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Abstract

In the microelectronics industry, thermal issues due to deheating are major prob-
lems that a ect the performance, e ciency, and reliability of devices. The recent
trend of producing advanced devices with smaller sizes, higpower densities, and
extreme performance makes thermal management an increagynimportant factor in
the development of microelectronic systems. In most appditons, the microelectronic
systems are modeled as rectangular ux channels, where héstgenerated in one or
more small heat-source areas and ows by conduction throughe system to spread
the heat into a larger convective heat-sink area, where thesgerated heat is then
transferred by convection into an ambient uid.

In this work, analytical solutions for the temperature distibution and thermal
resistance in three-dimensional (3D) ux channels with namiform properties and
complex structures are obtained. First, general analyticadolutions in 3D isotropic
ux channels with nonuniform heat transfer coe cients along the sink plane are pre-
sented using the method of separation of variables combinedth the method of least
squares. Di erent parametric studies have been conducted study the e ect of di er-
ent variable heat transfer coe cient functions with the sane average conductance on
the temperature eld. Second, general analytical solutiaof 3D isotropic ux chan-
nels with temperature-dependent thermal conductivitiesrad a uniform heat transfer
coe cient along the sink plane are presented by means of theiki€hho transform
method. The solutions are used to study the e ect of the tempature-dependent
thermal conductivity on the temperature rise and thermal reistance for di erent con-
ductivity functions. Third, general analytical solutionsin 3D ux channels of mul-
tilayered structures consisting of a nite number of orthotopic layers with constant
and temperature-dependent thermal conductivities are obined. All the analytical
solutions have been veri ed by conducting numerical simul@ns based on the nite
element method (FEM) using the Analysis of Systems (ANSYS) sefare package.
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Statement of contribution

This thesis contributes to the area of heat transfer. It intoduces analytical solutions
for the temperature distribution and thermal resistance in3D ux channels with
nonuniform properties and complex structures. This contoution includes developing
analytical solutions for the temperature eld in ux channds with nonuniform heat
transfer coe cients, multilayered structures with orthotropic conductivity tensor and
interfacial conductance, nonlinear conduction in singlenal multilayered structures.
A variety of di erent mathematical models, techniques, andransformations are used
to illustrate the construction of the developed analyticakolutions. Moreover, numer-
ical simulations based on the FEM are conducted in order to iy these analytical
solutions and to demonstrate their robustness.

This work is considered of signi cant importance for thermbanalysts and engineers
in the microelectronics industry as it provides computatioal algorithms and tools for
obtaining the precise thermal behavior and the optimal corguration of the micro-
electronic devices rather than conducting the challengingxperimental work. In fact,
the developed analytical solutions can be used in other traport phenomena, such as
mass transfer according to some analogies that can be madéewsen the transport
phenomena laws.

The ndings presented in Chapters 2-6 are considered origihscholarship and distinct
contributions to knowledge.
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Chapter 1

Introduction and Overview

1.1 Motivation

In the electronics industry, the development of electroniequipment has come a long
way from large and low power performing devices to advance@wces with smaller
sizes and high power densities. In the past few decades, tlevelopment of electronic
devices has received signi cant attention in producing snilar, more exible, and
higher power density devices. This includes the developmet new materials, tools,
processes, and design methodologies [1, 2].

As electronic devices are rapidly shrinking in size while tivgpower density contin-
ues to increase, thermal management becomes an increasimgiportant factor in the
development of electronic devices to improve their functality, performance, and re-
liability. In most electronic devices, such as transistordight emitting diodes (LEDS),
integrated circuits (ICs), and microprocessors, heat is gerated by the ow of an elec-
trical current in the device, where the amount of the generat heat is proportional
to the power output of the device.

In many electronic devices, the geometry of the device is cidered as a 3D



Heat source

Figure 1.1: (a) Schematic layout of a 3D flux channel. (b) A sample of a microelec-
tronic device [4].

flux channel, where heat is generated in the system in one or more small regions.
The regions are usually referred to as heat sources, and the generated heat flows
by conduction through the system to spread into a convective heat sink, where it is
transferred from the system into an ambient fluid, using any of the cooling techniques,
as shown in Fig. 1.1. As a result of this process, the temperature excess in the
electronic system may rise until it stabilizes at a point where the generated heat in
the system is equal to the removed heat from the system [3].

The importance of thermal management in electronic systems has served to push
engineers, physicists, and mathematicians to obtain precise thermal behaviors of the
developed electronic systems using experimental work, numerical simulations, and by
developing analytical solutions for the temperature field. However, among the three
techniques, analytical solutions are most advantageous since they are obtained and
illustrated in closed forms that can be applied directly to several applications. In

addition, analytical solutions are more flexible and practical for optimization studies.



1.2 Objectives

In the modern microelectronics industry, the developmentfanicroelectronic systems
involves using new anisotropic materials, multilayered sictures, di erent heat-sink
structures, and di erent cooling techniques in manufactung the electronic systems.
In particular, the di erent heat-sink structures and the dierent cooling techniques
might present a nonuniform heat transfer coe cient along tle sink plane. Further,
some anisotropic materials with di erent thermal conductities in the three spatial
directions (orthotropic) have received signi cant attenton in the development of mi-
croelectronic systems of single or multilayered structuse In most of these materials,
the thermal conductivities are temperature dependent. Hee¢the development of an-
alytical solutions for the temperature eld of such complexstructures becomes more
challenging. In most cases, the development of analyticablstions for the temper-
ature distribution in the microelectronic systems require the employment of some
advanced mathematical transformations and techniques. Ehmain objectives of the

present work are as follows:

Develop analytical solutions for the temperature distribtion and total ther-
mal resistance of an isotropic 3D ux channel with a nonunifon heat transfer
coe cient along the sink plane and study the e ect of di erent heat transfer

coe cient distributions on thermal analysis, see Fig. 1.2a.

Present analytical solutions for the temperature distribtion and total thermal
resistance of an isotropic 3D ux channel with a temperaturglependent thermal
conductivity and study the e ect of di erent temperature-dependent thermal

conductivity functions on thermal analysis.

Develop analytical solutions for the temperature distribtion and total thermal

resistance of a multilayered 3D ux channel, consisting & -layers of orthotropic



Heat source Heat source

Orthotropic
materials

/ Heat sink

(a) (b)

Figure 1.2: Schematic layout of different 3D flux channels. (a) Single layer with
nonuniform convection. (b) Multilayered with uniform convection.

/ Heat sink

-

materials with different thermal conductivities in the three spatial directions in
each layer and interfacial thermal resistance between the adjacent layers, see

Fig. 1.2b.

e Obtain analytical solutions for the temperature distribution and total thermal
resistance of a multilayered 3D flux channel consisting of N-layers of temperature-

dependent orthotropic thermal conductivities in each layer.

e Verify all the developed analytical solutions by conducting numerical simulations

based on the FEM using the ANSYS commercial software package.

1.3 Heat Conduction and Spreading Resistance

1.3.1 Governing Equations

The general heat conduction equation for a stationary solid is given by [5, 6]:

oT = .
P gy = V- (kVT)+g, (1.1)



where is the material density, ¢, is the specic heat constant,g_is the internal
heat generation rate per unit volume, andk is the thermal conductivity tensor of
the material. In the steady-state case with no internal gemation, the general heat

conduction equation reduces to:
r (kr T)=0: (1.2)

The thermal conductivity of the medium is presented in tengoform and is kept
included within the divergence operatori( ) to account for anisotropic materials and
temperature-dependent thermal conductivity relationshps. The general form of the
thermal conductivity tensork is considered as a second-order tensor that involves nine
components given by [5, page 615]:
2 3
kll k12 k13
k= §k21 Koo kzé ) (1.3)
k31 k32 k33

wheref k;; gﬁj _, are the conductivity coe cients with i;j corresponding to the three
Cartesian coordinatex;y, andz, i.e.,x 1,y 2;z 3. Moreover, the conductivity
coe cients kj might be constants or presented as temperature-dependeanttional
relationships, i.e.,kj = k; (T), depending on the material's properties. Furthermore,
when the o -diagonal elements of the conductivity tensor maix vanish, i.e., kj =0
fori 6 j, the system is called orthotropic and the conductivity tensr matrix becomes:
2 3 2 3
kn O O ke 0 O
kzgo Koo o§=§o Ky o? (1.4)

0 O ka3 0 0 k



and the steady-state conduction equation becomes:

@ er,e er, @ e

— — — — =0: 15

@x "@x @y '@y @z ‘@z (1.5)
Moreover, in the case of equal diagonal components in the lootropic system, i.e.,
ke = ky = k; = k, the system is called isotropic and the steady-state heatmauction
equation reduces to:

r (kr T)=0; (1.6)

which is reduced in the case of constant thermal conductiyito the Laplace equation
given by:
r 2T =0: (1.7)

1.3.2 Boundary Conditions

The main linear boundary conditions that may appear on the sfem’'s boundaries

can be classi ed into three types:

1. Boundary conditions of the rst type (prescribed temperature or

Dirichlet conditions)

This boundary condition is considered when the temperaturdistribution is

speci ed along the boundary surface as:
ijoundary = TO; or ijoundary = f(f\); (1-8)

where the boundary temperature can be a constant or changingth position

according to the functionf (f), whereris the position vector (*= (X;y; z)).



2. Boundary conditions of the second type (prescribed heat ux or Neu-

mann conditions)

This boundary condition is considered when the heat ux is @i ed along the

boundary surface as:

k@T

n—
@ nboundary

k@T

=q; or kp—
@nboundary

= 9(f); (1.9)
where @=@denotes the derivative along the outward normal at the bouraty
surface andk, is the normal thermal conductivity component. The heat ux
at the boundary surface can be a constant or changing with ptien according
to the function g(f). As a special case, when no heat ow enters or leaves the
system though the boundary surface, the surface is callediallatic or perfectly

insulated, i.e.,
@T

=0: (1.10)
@ r]boundary

3. Boundary conditions of the third type (convection or Robin condi-

tions) .

This boundary condition is considered when the heat is trafesred from a con-

ductive medium into a surrounding ambient uid, de ned by:

— = hy(T] T, ); 1.11
n @nboundary s( Jboundary 1 ), ( )

whereT; is a reference temperature of the surrounding ambient uidrad hg is
the heat transfer coe cient which is usually taken as a consint. However, it
can be a function of positionhg(f*) with nonuniform values along the boundary

surface.



1.3.3 Thermal Spreading Resistance

Thermal resistance is a measurement of a temperature gradliehat represents how
an object resists a heat ow. In modeling microelectronic déces and cooling sys-
tems, the measurement of the thermal resistance plays a sigant role in the thermal
management of the systems as it gives an index of the e ectivess of the cooling sys-
tems, where it is always desirable to minimize the thermal sestance of the system.
Thermal spreading resistance (TSR) occurs as heat ows byrmduction from a small
source to a larger sink with di erent cross-sectional areaas shown in Fig. 1.3. Ther-
mal spreading resistance is an increasingly important topiin thermal management
of microelectronic systems because, in some cases, it haargd contribution of more
than 50% to the total thermal resistance.

For a single heat source spreading heat to a larger extendddksarea, the total
thermal resistance of the system can be de ned as [7, 8]:

T T,

whereT, is the mean temperature over the heat-source area, ais the total heat

input of the system.

1.4 Methodology

Throughout the thesis, the following mathematical methodgechniques, and transfor-
mations are used to obtain the solutions for the temperaturistribution and thermal

resistance of the di erent models under study.



Heat source

il

Flow lines

]
.

hs , Too Heat sink

Figure 1.3: Example of spreading heat flow (channel’s vertical cross section).

1.4.1 Separation of Variables

Separation of variables is a widely used method in solving linear partial differential
equations (PDEs) including the heat equation, the wave equation, and the Helmholtz
equation. The main idea of the method of separation of variables is to seek solutions
to a PDE represented in the form of products of functions, each of which depends on
one variable [9], in which the PDE is separated into ordinary differential equations
(ODEs) that can be solved individually. Thereafter, the solutions of the ODEs are
used to find the solution of the original PDE [10]. However, the direct application of
the method has some requirements on the PDE and the boundary conditions of the

system under study. Such requirements include [5]:
e Linear PDE and linear boundary conditions;
e Homogeneous PDE;

e For steady-state problems, all the boundary conditions are homogeneous with
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the exception of a single nonhomogeneous boundary conditio

For transient problems, all the boundary conditions are hoogeneous and the

initial condition is nonhomogeneous.

If the above requirements are not satis ed, other approackehave to be applied rst
before using separation of variables, such as the principé superposition, shifting,
splitting the problem, using mathematical transformatiors, or other mathematical
techniques.

