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Abstract

In the microelectronics industry, thermal issues due to self-heating are major prob-

lems that affect the performance, efficiency, and reliability of devices. The recent

trend of producing advanced devices with smaller sizes, high power densities, and

extreme performance makes thermal management an increasingly important factor in

the development of microelectronic systems. In most applications, the microelectronic

systems are modeled as rectangular flux channels, where heat is generated in one or

more small heat-source areas and flows by conduction through the system to spread

the heat into a larger convective heat-sink area, where the generated heat is then

transferred by convection into an ambient fluid.

In this work, analytical solutions for the temperature distribution and thermal

resistance in three-dimensional (3D) flux channels with nonuniform properties and

complex structures are obtained. First, general analytical solutions in 3D isotropic

flux channels with nonuniform heat transfer coefficients along the sink plane are pre-

sented using the method of separation of variables combined with the method of least

squares. Different parametric studies have been conducted to study the effect of differ-

ent variable heat transfer coefficient functions with the same average conductance on

the temperature field. Second, general analytical solutions of 3D isotropic flux chan-

nels with temperature-dependent thermal conductivities and a uniform heat transfer

coefficient along the sink plane are presented by means of the Kirchhoff transform

method. The solutions are used to study the effect of the temperature-dependent

thermal conductivity on the temperature rise and thermal resistance for different con-

ductivity functions. Third, general analytical solutions in 3D flux channels of mul-

tilayered structures consisting of a finite number of orthotropic layers with constant

and temperature-dependent thermal conductivities are obtained. All the analytical

solutions have been verified by conducting numerical simulations based on the finite

element method (FEM) using the Analysis of Systems (ANSYS) software package.
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Statement of contribution

This thesis contributes to the area of heat transfer. It introduces analytical solutions

for the temperature distribution and thermal resistance in 3D flux channels with

nonuniform properties and complex structures. This contribution includes developing

analytical solutions for the temperature field in flux channels with nonuniform heat

transfer coefficients, multilayered structures with orthotropic conductivity tensor and

interfacial conductance, nonlinear conduction in single and multilayered structures.

A variety of different mathematical models, techniques, and transformations are used

to illustrate the construction of the developed analytical solutions. Moreover, numer-

ical simulations based on the FEM are conducted in order to verify these analytical

solutions and to demonstrate their robustness.

This work is considered of significant importance for thermal analysts and engineers

in the microelectronics industry as it provides computational algorithms and tools for

obtaining the precise thermal behavior and the optimal configuration of the micro-

electronic devices rather than conducting the challenging experimental work. In fact,

the developed analytical solutions can be used in other transport phenomena, such as

mass transfer according to some analogies that can be made between the transport

phenomena laws.

The findings presented in Chapters 2-6 are considered original scholarship and distinct

contributions to knowledge.
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Chapter 1

Introduction and Overview

1.1 Motivation

In the electronics industry, the development of electronic equipment has come a long

way from large and low power performing devices to advanced devices with smaller

sizes and high power densities. In the past few decades, the development of electronic

devices has received significant attention in producing smaller, more flexible, and

higher power density devices. This includes the development of new materials, tools,

processes, and design methodologies [1, 2].

As electronic devices are rapidly shrinking in size while their power density contin-

ues to increase, thermal management becomes an increasingly important factor in the

development of electronic devices to improve their functionality, performance, and re-

liability. In most electronic devices, such as transistors, light emitting diodes (LEDs),

integrated circuits (ICs), and microprocessors, heat is generated by the flow of an elec-

trical current in the device, where the amount of the generated heat is proportional

to the power output of the device.

In many electronic devices, the geometry of the device is considered as a 3D
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1.2 Objectives

In the modern microelectronics industry, the development of microelectronic systems

involves using new anisotropic materials, multilayered structures, different heat-sink

structures, and different cooling techniques in manufacturing the electronic systems.

In particular, the different heat-sink structures and the different cooling techniques

might present a nonuniform heat transfer coefficient along the sink plane. Further,

some anisotropic materials with different thermal conductivities in the three spatial

directions (orthotropic) have received significant attention in the development of mi-

croelectronic systems of single or multilayered structures. In most of these materials,

the thermal conductivities are temperature dependent. Hence, the development of an-

alytical solutions for the temperature field of such complex structures becomes more

challenging. In most cases, the development of analytical solutions for the temper-

ature distribution in the microelectronic systems requires the employment of some

advanced mathematical transformations and techniques. The main objectives of the

present work are as follows:

• Develop analytical solutions for the temperature distribution and total ther-

mal resistance of an isotropic 3D flux channel with a nonuniform heat transfer

coefficient along the sink plane and study the effect of different heat transfer

coefficient distributions on thermal analysis, see Fig. 1.2a.

• Present analytical solutions for the temperature distribution and total thermal

resistance of an isotropic 3D flux channel with a temperature-dependent thermal

conductivity and study the effect of different temperature-dependent thermal

conductivity functions on thermal analysis.

• Develop analytical solutions for the temperature distribution and total thermal

resistance of a multilayered 3D flux channel, consisting ofN -layers of orthotropic
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where ρ is the material density, cp is the specific heat constant, ġ is the internal

heat generation rate per unit volume, and ¯̄k is the thermal conductivity tensor of

the material. In the steady-state case with no internal generation, the general heat

conduction equation reduces to:

∇ · (¯̄k ∇T ) = 0. (1.2)

The thermal conductivity of the medium is presented in tensor form and is kept

included within the divergence operator (∇·) to account for anisotropic materials and

temperature-dependent thermal conductivity relationships. The general form of the

thermal conductivity tensor ¯̄k is considered as a second-order tensor that involves nine

components given by [5, page 615]:

¯̄k =









k11 k12 k13

k21 k22 k23

k31 k32 k33









, (1.3)

where {kij}3i,j=1 are the conductivity coefficients with i, j corresponding to the three

Cartesian coordinates x, y, and z, i.e., x ≡ 1, y ≡ 2, z ≡ 3. Moreover, the conductivity

coefficients kij might be constants or presented as temperature-dependent functional

relationships, i.e., kij = kij(T ), depending on the material’s properties. Furthermore,

when the off-diagonal elements of the conductivity tensor matrix vanish, i.e., kij = 0

for i 6= j, the system is called orthotropic and the conductivity tensor matrix becomes:

¯̄k =









k11 0 0

0 k22 0

0 0 k33









=









kx 0 0

0 ky 0

0 0 kz









, (1.4)
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and the steady-state conduction equation becomes:

∂

∂x

(

kx
∂T

∂x

)

+
∂

∂y

(

ky
∂T

∂y

)

+
∂

∂z

(

kz
∂T

∂z

)

= 0. (1.5)

Moreover, in the case of equal diagonal components in the orthotropic system, i.e.,

kx = ky = kz = k, the system is called isotropic and the steady-state heat conduction

equation reduces to:

∇ · (k ∇T ) = 0, (1.6)

which is reduced in the case of constant thermal conductivity to the Laplace equation

given by:

∇2T = 0. (1.7)

1.3.2 Boundary Conditions

The main linear boundary conditions that may appear on the system’s boundaries

can be classified into three types:

1. Boundary conditions of the first type (prescribed temperature or

Dirichlet conditions).

This boundary condition is considered when the temperature distribution is

specified along the boundary surface as:

T |boundary = T0, or T |boundary = f(r̂), (1.8)

where the boundary temperature can be a constant or changing with position

according to the function f(r̂), where r̂ is the position vector (r̂ = (x, y, z)).



7

2. Boundary conditions of the second type (prescribed heat flux or Neu-

mann conditions).

This boundary condition is considered when the heat flux is specified along the

boundary surface as:

kn
∂T

∂n

∣
∣
∣
∣
boundary

= q, or kn
∂T

∂n

∣
∣
∣
∣
boundary

= g(r̂), (1.9)

where ∂/∂n denotes the derivative along the outward normal at the boundary

surface and kn is the normal thermal conductivity component. The heat flux

at the boundary surface can be a constant or changing with position according

to the function g(r̂). As a special case, when no heat flow enters or leaves the

system though the boundary surface, the surface is called adiabatic or perfectly

insulated, i.e.,

∂T

∂n

∣
∣
∣
∣
boundary

= 0. (1.10)

3. Boundary conditions of the third type (convection or Robin condi-

tions).

This boundary condition is considered when the heat is transferred from a con-

ductive medium into a surrounding ambient fluid, defined by:

−kn
∂T

∂n

∣
∣
∣
∣
boundary

= hs(T |boundary − T∞), (1.11)

where T∞ is a reference temperature of the surrounding ambient fluid and hs is

the heat transfer coefficient which is usually taken as a constant. However, it

can be a function of position hs(r̂) with nonuniform values along the boundary

surface.
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1.3.3 Thermal Spreading Resistance

Thermal resistance is a measurement of a temperature gradient that represents how

an object resists a heat flow. In modeling microelectronic devices and cooling sys-

tems, the measurement of the thermal resistance plays a significant role in the thermal

management of the systems as it gives an index of the effectiveness of the cooling sys-

tems, where it is always desirable to minimize the thermal resistance of the system.

Thermal spreading resistance (TSR) occurs as heat flows by conduction from a small

source to a larger sink with different cross-sectional areas, as shown in Fig. 1.3. Ther-

mal spreading resistance is an increasingly important topic in thermal management

of microelectronic systems because, in some cases, it has a large contribution of more

than 50% to the total thermal resistance.

For a single heat source spreading heat to a larger extended sink area, the total

thermal resistance of the system can be defined as [7, 8]:

Rt =
Tc − T∞

Q
, (1.12)

where Tc is the mean temperature over the heat-source area, and Q is the total heat

input of the system.

1.4 Methodology

Throughout the thesis, the following mathematical methods, techniques, and transfor-

mations are used to obtain the solutions for the temperature distribution and thermal

resistance of the different models under study.
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the exception of a single nonhomogeneous boundary condition;

• For transient problems, all the boundary conditions are homogeneous and the

initial condition is nonhomogeneous.

If the above requirements are not satisfied, other approaches have to be applied first

before using separation of variables, such as the principle of superposition, shifting,

splitting the problem, using mathematical transformations, or other mathematical

techniques.

The application of the separation of variables method to a linear PDE defined

in an orthogonal coordinate system (like, Cartesian, cylindrical, and spherical co-

ordinate systems) can be applied by expressing the dependent variable of the PDE

in a separable form of the orthogonal coordinates. For example, when considering

the linear steady-state heat conduction equation in the Cartesian coordinate system,

represented by the Laplace equation given in Eq. (1.7), the method of separation of

variables can be employed to obtain a general series solution of the problem. This

solution can be obtained by assuming that the solution will take the following product

form:

T (x, y, z) = X(x) · Y (y) · Z(z), (1.13)

and when substituting this form into the Laplace equation, we can obtain a system

of ODEs, each of its equations depends on one variable and separation constants [11].

Moreover, the use of the method of separation of variables reduces the PDE into a

system of ODEs that involves the well known Sturm-Liouville problem. The general

Sturm-Liouville equation for u(x) defined on the interval [a, b] can be expressed by

the following linear homogeneous ODE [10, 12, 13]:

d

dx

[

p(x)
du

dx

]

+ [v(x) + λw(x)]u(x) = 0, (1.14)
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subject to boundary conditions of the following types:

1. A1u(a) + A2u
′(a) = 0, A2

1 + A2
2 > 0,

2. B1u(b) + B2u
′(b) = 0, B2

1 +B2
2 > 0,

3. u(a) = u(b) and p(a)u′(a) = p(b)u′(b);

4. u(a) and u′(a) are finite with p(a) = 0,

5. u(b) and u′(b) are finite with p(b) = 0,

where p(x), v(x), w(x), and p′(x) are real-valued continuous functions over [a, b] and

p(x) > 0 and w(x) > 0 over (a, b). The Sturm-Liouville problem is called regular

when the boundary conditions associated with Eq. (1.14) are of the first two types and

p(x) > 0 and w(x) > 0 over the bounded interval [a, b], which we are mainly concerned

with in this work. The values of λ for which the regular Sturm-Liouville problem has a

nontrivial solution are called the eigenvalues, and the corresponding solutions u(x, λ)

are called the eigenfunctions. A regular Sturm-Liouville problem has an infinite set

of real eigenvalues that are arranged in ascending order λ1 < λ2 < λ3 < . . . , i.e.,

λi < λi+1 (i = 1, 2, 3, . . . ) and λi → ∞ as i → ∞ [12, 14]. Moreover, the set

of corresponding eigenfunctions ui(x, λi) is an orthogonal set with respect to the

weighting function w(x), i.e.,

ˆ b

a

un(x, λn)um(x, λm)w(x)dx =







0, n 6= m,

N(λn), n = m,

(1.15)

where N(λn) is the norm of the eigenfunction un(x, λn).

When considering the steady-state heat conduction equation given in Eq. (1.7)
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(Laplace equation), defined on a 3D finite rectangular domain in the Cartesian co-

ordinate system subject to linear boundary conditions of the types presented in Sec-

tion 1.3.2 with all homogeneous boundary conditions except one nonhomogeneous

boundary condition, the application of the separation of variables method will reduce

the PDE into a system of ODEs. This system involves the regular Sturm-Liouville

problem in the homogeneous directions of the form:

d2u

dx2
+ λu = 0, a ≤ x ≤ b, (1.16)

with respect to the following boundary conditions:

A1u(a) + A2u
′(a) = 0, A2

1 + A2
2 > 0, (1.17)

B1u(b) + B2u
′(b) = 0, B2

1 +B2
2 > 0. (1.18)

This problem has nontrivial solutions for positive values of λ (and λ = 0 when A1 =

B1 = 0) and the general solutions can be expressed as:

ui(x) = Ci cos(
√

λix) +Di sin(
√

λix), for positive λi, (1.19)

ui(x) = C0 +D0x, for λ0 = 0 (when A1 = B1 = 0), (1.20)

where the eigenvalues {λi}∞i=0 are obtained based on the specific boundary conditions

of the problem, which can be obtained explicitly or can be represented by a transcen-

dental equation F (λi) = 0 [5].

Once the solutions of the ODEs are obtained, the principle of superposition can be

used to represent the general solution of the original PDE, where the nonhomogeneous

direction boundary conditions are used to find the unknown coefficients in the gen-

eral solution. It is worth mentioning that the definition of the boundary conditions
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by Laplace’s equation:

∇2θ =
∂2θ

∂x2
+
∂2θ

∂z2
= 0, (1.21)

with respect to the following boundary conditions. Along the line z = 0, the boundary

condition is given by:

−k ∂θ
∂z

∣
∣
∣
∣
z=0

=







q, 0 < x < a

0, a < x < c.

(1.22)

Along the two side edges, the boundary conditions are given by:

∂θ

∂x

∣
∣
∣
∣
x=0

= 0, (1.23)

−k ∂θ
∂x

∣
∣
∣
∣
x=c

= heθ(c, z), (1.24)

where he is the lateral heat transfer coefficient, which is considered constant. More-

over, the convective-cooling boundary condition along the line x = c can be turned

to an adiabatic condition when he → 0. Along the line z = t, a convective-cooling

boundary condition is considered, given by:

−k∂θ
∂z

∣
∣
∣
∣
z=t

= hsθ(x, t). (1.25)

The sink heat transfer coefficient hs is of most importance as it plays the major role in

removing the heat out of the system. This coefficient might be defined as a constant

or as a function of position (hs ≡ hs(x)), where the two different definitions have

significant effects on the representation of the general solution. For the time being,

we will consider a constant value of the sink heat transfer coefficient and proceed to the

general solution of the problem. The method of separation of variables can be used to

obtain the general solution of the problem, where we attempt to determine solutions
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in the product form θ(x, z) = X(x) · Z(z) [6, 11, 15, 16]. Applying the method of

separation of variables and using the side boundary conditions (homogenous-direction

boundary conditions) yield the following general solution:

θ(x, z) =
∞∑

m=1

cos(λmx) [Cm cosh(λmz) +Dm sinh(λmz)] , (1.26)

where λm are the eigenvalues in the x-direction, which can be obtained by solving the

following transcendental equations:

λm sin(λmc) =
he
k

cos(λmc), m = 1, 2, . . . , (1.27)

Cm and Dm are the Fourier coefficients. The following result is obtained for the

Fourier coefficients when the sink boundary condition is applied (Eq. (1.25)):

Dm = −φmCm, (1.28)

where φm is the spreading function defined by:

φm =
λm tanh(λmt) + [hs/k]

λm + [hs/k] tanh(λmt)
. (1.29)

Thus, the general solution can be rewritten as:

θ(x, z) =
∞∑

m=1

Cm cos(λmx) [cosh(λmz)− φm sinh(λmz)] . (1.30)

Finally, the nonhomogenous boundary condition, given in Eq. (1.22), is used to find
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the Fourier coefficients Cm by taking Fourier series expansions of the boundary con-

dition and using the orthogonality of the eigenfunctions to get:

Cm =
q

kλmφm

´ a

0
cos(λmx) dx

´ c

0
cos2(λmx) dx

=
2q sin(λma)

ckλ2mφm
, (1.31)

which completes the representation of the general solution as an exact infinite series

analytical solution. On the other hand, when the sink heat transfer coefficient is

defined as a function of position (hs(x)), the general solution of problem can not be

represented as an exact infinite series analytical solution anymore since the classical

representation of the infinite Fourier series solution is violated. This can be seen

clearly when we employ the sink boundary condition to find a relationship between the

Fourier coefficients Cm and Dm, where the relationship represented by the spreading

function becomes a function of x as:

φm = φm(x) =
λm tanh(λmt) + [hs(x)/k]

λm + [hs(x)/k] tanh(λmt)
, (1.32)

and this violates the assumptions of the separation of variables methodology as the

Fourier coefficients are no longer constants. However, an approximate solution of the

problem can be constructed based on the separation of variables methodology. This

approximate solution might be constructed as:

θ(x, z) =
M∑

m=1

Cm cos(λmx) [cosh(λmz)− φm(x) sinh(λmz)] , (1.33)

This solution is constructed by following a similar technique to some variational cal-

culus methods that usually used for obtaining approximate solutions, like the Ritz

method and the Kantorovich method [15, 17], in which a general form of an approxi-

mate solution is constructed with unknown coefficients or functions that are usually



17

determined using variational calculus. However, in our solution, we apply the method

of least squares to find the unknown Fourier coefficients Cm with an extension to 3D

problems, as we will see in Chapters 2 and 3.

1.4.2 Least Squares Method

The method of least squares is a widely used method in approximating functions,

and it is considered a standard technique in regression analysis, data fitting, and

approximating a function by a combination of other functions. Least squares problems

can be classified into linear least squares and nonlinear least squares, depending on

the general form of the modeling (approximating) function. We will focus on linear

least squares, where the modeling function can be expressed as a linear combination

of some linearly independent set of functions. For example, a one-dimensional (1D)

modeling function can be expressed in the form:

ũ(x, c1, c2, . . . , cM) =
M∑

j=1

cjϕj(x), (1.34)

where {cj}Mj=1 are the modeling-function parameters to be determined. For dis-

crete data represented by a set of points (xi, yi), i = 1, 2, . . . , N , the least squares

method can be applied to find the best approximate continuous modeling function

ũ(x, c1, c2, . . . , cM). The idea behind the method of least squares is to determine the

values of the parameters {cj}Mj=1 such that the modeling function minimizes the sum

of the squares of the residuals represented by [18]:

I =
N∑

i=1

r2i , (1.35)
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where ri is the residual defined by the difference between the ith discrete value yi and

the corresponding value predicted by the modeling function, i.e.,

ri = yi − ũ(xi, c1, c2, . . . , cM),

ri = yi −
M∑

j=1

cjϕj(xi). (1.36)

The modeling-function parameters {cj}Mj=1 are obtained to minimize the sum of the

squared residuals I represented in Eq. (1.35) by setting the gradient of I with respect

to the parameters to zero:

∂I

∂cm
= 2

N∑

i=1

ri
∂ri
∂cm

= 0, m = 1, 2, . . . ,M, (1.37)

which leads to the following system:

M∑

j=1

cj

(
N∑

i=1

ϕj(xi)ϕm(xi)

)

=
N∑

i=1

yiϕm(xi), m = 1, 2, . . . ,M. (1.38)

Equation (1.38) represents a system of m-equations and m-unknown parameters that

has to be solved for the parameters {cj}Mj=1. These equations are called the normal

equations for the least squares problem [18, 19].

The same procedure can be used for approximating a continuous function u(x)

defined on a bounded interval [a, b] by a linear combination of other functions as

defined in (1.34). This can be done by viewing the function u(x) as a vector of

infinitely many points. Hence, the sum of the squared residuals can be defined in an

integral form as [19]:

I =

ˆ b

a

[

u(x)−
M∑

j=1

cjϕj(x)

]2

dx, (1.39)
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and the parameters of the modeling function {cj}Mj=1 are found to minimize I us-

ing [20]:

∂I

∂cm
= 0, m = 1, 2, . . . ,M, (1.40)

which leads to the following linear system of normal equations, represented by:

M∑

j=1

cj

ˆ b

a

ϕj(x)ϕm(x)dx =

ˆ b

a

u(x)ϕm(x)dx, m = 1, 2, . . . ,M. (1.41)

Furthermore, the least squares method can be used, in general, for a multidimensional

function u(~x) defined on a bounded domain Ω by considering:

I =

ˆ

Ω

[u(~x)− ũ(~x, c1, c2, . . . , cM)]2 dΩ, (1.42)

and following the same procedure for the 1D least squares method.

1.4.3 Stretched Coordinate Transformations

Stretched coordinate transformations are mathematical transformations that can be

used to transform a system of governing equations defined on a physical domain

into an equivalently convenient system defined on a new logical domain. Under this

kind of transformation, the physical domain can be extended or squeezed in one or

more directions to obtain the new logical domain, in which the transformed governing

equations are presented in a simpler form [21]. We will confine our attention to the

use of stretched coordinate transformations for the heat conduction equation of an

orthotropic medium. Consider the 3D steady-state heat conduction equation for an

orthotropic medium with constant thermal conductivities given by:

kx
∂2T

∂x2
+ ky

∂2T

∂y2
+ kz

∂2T

∂z2
= 0, (1.43)
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defined on the following rectangular domain:

0 < x < c, 0 < y < d, 0 < z < t. (1.44)

The stretched coordinate transformations can be applied to this system by considering

the following new independent variables ζ1, ζ2, and ζ3 defined by [5]:

ζ1 = x
√

k0/kx, ζ2 = y
√

k0/ky, ζ3 = z
√

k0/kz, (1.45)

where k0 is a reference conductivity. Under these transformations, the heat conduction

equation for the orthotropic medium given in Eq. (1.43) is transformed to the following

heat conduction equation with isotropic properties:

k0

(
∂2T

∂ζ21
+
∂2T

∂ζ22
+
∂2T

∂ζ23

)

= 0, (1.46)

defined on the following transformed logical domain:

0 < ζ1 < c
√

k0/kx, 0 < ζ2 < d
√

k0/ky, 0 < ζ3 < t
√

k0/kz. (1.47)

1.4.4 Kirchhoff Transform

When thermal properties of a material vary with temperature, the general heat con-

duction equation becomes nonlinear, and the general heat conduction equation for an

isotropic medium becomes of the form [16]:

ρ(T )cp(T )
∂T

∂t
= ∇ · (k(T ) ∇T ) + ġ, (1.48)
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where ρ(T ), cp(T ), and k(T ) are temperature dependent. In particular, the thermal

conductivity of any material depends on the chemical composition, physical structure,

and state of the material. Moreover, it also depends on the temperature variation

interval under consideration [6]. In most cases, the thermal conductivity varies with

temperature according to some functional relationship, e.g.,

k(T ) = k0[1 + ωT ], (1.49)

where k0 is a reference conductivity, and ω is the temperature coefficient of thermal

conductivity. When the temperature variation interval under consideration is not

too wide or the functional dependency of the thermal conductivity on temperature

is not too strong, the variation of thermal conductivity with temperature may be

neglected and it can be approximated by a constant [6, 16]. However, when the tem-

perature variation interval is wide or the functional dependency between the thermal

conductivity and temperature is quite strong, the assumption of a constant thermal

conductivity becomes unacceptable.

The Kirchhoff transform is considered a convenient method for solving nonlin-

ear transient and steady-state heat conduction problems with temperature-dependent

properties. However, the method is more attractive for solving steady-state problems,

as the method can be used to obtain exact solutions without considering any assump-

tions or approximations [16]. The idea behind the Kirchhoff transform is to present a

new variable as an integral function of the temperature-dependent thermal conductiv-

ity, where the nonlinear system can be transformed under the Kirchhoff transform into

a linear system in terms of the new variable. Moreover, the linearized system can be

solved using existing analytical methods for solving linear problems, after which the

solution of the linear system can be transformed back to the solution of the nonlinear
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system through the inverse Kirchhoff transform. The original Kirchhoff transform is

presented by defining a new dependent variable in the form [15, 16, 22, 23]:

U = K{T} =
1

k0

T̂

0

k(τ)dτ, (1.50)

where U ≡ U(T ), and k0 is a constant reference conductivity. We will only present the

application of the Kirchhoff transform to the nonlinear steady-state problems with no

heat generation term, defined by:

∇ · (k(T ) ∇T ) = 0. (1.51)

From Eq. (1.50), we have the following relation [24, 25]:

dU

dT
=
k(T )

k0
. (1.52)

Hence, using the result in Eq. (1.52), we get the following relations:

∇U =
dU

dT
∇T =

k(T )

k0
∇T, (1.53)

∇2U =
1

k0
[∇ · (k(T ) ∇T )] . (1.54)

In other words, the nonlinear heat equation given in Eq. (1.51) can be transformed

under the Kirchhoff transform defined in Eq. (1.50) to the Laplace linear equation in

terms of the new variable U :

∇2U = 0, (1.55)

which can be solved using the existing analytical methods for solving linear problems,
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provided that the boundary conditions can be transformed into linear boundary con-

ditions. The boundary conditions associated with the problem can be transformed

under the Kirchhoff transform according to their types. Now, we will examine the

transformation for the different linear types of boundary conditions presented in Sec-

tion 1.3.2. To illustrate the application of the transformation to the boundary condi-

tions with a practical example, we will assume that the thermal conductivity depends

on temperature in the form presented in Eq. (1.49). The boundary conditions can be

transformed under the Kirchhoff transform as follows [16]:

1. Prescribed temperature.

For a prescribed temperature boundary condition addressed by:

T |boundary = f(r̂), (1.56)

the boundary condition can be transformed directly under the Kirchhoff trans-

form by substituting the function f(r̂) into the Kirchhoff integral given in

Eq. (1.50), i.e.,

U |boundary =
1

k0

f(r̂)
ˆ

0

k(τ)dτ =

f(r̂)
ˆ

0

(1 + ωτ)dτ = f(r̂) +
ω

2
f 2(r̂), (1.57)

which is again a prescribed temperature boundary condition for the new variable

U . Moreover, when the temperature along the boundary is considered to be

constant, i.e., f(r̂) = T0, the transformed boundary condition is also a constant

temperature along the boundary given by:

U |boundary = T0 +
ω

2
T 2
0 . (1.58)
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2. Prescribed heat flux.

For a prescribed heat flux boundary condition addressed by:

k(T )
∂T

∂n

∣
∣
∣
∣
boundary

= g(r̂), (1.59)

which is a nonlinear boundary condition, the transformation of this kind of

boundary conditions is straightforward, by using the following result:

k(T )
∂T

∂n
= k(T )

∂T

∂U
· ∂U
∂n

= k0
∂U

∂n
. (1.60)

Thus, the transformed boundary condition is addressed by:

k0
∂U

∂n

∣
∣
∣
∣
boundary

= g(r̂), (1.61)

which is a linear boundary condition for U .

