey’s Simultaneous Confidence Intervals for y; — pt;,j > i

Upper bound

1 B 3 1 5 6 7 8 9 j/i
1 52.72 5240 7822 7563 60.30 7222 7399 7822 1
2 672 2049 5522 5263 46.30 49.22 50.99 5522 2
3 101 -21.99 4749 4445 3812 4149 4252 4749 3
4 1878 -4.22 -3.99 27.13 2080 23.72 2549 29.72 4
5 2137 2713 1794 2113 2245 2713 5
6 1503 -7.97 -7.28 -33.47 -30.60 2747 2878 3347 6
7 1278 -1022 -999 -35.72 -33.13 -26.80 3149 3572 7
8 2251 -049 048 -25.99 -22.95 -16.62 -19.99 2599 8
9 1878 -422 -399 -20.72 -27.13 -20.80 -23.72 -25.49
Jfi 1 2 3 1 5 [ 7 8

Lower bound
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Table 3.3: 90% Max-Min Simultaneous Confidence Intervals for pu; — i, j > @

Upper bound

T 2 3 1 5 3 7 8 9 Jji
I 5249 5249 69.30 69.30 69.30 7222 7390 7822 1
2 6720 2049 4630 4630 4630 4922  50.99 5522 2
3 101 -21.99° 3812 3812 3812 4149 4252 4749 3
4 1878 399 2080 2080 2372 2549 2072 4
5 21.37  -0.95* -17.94* 17.94 2113 2245 2713 5
6 2137 095 17940 -17.04° 2113 2245 2113 6
72137 095 1794° -1794° 1794 2045 2713 7T
8 2251 048 -1662° -1662° -16.62° -19.99° 2599 8
9 2251 0.48 -16.62* -16.62° -16.62* -19.99* -22.45*
ifi 1 2 4 5 6 7 8

Lower bound
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Table 3.4: Lower Bounds E(Z;_yj—1) — B(Z14-i41) Whent =3,k =9

Wy 4 5 6 7 8 9
1 085 14l 160 1.88 201 2.11
2 056 1.13 141 159 1.73 1.83
3 000 056 085 103 116 1.27




Chapter 4

Simultaneous Confidence Lower
Bounds

The regression curve y = f(z) is to be estimated from the observations
Yi1, Yz, ..., Yin, collected at the quantitative level z;,i = 1,2,...,k. Let ¥;; be

independent normal variates with means y; = f(z;) and a common variance o,

where p; are nondecreasing. We are i in the one-sided con-
fidence lower bounds for the pairwise comparisons ; — i, 1 < i < j < k, and
nonnegative linear combinations of pairwise comparisons (nonnegative con-

trasts). The devel of simuls fid bounds for restricted

settings was first carried out by Bohrer (1967) and Bohrer and Francis (1972).
By use of the likelihood ratio statistic, Marcus and Peritz (1976) obtained one-

sided simul i intervals for contrasts S5, nicip, for

which 3%, ni¢; = 0 and ¢; < ¢; < -+ < cx. Their results subsume those of
Bohrer and Francis (1972). However, apart from i — p11, none of the ordered
pairwise comparisons ji; — ji; are monotone contrasts. Marcus (1978) stud-

ied the confidence lower bounds for the nonnegative contrasts, which include

37
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trasts and pairwise i when the common variance o*

is known.
If several treatment means are to be compared with one another and the
experimenter has a reason to believe that the treatment means are simply or-
dered, then this order assumption can improve confidence bounds. The use of

prior knowledge that the fon curve is m << < gy to

sharpen confidence bounds first appeared in Marcus and Peritz (1976). The
technique can also be found in Marcus (1978), Korn (1982), Schoenfeld (1986),
Hayter (1990) and Lee (1996). Marcus (1978) studied the improved simulta-
neous confidence lower bounds for nonnegative contrasts while utilizing prior
knowledge of the monotonicity of the means ;. This improved lower bound

is the solution to an optimization problem of imizing the simul

confidence lower bounds. However, Marcus’ results are incomplete.
In this chapter, we improve significantly over the results of Marcus (1978).
In Section 4.1, we provide a necessary and sufficient condition for the solu-

lower

tion to the optimization problem of

bounds. An efficient computation algorithm for the improved one-sided confi-

dence lower bounds of pairwise i and i it is given

in Section 4.2. A ical example i ing the i is given in Sec-

tion 4.3. Section 4.4 contains all technical results and a conclusion is included

in Section 4.5.
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4.1 The Optimization Problem
4.1.1 Simultaneous Confidence Lower Bounds

For the monotone nondecreasing regression means g, the class of monotone
contrasts is defined as 5, nicip; where ¢ioy < ¢iyi = 2,...,k. The class of
nonnegative contrasts is defined by Y, mei = L Sy Ny — i)
with Ay > 0, which is a nonnegative linear combination of p; — i < j.

The coefficient ¢, .., cx can be rewritten as ¢ = 0, where the partial order

k=1, and TE nic; =

¢ = ¢ is defined by Sk ;41 nic; < Tk nict,

% nic; = 0. Monotone contrasts are special cases of nonnegative contrasts.

Example 4.1.1 Let k = 5,n; = n for i = 1,..,5. ps — (uy + pa)/2 is a
monotone contrast. However, s — pig is a nonnegative contrast but not a

monotone contrast.

As not all pairwise mean differences are monotone contrasts while they are
nonnegative contrasts, it will be of considerable interest to construct one-sided

simultaneous confidence lower bounds for pairwise comparisons p; — p;, 1 <

i<j <k, and ive linear inations of pairwise
A 100(1—a)% one-sided simultaneous confidence bound for the nonnegative
contrast X, nicip; is denoted by
K k &
) = 3 mci - Fa i, )
= b= =

where ¥; = Y7, Yij/ni, s = Ti;(Yy — Y)? /v with v = £, n — k > 0,

and 7, will be given below. Marcus (1978) studied the case when o is known,
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and some of the critical values 7, can be found there. As a special case, the

100(1 — @)% one-sided simultaneous confidence lower bound for p; — p; is
W — i) = Y5 = Vi = Eas(nj* +n7")V2 (42)

4.1.2 The Critical Value i,
The critical value , is the solution to the equation:

« Kk

PuAS mcips > Y nici¥s — tas(Y mc}) 2, Ve = 0} =1-a.

=1 = =

The left-hand side can be rewritten as

Pu("é‘%@‘imu.(ﬁ - u‘)/s(zk: )% < 1o}
Al =1 =1

k k
max 3 miei¥i/s(nicd)'/? < fa}
= i=1

k.
Puo{ X nin*/s* < T}
=

and the last identity follows a similar argument as in Hogg (1965) where 1* =
(49, ..y 1) is the weighted least square projection of (¥i,...,¥;) onto N =
{c: ¢ > 0,55, nic; = 0} with weights ny,ng,..,ng. The statistic S =
Tk nipd?/s? has the same distribution as the statistic Sy, in (2.4) in Section
2.2 when 2 = 0 and its critical value  can be found in Table A.7 of Robertson,

Wright and Dykstra (1988).
4.1.3 The Optimization Problem

The decreasing property of ion curves can be used to

improve the confidence lower bound for $5, nicfpi. If y16 — 11 > 15 — 11, then
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the simultaneous confidence lower bound for i — iy is bounded from below by
that for i5 — 1. By Abel’s method of summation, S5, nici < S maci s
for all gt = (1, ooy fix), ft1 < iz < -+ < pig, if and only if ¢ < ¢*. The improved

confidence lower bound for Y5 nye;; is denoted by

k k.
L(Y nicip) = max 13- nicips)- (4.3)
= =

0<c<c*
1t can be shown that Sg > 2 if and only if there exists a c,c = 0, such that
I(XE nicipts) > 0. The latter indicates that there are differences between the
dose levels, in particular, g — 1 > 0. In this chapter, we shall restrict our
attention to the case [(S5, nciu;) > 0 for some ¢ = 0. The following theorem
establishes a necessary and sufficient condition for an optimal solution to (4.3)

and its proof is found in Section 4.4.

Theorem 4.1.1 Given a contrast Y5 nici i where py < -+ < p, let a5 =
S michi =1,..k—1, and let Z = {j < k : aj = 0} Let c” be such
that 0 % ¢® X ¢*, let a9 = Tk micf, let R={j < k:a? =a; >0} and
S ={j <k:a}=0a} >0} Letp,q andr be three consecutive indices in
RUSUZU{0,k,k+1}(g # 0,k +1). Let fipg = i1 5, Cpg = (ap — ag)/fipg
and Yoy = 041173/ pg. The ¢ magimizes IS5, nicipss) = $hy miei¥; —

Tas(XE, nic?)Y? subject to 0 < ¢ < c* if and only if

2= +b(Y; ~Y,), fp<i<y (4.4)
Cor = Gpq <b(Vyr — Vo), if 9 €ER, (45)

g — &g 2 by = Yoo), if 4 €S, (4.6)
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q =
SSW =3 3 nif; - o < B, )
T ispt
where
b= {3 fipgtly/ (E2s* — SSW)}/2. (4.8)
7

Remark: For the case SSW = 0, the optimization problem (4.3) is reduced

k
i=1

to minimizing $°F_, nyc? subject to 0 = ¢ X ¢*. The optimal solution ¢° is
determined by R D {j < k: ¥; < ¥j41,0; > 0} and § D {j < k: ¥; > Vi
and aj > 0}. An index j such that Y; = Y41 and aj > 0 shall have the value
g=cif0=<co e

From the discussion following (4.9) in Section 4.4, it suffices to consider
the case that Z = () in the remainder of this chapter. Marcus (1978) proposed
a method to compute the solution for a particular partition R,S and T =
{1,...,k =1} = (RUS). Part of the results of Lemma 4.4.2 in Section 4.4,
including (4.10), (4.13) and (4.14), were given by Marcus (1978). The formulas
(4.4), (4.7) and (4.8) in Theorem 4.1.1 are respectively their simplifications.
However, which partition yields the optimal solution is unresolved by Marcus
(1978). Theorem 4.1.1 provides a necessary and sufficient condition for the
optimal solution. These are the two significant improvements over those of
Marcus (1978). Furthermore, we make another improvement by providing an

efficient, computation algorithm as below.

4.2 Stepwise Optimal Partition Algorithm

When L(X¥, nicip;) > 0, the feasible partition is the one with nonempty R.

It has as many as 35~! — 261 choices. This is a very large number even for
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a moderate k. For example, when k = 6, there are 211 feasible partitions.
Hence, it is important to have an efficient algorithm. This section provides an
efficient algorithm to identify the optimal partitions (R;, S;, T3). For a given
Yijyi =1,.,k,j = 1,..., s, each partition (R;, S;, Ti) is optimal for a different
range of confidence level 1 — a, starting from the lowest level and continuing

until a desired level is reached.
Algorithm

In each step, let p, ¢ and r be three consecutive indices in R;US;UZU{0, k, k+

1}

(0) Let af = XX pyyni¢5,h =

wyk—1. Seti=0Ry ={j<k:¥ <

Yie1,05 > 0},80 = {j <k :Y; > Yj41,05 > 0} and Tp = 0 (for the case
that ¥; = ¥;,; for some j, see Remark after Theorem 4.1.1 for the initial
partition Ry, Sy and Ty).
Let a, = a} if g € Ro,a, = 0if g € So,a0 = 0 and a5 = 0. Let &, =
(@1 = g)/ng, Vg = ¥y fipg =g g =1, ..., k. Let Ag = £k, g2, and
By =0.

(9) Let 61 = sup{(Gar — )/ (o = Vo) < bics s Vor # Frnd € B U S} and

the restriction of §;_; applies to ¢ > 1 only.
(ii) For i > 1, let

G = sup{(@i—ag~ 3 i)/l > mi(Ty=Tp)] <61 h€Typ<h<gh
J=ht1 j=h+1
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(iii) Let &; = max{8, 62} and t; = (B; + A;/62)/?/s. If {, < t;, the optimal
partition is R;, S; and T;. Otherwise, go to Step (iv) if §; = 6,1 and Step
(v) if 6 = 6.

(iv) If the supremum of &; is obtained at ¢ € R;, define Riyy = Ri—{q}, Siy1 =
S; and Tiy; = T;U{q}. If the supremum of §; is obtained at q € S;, define
Ryt = Ry, Sipt = Si— {g}, T = TiU{g}. Let A = (¥ — ¥or)?/ (i) +
ig!). Let Ayt = A; — 824 and Biyy = Bi+ A. Replacei =i+ 1. Go

to Step (i).

(v) If the supremum of d; is obtained at h = Ti,p < h < g, define Riyy =
RiU{h}, Sier = S, T = Ti—{h}. Let ap = af, A = (Yu—Yia)?/ (i +
fipd); A1 = Ai+062A and Biyy = Bi— A. Replace i = i+ 1. Go to Step
@)

Remark: For pairwise comparison j1; — p1;, skip Step (i) and Step (v).
4.3 A Numerical Example

Let Vi =-10,Y2=2,¥3 = 2,7, =6,¥ =10,V =4, let m =np = --- =
ng = n = 10 and s/\/n = 3.6. The 100(1 — a)% simultaneous confidence
lower bound L(—; + 0.35/15 — 03515 + f15) can be computed as follows. Here

a* = (1,0.65,1,1,1) and a = (a1,az,..., as)'-

(0) The initial partition is Ry = {1,3,4}, S = {2,5} and Ty = 0. We have

a=(1,0,1,1,0),n = (-1,1,-1,0,1,0, ¥p1p = Ty, fip1p = mpyp =
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1,..., k. Therefore,

8o = do1 7sup{% ﬁ ol E E) =1/20.

Since Ay = 2/5 and By = SSW =0, we have t; = 1.11. The Ry, Sy and

Ty form the optimal partition for confidence level up to 20.9%.

(1) Since dy = 1/20 is obtained at ¢ = 2 € Sp, define the partition B, =
{1,3,4},8, = {5} and T = {2}. We have a = (1,1 — 205,1,1,0). In

this step we have that

6; = max{sup( ), sup(— )) =1/40.

100’ o 40 60 400
Since A = 80, A4; = 1/5 and B, = 80, we have t; = 1.76. The partition

is optimal for confidence level ranging from 20.9% to 52.9%.

(2) Since &, = 1/40 is obtained at ¢ = 4 € Ry, define the partition R, =
{1,3}, 5, = {5} and T, = {2,4}. We have a = (1,1 - 20b,1, % +20b,0)’
and

6, = max{sup(—— 100 mo 8l]),sup(mu)) = 7/400.

Since A = 80, A, = 3/20 and B, = 160, we have t, = 2.24. The partition

is optimal for confidence level ranging from 52.9% to 74.7%.

(3) Since 8, = 7/400 is obtained at ¢ = 2 € T, define Ry = {1,2,3}, 53 = {5}
and Ty = {4}. We have a = (1,0.65,1, 1 +20b,0)" and

5= max{sup(soo 2000)' sup( 0)} =1/80.

Since A = 80, A3 = 349/2000 and B; = 80, we have t; = 3.04. The

partition is optimal for confidence level ranging from 74.7% to 94.1%.
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(4) Since 5 = 1/80 is obtained at ¢ = 5 € Sy, define Ry = {1,2,3},5: = 0
and Ty = {4,5}. We have a = (1,0.65,1,2 + 2b, } — %b)’ and
D Al

1
500" 5200 3P (39} = 9/800-

65 = max{sup(

Since A = 320/3, A; = 947/6000 and B; = 560/3, we have t;, = 3.33.

The partition is optimal for confidence level ranging from 94.1% to 96.9%.

(5) Since d; = 9/800 is obtained at ¢ = 1 € Ry, define Rs = {2,3},5; = 0
and Ty = {1,4,5}. We have t; = 3.91. The partition is optimal for
confidence level ranging from 96.9% to 99.3%.

(6) Since 65 = 41/5200 is obtained at ¢ = 3 € Rs, define Rg = {2}, S5 = 0
and Ty = {1,3,4,5}. We have ¢, = 4.33. The partition is optimal for
confidence level ranging from 99.3% to 99.8%. Note that the p-value for

the test statistic Sg, is 0.002.

When o = 0.05, the critical value 05,65 With k = 6 and v = 54 is 3.116.
The 95% simultaneous confidence lower bound L(— 1 +0.35115~0.35u3+ tg) =

5.06 can be obtained at Step (4) with
ne? = (~1,0.35, —0.35,0.252, 0.738,0.010)’.

If we are i d 95% simul d lower bound for the

pairwise comparison fts — i1, Step (0) remains the same as above. In Step
(1), we have 6, = max{g;,0, 45,4} = 1/40. However, A, = 1/5,B; =

80,t; = 1.76 remain also the same as in Step (1). But in Step (2), we have

0y = max{5g, 155, 35} = 1/80, Ay = 3/20, B, = 160 and t; = 2.94. Therefore,
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the R, Ty and S, form the optimal partition for confidence level between 20.9%
and 92.7%. In Step (3) we have that Ry = {1,3},8; = 0 and Ty = {2,4,5}.
Since dy = max{gkg, 5} = 1/100,A = 320/3, Ay = 2/15, By = 800/3 and
ty = 3.51. The Ry, Ty and Sy form the optimal partition for confidence level
between 92.7% and 98.0%. The 95% simultaneous confidence lower bound
for pig — i1 s 5.17 with nc? = (—1,0.232, ~0.232,0.256,0.720,0.024)’. Since
o — 1 > —pn + 03505 — 0.35p15 + pg, it follows that L(se — pu) = 5.17 is
bounded from below by L(—p1 + 0.35j15 — 0.35413 + ig) = 5.06.

4.4 Technical Results
4.4.1 Derivation of the Optimal Solution

Consider the transformations X; = Vip1 — ¥, 6; = pripn — i, 03 = Xhoipy nyey
Then Xi, Xa, ..., Xs—; are normally distributed with means &; and covariance
matrix 0?S = o?[oy;], where o = (7' + ni}h),0iin1 = Oig = —nih
and oy = 0if [j — 4| > 1. Note that T, mcyni = L5 aibi. Let X =

(X1, X, ., Xe_1)', the optimization problem (4.3) becomes the problem

max J(Z a6;) = max {a'X —{,s(a'Sa)"/?}. (4.9)

0<agar T ohE

terms on the right-hand side of

If a; = 0, so is a; and the corr

(4.9) vanish. Without loss of generality we may assume a; > 0 for each

i=1,., k-1
Let a° be a vector such that 0 < a° < a*andlet R={i: 0 < af =qf},5 =
{i:a?=0}and T = {i:0<a? <a;}. Then a® and a* can be partitioned

as a’ = [a%,a%,a%] and a* = [a}y,a},ay]. The matrix £ and the vector X
R8s, A7, R135, a7
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are partitioned likewise. A necessary and sufficient condition for the optimal
solution to be attained at a° is given by Lemma 4.4.2 which is another version
of Theorem 4.1.1. We will introduce Lemma 4.4.1 first, which will be used in

the proof of Lemma 4.4.2.
Lemma 4.4.1 The function f(x) = (x'Sx)Y? is conves.

Proof. Tt suffices to prove that the Hessian matrix (3{}5}) is positive semi-

definite (Rockafellar 1972). By taking the derivatives of the function

) = (xEx)E= (220‘]2 ;)2

we have that

f(x) _ 1
Tn " o) 5

and
2
S — 5100 = (5 ) (S ) 160
For any k x 1 vector y,
VGt = T Sl 100 - XSS (o 1169
Z Zmuy,// %) = (Z Z yﬂ-ﬂ:)(z Z 2101545)/ (%)

= [(XEX)(yEy) =y (x).

Let % = £'/2x and § = £y, then by the Cauchy-Schwarz inequality

(¥'Zx)(y'Sy) - (XZy)® = (X%)(¥'7) - (X')* 2 0.
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Lemma 4.4.2 The mazimum of (SF=! a;6;) subject to 0 < a < a* is attained

at a° if and only if a° satisfies
aj = —S7rSrrak + bErr Xy
Xg = b7 (Srrak + Srraf) 2 0;
X5 — b7 (Bsraj + Bsrag) < 0.

Xy < B

where
¥ = aySreray/[fas’ — XpSrrXr)

with the convention Srrr = Srr — SerLrsSrr.

Proof. Consider the optimization problem

k=1
maximize (3" a6;) subject to 0<a<a'.

i=1

(4.10)

(4.11)
(4.12)

(4.13)

(4.14)

(4.15)

By Lemma 4.4.1, (S5} a;6;) is concave. Let ¢(a,u) = a'X — ,5(a’Sa)"/? +

o

w(a — a) and let 2

denote the partial derivatives evaluated at the point

(a%,u?). By the Kuhn-Tucker cquivalence theorem (Kuhn and Tucker 1951),

a° is the solution to the problem (4.15) if and only if

(i) 2 - <0,(Z —u’)a® =0 and a° > 0,

B
(ii) a* —a° > 0, (a* — a%)'u’ = 0 and u > 0.
It is trivial that (i) and (ii) are equivalent to

al
da%

=up >0,

(4.16)



<ug=0, (@17)

and
(4.18)

where u has the same partition, u = [u'g,u's, u'7]". The objective function

I(£55! a;:8;) can be written as

k=1
U @) = apXp + asXs + Xy — (fas)c(a)
&
where c(a) = a’Sa. The identity (4.18) is
al 5 .
o = X7~ fas(Errof + Srrag)/c(@)’? = 0. (4.19)

1t follows that a§ = —£7+Era + c(a®)/*(fas) ' Sr4Xr. But
c(a’) = ay'Tpeay +2a}'Crraf +af Srrajg
= ay'Srray +2ay Trr[-TriSreay + c(a’) / (fas) " S Xr]
+-Sr1Erray + c(a) " (fas) " S11 X Trr{- 7t Eraay
+o(a”)"*(fas) ™ Sk Xa]
= aySppag — apSrriitSraag + XpSrXre(a®)(252) 7.
= aySprrap + XpSrpXrc(a®)(Bs%) 7.
Hence
ofa?) = " Srnrag/ (s’ — XS Xr).
Let b = ¢(a®)'/?/(fos). Then it has the same expression as (4.14) and expres-
sion (4.19) becomes (4.10). The inequalities (4.16) and (4.17) are, respectively,

= X0 Sty + D) 20



and
al
g

and they are (4.11) and (4.12), respectively.

