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ABSTRACT 

Colorectal cancer is a common and complex disease with significant impact on 

patients and their families. Despite the extensive research conducted on this disease, there 

is still significant variability in tumor characteristics and disease outcomes. The unknown 

variability may be explained, in part, by germline genetic variations. This dissertation 

aimed to identify genetic polymorphisms associated with colorectal cancer tumor 

histology as well as with the long-term risk and/or timing of metastasis in colorectal 

cancer using appropriate study designs and statistical methods. As a result of these 

comprehensive analyses, we identified a set of polymorphisms that significantly increase 

the discriminatory accuracy of a model for distinguishing between mucinous and non-

mucinous colorectal tumors. In addition, we identified ten polymorphisms significantly 

associated with time-to-metastasis of colorectal cancer after adjusting for significant 

baseline characteristics. Once replicated, these results could assist in better understanding 

the complex biological mechanisms behind colorectal tumor histology and distant 

metastasis.   
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Chapter 1: Introduction  

1.1 Overview of the research projects 

Colorectal cancer arises from abnormal growth and proliferation of the epithelial 

cells in the colon or rectum. This disease is a common malignancy worldwide, but there is 

a noticeably higher incidence of this disease in developed counties 
1
. In Canada, in 

particular, it is the second most common cause of cancer in both sexes as well as the 

second most common cause of cancer mortality in men and third in women. The province 

of Newfoundland and Labrador (NL) has the highest rates of incidence and mortality of 

all the Canadian provinces 
2
.  

Genetic association studies facilitate the identification of genes/genomic regions 

that may be influential in disease formation, disease progression, response to treatment, 

and clinical outcomes. Typically, these studies investigate associations between genetic 

markers, such as single base substitutions within DNA sequences known as single 

nucleotide polymorphisms (SNPs), and a given disease phenotype. Recently, genome-

wide approaches have gained popularity in genetic association studies since they include 

genetic markers throughout the genome, enabling researchers to conduct comprehensive 

investigations. Such approaches have had much success in identifying genetic 

associations with disease susceptibility and drug responses. In addition, they have been 

successful in identifying genetic loci associated with patient survival outcomes.  

This Master’s thesis describes two genome-wide association studies that 

investigate associations between previously generated genome-wide SNP genotype data 

and select clinical features of colorectal cancer. The first genome-wide association study 
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(GWAS) to be discussed (Chapter 2) aimed to identify common and rare germline genetic 

variants that are associated with tumor histology (mucinous versus non-mucinous) in a 

Newfoundland colorectal cancer patient cohort. The second GWAS to be discussed 

(Chapter 3) aimed to identify common germline genetic variations that are associated 

with the long-term risk and/or timing of metastasis in a Newfoundland colorectal cancer 

patient cohort using a suite of statistical methods. The results from both studies provide 

novel genetic associations with colorectal cancer-related characteristics that may be 

valuable for both clinical and scientific communities.  

 

1.2 Colorectal Cancer 

1.2.1. Etiology and symptoms of colorectal cancer  

 Malignant colorectal tumors originate from the epithelial cells in the colon or 

rectum. Most cases of colorectal cancer are sporadic 
3
, but it is estimated that up to 10% 

of cases are caused by highly penetrant inherited mutations 
4
. The etiology of colorectal 

cancer is heterogeneous with many genetic and environmental factors influencing the risk 

of developing this disease. Known unmodifiable risk factors include age, particularly over 

50 years of age; a personal history of colorectal polyps, colorectal cancer, or 

inflammatory bowel disease; a family history of colorectal cancer, primarily one or more 

first degree blood relatives diagnosed with colorectal cancer under the age of 45; and 

having an inherited colorectal cancer syndrome, such as familial adenomatous polyposis 

(FAP) or Lynch syndrome (also known as hereditary non-polyposis colorectal cancer 

[HNPCC]) 
5
. Additionally, while their biological contributions are not well known, a 
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number of large-scale studies have identified genetic variations that are associated with 

the risk of developing colorectal cancer 
6
. Modifiable behavioral or environmental risk 

factors for colorectal cancer include smoking, alcohol consumption, being overweight or 

obese, lack of physical activity, and diet, namely one high in red or processed meat 
5
. 

There are often few symptoms of colorectal cancer at early stages, resulting in the 

diagnosis occurring at advanced stages of the disease in the absence of screening. 

Possible symptoms of colorectal cancer include, but are not limited to, anemia, blood in 

the stool, weight loss, pain in the abdomen, fatigue, and change in bowel movements 
7
.   

 

1.2.2 Incidence and mortality rates of colorectal cancer  

 Colorectal cancer is a common malignancy worldwide, representing the third most 

common cancer in males (746,300 cases) and second in females (614,300 cases) in 2012 

1
. It is estimated that over half of the cases of colorectal cancer are diagnosed in 

developed regions/countries 
1
. Reports suggest that this trend may be due to cultural 

habits, more specifically a Westernized lifestyle of high caloric intake and limited 

physical activity. It is also possible that the screening programs or proper recording of 

clinical cases in developed countries may contribute to the relatively high incidence rate 

compared to developing countries 
8
. 

Colorectal cancer is also a substantial contributor to worldwide cancer mortality 

for both males (373,600 deaths in 2012) and females (320,300 deaths in 2012) 
1
. In 

contrast to incidence, mortality rates from colorectal cancer is higher in developing 

regions/countries, which may be attributed to limited access to screening and healthcare 
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in these countries compared to developed countries. A major cause of mortality in 

colorectal cancer is distant metastasis, with the most common site of metastasis being the 

liver 
9
. The risk of metastasis and death from this disease can be reduced substantially if 

the colorectal tumors are detected early via screening 
8,10

. In fact, clinical screening has 

been shown by several studies to increase colorectal cancer survival rates 
11,12

. 

In Canada, colorectal cancer is considered a significant health problem. This 

disease is estimated to be the second most common cancer in 2017 with over 26,000 new 

cases 
2
. Furthermore, colorectal cancer accounts for 12% of all cancer deaths and is the 

second most common cause of cancer death in Canadian men and third in Canadian 

women 
2
. The high incidence of this disease has resulted in nationwide screening 

initiatives, such as Screen Colons Canada 
13

, which allows for the identification and 

resection of precancerous lesions thereby reducing cancer incidence. In fact, as of 2017, 

all Canadian provinces are either in the process of or have implemented colorectal cancer 

screening programs 
14

. Initial screening for asymptomatic colorectal cancer may involve 

looking for the presence of occult blood in the stool released by polyps or tumors. Two 

types of stool tests are used in Canada: the Guaiac-based fecal occult blood test (gFOBT) 

and the fecal immunochemical test (FIT) 
15

. The gFOBT involves a chemical reaction that 

occurs on a paper card which detects heme in the stool. The FIT, on the other hand, uses 

antibodies to detect human hemoglobin in the stool. If these tests are positive for blood in 

the stool, imaging would likely be suggested to determine where the blood is originating. 

This could include colonoscopy (examining the lining of the entire colon with a light and 
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camera), sigmoidoscopy (examining the lining of the rectum and lower colon with a light 

and camera), or double contrast enema (an X-ray based procedure of entire colon and 

rectum using a dye called barium) 
15

. If these tests show an abnormality, a biopsy may be 

performed during a colonoscopy or sigmoidoscopy. A diagnosis then can be made by 

pathological examination of the biopsied specimen. The Canadian Task Force on 

Preventive Health Care recommends screening for low risk adults with a stool test every 

two years or sigmoidoscopy every 10 years starting at 50 years of age 
16

. 

Although advances in colorectal cancer screening and treatment have resulted in 

decreases in both incidence and mortality, NL has the highest age-standardized rates 

among the Canadian provinces 
2
. In addition, NL has higher than average rates of familial 

cases of colorectal cancer 
17,18

. For those reasons, the Newfoundland and Labrador Colon 

Cancer Screening Program was launched in 2012 
19

. This screening program offers one of 

the screening tests described in the previous paragraph, an in-home FIT test, to NL 

residents between the ages of 50 and 74. The FIT kit is mailed to participants’ place of 

residence every two years from the date of entry into the program. The program is geared 

towards individuals who are at an average risk of developing colorectal cancer, including 

people who have no personal or family history of colorectal cancer, have not had a 

colonoscopy in the previous 5 years, and have no personal history of an inflammatory 

bowel condition. Individuals who have a family history of colorectal cancer, on the other 

hand, can be referred to the Provincial Medical Genetics Program for further evaluation 

19
. 
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1.2.3. Hereditary colorectal cancer syndromes  

As mentioned earlier, while the majority of the patients affected by colorectal 

cancer are sporadic, a small portion of cases (up to 10%) are due to inherited mutations in 

known genes and have well-categorized clinical presentations 
4
. The main types of 

hereditary colorectal cancer are hereditary nonpolyposis colorectal cancer (HNPCC), 

familial adenomatous polyposis (FAP), MUTYH-associated polyposis (MAP), Peutz-

Jeghers syndrome (PJS), and juvenile polyposis syndrome (JPS), and can be summarized 

as follows: 

Hereditary nonpolyposis colorectal cancer (HNPCC): Lynch syndrome and 

familial colorectal cancer type X (FCCX) are known collectively as HNPCC. 

Lynch syndrome is the most common form of hereditary colorectal cancer, 

accounting for up to 4% of all colorectal cancer cases 
4
. Lynch syndrome is 

inherited in an autosomal dominant manner and is caused by loss-of-function 

germline mutations in DNA mismatch repair (MMR) genes. This typically results 

in the tumors that arise in Lynch syndrome patients having high microsatellite 

instability (MSI) (described in Section 1.2.4.1) 
20

. It is estimated that 50% of 

Lynch syndrome cases are caused by mutations in MLH1, up to 40% are caused 

by mutations in MSH2, up to 10% are caused by mutations in MSH6, and 

mutations in PMS2 are seen in 1% of Lynch syndrome patients 
21

. Patients with 

this syndrome are predisposed to several cancer types, with colorectal and 

endometrial cancer being the most frequent. The lifetime risk for colorectal cancer 

in Lynch syndrome patients is 50-80% 
22

.  
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Patients with FCCX, on the other hand, have a similar clinical phenotype to Lynch 

syndrome and meet the HNPCC diagnostic criteria 
23,24

, however, their tumors 

lack the genetic instability characteristic 
25

. Specifically, there are no germline 

mutations detected in the DNA MMR genes in these individuals. In fact, despite 

extensive genetic research, the exact genetic cause of this disease remains 

unknown 
26

. Both Lynch syndrome and FCCX have been extensively studied in 

the NL population 
17,18

.  

Familial adenomatous polyposis (FAP): The second most common form of 

inherited colorectal cancer, FAP, has a prevalence of 1 in 10,000 
27

. FAP is an 

autosomal dominant disorder caused by germline mutations in the APC gene on 

chromosome 5q21 
28,29

. According to the Gene Entrez 
30

, this gene is a tumor 

suppressor gene and codes for a member of the Wnt signaling pathway. The 

genomic location of the causal mutation within the APC gene has been linked to 

the severity of adenomas, age of onset, and presence of extracolonic 

manifestations. While such correlations have been identified, there is still 

variability in disease features even between patients with identical mutations 
31

.  

Patients with FAP develop hundreds to thousands of colorectal adenomatous 

polyps. These adenomas begin developing in early adolescence and, if left 

untreated, will develop into colorectal cancer by 40 to 50 years of age 
32

. A less 

severe phenotype of this disease is attenuated FAP, characterized by a 69% 

average lifetime risk of developing colorectal cancer, a range of 0 to 100 
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adenomas, a later age of adenoma and colorectal cancer development, and a 

tendency towards proximal colorectal tumors 
33

. 

MUTYH-associated polyposis (MAP): This is an autosomal recessive syndrome 

that causes an increased risk of developing colorectal cancer. MAP is 

phenotypically similar to FAP, however, patients with MAP do not have germline 

mutations in APC. MAP, instead, is caused by bi-allelic mutations in the MUTYH 

gene 
34

. According to Gene Entrez database, this gene is involved in base-excision 

repair, a DNA repair mechanism that repairs oxidative DNA damage 
30

.  

This syndrome is characterized by the presence of adenomatous polyposis of the 

colorectum 
34

. The average age of diagnosis of polyposis is 43 in patients with 

MAP, although polyps and subsequent development of colorectal cancer can 

happen at earlier ages 
35

.  

Peutz-Jeghers syndrome (PJS): PJS is a hamartomatous polyposis syndrome 

inherited in an autosomal dominant manner. The only known cause of PJS is 

germline mutations in STK11, a tumor suppressor gene 
36,37

. The characteristic 

feature of PJS is two or more hamartomatous polyps in the small bowel, colon, or 

stomach 
38,39

. The most common extracolonic manifestation of this disease is 

mucocutaneous pigmentation on the lips, inside the mouth, and around the eyes 

presenting in childhood. Gastrointestinal complications usually occur in the first 

decade of life and include small bowel obstruction and gastrointestinal bleeding 
40

. 
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Patients with this syndrome are at an increased lifetime risk of any cancer, with 

most cancers being of gastrointestinal origin 
41

.  

Juvenile polyposis syndrome (JPS): JPS is caused by germline mutations in 

either SMAD4 or BMPR1A 
42,43

. Like PJS, JPS is also a hamartomatous polyposis 

syndrome inherited in an autosomal dominant fashion 
44

. However, JPS does not 

have clear extracolonic manifestations. The main clinical feature of JPS is several 

juvenile polyps, mainly in the colon but can also appear in other areas of the 

gastrointestinal tract. Symptoms of JPS include anemia and gastrointestinal 

bleeding. Patients with this syndrome have an estimated lifetime risk of colorectal 

cancer of 39% 
45

, but also an increased risk of gastric, small bowel, and pancreatic 

cancers 
46

.  

 

1.2.4 Subtypes of colorectal cancer  

 Colorectal cancer is a complex disease with a wide collection of factors 

contributing to its risk and progression 
47

. This heterogeneity results in clinically and 

genetically distinct subtypes of colorectal cancer, including molecular subtypes and 

histological variants, which have noticeable differences in various aspects of the disease 

48-50
. 
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1.2.4.1 Molecular subtypes 

The molecular heterogeneity of colorectal cancer is well-known and can result in 

differences in clinical features such as progression, therapeutic response, and outcomes. 

So far, many different molecular classifications have been proposed. For example, 

Roepman et al. (2014) proposed three subtype classifications driven primarily by their 

epithelial-to-mesenchymal transition (EMT) status, DNA MMR system status, and tumor 

proliferation rate 
48

. Additionally, Budinska et al. (2013) defined five different colorectal 

cancer subtypes based on differential expression of 54 gene modules 
50

. In fact, the 

presence of so many molecular subtype classifications inspired several experts to attempt 

to make consensus classifications 
51

. However, these subtypes are still considered 

subjective and are not widely used, making scientific and clinical discoveries based on 

these subtypes challenging to generalize. Consequently, the scientific community can 

instead categorize patients based on the three known major molecular pathways important 

in colorectal cancer pathogenesis: the chromosomal instability (CIN), microsatellite 

instability (MSI), and CpG-island methylator phenotype (CIMP) pathways 
52

. 

Chromosomal instability (CIN) subtype: This tumor subtype accounts for 

approximately 70% of sporadic colorectal cancer cases 
53

. The hallmark of CIN is 

an aggregation of several structural genetic abnormalities, including gene 

deletions, duplications, and chromosomal rearrangements. As a result of such 

variations, these tumors typically have frequent loss of heterozygosity (LOH) of 

tumor suppressor genes and aneuploidy. In addition, these tumors typically have 

an accumulation of mutations in specific oncogenes and tumor suppressor genes, 
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such as KRAS, PIK3CA, APC, and TP53 
53

. This cancer subtype is typically 

indicative of poor patient prognosis 
54,55

.    

Microsatellite instability (MSI) subtype: MSI is a form of genetic instability 

caused by deficiencies in the DNA MMR system, resulting in frequent variation in 

microsatellite sequences along the DNA 
56

. MSI is detected based on the analysis 

of five microsatellite loci (BAT25, BAT26, D2S123, D5S346 and D17S250) in 

tumor genomes. Altered size of at least two of these five microsatellite panel 

markers is required for a tumor to be labelled as being MSI-high (MSI-H). If there 

is only one or no abnormal marker in the panel, the tumor is classified as MSI-low 

(MSI-L) and microsatellite stable (MSS), respectively 
57

. In contrast to the CIN 

pathway, this subtype is typically diploid and LOH is rare 
56

. 

MSI-H tumors account for approximately 15% of sporadic colorectal tumors 
56

. It 

is mainly caused by epigenetic silencing of DNA MMR genes via promotor 

hypermethylation in sporadic colorectal tumors, with MLH1 being the most 

common culprit (>80%) 
56

. However, as previously discussed, it is also caused by 

inherited mutations in DNA MMR genes and is a characteristic of the tumors of 

patients affected by Lynch syndrome 
20

. 

While MSI-H tumors do not respond well to 5-fluorouracil-based treatments 
58

, a 

systematic review found that the MSI-H tumor phenotype is associated with 

longer survival times, adverse-free disease progression, and substantially reduced 

instances of distant metastasis 
59

. Therefore, MSI-H molecular subtype is 

generally recognized as a marker for favorable patient outcomes. 
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CpG island methylator phenotype (CIMP) subtype: The main attribute of the 

CIMP tumor subtype is widespread CpG island methylation 
60

. This subtype is 

hence an example of epigenetic instability. CIMP tumors can also be MSI-H due 

to methylation of MLH1, but the two molecular events are not fully concordant 
61

. 

There is a trend towards CIMP-positive tumors being located in the proximal 

colon compared to the distal colon 
62

. CIMP-positive tumors can sometimes be 

further classified into CIMP-high, which are shown to be associated with BRAF 

mutations and MSI-H status, and CIMP-low, which are shown to be associated 

with KRAS mutations and MSS status. CIMP-negative tumors, on the other hand, 

are typically MSS with TP53 mutations 
63

. A systematic review and meta-analysis 

published in 2014 showed that the CIMP subtype is significantly associated with 

poor prognosis, regardless of the tumor MSI status 
64

. 

 

While these molecular subtypes of colorectal cancer possess their own biological 

characteristics and demonstrate their own associated clinical features, interestingly, they 

are not necessarily mutually exclusive (as demonstrated by CIMP-positive tumors 

exhibiting MSI through MLH1 promotor methylation). In contrast, histological subtypes 

of colorectal cancer do not display such overlap in subtype definition and, thus, can be 

fully distinguished from each other as explained in the next section. 
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1.2.4.2 Histological variants 

 The World Health Organization (WHO) reports a number of histological 

variations of colorectal cancer, which are classified based on the microscopic anatomy 

and characteristics of the tumor cells 
65

. Since some of these histological variants are rare 

and have had limited investigation, I will only discuss the following subtypes: 

adenocarcinoma, mucinous adenocarcinoma, signet-ring cell carcinoma, and medullary 

carcinoma.  

Adenocarcinoma: These tumors comprise the most common type of colorectal 

carcinoma, accounting for over 90% of cases. Adenocarcinomas form in secretory 

epithelial cells, which normally secrete mucus in the colon and rectum 
66

. 

Mucinous adenocarcinoma: This is a subtype of adenocarcinomas that account 

for up to 15% of colorectal tumors 
67

. The defining characteristic of these tumors 

is a high extracellular mucin component. Specifically, over 50% of the tumor 

volume must be composed of mucin to obtain this classification 
65

. Patients with 

mucinous adenocarcinoma are typically younger and at an advanced stage at 

diagnosis 
68,69

. In addition, these tumors tend to have an inferior response to broad 

chemotherapy treatments 
70,71

. There are several differential molecular and genetic 

characteristics of colorectal mucinous adenocarcinoma compared to non-

mucinous adenocarcinoma, which will be further discussed in Section 2.3.  

Signet-ring cell carcinoma: This subtype has a defining characteristic of >50% 

of the tumor cells having abundant intracellular mucin causing the nucleus to be 

displaced to the periphery 
65

. It is a rare subtype of colorectal adenocarcinoma, 
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accounting for <1% of all cases 
72

. Tumors of this subtype typically occur in 

younger patients, associate with lymph node metastasis, present at an advanced 

stage at diagnosis 
73,74

, and are associated with a high frequency of MSI 
75

. Signet-

ring cell carcinoma has also been shown to be a predictor of poorer patient 

outcomes 
74,76

.    

Medullary carcinoma: This is a rare histological variant of colorectal cancer that 

accounts for only 5-8 cases per every 10,000 
77

. These tumors are characterized by 

sheets of cancerous cells with vesicular nuclei, prominent nucleoli, abundant 

cytoplasm, and tumor infiltrating lymphocytes 
65

. Patients with this cancer subtype 

tend to have tumors located in the proximal colon and with high MSI 
78

. In 

addition, these patients tend to have early stage tumors at diagnosis and have a 

better prognosis, including a low incidence of disease recurrence 
77,78

. 

 

 In summary, there are extensive molecular and histological variations in colorectal 

cancer. Understanding these aspects of the biology of this disease is essential in 

deciphering the complex pathways to pathogenesis created by these variations, as well as 

how they affect the patient and their clinical features. Consequently, stratifying patients 

based on specific disease subtype characteristics is not only challenging, but is also 

critical for better prognostication and clinical care. To that end, the focus of the project 

described in Chapter 2 is on the mucinous and non-mucinous histological variants of 

colorectal cancer with an aim to identify germline genetic variants associated with tumor 

histology. 
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1.2.5 Prognostic factors in colorectal cancer 

Different subtypes of colorectal tumors and their respective cellular behaviors can 

also specify different sets of predictive and prognostic markers 
79

. Prognostic factors can 

be clinicopathologic features as well as molecular markers. These factors aid in 

identifying patients that are at a higher risk for disease recurrence and/or progression and 

can also estimate how a patient may respond to treatment. Select Several factors have 

been identified or widely examined for their prognostic importance:  

Tumor staging: The tumor-node-metastasis (TNM) staging is the most important 

prognostic indicator to date. This staging is based on the size of the tumor and/or 

the extent of invasion to surrounding tissue by the tumor (T) as well as metastasis 

to the lymph nodes (N) or to other areas of the body (M). The TNM staging as set 

by the American Joint Committee on Cancer (AJCC) is the most widely used 

staging method 
80

. The latest stage grouping was published in 2010 and is given in 

Table 1.1.  

Lymphatic and vascular invasion: There are two ways in which tumors cells can 

spread to other parts of the body: via invasion into the lymphatic system 

(lymphatic invasion) or the blood circulatory system (vascular invasion) 
81

. Since 

metastasis is a major cause of mortality in colorectal cancer, it is not surprising 

that lymphatic invasion and vascular invasion strongly correlate with cancer 

recurrence and survival. In fact, it has been estimated that the 5-year survival rate 

drops to 30-35% in the event of lymphatic invasion or vascular invasion, where  
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Table 1.1  AJCC staging for colorectal cancer 

 

Stage Tumor Node Metastasis 

Stage 0 Tis N0 M0 

Stage I T1, T2 N0 M0 

Stage II T3, T4 N0 M0 

Stage IIA T3 N0 M0 

Stage IIB T4a N0 M0 

Stage IIC T4b N0 M0 

Stage III Any T N1, N2 M0 

Stage IIIA 
T1, T2 N1 M0 

T1 N2a M0 

Stage IIIB 

T3, T4a N1 M0 

T2, T3 N2a M0 

T1, T2 N2b M0 

Stage IIIC 

T4a N2a M0 

T3, T4a N2b M0 

T4b N1, N2 M0 

Stage IVA Any T Any N M1a 

Stage IVB Any T Any N M1b 

 

Tis: carcinoma in situ; T1: tumor invades submucosa; T2: tumor invades muscularis 

propria; T3: tumor invades subserosa or beyond; T4: tumor pierces visceral peritoneum 

and/or directly invades other organs or structures; T4a: tumor pierces visceral 

peritoneum; T4b: tumor directly invades other organs or structures; N0: no regional 

lymph node metastasis; N1: metastasis to 1-3 lymph nodes; N1a: metastasis to 1 lymph 

node; N1b: metastasis to 2-3 lymph nodes; N1c: tumor deposits in the subserosa or 

beyond without lymph node metastasis; N2: metastasis to 4 or more lymph nodes; N2a: 

metastasis to 4-6 lymph nodes; N2b: metastasis to 7 or more lymph nodes; M0: no distant 

metastasis; M1a: distant metastasis to one organ; M1b: metastasis to more than one organ 

or site.  

Used with permission from the AJCC Cancer Staging Handbook, 7
th
 Edition (2010) 

80
 

(Appendix A). 
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this rate is up to 84% when there is no evidence of invasion 
81

.  

Tumor budding: Tumor budding denotes microscopic clusters of de-

differentiated cancer cells at the invasive front of the tumor. This characteristic is 

an indicator of aggressive tumor behavior that may be driven by an EMT-like 

process 
82

. Several studies have shown that severe tumor budding correlates with 

increased risk of disease recurrence and reduced survival rates 
83

. Particularly in 

stage II patients, it has been generally observed that patients who experience 

highly adverse clinical outcomes are those with evidence of tumor budding 
84

. 

Hence, tumor budding may have significant prognostic potential, particularly in 

predicting aggressive tumor behavior and metastasis.  

Tumor grade: Tumor grade is an account of how far the tumor cells and tissue 

have deviated from normal cells and tissues 
85

. A high grade tumor is indicative of 

tumors that are undifferentiated or poorly differentiated and look extremely 

abnormal under a microscope when compared to their normal counterparts. 

Conversely, low grade tumors are well-differentiated and look similar to their 

normal counterparts. High grade tumors tend to associate with a less favorable 

patient prognosis and high metastatic potential whereas low grade tumors tend to 

infer a favorable patient prognosis and low metastatic potential 
85

. However, some 

experts have proposed that a lack of a consensus grading scheme makes the 

prognostic evaluation of tumor grade difficult 
86,87

. 

Tumor location: Traditionally, it has been shown that tumors located in the 

rectum tend to have worse survival compared to colonic tumors 
88,89

. This is 
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mainly because of the substantially higher risk of local recurrence in rectal cancer 

patients compared to colon cancer patients 
90

. This trend appears to be changing as 

some studies showed that advances in treatment are related to improved survival 

in stage II-III colorectal cancer patients regardless of tumor location 
91,92

. 

However, this improvement in survival is not yet universal and it was suggested in 

a recent study that the location of the tumor still correlates with clinical outcomes 

93
. 

Demographic and life-style related variables: Several demographic variables 

have been evaluated for their prognostic significance in colorectal cancer. An 

increased age at diagnosis has been shown to be a negative prognostic factor, even 

though younger patients typically present with more locally advanced cancers 

94,95
. In addition, several studies have identified a survival advantage in females 

96-

98
. Clearly, age at diagnosis and sex appear to play a role in patient prognosis. 

However, differential comorbidities stemming from age at diagnosis or sex offer 

an additional challenge in establishing a direct causal link between these 

characteristics and patient prognosis 
80

. Last but not least, there are a number of 

other environmental and lifestyle related factors that have been suggested as 

potential prognostic variables, such as cigarette smoking 
99

 and lack of physical 

activity 
100,101

, which demonstrates the potential importance of environment in 

prognostication of this disease.  