3. Convection boundary conditions.

Although the prescribed temperature and prescribed heat flux boundary con-

ditions can be transformed easily into linear boundary conditions through the

Kirchhoff transform for the new variable U , this is not the case, in general, when

considering a convection boundary condition of the form:

−k(T )∂T
∂n

∣
∣
∣
∣
boundary

= hs(T |boundary − T∞), (1.62)

and when the Kirchhoff transform is considered, the boundary condition can be

transformed to:

−k0
∂U

∂n

∣
∣
∣
∣
boundary

= hs(K
−1{U |boundary} − T∞), (1.63)
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which is a nonlinear boundary condition, sinceK−1{U} is, in general, a nonlinear

function of U . In fact, when convection boundary conditions are present in

the problem, the transformed boundary conditions are, in general, nonlinear

boundary conditions [16, 22].

1.4.5 Finite Element Method and ANSYS Software

Although the scope of this work is to obtain analytical solutions for the temperature

distribution and thermal resistance in various flux channel problems, verifications of

the developed analytical solutions have been conducted in comparison with solving

the problems numerically based on the FEM using the ANSYS commercial software

package. The FEM is a powerful and widely used numerical method for solving initial-

and boundary-value problems arising in different real-life problems. The main idea

of the FEM is to divide the physical domain of the problem into a finite number of

subdomains (elements) for which the solution is approximated over these subdomains

based on some basis functions using the variational or weighted residual methods [26–

28]. The ability to discretize complex and irregular domains and the flexibility of

refining the grid in regions of interest with the FEM make the method an attractive

analysis tool for many problems.

Solving practical problems using the FEM requires either the development of an

FEM computer program or the use of available FEM software products, packages, and

libraries. ANSYS is a finite element analysis software used to simulate a wide variety

of engineering disciplines including fluid dynamics and thermal analysis. The software

has been developed extensively over the past few decades to include several physical

phenomena and to improve the power of solving complex systems. Nowadays, ANSYS

with its user friendly interface (Workbench) is considered one of the most trusted and

widely used numerical simulation software packages [28, 29].
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In thermal analysis simulations, the construction of the solution using the ANSYS

software can be summarized by the following three steps [28]:

1. Preprocessing.

The first step corresponds to the model generation process, in which the ge-

ometry of the problem is determined and the material properties are defined.

Moreover, the finite element mesh is generated in this step, where many options

can be specified within the meshing generation process such as element type,

mesh refinement regions, real constants required by the element type, etc.

2. Solution Processing.

In this step, the boundary conditions of the problem are specified along the

geometry boundaries and the solution can be obtained.

3. Postprocessing.

In this step, the results are reviewed and can be exported into result files in

tabular format which can be used for data analysis purposes.

1.5 Thesis Organization

This thesis is presented in a manuscript (research paper) format. It contains seven

chapters including five chapters that are published (3), accepted (1), and submitted (1)

to international peer-reviewed journals. In Chapter 1, an introduction and overview

is presented. This chapter summarizes the motivations, objectives, and literature

review of the problems addressed in this thesis. It also presents the mathematical

methods, techniques, and transformations used throughout the thesis to address the
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problems under study. Chapter 2 is published in the IEEE Transactions on Com-

ponents, Packaging and Manufacturing Technology [30]. In this chapter, the tem-

perature distribution and thermal resistance of a 3D flux channel with a nonuniform

heat transfer coefficient along the sink plane are modeled and analyzed analytically.

The solutions are obtained by using the method of separation of variables combined

with the method of least squares. A single concentric heat source is considered in the

source plane, while the conductance along the sink plane is modeled by a symmet-

ric 1D conductance function. Chapter 3 is submitted to the ASME-Journal of Heat

Transfer. In this chapter, analytical solutions for the temperature distribution and

thermal resistance of a 3D flux channel with eccentric heat source and a variable heat

transfer coefficient that varies in the two horizontal dimensions are developed by us-

ing the method of separation of variables combined with the method of least squares.

Chapter 4 is accepted for publication in the AIAA-Journal of Thermophysics and

Heat Transfer. In this chapter, analytical solutions for the temperature distribution

and thermal resistance of a 3D flux channel with temperature-dependent thermal

conductivity are discussed and used to study the effect of the temperature-dependent

thermal conductivity on the temperature rise and spreading resistance for different

conductivity functions. Chapter 5 is published in the ASME-Journal of Heat Trans-

fer [31]. In this chapter, general analytical solutions for the temperature distribution

and thermal resistance of a multilayered orthotropic system are obtained. The sys-

tem is considered as a compound 3D flux channel consisting of N -layers with different

thermal conductivities in the three spatial directions of each layer. A single eccentric

heat source is considered in the source plane, while a uniform heat transfer coefficient

is considered along the sink plane. The solutions account for the effect of interfacial

conductance between the layers and for considering multiple eccentric heat sources in

the source plane. Chapter 6 is published in the AIAA-Journal of Thermophysics and
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Heat Transfer [32]. In this chapter, analytical solutions for the temperature rise and

thermal resistance of a multilayered 3D flux channel with orthotropic temperature-

dependent thermal conductivities are addressed by means of the Kirchhoff transform.

Chapter 7 summarizes the problems considered in this thesis and presents suggestions

for further investigation.

1.6 Literature Review

Thermal analysis and thermal resistance in microelectronic devices have been studied

extensively in the past few decades. The significant importance of thermal man-

agement in microelectronics has served to put considerable demands on researchers

to conduct different analytical, numerical, and experimental studies in the field of

thermal analysis. For the analytical studies, which are the scope of this thesis, the

geometry of the microelectronic devices is usually considered as a rectangular flux

channel or a cylindrical flux tube. A general review of the literature on thermal

analysis and thermal spreading resistance shows that several analytical solutions have

been developed for obtaining the precise thermal behavior and thermal resistance of

different flux channels and flux tubes with different structures.

Kennedy started the research on thermal spreading resistance of cylindrical shaped

semiconductor devices [33]. He obtained analytical solutions for the temperature

distribution and thermal resistance in a finite flux tube with a constant heat flux over

a part of one end and an isothermal-sink boundary condition along the other end.

Thereafter, a number of relevant analytical studies have been presented on thermal

analysis and thermal spreading/constriction resistance in different systems with finite

and semi-infinite domains [7, 8, 34–59].

A general literature review on thermal analysis and thermal spreading resistance
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of microelectronics in the past fifty years is discussed in detail in a recent review

paper [60]. The authors presented a review of the most important research studies on

thermal spreading/constriction resistance in the past five decades starting from the

work of Kennedy in 1960 up to the most recent studies. However, in the following

subsections, we will describe and focus on some studies that are related directly to

the scope of this thesis.

1.6.1 Single-Layer Flux Channels

Different analytical solutions for the temperature field and thermal resistance have

been investigated for single-layer flux channels with different aspects. Such aspects

include: considering isotropic materials [7, 36–38, 51, 58], anisotropic materials [49,

51, 54, 57], materials with temperature-dependent thermal conductivity [57, 58], con-

centric heat source [36–38, 49], eccentric heat source [7, 51, 54, 57, 58], single heat

source [36–38, 57], multiple heat sources [7, 49, 51, 54, 57, 58], isothermal-sink bound-

ary conditions [37, 57], convective-sink boundary conditons [7, 36, 38, 49–51, 58], and

others.

Kadambi and Abuaf started the research on obtaining analytical solutions for the

temperature field in 3D finite rectangular flux channels with convective sink for the

first time [36]. They obtained analytical solutions for the transient and steady-state

temperature field in 2D and 3D rectangular isotropic flux channels with a concentric

isoflux heat source, convective sink, and insulated sides. A similar model has been

analytically studied by Krane [37], but changes the heat-sink boundary condition to

an isothermal boundary condition.

Muzychka et al. [7, 8, 49–53] have done extensive research on different thermal

spreading resistance problems, including different geometries, boundaries, and prop-

erties. Muzychka et al. [7] developed a general solution for the spreading resistance of
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a rectangular eccentric heat source with convective-sink boundary conditions. Their

solution accounts for multiple discrete heat sources distributed over the source plane

and for compound flux channel structures consisting of two isotropic layers in per-

fect contact. They extended their solution to account for transversely isotropic and

compound systems in [49]. Moreover, Muzychka et al. [51] presented the influence

coefficient method as an efficient and convenient method for calculating the tempera-

ture field in the source plane for multiple isoflux heat sources in isotropic, transversely

isotropic, and compound flux channels.

Ditri [57] studied a single-layer flux channel with orthotropic temperature-dependent

thermal conductivities and a fixed-temperature boundary condition along the sink

plane. Bagnall et al. [58] studied the temperature rise in problems with temperature-

dependent thermal conductivities and convection boundary conditions along the sink

plane using the Kirchhoff transform. Gholami and Bahrami [54] obtained analytical

solutions for the spreading resistance of a single orthotropic flux channel with different

constant thermal conductivities in the three spatial directions (i.e., kx 6= ky 6= kz),

and discrete inward and outward heat fluxes along both sides of the channel.

Although many analytical studies have been done on different aspects of thermal

spreading resistance and thermal management, attention has been focused on prob-

lems with a uniform heat transfer coefficient, uniform temperature, and uniform heat

flux boundary conditions along the sink plane. Recently, Razavi et al. [61] studied

the thermal resistance of a 2D flux channel with nonuniform heat transfer coefficients

along the sink plane. However, usually the heat sources are of different dimensions in

both horizontal directions compared to the dimensions of the horizontal cross section

of the flux channel. Hence, the nature of heat flow is 3D through the flux chan-

nel. Moreover, analytical solutions for the temperature field and thermal spreading

resistance in flux channels with temperature-dependent thermal conductivities and
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convective boundary conditions are limited [58] because of the restricted applicability

of the Kirchhoff transform to boundary conditions of the first and second kinds.

1.6.2 Multilayered Flux Channels

In the microelectronics industry, multilayered structures are found extensively, where

the microelectronic device/system is manufactured as a compound system of different

materials. A variety of analytical studies have been conducted for the temperature

field and thermal resistance in multilayered flux channels.

Kokkas [35] studied thermal analysis in multilayered rectangular structures with

isotropic materials and isothermal-sink boundary conditions. Bonani and Ghione [56]

used the Kirchhoff transform to study a composite medium consisting of two perfectly

attached layers with temperature-dependent and piecewise inhomogeneous thermal

conductivity. Yovanovich et al. [38] obtained a general analytical solution for the

spreading resistance of an isoflux rectangular concentric heat source on a two-layer

flux channel with isotropic properties and a convective-sink boundary condition. In

Muzychka et al. [7, 49], the authors extended their solution to account for eccentric

heat sources and transversely isotropic compound systems.

Recently, Muzychka et al. [8] analytically modeled the thermal spreading resis-

tance of compound transversely isotropic two-layer systems with equal thermal con-

ductivities in the in-plane directions that are different than the through-plane thermal

conductivity (i.e., kx = ky 6= kz). Bagnall et al. [59] developed an analytical solution

for the thermal spreading resistance in multilayered flux channels with isotropic and

transversely isotropic properties. Their solution accounts for the effect of the interfa-

cial conductance between the adjacent layers.
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Recently, a variety of new materials have emerged in the microelectronics indus-

try with properties superior to Silicon, enabling new devices with extreme perfor-

mance. Such materials include β-Gallium-oxide (β-Ga2O3) [62] and Black Phosphorus

(BP) [63], which are acknowledged to have orthotropic thermal conductivity tensors

with different thermal conductivities in the three spatial directions. A review of the

literature reveals that analytical solutions for the temperature field and thermal resis-

tance of multilayered othrotropic systems with different thermal conductivities in the

three spatial directions, i.e., kx 6= ky 6= kz in each layer, have not yet been analyzed.
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Chapter 2

Thermal Resistance of a 3D Flux

Channel with Nonuniform Heat

Convection in the Sink Plane

2.1 Introduction

Thermal spreading resistance is an increasingly important topic in thermal manage-

ment and thermal analysis of mechanical and electronic devices because, in some

devices, more than 50% of the total thermal resistance is confined in spreading re-

sistance. Thermal spreading resistance occurs when heat enters the system through

a small region and flows by conduction. A proper analysis of the temperature rise

and thermal resistance is essential for designing a durable device. For this purpose,

different analytical, experimental and numerical methods are used to determine the

Published in the IEEE Transactions on Components, Packaging and Manufacturing Technol-
ogy [1].
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precise thermal behavior of the device. For the analytical methods, the geometry of

the device is usually simplified to a rectangular flux channel or a cylindrical flux tube

in order to accommodate the Cartesian or cylindrical coordinate systems.

Kennedy [2] began the research on the thermal spreading resistance of cylindrical

shaped semiconductor devices. Ellison [3–5] analytically studied the thermal spread-

ing resistance in electronic devices. Yovanovich [6–9] studied different spreading resis-

tance problems for more than forty years. Lemczyk and Yovanovich [10, 11] studied

the thermal spreading/constriction resistance in systems with convective boundary

conditions. Muzychka et al. [12–14] and Muzychka [15] have done comprehensive re-

search on different aspects of thermal spreading resistance problems including different

geometries, boundaries, and properties. Muzychka et al. [12] modeled and obtained

a solution for the spreading resistance of rectangular flux channels with eccentric

heat sources, adiabatic edges and a uniform heat transfer coefficient along the sink

plane. Furthermore, they studied the effects of geometry and edge cooling on ther-

mal spreading resistance [13]. Muzychka [16] developed a computationally efficient

method for calculating the temperature of flux channels with discrete heat sources

and uniform conductance along the sink plane. Recently, Muzychka et al. [14] analyt-

ically modeled the thermal spreading resistance for a two-layer transversely isotropic

system with interfacial resistance between the layers. Muzychka [15] also developed

a similar model for cylindrical flux tubes. Bagnall et al. [17] studied the effect of

temperature-dependent thermal conductivity on the temperature rise in systems with

a uniform heat transfer coefficient along the sink plane where the Kirchhoff transform

has been used to linearize the heat conduction equation. Moreover, they developed

an analytical solution for spreading resistance in multilayered flux channels by finding

a recursive formula for solving problems with an arbitrary number of layers [18].



44

Although many comprehensive studies have been done on different aspects of ther-

mal spreading resistance and thermal management, attention has been focused on

problems with a uniform heat transfer coefficient along the sink plane. However, in

most devices, the sink configuration is not uniform, which can help in reducing the

material and distributing convection cooling based on the temperature distribution

along the sink plane where intense cooling is more necessary in high-temperature re-

gions than low-temperature regions, as shown in Fig. 2.1. Recently, Razavi et al. [19]

studied the thermal resistance of a two-dimensional (2D) flux channel with nonuni-

form heat transfer coefficient along the sink plane. However, in most devices, the

heat sources are of different dimensions in both the horizontal directions compared

to the dimensions of the horizontal cross-sectional of the device, and the heat-source

area is much smaller than the cross-sectional area. Hence, the nature of heat flow

is three-dimensional (3D) through the flux channel. The aim of this study is to an-

alytically investigate the effect of a nonuniform heat transfer coefficient along the

sink plane of a 3D flux channel on thermal resistance. In order to develop analytical

solutions for such problems, the method of separation of variables, along with the

method of least squares, is used. Then the analytical solution is used to evaluate

and study the dimensionless total thermal resistance of different heat-source-size and

channel-thickness aspect ratios for different Biot numbers and different conductance

distribution profiles along the sink plane.

Figure 2.1: Flux channels with a nonuniform heat transfer coefficient.
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2.2 Mathematical Theory

In this section, the problem under consideration is modeled and illustrated mathe-

matically where the governing equation of the temperature distribution as well as the

boundary conditions are stated, after which the analytical solution of the problem

is presented. The total thermal resistance is then presented based on the analytical

solution, and the nondimensional total thermal resistance as a function of some aspect

ratio factors is then introduced.

2.2.1 Problem Statement

The system under consideration is a 3D rectangular flux channel with a concentric

heat source, convective cooling along the lateral edges and a variable heat transfer

coefficient along the sink plane, as shown in Fig. 2.2. The system is modeled in

Cartesian coordinates such that the origin is at the center of the heat source.

The heat conduction in the flux channel is governed by Laplace’s equation:

∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2
= 0, (2.1)

or, by defining the temperature excess θ = T − T∞:

∂2θ

∂x2
+
∂2θ

∂y2
+
∂2θ

∂z2
= 0, (2.2)

with respect to the following boundary conditions based on the configuration shown in

Fig. 2.2 and by using the symmetry of the system in the x- and y-directions. Along the

source plane, a discrete heat flux is specified over the heat-source region, whereas the

area outside the heat-source region is considered as adiabatic. Hence, the source-plane
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boundary condition is given by:

−k ∂θ
∂z

∣
∣
∣
∣
z=0

=







q, inside source region,

0, outside source region.

(2.3)

Convective cooling boundary conditions are taken along the lateral edges of the sys-

tem. However, since the symmetry of the system is considered, only a quarter model

is required to be solved; therefore, the boundary conditions along the planes x = c

and y = d are given by:

∂θ

∂x

∣
∣
∣
∣
x=c

= −he
k
θ(c, y, z), (2.4)

∂θ

∂y

∣
∣
∣
∣
y=d

= −he
k
θ(x, d, z). (2.5)

These convective cooling boundary conditions can be turned to adiabatic conditions

when he → 0. The boundary conditions along the center planes of the system (x = 0

and y = 0) are as follows:

∂θ

∂x

∣
∣
∣
∣
x=0

= 0,
∂θ

∂y

∣
∣
∣
∣
y=0

= 0. (2.6)

Along the sink plane, a variable heat transfer coefficient varying in the x-direction

exists, and the boundary condition is given by:

∂θ

∂z

∣
∣
∣
∣
z=t

= −h(x)
k

θ(x, y, t). (2.7)

To define the variable heat transfer coefficient h(x), a modeling function changing in

the x-direction is used to define a wide variety of different conductance distributions
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along the sink plane:

h(x) = h0

[

1−
(x

c

)p]

, (2.8)

where h0 is a reference conductance representing the maximum heat transfer coefficient

in the central region of the sink plane (when x = 0). To change the configuration of

the conductance along the sink plane, the power in the sink-conductance function p

has to be changed. Different conductance profiles can be obtained by changing the

value of the power p, which would vary the conductance profile from intense cooling

in the central region for p < 1, a linear profile when p = 1 or a parabolic profile

for p = 2 up to uniform conductance when p → ∞. It is clear from Eq. (2.8) that

the total conductance (averaged along the sink plane) depends on the value of p,

while the maximum conductance in the central region h0 is the same for all values

of p. However, it is more appropriate and meaningful to present the system with

a constant total conductance for all values of p in order to study the effect of the

different conductance distributions with the same total conductance. This can be

done by integrating and averaging the conductance in Eq. (2.8) over half of the flux

channel and then presenting h0 in terms of the total averaged conductance h̄s:

h̄s =
1

c

ˆ c

0

h(x)dx =
p h0
p+ 1

. (2.9)

Hence, the conductance function in Eq. (2.8) can be rewritten as:

h(x) =
(p+ 1) h̄s

p

[

1−
(x

c

)p]

. (2.10)

Figure 2.3 shows different nonuniform heat transfer coefficient distributions along the

sink plane for different values of the parameter p with same total averaged conductance

as defined in Eq. (2.10).
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Figure 2.3: Variable heat transfer coefficient function along half of the sink plane for
different values of p.

2.2.2 General Solution

The general solution of Laplace’s equation given in Eq. (2.2) may be found by using

the method of separation of variables, where the solution is assumed to have the form

θ(x, y, z) = X(x) ·Y (y) ·Z(z) [20–22]. Applying the method of separation of variables

and using the boundary conditions along the planes (x = 0, x = c) and (y = 0, y = d)

yield the following general solution:

θ(x, y, z) =
∞∑

m=1

∞∑

n=1

cos(λmx) cos(δny) [Cmn cosh(βmnz) +Dmn sinh(βmnz)] , (2.11)

where λm and δn are the eigenvalues in the x- and y-directions, respectively, which

can be obtained by solving the following transcendental equations numerically:

λm sin(λmc) =
he
k

cos(λmc), m = 1, 2, . . . (2.12)

δn sin(δnd) =
he
k

cos(δnd), n = 1, 2, . . . (2.13)
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whereas βmn is defined by βmn =
√

λ2m + δ2n. The following result is obtained for the

Fourier coefficients when the boundary condition at the sink plane is applied Eq. (2.7):

Dmn = −φmn(x)Cmn, (2.14)

where φmn(x) is the spreading function defined by:

φmn(x) =
βmn tanh(βmnt) + [h(x)/k]

βmn + [h(x)/k] tanh(βmnt)
. (2.15)

Thus, the general solution can be rewritten as:

θ(x, y, z) =
∞∑

m=1

∞∑

n=1

Cmn cos(λmx) cos(δny) [cosh(βmnz)− φmn(x) sinh(βmnz)] . (2.16)

Finally, the boundary condition at the source plane given by Eq. (2.3) is considered

in order to find the Fourier coefficients Cmn. Usually, when solving flux channel

problems with a constant heat transfer coefficient, the Fourier coefficients are obtained

directly by taking the Fourier series expansions of the boundary condition at the

source plane (z = 0) and using the orthogonality of the eigenfunctions. However,

since the heat transfer coefficient h(x) depends on the variable x and so does the

spreading function φmn(x), then the use of the orthogonality of the eigenfunctions in

the x-direction is prevented when following the same procedure for the constant heat

transfer coefficient. Instead, the method of least squares is used to obtain the Fourier

coefficients Cmn. The general approximate solution for finite M,N can be written as:

θ(x, y, z) =
M∑

m=1

N∑

n=1

Cmn cos(λmx) cos(δny) [cosh(βmnz)− φmn(x) sinh(βmnz)] . (2.17)

The method of least squares can be applied to the general solution given in Eq. (2.17).
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Hence, the following integral (which represents the residual) is defined:

IMN =

c
ˆ

0

d
ˆ

0

[

− ∂θ

∂z

∣
∣
∣
∣
z=0

− S(x, y)

]2

dydx, (2.18)

where S(x, y) is the function defining the boundary condition at the source plane

given by:

S(x, y) =







q/k, 0 < x < a and 0 < y < b

0, a < x < c or b < y < d.

(2.19)

The first derivative of the general solution Eq. (2.17) with respect to z at the source

plane (at z = 0) is:

∂θ

∂z

∣
∣
∣
∣
z=0

= −
M∑

m=1

N∑

n=1

Cmnβmnφmn(x) cos(λmx) cos(δny). (2.20)

Hence, the residual integral in Eq. (2.18) can be rewritten as:

IMN =

c
ˆ

0

d
ˆ

0

[
M∑

m=1

N∑

n=1

Cmnβmnφmn(x) cos(λmx) cos(δny)− S(x, y)

]2

dydx. (2.21)

The Fourier coefficients are obtained to minimize the residual IMN by using [23]:

∂IMN

∂Cij
= 0, i = 1, 2, . . . ,M, j = 1, 2, . . . , N. (2.22)

The application of Eq. (2.22) yields:

c
ˆ

0

d
ˆ

0

[
M∑

m=1

N∑

n=1

Cmnβmnφmn(x) cos(λmx) cos(δny)− S(x, y)

]

· φij(x) cos(λix) cos(δjy) dydx = 0. (2.23)
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Equation (2.23) can be simplified by using the orthogonality of the eigenfunctions in

the y-direction to get:

M∑

m=1

Cmjβmj

c
ˆ

0

φmj(x)φij(x) cos(λmx) cos(λix) dx =
q sin(δjb)

kδjN(δj)

a
ˆ

0

φij(x) cos(λix) dx,

(2.24)

whereN(δj) is the norm of the y-direction eigenfunctions which depends on the specific

nature of the y-direction eigenvalues:

N(δj) =

d
ˆ

0

cos2(δjy) dy =
1

2

[

d+
he/k

δ2j + (he/k)2

]

. (2.25)

Thus, in order to find the Fourier coefficients Cij, a linear system has to be solved for

every j (i.e., for every eigenvalue in the y-direction). The linear system is as follows:

AjCj = bj, (2.26)

where Aj = [ajim] is anM×M matrix whose entries (represented by row i and column

m) are given by:

ajim = βmj

c
ˆ

0

φmj(x)φij(x) cos(λmx) cos(λix) dx. (2.27)

Cj = [C1j C2j . . . CMj]
t is the unknown Fourier coefficients vector, and bj =

[bj1 bj2 . . . bjM ]t represents the right-hand-side vector whose components are given

by:

bji =
q sin(δjb)

kδjN(δj)

a
ˆ

0

φij(x) cos(λix) dx. (2.28)

It is important to note that the full set of Fourier coefficients Cij can be obtained
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by solving N -linear systems using any mathematical software package (for example,

MATLAB) in which numerical integration is used to evaluate the entries of each

system.

2.2.3 Total Thermal Resistance

For a single heat source spreading heat to a larger extended sink area, the total

thermal resistance of the system can be defined as [18, 24]:

Rt =
Tc − T∞

Q
=
θ̄c
Q
, (2.29)

where Tc is the mean temperature over the heat-source area, θ̄c is the mean heat-

source temperature excess, and Q = 4qab is the total heat input of the flux channel.