=X - b7 (Tspap + Zsrad) < 0.

For the case when T is empty, (4.10) does not apply. (4.11) and (4.12) are

reduced to
Xp > b~ Srpal
and
Xs < b 'Sgpal.
This completes the proof. o

4.4.2 Computation and Proof of Theorem 4.1.1

The following lemmas will be used to simplify the computation. The transfor-
mations in Section 4.4.1 will be used here. Let ¥ = [¥,..., ¥]'. Then X = AY

where A = [a;](k—1)xk is such that az = —1,a;:41 = 1, a;; = 0 otherwise.

Lemma 4.4.3 The inverse matriz of £ has the following expression: £~' =

0], 0% = ot = Bk 4pi < j <k,
ok J

Proof. Tt is trivial that 7' =

In T
=
(5 52)

mn) Assume 51 = 0] holds for k. For the

case k + 1, we have that
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with £11 = [03]-yxk-1, S = [0,+,0, =L ixe-, and Bp = - + o

It is trivial that

s (= +EuEmEmEz| =i —Eﬁ'El‘aEz’z'n )
I3 S B T

where S0, = Sy~ S5 Siz. By the assumption we have that Sy S5 Ty =
OF VR = g i/ (niior) = Fio k-1/ (nkfiok), and hence Bply = fiokns/Foksr =
o*_ Tt follows that

= . 1 | figrmy
—SiTulEh = (FD(-) et Ele

" Mo+t
_ Dokt ik 1= 5
T k1 i

where €_y = [0, 0, 1]} o_yy and

foiftjk | Toinker 1 fiojni

(T8 + SRS Te TSy =
11 11 H12892,1 421511 kg = = =
gk Nok+1 Tk Mok
= T (R Tgnes)
= (o1 + TojTh+1
TiokTlo k+1
figi oo S
= (o + Nes1 Tk + Toj k1)
T0kTUk-+1
B - giftjkt1
= g = — 2 =0,
TokT0,k+1 0 k+1

Lemma 4.4.4 The vector ™'X and the quadratic form X'S'X have the
Jfollowing expressions: [E'X); = figi(Yor — Yoi) and X'S1X = Tk ny(¥; —

}.,ﬂk)y'



Proof. By Lemma 4.4.3

EXL = 30X

=1

>

i=1

By Abel’s method of summation, $7_, a,

a5 YL, b, we have that

L -
> ¥

i=it1

o, i i o
j.j%kocﬂ—yw 5 o B o - ).

=i+l

= Taler -

1)ig + Yiriflogst,

k-1
> (% = Vi) iy + Yaiax.

=t}
It follows that
i
Zno;( 41— Y5) = feYi — Y ;Y5
j=1
and
k-1 - - =y -
> (i =Y) = 3 (Vo = Y5) (e — i)
J=it G=it
o - L3 S . =
(Ve = Yor) + 3 (1 = Vi)t
fhurst
L = -
= Y n¥;—fa¥in
=i
Hence
o fit o o Lo o s
=X = :—(nn,Y,“ =¥ + m( > 0¥ = Yir)
= ok 55

"ﬂnnxk

(Yk = o) = fios(Yor — Yau).

r41) Tica bt +
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Let B = A'T~'X. Then we have that B, = n(¥; — Yor), B; = fioi— (Yox —
Voi-1) = fioi (Yor — Yoi) = ny(¥i = You),i =2, k = 1, and

o 5 kL o
B = diop1(Yor — Yor-1) = fios-1Yor — 2_n,Y;
=

= g1 Yor + mYh — o Yor = me(Ye — Yor)-

It follows that X'E1X = YA'SX = £ ¥iny(V; - ¥or) = Snu(¥i — You)?.

This completes the proof. o

Let Q = RUS = {ry,rs,yrica }, let Ty = {risy + 1,.0,ri =1} if iy +1 <
7;—1and let T = {t1, s, ..., tgt} = Ty UT, U--- U T} with the conventions
1o =0 and r; = k. Note that T} is an empty set @ if 7;_, and r; are consecutive
integers and RUSUT = {1,---,k — 1}. Let p, ¢ and r be three consecutive
indices in Q U {0,k} (¢ # 0,k). We shall denote ¢ = r; € Q. If i = 1 then

p=riy =0;ifi=1—1then r =ry; = k. Let 7 be the permutation
1-1 1 - k=1
Tt bk

and let T' be the corresponding elementary operation matrix which permutes

rows according to m, i.e.,

See
[Brv= |99 S97 |,
[zm Srp
Note that
Sy 0 e 0
0 Sppn o0 0

0 0w B



1@ = [Brris 1 1] s Trw =[Sy o1 Byr,]’ and
e =10,+,0,~1/ng] it T.#0,
Sig = [=1/1g41,0,--+,0]  if Tia #0, (4.20)
i =0 otherwise.
From Lemma 4.4.3, we have [S77]as = “;: ifp<a<p <qand
(22 mlos = 2522 if ¢ < a < B < 1. Therefore,
~SginBng = [ if T,#0,
ET+\71+.ET\+1V if Tiy #0, (4.21)
I3/, 510 =0 if j#d,i+1

Lemma 4.4.5 Let Soqr = Sqq — SerSLre = [nl, then 70 = 7= +

oy Tar = Teg = =5 and 7y = 0 otherwise.

Proof. By (4.20) and (4.21), we have that

T = [Taq — SerSritrol
= b A Lfpew 1 fatir
Mg Tipg  Tgi1 Tigr
i _
= Tty (1 - ety
Tg+1 Tgr
gy 1 1
=[S0 - ZerZrpSrgly = ——— =-—=— if r=g+1;
Ng41 Tgr
1 1
rp= ()2 o2 i rsgtl
Ng+1” Tlgr Tigr

It is trivial that [Sqq — DorSrhSralas = 0 if @, § are not consecutive indices

in Q. This completes the proof. [s]
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Let & = af if i € Rand &; = 0if i € S. The expression (4.10) can be
rewritten as

a3 = ~TrhTrodq + bErhXr. (4.22)

By the fact that SrpXe = (SpinXn), -, (S5, Xn)] and by Lemma 4.4.4,
[SR5X5]; = fips (Yo = Yos)s P < j < g Therefore,

a5 = (Ajofty + Tipjii) [fipg + Vit (Yo — Vi), < <q.  (4.23)

By (4.22), the left-hand sides of the inequalities (4.11) and (4.12) can be com-

bined as
Xq ~ 7' (Sqo8q + Sqraf) = (Xg — SorSrpXr) — b7 (Sgorde)
where

[Xq - SerSiXrly = Yn-Y,

and [Sqqragly = (g — ar)/figr — (@ — g) /Tips-

Therefore, (4.11) and (4.12) become, respectively,

(Ve = Yrg) > (g — @) /itgr — (@ — @) /g if G € R; (1.24)

b(Yr — Yg) < (g — @r) /figr — (p — @g) [Tipg if g€ S. (4.25)

Proof of Theorem 4.1.1
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From (4.22), we have that

i az _ Iy » ¥ 0
"“’(a; =\ —2@ore )2 i )

By the inverse permutation, we have that a® = I"a2. The optimal coefficient

nc’ = A'a’ is expressed as

sl T Neoamel 0
ne® = AT ( il )aq +BAT ( " ) (4.26)
The k x (I - 1) matrix [AT' ( ) >] can be eveluated as;
—agplarg

7 7k if p<j<q
[Ar[‘l( s )],,: a" it g<j<r
e 0 otherwise.

The first term of (4.26) is

I, ) < n,
AT o agly = 4
[ ( T, )3l o

The second term of (4.26) can be evaluated as

—dg) =nylye if p<j<q (427)

- 0 o o § y
W (b, Jo=mBi- B, Hp<ice G
By (4.26), (4.27) and (4.28), the identity (4.10) is equivalent to (4.4). By (4.24)
and (4.25),
GG WV~ V) i wE B
G = Gy 2 b(Yer = Vyg) if g€S.

By Lemma 4.4.4, X4 57- Xy = 5, 501 n5(V;—Y;)?. Note that aySprraj =

8y Ygq g = X, fipge2, This completes the proof. o
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4.4.3 Justification of the Algorithm

The following proofs are derived from Theorem 4.1.1 as well as (4.23), (4.24)
and (4.25).

Let By 2 {j <k:¥; < ¥jp1,05 > 0},5 2 {j <k:¥; > ¥jur,0j > 0} and
let p, g and r be three consecutive indices in RoUSoU{0, k, k+1}(g # 0,k+1).
Then ¥ = py if p < j < ¢ and hence SSW = 0. By Theorem 4.1.1, the

optimal solution ¢° is the one such that ¢ = &, p <j < g, if
b > 8y = o1 = sup{ (Ggr — &0/ (Ver = pa) : 4 € RoU S, Yor # Yo}

where b = (Sfipgi2,)'/?/(fas). The above inequality is equivalent to f, <
tao = Ab/%s/6y. Confidence lower bound (4.3) is solved for confidence level up
to 1 —ap.

Let R, S; and T be the optimal partition satisfying (4.4), (4.5), (4.6) and
(4.7) of Theorem 4.1.1 for a given f, < to,(a > ;). We shall show that

Si D Sip1. Let g € Syvy have an i pand an i

successor 1 respectively in Rit1 U Siy1 U {0,k}. Then by (4.25), we have that
for any b(e), 0 < b(a) < &,

Yo = Yiq < (~8p/ipg — in/igr) [b(0) < 0.

Suppose that g € T. From (4.23), we have that for any b(a) > &

agfb(@)] = (Figrly + Tipgir) /Tige + () atyr (Vir = Yig) /e
= ag(0) + [6(@) — Silitpar (Yor = Vo) /ipr- (4.29)
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Since ag(6;) = 0, ag[b(a)] < 0 for any b(a) > &;. This contradicts that ¢ € T;.
It follows that S; D Siyi.
As the confidence level 1—a (and hence Z,) increases, the optimal partition

holds until either

(1) fa < to, and there exists a g € R; so that Riyy = R; — {g}, Six1 = S; and

Tir = T; U {g} is the optimal partition for £, > ta,, or

(I1) 5 < t, and there exists a g € S 5o that Risy = Ri, Sis1 = S; — {g} and

T4 = T; U {q} is the optimal partition for i, > ta,, or

(I11) #4 < to; and there exists a j € T so that Riyy = R;U{j}, Siz1 = S and

Tie1 = T; — {j} is the optimal partition for T > ta,.

We shall prove the Case (I) only and the proofs for the Case (II) and (IIT)

follow similarly.

Let ¢ € R; have an i i d pand an i diate successor

respectively in RiUS;U{0, k}. For I, < ta,, we have that b2(a) = A;/(fs?~B;)

where
A= 3 ()"
7
and
2 - -
Bi=3% 3 i -Ty*
Ot
Then

& = pg = 8T = To). (430)
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For iy > ta,, we have that b%

and By, = B; + A with

= Aint/(s*~Byy1) where Aiy = Ai=02A

A = (Yo = Yor)?/ (g + 735
Therefore, limg-,q- b() = Aip1/(t252 — Biyy). However,

At __A-BA _ A-BA
B2 —By BS-B-A AjE-A %

1t follows that limgq,- b(a) = & and the coefficient b(a) is a continuous,
increasing function of o
By (4.4), when b(a) = 6 we have that
o) =t + 0Ty = Fp), W p<j<a
) =G+ 8T~ V), i g<jsT

where ¢ denotes the optimal solution for the partition R;,S; and Ti. By

(4.30),

By iy = B = B 0 (431)

where &y = (puCpq+gr o) (g lgr) a0 Yo = (g Vg +7iqr ¥or) /(g + i)
1t follows that

& =+ 6%~ Y,) if p<i<r
Let (4.4) hold for the partition Riy1, Sis1 and Tiyy when b(a) < 6. Then
& o
0< Y nd) < Y ng
Pty et}

for cach h € Ty, except h = g, and hence the inequality holds for b in the

neighborhood of &, 541 < b(a) < 6. Since ¢ € R, the last inequality becomes
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an identity when h = g. By the fact that Vg > Ypr, 0 < Shigey e () <
S gy for Gigy < ba) < 6.

By the assumption that ; is determined by ¢ € Ri, (4.5) holds for cach
h € Ry, for 61y < b(er) < &; with the exception of h = p or h = r. Suppose

that p € R; with an immediate predecessor m in R; U S; U {0,k}. Then
Gy = Emp < 8i(Trq = Yinp)-
By (4.31),
gr = g < 01(Vpr = Vo).
Therefore, (4.5) holds for the partition Ry1, Sis; and T4y when §is1 < b(a) <

5:. The proof for the case h = r and the case (4.6) follows similarly. For

ta > ta, we have that
To > to, = Bi+ (4i/8}) = Bipt — A + (A + 674)/87 > Biya.

Therefore, (4.7) holds for the new partition. Since each optimal partition R;, S;
and T; holds for a specific range of 1 — a, &; < b(e) < 6;_y, the algorithm will
terminate after a finite number of steps.

For pairwise comparisons i — pu, we have that a} = 1,i = 1,2,...,k — 1.

Let ¢ € Ry have an i p and an immediate successor
7 respectively in Ry U Sizy U {0,k}. Then by (4.24), we have that for any
b(e) <6,

Yir = Yo 2 [(1 = ) /igg + (1 = &) /e /b(c) 2 0.

Suppose that ¢ € T We also have (4.29) holds for any b(a) > 6. Since
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0
g

follows that R; D Ri41. o

(6:) =1, aglb(@)] > 1 for any b(a) > &;. This contradicts that ¢ € T;. It

4.5 Conclusion

The use of prior } ledge that the ion curve is m < pp <

+ < g, can sharpen confidence bounds. The 100(1 — )% simultaneous
confidence lower bound in the numerical example in Section 4.3 for pg — 1y is
~1.86 without the prior knowledge and it is 5.17 with the prior knowledge.

Incorporating the prior knowledge of monotonicity, Marcus (1978) studied
the optimal lower bound for the nonnegative contrasts when the common vari-

ance ¢ is known and her method requires computation of a large number of

feasible partitions when R is Our al, in Section 4.2 simplif

the computations. At each step of the algorithm, an optimal partition is found
for an optimal solution with a different confidence coefficient until a desired
level of 1 — o is reached. The algorithm terminates after a finite number of
steps.

Theorem 4.1.1, which employs the Kuhn-Tucker equivalence theorem, is
the key to the optimization problem and the proposed algorithm. This ap-
proach can also be applied to other optimization problems involving ordered

restrictions.



Chapter 5

A One-Sided Multiple
Comparison Procedure

Marcus (1978) obtained explicit one-sided simultaneous confidence intervals

for trasts and i trasts. The most recent improve-
ments were made by Hayter (1990) which were shown to compare well with its
predecessors. The purpose of this chapter is to develop a more efficient interval
estimation procedure for ordered pairwise mean differences and nonnegative
contrasts. In Section 5.1 a one-sided multiple comparison test (OMCT) statis-

ticis i d. The upper points of its distribution are tabled for

tail probabilities a = .10,.05, and .01. The power comparisons are made with
the other test procedures. In Section 5.2, a procedure is proposed to construct
one-sided simultaneous confidence lower bounds. This approach makes use of
the distribution of the one-sided multiple comparison test statistic. Simula-
tion studies to compare the probabilities of detecting the differences of dosage
levels by Hayter’s (1990) one-sided studentized range test (OSRT) to those by

the OMCT are included in Section 5.3. Our method is more efficient when

63
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the number of dosage levels is four or more. The efficiency of the OMCT
procedure in some occasions may exceed that of the least significant difference
(LSD) procedure - a one-sided ¢-test with the critical value ¢;. The extension
of the OMCT procedure to two-sided simultaneous confidence intervals is dis-
cussed in Section 5.4. Tllustrated is an application to the data of a binding
inhibition assay given in Section 5.5. The proofs of the theorems are given in

Section 5.6 and a conclusion is included in Section 5.7.

5.1 A One-Sided Multiple Comparison Test
5.1.1 A One-Sided Multiple Comparison Test

The dose-response curve y = f(z) is to be estimated from the observations
Y1, Yia, -y Yin, collected at dose level z;,i = 1,2, ..., k. Let Y;; be independent
normal variates with means z; = f(;) and a common unknown variance o2,
We are considering the problem of testing the null hypothesis Hy : gy =
-+ = i against the alternative hypothesis H, : yiy < -+ < 5 with at least one
strict inequality. The following one-sided multiple comparison test statistic is
proposed. We reject the null hypothesis Hy if
BT
15p§,‘33‘§55km
is large, where ¥; = X5, Yii/n;, Vo = T n¥i/ T, mi, §? = Tiy(Yy —
¥i)2/(Shey ni — k). Tts critical value I, , is defined by
5o

max e P <
et 5 m) (S

Po( L) =1-0a,  (52)
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when the means are equal, i.c., ji = -+ = ju, where v = T n; — k > 0 is
the degrees of freedom for S?. For the equal sample size case, we shall use the
notation I .

There are many special cases of the OMCT statistic described by (5.2)
found in the literature. They include Hayter’s (1990) OSRT, Hayter’s (1992)
modified OSRT when r = s and p = g, and Hirotsu, Kuriki and Hayter’s (1992)
maximum ¢ method when s = k,7 = g+1and p = 1. The type of contrast used
here is a comparison of firs t0 fipg Which includes Helmert contrasts, reverse
Helmert contrasts and step contrasts (see Tamhane, Hochberg and Dunnett
1996). It is of particular interest when neighboring dosage levels have similar
responses. The calculation of the critical point 13, is discussed in Section
512

A simulation study is conducted to compare the powers of LRT, OSRT and
OMCT. The powers are simulated at the 5% level of significance for k = 4,6
and 9, ny =y =+ =mg = n, A =1,2,3,4and 0°/n = 1 where the non-
centrality parameter is A2 = S5 ny (st — puyi)? with o = S, nggig/ TE my.
Two kinds of configurations are considered: Case I, a linear regression func-
tion; and Case 11, a step regression function with a jump at a midpoint. The
results are provided in Table 5.1 with 1,000,000 replications. The powers of
the OMCT are much higher than those of the OSRT, particularly at large k
and for Case I1. They are lower than those of the LRT. These powers are
the probabilities of detecting the difference between i and . Both LRT
and OSRT have larger powers along the linear regression curve than the step

regression function. However, the OMCT has an identical power over the two
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regression curves. The advantage of the OMCT over the LRT is that it de-
tects the difference between g; and ; and is used to construct simultaneous
confidence lower bounds for multiple comparisons. The proof for the following

theorem is given in Section 5.6.

Theorem 5.1.1 The OMCT statistic given in (5.1) is consistent and unbi-
ased. Its power function
Yoo — Yoo

1<pS0erkoch s L )T
srsacrsest 5 (5 )t + (Tipe)

Pu( 2 lng,) (5:3)

is monotone increasing in s — ut, ..., ik — Hg—1 with an infimum o attainable

when pu € Hy.

5.1.2 Calculation of the Critical Points

The acceptance region of the OMCT statistic for a fixed S is a one-sided poly-
hedron in & — 1 dimensional Enclidean space bounded by (*:?) hyperplanes.

When k = 3 and n, = ny = ng, the probability (5.2) can be evaluated by
[T RS B/ ¥ <0) = 30,5/} () s,

where f(s) is the density of a random variable (¢/y/7)(x2)? and X,Y are
two standardized bivariate normal random variables having a correlation coef-
ficient p = — tan(r/12)/[1 + tan?(r/12)]'/2. One may evaluate the percentiles
of the OMCT statistic by ical i ions of k di ions such as Genz

(1992). For higher di ional cases, the polyh are very
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and the accuracy of the numerical quadrature of the acceptance region is ques-
tionable. A Monte Carlo method is used to simulate the percentiles of the
OMCT statistic. A FORTRAN program to calculate [, , is given in the Ap-
pendices. The result is provided in Table 5.2 for the equal sample size case
with @ = .1,.05, and .01, k = 3,4,5,6,7,8,9,10,12,15,20, and degrees of
freedom » = 5,10, 15, 20,25, 30,40, 60, co. The accuracy employed is that the
simulated tail probabilities have errors no more than 0.01.

For the unequal sample size case, the critical value will depend on the
sample size ratios n;/ni(2 < i < k), as well as k,v, and a. If sample sizes do
not vary much, the critical value [, for the equal sample size case can be used
to approximate the value of 13, When k=9 and n = (2,2,4,2,3,3,2,4,2),
we have that 105 ,; = 3.52 which is very close to [{§; = 3.53; when k = 7 and
n = (8,4,4,4,4,4,4), we have that 135, = 3.12 which is also very close to
195 = 3.11. Even for the case of a large variation in sample sizes, say n =
(2,2,10,2,6,13,6,1,2), the critical value l;:’ng = 3.44 does not differ greatly
from the equal weight case [%; = 3.53. This illustrates the robustness of the
OMCT to sample size variation, by using Table 5.2 in testing the hypothesis
H, against H; and in interval estimation.