Tumor mutations: Like in other cancers, scientists have identified several 

recurrent somatic mutations in colorectal tumors 
102

. Among these are the 
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mutually exclusive mutations in two members of the RAS/MAPK pathway: KRAS 

and BRAF. This pathway controls several important cellular functions, including 

the regulation of cellular proliferation, differentiation, and apoptosis 
103

. KRAS 

mutations are typically activating missense mutations, of which 90% are in exon 

2, and can be found in 30-50% of colorectal tumors 
104

. These mutations are 

increasingly screened for in clinics since they confer resistance to targeted 

treatments, including anti-epidermal growth factor receptor (EGFR) antibodies 

which have recently become approved by the Food and Drug Administration 

(FDA) for treatment of metastatic colorectal cancer 
105

. BRAF mutations are less 

common, occurring in 5-10% of colorectal tumors 
104

. One of the mutations 

identified in BRAF is a missense mutation, Val600Glu, that causes the gene to be 

perpetually activated and, thus, work as an oncogene by promoting proliferation 

and reducing apoptosis 
106

. While their clinical utility remains to be fully 

established, in some studies mutations in these genes have been associated with 

adverse outcomes in colorectal cancer patients 
107-109

.  

Polymorphisms and other genetic variations: Numerous studies have been 

conducted testing associations between genetic polymorphism and colorectal 

cancer patient outcomes. These associations have identified potential biomarkers 

for not only survival outcomes 
110-112

, but also responses to treatment 
113-115

. 

However, a common challenge with genetic associations is the inconsistency 

among different studies or lack of replication of the results 
116

. Consequently, for 
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the time being, the results from such studies are not used in clinical care of 

colorectal cancer patients. 

In summary, there are several variables that may influence or predict the 

prognosis of colorectal cancer patients. However, there is still much to discover 

considering the variability in outcomes experienced by the patients. Consequently, the 

research project described in Chapter 3 focuses on identifying germline genetic 

polymorphisms that are associated with the long-term risk and timing of metastasis in a 

colorectal cancer patient cohort from NL. 

 

1.3 Genetic variations in humans  

 Genetic variations are changes in DNA that can range from single nucleotide 

changes to large scale structural changes. If these variations exist in the gametes, they are 

known as germline variations and can be passed onto future generations. On the other 

hand, if a variation occurs in other tissues during development, it is known as a somatic 

variant and is not passed onto future generations 
117

. At the genetic level, all human traits 

may be affected by one or more genetic variations.  

The most common form of genetic variation in humans is the substitution of a 

single base in a DNA sequence known as a SNP 
118

. SNPs can occur within the protein 

coding sequences of genes. In these cases, SNPs are known as synonymous if there are no 

changes to the amino acid sequence, missense when the substitution changes the codon to 

encode a different amino acid, and nonsense if the change in sequence results in a stop 

codon and, consequently, a possibly truncated protein. In addition, SNPs can occur in 
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regulatory regions, such as untranslated regions (UTRs) or splice sites, as well as 

intergenic sequences 
119

.  

The 1000 Genomes Project and other large-scale genome projects have identified 

over 88 million human SNPs with allele frequencies of >1% 
120

. The distribution and 

frequencies of human SNPs across populations show variability and can be shaped by 

many factors, including evolutionary mechanisms such as natural selection 
121,122

 and 

genetic drift 
123

. A large portion of SNPs are common among several different 

populations 
124

, however, in some cases their frequencies can noticeably vary 
120

. For 

example, the Q allele of the K121Q polymorphism in the glycoprotein gene PC-1 was 

shown to be highly common in African American children (allele frequency up to 80%), 

while the allele frequency was only up to 15% in Caucasian children 
125

. Overall, African 

populations have a larger number of genetic variation when compared to other historical 

human populations, namely Asians and Caucasians 
120

. Additionally, in some cases, 

differences in allele frequencies explain sub-population variances in the incidence of 

traits or diseases. For example, there is a measurable difference in the frequencies of 

alleles associated with height between Northern and Southern Europeans that is consistent 

with polygenic adaptation, or weak widespread natural selection 
126

. Another study 

demonstrated evidence that individuals of Puerto Rican ancestry have a higher frequency 

of risk alleles and lower frequency of protective alleles for 101 disease-associated SNPs 

compared to individuals of a non-Hispanic Caucasian ancestry 
127

. These examples 

underlie the potential biological effects of genetic variations and importance of 
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considering the differences in allele frequencies between populations when examining the 

genetic basis of traits. 

While they are typically considered benign, a portion of SNPs can directly affect a 

gene and its expression or function. For example, one study revealed that a polymorphism 

in the gene encoding interleukin 21 (IL21) was associated with significant changes in 

IL21 mRNA and protein levels 
128

. The authors of this study suggest that this 

upregulation of gene expression is a possible mechanism for an increased risk of ischemic 

stroke. Another study showed that two missense variants that affect the Asp263 residue of 

PGM1 causing a decrease in catalytic activity of the encoded enzyme, which may be a 

cause of PGM1 deficiency in individuals with these variants 
129

. As will be discussed 

later, identifying SNPs that have causal links to human phenotypes has been an intense 

research area in genetics.  

In addition to SNPs, DNA variations involving more than one base pair do exist in 

the human genome. Two common types are insertion/deletion variants (indels) and copy 

number variants (CNVs). In these types of genetic variations, sequences of DNA are 

inserted/amplified or deleted. If the length of the affected sequence is less than 1,000 base 

pairs, some researchers define them as an indel. In contrast, if the length of the sequence 

is greater than 1,000 base pairs, it may be called a CNV 
130

. Intuitively, such structural 

variants could have a large effect on the gene or protein function 
131

. In fact, there are 

good examples of such functional variations in literature. Falchi et al (2014) demonstrated 

that a CNV encompassing the salivary amylase gene AMY1 associates with body mass 

index and risk of obesity 
132

. Individuals with higher copy numbers of this gene have 
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higher amounts of the salivary amylase protein, which initiates the digestion of starch in 

humans. Interestingly, this CNV appears to have been positively selected for in some 

populations, since populations with high-starch diets have on average more copies of the 

AMY1 gene, suggesting an adaptation towards more efficient starch digestion in these 

populations 
133

. In addition, several genes related to immune responses have been shown 

to have CNVs with potential biological consequences 
134-136

. CNVs are also known to be 

associated with neurological diseases, such as autism 
137

. Similar to SNPs, studying indels 

and CNVs is an active area of research with the potential to further illuminate the 

influence of genetic variations on the development of complex traits. 

In addition to their sizes, human genetic variations are also categorized as 

common or rare based on their frequencies in the populations. Typically, the 

categorization is based on frequency of the least common allele, also known as the minor 

allele frequency (MAF) 
138

. The MAF threshold for common/rare classification is still 

subjective with different studies applying different thresholds. However, common 

variants typically have a MAF ≥ 1 or 5% and rare variants have a MAF < 1 or 5% 
138,139

. 

Both common and rare variants are expected to have very important roles in complex trait 

development. In fact, the genetic architecture of complex traits, including diseases, can be 

hypothesized using the following theories: (1) the common disease-common variant 

hypothesis, which suggests a moderate number of common variants each contributing a 

moderate effect on the trait 
140

; (2) the common disease-rare variant hypothesis, which 

advocates multiple moderate to highly penetrant rare variants with large effects are 

responsible for the trait 
141

; (3) the infinitesimal model, postulating that a large number of 
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small-effect common variants are responsible for complex trait development 
142

; and (4) 

the broad-sense heritability model, which proposes a combination of gene, environment, 

and epigenetic interactions contribute to the trait 
143

. It is likely that not all complex traits 

will fall into only one of these categories. As a result, it is imperative to properly 

investigate both common and rare variants in the exploration of the genetic basis of 

complex traits. These analyses require different analytical approaches, which will be 

discussed in Section 1.4.1. 

To sum up, extensive research performed so far has shown that, while most 

genetic variations have little or no effect on trait development, in some cases they can 

have a functional influence on a gene or protein as well as biological pathways and 

processes. Accordingly, such variations may be the main cause of a Mendelian disease or 

may influence the risk of complex diseases 
144

.  

 

1.3.1 Mendelian vs. complex diseases 

Diseases are typically classified by geneticists as either Mendelian or complex. 

Mendelian disorders are usually rare but have predictable and recognizable inheritance 

patterns. In addition, these diseases are typically caused by high-penetrant mutation(s) in 

one or a few causative gene(s). Examples of such diseases are sickle-cell anemia 
145

 and 

cystic fibrosis 
146

. Diverse types of genetic mutations, including point mutations, indels, 

and chromosomal abnormalities have been implicated in these diseases 
147

.  

Complex diseases, on the other hand, are relatively common in the general 

population. These diseases can sometimes have significant genetic components, but also 
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may require the influence of environmental factors and/or gene-environment interactions 

for their development. Examples of complex diseases include cancer, cardiovascular 

disease, and diabetes 
148

. Since there are so many potential contributors to the disease, 

complex diseases do not typically display a predictable inheritance pattern. Consequently, 

the molecular biology behind complex disease etiology, including the genetic 

contribution, is challenging to dissect. A number of approaches can be applied to help 

identify genetic variations that may influence a complex phenotype, one of which is 

performing genetic association studies.  

 

1.3.2 Genetic association studies  

Genetic association studies can assist in the identification of susceptibility or 

causative alleles by testing for correlations between genetic variations and clinical 

outcome or complex phenotype, also known as a trait 
149

. The most common genetic 

variations investigated in these types of studies are SNPs, however, indels and CNVs may 

also be considered 
150

.  

Genetic association studies rely on detecting the causal variant either directly or 

indirectly. Direct detection occurs when the causal variant is directly identified through 

associations (i.e. genotyped and statistically associated with the phenotype). Indirect 

detection, on the other hand, occurs when nearby genetic markers highly correlated with 

the causal variant are detected to be associated with the phenotype. This non-random 

correlation between alleles at different genomic loci is known as linkage disequilibrium 

(LD). Further investigation past the association analysis is required to properly classify 
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the variants as causal or merely a marker of the phenotype 
151

. Consequently, associations 

with both genotyped causal SNPs and SNPs linked to the causal variant can provide 

valuable information related to the trait of interest and factors contributing to it. 

Tests for genetic association are typically performed for each variant individually. 

Statistical tests are available if a researcher is interested in the simple presence or absence 

of an association, such as a conventional    test for association 
152

. Such tests check for 

dependence, but do not infer a direction of effect nor can they adjust for any potential 

phenotype-related characteristics (i.e. exclusively univariable analyses). Alternatively, 

researchers may aim to explicitly model the conditional probability that a random 

individual in the population has the phenotype given the genetic and other variables. This 

is done using more complicated regression models. Regression models provide 

coefficients that offer a measure of association for each variable included in the model. 

Given that complex traits and diseases typically have several genetic and/or 

environmental factors influencing the development of the phenotype, regression models 

are desirable to model complex/multifactorial traits.  

While genetic association studies have the potential to provide informative results 

to assist in understanding the genetic contribution to complex trait development, the 

human genome contains a large amount of genetic variations. Thus, data analyses can be 

fairly challenging. As a result, precise study designs are required to properly answer 

specific research questions regarding the genetic foundation of traits. Genetic association 

studies can focus on genetic markers in targeted genes/genomic regions (candidate 
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polymorphism/gene/pathway studies) or throughout the human genome (genome-wide 

association studies; GWAS).  

 

1.3.2.1 Candidate polymorphism/gene/pathway studies 

Candidate polymorphism/gene/pathway studies are hypothesis-driven, meaning 

they are based on prior biological knowledge regarding a polymorphism, gene, or 

biological pathway relevant to the trait 
149,153

. In candidate polymorphism studies, 

associations between a trait and individual SNPs usually with an anticipated functional 

link are tested. Candidate gene studies, on the other hand, test associations between 

several SNPs individually within a gene of expected functional importance in the 

development of the trait. Lastly, candidate pathway studies aim to examine variants in the 

genes functioning in specific biological pathways related to the etiology of the trait of 

interest, which may offer a more comprehensive and biologically relevant approach. 

While these studies aim to directly identify functional variants, as expected they may also 

identify markers that are linked (i.e. in high LD) with the causal functional variant within 

or outside the examined gene 
149

.  

The main limitation in candidate polymorphism/gene/pathway studies is the 

requirement for prior knowledge thereby identifying the candidate(s). This can limit the 

study to a very small part of the genome. Instead, it can be useful to analyze genomic 

variants comprehensively in a genome-wide approach 
149

. 
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1.3.2.2 Genome-wide association studies (GWAS) 

Together with the scientific knowledge created on genetic variations by large 

scale genome projects, such as the Human Genome Project 
154

 and 1000 Genomes project 

120
, and technological advances, such as development of DNA chips 

155
, high-dimensional 

genetic association studies using genetic markers across the genome have been made 

possible. In fact, GWAS have become an important contributor to genetic and complex 

disease research. GWAS are high-dimensional studies that are extremely helpful in 

identifying genetic variations implicated in complex disease risk because of their high 

genomic coverage, which also removes the need for selecting candidates based on prior 

information. Regression-based GWAS can be particularly valuable 
149

. As mentioned in 

Section 1.3.2, regression models can analyze several variables and provide a measure of 

association for each variable. Consequently, regression-based GWAS can detect genome-

wide genetic associations while adjusting for other disease-associated characteristics to 

potentially isolate the genetic effects. Using such information, researchers can develop 

new strategies for treatment as well as disease prevention 
156-158

. Consequently, GWAS 

have the potential to catalyze the induction of personalized medicine 
159

. 

While GWAS allow for a more comprehensive investigation of the genome than 

candidate studies, they also introduce large data processing and computational burdens 

that can be non-trivial challenges for researchers. In addition, since GWAS test hundreds 

of thousands of SNPs from the same dataset individually, there is a large burden of 

correction for multiple testing. These corrections can be quite conservative with such a 

large number of tests performed and their application can result in a loss of power of the 
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analysis and high false-negative rates. However, these corrections are necessary to control 

for false-positive rates and increase the replicability of the associations 
160

.  

The results from genetic association studies can provide important insight into the 

genetic foundation of complex diseases. More specifically, the results can indicate which 

specific genotype of a given genetic polymorphism is associated with a disease 

characteristic. However, the allele combinations that are investigated in such studies are 

dictated by the genetic model considered in the analysis, which is determined by the 

researcher. Accordingly, the choice of genetic model can have a strong influence on the 

results of the analysis.  

 

1.3.2.3 Application of different genetic models 

As mentioned, SNPs are the most common form of genetic variation and are the 

typical variants studied in genetic association studies. Generally, a SNP is biallelic 

consisting of a major and a minor allele. Consequently, a genotype can be composed of 

two copies of the minor or major allele (minor/major allele homozygous genotypes) or 

combination of both (heterozygous genotype) 
161

. In different genetic models, these three 

possible genotypes are grouped together and compared to the other genotype(s) in 

different ways. 

The four genetic models generally applied in genetic association analyses are the 

additive, dominant, recessive, and co-dominant genetic models 
162

. In the additive model, 

patients homozygous for the minor allele are compared with the patients homozygous for 

the major allele at a 2x effect size and heterozygous patients are compared to the patients 
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homozygous for the major allele at a 1x effect size. Essentially, this model assumes that 

the effect increases or decreases at a similar magnitude with each count of minor allele. In 

the dominant model, patients homozygous for the minor allele combined with 

heterozygous patients are compared to patients homozygous for the major allele. This 

genetic model assumes that one or two counts of the minor allele have similar effects (i.e. 

one minor allele is sufficient to produce the effect). In the recessive model, patients 

homozygous for the minor allele are compared with patients homozygous for the major 

allele combined with heterozygous patients. The recessive genetic model assumes that 

two minor alleles, not one, are necessary for the effect. Finally, in the co-dominant model, 

patients homozygous for the minor allele and heterozygous patients are compared 

separately to patients homozygous for the major allele. This model assumes that the effect 

attributable to the genotypes may be different regardless of their allele compositions. 

Table 1.2 illustrates these genetic models.  

 

Table 1.2 Illustration of the different genetic models 

 

Genetic Model Reference Genotype Comparison Genotype(s) 

Additive BB AB, AA 

Dominant BB AB + AA 

Recessive BB + AB AA 

Co-Dominant BB AB AA 

 

A: minor allele of genetic variant; B: major allele of genetic variant. 

 

 

Typically, in genetic association studies, one genetic model is applied. Since study 

power is highest under the true/correct genetic model 
163

, applying an incorrect genetic  
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model can lead to a substantial loss of power and incorrect interpretation of the results 
164

. 

It has been suggested for genetic association studies that multiple genetic models be 

tested in the absence of prior biological knowledge for a GWAS 
165

. Consequently, for the 

projects described in this dissertation (Chapter 2 and Chapter 3), we applied each of the 

four genetic models and tested their plausibility, as will be described in Section 1.4.3.  

After the genetic models are applied to the genetic data, association analysis can 

be performed. It is imperative in such studies that the statistical models and methods 

applied are in agreement with the given data and research questions. This includes the 

selection of the disease outcome of interest, known as the response variable in statistical 

analysis. In the following sections, I will discuss different potential statistical models and 

methods of analysis as they relate to the response variables and specific research 

questions in this dissertation. 

 

1.4 Statistical approach to the research 

This thesis required extensive statistical analyses tailored to each specific research 

question. Different regression models were used to investigate the association between 

genetic markers and disease outcomes based on the type of outcome of interest. One type 

of disease outcome is the presence or absence of a disease or disease-specific 

characteristic. This is known as a binary response variable: a variable with only two 

possible values. These associations can provide information regarding the susceptibility 

of a disease or risk of developing some specific disease subtype. This type of response 

variable is the focus of the study presented in Chapter 2. However, if the research 
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question is focused on disease progression, an appropriate response variable to analyze 

might be the time-to-event of interest. Such response variables consider the timing of a 

given disease-related event, such as disease recurrence or death. The results from 

answering these research questions, once validated, can provide information regarding 

disease prognosis. Such a research question is the focus of the study to be described in 

Chapter 3. 

As mentioned in Section 1.2.4.2, the study to be described in Chapter 2 aimed to 

identify genetic variations that are associated with the mucinous histological variant of 

colorectal cancer. The presence or absence of mucinous tumor histology is a binary 

response variable. Consequently, we applied statistical methods that are appropriate for 

analyzing such data. In addition, we considered both common and rare genetic variants in 

the association analysis. The allele frequency has a large impact on the power of the 

association test and, thus, has to be a consideration in determining the appropriate 

statistical method to apply. As a result, I will first discuss the analysis of a binary 

response variable as it would be considered for investigating associations with common 

genetic variants, and then describe multi-marker tests for the examination of rare variants.  

 

1.4.1 Analysis of a binary outcome 

 Fitting regression models can provide insight on the relationships between a 

binary outcome and given predictors.  Binary variables take only two values, such as 

success/failure, yes/no, or present/absent 
166,167

. These variables are often assigned 1 or 0 

for the purpose of analysis. The probability of a particular outcome occurring is modelled 
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using one or more related characteristics typically referred to as covariates, factors, or 

variables. Unlike the response variable, the covariates can be quantitative or qualitative 

and are considered potential determinants for the disease outcome. A regression model of 

a function of the probability of success can be used to model the association of covariates 

with the outcome 
166,167

.  

 Several regression models are available for the analysis of binary outcomes. 

However, they have their own assumptions and limitations. For example, one method to 

model the probability of success is using a log-linear model 
168

. This model assumes a 

linear relationship between the logarithm of the probability of success and covariates. 

However, this model may yield estimated probabilities outside of the interval [0,1], which 

are not allowable risks. This problem can be addressed by modelling odds instead of 

probabilities using a logistic regression model 
166,167

. 

 

1.4.1.1 Logistic regression model 

When the outcome of interest is binary, the preferred method of analysis is logistic 

regression in many studies. Univariable logistic regression model is given as 

    
  

    
                                                                    

where             is the probability of having the outcome   conditioning on a 

covariate    ,  
  

    
 is the odds of having the outcome   conditioning on a covariate 

   ,   is the logarithm of the odds at baseline (   ), and the coefficient   is the 

logarithm of the odds ratio associated with a unit increase in the scale of  .  Since this 

model calculates the logarithm of the odds for the probability of having the event, it 
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follows that    is the odds ratio associated with a unit increase in the scale of  . The odds 

ratio is a measure of association of the given covariate  . If the odds ratio is greater than 

one, the comparison group has higher odds of experiencing the outcome than the 

reference group. If the odds ratio is less than one, the comparison group has lower odds of 

experiencing the event than the reference group. When the odds ratio is equal to one, the 

two groups have the same odds of experiencing the event. The logarithm       

transformation ensures the estimates of    are between zero and one for any value of   

167,169
. 

In genetic association analysis, the covariate   would represent a genetic variant. 

Its value is determined based on the genetic model selected for each subject. Consider a 

SNP with minor allele   and major allele  , as in Table 1.2. The coding of each genetic 

model under the logistic regression model given in (1) is, as follows: 

In the additive genetic model,   takes the value  

   

                       
                       
                       

                                                         

In the dominant genetic model,   takes the value  

   
                             

                       
                                                 

In the recessive genetic model,   takes the value  

    
                       

                             
                                                 

For the co-dominant genetic model, the univariable logistic regression model needs to be 

changed to accommodate the additional variable resulting from the consideration of each 
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genotype separately. Consequently, when considering the co-dominant genetic model, the 

univariable logistic regression model becomes 

    
        

          
                                                          

where  

         

                           
                            
                           

                                            

In the regression model (1),    gives the odds ratio for the different possible genotype 

groupings described in (2), (3), and (4). For example, consider the genotype grouping 

given in (3). If    is greater than one, individuals with the AA or AB genotypes have a 

higher odds of experiencing the outcome compared to individuals with the BB genotype. 

If    is less than one, individuals with the AA or AB genotypes have a lower odds of 

experiencing the outcome compared to individuals with the BB genotype. In the model 

(5),     provides the odds ratio for the heterozygous genotype compared to major allele 

homozygous genotype, and     provides the odds ratio for the minor allele homozygous 

genotype compared to major allele homozygous genotype, as denoted in (6).  

In addition to the ability to provide valid risk probability measures, an asset of the 

logistic regression model is the ability to analyze several covariates 
170

. Not only can the 

model handle multiple covariates, the variables do not need to be on the same 

measurement scale. This means some covariates could be on a continuous scale while the 

others can be categorical and the model can still calculate the appropriate risk measures. 

The multivariable logistic regression model is written as 
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where               
 
 is a vector of   covariates other than  ,                 is a 

vector of  coefficients for the covariates in  , and                      denotes 

a linear combination of covariate values     and their coefficients  . For some      

      , the odds ratio for a unit increase in    is     while holding the other covariates 

constant.  

Now that we have defined these logistic regression models, we require methods to 

estimate the parameters within the models based on a random sample of the population. A 

well-known method to estimate the unknown coefficients in logistic regression models is 

the maximum likelihood estimation 
167,171

. This method obtains values for the unknown 

parameters, such as   and   in (1), that maximize the probability of obtaining the given 

data. The first step in this method is to construct a likelihood function, which expresses 

the probability of the given data as a function of the unknown parameters under the given 

model. Suppose the observed data is                    for sample size  . Since the 

subjects are independent of one another in a random sample, the likelihood function   is 

written as 

                    

 

   

                                                       

where            can be modelled by using a logistic regression model as in (1). The 

maximum likelihood estimators    and    of the unknown parameters   and   in model (1) 

are the values that maximize the likelihood function and, thus, agree the most with the 
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given data 
167,171

. Note that if the distribution of  ,        , does not depend on the 

unknown parameters   and  , it can be omitted from maximizing   
171

. As a result, the 

estimates of the unknown parameters (i.e.   and  ) that maximize 

              

 

   

                                                              

are the maximum likelihood estimators (i.e.    and   ) of the unknown parameters. It 

follows that     is the odds ratio estimate for a unit increase in the scale of  . 

 The maximum likelihood estimation may also be used to obtain approximate 

confidence intervals for the odds ratio    and to conduct hypothesis testing for the 

absence of association between   and   
171

. This is because the estimators have 

asymptotically normal distribution when the sample size   is sufficiently large. To 

calculate an approximate confidence interval for the coefficient   using the normal 

approximation of the distribution of the maximum likelihood point estimator   , we need 

the variance of the sampling distribution,     
171

. Both    and     are obtained from the 

likelihood function. Thus, an approximate 100       confidence interval can be 

calculated by 

                                                                                   

where    is the    
 

 
 th percentile of the standard normal distribution. It is important to 

note that this supplies the confidence interval for  , which is the log odds ratio. To obtain 

the confidence interval for the odds ratio, we simply exponentiate the values calculated 

from the equation above.  As mentioned, the likelihood function also allows for 
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hypothesis tests to assess the absence of association between   and  . One method to 

accomplish this, and the test used in this thesis, is the Wald test. This method involves 

calculating a test statistic,           , which follows an asymptotically standard normal 

distribution in sufficiently large sample sizes under the null hypothesis        (i.e. no 

association between the covariate and outcome). In addition to the Wald test, the Score 

test and the Likelihood Ratio test could be used for hypothesis testing. For large  , each 

of these methods generally give similar p-values 
171

.  

 In this thesis, as revealed in Section 2.5.4.1, logistic regression models were fitted 

using R software 
172

. Specifically, we used the     function which gives the maximum 

likelihood estimates of the coefficients, standard errors of the maximum likelihood 

estimates, Wald test statistic for testing the absence of association between the outcome 

and covariates, and the corresponding p-values. Using the maximum likelihood estimates, 

their standard errors, and the asymptotic distribution assumption, we calculated the 

approximate confidence intervals.  

Regression methods are well-known and widely used in statistical genetics and 

genetic epidemiology for testing single-marker genetic associations 
160

. Such methods can 

identify genetic markers that are significantly associated with a given trait. An additional 

characteristic that may be of interest to researchers is how well these identified SNPs or 

SNP sets can differentiate between individuals who have or do not have the given trait. 

This can be done using receiving operating characteristic (ROC) analysis. 
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1.4.1.2 ROC curves for a binary outcome 

A well-known method to assess the discriminatory accuracy of a given model, 

including various associated factors or covariates, is using a ROC curve 
173

. This curve 

visualizes the balance between sensitivity, or true positive rate, and specificity, or true 

negative rate, over varying decision thresholds. These two components are inversely 

related, so sensitivity increases as specificity decreases. Specifically, the ROC curve plots 

sensitivity versus (1-specificity), which is also known as the false positive rate.  

ROC curves can be constructed based on univariable and multivariable models 
174

. 

As a result, researchers can include several associated covariates in the model and 

determine the change in discriminatory accuracy due to the addition of these covariates. 

Specifically, as covariates that are significantly associated with the binary response 

variable are added to the model, the discriminatory accuracy increases 
175

. However, with 

the addition of several parameters, it is possible to overfit the model. In this case, the 

model becomes tailored to fit the given data instead of being able to make inferences 

about the population given the data 
175

. Consequently, it is important to determine if there 

is a statistically significant increase in discriminatory accuracy when adding parameters 

to the model to avoid overfitting. ROC curves can also provide a direct visual comparison 

of several different univariable or multivariable models with differing sets of covariates 

on a single graph 
173,176

. Such comparisons can provide some conclusions regarding the 

relative accuracies of the different models: a curve that lies above and to the left of 

another indicates a better discriminatory accuracy 
176

.  
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A useful way to quantify the discriminatory accuracy of a given model is using the 

area under the ROC curve (AUC). This is the combined measure of sensitivity and 

specificity and is a good indication of the validity of the model 
173

. It is a single numeric 

representation of the performance of the model that is obtained by calculating the area 

under the ROC curve. The AUC can take any value between 0.5 and 1, inclusive. If the 

AUC is equal to one, the model is 100% accurate at discriminating individuals given the 

set of variables. This is enormously improbable in practice. Thus, an AUC of close to 1 is 

a more real-world objective. The minimum AUC value is 0.5, because this indicates the 

model has an equal chance of correctly and incorrectly discriminating individuals given a 

set of variables. 