The application of the separation of variables method to arlear PDE de ned
in an orthogonal coordinate system (like, Cartesian, cyldrical, and spherical co-
ordinate systems) can be applied by expressing the dependeariable of the PDE
in a separable form of the orthogonal coordinates. For exatep when considering
the linear steady-state heat conduction equation in the Casian coordinate system,
represented by the Laplace equation given in Eq. (1.7), theethod of separation of
variables can be employed to obtain a general series solatiof the problem. This
solution can be obtained by assuming that the solution willake the following product
form:

T(Xy;z) = X(x) Y(y) Z(2); (1.13)

and when substituting this form into the Laplace equation, & can obtain a system
of ODEs, each of its equations depends on one variable andagpion constants [11].
Moreover, the use of the method of separation of variablesdieces the PDE into a
system of ODEs that involves the well known Sturm-Liouvillgoroblem. The general
Sturm-Liouville equation for u(x) de ned on the interval [a;[d can be expressed by

the following linear homogeneous ODE [10, 12, 13]:

dix p(x)$ +[v(x)+ w (X)]u(x) =0; (1.14)
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subject to boundary conditions of the following types:

[N

CAu(a)+ Auda)=0; A2+ A2> 0,
2. Byu()+ B,u{h)=0; B2+ B2> 0,
3. u(a) = u(b) and p(a)u%a) = p(b)uyb);
4. u(a) and uYa) are nite with p(a) = 0,
5. u(b) and uYb) are nite with p(b) = O,

wherep(x), v(x), w(x), and pY{x) are real-valued continuous functions overf ij and
p(x) > 0 and w(x) > 0 over @;b. The Sturm-Liouville problem is called regular
when the boundary conditions associated with Eq. (1.14) acé the rst two types and
p(x) > 0 andw(x) > 0 over the bounded interval &; b, which we are mainly concerned
with in this work. The values of for which the regular Sturm-Liouville problem has a
nontrivial solution are called the eigenvalues, and the carsponding solutionsu(x; )
are called the eigenfunctions. A regular Sturm-Liouville noblem has an in nite set
of real eigenvalues that are arranged in ascending ordef < , < 3<:::, le,

i < jx (1 =1;23:::)and !'1 asi !l [12, 14]. Moreover, the set
of corresponding eigenfunctionsl;(x; ;) is an orthogonal set with respect to the
weighting function w(x), i.e.,

8

b 5 o; né m;
Un(X; n)Um(X; m)wW(x)dx = (1.15)

a “N(a);, n=m;

whereN ( ,) is the norm of the eigenfunctionu,(x; »).

When considering the steady-state heat conduction equatiagiven in Eq. (1.7)
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(Laplace equation), de ned on a 3D nite rectangular domainin the Cartesian co-
ordinate system subject to linear boundary conditions of #types presented in Sec-
tion 1.3.2 with all homogeneous boundary conditions excepgine nonhomogeneous
boundary condition, the application of the separation of vaables method will reduce
the PDE into a system of ODEs. This system involves the regul&turm-Liouville
problem in the homogeneous directions of the form:

d?u

W+ u =0; a x b; (1.16)

with respect to the following boundary conditions:

A.u(a) + A,u%a) = 0; AZ+ A2> Q; (1.17)

B.u(b) + BouYb) =0; B2+ BZ> 0 (1.18)

This problem has nontrivial solutions for positive valuesfo (and =0 when A; =

B, = 0) and the general solutions can be expressed as:

_ p
ui(x) = C; (:os{J iX)+ Disin( ix); for positive ; (2.19)

ui(x) = Co+ Dox; for =0 (whenA;=B;=0); (1.20)

where the eigenvalueg igi1=o are obtained based on the speci c boundary conditions
of the problem, which can be obtained explicitly or can be reesented by a transcen-
dental equationF ( ;) =0 [5].

Once the solutions of the ODEs are obtained, the principle stiperposition can be
used to represent the general solution of the original PDE,here the nonhomogeneous
direction boundary conditions are used to nd the unknown ce cients in the gen-

eral solution. It is worth mentioning that the de nition of t he boundary conditions
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Figure 1.4: Configuration of the 2D flux channel problem.

has a significant effect on the general solution representation. Usually, when these
boundary conditions are linear with constant coefficients, the Fourier coefficients in
the general series solution can be obtained explicitly by employing the orthogonal-
ity of the homogeneous direction eigenfunctions. Moreover, the general solution can
be presented as an exact infinite series analytical solution. However, when variable
coefficients are present (as we will see in Chapters 2 and 3) in the definition of the
boundary conditions, the classical Sturm-Liouville theory might not be applied di-
rectly, where approximate analytical solutions, that represent a good approximation
to the true solution, are needed in some cases. In order to illustrate this clearly and
to distinguish between the exact and approximate solutions that have been adopted
in this thesis, we will present the solution procedure for a two-dimensional (2D) flux
channel with different boundary conditions.

Consider a 2D rectangular flux channel with a constant heat flux over a part of
one end and a convective cooling along the opposite end, as shown in Fig. 1.4. The

heat conduction for the temperature excess § = T'— T, in the flux channel is governed
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by Laplace's equation:

@ L @
2 & ¥ _4.
=52t @F 0; (1.21)
with respect to the following boundary conditions. Along théine z = 0, the boundary
condition is given by: 8
q; O<x<a
Kk %z = 5 (1.22)
=0 70 a<x<c
Along the two side edges, the boundary conditions are given:by
@
— =0; 1.23
@ _, (1.23)
@ _ A
k@XX:C = he (c;2); (1.24)

where he is the lateral heat transfer coe cient, which is considerecconstant. More-
over, the convective-cooling boundary condition along thine x = ¢ can be turned
to an adiabatic condition whenh, ! 0. Along the linez = t, a convective-cooling

boundary condition is considered, given by:

@ _ .
k@ZZ:t = hs (X;1): (1.25)

The sink heat transfer coe cient hg is of most importance as it plays the major role in
removing the heat out of the system. This coe cient might be @& ned as a constant
or as a function of position fis  hg(x)), where the two di erent de nitions have
signi cant e ects on the representation of the general sotion. For the time being,
we will consider a constant value of the sink heat transfer eacient and proceed to the
general solution of the problem. The method of separation @ériables can be used to

obtain the general solution of the problem, where we attempb determine solutions
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in the product form (x;z) = X (x) Z(2) [6, 11, 15, 16]. Applying the method of
separation of variables and using the side boundary conditis (homogenous-direction

boundary conditions) yield the following general solution

X
(x;2) = cos( mx)[Cy, cosh( mz) + Dy, sinh( ,2)]; (1.26)

m=1

where |, are the eigenvalues in the&-direction, which can be obtained by solving the

following transcendental equations:

Ecos(mc); m=1;2:::; (1.27)

m Sin( nC) = ”

Cn and D, are the Fourier coe cients. The following result is obtainel for the

Fourier coe cients when the sink boundary condition is appkd (Eg. (1.25)):
Dn= mCm; (1.28)

where |, is the spreading function de ned by:

mtanh( mt) +[hs=k]

m T+ [he=Ktanh( mt)’ (1.29)
Thus, the general solution can be rewritten as:
b3
(x;2) = Cm cos( mX) [cosh( m2) m Sinh( 12)]: (1.30)
m=1

Finally, the nonhomogenous boundary condition, given in Eq1.22), is used to nd
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the Fourier coe cients C,, by taking Fourier series expansions of the boundary con-

dition and using the orthogonality of the eigenfunctions taet:

q s cos( mx) dx _ 2gsin( ma).
C
m 0

k cof( mx)dx  ck 2 o, ' (1.31)

m

which completes the representation of the general soluti@s an exact in nite series
analytical solution. On the other hand, when the sink heat tnsfer coe cient is
de ned as a function of position fis(x)), the general solution of problem can not be
represented as an exact in nite series analytical solutioanymore since the classical
representation of the in nite Fourier series solution is wlated. This can be seen
clearly when we employ the sink boundary condition to nd a rationship between the
Fourier coe cients C,, and D,, where the relationship represented by the spreading

function becomes a function ok as:

m tanh(_ mt) + [hs(x)=K],
m + [hs(x)=K]tanh( mt)’

m= m(X)= (1.32)

and this violates the assumptions of the separation of vabées methodology as the
Fourier coe cients are no longer constants. However, an apprimate solution of the
problem can be constructed based on the separation of varieb methodology. This

approximate solution might be constructed as:

X
(x;2) = Cm cos( mx) [cosh( n2) m(X)sinh( 2)]; (1.33)

m=1

This solution is constructed by following a similar technige to some variational cal-
culus methods that usually used for obtaining approximateagutions, like the Ritz
method and the Kantorovich method [15, 17], in which a gendréorm of an approxi-

mate solution is constructed with unknown coe cients or furctions that are usually
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determined using variational calculus. However, in our sdion, we apply the method
of least squares to nd the unknown Fourier coe cientsC,, with an extension to 3D

problems, as we will see in Chapters 2 and 3.

1.4.2 Least Squares Method

The method of least squares is a widely used method in appnmdting functions,
and it is considered a standard technique in regression aysis, data tting, and
approximating a function by a combination of other functiors. Least squares problems
can be classi ed into linear least squares and nonlinear Easquares, depending on
the general form of the modeling (approximating) function.We will focus on linear
least squares, where the modeling function can be expresssda linear combination
of some linearly independent set of functions. For exampla,one-dimensional (1D)

modeling function can be expressed in the form:

X
(X, CCriiiiam) = G j(X); (1.34)
j=1
wherefc,-gj!\":1 are the modeling-function parameters to be determined. Fadis-
crete data represented by a set of pointsx(;y;), i = 1;2;:::;N, the least squares
method can be applied to nd the best approximate continuousnodeling function
t(X; C1;Co; i1 ;aw). The idea behind the method of least squares is to determitiee

values of the parameterd ¢; ng=1 such that the modeling function minimizes the sum

of the squares of the residuals represented by [18]:

& (1.35)



18

wherer; is the residual de ned by the di erence between théth discrete valuey; and

the corresponding value predicted by the modeling function.e.,

=y G'j(x): (1.36)

The modeling-function parameterd ¢; ng=1 are obtained to minimize the sum of the
squared residuals represented in Eq. (1.35) by setting the gradient df with respect

to the parameters to zero:

X .
a_,X e

@c @ =% m=ELiznnm (1.37)

i=1

which leads to the following system:

G LX) m(xi) = X Yi' m(Xi); m=1;2;:::;M: (1.38)
j=1 i=1 i=1
Equation (1.38) represents a system @h-equations andm-unknown parameters that
has to be solved for the parameterfc; gj“":l. These equations are called the normal
equations for the least squares problem [18, 19].

The same procedure can be used for approximating a continotunction u(x)
de ned on a bounded interval §;H by a linear combination of other functions as
de ned in (1.34). This can be done by viewing the functioru(x) as a vector of
in nitely many points. Hence, the sum of the squared residualcan be de ned in an

integral form as [19]: " #
b W 2
| = u(x) G'j(x) dx; (1.39)

a j:].
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and the parameters of the modeling func:tiorfqgj'\":1 are found to minimizel us-

ing [20]:
@ _ .
@

which leads to the following linear system of normal equatis, represented by:

m=1;2:::;M; (1.40)

X b b
G i) m()dx= u(X)' m(x)dx;  m=1;2::00M: (1.41)
j=1 a a

Furthermore, the least squares method can be used, in gerlefar a multidimensional

function u(x) de ned on a bounded domain by considering:
| = [u(®) w(xc;c;iiiam)’d ; (1.42)
and following the same procedure for the 1D least squares medl.

1.4.3 Stretched Coordinate Transformations

Stretched coordinate transformations are mathematical &ansformations that can be
used to transform a system of governing equations de ned on @hysical domain
into an equivalently convenient system de ned on a new logat domain. Under this
kind of transformation, the physical domain can be extendedr squeezed in one or
more directions to obtain the new logical domain, in which ta transformed governing
equations are presented in a simpler form [21]. We will conenour attention to the
use of stretched coordinate transformations for the heat wduction equation of an
orthotropic medium. Consider the 3D steady-state heat comtion equation for an

orthotropic medium with constant thermal conductivities gven by:

a@T

x@)l,("' @T

Y@y " at°

k k ‘@7

K 0; (1.43)
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de ned on the following rectangular domain:

O<x<g; O<y<d; O<z<t: (1.44)

The stretched coordinate transformations can be applied this system by considering

the following new independent variables;, ., and 3 de ned by [5]:

p q p__
1= X kozkx; 2=Y k():ky; 3=2 kozkz; (145)
wherek, is a reference conductivity. Under these transformationshé heat conduction
equation for the orthotropic medium given in Eq. (1.43) is @nsformed to the following

heat conduction equation with isotropic properties:

Ko @12- + @-2 + @12- =0; (1.46)
@ @5 @;
de ned on the following transformed logical domain:
p q p___
0< 1<c kozkx; 0< ,<d kozky; 0< 3<t kozkz: (147)

1.4.4 Kirchho Transform

When thermal properties of a material vary with temperaturethe general heat con-
duction equation becomes nonlinear, and the general heanduction equation for an

isotropic medium becomes of the form [16]:

(T)co(T)

%I: r (k(T)yrT)+ g; (1.48)
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where (T), ¢,(T), and k(T) are temperature dependent. In particular, the thermal
conductivity of any material depends on the chemical compitisn, physical structure,
and state of the material. Moreover, it also depends on the rtgerature variation
interval under consideration [6]. In most cases, the therrhaonductivity varies with

temperature according to some functional relationship, @.,

K(T) = ko[l +IT ]; (1.49)

wherekgy is a reference conductivity, and is the temperature coe cient of thermal

conductivity. When the temperature variation interval unde consideration is not
too wide or the functional dependency of the thermal condueity on temperature

is not too strong, the variation of thermal conductivity with temperature may be
neglected and it can be approximated by a constant [6, 16]. Hewer, when the tem-
perature variation interval is wide or the functional depedency between the thermal
conductivity and temperature is quite strong, the assumptin of a constant thermal
conductivity becomes unacceptable.