The mean source temperature excess is given by:

θ̄c =
1

Ac

¨

Ac

θ(x, y, 0) dAc, (2.30)

where Ac is the heat-source area. The application of Eq. (2.30) yields:

θ̄c =
1

4ab

a
ˆ

−a

b
ˆ

−b

M∑

m=1

N∑

n=1

Cmn cos(λmx) cos(δny) dydx

=
1

ab

M∑

m=1

N∑

n=1

Cmn
λmδn

sin(λma) sin(δnb). (2.31)

Hence, the total thermal resistance can be obtained by using Eq. (2.29) to get:

Rt =
1

4a2b2q

M∑

m=1

N∑

n=1

Cmn
λm δn

sin(λma) sin(δnb). (2.32)
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2.2.4 Aspect Ratios and Dimensionless Resistance

Before beginning to present and analyze the results of the problem, it is clear that the

problem depends on a large number of parameters: the heat-source dimensions a, b;

the cross-sectional dimensions c, d; the channel thickness t; the thermal conductivity

k; the magnitude of the heat flux q; heat transfer coefficient of the lateral edges

he; and the average heat transfer coefficient at the sink plane h̄s. Thus, it is more

convenient to present and study the total thermal resistance in a nondimensional form

as a function of some aspect ratios of the channel dimensions and some Biot numbers,

which are represented by: the aspect ratio between the heat-source length and the

cross-sectional length ǫx = a/c, the aspect ratio between the heat-source width and

the cross-sectional width ǫy = b/d, the aspect ratio between the channel thickness and

the cross-sectional length τx = t/c, the aspect ratio between the channel thickness and

the cross-sectional width τy = t/d, the Biot number in the x-direction Bie,x = hec/k,

the Biot number in the y-direction Bie,y = hed/k and the z-direction Biot number

Bis = h̄st/k. This can be done by defining the following nondimensional variables:

x∗ =
x

c
, y∗ =

y

d
, z∗ =

z

t
. (2.33)

Hence, the general solution in Eq. (2.17) can be rewritten as:

θ(x∗, y∗, z∗) =
M∑

m=1

N∑

n=1

Cmn cos(λ
∗
mx

∗) cos(δ∗ny
∗) [cosh(β∗

mnz
∗)− φ∗

mn(x
∗) sinh(β∗

mnz
∗)] ,

(2.34)

where λ∗m = λmc and δ
∗
n = δnd are the dimensionless eigenvalues that can be obtained

by solving the following transcendental equations numerically:

λ∗m sin(λ∗m) = Bie,x cos(λ
∗
m), m = 1, 2, . . .M
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δ∗n sin(δ
∗
n) = Bie,y cos(δ

∗
n), n = 1, 2, . . . N (2.35)

while β∗
mn is defined by β∗

mn = βmnt =
√

(λ∗mτx)
2 + (δ∗nτy)

2 and the spreading function

φ∗
mn(x

∗) is given by:

φ∗
mn(x

∗) =
β∗
mn tanh(β

∗
mn) + Bis(x

∗)

β∗
mn +Bis(x∗) tanh(β∗

mn)
, (2.36)

where

Bis(x
∗) = Bis

(p+ 1)

p
[1− (x∗)p] . (2.37)

To find the Fourier coefficients Cmn based on the aspect ratio factors, the general

equation for the linear systems given in Eq. (2.24) can be written as:

M∑

m=1

Ĉmjβ
∗
mj

1
ˆ

0

φ∗
mj(x

∗)φ∗
ij(x

∗) cos(λ∗mx
∗) cos(λ∗ix

∗) dx∗ =

sin(δ∗j ǫy)

δ∗jN
∗(δ∗j )

ǫx
ˆ

0

φ∗
ij(x

∗) cos(λ∗ix
∗) dx∗, (2.38)

where

N∗(δ∗j ) =
1

2

[

1 +
Bie,y

δ∗2j +Bi2e,y

]

. (2.39)

It is important to note that in the linear systems included in Eq. (2.38) we solve for the

modified Fourier coefficients Ĉmn, which are related to the actual Fourier coefficient

Cmn by Ĉmn = Cmn/α, where α = qt/k.

Finally, the total thermal resistance Rt is nondimensionalized by using the thermal

conductivity k and an intrinsic length scale, which is taken to be
√
ab (i.e.,

√
Ac/2):

R∗
t = k

√
abRt. (2.40)
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Thus, the nondimensional total thermal resistance can be expressed as a function of

the aspect ratio factors as follows:

R∗
t =

√
τxτy

4(ǫxǫy)3/2

M∑

m=1

N∑

n=1

Ĉmn
λ∗mδ

∗
n

sin(λ∗mǫx) sin(δ
∗
nǫy). (2.41)

2.3 Results and Discussions

In modeling heat-sink cooling systems, it is desirable to minimize the total thermal

resistance of the system. We will focus on studying the thermal resistance for flux

channels with different conductance profiles along the sink plane as it gives an index

of the effectiveness of the heat-sink cooling systems and the results can be useful in

thermal design analysis for heat-sink sizing and optimization. In this section, the

dimensionless thermal resistance of the 3D flux channel for different aspect ratios

and different conductance distribution profiles along the sink plane is calculated and

analyzed. First, in order to show the accuracy of the developed analytical solution,

a solution validation study is presented in which the analytical solution is compared

to results obtained by solving the problem numerically. Second, different parametric

studies are then conducted to study the effect of the different conductance distribution

profiles along the sink plane on total thermal resistance for different values of the

Biot number. Third, a dimensional study is then presented to study the effect of

the different conductance profiles on the temperature rise of the flux channel. For the

analytical solution results, MATLAB (version 2013b) software is used to carry out the

results [25], while the numerical results have been conducted with the finite element

method (FEM) using the ANSYS commercial software package [26].
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2.3.1 Solution Validation Study

To demonstrate the accuracy and computational efficiency of the developed analytical

solution, a test study is conducted and compared to the results obtained by solving the

problem numerically with the FEM. The results of the test case study are obtained

based on solving a flux channel problem that has the following aspect ratios and

properties: ǫx = ǫy = 0.2 , τx = τy = 0.1, Bie,x = Bie,y = 0.5, and Bis = 0.1. For

the variable heat transfer coefficient at the sink plane, a linear profile is considered

with p = 1. The dimensionless total thermal resistance is calculated and compared

both for the analytical and the FEM solutions. The FEM results are obtained with

a tetrahedral mesh and the convergence is checked by refining the mesh, especially

around the heat-source region. The system with a tetrahedral mesh consisting of

183351 elements converged with three digits of precision for the dimensionless thermal

resistance, which is shown in Table 2.1. Regarding the analytical solution results, the

number of terms for each summation in Eq. (2.41) is chosen to be the same, M = N ,

and the convergence is checked by increasing the number of terms in the summations.

It can be seen from Table 2.1 that with M = N = 25, the nondimensional thermal

resistance agrees well with the FEM results with an approximately relative error of

0.1% compared to the finest mesh result. Furthermore, increasing the the number of

terms in the summations will increase accuracy. For example, with M = N = 40, the

relative error decreases to approximately 0.03%.

2.3.2 Model Parametric Analysis

In this part, the proposed analytical solution is used to find and analyze the dimen-

sionless total thermal resistance of a 3D flux channel and to study the effect of the

different conductance profiles on thermal resistance for different aspect ratios and Biot
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FEM Analytical
Number of Elements R∗

t M = N R∗
t

286 0.258199 5 0.264356
636 0.262854 10 0.269531
9822 0.269025 20 0.270850
49109 0.270851 25 0.271011
183351 0.271153 30 0.271112
282386 0.271214 40 0.271206

Table 2.1: Test study dimensionless thermal resistance for FEM and analytical results

numbers. In order to only consider the effect of the variable heat transfer coefficient

along the sink plane, the lateral edges of the channel are assumed to be adiabatic by

assigning the x- and y-direction Biot numbers a very small value, which is taken in the

rest of this analysis as Bie,x = Bie,y = 0.001. Hence, the dimensionless thermal resis-

tance is now represented as a function of five parameters: ǫx, ǫy, τx, τy, and Bis. First,

a flux channel of equal aspect ratios is considered, i.e., ǫx = ǫy = ǫ and τx = τy = τ .

Different variable heat transfer coefficient profiles along the sink plane are considered,

including the concave profile p = 0.5, the linear profile p = 1, the parabolic profile

p = 2, and the uniform heat transfer coefficient p −→ ∞. The dimensionless thermal

resistance is calculated for different values of the Biot number, Bis = 0.1, 1, 5, 10

and with thickness aspect ratio τ = 0.1. For calculating the dimensionless thermal

resistance, the number of terms in Eq. (2.41) is taken the same for both the x and y

summations, i.e., M = N , starting from M = N = 15 and then the number of terms

is incremented until the following stopping criteria are satisfied

∣
∣
∣
∣

R∗
t
M+1 −R∗

t
M

R∗
t
M+1

∣
∣
∣
∣
≤ 10−4, (2.42)

where R∗
t
M+1 represents the dimensionless resistance R∗

t calculated by using M + 1

and N + 1 terms in the summations. Figures 2.4-2.7 show the dimensionless thermal

resistance R∗
t versus the aspect ratio ǫ (ǫ is taken to vary from 0.1 to 1) for the different
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Biot numbers. Moreover, the numerical solution results are obtained using the FEM

for different values of ǫ to validate the analytical results, where both analytical and

FEM results are shown on the same plots. For the FEM numerical results, the results

can be obtained by considering any model that satisfies the nondimensional parame-

ters. For example, considering a flux channel model of a = b = 0.01 m, c = d = 0.1 m,

t = 0.01 m, k = 10 W/m·K, he = 0.1 W/m2·K, and h̄s = 100 W/m2·K will give the

same value of the dimensionless thermal resistance if we consider the following differ-

ent model of a = b = 0.001 m, c = d = 0.01 m, t = 0.001 m, k = 5 W/m·K, he = 0.5

W/m2·K, and h̄s = 500 W/m2·K, since both the models have the same nondimen-

sional parameters of ǫ = 0.1, τ = 0.1, Bie,x = Bie,y = 0.001, and Bis = 0.1. However,

we used the first model in our numerical simulations and all the results are obtained

by changing the source dimensions a, b and the averaged heat transfer coefficient h̄s

according to the nondimensional parameters. For the analytical results, the number

of terms used to satisfy Eq. (2.42) varied approximately between M = N = 16 and

M = N = 30 depending on the aspect ratio value ǫ, the Biot number value Bis and

the conductance distribution profile along the sink plane determined by the value of

p. In general, using M = N = 30 for all the analytical results is found to be sufficient

to satisfy Eq. (2.42) and keep the relative error of less than 0.2% compared to the

FEM results, as shown in Table 2.2.

In the set of nondimensional parameters, the nondimensional Biot number Bis is of

particular physical significance as it represents the ratio between the one-dimensional

(1D) conduction resistance inside the channel, defined by t/(kcd), and the convection

resistance along the sink plane based on the averaged heat transfer coefficient h̄s,

given by 1/(h̄scd).

It can be seen from Figs. 2.4-2.7 that the order of magnitude for the dimensionless

thermal resistance decreases by increasing the Biot number, because the Biot number
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is defined as Bis = h̄st/k and for a fixed-thickness aspect ratio system with fixed ma-

terial properties, increasing the Biot number is equivalent to increasing the averaged

heat transfer coefficient value h̄s. Hence, more heat can be removed from the sys-

tem, so the total thermal resistance is decreased. Moreover, the effect of the different

conductance profiles along the sink plane on thermal resistance is obvious for the dif-

ferent Biot numbers. In particular, for Bis < 5, the dimensionless thermal resistance

depends strongly on the source-size aspect ratio ǫ and the shape of the conductance

profile represented by the value of the power p. As seen from Figs. 2.4 and 2.5 when

the aspect ratio ǫ has small values, the dimensionless thermal resistance gets smaller

by decreasing the value of p. However, for large values of ǫ, the dimensionless thermal

resistance gets larger by decreasing the value of p. The reason behind this is that for

small aspect ratios ǫ (and small thickness ratio τ), the heat flow will reach the sink

plane concentrated in the central area of the sink plane, and by decreasing the value

of p, the intense cooling is concentrated in that area as well, which would decrease

the thermal resistance. On the other hand, for a large aspect ratio ǫ, the heat flow

will constrict to go through the intense cooling area which would increase the effort,

and therefore the thermal resistance by decreasing the value of p.

In Fig. 2.4, which shows the dimensionless thermal resistance profiles for Bis = 0.1,

one can see the significant difference between the different profiles. For the concave

conductance distribution (p = 0.5), the profile has the minimum values of the di-

mensionless thermal resistance when ǫ < 0.6 compared to the other three profiles.

For the linear conductance distribution (p = 1), the dimensionless thermal resistance

profile shows lower values when ǫ < 0.7 compared to using the parabolic conductance

distribution (p = 2) and the uniform conductance distribution (p → ∞). Moreover,

when considering the parabolic conductance distribution (p = 2), the dimensionless

thermal resistance profile shows lower values when ǫ < 0.87 compared to using the
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Figure 2.4: Dimensionless thermal resistance for Bis = 0.1 and τ = 0.1.
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Figure 2.5: Dimensionless thermal resistance for Bis = 1 and τ = 0.1.

uniform conductance distribution. The effect of the different conductance profiles

along the sink plane on thermal resistance gets weaker by increasing the value of the

Biot number, as shown in Figs. 2.6 and 2.7. One can note from Figs. 2.5-2.7 a sud-

den increase in the dimensionless thermal resistance for the nonuniform conductance

distributions when ǫ > 0.8 compared to using the uniform conductance distribution.
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ǫ R∗
t (Analytical) R∗

t (FEM) Relative Error(%)
0.1 0.176285 0.176325 0.03%
0.2 0.132151 0.132038 0.09%
0.4 0.084396 0.084317 0.1%
0.6 0.062567 0.062476 0.15%
0.8 0.052503 0.052424 0.15%
1 0.059053 0.058995 0.1%

Table 2.2: Relative error of dimensionless thermal resistance between analytical and
FEM results for Bis = 1, τ = 0.1 and p = 2.

The reason behind this is that when considering the uniform conductance distribu-

tion with the uniform heat transfer coefficient along the sink plane, as the source-size

aspect ratio gets closer to 1, i.e., ǫ → 1, the heat flow becomes of 1D nature and so

does the thermal resistance (spreading resistance gets weaker). However, this is not

the case when considering the nonuniform conductance distributions, where the heat

flow and the thermal resistance are always multidimensional for all the values of ǫ,

and as the source aspect ratio approaches 1, the thermal resistance increases since

the cooling is concentrated in the central area of the sink plane for the nonuniform

conductance distributions under study. It is important to note that for a fixed p,

the behavior (increasing/decreasing intervals) of the dimensionless thermal resistance

profile R∗
t with respect to ǫ is not necessarily representing the same behavior for the

dimensional thermal resistance profile Rt, since
√
ab is used to nondimensionalize the

thermal resistance and hence the dimensional value of the resistance depends on the

value of ǫ.

The effect of the thickness aspect ratio τ on thermal resistance is also studied

for the different conductance profiles. Figure 2.8 shows the dimensionless thermal

resistance profiles for ǫ = 0.2 and Bis = 1 versus the thickness aspect ratios τ (τ was

taken to vary from 0.1 to 2). It can be seen that the behavior of the dimensionless

thermal resistance for the different conductance profiles is dependent on the value of
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Figure 2.6: Dimensionless thermal resistance for Bis = 5 and τ = 0.1.
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Figure 2.7: Dimensionless thermal resistance for Bis = 10 and τ = 0.1.

the thickness aspect ratio τ , where for τ < 0.75, the dimensionless thermal resistance

decreases when the value of p decreases, and this agrees with the previous results

shown in Fig. 2.5 for the small source-size aspect ratio ǫ. However, as the thickness

aspect ratio becomes larger than 0.75, i.e., τ > 0.75, the dimensionless thermal resis-

tance increases when the value of p decreases. The reason is that for this relatively

small fixed value of Biot number Bis = 1, when the thickness aspect ratio gets larger,
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Figure 2.8: Dimensionless thermal resistance for Bis = 1 and ǫ = 0.2.
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Figure 2.9: Dimensionless thermal resistance for ǫy = 0.1, τ = 0.1 and Bis = 1.

the value of the averaged heat transfer coefficient h̄s gets smaller, and thus the de-

pendency of thermal resistance on the conductance profile becomes stronger, where

for smaller values of p, heat flow should constrict to go through the heat sink, and

this would increase the thermal resistance.

Furthermore, the effect of changing one of the heat-source-size aspect ratios (ǫx or

ǫy) while fixing the other one is considered. Figure 2.9 shows the dimensionless thermal
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Figure 2.10: Dimensionless thermal resistance for ǫx = 0.1, τ = 0.1 and Bis = 1.

resistance profiles for τ = 0.1 and Bis = 1 versus the heat-source-length aspect ratio

ǫx with a fixed heat-source-width aspect ratio ǫy = 0.1. Meanwhile, Fig. 2.10 shows

the dimensionless thermal resistance profiles versus the heat-source-width aspect ratio

ǫy with fixed heat-source-length aspect ratio ǫx = 0.1 for the same Biot number and

thickness aspect ratio. It is clear from Figs. 2.9 and 2.10 that the effect of changing

the length aspect ratio ǫx is the one responsible for changing the pattern of the the

dimensionless thermal resistance of the different conductance profiles.

In the previous discussion, the dimensionless thermal resistance is studied for flux

channels with different properties and parameters. However, the dimensional analyt-

ical solution of the temperature distribution presented in Section 2.2.2 can be used

to obtain the temperature distribution in the flux channel if desired. A dimensional

study is conducted to study the effect of the different conductance distributions on

the temperature rise. A 3D square flux channel with side dimensions of c = d = 0.1 m

and thickness t = 0.01 m is considered. The heat-source dimensions are a = b = 0.02

m. The thermal conductivity of the system is k = 10 W/m·K. A uniform heat flux of

q = 104 W/m2 is applied in the source region. The conductance along the lateral edges
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Figure 2.11: Temperature profiles along half of the source plane (along the x-axis
when y = 0) for the different conductance distributions.

is he = 0.1 W/m2·K, and the average conductance along the sink plane is h̄s = 100

W/m2·K. The ambient temperature is chosen of 25◦ C. Figure 2.11 shows the source-

plane temperature profile along the x-axis when y = 0 for the different conductance

distributions in which the effect of the different conductance distributions along the

sink plane on the temperature rise along the source plane is clear.

2.4 Conclusion

In this chapter, an analytical solution of a 3D flux channel with a nonuniform heat

transfer coefficient along the sink plane was presented by using the method of sep-

aration of variables combined with the method of least squares. The nonuniform

heat transfer coefficient along the sink plane has been modeled by using a conduc-

tance function changing in the x-direction, which can define a wide variety of different

conductance distributions along the sink plane. The proposed analytical solution was

used to find and analyze the dimensionless total thermal resistance, where the thermal
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resistance was presented in a nondimensional form as a function of the heat-source-size

aspect ratios, channel-thickness aspect ratios, and Biot numbers. The solution was

validated by comparing the developed analytical solution results with results obtained

by solving the problem numerically using the FEM in which excellent agreement has

been observed, and then, the solution was used to study the effect of different conduc-

tance distributions on the dimensionless total thermal resistance of the channel and

the temperature rise.
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Chapter 3

Thermal Resistance of a 3D Flux

Channel with Eccentric Source and

2D Variable Heat Convection

3.1 Introduction

Thermal management of microelectronic devices is considered as a key factor in the

development of microelectronic systems for better performance and device reliability.

In most applications, microelectronic systems are modeled as rectangular flux chan-

nels, where heat is generated in a small heat-source area and flows by conduction

through the system to spread the heat into a larger convective heat-sink area where

the generated heat is then transferred into an ambient fluid. The heat convection

along the sink plane depends strongly on the sink configuration, where sometimes

a nonuniform heat transfer coefficient along the sink plane might be present. For

Submitted to the ASME-Journal of Heat Transfer.
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example, when considering nonuniformly distributed extended surfaces with differ-

ent lengths or a nonuniform nature of the moving ambient fluid, the heat transfer

coefficient along the sink plane becomes nonuniform.

Many relevant studies can be found in the literature on thermal analysis of flux

channels. In particular, many analytical solutions for the temperature distribution and

thermal spreading resistance in flux channels have been studied comprehensively [1–

9]. Kadambi and Abuaf [1] obtained analytical solutions for the temperature field in

rectangular flux channels. Yovanovich et al. [2] obtained general analytical solutions

for temperature field and spreading resistance in compound flux channels. Muzychka

et al. [3–7] have conducted comprehensive research on different spreading resistance

problems including different geometries, boundaries, and properties. Bagnall et al. [8]

obtained analytical solutions for the temperature rise and thermal spreading resistance

in multilayered flux channels. However, in most of the existing work, attention has

been focused on problems with a uniform heat transfer coefficient along the sink plane.

Recently, Razavi et al. [10] studied thermal resistance of a two-dimensional (2D) flux

channel with a concentric heat source in the source plane and a nonuniform heat

transfer coefficient along the sink plane.

In this chapter, general analytical solutions for the temperature field and thermal

resistance of a three-dimensional (3D) flux channel with eccentric heat source and

a variable heat transfer coefficient that varies in the two horizontal dimensions are

developed by using the method of separation of variables combined with the method

of least squares. These solutions can be used to find the optimal configuration of the

heat sink for many applications.
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3.2 Mathematical Theory

In this section, the mathematical model of the problem under consideration is pre-

sented along with the governing equation of the temperature distribution and the

appropriate boundary conditions. The analytical solutions for the temperature field

and total thermal resistance are then obtained using the method of separation of

variables and the method of least squares, in which the two methods are used to

construct a mathematical algorithm for finding the Fourier coefficients. Finally, a

nondimensional total thermal resistance is introduced in terms of some aspect ratio

factors.

3.2.1 Mathematical model

The system under study is a 3D rectangular flux channel in which heat enters the

system through an eccentric heat source and flows by conduction to a larger convective

heat sink with variable heat transfer coefficient h(x, y) varying in the two horizontal

dimensions. The system is modeled in Cartesian coordinates such that the origin is

at the left corner of the source plane, as shown in Fig. 3.1.

The steady-state heat conduction equation of the temperature excess θ = T − T∞

is governed by Laplace’s equation:

∂2θ

∂x2
+
∂2θ

∂y2
+
∂2θ

∂z2
= 0, (3.1)

with respect to the following boundary conditions: in the source plane, a uniform heat

flux q is specified over the heat-source region, where the heat source is considered as

a rectangular shape with dimensions a and b in the x- and y-directions, respectively,
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while the remainder of the source plane is considered as adiabatic. Hence, the source-

plane boundary condition is given by:

−k ∂θ
∂z

∣
∣
∣
∣
z=0

=







q, inside source region,

0, outside source region.

(3.2)

The lateral edges of the system are assumed to be adiabatic. Thus, the lateral-edge

boundary conditions are:

∂θ

∂x

∣
∣
∣
∣
x = 0, c

= 0,
∂θ

∂y

∣
∣
∣
∣
y = 0, d

= 0. (3.3)

Along the sink plane, a variable heat transfer coefficient varying in the x- and y-

directions exists and the boundary condition is addressed by:

∂θ

∂z

∣
∣
∣
∣
z=t

= −h(x, y)
k

θ(x, y, t). (3.4)

The variable heat transfer coefficient function h(x, y) might present along the sink

plane in different distributions according to the sink configuration when considering

a nonuniform distribution of the extended surfaces (fins or bins) or according to a

nonuniform nature of the moving ambient fluid over the sink region. Thus, the heat

transfer coefficient function depends on the specific problem under study. However,

the general solution for the temperature distribution and thermal resistance can be

obtained in the same manner for any heat transfer coefficient distribution. In this

study, we will consider two heat transfer coefficient distributions that are of opposite

nature in distributing the convective cooling along the sink plane, defined by:

h1(x, y) = h0 sin
(xπ

c

)

sin
(yπ

d

)

, (3.5)
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h2(x, y) = h0

[

1− sin
(xπ

c

)

sin
(yπ

d

)]

, (3.6)

where h0 is a reference conductance representing the maximum value of the heat

transfer coefficient in the sink region. It can be seen that the first distribution function

h1(x, y) has the maximum conductance in the central region of the sink plane and the

conductance decreases when moving away from the central region, whereas in the

second distribution function h2(x, y), the maximum value of the conductance is along

the sink boundaries and the conductance decreases when moving towards the central

region. Figures 3.2 and 3.3 show two samples of flux channels with extended surfaces

distributed along the sink plane based on the heat transfer coefficient functions given

by Eqs. (3.5) and (3.6). For the purpose of comparing the effect of the different

conductance distribution functions on the temperature field and the thermal resistance

of the channel, it is more appropriate to present the distributions with the same total

average conductance. This can be done by integrating the conductance distributions

along the sink plane and finding the average total conductance h̄s as:

h̄s =
1

cd

c
ˆ

0

d
ˆ

0

h(x, y)dydx. (3.7)

Hence, the two conductance functions in Eqs. (3.5) and (3.6) can be rewritten to have

the same average conductance as:

h1(x, y) =
π2h̄s
4

sin
(xπ

c

)

sin
(yπ

d

)

, (3.8)

h2(x, y) =
π2h̄s
π2 − 4

[

1− sin
(xπ

c

)

sin
(yπ

d

)]

. (3.9)
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the form of an infinite Fourier series solution. The solution is assumed to have the

form θ(x, y, z) = X(x) · Y (y) · Z(z) [11–14]. Applying the method of separation of

variables and making use of the lateral-edge boundary conditions along the planes

(x = 0, x = c, y = 0, and y = d) yields the following general solution:

θ(x, y, z) = C00 +D00z

+
∞∑

m=1

cos(λmx) [Cm0 cosh(λmz) +Dm0 sinh(λmz)]

+
∞∑

n=1

cos(δny) [C0n cosh(δnz) +D0n sinh(δnz)]

+
∞∑

m=1

∞∑

n=1

cos(λmx) cos(δny) [Cmn cosh(βmnz) +Dmn sinh(βmnz)] , (3.10)

where λm = mπ/c and δn = nπ/d are the eigenvalues in the x- and y-directions,

respectively, and βmn =
√

λm
2 + δn

2 (m,n > 0) are the double Fourier expansion

eigenvalues. The relationship between the Fourier coefficients Cmn and Dmn can be

obtained by applying the sink boundary condition in Eq. (3.4), where the following

result can be obtained:

Dmn = −φmn(x, y)Cmn, (3.11)

where φmn(x, y) is given by:

φmn(x, y) =







h(x, y)

k + h(x, y)t
, for m = n = 0,

γ tanh(γt) + [h(x, y)/k]

γ + [h(x, y)/k] tanh(γt)
, otherwise,

(3.12)

where γ refers to any of the corresponding eigenvalues λm, δn, or βmn.