The interpretation of the AUC for ROC curves can be considered in the following 

in three ways: (1) the AUC is an average of sensitivity for all values of specificity; (2) the 

AUC is an average of specificity for all values of sensitivity; and (3) the AUC is the 

probability that a person with a given trait has a test result indicating a greater risk of that 

trait than a person that does not have the trait 
173,176

. In medical research, ROC curves are 

most commonly used in testing the validity of diagnostic tests, namely in their ability to 

correctly identify diseased and non-diseased individuals 
177,178

. For example, an AUC of 

0.75 indicates that 75% of the time, a randomly selected individual with cancer has a 

positive cancer screening result indicating a higher risk of having cancer than a randomly 

selected individual that does not have cancer 
176

. However, this principle can be applied to 

any model that attempts to differentiate between two groups depending on a given 

characteristic or set of variables. A quick literature review supports this, indicating that 
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this methodology has been used in bioinformatics 
179,180

, clinical studies 
181-183

, and 

epidemiology 
184-186

.  

In practice, there are typically two goals in ROC analysis: to determine if a test 

has more discriminatory accuracy than chance or to determine if one test outperforms 

another in terms of discriminatory accuracy. One way to assist in determining if there is a 

statistically significant difference in discriminatory accuracy is using confidence intervals 

of ROC curve AUC values 
176

. For example, if a confidence interval for a model’s AUC 

contains 0.5, it is acceptable to reject that model as the discriminatory accuracy is not 

sufficiently different than the one given by chance. However, if the confidence interval 

does not contain 0.5, the test discriminates between subjects with and without the trait 

better than chance. This concept can extend to the comparison of different models. When 

comparing two or more different models, if the confidence intervals for the AUC values 

of different models overlap, there might not be a significant difference in the 

discriminatory accuracy of one model in comparison to the other(s). However, if the 

confidence intervals do not overlap, there is a statistically significant difference and the 

ROC curve with the higher AUC value has a significantly higher discriminatory accuracy 

176
. 

ROC analysis was performed in this thesis using R software 
171

, as discussed in 

Section 2.5.4.1. Specifically, we used the      package 
187

. Using this package, we were 

able to plot the ROC curves, and calculate the AUC with corresponding confidence 

intervals. 
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There are many ways to analyze data to identify associations between genetic 

variants and a binary outcome variable, and to determine the importance of these 

associations. The regression methods discussed above typically test the association of 

single genetic variants with the outcome variable, also known as single SNP analysis. 

However, the power of this analysis is highly dependent on the sample size. In addition, 

depending on the minor allele frequency, the adequate sample size for sufficient statistical 

power may be enormous. Consequently, these methods are most successful when used in 

the analysis of common variants but can be underpowered for the analysis of rare variants 

188
.  

 

1.4.1.3 Rare variant analysis methods 

Despite the success of single marker association tests in identifying some genetic 

associations with complex disease, a large portion of the genetic contribution is unknown. 

One theory behind this is that rare genetic variants are present that have a high effect on 

complex diseases 
189

. Advancements in technology have facilitated the investigation of 

the role of rare variants in disease. In fact, rare variants have already been found to be 

associated with lipid traits 
190,191

, type 1 
192

 and type 2 diabetes 
193,194

, hypertension 
195

, 

inflammatory bowel disease 
196

, sick sinus syndrome 
197

, and schizophrenia 
198

. However, 

although it is easier to sequence rare variants, detecting significant associations between 

rare variants and complex traits can be challenging. This is due in part to the frequent use 

of single marker tests in rare variant analysis, which can be underpowered in detecting 

associations between rare genetic variants and complex diseases 
188

. Consequently, 
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several multi-marker tests have been proposed which aggregate one or more SNPs in a 

gene/genomic region into a single test statistic and test the association between this region 

and the disease trait of interest 
199

. I will briefly summarize three different approaches of 

multi-marker tests for rare variant analysis. 

Burden tests are aggregate tests that collapse information for multiple rare variants 

into a single genetic score 
200,201

. A simple approach to this method is to count the number 

of minor alleles across all variants in a given set of SNPs having a rare variant. The 

higher the quantity of rare variants, the higher the genetic score. This method has the 

large assumption that all rare variants in the set of SNPs are causal and they all have the 

same effect on the phenotype. If this assumption is not satisfied, a substantial loss of 

power will occur. 

Another method for testing rare variant associations is using a variance-

component test 
202-204

. This approach does not simply aggregate genetic information for a 

given set of SNPs, but it evaluates the distribution of genetic effects for the set of SNPs. 

Consequently, this method can aggregate both risk increasing and decreasing variants 

with different magnitudes of effects, including no effect, and analyze them appropriately. 

In fact, the major assumption of this method is that there is a mixture of variants with 

different effects, and the model is quite powerful in these cases. One example of such a 

test is the sequence kernel association test (SKAT) 
204,205

.  

The burden and variance-component tests are both powerful methods in their own 

way, provided the corresponding assumptions are satisfied 
199

. A variance-component 

method like SKAT is an attractive option since the assumptions are minimal. However, in 



44 

 

the event that a set of SNPs does have a large number of causal rare variants that have the 

same direction of effect, the burden test is a more powerful method. However, it is 

impossible to know which method is best since the underlying genetic construction is 

rarely known. To address this, methods that combine burden and variance-component 

tests have been proposed 
206-210

. One such approach is a weighted linear combination of 

SKAT and burden test statistics: SKAT-O 
206,210

. This test has fewer assumptions than the 

individual tests and is an attractive choice because it is a robust test. However, it is 

important to note that, although SKAT-O is designed to reduce the assumptions of the 

individual burden and SKAT tests, the individual tests are still more powerful if their 

assumptions are met 
199

.  

In this thesis, rare variant region-based testing was performed on genotype data 

using R software 
172

. Specifically, as will be discussed in Section 2.5.4.2, we used the 

SKAT-O test in the      package 
211

 which calculates the p-values for testing the 

association of the disease trait with each pre-determined set of SNPs in a genomic region. 

This package applies the additive genetic model only. 

 The methods described to now are appropriate to apply when the research 

question is focused around a binary disease trait, as is the case in the study to be described 

in Chapter 2. However, the study presented in Chapter 3 considers a time-to-event 

response variable. Specifically, as mentioned in Section 1.2.5, this study aimed to identify 

common germline genetic variants associated with the risk and timing of metastasis in 

colorectal cancer. To achieve this aim, the response variable used in this study was time-

to-metastasis. 
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1.4.2 Analysis of time-to-event data 

 Prognostic studies are important contributors to medical research. Such 

investigations can identify both clinical and non-clinical biomarkers may confer the risk 

of experiencing specific disease-related outcomes. To identify such factors, researchers 

may wish to study survival data, typically referred to as survival analysis, which includes 

a time-to-event response variable. Analyzing such data requires specialized methods and 

considerations to appropriately describe the relationship between the timing of an event 

and covariates 
212,213

.  

There are several methodological considerations of survival analysis that must be 

addressed prior to the beginning of the study. First, it is extremely important to have an 

unambiguous, clearly defined event that is conclusively measurable. In addition, the time 

at which the follow-up commences (i.e. the time origin) must be well-defined. Finally, the 

scale of measurement of time must be the same for all subjects in the study 
213

.     

 While the event definition, time origin, and time scale are exceptionally important, 

they are not the only considerations in the analysis of time-to-event data. The largest 

complication in survival analysis comes from having incomplete data, such as censored 

data 
212,213

. Censoring is the consideration of data for unobserved events, meaning the 

actual time-to-event is unknown. There are different forms of censored data. The most 

common is right-censored data, which occurs when the true survival time is equal to or 

greater than the censoring time, which is the observed survival time (Figure 1.1). In fact, 

there are three different subsets of right censoring. Type I censoring, which occurs when 
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Figure 1.1  Right censored data 

 

 

 

 

 

 

Event of interest occurs after the observed survival time. The observed survival time 

could be the end of the study or the time the participant was lost to follow-up. 

 

 

there is a pre-determined follow-up time and some participants have not experienced the 

event by the end of this time duration. Type II censoring, on the other hand, occurs when 

you follow participants until a set number of events occur and some participants 

experience the event after the end of the study. Finally, random censoring occurs when 

there is some other competing event that is unrelated to the event of interest occurs which 

prevents participants from continuing in the study. Such events include patient 

withdrawal, accidental death, or patient migration. In medical research, we typically 

observe a mixture of type I and random censoring 
213

. Clearly, censoring is a complicated 

and unavoidable problem, thereby requiring specialized procedures to correctly analyze 

time-to-event data.  

 Time-to-event data can be described by two frequently used and related 

probabilities: survival and hazard 
212,213

. The survival probability at a given time is 

obtained by the survival function, which is given by the following formula: 

Time 

origin 

Observed survival 

time  

Time that 

event occurs 
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Essentially,      is the probability     that the survival time   is greater than a given 

time  . A standard survival function is between zero and one (                ). 

Specifically, the survival probability at the time origin (   ) is one and, as   increases, 

the survival function approaches zero. Moreover, the survival function is a non-increasing 

function of time  . This means that as   increases,      must either decrease or remain 

constant. Generally speaking this can be instinctive, particularly when considering death 

by any cause as the event of interest since everyone will experience the event at some 

point in time.  

Another important function to describe the distribution of time-to-event data is the 

hazard function,     , given by the following: 

        
    

             

  
                                                  

Basically,      gives the instantaneous rate at which an event occurs at a given time   

among subjects that have yet to experience the event 
212,213

. As mentioned previously, the 

survival and hazard functions are one-to-one functions of one another. Specifically, the 

relationship between these two functions can be written as  

                 

 

 

                                                        

Therefore, it is only necessary to consider one of these functions to model the survival 

time  .   

The survival and hazard functions can also be written to condition on covariates 

212,213
. The survival function conditioning on covariate     is written as 
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where        is the probability that the survival time   is greater than time   given 

covariate  . Essentially, this function models the survival probability stratifying the 

participants according to their status of  . The hazard function conditioning on a covariate 

is written as 

          
    

               

  
                                               

where        gives the instantaneous rate at which an event occurs at a given time   

among subjects that have yet to experience the event given time-fixed covariate    . In 

genetic association analysis, the covariates are the specific genotypes of the 

polymorphisms and are included in the function as described in (2), (3), (4), and (6) 

depending on the genetic model selected for the tests. As mentioned in Section 1.3.2, 

when considering covariates in association tests, regression models are desirable to apply. 

This is no different in survival analysis. For example, one regression model commonly 

used in survival analysis for modelling the hazard function is the proportional hazards 

regression model  

             
                                                                     

where   is a given time-fixed covariate value,       is the baseline hazard function (the 

hazard function for an individual when   = 0), and    is the hazard ratio for a unit 

increase in the scale of   
212,213

. An important assumption of the proportional hazards 

regression model is the assumption of proportionality: the hazard functions are 

proportional overtime, or the hazard ratios are constant over time, for two subjects with a 

given time-fixed covariate.  
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 The overarching aim of survival analysis is to estimate the survival or hazard 

function 
212,213

. These functions can be estimated using several standard methods, each 

with their own strengths and limitations. However, there are circumstances where the 

standard survival analysis approaches are not appropriate to apply 
214-216

. As such, I will 

first discuss some frequently used methods for the analysis of survival data, Kaplan-

Meier estimation and Cox proportional hazards regression model, and then discuss a more 

advanced statistical method, the mixture cure model, which can give more informative 

results than the other methods under certain conditions.   

 

1.4.2.1 Kaplan-Meier estimation 

When conducting univariable analysis without considering covariates for a given 

subgroup, the most popular method to estimate the survival function is the Kaplan-Meier 

estimate, also known as the Product-Limit estimate 
217

. This is a non-parametric 

estimation method and the Kaplan-Meier estimate of      is  

       
     
  

      

                                                                

where              are   ordered distinct event times in a random sample of size 

 ,    is the number of participants who have not yet had the event or been censored at 

time    and    is the number of events at time    (     ) 
217

. From the equation, we 

can see that the Kaplan-Meier estimate of the survival function starts at one at the time 

origin and decreases as events occur 
212,213

. In Chapter 3 of this thesis, specifically Section 

3.5.3.1, we performed Kaplan-Meier estimation using the          package 
218

 in R 
172

. 



50 

 

One main feature of the Kaplan-Meier estimation method is that survival 

probability estimates at given time-points can be plotted against time to produce survival 

curves 
212,213

. These curves are the easiest means to visualize survival trends. Importantly, 

several survival curves can be plotted simultaneously on one graph, so a visual 

comparison of the survival patterns for different groups is possible. While this can be 

useful, it is more informative to determine the statistical significance of the potential 

differences between survival functions 
212,213

. This can be done by performing a log-rank 

test: a non-parametric test that determines if the distribution of the survival times is the 

same between two or more groups. As will be disclosed in Section 3.5.3.1, we performed 

a log-rank test in the project described in Chapter 3. To do this, we used the          

function in the          package 
218

 in R 
172

. From the output given by this function, we 

obtained a p-value for the corresponding test.  

The Kaplan-Meier estimation is a widely-used tool for analyzing and visualizing 

survival pattern. Additionally, with the log-rank test, statistical inferences can be made 

regarding the differences in survival patterns between two or more groups. These 

methods are attractive because they require few assumptions and, thus, are quite flexible. 

However, since they are non-parametric methods, they do not provide a measure of effect 

212,213
. Furthermore, these methods are not suitable for multivariable analysis as they 

cannot adjust for any covariates. As a result, additional survival analysis tools are 

required for such types of analysis.  
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1.4.2.2 Cox proportional hazards regression method 

 The Cox proportional hazards regression method is the most widely-used method 

for performing multivariable survival analysis 
212,213,219

. It is based on the proportional 

hazards regression model given in (16). This is a semi-parametric method, meaning it has 

parametric and nonparametric components 
213

. The baseline function,      , is non-

parametrically estimated while we have a parametric form for the coefficient of the 

covariate  . The model given in (16) is a univariable model, conditioning on only one 

covariate,  .  

The multivariable proportional hazards regression model is written as 

             
                                                          

where       is the baseline hazard function (i.e. all covariates set to 0),   

            
  is a vector of   covariates other than  ,                 is a vector 

of coefficients for the covariates in  , and                      denotes a linear 

combination of covariate values     and their coefficients  . For some   between 1 and 

 , the hazard ratio for a unit increase in the scale of    is     while holding the other 

covariates constant. If the hazard ratio is above one, the comparison group is at a greater 

relative risk of experiencing the event than the reference group. Conversely, if the hazard 

ratio is between zero and one, the comparison group is at a reduced relative risk of 

experiencing the event compared to the reference group 
213,219

. If the hazard ratio is one, 

there is no association between the survival time   and covariate   . 

Since the Cox proportional hazards regression model includes the unspecified 

baseline hazard function      , in order to estimate this model, we must use a partial 



52 

 

likelihood function 
219

. This function provides the maximum partial likelihood estimators 

for the unknown parameters and the standard errors for these estimators from which we 

can calculate approximate confidence intervals and Wald-type test statistic for hypothesis 

testing. The Cox proportional hazards regression model does assume proportionality as 

described in Section 1.4.2. This assumption, in fact, can be tested by using a score test 

once the Cox model is fitted 
220

. If this test of proportionality fails, the inference made 

from this model is not accurate 
212,213

.  

Cox proportional hazards regression was applied in the study presented in Chapter 

3 this thesis using R software 
172

. Specifically, we used the       function in the 

         package 
218

. This function calculated the maximum partial likelihood 

estimate(s), standard error(s) of these estimates, confidence interval(s), Wald test 

statistic(s), and p-value(s) for each SNP and covariates included in the model. In addition, 

we used the         function in the          package to test the proportionality 

assumption. This method and its specific application in this thesis will be further 

discussed in Section 3.5.3.1 and Section 3.5.3.4. 

 Both the Kaplan-Meier estimation and the Cox proportional hazards regression 

models are frequently used in the analysis of survival data. However, there are scenarios 

in which these models are not suitable to answer the specific research question. 

Specifically, if a disease has several important covariates that should be included in a 

prognostic model, Kaplan-Meier estimation cannot be applied. As for the Cox 

proportional hazards regression model, the proportionality assumption may be too 

stringent given the data. Recall that this assumption requires the hazard functions 



53 

 

stratifying patients according to different levels of a given variable to remain proportional 

over time. However, the short- and long-term effects of a given covariate can be different. 

In fact, these circumstances can result in the survival curves stratifying patients based on 

such a covariate to cross each other at some time-point within the follow-up duration. The 

Cox proportional hazards regression model cannot adequately model the relationship 

between this type of covariate and the time-to-event of interest since the proportional 

hazards assumption is violated 
215

. Consequently, in cases where several variables with 

possible differences in short- and long-term effects must be analyzed, cure models have 

been suggested as suitable methods 
214,216

. 

 

1.4.2.3 Mixture cure model 

 As advancements in medical research and treatment continue, it is expected that a 

higher proportion of the population will be cured of disease 
215

. As a result, Kaplan-Meier 

survival probability estimates will plateau at a non-zero probability at some point in time 

221-223
. Specifically, the survival patterns may show an aggregation of events at the 

beginning of the follow-up time, but fewer events occur as time progresses until there are 

no more events and patients are considered statistically cured 
214

. These patient 

populations, thus, consist of a mixture of patients who are susceptible to experiencing the 

event of interest and non-susceptible (i.e. cured) patients 
214,215,222,224,225

. Such populations 

can be investigated using cure models, which estimate whether the patient is susceptible 

to experiencing the event (i.e. the risk of experiencing the event) and the survival 
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probability of the patient given that the patient is susceptible 
214,215,221-223,226,227

. In 

addition, these models can adjust for covariates. 

 There are several approaches to construct a cure model to estimate the survival 

function 
214,216,225,227-237

. A widely used modelling approach 
214,216,222,227,230,232-236,238

, and 

the one used in this thesis, can be written as follows 

                                                                           

where                  is the survival probability to time   given the covariate  , 

              is the probability of being cured and                       

is the survival function of the time-to-event in patients who are susceptible to the event 

given the covariate  . The probability of being cured can be modelled using a logistic 

regression model where 

     
         

           
                                                              

and    is the odds ratio associated with a unit increase in the scale of   for the susceptible 

and non-susceptible patient groups. The conditional survival function for the time-to-

event can be modelled using a proportional hazards regression model 

                       
 

 

                                                      

where         can be modelled as described above in reference to the Cox proportional 

hazards regression model in (15) and (17). Namely,                
   where        is 

the baseline hazard function for the susceptible group and    is the hazard ratio for a unit 

increase in the scale of   in the susceptible group.  
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There are parametric and semi-parametric methods for estimating      and 

        
216,230,232

. In this thesis, we assumed a logistic regression model to model      

and a Weibull regression model, which is a proportional hazards regression model, to 

model         
216,222

. To estimate this mixture cure model, we applied maximum 

likelihood estimation 
222

. The likelihood function   for the observed data               

        of sample size   is 

           
          

    

 

   

                                               

where         
       

  
,        is given in (19),   is the observed time,   is the 

censoring indicator, and   is the covariate. The parameters  ,  ,  , and the parameters in 

       are estimated by maximizing the likelihood function   in (22). Consequently, two 

risk estimates are obtained from the mixture cure model separately but simultaneously: 

odds ratio for the probability of being cured (  ) and hazard ratio for the time-to-event in 

susceptible patients (  ). In this case, the odds ratio compares the odds of being cured in 

the comparison group to the reference group considering all individuals and the hazard 

ratio compares the hazard functions between the comparison and reference groups among 

the patients who are susceptible to experiencing the event. The tests for no association for 

the two hypotheses were tested by the Wald test, which calculated test statistics for both 

the logistic regression model and the proportional hazards regression model. Specifically, 

we tested if     (or     ), which would indicate there is no association between the 

covariate   and the probability of being cured, and we tested if     (or     ), which 
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would indicate there is no association between the covariate   and the time-to-event in the 

susceptible patients.  

 While the mixture cure model is an attractive and more informative model, it does 

have assumptions that need to be met for the estimates to be valid. First, the mixture cure 

model must be applied to a patient cohort that has a mixture of susceptible and cured 

patients 
216

. This can be checked using Kaplan-Meier survival curves: curves that level off 

to a stable plateau in the long-term can be considered empirical evidence of the existence 

of a large proportion of cured patients. Without empirical evidence of a mixture of 

patients, the model reduces to a proportional hazards model. In addition, cure models 

benefit from long-term follow-up of the patient cohort and a small number of early 

censoring 
214

. When these requirements are met, the mixture cure model can provide 

detailed and informative results regarding the risk and timing of the event of interest 

should the cohort be a mixture of susceptible and non-susceptible individuals.  

As will be discussed in Section 3.5.3.1 and Section 3.5.3.4, to analyze the 

genotype data in the project described in Chapter 3 using the mixture cure model, we used 

R software 
172

. We wrote an original code to complete this analysis which used a general 

purpose optimization function     to maximize the likelihood function. From the output 

of this function, we obtained the maximum likelihood estimates of the unknown 

parameters in the model (19) and their standard errors. From these estimates, we 

calculated the odds ratio and hazard ratio estimates. Additionally, since the maximum 

likelihood estimates are asymptotically normally distributed, we were able to calculate 

approximate confidence intervals and p-values.  
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This thesis contains two genetic association studies: one has a binary outcome 

variable (Chapter 2) and one has a time-to-event outcome variable (Chapter 3). The 

section above describes the appropriate methods of analysis for each type of outcome 

variable. As discussed in Section 1.3.2.3, both studies investigated all four genetic models 

to identify specific genotypes of the common SNPs that are associated with the given 

disease outcomes. This meticulousness can be quite informative and assist in increasing 

the confidence of the results. However, this adds a level of complexity to the research 

since, generally, we obtain multiple results for the same genetic variant. To isolate the 

most plausible genetic model, once the statistical models are fitted for each SNP under 

each genotype coding (Table 1.2), the fit of these models can be assessed to determine 

which genetic model is the most likely to be the true model. 

 

1.4.3 Plausibility of genetic models  

Considering we obtained four different results for many SNPs (one per genetic 

model), it could be challenging to decipher these results. To increase the accuracy of the 

results, we checked the plausibility of the genetic model to ensure the genetic model in 

which the association was identified was the best fitting model.  

One criterion we used to assess the plausibility of the model was the Akaike 

Information Criterion (AIC) 
239

 for each SNP under each genetic model. The AIC is 

obtained using the maximized likelihood    , which is defined as           from equation 

(9) where   and   are replaced by the maximum likelihood estimates    and   . 

Specifically, the AIC is 
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where   is the number of parameters in the model. For a given SNP, the lowest AIC 

value represented the model with the best fit. Accordingly, if the SNP had the highest 

association in the genetic model yielding the lowest AIC, the results were reported. If the 

SNP had the highest association in a model that was not the best fitting according to the 

AIC calculation, it was considered a false positive and did not undergo further 

investigation. This criterion for assessing the plausibility of the genetic model was 

applied in the study in Chapter 2, as described in Section 2.5.4.1.  

Another method we employed for testing the plausibility of the genetic models is 

by conducting a likelihood ratio test 
240

. This approach for goodness-of-fit testing 

compares the model under consideration with an expanded model. In the case of genetic 

models, the co-dominant model encompasses all the genetic models because it tests 

associations with each specific genotype separately. With this in mind, we conducted 

maximum likelihood ratio tests comparing the identified genetic model with the co-

dominant model. First, we obtain the maximum likelihood for both the co-dominant 

model (  ) and the model under consideration (  ). From these values, the likelihood 

ratio   is  

                                                                          

where    and    are obtained from (22) with the corresponding genetic models as defined 

by (2), (3), (4), and (6). Because   has asymptotically chi-square distribution with one 

degree of freedom, we can obtain a p-value when the sample size is sufficiently large. A 

significant difference in the goodness of fit (      ) would determine if we reject the 
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proposed genetic model. If the recessive, dominant, and additive models were rejected, 

the co-dominant model is the plausible genetic model. As a result, after these tests, we 

have one appropriate association result for each SNP based on the most plausible genetic 

model and the results for the other genetic models were not reported. This approach for 

testing the goodness of fit of the different models was applied in the methods explained in 

Section 3.5.3.2. 

 

1.5 Rationale, objectives, and outline 

 Colorectal cancer is a heterogeneous disease with significant impact on patients 

and health care systems. Despite extensive research, there is still much variability in this 

disease yet to be understood. This unknown variability may be partially explained by 

germline genetic variations. To that end, the overarching aim of this thesis project is to 

further understand potential genetic associations with colorectal cancer disease subtype 

formation and metastasis. 

 The first project in this thesis, which is described in Chapter 2, focuses on an 

aggressive histological variant of colorectal cancer: mucinous adenocarcinoma. The main 

objectives of this study were, as follows: 

1) Identify specific genotypes of a genome-wide set of common SNPs (MAF ≥ 5%) 

independently associated with mucinous tumor histology in a colorectal cancer 

patient cohort (n=505) adjusting for significant baseline characteristics; 
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2) Identify gene-based sets of rare SNPs (MAF < 5%) associated with mucinous 

tumor histology in a colorectal cancer patient cohort (n=505) adjusting for 

significant baseline characteristics; and 

3) Discuss a potential biological connection between genes/genetic variations and 

excessive mucin production in mucinous colorectal tumors based on current 

literature. 

To our knowledge, this was the first genome-wide association study to assess genetic 

associations between both common and rare germline genetic variations and the 

mucinous tumor phenotype in colorectal cancer. These results may, consequently, provide 

unique insight into the development of mucinous tumors in colorectal cancer and offer a 

better understanding of the disease subtype etiology.  

This project has been written in manuscript format for submission to a peer reviewed 

journal and a version of this manuscript is given in Chapter 2. Hence, I will give an 

introduction to this project and the research question, description of the methods used, 

summary of the results, and a discussion of these results. For ease of reading, the 

references for this manuscript will be given at the end of the chapter.  

The second project, described in Chapter 3 of this thesis, investigated potential genetic 

associations with the risk and timing of metastasis of colorectal cancer. In particular, the 

main objectives of this study were: 

1) Identify specific genotypes of a genome-wide set of common and low-frequency 

SNPs (MAF > 1%) associated with  

i. the long-term risk of metastasis and  
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ii. time-to-metastasis in patients susceptible to metastasis  

in stage I-III colorectal cancer patients with MSI-L/MSS tumors (n=379) using 

appropriate statistical methods; 

2) Perform multivariable analysis on significantly associated SNPs adjusting for 

appropriate baseline characteristics to assess the independence of the genetic 

associations; and 

3) Discuss a possible biological link between the identified genes/genetic variations 

that may explain differential risk of/time-to-metastasis in colorectal cancer 

patients based on available literature. 

To now, this is the first genome-wide association study investigating time-to-

metastasis in colorectal cancer patients using an extensive, high-dimensional dataset. The 

results obtained in this study have potential clinical implications in formulating 

personalized treatment strategies for colorectal cancer patients based on their predicted 

time-to-metastasis.  