The OMCT statistic in (5.1) is bounded from below by OSRT/v/2 =
maxe; (¥ — i) /S(2/n)"/?, with critical value hg,/v/2, and is bounded from
above by a statistic which has the same distribution as /Si; (see Section

4.1.2). 1t follows that their corresponding critical values have the relationship

V2 <1y < \[Su,
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for the equal sample size case. When k is small, the differences arc relatively
small. The difference I, — h2,/v/2 is a monotone-increasing function of k and
a monotone-decreasing function of v and a and these differences are provided
in Table 5.3. For a = .05, the difference lies between .04 at k = 3, = 0o and
.34 at k = 12,v = 5 with values .05 at k = 3,v =5 and .23 at k = 12,v = oo.
The pattern of the difference /57, ;, — I, is similar to that of I, —hg,/v2,
and these differences, provided in Table 5.4, are much larger. For k = 9,1 = 15
and o = .05, {% — hi¥ls/vV2 = 21 and /S, 5

The ratios Ag,(v2)"/Ig, are provided in Table 5.5. These ratios are

05, = .65.

almost identical for each fixed & and they are monotone decreasing in k from
98 at k=3 to .93 at k = 12. The ratios I/, /S5, are provided in Table
5.6. These ratios are monotone decreasing in k from .99 at k = 3 to .79 at

k = 12. They are also monoton in a and i ing in

v.

5.2 One-Sided Simultaneous Confidence Lower
Bounds

5.2.1 One-Sided Simultaneous Confidence Lower Bounds

Let ftrs = S, napts/Tiep i and ppg = T, nps/ T, n; be the mean re-
sponses at the dosage levels from 7 to s and from p to ¢ respectively, where
1<p<q<r<s<k Weare interested in onesided simultancous
confidence lower bounds for piry — ppy without assuming that ;< jp <

. < k. The numerator of the OMCT statistic in (5.2) can be replaced

by (Vs = Ypg) = (ttrs — fipq)- The exact 100(1 — @)% simultancous one-sided
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confidence lower bounds for jirs — f1,4 are as follows:

Hre—tpg 2 You=Yog—134,S

(5:4)
Let tw,,(Y) be the simultaneous confidence lower bound in (5.4). The positive
value of Lg«(Y) indicates that the mean response at the dosage level from r to
s is significantly higher than the one from p to g. The simultaneous confidence
lower bounds for ji.; — fi, include special cases of pairwise mean differences

i — i < j, when p =g =1i,r = 5 = j. That is

= 2 Y= Vi— 18, Sy (5.5)
Remark: One may be interested in a contrast which is a nonnegative linear
combination of the ones in (5.4). For example, when k = 4 the linear contrast

has an expression

Bp + pg — g — 3pn = 3(pta — pis) + (s — p12) + 3(p2 — ).
The OMCT in (5.2) may be generalized by including such a linear contrast.
The corresponding critical value is larger than I, . However, the increment
due to the linear contrast is almost negligible. For the equal sample size case,
it is no more than 0.002 when a = 0.1 and no more than 0.004 when a = 0.05

or 0.01.

5.2.2 Efficiency of Confidence Lower Bounds

We consider the case that o? is known (i.e., » = 00) and the sample sizes

are equal. The height of the confidence lower bound (i.e., the distance the

forall 1<p<q<r<s<k
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confidence lower bound extends below the difference jir — fipg) given in (5.4)

is 1 o0\/(s =7 + 1)1+ (g = p+ 1)~*/+/i. The confidence lower bounds ob-
tained by Marcus [1978, eq.(16)] and Hayter [1990, eq.(1.4)] are similar to those
given in (5.4) except their heights are 0y/Xhq/(5— 7+ 1)~ + (4= p+ 1)~ /v/R
and ohg . /v/f, respectively. The ratio of the height of the OMCT confidence
lower bound to the height of the confidence lower bound given by Marcus
(1978) i5 12 o//No2a: These ratios can be found in the last three rows of
Table 5.6 and they lie between .99 when k = 3 and .80 when k = 12. There-
fore, the OMCT procedure is more efficient than Marcus’ (1978) procedure for
comparing firs t0 fipq -

The ratio of the height of the OSRT confidence lower bound to the height
of the OMCT confidence lower bound is

B =W/ {l o\ (s =7+ 1) + (g —p+ 1)}

Since g, > hg,/v/2, for ordered pairwise differences, ie., s = r,q = p,
the height of the OSRT confidence lower bound is shorter than that of the
OMCT. But for more complicated contrasts, the converse is true. Some nu-
merical evaluations of R are provided in Table 5.7 for @ = .05 and k =
3,4,5,6,7,8,9,10,12. Four types of contrasts are considered, pairwise differ-
ences ji;—p; and three more complicated comparisons 1 — fuiis1, fj —tiiv2 and
Hj-14 — Hig1. For complicated comparisons, the heights of the OMCT confi-
dence lower bounds are shorter than those of the OSRT as one would expect.
The reduction of the height of the OMCT confidence lower bound relative to

that of the OSRT confidence lower bound can reach 27%. Hayter(1990) tabu-



71

lated the ratios of its height to that of Marcus (1978), hf o /[y/Xiza{(s — 7 +
1)=1 + (g — p+ 1)~1}"/2]. These ratios are considerably smaller than the ones
in Table 5.7. For instance, when k = 8 these ratios are .822, .949, 1.006, 1.162
(see Hayter, 1990) as compared to 943, 1.089, 1.155, 1.333 listed in Table
5.7. The OMCT procedure has the highest relative efficiency over the OSRT
in detecting the difference between 134 and fu;. The OSRT, a Tukey-type, is
efficient for pairwise comparisons, Marcus’ (1978) procedure, a Scheffé-type,
attains shorter bounds for more complicated contrasts and the OMCT, the

one in between, has both lower bounds

can be sharpened substantially when we utilize the prior knowledge of the

monotone regression curve as in the next section.
5.3 One-Sided Simultaneous Confidence Lower
Bounds for Monotone Dose-Response Means

5.3.1 One-Sided Simultaneous Confidence Lower Bounds
for Monotone Dose-Response Means

Simultaneous confidence lower bounds for pairwise mean differences y1; — s, 1 <
Jj, are of great interest to experimenters. For a monotone nondecreasing re-

gression curve yi; = f(z),
B = 142 s — o
ifi<p<g<r<s<j. It follows from (5.4) that

— 1 > lpgrs (V).
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The 100(1 — a)% OMCT simultaneous confidence lower bound for 15 — p; is

w2 max e (Y). (5.6)

It is noted that the sample means ¥;, i1, ..., ¥; have been used to construct
the lower bound (5.6). The lower bound lygrs(¥') which maximizes (5.6) occurs
on p <q<r<s with large combined sample sizes S5, n; and S0, n;, and

a large difference Vs — Yp,. It is trivial that for 1 <p<g<r<s<k,

s = lipg = fhr'st = [hpiqts
ifp <¢ < <sp<p,g<q,r <rs <s From (5.4), the 100(1 — )%
OMCT simultancous confidence lower bound for jiys — iy is

Bro=Mpa 2 o B lygrs(Y). (5.7)

Let Lygrs(Y) be the simultancous confidence lower bound in (5.7). By the as-

of the regression curve, 4; — f; is bounded from below by
2€r0, S0 1S firs — ftpg. A FORTRAN program for computing the OMCT simul-

taneous lower bounds is given in the A di For d P

curves, our primary interest lies in whether one can detect the difference be-
tween p1; and g or the difference between ji,s and jip,. If the answer is affirma-
tive, then our interest will focus on the value of the lower bound. We can apply
(5.6) and (5.7) to construct OMCT simultaneous confidence lower bounds for
any nonnegative contrasts as discussed in Section 5.2.1. The improvement
of the simultaneous confidence lower bounds for y; — p; and frs — 1y While

utilizing the assumption of the monotone regression curve can also be found
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in Marcus (1978) and Hayter (1990). Marcus’ (1978) simultaneous confidence
lower bound is not as efficient as that of the OMCT.

These simultaneous confidence lower bounds are not derived from the es-
timated isotonic regression, but result from the sample means by utilizing the

isotonic jon on f(z). Any d i ion curve

which satisfies (5.4) will satisfy (5.7). The coverage probability of these simul-
taneous confidence lower bounds (5.7) is at least 1 — o as demonstrated by the

following theorem. Its proof is provided in Section 5.6.
Theorem 5.3.1 Let the simultaneous confidence level be defined by
C(1) = Pu(ttrs — ttpg > Lpgrs(Y), forall p<q<r<s).

Then C(u) is partially ordered by 1 in the sense that C(u) < C(v) if pigr—ps <

Vigs — vi. Therefore,
infy<cuy (1) = Po(Lpgrs(Y) <0, forall p<q<r<s)=1l-a
and the infimum is attainable when j € Hy.

In the next two subsections, we investigate the behavior of the OMCT
and the OSRT procedures under monotone regression curves using simulation
studies. For simplicity, the studies are restricted to the equal sample size case

with o = .05 and 0%/n = 1.
5.3.2 Pairwise Comparisons

In this subsection, we will study whether the procedures will be able to detect

the difference between 4; and p; at a confidence level 1 — a.
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The OMCT critical value Ig, is larger than hg,/v/2 for every k, v and a.
Hence the lower bound of OSRT for f1;41 — 4 is larger than that of OMCT.
However, the situation for /1 —p; with j—i > 3 could be quite different. For ex-
ample, if we are interested in the confidence lower bound for 14— 11, the OMCT
procedure will compare the confidence lower bound of ps — py not only with
those of iy — 11, 13— fux, j13— 2, s — Hz, Ha— i3 as does the OSRT, but also with
the confidence lower bounds of pug3— a1, ft3a— g1, pr2a—fr, 3=z, pa—paz, s —
12, 4 — g, fsa — po and g — pio. Furthermore, the height of the OMCT
confidence lower bound for ftrs — figg, 18,0\/(s — 7 + 1)L+ (¢ — p+ 1)71/y/m,
is shorter than the corresponding height of the OSRT if r < s or p < g as
shown in Table 5.7.

The OMCT confidence lower bound on f(z;) — f(z:),j > i, will substan-
tially improve the OSRT confidence lower bound when j — i is large. The
situation in which the OMCT bounds are most advantageous is when there
exist p,q,7,s with i < p < ¢ <r < s < jsuch that f(z,) = -+ = f(z,)
and f(z,) = -+ = f(x,). The situation in which the OMCT bounds are less
advantageous is when f(ziy1) — f(2;) > 8,i = 1,..., k — 1 for a large positive .

A simulation study is conducted to compare the efficiency of the new
procedure to that of the OSRT procedure. The 95% simultaneous confi-
dence lower bounds are computed by generating 1,000,000 sets of normal vari-
ates. The percentages of detecting the difference between level j and level
i are computed for the two procedures. Two cases are considered, the lin-
ear regression function, yi; = di for Case I and the step regression function

= = pysy = O, pggapa = - = =  for the Case I1. The results for
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comparing fi; to p; are provided in Table 5.8.

By (5.5) and equation (1.2) in Hayter (1990), the probability of detect-
ing the difference between ju; and 11 without the assumption of the mono-
tone regression curve is ®[(j1; — )/v2 — %] where ® is the distribution
function of a standard normal random variable and ¢, = h% /v/2 for the
OSRT and ¢, = I, for the OMCT. The probabilities in Table 5.8 are
considerably larger than those obtained without the assumption. Consider
the comparison of 5 and piy. For Case I and A = 4 we have .907 ver-
sus ®(20/v/35 — %, /V/2) = .772 and .947 versus ®(20/v/35 — I95,) = .729
when k = 6; .822 versus (16/v/30 — hf3,/v/2) = 507 and .924 versus
B(16/v/30 — I95,) = 429 when k = 9. For Case II and A = 4 we have
881 versus B(4/v/3 — hi%,/V/2) = 373 and 947 versus ®(4/v/3— %%, = 333
when k = 6, and .784 versus ®(6/v/10 — h{S,/V/2) = .157 and 922 versus
B(6/v/10—1%%,) = 115 when k = 9. The increase in probability by the OSRT
is due to the extra (§) — 1 comparisons. The gain by the OMCT is much

larger. It is due to the extra (”fz) — 1 comparisons, and to the inequality
PLugx(¥) > 0] 2 mazicpeqersoskPllprs(¥) > 0] (5.8)

For Case I and A = 4, the right hand side of (5.8) is Pllss(Y) > 0] =
B(32/v/70 — 15,) = 854 when k = 6 and it is Plyzre(¥) > 0] = &(12/v/10 —
15,) = .756 when k = 9. For Case II and A = 4, it is Plhaus(¥) > 0] =
B4 —1%5,) = 891 when k = 6 and it is Plhuso(¥) > 0] = &(4 - I§5) =
816 when k = 9. These probabilities P[lygrs(¥) > 0] calculated without the

curve ion are the lower bounds for the probability
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of detecting the difference between i and j; by the OMCT procedure. It is
noted that for Case IT, i — j1; = 0 if i < j < [k/2] and the difference 1; — p;
is a constant if i < [k/2] < j. The increase in the probabilities P[L;;;(¥) > 0]
in j is due to the assumption of a monotone regression curve.

These probabilities for comparing i to p; are the same as the powers
of the two tests in Table 5.1 when A = 4. Therefore, the probabilities of
detecting the difference between s and gy can be found in Table 5.1 for
k =4,6, and 9, A = 1,2,3,4 with the linear regression function or the step
regression function. The OMCT procedure has higher probabilities of detecting
the difference between 4 and p; than the OSRT procedure. The improvement
increases for large k.

The OSRT procedure is more efficient than the OMCT procedure in de-
tecting the difference between py and py but less efficient for comparing py
and yi;. Table 5.8 indicates that for a fixed 4, when the probability is small or
j is small, the OSRT is more efficient and when the probability is large or j is
large, the OMCT is more efficient. When the difference y; — p; is detectable,
the OMCT should normally be used. For Case I, the linear regression, the
probability of detecting the difference between 1 and s, i < j, is the same
as the probability between ji;_i41 and juy. For Case I, the step regression
function, the probability of detecting the difference between px_; and g; is the
same as the probability between p_; and pi; for i + j < k when k = 9 and
the probability of detecting the difference between pixq1-; and y; is the same
as the probability between 41_; and i for i + j < k when k = 6.

The OMCT procedure may perform favorably against the least signif-
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icant diffc (LSD) d The bability of d ing the differ-
ence between y; and p; by the latter procedure at 95% confidence level is
®((1; — s)/v/2 — 1.645]. We observed that the probabilities for the OMCT
procedure may exceed the corresponding LSD procedure. They include the
comparisons of 5 — pu1, fts — piz, pte — 1 When A = 3.46, pi5 — 1y, pr6 — fla, s — 2
and jig — 12 when A = 4 in Case IT at k = 6 and ptg — 1y in Case I at k=9,
and jig — i, 7 — i, fis — fh, flo — [h1, 7 — iz, fig — Hz, o — o, g — g and
19— pi3 in Case IT at k = 9. This superiority will also be seen in the numerical
example in Section 5.5.

Also included in Table 5.8 are regression functions with A = 2.16 and
A = 3.46 respectively when k = 6. They are part of the regression functions
of Case I and Case I1 respectively when k = 9 and A = 4. For Case I, the
probabilities for the case k = 6 and A = 2.16 are larger than the corresponding
ones for the case k = 9 and A = 4. This is because the former use the

critical values h%, =

3.725 and [ 5, = 2.77, while the latter use the values
hif3, = 4107 and 5, = 3.09. Similar results hold true for Case I1, but
comparisons are made between j1; — ji; when k = 6 and ji;41 — pti1 when
k =9. One may also compare the results of the same type of the regression
curve with two different A’s when &k = 6.

It is of interest to compare the mean heights of simultaneous confidence
lower bounds when the probability of detecting the difference between p; and
Ji; is high by both procedures. The probability that both the OMCT and

the OSRT can detect the difference in the means indicates that both proce-

diffe

dures succeed in detecting the in p; and p; simul ly. The
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mean height is the distance between the lower bound and p; — p;. Our prior

1 dge of the ion curve indicates that p; > p; if j > i.

Therefore, the simultaneous confidence lower bound for p; — p; is always non-
negative and it is positive if there is a significant difference between y; and p;
at a confidence level 1 — a. The mean heights of 95% simultaneous confidence
lower bounds for u; — p; by the OMCT and the OSRT procedures are pro-
vided in Table 5.9 for the case that the probability of detecting the difference
between j1; and 1; by both procedures is at least 60%.

C ing these probabilities with the corr ding ones in Table 5.8,

it can be seen that these probabilities are less than the ones obtained by the
OSRT by no more than .015, but they are less than the ones by the OMCT by
at least .044 if £ = 6 and .106 if k = 9. The OMCT mean heights are smaller
than their counterparts of the OSRT. The larger the difference between j and 4,
the larger the difference will be between the two mean heights. The reduction
in the mean height by the OMCT over that of OSRT can be as large as .24
(13.5%). The Pittman efficiency for the mean height is the ratio of squared
mean heights as stated in Schoenfeld (1986). The ratio of the OSRT mean
height squared compared to that of the OMCT can reach 106% for the linear
regression curve and 124% for the step regression function when k = 6. It
can reach 113% for lincar regression curve and 134% for the step regression
curve when k = 9. The OMCT procedure is generally preferable to the OSRT

procedure when k is large and the dose-response curve increases moderately.
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5.3.3 Comparing Two Categories of Dosage Levels

By (5.4) and equation (1.4) in Hayter (1990), the probability of detecting
the difference between a mean response p,, of the dosage levels from 7 to s

and a mean response fi,, of the dosage levels from p to ¢ without the as-

of the ion curve is ®[(ng — ftg)/|IC]| — 1%, for
the OMCT procedure and ®{(irs — ftpg — hi¥3,)/||C]] for the OSRT proce-
dure where ||C||* = (r — 5+ 1) + (¢ = p+1)7". If any of the two cate-
gories consists of more than one dosage level then the former probability is
larger than the latter. The difference may be quite large. For example, when
k=9, ®(uso — iz — I§%,) = 697 and P (pgo — pu2 — hdS,) = 311 for Case I,
and they are .338 and .077 respectively for OMCT and OSRT for Case I1. A

simulation study is to i igate their behaviors when the regres-
sion curve is monotone. Three types of comparisons, j1; — p1g, 45 — i3 and
i1, — fhz, are considered for k = 6 and 9 for Case I, the linear regression
curve, and Case 11, the step regression function, when A = 4. The results are
provided in Table 5.10.

The probabilities are much larger than the ones without the monotone
assumption, particularly when k = 9, Case I1, and by the OMCT proce-
dure. The OMCT procedure performs overwhelmingly better than the OSRT

procedure except for the few ions when are extremely low.

The difference in probabilities can be as large as .283. These probabilities are
bounded from above by the corresponding ones for /1;—p; in Table 5.8, and the

probabilities by the OMCT are uniformly closer to their upper bounds than
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the ones by the OSRT. They are bounded from below by the corresponding
probabilities for y; — pa, tj — p13 and psj_1 — 1z respectively in Table 5.10 for
the three types of comparisons.

The probability of detecting the difference between /i, and pr,g by the
OMCT may exceed the one by the LSD. For the step regression function in
Case 1, they include the comparisons of pis — fti2, s — iz flg — pas When
k=6, and pi7 — g, fs — phaz, o — Jhaz; it — [z, s — Hag, o — Haz, flrs — iz

and g9 — iy when k = 9.

‘When the probability of detecting the difference between p,; and ju,, is at
least 60% by both OMCT and OSRT, the mean heights of their simultaneous

confidence lower bounds were computed. The results are provided in Table

5.11. Comparing these probabilities with the cor ding ones in Table
5.10, it is found that these probabilities are less than the ones by the OSRT
by no more than .008, but they are less than the ones by the OMCT by at
least .092. The mean heights of 95% simultaneous confidence lower bound by
the OMCT are uniformly shorter than those by the OSRT. The reduction in
mean height by the OMCT over the OSRT can be as large as .37(12.9%). The
Pittman efficiency for the mean height of the OSRT compared to that of the
OMCT can reach 133% for the linear regression curve and 139% for the step
regression curve when k = 6; and they are 132% and 144% respectively, when

k=9.
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5.4 Extension to Simultaneous Confidence In-
tervals

The ideas behind the multiple comparison procedure can also be used to con-

struct si fid intervals. An ion of the OMCT d

to simultaneous confidence interval is as follows. The test statistic
. 1%, = Tl
1Tk 5 g )+ (D)

is used. Let mg ., be the critical value of M. The exact 100(1 — )% simul-

M

taneous confidence intervals for the multiple comparison f,, — f1,, are

o : 7
Yoo = Yog = mi S| (o my) ™t + (o mi) ™
= i

Hrs = Hpg

o B 7
< Yoy = Vgt me, Sy (T )=+ (o mi)
=, =1

The 100(1—a)% simultaneous confidence intervals for j;—p; by Tukey-Kramer

IA

(TK) procedure are

Plyy—pm e [Y—Yitql,S i1<i,j<k}>1-0a, (59)

where g, is the critical value of the studentized range statistic (see Hayter

1986). It also can be lized to more i ive contrast

If the common variance o2 is known and the sample sizes are equal, the
ratio of the mean lengths (i.¢, the différence of the confidence upper bound and
the confidence lower bound) of the generalized OMCT confidence intervals and

TK confidence intervals is

Mok (8 =7+ 1)+ (¢ =p+1)7"/Gf o
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When k = 9, we study the same four types of contrasts u; — ti, /15 = fii41, 1t —
Jiigr2 and f_1g — gy as in Section 5.2.2. The corresponding ratios are
provided in Table 5.12. The more complicated the contrasts are, the more
reduction we obtain by the generalized OMCT procedure.