The Kirchho transform is considered a convenient method fosolving nonlin-
ear transient and steady-state heat conduction problems thitemperature-dependent
properties. However, the method is more attractive for solng steady-state problems,
as the method can be used to obtain exact solutions without isidering any assump-
tions or approximations [16]. The idea behind the Kirchho tansform is to present a
new variable as an integral function of the temperature-demdent thermal conductiv-
ity, where the nonlinear system can be transformed under th&@rchho transform into
a linear system in terms of the new variable. Moreover, thenkarized system can be
solved using existing analytical methods for solving linegproblems, after which the

solution of the linear system can be transformed back to th@lsition of the nonlinear
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system through the inverse Kirchho transform. The origind Kirchho transform is

presented by de ning a new dependent variable in the form [186, 22, 23]:

.
U= KfTg= ki k( )d; (1.50)
0
0

whereU  U(T), and kg is a constant reference conductivity. We will only presentie
application of the Kirchho transform to the nonlinear steady-state problems with no

heat generation term, de ned by:
r (k(T)r T)=0: (1.51)

From Eq. (1.50), we have the following relation [24, 25]:

du  k(T).
FT (1.52)
Hence, using the result in Eq. (1.52), we get the following edlons:
_du k(™)
rU—d—TrT— Ko rT; (1.53)
r2u= ki[r (k(T)r T)]: (1.54)
0

In other words, the nonlinear heat equation given in Eq. (15 can be transformed
under the Kirchho transform de ned in Eq. (1.50) to the Laplace linear equation in
terms of the new variableU:

r 20 =0; (1.55)

which can be solved using the existing analytical methodsrfsolving linear problems,
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provided that the boundary conditions can be transformed io linear boundary con-

ditions. The boundary conditions associated with the prokeim can be transformed

under the Kirchho transform according to their types. Now, we will examine the

transformation for the di erent linear types of boundary coritions presented in Sec-

tion 1.3.2. To illustrate the application of the transformdion to the boundary condi-

tions with a practical example, we will assume that the thermal conductivity depends

on temperature in the form presented in Eq. (1.49). The bourady conditions can be

transformed under the Kirchho transform as follows [16]:

1. Prescribed temperature

For a prescribed temperature boundary condition addresséyy:
ijoundary = f(1); (1.56)

the boundary condition can be transformed directly under té Kirchho trans-
form by substituting the function f () into the Kirchho integral given in
Eqg. (1.50), i.e.,
f(f) f (£)
. 1 I
UJboundary = k_ k( )d = (1+ ! )d = f(f\) + Ef z(f\); (1-57)
0 0 0

which is again a prescribed temperature boundary conditidor the new variable
U. Moreover, when the temperature along the boundary is codgred to be
constant, i.e.,f (ff) = Ty, the transformed boundary condition is also a constant

temperature along the boundary given by:

!
Ujboundary = To+ ETOZ: (1.58)
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2. Prescribed heat ux

For a prescribed heat ux boundary condition addressed by:

QT _ ).
k(T)@“boundary = o(f); (1.59)

which is a nonlinear boundary condition, the transformatin of this kind of

boundary conditions is straightforward, by using the follaing result:

@T @U_ @U
k(T)— = k(T)@U @n @n (1.60)
Thus, the transformed boundary condition is addressed by:
o= g (1.61)

0 =
@nboundary
which is a linear boundary condition forU.

3. Convection boundary conditions

Although the prescribed temperature and prescribed heat wboundary con-
ditions can be transformed easily into linear boundary cotiibns through the
Kirchho transform for the new variable U, this is not the case, in general, when

considering a convection boundary condition of the form:

@T .
k(T)@ = hs(Tjboundary ~ T1); (1.62)
boundary

and when the Kirchho transform is considered, the boundargondition can be

transformed to:

Ko—- = hs(K 'f Ujboundaryd  T1 ); (1.63)
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which is a nonlinear boundary condition, sinc& 1f Ugis, in general, a nonlinear
function of U. In fact, when convection boundary conditions are presenti
the problem, the transformed boundary conditions are, in geral, nonlinear

boundary conditions [16, 22].

1.4.5 Finite Element Method and ANSYS Software

Although the scope of this work is to obtain analytical solutins for the temperature
distribution and thermal resistance in various ux channelproblems, veri cations of
the developed analytical solutions have been conducted iomparison with solving
the problems numerically based on the FEM using the ANSYS commatsoftware
package. The FEM is a powerful and widely used numerical mettidor solving initial-
and boundary-value problems arising in di erent real-lifeproblems. The main idea
of the FEM is to divide the physical domain of the problem into anite number of
subdomains (elements) for which the solution is approximatl over these subdomains
based on some basis functions using the variational or weigth residual methods [26{
28]. The ability to discretize complex and irregular domai and the exibility of
re ning the grid in regions of interest with the FEM make the me¢hod an attractive
analysis tool for many problems.

Solving practical problems using the FEM requires either thdevelopment of an
FEM computer program or the use of available FEM software prodis, packages, and
libraries. ANSYS is a nite element analysis software used toraulate a wide variety
of engineering disciplines including uid dynamics and thenal analysis. The software
has been developed extensively over the past few decadeshtude several physical
phenomena and to improve the power of solving complex systenNowadays, ANSYS
with its user friendly interface (Workbench) is consideredne of the most trusted and

widely used numerical simulation software packages [28,]29



26

In thermal analysis simulations, the construction of the dation using the ANSYS

software can be summarized by the following three steps [28]

1. Preprocessing .

The rst step corresponds to the model generation process) which the ge-
ometry of the problem is determined and the material propeigs are de ned.
Moreover, the nite element mesh is generated in this step,ivere many options
can be speci ed within the meshing generation process suck element type,

mesh re nement regions, real constants required by the elemt type, etc.

2. Solution Processing .

In this step, the boundary conditions of the problem are speed along the

geometry boundaries and the solution can be obtained.

3. Postprocessing .

In this step, the results are reviewed and can be exported mtresult les in

tabular format which can be used for data analysis purposes.

1.5 Thesis Organization

This thesis is presented in a manuscript (research paper)rfioat. It contains seven
chapters including ve chapters that are published (3), aapted (1), and submitted (1)
to international peer-reviewed journals. In Chapter 1, anntroduction and overview
is presented. This chapter summarizes the motivations, daajtives, and literature
review of the problems addressed in this thesis. It also pesgs the mathematical

methods, techniques, and transformations used throughothe thesis to address the
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problems under study. Chapter 2 is published in the IEEE Trasactions on Com-
ponents, Packaging and Manufacturing Technology [30]. Irhis chapter, the tem-
perature distribution and thermal resistance of a 3D ux chanel with a nonuniform
heat transfer coe cient along the sink plane are modeled andnalyzed analytically.
The solutions are obtained by using the method of separatiasf variables combined
with the method of least squares. A single concentric heatwwae is considered in the
source plane, while the conductance along the sink plane ideled by a symmet-
ric 1D conductance function. Chapter 3 is submitted to the ASM-Journal of Heat
Transfer. In this chapter, analytical solutions for the tenperature distribution and
thermal resistance of a 3D ux channel with eccentric heat swce and a variable heat
transfer coe cient that varies in the two horizontal dimensons are developed by us-
ing the method of separation of variables combined with the ethod of least squares.
Chapter 4 is accepted for publication in the AlAA-Journal of Themophysics and
Heat Transfer. In this chapter, analytical solutions for thetemperature distribution
and thermal resistance of a 3D ux channel with temperaturglependent thermal
conductivity are discussed and used to study the e ect of theemperature-dependent
thermal conductivity on the temperature rise and spreadingesistance for di erent
conductivity functions. Chapter 5 is published in the ASME-Jarnal of Heat Trans-
fer [31]. In this chapter, general analytical solutions fothe temperature distribution
and thermal resistance of a multilayered orthotropic syste are obtained. The sys-
tem is considered as a compound 3D ux channel consistingdflayers with di erent
thermal conductivities in the three spatial directions of ach layer. A single eccentric
heat source is considered in the source plane, while a unifoheat transfer coe cient
is considered along the sink plane. The solutions account fihe e ect of interfacial
conductance between the layers and for considering multgpéccentric heat sources in

the source plane. Chapter 6 is published in the AIAA-Journal of Térmophysics and
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Heat Transfer [32]. In this chapter, analytical solutions fothe temperature rise and
thermal resistance of a multilayered 3D ux channel with orhotropic temperature-
dependent thermal conductivities are addressed by meanstioé Kirchho transform.
Chapter 7 summarizes the problems considered in this thesisd presents suggestions

for further investigation.

1.6 Literature Review

Thermal analysis and thermal resistance in microelectrandevices have been studied
extensively in the past few decades. The signi cant importece of thermal man-
agement in microelectronics has served to put consideraldemands on researchers
to conduct di erent analytical, numerical, and experimenal studies in the eld of
thermal analysis. For the analytical studies, which are thacope of this thesis, the
geometry of the microelectronic devices is usually considd as a rectangular ux
channel or a cylindrical ux tube. A general review of the lierature on thermal
analysis and thermal spreading resistance shows that sealesnalytical solutions have
been developed for obtaining the precise thermal behaviondthermal resistance of
di erent ux channels and ux tubes with di erent structure s.

Kennedy started the research on thermal spreading resist@of cylindrical shaped
semiconductor devices [33]. He obtained analytical soluti® for the temperature
distribution and thermal resistance in a nite ux tube with a constant heat ux over
a part of one end and an isothermal-sink boundary conditionl@ang the other end.
Thereafter, a number of relevant analytical studies have lea presented on thermal
analysis and thermal spreading/constriction resistanceidi erent systems with nite
and semi-in nite domains [7, 8, 34{59].

A general literature review on thermal analysis and thermadpreading resistance



29

of microelectronics in the past fty years is discussed in d¢&l in a recent review
paper [60]. The authors presented a review of the most imparit research studies on
thermal spreading/constriction resistance in the past vedecades starting from the
work of Kennedy in 1960 up to the most recent studies. Howevdn the following
subsections, we will describe and focus on some studies tha¢ related directly to

the scope of this thesis.

1.6.1 Single-Layer Flux Channels

Di erent analytical solutions for the temperature eld and thermal resistance have
been investigated for single-layer ux channels with di eent aspects. Such aspects
include: considering isotropic materials [7, 36{38, 51, h&nisotropic materials [49,
51, 54, 57], materials with temperature-dependent thermabnductivity [57, 58], con-
centric heat source [36{38, 49], eccentric heat source [2, B4, 57, 58], single heat
source [36{38, 57], multiple heat sources [7, 49, 51, 54, 58], isothermal-sink bound-
ary conditions [37, 57], convective-sink boundary condms [7, 36, 38, 49{51, 58], and
others.

Kadambi and Abuaf started the research on obtaining analytal solutions for the
temperature eld in 3D nite rectangular ux channels with convective sink for the
rst time [36]. They obtained analytical solutions for the fransient and steady-state
temperature eld in 2D and 3D rectangular isotropic ux chamels with a concentric
iso ux heat source, convective sink, and insulated sides. #imilar model has been
analytically studied by Krane [37], but changes the heatisk boundary condition to
an isothermal boundary condition.

Muzychka et al. [7, 8, 49{53] have done extensive research direrent thermal
spreading resistance problems, including di erent geome&ts, boundaries, and prop-

erties. Muzychka et al. [7] developed a general solution fitre spreading resistance of
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a rectangular eccentric heat source with convective-sinkobndary conditions. Their
solution accounts for multiple discrete heat sources didbuted over the source plane
and for compound ux channel structures consisting of two igoopic layers in per-
fect contact. They extended their solution to account for @mnsversely isotropic and
compound systems in [49]. Moreover, Muzychka et al. [51] pented the in uence
coe cient method as an e cient and convenient method for catulating the tempera-
ture eld in the source plane for multiple iso ux heat sourcs in isotropic, transversely
isotropic, and compound ux channels.

Ditri [57] studied a single-layer ux channel with orthotropic temperature-dependent
thermal conductivities and a xed-temperature boundary caodition along the sink
plane. Bagnall et al. [58] studied the temperature rise in pblems with temperature-
dependent thermal conductivities and convection boundargonditions along the sink
plane using the Kirchho transform. Gholami and Bahrami [54 obtained analytical
solutions for the spreading resistance of a single orthofri@ ux channel with di erent
constant thermal conductivities in the three spatial diretions (i.e., ky & ky 6 k),
and discrete inward and outward heat uxes along both sides ¢the channel.

Although many analytical studies have been done on di erentspects of thermal
spreading resistance and thermal management, attention hagen focused on prob-
lems with a uniform heat transfer coe cient, uniform tempeiature, and uniform heat
ux boundary conditions along the sink plane. Recently, Raavi et al. [61] studied
the thermal resistance of a 2D ux channel with nonuniform hearansfer coe cients
along the sink plane. However, usually the heat sources aredberent dimensions in
both horizontal directions compared to the dimensions of thhorizontal cross section
of the ux channel. Hence, the nature of heat ow is 3D through he ux chan-
nel. Moreover, analytical solutions for the temperature & and thermal spreading

resistance in ux channels with temperature-dependent thienal conductivities and
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convective boundary conditions are limited [58] because thie restricted applicability

of the Kirchho transform to boundary conditions of the rst and second kinds.

1.6.2 Multilayered Flux Channels

In the microelectronics industry, multilayered structures are found extensively, where
the microelectronic device/system is manufactured as a cgmund system of di erent
materials. A variety of analytical studies have been condted for the temperature
eld and thermal resistance in multilayered ux channels.

Kokkas [35] studied thermal analysis in multilayered rectegular structures with
isotropic materials and isothermal-sink boundary conditins. Bonani and Ghione [56]
used the Kirchho transform to study a composite medium coristing of two perfectly
attached layers with temperature-dependent and piecewisehomogeneous thermal
conductivity. Yovanovich et al. [38] obtained a general amgical solution for the
spreading resistance of an iso ux rectangular concentriceht source on a two-layer
ux channel with isotropic properties and a convective-sik boundary condition. In
Muzychka et al. [7, 49], the authors extended their solutioto account for eccentric
heat sources and transversely isotropic compound systems.