Finally, the source-plane boundary condition is used to find the Fourier coefficients

Cmn by means of the method of least squares. The method of least squares is used
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to find the Fourier coefficients because of the existence of the variable conductance

function h(x, y) in the general solution. The general solution in Eq. (3.10) is presented

in an infinite series form; however, in practical applications we consider a finite number

of terms to calculate the results provided that the number of terms is sufficient to

represent the solution without loss of accuracy. The general approximate solution for

finite M and N eigenvalues in the x- and y-directions, respectively, can be rewritten

after making use of Eq. (3.11) as:

θ(x, y, z) = C00 [1− φ00(x, y)z]

+
M−1∑

m=1

Cm0 cos(λmx) [cosh(λmz)− φm0(x, y) sinh(λmz)]

+
N−1∑

n=1

C0n cos(δny) [cosh(δnz)− φ0n(x, y) sinh(δnz)]

+
M−1∑

m=1

N−1∑

n=1

Cmn cos(λmx) cos(δny) [cosh(βmnz)− φmn(x, y) sinh(βmnz)] .

(3.13)

The method of least squares can be applied to the general solution given in Eq. (3.13)

by considering the source-plane boundary condition in Eq. (3.2). This can be done

by defining the least squares integral [15, 16]:

IMN =

c
ˆ

0

d
ˆ

0

[

− ∂θ

∂z

∣
∣
∣
∣
z=0

− S(x, y)

]2

dydx, (3.14)

where S(x, y) is the function defining the boundary condition at the source plane

given by:

S(x, y) =







q/k, inside source region,

0, outside source region.

(3.15)
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To simplify the least squares integral, the first derivative of the general solution in

Eq. (3.13) with respect to z at the source plane (at z = 0) can be found as:

∂θ

∂z

∣
∣
∣
∣
z=0

= −C00φ00(x, y)−
M−1∑

m=1

Cm0λmφm0(x, y) cos(λmx)

−
N−1∑

n=1

C0nδnφ0n(x, y) cos(δny)−
M−1∑

m=1

N−1∑

n=1

Cmnβmnφmn(x, y) cos(λmx) cos(δny).

(3.16)

Thus, the least square integral in Eq. (3.14) can be rewritten in a compact form as:

IMN =

c
ˆ

0

d
ˆ

0

[
M−1∑

m=0

N−1∑

n=0

Cmnψmn(x, y)− S(x, y)

]2

dydx, (3.17)

where ψmn(x, y) is the Fourier coefficient’s corresponding function given by:

ψmn(x, y) =







φ00(x, y), for m = n = 0,

λmφm0(x, y) cos(λmx), for m 6= 0, n = 0,

δnφ0n(x, y) cos(δny), for m = 0, n 6= 0,

βmnφmn(x, y) cos(λmx) cos(δny), for m 6= 0, n 6= 0.

(3.18)

The least squares Fourier coefficients are obtained to minimize the least squares inte-

gral IMN using [17, 18]:

∂IMN

∂Cij
= 0, i = 0, 1, . . . ,M − 1, j = 0, 1, . . . , N − 1. (3.19)

The application of Eq. (3.19) yields:
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c
ˆ

0

d
ˆ

0

[
M−1∑

m=0

N−1∑

n=0

Cmnψmn(x, y)− S(x, y)

]

ψij(x, y)dydx = 0, (3.20)

which can be simplified to:

M−1∑

m=0

N−1∑

n=0

Cmn

c
ˆ

0

d
ˆ

0

ψmn(x, y)ψij(x, y)dydx =
q

k

ˆ Xc+a/2

Xc−a/2

ˆ Yc+b/2

Yc−b/2

ψij(x, y)dydx.

(3.21)

Equation (3.21) represents a system of MN linear equations, where each equation

is obtained by considering different values of i and j for i = 0, 1, . . . ,M − 1 and

j = 0, 1, . . . , N − 1. The system of linear equations has to be solved for the Fourier

coefficients which can be represented in a matrix form as:

AC = b, (3.22)

where A is an MN×MN matrix whose components are represented by definite inte-

grals, which can defined by:

A =

c
ˆ

0

d
ˆ

0

Ψt(x, y)Ψ(x, y)dydx, (3.23)

where Ψ(x, y) is vector-valued function of MN components given by:

Ψ(x, y) = [ψ00 ψ01 . . . ψ0N−1 ψ10 ψ11 . . . ψ1N−1 . . . . . . ψM−1N−1], (3.24)

C is the unknown Fourier coefficients vector defined as:

C = [C00 C01 . . . C0N−1 C10 C11 . . . C1N−1 . . . . . . CM−1N−1]
t, (3.25)
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and b is the right-hand-side vector given by:

b =
q

k

ˆ Xc+a/2

Xc−a/2

ˆ Yc+b/2

Yc−b/2

Ψt(x, y)dydx. (3.26)

It is worth mentioning that the linear system matrix A and the right-hand-side vector

b are presented in the form of definite integrals of a matrix-valued function and vector-

valued function, respectively, where the integrals are applied componentwise to the

component functions. Thus, numerical integration can be used to evaluate the entries

of the linear system using any mathematical software package (e.g., MATLAB) and

then the Fourier coefficients Cmn can be obtained by solving the resultant linear

system.

From the previous discussion, the general solution of the temperature excess θ

is illustrated along with a mathematical linear system that has to be solved for the

Fourier coefficients. The solution in the source plane z = 0 is of most interest for

finding the maximum temperature and the total thermal resistance of the flux channel,

and is given by:

θ(x, y, 0) = C00+
M−1∑

m=1

Cm0 cos(λmx)+
N−1∑

n=1

C0n cos(δny)+
M−1∑

m=1

N−1∑

n=1

Cmn cos(λmx) cos(δny).

(3.27)

3.2.3 Total Thermal Resistance

The total thermal resistance of the system under consideration can be properly defined

as [3, 6]:

Rt =
Tc − T∞

Q
=
θ̄c
Q
, (3.28)

where Tc and θ̄c are the mean temperature over the heat-source area and the mean

heat-source temperature excess, respectively, and Q = abq is the total heat flow rate
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into the flux channel. The mean source temperature excess is addressed by:

θ̄c =
1

Ac

¨

Ac

θ(x, y, 0) dAc =
1

ab

ˆ Xc+a/2

Xc−a/2

ˆ Yc+b/2

Yc−b/2

θ(x, y, 0)dydx. (3.29)

The application of Eq. (3.29) to the source-plane solution in Eq. (3.27) yields:

θ̄c = C00 + 2
M−1∑

m=1

Cm0

cos(λmXc) sin(
1
2
λma)

aλm
+ 2

N−1∑

n=1

C0n

cos(δnYc) sin(
1
2
δnb)

bδn

+ 4
M−1∑

m=1

N−1∑

n=1

Cmn
cos(λmXc) sin(

1
2
λma) cos(δnYc) sin(

1
2
δnb)

aλmbδn
. (3.30)

3.2.4 Dimensionless Resistance

As the general expression of the thermal resistance depends on a large number of

parameters, it is more appropriate to present the results in a general dimensionless

form in terms of some aspect ratio factors. This can be done by considering the

following nondimensional variables:

x∗ =
x

c
, y∗ =

y

d
, z∗ =

z

t
, (3.31)

which leads to the following effective nondimensional parameters:

ǫx = a/c, ǫy = b/d, τx = t/c, τy = t/d, Bis = h̄st/k, (3.32)

where ǫx and ǫy are the aspect ratios between the heat-source dimensions and the hori-

zontal cross-sectional dimensions. τx and τy are the aspect ratios between the channel

thickness and the horizontal cross-sectional dimensions in the x- and y-directions,

respectively, while Bis represents the Biot number based on the total average heat

transfer coefficient. Thus, the general solution in Eq. (3.13) can be rewritten in terms
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of the nondimensional variables as:

θ(x∗, y∗, z∗) = C00 [1− φ∗
00(x

∗, y∗)z∗]

+
M−1∑

m=1

Cm0 cos(λ
∗
mx

∗) [cosh(τxλ
∗
mz

∗)− φ∗
m0(x

∗, y∗) sinh(τxλ
∗
mz

∗)]

+
N−1∑

n=1

C0n cos(δ
∗
ny

∗) [cosh(τyδ
∗
nz

∗)− φ∗
0n(x

∗, y∗) sinh(τyδ
∗
nz

∗)] +

M−1∑

m=1

N−1∑

n=1

Cmn cos(λ
∗
mx

∗) cos(δ∗ny
∗) [cosh(β∗

mnz
∗)− φ∗

mn(x
∗, y∗) sinh(β∗

mnz
∗)] ,

(3.33)

where λ∗m = λmc = mπ and δ∗n = δnd = nπ are the dimensionless eigenvalues in

the x- and y-directions, respectively, and β∗
mn = βmnt =

√

(λ∗mτx)
2 + (δ∗nτy)

2 are the

dimensionless double Fourier expansion eigenvalues. The Fourier coefficients function

φ∗
mn(x

∗, y∗) is rewritten as:

φ∗
mn(x

∗, y∗) =







Bi(x∗, y∗)

1 + Bi(x∗, y∗)
, for m = n = 0,

γ∗ tanh(γ∗τγ) + [Bi(x∗, y∗)/τγ]

γ∗ + [Bi(x∗, y∗)/τγ] tanh(γ∗τγ)
, otherwise,

(3.34)

where γ∗ refers to any of the corresponding dimensionless eigenvalues λ∗m, δ
∗
n, or β

∗
mn

and τγ is the corresponding thickness-aspect ratio, i.e., τγ = τx for λ∗m, τγ = τy for

δ∗n, and τγ = 1 for β∗
mn. The function Bi(x∗, y∗) represents the nondimensional heat

transfer coefficient function h(x, y), where the two functions considered in this study

given by Eqs. (3.8) and (3.9) can be represented as:

Bi1(x
∗, y∗) =Bis

π2

4
sin(x∗π) sin(y∗π), (3.35)
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Bi2(x
∗, y∗) =Bis

π2

π2 − 4
[1− sin(x∗π) sin(y∗π)] . (3.36)

To find the Fourier coefficients Cmn based on the nondimensional representation,

the general equation of the linear system in Eq. (3.21) can be rewritten as:

M−1∑

m=0

N−1∑

n=0

Ĉmn

1
ˆ

0

1
ˆ

0

ψ∗
mn(x

∗, y∗)ψ∗
ij(x

∗, y∗)dy∗dx∗ =

ˆ X∗

c+ǫx/2

X∗

c−ǫx/2

ˆ Y ∗

c +ǫy/2

Y ∗

c −ǫy/2

ψ∗
ij(x

∗, y∗)dy∗dx∗,

(3.37)

where

ψmn(x, y) =







φ∗
00(x

∗, y∗), for m = n = 0,

λ∗mφ
∗
m0(x

∗, y∗) cos(λ∗mx
∗), for m 6= 0, n = 0,

δ∗nφ
∗
0n(x

∗, y∗) cos(δ∗ny
∗), for m = 0, n 6= 0,

β∗
mnφ

∗
mn(x

∗, y∗) cos(λ∗mx
∗) cos(δ∗ny

∗), for m 6= 0, n 6= 0.

(3.38)

It is important to note that the nondimensional linear system equation (3.37) is pre-

sented in terms of the modified Fourier coefficients that can be related to the ac-

tual Fourier coefficients as Ĉ00 = C00k/qt, Ĉm0 = Cm0k/qc, Ĉ0n = C0nk/qd, and

Ĉmn = Cmnk/qt for both m 6= 0 and n 6= 0.

Finally, the total thermal resistance Rt is nondimensionalized by using the thermal

conductivity k and an intrinsic length scale which is taken to be
√
ab (i.e.,

√
Ac) to

get:

R∗
t = k

√
abRt. (3.39)

Thus, once the linear system is solved for the modified Fourier coefficients Ĉmn, the

nondimensional total thermal resistance can be expressed in terms of the aspect ratio

factors as:



88

R∗
t =

√
τxτy√
ǫxǫy

[

Ĉ00 +
2

ǫxτx

M−1∑

m=1

Ĉm0

cos(λ∗mX
∗
c ) sin(

1
2
λ∗mǫx)

λ∗m

+
2

ǫyτy

N−1∑

n=1

Ĉ0n

cos(δ∗nY
∗
c ) sin(

1
2
δ∗nǫy)

δ∗n

+
4

ǫxǫy

M−1∑

m=1

N−1∑

n=1

Ĉmn
cos(λ∗mX

∗
c ) sin(

1
2
λ∗mǫx) cos(δ

∗
nY

∗
c ) sin(

1
2
δ∗nǫy)

λ∗mδ
∗
n

]

. (3.40)

3.3 Results and Discussions

In this section, different parametric studies are conducted to validate the analytical

solution and to study the effect of the different conductance distribution profiles along

the sink plane on the thermal resistance and temperature rise. First, the analytical

solution is used to calculate and study the dimensionless thermal resistance of a 3D

flux channel for different aspect ratios and different values of the Biot number where

the results are compared with numerical simulation results. One parametric dimen-

sional study is then presented to see the effect of the different conductance profiles

on the temperature distribution along the source plane. For the analytical solution

results, MATLAB (version 2016b) software is used to carry out the results [19], while

the numerical results are conducted based on the finite element method (FEM) using

the ANSYS commercial software package [20].

3.3.1 Dimensionless Parametric Analysis

We start our investigation by considering the developed analytical solution to evaluate

the dimensionless total thermal resistance of a 3D flux channel and to study the effect

of the different conductance profiles on the thermal resistance for different aspect

ratios and different Biot numbers. The analytical dimensionless thermal resistance

presented in Eq. (3.40) can be seen as a function of seven parameters: X∗
c , Y

∗
c , ǫx,
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ǫy, τx, τy, and Bis. In this study, we consider a channel flux of equal aspect ratios,

i.e., ǫx = ǫy = ǫ and τx = τy = τ , and a centered heat source of X∗
c = Y ∗

c = 0.5. The

two variable heat transfer coefficient profiles along the sink plane given by Eqs. (3.8)

and (3.9) are considered and compared with using a uniform heat transfer coefficient

along the sink plane h̄s. The dimensionless thermal resistance is calculated for different

values of the Biot number: Bis = 0.1, 1, 10 and with a thickness-aspect ratio fixed as

τ = 0.1. The dimensionless total thermal resistance is calculated for different values

of the aspect ratio ǫ (ǫ is taken to vary from 0.1 to 1) and the analytical results are

compared to the FEM numerical solution results. Regarding the analytical solution

results, the number of terms for each summation in Eq. (3.40) is taken the same, i.e.,

M = N , and the convergence is checked by increasing the number of terms in the

summations starting from M = N = 10 and then the number of terms is incremented

until the following stopping criteria are satisfied [21]:

∣
∣
∣
∣

R∗
t
M+1 −R∗

t
M

R∗
t
M+1

∣
∣
∣
∣
≤ 10−3, (3.41)

where R∗
t
M+1 represents the dimensionless resistance R∗

t calculated by using M + 1

and N + 1 terms in the summations. Moreover, the FEM results are obtained with a

tetrahedral mesh and the convergence is checked by refining the mesh. In particular,

most of the refinement is required around the heat-source region. Table 3.1 shows

the convergence of the analytical and the numerical dimensionless thermal resistance

of one sample of the conducted studies for ǫ = 0.4 and Bis = 0.1 when considering

h1(x, y) as the heat transfer coefficient along the sink plane. It can be seen that with

M = N = 20, the dimensionless thermal resistance has very good agreement with the

FEM results with a relative error of approximately 0.1% compared to the finest mesh

result.



90

FEM Analytical
Number of Elements R∗

t M = N R∗
t

14842 0.619830 5 0.619728
34443 0.631640 10 0.636532
43882 0.636269 15 0.640422
119160 0.639505 20 0.641298
282386 0.641478 25 0.641519
482386 0.641934 30 0.641675

Table 3.1: Convergence study of the dimensionless thermal resistance for the analytical
and the FEM results with Bis = 0.1, and ǫ = 0.4 when considering h1(x, y).

0.1 0.2 0.4 0.6 0.8 1

0.5

0.7

0.9

1.1

1.3

Figure 3.4: Dimensionless thermal resistance for Bis = 0.1 and τ = 0.1.

Figures 3.4-3.6 show the dimensionless thermal resistance R∗
t as a function of

the aspect ratio ǫ for the different values of the Biot numbers where both of the

analytical and the FEM results are shown on the same plots. For the analytical

results, the number of terms used to satisfy Eq. (3.41) is found to be varying between

M = N = 15 and M = N = 30 depending on the aspect ratio value ǫ where

more terms are required for the smaller values of ǫ. It is important to note that

the behavior (increasing/decreasing intervals) of the dimensionless thermal resistance

profile R∗
t with respect to ǫ is not necessarily representing the same behavior of the

dimensional thermal resistance profile Rt since
√
ab is used to nondimensionalize the
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Figure 3.5: Dimensionless thermal resistance for Bis = 1 and τ = 0.1.
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Figure 3.6: Dimensionless thermal resistance for Bis = 10 and τ = 0.1.

thermal resistance; hence, the dimensional value of the resistance depends on the

value of ǫ.

One can see from Figs. 3.4-3.6 that the order of magnitude for the dimensionless

thermal resistance decreases when the Biot number increases. Furthermore, the effect

of the different conductance profiles along the sink plane on the thermal resistance is

obvious for the different Biot numbers. Although the total average conductance of the
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different conductance profiles is the same and equals to the uniform conductance value

h̄s, the thermal resistance is strongly dependent on the distribution of the conductance

profile along the sink plane. In particular, for ǫ < 0.8, the thermal resistance has

minimum values when using h1(x, y) as the conductance profile compared with using

uniform conductance along the entire sink plane or h2(x, y). The reason behind this

is that by considering the distribution of h1(x, y), the intense cooling area is located

directly under the heat-source region. However, for the larger values of the aspect

ratio, i.e., ǫ > 0.8, the thermal resistance has minimum values when using the uniform

conductance profile. It is worth mentioning that the heat flow mechanism through

the channel is different for the three conductance distributions. For example, when

considering the uniform conductance along the sink plane, as the heat-source aspect

ratio ǫ increases to cover the source-plane area, i.e., ǫ = 1, the nature of the heat flow

becomes one-dimensional (1D). However, this is not the case when considering the two

other distributions h1(x, y) and h2(x, y) where the flow is always multidimensional for

all the values of ǫ, as we will see in the next section.

3.3.2 Source-Plane Temperature

In this part, a dimensional study is conducted to see the impact of the variable heat

transfer coefficients on the temperature distribution along the source plane. A 3D

square flux channel with side dimensions of c = d = 0.1 m and thickness t = 0.01 m

(τ = 0.1) is considered. In the source plane, the heat-source center is located at the

point (Xc, Yc) = (0.05 m, 0.05 m) where two different dimensions of the heat source

are considered. First, we consider a small heat source of dimensions a = b = 0.02 m

(ǫ = 0.2). Then a large heat source that covers the whole source plane of dimensions

a = b = 0.1 m (ǫ = 1.0) is considered. The thermal conductivity is k = 10 W/m·K.

A uniform heat flux of q = 104 W/m2 is applied in the source region. Along the
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(a) (b)

Figure 3.7: Color-map plots of the temperature distribution along the source plane
when considering h1(x, y) as the heat transfer coefficient. (a) ǫ = 0.2. (b) ǫ = 1.0.

(a) (b)

Figure 3.8: Color-map plots of the temperature distribution along the source plane
when considering h2(x, y) as the heat transfer coefficient. (a) ǫ = 0.2. (b) ǫ = 1.0.

sink plane, the different heat transfer coefficients represented by h1(x, y), h2(x, y) and

the uniform heat transfer coefficient h̄s are considered with average conductance of

h̄s = 100 W/m2·K (Bis = 0.1). The ambient temperature is chosen as 25◦ C.
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(a) (b)

Figure 3.9: Color-map plots of the temperature distribution along the source plane
when considering a uniform heat transfer coefficient h̄s. (a) ǫ = 0.2. (b) ǫ = 1.0.

The developed analytical solution is used to evaluate the temperature distribution

along the source plane for the different conductance functions. Figures 3.7-3.9 show

the source-plane temperature distributions for the different conductance functions.

One can observe how the different conductance profiles along the sink plane affect

the temperature distributions along the source plane. In particular, for the small

heat-source case, i.e., ǫ = 0.2, the temperature rise inside the heat-source area records

the minimum values when considering h1(x, y) as the conductance profile. On the

other hand, for the large heat-source case, i.e., ǫ = 1.0, the nature of the tempera-

ture distributions is significantly different for the three conductance profiles. When

considering h1(x, y) as the conductance profile, the temperature distribution records

the minimum values in the central region (intense cooling region) and the maximum

values along the corners of the source plane, whereas the temperature distribution

records the maximum values in the central region of the source plane when consid-

ering h2(x, y). However, the temperature distribution has a uniform value along the
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source plane when considering the uniform heat transfer coefficient h̄s.

3.4 Conclusion

In this chapter, analytical solutions for the temperature field and thermal resistance

of a 3D flux channel with eccentric heat source and a variable heat transfer coefficient

that varies in the two horizontal dimensions were developed by using the method

of separation of variables combined with the method of least squares. Two different

variable heat transfer coefficients were considered in this chapter to study the effect of

the variable conductance distribution along the sink plane on the temperature distri-

bution and the thermal resistance of the flux channel compared with using uniformly

distributed conductance along the sink plane. The thermal resistance was presented

in a general dimensionless form as a function of the heat-source aspect ratios, the

channel-thickness aspect ratios, and the Biot number. The analytical solution results

were validated by comparing the developed analytical solution results with the results

obtained by solving the problem numerically based on the FEM using the ANSYS

commercial software package [20] where very good agreement was found. Different

parametric studies were conducted to study the effect of the different conductance

distributions on the dimensionless total thermal resistance of the channel and the

temperature distribution along the source plane. It was observed that although the

total average conductance of the different conductance profiles are considered to be the

same, the temperature distribution and the thermal resistance are strongly dependent

on the distribution of the conductance profile along the sink plane.
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Chapter 4

Effect of Temperature-Dependent

Thermal Conductivity on

Spreading Resistance in Flux

Channels

4.1 Introduction

Accurate thermal analysis of microelectronic devices is considered as a key factor in

the development of electronic systems for better performance and device reliability.

In many materials used in the microelectronics industry, the thermal properties vary

with temperature. In particular, the thermal conductivity of most of the materials are

temperature dependent, and the assumption of constant thermal conductivity within
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the whole temperature variation interval when considering thermal management may

lead to unacceptable errors in the temperature distribution field, and so, in thermal

analysis [1, 2]. Therefore, a good understanding of the effects of the material’s prop-

erties used for designing the device on the temperature rise and thermal resistance is

essential to design a durable device. Most electronic systems are modeled as rectan-

gular flux channels or cylindrical flux tubes, where heat enters the channel through

small region(s) and flows by conduction through the system to spread the heat out

into a larger heat-sink area, which gives rise to thermal spreading resistance.

The temperature-dependent thermal conductivity produces a nonlinearity in the

heat conduction governing equation and this makes the problem complicated to be

solved directly. Usually, numerical methods are used to solve nonlinear conduction

problems; however, in most applications, the numerical methods are computationally

expensive and less flexible for the optimization studies of the device layout to re-

duce thermal resistance. The Kirchhoff transform method is an attractive technique

for dealing with nonlinear conduction problems with temperature-dependent thermal

conductivity since it provides a convenient way to linearize the governing equation

and then the solution of the linearized system can be transformed back to the solu-

tion of the nonlinear problem in an exact manner [3–6]. The Kirchhoff transform was

introduced by Kirchhoff in 1894, and since its introduction it has been widely used

to solve heat conduction problems in which the thermal conductivity of the materials

depends on temperature [7]. Although the Kirchhoff transform is considered a pow-

erful technique in solving nonlinear conduction problems, its applicability has some

restrictions. In particular, when the boundary conditions of the problem are Dirich-

let (first kind) or Neumann (second kind), the Kirchhoff transform will transform

the boundary conditions to linear boundary conditions that can be used directly to

solve the transformed linear system. However, this is not the case when considering
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convective boundary conditions (third kind or Robin), as the transformed boundary

conditions become nonlinear boundary conditions, and this produces a difficulty when

trying to solve the transformed linear problem [3, 4].

Many relevant studies can be found in the literature on thermal analysis of flux

channels. In most of the existing work, attention has been focused on problems with

constant thermal conductivities. Yovanovich studied different spreading resistance

problems for more than forty years, and he summarized the most important mod-

els of thermal spreading resistance in a review paper about contact, gap and joint

resistance in [8]. Muzychka et al. [9–14] have done comprehensive research on differ-

ent aspects of thermal spreading resistance problems including different geometries,

boundaries, and properties. Bagnall et al. [15] developed an analytical solution for

the spreading resistance in multilayered flux channels with isotropic and transversely

isotropic properties. Bonani and Ghoine [1] applied the Kirchhoff transform to a

composite medium with temperature-dependent and piecewise inhomogeneous ther-

mal conductivity for a fixed-sink-temperature boundary condition. Ditri [16] studied

a single-layer flux channel with orthotropic temperature-dependent thermal conduc-

tivities and a fixed-temperature boundary condition along the sink plane. A review of

the literature reveals that analytical solutions for the temperature field and thermal

spreading resistance for flux channels with temperature-dependent thermal conduc-

tivities and convective boundary conditions are limited. Recently, Bagnall et al. [7]

applied the Kirchhoff transform to problems with convection boundary conditions to

study the temperature rise.

In this chapter, the Kirchhoff transform is used to study the effect of the temperature-

dependent thermal conductivity on the temperature rise and thermal resistance of a

three-dimensional (3D) flux channel for different conductivity functions. The Kirch-

hoff transform is used to transform the nonlinear conduction problem into a linear



103

problem, after which the solution of the linear problem is presented and used to

find the solution of the original nonlinear problem by means of the inverse Kirchhoff

transform. Moreover, explicit approximation of the total thermal resistance of the

nonlinear problem is developed.

4.2 Mathematical Theory

The model under consideration is a 3D rectangular flux channel in which heat enters

the system through an eccentric heat source and flows by conduction to a larger

convective heat sink, as shown in Fig. 4.1. This model represents the general layout

of many applications including heat spreaders, semiconductors and microelectronic

devices.

In many applications, the thermal conductivity of the used materials is tempera-

ture dependent and can be represented by a functional relationship k(T ). Hence, the

steady-state heat conduction is governed by the following nonlinear heat equation:

∇ · k(T )∇T = 0, (4.1)

with respect to the following boundary conditions (see Fig. 4.1). In the source plane,

a uniform heat flux is specified over the heat-source region, where the heat source is

considered as of rectangular shape with dimensions a and b in the x- and y-directions,

respectively, whereas outside the heat-source region is considered as adiabatic. Hence,

the source-plane boundary condition is given by:

−k(T )∂T
∂z

∣
∣
∣
∣
z = 0

=







q, inside source region,

0, outside source region.