A manuscript for this project has been written for submission to a peer reviewed 

journal. This manuscript is presented in this thesis in Chapter 3 and provides sections 

describing the motivation for the research, methods, results, and discussion. As with the 

first project, the references for this manuscript are given at the end of the chapter. 
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Chapter 2: Manuscript – “Associations of single nucleotide 

polymorphisms with mucinous colorectal cancer: genome-wide 

common variant and gene-based rare variant analyses” 

A version of this manuscript has been prepared for submission for publishing in a 

peer reviewed journal. Supplementary data is provided in Appendix B.   
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2.3 Abstract 

Background: Colorectal cancer has significant impact on individuals and healthcare 

systems. Many genes have been identified to influence its pathogenesis. However, the 

genetic basis of mucinous tumor histology, an aggressive histological variant of colorectal 

cancer, is currently not well-known. This study aimed to identify common and rare 

genetic variations that are associated with the mucinous tumor phenotype.   

 

Methods: Genome-wide single nucleotide polymorphism (SNP) data was investigated in 

a colorectal cancer patient cohort (n=505). Association analyses were performed for 

729,373 common SNPs and 275,645 rare SNPs. Common SNP association analysis was 

performed using univariable and multivariable logistic regression under different genetic 

models. Rare-variant association analysis was performed using a multi-marker test.  

 

Results: No associations reached the traditional genome-wide significance. However, 

promising genetic associations were identified. The identified common SNPs 

significantly improved the discriminatory accuracy of the model for mucinous tumor 

phenotype. Specifically, the area under the receiver operating characteristic curve 

increased from 0.703 (95% CI: 0.634-0.773) to 0.916 (95% CI: 0.873-0.960) when 

considering the most significant SNPs. Additionally, the rare variant analysis identified a 

number of genetic regions that potentially contain causal rare variants associated with 

mucinous tumor histology. 
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Conclusions: This is the first study applying both common and rare variant analyses to 

identify genetic associations with mucinous tumor histology using a genome-wide 

genotype data. Our results suggested novel associations with mucinous tumors. Once 

confirmed, these results will not only help us understand the biological basis of mucinous 

histology, but may also help develop targeted treatment options for mucinous tumors. 

 

2.4 Introduction 

Colorectal cancer is a global health problem and contributes substantially to 

worldwide cancer mortality 
1
. In 2012, this disease was the 3

rd
 most common cancer 

worldwide with higher rates occurring in developed countries 
1
. In Canada, colorectal 

cancer is expected to cause 26,800 new cases and 9,400 deaths in 2017. Newfoundland 

and Labrador, in particular, have the highest age-standardized rates of incidence and 

mortality in the country 
2
.  

Mucins are a family of high-molecular-weight glycoproteins that are widely 

expressed by epithelial tissues 
3
. They have been identified in two forms: cell surface 

(transmembrane) and fully released (gel-forming) 
3,4

. The gel-forming mucin-encoding 

genes are clustered at chromosome 11p15.5 
4,5

. These mucins, including MUC2, 

MUC5AC, MUC5B, and MUC6, constitute the major macromolecular components of 

mucus 
4,5

. Among them, MUC2 is the most highly expressed one in the colorectum and is 

the predominant component of colorectal mucus 
6-8

. MUC5B and MUC6 are highly 

expressed in the upper gastrointestinal (GI) tract, but low levels of both have been 

reported in the normal colon 
8,9

. MUC5AC is highly expressed in the upper GI tract and is 
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not expressed in the normal colon, however, abnormal expression is observed in 

colorectal cancer 
10,11

.
 
 

Mucinous adenocarcinoma is a distinct form of colorectal cancer with the defining 

characteristic of a high mucin component (more than 50% of the tumor volume). This 

subtype accounts for 5-15% of colorectal cancer cases.
 
Compared to non-mucinous 

colorectal cancer, mucinous adenocarcinoma patients are typically younger and are often 

at an advanced stage at diagnosis 
12-18

. Mucinous tumors are more likely to occur in the 

proximal colon 
15,16,19,20

 and tend to have an inferior response to systemic therapies 
20,21

.  

Specific molecular distinctions are also seen in mucinous compared to non-

mucinous colorectal tumors. For example, increased rates of BRAF mutations and CpG 

island methylator phenotype (CIMP) are observed in mucinous colorectal tumors 
22

. In 

addition, overexpression of MUC2, strong ectopic expression of gastric MUC5AC, and 

decreased p53 expression in mucinous tumors are reported in the literature 
23,24

. Mucinous 

and non-mucinous tumors also appear to have differences in genome-wide gene 

expression patterns 
18

.
 
Some of the upregulated genes in mucinous tumors are involved in 

cellular differentiation and mucin metabolism, which are characteristics biologically 

relevant to the phenotype 
18

. While some differences between mucinous and non-

mucinous colorectal cancers are well recognized, the prognostic importance of a high 

mucin component has been controversial 
14-16,20,21,25-30

.
 
 

Most studies investigating genetic characteristics of mucinous colorectal tumors 

examined single or a limited number of candidate genes 
6,31,32

. Conversely, this study 

aimed to comprehensively identify common and rare genetic polymorphisms that may be 
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influencing the production of mucin or formation of the mucinous tumor phenotype. To 

do so, we applied a genome-wide approach to identify genes and genetic regions that are 

associated with the risk of developing mucinous colorectal tumors.  

 

2.5 Methods 

2.5.1 Ethics statement 

Patient consents were obtained by the Newfoundland Colorectal Cancer Registry 

(NFCCR) at the time of recruitment. If the patient was deceased, consent was sought from 

a close relative 
33

. Ethics approval for this study was obtained from the Health Research 

Ethics Board (HREB; #15.043). Since this is a secondary use of data study, no patient 

consent specifically for this study was required. 

 

2.5.2 Patient cohort 

The study cohort was a subgroup of the NFCCR and consisted of 505 Caucasian 

patients. Both the NFCCR and the study cohort were described in detail in other 

publications 
34,35

. In short, the NFCCR recruited 750 colorectal cancer patients in 

Newfoundland and Labrador collected between 1999 and 2003. All diagnoses were 

confirmed by pathological examination. Out of 750 patients, 505 patients constituted the 

study cohort as explained below. 
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2.5.3 Genotype data 

The genotype data used in this study was explained in Xu et al. (2015) 
35

. In short, 

DNA samples of 539 patients were subject to whole-genome single nucleotide 

polymorphism (SNP) genotyping using the Illumina Omni1-Quad human SNP 

genotyping platform. These patients were included into the genetic analysis because of 

the availability of their outcome and clinical data as well as the germline DNAs extracted 

from peripheral blood samples. The quality control analysis and filtering for this data 

included removing SNPs whose frequencies deviated from Hardy-Weinberg equilibrium, 

SNPs that had     missing values, and patients with discordant sex information, 

accidental duplicates, divergent or non-Caucasian ancestry, and first, second, or third 

degree relatives 
35

.
 
In this genotype data, there were 505 patients with 729,373 common 

SNPs (minor allele frequency; MAF      ) and 275,645 rare SNPs (MAF      ) that 

were included in this study. During this study, management and handling of these 

genotype data was done using PLINK v. 1.07 
36

.  

 

2.5.4 Statistical analysis 

All statistical analysis was performed using R v. 3.1.3 
37

. Correction for multiple 

testing was not applied to the results as this is an exploratory study and we did not want to 

increase false negative rate due to conservative corrections. While this increases the 

chances of obtaining false positives, we believe replication of these results in other 

studies will assist in reducing the potential false positive findings.  
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2.5.4.1 Common SNP analysis 

Univariable logistic regression analysis: Univariable logistic regression analysis was 

performed on each common SNP (MAF     ) to determine if individual SNPs were 

significantly associated with the mucinous tumor phenotype. For each SNP, the additive, 

co-dominant, dominant, and recessive genetic models were applied. Consequently, we 

report the 10 SNPs with the highest level of significance in each genetic model 

(Supplementary Tables S1-S4).  

 

Selection of baseline variables and multivariable logistic regression analysis: In order 

to select significant baseline factors to adjust for in the multivariable analyses, we first 

examined the variables shown in Table 2.1 using univariable logistic regression models. 

Factors that had a p-value less than 0.1 were then included in a forward stepwise variable 

selection method. In addition, although there appeared to be a non-significant association 

between tumor histology and grade in the univariable analysis, tumor grade was still 

included in the multivariable model as has been shown to be linked to tumor histology 

25,38
. As a result, the baseline characteristics in the final models were sex, age at 

diagnosis, stage, and tumor location based on the 0.1 level of significance, and tumor 

grade (Supplementary Table S5). The 10 SNPs with the highest level of significance 

under each genetic model in the univariable logistic regression analysis were analyzed 

using the multivariable logistic regression model adjusting for the selected baseline 

characteristics (Supplementary Tables S1-S4).  
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Table 2.1 Baseline features of the study cohort and the results of univariable logistic 

regression analysis
 
 

 
Mucinous 

 

Non-

mucinous 

 
Characteristics No. (%) 

 
No. (%) OR (95% CI) 

p-

value 

Age
a
 ≤60 20 (9) 

 
203 (91) 

  
 

60-65 17 (18) 
 

78 (82) 2.21 (1.09-4.44) 0.025 

 
>65 20 (11) 

 
167 (89) 1.22 (0.63-2.34) 0.558 

Sex Female 29 (15)  169 (85) 

  
 

Male 28 (9)  279 (91) 0.58 (0.34-1.02) 0.057 

Location Colon 47 (14) 
 

287 (86) 

  
 

Rectum 10 (6) 
 

161 (94) 0.38 (0.18-0.74) 0.007 

Stage I 3 (3) 
 

90 (97) 

  
 

II 27 (14) 
 

169 (86) 4.79 (1.64-20.45) 0.012 

 
III 19 (11) 

 
147 (89) 3.88 (1.28-16.83) 0.033 

 
IV 8 (16) 

 
42 (84) 5.71 (1.57-27.09) 0.013 

Grade 
Well/moderately 

diff. 
48 (10) 

 
416 (90) 

  
 

Poorly diff. 7 (19) 
 

30 (81) 2.02 (0.78-4.62) 0.115 

 Unknown 2  2   

MSI status MSI-low/MSS 49 (11) 
 

382 (89) 

  
 

MSI-high 6 (11) 
 

47 (89) 1.00 (0.37-2.29) 0.992 

 Unknown 3  18   

Lymphatic Absent 31 (10) 
 

267 (90) 

  invasion Present 23 (14) 
 

144 (86) 1.38 (0.77-2.44) 0.278 

 Unknown 3  37   

BRAF  Absent 45 (11) 
 

366 (89) 

  V600E  Present 9 (19) 
 

38 (81) 1.93 (0.83-4.09) 0.104 

mutation Unknown 3  44   
a
The age at diagnosis was separated into 3 groups: ≤60, 60-65, and >65 since this 

particular grouping gave the most efficient estimates with no significant change in the 

results when considering slightly different groupings. CI: confidence interval, diff.: 

differentiated, MSI: microsatellite instability, MSS: microsatellite stable, No: number, 

OR: odds ratio (compares the odds of having mucinous tumors with the corresponding 

factor level to the odds of having mucinous tumors with the reference factor level). 
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Plausibility of the genetic models: It is common in genetic association studies that only 

one genetic model is applied. In this study we applied all four genetic models and 

assessed the plausibility of the genetic model under which the SNP was identified. To do 

this, we used the Akaike Information Criterion (AIC) calculations to compare the fit of 

four different genetic models per SNP under the multivariable logistic regression model 

in (7). The genetic model with the smallest AIC estimate was considered to be the most 

plausible genetic model. We first ranked the SNPs based on their p-value obtained in the 

multivariable model with the genetic model under which the SNP was identified 

(Supplementary Table S6). Then, we excluded those SNPs that were not identified in 

their plausible genetic model. Of note, we present in this manuscript only the 10 SNPs 

that have the highest association significance levels under the multivariable logistic 

regression models that were identified in their most plausible genetic model. We refer to 

these SNPs as “the top 10 SNPs”. 

 

Assessing the discriminatory accuracy of the estimated models: We aimed to check the 

ability of the multivariable models of the top 10 SNPs to discriminate between mucinous 

and non-mucinous tumors. A well-known method for testing the discriminatory accuracy 

of a model is using a receiver operating characteristic (ROC) curve 
39-41

. Calculating the 

area under the curve (AUC) of the ROC curve for the given models provides a single 

numeric representation for the performance of the model 
40,42,43

. Comparing the AUC 

values and their corresponding confidence intervals provides a method for determining if 

one model is significantly superior to another in diagnostic accuracy 
41,44

.   
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ROC curve analysis was performed by calculating the AUC using the pROC 

package in R 
45

. AUC estimates were calculated for (i) the model conditioning only on the 

baseline characteristics, (ii) the model conditioning on only the top SNPs, and (iii) the 

model conditioning on the baseline characteristics and the top SNPs. Comparing the AUC 

estimates, specifically the 95% confidence intervals, between these three models can 

quantify the differences in the capacity of the models to distinguish mucinous and non-

mucinous tumors. 

 

2.5.4.2 Rare variant analysis 

SKAT-O analysis: SKAT-O 
46

 test statistic was used to test the associations between the 

rare variants and mucinous tumor histology. For this analysis, we prioritized gene-based 

regions including 5 kb long sequences before and after each gene. To do so, we first 

obtained genome location information for genome-wide gene-based regions (for the 

reference genome GRCh37.p13) using the biomaRt tool 
47

 in the Ensembl database 
48

. 

The SNP information within these regions were then retrieved from the patient genome-

wide data and used as the region-based SNP-sets in SKAT-O. During this analysis, each 

SNP was assigned to one gene-based region only. As a result, when a gene is located in 

close proximity to another gene, the second gene-based region does not include the SNPs 

that are analyzed in the first gene-based region. This limits redundancy since no SNP is 

analyzed more than once. For this analysis, only the additive genetic model was 

considered as using multiple genetic models is not a practical option for SKAT-O. The 
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associations of gene regions were examined in multivariable models adjusting for sex, 

age at diagnosis, stage, tumor location, and tumor grade.  

 

2.5.5 Bioinformatics analysis 

Potential regulatory consequences of the identified SNPs were examined through 

RegulomeDB (http://www.regulomedb.org/) 
49

.
 
Ensembl 

48
 database was used to retrieve 

information related to the genes identified in the common and rare variant analysis. 

2.6 Results 

The demographic and clinicopathological information for the sample population is 

shown in Table 2.1. We observed a non-significant association of tumor histology with 

age at diagnosis (    versus    ), grade, microsatellite instability (MSI) status, 

lymphatic invasion (LI), and BRAF V600E mutation; a moderately significant association 

with stage, sex, and age at diagnosis between 60-65 versus    ; and a strongly 

significant association with tumor location (Table 2.1). In this cohort, there was a trend 

for female sex having increased risk of mucinous tumors. As expected, the proportion of 

mucinous tumors was higher in colon cancer patients compared to rectum cancer patients 

and in stage II-IV patients compared to stage I patients (Table 2.1). 

 

2.6.1 Common SNP analysis 

None of the associations in this analysis reached the traditional genome-wide 

significance level (        ), but each genetic model identified promising 

associations.  
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After the univariable analysis, there were 33 SNPs that were nominally associated 

with the mucinous tumor phenotype (Supplementary Tables S1-S4). Associations of two 

SNPs (rs11216624 & rs17712784) were identified in both the dominant and co-dominant 

genetic models; one SNP (rs7314811) was detected in the additive, recessive, and co-

dominant genetic models; and three SNPs (rs4843335, rs10511330, & rs16822593) were 

detected in both the additive and dominant genetic models. The estimates obtained in the 

univariable analysis did not change significantly when the models were adjusted for the 

baseline characteristics (Supplementary Tables S1-S4).  

As explained in the Methods section, the Akaike Information Criterion (AIC) 

estimates (Supplementary Table S6) were used to determine the most plausible genetic 

models for each of 33 SNPs. The ten SNPs with the smallest p-value in the multivariable 

analysis under the most plausible genetic models were further prioritized (i.e., the top 10 

SNPs). The results of the univariable and the multivariable logistic regression analyses 

for these top 10 SNPs are summarized in Table 2.2. Seven of these SNPs were located 

within gene sequences. These genes were quite diverse and belong to a variety of 

biological processes and pathways (Table 2.3). 

Before the ROC analysis, the linkage disequilibrium (LD) among the top 10 SNPs 

was assessed using patient genotype data. These calculations indicated that rs13019215 

and rs12471607 were in complete pairwise LD (r
2 

= 1). The SNPs rs4837345 and 

kgp10457679 were also in high LD with each other, as well as rs10511330 and 

rs16822593 (0.99 ≤ r
2
 ≤ 1.0). Therefore, we arbitrarily selected one SNP per SNP set in  
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Table 2.2 Top ten promising SNPs identified in univariable analysis and the subsequent multivariable analysis under their 

plausible genetic models  

 

 
    

Univariable 

 

Multivariable 

Genomic 

Location 

SNP ID  

(Genotype
a
) 

Gene
b
 

Information in 

RegulomeDB 

Plausible 

Model
c
 

OR  

(95% CI) 
p-value 

 

OR  

(95% CI) 
p-value 

Chr6:110750552 
rs9481067  

(GG) 
SLC22A16 ND Recessive 

4.17  

(2.33-7.43) 
1.24E-06 

 

4.75  

(2.53-8.95) 
1.24E-06 

Chr3:114121019 
rs10511330  

(CT + CC) 
ZBTB20 

Minimal binding 

evidence 
Dominant 

3.77  

(2.06-6.81) 
1.24E-05 

 

4.85  

(2.54-9.23) 
1.40E-06 

Chr3:114117327 
rs16822593  

(AG + AA) 
ZBTB20 ND Dominant 

3.70  

(2.02-6.68) 
1.59E-05 

 

4.83  

(2.53-9.20) 
1.50E-06 

Chr2:179860562 
rs13019215  

(TC + TT) 
CCDC141 ND Dominant 

0.27 

(0.14-0.48) 
1.56E-05 

 

0.23  

(0.12-0.43) 
8.20E-06 

Chr2:179867985 
rs12471607  
(TC + TT) 

CCDC141 ND Dominant 
0.27  

(0.14-0.48) 
1.65E-05 

 
0.23  

(0.12-0.43) 
8.42E-06 

Chr5:80483574 
rs716897  

(CT + CC) 
RASGRF2 

Minimal binding 

evidence 
Dominant 

0.27  

(0.15-0.47) 
5.33E-06 

 

0.26  

(0.14-0.47) 
1.12E-05 

Chr16:86077637 
rs4843335  

(AG + AA) 
intergenic 

Minimal binding 

evidence 
Dominant 

4.11  

(2.11-7.79) 
2.06E-05 

 

4.67  

(2.98-9.34) 
1.48E-05 

Chr6:118634698 
rs11968293  

(CA + CC) 
SLC35F1 

Minimal binding 

evidence 
Dominant 

0.28  

(0.16-0.50) 
1.27E-05 

 

0.26  

(0.14-0.48) 
1.48E-05 

Chr9:131923949 
rs4837345 

(TT) 
intergenic 

Minimal binding 

evidence 
Recessive 

4.72  

(2.40-9.05) 
4.00E-06 

 

4.56  

(2.24-9.11) 
1.97E-05 

Chr9:131930494 

kgp10457679/ 

rs10819474d 

(CC) 

intergenic 

Likely to affect binding 

and linked to expression 

of a gene target 

Recessive 
4.72  

(2.40-9.05) 
4.00E-06 

 

4.56 

(2.24-9.11) 
1.97E-05 

a
Risk increasing/decreasing genotype. 

b
Based on Ensembl 

48
 or dbSNP databases 

50
. 

c
Under the recessive genetic model, minor allele 

homozygous patients are compared to major allele homozygous and heterozygous patients combined. Under the dominant genetic model, 
minor allele homozygous and heterozygous patients are combined and compared to major allele homozygous patients. 

d
The rs number for 

the kgp10457679 polymorphism was obtained from the UCSC genome browser 
51

. *Multivariable models adjusted for sex, age at 

diagnosis, stage, tumor location, and tumor grade. Patients with missing/unknown data for any of these variables were excluded from the 
analysis. Chr: chromosome, CI: confidence interval, ND: data not available at RegulomeDB, OR: odds ratio (compares the odds of having 

mucinous tumors with the specified genotype(s)
a
 to the odds of having mucinous tumors with the reference (other) genotype(s)). 

http://www.ncbi.nlm.nih.gov/variation/view/?q=rs13019215&filters=source:dbsnp&assm=GCF_000001405.25
http://www.ncbi.nlm.nih.gov/variation/view/?q=rs12471607&filters=source:dbsnp&assm=GCF_000001405.25
http://www.ncbi.nlm.nih.gov/variation/view/?q=rs716897&filters=source:dbsnp&assm=GCF_000001405.25
http://www.ncbi.nlm.nih.gov/variation/view/?q=rs4843335&filters=source:dbsnp&assm=GCF_000001405.25
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Table 2.3 Genes identified in the common and rare analyses 

Gene Symbol
a
 Gene Name

b
 Function 

SLC22A16 solute carrier family 22 member 16 
codes for a human ʟ-carnitine transporter protein hCT2. hCT2 has been shown 

to have undetectable expression in a colon cancer cell line. 52,53 

CCDC141 coiled-coil domain containing 141 

codes for a protein that plays a critical role in centrosome positioning and 

movement, particularly radial migration. Centrosome aberrations have been 

shown to be present in early-stage colorectal cancers and could contribute to 

chromosomal instability. 54,55 

SLC35F1 solute carrier family 35 member F1 
codes for a member of the solute carrier family 35, a family of nucleotide sugar 

transporters. 56 

ZBTB20 zinc finger and BTB domain containing 20 

codes for a transcriptional repressor. Upregulation of ZBTB20 has been shown 

to promote cell proliferation in non-small cell lung cancer and is a potential 
druggable target for the disease. Similarly, overexpression of ZBTB20 has been 

associated with poor prognosis in patients with hepatocellular carcinoma. 57-59 

RASGRF2 
Ras protein specific guanine nucleotide releasing 

factor 2 

codes for a signalling molecule. RasGRF2 contains regulatory domains for both 

Ras and Rho GTPases, suggesting it can influence both pathways. The Rho 

pathway has been thought to be involved in cell migration, while the Ras 

pathway has been thought to be involved in cell proliferation and survival, 

which are all processes related to cancer. 60,61 

SEC24B 
SEC24 homolog B, COPII coat complex 

component 

codes for a protein that is a part of the COPII vesicle coat, facilitating 

molecular transport from the endoplasmic reticulum to the Golgi apparatus. It 

has been suggested that alterations in vesicle trafficking proteins may be 

facilitators of epithelial carcinogenesis.62,63 

CCDC109b coiled-coil domain containing 109B 

also known as MCUb. This gene codes a protein that interacts with the 

mitochondrial calcium transporter protein, CCDC109a/MCU, reducing the 

activity of the transporter. Calcium homeostasis in mitochondria may regulate 

cell death pathways.64,65 

LINC00596 long intergenic non-protein coding RNA 596 no literature data available. 

SEC24B-AS1 SEC24B antisense RNA 1 
long non-coding RNA (lncRNA) that is involved in gene expression regulation. 
66 

RP11-564A8.8 NA no literature data available. 

FAM87A family with sequence similarity 87 member A no literature data available. 
a
According to Ensembl database 

48
. 

b
According to HUGO Gene Nomenclature Committee (HGNC) 

67
. NA = Not available.
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high LD, which left the following SNPs for the ROC analysis: rs9481067, rs10511330, 

rs13019215, rs716897, rs4843335, rs11968293, and kgp10457679. 

Figure 2.1 shows the ROC curves comparing the accuracy of the models to 

discriminate between mucinous and non-mucinous tumors. The model (iii) including both 

the baseline characteristics and the SNPs (area under the ROC curve (AUC) = 0.916, CI: 

0.873-0.960) had the most discriminatory accuracy followed by model (ii) including only 

the SNPs (AUC = 0.868, CI: 0.813-0.923) and model (i) including only the baseline 

characteristics (AUC = 0.703, 95% CI: 0.634-0.773). Since the confidence intervals of 

models (i) and (iii) do not overlap, we can confidently claim that there is a statistically 

significant improvement in the discriminating accuracy of the model containing the SNPs 

41,44
. This also suggests that these SNPs explain some of the variation between mucinous 

and non-mucinous tumor histology. 

 

2.6.2 Rare SNP Analysis 

In the gene region-based rare variant analysis, we investigated 29,966 regions in 

the patient cohort using the multivariable SKAT-O method. Table 2.3 and Table 2.4 

summarize the most significant regions (      ) that potentially contain causal rare 

variants associated with the mucinous tumor phenotype. The number of variants 

aggregated in these gene-based regions varied from 5 - 10. While three of these regions 

(including SEC24B, SEC24B-AS1, and CCDC109B) were located close to each other on 

chromosome 4, other regions come from different parts of the genome (Table 2.4). 
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Figure 2.1 ROC curves and corresponding AUC values for multivariable models. 

 

 

 
 

 

 

Due to high LD among some of the top 10 SNPs, ROC analysis was performed on only 

the following SNPs: rs9481067, rs10511330, rs13019215, rs716897, rs4843335, 

rs11968293, and kgp10457679.  

AUC: area under the ROC curve, CI: confidence interval, LD: linkage disequilibrium, 

ROC: receiver operator characteristic. 
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Table 2.4 Most significant gene regions identified from SKAT-O multivariable analysis. 

Genomic 

Location
a 

Gene
b Description

c 
Other genes in the gene-based 

region
d 

# of 

SNPs 
SNPs p-value 

Chr4:11034992

8-110467052 
SEC24B protein coding SEC24B-AS1 (partial sequence) 5 

rs10516557, kgp21293502, 

rs10003981, rs17040515, 
rs17040519 

1.81E-05 

Chr4:11047636

1-110614874 
CCDC109

B 
protein coding 

CDC42P4 (pseudogene: partial 

sequence), HIGD1AP14 

(pseudogene; full length), 
CASP6 (partial sequence) 

6 
rs17619262, rs7654187, 
rs6831048, rs17619310, 

rs9997940, rs1053680 
3.29E-05 

Chr14:2438645

6-24408777 
LINC0059

6 

long intergenic 

non-protein 

coding RNA 
DHRS4-AS1 (partial sequence) 6 

rs8010486, rs1159372, 

rs10135026, rs8005541, 

rs8019962, kgp19564619 
3.34E-05 

Chr4:11026363

1-110359973 
SEC24B-

AS1 

noncoding 
RNA; antisense 

RNA 

RBMXP4 (pseudogene; full 
length), SEC24B (partial 

sequence) 
7 

rs10031399, rs17040364, 

rs17040369, rs11098033, 

rs17040401, rs12648138, 
rs11098035 

4.21E-05 

Chr1:20707427

3-207084738 
RP11-

564A8.8 
pseudogene 

IL24 (partial sequence), FAIM3 

(partial sequence), FCMR 
(partial sequence) 

10 

rs3093428, kgp15249933, 

kgp15191074, rs3093447, 

kgp22852559, rs3093434, 
rs3093437, rs3093438, 

rs3093440, rs41304091 

5.47E-05 

Chr8:320931-
338174 

FAM87A 
non-coding 
RNA 

- 7 

rs4527844, kgp20525414, 

kgp20198205, rs11785854, 
rs7461388, rs17064450, 

rs17064458 

6.58E-05 

a
These genomic locations describe the region containing the gene as well as 5 kb long sequences before and after the gene. 

b
Based on the 

information in the UCSC database 
51

. 
c
NCBI's Gene Entrez database 

66
. 

d
In some cases, the gene regions examined also contained 

sequences of other genes. Chr = chromosome.
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2.7 Discussion 

Mucinous tumors are considered an aggressive type of colorectal tumors that are 

poorly understood 
17,19,68

. While their role in prognosis is not well established, several 

studies suggested these tumors are associated with poorer prognosis when compared to 

non-mucinous tumors 
20,21,27,28,30

.
  