Recently, Muzychka et al. [8] analytically modeled the thenal spreading resis-
tance of compound transversely isotropic two-layer systenwith equal thermal con-
ductivities in the in-plane directions that are di erent than the through-plane thermal
conductivity (i.e., ky = ky 6 k;). Bagnall et al. [59] developed an analytical solution
for the thermal spreading resistance in multilayered ux chnnels with isotropic and
transversely isotropic properties. Their solution accous for the e ect of the interfa-

cial conductance between the adjacent layers.
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Recently, a variety of new materials have emerged in the malectronics indus-
try with properties superior to Silicon, enabling new devies with extreme perfor-
mance. Such materials include-Gallium-oxide ( -Ga,O3) [62] and Black Phosphorus
(BP) [63], which are acknowledged to have orthotropic therad conductivity tensors
with di erent thermal conductivities in the three spatial directions. A review of the
literature reveals that analytical solutions for the tempeature eld and thermal resis-
tance of multilayered othrotropic systems with di erent thermal conductivities in the

three spatial directions, i.e.ky 6 ky 6 k; in each layer, have not yet been analyzed.
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Chapter 2

Thermal Resistance of a 3D Flux
Channel with Nonuniform Heat

Convection In the Sink Plane

2.1 Introduction

Thermal spreading resistance is an increasingly importambpic in thermal manage-
ment and thermal analysis of mechanical and electronic dees because, in some
devices, more than 50% of the total thermal resistance is caed in spreading re-
sistance. Thermal spreading resistance occurs when heatees the system through
a small region and ows by conduction. A proper analysis of #temperature rise
and thermal resistance is essential for designing a duratdevice. For this purpose,

di erent analytical, experimental and numerical methods e used to determine the

Published in the IEEE Transactions on Components, Packaging and Manufaatring Technol-
ogy [1].
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precise thermal behavior of the device. For the analytical ethods, the geometry of
the device is usually simpli ed to a rectangular ux channel oa cylindrical ux tube
in order to accommodate the Cartesian or cylindrical coordate systems.

Kennedy [2] began the research on the thermal spreading stance of cylindrical
shaped semiconductor devices. Ellison [3{5] analyticalstudied the thermal spread-
ing resistance in electronic devices. Yovanovich [6{9] stied di erent spreading resis-
tance problems for more than forty years. Lemczyk and Yovawieh [10, 11] studied
the thermal spreading/constriction resistance in systemwith convective boundary
conditions. Muzychka et al. [12{14] and Muzychka [15] haveode comprehensive re-
search on di erent aspects of thermal spreading resistanpeoblems including di erent
geometries, boundaries, and properties. Muzychka et al.2[ilmodeled and obtained
a solution for the spreading resistance of rectangular uxhannels with eccentric
heat sources, adiabatic edges and a uniform heat transfereaent along the sink
plane. Furthermore, they studied the e ects of geometry an@dge cooling on ther-
mal spreading resistance [13]. Muzychka [16] developed anpaitationally e cient
method for calculating the temperature of ux channels withdiscrete heat sources
and uniform conductance along the sink plane. Recently, Myehka et al. [14] analyt-
ically modeled the thermal spreading resistance for a twayler transversely isotropic
system with interfacial resistance between the layers. Myehka [15] also developed
a similar model for cylindrical ux tubes. Bagnall et al. [17 studied the e ect of
temperature-dependent thermal conductivity on the tempeature rise in systems with
a uniform heat transfer coe cient along the sink plane wherehe Kirchho transform
has been used to linearize the heat conduction equation. Mawer, they developed
an analytical solution for spreading resistance in multigered ux channels by nding

a recursive formula for solving problems with an arbitrary amber of layers [18].
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Although many comprehensive studies have been done on di eteaspects of ther-
mal spreading resistance and thermal management, attentichas been focused on
problems with a uniform heat transfer coe cient along the snk plane. However, in
most devices, the sink con guration is not uniform, which ca help in reducing the
material and distributing convection cooling based on theemperature distribution
along the sink plane where intense cooling is more necessarjigh-temperature re-
gions than low-temperature regions, as shown in Fig. 2.1. Retly, Razavi et al. [19]
studied the thermal resistance of a two-dimensional (2D) x channel with nonuni-
form heat transfer coe cient along the sink plane. However,n most devices, the
heat sources are of di erent dimensions in both the horizoat directions compared
to the dimensions of the horizontal cross-sectional of theedice, and the heat-source
area is much smaller than the cross-sectional area. Hencee thature of heat ow
is three-dimensional (3D) through the ux channel. The aim bthis study is to an-
alytically investigate the e ect of a nonuniform heat trander coe cient along the
sink plane of a 3D ux channel on thermal resistance. In ordeo develop analytical
solutions for such problems, the method of separation of vables, along with the
method of least squares, is used. Then the analytical solomi is used to evaluate
and study the dimensionless total thermal resistance of d@rent heat-source-size and
channel-thickness aspect ratios for di erent Biot numberand di erent conductance

distribution pro les along the sink plane.

Figure 2.1: Flux channels with a nonuniform heat transfer coecient.



45

2.2 Mathematical Theory

In this section, the problem under consideration is modeleand illustrated mathe-
matically where the governing equation of the temperatureistribution as well as the
boundary conditions are stated, after which the analyticakolution of the problem
is presented. The total thermal resistance is then preseutdased on the analytical
solution, and the nondimensional total thermal resistancas a function of some aspect

ratio factors is then introduced.

2.2.1 Problem Statement

The system under consideration is a 3D rectangular ux chamh with a concentric
heat source, convective cooling along the lateral edges aad/ariable heat transfer
coe cient along the sink plane, as shown in Fig. 2.2. The syste is modeled in
Cartesian coordinates such that the origin is at the centerfahe heat source.

The heat conduction in the ux channel is governed by Laplacg equation:

@r, @t ar _ .

@)7(+ @9+ @%—O, (2.1)
or, by de ning the temperature excess = T T :

@ @ @ __.

@+@+@—O, (2.2)

with respect to the following boundary conditions based orhe con guration shown in
Fig. 2.2 and by using the symmetry of the system in the- and y-directions. Along the
source plane, a discrete heat ux is speci ed over the heabtsrce region, whereas the

area outside the heat-source region is considered as adiabaHence, the source-plane
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Figure 2.2: Schematic view of a 3D flux channel layout. (a) Top view. (b) Cross-
sectional view in the xz-plane. (c¢) Cross-sectional view in the yz-plane.
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boundary condition is given by:

8
2 g; inside source region,
= (2.3)

2 0; outside source region.

@
k =
@ Zz=0

Convective cooling boundary conditions are taken along tHateral edges of the sys-
tem. However, since the symmetry of the system is considerashly a quarter model
is required to be solved; therefore, the boundary conditisnalong the planex = ¢

andy = d are given by:

@ _ he .
_@Xx—c_ n (c;y:2); (2.4)
@ _ he .. .
@yy_d— n (x;d; 2): (2.5)

These convective cooling boundary conditions can be turnéd adiabatic conditions
whenhe! 0. The boundary conditions along the center planes of the sgm (x =0

andy = 0) are as follows:

@ @
— =0; — =0: (2.6)
@ x=0 @yyzo
Along the sink plane, a variable heat transfer coe cient varyng in the x-direction
exists, and the boundary condition is given by:
@ h(x)

= —= (xy;t): 2.7
02, " K 0D (27)
To de ne the variable heat transfer coe cient h(x), a modeling function changing in

the x-direction is used to de ne a wide variety of di erent condutance distributions
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along the sink plane: H

h(x) = ho 1

o X

; (2.8)

wherehg is a reference conductance representing the maximum heanisfer coe cient
in the central region of the sink plane (wherx = 0). To change the con guration of
the conductance along the sink plane, the power in the sinkieductance functionp
has to be changed. Dierent conductance pro les can be obtad by changing the
value of the powerp, which would vary the conductance pro le from intense coalg
in the central region forp < 1, a linear prole whenp = 1 or a parabolic prole
for p = 2 up to uniform conductance whenp! 1 . Itis clear from Eqg. (2.8) that
the total conductance (averaged along the sink plane) depdsh on the value ofp,
while the maximum conductance in the central regioing is the same for all values
of p. However, it is more appropriate and meaningful to presenthe system with
a constant total conductance for all values op in order to study the e ect of the
di erent conductance distributions with the same total comluctance. This can be
done by integrating and averaging the conductance in Eq. @. over half of the ux

channel and then presentindng in terms of the total averaged conductancés:

Ol

C
_ pho.
h(gdx= D75 2.9)

Hence, the conductance function in Eq. (2.8) can be rewritteais:

(p+1) hs"

h(x) = 1

ol Xx

(2.10)

Figure 2.3 shows di erent nonuniform heat transfer coe ciem distributions along the
sink plane for di erent values of the parametep with same total averaged conductance

as de ned in Eqg. (2.10).
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Figure 2.3: Variable heat transfer coe cient function alonghalf of the sink plane for
di erent values of p.

2.2.2 General Solution

The general solution of Laplace's equation given in Eq. (3.2hay be found by using

the method of separation of variables, where the solution &ssumed to have the form
(x;y;2) = X(X) Y(y) Z(z)[20{22]. Applying the method of separation of variables

and using the boundary conditions along the planex(=0; x = cjand (y=0; y = d)

yield the following general solution:

X X
(Xy:2) = cos( mX) cos( nY) [Crn €OSh( mn2) + Dmn sinh( mn2)];  (2.11)

m=1 n=1

where ., and , are the eigenvalues in thex- and y-directions, respectively, which
can be obtained by solving the following transcendental egtions numerically:

m Sin( nC) = %cos(mc); m=1;2::: (2.12)

nsin( ,d) = %cos(nd); n=1;2;::: (2.13)
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whereas ., isdened by ., = P 2 + 2. The following result is obtained for the

Fourier coe cients when the boundary condition at the sink pane is applied Eqg. (2.7):

Dmn = mn (X) Cmn; (2-14)

where ,(x) is the spreading function de ned by:

mn taNh( mnt) + [h(x)=K]

m ) = ThG)=K @nh( )" (2.15)
Thus, the general solution can be rewritten as:
X X .
(xy;2) = Cmn €0S( mX) €0S(nY)[cOSh( mn2Z)  mn(X)sinh( mn2)]: (2.16)
m=1 n=1

Finally, the boundary condition at the source plane given by & (2.3) is considered
in order to nd the Fourier coe cients C,,. Usually, when solving ux channel
problems with a constant heat transfer coe cient, the Fourer coe cients are obtained
directly by taking the Fourier series expansions of the bodiary condition at the
source plane £ = 0) and using the orthogonality of the eigenfunctions. Howesr,
since the heat transfer coe cient h(x) depends on the variablex and so does the
spreading function ,(X), then the use of the orthogonality of the eigenfunctions in
the x-direction is prevented when following the same procedurerfthe constant heat
transfer coe cient. Instead, the method of least squares igsed to obtain the Fourier

coe cients C,,,. The general approximate solution for niteM;N can be written as:

X
(x1y;2) = Crn €OS( mX) €0S(nY) [cOSh( mnZ)  mn(X)SiNh( mn2)]: (2.17)

m=1 n=1

The method of least squares can be applied to the general ¢mao given in Eq. (2.17).



51

Hence, the following integral (which represents the residl)as de ned:

2

= %Z S(xy)  dydx (2.18)

where S(x;y) is the function de ning the boundary condition at the soure plane

given by: 8
5q=k; O<x<a and O<y<b
-0 a<x<c or b<y<d:

The rst derivative of the general solution Eq. (2.17) with respect toz at the source

plane (atz = 0) is:

@ X
@z " Con mn mn (X) €OS( mX) COS( nY): (2.20)

m=1 n=1

Hence, the residual integral in Eqg. (2.18) can be rewritten as

c d #
d )(/I )(\I 2
Ivn = Con mn mn (X) COS( mx) COS( nY) S(X; y) ddeZ (2-21)

0 0 m=1 n=1

The Fourier coe cients are obtained to minimize the residu&l yy by using [23]:

@hn _ . o, Ao .
oo S0 I=LiZInMj =1i2iN: (2.22)

The application of Eq. (2.22) yields:

¢ d" #
4w
Cmn mn mn(X)€OS( mx)cos(ny) S(X;y)

0 0 m=1 n=1

i (x)cos( ix)cos(jy) dydx=0: (2.23)
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Equation (2.23) can be simpli ed by using the orthogonalityof the eigenfunctions in
the y-direction to get:

)(A c

Crnj  mj mj (X) jj (X) cos( mX)cos( ix) dx = gsin(;b)

NG i () cos( ix) dx;
iNCj) ,
(2.24)
whereN (' ;) is the norm of they-direction eigenfunctions which depends on the speci ¢
nature of the y-direction eigenvalues:

d
1 he=k
N(j)= cos(y)dy=> d+ ———
(i) (jy)dy > 2+ (he=K)2

0

(2.25)

Thus, in order to nd the Fourier coe cients Cj , a linear system has to be solved for

everyj (i.e., for every eigenvalue in the/-direction). The linear system is as follows:
AlCl = pl; (2.26)

whereAl = [a{m] isanM M matrix whose entries (represented by rowand column

m) are given by:

a{:m = mj mj (X) i (X) cos( mX)cos( ix) dx: (2.27)
0
Cl = [Cy Cy ::: Cywl' is the unknown Fourier coe cients vector, andb! =
[ki'l Uz o ﬂv,]t represents the right-hand-side vector whose componentseagiven
by:
in(ib)
i _ gsin( _
= —— i (X) cos( ix) dx: (2.28)
d KiN(j) ; ! '

It is important to note that the full set of Fourier coe cient s C; can be obtained
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by solving N -linear systems using any mathematical software packageifexample,
MATLAB) in which numerical integration is used to evaluate the entries of each

system.

2.2.3 Total Thermal Resistance

For a single heat source spreading heat to a larger extendeidksarea, the total
thermal resistance of the system can be de ned as [18, 24]:
Tc Tl

Rt: :_C;
Q Q

(2.29)

whereT, is the mean temperature over the heat-source area, is the mean heat-
source temperature excess, ang = 4gabis the total heat input of the ux channel.