(4.2)
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∂T

∂x

∣
∣
∣
∣
x = 0, c

= 0,
∂T

∂y

∣
∣
∣
∣
y = 0, d

= 0. (4.4)

The problem statement is illustrated along with the nonlinear governing equation

and boundary conditions. It is important to note that the nonlinearity of the problem

makes it difficult to be solved analytically. However, this problem can be linearized

and solved by means of the Kirchhoff transform.

4.2.1 Kirchhoff Transform

The Kirchhoff transform is considered a convenient method for solving heat conduction

problems with temperature-dependent properties, which can be applied for solving

nonlinear steady-state and transient problems [3]. However, the method is more

attractive for solving steady-state problems in the context of obtaining fully exact

solutions without considering any assumptions or approximations.

The Kirchhoff transform can be used to linearize the nonlinear heat conduction

equation in Eq. (4.1) by transforming the nonlinear system with the temperature-

dependent thermal conductivity into another linear system with a constant thermal

conductivity. This can be done by introducing a new variable θ, which can be defined

in its general form as:

θ = K{T} = A+
1

C

T̂

B

k(τ)dτ, (4.5)

where A, B, and C are constants that can be chosen arbitrarily. Kirchhoff originally

introduced the transform in 1894 of the form:

U =
1

k0

T̂

0

k(τ)dτ, (4.6)

with k0 as the thermal conductivity evaluated at 0, i.e., k0 = k(0). However, the



106

general form in Eq. (4.5) can be seen as a result of applying the so-called Hopf-

Cole transformation [17]. The Hopf-Cole transformation was originally presented to

linearize the viscous Burgers’ equation into a linear diffusion equation, by introducing

new variables that would eliminate the nonlinear terms when the equation is presented

in terms of the new transformed variables. By following the Holf-Cole method, the

nonlinear heat conduction equation given by Eq. (4.1) can be rewritten as:

k(T )∇2T +
dk

dT

((
∂T

∂x

)2

+

(
∂T

∂y

)2

+

(
∂T

∂z

)2
)

︸ ︷︷ ︸

(∇T ·∇T )

= 0, (4.7)

which shows the nonlinearity clearly. It is desirable to introduce a transformation of

the form:

T = ψ(θ), (4.8)

such that the nonlinear term represented by the second term in Eq. (4.7) is eliminated

when using the new variable θ. It follows from Eq. (4.8) that,

∇T = ψ′∇θ, ∇2T = ψ′∇2θ + ψ′′∇θ · ∇θ, (4.9)

where the derivatives of ψ are with respect to the new variable θ, i.e., ψ′ = dψ/dθ and

ψ′′ = d2ψ/dθ2. Thus, the nonlinear conduction equation in Eq. (4.7) is transformed

under the new variable θ to:

k(ψ)ψ′∇2θ +

[

k(ψ)ψ′′ +
dk

dψ
ψ′2

]

∇θ · ∇θ = 0. (4.10)

It can be seen that the second nonlinear term in Eq. (4.10) corresponds to ∇θ · ∇θ
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vanishes when
[

k(ψ)ψ′′ +
dk

dψ
ψ′2

]

= 0, (4.11)

which can be rewritten as:

d

dθ

[

k(ψ)
dψ

dθ

]

= 0. (4.12)

Integrating Eq. (4.12) with respect to θ yields:

k(ψ)
dψ

dθ
= C, (4.13)

where C is the integration constant. Furthermore, the result in Eq. (4.13) implies that

the coefficient of the Laplacian term ∇2θ in Eq. (4.10) is constant, i.e., k(ψ)ψ′∇2θ =

C∇2θ. Equation (4.13) can be rewritten in a separable form and integrated from θ0

to θ to get the general formula of the new variable θ as:

θ = θ0 +
1

C

ψ(θ)
ˆ

ψ(θ0)

k(ψ̇)dψ̇, (4.14)

where θ0 and ψ(θ0) can be chosen to be any arbitrary constants. Hence, the general

formula in Eq. (4.14) can be written as:

θ = A+
1

C

T̂

B

k(τ)dτ, (4.15)

which is the general form of the Kirchhoff transform presented in Eq. (4.5) where ψ

is just the inverse Kirchhoff transform, i.e., ψ = K−1. As a convenient choice and to

give the new variable θ the dimension of temperature, in order to keep the physical

meaning of the problem, the constants can be chosen as A = B = T0, where T0 is a

convenient reference temperature depending on the problem to be investigated and
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C = k(T0) = k0 is the thermal conductivity evaluated at T0. Therefore, the new

variable θ (usually referred to as the apparent temperature) can be written as:

θ = K{T} = T0 +
1

k0

T̂

T0

k(τ)dτ. (4.16)

As a result, when applying the Kirchhoff transform given by Eq. (4.16) to the nonlinear

heat conduction equation in Eq. (4.1), the nonlinear equation is transformed into the

linear Laplace’s equation:

∇2θ = 0. (4.17)

From the previous discussion on the Kirchhoff transform, one can see the impor-

tance of this transform for solving nonlinear heat conduction problems by transforming

them into linear problems in terms of the new variable θ. The linearized problem can

be solved using the existing analytical methods for solving linear problems provided

that the boundary conditions can be transformed into linear boundary conditions.

In heat conduction problems, the linear boundary conditions are of three main

kinds: prescribed temperature (Dirichlet or first kind) boundary conditions, pre-

scribed heat flux (Neumann or second kind) boundary conditions, and convective

(Robin or third kind) boundary conditions. For boundary conditions of the first and

second kinds, the boundary conditions can be transformed directly through the Kirch-

hoff transform into linear boundary conditions in terms of the new variable θ. This

can be seen by considering the following boundary conditions:

T |boundary = Tb, (prescribed temperature), (4.18)

which can be transformed through the Kirchhoff transform into:
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θ|boundary = K{Tb} = T0 +
1

k0

Tb
ˆ

T0

k(τ)dτ = θb, (4.19)

which is again a prescribed temperature boundary condition after evaluating the def-

inite integral. The boundary condition of the second kind in the form:

k(T )
∂T

∂n

∣
∣
∣
∣
boundary

= q, (prescribed heat flux), (4.20)

can be transformed through the Kirchhoff transform into (using Eq. (4.13))

k0
∂θ

∂n

∣
∣
∣
∣
boundary

= q, (4.21)

where ∂/∂n denotes the derivative along the outward normal at the boundary surface.

More details about the transformations of the boundary conditions of the first and

second kinds can be found in [3].

Although the boundary conditions of the first and second kinds can be transformed

easily into linear boundary conditions through the Kirchhoff transform, in general, this

is not the case when considering a boundary condition of the third kind which has

the form:

−k(T )∂T
∂n

∣
∣
∣
∣
boundary

= hs(T |boundary − T∞), (4.22)

and when the Kirchhoff transform is considered, the boundary condition is trans-

formed to:

−k0
∂θ

∂n

∣
∣
∣
∣
boundary

= hs(K
−1{θ|boundary} − T∞), (4.23)

which is a nonlinear boundary condition since, in general, K−1{θ} is a nonlinear

function of θ (K−1{θ} 6= θ). However, for some cases when the temperature distribu-

tion at the boundary can be approximated prior to using the Kirchhoff transform, the
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linear boundary condition:

−k0
∂θ

∂n

∣
∣
∣
∣
z=t

= hs(θ|z=t − T∞). (4.25)

This can be seen as a result of considering the approximate sink temperature as

a reference temperature in the Kirchhoff transform, where the following relation is

obtained:

θ|z=t ≈ T |z=t. (4.26)

To summarize, by using the Kirchhoff transform given in Eq. (4.16) with a reference

temperature T0 defined by:

T0 =
1

hs

Q

cd
+ T∞, (4.27)

the nonlinear system gevin in Eqs. (4.1)-(4.4) is transformed to the following linear

system in terms of the apparent temperature θ:

∇2θ = 0, (4.28)

with respect to the following boundary conditions:

−k0
∂θ

∂z

∣
∣
∣
∣
z = 0

=







q, inside source region,

0, outside source region.

(4.29)

in the source plane, and

−k0
∂θ

∂z

∣
∣
∣
∣
z = t

= hs (θ(x, y, t)− T∞) , (4.30)

along the sink plane, while the lateral-edge boundary conditions are transformed to:



112

∂θ

∂x

∣
∣
∣
∣
x = 0, c

= 0,
∂θ

∂y

∣
∣
∣
∣
y = 0, d

= 0. (4.31)

Once the solution of the new linear problem is obtained for θ, this solution can be

transformed easily to the actual temperature of the nonlinear problem T by employing

the inverse Kirchhoff transform, where the inverse Kirchhoff K−1{θ} is not defined

explicitly in general. However, the actual temperature can be obtained after finding

the relationship between θ and T (once the thermal conductivity is specified) by using

Eq. (4.16).

4.2.2 Linear System Solution

The general solution of the linearized system given by Eqs. (4.28)-(4.31) can be ob-

tained by using the method of separation of variables. By defining θ′ = θ − T∞,

the linear system of θ′ is the same as the linear system of θ but with homogenous

boundary condition at the sink plane. The solution of θ′ is assumed to have the form

θ′(x, y, z) = X(x) · Y (y) · Z(z). Applying the method of separation of variables and

using the boundary conditions along the planes (x = 0, x = c) and (y = 0, y = d)

yield the following general solution:

θ′(x, y, z) = A00 +B00z

+
∞∑

m=1

cos(λmx) [Am0 cosh(λmz) + Bm0 sinh(λmz)]

+
∞∑

n=1

cos(δny) [A0n cosh(δnz) + B0n sinh(δnz)]

+
∞∑

m=1

∞∑

n=1

cos(λmx) cos(δny) [Amn cosh(βmnz) + Bmn sinh(βmnz)] ,

(4.32)
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where λm = mπ/c and δn = nπ/d are the eigenvalues in the x- and y-directions,

respectively, and βmn =
√

λm
2 + δn

2 are the double Fourier expansion eigenvalues.

The general solution contains four components: a uniform flow solution, and three

spreading solutions represented by the series components that vanish when the heat

flux is covering the whole source-plane surface (z = 0). For m,n not both equal

to zero, the application of the sink-plane boundary condition leads to the following

relationship between the Fourier coefficients:

φ(γ) = −Bmn

Amn
=

(γk0/hs) tanh(γt) + 1

(γk0/hs) + tanh(γt)
, (4.33)

where φ is the spreading function and γ refers to any of the eigenvalues λm, δn, or

βmn. In the limit of hs −→ ∞, i.e., fixed-sink temperature, the spreading function

becomes φ(γ) = coth(γt).

Finally, the boundary condition at the source plane (z = 0) is considered to find

the Fourier coefficients Amn after making use of Bmn = −φ(γ)Amn. This can be done

by taking Fourier series expansions of the boundary condition at the source plane and

using the orthogonality of the eigenfunctions to get:

Am0 =
4Q cos(λmXc) sin(

1
2
λma)

acdk0λm
2φ(λm)

, (4.34)

and

A0n =
4Q cos(δnYc) sin(

1
2
δnb)

bcdk0δn
2φ(δn)

, (4.35)

and

Amn =
16Q cos(λmXc) sin(

1
2
λma) cos(δnYc) sin(

1
2
δnb)

abcdk0βmnλmδnφ(βmn)
, (4.36)

where Q = abq is the total heat input of the flux channel. Now, when m, n are both
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zeros, the zeroth-order Fourier coefficients A00 and B00 can be found by applying the

sink-plane boundary condition and taking the Fourier expansion in the source plane

to get:

A00 =
Q

cd

[
t

k0
+

1

hs

]

,

B00 = − Q

cdk0
. (4.37)

The general solution of θ′ is illustrated along with the Fourier coefficients; hence, the

general solution of θ can be written as θ = θ′ + T∞. The solution in the source plane

(z = 0) is of most interest for finding the maximum temperature and the total thermal

resistance of the flux channel which is addressed by:

θ(x, y, 0) = T∞ + A00 +
∞∑

m=1

Am0 cos(λmx)

+
∞∑

n=1

A0n cos(δny) +
∞∑

m=1

∞∑

n=1

Amn cos(λmx) cos(δny). (4.38)

4.2.3 Temperature-Dependent Thermal Conductivity

The thermal conductivity of most materials is temperature dependent, and varies

with temperature according to specific functional relationships between the thermal

conductivity and the temperature k(T ). In some materials, the thermal conductivity

increases with increasing the temperature (e.g., Aluminum), while in other materials,

the thermal conductivity decreases with increasing the temperature (e.g., Silicon).

Different dependency functions of the thermal conductivity on temperature can be

found in the literature explicitly or can be obtained by considering the best curve

fitting of experimental data. In this study, we will focus on three general forms of the
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thermal conductivity functions given by [7, 17, 18]:

k1(T ) = k0(1 + ω1(T − T0))
p, (4.39)

k2(T ) = k0 exp[ω2(T − T0)], (4.40)

k3(T ) = k0

(
T0
T

)s

, (4.41)

where k0 is a reference constant thermal conductivity; ω1, ω2 are constants called the

temperature coefficients of the thermal conductivity [19]; and p, s are real numbers

representing the exponents in the corresponding functions. It is important to note

that the reference temperature T0 is included in the definition of the temperature-

dependent thermal conductivities in order to get the same reference thermal conduc-

tivity at T0, i.e., ki(T0) = k0, for comparison reasons.

Considering the Kirchhoff transform in Eq. (4.16), the functional relationship be-

tween the apparent temperature θ and the actual temperature T that corresponds to

each of the three general forms of thermal conductivity functions given in Eqs. (4.39)-

(4.41) can be obtained explicitly, and then by solving these relationships for T , the

actual temperature T can be obtained in terms of the apparent temperature θ as:

T = K−1
1 {θ} =







T0 +
1

ω1

{exp[ω1(θ − T0)]− 1} , p = −1

T0 +
1

ω1

[
(ω1(p+ 1)(θ − T0) + 1)1/(p+1) − 1

]
, p 6= −1

(4.42)

T = K−1
2 {θ} = T0 +

1

ω2

ln(1 + ω2(θ − T0)), (4.43)

T = K−1
3 {θ} =







T0 exp(θ/T0 − 1), s = 1

T0

[
(1− s)θ

T0
+ s

]1/(1−s)

, s 6= 1

(4.44)
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4.2.4 Total Thermal Resistance

For a single heat source spreading heat to a much larger sink area, the total thermal

resistance can be defined by [9, 13, 20]:

Rt =
Tc − T∞

Q
, (4.45)

where Tc is the mean temperature over the heat-source contact area that can be

defined by:

Tc =
1

Ac

¨

Ac

T (x, y, 0) dAc, (4.46)

where Ac = ab is the heat-source area. It is important to note that it is complicated

to integrate the solution for T explicitly over the heat-source area because of the non-

linearity of the inverse Kirchhoff transform functions. Thus, numerical integration

can be used to evaluate the integrals in Eq. (4.46). However, since the mean temper-

ature Tc requires only evaluation of the integrals over the small heat-source area, a

good approximation of the temperature field T (x, y, 0) is the first-order Taylor series

approximation of the functional relationships between the actual temperature T and

the apparent temperature θ (T = K−1
1 {θ} = ψ(θ)) around the centroidal temperature

of the linear solution θ̂ = θ(Xc, Yc, 0). Thus, the solution in the heat-source region

can be approximated by:

T (x, y, 0) = ψ(θ̂) + ψ′(θ̂)(θ(x, y, 0)− θ̂). (4.47)

Hence, the mean source temperature Tc can be approximated explicitly by:

Tc(approx.) = ψ(θ̂) + ψ′(θ̂)(θ̄c − θ̂),
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= ψ(θ̂) + (A00 + T∞ − θ̂)ψ′(θ̂)

+ ψ′(θ̂)

[

2
∞∑

m=1

Am0

cos(λmXc) sin(
1
2
λma)

aλm
+ 2

∞∑

n=1

A0n

cos(δnYc) sin(
1
2
δnb)

bδn

+ 4
∞∑

m=1

∞∑

n=1

Amn
cos(λmXc) sin(

1
2
λma) cos(δnYc) sin(

1
2
δnb)

aλmbδn

]

, (4.48)

where ψ′ is the derivative of any of the inverse Kirchhoff functional relationships given

in Eqs. (4.42)-(4.44) with respect to θ that can be addressed by:

ψ′
1(θ) = K

′−1
1 {θ} =







exp[ω1(θ − T0)], p = −1

(ω1(p+ 1)(θ − T0) + 1)−p/(p+1), p 6= −1

(4.49)

ψ′
2(θ) = K

′−1
2 {θ} =

1

1 + ω2(θ − T0)
, (4.50)

ψ′
3(θ) = K

′−1
3 {θ} =







exp(θ/T0 − 1), s = 1
[
(1− s)θ

T0
+ s

]s/(1−s)

, s 6= 1.

(4.51)

4.3 Results and discussion

In this section, different parametric studies are considered to illustrate the influence

of the temperature-dependent thermal conductivity on the temperature rise and total

thermal resistance in flux channels with different configurations. For the purpose of

verifying and demonstrating the computational efficiency of the analytical solutions,

numerical analysis has been conducted by solving the problems numerically based

on the finite element method (FEM) and comparing the numerical results to the

analytical results. For the analytical results, MATLAB (version 2016b) software is

used to carry out the results [21], while the numerical simulations are performed based

on the FEM using the ANSYS commercial software package [22].





119

0 1 2 3 4 5 6 7 8 9 10
300

305

310

315

320

325

330

335

Figure 4.4: Temperature profile along x-axis in the source plane (at y = Yc) by
considering k1(T ) with ω1 = 0.1 for the fixed-sink-temperature study.

dimensions are a = b = 1 mm. The center of the heat source is located at the point

(Xc, Yc) = (5, 5) mm and the thickness of the channel is t = 1 mm, as shown in

Fig. 4.3. The different thermal conductivity functions given in Eqs. (4.39)-(4.41) are

considered with a reference thermal conductivity of k0 = 150 W/m·K. In the source

region, a uniform heat flux of q = 107 W/m2 is applied. The analytical solution is used

to compute the temperature profile along the source plane including the centroidal

temperature of the heat source (T̂ = T (Xc, Yc, 0)), and the source mean temperature

Tc that can be used to obtain the total thermal resistance of the flux channel using

Eq. (4.45). The source mean temperature is computed in two ways. First, by using

numerical integration to evaluate the source mean temperature Tc. Second, using the

result in Eq. (4.48) by approximating the source mean temperature using the first-

order Taylor series approximation to get Tc(approx.). Furthermore, all the results are

compared to numerical results obtained by solving the system numerically using the

FEM.
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Figure 4.5: Temperature profile along x-axis in the source plane (at y = Yc) by
considering k2(T ) for the fixed-sink-temperature study.
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Figure 4.6: Temperature profile along x-axis in the source plane (at y = Yc) by
considering k3(T ) for the fixed-sink-temperature study.

In the analytical solution, the number of terms used in the infinite Fourier series

summation of the linear system solution is 500 in each of the summations and then
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Analytical FEM

k(T ) (W/m·K) T̂ (K) Tc (K) Tc(approx.) (K) T̂ (K) Tc (K)
k0 330.249 324.549 324.549 330.23 324.349

k1(T ), p = 1 316.552 314.255 314.405 316.58 314.193
k1(T ), p = 2 311.598 310.254 310.376 311.63 310.225

k2(T ), ω2 = 0.1 313.925 312.332 312.509 313.96 312.299
k2(T ), ω2 = 0.3 307.700 307.046 307.134 307.72 307.033
k3(T ), s = 1 331.827 325.604 325.522 331.80 325.380
k3(T ), s = 3 335.759 328.156 327.768 335.68 327.869

Table 4.1: Source temperatures for the different thermal conductivity functions with
hs −→ ∞ and T∞ = 300 K.

the inverse Kirchhoff transform is used to obtain the actual temperature (T ). A sen-

sitivity study on the number of terms in the series is performed by increasing the

number of terms in the linear solution to 1000 in each summation and it is found

that the change in the results is very small of a relative error less than 0.01%. The

computational time required to find the temperature of any point in the source plane

is approximately 0.03 s. Furthermore, the FEM numerical results are obtained with a

tetrahedral mesh and the convergence is checked by refining the mesh. In particular,

most of the refinement is required around the heat-source region due to the rapid

change in temperature. The system with a tetrahedral mesh consisting of approxi-

mately 9.2 × 104 elements is found to be sufficient to solve the problem with a very

small loss in accuracy (relative error of less than 0.05% compared to using approxi-

mately 1.5×105 elements). Figures 4.4-4.6 show the source plane temperature profiles

along the x-axis when y = Yc for the three different conductivity functions with dif-

ferent parameters. In each of the figures, the effect of the temperature-dependent

thermal conductivity on the temperature rise is obvious compared to using the con-

stant thermal conductivity, where for the case of considering k1(T ) or k2(T ) with the

specified parameters, it is clear that the thermal conductivity is an increasing function

with respect to temperature; hence, the temperature rise around the heat-source area



122

is less in magnitude than the temperature rise when considering the constant ther-

mal conductivity, as shown in Figs. 4.4 and 4.5. However, for the case of considering

k3(T ), the thermal conductivity is a decreasing function of temperature. Thus, the

magnitude of the temperature rise is higher than the case of the constant thermal

conductivity, as shown in Fig. 4.6. Moreover, it can be seen from Figs. 4.4-4.6 that

the temperature distribution in the source plane is highly localized at and around

the source region, while the surface temperature away from the heat source is at or

near 300 K, which is the temperature of the sink plane. The reason behind this is

the large value of the heat transfer coefficient along the sink plane (in the limit of

hs −→ ∞) [23]. For the flux channel configuration shown in Fig. 4.3 with k0 = 150

W/m·K, increasing the heat transfer coefficient leads to less spreading of the heat flow.

On the other hand, decreasing the heat transfer coefficient leads to a wider spreading

through the channel. Hence, the surface temperature becomes of a different nature

as we will see in the next convective-sink study. Furthermore, the centroidal and the

mean source temperature of the analytical and the numerical results for the different

thermal conductivity functions are given in Table 4.1 for comparison. The agreement

between the analytical and the FEM results is considerably very good with a relative

error of less than 0.1% for all the results. It is worth mentioning that in computing the

mean source temperature, the closed-form analytical approximate averageTc(approx.)

presented in Eq. (4.48) has a very good agreement with the mean source temperature

Tc obtained by using the numerical integration with a relative error of less than 0.1%.

The most important advantage of this closed-form analytical approximation for the

mean source temperature is the shorter computational time compared with using the

numerical integration. For example, the computational time required to compute the

mean source temperature using Eq. (4.48) is found to be approximately 0.05 s, while

the computational time when using the numerical integration is found to be more
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than 10 s for some cases.

4.3.2 Convective Sink

In the second study, the analytical solution is used to study the influence of the

temperature-dependent thermal conductivity for flux channels with a uniform heat

transfer coefficient along the sink plane. The same previous flux channel shown in

Fig. 4.3 with the same channel’s configuration is considered but by assuming a uniform

heat transfer coefficient along the sink plane hs = 500 W/m2·K. For this flux chan-

nel, the average sink-plane reference temperature can be obtained using Eq. (4.27) as

T0 = 500 K which has been used as the reference temperature in the Kirchhoff trans-

form. In the analytical solution, the number of terms used in the infinite Fourier series

summations for the linear system solution is taken the same as the previous study of

500 terms in each of the summations without any loss in accuracy and the computa-

tional time required to compute the temperature at any point in the source plane is of

approximately 0.03 s. Further, the FEM results are obtained with a tetrahedral mesh

consisting of approximately 9.2× 104 elements. Figures 4.7-4.9 show the source plane

temperature profiles along the x-axis when y = Yc for the three different conductivity

functions with different parameters, where the effect of the temperature-dependent

thermal conductivity on the temperature rise can be seen.

The accuracy of the analytical solution by using the average sink plane as a ref-

erence temperature in the Kirchhoff transform can be seen in Table 4.2. The results

show very good agreement between the analytical and FEM results of a relative error

within 0.2% for all the results. However, it is more advantageous to consider the

analytical solutions since the numerical solutions are time consuming and less flexible

for optimization studies compared to using the closed-form analytical solution.

Although the previous study shows the use of the Kirchhoff transform for solving
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Figure 4.7: Temperature profile along x-axis in the source plane (at y = Yc) by
considering k1(T ) with ω1 = 0.1 for the convective-sink study with hs = 500 W/m2·K.
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Figure 4.8: Temperature profile along x-axis in the source plane (at y = Yc) by
considering k2(T ) for the convective-sink study with hs = 500 W/m2·K.

spreading heat problems with convective-sink boundary conditions, the applicability

of the method may have larger errors for some cases, such as extremely thin flux
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Figure 4.9: Temperature profile along x-axis in the source plane (at y = Yc) by
considering k3(T ) for the convective-sink study with hs = 500 W/m2·K.

Analytical FEM

k(T ) (W/m·K) T̂ (K) Tc (K) Tc(approx.) (K) T̂ (K) Tc (K)
k0 539.506 533.435 533.435 539.49 533.22

k1(T ), p = 1 519.835 517.684 517.799 519.98 517.778
k1(T ), p = 2 513.424 512.228 512.317 513.57 512.347

k2(T ), ω2 = 0.1 515.995 514.640 514.769 516.1 514.708
k2(T ), ω2 = 0.3 508.512 507.981 508.039 508.58 508.039
k3(T ), s = 1 541.109 534.590 534.538 541.07 534.349
k3(T ), s = 3 544.904 537.276 537.0455 544.8 536.956

Table 4.2: Source temperatures for the different thermal conductivity functions with
hs = 500 W/m2·K and T∞ = 300 K.

channels and weak conduction/convection effects, where the sink-plane temperature

distribution becomes highly nonuniform. Hence, the use of the approximate uniform

average sink temperature in the definition of the Kirchhoff transform may produce un-

reliable results. To examine this, one study is conducted to see the effect of changing

the thickness of the channel on the analytical results. The same previous channel’s
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Figure 4.10: Relative error of the centroidal temperature between analytical and FEM
results by considering k1(T ) with ω1 = 0.1, and p = 1.
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Figure 4.11: Relative error of the centroidal temperature between analytical and FEM
results by considering k3(T ) with s = 3.

configuration of the convective-sink example is considered but with varying the thick-

ness of the channel as 0.05 ≤ t ≤ 5 mm. Figure 4.10 show the relative error of the
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centroidal temperature between the analytical and numerical results for different val-

ues of the thickness t by considering the thermal conductivity function k1(T ). One

can see that the relative error of the centroidal temperature between the analytical

and FEM results increases as the thickness of the channel decreases.