If we utilize the prior knowledge that i < pp < -+- < ji, the 100(1— @)%

simultaneous confidence intervals for p; — 5,1 <@ < j < k, can be improved

v 7
. B} .
rop e (Voo = ¥y = mily, S, (;n,) ‘+(§m) }

< p— M

; .
S el e = Bt ) (5m) () ).

As in Section 5.3, the 100(1 — @)% simultaneous confidence intervals for the
multiple comparisons jis — fipq are

to

” 7
Yy — Vg —me -1 A
s aaca e Ty =00 =S (,:Z.rnj) = (,Z,;r i

Hrs = tipg

(X m)+ (X m) )
i=p'

j=r'

VS'/S«<r$‘?’l$n=’w’5»,='9(y”’ ~ Yyt miesS
The critical value mg , is a little larger than the corresponding I, ,. For

example m)$P s = 3.82, where n = (2,2, 4,2,3,3,2,4,2), whereas [03%5 = 3.52.

One may use a conservative two-sided simultaneous confidence interval pro-

cedure as in Berk and Marcus (1996),

Pllins — tipg € Yoy = Vo £ 1212, 8

(5.10)
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By comparing the table values 5%, = 3.52 and m{},; = 3.40, we can see

our generalized OMCT approach is more efficient.

5.5 A Numerical Example

The data given in Table 3.1 from a binding inhibition assay which was described
fully by Kanowith-Klein, Vitetta, Korn, and Ashman (1979) will be studied
here. In this set of data, there are k = 9 different dilutions of one antiserum
and 24 observations were made. The pooled estimate of variance, S2, is 86.48
with v = 15 degrees of freedom. To test the null hypothesis Hy : i = -+ = iq
against all alternatives, the usual overall F-test statistic is #' = 7.40 and it
has a p-value 0.0005. The null hypothesis is rejected and the means py, - -, jig
are not all equal.

The behavior of these means without the assumption of monotone regres-
sion curve is of considerable interest. The scatterplot in Figure 5.1 indicates
that there are no differences among the six levels, level 4, 5, 6, 7, 8 and 9, of
high doses. The upper percentage points are 4%, = 3.52 and 19,5 = 3.11.
Hayter’s OSRT procedure applies only to the equal sample size case. One can

generalize it by using the statistic

max
1<i<5<k

with critical values 7% s = 4.68 and A} 5 = 4.13. Both procedures detect
the difference between the group of levels 1, 2, and 3 and the group of levels

4,5,6,7,8, and 9. The 95% OMCT simultaneous confidence lower bound for
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fiag— 3 i 13.20 while the ding OSRT simul dence lower
bound is 2.09, a difference of 11.11. The OMCT also detects the difference
between the group of levels 2 and 3 and the group of levels 4, 5, 6, 7, 8 and 9,
while the OSRT fails to do so. The 95% OMCT simultancous confidence lower
bound for jusg — iz is 5.33. Furthermore, the OMCT detects the difference
between level 1 and the group of levels 2 and 3, but again the OSRT fails
to do so. The 90% OMCT simultaneous confidence lower bound for s —
1 is 1.89. Marcus’ simultaneous confidence lower bound can be computed
similarly as (5.4) with 135, replaced by /5§, where VSFngns = 416
and /S5 = 3.69. Marcus’ simultancous confidence lower bounds are
always less efficient than those of the OMCT.

Consider the one-sided test of Ho : py = -+ = g against Hy : uy <
<-+ < g with at least one strict inequality. The OSRT test statistic is H =
maxs<icjcx V2(Y) ~ i) /(Sy/1/n; + 1/ny), with the maximum oceurring at i =
Land j =8 and its value is v2(¥s — ¥4)/(5\/1/2 + 1/4) = 8.47. The p-value is
0.0003. Utilizing the OMCT statistic (5.1), the maximum of the test statistic
L = masigpsecrsos(Foe — Gl 19\ )T (2wl ] occurs at p =
1,g=3,r=4and s =9 and its value is (Vi — ¥25)/(5/1/16+ 1/8) = 6.80.
Its corresponding p-value is 0.0001. The value of the LRT test statistic is
54.16 with p-value 0.0000. The null hypothesis is rejected at significant level
= 0.05 by all three tests. The LRT is the best, and the OMCT procedure is
more powerful than the OSRT.

From the scatterplot in Figure 5.1, one can see that percentage inhibition is

monotone in the levels of dilution. Based on a monotone regression curve, the



85

95% OMCT simultaneous confidence lower bounds for 1; —p;,4 < j,i = 1,2,3,
and those of OSRT and Marcus’ (1978) max Fj are provided in Table 5.14.
There are no significant differences between any two levels of the high dosage
categories, levels 4 to 9.

It is found that the OMCT is the most efficient test in comparing p; to p;.
The differences 15 — jia, jis — p13 and fzg — i3 can be detected by the OMCT
procedure, while they failed to be detected by the OSRT and Marcus’ (1978)
procedures. However, the difference 13— 1, can be detected by the OSRT, but
neither the OMCT nor Marcus’ (1978) procedures could detect this difference.
It is noted that the OMCT simultaneous confidence lower bounds are larger
than those of Marcus (1978). The latter is a Scheffé-type procedure which is
known to be less efficient for pairwise comparisons.

The efficiency of the OMCT simultaneous confidence lower bounds can also
be examined by comparing to the LSD one-sided confidence lower bounds.
The OMCT simultaneous confidence lower bound for pi7 — s is 3.18, which is
the simultaneous confidence lower bound for a5 — pip3 without the monotone
assumption, while the LSD confidence lower bound for iy — s is ¥; — Y5 —
AT ¥

this case is approximately the same as the corresponding LSD confidence lower

% = 3.20. The OMCT simultaneous confidence lower bound in
bound.

The OMCT procedure indicates that in general the dilution levels can be
classified into a low inhibition percentage category (level 1) , a high inhibition
percentage category (level 4, 5, 6, 7, 8, and 9) and an in-between inhibition

percentage category (level 2 and 3). However, there is no significant difference
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between the means of the six levels in the high inhibition percentage category
and there is also no significant difference between the means of the two levels
within the in-between percentage category.

With the ion, the lized OMCT simul con-

fidence intervals for the numerical example is given in Table 5.15 where the
critical point m%%,, = 3.82. The 95% generalized OMCT simultancous confi-
dence intervals for pairwise mean differences also show the difference in high
dose levels from the low and in-between dose levels. In addition, the difference
between the low dose level and in-between level can not be detected by the
lower bound of contrast fp3 — g1y which is -3.51. However, the lower bounds
for puag — fiz3 and g — g are 3.99 and 11.99 respectively. The differences
between the high dose levels and low, in-between dose levels are detectable by

the generalized OMCT procedure as well.

5.6 Proof of Theorem 5.1.1 and Theorem 5.3.1

Proof of Theorem 5.3.1:
It suffices to consider the case that
vi=pii=12.,tand g =p+0i=t+1,.k
for an index t,1 < t < k, and for an arbitrary positive real number 6. Let
X1, ..., X have identical distributions as ¥, ..., Y4 and let Xf = X;,i =1,...,t,
XE=Ri+0i=1t+1,..k Foreachp<q<r <s let y= (Vs — 1) —
(trs — Htpq). We shall establish that

7 2 Logrs(X%) — Lpgra(X) (5.11)
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It follows that
Vrs = Vpg = Lpgrs(X%) 2 ftrs = tipg — Lpgrs(X)
and hence
C(W) = P(Vry—Vpg 2 Lygrs(X?) forall 1<p<g<r<s<k)
> Plpirs = tpg 2 Lygro(X) forall 1<p<qg<r<s<k)

= Pliirs = ttpg 2 Lygrs(¥) forall 1<p<q<r<s<k)
= Cw
The inequality (5.11) is implied by
bygrs (X7) = bygma(X) S 7 (5.12)
forall p < ¢ <+ < withp <p',qg < ¢,r' < <s. This is because
pgrs(X?) = Lygrs(X) lygrs (X7)

Lygrs(X)

= max
P<p<q/<ri<s' <s.qSq <

- max
PSP/ <r' s Saq<dl ' <r

bogoross(X%) = max
oo (X°) PSP <q'<ri<s Ssq<d'ir'<r

i -
< boagorosa(X?) = Lpoquroso(X)

< max [ygrs (X?) = lygre(X)]

PP <r <5 Ssase <

g%y

where pg < gg < 19 < 8¢ are such that

boaoroso(X°) = 2 Lygrs (X°).

= max
PP </ <r'<s s ,q<q ' Sr

Consider the following four cases.



(t<pors<t:

Here, 7 = (vrs — ¥pq) = (rs — Hpq) = 0 and s0 does
bygre(X) —lygre(X) =0< 7.

(Mp<t<q:

Here, 7 = (v — ) = (s — ) = 8 — 558

6 py= ™5
o™ EH
If t < p then gy (X?) = lygrg(X) =0< 7.

Otherwise, ' < ¢ and
byges (X°) = bygro (X) = s,
i

However,

iy T < prp ):._
2,-, T Ty ):.ﬂ n;
and (5.12) is satisfied.

() g<t<r
Here, ¥ = (Vs — Vpg) — (irs — ptpg) = 0. It is trivial that
lygrs(X) < lygry(X) +6
and hence (5.12) is satisfied.
(V) r<t<s:

Here, 7 = (Vrs — Vpa) — (frs — pg) = -Ef:r,_—é Ift <, then

e (29) = by g () + Et15
Lo




89

However,
Shonm _ S
T T Liem
and (5.12) is satisfied. Otherwise,

§ < tin which case Ly (X?) =

lygrg(X) and this completes the proof. o

Proof of Theorem 5.1.1:

By the proof of Theorem 5.3.1,

Pojtrs — fipg > lygre(V) forall 1<p<q<r<s<k)

ma;
[

< Po(trs—vpg > lygrs(X%) forall 1<p<g<r<s<k)

max
PSP Sq/<r <5 Ss.0<d <

i iy — i < Vi — vy =

..k — 1. Since the event on the left hand side

of the above inequality is equivalent to the event
[lirs = Hipg > lpars(¥)  forall 1<p<q<r<s<k
under the monotone nondecreasing regression function, and that event is equiv-
alent to the event
Yom¥y,
max M
1spsacrsask §\ [T, m) ! + (S my)

l

2 Rkl

the monotonicity of the power function (5.3) is established. Consequently,

mfP 4 2 i)
1<P<q<v‘<s<h.s (=, = 1)1+ (T i) ks

it 5 T ) + (T

= Pl

2 k)

= a
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and the test is unbiased.

Let A = ma s Lirs=it . If p € Hy — Hy then
<p<q<rssk a\/(z;z,nj)*'ﬂ):f&,m)” " 1 {1

there exist p < ¢ < 7 < s such that et > 0 and hence
o/ (Tjo i) T, )

A > 0. Since the one-sided t-test

is consistent, so is our OMCT statistic. a

5.7 Conclusion

If experimenters have a prior reason to believe that the regression curve is
monotone nondecreasing, then a test procedure can be chosen to have good
power properties under this ordered alternative. The inversion of the test pro-
cedure results in a set of simultaneous confidence intervals for various contrasts
of the means (Hayter 1990).

The multiple comparison procedure proposed in this chapter is a simple

and effective method for i e-sided simul lower

bounds for multiple ari The OMCT simul fid lower

bounds are compared favorably to those of the OSRT simultaneous confidence
lower bounds as the latter does not fully utilize all the observed information.
When differences between the means i; < --- < 4; are small, it is advantageous
t0 use weighted average means Y2 _; noYa./ S-_; nq in the inference procedure,
sec Wright (1982). The OMCT procedure is most advantageous when the

regression curve f(z) does not increase rapidly in one or more intervals of

dosage levels. Without the prior knowledge of the monotonicity of the response
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curves, the OMCT lower bound is the most effective method to categorize the
dosage levels into different response groups as shown in the above numerical
example. Applied to the dose-response curves, the OMCT procedure tends
to have sharper confidence lower bounds than the OSRT procedure for the
pairwise mean differences yi; — p1; when j — i is large. It must be stressed that
these confidence lower bounds are valid only when the ordering is specified

prior to observations of the data and hence is independent of the data.
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Table 5.1: The Powers of the OMCT, the OSRT and the LRT at a = 0.05 and

v=o00
k= k=6 k=9

C A OSRT OMCT LRT OSRT OMCT LRT OSRT OMCT LRT

1 73 186 239 143 -163 234 121 144 .230

I 2 455 487 594 .365 428 586 .289 377 578

3 785 814 885 679 758 879 .561 702 874

4 957 967 985 .907 947 1983 .822 924 983

1 167 184 212 138 162 2200 117 .143 192

g 2 440 .489 545 350 429 .515 276 379 493

3 761 814 856 .647 758 832 .529 703 812

4 945 967 979 881 947 972 784 922 966

91 (1,2,3,4)A/V5 for k =4, (1,2,3,4,5,6)A//35]2 for k = 6
and (1,2,3,4,5,6,7,8,9)A/V/60 for k = 9.
P11 (0,0,1,1)A for k =4, (0,0,0,1,1,1)A/ /372 for k

and (0,0,0,0,1,1,1,1,1)A/,/20/9 for k=9.
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Table 5.2: Upper Percentage Points for One-Sided Multiple Comparison Test

k
v a 3 4 5 6 7 8 9 10 12 15 20
5 .10 220 2.65 3.00 327 349 3.68 386 4.00 425 455 4.92
.05 279 330 3.69 4.01 425 447 468 483 511 546 5.88
.01 436 502 554 597 629 6.60 689 7.10 749 7.96 8.55

10 .10 1.98 235 263 2.84 3.01 3.16 3.29 341 3.60 3.83 4.12
05 242 281 3.09 331 349 3.65 3.79 391 411 436 4.66
01 341 383 415 440 461 478 493 508 530 559 595

15 .10 191 226 251 271 287 3.01 313 3.23 341 3.62 3.87
05 232 266 291 311 3.28 342 3.53 3.64 3.82 404 431
.01 316 351 3.78 400 416 4.31 444 455 475 499 525

20 .10 1.88 222 246 2.65 281 293 3.05 315 332 3.51 3.76
.05 227 259 283 3.03 318 330 342 352 3.69 3.89 414
.01 305 3.38 363 3.81 397 410 421 432 450 4.70 4.97

25 .10 1.86 220 243 262 277 289 3.00 3.10 326 3.45 3.69
.05 223 256 279 297 3.11 3.24 335 345 361 3.80 4.04
.01 299 330 354 3.70 3.84 3.98 4.09 419 435 455 4.79

30 .10 1.85 218 241 259 274 286 293 3.06 3.22 3.41 3.64
.05 220 253 276 294 3.08 3.20 330 340 3.56 3.74 3.97
01 295 3.24 347 3.64 3.79 3.90 4.00 4.11 425 4.44 4.67

40 .10 1.84 216 239 256 271 283 293 3.03 3.8 3.36 3.58
.05 219 250 273 2.89 3.03 3.15 325 3.34 349 3.67 3.89
01 290 3.18 340 3.56 3.69 3.81 391 399 415 432 453

60 .10 1.83 214 236 254 268 279 290 298 3.3 3.31 3.52
05 217 247 269 2.85 299 3.0 320 328 343 3.60 3.81
.01 284 312 332 348 3.61 3.72 3.81 3.89 4.03 420 4.40

oo .10 1.80 210 2.32 248 261 272 282 290 3.04 321 341
05 212 241 261 277 290 3.00 3.09 3.17 331 3.46 3.65
.01 275 3.01 319 330 344 3.55 3.63 370 3.82 3.96 4.14
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Table 5.3: Differences of Upper Percentage Points Between OMCT and
OSRT/v2

v _a 3 4 5 6 7 8 9 10 12

.05 .05 .10 .15 .20 .22 .25 .30 .30 .34
01 .09 15 22 29 .31 .36 .43 44 49

.05 .05 .10 .13 .16 .18 .21 .23 .25 .28
01 .07 13 .18 .22 .25 .27 .29 .32 .36

05 .05 .09 .12 .15 .18 :20 21 .23 .26
01 06 .11 .15 .20 .21 .24 .26 .28 .32
20 .10 .03 .07 .10 .13 .15 .16 .19 .20 .23
.01 06 .11 .16 .18 .21 :23 24 .27 :30
25 .10 .03 .08 .10 .13 .15 .17 .18 .20 .23
:01 :(17 A1 .16 :17 19 :22 :24 :26 29
3 .10 .03 .07 .10 .12 .15 .16 .18 .19 .22
.01 :07 10 015 17 21 .22 23 .27 :28
40 .10 .04 .07 .10 .12 .15 .17 .18 .20 .22
01 :07 .10 :15 :17 a9 .22 23 24 .28
60 .10 .04 .07 .10 .13 .15 .16 .18 .19 .21

.01 .05 .10 .13 .16 .19 .21 .22 .24 .26

.01 .06 .10 .13 .15 .17 .20 .22 .23 .25




Table 5.4: Differences of Upper Percentage Points Between /S; and OMCT

k
v _a 3 4 5 6 7 8 9 10 12
5 .10 .01 .09 .19 .32 46 .60 .74 .90 1.20
05 .02 .11 .23 36 54 71 .87 1.07 143
01 .03 .17 34 55 .81 104 127 154 207

10 .10 .01 .08 .16 .27 .39 .51 .63 .75 .99
05 .02 .08 .18 .30 43 .56 .69 .83 111
01 .02 .11 23 38 .53 .71 .88 1.03 1.39

15 .10 .02 .08 .16 .26 .37 47 .59 .70 .93
01 .02 .11 21 .34 48 62 .76 .91 120

20 .10 .02 .07 .16 .25 35 47 .57 .68 .89
01 .02 .10 19 32 45 58 .72 .84 110

30 .10 .02 .07 .15 .26 .34 45 .55 .66 .87
01 .02 .10 19 30 41 .54 67 .77 1.03

40 .10 .01 .07 .15 24 34 44 54 64 8
01 .01 .11 .18 29 41 52 .64 .76 .98

60 .10 .01 .07 .15 .23 33 44 .53 .64 .84
05 01 .08 .15 .26 .35 .46 .56 .67 .87
.01 02 09 19 29 39 50 .62 .73 .95

oo .10 01 .07 .14 23 33 42 52 62 .81

01 .02 .08 .17 30 .37 46 .57 .67 .87




Table 5.5: Ratios of Upper Percentage Points of OSRT/v/2 to OMCT

k
v a 3 4 5 6 7 8 9 10 12
5 .10 978 970 .958 .952 .949 .945 .938 .937 .932
05 981 969 .958 .949 .948 .943 .937 .936 .934
01 980 969 .960 .952 .951 .945 .938 .938 .934
10 .10 979 968 957 .951 .948 .944 .940 .936 .932
05 980 .965 .957 .951 .947 .942 .938 .936 .932
.01 979 967 957 .951 .945 .943 941 .936 .935
15 .10 983 969 .960 .952 .948 .942 938 .937 .931
05 977 967 960 .953 946 .942 941 .937 .933
01 981 970 959 .950 .949 .944 941 .939 .933
2 .10 982 967 .959 .952 .945 .944 .938 .935 .930
05 977 969 960 .949 .945 .943 .939 .936 .932
01 980 967 .956 .952 .947 .944 .942 938 .932
25 .10 983 965 .959 950 .945 .943 .939 .935 .931
.05 (982 965 .958 951 .949 943 .940 .936 .932
01 978 967 .955 954 .951 .944 .941 .937 .933
30 .10 982 967 .959 952 .946 .943 .939 .937 .932
05 987 967 957 .950 .946 .943 .941 .936 931
01 977 969 958 952 946 .945 .942 935 .935
40 .10 980 .967 957 .953 .945 .941 .939 .934 .930
05 981 967 .955 .952 .947 .943 .940 .937 .933
.01 977 968 957 .952 .949 .944 .940 .939 .932
60 .10 978 967 .959 950 .945 .943 .938 .936 .932
05 979 966 .956 .951 .945 .942 .938 .936 .932
01 981 968 960 .953 .948 .943 .941 .939 .935
oo .10 979 967 956 .951 .947 .943 .938 .937 .932
.05 982 967 959 .951 .945 .943 .940 .937 .931
01 2980 966 .958 962 .950 .942 .940 .939 .935
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Table 5.6: Ratios of Upper Percentage Points of OMCT to v/Si;

k
v a 3 4 5 6 7 8 9 10 12
5 .10 997 967 .941 912 .884 .859 .839 .817 .780
.05 993 969 942 917 .887 .862 .843 .819 .781
.01 994 968 942 916 .886 .863 .845 .821 .784
10 .10 994 968 .943 .914 .886 .862 .840 .821 .784
-05 993 972 944 916 .889 .866 .845 .825 .787
01 993 971 .947 921 .896 .871 .849 .831 .793
15 .10 991 968 .939 .913 .887 .864 .842 .821 .786
.05 996 969 .941 915 .892 .869 .845 .825 .790
.01 992 969 945 .923 .896 .874 .853 .833 .800
20 .10 991 969 .940 .913 .890 .863 .843 .823 .788
05 996 968 .942 919 .893 .867 .847 .828 .793
01 993 972 949 922 899 .876 .854 .836 .803
30 .10 991 969 .940 .913 .889 .864 .843 .823 .788
05 986 970 .944 919 .893 .869 .847 .829 .795
.01 995 970 948 923 902 .877 .856 .841 .804
40 .10 993 969 .942 913 .890 .866 .843 .826 .790
05 992 970 .947 917 .892 .870 .847 .830 .795
01 995 966 .949 .924 .900 .880 .860 .840 .809
60 .10 996 969 940 916 .891 .865 .846 .824 .789
.05 994 970 946 918 .895 .871 .851 .830 .797
01 991 971 .947 924 902 .881 .861 .842 .809
oo .10 995 969 943 915 .888 .865 .845 .825 .790
.05 991 970 943 918 .896 .872 .851 .832 .800
.01 993 973 949 917 902 .885 .865 .847 .814
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Table 5.7: Ratios of the Height of the OSRT Simultaneous Lower Bound to
the Height of the OMCT Simultaneous Lower Bound for Various Contrast C
and a = .05

k
(¢} 3 4 5) 6 i 8 9 10 12
15— i 982 967 959 951 .945 943 940 .937 931
My = i+t 1133 1116 1.107 1.098 1.091 1.089 1.085 1.082 1.075
M= Biit2 NA 1184 1174 1165 1.157 1.155 1.151 1.147 1.140
Mg — Mg NA 1367 1356 1.345 1336 1.333 1.329 1.325 1.316
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Table 5.8: Probabilities of Detecting the Difference Between s; and y; by 95%
One-Sided Simultaneous Confidence Lower Bounds