The mean source temperature excess is given by:

¢ = 1 (X;y;0) dA; (2.30)
AC A

Cc

where A, is the heat-source area. The application of Eq. (2.30) yiedd

a b

1 P
c= Zab Cmn €0S( mX) cos( ny) dydx
a b
XX
. ai Cm_sin( ma)sin( nb): (2.31)

m n

m=1 n=1

m=1 n=1

Hence, the total thermal resistance can be obtained by usingyE(2.29) to get:

L. M
Ri= e
q

Crnn sin( ma) sin( nb): (2.32)

m=1n=1 M N
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2.2.4 Aspect Ratios and Dimensionless Resistance

Before beginning to present and analyze the results of thegislem, it is clear that the
problem depends on a large number of parameters: the heatisz® dimensionsa; b
the cross-sectional dimensions, d; the channel thicknesg; the thermal conductivity

k; the magnitude of the heat ux q; heat transfer coe cient of the lateral edges
he; and the average heat transfer coe cient at the sink planéhs. Thus, it is more
convenient to present and study the total thermal resistarecin a nondimensional form
as a function of some aspect ratios of the channel dimensi@rml some Biot numbers,
which are represented by: the aspect ratio between the hesturce length and the
cross-sectional lengthy, = a=¢ the aspect ratio between the heat-source width and
the cross-sectional width, = b=d the aspect ratio between the channel thickness and

the cross-sectional length, = t=c, the aspect ratio between the channel thickness and

the cross-sectional width y = t=d, the Biot number in the x-direction Biex = heC=k
the Biot number in the y-direction Biey = hed=k and the z-direction Biot number

Bis = hst=k. This can be done by de ning the following nondimensional vables:

X y y4
== =2 = 2.33
X C y d z t ( )
Hence, the general solution in Eq. (2.17) can be rewritten as:
M .
(x;y;z)= Crmn €OS( X )cos(,y )[cosh( nz) o (X)SINh( 2z )];
m=1 n=1
(2.34)
where . = jcand ,= ,darethe dimensionless eigenvalues that can be obtained

by solving the following transcendental equations numeady:

m SIN( ) = Biexcos( ,); m=1;2:::M
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nSin( ) = Bieycos(,); n=1;2:::N (2.35)

while ., isdenedby ., = mt= P ( m x)?*+( , y)?andthe spreading function

mn (X ) IS given by:

mn tANN(C ) + Big(x)
o T Bis(x )tanh( .,)’

mn (X ) = (2.36)

where

— (p+1)

Bis(x )= Bis 1 (x)]: (2.37)

To nd the Fourier coe cients C,, based on the aspect ratio factors, the general

equation for the linear systems given in Eq. (2.24) can be wWen as:

X/I 1
Coi m  m(x) j(x)cos( px )cos(;x)dx =
m=1 0
M j (X )cos(;x)dx; (2.38)
iN () )
where
1 Bie.
N(j)zé 1+ﬁ (2.39)
J ey

It is important to note that in the linear systems included inEq. (2.38) we solve for the
modi ed Fourier coe cients Cmn, which are related to the actual Fourier coe cient
Con by Con = Cn= , Where = qgt=k

Finally, the total thermal resistanceR; is nondimensionalized by using the thermal

p

conductivity k and an intrinsic length scale, which is taken to bg ab(ie., Ac=2):

R, = K abR: (2.40)
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Thus, the nondimensional total thermal resistance can be pressed as a function of

the aspect ratio factors as follows:

Y
R =__ Y WA o sin( . x)sin( . y): (2.41)
t 4( )3:2 m X nyjs '
Xy m=1n=1 MmN

2.3 Results and Discussions

In modeling heat-sink cooling systems, it is desirable to mimize the total thermal
resistance of the system. We will focus on studying the theahresistance for ux
channels with di erent conductance pro les along the sink [ane as it gives an index
of the e ectiveness of the heat-sink cooling systems and thesults can be useful in
thermal design analysis for heat-sink sizing and optimizan. In this section, the
dimensionless thermal resistance of the 3D ux channel fori drent aspect ratios
and di erent conductance distribution pro les along the snk plane is calculated and
analyzed. First, in order to show the accuracy of the develogenalytical solution,
a solution validation study is presented in which the analytal solution is compared
to results obtained by solving the problem numerically. Sead, di erent parametric
studies are then conducted to study the e ect of the di erentconductance distribution
pro les along the sink plane on total thermal resistance fodi erent values of the
Biot number. Third, a dimensional study is then presented tasstudy the e ect of
the di erent conductance pro les on the temperature rise othe ux channel. For the
analytical solution results, MATLAB (version 2013b) softwae is used to carry out the
results [25], while the numerical results have been condedtwith the nite element

method (FEM) using the ANSYS commercial software package [26].
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2.3.1 Solution Validation Study

To demonstrate the accuracy and computational e ciency oflie developed analytical
solution, a test study is conducted and compared to the regsilobtained by solving the
problem numerically with the FEM. The results of the test casetudy are obtained
based on solving a ux channel problem that has the followingspect ratios and
properties: = y =0:2, x = y =0:1,Bigx = Bigy = 0:5, and Bis = 0:1. For
the variable heat transfer coe cient at the sink plane, a lirear pro le is considered
with p = 1. The dimensionless total thermal resistance is calcukatl and compared
both for the analytical and the FEM solutions. The FEM results ae obtained with
a tetrahedral mesh and the convergence is checked by re nitige mesh, especially
around the heat-source region. The system with a tetrahedranesh consisting of
183351 elements converged with three digits of precisiom tbe dimensionless thermal
resistance, which is shown in Table 2.1. Regarding the anabal solution results, the
number of terms for each summation in Eq. (2.41) is chosen te Ithe sameM = N,
and the convergence is checked by increasing the number afris in the summations.
It can be seen from Table 2.1 that withM = N = 25, the nondimensional thermal
resistance agrees well with the FEM results with an approxintly relative error of
0:1% compared to the nest mesh result. Furthermore, increasy the the number of
terms in the summations will increase accuracy. For examplaith M = N =40, the

relative error decreases to approximately:03%.

2.3.2 Model Parametric Analysis

In this part, the proposed analytical solution is used to ndand analyze the dimen-
sionless total thermal resistance of a 3D ux channel and tawdy the e ect of the

di erent conductance pro les on thermal resistance for dierent aspect ratios and Biot
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FEM Analytical

Number of Elements R, M =N R,
286 0.258199 5 0.264356
636 0.262854 10 0.269531
9822 0.269025 20 0.270850
49109 0.270851 25 0.271011
183351 0.271153 30 0.271112
282386 0.271214 40 0.271206

Table 2.1: Test study dimensionless thermal resistance fBEM and analytical results

numbers. In order to only consider the e ect of the variable &at transfer coe cient
along the sink plane, the lateral edges of the channel are as®ed to be adiabatic by
assigning thex- and y-direction Biot numbers a very small value, which is taken ithe
rest of this analysis aBicx = Biey = 0:001. Hence, the dimensionless thermal resis-
tance is now represented as a function of ve parameters;, y, «, y, and Bis. First,

a ux channel of equal aspect ratios is considered, i.e,, = = and y = =

Di erent variable heat transfer coe cient pro les along th e sink plane are considered,
including the concave prolep = 0:5, the linear prole p = 1, the parabolic pro le

p = 2, and the uniform heat transfer coecient p! 1 . The dimensionless thermal
resistance is calculated for di erent values of the Biot nuimer, Bis = 0:1; 1; 5; 10
and with thickness aspect ratio = 0:1. For calculating the dimensionless thermal
resistance, the number of terms in Eq. (2.41) is taken the sanior both thex and y
summations, i.e.,M = N, starting from M = N = 15 and then the number of terms

is incremented until the following stopping criteria are sias ed

RtM+l RtM

M +1
R

10 #; (2.42)

where R, M*! represents the dimensionless resistanBe calculated by usingM + 1
and N +1 terms in the summations. Figures 2.4-2.7 show the dimensiess thermal

resistanceR, versus the aspect ratio ( is taken to vary from Q1 to 1) for the di erent
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Biot numbers. Moreover, the numerical solution results arebtained using the FEM
for di erent values of to validate the analytical results, where both analytical ad
FEM results are shown on the same plots. For the FEM numerical salts, the results
can be obtained by considering any model that satis es the ndimensional parame-
ters. For example, considering a ux channel model @f= b=0:01 m,c=d=0:1m,
t=0:01 mk =10 W/m K, he =0:1 Wm?K, and hg = 100 W/m ? K will give the
same value of the dimensionless thermal resistance if we sider the following di er-
ent model ofa= b=0:001 m,c=d=0:01 m,t =0:001 m,k=5W/m K, he =0:5
W/m 2 K, and hg = 500 W/m 2 K, since both the models have the same nondimen-
sional parameters of =0:1, =0:1, Biex = Biey =0:001, andBis = 0:1. However,
we used the rst model in our numerical simulations and all ta results are obtained
by changing the source dimensiong; b and the averaged heat transfer coe cienths
according to the nondimensional parameters. For the analgtl results, the number
of terms used to satisfy Eq. (2.42) varied approximately beeenM = N = 16 and
M = N = 30 depending on the aspect ratio value, the Biot number value Bis and
the conductance distribution pro le along the sink plane deermined by the value of
p. In general, usingM = N = 30 for all the analytical results is found to be su cient
to satisfy Eqg. (2.42) and keep the relative error of less thad2% compared to the
FEM results, as shown in Table 2.2.

In the set of nondimensional parameters, the nondimensidrgiot number Bi g is of
particular physical signi cance as it represents the ratidoetween the one-dimensional
(1D) conduction resistance inside the channel, de ned ky(kcd), and the convection
resistance along the sink plane based on the averaged heangfer coe cient hg,
given by 1=(hscd).

It can be seen from Figs. 2.4-2.7 that the order of magnituderfthe dimensionless

thermal resistance decreases by increasing the Biot numbkecause the Biot number



60

is de ned asBis = hst=k and for a xed-thickness aspect ratio system with xed ma-
terial properties, increasing the Biot number is equivalério increasing the averaged
heat transfer coe cient value hs. Hence, more heat can be removed from the sys-
tem, so the total thermal resistance is decreased. Moreoyére e ect of the di erent
conductance pro les along the sink plane on thermal resistae is obvious for the dif-
ferent Biot numbers. In particular, for Bis < 5, the dimensionless thermal resistance
depends strongly on the source-size aspect ratiand the shape of the conductance
pro le represented by the value of the powep. As seen from Figs. 2.4 and 2.5 when
the aspect ratio has small values, the dimensionless thermal resistancegsinaller
by decreasing the value gb. However, for large values of, the dimensionless thermal
resistance gets larger by decreasing the valuemfThe reason behind this is that for
small aspect ratios (and small thickness ratio ), the heat ow will reach the sink
plane concentrated in the central area of the sink plane, arlty decreasing the value
of p, the intense cooling is concentrated in that area as well, wam would decrease
the thermal resistance. On the other hand, for a large aspertio , the heat ow
will constrict to go through the intense cooling area which auld increase the e ort,
and therefore the thermal resistance by decreasing the valofp.

In Fig. 2.4, which shows the dimensionless thermal resistanpro les for Bis = 0:1,
one can see the signi cant di erence between the di erent mrles. For the concave
conductance distribution (@ = 0:5), the pro le has the minimum values of the di-
mensionless thermal resistance when< 0.6 compared to the other three pro les.
For the linear conductance distribution p = 1), the dimensionless thermal resistance
pro le shows lower values when< 0:7 compared to using the parabolic conductance
distribution (p = 2) and the uniform conductance distribution ! 1 ). Moreover,
when considering the parabolic conductance distributionp(= 2), the dimensionless

thermal resistance pro le shows lower values when< 0:87 compared to using the
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Figure 2.4: Dimensionless thermal resistance f&is =0:1 and =0:1.
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Figure 2.5: Dimensionless thermal resistance f&is =1 and =0:1.

uniform conductance distribution. The e ect of the di erent conductance pro les
along the sink plane on thermal resistance gets weaker by ieasing the value of the
Biot number, as shown in Figs. 2.6 and 2.7. One can note from Figs5-2.7 a sud-
den increase in the dimensionless thermal resistance foethonuniform conductance

distributions when > 0:8 compared to using the uniform conductance distribution.



R; (Analytical) | R, (FEM) | Relative Error(%)
0.1 0.176285 0.176325 0.03%
0.2 0.132151 0.132038 0.09%
0.4 0.084396 0.084317 0.1%
0.6 0.062567 0.062476 0.15%
0.8 0.052503 0.052424 0.15%
1 0.059053 0.058995 0.1%
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Table 2.2: Relative error of dimensionless thermal resistee between analytical and
FEM results forBig =1, =0:1andp=2.

The reason behind this is that when considering the uniformoaductance distribu-
tion with the uniform heat transfer coe cient along the sink plane, as the source-size
aspect ratio gets closer to 1, i.e.,! 1, the heat ow becomes of 1D nature and so
does the thermal resistance (spreading resistance gets k&xa However, this is not
the case when considering the nonuniform conductance dibtitions, where the heat
ow and the thermal resistance are always multidimensiondior all the values of ,
and as the source aspect ratio approaches 1, the thermal stance increases since
the cooling is concentrated in the central area of the sink ahe for the nonuniform
conductance distributions under study. It is important to rote that for a xed p,
the behavior (increasing/decreasing intervals) of the diemsionless thermal resistance
prole R, with respect to is not necessarily representing the same behavior for the
dimensional thermal resistance pro leRy, sincep abis used to nondimensionalize the
thermal resistance and hence the dimensional value of thesigance depends on the
value of .