Another study is conducted to see the effects of the heat-source position and the

weak conduction/convection on the analytical results. The configuration shown in

Fig. 4.3 is considered with the same heat source dimensions but the center is located

at the point (Xc, Yc) = (2, 5) mm. The effects of the weak conduction/convection

on the centroidal temperature of the heat source are examined. The heat transfer

coefficient along the sink plane is varied as 10 ≤ hs ≤ 103 W/m2·K, whereas the

ratio between the heat transfer coefficient hs and the reference thermal conductivity

k0 is kept fixed (k0/hs = 0.3). Figure 4.11 shows the relative error of the centroidal

temperature between the analytical and numerical results for different values of the

heat transfer coefficient by considering the thermal conductivity function k3(T ) with

s = 3. One can see that the relative error of the centroidal temperature between the

analytical and FEM results increases as the heat transfer coefficient (and the reference

thermal conductivity) decreases.

4.4 Conclusion

In this chapter, the effects of temperature-dependent thermal conductivities on the

temperature rise and thermal resistance of a 3D flux channel was studied analytically

by means of the Kirchhoff transform for different thermal conductivity functions. A

significant change in the temperature rise and thermal resistance has been observed

when considering different thermal conductivity functions compared to using a con-

stant thermal conductivity. The results were validated by comparing the analytical
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results with results obtained by solving the problem numerically based on the FEM

using the ANSYS commercial software package [22] in which a very good agreement

has been shown. In addition, the computational efficiency of using the analytical

solution was illustrated in comparison with using the numerical solutions. Moreover,

a closed-form analytical approximation of the mean source temperature that can be

used in computing the total thermal resistance was presented and found to approxi-

mate the actual mean source temperature with good accuracy and less computational

time.
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Chapter 5

Spreading Resistance in

Multilayered Orthotropic Flux

Channels with Different

Conductivities in the Three Spatial

Directions

5.1 Introduction

Thermal management is considered as a key factor in the development of power devices

and microelectronic systems for better performance and device functionality. A good

understanding of the effects of materials’ properties used for designing the device on
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temperature rise and thermal resistance is essential to design a durable device. Ther-

mal spreading resistance, which occurs when heat enters the system through small

region(s) and flows by conduction through the system to spread the heat out into

a larger heat-sink area, is an increasingly important topic in thermal management.

There have been some interesting and new materials that have emerged recently in

the development of microelectronic devices due to their superior properties. These

materials include β-Gallium-oxide (β-Ga2O3) [2], Black Phosphorus (BP) [3–5], and

Tungsten telluride (WTe2) [6], which are known to have anisotropic thermal conduc-

tivity tensors. In particular, β-Ga2O3 is considered an attractive material for high-

power device applications, such as field-effect transistors (FETs) and light-emitting

diodes (LEDs), due to its superior material properties [2, 7, 8]. Despite the fact that

β-Ga2O3 has excellent electrical properties, it has relatively low thermal conductivi-

ties that range from 11 W/m·K to 27 W/m·K at room temperature along the three

principal directions [7]. Hence, thermal management in β-Ga2O3-based power devices

is essential. Black Phosphorus has also attracted much attention in the development

of microelectronic devices and is considered a promising semiconducting material for

the new generation of smaller and flexible devices.

Different analytical and numerical studies have been conducted to study the tem-

perature rise and thermal resistance for different heat spreading problems. However,

numerical methods are less efficient for most problems compared to using a closed-

form analytical solution since they are time consuming and are less flexible for the

optimization of the device layout to reduce thermal resistance [9].

Many relevant studies can be found in the literature on this topic. Kennedy

[10] started the research on thermal spreading resistance of cylindrical shaped semi-

conductor devices. Kokkas [11] studied thermal analysis in multilayered rectangular
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structures with isotropic materials. Yovanovich [12–14] studied different spreading re-

sistance problems including flux channels and flux tubes with finite and semi-infinite

geometries. He summarized the most important models of thermal spreading resis-

tance for more than forty years in a review paper [15]. Muzychka et al. [16–21] have

done extensive research on different thermal spreading resistance problems, including

different geometries, boundaries, and properties. In most of the existing work, atten-

tion has been focused on problems with isotropic materials. Gholami and Bahrami [22]

obtained analytical solution for the spreading resistance of a single-layer flux channel

with orthotropic properties. Recently, Muzychka et al. [19] analytically modeled the

thermal spreading resistance for compound transversely isotropic two-layer systems

with equal thermal conductivities in the in-plane directions that are different than

the through-plane thermal conductivity (i.e., kx = ky 6= kz). Bagnall et al. [23] devel-

oped an analytical solution for the thermal spreading resistance in multilayered flux

channels with isotropic and transversely isotropic properties.

In this chapter, general analytical solutions for the temperature distribution and

thermal resistance in a multilayered orthotropic flux channel consisting of N -layers

with different thermal conductivities in the three spatial directions (i.e., kx 6= ky 6=

kz) in each layer are obtained. The solutions account for the effect of interfacial

resistance or contact conductance between the adjacent layers. Moreover, an extension

of the problem to consider multiple eccentric heat sources in the source plane is also

considered.
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5.2 Mathematical Theory

In this section, the problem statement is mathematically illustrated by the governing

equations of temperature distributions along with the appropriate boundary condi-

tions, then the analytical solution of the problem is presented after applying special

transformations on the governing equations. The total thermal resistance is then in-

troduced based on the analytical solution of the temperature distribution. Then the

solution is extended to account for multiple heat sources in the source plane.

5.2.1 Mathematical Formulation of the Problem

The problem under consideration is a three-dimensional (3D) rectangular flux chan-

nel consisting of N -layers with an eccentric heat source in the source plane and a

convective cooling along the sink plane, whereas all the lateral edges are assumed to

be adiabatic. Each layer is assumed to be orthotropic with different thermal con-

ductivities in the three spatial directions (x, y, z). An interfacial contact conductance

hci is considered between the adjacent layers (layer i and i + 1) to model the effects

of surface roughness, imperfect contact, or the intrinsic phonon mismatch between

dissimilar materials, as shown in Fig. 5.1. The system is modeled using a local system

of coordinates for each layer in which the xy-plane have the same coordinates in all

the layers with 0 < x < c and 0 < y < d, while the through-plane direction (z) is

different for each layer. This approach is used as it facilitates the stretched coordinate

transformations and produces a convenient form of the general solution [19].

By defining the temperature excess θ = T−T∞ relative to the ambient temperature

(T∞), the governing equation in each layer is Laplace’s equation. Hence, the following

system of equations represents the governing equations for the N -layers:
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k1,x
∂2θ1
∂x2

+ k1,y
∂2θ1
∂y2

+ k1,z
∂2θ1
∂z21

= 0, 0 <z1 < t1,

k2,x
∂2θ2
∂x2

+ k2,y
∂2θ2
∂y2

+ k2,z
∂2θ2
∂z22

= 0, 0 <z2 < t2,

...
...

kN,x
∂2θN
∂x2

+ kN,y
∂2θN
∂y2

+ kN,z
∂2θN
∂z2N

= 0, 0 <zN < tN , (5.1)

with different thermal conductivities in each direction, i.e., kx 6= ky 6= kz for each layer.

The following boundary conditions based on the configuration shown in Fig. 5.1 are

considered. In the source plane, a uniform heat flux is specified over the heat-source

region where the heat source is considered as of rectangular shape with dimensions a

and b in the x- and y-directions, respectively, while the remainder of the source plane

is considered as adiabatic. Hence, the source-plane boundary condition is given by:

−k1,z
∂θ1
∂z1

∣
∣
∣
∣
z1 = 0

=







q, inside source region,

0, outside source region.

(5.2)

At the interface between the adjacent layers, the following conditions are considered

(for i = 1, 2, . . . , N − 1), representing the continuity of heat flux and the temperature

drop due to the interfacial conductance, respectively:

ki,z
∂θi
∂zi

∣
∣
∣
∣
zi = ti

= ki+1,z
∂θi+1

∂zi+1

∣
∣
∣
∣
zi+1 = 0

, (5.3)

−ki,z
∂θi
∂zi

∣
∣
∣
∣
zi = ti

= hci [θi(x, y, ti)− θi+1(x, y, 0)] . (5.4)

The temperature drop condition in Eq. (5.4) might be replaced by the following con-

dition in the case of a high value of the interfacial conductance hci −→ ∞ (continuity
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of temperature excess):

θi(x, y, ti) = θi+1(x, y, 0). (5.5)

Along the sink plane, a uniform heat transfer coefficient hs exists and the boundary

condition is given by:

−kN,z
∂θN
∂zN

∣
∣
∣
∣
zN = tN

= hsθN(x, y, tN). (5.6)

The lateral edges of the system are assumed to be adiabatic. The lateral-edge bound-

ary conditions are:

∂θi
∂x

∣
∣
∣
∣
x = 0, c

= 0,
∂θi
∂y

∣
∣
∣
∣
y = 0, d

= 0, i = 1, 2, . . . , N. (5.7)

The problem statement along with the governing equations and boundary conditions

is now completely illustrated. We then proceed to apply stretched coordinate trans-

formations in order to present the problem in a simpler solvable form.

5.2.2 Transformations (Stretched Coordinates)

Stretched coordinate transformations can be used as a powerful technique to transform

orthotropic systems into equivalent isotropic systems [24]. Muzychka et al. [19, 25]

implemented a system of stretched coordinates for a flux channel consisting of two

transversely isotropic layers with equal in-plane thermal conductivities kx = ky that

are different than the through-plane conductivity, i.e., kx = ky 6= kz, of each layer.

The application of the following transformations for each layer (for i = 1, 2, . . . , N):

Layer i : yi = y/
√

ki,y/ki,x, ζi = zi/
√

ki,z/ki,x, (5.8)
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leads to the definition of the following effective isotropic properties:

Layer i : ki =
√

ki,xki,z, t̄i = ti/
√

ki,z/ki,x, d̄i = d/
√

ki,y/ki,x. (5.9)

Under these transformations, the system of governing equations in Eq. (5.1) becomes:

∂2θi
∂x2

+
∂2θi
∂y2i

+
∂2θi
∂ζ2i

= 0, 0 < x < c, 0 < yi < d̄i, 0 < ζi < t̄i. (5.10)

Although the direct application of the transformations in Eq. (5.8) is able to trans-

form the governing equations in Eq. (5.1) into an equivalent set of equations given

in Eq. (5.10) with isotropic properties, a problem appears when trying to transform

the interface boundary conditions given by Eqs. (5.3) and (5.4) using these transfor-

mations because we have different stretched coordinates in the y-direction for each

layer with different dimensions. In other words, each yi’s coordinates are different. It

is important to note that when the in-plane conductivities are equal, i.e., ki,x = ki,y,

in each layer, the new stretched coordinates in the y-direction are the same for all

the layers and equal to the original coordinate, i.e., yi = y; hence, the interface

boundary conditions can be transformed directly as in [19, 25]. However, in order to

solve the problem in general with different conductivities in the three directions, a

second transformation is applied. The y-direction stretched coordinates (yi) in layers

i = 2, 3, . . . , N can be transformed to the stretched coordinate of the first layer (y1)

by using:

yi =
√
µi y1, with µi =

k1,xki,y
k1,yki,x

, i = 2, 3, . . . , N. (5.11)

Hence, the system of equations and boundary conditions given in Eqs. (5.1) − (5.7)

can be transformed by using Eqs. (5.8) and (5.11) into the following system:
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∂2θ1
∂x2

+
∂2θ1
∂y21

+
∂2θ1
∂ζ21

= 0, 0 < ζ1 < t̄1

∂2θi
∂x2

+
1

µi

∂2θi
∂y21

+
∂2θi
∂ζ2i

= 0,
0 < ζi < t̄i

i = 2, 3, . . . , N
(5.12)

with 0 < x < c and 0 < y1 < d̄1, and subject to the following boundary conditions:

−k1
∂θ1
∂ζ1

∣
∣
∣
∣
ζ1 = 0

=







q, inside transformed source region,

0, outside transformed source region

(5.13)

at the source plane, while the interfacial boundary conditions are transformed to:

ki
∂θi
∂ζi

∣
∣
∣
∣
ζi = t̄i

= ki+1
∂θi+1

∂ζi+1

∣
∣
∣
∣
ζi+1 = 0

, (5.14)

−ki
∂θi
∂ζi

∣
∣
∣
∣
ζi = t̄i

= hci [θi(x, y1, t̄i)− θi+1(x, y1, 0)] . (5.15)

Along the sink plane, we have:

−kN
∂θN
∂ζN

∣
∣
∣
∣
ζN = t̄N

= hsθN(x, y1, t̄N), (5.16)

and for the lateral-edge boundary conditions, we get:

∂θi
∂x

∣
∣
∣
∣
x = 0, c

= 0,
∂θi
∂y1

∣
∣
∣
∣
y1 = 0, d̄1

= 0, i = 1, 2, . . . , N. (5.17)

The problem is now in a convenient solvable form. To summarize, the multilayered

system of orthotropic layers represented by Eqs. (5.1)-(5.7) has been transformed

into an equivalent, simpler system of equations given by Eqs. (5.12)-(5.17) using two

transformations. The two transformations associated with Eqs. (5.8) and (5.11), which

represent an expansion of the ones introduced by Muzychka et al. in [19, 25], can be
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combined by applying only one transformation given by:

Layer i : y1 = y/
√

k1,y/k1,x, ζi = zi/
√

ki,z/ki,x, (5.18)

after which, some simple mathematics can be used to obtain the form given in

Eqs. (5.12)-(5.17). It is important to note that although the transformed system

is not fully isotropic (because of the existence of the parameters µi), the general solu-

tion can be obtained using the method of separation of variables in the same manner

of solving isotropic system with a slightly different form, as we will see in the following

section.

5.2.3 General Solution

The general solution of the first layer temperature excess distribution θ1 can be found

by using the method of separation of variables [26–28], where the solution is assumed

to have the form θ1(x, y1, ζ1) = X1(x) · Y1(y1) · Z1(ζ1). Applying the method of

separation of variables to the first governing equation in Eq. (5.12) and using the

boundary conditions along (x = 0, x = c) and (y1 = 0, y1 = d̄1) yields the following

general solution:

θ1(x, y1, ζ1) = A1
00 +B1

00ζ1

+
∞∑

m=1

cos(λ1mx)
[
A1
m0 cosh(λ

1
mζ1) + B1

m0 sinh(λ
1
mζ1)

]

+
∞∑

n=1

cos(δ1ny1)
[
A1

0n cosh(δ
1
nζ1) + B1

0n sinh(δ
1
nζ1)

]

+
∞∑

m=1

∞∑

n=1

cos(λ1mx) cos(δ
1
ny1)

[
A1
mn cosh(β

1
mnζ1) + B1

mn sinh(β
1
mnζ1)

]
,

(5.19)
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where λ1m = mπ/c, δ1n = nπ/d̄1, and β1
mn =

√

(λ1m)
2 + (δ1n)

2. The general solution

contains four components: a uniform flow solution, and three spreading solutions

represented by the series components that vanish when the heat-source area is equal

to the sink-plane area (the heat flux is distributed over the entire source-plane surface

ζ1 = 0). The solution for the temperature excess in the other layers (layer 2, 3, . . . , N)

can be obtained by solving the corresponding governing equations given in Eq. (5.12)

also by using the method of separation of variables. It is important to note that

in these layers, the governing equations of θi are different in the general form than

the first one of θ1. However, the general solution of θi may be obtained in the same

manner with new eigenvalues that can be related to the eigenvalues of the solution of

θ1. This can be done by assuming the general solution to have the form θi(x, y1, ζi) =

Xi(x) ·Yi(y1) ·Zi(ζi). Applying the method of separation of variables to the governing

equations in Eq. (5.12) and using the boundary conditions along (x = 0, x = c) and

(y1 = 0, y1 = d̄1) yield the following general solution for the ith layer:

θi(x, y1, ζi) = Ai00 +Bi
00ζi

+
∞∑

m=1

cos(λ1mx)
[
Aim0 cosh(λ

i
mζi) + Bi

m0 sinh(λ
i
mζi)

]

+
∞∑

n=1

cos(δ1ny1)
[
Ai0n cosh(δ

i
nζi) + Bi

0n sinh(δ
i
nζi)
]

+
∞∑

m=1

∞∑

n=1

cos(λ1mx) cos(δ
1
ny1)

[
Aimn cosh(β

i
mnζi) + Bi

mn sinh(β
i
mnζi)

]
,

(5.20)

where λim = λ1m, δ
i
n = δ1n/

√
µi, and β

i
mn =

√

λim
2 + δin

2 =
√

(λ1m)
2 + (δ1n)

2/µi. Equa-

tions (5.19) and (5.20) represent the general solution of the temperature excess in the
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first and ith (for i = 2, 3, . . . , N) layers, respectively, after applying the lateral bound-

ary conditions. The interfacial and sink-plane boundary conditions are then used to

find a relationship between the Fourier coefficients Aimn and Bi
mn in each layer. We

follow the work of Muzychka et al. [19] and Bagnall et al. [23] in which the relationship

is represented by a spreading function φi(γ
i) defined by:

φi(γ
i) = −B

i
mn

Aimn
, (5.21)

where γi refers to any of the eigenvalues λim, δ
i
n, and β

i
mn. Firstly, for m,n not both

equal to zero, in order to find the relationship between the ith-layer Fourier coeffi-

cients (Aimn and Bi
mn), represented by the spreading function φi(γ

i), it is important

to note that the Fourier coefficients of θi depend on the Fourier coefficients of θi+1

(i.e., Aimn and Bi
mn depend on Ai+1

mn and Bi+1
mn ) when applying the interface boundary

conditions; hence, the spreading function φi(γ
i) depends on the next layer’s spreading

function φi+1(γ
i+1). Thus, we start with finding the spreading function of the Nth-

layer solution, and then a backward recursive formula can be obtained to find φi(γ
i).

The application of the convection boundary condition at the sink plane (ζN = t̄N)

given by Eq. (5.16) leads to:

φN(γ
N) = −B

N
mn

ANmn
=
γN tanh(γN t̄N) + [hs/kN ]

γN + [hs/kN ] tanh(γN t̄N)
. (5.22)

Now, the application of the continuity of heat flux and the temperature drop boundary

conditions, represented by Eqs. (5.14) and (5.15), leads to the following backward

recursive relationship:

φi(γ
i) =

[(kiγ
i) / (ki+1γ

i+1) + (kiγ
i/hci)φi+1(γ

i+1)] tanh(γit̄i) + φi+1(γ
i+1)

[(kiγi) / (ki+1γi+1) + (kiγi/hci)φi+1(γi+1)] + φi+1(γi+1) tanh(γit̄i)
, (5.23)
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which is simplified in the case of continuity of temperature excess boundary condition

into (as hci −→ ∞):

φi(γ
i) =

[(kiγ
i) / (ki+1γ

i+1)] tanh(γit̄i) + φi+1(γ
i+1)

[(kiγi) / (ki+1γi+1)] + φi+1(γi+1) tanh(γit̄i)
. (5.24)

Finally, the boundary condition at the source plane is used to find the Fourier coef-

ficients Aimn after making use of Bi
mn = −φi(γi)Aimn, starting from finding A1

mn and

then a forward recursive formula can be used to obtain the ith-layer Fourier coeffi-

cients Aimn if desired. The Fourier coefficients in the first layer (A1
mn) are obtained by

taking Fourier series expansions of the boundary condition at the source plane given

by Eq. (5.13) and making use of B1
mn = −φ1(γ

1)A1
mn to get:

A1
m0 =

b̄q

d̄k1λ1mφ1(λ1m)

ˆ Xc+a/2

Xc−a/2

cos(λ1mx) dx

´ c

0
cos2(λ1mx) dx

=
4Q cos(λ1mXc) sin(

1
2
λ1ma)

acdk1 (λ1m)
2φ1(λ1m)

, (5.25)

and

A1
0n =

aq

ck1δ1nφ1(δ1n)

ˆ Y c+b̄/2

Y c−b̄/2

cos(δ1ny1) dy1

´ d̄

0
cos2(δ1ny1) dy1

=
4Qσ cos(δ1nY c) sin(

1
2
δ1nb̄)

bcdk1(δ1n)
2φ1(δ1n)

, (5.26)

and

A1
mn =

q

k1β1
mnφ1(β1

mn)

ˆ Y c+b̄/2

Y c−b̄/2

ˆ Xc+a/2

Xc−a/2

cos(λ1mx) cos(δ
1
ny1) dxdy1

´ d̄

0

´ c

0
cos2(λ1mx) cos

2(δ1ny1) dxdy1
,

=
16Qσ cos(λ1mXc) sin(

1
2
λ1ma) cos(δ

1
nY c) sin(

1
2
δ1nb̄)

abcdk1β1
mnλ

1
mδ

1
nφ1(β1

mn)
, (5.27)
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where σ =
√

k1,y/k1,x, b̄ = b/σ, Y c = Yc/σ, and Q = abq is the total heat input

of the flux channel. Equations (5.25)-(5.27) represent the Fourier coefficients of the

first-layer solution for m,n not both equal to zero. To find the Fourier coefficients of

the other layers, the following forward recursive formula can be used:

Ai+1
mn = Aimn




cosh(γit̄i)− φi(γ

i) sinh(γit̄i)

1 + ki+1γi+1

hci
φi+1(γi+1)



 . (5.28)

When m, n are both zeros, the zeroth-order Fourier coefficients in the first layer

(A1
00 and B

1
00) can be found by applying the sink-plane boundary condition and taking

the Fourier expansion in the source plane after relating the coefficients between the

adjacent layers to get:

A1
00 =

Q

cd

[
N−1∑

l=1

(
t̄l
kl

+
1

hcl

)

+
t̄N
kN

+
1

hs

]

,

B1
00 = − Q

cdk1
. (5.29)

Moreover, the zeroth-order Fourier coefficients in the other layers (Ai00 and Bi
00) can

be obtained as:

Ai00 =
Q

cd

[
N−1∑

l=i

(
t̄l
kl

+
1

hcl

)

+
t̄N
kN

+
1

hs

]

,

Bi
00 = − Q

cdki
. (5.30)

From the previous discussion, the analytical solution for the temperature excess

in each layer is illustrated completely along with the proper recursive formulas, which

can be used for finding the Fourier coefficients. However, the solution in the first

layer θ1(x, y1, ζ1) (in particular, the solution in the source plane at ζ1 = 0) is of most

interest for finding the maximum temperature and the total thermal resistance of the
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flux channel, which is addressed by:

θ1(x, y1, 0) = A1
00 +

∞∑

m=1

A1
m0 cos(λ

1
mx)

+
∞∑

n=1

A1
0n cos(δ

1
ny1) +

∞∑

m=1

∞∑

n=1

A1
mn cos(λ

1
mx) cos(δ

1
ny1), (5.31)

and can be transformed back for convenience to the original coordinates, i.e., x and

y, by making use of Eq. (5.8) to get:

θ1(x, y, 0) = A1
00 +

∞∑

m=1

A1
m0 cos(λ

1
mx)

+
∞∑

n=1

A1
0n cos(δ

1
ny/σ) +

∞∑

m=1

∞∑

n=1

A1
mn cos(λ

1
mx) cos(δ

1
ny/σ). (5.32)

5.2.4 Total Thermal Resistance

For a single heat source spreading to a larger extended sink area, the total thermal

resistance can be defined by [16, 19]:

Rt =
Tc − T∞

Q
=
θ̄c
Q

= R1D +Rsp, (5.33)

where Tc is the heat-source contact mean temperature, θ̄c is the mean heat-source

contact temperature excess, R1D is the one-dimensional (1D) resistance and Rsp is

the spreading resistance. The mean source temperature excess is given by:

θ̄c =
1

Ac

¨

Ac

θ1(x, y, 0) dAc, (5.34)
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where Ac = ab is the heat-source area. The application of Eq. (5.34) to the source-

plane solution given by Eq. (5.32) yields:

θ̄c = A1
00 + 2

∞∑

m=1

A1
m0

cos(λ1mXc) sin(
1
2
λ1ma)

aλ1m
+ 2

∞∑

n=1

A1
0n

σ cos(δ1nY c) sin(
1
2
δ1nb̄)

bδ1n

+ 4
∞∑

m=1

∞∑

n=1

A1
mn

σ cos(λ1mXc) sin(
1
2
λ1ma) cos(δ

1
nY c) sin(

1
2
δ1nb̄)

aλ1mbδ
1
n

. (5.35)

Thus, the total thermal resistance can be obtained by using Eq. (5.33) as:

Rt = R1D +
∞∑

m=1

Rm0 +
∞∑

n=1

R0n +
∞∑

m=1

∞∑

n=1

Rmn, (5.36)

where,

R1D =
1

cd

[
N−1∑

l=1

(
t̄l
kl

+
1

hcl

)

+
t̄N
kN

+
1

hs

]

, (5.37)

and

Rm0 =
8 cos2(λ1mXc) sin

2(1
2
λ1ma)

a2cdk1 (λ1m)
3φ1(λ1m)

, (5.38)

and

R0n =
8σ2 cos2(δ1nY c) sin

2(1
2
δ1nb̄)

b2cdk1(δ1n)
3φ1(δ1n)

, (5.39)

and

Rmn =
64σ2 cos2(λ1mXc) sin

2(1
2
λ1ma) cos

2(δ1nY c) sin
2(1

2
δ1nb̄)

a2b2cdk1β1
mn(λ

1
m)

2(δ1n)
2φ1(β1

mn)
. (5.40)
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problem as one problem in which the Fourier coefficients are to be calculated for only

one solution instead of finding the Fourier coefficients for Nc problems and then us-

ing the superposition. In fact, the same result can be obtained when the individual

solutions of the superposition are combined together into one solution. The general

solution of the multiple-heat-source problem is the same as the general solution for

the single-heat-source problem given in Eqs. (5.19) and (5.20) with the same spread-

ing functions given in Eqs. (5.22) and (5.23). However, the only difference is in the

Fourier coefficients; more precisely, the Fourier coefficients of the first-layer solution

A∗1
mn, since all the other Fourier coefficients depend on A∗1

mn by a recursive formula or

a spreading function. For m,n not both equal to zero, the Fourier coefficients of the

first-layer solution of the multiple-heat-source problem can be obtained by using the

new boundary condition in the source plane Eq. (5.41) to get:

A∗1
m0 =

4
Nc∑

j=1

bjqj cos(λ
1
mXcj) sin(

1
2
λ1maj)

cdk1(λ1m)
2φ1(λ1m)

, (5.42)

and

A∗1
0n =

4σ
Nc∑

j=1

ajqj cos(δ
1
nY cj) sin(

1
2
δ1nb̄j)

cdk1(δ1n)
2φ1(δ1n)

, (5.43)

and

A∗1
mn =

16σ
Nc∑

j=1

qj cos(λ
1
mXcj) sin(

1
2
λ1maj) cos(δ

1
nY cj) sin(

1
2
δ1nb̄j)

cdk1β1
mnλ

1
mδ

1
nφ1(β1

mn)
. (5.44)

Regarding the Fourier coefficients of the other layers, the same recursive formula in

Eq. (5.28) can be used to find them after replacing Ai+1
mn and Aimn by A∗i+1

mn and A∗i
mn,

respectively. Moreover, the zeroth-order Fourier coefficients of the first-layer solution
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(A∗1
00 and B∗1

00) are obtained as:

A∗1
00 =

Nc∑

j=1

Qj

cd

[
N−1∑

l=1

(
t̄l
kl

+
1

hcl

)

+
t̄N
kN

+
1

hs

]

,

B∗1
00 = −

Nc∑

j=1

Qj

cdk1
. (5.45)

While the zeroth-order Fourier coefficients in the other layers (A∗i
00 and B∗i

00) can be

obtained as:

A∗i
00 =

Nc∑

j=1

Qj

cd

[
N−1∑

l=i

(
t̄l
kl

+
1

hcl

)

+
t̄N
kN

+
1

hs

]

,

B∗i
00 = −

Nc∑

j=1

Qj

cdki
, (5.46)

where Qj = ajbjqj is the total heat input of the jth heat source. Furthermore, the

solution in the source plane can be addressed by:

θ∗1(x, y, 0) = A∗1
00 +

∞∑

m=1

A∗1
m0 cos(λ

1
mx)

+
∞∑

n=1

A∗1
0n cos(δ

1
ny/σ) +

∞∑

m=1

∞∑

n=1

A∗1
mn cos(λ

1
mx) cos(δ

1
ny/σ). (5.47)

Finally, the total thermal resistance for the multiple-heat-source problem can be

defined as [22]:

R∗
t =

θ̄∗c
Nc∑

j=1

Qj

, (5.48)

where θ̄∗c is the mean temperature excess of all the heat sources, as defined by:
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θ̄∗c =
1

Nc∑

j=1

Acj

Nc∑

j=1

¨

Acj

θ∗1(x, y, 0) dAcj , (5.49)

5.3 Results and Discussion

In this section, different validation and parametric studies are used to verify and

demonstrate the computational efficiency of the developed analytical solutions. For

the purpose of verifying the analytical solutions, numerical analysis has been con-

ducted by solving the problems numerically using the finite element method (FEM)

and comparing the numerical results to the analytical results. MATLAB (version

2016b) software is used to carry out the analytical results [29], while the numerical

simulations are performed based on the FEM using the ANSYS commercial software

package [30].