Identification of genes and genetic variations that can 

have a role in mucinous tumor development, therefore, has both scientific (e.g. dissecting 

the biology behind the mucinous tumor histology) as well as clinical value (e.g. biological 

information gained may assist with development of targeted treatment for this cancer 

subtype). Accordingly, for the first time with this study, we examined associations of both 

common and rare variants with the risk of developing mucinous tumors using a genome-

wide dataset.  

While our results did not reach the conservative genome-wide significance level, 

promising associations were detected in both the common and rare variant analyses. In 

common SNP analysis, we identified seven unlinked polymorphisms that significantly 

increased our capacity to discriminate between mucinous and non-mucinous tumors 

(Figure 2.1, Table 2.2). Their effects on mucinous histology were independent from the 

effects of the baseline variables (Figure 2.1, Table 2.2). It is possible these 

polymorphisms (or others in high LD with them [Supplementary Table S7], including 

three additional SNPs shown in Table 2.2) are biologically linked to the mucinous tumor 

phenotype or mucin production. Since there was no reported functional consequence of 

these SNPs in the literature, we searched the RegulomeDB database 
49

 for their potential 

regulatory characteristics. As of October 2017, the only SNP with a predicted/reported 
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regulatory function in this database was kgp10457679 (rs10819474) (RegulomeDB score 

= 1f). This intergenic SNP is categorized as an expression quantitative trait locus 

(eQTL)/transcription factor (TF) binding/DNAse peak site, with a likely role of 

influencing the expression of target genes (Supplementary Table S8). Specifically, 

PPP2R4 is noted as the eQTL for this SNP. PPP2R4 is a tumor suppressor protein 
69

 

which has been shown to have low activity in a large portion of a small cohort of 

colorectal tumors 
70

 and is associated with shorter survival times in metastatic colorectal 

cancer patients 
71

. A potential link between PPP2R4 and mucinous tumor histology 

should be examined in further studies. Overall, all the novel loci identified by the 

common variant analysis are interesting candidates in examination of mucinous tumor 

histology.  

Typical association studies, such as the common variant analysis, focus on a 

variant-by-variant approach, which can be underpowered for rare variants. It has been 

suggested that gene/region-based approaches can be useful in increasing the power under 

these circumstances where the direct effects of multiple variants on a phenotype can 

instead be examined 
72

. In this study, we performed the first rare variant analysis to 

explore gene regions that may have a role in mucinous tumor formation using SKAT-O 

46
. SKAT-O is a multi-marker association test which has reasonable type I error rate and 

is a powerful test under many scenarios 
46

. In our study, this method identified a number 

of gene-based regions that may harbor rare variants associated with mucinous tumors 

(Table 2.3, Table 2.4). Interestingly, three of the gene-based regions in Table 2.4 

(SEC24B, SEC24B-AS1, and CCDC109B-based regions) were located in a 341,243 bp 
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long genomic region on chromosome 4q. Since we assigned each SNP to only one gene 

region, these results suggest that these three gene regions are associated with mucinous 

colorectal tumors independent of each other. A search on the RegulomeDB database 
49

 

indicated that one of the SNPs in LINC00596 (rs8005541) could have a strong regulatory 

function (RegulomeDB score = 1f). This variant is located in an eQTL and seems to 

affect the expression of two nearby genes; DHRS4 and DHRS4L2. These two genes are a 

part of a gene cluster on chromosome 14 that code for dehydrogenases/reductases 
73

 and 

have not been previously linked to mucinous colorectal tumors. Similarly, none of the 

genes in Table 2.4 had a previously identified connection to the risk of developing 

mucinous tumors. In conclusion, these regions, genes, or SNPs, alone or in combination, 

may be influential in the development of mucinous tumor histology and should be 

explored further.  

Several strengths and limitations of this study should be mentioned. Studying the 

mucinous tumor phenotype is inherently challenging since it is not frequently detected. 

Despite this and the large number of SNPs/gene-based regions investigated, this study 

identified promising variants and genetic regions that may have a biological connection to 

mucinous tumor histology. We are aware that our results need to be replicated in 

independent cohorts and remain to be verified. Of note, SNPs and genetic regions we 

report are different than the MUC genes, which are the typical candidate genes for mucin 

production and mucinous histology. In the common variant analysis, the recessive and co-

dominant models yielded some high odds ratio estimates but also wide confidence 

intervals (as expected, as these are the models with relatively low power). Consequently, 
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the interpretation of these results should be made with caution. Additionally, SKAT-O is 

a robust test and an attractive choice for rare variant analysis, however, it cannot 

determine which SNPs or how many SNPs within a SNP-set are truly associated with the 

phenotype. Also, in the rare variant analysis, due to the assignment of one SNP to one 

gene region, there could be some genes whose associations may have been missed. 

Finally, in contrast to previous studies, we used a comprehensive genome-wide SNP 

genotype data. However, analysis of a more comprehensive data (such as those obtained 

by whole genome sequencing) would be desirable. This is particularly true for rare 

variants as most genotyping technologies target primarily common SNPs. Future studies 

should focus their efforts on sequence data to obtain a more complete dataset of rare as 

well as common variants.  

 In conclusion in this study, we performed the first genome-wide association study 

investigating common and rare SNPs in colorectal cancer patients to identify novel 

genetic associations with mucinous tumor histology. We identified novel, promising, and 

independent associations of specific common SNP genotypes with the risk of developing 

mucinous tumors. Furthermore, these SNPs significantly improved the discriminatory 

accuracy of the multivariable model to distinguish between mucinous and non-mucinous 

tumors. In addition, we detected novel promising associations between gene-based sets of 

rare SNPs and mucinous tumors. The results of this study, once replicated in other 

cohorts, can contribute further information to the molecular characteristics of this under-

studied but clinically important colorectal cancer histological variant.  
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Chapter 3: Manuscript – “A Genome-wide Association Study 

Identifies Single Nucleotide Polymorphisms (SNPs) Associated 

with Time-to-Metastasis in Colorectal Cancer” 

A version of this manuscript has been prepared for submission for publishing in a 

peer reviewed journal. Supplementary data is provided in Appendix C.   
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3.3 Abstract 

Background: Differentiating between patients who will experience metastasis within a 

short time and who will be long-term survivors without metastasis is a critical aim in 

healthcare. The microsatellite instability (MSI)-high tumor phenotype is such a 

differentiator in colorectal cancer, as patients with these tumors are unlikely to experience 

metastasis. Our aim in this study was to determine if germline genetic variations could 

further differentiate colorectal cancer patients based on the long-term risk and timing of 

metastasis. 

 

Methods: The patient cohort consisted of 379 stage I-III colorectal cancer patients with 

microsatellite stable or MSI-low tumors. We performed univariable analysis on 810,622 

common single nucleotide polymorphisms (SNPs) under different genetic models. 

Depending on the long-term metastasis-free survival probability estimates, we applied a 

mixture cure model, Cox proportional hazards regression model, or log-rank test. For 

SNPs reaching Bonferroni-corrected significance              having valid genetic 

models, multivariable analysis adjusting for significant baseline characteristics was 

conducted. 

 

Results: After adjusting for significant baseline characteristics, specific genotypes of ten 

polymorphisms were significantly associated with early metastasis. These polymorphisms 

are three intergenic SNPs, rs5749032 (p=1.28e-10), rs2327990 (p=9.59e-10), rs1145724 

(p=3e-8), and seven SNPs within the non-coding sequences of three genes: FHIT 
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(p=2.59e-9), EPHB1 (p=8.23e-9), and MIR7515 (p=4.87e-8). These genes have been 

previously implicated in advanced tumor progression or metastasis in cancer.   

 

Conclusions: Our results suggest novel associations of specific genotypes of SNPs with 

early metastasis in colorectal cancer patients. These associations, once replicated in other 

patient cohorts, could assist in the development of personalized treatment strategies for 

colorectal cancer patients. 

 

3.4 Introduction 

Cancer is an important and increasing problem worldwide. From 1990 to 2013, 

incidence for almost every cancer increased between 9% and 217% 
1,2

. It is also an 

important cause of global mortality with over 8 million deaths caused by this disease in 

2012 
1
. Metastasis, specifically, is responsible for approximately 90% of all cancer deaths 

3,4
. Lately, there have been great advances in the development of therapeutics and 

increased survival of metastatic cancer patients 
5-7

. However, despite serious efforts to 

better control this disease, the 5-year survival rate for several metastatic cancers is less 

than 20% 
8
.  

A major contributor to the global cancer burden is colorectal cancer. In 2012, this 

disease was the second most common cancer in males and third in females. In addition, 

colorectal cancer caused almost 700,000 deaths worldwide in 2012 
1
. As with other 

cancer types, a main cause of death in colorectal cancer is metastasis. Several factors have 

been identified to have prognostic importance in colorectal cancer, including the tumor 
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stage and tumor microsatellite instability (MSI) status 
9
. A systematic review published in 

2005 
10

 concluded that colorectal cancer patients with microsatellite instability-high 

(MSI-H) tumors have a significantly improved prognosis than patients with microsatellite 

instability-low (MSI-L) and microsatellite stable (MSS) tumors. Furthermore, there is a 

significantly lower incidence of metastasis in MSI-H colorectal tumors 
11-14

. However, 

despite the identification of such factors, there is still significant variability in patient 

outcomes that may be further explained by germline genetic variation. Following this 

hypothesis, genome-wide association studies (GWAS) can be conducted to identify such 

variations.  

Routine research approaches in survival GWAS can be improved by considering a 

more focused study design and applying improved analysis methods to adequately and 

correctly address the research problem. By applying a focused study design, we could 

decrease the genetic and phenotypic heterogeneity, and hence, increase the statistical 

power of the association tests 
15

. Among the components of a study design that can 

influence the study power are concentrating on a homogenous patient cohort and using a 

more explicit disease event phenotype. Homogeneous patient subgroups, by definition, 

consist of individuals that have a certain level of similarity. Such cohorts can be obtained, 

for example, by focusing on cancer subtypes that possess certain characteristics relevant 

to the research question 
16

. This helps to reduce the variability in the disease trait and, 

thus, the association tests can be more powerful. In addition, when defining the time-to-

event phenotype in survival analysis, it is important to use a specifically-defined endpoint 

17
. Some endpoint definitions, such as death due to any cause, can include several 
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different events. Although the number of events increases when such an endpoint 

definition is used, the ambiguity in the endpoint definition may lead to increased 

variability in the time-to-event phenotype and less informative results. It can be useful, 

instead, to consider a precisely defined endpoint that is an event specific to the disease 

being investigated, such as metastasis in cancer.  

When analyzing metastasis as a clinical outcome, it is possible that not all patients 

will experience the outcome despite long follow-up times 
18-21

. Consequently, the long-

term metastasis-free survival probability estimates for these patient groups could plateau 

at a non-zero value. This indicates the patient cohort consists of a mixture of long-term 

metastasis-free survivors as well as patients who are susceptible to metastasis within the 

follow-up time 
18,19,22-24

. Such a patient cohort can be properly investigated using the 

mixture cure model 
17-19,21,24-26

. In fact, this model can determine two features for each 

potential predictive variable: 1) it can identify variables that are able to differentiate 

between patients who are susceptible to develop metastasis and who will potentially 

remain metastasis-free in the long-term, and 2) identify variables associated with time-to-

metastasis in the susceptible patient sub-group. This model can make these 

determinations separately but simultaneously for each variable category. In addition, to 

make inferences on the long-term prognosis of a patient, long follow-up times are 

fundamentally important when modeling survival times with a mixture cure model 
24

. 

However, when investigating high-dimensional data (such as genome-wide genotype 

data) using a mixture cure model, it is inevitable that the long-term metastasis-free 

survival probability estimates for a category of some variables will not plateau at a non-
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zero probability. For such variables, conventional survival models can be used to 

appropriately analyze the data. 

Our specific objective in this study was to identify common single nucleotide 

polymorphisms (SNPs) that are associated with the long-term risk and timing of 

metastasis of colorectal cancer using a genome-wide genotype dataset. We focus our 

efforts on a subgroup of colorectal cancer patients with stage I-III MSI-L/MSS tumors. 

This study represents the first comprehensive study that aimed to identify the genetic 

markers that may be associated with the development of metastasis in colorectal cancer. 

 

3.5 Methods 

3.5.1 Ethics statement 

Ethics approval for this study was obtained from the Health Research Ethics 

Board (HREB; #15.043). Since this study uses secondary data, patient consent 

specifically for this study was not required. 

 

3.5.2 Patient cohort and genotype data 

The patient cohort included in this study is a sub-cohort of the Newfoundland 

Colorectal Cancer Registry (NFCCR). The characteristics of the NFCCR cohort have 

been described previously 
27,28

. NFCCR sought consent from participants; if the patient 

was deceased, consent was sought from a close relative 
29

. These patients were followed 

until April 2010 
30

.  
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Genetic data was obtained from the NFCCR. Sample quality control steps on the 

genotype data were previously described by Xu et al. (2015) for another genome-wide 

survival study 
31

. In short, germline DNA extracted from blood was available for 539 of 

the NFCCR patients. These DNA samples were subject to whole-genome SNP 

genotyping using the Illumina Omni-1 Quad human SNP genotyping platform at an 

outsourced company (Centrillion Bioscience, USA). Patients with discordant sex 

information, accidental duplicates, divergent or non-Caucasian ancestry, and first, second, 

or third-degree relatives were removed from the sample cohort 
31

. There were 505 

patients remaining in the quality-controlled data. Please note that no SNPs were removed 

due to high LD. In the previous genome-wide SNP-survival study 
31

, these 505 patients 

were examined in sub-groups (stage I-IV colorectal cancer patients with MSI-L/MSS 

tumors, and stage I-IV colon and rectal cancer patients regardless of their tumor MSI 

status) investigating associations between overall and disease-free survival times and 

genetic polymorphisms with a minor allele frequency (MAF) of at least 5%. The present 

study differs from this previous study in terms of the outcome of interest examined, minor 

allele frequencies of the genetic variants, and patients included, as explained below. 

Further exclusion criteria/quality control measures were applied in order to 

address the objectives of this study. SNPs whose frequencies deviated from Hardy-

Weinberg equilibrium, SNPs that had     missing values, and rare SNPs (minor allele 

frequency [MAF]    ) were excluded, leaving 810,622 common SNPs. In contrast to 

the previous genome-wide survival study 
31

, the present study only considered stage I-III 

patients since patients with stage IV tumors (n=50) already have metastatic cancer. In 
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addition, we focus our efforts on the MSI-L/MSS subgroup. This was motivated by the 

survival pattern observed when stratifying based on MSI status (excluding 20 patients 

with missing or unknown MSI tumor status and four patients due to lack of disease 

recurrence data). In the quality controlled patient data of stage I-III patients, there are no 

occurrences of metastasis in patients with MSI-H tumors (Figure 3.1). For this reason, 52 

patients with MSI-H tumors have also been excluded from this study. The final study 

cohort consisted of 379 stage I-III patients with MSI-L/MSS tumors. Of these 379 

patients, 21% experienced metastasis. The median follow-up time for metastasis was 6.3 

years with the longest follow-up time being 10.9 years.  

 

3.5.3 Data analysis 

The survival outcome of interest throughout the analysis was time-to-metastasis. 

Patients who did not experience metastasis by the end of the follow-up time were 

censored at the time of the last follow-up. As seen in Figure 3.1, the long-term metastasis-

free survival probability estimate for the patient subgroup with MSI-L/MSS tumors 

plateaus at 0.71 after being followed for just over 9 years. Since there is a plateau at a 

non-zero probability estimate, the mixture cure model is a potentially appropriate model 

to analyze this patient group 
18,19,21,24-26

. In genetic association analyses such as the 

present one, this model can identify novel genes or regulatory regions, through the 

identification of SNPs, that are associated with (i) being a long-term survivor without 

metastasis and (ii) the time-to-metastasis in patients who are susceptible to/experience 

metastasis after diagnosis in the patient sub-cohort described above (Figure 3.2). As  
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Figure 3.1 Kaplan-Meier survival functions stratified by microsatellite instability (MSI) 

status 

 

 

 

Kaplan-Meier survival functions stratified according to MSI status for the sub-cohort 

excluding stage IV patients and patients with unknown MSI tumor data
 
(n=431).

 

MSI-H: microsatellite instability high; MSI-L: microsatellite instability low; MSS: 

microsatellite stable. 
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Figure 3.2 Flow chart illustrating the aim of this study 

 

 

 
 

 

 

 

 

mentioned earlier, both associations can be estimated using the mixture cure model. 

 

3.5.3.1 Univariable analysis 

Univariable analysis was performed on genome-wide SNP genotype data. This 

investigation required a detailed and comprehensive statistical analysis (Figure 3.3).  
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Figure 3.3 Methods of analysis used in this project 

 

 
 

 

Each SNP was analyzed under each genetic model using one of the three statistical 

methods listed. 

HR: hazard ratio; MAF: minor allele frequency; OR: odds ratio; p: metastasis-free 

survival probability   
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First, for each SNP, all four genetic models were considered: additive, dominant, 

recessive, and co-dominant. However, for some SNPs, the number of patients with a 

genotype category was zero or very small (<2 patients) when the recessive (for 64,809 

SNPs) and co-dominant (for 75,912 SNPs) genetic models were applied. As such, these 

SNPs were not analyzed under these specific genetic models.  

For each SNP under a given genetic model, in order to determine if the mixture 

cure model was an appropriate model, we obtained the Kaplan Meier metastasis-free 

survival probability estimates at the end of the long-term follow-up time for each 

genotype category. If the long-term metastasis-free survival probability estimate was 

between zero and one, the mixture cure model was used. If the long-term metastasis-free 

survival probability estimate was zero for a genotype category, we applied the Cox 

proportional hazards regression model instead of the mixture cure model for the 

corresponding genetic model. For each significantly associated SNP identified under the 

Cox proportional hazards regression model, the proportionality assumption was assessed 

through a score test 
32

. If the long-term metastasis-free survival probability estimate was 

one for a genotype category (i.e. if there is no metastasis within a given subgroup), we 

applied the log-rank test rather than fitting the mixture cure model or Cox proportional 

hazards regression model under the corresponding genetic model. In other words, SNPs 

that are associated with the probability of being a long-term metastasis-free survivor and 

the time-to-metastasis in patients who are susceptible to metastasis after diagnosis can be 

identified using the mixture cure model. For SNPs analyzed using the Cox proportional 

hazards regression model, we could test associations between specific genotype 
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categories and time-to-metastasis. Finally, using the log-rank test, we could determine if 

there was a significant difference in the survival probability estimates between specified 

genotype categories.  

All four genetic models were considered under the mixture cure model and for the 

log-rank test. However, only the recessive and co-dominant genetic models were used 

under the Cox proportional hazards regression model since there were no SNPs under the 

additive or dominant genetic models with corresponding genotypes yielding 0% 

metastasis-free survival estimate. 

For this analysis, a Bonferroni-corrected p-value of          was required for 

significance.  

 

3.5.3.2 Validity of the genetic model 

For each significantly associated SNP, we assessed the fit of the corresponding 

genetic model under which it was identified. Since recessive, dominant, and additive 

models are nested models of the co-dominant model 
33

, we compared the results of the 

identified genetic model to the results of the co-dominant model using multiple 

approaches. We performed likelihood ratio tests to assess whether the identified genetic 

model was the plausible model. Additionally, for a sensitivity check, we constructed 

Kaplan-Meier curves under the co-dominant model and then checked whether or not the 

patterns of the curves for each genotype category were consistent with the estimated 

effects obtained under the identified genetic model. We also compared the coefficient 

estimates obtained in the identified additive, dominant, or recessive genetic model with 



110 

 

the results obtained from the co-dominant model. This was done under the mixture cure 

model and the Cox proportional hazards regression model. Significant SNPs considered 

in the multivariable analysis are the ones identified in their most plausible genetic model. 

As given in the Results section, we did not identify any significantly associated SNP 

using the log-rank test, and hence validity of the genetic models was not assessed for this 

test. 

 

3.5.3.3 Selection of significant baseline characteristics 

Univariable analysis was also performed on the baseline characteristics to identify 

potential confounding factors to be adjusted for in the multivariable analysis. Patients 

with missing or unknown values for the baseline characteristics were excluded from this 

analysis. As such, we included only patients for which we had all data for the given 

baseline variable. This analysis was performed using the mixture cure model and the Cox 

proportional hazards regression model to select significant baseline characteristics for 

each model separately. Under both models, characteristics with a p-value of      in the 

univariable analysis were prioritized and included in a backwards stepwise variable 

selection method to identify the final model with significant baseline characteristics. After 

this step, the significant baseline characteristics in the mixture cure model were tumor 

location, 5-fluorouracil (5-FU) treatment status, and stage (Supplementary Table S1). In 

the Cox proportional hazards regression model, the significant baseline characteristics 

were tumor location, stage, and BRAF V600E mutation status. In addition, although 

insignificant in the stepwise selection, 5-FU treatment status was forced into the model 
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(Supplementary Table S2). Of the significant baseline characteristics, only 5-FU 

treatment status and BRAF V600E mutation status had patients with missing or unknown 

values and were excluded from both models, resulting in 349 patients. 

 

3.5.3.4 Multivariable analyses 

Multivariable analysis was performed using the mixture cure model and the Cox 

proportional hazards regression model on significant SNPs identified in the respective 

univariable analyses adjusting for the selected baseline characteristics. These models 

were fitted using the genetic model in which the SNP was identified. As with the 

univariable analysis, a Bonferroni-corrected p-value of          was deemed 

significant.  

All statistical analyses were conducted using R v 3.1.3 
34

.  

 

3.5.3.5 Bioinformatics analyses 

The information related to functional effects of the significant SNPs was obtained 

using the Ensembl v. GRCh37.p13 Variant Effect Predictor 

(http://grch37.ensembl.org/Tools/VEP) 
35

. Potential regulatory consequences of the 

significant SNPs were also explored through the RegulomeDB database 

(http://www.regulomedb.org/) 
36

. Investigation of the genomic regions in which the SNPs 

were identified, including the identification of genes near intergenic SNPs, was 

performed using the UCSC Genome Browser (https://genome.ucsc.edu/) using the 

Human GRCh37/hg19 genome coordinates 
37

. 
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3.6 Results  

The baseline characteristics of the patient cohort can be found in Table 3.1. The 

characteristics of the patient cohort considered in this study with genotype data (n=379) 

were comparable to the larger NFCCR cohort excluding stage IV and MSI-H tumors 

(n=517) (Supplementary Table S3). One-fifth (21%) of the patients in this cohort 

experienced metastasis within the follow-up time. There were noticeably more male 

(63%) than females (37%) in the patient cohort, but the proportions experiencing 

metastasis were similar (22% males; 21% females). Just over half the patients were 

treated with a 5-FU based treatment (57%), of which 28% experienced metastasis. More 

patients had tumors located in the colon (62%) than the rectum (38%), but a higher 

proportion of patients with rectal tumors experienced metastasis (27% vs. 18%). As 

expected, a higher proportion of stage III patients experienced metastasis (31%) within 

the follow-up time compared to stage I (10%) and II (19%). Most patients had non-

mucinous tumors (91%) and one-fifth of these patients experienced metastasis.  

Using the univariable mixture cure model, we identified specific genotypes of 

nine SNPs that were significantly associated with time-to-metastasis (Figure 3.4, 

Supplementary Table S4, Supplementary Figure S1). These SNPs were identified under 

the dominant or recessive genetic model and did satisfy the test for genetic model 

validity. The nine significant SNPs were analyzed using a multivariable mixture cure 

model adjusting for significant baseline characteristics (Table 3.2, Supplementary Tables 

S5-S13). Of these, association of the minor allele homozygous genotype (genotype 

frequency=14%) in one SNP remained significant with time-to-metastasis in  
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Table 3.1 Baseline characteristics of the patient cohort (n=379) including metastasis 

proportions  

Variable 
Number of 

patients
a
 

% total 

Number 

with 

metastasis 

% 

metastasis 

Sex 
Female 139 36.7% 29 20.9% 

Male 240 63.3% 52 21.7% 

Age 

≤60 157 41.4% 41 26.1% 

60-70 154 40.6% 29 18.8% 

>70 68 17.9% 11 16.2% 

Familial 

risk 

Low 196 51.7% 34 17.3% 

Intermediate/High 183 48.3% 47 25.7% 

5-FU 

based 

treatment 

5-FU treated 214 56.5% 59 27.6% 

Other/No chemo 159 42.0% 17 10.7% 

Unknown 6 1.6% 5 83.3% 

Stage 

I 81 21.4% 8 9.9% 

II 158 41.7% 30 19.0% 

III 140 36.9% 43 30.7% 

Location 
Colon 233 61.5% 41 17.6% 

Rectum 146 38.5% 40 27.4% 

Histology 
Non-mucinous 343 90.5% 75 21.9% 

Mucinous 36 9.5% 6 16.7% 

Vascular 

invasion 

Absence 242 63.9% 45 18.6% 

Presence 111 29.3% 30 27.0% 

Unknown 26 6.9% 6 23.1% 

Lymphatic 

invasion 

Absence 237 62.5% 44 18.6% 

Presence 116 30.6% 31 26.7% 

Unknown 26 6.9% 6 23.1% 

BRAF 

V600E 

mutation 

Absence 333 87.9% 72 21.6% 

Presence 19 5.0% 8 42.1% 

Unknown 27 7.1% 1 3.7% 

 

a. Patients with MSI-H tumors and Stage IV patients were excluded. 5-FU: 5-fluorouracil 
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Figure 3.4 Kaplan-Meier survival function for the most significant SNPs in the 

multivariable analysis under the (a) mixture cure model and (b) Cox proportional hazards 

regression model 

 

(a)                                        (b) 

       
 

n: number of patients in that genotype category; d: number of metastasis in that genotype 

category. 

(a) rs5749032 was the only SNP maintaining genome-wide significance after the 

multivariable analysis using the mixture cure model. In the rs5749032 GG genotype 

subgroup, the clear plateau at approximately 80% metastasis-free survival probability 

indicates the existence of a large proportion of long-term metastasis-free survivors. 

(b) In the rs2327990 TT genotype subgroup, all the patients experienced metastasis 

within approximately the first two years. Therefore, a standard survival analysis method 

is appropriate. 