The e ect of the thickness aspect ratio on thermal resistance is also studied
for the di erent conductance pro les. Figure 2.8 shows the dnensionless thermal
resistance pro les for =0:2 andBis = 1 versus the thickness aspect ratios ( was
taken to vary from 0.1 to 2). It can be seen that the behavior of the dimensionless

thermal resistance for the di erent conductance pro les islependent on the value of
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Figure 2.7: Dimensionless thermal resistance f&is = 10 and =0:1.

the thickness aspect ratio , where for < 0:75, the dimensionless thermal resistance
decreases when the value ¢f decreases, and this agrees with the previous results
shown in Fig. 2.5 for the small source-size aspect ratio However, as the thickness
aspect ratio becomes larger than:©5, i.e., > 0:75, the dimensionless thermal resis-
tance increases when the value @f decreases. The reason is that for this relatively

small xed value of Biot numberBi = 1, when the thickness aspect ratio gets larger,
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Figure 2.8: Dimensionless thermal resistance f&is =1 and =0:2.
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Figure 2.9: Dimensionless thermal resistance foy = 0:1, =0:1 and Bis = 1.

the value of the averaged heat transfer coe cienhs gets smaller, and thus the de-
pendency of thermal resistance on the conductance pro le &@mes stronger, where
for smaller values ofp, heat ow should constrict to go through the heat sink, and
this would increase the thermal resistance.

Furthermore, the e ect of changing one of the heat-sourceze aspect ratios (x or

y) While xing the other one is considered. Figure 2.9 shows tltBmensionless thermal
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Figure 2.10: Dimensionless thermal resistance for=0:1, =0:1 andBis = 1.

resistance pro les for = 0:1 andBis = 1 versus the heat-source-length aspect ratio
x With a xed heat-source-width aspect ratio y = 0:1. Meanwhile, Fig. 2.10 shows
the dimensionless thermal resistance pro les versus thedtesource-width aspect ratio
y With xed heat-source-length aspect ratio x = 0:1 for the same Biot number and
thickness aspect ratio. It is clear from Figs. 2.9 and 2.10 th#he e ect of changing
the length aspect ratio 4 is the one responsible for changing the pattern of the the
dimensionless thermal resistance of the di erent conduatae pro les.

In the previous discussion, the dimensionless thermal rsisince is studied for ux
channels with di erent properties and parameters. Howevethe dimensional analyt-
ical solution of the temperature distribution presented inSection 2.2.2 can be used
to obtain the temperature distribution in the ux channel if desired. A dimensional
study is conducted to study the e ect of the di erent conductance distributions on
the temperature rise. A 3D square ux channel with side dimesions ofc= d=0:1'm
and thicknesst = 0:01 m is considered. The heat-source dimensions are b= 0:02
m. The thermal conductivity of the system isk = 10 W/m K. A uniform heat ux of

q=10* W/m 2 is applied in the source region. The conductance along thedeal edges
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Figure 2.11: Temperature pro les along half of the source pie (along the x-axis
wheny = 0) for the di erent conductance distributions.

is he = 0:1 W/m?2 K, and the average conductance along the sink plane lig = 100
W/m 2 K. The ambient temperature is chosen of 25C. Figure 2.11 shows the source-
plane temperature pro le along thex-axis wheny = 0 for the di erent conductance
distributions in which the e ect of the di erent conductance distributions along the

sink plane on the temperature rise along the source plane igar.

2.4 Conclusion

In this chapter, an analytical solution of a 3D ux channel wih a nonuniform heat
transfer coe cient along the sink plane was presented by usg the method of sep-
aration of variables combined with the method of least squas. The nonuniform
heat transfer coe cient along the sink plane has been modealeby using a conduc-
tance function changing in thex-direction, which can de ne a wide variety of di erent
conductance distributions along the sink plane. The proped analytical solution was

used to nd and analyze the dimensionless total thermal restiance, where the thermal
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resistance was presented in a nondimensional form as a fuantof the heat-source-size
aspect ratios, channel-thickness aspect ratios, and Bioumbers. The solution was
validated by comparing the developed analytical solutioressults with results obtained
by solving the problem numerically using the FEM in which exdkent agreement has
been observed, and then, the solution was used to study theeet of di erent conduc-
tance distributions on the dimensionless total thermal réstance of the channel and

the temperature rise.
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Chapter 3

Thermal Resistance of a 3D Flux
Channel with Eccentric Source and

2D Variable Heat Convection

3.1 Introduction

Thermal management of microelectronic devices is considdras a key factor in the
development of microelectronic systems for better perfoance and device reliability.
In most applications, microelectronic systems are modeled eectangular ux chan-

nels, where heat is generated in a small heat-source area aads by conduction

through the system to spread the heat into a larger convectvheat-sink area where
the generated heat is then transferred into an ambient uid. The heat convection
along the sink plane depends strongly on the sink con gurath, where sometimes

a nonuniform heat transfer coe cient along the sink plane nght be present. For
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example, when considering nonuniformly distributed exteted surfaces with dier-
ent lengths or a nonuniform nature of the moving ambient uid the heat transfer
coe cient along the sink plane becomes nonuniform.

Many relevant studies can be found in the literature on thera analysis of ux
channels. In particular, many analytical solutions for theemperature distribution and
thermal spreading resistance in ux channels have been stied comprehensively [1{
9]. Kadambi and Abuaf [1] obtained analytical solutions fortie temperature eld in
rectangular ux channels. Yovanovich et al. [2] obtained geeral analytical solutions
for temperature eld and spreading resistance in compoundux channels. Muzychka
et al. [3{7] have conducted comprehensive research on diesit spreading resistance
problems including di erent geometries, boundaries, andrpperties. Bagnall et al. [8]
obtained analytical solutions for the temperature rise anthermal spreading resistance
in multilayered ux channels. However, in most of the existig work, attention has
been focused on problems with a uniform heat transfer coe ent along the sink plane.
Recently, Razavi et al. [10] studied thermal resistance oftao-dimensional (2D) ux
channel with a concentric heat source in the source plane amdnonuniform heat
transfer coe cient along the sink plane.

In this chapter, general analytical solutions for the tempature eld and thermal
resistance of a three-dimensional (3D) ux channel with eeatric heat source and
a variable heat transfer coe cient that varies in the two hoilizontal dimensions are
developed by using the method of separation of variables coimed with the method
of least squares. These solutions can be used to nd the optihcon guration of the

heat sink for many applications.
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3.2 Mathematical Theory

In this section, the mathematical model of the problem undeconsideration is pre-
sented along with the governing equation of the temperaturdistribution and the
appropriate boundary conditions. The analytical solutios for the temperature eld
and total thermal resistance are then obtained using the miedbd of separation of
variables and the method of least squares, in which the two theds are used to
construct a mathematical algorithm for nding the Fourier coe cients. Finally, a
nondimensional total thermal resistance is introduced inerms of some aspect ratio

factors.

3.2.1 Mathematical model

The system under study is a 3D rectangular ux channel in whit heat enters the
system through an eccentric heat source and ows by conduaeti to a larger convective
heat sink with variable heat transfer coe cient h(x;y) varying in the two horizontal
dimensions. The system is modeled in Cartesian coordinatesch that the origin is
at the left corner of the source plane, as shown in Fig. 3.1.

The steady-state heat conduction equation of the temperate excess = T T,
is governed by Laplace's equation:

@;+@;+@;:0; (3.1)
@%x @y @2
with respect to the following boundary conditions: in the sarce plane, a uniform heat

ux g is specied over the heat-source region, where the heat soaris considered as

a rectangular shape with dimensiona and b in the x- and y-directions, respectively,
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Figure 3.1: Schematic view of a 3D flux channel layout. (a) Top view. (b) Vertical
cross-sectional view in the zz-plane at y = Y.. (¢) Vertical cross-sectional view in the
yz-plane at x = X..
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while the remainder of the source plane is considered as duitic. Hence, the source-

plane boundary condition is given by:

8
@ 2 g; inside source region,
K @z, 3 2
z=0

- 0; outside source region.

The lateral edges of the system are assumed to be adiabatichug, the lateral-edge

boundary conditions are:

@ =0; @ =0: (3.3)
@XX:O;C @yy:O;d
Along the sink plane, a variable heat transfer coe cient varyng in the x- and y-

directions exists and the boundary condition is addresseg:b

@ _ hxy)
@z, k

(X y;t): (3.4)

The variable heat transfer coe cient function h(x;y) might present along the sink
plane in di erent distributions according to the sink con guration when considering
a nonuniform distribution of the extended surfaces (ns or lnis) or according to a
nonuniform nature of the moving ambient uid over the sink rgion. Thus, the heat
transfer coe cient function depends on the speci c problemunder study. However,
the general solution for the temperature distribution and hermal resistance can be
obtained in the same manner for any heat transfer coe cient dtribution. In this
study, we will consider two heat transfer coe cient distributions that are of opposite

nature in distributing the convective cooling along the sik plane, de ned by:

‘v = XY
hi(X;y) = hgsin c sin q (3.5
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h X y [
ho(X;y) = hg 1 sin o sin r ; (3.6)

where hy is a reference conductance representing the maximum valuetbe heat
transfer coe cient in the sink region. It can be seen that therst distribution function
h1(x;y) has the maximum conductance in the central region of the dirplane and the
conductance decreases when moving away from the centralioeg whereas in the
second distribution functionh,(x;y), the maximum value of the conductance is along
the sink boundaries and the conductance decreases when mgviowards the central
region. Figures 3.2 and 3.3 show two samples of ux channelgshvextended surfaces
distributed along the sink plane based on the heat transfepe cient functions given
by Egs. (3.5) and (3.6). For the purpose of comparing the e ¢®f the di erent
conductance distribution functions on the temperature all and the thermal resistance
of the channel, it is more appropriate to present the distribtions with the same total
average conductance. This can be done by integrating the cluttance distributions
along the sink plane and nding the average total conductarmchg as:
c d
hs = c_ld h(x; y)dydx: (3.7)
0 0

Hence, the two conductance functions in Egs. (3.5) and (3.6 be rewritten to have

the same average conductance as:

2hs

ha(x;y) = sin X? sin L - (3.8)

ha(Gy)= ——% 1 sin X? sin L - (3.9)




79

h(z,y)/ho

y/d 0 o z/c

Figure 3.2: Flux channel with hi(z,y) as the conductance function along the sink
plane. Extended surfaces sample (left). Function’s surface plot (right).
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Figure 3.3: Flux channel with hs(z,y) as the conductance function along the sink
plane. Extended surfaces sample (left). Function’s surface plot (right).

3.2.2 General Solution

The general solution of temperature excess can be obtained by solving the Laplace
equation (3.1) with respect to the set of boundary conditions given in Egs. (3.2)-(3.4).

The method of separation of variables can be used to obtain the general solution in
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the form of an in nite Fourier series solution. The solutionis assumed to have the
form (x;y;z) = X(X) Y(y) Z(z) [11{14]. Applying the method of separation of
variables and making use of the lateral-edge boundary cotidns along the planes

(x=0, x=1c¢,y=0, and y = d) yields the following general solution:

(X;¥;2) = Coo + Doz

b3
+ cOS( mX) [Cmocosh( mz) + Dmosinh( 2)]
m=1

+ COS( ny) [COn COSh( nz) + Don Sinh( nz)]
n=1
X X
+ cos( mX) €os( nY) [Crmn cOSh( mnZ) + Dpn SiNh( mn2)]; (3.10)

m=1 n=1

where ,, = m=c and , = n=d are the eigenvalues in thex- and y-directions,
respectively, and , = ﬁ (m;n > 0) are the double Fourier expansion
eigenvalues. The relationship between the Fourier coe cies C,,, and D,,, can be
obtained by applying the sink boundary condition in Eq. (3.% where the following

result can be obtained:

Dmn = mn (X;Y) Crnn s (3.11)
where 1, (X;y) is given by:
8
h(x;y) . A
% m for m= n=0;
mn (X7 Y) = (3.12)

2 tanh(t)+[h0Gy)=K],
+[h(y)=Ktanh( 1)’

otherwise,

where refers to any of the corresponding eigenvalueg,, n, Or mn.
Finally, the source-plane boundary condition is used to ndhe Fourier coe cients

Cmn by means of the method of least squares. The method of leastiates is used
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to nd the Fourier coe cients because of the existence of thevariable conductance
function h(x;y) in the general solution. The general solution in Eq. (3.10% presented
in an in nite series form; however, in practical applicatios we consider a nite number
of terms to calculate the results provided that the number oferms is su cient to

represent the solution without loss of accuracy. The genérapproximate solution for
nite M and N eigenvalues in thex- and y-directions, respectively, can be rewritten

after making use of Eq. (3.11) as:

(X,y;2) = Coo[l  oo(X;Y)Z]
ly( 1
+ CmoCOS( mX)[cosh( mz)  mo(X;y)sinh( mZ)]
¥ 1
+  Concos(ny)[cosh(nz)  on(X;y)sinh( ,2z)]
+ Crmn €0S( mX) c0s( nY) [cOSh( mnZ) mn (X; Y) SINh( mn 2)] :

m=1 n=1

(3.13)

The method of least squares can be applied to the general s$@uo given in Eq. (3.13)
by considering the source-plane boundary condition in Eq3(). This can be done

by de ning the least squares integral [15, 16]:

2

= %Z S(xy)  dydx (3.14)

where S(x;y) is the function de ning the boundary condition at the soure plane
given by: 8

3 g=k; inside source region,
T 0 outside source region.
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To simplify the least squares integral, the rst derivativeof the general solution in

Eq. (3.13) with respect toz at the source plane (atz = 0) can be found as:

@ X
— = Coo oo(x;y) Cmo m mo(X;y)cos( mx)
@ZZ=0 m=1
X 1 oI 1
Con n on(X;y)cos(ny) Cin mn mn (X;¥) cOS( mX) cos( nY):
n=1 m=1 n=1

(3.16)

Thus, the least square integral in Eq. (3.14) can be rewrittein a compact form as:

c d

e 2
Iun = Con mn(Xy) S(x;y) dydx; (3.17)
0 0 m=0 n=0

where 4, (X;Yy) is the Fourier coe cient's corresponding function given ly:

8
g 0o(X;Y); for m=n=0;
m mo(X;y)cos( mX); for m60; n=0;
mn (X;Y) = (3.18)
% n on(X;y)cos(nY); for m=0; n60;

mn mn (X;y) coS( mX)cos(ny); for m60; n6O0:

The least squares Fourier coe cients are obtained to minime the least squares inte-

gral Iyn using [17, 18]:

@in : .
=0; =0:L::::M 1] =0:1L::::N 1 3.19
@q; ] I Pl | 1 1] 1 - ( )

The application of Eq. (3.19) yields:
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#
Cmn mn (X; y) S(X; y) ij (X; y)dydx = 0; (3-20)

0 0 m=0 n=0

c d",y( lb( 1

which can be simpli ed to:

d

Wikl ¢
Cmn mn (X;Y) ij (x;y)dydx =

m=0 n=0 0 0 X¢ a=2 Ye b=2

Xcta=2 Yc+ b=2

i (x;y)dydx:

xla

(3.21)
Equation (3.21) represents a system d¥IN linear equations, where each equation
is obtained by considering di erent values ofi andj fori = 0;1;:::;M 1 and
] =0;1;:::;N 1. The system of linear equations has to be solved for the Foar

coe cients which can be represented in a matrix form as:

AC = b; (3.22)

whereA isanMN MN matrix whose components are represented by de nite inte-

grals, which can de ned by:

A = ‘(xy) ( xy)dydx; (3.23)

where ( x;y) is vector-valued function ofMN components given by:

(XY)=[ 00 o1::: oN 1 10 121::% IN 1:::i10 M N 1l (3.24)

C is the unknown Fourier coe cients vector de ned as:

C:[C(]oCo]_:::CON 1C10C11:::C1N 1::::::CM N 1]t; (325)
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and b is the right-hand-side vector given by:

Xcta=2 Yc+ b=2

Y(x; y)dydx: (3.26)

(op
]
Xl

Xe¢ a=2 Ye b=2

It is worth mentioning that the linear system matrix A and the right-hand-side vector
b are presented in the form of de nite integrals of a matrix-vued function and vector-
valued function, respectively, where the integrals are appd componentwise to the
component functions. Thus, numerical integration can be ed to evaluate the entries
of the linear system using any mathematical software packade.g., MATLAB) and
then the Fourier coe cients C,,, can be obtained by solving the resultant linear
system.

From the previous discussion, the general solution of thergerature excess
is illustrated along with a mathematical linear system thathas to be solved for the
Fourier coe cients. The solution in the source planez = 0 is of most interest for
nding the maximum temperature and the total thermal resisance of the ux channel,
and is given by:

1 X 1 W11

(X;y;0) = Coot Cmocos( mx)+  Concos(ny)+ Cimn €0S( mX) cOS( nY):
m=1 n=1 m=1 n=1

(3.27)

3.2.3 Total Thermal Resistance

The total thermal resistance of the system under considerah can be properly de ned

as [3, 6] B
Ry = T—C QTl = é;

whereT. and . are the mean temperature over the heat-source area and the ane

(3.28)

heat-source temperature excess, respectively, aQd= abqgis the total heat ow rate
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into the ux channel. The mean source temperature excess igddressed by:

1 Xc+a=2 Yc+ b=2
(x;y;0)dA; = — (x;y; 0)dydx: (3.29)
c b X¢ a=2 Ye b=2

1
c Ac 4

The application of Eq. (3.29) to the source-plane solutiomiEqg. (3.27) yields:

K1 1 X 1 -
= Cypt2 Cmocos( mXc)sin(z ma) 2 cos( n Ye) sin(3 nb)

On
m=1 a m n=1 by
WIX T cos( X sin(E na)cos(,Y.)sint b
+4 Crn (X (Zam )b St A ): (3.30)
m=1 n=1 m=n

3.2.4 Dimensionless Resistance

As the general expression of the thermal resistance depends a large number of
parameters, it is more appropriate to present the results ia general dimensionless
form in terms of some aspect ratio factors. This can be done lopnsidering the

following nondimensional variables:

; (3.31)

which leads to the following e ective nondimensional parasters:

« = a=c; y = b=d; « = t=cC; y = t=d; Bis = het=k; (3.32)

where , and  are the aspect ratios between the heat-source dimensionslidne hori-
zontal cross-sectional dimensions, and y are the aspect ratios between the channel
thickness and the horizontal cross-sectional dimensions the x- and y-directions,
respectively, whileBis represents the Biot number based on the total average heat

transfer coe cient. Thus, the general solution in Eq. (3.13 can be rewritten in terms
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of the nondimensional variables as:

(X3yi;z2)= Cooll o(x;y)z]
ly( 1
+ CmoCOS( X )[cosh(x nZ)  po(X sy )sinh(x ,z)]
¥ 1
+  Concos(,y )[cosh(y nz)  on(Xx;y)sinh(y ,z )]+
Cmn €OS( X )cos(y )[cosh( pnz )  mn(X 5y )sinh( n,z)];

m=1 n=1

(3.33)

where , = mc=m and , = ,d= n are the dimensionless eigenvalues in

o . Y
the x- and y-directions, respectively, and ,,, = mt="( , x)?2+( , y)? are the
dimensionless double Fourier expansion eigenvalues. ThauFer coe cients function
mn (X ;Y ) IS rewritten as:

8
Bi(x ;y)
1+Bi(x;y)’

mn (XY )= (3.34)

2 tanh( ) +[Bi(x;y)= .
+[Bi(x ;y )= Jtanh( )’

for m=n=0;

otherwise,

where refers to any of the corresponding dimensionless eigenvalue,, ,, or .,
and is the corresponding thickness-aspect ratio, i.e., =  for ., =  for
. and =1for _,. The function Bi(x ;y ) represents the nondimensional heat
transfer coe cient function h(x;y), where the two functions considered in this study

given by Egs. (3.8) and (3.9) can be represented as:

Bii(x ;y)= Bisz2 sin(x )sin(y ); (3.35)
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Biy(x ;y ) = Bis

71 sinkx )sin(y )] (3.36)

To nd the Fourier coe cients C;,, based on the nondimensional representation,

the general equation of the linear system in Eq. (3.21) can lbewritten as:

oI 1 vt X+ x=2 Yo+ y=2
Con (XY ) (X 5y )dy dx = i (X 5y )dy dx ;
m=0 n=0 ) Xc x =2 YC y:2
(3.37)
where
8
g wo(X Y )i for m=n=0;
m mO(X;y)COS( mX )i for m60; n=0;
mn (X;Y) = (3.38)
% n on(X 3y )cos(,y ); for m=0; n60;

o mn (X 3y )cos( ,x )cos(,y); for m60; n6O0:

It is important to note that the nondimensional linear systen equation (3.37) is pre-
sented in terms of the modi ed Fourier coe cients that can berelated to the ac-
tual Fourier coe cients as Cop = Cook=qt Cmo = Cmok=0¢ Con = Conk=qd and
Con = Cmnk=qtfor both m 6 0 and n 6 0.

Finally, the total thermal resistanceR; is nondimensionalized by using the thermal

P 2o to

conductivity k and an intrinsic length scale which is taken to bg ab(i.e.,
get:

R, = kp abR: (3.39)

Thus, once the linear system is solved for the modi ed Fourieoe cients Cn,, the
nondimensional total thermal resistance can be expressedterms of the aspect ratio

factors as:
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p
R, = ’p% Coo +

Xy X X

2 X 1(5 Ocos( mXe)sin(g m x)
m

m=1 m

+
Y'Y n=1 n

4 X 1X lé cos( nXo)Sin(3 o x)cos(,Ye)sinG , y)

2 X 160 cos(,Y.)sin(z , y)

#

+

(3.40)

XY m=1 n=1 m n

3.3 Results and Discussions

In this section, di erent parametric studies are conductedo validate the analytical
solution and to study the e ect of the di erent conductance dstribution pro les along
the sink plane on the thermal resistance and temperature d@s First, the analytical
solution is used to calculate and study the dimensionlessdatmal resistance of a 3D
ux channel for di erent aspect ratios and di erent values d the Biot number where
the results are compared with numerical simulation resultsOne parametric dimen-
sional study is then presented to see the e ect of the di eréanconductance pro les
on the temperature distribution along the source plane. Fothe analytical solution
results, MATLAB (version 2016b) software is used to carry outhe results [19], while
the numerical results are conducted based on the nite elemiemethod (FEM) using

the ANSYS commercial software package [20].

3.3.1 Dimensionless Parametric Analysis

We start our investigation by considering the developed ahgdical solution to evaluate
the dimensionless total thermal resistance of a 3D ux chamhand to study the e ect
of the dierent conductance pro les on the thermal resistane for di erent aspect
ratios and di erent Biot numbers. The analytical dimensioness thermal resistance

presented in Eq. (3.40) can be seen as a function of seven paeters: X, Y., «x,
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y» x» y» and Bis. In this study, we consider a channel ux of equal aspect rats,
e, x= y= and y= y= ,and a centered heat source of, = Y, =0:5. The
two variable heat transfer coe cient pro les along the sinkplane given by Egs. (3.8)
and (3.9) are considered and compared with using a uniformdtegransfer coe cient
along the sink planehs. The dimensionless thermal resistance is calculated foratient
values of the Biot number:Bis = 0:1; 1; 10 and with a thickness-aspect ratio xed as

= 0:1. The dimensionless total thermal resistance is calculatdor di erent values
of the aspect ratio ( is taken to vary from Q1 to 1) and the analytical results are
compared to the FEM numerical solution results. Regarding th analytical solution
results, the number of terms for each summation in Eq. (3.4@ taken the same, i.e.,
M = N, and the convergence is checked by increasing the number efms in the
summations starting fromM = N = 10 and then the number of terms is incremented

until the following stopping criteria are satis ed [21]:

RtM+l RtM

R 10 3 (3.41)

where R,M*! represents the dimensionless resistangg calculated by usingM + 1
and N + 1 terms in the summations. Moreover, the FEM results are obtaed with a
tetrahedral mesh and the convergence is checked by re ninget mesh. In particular,
most of the re nement is required around the heat-source rem. Table 3.1 shows
the convergence of the analytical and the numerical dimewsiless thermal resistance
of one sample of the conducted studies for= 0:4 and Bis = 0:1 when considering
hi(x;y) as the heat transfer coe cient along the sink plane. It can b seen that with
M = N = 20, the dimensionless thermal resistance has very good agment with the
FEM results with a relative error of approximately 01% compared to the nest mesh

result.
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FEM Analytical

Number of Elements R, M =N R,
14842 0.619830 5 0.619728
34443 0.631640 10 0.636532
43882 0.636269 15 0.640422
119160 0.639505 20 0.641298
282386 0.641478 25 0.641519
482386 0.641934 30 0.641675

Table 3.1: Convergence study of the dimensionless thermasistance for the analytical
and the FEM results with Big = 0:1, and = 0:4 when consideringh;(X;y).

1.3t =ha(z,y)

- = ha(z,y) R
11} — Uniform Pt
: % FEM g%

0.1 0.2 0.4 0.6 0.8 1
€

Figure 3.4: Dimensionless thermal resistance f&is =0:1 and =0:1.

Figures 3.4-3.6 show the dimensionless thermal resistarRe as a function of
the aspect ratio for the dierent values of the Biot numbers where both of the
analytical and the FEM results are shown on the same plots. Fdhe analytical
results, the number of terms used to satisfy Eq. (3.41) is fod to be varying between
M = N =15and M = N = 30 depending on the aspect ratio value where
more terms are required for the smaller values of It is important to note that
the behavior (increasing/decreasing intervals) of the diensionless thermal resistance
prole R, with respect to is not necessarily representing the same behavior of the

: : . . P . . .
dimensional thermal resistance pro leR; since abis used to nondimensionalize the
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Figure 3.5: Dimensionless thermal resistance f&is =1 and =0:1.
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Figure 3.6: Dimensionless thermal resistance f&is =10 and =0:1.

thermal resistance; hence, the dimensional value of the isgance depends on the
value of .

One can see from Figs. 3.4-3.6 that the order of magnitude fdre dimensionless
thermal resistance decreases when the Biot number increms€urthermore, the e ect
of the di erent conductance pro les along the sink plane onte thermal resistance is

obvious for the di erent Biot numbers. Although the total average conductance of the
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di erent conductance pro les is the same and equals to the uform conductance value
hs, the thermal resistance is strongly dependent on the disbition of the conductance
pro le along the sink plane. In particular, for < 0.8, the thermal resistance has
minimum values when usingh;(X;y) as the conductance pro le compared with using
uniform conductance along the entire sink plane dm(x;y). The reason behind this
is that by considering the distribution of hy(X;y), the intense cooling area is located
directly under the heat-source region. However, for the lagg values of the aspect
ratio, i.e., > 0:8, the thermal resistance has minimum values when using thaitorm
conductance pro le. It is worth mentioning that the heat ow mechanism through
the channel is di erent for the three conductance distribubns. For example, when
considering the uniform conductance along the sink planes @ghe heat-source aspect
ratio increases to cover the source-plane area, i.e5 1, the nature of the heat ow
becomes one-dimensional (1D). However, this is not the caseen considering the two
other distributions h;(x;y) and h,(x;y) where the ow is always multidimensional for

all the values of , as we will see in the next section.

3.3.2 Source-Plane Temperature

In this part, a dimensional study is conducted to see the img# of the variable heat
transfer coe cients on the temperature distribution alongthe source plane. A 3D
square ux channel with side dimensions of = d = 0:1 m and thicknesst = 0:01 m
( =0:1) is considered. In the source plane, the heat-source centelocated at the
point (X¢;Y:) = (0:05 m 0:05 m) where two di erent dimensions of the heat source
are considered. First, we consider a small heat source of dmmnsa = b=0:02 m
( =0:2). Then a large heat source that covers the whole source péaaf dimensions
a=b=0:1m( =1:0)is considered. The thermal conductivity ik = 10 W/m K.