% A i 7
2 3 45 6 7 8 9
6 I 216 1 OSRT 012 046 118 240 412
OMCT 008 040 .120 .269 .482
4 1 OSRT .025 .128 .364 .680 .907
OMCT 018 .116 380 .734 .947
II 346 1 OSRT 004 .012 436 624 .727
OMCT .003 .009 436 .707 .831
2 OSRT 004 354 .524 .624
OMCT 003 340 579 707
4 1 OSRT .004 012 .620 .802 .881
OMCT .003 .009 .624 .872 .947
2 OSRT 004 530 713 .802
oMCT 003 518 772 872
9 I 4 1 OSRT .006 024 067 .151 285 .465 .659 .822
OMCT .003 .018 .062 .161 .334 .564 .782 .924
II 4 1 OSRT .002 .005 .010 372 .554 663 .734 .784
OMCT .001 .004 .008 .361 .655 .805 .881 .922
2 OSRT 002 005 320 487 .502 .663 715
OMCT 001 004 .303 569 .720 .805 .856
3 OSRT 002 253 394 48T 555 .605
oMCT 001 225 436 .560 655 713
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Table 5.9: Probabilities of Detecting the Difference by Both OMCT and OSRT
and Their Mean Heights of 95% One-Sided Simultaneous Confidence Lower
Bounds for u; — 4 when A =4

Mean Height

“ Contrast Probability "OSRT_OMCT
T o — i 903 317 3.08
Ho — Ha, s — 665 300 297
o — pt 818 309 291
Ho = fiz, Hs — fi1 646 290 279
I o — 878 197 177
o — bz, Hs — 796 219 206
15 — Jiz 702 238 231
Ho =t 780 178 154
s — 728 1.87 166
Ho — pz 707 191 172
s — fiz, Hr — 654 199 1.82
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Table 5.10: Probabilities of Detecting the Difference pirs — f1,4 by 95% One-
Sided Simultaneous Confidence Lower Bounds for Various Comparisons when

A=4
Comparison k1t F
i 5 6 7 8 9
Wi—m2 6 I OSRT 204 525 838
OMCT 204 676 .933
II OSRT .576 .766 .853
OMCT .607 .865 .943
9 I OSRT .031 087 .195 .363 .569 .763
OMCT 042 .130 297 .531 .763 916
II OSRT 006 .343 520 629 .703 .756
OMCT 005 .350 .646 .799 877 .920
wi—mas 6 I OSRT 080 .337 .707
OMCT 136 534 .887
II OSRT 500 .694 .793
OMCT .568 .844 .934
9 I OSRT .011 .044 .122 .262 .462 .678
OMCT 016 .079 227 462 .717 .896
II OSRT .002 305 .473 .582 .657 .712
OMCT .002 .328 .627 .787 .869 .914
wji;—mz 6 I OSRT 068 330 .722
OMCT 208 613 915
II OSRT 051 .679 .820
OMCT .149 851 .940
9 I OSRT .009 .039 .15 .257 463 .685
OMCT .025 .101 263 .501 .743 .908
II OSRT .002 035 .416 .576 670 .734
OMCT .003 087 .627 .793 .874 918
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Table 5.11: Probabilities of Detecting the Difference by Both OMCT and
OSRT and Their Mean Heights of 95% One-Sided Simultaneous Confidence

Lower Bounds for fir, — ptpq when A = 4

Mean Height

" Contrast bability "OSRT_OMCT

I He — M1z 836 307 280
He — 704 2.91 2.66
Jiss = 721 293 254
Ho — pi12 760 295 267
Mo = ths 674 2.87 256
1y — puz 683 287 250

1 s — b1z 761 228 210
Ho — phz 851 207 181
s — ps 691 242 219
e — p3 792 223 190
Has — 2 676 245 217
Hss = iz 818 218 185
7 = pz 621 204 184
s = pz 698 193 168
o — pi1z 753 184 156
g = pg 653 200 172
o — ps 709 192 160
Has — iz 666 198 170
sy — 2 731 189 158
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Table 5.12: Ratio of the Heights of the OMCT Simultaneous Lower Bounds
to the Heights of the TK Simultaneous Lower Bounds for Various Contrast C
with a = .05

k
[¢] 3 4 5 6 i 8 10 12 15 20
M — i 1020 1.035 1.045 1.053 1.058 1.062 1.068 1.074 1.079 1.084
M= Bigs1 0.883 0.897 0.905 0.912 0.916 0.920 0.925 0.930 0.935 0.938
i — Bigs2 0.833 0.845 0.853 0.860 0.864 0.868 0.872 0.877 0.881 0.885
M-t — fige1 0.721 0.732 0.739 0.744 0.748 0.751 0.755 0.759 0.763 0.766
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Table 5.13: The 95% max Fr, OMCT and OSRT Simultaneous Confidence

Lower Bounds for ji; — i, < j

i

J

1 max Fp
OMCT

2 max Fg
OSRT
OMCT

3 max Fr
OSRT
OMCT

2 3 4 5 6 7 8 a
n® n 9.79 16.11 1631 16.41 18.18 18.79
n 010 17.73 20.41 20.41 20.41 21.60 21.60
n n 1577 2111 2111 21.11 2147 21.95
n n n 0.38 0.69 272 340

n n n n n n n
n n 3.18 318 318 474 533

n n n n n n

n n n n n n
n n n n 091 145

%n represents the difference can not be detected
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Table 5.14: 95% Two-Sided OMCT Simultancous Confidence Intervals for

ni—p,1<i<j<9

Upper Bound
1 2 3 5 7 s 9 jji
T 5451 b7.51 7202 72.02 7202 7496 77.34 8402 1
2 1252 3451 49.02 49.02 49.02 5196 5434 61.02 2
3 351 -27.01 3801 3805 3812 40.56 4334 5201 3
4 1298 -6.01 -9.01 2352 2352 2646 2884 3552 4
5 1878 149 -2.08 -32.43 1625 1863 21.34 2972 5
6 1878 149 -2.08 -32.17 -35.34 1851 2134 2972 6
7 1878 156 -2.08 -28.67 -31.84 -32.10 2128 20.72 7
8 1936 338 -0.68 -17.88 -17.88 -17.88 -25.01 20.14 8
9 1986 3.99 0.1 -1541 -1548 -1548 -23.17 -30.51
ifi 1 2 3 1 5 6 7 B

Lower bound




Figure 5.1: Scatterplot of the Data of Binding Inhibition Assay
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Chapter 6

Simultaneous Statistical
Inference with a Control

6.1 Introduction

In drug ds studies, several i ing dose levels of a substance are

usually compared with the zero-dose control to investigate the effect of the
substance. For this purpose, a dose-response experiment is often conducted

in which the doses of the sul under ideration are ini d to

separate groups of subjects. There are many applications when the dose-
response curve is monotone. Our first concern is whether there exists one
response mean which is better than the zero-dose control mean. If so, we
will be interested in identifying the lowest dose level that produces a desirable
effect over that of the zero-dose control.

Specifically, we assume that we have the responses Yi;(i = 0,1,..,k,j =

n:) from k dose levels and a control (i = 0). The sample means Y, ..., Vi

are normally distributed with means y1; and variances 0?/n;. For our first

concern, as we know that the response means p;,i = 1,...,k, are at least as

107
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effective as the control mean o, and a natural strategy in the statistical anal-
ysis is to test the hypothesis Hy : pg = py = -+ = fu; against the one-sided
alternative that at least one response mean y; is better than the control, i.e.,

Hit: iy < priyi = 1,..., k, with at least one inequality. This one-sided alterna-

tive is a well known simple tree order restriction. A variety of test procedures
have been proposed and the majority are based on one or more contrasts among
the sample means. The best known is Dunnett’s (1955) multiple comparison
procedure. Dunnett’s approach has the advantage of providing confidence lim-
its for the differences between the response mean and the control mean, but
the case of unequal sample sizes prevents the use of the existing table values of
Dunnett’s test statistic. There is no basic theoretical reason requiring the num-
ber of observations in each of k + 1 dose levels to be equal. In fact, it would
be more appealing to allow the control to have more observations than the
other k dose levels. An alternative to Dunnett’s test is the likelihood ratio test
(LRT) by Bartholomew (1959a, 1959b, 1961a, 1961b). As the null distribution
of the LRT also depends on the sample sizes, implementing this test is diffi-
cult in practice. Abelson and Tukey (1963) and Schaafsma and Smid (1966)
developed the single contrast tests with high power at the center of the alter-
native region but a very low power at the edge of this region that is generally
far below that of the LRT (Robertson, Wright and Dykstra 1988). Mukerjee,
Robertson and Wright (1987) proposed a family of orthogonal contrasts which
includes Dunnett’s and the aforementioned single contrast as special cases.
Tang and Lin (1997) proposed a LRT based on an orthant approximation and

the generalizations of the orthogonal contrast test of Mukerjee, Robertson and
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Wright (1987) was recently studied by McDermott (1999).

Usually, a more restrictive order, a simple order, is considered in dose-
response studies when prior knowledge indicates that the response means are
monotone nondecreasing with the dose levels and arc at least as effective as
the control, i.e. Hy : iy < ir < -+ < . The related tests of equality of
against H, can be found in Section 2.2. For the monotone dose-response means,
we are also interested in identifying the dose level i such that any other dose
levels higher than i will be more efficacious than the control simultaneously.
The difference of the response mean with that of the control is evaluated by
the interval estimate. With the monotone assumption, the lower bound for
145 — o will be nonnegative. A positive lower bound for y; — po indicates
that the response mean g is larger than the control mean g. By the LRT
statistic for the simple order alternative, Marcus and Peritz (1976) obtained

1 intervals for contrast:

explicit ided
¥ g nicii, for which Y5 nic; = 0 and ¢ < ¢; < -+ < ¢. Utilizing the
properties of the dual cone of the simple order cone, Marcus (1978) studied
the confidence lower bounds for nonnegative combinations of pairwise mean
comparisons with the application to both the simple order and the simple tree
ordering assumptions. Berk and Marcus (1996) gave a review of the work of
the simultaneous bounds for partially ordered means.

In this chapter, we will propose a new procedure which outperforms its

predecessors and is invariant with respect to sample sizes. In Section 6.2, we

asi inference

that will be used in our study. In

Section 6.3, a new test statistic will be presented and power comparisons are
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1 ds lower

conducted. In Section 6.4, a sided optimal si
bound for pairwise mean differences p; — jio is proposed. Also included are an
algorithm to compute this optimal simultaneous lower bound and a numerical
example. Technical results can be found in Section 6.5. A discussion is given

in Section 6.6.

6.2 Simultaneous Inference Procedure

Let pto, pt1, -+, pix. be dose-response means at dose level ¢ with level 0 as the
control. We assume that g < 11 < +++ < st In order to identify the minimum
dose level which has a desirable effect, we consider the null hypothesis Hy :
o = i1 = -+ - = Ju against the alternative hypothesis Hy : po < 1y < -+ < pge
with at least one strict inequality. If Hy is rejected, we conclude that that
ik > po. It is of considerable interest to identify the smallest dose level j such
that 1, > o, 7 > j, simultaneously. For example, when the response means
satisfy po = 1 = po < ps < pa, one would like to identify simultaneously
43 > pto and gty > . This can be achieved by simultaneous tests and the

simultaneous confidence lower bound for j1; — pi.
6.2.1 Dunnett’s Procedure
Dunnett (1955) proposed the test statistic
Dy = 1'2315’%{(‘7‘ = Yo)/{s(ng" +ni")"*}

for testing Hy against H{' : ytg < jii,i = 1, ..., k with at least one strict inequal-

ity, where s? = ¥, ;(Vy; — ¥2)?/v and v = %y n; — (k+1) > 0. The critical
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value for D; is denoted by da . If Hy is rejected for large values of Dj, one
concludes that there exists a level i < k such that p; > po. Incorporating the
prior knowledge that j, 4, ..., st are monotone, one would also conclude that
i > pro. The smallest level j such that u, > po for any r > j can be found

by testing Ho; : po = py = -+ = p; against H{j : po < pii(i = 1,...,5) with at

least one strict i

J =1, k, simul ly. As D; has the property

that Dy < Dy < - < Dy, if Dy > day, where

D; = (% = Yo/ sl + )1},
one rejects Hy; and concludes that pz, > p; for all » > j. With the assumption
that po < pt1 < +++ < iy, the one-sided simultaneous confidence lower bound

for pj — o is constructed as
L4(n; = o) = pax{¥i — Yo — daas(ng' +n)'/%). ©1)
Note that L#(s1; — i) > 0 implies L(pt, — o) > 0 for any r > j. Furthermore,

for a given a, L4(u; — pg) > 0 is equivalent to D; > d .

6.2.2 Modified Likelihood Ratio Test for the Simple Tree
Alternative

An excellent alternative to Dunnett’s procedure is the modified likelihood ratio

test (MLRT) considered by Wright (1988) for testing H, against H{'. The

MLRT Tt rejects Hy for large values of

k
T = (Y malud’ = )/}
=
where i = ¥¥ .Y/ ¥ n; is the MLE of the common population mean

under Hp and p*(i = 0,..., j) are the restricted MLE of z;’s under the simple
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tree order alternative. For the simple tree alternative, Thompson’s minimum-
violator algorithm provides a convenient method for computing the estimate
47 (Thompson 1962). Hogg (1965) discussed the relationship between the
likelihood ratio function and the class of linear functions of the sample mean
Y;. It follows that
k k
Tt = max{ 3 mieiVi/(s2 3" mac?) 2}
coses g =
If Hy is rejected for large values of T3, one concludes that s > . By testing
Ho; against Hi! simultaneously, we conclude ji; > pq if Hoj is rejected. That
is, if
j i
T = e neTi/ (S md) ) > e,
where 2%, , is the critical value for Tg. Since T3 < T§ < --+ < T¢", one
concludes that i, > po for all + > j. The simultaneous confidence lower
bound for ji; — g is constructed as
i J
L(p; — po) = max e —tey s i)}, (6.2)
PR A =

We have noticed that the test procedures by Dy and T2 are designed
to test the homogeneity of the response means against the simple tree order
alternative, however they do not fully utilize the prior knowledge that y;,i =
0,..., k, are monotone nondecreasing.
6.2.3 Modified Likelihood Ratio Test for the Simple Or-

der Alternative

‘Wright (1988) also proposed the MLRT T} to test Hy against Hy : pt9 < py <

+++ < pg with at least one strict inequality. The null hypothesis Hy is rejected
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for large values of
£
T3 = {3 ma(® — fu)?/s*}2
=

Here pf°(i = 0,...,k) are the restricted MLE of y; under the simple order

alternative which can be by the pool-adj t-violati
(see Section 2.1). In a similar manner as Tj*, the statistic T¢° can be formatted
as
k ~ k
T3 = max{} nie;¥i/(s* Y nic?)' %},
<€C i =0
where C = {c = (co,c1,...,c) € R¥ 1 T8 miey = 0,0 S ey <+ < ey}

Let t3%, be the critical value of 7° and let

ok
T3 = max(3 maBi/ (o) 2,
¥ =0 i=0

where C; = {c € R 5F inie;=0,c0 < er <o S gjg = = o =
0}. When T} > ¢, ,, one rejects Ho; in favor of Hy; : po < jur < -+ < pi5
with at least one strict inequality. Note that 7} fails to satisfy the property
that 77° < 73° < -+ < T#°. In order to make a simultaneous inference, one
applies the Bonferroni inequality so that Ho; is rejected if 77° > £37, ;. The
corresponding simultancous confidence lower bound for 5 — jig is

i ;
L*(pj — po) = max {3 nia¥s =t s (o micd) 2}, (6.3)
= =

B S
6.3 Orthant Test
The hypothesis Ho; : pg = py = -++ = pu; satisfies Hoy D Hoz D -+~ D Hyi

where Hy = Hy. Consider the rejection region R; = {y : Tj > t} for the test

of Hy;. If the test statistic 7} is monotone nondecreasing, then the rejection
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region for the union-intersection test of Hy is R = U5_, R, which is {y : T > t}.
The test statistic for testing Ho is Ty = max;<j<t 7. The Dunnett’s test Dy =
max;<;j<x D; and the MLRT T3 = max;<;<k T are both union-intersection
tests; however, T¢° is not. In the following subsection, we will propose a new

test statistic which is a union-intersection test based on T7°.

6.3.1 Orthant Test Statistic

Consider the union-intersection test based on the statistic 7 and the rejection

region for testing Ho against H, is {y : maxi<;<x T3 > c}. Therefore, we have

I

5 j
max T max max{3" nic;¥i/(s* 3 nc?)2}
i=0 i=0

i<i<k 7 1<j<k c€C)
: \ % 2 S 2\1/2
max {} mie¥i/ (s 3 micf) '}
cEU!:‘C, i=0 =0
However, the set U, C; is not convex, hence it is difficult to compute its

critical value. Let

&
Op={ce R : Y niei=0,c0 <y < -+ < Con}
=
where &, = ¥i_gnici/ ©Lon;. The convex set Oy is an orthant. It is also

known as upper-starshaped (Robertson, Wright and Dykstra 1988).
Lemma 6.3.1 The set O is a convez hull of U_,C;.

Proof. Let x = [zg,..., 7] and y = [yo, .., 4] be two vectors in Oy and

20, s 28] = AX+ (1= A)y where 0 < A < 1. Let Zo; =Yg niai/ Tieg s,

Toj = Theoma¥i/ Lo mi and Zo; = Sl mizi/ Ylg . It is trivial that

Zoiot = AToi-1+ (1= o1



< Az + (1= A)goi
= Zoi
and hence Oy is convex. It is obvious that C; C O,j = 1,..,k Let

co(UE_,C;) denote the convex hull of US,C;. Thercfore, we have O >

co(u;;,c,). On the other hand, the generators of the set Oy are {e;}i—1,..k

where ; = [-ng}_y, .., —ngj_1,7; ", 0, ..., 0] with the jth entry e;; =

ngj = l_gny. Since e; is in C;, we have Ok C co(U_,C;). o

T2 = m(S e/ S ).
The Ty is a modified union-intersection test statistic obtained by fully utilizing
the prior knowledge s1g < i1 < -+ < p. The T} is slightly greater than the
union-intersection test statistic max, ;<x T;°; however, the difference is small.
For example, when v = oo, the upper 5% critical points for T} are 2.057, 2.331
and 2.549 for k = 2,3 and 4, respectively. They are the upper critical points
of the statistic max;<;< T}° at the levels 4.9%, 4.6% and 4.1%, respectively

The statistic T2 can be formatted as

.
o= (S na®/s Y

]

(55 P (0, — Fogor) /5712
=1 Toi

where 1° = (f, .., ug) is the weighted least square projection of (¥, ..., Vi)
onto O with the weights ng, ny, ..

i, and Yo = Sgn¥i/ $oni. The

derivation of the last equality is seen in Section 6.5. The statistic Ty? is used to
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test Hy against HY : pig < figr < -+ < fige with at least one strict inequality,
where figj = Yo nipti/ Slaomi. One rejects Hy in favor of HY if T¢ > 55,
Define
J _ J
Ty = max{}_nici¥i/(s* 3_nich)/?},
©€0; 5 =0
where

&
0;={ceR*':3n

i=0

=0,c0< e < - S By iy == =0}

The statistic T} has the property that Tf < Ty < --- < T¢. It will be demon-
strated in Section 6.3.3 that this new test statistic is more powerful than the
aforementioned test statistics for testing Ho; against Hy;. The simultaneous
confidence lower bound for pairwise mean difference p; — ju9 corresponding to

Ty will be discussed in Section 6.4.
6.3.2 The Null Distribution of T¢.
The critical value #], ;,, for T} is given by
L (m“anC-(Y - b /s(Zw?)‘” < VueERH = 1—a. (6.4)
The left hand side can be rewritten as
k ok
Pologe > e/ s(onl) " < )
=
= PD(Z"X /s < (tep)}-

The p-value of T¢ = t° is given by

k- 0
PIzey =5 (z * l)z*P(FF” 25, (65)

=2 ~
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while the corresponding one for T = t* is given by

-
=3 Pall b+ Lw)P(Fa > 1) (66)
=2

P(T > ¢
(Wright 1988) where w = [wg, wi, .., we]' with w; = n/o? and Py(l, k + 1;w)
denotes the level probability that there are exactly I distinct values (levels)
for the MLE satisfying the simple tree order (Robertson, Wright and Dykstra
1988). The Py(l,k + 1;w)’s depend on the sample sizes and the population
variances through the weights w;. Robertson, Wright and Dykstra (1988)
discussed that Py(l, k+1; w)'s converge to the binomial probabilities () (3)*
with k trials and the probability of success equals 1/2 when the weight at the
control wy — o0o.