 

 

the multivariable model (GG genotype of rs5749032; HR=15.86 [95% CI: 6.83-36.83], 

p=1.28E-10). We also obtained significant SNPs under the additive model. However, 

upon checking the validity of the genetic model, we found that the additive genetic model 

was not plausible for those SNPs. Thus, these results are not reported here. 
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Table 3.2 Results from the multivariable* analysis using the mixture cure model on the significant SNPs identified by the 

univariable mixture cure model 
 

  
 Logistic regression model 

for metastasis probability 
 Proportional hazards model for 

time-to-metastasis  
  

 
 

Genomic 

location 

Genetic 

model 

rs number 

(genotypes a vs. b) 

Genotype 

freq. 
OR 95% CI p-value 

 
HR 95% CI p-value 

22:17793969 Recessive 
rs5749032  

(GG vs. AA + AG) 
14% 0.38 0.14-1.07 0.066 

 
15.86 6.83-36.83 1.28E-10 

17:77361176 Co-Dominant 
rs12949587  
(CT vs. CC) 

20% 0.66 0.32-1.37 0.261 
 

7.56 3.44-16.61 4.63E-07 

20:15111138 Co-Dominant 
rs6110524 

(AG vs. GG) 
17% 0.95 0.44-2.04 0.887 

 
4.80 2.00-11.53 4.52E-04 

7:33913404 Recessive 
rs3815652  
(TT vs. CC + CT) 

4% 0.59 0.13-2.65 0.488 
 

12.97 3.26-51.66 2.78E-04 

14:100691178 Recessive 
rs756055  

(CC vs. TT + TC) 
13% 0.28 0.10-0.82 0.020 

 
7.58 2.53-22.65 2.90E-04 

14:100730920 Recessive 
rs7153665  

(AA vs. GG + AG) 
13% 0.28 0.10-0.82 0.020 

 
7.58 2.53-22.65 2.90E-04 

11:100430053 Recessive 
rs4754687  

(AA vs. CC + CA) 
11% 0.51 0.18-1.43 0.201 

 
8.13 2.59-25.53 3.28E-04 

5:155345221 Dominant 
rs2163746  

(CT + CC vs. TT) 
24% 0.49 0.23-1.07 0.075 

 
9.65 3.67-25.37 4.29E-06 

5:155361116 Dominant 
rs17053011  
(TG + TT vs. GG) 

24% 0.49 0.23-1.07 0.075 
 

9.65 3.67-25.37 4.29E-06 

*Adjusted for the significant baseline characteristics: tumor location, 5-fluorouracil treatment status, and tumor stage. Each SNP was analyzed 

separately adjusting for these factors. Linkage disequilibrium (LD) calculations indicated that rs756055 and rs7153665 as well as rs2163746 and 

rs17053011 are in complete pairwise LD (r2 = 1). The SNPs listed yielded similar hazard ratio estimates under the univariable (Supplementary Table S4) 

and multivariable analyses. Consequently, all of the SNPs identified in this study could be considered independent prognostic factors for time-to-

metastasis in colorectal cancer if the results are replicated using independent cohort data. Genotype freq.: frequency of genotype a calculated from the 

patient cohort; OR: odds ratio for metastasis comparing odds of metastasis in subgroup a with that in subgroup b; HR: hazard ratio comparing metastasis 

rate in subgroup a with that in subgroup b among those who are susceptible to metastasis; CI: confidence interval. 
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Univariable analysis under the Cox proportional hazards regression model 

identified 25 SNPs that were significantly associated with time-to-metastasis under the 

recessive and the co-dominant genetic models (Figure 3.4, Supplementary Table S14). 

The fitted genetic models were found to be the most plausible genetic model for each 

SNP. In addition, the proportionality assumption of the Cox proportional hazards 

regression model was not rejected for any of the significant SNPs. After adjusting for the 

significant baseline characteristics in the multivariable analysis, specific genotypes of 

nine SNPs remained significantly associated with time-to-metastasis (Table 3.3, 

Supplementary Tables S15-S23).  

Last, of the SNPs analyzed in this study, there were no associations with the risk 

of metastasis reaching Bonferroni-corrected significance using either the mixture cure 

model or the log-rank test. However, promising associations were detected in the mixture 

cure model and are reported for interested readers (Table 3.4, Supplementary Figure S2).  

 

3.7 Discussion  

Distant metastasis is the most lethal event in colorectal cancer progression. 

Despite significant advances in treatment options, the 5-year survival rate for metastatic 

colorectal cancer patients is only 13.5% in the US 
8
. Tumor MSI status is an important 

prognostic indicator in colorectal cancer, as patients with MSI-H tumors rarely experience 

metastasis 
11-14

. Identifying additional biomarkers that can distinguish between patients 
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Table 3.3 Genotypes significantly associated with time-to-metastasis after adjusting for significant baseline characteristics 

identified in the Cox proportional hazards regression model 

  
 Univariable 

 
Multivariable* 

Genomic 

location 

rs number  

(genotypes a vs. b) 

Genotype 

freq. 
HR 95% CI p-value 

 
HR 95% CI p-value 

20:16189263 
rs2327990  
(TT vs. CC + CT) 

1.3% 21.97 8.42-57.33 2.74E-10 
 

22.58 8.32-61.31 9.59E-10 

3:134513356 
rs11918092  

(CC vs. AA + AC) 
0.5% 216.98 35.64-1321.13 5.32E-09 

 
535.33 63.20-4534.30 8.23E-09 

3:134515336 
rs3732568  

(AA vs. CC + CA) 
0.5% 216.98 35.64-1321.13 5.32E-09 

 
535.33 63.20-4534.30 8.23E-09 

3:59930672 
rs2366964  

(CC vs. TT + TC) 
0.8% 41.19 11.81-143.66 5.40E-09 

 
56.53 14.98-213.26 2.59E-09 

2:6769988 
rs1563948  

(AA vs. GG + GA) 
0.8% 34.43 10.35-114.58 7.97E-09 

 
33.97 9.57-120.54 4.87E-08 

2:6773920 
rs11694697  
(TT vs. CC + CT) 

0.8% 34.43 10.35-114.58 7.97E-09 
 

33.97 9.57-120.54 4.87E-08 

2:6777992 
rs11692570  

(TT vs. CC + CT) 
0.8% 34.43 10.35-114.58 7.97E-09 

 
33.97 9.57-120.54 4.87E-08 

2:6779277 
rs2219613  

(TT vs. CC + CT) 
0.8% 34.43 10.35-114.58 7.97E-09 

 
33.97 9.57-120.54 4.87E-08 

6:91187510 
rs1145724  

(GG vs. AA + AG) 
0.8% 30.76 9.27-102.03 2.14E-08 

 
36.43 10.21-129.93 3.00E-08 

*Adjusted for tumor location, 5-fluorouracil treatment status, BRAF V600E somatic mutation status, and tumor stage. Each 

SNP was analyzed separately adjusting for these factors. LD calculations indicated that rs11918092 and rs3732568 are in high 

pairwise LD (r
2 
= 0.96). In addition, rs1563948, rs11694697, rs11692570, and rs2219613 are all highly linked to each other 

(0.94 ≤ r
2 
≤ 1).  The SNPs listed yielded similar risk estimates under the univariable and multivariable analyses. Consequently, 

all of the SNPs identified in this study could be considered independent prognostic factors for time-to-metastasis in colorectal 

cancer if the results are replicated using independent cohort data.  Genotype freq.: frequency of genotype a calculated from the 

patient cohort; HR: hazard ratio comparing metastasis rate in subgroup a with that in subgroup b; CI: confidence interval.
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Table 3.4 Most significant associations with the risk of metastasis estimated in the univariable mixture cure model 

 

     
 

 Logistic regression model 

for metastasis probability 

 Proportional hazards 

model for time-to-

metastasis Genomic 

location 

rs number 

(genotypes; 

a vs. b) 

Genetic 

model 
No. Freq MAF 

Type of 

variant* 

 

OR 
95% 

CI 
p-value 

 
HR 

95% 

CI 
p-value 

8:65783019 
rs6985116 

(CC vs. TT) 

Co-

Dominant 
88 23% 48% Intergenic 0.07 

0.02-

0.24 
1.82E-05 

 
2.61 

0.68-

10.07 
0.1623 

8:5438981 
rs17354999 
(AG & AA 

vs. GG) 

Additive 252 66% 44% Intergenic 2.93 
1.79-

4.79 
1.98E-05 

 
0.62 

0.38-

1.00 
0.0524 

5:105924416 
rs10080115 

(CT vs. TT) 

Co-

Dominant 
149 39% 27% Intergenic 0.24 

0.13-

0.47 
2.03E-05 

 
2.32 

1.15-

4.71 
0.0195 

22:47701711 
rs4823630 

(TC vs. CC) 

Co-

Dominant 
173 46% 34% Intergenic 0.24 

0.12-

0.47 
2.58E-05 

 
1.33 

0.60-

2.93 
0.4844 

8:5437805 
rs1468386 
(AA vs. GG) 

Co-
Dominant 

94 25% 49% Intergenic 7.41 
2.87-
19.17 

3.61E-05 
 

0.64 
0.21-
1.95 

0.4298 

 

*based on Ensembl database 
38

 

OR: odds ratio for metastasis comparing odds of metastasis in subgroup a with that in subgroup b.  

HR: hazard ratio comparing metastasis rate in subgroup a with that in subgroup b among those who are susceptible to 

metastasis.   

No.: number of patients with genotype a; MAF: minor allele frequency calculated from patient cohort analyzed; Freq: 

frequency of genotype a calculated from the patient cohort; CI: confidence interval. 
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who will experience metastasis in the short term and who will not experience metastasis 

in the long-term has clear clinical implications in the management and treatment of this 

disease. In this study, using a focused study design as well as applying appropriate and 

informative methods of analysis, we identified ten genetic polymorphisms significantly 

associated with time-to-metastasis in stage I-III colorectal cancer patients with MSI-

L/MSS tumors after adjusting for significant baseline characteristics.  

The mixture cure model identified a specific genotype (GG) of one SNP 

(rs5749032) that was significantly associated with early metastasis after adjusting for 

significant baseline characteristics (Table 3.2, HR=15.86, p=1.28e-10). This was a 

frequent genotype in the patient cohort (14%). Most patients with this genotype that 

experienced metastasis did so within the first 2 years post-diagnosis (Figure 3.4). After 

this time-point, patients with this genotype did not experience metastasis, despite the 

long-term follow-up for many patients. Essentially, this suggests that if metastasis occurs 

in patients with this genotype, it is likely to be in a relatively short time after diagnosis. A 

search in scientific literature and in the RegulomeDB database 
36

 did not return 

information about possible biological or regulatory functions of this polymorphism. 

However, according to the Haploreg database 
39

, there are no known SNPs in high linkage 

disequilibrium with this SNP. Thus, this polymorphism may have a direct biological 

effect on time-to-metastasis. The rs5749032 polymorphism is located in an intergenic 

sequence flanked by two genes: CECR2 and CECR3 (Supplementary Figure S3). CECR2 

is a protein-coding gene downstream of the SNP. The protein product is a transcription 

factor that is reported to be involved in chromatin remodeling 
40

 and may have an 
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additional role in DNA damage response 
41

. On the other hand, CECR3 is a non-coding 

RNA, according to the Gene Entrez database 
42

. At the present time, there are no reported 

relationships between these two genes and cancer. Finally, it is important to note that this 

association might not have been detected using the traditional survival analysis method of 

applying Cox proportional hazards regression model since the proportional hazards 

assumption was not satisfied (i.e. the survival curves cross; Figure 3.4) and there is a 

large proportion of long-term metastasis-free survivors (i.e. stable plateau at non-zero 

metastasis-free survival probability; Figure 3.4). We verified this by fitting a Cox 

proportional hazards regression model to this SNP. Under neither the univariable 

(HR=1.03 [95% CI: 0.54-1.94], p=0.93) nor the multivariable (HR=1.09 [95% CI: 0.57-

2.10], p=0.80) Cox proportional hazards regression analysis was there a significant 

association. Overall, this SNP is a novel candidate biomarker deserving further 

investigations, particularly replicating its association and examining its potential 

biological link to metastasis. 

For the SNPs with genotype categories showing 0% metastasis-free survival 

probability, the Cox proportional hazards regression model identified nine SNPs 

significantly associated with time-to-metastasis after adjusting for significant baseline 

characteristics (Table 3.3, Supplementary Figure S3). The most significant SNP, 

rs2327990, is an intergenic variant (Table 3.5). While there are no published reports about 

this SNP, according to the RegulomeDB database 
36

, there is some evidence that 

rs2327990 may affect the binding of transcription factors USF1 and USF2. The 
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Table 3.5 Variant information for the significant genotypes in the multivariable mixture cure and Cox proportional hazards 

regression models 

 

Genomic 

location 
rs number (genotype

a
) MAF

b
 Type of variant

 
(gene)

c
 DNA binding evidence

d
 

22:17793969 rs5749032 (GG) 40% Intergenic ND 

20:16189263 rs2327990 (TT) 11% Intergenic Less likely to affect binding 

3:134513356 rs11918092 (CC) 8% Intronic (EPHB1) Minimal binding evidence 

3:134515336 rs3732568 (AA) 8% Intronic (EPHB1) Minimal binding evidence 

3:59930672 rs2366964 (CC) 8% Intronic (FHIT) ND 

2:6769988 rs1563948 (AA) 11% Intronic (MIR7515) Minimal binding evidence 

2:6773920 rs11694697 (TT) 11% Intronic (MIR7515) ND 

2:6777992 rs11692570 (TT) 11% Intronic (MIR7515) Minimal binding evidence 

2:6779277 rs2219613 (TT) 11% Intronic (MIR7515) Minimal binding evidence 

6:91187510 rs1145724 (GG) 9% Intergenic Minimal binding evidence 

 

a. Risk increasing/decreasing genotype, b. Minor allele frequency (MAF) calculated from patient cohort analyzed. Values 

comparable to CEU population based on 1000 Genomes Project Phase 3 
43

 data obtained through the Ensembl database 

(http://grch37.ensembl.org/), c. based on Ensembl database 
38

, d. based on RegulomeDB database 
36

. 

ND: no data 
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consequence of this potential regulatory function with regards to metastasis in colorectal 

cancer has yet to be investigated. This variant is located between a processed pseudogene, 

PPIAP17, and a protein coding gene, KIF16B. KIF16B is a kinesin-like protein that may 

be involved in intracellular trafficking 
44

. While the function of PPIAP17 is not known, 

there is a protein coding gene further upstream named MACROD2. This gene is quite 

interesting because one study examining 352 colorectal cancer patients identified 

MACROD2 as the gene with the most prevalent and recurrent chromosomal breakpoints 

in colorectal tumors (41%) 
45

. According to the Gene Entrez database 
42

, this gene 

encodes a deacetylase that removes ADP ribose from modified proteins. As also 

discussed by van den Broek et al. (2015), one of the target proteins of MACROD2 is 

GSK3β: active MACROD2 removes the mono-ADP-ribosyl units resulting in an increase 

in active GSK3β 
46

. Interestingly, GSK3β is a regulator of the Wnt signaling pathway 
47,48

 

and connections between upregulated Wnt signaling and distant metastasis in colorectal 

cancer have been identified 
49,50

. Thus, when there is a reduction in active MACROD2 

levels, this may lead to decreased GSK3β function, which in turn could lead to increased 

Wnt signaling and, accordingly, an increased risk of metastasis (Supplementary Figure 

S3). Therefore, evaluating the presence of a link between the identified polymorphism, 

rs2327990, and MACROD2 expression levels and metastatic potential may prove to be 

valuable.  

It is important to note that, although the quality control steps excluded rare SNPs 

(MAF    ), when the recessive and co-dominant genetic models were applied to the 

raw genotype data, we obtained genotype frequencies that are rare in the patient cohort. 
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This is because these genetic models analyze the minor allele homozygous genotypes as 

one independent category. As a result, for the remaining eight significant SNPs reported 

from the Cox proportional hazards regression model, the genotype frequencies were less 

than 1% (Table 3.3). Consequently, although the associations were significant (possibly 

due to a high effect size 
51

), the results may not be generalized to the population. Hence, 

we should interpret these results with caution. These SNPs were either intergenic (n=1; 

rs1145724; Supplementary Figure S3) or located within intronic sequences of three genes 

(n=7), including four linked SNPs in MIR7515, two linked SNPs in EPHB1, and one SNP 

in FHIT (Figure 3.5). There are no known functional consequences reported for these 

SNPs (Table 3.5) and the potential biological effects of these SNPs on these genes or 

metastasis in colorectal cancer are not presently known. However, the results of our study 

combined with previously published findings suggest that there may be potential 

relationships between these genes and metastasis in colorectal cancer. For example, low 

levels of FHIT 
52,53

 and increased levels of a target of MIR7515, c-MET 
54

, have been 

linked to increased risk of metastasis of colorectal tumors 
55,56

. In addition, a reduced 

level of EPHB1 in colorectal cancer cells was associated with increased invasive potential 

in one study 
57

.  

 Additionally, although the univariable mixture cure model identified several 

SNPs significantly associated with time-to-metastasis in colorectal cancer, it did not 

detect any SNPs that were significantly associated with the long-term risk of metastasis. 

However, we report five of the most significantly associated SNPs for interested 

researchers (Table 3.5). These SNPs were all located in intergenic regions and have no  
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Figure 3.5 Known and hypothesized relationships between the identified SNPs, genes on 

either side of the SNPs, and the risk of metastasis 
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known regulatory consequences according to the RegulomeDB database 
36

. The results 

contained odds ratio estimates different than 1             , indicating that these 

SNPs could be differentiators for being long-term metastasis free survivors, but the 

associations did not reach the conservative Bonferroni-corrected significance level. This 

could be indicative of a lack of power due to the small number of patients who 

experienced metastasis. Consequently, these SNPs should be investigated in a larger 

cohort.  

This is one of the first large-scale association studies that examined clinical 

outcomes in colorectal cancer. Two other studies published previously investigated the 

prognostic value of genome-wide genetic polymorphisms on colorectal cancer patient 

outcomes. As explained in the Methods, Xu et al. (2015) performed a genome-wide 

association study with the aim of identifying common genetic polymorphisms associated 

with overall and disease-free survival times in stage I-IV colorectal cancer patient cohorts 

31
. This study did not identify associations reaching genome-wide significance levels. In 

addition, Phipps et al. (2016) investigated associations between genome-wide common 

genetic variants and survival outcomes in patients enrolled in six prospective cohort 

studies 
58

. These authors also performed an analysis on a sub-group of their study cohort 

by focusing only on those patients who had already experienced metastasis at diagnosis 

(i.e. stage IV patients) and identified a set of SNPs in their pooled analysis that were 

significantly associated with overall survival times. In contrast to both of these studies, 

our study considered time-to-metastasis as the survival outcome, applied appropriate 

statistical methods due to the investigation of metastasis, and focused on patients with 
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stage I-III and MSI-L/MSS tumors only. Thus, this study is different from both of these 

previous studies and brings a new depth into colorectal cancer research in terms of both 

its design and significant findings.  

A large strength of this study is the comprehensive study design. We applied 

appropriate methods of analysis based on the endpoint of choice and the characteristics of 

the patient cohort subgroups we considered rather than applying the widely used Cox 

proportional hazards regression model only. In addition, by concentrating our efforts on a 

sub-cohort determined by the MSI tumor status and the tumor stage, we created a more 

homogeneous study cohort with an undifferentiated survival pattern (Figure 3.1). This 

enabled us to reduce the genetic and phenotypic variability in the cohort to identify 

potential prognostic biomarkers. This intricate study design allowed for a more powerful 

analysis although we had a moderate number of patients. We also applied four genetic 

models to ensure a complete and informative investigation. Finally, it is important to note 

that, in this study, we proposed and applied a framework for conducting a genome-wide 

association study of time-to-metastasis in curable cancer types. The study design and 

statistical methods utilized in this study are pertinent to any cancer type that has a large 

proportion of long-term metastasis-free survivors. This is significant, since advances in 

medical research are creating more patient cohorts with such a characteristic. 

Consequently, this study not only identified potential biomarkers for early metastasis in 

colorectal cancer patients, but also demonstrated an advanced and informative analysis 

approach to potentially enrich prognostic research in other cancer types.  
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In conclusion, this is the first study to investigate genetic associations with time-

to-metastasis in colorectal cancer patients using such a large genetic data set and the first 

study where a mixture cure model was used for a high dimensional genetic data analysis. 

More importantly, for the first time, significant associations between genome-wide SNP 

genotype data and time-to-metastasis were detected in colorectal cancer patients. The 

identified genetic variations represent a novel set of SNPs and genes that may have 

biological roles in colorectal cancer progression and metastasis in these patients. Once 

replicated, these results could aid in providing a means to distinguish colorectal cancer 

patients who are at an increased risk of early metastasis, which could be valuable in the 

clinical care of these patients as well as contribute to individualized therapies. 
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Chapter 4: General Conclusions  

 Colorectal cancer is a serious health concern worldwide with significant impact on 

global cancer mortality 
1
. Obtaining a better understanding of the potential genetic 

foundation of colorectal cancer subtype development and clinical characteristics is 

essential in improving patient care and outcomes. With this in mind, the projects in this 

dissertation aimed to identify genetic associations with a histological variant of colorectal 

cancer as well as with the risk and timing of metastasis in a Newfoundland colorectal 

cancer patient cohort.    

The mucinous histological variant of colorectal cancer is a distinct tumor subtype 

that appears to exhibit aggressive tendencies. However, the genetic markers of this 

histological subtype are largely unknown. Previous studies investigating the genetic basis 

of mucinous tumor histology in colorectal cancer have been focused on candidate genes 

241-243
. Consequently, in the manuscript presented in Chapter 2, we aimed to detect 

common and rare germline genetic variants that are associated with mucinous tumor 

histology in colorectal cancer patients using a genome-wide approach. This is the first 

time such a comprehensive investigation that included the analysis of a genome-wide set 

of both common and rare genetic variants has been performed related to colorectal cancer 

tumor histology. We performed single-SNP analysis to detect associations between 

common polymorphisms and mucinous tumor histology. In addition, we analyzed the rare 

variants using a recently developed multi-marker test procedure. As a result of these 

analyses, we identified novel polymorphisms (Table 2.2) and genes (Table 2.3) that may 

explain a portion of the diversity in colorectal tumor histology. In fact, there was a 
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significant increase in the discriminatory accuracy of the model to differentiate between 

mucinous and non-mucinous tumors when the identified common SNPs were added to the 

model containing the significant baseline characteristics. Overall, the results from this 

study provide novel candidate biomarkers that may help ascertain the genetic basis of 

tumor histology in colorectal cancer patients. 

 Metastasis is the main cause of death in colorectal cancer 
244,245

. However, it is 

possible that not all patients will experience metastasis, resulting in a patient population 

that is a mixture of individuals who are susceptible and non-susceptible to metastasis. 

Regrettably, predicting the risk of metastasis in stage I-III colorectal cancer patients 

remains difficult as there is still much unexplained variability in the long-term risk and 

timing of metastasis. There is one factor, the MSI-H tumor status, which is associated 

with extremely low incidence of metastasis (Figure 3.1). However, the remaining 

patients, those with MSI-L/MSS tumors, display an undifferentiated survival pattern. In 

light of this, the second manuscript of this thesis (Chapter 3) intended to illuminate some 

of the genetic basis of distant metastasis in colorectal cancer patients. To that end, we 

performed the first genome-wide association study which aimed to identify common 

germline genetic variations associated with the long-term risk and timing of metastasis in 

colorectal cancer patients with MSI-L/MSS tumors. After extensive analyses, we 

identified specific genotypes of ten polymorphisms that were significantly and 

independently associated with early metastasis. Of particular interest was a specific 

genotype of rs5749032, which was frequent in the patient cohort (14%) and provided the 

most significant association. Patients with this genotype that experienced metastasis did 
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so within a short time after diagnosis, after which there were no instances of metastasis 

during the follow up and these patients could be considered statistically cured. The 

clinical implications of this result could be significant: for example, patients could be 

screened for this genotype and, if they have this genotype, could receive aggressive 

treatment and close monitoring for the first two years post-diagnosis. If patients with this 

genotype do not experience metastasis in the first two years, they are likely to be 

statistically cured and treatment/monitoring can be reduced or stopped. This may 

minimize the likelihood of over-treating the patient, as well as decrease the burden on the 

healthcare system. 

 Interestingly, the study described in Chapter 3 was the first to apply a mixture 

cure model in a genome-wide association study. When there is empirical evidence of a 

large proportion of long-term metastasis-free survivors in a patient cohort, the mixture 

cure model is appropriate to model time-to-metastasis. While such models are relatively 

well-known in statistical science, they have yet to be widely applied in medical research. 

With continuing advancements in treatment and prognostic research, it is expected that 

such mixed-survival cohorts will become more common and, accordingly, mixture cure 

models may be an important tool to properly model the time-to-event. Furthermore, by 

considering colorectal cancer patients with stage I-III MSI-L/MSS tumors, we decreased 

the phenotypic and genetic variability which helped isolate the potential effects of the 

polymorphisms. Furthermore, based on the long-term metastasis-free survival estimates, 

we applied appropriate statistical models and methods for each polymorphism. As a result 

of such methodological considerations, we were able to identify significant genetic 
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associations. Therefore, I hope that the approach used in this project can act as a resource 

for other researchers and inspire them to investigate other diseases with a significant cure 

fraction to facilitate the continuation of novel discoveries in prognostic research.  

 In conclusion, this Master’s thesis presents two projects that were quite 

interdisciplinary in nature, including aspects of molecular genetics, epidemiology, and 

applied statistics. Once replicated, these results could strengthen our overall 

understanding of colorectal cancer biology as well as possibly assist in the development 

of personalized treatment strategies for colorectal cancer patients. While much work 

remains to be done in these areas of colorectal cancer genetics research, this thesis 

provides a set of new candidate polymorphisms and genes that may enhance our 

comprehension of the etiology of colorectal cancer tumor histology and distant 

metastasis. 
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Appendix B: Supplementary data for Penney et al., 2018: “Associations of 

single nucleotide polymorphisms with mucinous colorectal cancer: genome-

wide common variant and gene-based rare variant analyses” 

 

 
 
Supplementary Table S1. Top ten most significant common SNPs identified based on 

the univariable analyses and the subsequent multivariable analyses under the additive 

genetic models. 
 

 
Univariable 

 
Multivariable* 

SNP ID  

(a vs. b) 

OR  

(95% CI) 
p-value 

 

OR  

(95% CI) 
p-value 

rs11159673  

(AG + 2*AA vs. GG) 

3.096  

(1.879-5.073) 
7.11E-06   

3.016  

(1.766-5.138) 
4.53E-05 

rs7314811  

(CT + 2*CC vs. TT) 

2.387  

(1.611-3.567) 
1.67E-05 

 

2.129  

(1.409-3.242) 
3.59E-04 

rs4843335  

(AG + 2*AA vs. GG) 

3.818  

(2.040-7.037) 
1.97E-05 

 

4.160  

(2.130-8.107) 
2.64E-05 

rs10511330  

(CT + 2*CC vs. TT) 

3.013  

(1.788-5.031) 
2.59E-05 

 

3.908  

(2.211-6.945) 
2.65E-06 

rs12915222  

(CT + 2*TT vs. CC) 

2.476  

(1.623-3.801) 
2.76E-05 

 

2.664  

(1.685-4.260) 
3.19E-05 

rs12956191  

(GA + 2*GG vs. AA) 

2.364  

(1.580-3.549) 
2.86E-05 

 

2.397  

(1.555-3.726) 
8.18E-05 

rs11648965  

(GA + 2*GG vs. AA) 

3.033  

(1.786-5.104) 
3.04E-05 

 

3.250  

(1.867-5.671) 
2.82E-05 

rs16822593  

(AG + 2*AA vs. GG) 

2.977  

(1.767-4.968) 
3.11E-05 

 

3.899  

(2.205-6.930) 
2.78E-06 

rs205536  

(CT + 2*CC vs. TT) 

2.494  

(1.636-3.885) 
3.28E-05 

 

2.681  

(1.717-4.294) 
2.34E-05 

rs2384298  

(CT + 2*CC vs. TT) 

2.332  

(1.563-3.489) 
3.42E-05   

2.406  

(1.576-3.702) 
5.14E-05 

 CI: confidence interval, OR: odds ratio. 