5.3.1 Single Heat Source

We start our investigation by considering an idealized single gate field-effect tran-

sistor model consisting of three layers of Aluminum oxide, Black Phosphorus, and

β-Gallium-oxide (Al2O3/BP/β-Ga2O3). The structure of the model is hypothetically

constructed base on two different field-effect transistor models that have been dis-

cussed in [5, 7]. We have considered this hypothetical structure in our investigation

in order to develop a multilayered structure with enough complexity to demonstrate

the accuracy and computational efficiency of the analytical solutions. The model has

side dimensions of c = 28 µm and d = 10 µm, while the heat-source (gate) dimensions

are of a = 2 µm, and b = 1 µm. The center of the heat source is located at the point

(Xc, Yc) = (10 µm, 5 µm), as shown in Fig. 5.3. The multilayered structure consists

of Al2O3 as the first layer of thickness t1 = 3 µm with isotropic thermal conductivities
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thicker layers are chosen in this model to consider the 3D nature of each layer and

to guarantee the convergence of the numerical FEM solution for comparison reasons.

The heat transfer coefficient along the sink plane is considered as hs = 106 W/m2·K

and the ambient temperature is of 25◦ C. A uniform heat flux of q = 109 W/m2 is

applied in the source region which corresponds to a uniform power dissipation of 1

W/mm (normalized to the gate length a). The interfacial conductance associated

with the Al2O3/BP interface hc1 is fixed at the value of hc1 = 108 W/m2·K, while

the interfacial conductance associated with the BP/β-Ga2O3 interface hc2 is varied as

106 < hc2 <∞ W/m2·K, where the case of hc2 −→ ∞ indicates that the effect of the

interfacial conductance is neglected and the continuity of temperature boundary con-

dition is considered. The analytical solution is used to compute the average (T) and

centroidal (T̂ = T (Xc, Yc, 0)) temperatures of the heat source and the total thermal

resistance of the system for different values of the interfacial conductance hc2 . The

results are compared to numerical results obtained by solving the system numerically

using the FEM. In the analytical solution, the number of terms used in the infinite

Fourier series summation is chosen of 1000 in each of the summations and the compu-

tational time required to find any of the results (T, T̂ or Rt ) is found of approximately

0.4 s. The number of terms is chosen based on a sensitivity study to see the effect

of increasing the number of terms on the average and centroidal temperatures and

it is found that 1000 terms in each of the summations converged with a very small

relative error of less than 0.005% compared to using 104 terms. Figure 5.4 shows the

effect of increasing the number of terms on the average and centroidal temperatures

of the heat source for hc2 = 106 W/m2·K. Furthermore, the FEM numerical results

are obtained with a tetrahedral mesh and the convergence is checked by refining the

mesh. In particular, most of the refinement is required around the heat source and in-

terfacial contact regions due to the rapid change in temperature around these regions.
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The system with a tetrahedral mesh consisting of approximately 3.8× 105 elements is

found to be sufficient to solve the problem with a very small loss in accuracy (relative

error of less than 0.1% compared to using approximately 6.5 × 105 elements) with

computational time of approximately 3 min. The analytical and numerical results of

the average and centroidal temperatures of the heat source and the thermal resistance

of the system for different values of the interfacial conductance hc2 are shown in Ta-

ble 5.1 and Table 5.2, respectively. The agreement between the analytical and FEM

results is considerably very good with a relative error of less than 0.3% for all the re-

sults. In addition, the effect of increasing the value of the interfacial conductance hc2

is obvious, where both the temperature rise in the heat-source region and the thermal

resistance of the system decrease by increasing the value of interfacial conductance.

The minimum values are recorded when hc2 −→ ∞.

Finally, one more study is conducted by changing the thermal conductivities of

the first layer to k1,x = 50, k1,y = 25, k1,z = 15 W/m·K. Although the thermal

conductivity of the first Al2O3 layer is isotropic, this study is conducted as a validation

study of the analytical solution with orthotropic properties in all the layers. The

analytical and numerical results of the average and centroidal temperatures of the heat

source for different values of the interfacial conductance hc2 are shown in Table 5.3

with very good agreement. Moreover, the effect of changing the thermal conductivities

on the centroidal and average temperatures is obvious compared to considering the

isotropic values with differences of approximately three degrees.

5.3.2 Multiple Heat Sources

To demonstrate the computational efficiency of the developed analytical solution for

multiple-heat-source problems, the same previous model for the single-heat-source

problem with the same channel configuration and thermal properties shown in Fig. 5.3
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Figure 5.4: Analytical centroidal and average temperatures of the single-heat-source
problem computed as a function of the number of terms in the summations for hc2 =
106 W/m2·K.

Analytical FEM

hc2 (W/m2·K) T̂ (◦C) T (◦C) T̂ (◦C) T (◦C)
106 72.985 68.356 73.031 68.227

5× 106 67.224 62.596 67.271 62.467
107 66.500 61.871 66.547 61.743

5× 107 65.919 61.291 65.966 61.162
108 65.846 61.218 65.893 61.089
∞ 65.773 61.145 65.827 61.083

Table 5.1: Centroidal and average temperatures of the single-heat-source validation
study for hc1 = 108 W/m2·K and different values of the interfacial conductance hc2 .

Analytical FEM
hc2 (W/m2·K) R1D (K/W) Rsp (K/W) Rt (K/W) Rt (K/W)

106 9564.8 12113 21678 21614
5× 106 6707.7 12090 18798 18733
107 6350.5 12085 18436 18371

5× 107 6064.8 12080 18145 18081
108 6029.1 12080 18109 18045
∞ 5993.4 12079 18072 18042

Table 5.2: Thermal resistance of the single-heat-source validation study for hc1 = 108

W/m2·K and different values of the interfacial conductance hc2 .
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Source j aj (µm) bj (µm) Xcj (µm) Ycj (µm) qj (W/m2)
1 1 1 5 6 8× 108

2 2 1 10 5 1× 109

3 1 2 15 4 9× 108

4 2 2 20 8 8.5× 108

5 1 3 25 2 7× 108

Table 5.4: Heat-source dimensions and properties of the multiple-heat-source problem.

Analytical FEM Relative Error
hc2 (W/m2·K) R∗

t (K/W) R∗
t (K/W) (%)

106 11728 11720 0.07%
5× 106 8860.8 8853.9 0.08%
107 8501.5 8494.8 0.08%

5× 107 8213.9 8207.1 0.09%
108 8177.9 8171.2 0.09%
∞ 8141.9 8136.2 0.07%

Table 5.5: Thermal resistance of the multiple-heat-source validation study for hc1 =
108 W/m2·K and different values of the interfacial conductance hc2 .

can be considered as a superposition of five single-heat-source solutions; hence, the

number of terms for the multiple-heat-source is chosen as the same number of terms

used for the single-source problem and is found to be sufficient to obtain the results.

This can be seen from Fig. 5.6 which shows a sensitivity study of increasing the number

of terms on the centroidal temperature of each heat source for hc2 = 106 W/m2·K. In

addition, the problem is solved numerically using the FEM with a tetrahedral mesh

consisting of approximately 6×105 elements with computational time of approximately

7 min. The total thermal resistance R∗
t of the analytical and numerical results for

different values of the interfacial conductance hc2 are shown in Table 5.5. The results

show very good agreement between the analytical and numerical solution results with

a relative error of less than 0.2%. Moreover, the centroidal and average temperatures

of each heat source for one value of the interfacial conductance hc2 = 106 W/m2·K

are shown in Table 5.6.
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Figure 5.6: Analytical centroidal temperature of each heat source in the multiple-
heat-source validation study computed as a function of the number of terms in the
summations for hc2 = 106 W/m2·K.

Analytical FEM

Source j T̂ (◦C) T (◦C) T̂ (◦C) T (◦C)
1 129.12 126.33 129.20 126.25
2 143.82 139.25 143.93 139.40
3 144.85 140.71 144.83 140.59
4 157.52 151.64 157.79 151.56
5 146.19 142.86 146.37 142.83

Table 5.6: Centroidal and average temperatures of each heat source in the multiple-
heat-source validation study for hc1 = 108 W/m2·K and hc2 = 106 W/m2·K.

From the previous discussion, the computational efficiency of the developed ana-

lytical solution is obvious compared to solving the problem numerically. In particular,

when the problem contains multiple heat sources in the source plane, a large number

of elements is required around each heat source and along the flux channel to solve

the problem numerically using the FEM which will increase the computational time

and the complexity of the problem. However, in the analytical solution, the same

number of terms in the summations as used to solve the single-heat-source problem
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is found sufficient to solve the multiple-heat-source problem without loss of any ac-

curacy. Further, the complexity of the problem for solving the multiple-heat-source

problem is found to be about twice that for solving the single-heat-source problem.

5.4 Conclusion

In this chapter, general analytical solutions for the temperature distribution and ther-

mal resistance of a 3D multilayered orthotropic flux channel consisting of N -layers

with interfacial conductance between the layers were developed. The solutions ac-

count for using anisotropic materials with different thermal conductivities in the three

spatial directions of each layer. The developed solutions were extended to account for

problems with multiple heat sources in the source plane. The solutions were validated

by comparing the developed analytical solution results with the results obtained by

solving the problem numerically based on the FEM using the ANSYS commercial

software package [30] where very good agreement was found. In addition, the compu-

tational efficiency of the developed solutions was also discussed in comparison with

using numerical solutions.
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Chapter 6

Spreading Resistance in

Multilayered Orthotropic Flux

Channel with

Temperature-Dependent Thermal

Conductivities

6.1 Introduction

In the modern microelectronics industry, as the size of microelectronic devices contin-

ues to decrease with a remarkable growth in power densities, thermal management of

microelectronic systems becomes more important for maintaining device functionality

Published in the AIAA-Journal of Thermophysics and Heat Transfer [1].
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and reliability. Accurate thermal analysis is considered as a significant factor in the

development of microelectronic systems for retaining device performance and to pro-

duce a durable device. Most microelectronic systems are modeled as rectangular flux

channels, where heat enters the channel through small heat source(s) and flows by

conduction through the system to spread the heat into a larger convective heat-sink

area, and this process gives rise to thermal spreading resistance. The multilayered

structure is a widely used structure in the microelectronic industry where devices are

designed as a compound system of attached layers of different materials. Recently,

some anisotropic materials have received exceptional attention in the development

of the microelectronics in which the thermal conductivity varies with direction [2].

Orthotropic materials are of particular interest, where the thermal conductivity in

these materials is different in the three principal spatial directions. Such anisotropic

materials include β-Gallium-oxide (β-Ga2O3) [3, 4], and Black Phosphorus (BP) [5].

The orthotropic different thermal conductivities in many materials are varying with

temperature and usually are approximated by constant thermal conductivities. How-

ever, the assumption of constant thermal conductivities within the whole temperature

variation intervals may lead to unreliable results in thermal analysis [6, 7].

When considering temperature-dependent thermal conductivities in multilayered

orthotropic structures, the governing heat conduction equations of the system become

nonlinear. In general, analytical solutions of nonlinear systems are challenging, and

usually numerical methods are used to solve the nonlinear systems. However, when the

problem under consideration is complex, the numerical methods are computationally

expensive and less flexible for optimization studies. Moreover, the complexity of

solving nonlinear systems numerically is larger than solving linear systems. Hence,

analytical solutions (if possible) are advantageous for presenting accurate results and

for saving computational work.
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The Kirchhoff transform method is considered as an attractive technique for solv-

ing nonlinear conduction systems with temperature-dependent thermal conductivities,

because it can be used to transform the nonlinear governing system of equations into

a linear system of equations that can be solved using existing analytical solutions

of linear systems, and then the solution of the linearized system can be transformed

back to get the solution of the original nonlinear system using the inverse Kirchhoff

transform [8–11].

In the past few decades, analytical solutions of the temperature distribution and

thermal spreading resistance in flux channels have been studied comprehensively, and

many related studies can be found in the literature. However, in most of the existing

work, attention has been focused on problems with constant thermal conductivities.

Yovanovich studied different problems on spreading resistance in flux channels and

flux tubes, and he summarized the most important models of thermal spreading re-

sistance for more than 40 years in a review paper [12]. Muzychka et al. [13–18] have

conducted comprehensive research on different spreading resistance problems includ-

ing different geometries, boundaries, and properties for single and multilayered struc-

tures. Bagnall et al. [19] studied temperature rise and thermal spreading resistance in

multilayered flux channels with constant isotropic and transversely isotropic thermal

conductivities. Bonani and Ghione [6] used the Kirchhoff transform to study a com-

posite medium consisting of two layers with temperature-dependent and piecewise in-

homogeneous thermal conductivity. Ditri [20] studied a single-layer flux channel with

orthotropic temperature-dependent thermal conductivities and a fixed-temperature

boundary condition along the sink plane. Bagnall et al. [21] studied the temperature

rise in problems with temperature-dependent thermal conductivities and convection

boundary conditions along the sink plane using the Kirchhoff transform.
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In this chapter, the Kirchhoff transform is used to obtain general analytical so-

lutions of the temperature rise and thermal resistance in a multilayered orthotropic

flux channel consisting of N composite layers with different temperature-dependent

thermal conductivities in the three spatial directions of each layer. The Kirchhoff

transform is used to transform the nonlinear system into a linear system, and then

stretched coordinate transformations and the method of separation of variables are

used to solve the linear system, where the solution the linear system is used to find the

solution of the original nonlinear system by means of the inverse Kirchhoff transform.

Moreover, an efficient approximation of the total thermal resistance of the nonlin-

ear system is presented. The solutions have been extended to account for multiple

eccentric heat sources in the source plane.

6.2 Mathematical Theory

In this section, we present the mathematical formulation of the problem including the

nonlinear governing equations of the temperature distribution for the multilayered

structure along with the appropriate boundary conditions. Then the analytical solu-

tion of the problem is illustrated after making use of the Kirchhoff and the stretched

coordinate transformations. The analytical solution is then used to present the total

thermal resistance of the system. Finally, an extension of the solution to account for

multiple heat sources in the source plane is introduced.

6.2.1 Problem Statement

The system under consideration is a composite three-dimensional (3D) rectangular

flux channel consisting of N bonded layers, which represents the general geometry

of many modern microelectronic devices. The heat enters the system from a small
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heated spot represented by an eccentric heat source of a rectangular shape and flows

by conduction through the layers to reach a convective heat sink with a uniform heat

transfer coefficient. Furthermore, all the lateral edges are assumed to be adiabatic,

and the adjacent layers are assumed to be in perfect contact with no interfacial re-

sistance. The layers are assumed to be of different thermal properties. In particular,

the material of each layer is assumed to be orthotropic, with different temperature-

dependent thermal conductivities in the three spatial directions (x, y, zi), as shown in

Fig. 6.1. For convenience, the system is modeled using a local system of coordinates

in each layer with different through-plane (vertical) coordinates 0 < zi < ti and the

same in-plane (horizontal) coordinates with 0 < x < c and 0 < y < d for all the

layers.

The steady-state heat conduction in each layer is governed by a nonlinear heat

equation because of the dependency of the thermal conductivities on temperature.

The general system of nonlinear equations that represents the governing equations

of heat conduction in the N -multilayered structure with orthotropic temperature-

dependent thermal conductivities can be addressed by:

∂

∂x

(

ki,x(Ti)
∂Ti
∂x

)

+
∂

∂y

(

ki,y(Ti)
∂Ti
∂y

)

+
∂

∂zi

(

ki,z(Ti)
∂Ti
∂zi

)

= 0, 0 <zi < ti, (6.1)

for i = 1, 2, . . . , N . The boundary conditions of the system are addressed based on the

general nature of heat flow in the flux channel, where heat enters the system from the

source region and is removed from the system by convection through the sink plane.

In the source plane, a uniform heat flux is specified inside the rectangular heat-source

region, whereas the remainder of the source plane is considered as adiabatic. Hence,
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the source-plane boundary condition is given by:

−k1,z(T1)
∂T1
∂z1

∣
∣
∣
∣
z1 = 0

=







q, inside source region,

0, outside source region.

(6.2)

The interface boundary conditions between the adjacent layers (for i = 1, 2, . . . , N−1)

are the continuity of heat flux and the continuity of temperature, respectively:

ki,z(Ti)
∂Ti
∂zi

∣
∣
∣
∣
zi = ti

= ki+1,z(Ti+1)
∂Ti+1

∂zi+1

∣
∣
∣
∣
zi+1 = 0

, (6.3)

Ti(x, y, ti) = Ti+1(x, y, 0). (6.4)

Along the sink plane, a convection boundary condition with a uniform heat transfer

coefficient hs exists, and the boundary condition is given by:

−kN,z(TN)
∂TN
∂zN

∣
∣
∣
∣
zN = tN

= hs (TN(x, y, tN)− T∞) . (6.5)

The lateral edges of the system are considered as adiabatic; hence, the lateral-edge

boundary conditions are:

∂Ti
∂x

∣
∣
∣
∣
x = 0, c

= 0,
∂Ti
∂y

∣
∣
∣
∣
y = 0, d

= 0, i = 1, 2, . . . , N. (6.6)

The governing equations along with the boundary conditions of the temperature

distribution in the multilayered system are completely illustrated in Eqs. (6.1)-(6.6).

Although the general form of the governing equations in Eq. (6.1) governs the problem

for different thermal conductivity functions in the three spatial directions of each

layer (ki,x(Ti) 6= ki,y(Ti) 6= ki,zi(Ti)), the analytical solution of the proposed problem

requires that all the thermal conductivity functions in the system must depend on
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temperature in the same manner [6, 20]. In other words, the temperature-dependent

thermal conductivities can be written as:

ki,u(T ) = k0i,uk̂(T ), (6.7)

where u refers to any of the coordinates x, y or zi; k
0
i,u is a constant thermal conductiv-

ity; and k̂(T ) is a functional relationship of temperature, for example, k̂(T ) = 1 + T .

Under this assumption, the governing equations in Eq. (6.1) can be rewritten as:

k0i,x
∂

∂x

(

k̂(Ti)
∂Ti
∂x

)

+ k0i,y
∂

∂y

(

k̂(Ti)
∂Ti
∂y

)

+ k0i,z
∂

∂zi

(

k̂(Ti)
∂Ti
∂zi

)

= 0, 0 <zi < ti.

(6.8)

We then proceed to obtain the analytical solution of the problem using some mathe-

matical transformations.

6.2.2 Kirchhoff Transform

The Kirchhoff transform is considered to be a powerful method for linearizing nonlin-

ear heat conduction problems with temperature-dependent thermal conductivity. The

idea behind the Kirchhoff transform is to present a new variable θ (usually referred to

as the apparent temperature) as an integral function of the temperature-dependent

thermal conductivity, where the nonlinear system can be transformed under the Kirch-

hoff transform into a linear system in terms of the new variable θ. Furthermore, the

linearized system can be solved using existing analytical methods for solving linear

problems, and then the solution of the linear system can be transformed back to

the solution of the nonlinear system through the inverse Kirchhoff transform. The

Kirchhoff transform can be found in the literature in many forms depending on the

problem under investigation [9, 21–23]; however, all forms share the same general
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idea. For the multilayered system, the following general form of the Kirchhoff trans-

form is considered in each layer because it facilitates the multilayered structure and

the transformation of the convective boundary condition along the sink plane:

θi = K{Ti} = T0 +

Ti
ˆ

T0

k̂(τ)dτ. (6.9)

where T0 is a convenient reference temperature. Applying the Kirchhoff transform

given by Eq. (6.9) to the nonlinear system, Eq. (6.8), the nonlinear system is trans-

formed into a linear orthotropic system of equations with constant thermal conduc-

tivities given by:

k0i,x
∂2θi
∂x2

+ k0i,y
∂2θi
∂y2

+ k0i,z
∂2θi
∂z2i

= 0, for i = 1, 2, . . . , N. (6.10)

Moreover, the boundary conditions of the nonlinear system are transformed through

the Kirchhoff transform into the following boundary conditions. The source-plane

boundary condition in Eq. (6.2) is transformed to:

−k01,z
∂θ1
∂z1

∣
∣
∣
∣
z1 = 0

=







q, inside source region,

0, outside source region.

(6.11)

The interface boundary conditions in Eqs. (6.3) and (6.4) are transformed to [6]:

k0i,z
∂θi
∂zi

∣
∣
∣
∣
zi = ti

= k0i+1,z

∂θi+1

∂zi+1

∣
∣
∣
∣
zi+1 = 0

, (6.12)

θi(x, y, ti) = θi+1(x, y, 0). (6.13)

The lateral-edge boundary conditions in Eq. (6.6) are transformed to:
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∂θi
∂x

∣
∣
∣
∣
x = 0, c

= 0,
∂θi
∂y

∣
∣
∣
∣
y = 0, d

= 0, i = 1, 2, . . . , N. (6.14)

Although the source plane, interfacial, and lateral-edge boundary conditions are

transformed easily into linear boundary conditions through the Kirchhoff transform,

this is not the case, in general, when considering the convective sink-plane boundary

condition. In fact, when convective boundary conditions (third kind or Robin) are

present, the transformed boundary conditions are, in general, nonlinear boundary

conditions [9, 10]. This can be seen by considering the sink-plane boundary condition:

−kN,z(TN)
∂TN
∂zN

∣
∣
∣
∣
zN = tN

= hs (TN(x, y, tN)− T∞) . (6.15)

When the Kirchhoff transform is considered, the boundary condition is transformed

to:

−k0N,z
∂θN
∂zN

∣
∣
∣
∣
zN = tN

= hs
(
K−1{θN(x, y, tN)} − T∞

)
, (6.16)

which is a nonlinear boundary condition because K−1{θN} is, in general, a nonlinear

function of θN , and this makes it difficult when trying to solve the transformed linear

problem. However, when the temperature distribution along the sink plane can be

approximated before using the Kirchhoff transform and used as a reference tempera-

ture T0 in the definition of the transform, Eq. (6.9), the transform can be applied for

the convective boundary condition in Eq. (6.15) to get a linear transformed bound-

ary condition [21]. By considering the problem under study, heat enters the system

through the small heat-source region and flows by conduction to spread the heat out

from the heat-source area into the larger heat-sink area. Hence, the temperature along

the sink plane can be approximated by the mean sink-plane temperature using the

conservation of energy, and then the approximated temperature can be used as the
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reference temperature in the Kirchhoff transform, i.e.,

T0 = TN |z=t =
1

hs

Q

cd
+ T∞. (6.17)

Thus, when the approximated sink-plane temperature in Eq. (6.17) is used as the

reference temperature in the Kirchhoff transform Eq. (6.9), the convective boundary

condition in Eq. (6.15) can be transformed into the following approximate linear

boundary condition [21]:

−k0N,z
∂θN
∂zN

∣
∣
∣
∣
zN = tN

= hs (θN(x, y, tN)− T∞) . (6.18)

To summarize, by considering the average sink temperature defined in Eq. (6.17)

as a reference temperature in the Kirchhoff transform, the nonlinear system Eqs. (6.1)-

(6.6) is transformed to the linear system represented by Eqs. (6.10)-(6.14) and Eq. (6.18).

Once the solution of the linearized system is obtained, the solution can be transformed

to the approximate actual temperature of the nonlinear problem by employing the

inverse Kirchhoff transform. It is worth mentioning that the explicit functional rela-

tionship between the actual temperature Ti and the apparent temperature θi depends

on the specific nature of the temperature-dependent function k̂(T ). Different de-

pendency functions of the thermal conductivity on temperature can be found in the

literature [21, 23, 24]. In this study, we will consider three general forms of the thermal

conductivity functions given by:

k̂1(T ) = 1 + ω1(T − T0), (6.19)

k̂2(T ) = exp[ω2(T − T0)], (6.20)

k̂3(T ) =

(
T0
T

)s

, (6.21)
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where ω1, ω2 are dependency parameters called the temperature coefficients of ther-

mal conductivity [11], and s is a real-number exponent. The functional relationship

between the apparent temperature θi and the actual temperature Ti can be obtained

for the three general conductivity functions using Eq. (6.9), and then the actual tem-

perature Ti can be obtained in terms of the apparent temperature θi that represents

the inverse Kirchhoff transform by solving the relationships for Ti to get the following

results for the three general functions, respectively:

Ti = K−1
1 {θi} = T0 +

1

ω1

[√

2ω1(θi − T0) + 1− 1
]

, (6.22)

Ti = K−1
2 {θi} = T0 +

1

ω2

ln(1 + ω2(θi − T0)), (6.23)

Ti = K−1
3 {θi} =







T0 exp(θi/T0 − 1), s = 1

T0

[
(1− s)θi

T0
+ s

]1/(1−s)

, s 6= 1

(6.24)

6.2.3 Linear System Solution

The solution of the nonlinear system requires finding the solution of the linearized

system for the apparent temperature first, and then, by using any of the functional

relationships in Eqs. (6.22)-(6.24) that corresponds to the used conductivity func-

tion, these solutions can be transformed to the solution of the nonlinear system. The

general solution of the linearized system can be obtained by using stretched coor-

dinate transformations combined with the method of separation of variables. The

application of the following stretched coordinates transformations for each layer (for

i = 1, 2, . . . , N),

Layer i : y1 = y/
√

k01,y/k
0
1,x, ζi = zi/

√

k0i,z/k
0
i,x, (6.25)
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leads to the definition of the following effective properties:

Layer i : ki =
√

k0i,xk
0
i,z, µi =

k01,xk
0
i,y

k01,yk
0
i,x

, t̄i = ti/
√

k0i,z/k
0
i,x, d̄ = d/

√

k01,y/k
0
1,x.