On the other hand, the p-value of T;{° = *° has the same format as (6.6) ex-
cept that one replaces Py (l, k+1;w) by Ps(l, k+1; w) which denotes the level
probability for the simple order restriction (see Section 2.2). Robertson and
Wright (1982) discussed that Ps(l,k + 1; w)’s converge to the binomial prob-
abilities with k trials and probability of success equal to 1/2 for a particular
sequence w. These particular limiting distributions of 73t and T correspond
to that of 7. Therefore, T will have the same distribution as the limiting
distribution of T® and Tgt, where Tg® < T¢ < T3, The critical value of 95,
can be found in Table A.9 when wy = oo by Robertson, Wright and Dysktra
(1988).

6.3.3 Power Comparisons

The power functions of simultaneous tests for null hypotheses Ho; : po =

py = o = p; against Hyj : po < gy < -+ < py with at least one strict
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inequality are studied for D;, T;° (with Bonferroni inequality applied), T;* and

T¢,j = 1,...,k. For simplicity, we consider the equal sample size case n; = n

with 02/n = 1, = 0.05. In dose-response studies, the logistic function is one
of the most popular dose-response curves. The logistic function considered
here is f(z) = E{1 — [1 + (z/C)°]"'} where  is the dose level and f(z) is
the corresponding dose-response mean with f(5) fixed at 4 (Ruberg 1995). We
study five cases with C' = 1.5,2.0,2.5,3.0,3.5.

As Dunnett’s test Dj, T;‘ and the new proposed test 77 have the property
that Dy < Dy < -+ S Dy, TP < T3t < - < Tt and T < T < -+ < T,
they can be used to detect the difference between y1; and 5. However, as the
statistic 75* does not satisfy 77° < 73° < --- < T3°, we apply the Bonferroni
inequality to obtain a conservative simultaneous test such that we reject H; in
favor of Hy; for large values of 73°. With the prior assumption of monotonicity,
if Ho; is rejected, the lower bound for j1; — o will be positive. The power for
testing Hy; against H); is actually the probability of obtaining the positive
simultaneous lower bound for ji; — yg. The simulation results for & = 5 are
given in Table 6.1.

Table 6.1 indicates that if there are significant differences between the dose
levels and the zero-dose control level, the orthant test statistic 7 is much more
powerful in detecting this difference than the other three procedures. When
C = 2.5, the orthant test T has the largest power among the four tests for
detecting the differences between y1; and pig for j = 3,4 and 5. Even though
D; and T;° have larger powers to detect the differences between 1, and i for

J =1 and 2, they gain little over the orthant test statistic. The maximum
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gains of the statistic T¢ over Dj, T;° and T} are 11.7%, 4.4% and 10.9%;
however, the maximum gains of the statistics D; and T}° over T¢ are only

3.1% and 1.6%, respectively. Similar results apply in the other four cases. In

general, when the probabilities to detect the si between f1;
and fio by the four procedures are all above 50%, the gains of the orthant test
statistic 7 over the other three tests D, Tj° and T5* can reach 15.0%, 7.8%

and 10.8%, respectively. When the diff between the dos P mean

and the control mean is detected, the new statistic 77 is the one to use.

6.4 Simultaneous Confidence Lower Bounds for
Pairwise Mean Differences

6.4.1 The Optimization Problem
In order to assess the size of the difference between the response mean at
level j and the zero-dose control mean, one needs to construct a corresponding
simultaneous confidence lower bound. According to (6.4), a 100(1 — @)% si-
multaneous confidence lower bound for j; — g can be inverted by the orthant
test and is given by
Ui — o) = ¥ = Yo — 10, 8(n7 + ng ") /2. (6.7)
For more general contrasts, T% o nicifts, ¢ = (¢, ¢y, ...y ¢x) € Oy, the 100(1 —
a)% simultancous confidence lower bound can be constructed as
k K &
1S nicips) = 3 miei¥s = b5 ,5(3 mie) V2. (68)
= prd =
If one rejects Hy, there exists at least one contrast % nicip; that has a

positive lower bound.  Specifically, if T2 > 19, one rejects Ho, in favor
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of Hy; and there exists a contrast Yo micisti < 1 — pio,¢ € O; such that
(g nicipis) > 0. Tt suffices to consider the confidence lower bound for fux— i
under the assumption g < gy < -+ < . The result for p; — po follows
similarly. The lower bound for i — fzg can be improved to

k.
L°(uk — o) = max 1Y nicips)- (6.9)

€0k Tl nicitiSu—to 10
The positive lower bound for py — po indicates the difference between the
dose level k and the control. We have the following lemma and its proof is

straightforward.
Lemma 6.4.1 T¢ > #2,, , if and only if L°(u — pio) > 0.

We shall restrict our attention to the case [(X¥ o nicis;) > 0 for some ¢ €
Oy, ie., when T¢ > 12, ,. The value of the lower bound L%(z — i) indicates
the size of the difference between jz and . We can assess a minimum dosage
level which has the desired difference from the zero-dose control mean.

Let npy = $0,n; if p < g and nyy = 0 if p > ¢. The evaluation of
the lower bound L°(sx — o) in (6.9) is an optimization problem. In order
to solve this rather complicated concave programming problem and seek an
efficient algorithm to compute this improved lower bound, we consider the
transformation z; = ¥; — Yoi-1,8 = pti — flos1, ai = Noi—1na(c; — Toi—1)/Moi-

Then 2y, ..., z are normally distributed with means §; and covariance matrix

0?8 = o’[oy;] where oy = ngly + 07, oy = 0if i # j and Sk nici =
5 adi Let A =[] with oy = noy_1/ney_1 if i < j, and 0 otherwise.

The constraint ¢ € O, i.e, o1 < (7

.., k), is equivalent to a; > 0.
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In addition, with the prior knowledge y9 < py < -+- < py, the constraint
Sk gnmicip < pk — po s equivalent to S5 nje; < 1,4 = 1,...,k, which can

also be shown equivalent to 5_; ajno;1/no;-1 < 1. Let a = [ay,..., a]'. The

problem (6.9) becomes

k k k
- e 512
ol l(; ad) = S &{a‘z‘ ta,k,vs(g a}aii)'?} (6.10)

where 1= [1,1,...., 1f4,,,- Let a® be the optimal solution to the problem (6.10).

Note that a® has the following property:

Lemma 6.4.2 Suppose that the mazimum of (S, a;6;) subject toa > 0, Aa <

1 is attained at a°, then z; < 0 implies that af = 0.

Proof. Suppose there exists z; < 0 and ag > 0. Let d; = 0 and d; = a? if i # j.

Then we have

5 k
>adn <Y diz
= =

and
k k
> a0y > Y dloii.
i=1 i=1
Therefore,
k k k k
3 aim = 1, s()a%ow) < Yo diz — t,4,5(3 dfow)
=1 i=t =1 =t
which contradicts the assumption. The proof is complete. o

Let w = [wg, wy, -, wy] be the vector of weights where w; = ny/noy(i =

0,1, k). I x = [00, 21, oy 2]’ and ¥ = [y, g1, -, ps]' are in R¥HL, then the
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inner product and the norm are defined respectively by

k
<X Y Su= Y wiTilh
=0

IIllf, = iwxzf-
=

Let e; = [—ngi_y,- -+, —ngiq,m, 0, +, 0] with e;; = n; L. Let P(Y|Oy) be
the vector v € Oy minimizing |[Y — v||w. It can be shown that P(Y|Oy) can
be expressed by TX, < Y,e; >} e;/|lei||% where ¢t = max{c,0}. Lemma
6.4.2 guarantees that ¥ and P(Y|Ox) will lead to the same optimal lower
bound for ju — pio.

Let R={i:a; > 0,[Aa); = 1},S = {i 1 a; = 0,[Aa}; < 1} and T = {i :
a; > 0,[Aa]; < 1} where the notation [Aa]; denotes the ith component of the
vector Aa. Since [Aa]; = a;+ (ng,;-1/noi)[Aalit1, a; = 0 implies that [Aal; < 1.
Therefore, R, S and T form a partition of {1,...,k}. Let a = [ai, ..., a;),Z =
[#1, -, 2]' and 1 be partitioned as a = [a's, a's,a'r]', Z = [Z'r, Z's, Z'r]’ and
1 = [1},1%,1,). The same partition applies to A and 5. A necessary and
sufficient condition for the optimal solution to (6.10) is given by the following

theorem.

Theorem 6.4.1 The mazimum of I(CX, a;6;) subject to a > 0,Aa < 1 is

attained at a° if and only if a° satisfies
af = A7 {A'rr A grSrr ARk LR + b(Zr — A'pr A'RpZr)}; (6.11)

Fh(lr — Arrad); (6.12)

A'pr(Zr — b Sraaf) > 0; (6.13)
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A'psA'zi(Zr — V7' Srral) > Zs (6.14)
where b = (a%Sa®)/2/(t%4,5) and Arp = Srr + A'RrA'RRSrrArhArT-

When T = 0, (6.11) does not apply and (6.12) becomes ar = Azk1g.
Proof. Consider the problem

17 _ 0 15001/2
s (87— 0, 5(al%a)' 7). (6.15)

Let ¢(a,u) = [(T5, a;d;)+u'(1—Aa) and let B%% denote the partial derivatives
evaluated at the point a® and u’. It can be shown that /(S a;4;) is concave.
By the Kuhn-Tucker equivalence theorem (Kuhn and Tucker 1951), a° is the
solution to the problem in (6.15) if and only if

(i) 2 <0,()a°=0and a° > 0,

s S
(i) 1 - Aa® > 0, (1 — Aa®)'u® = 0 and u® > 0.
Let a° be the optimal solution and let u have the same partition u = [u'g, u's, u'z]'.
Therefore, ¢(a,u) can be written as
d(a,u) = a'pZp+a'sZs+arZy
—t4 1.,5(@ RS rraR + ' sSssas + a'rrrar) '/
+u'r{1g — (Arrar + Arsas + Aprar)}
+s{ls — (Asnan + Assas + Asrar}
+u'r{1r ~ (Arpar + Arsas + Arrar)}.
Condition (ii) implies that u% > 0,ug = 0, and u$ = 0. Condition (i) becomes

¢

ag,

=Zp — b Sppal — Appul =0,
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) — s

Gag = %~ Dssal = Asui <0,
and

¢ e 9 o

g =2 Y 15prad — Appug =0,

where b = (a”Sa®)V/2/(t2,, ,5).
It follows that
u% = Ak (Za— b Trpal) 2 0,
A'rsuf > Zs,
Srraf — A'rrA'ppSreah = b(Zr — A'rrA'piZr).
The condition [Aa]; = 1 for any i € R is equivalent to
Agra®p + Agra®y = 1p.

The last two identities lead to the expressions (6.11) and (6.12), while the last
lent to ions (6.13) and (6.14). o

o .

are

k

It can be shown that if I(T5, ag6;) > 0, then R is not an empty set.

6.4.2 Simplified Formulas

The computation for a and the conditions in Theorem 6.4.1 can be simpli-
fied. Let R = {ry,...,rm} with the convention ro = 0 and sy = k + 1
and let t,p and ¢ be three consecutive indices in R U {0,k +1}. Let 7, =
Npg-1/(nop-1n0,-1) With the convention mk41 = ng,_y and 7o, = 0. Let

Thigss = L4y ¢5(n5 41 — ng;') with the convention that 75, = 0. Note that
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if there does not exist any index i, p < i < ¢ such that i € S, then 7,5 =T
for p#0,q # k+ 1. Let npq5 = £I} 1. <(n;/no;)2; with the convention that

op.s = 0. The expressions (6.11) and (6.12) become

@ = (n/n0i) {TpaTys +b(noi12 ~ ThpgsTons)}, forp<i<gandi€ TUR.
(6.16)
Conditions (6.13) and (6.14) become

N T s =T s =0 (ks —Tegiks)} 2 0, for p € B; (6.17)

and

NodiTpas(pas — b7 75) 2 2, fori €S, (6.18)

respectively. The coefficient b can be obtained by
E
¥ =3 ratpasHtu,sV = 3 (enosa/n)d + T asTras)- (619)
ek i=lags PER
The constraint [Aa] < 1 becomes

ToaTpasTia s+ Tak1 HD(ig s~ Ty sMhasTias) < mgjy, for p<i<g. (620)

The simplified formulas (6.16) to (6.20) determine whether the partition
R, S and T is optimal. The number of feasible partitions for R, S and T is
3% — 2% a large number even for a moderate k. It is important to have an
efficient algorithm to compute the optimal confidence lower bound for s — o
The following algorithm provides optimal partitions R, S and T for different
confidence level 1 — a, starting from 1 — p, where p is the p-value of the test

statistic T.
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6.4.3 Computation Algorithm

Without loss of generality, it suffices to consider the optimal lower bound for
tx — po. For simplicity, we use f, to denote the critical value 13, in the
remainder of this chapter. Let fy = {S£, 2=} max(0, ¥; — ¥o.-1)]*/s*}/2.

If o > to, we have L°(jsx — i) = 0. We assume that tp > o

(0) Let M = max; cjet Sy n:P(¥|04). The initial ¢” = n;P(V]04):/M, i =
1.,k Let B = {i: [4a®) = D5 nid® = 1},8' = {i : 6 =

¢ — ), =0} and T = {1,...,k} — (R'US"). Set r = 1.

(1) Let p and g be consecutive indices in R". Compute
= (ni/no) {TpaTp, e +0(M0,i-12i~Tpq,5Tyg5r)}, for p < i < g and i € T'UR',
by = min{b>0: [4a”)], = 1 ora{” = 0,i € T7},
and
te={ X TraTasr/V * E o/ = 3 s Ty} s
PER" PERT
1f t,, > t,, stop. Otherwise, go to the next step.

(2) If there exists an index h € T" such that b = b, and [4a")], = 1, define
R = R"U {h}, 5"+ = S" and T™*! = T7 — {h}. On the other hand,
if there exists an index h € T" such that b = b,, and af) = 0, define
R = R, 8™ = §"U{h} and T+ =T — {h}. Set r =7 +1, go to

step (1).
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6.4.4 Application of the Algorithm

Let Vo =27, =4,%=07=10Y; =14 i =12np=n =---=n5 =6

and s? = 35.4. The computation of L°(us — o) is illustrated as follows:

(0) Since Y = (2,4,0,10,14,12) ¢ Oy, the projection P(Y|Oy) is (-6, -4,
-5, 3,7, 5). Compute to = {Ef., "= max(0,¥; — ¥5,,-1)]2/s*}/* =
5.21. The p-value of the test statistic T} is 0.0002. We have M =
max; £5; n; P(V]0); = 90. The initial ¢ = (~

2 TR e B R i)
13715 18 150150 15/

(1) Set r =1 and R' = {3},5' = {2} and T" = {1,4,5}. Compute

1 2 1
= (6b,0, - —9b, - +12b, 7).
(66,0, 9b,5+ '7,3)
We have by = min{, §, £} = & and t; = 2.40. The R',$" and T" form
the optimal partition for confidence level between 99.98% and 87.8%.
(2) Since by = 1/36 occurs at the index h = 4 such that [Aa(]; = 1, define
R? = (3,4}, 5% = {2} and T? = {1,5}. Compute

1 3 24 1
) — =4 btid
a® = (66,0, 3,5 + b5 — 6b).
We have b, = min{;,3} = 5 and t, = 1.11. The partition is optimal

for confidence level between 87.8% and 38.7%.

(3) Since by = 1/12 occurs at the index h = 5 such that al® = 0, define
= {3,4},5% = {2,5} and T® = {1}. Compute

a® = (60,0, i 1,0).
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‘We have by = % and t3 = 0.92. The partition is optimal for confidence

level between 38.7% and 30.0%.

(4) Since by = 1/9 occurs at the index h = 1 such that [A4a®], = 1, define
R* = {1,3,4},5* = {2,5} and T* = 0. The partition is optimal for

confidence level less than 30.0%.

‘When o = 0.05, the critical value with k = 5 and v = 30 is t g5 = 2.88. The
95% simultancous confidence lower bound L°(p5 — p1g) = 4.91 can be obtained
at Step (1) with nc® = (=0.077, —0.034, —0.056,0.012, 0.099, 0.056)".

Similarly, we have L°(114 — o) = 4.30 and L%(pt5 — pio) = 0.09. Comparing
to the Dunnett’s procedure, with the critical value d 55,30 = 2.33 we note that
L5 — pio) = 4.00, L4pts — i) = 4.00 and L4(pi5 — pp) = 0. This example
demonstrates that lower bounds obtained by the new procedure are sharper

than those of Dunnett’s.

6.5 Technical Results
6.5.1 Simplification of the Optimal Solution

The following lemma, will be used to simplify the computation procedure and

its proof is straightforward.

Lemma 6.5.1 The inverse matriz of I +ww' is [ — Aww' where w is a kx 1

vector and the scalar A = (1+w'w)~L.

Proof. We will show when A = 1/(1+ w'w), (I + w'w)(I — Aw'w) = [

(I+ww)(I —dw'w) = I-Iww+ww-—Iwwww
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= I+ (-2 +1-dww)w'w

= I

It completes the proof. o

Let R = {ry,...,rm} with the convention o = 0 and 741 = k + 1 and let

t,p and q be three consecutive indices in RU {0,k + 1}. Then we have that

1 if ri=r; =
[ARklrir; = { ~mop-1/mog1  if ri=pry
0 otherwise.

Therefore, [Azx1rlp = 10,5-175,5- We also have

0 vy 0 0 0
L 00 00
ArpArr = . R
00 0 0V,

where v, is a column vector with entries vy = n0,-1/ngi-1,p < i < ¢,i € T.
Therefore,
[A' e A RS rrARRART); = [opVpvilii
= TopuMoiangio for p<ij<gijeT
with the convention oo = 0. Then

Arr = Srr+ ArrApiSreArkArr
B ¥ T VsV 0 s 0
0 Zry + Orry Vi Vg

Do+ CrraVraVra

0 0
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where £, = [03;] withp <i,j < ¢q,i,j € T.
We find (£, + 0,pv,v',) " by Lemma 6.5.1 as follows. Rewriting %, +

F o
GypVyV'p, we have

By + 0¥y = ST + wyw'p)Sh2

. _ 12 o B o S5
where w, = 0?5, /2v,. Then Wiyw, = 03V, 55V, = 15k iTyi1,s and

(14 wyw,) ™ =7 11750 5. Hence, we have that

-1

[Azrlg' = (S5 +0pvpvyly
= [E;‘ — (14w, v\r,)"E;l(oi,l,v,,v',,)E;‘]‘_7

-y ¢
o j-1my

ning 1 Mo a1
T&, = {Tp,p‘#‘rﬂqus(m) (T psamoi-1ng5-1)(

i g Tl
O — Tpgs
Toi 0ino;

where 6; = 1 and d; = 0 for i # j. Also we have

TroroVroM0,r0-1Tro,r1

£ o Oriry Ve W0, =171,z
[A'rr A5 SreArklal; = e

Ormtm Vim W0rm Trm rmi1
forp < j <g,j €T. Hence,
[AT R A rr A iR SRR ARk Lal:
ot
= (0,i1/n0) Toq Ty 1M1 = Tpoms i/ M0i) o T 30 {ni/ (mojmog-1)}
J=p+1,3¢S
= (/1) Ty Typia (1 = Toi1.05T505)
= (/n0) T TypiTort1 T

= (n/n0)TpaTygs-
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We have
[Zr — Arr A RRZR] = [Zr = 200Vray 1 Ll = 2 V'e]

where Z, = [z;]' for p < j < ¢ with the convention 2 = 0, then

[A7%(Zr — A'rr AR Zn):

y
= (unogr/nos — Toks(ifra) T (ngfne
J=p+1.5¢S

"
{041 /10) o1 /m0r) = Trds(mroioges S g (ograg-1)}zp
J=p+1,j¢S

-1
X (i/n0)zj = nop1(1 = TprrasTrgs) s}
J=p+1j¢ES

= (ni/noi){noiz
oy
= (nifno){noi1zi — o053 (1i/n05)7 ~ Nop-1TppniTog sz}
=prLigs
a1
> (ny/no)z}
i=pies
= (ni/noi){noi-17 — Tyg sTpass}-

= (ni/noi){no;-12 — Tyq,

1t follows that
af = (m/10:){TpaTyq,5 + D012 = MpasTrgs)}, for €T (6.21)

For any p € R,

ay = [Agrle — AziAiragly
=
= nopaTpg = 2 (Pop-1/nos-1)af
J=pHiggs
o1
= nopatpa— 2 (Mop-1/mog){(n5/m0) [Ty + bn0 12 — e 5750,5)]}
J=p+1j¢s