OR is the ratio of the odds of having mucinous tumors for one minor allele increase. 

*Multivariable logistic regression model adjusting for the selected baseline characteristics 

listed in Supplementary Table S5. 
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Supplementary Table S2. Top ten most significant common SNPs identified based on 

the univariable analyses and the subsequent multivariable analysis under the dominant 

genetic models. 

 

 Univariable  Multivariable* 

SNP ID  

(a vs. b) 

OR  

(95% CI) 
p-value  

OR  

(95% CI) 
p-value 

rs716897  

(CC + CT vs. TT) 

0.268  

(0.150-0.469) 
5.33E-06  

0.262  

(0.143-0.473) 
1.12E-05 

rs10511330  

(CC + CT vs. TT) 

3.771  

(2.059-6.809) 
1.24E-05  

4.851  

(2.544-9.232) 
1.40E-06 

rs11968293  

(CC + CA vs. AA) 

0.285  

(0.161-0.501) 
1.27E-05  

0.264  

(0.143-0.481) 
1.48E-05 

rs17712784  

(AA + AG vs. GG) 

3.469  

(1.972-6.120) 
1.54E-05  

3.299  

(1.798-6.064) 
1.12E-04 

rs13019215  

(TT + TC vs. CC) 

0.267  

(0.144-0.479) 
1.56E-05  

0.232  

(0.119-0.432) 
8.20E-06 

rs16822593  

(AA + AG vs. GG) 

3.704  

(2.024-6.681) 
1.59E-05  

4.834  

(2.534-9.202) 
1.50E-06 

rs12471607  

(TT + TC vs. CC) 

0.268  

(0.144-0.480) 
1.65E-05  

0.233  

(0.119-0.433) 
8.42E-06 

rs4843335  

(AA + AG vs. GG) 

4.108  

(2.108-7.794) 
2.06E-05  

4.672  

(2.298-9.344) 
1.48E-05 

rs11216624  

(AA + AG vs. GG) 

3.565 

(1.933-6.460) 
3.34E-05  

3.074  

(1.604-5.787) 
5.67E-04 

rs9809129  

(AA + AG vs. GG) 

0.231  

(0.107-0.449) 
4.78E-05  

0.226  

(0.103-0.451) 
6.52E-05 

 

CI: confidence interval, OR: odds ratio. 

OR compares the odds of having mucinous tumors in subgroup a to the odds of having 

mucinous tumors in subgroup b. *Multivariable logistic regression model adjusting for 

the selected baseline characteristics listed in Supplementary Table S5.      
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Supplementary Table S3. Top ten most significant common SNPs identified based on 

the univariable analyses and the subsequent multivariable analyses under the recessive 

genetic models. 

 

 
Univariable 

 
Multivariable* 

SNP ID  

(a vs. b) 

OR  

(95% CI) 
p-value 

 

OR  

(95% CI) 
p-value 

rs9481067  

(GG vs. AG + AA) 

4.171  

(2.332-7.431) 
1.24E-06   

4.747  

(2.527-8.948) 
1.24E-06 

rs4837345  

(TT vs. TC + CC) 

4.721  

(2.403-9.052) 
4.00E-06 

 

4.563  

(2.242-9.107) 
1.97E-05 

kgp10457679  

(CC vs. CT + TT) 

4.721  

(2.403-9.052) 
4.00E-06 

 

4.563  

(2.242-9.107) 
1.97E-05 

kgp4136779  

(TT vs. TC + CC) 

4.721  

(2.403-9.052) 
4.00E-06 

 

4.563  

(2.242-9.107) 
1.97E-05 

rs1075650  

(GG vs. AG + AA) 

4.721 

(2.403-9.052) 
4.00E-06 

 

4.563  

(2.242-9.107) 
1.97E-05 

rs7314811  

(CC vs. CT + TT) 

4.586  

(2.338-8.772) 
5.66E-06 

 

3.654  

(1.746-7.425) 
4.15E-04 

rs6596805  

(GG vs. AG + AA) 

3.862  

(2.139-6.908) 
5.72E-06 

 

3.683  

(1.957-6.887) 
4.51E-05 

rs11047047  

(GG vs. AG + AA) 

3.734  

(2.104-6.613) 
5.92E-06 

 

3.505  

(1.908-6.426) 
4.79E-05 

rs1661281  

(TT vs. TC + CC) 

5.284  

(2.518-10.764) 
6.12E-06 

 

5.403  

(2.442-11.704) 
2.17E-05 

rs919001  

(AA vs. AG + GG) 

3.913  

(2.134-7.077) 
7.46E-06   

3.151  

(1.636-5.953) 
4.66E-04 

 
CI: confidence interval, OR: odds ratio. 

OR compares the odds of having mucinous tumors in subgroup a to the odds of having 

mucinous tumors in subgroup b. 

*Multivariable logistic regression model adjusting for the selected baseline characteristics 

listed in Supplementary Table S5. 
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Supplementary Table S4. Top ten most significant common SNPs identified under the 

univariable analyses and the subsequent multivariable analyses under the co-dominant 

genetic models. 

 

 

Univariable 

 

Multivariable* 

SNP ID  

(a vs. b) 
OR (95% CI) p-value 

 
OR (95% CI) p-value 

rs7314811  

(CC vs. TT) 
5.974 (2.803-12.805) 3.48E-06   4.788 (2.109-10.853) 1.63E-04 

rs16907305  

(AA vs. GG) 
5.550 (2.611-11.857) 7.91E-06 

 
4.505 (1.994-10.162) 2.66E-04 

rs11216624  

(AG vs. GG) 
3.872 (2.092-7.050) 1.15E-05 

 
3.326 (1.727-6.302) 2.57E-04 

rs17712784  

(AG vs. GG) 
3.520 (1.988-6.243) 1.50E-05 

 
3.304 (1.788-6.106) 1.28E-04 

rs6573132  

(AG vs. GG) 
4.814 (2.308-9.722) 1.62E-05 

 
5.183 (2.382-11.030) 2.27E-05 

rs8019850  

(TC vs. CC) 
4.802 (2.302-9.699) 1.67E-05 

 
5.011 (2.310-10.619) 3.07E-05 

rs17093005  

(TG vs. GG) 
4.802 (2.302-9.699) 1.67E-05 

 
5.098 (2.345-10.828) 2.66E-05 

rs11656626  

(GG vs. AA) 
7.194 (2.866-17.642) 1.72E-05 

 
7.156 (2.675-18.933) 6.94E-05 

rs1189903  

(AC vs. CC) 
4.759 (2.284-9.589) 1.78E-05 

 
4.952 (2.283-10.488) 3.47E-05 

rs4779810  

(TT vs. CC) 
5.965 (2.608-13.499) 1.79E-05   4.286 (1.731-10.343) 1.30E-03 

 CI: confidence interval, OR: odds ratio. 

OR compares the odds of having mucinous tumors in subgroup a to the odds of having 

mucinous tumors in subgroup b. 

*Multivariable logistic regression model adjusting for the selected baseline characteristics 

listed in Supplementary Table S5. 
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Supplementary Table S5. Baseline characteristics selected through a stepwise variable 

selection method under the multivariable model. 

 

Characteristics OR (95% CI) P-value 

Age ≤60 

  

 

60-65 2.29 (1.08-4.81) 0.018 

  >65 1.19 (0.60-2.37) 0.611 

Sex Female 

    Male 0.58 (0.32-1.04) 0.067 

Location Colon 

    Rectum 0.45 (0.21-0.90) 0.031 

Stage I 

  
 

II 4.41 (1.48-18.98) 0.018 

 
III 3.65 (1.18-16.02) 0.044 

  IV 4.57 (1.18-22.43) 0.036 

Grade Well/moderately diff. 

    Poorly diff. 1.90 (0.70-4.54) 0.169 

 CI: confidence interval, diff.: differentiated. 

OR: odds ratio (compares the odds of having mucinous tumors with the corresponding 

factor level to the odds of having mucinous tumors with the reference factor level).  
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Supplementary Table S6.  AIC estimates under the multivariable models of common 

SNPs identified in the univariable analysis. 

 

SNP ID Initial Model 

AIC  Plausible 

Model p-value** A* D* R* C* 

rs9481067 Recessive 322.4 336.5 318.4 320.2 Recessive 1.24E-06 

rs10511330 Dominant 320.1 319.2 338.6 321.0 Dominant 1.40E-06 

rs16822593 Dominant 320.2 319.3 338.6 321.1 Dominant 1.50E-06 

rs13019215 Dominant 319.0 318.6 336.5 320.2 Dominant 8.20E-06 

rs12471607 Dominant 318.9 318.6 336.4 320.1 Dominant 8.42E-06 

rs716897 Dominant 323.4 321.2 337.0 323.0 Dominant 1.12E-05 

rs4843335 Dominant 324.5 324.1 339.9 326.0 Dominant 1.48E-05 

rs11968293 Dominant 327.2 322.4 338.9 324.4 Dominant 1.48E-05 

rs4837345 Recessive 333.9 340.5 324.6 325.7 Recessive 1.97E-05 

kgp10457679 Recessive 333.9 340.5 324.6 325.7 Recessive 1.97E-05 

kgp4136779 Recessive 333.9 340.5 324.6 325.7 Recessive 1.97E-05 

rs1075650 Recessive 334.1 340.6 324.6 325.6 Recessive 1.97E-05 

rs1661281 Recessive 338.2 340.8 324.9 322.7 Recessive 2.17E-05 

rs6573132[1] Co-Dominant 334.3 328.9 339.0 325.0 Co-Dominant 2.27E-05 

rs205536 Additive 321.3 330.3 326.0 323.3 Additive 2.34E-05 

rs17093005[1] Co-Dominant 334.2 328.9 338.8 325.1 Co-Dominant 2.66E-05 

rs11648965 Additive 324.4 325.2 336.7 326.3 Additive 2.82E-05 

rs8019850[1] Co-Dominant 334.4 329.2 338.9 325.4 Co-Dominant 3.07E-05 

rs12915222 Additive 323.5 327.9 331.9 325.5 Additive 3.19E-05 

rs1189903[1] Co-Dominant 328.0 323.4 334.2 320.9 Co-Dominant 3.47E-05 

rs6596805 Recessive 331.2 339.6 325.3 327.1 Recessive 4.51E-05 

rs11159673 Additive 325.5 329.4 331.1 326.8 Additive 4.53E-05 

rs11047047 Recessive 328.4 338.3 325.2 327.1 Recessive 4.79E-05 

rs2384298 Additive 323.3 324.0 333.6 324.5 Additive 5.14E-05 

rs9809129 Dominant 319.6 321.4 335.0 321.0 Additive 6.52E-05 

rs11656626[2] Co-Dominant 331.5 337.6 326.6 328.3 Recessive 6.94E-05 

rs12956191 Additive 325.5 330.0 331.2 327.4 Additive 8.18E-05 

rs17712784 Dominant 327.6 326.5 340.7 328.5 Dominant 1.12E-04 

rs7314811[2] Co-Dominant 328.2 334.1 329.8 329.4 Additive 1.63E-04 

rs16907305[2] Co-Dominant 329.1 334.8 330.3 330.3 Additive 2.66E-04 

rs919001 Recessive 330.4 337.4 329.7 331.0 Recessive 4.66E-04 

rs11216624 Dominant 332.7 330.0 339.9 329.5 Co-Dominant 5.67E-04 

rs4779810[2] Co-Dominant 330.5 333.7 334.5 332.5 Additive 1.30E-03 

 *A: Additive, D: Dominant, R: Recessive, C: Co-dominant.     

**p-value under the multivariable model based on the initial genetic model. 

[1]: heterozygous genotype/major allele homozygous genotype. 

[2]: minor allele homozygous genotype/major allele homozygous genotype. 

The SNPs in bold were identified under their plausible genetic model. 
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Supplementary Table S7. Haploreg results for the top 10 SNPs in the common variant 

analysis. 

 

SNP ID chr r2 D' rs ID GENCODE_name 

rs10819474 9 0.92 0.96 rs4837345 PPP2R4 

 9 0.91 0.96 rs192983 IER5L 

 9 0.9 -0.97 rs944072 IER5L 

 9 0.86 -0.99 rs10819473 IER5L 

 9 0.94 -0.99 rs1966223 IER5L 

 9 0.94 -0.99 rs1966222 IER5L 

 9 0.99 1 rs12057089 IER5L 

 9 1 1 rs10819474 IER5L 

 9 1 1 rs10819475 IER5L 

 9 1 1 rs419636 IER5L 

 9 0.96 -1 rs12237274 IER5L 

 9 0.9 -0.99 rs10739743 IER5L 

 9 0.88 -0.99 rs4837346 IER5L 

 9 0.94 -0.99 rs1556147 IER5L 

 9 0.97 0.99 rs141780496 IER5L 

 9 0.97 0.99 rs1075650 IER5L 

 9 0.97 0.99 rs184457 IER5L 

 9 0.93 0.97 rs882616 RP11-247A12.2 

 9 0.93 -0.99 rs7034195 RP11-247A12.2 

 9 0.91 -0.99 rs2005078 RP11-247A12.2 

 9 0.83 -0.93 rs967497 RP11-247A12.2 

 9 0.85 0.95 rs913264 RP11-247A12.2 

 9 0.83 -0.93 rs4837347 RP11-247A12.2 

 9 0.82 -0.92 rs7871824 RP11-247A12.2 

rs716897 5 1 1 rs716897 RASGRF2 

rs4843335 16 0.96 0.98 rs7500355 RP11-805I24.1 

 16 1 1 rs4843335 RP11-805I24.1 

rs4837345 9 0.8 0.94 rs9408986 PPP2R4 

 9 0.8 0.94 rs71497442 PPP2R4 

 9 0.8 0.94 rs4836641 PPP2R4 

 9 0.8 0.94 rs1107329 PPP2R4 

 9 1 1 rs4837345 PPP2R4 

 9 0.97 1 rs192983 IER5L 

 9 0.95 -1 rs944072 IER5L 

 9 0.82 -0.97 rs10819473 IER5L 

 9 0.9 -0.97 rs1966223 IER5L 

 9 0.9 -0.97 rs1966222 IER5L 

 9 0.91 0.95 rs12057089 IER5L 

 9 0.92 0.96 rs10819474 IER5L 

 9 0.92 0.96 rs10819475 IER5L 
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 9 0.92 0.96 rs419636 IER5L 

 9 0.89 -0.97 rs12237274 IER5L 

 9 0.83 -0.95 rs10739743 IER5L 

 9 0.81 -0.95 rs4837346 IER5L 

 9 0.87 -0.95 rs1556147 IER5L 

 9 0.89 0.95 rs141780496 IER5L 

 9 0.89 0.95 rs1075650 IER5L 

 9 0.89 0.95 rs184457 IER5L 

 9 0.86 0.93 rs882616 RP11-247A12.2 

 9 0.87 -0.95 rs7034195 RP11-247A12.2 

 9 0.84 -0.95 rs2005078 RP11-247A12.2 

rs9481067 6 1 1 rs9481067 SLC22A16 

 6 0.99 1 rs910399 SLC22A16 

 6 1 1 rs761589 SLC22A16 

rs13019215 2 1 1 rs13019215 CCDC141 

 2 0.94 1 rs11680978 CCDC141 

 2 0.93 1 rs150840830 CCDC141 

 2 0.93 1 rs10930850 CCDC141 

 2 0.92 0.99 rs12471607 CCDC141 

rs12471607 2 0.92 0.99 rs13019215 CCDC141 

 2 0.98 0.99 rs11680978 CCDC141 

 2 0.98 0.99 rs150840830 CCDC141 

 2 0.98 0.99 rs10930850 CCDC141 

 2 1 1 rs12471607 CCDC141 

rs10511330 3 0.92 0.96 rs16822588 ZBTB20 

 3 0.95 0.99 rs16822593 ZBTB20 

 3 0.97 0.99 rs73857113 ZBTB20 

 3 1 1 rs6763403 ZBTB20 

 3 1 1 rs10511330 ZBTB20 

 3 0.94 0.97 rs73860251 ZBTB20 

 3 0.91 0.97 rs16822606 ZBTB20 

 3 0.91 0.97 rs7428451 ZBTB20 

 3 0.9 0.96 rs6778079 ZBTB20 

 3 0.9 0.96 rs6792964 ZBTB20 

 3 0.9 0.96 rs6793257 ZBTB20 

 3 0.9 0.96 rs57864250 ZBTB20 

 3 0.9 0.96 rs73857603 ZBTB20 

 3 0.9 0.96 rs6785090 ZBTB20 

 3 0.9 0.96 rs73857605 ZBTB20 

 3 0.9 0.96 rs2067756 ZBTB20 

rs16822593 3 0.97 1 rs16822588 ZBTB20 

 3 1 1 rs16822593 ZBTB20 

 3 0.97 1 rs73857113 ZBTB20 

 3 0.95 0.99 rs6763403 ZBTB20 
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 3 0.95 0.99 rs10511330 ZBTB20 

 3 0.88 0.95 rs73860251 ZBTB20 

 3 0.86 0.93 rs16822606 ZBTB20 

 3 0.86 0.93 rs7428451 ZBTB20 

 3 0.85 0.92 rs6778079 ZBTB20 

 3 0.85 0.92 rs6792964 ZBTB20 

 3 0.85 0.92 rs6793257 ZBTB20 

 3 0.85 0.92 rs57864250 ZBTB20 

 3 0.85 0.92 rs73857603 ZBTB20 

 3 0.85 0.92 rs6785090 ZBTB20 

 3 0.85 0.92 rs73857605 ZBTB20 

 3 0.85 0.92 rs2067756 ZBTB20 

rs11968293 6 0.9 0.98 rs10708664 SLC35F1 

 6 0.88 0.99 rs6940985 SLC35F1 

 6 1 1 rs11968293 SLC35F1 

 6 1 1 rs1572226 SLC35F1 

 6 0.85 0.97 rs72967533 16kb 3' of SLC35F1 

 6 0.82 0.93 rs11153730 29kb 3' of SLC35F1 

 

To retrieve the data, we used the default conditions and selected the CEU (Caucasian) as 

the population.  

Chr: chromosome, r2: correlation coefficient,  

D': ratio of given and min/max coefficient of linkage disequilibrium depending on allele 

frequencies. 
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Supplementary Table S8. Proteins which have reported evidence of binding to the 

genomic region in which kgp10457679 resides (extracted from RegulomeDB). 

 

Location Bound Protein 

chr9:131930083-131930707 PHF8 

chr9:131930124-131930734 POLR2A 

chr9:131930177-131930837 SMARCB1 

chr9:131930235-131930775 EP300 

chr9:131930398-131930728 EP300 

chr9:131930394-131930710 EP300 

chr9:131930310-131930710 FOS 

chr9:131930295-131930751 GTF2F1 

chr9:131930295-131930751 JUND 

chr9:131930321-131930661 JUN 

chr9:131930369-131930709 JUN 

chr9:131930291-131930687 MAX 

chr9:131930308-131930772 POLR2A 

chr9:131930314-131930520 POLR2A 

chr9:131930373-131930729 RCOR1 

chr9:131930379-131930709 RFX5 

chr9:131930359-131930715 TAF1 

chr9:131930275-131930711 UBTF 

chr9:131930369-131930679 IRF1 

chr9:131930380-131930700 JUND 

chr9:131930343-131930699 MAX 

chr9:131930332-131930702 MAZ 

chr9:131930374-131930684 MYC 

chr9:131930403-131930699 RCOR1 

chr9:131930351-131930667 YY1 

chr9:131930381-131930677 JUN 

chr9:131930388-131930672 FOS 

chr9:131930392-131930656 CEBPB 

chr9:131930395-131930671 JUND 

chr9:131930405-131930655 FOS 

chr9:131930406-131930666 FOSL2 

chr9:131930420-131930656 BACH1 

chr9:131930423-131930659 ATF3 

chr9:131930419-131930649 JUN 

chr9:131930417-131930627 MAFF 

chr9:131930376-131930666 USF2 

chr9:131930451-131930567 MAFK 

chr9:131930484-131930584 FOS 

chr9:131930489-131930574 FOS 

chr9:131930462-131930577 NFE2 
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chr9:131930433-131930605 FOSL2 

chr9:131930433-131930610 MAFF 

chr9:131930436-131930602 MAFK 

chr9:131930442-131930598 MAFK 

chr9:131930432-131930604 MAFK 

chr9:131930210-131930654 POLR2A 

chr9:131930433-131930663 FOSL1 

chr9:131930443-131930622 BACH1 

chr9:131930438-131930615 MAFK 
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Appendix C: Supplementary data for Penney et al., 2018: “A Genome-wide 

Association Study Identifies Single Nucleotide Polymorphisms Associated 

with Time-to-Metastasis in Colorectal Cancer” 

 

Supplementary Table S1. Results from the stepwise variable selection method using 

multivariable mixture cure model to determine the final significant baseline 

characteristics 

 

Logistic regression model 

for metastasis probability 
 

Proportional hazards model 

for time-to-metastasis  

 
 

Variable 

(a vs. b) 
OR 95% CI p-value 

 
HR 95% CI p-value 

Location 

(rectum vs. colon) 
9.11 1.05-78.82 0.0447 

 
0.23 0.09-0.58 0.0018 

5-FU treatment status 

(given vs. not 

given/unknown) 

7.15 1.37-37.26 0.0195 
 

0.21 0.06-0.69 0.0103 

Stage II 

(vs. Stage I) 
1.25 0.12-13.47 0.8529 

 
3.45 0.34-35.37 0.2964 

Stage III 

(vs. Stage I) 
0.45 0.02-8.75 0.5990 

 
14.22 1.27-159.49 0.0313 

 

OR: odds ratio for metastasis (i.e. probability of being in the susceptible group). OR 

compares metastasis proportion in subgroup a with that in subgroup b. HR: hazard ratio 

for time to metastasis among susceptible patients. HR compares metastasis rate in 

subgroup a with that in subgroup b among those who are susceptible to metastasis. CI: 

confidence interval; 5-FU: 5-fluorouracil 
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Supplementary Table S2. Results from the univariable analysis conducted on the 

baseline characteristics using the Cox PH model to identify the factors to adjust in the 

multivariable analysis 

Variable (a vs. b) HR 95% CI p-value 

5-FU treatment status (given vs. not given/unknown) 1.37 0.64-2.91 0.4078 

Stage II (vs. Stage I) 1.92 0.71-5.17 0.1986 

Stage III (vs. Stage I) 3.10 1.04-9.24 0.0424 

Location (rectum vs. colon) 1.76 1.06-2.92 0.0278 

BRAF V600E mutation (present vs. absent) 2.83 1.30-6.16 0.0085 

 

HR: hazard ratio for time to metastasis among susceptible patients. HR compares 

metastasis rate in subgroup a with that in subgroup b among those who are susceptible to 

metastasis. CI: confidence interval. 5-FU: 5-fluorouracil 
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Supplementary Table S3. Demographic and clinicopathologic characteristics of the 

patient cohort and *larger NFCCR cohort 

  

Number of 

Patients in 

NFCCR 

Cohort 

(n=517)
a
 

 

Number of 

Patients in 

Sample 

Cohort 

(n=379)
a
 

 
    

Variable % Total % Total 

Sex 
Female 194 37.5% 139 36.7% 

Male 323 62.5% 240 63.3% 

Age 

≤60 205 39.7% 157 41.4% 

60-70 212 41.0% 154 40.6% 

70< 100 19.3% 68 17.9% 

Familial 

risk 

Low 260 50.3% 196 51.7% 

Intermediate/high 241 46.6% 183 48.3% 

Unknown 15 2.9% N/A N/A 

5-FU based 

treatment  

5-FU treated 279 54.0% 214 56.5% 

other/no chemo 228 44.1% 159 42.0% 

Unknown 10 1.9% 6 1.6% 

 Stage 

I 97 18.8% 81 21.4% 

II 211 40.8% 158 41.7% 

III 209 40.4% 140 36.9% 

Location 
Colon 321 62.1% 233 61.5% 

Rectum 196 37.9% 146 38.5% 

Histology 
Non-mucinous 462 89.4% 343 90.5% 

Mucinous 55 10.6% 36 9.5% 

Vascular 

invasion 

Absence 313 60.5% 242 63.9% 

Presence 167 32.3% 111 29.3% 

Unknown 37 7.2% 26 6.9% 

Lymphatic 

invasion 

Absence 306 59.2% 237 62.5% 

Presence 170 32.9% 116 30.6% 

Unknown 41 7.9% 26 6.9% 

BRAF 

V600E 

mutation 

Absence 433 83.8% 333 87.9% 

Presence 35 6.8% 19 5.0% 

Unknown 49 9.5% 27 7.1% 

 

5-FU: 5-fluorouracil. *NFCCR included 750 consenting patients diagnosed with 

colorectal cancer between 1999 and 2003 
1,2

. From this set of patients, only the patients 

with MSI-L/MSS tumors and Stage I-III patients are shown in this table.
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Supplementary Table S4. Genotypes significantly associated with time-to-metastasis identified in the univariable analysis 

using the mixture cure model 

   
Logistic regression model 

for metastasis probability 
 

Proportional hazards model 

for time-to-metastasis 
    

Genomic Location Genetic Model 
rs Number  

(genotypes a vs. b) 
OR 95% CI p-value 

 
HR 95% CI p-value 

22:17793969 Recessive 
rs5749032  

(GG vs. AA + AG) 
0.73 0.35 - 1.53 0.400 

 
9.55 4.44 - 20.55 7.70E-09 

17:77361176 Co-Dominant 
rs12949587  

(CT vs. CC) 
0.61 0.31 - 1.20 0.151 

 
7.92 3.88 - 16.16 1.29E-08 

20:15111138 Co-Dominant 
rs6110524  

(AG vs. GG) 
0.86 0.44 - 1.70 0.665 

 
7.56 3.75 - 15.27 1.66E-08 

7:33913404 Recessive 
rs3815652  

(TT vs. CC + CT) 
1.38 0.46 - 4.15 0.566 

 
20.75 7.20 -  59.80 1.96E-08 

14:100691178 Recessive 
rs756055  

(CC vs. TT + TC) 
0.44 0.18-1.03 0.058 

 
13.39 5.37 - 33.43 2.70E-08 

14:100730920 Recessive 
rs7153665  

(AA vs. GG + AG) 
0.44 0.18-1.04 0.058 

 
13.39 5.37 - 33.44 2.70E-08 

11:100430053 Recessive 
rs4754687  

(AA vs. CC + CA) 
0.60 0.25 - 1.44 0.255 

 
13.33 5.34 - 33.28 2.90E-08 

5:155345221 Dominant 
rs2163746  

(CT + CC vs. TT) 
0.60 0.31 - 1.15 0.124 

 
6.45 3.29 - 12.63 5.40E-08 

5:155361116 Dominant 
rs17053011  

(TG + TT vs. GG) 
0.60 0.31 - 1.16 0.124 

 
6.45 3.29 - 12.64 5.40E-08 

 