(6.26)

Hence, the linear system of equations and boundary conditions of θi can be trans-

formed under Eq. (6.25) into the following system:

∂2θ1
∂x2

+
∂2θ1
∂y21

+
∂2θ1
∂ζ21

= 0, 0 < ζ1 < t̄1

∂2θi
∂x2

+
1

µi

∂2θi
∂y21

+
∂2θi
∂ζ2i

= 0,
0 < ζi < t̄i

i = 2, 3, . . . , N
(6.27)

with 0 < x < c and 0 < y1 < d̄, and subject to the following boundary conditions:

−k1
∂θ1
∂ζ1

∣
∣
∣
∣
ζ1 = 0

=







q, inside stretched source region,

0, outside stretched source region,

(6.28)

in the source plane, whereas the interfacial boundary conditions are transformed to:

ki
∂θi
∂ζi

∣
∣
∣
∣
ζi = t̄i

= ki+1
∂θi+1

∂ζi+1

∣
∣
∣
∣
ζi+1 = 0

, (6.29)

θi(x, y1, t̄i) = θi+1(x, y1, 0). (6.30)

Along the sink plane, we have:

−kN
∂θN
∂ζN

∣
∣
∣
∣
ζN = t̄N

= hs(θN(x, y1, t̄N)− T∞), (6.31)

and for the lateral-edge boundary conditions, we get:
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∂θi
∂x

∣
∣
∣
∣
x = 0, c

= 0,
∂θi
∂y1

∣
∣
∣
∣
y1 = 0, d̄

= 0, i = 1, 2, . . . , N. (6.32)

By introducing θ′i = θi−T∞, the linear system of θ′i is the same as the linear system

of θi but with a homogenous boundary condition along the sink plane. The application

of the method of separation of variables by assuming the general solution in each layer

to have the form θ′i(x, y1, ζi) = Xi(x) ·Yi(y1) ·Zi(ζi) and using the boundary conditions

along (x = 0, x = c) and (y1 = 0, y1 = d̄) yield the following general solutions for

i = 1, 2, . . . , N :

θ′i(x, y1, ζi) = Ai00 +Bi
00ζi

+
∞∑

m=1

cos(λ1mx)
[
Aim0 cosh(λ

i
mζi) + Bi

m0 sinh(λ
i
mζi)

]

+
∞∑

n=1

cos(δ1ny1)
[
Ai0n cosh(δ

i
nζi) + Bi

0n sinh(δ
i
nζi)
]

+
∞∑

m=1

∞∑

n=1

cos(λ1mx) cos(δ
1
ny1)

[
Aimn cosh(β

i
mnζi) + Bi

mn sinh(β
i
mnζi)

]
,

(6.33)

where λim, δ
i
n, and β

i
mn are the corresponding eigenvalues in each layer. The eigenvalues

in the first layer are defined by:

λ1m = mπ/c, δ1n = nπ/d̄, β1
mn =

√

(λ1m)
2 + (δ1n)

2, (6.34)

whereas the eigenvalues in the other layers can be related to the eigenvalues of the

first layer as:

λim = λ1m, δin =
1√
µi
δ1n, βimn =

√

λim
2 + δin

2 =

√

(λ1m)
2 +

1

µi
(δ1n)

2. (6.35)
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The interfacial and sink-plane boundary conditions are then used to find a re-

lationship between the Fourier coefficients Aimn and Bi
mn in each layer. We follow

the work of Muzychka et al. [17] and Bagnall et al. [19] in which the relationship is

represented by a spreading function φi(γ
i) defined by:

φi(γ
i) = −B

i
mn

Aimn
, (6.36)

where γi refers to any of the eigenvalues λim, δ
i
n, or β

i
mn. For m,n not both equal

to zero, we start with finding the spreading function of the Nth-layer solution by

applying the convection boundary condition at the sink plane Eq. (6.31) to get:

φN(γ
N) = −B

N
mn

ANmn
=
γN tanh(γN t̄N) + [hs/kN ]

γN + [hs/kN ] tanh(γN t̄N)
. (6.37)

The application of the interfacial boundary conditions Eqs. (6.29) and (6.30) leads to

the following backward recursive formula for finding φi(γ
i):

φi(γ
i) =

[(kiγ
i) / (ki+1γ

i+1)] tanh(γit̄i) + φi+1(γ
i+1)

[(kiγi) / (ki+1γi+1)] + φi+1(γi+1) tanh(γit̄i)
. (6.38)

Finding the total thermal resistance and the maximum temperature of the channel

requires obtaining the solution in the first layer θ1 (in particular, the solution at

ζ1 = 0). Hence, the Fourier coefficients A1
mn and B1

mn are of most interest. The

Fourier coefficients of the first-layer solution (A1
mn) are obtained by taking Fourier

series expansions of the boundary condition at the source plane Eq. (6.28) and making

use of B1
mn = −φ1(γ

1)A1
mn to get:

A1
m0 =

b̄q

d̄k1λ1mφ1(λ1m)

ˆ Xc+a/2

Xc−a/2

cos(λ1mx) dx

´ c

0
cos2(λ1mx) dx

=
4Q cos(λ1mXc) sin(

1
2
λ1ma)

acdk1 (λ1m)
2φ1(λ1m)

, (6.39)
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and

A1
0n =

aq

ck1δ1nφ1(δ1n)

ˆ Y c+b̄/2

Y c−b̄/2

cos(δ1ny1) dy1

´ d̄

0
cos2(δ1ny1) dy1

=
4Qσ cos(δ1nY c) sin(

1
2
δ1nb̄)

bcdk1(δ1n)
2φ1(δ1n)

, (6.40)

and

A1
mn =

q

k1β1
mnφ1(β1

mn)

ˆ Y c+b̄/2

Y c−b̄/2

ˆ Xc+a/2

Xc−a/2

cos(λ1mx) cos(δ
1
ny1) dxdy1

´ d̄

0

´ c

0
cos2(λ1mx) cos

2(δ1ny1) dxdy1
,

=
16Qσ cos(λ1mXc) sin(

1
2
λ1ma) cos(δ

1
nY c) sin(

1
2
δ1nb̄)

abcdk1β1
mnλ

1
mδ

1
nφ1(β1

mn)
, (6.41)

where σ =
√

k1,y/k1,x, b̄ = b/σ, Y c = Yc/σ, and Q = abq is the total heat input of the

flux channel. When m, n are both zeros, the zeroth-order Fourier coefficients in the

first-layer solution (A1
00 and B1

00) can be found by applying the sink-plane boundary

condition and taking the Fourier expansion in the source plane after relating the

coefficients between the adjacent layers to get:

A1
00 =

Q

cd

[
N∑

l=1

(
t̄l
kl

)

+
1

hs

]

,

B1
00 = − Q

cdk1
. (6.42)

The solution in the source plane at ζ1 = 0 is of most interest, which can be addressed

in terms of the original coordinates, i.e., x and y, by:

θ1(x, y, 0) = T∞ + A1
00 +

∞∑

m=1

A1
m0 cos(λ

1
mx) +

∞∑

n=1

A1
0n cos(δ

1
ny/σ)

+
∞∑

m=1

∞∑

n=1

A1
mn cos(λ

1
mx) cos(δ

1
ny/σ). (6.43)
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Thus, the solution of the nonlinear problem in the source plane T1(x, y, 0) can be

obtained by substituting the solution of the linear system given in Eq. (6.43) into the

corresponding functional relationships in Eqs. (6.22)-(6.24).

6.2.4 Total Thermal Resistance

For a single heat source spreading heat to a larger sink area, the total thermal resis-

tance can be defined by [13, 17, 25]:

Rt =
Tc − T∞

Q
, (6.44)

where Tc is the mean temperature over the heat-source area defined by:

Tc =
1

Ac

¨

Ac

T1(x, y, 0) dAc, (6.45)

with Ac = ab is the area of the heat source. It can be seen that the solution T1(x, y, 0)

is complicated to be integrated explicitly over the heat-source area because of the

complexity of the inverse Kirchhoff transform functions. Thus, numerical integration

can be used to evaluate the integrals in Eq. (6.45). However, a good approximation

of the temperature field T1(x, y, 0) is the first-order Taylor series approximation of

the functional relationships between the actual temperature T1 and the apparent

temperature θ1 denoted by the inverse Kirchhoff transform K−1 around the centroidal

temperature of the linear solution θ̂1 = θ1(Xc, Yc, 0). Thus, the solution in the heat-

source region can be approximated by:

T1(x, y, 0) = K−1{θ̂1}+ Ḱ−1{θ̂1}(θ1(x, y, 0)− θ̂1), (6.46)

where K−1 stands for any the functional relationships in Eqs. (6.22)-(6.24) and Ḱ−1
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is the derivative of the functional relationships with respect to the dependent variable

θ. Hence, the mean source temperature Tc can be approximated explicitly by:

Tc(approx.) = K−1{θ̂1}+ Ḱ−1{θ̂1}(θ̄c − θ̂1), (6.47)

where θ̄c is the mean temperature of the linear solution over the heat-source area that

can be calculated by:

θ̄c = T∞ + A1
00 + 2

∞∑

m=1

A1
m0

cos(λ1mXc) sin(
1
2
λ1ma)

aλ1m
+ 2

∞∑

n=1

A1
0n

σ cos(δ1nY c) sin(
1
2
δ1nb̄)

bδ1n

+ 4
∞∑

m=1

∞∑

n=1

A1
mn

σ cos(λ1mXc) sin(
1
2
λ1ma) cos(δ

1
nY c) sin(

1
2
δ1nb̄)

aλ1mbδ
1
n

. (6.48)

6.2.5 Extension to Multiple Heat Sources

In many applications, heat enters the system through multiple heat sources distributed

along the source plane instead of a single heat source. We extend the problem to

contain a finite number of Nc rectangular heat sources distributed nonuniformly along

the source plane, as shown in Fig. 6.2. With this extension, the only change that

happens to the problem statement is in the source-plane boundary condition. The

new source-plane boundary condition is expressed by considering a uniform heat flux

qj distributed over the jth heat source (for j = 1, 2, . . . , Nc), and outside the heat-

source regions, the surface is considered as adiabatic. Thus, the source-plane boundary

condition Eq. (6.2) is rewritten as:

−k1,z(T1)
∂T1
∂z1

∣
∣
∣
∣
z1 = 0

=







qj, inside jth source region,

0, outside source regions.

(6.49)

Applying the Kirchhoff transform Eq. (6.9) to the new extended problem with a
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where the Fourier coefficients of the multiple-source problem are given by,

A∗1
m0 =

4
Nc∑

j=1

bjqj cos(λ
1
mXcj) sin(

1
2
λ1maj)

cdk1(λ1m)
2φ1(λ1m)

, (6.53)

and

A∗1
0n =

4σ
Nc∑

j=1

ajqj cos(δ
1
nY cj) sin(

1
2
δ1nb̄j)

cdk1(δ1n)
2φ1(δ1n)

, (6.54)

and

A∗1
mn =

16σ
Nc∑

j=1

qj cos(λ
1
mXcj) sin(

1
2
λ1maj) cos(δ

1
nY cj) sin(

1
2
δ1nb̄j)

cdk1β1
mnλ

1
mδ

1
nφ1(β1

mn)
. (6.55)

Moreover, the zeroth-order Fourier coefficients of the first-layer solution (A∗1
00 and B

∗1
00)

are obtained as:

A∗1
00 =

Nc∑

j=1

Qj

cd

[
N∑

l=1

(
t̄l
kl

)

+
1

hs

]

,

B∗1
00 = −

Nc∑

j=1

Qj

cdk1
. (6.56)

Furthermore, the same functions that represent the inverse Kirchhoff transform can be

used to find the source-plane solution for the actual temperature T ∗
1 (x, y, 0). Finally,

the total thermal resistance for the multiple-heat-source problem can be defined as [2]:

R∗
t =

T
∗

c − T∞
Nc∑

j=1

Qj

, (6.57)

where T
∗

c is the mean temperature of all the heat sources, defined by:
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T
∗

c =
1

Nc∑

j=1

Acj

Nc∑

j=1

¨

Acj

T ∗
1 (x, y, 0) dAcj . (6.58)

6.3 Results and discussion

In this section, different parametric studies are considered to validate the developed

analytical solutions and to demonstrate their computational efficiency. Further, the

influence of the different temperature-dependent thermal conductivity functions on

the temperature rise and the total thermal resistance is also discussed. The ana-

lytical solution results are compared with numerical solution results that have been

conducted by solving the problem numerically based on the finite element method

(FEM). For the analytical results, MATLAB (version 2016b) software is used to carry

out the results [26], while the numerical results are obtained based on the FEM using

the ANSYS commercial software package [27].

6.3.1 Single Heat Source

We start our investigation by considering a multilayered 3D rectangular flux channel

consisting of three layers with orthotropic temperature-dependent thermal conduc-

tivities in which heat enters the system from a rectangular single heat source and

flows by conduction through the channel to reach a convective heat sink. The heat

source is of dimensions a = 1 mm, and b = 2 mm with its center located at the point

(Xc, Yc) = (15 mm, 4 mm), while the side dimensions of the channel are c = 30 mm

and d = 10 mm, as shown in Fig. 6.3. In each layer, the orthotropic thermal conduc-

tivities are presented as a product of different constant thermal conductivities in the

three spatial direction times any of the temperature-dependent conductivity functions

given in Eqs. (6.19)-(6.21). The first layer is considered of thickness t1 = 1 mm and
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along the sink plane, a heat transfer coefficient of hs = 200 W/m2·K exists. The am-

bient temperature is of 300 K. The developed analytical solution is used to compute

the centroidal (T̂ = T (Xc, Yc, 0)) and the average (T) temperatures of the heat source

for the three general forms of the thermal conductivity functions Eqs. (6.19)-(6.21)

with different parameters. The average sink plane reference temperature is obtained

using Eq. (6.17) as T0 = 333.3 K, which has been used as the reference temperature

in the definition of the Kirchhoff transform. The analytical solution is addressed by

obtaining the linear system solution first, and then the inverse Kirchhoff transform is

used to obtain the solution of the actual temperature. The number of terms used to

truncate the infinite Fourier series summations of the linear system solution is 1000

in each of the summations, and the computational time required to find the temper-

ature of any point in the source plane is found of approximately 0.4 s. Moreover, a

convergence study on the number of terms in the series is performed by increasing

the number of terms, and it is found that the change in the results is negligible. The

average source temperature that can be used to find the total thermal resistance of

the channel is computed using the two previously addressed methods, first by per-

forming numerical integration over the source contact area to get Tc, and second by

considering the result in Eq. (6.47) where the average source temperature is approxi-

mated using the first order Taylor approximation to get Tc(approx.). It is found that

the approximate average has good agreement with the numerically integrated average

with shorter computational time compared to using the numerical integration of the

analytical solution. Furthermore, the analytical results were validated by numerical

results obtained by solving the system numerically using the FEM. In the numerical

solution, the results were obtained with a tetrahedral mesh with high element den-

sity around the source region, and the convergence was checked by refining the mesh,

where a mesh consisting of approximately 2.5× 105 elements is found to be sufficient
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Figure 6.4: Temperature profile along x-axis in the source plane (at y = Yc) by
considering the thermal conductivity function k1(T ) for the single-source study.

to simulate the problem. The analytical and the numerical results of the average and

the centroidal temperatures of the heat source for the three general forms of thermal

conductivity functions with different parameters are shown in Table 6.1, where a very

good agreement between the analytical and the numerical results can be observed.

Figures 6.4-6.6 show the temperature profiles along the source plane in the x-

axis direction that passes through the heat-source center, i.e., when y = Yc, for the

three different conductivity functions with different parameters. In these figures,

the effect of changing the temperature-dependent thermal conductivity function on

the temperature rise is clear compared to using constant thermal conductivities, i.e.,

k̂(T ) = 1. Moreover, when considering k1(T ) or k2(T ) as the temperature-dependent

thermal conductivity function, it can be seen from the definition of these functions that

the thermal conductivity is an increasing function with respect to temperature; hence,

the temperature rise along the source region is less in magnitude than the temperature

rise when considering constant thermal conductivities, as shown in Figs. 6.4 and 6.5.
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Figure 6.5: Temperature profile along x-axis in the source plane (at y = Yc) by
considering the thermal conductivity function k2(T ) for the single-source study.
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Figure 6.6: Temperature profile along x-axis in the source plane (at y = Yc) by
considering the thermal conductivity function k3(T ) for the single-source study.

However, for the case of considering k3(T ), the thermal conductivity is a decreasing

function with respect to temperature, and one can see from Fig. 6.6 that the magnitude
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Source j aj (mm) bj (mm) Xcj (mm) Ycj (mm) qj (W/m2)
1 2 1 5 5 9× 105

2 1 1 10 6 8× 105

3 1 2 15 4 1× 106

4 2 2 20 8 2× 102

5 1 3 25 2 7× 105

Table 6.2: Heat-source dimensions and properties of the multiple-heat-source problem.

k̂(T ) T
∗

c (K) (Analytical) T
∗

c (K) (FEM) Relative Error

k̂(T ) = 1 437.900 437.479 0.1%

k̂1(T ), ω1 = 0.05 435.0269 434.895 0.03%

k̂1(T ), ω1 = 0.1 433.674 433.739 0.02%

k̂2(T ), ω2 = 0.05 434.651 434.531 0.03%

k̂2(T ), ω2 = 0.1 432.967 432.976 0.01%

k̂3(T ), s = 1 438.137 437.679 0.1%

k̂3(T ), s = 3 438.6549 438.121 0.1%

Table 6.3: Average temperature of all the heat sources of the multiple-source study
for the different thermal conductivity functions.

Both analytical and numerical solutions of the multiple-source problem have been

conducted, where, in the analytical results, the number of terms in each of the trunca-

tions of the infinite Fourier series summation is taken the same number of terms used

for the single-source problem of 1000 terms, and the computational time required to

find the temperature at any point in the source plane is found of approximately 0.7

s. The number of terms is chosen according to the fact that the multiple-heat-source

solution of the linear system can be considered as a superposition of five single-heat-

source solutions; hence, the number of terms for the multiple heat sources is chosen

as the same number of terms used for the single-source problem and is found to be

sufficient to obtain the results. In the numerical results, a tetrahedral mesh con-

sisting of approximately 4.6 × 105 elements is found to be sufficient to simulate the

problem. According to the new source-plane configuration, the average sink-plane
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reference temperature that has been used as the reference temperature in the Kirch-

hoff transform is found of T0 = 425 K using Eq. (6.50). Table 6.3 show the average

temperature of all the heat sources for the analytical and numerical solution, where

very good agreement can be observed.

Finally, it is worth mentioning that, in all of the previous analyses for the single-

and the multiple-source problems, although the numerical solutions of the problem

are flexible and has good agreement with the analytical solutions, the computational

time required to obtain the numerical results is much larger than the computational

time for the analytical solution. Moreover, simulating the nonlinear problems with

temperature-dependent thermal conductivities numerically requires more time than

simulating the linear problems with constant thermal conductivities.

6.4 Conclusion

In this chapter, general analytical solutions for the temperature distribution and the

total thermal resistance of a 3D multilayered flux channel with orthotropic temperature-

dependent thermal conductivities using the Kirchhoff transform were developed. Dif-

ferent thermal conductivity functions were considered to study the effect of changing

the temperature-dependent conductivity function on the temperature rise and the

total thermal resistance. An extension of the solutions for problems with multiple

heat sources in the source plane was illustrated. All the analytical results have been

validated with numerical results obtained by solving the problem numerically with

the FEM, where very good agreement has been shown. Further, the computational

efficiency of the developed analytical solution is also addressed.
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Chapter 7

Conclusions and Future Work

7.1 Summary and Conclusions

In this thesis, we obtained analytical solutions for the temperature distribution and

thermal resistance of 3D flux channels with nonuniform properties and complex struc-

tures. These solutions can be very useful for thermal engineers in thermal design

analysis and optimization of microelectronics and cooling systems.

In Chapters 2 and 3, we obtained analytical solutions for the temperature field

and total thermal resistance of a single-layer isotropic flux channel with nonuniform

heat transfer coefficients along the sink plane. The solutions in Chapter 2 account for

a concentric heat source, convective cooling along the side edges, and a variable heat

transfer coefficient varying in one direction along the sink region. The solutions were

obtained using the method of separation of variables combined with the least squares

method. In Chapter 3, we generalized the solutions to account for an eccentric heat

source and a 2D variable heat transfer coefficient varying in the two horizontal di-

rections along the sink plane. Furthermore, we used these solutions to conduct some

parametric studies in order to examine the effects of the different variable heat transfer
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coefficient functions with the same average conductance on the temperature distribu-

tion and thermal resistance of the flux channel. The results show that although the

average total conductance for the different variable heat transfer coefficient functions

was fixed at constant value, the temperature distribution and total thermal resistance

are strongly dependent on the distribution of the conductance profile along the sink

plane.

In Chapter 4, we presented the general solutions of a 3D isotropic flux channel

with temperature-dependent thermal conductivity and constant heat transfer coeffi-

cient along the sink plane. The solutions were presented by means of the Kirchhoff

transform and the inverse Kirchhoff transform. The Kirchhoff transform was used to

linearize the nonlinear conduction system, where the solution of the linearized system

is obtained using the method of separation of variables. Then we used the solution

of the linearized system in obtaining the solution of the original nonlinear system

through the inverse Kirchhoff transform. In the general definition of the Kirchhoff

transform, the approximate sink plane temperature was used as a reference temper-

ature in order to consider the convective boundary condition through the Kirchhoff

transform method. We also presented an explicit approximation for the total thermal

resistance based on the solution of the linearized system and the functional relation-

ships between the actual temperature and the apparent temperature. In addition, we

used these analytical solutions to study the effects of temperature-dependent thermal

conductivity functions on the temperature rise and thermal resistance. The results

show noticeable differences in the temperature distribution and thermal resistance for

the different temperature-dependent thermal conductivity functions compared with

using a constant thermal conductivity.

In Chapters 5 and 6, we studied 3D flux channels of multilayered structures consist-

ing of a finite number of orthotropic layers with constant and temperature-dependent
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thermal conductivities, respectively. In Chapter 5 we presented analytical solutions

for the temperature distribution and thermal resistance of the multilayered structure

with interfacial conductance between the adjacent layers and a uniform conductance

along the sink plane. The solutions account for multiple eccentric heat sources in the

source plane. The results show how the analytical solutions offer significant compu-

tational savings over the numerical FEM solutions.

Finally, in Chapter 6 we presented the general solutions of multilayered orthotropic

flux channels with temperature-dependent thermal conductivities by making use of

the solutions presented in Chapters 4 and 5. The Kirchhoff transform method pre-

sented in Chapter 4 was used to transform the nonlinear governing equations of the

multilayered temperature-dependent orthotropic system into a linear system with con-

stant thermal conductivities, representing a special case of the system discussed in

Chapter 5. Although the solutions presented in Chapter 6 are obtained for multilay-

ered orthotropic systems with temperature-dependent thermal conductivities, some

restrictions on the system exist for obtaining the general analytical solutions in this

way. First, all the adjacent layers have to be perfectly attached with no interfacial

conductance between the layers. Second, all the thermal conductivity functions in the

system must depend on temperature in the same manner.

7.2 Suggestions for Future Research

In the present research, analytical solutions for the temperature distribution and

thermal resistance in different types of flux channels have been developed. However,

many aspects of thermal issues and thermal analysis in microelectronic devices need

further investigations, which would benefit the overall field of thermal management

in microelectronics and some other disciplines. Some of these aspects are listed here
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as suggestions for future research:

• Analytical solutions for the temperature distribution and thermal resistance in

a cylindrical shaped flux tube with a circular heat source in the source plane

and a nonuniform heat transfer coefficient along the sink plane.

• Analytical solutions for the temperature distribution and thermal resistance in a

multilayered flux tube consisting of a finite number of layers with temperature-

dependent thermal conductivities.

• Analytical solutions for the temperature distribution and thermal resistance in

multilayered flux tubes of orthotropic materials.

• Analytical solutions for the temperature distribution and thermal resistance

in flux channels and flux tubes chosen in different orientations of orthotropic

materials.

• Analytical optimization studies for the multiple-heat-source distribution along

the source plane.

For cylindrical shaped flux tubes (which represent the other general geometry of

microelectronic devices) with a uniform heat transfer coefficient along the sink plane,

the heat flow mechanism is similar to that for rectangular shaped flux channels. In

addition, the general solutions for the temperature distribution and thermal resistance

in flux tubes can be obtained using the method of separation of variables, where

the solutions are represented in terms of the orthogonal set of Bessel’s functions.

However, when the distribution of the heat transfer coefficient along the sink plane

is nonuniform, the direct application of the method of separation of variables is not

possible. Nevertheless, the analytical solution procedures for rectangular flux channels
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with nonuniform heat transfer coefficients, presented in Chapters 2 and 3, can be

followed to obtain the analytical solutions for cylindrical flux tubes.

Similarly, the developed analytical solutions in Chapters 5 and 6 for the multilay-

ered flux channels with orthotropic and temperature-dependent thermal conductivities

construct mathematical procedures that can be followed to obtain the analytical so-

lutions for similar flux tube models. Moreover, when the flux channel or flux tube is

constructed from orthotropic materials in different orientations, the thermal conduc-

tivity tensor may have nine nonzero components and this requires the use of other

mathematical transformations besides the stretched coordinate transformations in or-

der to obtain the analytical solutions for the temperature distribution and thermal

resistance in the channel.

Finally, the developed analytical solutions can be used to conduct analytical op-

timization studies for the best distribution of the heat sources along the source plane

for which the temperature excess is minimized.
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