= nop1pa{l = g sTorias} + bnop-1{(n9/100)2 — o5 + Tog.sTor1.0,5as}
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= Nop-1TpTparTog,s + 001 {(Me/M0p) 2 — TpasTopr1Tog s}
= /oy {ToqTpa,s + (10915 — ThasTpas)}-
That is, (6.21) applies to all i € RUT. Therefore, (6.16) follows.
For A'zk(Zr — b~'Sgra}), if p=ry, we have
[A7k(Zr— b TrraR)ly = 2 —b'nop/(ynop-1)a
= nop{Tpastas =V haTrash
if p >z, we have
[A'zr(Zr — b Srraf)ly
= —(nog-1/mop-1)z — b~ "nor/ (nemos-1)af] + 2, — 5" ngp/ (mpnop-1)ag
= Ny {~TipsTas + TogsMhas = b (~TTips + ToaTrgs)}-
By the convention 704 = 0 and 75, ¢ = 0, the condition (6.13) becomes
Mopt{~Tipis s + Toaspas =V (aTogs = TTips)} 20 (6:22)

forallp € R.
Let ', p' and ¢ also be three consecutive indices in R. Consider the condi-

tion Aa < 1, for any p <i < g, we have

k k
[Aa% = 3 osa} = 3 (noie1/m0-1)a
= =

q-1

-1
= ¥ i)t T % (g
’

J=ij P> ER j=p',j¢S

s 0
-

= (n0,i-1/n0,i-){ (0 /103) [TpaTygs + b(M03-125 = Mpg,sTp0s) ]}
3¢S

5
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a-1

+ XX (oia/nog-){ni/ne)me s + 0012 = g 5T s)1}
V>iveRj=p j¢s

= o1 {TpaTrasTigs + Migs = MlpasTasTias + 2 Tog}
>ip'eR
= noi-1{ToaTpasTig,s + Taks1 + 0(Thig,s — Tog.stpa,sTias)}
The condition Aa < 1 becomes

TodTpasTons + Tagit +0(Mig,s = o sTasTigs) < Mojor- (6.23)
If i € R, (6.23) is an equality, otherwise, it is an inequality.
The condition (6.14) can be simplified as follows. For any p <i < g,i € S,
[A'rs AR(Zr — b Srrag))s
= Iiz(nﬂ,p/»l/"ﬂ,!—l)[A;Z:Z<zR — b7 Srraf)ly
<i
= VZ (Mg -1/noi-1)n5y {7y st a5 = Ty s s + 7 (T T s + Ty s)}

=l Y meess X waTas)

'=r2,78,0 q'=ra;r3,0
£
gl X Tasas— X TiesTrast
T=raad ¢=rarae

I

=15 i1 T s {0 o = Mo}
The condition (6.14) becomes for any i € S

Not1Tpaslpas = b 7o} 2 7 (6.24)
Furthermore,

&
a’%a® = ) af’oy

k
3 (ni/no) {TgTras + bnos12 — g sTorms) Yonos/ (nimoi 1)
i=1,¢S
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]

k
Y (n/noi)’ g mpgsnoi/ (ninoic1)
i=1,4¢S

k.
+0 S (ni/n0i)(noi-17i ~ Np,sTs) noi/ (nino 1)
s

k
26 0 (ni/10:) Ty g5 (N0i-17 — g 5Ty s) 01/ (it it)

i=1,i¢S
4
= Y {2 mimas+0 Y (nnoioa/no)2?
P=rorarm inits
P 9 ! Ly
D asTras 2o Ml (Moiane) — 2%y 0sTons Y (mifnoi)z}
—pags i=pags

o1
= ¥ s tOL X (noia/no)z = m 578l

Pt i=pa
Note the cross product term S5, (ni/n0i) Ty g7y 0.5 (M0,i-12—Tlp,0,5T5 0.5 ) *T0i/ (Mg 1)
is equal to zero. Since b= (a”'Ta?)/2(tas)~", we have
3
V=Y minas/tas) = X (mnoi1/ne)z + 3 Mg sTras)-  (625)
er i1ags »er

6.5.2 Justification of the Algorithm

(A.) The R',S" and T" form an optimal solution.

First we shall show R! = {p},§" = {i : z < 0} = {i : a® = ¥ —

&0, =0} and T% = {i : % > 0, # p} is the optimal solution. Let M =
g iiP(Y10k); = oy S5y i (ng/m0,i-1)7. For i # p we have

L3 k

S niP(Y|0k); =noict Y. (mi/mog-1)z < M.

J=t J=ijgst
For T 41 = 1/nop1, Tppsr,51 = E?:ww (n/m0,j-1)2% = MTypp41 and

1 1 1
<

1
e < Tpktl

Tpkit st =
Pk+1,S <
noj’  Mop-1 Mok

j=pagst T0g-
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we have
a2 = 7 ko + B GS — Tpn s Tk ) = Dt

where to = {T5_n; P(Y|0k)2}/2/s = (Z+'S1Z+)"/2/s.

Consider tg — € < t, < to, as
=T s /s’ — (8 - MPparius)h

we have M~1 < b < {M? + €(e — 2t0) /(T2 s1Typp1,51)} /% We denote the
right hand side of the inequality as M~* + 4.

Ifi € T',i < p, we have a” = (n;/no;)no -1zib > 0. Fori € R'UTY,i > p,
we have

n s <1
= a(wuf,*ﬂ;- +b(n 12 = Tlp 41,57 fs1,51)}

= %(nn.._.;—b ~ (M = Drpppirshy 51} > 0.

Consider the condition Aa < 1, for the index p € R', we have

3
[429), = 3 nop-10f” /o
i=p

k
Y (nop-1/nas1)(ni/ne;)na 123
J=pigst

k
= X (nop-1/noo1)(n;/no)) OM = 1)TppirTyir 50
i=pggs

=
= Nop-1Tlp k1,510 — Mop-17Tp k11,51 (OM — )T pinTyp s 1

= L
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For i > p, when b= M~", we have
k.
[4a%% = X (nog-1/no-1)(ns/no;)no 120
5

=i

k.
= Y (nos-1/n0-1)(ni/no;) OM = DTy i < 1.
j=iggst

Hence, [Aa®@]; < 1if M~' <b< M~'+4.
For i < p, when b= M~", we have
p1 5
2 = 3 (Roi-1/mos-1)af +noi-1/nopi[4a®],
j=igest
-1
= X (noi-1/noj-1)(n/noj)noj-12ib + nos-1/nop-1
J=iggst
& 5
Thus, [4a@]; < 1if M~ <b< M~' +4.

For condition (6.13), we have

A Okt ST 518 ok b 1) = M1 (5= M)/ (bmiopiTpsnst) > 0.

The above i lity is also equivalent to the condition (6.14). Therefore, the

initial R', S" and T" satisfy the sufficient and necessary condition in Theorem

6.4.1.
(B.) We will show that R™' D R and S™+! D §".

Let ¢,p and g be three consecutive indices in B". We prove S C §™! first.

Let j € " and p < j < q. Then by (6.24), we have that

1 (e
Toasr (=0 T + pg57) 2 017
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Therefore,
—N0,j-12) + Tpg. S Tpgsr = b TpgTyage 2 0
0,j-1%) + Tlp,g,57Tp .57 2 PaTpqsr = Y-
Hence we have
! e
b2 ~Tp Ty 5 (M05-1% = Tpg,5Tpg.s7)

Suppose that at Step r + 1,5 € ™1, from (6.21), we have

@ = (n5/m0;){Tp Ty gr1 + b(M0,j-12) = Mg 5741770 gru1) }
< (3/mo) {ToaTpgsr = ToaTpgsr (10,4212 = Mg 51750 gri) ™"
(M0j-12) = Tpg,57+17 g 5r1)}
= 0.
This contradicts that j € T7+1. It follows that 5™ C S™+!.
Let p € R", from (6.22), we have that
(TSt = TipsTeas?) < (MaTipse — ToaTygse)- (6:26)

Suppose that at Step +1,p € T+ and without loss of generality we assume
that S = S™+!. By [4a’], < 1 and (6.23), we have
blpa57 = Tigusr Tpas 7)< Moot = ToaTigisr Tpa.s™ = Takst
= Tog = TeaTigs TpasS™
Multiplying it by 7, s-, we have
—b(T5 4,5 TIa,s™ ~ Togsrtas™) > TeaTigisr — TpaTpgsr- (6.27)

Also assume t € R™!, by

(A%, =1, [4a%), <1
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and
P
[Aa’li= > (noe-1/noj-1)a5 + (no-1/n0p-1)[Aa%,,
J=tjgst

we have that

w1

> ngjaaf = ngia{l= (no-1/nop-1)[Aa’)}

taest
> ngp {1 = (nog-1/nop-1)} = Tip

That is

-

1
151 (/o)) {TeaTigsr + bn0j-12j — Mhg,sTigisr)}
J=tjgst
= TuTigsTpst + V(oS = Tea,srTigse Tupsr) > Tegp:
2, 0

Therefore, we have
b5 Togsr — Tt Tipssr) > TepTipesr — ToaTigesr (6.28)
Summing the inequalities (6.27) and (6.28), we have
(705005 — TipsrThns™) > (TeaTipsr = ToaTomsr)s

which contradicts (6.26). It follows that R" C R+1.

Therefore, the algorithm terminates at no more than k steps.

Let R7, 5" and T" be the optimal partition satisfying (6.11) — (6.14) of
Theorem 6.5.1 for a given #, > t, where ¢, corresponds to the confidence level

a,. As a decreases, the optimal solution holds at ¢, > ¢, until either

(I) there exists a p € T" so that R™! = R"U {p},$™! = S" and T"*! =

T" — {p} is the optimal partition for t, <, or
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(1) there exists an h € T7 so that R+ = Rr,S7+' = §7 U {h} and T7+! =

Tm — {h} is the optimal partition for t, < t,.

(0} Continuity o b
We have that b2 = A,/(t2s* — B,) where
A= Y mhetts
P10, Tm
and
¢-1
Bo= ¥ { X (mnoia/ne)?d —mfgsTipst
P=rorrm i=p igS"

For Case (I), we assume ¢ < p < g and t,g € R". Then, by [da], < 1 and
(6.23), we have

=1 =1 -1 =
be(Tpg.spa,s™ = Tog57Mas™) < ToaTpa,sr — TeaTig,s- (6.29)

For tq < t,, we have that 6(a) = Ar41/(tis? — Byy1) where Apyy = A, — B2A
W a’ T

atd Bygy =B 4+ with
= . 2 ~1 2 -1
A =My 5rTig,sr = NipstTip,sr = T8 Tpg,sr-

Therefore, limg,a, + b(@) = Aps1/(t25% — Bysy).
Firstly, we will show that 4,41 = A, — B2A. As Anyy = A, — (1o, —
TS g = TipuseTip)s then we only need to show that
BA =l — o st — T T (6.30)

By (6.29), we show that

(TopsrTog — ToasrToa = Tipsr oo Tpaslloas” = TigsrTeas)’  (6:31)
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oTrgsr) (6:32)

P St S S| s
(g5 Togusr = Mhp.s Temsr — MpaiseTrgsr) (TeaTigysr =

are equal.
BY Thp,s = Teg,s — Mpa,s a0d Togs = Typs + Tpg,s, the expression (6.32) can

be rewritten and expanded as

) [T R -
{ g5 (Tigsr = Tepsst) + 2,505 Tipsr = Mog,sm (Tog.sr + Tipesr) }
_ -~
(TeaTogs™ — ToaTpasr)
R R i
= M5 Tias 005 Tensr — Tpa,sTpgs Ta,S" Tipyse

-1 2
o)

- -
20,5 p.0,57Ti 57 HTeaTogysr —

o TR (B e g .
= Mhas I TaToas a8 s = ToaTras Toas Tipse T+ 2TeaToaTogsr Tipsr}

2 2 1 1 -1 2 =8 1 1

Mg, T0gTea s Tep.5 Tra 5~ ToaTrgs Topse Teas™  2TeaTnaTipsr Tpaus}
i .2 % 1 <1

20,505 Teps {TeaTears + TraToasw — 2TaTnaTons Toas

=Ty —

flicient for 17, - in the ion (6.31). By 7,

Consider the

Tpg» We have

R W TR R S D
Toas (Teqis Toa = Toa,5"Toa — TomsTom

B S T S 12 o2 1
Tias (Ti0.5Tia = Toa5Tpa = Tep57Tog ~ Tops o + 2TipsrTeaTa)

2 -2 (-1 -1 2 =2 ) =y ~2 -1
TaTias (Teasr = Tens?) = ToaToas (g + Tipist) + 2TeaTpaTogs Tips

2 1 2 g )
T 0,5 Top,5 TpaS" ~ TpaTha, 5" To,s Tpgs F 2TaTnaTig 57 p,s7

(6.32). Similarly,

for 77, in the

which is the same as the

the corresponding coefficients for 2, . and 274 5¢7p,4,s¢ in (6.31) and (6.32)
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are equal, that is (6.30) is proven. However,

A ABA _ A-BA
SHZ_B,,, C-B,—-A AJE-A T

It follows that limg_q,— b(a) = b,. Hence, the coefficient b(a) is a continuous
function of a.

For Case (IT), we assume p < h < g and p, ¢ € R". By the condition a < 0,
we have A,4; = A, — B2A and By, = B, — A where

br = ~TpaTpasr/ (Mop-12h = Thpa,srToa.s7)

s 2 2 -1 2 -1
A = —(nnn0n-1/10n)7h + Ty g,5rTp g, 50 — Tpg,5+1Tpg 51

Note that 74,541 = Tyg,57 + 7/ (M0,h-1701), Tp.g,57+1 = Tp,g,5 + (nn/non) 2 and
Tpq.57+1 = Tpq,sr — 1/ (nas—1non). Therefore, we have
o -1 2
An = A= (15T~ TasrnTyg)
= 2o -1
= At Tyt + T sn)
-1
= A+ 1o Tod seaTogsrin/ (Nop-1mion)-
Next, we show that
2 =
brA = =13 7od s Tpa,se i/ (Rop-1non)-

That is,

{TdTrasr+1Toa,srmn/ (Mo p-1m0n) }noa-12h = Tpg,50 Tp57)? (6.33)

{(nanop-1/non)2 = My g5 Tpasr + Mhgsr+iTogsrri}TpaToasr)” (6:34)
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should be equal. The expression (6.33) is equivalent to
2R e e Tyasr (MAno—1/on) + g5 To e/ (M=o oo 57T
+ 2lpq,57 70 (M /Mon) Ty g 5r 41 Tpras T

The expression (6.34) is equivalent to

{(nnon-1/non)z = g s Tpasr + [pa,s = (n/non)2n] g s g Togsr)
= {[(nunop-1/non) + (na/non, ZT;;‘sy«M]Z: + g5t (“Tomsr + Tomgrin)
=g 5200/ 100} Ty 51} (a5

= o5 Toasmh/ (Mo 1mon) Ty ooy
+22{(nano-1/mon) + (na/mon)*T, o1 oS Ty
~20pq,572 (M /T0R) Ty g 51Ty 3 S Tog
= M s Tomsrh/ (Mopimon)Ts s t2,
s ,,,,T,;,,‘,sm((n».nn,».q/nnf.)n,,,,,sm + (na/non)’}
252 mon) g 27
= ThasToasrnin] (Rop-1mon)Trasim2y
T o Tmasr+i L (N0 -1/non) [Ty,q,50 — ma/ (Rownon-1)] + (nn/non)?}
~2lp,q,50 20 (M /T0R)Ty g e 41 Tprase Tog
= g5 s+ (Mo p-1m0n)TaseTag
+ 2Ty s T Tyasr+1 (MATon—1 /mon)
~ 20,5720 (M /M0h) Ty g 51 T o
Therefore, expressions (6.33) and (6.34) are equal. By a similar discussion as

Case (I), we prove that b(a) is a continuous function of o for Case (II). This

completes the proof.
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6.6 Discussion

If several dose response means are compared with the control mean and the
experimenter has a prior knowledge that the response means are monotone
nondecreasing, a test procedure is available that has good properties under
this simple order alternative, hence improving confidence bounds. The orthant
test T¢ introduced in this article is an effective method for testing the equality
of the response means against the simple order alternative and constructing

one-sided simultaneous confidence lower bounds for y; — pg. The proposed

test is easy to implement and its p-value is a mixture of F' tail probabilities.
Furthermore, an efficient algorithm is given to compute the confidence lower

bound.
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Table 6.1: Probabilities (in Percentage) of Detecting the Difference Between
1 and pio for k= 5,0 = 0.05,v = 00

20

o
i
Jll
5
:
7o
o
T]a
T
;
I
T;’

;
i
i

52.7
34.5
50.5
45.3

21.5
10.3
19.7
16.2

74
23

43

4.1
1.0
3.0
1.9

3.1
07
2.3
1.4

3
78.4
73.8
813
82.1

64.3
57.7
66.9
68.5

45.3
36.3
45.1
472

25.2
17.3
23.4
25.2

13.3
7.5

111
12.0

4
87.6
89.2
91.3
93.6

821
85.5
87.9
91.1

74.3
78.9
81.6
86.0

63.3
67.2
70.1
76.4

50.5
52.2
54.8
62.6

91.9
95.2
95.2
97.5

89.4
94.9
95.0
97.4

86.3
94.3
94.2
96.9

82.7
92.6
92.3
95.9

79.3
90.4
89.8
94.3




Chapter 7

A Stepwise Multiple Test
Procedure

We continue to consider the problem of identifying the lowest dose level for
which the mean response differs from the zero dose level in the dose-response
studies. Ruberg (1989) referred to this dose as the minimum effective dose

(MED). However, test procedures only find the minimum d dose (MDD).

In dose-response studies, the response means py, ..., i correspond to increas-
ing doses of a substance and jo corresponds to the zero dose. It is desirable
for a method to not declare a lower dose to be efficacious if it does not de-
clare a higher dose to be efficacious. This can be achieved by testing the

null hypothesis Hy; : p; = po,i = 1,..., j, against the alternative hypothesis

Hit s g > pioyi = 1,...,j, with at least one strict inequality in a stepwise

fashion starting from j = k, continuing only while Hy; is rejected. Tamhane,
Hochberg and Dunnett (1996) studied various stepwise procedures including
Williams’ (1971) procedure and a class of stepwise procedures based on con-

trasts. Only Williams’ procedure utilized the monotonicity assumption of the
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response means. The stepwise confidence intervals based on a pairwise ¢ test
statistic can be found in Hsu and Berger (1999), and they used a fundamentally
different confidence set-based justification by partitioning the parameter space
naturally and using the principle that exactly one member of the partition
contains the true parameter.

By incorporating the assumption that 1o < puy < -

< g, we will consider
both likelihood ratio test and multiple comparison tests in a stepwise proce-
dure in this chapter. It will be demonstrated by a simulation study that the
prior knowledge of a monotone trend will provide us with more efficient test
procedures. In Section 7.1, the stepwise testing procedure will be proposed.
The simulation study to compare the probabilities of detecting the MDD are

given in Section 7.2.

7.1 A Stepwise Test Procedure

Denote a set of increasing dose levels by 0, 1, 2, ..., k, where 0 corresponds to
the zero dose level. Consider a one-way layout setting in which n; experimental
units are tested at the ith dose level, i = 0,1,..,k. We assume that all
observations Y;; are mutually independent with Yj; ~ N(pi,0%),i=0,1,....,k

and j = 1,2,..,m. Let ¥; ~ N, 0%/n;),i = 0,1,..., k, be the sample means,

and let 52 = ¥2¥ o 307, (V;; — ¥;)?/v be an unbiased estimate of the common
variance o? based on v = ¥ n; — (k + 1) > 0 degrees of freedom and
distributed as 0%x?/v, independent of the Y;. For simplicity, we restrict our
study to the case when sample sizes of the non-zero dose levels are the same.

We assume that the common sample size is n.
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Suppose that a larger ji; indicates a better average response and the re-
sponse means are monotone nondecreasing. We define MED as the minimum
dose i such that ji; > po. The problem of identifying the MED is reformatted

as a sequence of hypothesis testing problems:

Hyjipo=m=--=p;j vs Hy:po < << pye

If j* is the smallest value for which Hy; is rejected, then the j*th dose is
identified to be the MED, that is MED = j*. As previously mentioned, the
MED found is simply the lowest dose that differs significantly from the zero
dose. In this sense, the hypothesis testing procedures do not really identify
the MED; rather, we find the so-called MDD.

Suppose that Hy, is rejected for large values of the test statistic T, with
critical value ¢, ,. Under a one-way model, the stepwise method to detect
the MDD takes the following form (Tamhane, Hochberg and Dunnett 1996):
Step 1:

B i

then assert px > po and go to Step 2;

else assert that there is no dose level which is significantly better than the
zero dose level and stop.

Step 2:
I Ty > Caprps
then assert pu_1 > 1o and go to Step 3;

else assert MDD = k and stop.



148

Step k:

T > Capp

then assert p; > po and go to Step k + 1;

else assert MDD = 2 and stop.

Step k+ 1:

Assert that every dose level is significantly better than the zero dose level
and stop.

Let step j (1 < j < k+1) be the step at which the stepwise method stops.
If j > 1, then the stepwise method declares dose k—j+2, ..., k to be efficacious.
If j < k+ 1, then the stepwise method fails to declare doses 1, ..., k—j +1 to
be efficacious.