OR: odds ratio for metastasis (i.e. probability of being in the susceptible group). OR compares metastasis proportion in 

subgroup a with that in subgroup b. HR: hazard ratio for time to metastasis among susceptible patients. HR compares 

metastasis rate in subgroup a with that in subgroup b among those who are susceptible to metastasis. CI: confidence interval 



190 

 

Supplementary Figure S1. Conditional survival functions for the nine SNPs identified in 

the univariable analysis using the mixture cure model 

  

 

Under the assumptions of the mixture cure model, the population is viewed as a mixture 

of susceptible and non-susceptible individuals to metastasis, where susceptible refers to 

patients who will experience metastasis and non-susceptible individuals are long-term 

metastasis-free survivors who are viewed as (statistically) cured. For example, Figure 4a 

shows the Kaplan-Meier estimate of the survival curves of time-to-metastasis ( ) for each 

genotype category of a specific SNP rs5749032 (i.e., Kaplan-Meier estimates of the 

survival function                     where   denotes the covariate (genotype 

category of the corresponding polymorphism)). On the other hand, the plots in this figure 
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show the estimated conditional survival curves for the susceptible group under each   

level (i.e., Kaplan-Meier estimates of                                           

which is the probability that the susceptible person will survive beyond a specified time   

without metastasis). Hence, in Figure 4a, the probability of survival is for the population 

under consideration including both susceptible and non-susceptible individuals, but the 

plots in this figure are for the survival function of time-to-metastasis in the group of 

susceptible individuals. The conditional survival curves for the susceptible group are 

obtained from the mixture cure model                              

             where      denotes the probability of being long-term metastasis-free 

survivor and thus        is the probability of being susceptible to metastasis. Hence, 

the curves in this figure were obtained by plugging the Kaplan-Meier estimates of        

and      in                                 . 
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Supplementary Table S5. Results from the multivariable analysis of rs12949587 using the mixture cure model under the co-

dominant genetic model 

 
Logistic regression model for 

metastasis probability 
 

Proportional hazards model for 

time-to-metastasis  

 
 

Variable (a vs. b) OR 95% CI p-value   HR 95% CI p-value 

rs12949587 (CT vs. CC) 0.66 0.32-1.37 0.2614 

 

7.56 3.44-16.61 4.63E-07 

rs12949587 (TT vs. CC) 0.48 0.04-5.27 0.5486 

 

2.21 0.18-27.82 0.5397 

Location (rectum vs. colon) 2.11 1.08-4.11 0.0292 

 

0.47 0.23-0.95 0.0351 

5-FU treatment (given vs. not given/unknown) 1.96 0.76-5.02 0.1617 

 

0.62 0.20-1.97 0.4197 

Stage II (vs. Stage I) 2.51 0.82-7.73 0.1076 

 

0.81 0.21-3.16 0.7659 

Stage III (vs. Stage I) 2.99 0.80-11.20 0.1051   1.96 0.37-10.26 0.4269 

OR: odds ratio for metastasis (i.e. probability of being in the susceptible group). OR compares metastasis proportion in 

subgroup a with that in subgroup b. HR: hazard ratio for time to metastasis among susceptible patients. HR compares 

metastasis rate in subgroup a with that in subgroup b among those who are susceptible to metastasis. CI: confidence interval; 5-

FU: 5-fluorouracil 
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Supplementary Table S6. Results from the multivariable analysis of rs6110524 using the mixture cure model under the co-

dominant genetic model 

 
Logistic regression model for 

metastasis probability 
 

Proportional hazards model for 

time-to-metastasis  

 
 

Variable (a vs. b) OR 95% CI p-value   HR 95% CI p-value 

rs6110524 (AG vs. GG) 0.95 0.44-2.04 0.8870 

 

4.80 2.00-11.53 0.0005 

rs6110524 (AA vs. GG) 1.55 0.18-13.39 0.6886 

 

5.24 0.93-29.65 0.0608 

Location (rectum vs. colon) 2.33 1.05-5.15 0.0366 

 

0.40 0.17-0.95 0.0379 

5-FU treatment (given vs. not given/unknown) 2.24 0.78-6.48 0.1352 

 

0.40 0.12-1.39 0.1491 

Stage II (vs. Stage I) 2.24 0.70-7.17 0.1728 

 

1.20 0.31-4.68 0.7958 

Stage III (vs. Stage I) 2.47 0.57-10.74 0.2274   3.18 0.52-19.36 0.2094 

OR: odds ratio for metastasis (ie. probability of being in the susceptible group). OR compares metastasis proportion in 

subgroup a with that in subgroup b. HR: hazard ratio for time to metastasis among susceptible patients. HR compares 

metastasis rate in subgroup a with that in subgroup b among those who are susceptible to metastasis. CI: confidence interval; 5-

FU: 5-fluorouracil 
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Supplementary Table S7. Results from the multivariable analysis of rs17053011 using the mixture cure model under the 

dominant genetic model 

 
Logistic regression model for 

metastasis probability 
 

Proportional hazards model for 

time-to-metastasis  

 
 

Variable (a vs. b) OR 95% CI p-value   HR 95% CI p-value 

rs17053011 (TG + TT vs. GG) 0.49 0.23-1.07 0.0746 

 

9.65 3.67-25.37 4.29E-06 

Location (rectum vs. colon) 2.33 1.12-4.85 0.0230 

 

0.44 0.21-0.92 0.0296 

5-FU treatment (given vs. not given/unknown) 2.24 0.73-6.91 0.1606 

 

0.68 0.17-2.79 0.5935 

Stage II (vs. Stage I) 2.16 0.55-8.46 0.2706 

 

1.14 0.21-6.09 0.8791 

Stage III (vs. Stage I) 1.86 0.36-9.58 0.4568   4.78 0.69-33.40 0.1143 

OR: odds ratio for metastasis (ie. probability of being in the susceptible group). OR compares metastasis proportion in 

subgroup a with that in subgroup b. HR: hazard ratio for time to metastasis among susceptible patients. HR compares 

metastasis rate in subgroup a with that in subgroup b among those who are susceptible to metastasis. CI: confidence interval; 5-

FU: 5-fluorouracil 

  



195 

 

Supplementary Table S8. Results from the multivariable analysis of rs2163746 using the mixture cure model under the 

dominant genetic model 

 
Logistic regression model for 

metastasis probability 
 

Proportional hazards model for 

time-to-metastasis  

 
 

Variable (a vs. b) OR 95% CI p-value   HR 95% CI p-value 

rs2163746 (CT + CC vs. TT) 0.49 0.23-1.07 0.0746 

 

9.65 3.67-25.37 4.29E-06 

Location (rectum vs. colon) 2.33 1.12-4.85 0.0230 

 

0.44 0.21-0.92 0.0296 

5-FU treatment (given vs. not given/unknown) 2.24 0.73-6.91 0.1606 

 

0.68 0.17-2.79 0.5935 

Stage II (vs. Stage I) 2.16 0.55-8.46 0.2706 

 

1.14 0.21-6.09 0.8791 

Stage III (vs. Stage I) 1.86 0.36-9.58 0.4568   4.78 0.69-33.40 0.1143 

OR: odds ratio for metastasis (ie. probability of being in the susceptible group). OR compares metastasis proportion in 

subgroup a with that in subgroup b. HR: hazard ratio for time to metastasis among susceptible patients. HR compares 

metastasis rate in subgroup a with that in subgroup b among those who are susceptible to metastasis. CI: confidence interval; 5-

FU: 5-fluorouracil 
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Supplementary Table S9. Results from the multivariable analysis of rs3815652 using the mixture cure model under the 

recessive genetic model 

 
Logistic regression model for 

metastasis probability 
 

Proportional hazards model for 

time-to-metastasis  

 
 

Variable (a vs. b) OR 95% CI p-value   HR 95% CI p-value 

rs3815652 (TT vs. CC + CT) 0.59 0.13-2.65 0.4878 

 

12.97 3.26-51.66 0.0003 

Location (rectum vs. colon) 4.17 1.28-13.62 0.0179 

 

0.28 0.13-0.59 0.0008 

5-FU treatment (given vs. not given/unknown) 4.88 0.82-28.97 0.0810 

 

0.20 0.05-0.77 0.0197 

Stage II (vs. Stage I) 2.27 0.62-8.34 0.2171 

 

1.80 0.43-7.60 0.4218 

Stage III (vs. Stage I) 1.13 0.14-9.22 0.9070   7.67 1.10-53.51 0.0398 

OR: odds ratio for metastasis (ie. probability of being in the susceptible group). OR compares metastasis proportion in 

subgroup a with that in subgroup b. HR: hazard ratio for time to metastasis among susceptible patients. HR compares 

metastasis rate in subgroup a with that in subgroup b among those who are susceptible to metastasis. CI: confidence interval; 5-

FU: 5-fluorouracil 
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Supplementary Table S10. Results from the multivariable analysis of rs4754687 using the mixture cure model under the 

recessive genetic model 

 
Logistic regression model for 

metastasis probability 
 

Proportional hazards model for 

time-to-metastasis  

 
 

Variable (a vs. b) OR 95% CI p-value   HR 95% CI p-value 

rs4754687 (AA vs. CC + CA) 0.51 0.18-1.43 0.2012 

 

8.13 2.59-25.53 0.0003 

Location (rectum vs. colon) 2.61 1.06-6.39 0.0366 

 

0.34 0.15-0.75 0.0082 

5-FU treatment (given vs. not given/unknown) 2.35 0.70-7.85 0.1656 

 

0.48 0.11-2.10 0.3314 

Stage II (vs. Stage I) 2.28 0.68-7.64 0.1799 

 

1.20 0.28-5.18 0.8110 

Stage III (vs. Stage I) 2.38 0.48-11.92 0.2901   3.09 0.40-23.70 0.2783 

OR: odds ratio for metastasis (ie. probability of being in the susceptible group). OR compares metastasis proportion in 

subgroup a with that in subgroup b. HR: hazard ratio for time to metastasis among susceptible patients. HR compares 

metastasis rate in subgroup a with that in subgroup b among those who are susceptible to metastasis. CI: confidence interval; 5-

FU: 5-fluorouracil 
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Supplementary Table S11. Results from the multivariable analysis of rs5749032 using the mixture cure model under the 

recessive genetic model 

 
Logistic regression model for 

metastasis probability 
 

Proportional hazards model for 

time-to-metastasis  

 
 

Variable (a vs. b) OR 95% CI p-value   HR 95% CI p-value 

rs5749032 (GG vs. AA + AG) 0.38 0.14-1.07 0.0661 

 

15.86 6.83-36.83 1.28E-10 

Location (rectum vs. colon) 4.01 1.65-9.71 0.0021 

 

0.28 0.15-0.52 4.56E-05 

5-FU treatment (given vs. not given/unknown) 5.20 1.30-20.71 0.0194 

 

0.14 0.05-0.41 0.0003 

Stage II (vs. Stage I) 2.57 0.78-8.51 0.1214 

 

1.60 0.46-5.63 0.4624 

Stage III (vs. Stage I) 1.18 0.22-6.38 0.8439   8.50 1.82-39.64 0.0064 

OR: odds ratio for metastasis (ie. probability of being in the susceptible group). OR compares metastasis proportion in 

subgroup a with that in subgroup b. HR: hazard ratio for time to metastasis among susceptible patients. HR compares 

metastasis rate in subgroup a with that in subgroup b among those who are susceptible to metastasis. CI: confidence interval; 5-

FU: 5-fluorouracil 
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Supplementary Table S12. Results from the multivariable analysis of rs756055 using the mixture cure model under the 

recessive genetic model 

 
Logistic regression model for 

metastasis probability 
 

Proportional hazards model for 

time-to-metastasis  

 
 

Variable (a vs. b) OR 95% CI p-value   HR 95% CI p-value 

rs756055 (CC vs. TT + TC) 0.28 0.10-0.82 0.0204 

 

7.58 2.53-22.65 0.0003 

Location (rectum vs. colon) 2.47 1.02-5.98 0.0442 

 

0.36 0.17-0.78 0.0097 

5-FU treatment (given vs. not given/unknown) 2.72 0.77-9.64 0.1208 

 

0.41 0.10-1.79 0.2389 

Stage II (vs. Stage I) 2.17 0.63-7.48 0.2177 

 

1.38 0.29-6.59 0.6845 

Stage III (vs. Stage I) 2.13 0.40-11.35 0.3771   3.85 0.45-33.07 0.2185 

OR: odds ratio for metastasis (ie. probability of being in the susceptible group). OR compares metastasis proportion in 

subgroup a with that in subgroup b. HR: hazard ratio for time to metastasis among susceptible patients. HR compares 

metastasis rate in subgroup a with that in subgroup b among those who are susceptible to metastasis. CI: confidence interval; 5-

FU: 5-fluorouracil 
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Supplementary Table S13. Results from the multivariable analysis of rs7153665 using the mixture cure model under the 

recessive genetic model 

 
Logistic regression model for 

metastasis probability 
 

Proportional hazards model for 

time-to-metastasis  

 
 

Variable (a vs. b) OR 95% CI p-value   HR 95% CI p-value 

rs7153665 (AA vs. GG + AG) 0.28 0.10-0.82 0.0204 

 

7.58 2.53-22.65 0.0003 

Location (rectum vs. colon) 2.47 1.02-5.98 0.0442 

 

0.36 0.17-0.78 0.0097 

5-FU treatment (given vs. not given/unknown) 2.72 0.77-9.64 0.1208 

 

0.41 0.10-1.79 0.2389 

Stage II (vs. Stage I) 2.17 0.63-7.48 0.2177 

 

1.38 0.29-6.59 0.6845 

Stage III (vs. Stage I) 2.13 0.40-11.35 0.3771   3.85 0.45-33.07 0.2185 

OR: odds ratio for metastasis (ie. probability of being in the susceptible group). OR compares metastasis proportion in 

subgroup a with that in subgroup b. HR: hazard ratio for time to metastasis among susceptible patients. HR compares 

metastasis rate in subgroup a with that in subgroup b among those who are susceptible to metastasis. CI: confidence interval; 5-

FU: 5-fluorouracil 
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Supplementary Table S14. Results for all significant SNPs in the univariable Cox PH analysis and subsequent multivariable results 

  
Univariable 

 

Multivariable 

Genomic Location rs Number (Genotype) HR 95% CI p-value   HR 95% CI p-value 

20:16189263 rs2327990 (TT) 21.97 8.42 - 57.33 2.74E-10 
 

22.58 8.32-61.31 9.59E-10 

3:134513356 rs11918092 (CC) 216.98 35.64 - 1321.13 5.32E-09 
 

535.33 63.20-4534.30 8.23E-09 

3:134515336 rs3732568 (AA) 216.98 35.64 - 1321.13 5.32E-09 
 

535.33 63.20-4534.30 8.23E-09 

3:59930672 rs2366964 (CC) 41.19 11.81 - 143.66 5.40E-09 
 

56.53 14.98-213.26 2.59E-09 

2:175205513 rs7582977 (CC) 134.32 25.76 - 700.33 6.02E-09 
 

82.61 14.50-470.67 6.63E-07 

13:48118782 rs9534678 (AA) 133.60 25.62 - 696.59 6.26E-09 
 

83.96 14.71-479.13 6.17E-07 

2:86015121 rs13402783 (GG) 20.91 7.47 - 58.50 6.94E-09 
 

13.03 4.50-37.78 2.25E-06 

2:86013029 rs13386681 (TT) 20.79 7.47 - 58.50 7.40E-09 
 

12.86 4.43-37.27 2.57E-06 

2:6769988 rs1563948 (AA) 34.43 10.35 - 114.58 7.97E-09 
 

33.97 9.57-120.54 4.87E-08 

2:6773920 rs11692570 (TT) 34.43 10.35 - 114.58 7.97E-09 
 

33.97 9.57-120.54 4.87E-08 

2:6777992 rs2219613 (TT) 34.43 10.35 - 114.58 7.97E-09 
 

33.97 9.57-120.54 4.87E-08 

2:6779277 rs11694697 (TT) 34.43 10.35 - 114.58 7.97E-09 
 

33.97 9.57-120.54 4.87E-08 

5:148172928 rs9285673 (CC) 36.70 10.53 - 127.95 1.56E-08 
 

19.47 5.41-70.13 5.60E-06 

15:89420974 rs17201864 (TT) 19.06 6.86 - 52.98 1.60E-08 
 

11.01 3.76-32.24 1.20E-05 

9:119519588 rs1372330 (AA) 36.51 10.47 - 127.34 1.67E-08 
 

27.15 7.66-96.27 3.20E-07 

6:91187510 rs1145724 (GG) 30.76 9.27 - 102.03 2.14E-08 
 

36.43 10.21-129.93 3.00E-08 

4:53893156 rs17082301 (AA) 129.98 23.29 - 725.52 2.89E-08 
 

81.63 8.85-753.27 0.0001 

1:190131750 rs10920654 (TT) 76.85 16.51 - 357.84 3.16E-08 
 

32.48 5.86-180.04 6.78E-05 

10:98422896 rs1023741 (CC) 18.64 6.57 - 52.84 3.76E-08 
 

17.77 5.07-62.25 6.87E-06 

4:14296300 rs1426107 (AA) 28.08 8.53 - 92.45 4.13E-08 
 

14.10 2.70-73.53 0.0017 

18:40691675 rs3861289 (AA) 19.16 6.62 - 55.40 5.04E-08 
 

8.73 2.58-29.54 0.0005 

17:7396267 rs4265880 (AA) 98.28 18.72 - 515.88 5.86E-08 
 

64.74 11.27-371.86 2.93E-06 

17:7397043 rs4239258 (TT) 98.28 18.72 - 515.88 5.86E-08 
 

64.74 11.27-371.86 2.93E-06 

17:7404991 rs2228130 (TT) 98.28 18.72 - 515.88 5.86E-08 
 

64.74 11.27-371.86 2.93E-06 
17:7418109 rs9989479 (AA) 98.28 18.72 - 515.88 5.86E-08   64.74 11.27-371.86 2.93E-06 

HR: hazard ratio for time to metastasis among susceptible patients. CI: confidence interval; 5-FU: 5-fluorouracil
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Supplementary Table S15. Results from the multivariable analysis of rs2327990 using 

the Cox PH model under the recessive genetic model 

Variable (a vs. b) HR 95% CI p-value 

rs2327990 (TT vs. CC + CT) 22.58 8.32-61.31 9.59E-10 

Location (rectum vs. colon) 1.69 1.01-2.80 0.044 

5-FU treatment (given vs. not given/unknown) 1.32 0.62-2.83 0.469 

Stage II (vs. Stage I) 2.14 0.78-5.87 0.139 

Stage III (vs. Stage I) 3.46 1.13-10.54 0.029 

BRAF V600E mutation (present vs. absent) 3.01 1.38-6.56 0.005 

HR: hazard ratio for time to metastasis among susceptible patients. HR compares 

metastasis rate in subgroup a with that in subgroup b among those who are susceptible to 

metastasis. CI: confidence interval; 5-FU: 5-fluorouracil 
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Supplementary Table S16. Results from the multivariable analysis of rs3732568 using 

the Cox PH model under the recessive genetic model 

Variable (a vs. b) HR 95% CI p-value 

rs3732568 (AA vs. CC + CA) 535.33 63.20-4534.30 8.23E-09 

Location (rectum vs. colon) 1.76 1.06-2.93 0.029 

5-FU treatment (given vs. not given/unknown) 1.55 0.71-3.38 0.269 

Stage II (vs. Stage I) 1.69 0.62-4.63 0.306 

Stage III (vs. Stage I) 2.75 0.91-8.31 0.074 

BRAF V600E mutation (present vs. absent) 2.94 1.35-6.41 0.007 

HR: hazard ratio for time to metastasis among susceptible patients. HR compares 

metastasis rate in subgroup a with that in subgroup b among those who are susceptible to 

metastasis. CI: confidence interval; 5-FU: 5-fluorouracil 

  



204 

 

Supplementary Table S17. Results from the multivariable analysis of rs2219613 using 

the Cox PH model under the recessive genetic model 

Variable (a vs. b) HR 95% CI p-value 

rs2219613 (TT vs. CC + CT) 33.97 9.57-120.54 4.87E-08 

Location (rectum vs. colon) 1.96 1.17-3.30 0.011 

5-FU treatment (given vs. not given/unknown) 1.29 0.60-2.75 0.513 

Stage II (vs. Stage I) 2.00 0.74-5.40 0.173 

Stage III (vs. Stage I) 3.07 1.02-9.21 0.046 

BRAF V600E mutation (present vs. absent) 3.16 1.44-6.91 0.004 

HR: hazard ratio for time to metastasis among susceptible patients. HR compares 

metastasis rate in subgroup a with that in subgroup b among those who are susceptible to 

metastasis. CI: confidence interval; 5-FU: 5-fluorouracil 
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Supplementary Table S18. Results from the multivariable analysis of rs11692570 using 

the Cox PH model under the recessive genetic model 

Variable (a vs. b) HR 95% CI p-value 

rs11692570 (TT vs. CC + CT) 33.97 9.57-120.54 4.87E-08 

Location (rectum vs. colon) 1.96 1.17-3.30 0.011 

5-FU treatment (given vs. not given/unknown) 1.29 0.60-2.75 0.513 

Stage II (vs. Stage I) 2.00 0.74-5.40 0.173 

Stage III (vs. Stage I) 3.07 1.02-9.21 0.046 

BRAF V600E mutation (present vs. absent) 3.16 1.44-6.91 0.004 

HR: hazard ratio for time to metastasis among susceptible patients. HR compares 

metastasis rate in subgroup a with that in subgroup b among those who are susceptible to 

metastasis. CI: confidence interval; 5-FU: 5-fluorouracil 
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Supplementary Table S19. Results from the multivariable analysis of rs11918092 using 

the Cox PH model under the recessive genetic model 

Variable (a vs. b) HR 95% CI p-value 

rs11918092 (CC vs. AA + AC) 535.33 63.20-4534.30 8.23E-09 

Location (rectum vs. colon) 1.76 1.06-2.93 0.029 

5-FU treatment (given vs. not given/unknown) 1.55 0.71-3.38 0.269 

Stage II (vs. Stage I) 1.69 0.62-4.63 0.306 

Stage III (vs. Stage I) 2.75 0.91-8.31 0.074 

BRAF V600E mutation (present vs. absent) 2.94 1.35-6.41 0.007 

HR: hazard ratio for time to metastasis among susceptible patients. HR compares 

metastasis rate in subgroup a with that in subgroup b among those who are susceptible to 

metastasis. CI: confidence interval; 5-FU: 5-fluorouracil 
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Supplementary Table S20. Results from the multivariable analysis of rs1145724 using 

the Cox PH model under the recessive genetic model 

Variable (a vs. b) HR 95% CI p-value 

rs1145724 (GG vs AA + AG) 36.43 10.21-129.93 3.00E-08 

Location (rectum vs. colon) 1.85 1.12-3.06 0.016 

5-FU treatment (given vs. not given/unknown) 1.23 0.58-2.62 0.588 

Stage II (vs. Stage I) 1.91 0.71-5.17 0.203 

Stage III (vs. Stage I) 3.33 1.12-9.92 0.031 

BRAF V600E mutation (present vs. absent) 3.07 1.41-6.70 0.005 

HR: hazard ratio for time to metastasis among susceptible patients. HR compares 

metastasis rate in subgroup a with that in subgroup b among those who are susceptible to 

metastasis. CI: confidence interval; 5-FU: 5-fluorouracil 
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Supplementary Table S21. Results from the multivariable analysis of rs11694697 using 

the Cox PH model under the recessive genetic model 

Variable (a vs. b) HR 95% CI p-value 

rs11694697 (TT vs CC + CT) 33.97 9.57-120.54 4.87E-08 

Location (rectum vs. colon) 1.96 1.17-3.30 0.011 

5-FU treatment (given vs. not given/unknown) 1.29 0.60-2.75 0.513 

Stage II (vs. Stage I) 2.00 0.74-5.40 0.173 

Stage III (vs. Stage I) 3.07 1.02-9.21 0.046 

BRAF V600E mutation (present vs. absent) 3.16 1.44-6.91 0.004 

HR: hazard ratio for time to metastasis among susceptible patients. HR compares 

metastasis rate in subgroup a with that in subgroup b among those who are susceptible to 

metastasis. CI: confidence interval; 5-FU: 5-fluorouracil 
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Supplementary Table S22. Results from the multivariable analysis of rs1563948 using 

the Cox PH model under the recessive genetic model 

Variable (a vs. b) HR 95% CI p-value 

rs1563948 (AA vs GG + GA) 33.97 9.57-120.54 4.87E-08 

Location (rectum vs. colon) 1.96 1.17-3.30 0.011 

5-FU treatment (given vs. not given/unknown) 1.29 0.60-2.75 0.513 

Stage II (vs. Stage I) 2.00 0.74-5.40 0.173 

Stage III (vs. Stage I) 3.07 1.02-9.21 0.046 

BRAF V600E mutation (present vs. absent) 3.16 1.44-6.91 0.004 

HR: hazard ratio for time to metastasis among susceptible patients. HR compares 

metastasis rate in subgroup a with that in subgroup b among those who are susceptible to 

metastasis. CI: confidence interval; 5-FU: 5-fluorouracil 
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Supplementary Table S23. Results from the multivariable analysis of rs2366964 using 

the Cox PH model under the recessive genetic model 

Variable (a vs. b) HR 95% CI p-value 

rs2366964 (CC vs TT + TC) 56.53 14.98-213.26 2.59E-09 

Location (rectum vs. colon) 1.72 1.03-2.86 0.038 

5-FU treatment (given vs. not given/unknown) 1.45 0.68-3.12 0.336 

Stage II (vs. Stage I) 1.69 0.62-4.59 0.307 

Stage III (vs. Stage I) 2.91 0.97-8.72 0.057 

BRAF V600E mutation (present vs. absent) 2.96 1.36-6.45 0.006 

HR: hazard ratio for time to metastasis among susceptible patients. HR compares 

metastasis rate in subgroup a with that in subgroup b among those who are susceptible to 

metastasis. CI: confidence interval; 5-FU: 5-fluorouracil 
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Supplementary Figure S2. Survival curves for SNPs with the strongest association to 

risk of metastasis in the mixture cure model 
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Supplementary Figure S3. Known and hypothesized links between the intergenic SNPs, 

nearby genes, and the risk of metastasis 

 

All SNPs except rs1145724, are discussed in Discussion section of the manuscript. The 

intergenic SNP rs1145724 was identified by the Cox PH model as significantly associated 

with time to metastasis. According to UCSC genome browser 
3
 this SNP is flanked by a 
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miRNA, miR562, and a mitogen-activated protein kinase gene, MAP3K7. There is no 

scientific literature linking miR562 to colorectal cancer. MAP3K7, on the other hand, has 

been shown to be linked to colorectal cancer in several studies 
4-6

. MAP3K7 (TAK1) 

mediates signal transduction in several pathways, including negative regulation of Wnt 

signaling 
7
. However, at the present time there is no known connection between this SNP, 

these genes, or colorectal cancer metastasis. It is also possible that the SNPs identified in 

this study may have long-distance regulatory functions. 
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