We consider this stepwise test based on the following testing procedures:
(i) DR Procedure (Hsu and Berger 1999):
Let
T = (¥; = Yo)/{s(n™" +ng")"*} (7.1)
which is the pairwise ¢ test.

(ii) Williams’ Procedures

Williams’ (1971, 1972) procedure does not use the ¥;s as the estimates

of the y’s; instead, it uses the isotonic estimates (see Section 2.1):
t

W= /et i

-

The test statistic proposed by Williams (1971) is

W = (5 = ¥o)/{s(ng" +n 7)), (72)
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(iv)
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Williams (1971, 1977) discussed another test statistic
W = (4 - ") {s(ng" +n™)/%}

to test Ho; against H; where

n‘“ﬁ-}ﬂ‘é}czy/t’5+1)v1‘01

When o is known, Marcus (1976) gave the exact upper 5% and 1%
quantiles for k& = 2,...,5 and estimated upper 5% and 1% quantiles for
k = 6,...,11. Williams (1977) tabled the approximate critical values of
W for different degrees of freedom. The approximate critical values
given by Williams (1977) will result in a slight decrease in the true size
and power of the test. We will use the table values given by Marcus

(1976) for the simulation study.

For the procedures studied below, we suppose that
T; = (noco;¥o + chu )/{s*(nock; + Z"L’ 2%

Linear Contrast Procedure (Rom, Costello and Connell 1994)

The general form of the linear contrasts is
=7
=1 G-15+2
0

Helmert Contrasts (Ruberg 1989)

The jth Helmert contrast compares the jth dose response mean with the

average of all the lower dose response means (including the zero dose) .
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It is defined by

“1 i=0,1,.j 1
=14 =

Reverse Helmert Contrasts

The jth reverse Helmert contrast compares the average of the first j dose

response means with the zero dose response mean. It is defined by

—j i=0
=41 "
0 i

LRT for simple order alternative

The likelihood ratio test

_ (ol = B + S s = )2} /o?
{nal¥o — o)+ Tk (Y — " P} (%) + QW) v

for testing the homogeneity of the response means against the simple

Sot

order alternative (see Section 2.1) is considered, where 1 = S5 ¥i/(k+
1) and Q(v) = vs®/0®. As Sy utilizes the monotonicity assumption of
the response means, it is a more powerful test statistic for testing against

the simple order alternative.

7.2 A Simulation Study

The simulation studies are conducted to compare the behavior of the stepwise

method based on the LRT with DR method and the methods based on linear

contrasts (denoted by LIN), Helmert contrasts, reverse Helmert contrasts and

Williams' tests W, (denoted by WI) and W (denoted by WII). Without loss



of generality, a common sample size n is assumed for each dose level including
the zero dose and g is fixed at 0. The number of the non-zero dose levels (k)
is fixed at 5, the degrees of freedom (v) is fixed at 6, the error rate o is 0.05
and o/y/n = 1 for all the simulations. The five logistic functions that have
been studied in Section 6.3 are considered. For each case, 10,000 iterations
were made.

The probability of detecting the difference between ji; and pig is the per-
centage that Hy; was rejected in a stepwise fashion as described in Section 7.1.
The methods based on Helmert and Reverse Helmert contrasts have much

lower ilities to detect the diffe between j1; and 1o than the other

test procedures for most of the cases studied. For example, in Case 2, the
probability of successfully detecting the difference between yi5 and yiq is only
52.2% by the method based on Helmert contrasts, and is 71.1% by the method
based on reverse Helmert contrasts. However, the probabilities of successfully
detecting the difference between s5 and o by the other five procedures are
all above 80%. Hence, normally we will not use the test procedures based on
Helmert and Reverse Helmert contrasts when the dose-response curve is ap-
proximately a logistic function. The simulation results excluding Helmert and
reverse Helmert methods are given in Table 7.1. From Table 7.1, we can see
that the LRT method, which has high probabilities of detecting 11; and pq for
all the cases, compares favorably to the other methods. The maximum gains
of the LRT method over the DR method, WI, WII and the method based
on linear contrasts can reach 24.2%, 20.9%, 20.7% and 7.6%, respectively.

For the aforementioned stepwise testing procedures, only Williams’ tests and
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LRT take the prior knowledge that o < pir < -+ < ji into account. Since
Williams’ methods have low probabilities of detecting the difference jz; — fig,

they are not recommended. The LRT is generally the best procedure which

d ines MDD for d P curves without a high risk to

make an incorrect decision.
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Table 7.1: Probabilities (in percentage) of Detecting the Difference Between

45 and pig by Five Stepwise Procedures for k = 5, » = 6 and a = 0.05

[

J

DR

WI

Method
WII

LIN

LRT

L5

3.0

5
4
3
2
1

e N I I I S S C PR S

(SRR TRy

80.5
70.3
63.6
52.6

8.6

80.5
69.6
59.5
318

5.2

80.5
67.9
49.8
14.3

32

80.5
63.7
34.3

23
80.5
56.7
20.8

1.8

84.5
78.4
721
56.9

8.8

83.2
75.3
63.4
315

5.5

81.6
704
49.7
14.0

3.8

79.8
63.0
32.5
7.8
29

783
53.9
19.4

24

81.8
75.0
67.8
51.1

5.2

82.1
73.4
60.8
27.0

31

81.5
69.4
47.4
113

21

80.7
63.2
30.7
6.1
1.6

79.9
54.7
17.5

1.3

94.9
91.3
84.9
63.0

8.6

96.6
91.9
78.8
35.5

5.2

96.7
89.1
61.4
15.6

3.2

95.8
81.2
39.2

22
94.0
68.8
23.4

17

96.6
93.6
88.0
69.2

9.0

96.9
92.6
81.1
41.8

5.8

96.9
89.8
66.9
19.5

44

96.1
83.9
46.8
1.7

3.5

95.3
74.3
30.4

3.0




Chapter 8

Summary

The problem of identifying the diffe among the dos P
means is considered extensively in this thesis. If several response means are to
compared with one another and the prior knowledge indicates that the response
means are simply ordered, then better inference procedures can be chosen to
detect the differences among the means. Our study focuses on the interpreta-
tion of the testing hypotheses, on the duality of simultaneous confidence lower
bounds and on the constrained optimization problems. Interval estimation
for the response mean differences has received much attention in our study.
Four different approaches to construct efficient simultaneous bounds for linear
contrasts of the response means are proposed.

The max-min multiple comparison procedure takes the advantage of Tukey’s
procedure, which is effective to give upper and lower bounds for pairwise mean
differences. The extended OMCT procedure discussed in Section 5.4 may in
general give shorter confidence intervals for pairwise comparisons 1, — i, j > i
than the max-min procedure when j — i is large.

Marcus’ results (1978) are significantly improved by giving a necessary and

154
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sufficient condition for the optimal solution and an easy computational algo-
rithm to search for the improved lower bound for nonnegative contrasts. The
approach is a good way to obtain bounds; however, its corresponding statistic
Sor is mot useful for testing the homogeneity against the simple order alter-
native. The OMCT approach is an intuitive, simple procedure to categorized
the dosage levels. It is more efficient than OSRT as well as Marcus (1978)
when the response means does not increase rapidly in one or more intervals of
the dosage levels. This also suggests that if the differences among the means
fti < -+ < p; are small, it is advantageous to use weighted average means
50 ana¥a/ $fana in the inference procedures. The OMCT is not a good
testing procedure in comparison to LRT Sp;. However, the latter can only
provide the lower bound for the pairwise difference i — 1. While the OMCT
can deal with any pairwise comparisons.

‘With the assumption of simple ordering of response means in dose-response
studies, many analyses commence with an interest to discover the lowest dose
(MED) of which the response mean is more efficacious than the control mean.
We propose a more efficient test statistic, orthant test, by fully utilizing the
prior knowledge pg < i < -+ < iy, to test Ho; against Hy; simultancously.
The minimum effect dosage can be identified by simultaneous lower bounds
for pairwise difference between p; — . This procedure could not give the
bounds for general pairwise comparisons ji; — ju;,4 # 0. Stepwise multiple
testing procedure studied in Chapter 7 is another approach to identify this
MED.

The most challenging part of this thesis is the study on the constrained
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confidence bound through deriving an efficient computational algorithm. It
is a new field in order restricted statistical inference. The approach used in

Chapter 4 and 6 can be applied to other constrained optimization problems.
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Appendices: Fortran77 Programs

1. Program for Computing the Max-Min Simultaneous Confidence Intervals:

c

C* MAIN MAXMIN.FOR 2001/01/15/ #®
C* N
C+ Purpose : .
c To compute the max-min simultaneous -
ce confidence intervals .
[ .
C+ Variables: .
cs .
ce B - Constant .
cs K - Constant .
c The number of the populations .
ce Y - One dimension array .
Cs Y(I) is the sample mean of the Ith population *
cs s - One dimension array .
o® S(I) is the sample size of the Ith population *
C* TEMP - One dimension array .
c* Store temporary data .
C+ INVS - One dimension array .
c INVS(I) is the inverse of S(I) .
C* VAR - Pooled variance .
Cs* CVQ - The critical value of the studentized range .
Ce test -
cs L - Two dimension array .
cs - L(1,J) is the max-min simultaneous confidence *
Ce lower bound -
cs U - Two dimension array .
c - U(1,]) is the max-min simultaneous confidence *
c* upper bound .
c

INTEGER B

PARAMETER (B = 20)

INTEGER K

REAL Y(B), TEMP(B), S(B), INVS(B), C(B,B), CL(B,B)
REAL CU(B,B), N

REAL U(B,B), L(B,B), VAR, CVQ



OPEN (UNIT=2, FILE=’data.in’ , STATUS=’0LD’)
OPEN (UNIT=3, FILE=’data.out’, STATUS='UNKNOWN’)

READ (2,%) K

D010 I=1,K
READ (2,%) Y(I)
TEMP(I) = Y(I)

CONTINUE

READ (2,%) CVQ, VAR

CLOSE(2)

WRITE(3,*) ’ Finish inputting observations’
WRITE(3,%) (Y(I) , I= 1,K)
WRITE(3,%)  CVQ, VAR

OPEN (UNIT = 4, FILE= ’size.in’, STATUS = ’0LD’)
DO 15 I= 1, K
READ(4,%) S(I)
INVS(I) = 1/5(D)
CONTINUE
CLOSE(4)

WRITE(3,%) ’Finishing inputting the sample size’
WRITE(3,150) (S(I), I= 1, K)

D020 I=1,K
D030 J=1,K
C(1,3) = Y(I) - TEMP(J)
N = CVQ#VAR**0.5%(0.5%(INVS(I) + INVS(J)))**0.5
CL(I,J) = C(I,]) - N
CU(I,J) = C(I,1) + N
CONTINUE
CONTINUE

Write(3,x) °* Mean difference’
Write(3,200) ((¢(1,1), J=1, K), I=1, K)

D040 I=1, K
D050 J=1, K
L(1,3) = CL(I,3)
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U(1,3) = CU(I,J)

D060 M=1, I
DO 70 N=J, K

IF (M. NE. N) THEN
IF ( CL(M,N) .GT. L(I,J) ) THEN
L(I,J) = CL(M,N)
ENDIF
ELSE
G0 TO 70
ENDIF

CONTINUE
CONTINUE

D080 M=1I,K
D0 90 N=1,J

IF (M. NE. N) THEN

IF ( CU(M,N) .LT. U(CL,J) ) THEN
U(T,3) = CUM,N)

CONTINUE
CONTINUE

CONTINUE
CONTINUE

WRITE(3,*) ‘calculation end’

WRITE(3,%) ’Max-min Lower Bound is’
WRITE(3,200) ( (L(I,]), J=1, K), I=1,K)

WRITE(3,*) ’Max-min Upper Bound is’
WRITE(3,200) ( (U(I,)), J=1, K), I=1 ,K)
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150 FORMAT(SX, 1F6.2)
200 FORMAT(SX, 9F8.3)
CLOSE(3)

STOP

END
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2. Program for Simulating the OMCT Critical Values:

acaananocncnacaacaacacccacAacaAQcQQAQAqQ

KR K K K K K K K X K K K K K K K K K K K K K K K K K % K X K K K ¥

MAIN CVL.f 1998/08/27/ *
*

Purpose : *
To genmerate the critical value for the OMCT x

statistic *

*

Variables: *
*

ISEED - Seed of the intrinsic uniform random gemerator, *
usually a very large integer *

qQ - Generated sample variance *
K - Number of population levels *
DF - Degrees of freedom .
CHI - Generated Chi-square statistic *
NIT - Number of iteration *
N - One dimension array *
Sample size of each level .

A - Two dimension array *
A(1,J) is the mean of the observation from level*

I to level J .

% - One diemmsion array *
Generated standard normal radom variable *

G - One dimension array *
Tentative critical point *

P - One dimension array *
Percentage of the OMCT statistic greater than

the tentative critical point C *

SN - Two dimension array *
SN(I,J) is the sum of the sample size from *

level T to J .

WS - Two dimension arra; *
WS(I,J) is the inverse of SN(I,J) *

*

Subroutines: NORMO1, CHISQ *

INTEGER DF, ISEED, K, NIT

REAL
REAL

Q, 81, U, AV, SN(20,20), WS(20,20), F, T
2(20), A(20,20) , P(30), C(30), CHI, S(10)
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OPEN(S, FILE=’1ldf.dat’, STATUS=’0LD’)
OPEN(6, FILE=’1ldf.out’, STATUS=’UNKNOWN’)

READ(5,*) ISEED, NIT, K, DF
WRITE(6, 130) ISEED, NIT, K, DF

READ(5,*) (S(I), I=1,K)
WRITE(6,140) (S(I), I=1,K)

D0 10 I =1, 30
READ(S, *,END=200) C(I)
CONTINUE
CLOSE(5)
D020 T =1, 30
P(I) = 0.
CONTINUE
D0 110 IT = 1, NIT
CALL NORMO1(ISEED, K, Z)
CALL CHISQ(ISEED, DF, CHI)

Q = CHI/DF

DO 50 I

SN(I,I-1) = 0.

AV = AV + Z(3)*S(1)*0.5
SN(I,J) = SN(I,J-1) + S(J)
A(T,3) = AV/SN(I,T)

IF (J .GE. K) GO TO 50
J = J+
GO TO 40

CONTINUE



80
90

100

110

120

130

T=0

DO 90 IP = 1, K-1
DO 80 IQ = IP, K-1
S1 = A(IP,1Q)
WS(IP,IQ) = 1./SN(IP,IQ)

DO 70 IR = IQ+1, K

DO 60 IS = IR, K
WS(IR,IS) = 1./SN(IR,IS)
F = WS(IP,IQ) + WS(IR,IS)
F = SQRT(F)
U = (A(IR, IS) - S1)/F
U = U/SQRT(Q)
IF (U .GT. T) THEN

T=U
END IF
CONTINUE
CONTINUE
CONTINUE
CONTINUE
I=0
I=I+1

IF (T .LT. C(I)) GO TO 110
P(I) = P(I) + 1
IF (I .GE. 30) GO TO 110
GO TO 100

CONTINUE

D0 120 I =1, 30
P(I) = P(I)/NIT

CONTINUE

FORMAT(4110/)

WRITE(6, 140) (C(D), I =1, 10)
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WRITE(6, 150) (P(I), I =1, 10)
WRITE(6, 140) (C(I), I = 11, 20)
WRITE(6, 150) (P(I), I = 1t, 20)
WRITE(6, 140) (C(I), I = 21, 30)
WRITE(6, 150) (P(I), I = 21, 30)

FORMAT(10F8.3/)
FORMAT(10F8.5//)
CLOSE(6)

STOP
END

SUBROUTINE  NORMOL
Purpose

Generate a sample from a standard normal distribution.
Variables:

ISEED - Seed of the intrinsic uniform random

generator, usually a very large integer
N - Total sample size
DZi - One dimensional array

array size (N + 1)

Subroutines: none

R X R K X R X X % ok X %

cacaaacaaacaacaacaacna
Xk ok K K X % K % xR % N

SUBROUTINE NORMO1 (ISEED,K,Z2)

INTEGER ISEED , K
REAL 2(20), U(20)
REAL WA, WB, WC, WPIE

C #x*xx+generate K+1 pseudo-ran numbers from U(0,1)
c

WA = RAN(ISEED)
D0 200 I =1, K+t
A = RAN(ISEED)
DO WHILE (WA .LE. 1.E-5 .OR. WA .GE. 1.-1.E-5)



A = RAN(ISEED)
END DO
U = WA
200 CONTINUE

c
Cwsxxas transform U(0,1) to standard normal (Box-muller)
c
WPIE = ACOS(-1.)
DO 300 I=1,K,2
WA = SQRT(-2.+LOG(U(I)))
WB = COS(2.*WPIE*U(I+1))
C = SIN(2.*WPIE*U(I+1))
Z(I) = WAXWB
Z(I+1) = WAXWC
300 CONTINUE

c

Crxxxrx END

c
RETURN
END
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SUBROUTINE CHISQ 1998/07/20/

*
*
* Purpose: To generate the Chi-square random variables
*
*

caocacaaa

ok ow % ox

SUBROUTINE CHISQ(ISEED, DF, CHI)

INTEGER ISEED , DF

REAL Z, CHI, U(300), WCHI(300)
REAL WD, WE, WPIE

CHI = 0.

C
C xxx*x*generate K+1 pseudo-ran numbers from U(0,1)
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M = INT(DF/2)

WD = RAN(ISEED)
DO 1000 T = 1, M+2
WD = RAN(ISEED)
DO WHILE (WD .LE. 1.E-5 .OR. WD .GE. 1.-1.E-5)

D = RAN(ISEED)
END DO
U(I) = WD
1000 CONTINUE
c
Cxxsxxxtranform U(0,1) to Chi-square with 2df
4

DO 2000 I=1,M
HI = CHI -2.%LOG(U(I))
2000 CONTINUE

IF (MOD(DF,2) .EQ. 1) THEN
WPIE = ACOS(-1.)
WD = SQRT(-2.*LOG(U(M+1)))
E = COS(2.*WPIEXU(4+2))

Z = WDWE

CHI = CHI + Z##2
ENDIF
RETURN

END
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3. Program for Computing the OMCT Simultaneous Lower Bounds:

acacaceacanacacacacaaaaaaaa

EOE K K R K R K R K K K K K R K K K K K X X K X

Program  LBOMCT.f 1998/08/27

Purpose : Construct the OMCT simultaneous lower bounds

Varables:
B - Constant
STD - Pooled standard deviation
CVL - The OMCT critical value
Y - One dimension array
Y(I) is the sample mean of the Ith population
s - One dimension array
S(I) is the sample size of the Ith population
YS - Two dimension array

- ¥S(I,J) is the sum of observations from Ith
to Jth population
Y8 - Two dimension array
- Y¥B(I,J) is the mean of the obsevation from
Ith to Jth population
WS - Two dimension array
-~ WS(I,J) is the sum of the sample size from
Ith to Jth population
LL - Two dimension array
- The OMCT lower bound

BoE K R K K X K X R K K K B K K K K K X X KA X A

INTEGER B
PARAMETER  ( B=20 )

INTEGER K

REAL Y(B), YS(0:B,B), YB(B,B), S(B)

REAL L(B,B), LL(B,B), LLT(B,B), WS(0:B,B), WK(B)
REAL D, VL, STD

OPEN(2, FILE='par.dat’, STATUS=’0LD’)
READ(2,*) K, CVL, STD

READ(2,*) (Y(I), I=1, K)

READ(2,*) (S(I), I=1, K)

CLOSE(2)
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OPEN(3, FILE=’test.dat’ , STATUS=’UNKNOWN’)
WRITE(3,*) K, CVL

WRITE(3,%) (Y(I), I=1,K)

WRITE(3,%) (S(I), I=1,K)

DO 10 IP = 1, K
YS(IP,IP) = Y(IP)*S(IP)

WS(IP,IP) = S(IP)
YB(IP,IP) = Y(IP)
10 CONTINUE

D0 12 TP =1, K-1
D0 13 IQ = IP+1 K
YS(IQ,IP) = YS(IQ-1,IP) + Y(IQ)*S(IQ)
WS(IQ,IP) = WS(IQ-1,IP) + S(IQ)
YB(IQ,IP) = YS(IQ,IP)/WS(IQ,IP)
13 CONTINUE
12 CONTINUE

D020 IS=2, K
D0 30 IP =1, IS-1

LL(IS, IP) = -1.0E5
DO 40 IQ = IP, IS-1
DO 50 IR = IQ+1, IS
D = STD*CVL*(1./WS(IQ, IP)+ 1./WS(IS, IR))**0.5
L(IR, IQ) = YB(IS, IR) - ¥YB(IQ, IP) - D

IF (L(IR,IQ) .GT. LL(IS, IP)) THEN
LL(IS, IP) = L(IR,IQ)
LLT(IS,IP) = LL(IS,IP)

ENDIF

50 CONTINUE
40 CONTINUE



30
20

90

CONTINUE
CONTINUE

D0 300 IS = 2, K
D0 400 IP =1, IS-1

D0 500 IQ = IP, IS-1
DO 600 IR = IG+1, IS

IF ( LLT(IR, IQ) .GT. LL(IS, IP) )
LL(IS, IP) = LLT(IR, IQ)

ENDIF
CONTINUE
CONTINUE
CONTINUE
CONTINUE

WRITE(3,%*) ’OMCT lower bound’
WRITE(3,90) ( (LL(I,D), J=1, K), I= 1, K)

FORMAT(5X, 9F8.2)
CLOSE(3)

STOP
END
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