A uniform heat ux of q = 10* W/m 2 is applied in the source region. Along the



93

(a) (b)

Figure 3.7: Color-map plots of the temperature distributionalong the source plane
when consideringh;(x; y) as the heat transfer coe cient. (a) =0:2. (b) =1:0.

165
160

155

@) (b)

Figure 3.8: Color-map plots of the temperature distributionalong the source plane
when consideringh,(x;y) as the heat transfer coe cient. (a) =0:2. (b) =1:0.

sink plane, the di erent heat transfer coe cients represeted by h,(x;y), h,(x;y) and
the uniform heat transfer coe cient hg are considered with average conductance of

hs = 100 W/m 2 K (Bis = 0:1). The ambient temperature is chosen as 2.
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@) (b)

Figure 3.9: Color-map plots of the temperature distributionalong the source plane
when considering a uniform heat transfer coe cienths. (a) =0:2. (b) =1:0.

The developed analytical solution is used to evaluate thentgerature distribution
along the source plane for the di erent conductance functis. Figures 3.7-3.9 show
the source-plane temperature distributions for the di erat conductance functions.
One can observe how the di erent conductance pro les alonghé sink plane a ect
the temperature distributions along the source plane. In pacular, for the small
heat-source case, i.e.,= 0:2, the temperature rise inside the heat-source area records
the minimum values when considerindn;(x;y) as the conductance prole. On the
other hand, for the large heat-source case, i.e..= 1.0, the nature of the tempera-
ture distributions is signi cantly di erent for the three ¢ onductance pro les. When
consideringh;(x;y) as the conductance pro le, the temperature distribution reords
the minimum values in the central region (intense cooling ggon) and the maximum
values along the corners of the source plane, whereas the temgture distribution
records the maximum values in the central region of the sow@lane when consid-

ering h,(x;y). However, the temperature distribution has a uniform valuelong the
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source plane when considering the uniform heat transfer coent hg.

3.4 Conclusion

In this chapter, analytical solutions for the temperature eld and thermal resistance
of a 3D ux channel with eccentric heat source and a variabledat transfer coe cient
that varies in the two horizontal dimensions were developeby using the method
of separation of variables combined with the method of leastjuares. Two di erent
variable heat transfer coe cients were considered in thishapter to study the e ect of
the variable conductance distribution along the sink planen the temperature distri-
bution and the thermal resistance of the ux channel comparkewith using uniformly
distributed conductance along the sink plane. The thermalesistance was presented
in a general dimensionless form as a function of the heat-so@ aspect ratios, the
channel-thickness aspect ratios, and the Biot number. Thenalytical solution results
were validated by comparing the developed analytical soioh results with the results
obtained by solving the problem numerically based on the FEMsing the ANSYS
commercial software package [20] where very good agreemwas found. Di erent
parametric studies were conducted to study the e ect of theiagrent conductance
distributions on the dimensionless total thermal resistate of the channel and the
temperature distribution along the source plane. It was olesved that although the
total average conductance of the di erent conductance prdes are considered to be the
same, the temperature distribution and the thermal resistace are strongly dependent

on the distribution of the conductance pro le along the sinkplane.
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Chapter 4

E ect of Temperature-Dependent
Thermal Conductivity on
Spreading Resistance in Flux

Channels

4.1 Introduction

Accurate thermal analysis of microelectronic devices is csidered as a key factor in
the development of electronic systems for better performea and device reliability.
In many materials used in the microelectronics industry, tb thermal properties vary
with temperature. In particular, the thermal conductivity of most of the materials are

temperature dependent, and the assumption of constant theahconductivity within
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the whole temperature variation interval when consideringhermal management may
lead to unacceptable errors in the temperature distributio eld, and so, in thermal
analysis [1, 2]. Therefore, a good understanding of the etsoof the material's prop-
erties used for designing the device on the temperature rigad thermal resistance is
essential to design a durable device. Most electronic sysie are modeled as rectan-
gular ux channels or cylindrical ux tubes, where heat entes the channel through
small region(s) and ows by conduction through the system tspread the heat out
into a larger heat-sink area, which gives rise to thermal spading resistance.

The temperature-dependent thermal conductivity producea nonlinearity in the
heat conduction governing equation and this makes the prash complicated to be
solved directly. Usually, numerical methods are used to selwonlinear conduction
problems; however, in most applications, the numerical mebds are computationally
expensive and less exible for the optimization studies ofhe device layout to re-
duce thermal resistance. The Kirchho transform method is @ attractive technique
for dealing with nonlinear conduction problems with tempeature-dependent thermal
conductivity since it provides a convenient way to linearig the governing equation
and then the solution of the linearized system can be transfoed back to the solu-
tion of the nonlinear problem in an exact manner [3{6]. The Kchho transform was
introduced by Kirchho in 1894, and since its introduction t has been widely used
to solve heat conduction problems in which the thermal condtivity of the materials
depends on temperature [7]. Although the Kirchho transformis considered a pow-
erful technique in solving nonlinear conduction problemsts applicability has some
restrictions. In particular, when the boundary conditionsof the problem are Dirich-
let (rst kind) or Neumann (second kind), the Kirchho transform will transform
the boundary conditions to linear boundary conditions thatcan be used directly to

solve the transformed linear system. However, this is not thease when considering
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convective boundary conditions (third kind or Robin), as tle transformed boundary
conditions become nonlinear boundary conditions, and thigoduces a di culty when
trying to solve the transformed linear problem [3, 4].

Many relevant studies can be found in the literature on thera analysis of ux
channels. In most of the existing work, attention has been ¢ased on problems with
constant thermal conductivities. Yovanovich studied di e@ent spreading resistance
problems for more than forty years, and he summarized the ntosnportant mod-
els of thermal spreading resistance in a review paper abouintact, gap and joint
resistance in [8]. Muzychka et al. [9{14] have done compretstve research on di er-
ent aspects of thermal spreading resistance problems indilog di erent geometries,
boundaries, and properties. Bagnall et al. [15] developed analytical solution for
the spreading resistance in multilayered ux channels witlsotropic and transversely
isotropic properties. Bonani and Ghoine [1] applied the Kahho transform to a
composite medium with temperature-dependent and piecewisnhomogeneous ther-
mal conductivity for a xed-sink-temperature boundary comition. Ditri [16] studied
a single-layer ux channel with orthotropic temperature-e&épendent thermal conduc-
tivities and a xed-temperature boundary condition along he sink plane. A review of
the literature reveals that analytical solutions for the tenperature eld and thermal
spreading resistance for ux channels with temperature-gendent thermal conduc-
tivities and convective boundary conditions are limited. Rcently, Bagnall et al. [7]
applied the Kirchho transform to problems with convectionboundary conditions to
study the temperature rise.

In this chapter, the Kirchho transform is used to study the eect of the temperature-
dependent thermal conductivity on the temperature rise anthermal resistance of a
three-dimensional (3D) ux channel for di erent conductivity functions. The Kirch-

ho transform is used to transform the nonlinear conductionproblem into a linear
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problem, after which the solution of the linear problem is msented and used to
nd the solution of the original nonlinear problem by means bthe inverse Kirchho
transform. Moreover, explicit approximation of the total thermal resistance of the

nonlinear problem is developed.

4.2 Mathematical Theory

The model under consideration is a 3D rectangular ux chanthén which heat enters
the system through an eccentric heat source and ows by conchion to a larger
convective heat sink, as shown in Fig. 4.1. This model represe the general layout
of many applications including heat spreaders, semicondars and microelectronic
devices.

In many applications, the thermal conductivity of the used materials is tempera-
ture dependent and can be represented by a functional relatiship k(T). Hence, the

steady-state heat conduction is governed by the followingonlinear heat equation:
r k(T)r T=0; (4.1)

with respect to the following boundary conditions (see Fig..4). In the source plane,
a uniform heat ux is speci ed over the heat-source region, ere the heat source is
considered as of rectangular shape with dimensioasnd bin the x- and y-directions,

respectively, whereas outside the heat-source region issiolered as adiabatic. Hence,

the source-plane boundary condition is given by:

8
@T 2 g; inside source region,
ez, "3 2
z=0

~ 0; outside source region.
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@T @T
= =0; _ =0: 4.4
@Xx=0;c @yyzo;d ( )

The problem statement is illustrated along with the nonlinar governing equation
and boundary conditions. It is important to note that the norinearity of the problem
makes it di cult to be solved analytically. However, this problem can be linearized

and solved by means of the Kirchho transform.

4.2.1 Kirchho Transform

The Kirchho transform is considered a convenient method fosolving heat conduction
problems with temperature-dependent properties, which oabe applied for solving
nonlinear steady-state and transient problems [3]. Howevethe method is more
attractive for solving steady-state problems in the contexof obtaining fully exact
solutions without considering any assumptions or approxiations.

The Kirchho transform can be used to linearize the nonlineaheat conduction
equation in Eq. (4.1) by transforming the nonlinear system ith the temperature-
dependent thermal conductivity into another linear systenwith a constant thermal
conductivity. This can be done by introducing a new variable, which can be de ned

in its general form as:
T

=Kng=A+é k( )d ; (4.5)
B

whereA, B, and C are constants that can be chosen arbitrarily. Kirchho orignally

introduced the transform in 1894 of the form:
U= — k()d; (4.6)

with ko as the thermal conductivity evaluated at 0, i.e.kg = k(0). However, the
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general form in Eqg. (4.5) can be seen as a result of applyingetiso-called Hopf-
Cole transformation [17]. The Hopf-Cole transformation waoriginally presented to
linearize the viscous Burgers' equation into a linear di usn equation, by introducing
new variables that would eliminate the nonlinear terms whethe equation is presented
in terms of the new transformed variables. By following the HbCole method, the

nonlinear heat conduction equation given by Eq. (4.1) can brewritten as:

|
,. dk @T? @T°* @T°
k(T)r T+d_T| @x + §y + @z }_0, 4.7)
V4

(rTrT)

which shows the nonlinearity clearly. It is desirable to inbduce a transformation of

the form:

T= () (4.8)

such that the nonlinear term represented by the second term Eq. (4.7) is eliminated

when using the new variable . It follows from Eq. (4.8) that,

rT= % ; retT= %2+ % r (4.9)

where the derivatives of are with respect to the new variable , i.e., °=d=d and
0= ¢? =d 2. Thus, the nonlinear conduction equation in Eq. (4.7) is trasformed
under the new variable to:

dk o

K() %2+ k()

r r =0: (4.10)

It can be seen that the second nonlinear term in Eq. (4.10) aesponds tor  r
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vanishes when

k() %% g—k ® =0; (4.11)
which can be rewritten as:
d d
q k( )d— =0: (4.12)
Integrating Eq. (4.12) with respect to yields:
d
k( )d— = C; (4.13)

whereC is the integration constant. Furthermore, the result in Eq(4.13) implies that
the coe cient of the Laplacian term r 2 in Eq. (4.10) is constant, i.e.k( ) & 2 =
Cr 2 . Equation (4.13) can be rewritten in a separable form and iegrated from o

to to get the general formula of the new variable as:

()
1
= o+ c k(Jd ;- (4.14)
(o)
where o and ( o) can be chosen to be any arbitrary constants. Hence, the geaker
formula in Eq. (4.14) can be written as:
1 T
=A+ ol k( )d; (4.15)
B
which is the general form of the Kirchho transform presentd in Eq. (4.5) where
is just the inverse Kirchho transform, i.e., = K 1. As a convenient choice and to
give the new variable the dimension of temperature, in order to keep the physical
meaning of the problem, the constants can be chosen@as= B = Ty, whereTy is a

convenient reference temperature depending on the probldm be investigated and
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C = Kk(Tp) = kg is the thermal conductivity evaluated at To. Therefore, the new
variable (usually referred to as the apparent temperature) can be wien as:

1 T

= Kng:To+k— k( )d: (4.16)

OTO
As a result, when applying the Kirchho transform given by Eq.(4.16) to the nonlinear
heat conduction equation in Eg. (4.1), the nonlinear equath is transformed into the
linear Laplace's equation:

r2 =0: (4.17)

From the previous discussion on the Kirchho transform, onean see the impor-
tance of this transform for solving nonlinear heat conduatn problems by transforming
them into linear problems in terms of the new variable. The linearized problem can
be solved using the existing analytical methods for solvirignear problems provided
that the boundary conditions can be transformed into lineaboundary conditions.

In heat conduction problems, the linear boundary condition are of three main
kinds: prescribed temperature (Dirichlet or rst kind) boundary conditions, pre-
scribed heat ux (Neumann or second kind) boundary conditiosy and convective
(Robin or third kind) boundary conditions. For boundary corditions of the rst and
second kinds, the boundary conditions can be transformedéctly through the Kirch-
ho transform into linear boundary conditions in terms of the new variable . This

can be seen by considering the following boundary conditisin
Tiboundary = To; (prescribed temperature) (4.18)

which can be transformed through the Kirchho transform inbo:
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To
: 1
Jboundary = KfTpg= To + PA k( )d = (4.19)
0TO
which is again a prescribed temperature boundary conditicafter evaluating the def-

inite integral. The boundary condition of the second kind irthe form:

k(T)@T =q; (prescribed heat ux); (4.20)

@ r]boundary

can be transformed through the Kirchho transform into (ushg Eq. (4.13))

@

— = Q; (4.21)
@ r]boundary

where @ =@denotes the derivative along the outward normal at the bouraty surface.
More details about the transformations of the boundary contions of the rst and
second kinds can be found in [3].

Although the boundary conditions of the rst and second kind€an be transformed
easily into linear boundary conditions through the Kirchhotransform, in general, this
is not the case when considering a boundary condition of théitd kind which has

the form:
@T

@ boundary

k(T) = hs(Tjboundary  T1); (4.22)

and when the Kirchho transform is considered, the boundarycondition is trans-
formed to:

@ .
Ko—- = hg(K 'f Jooundaryd Tz ); (4.23)

@nboundary
which is a nonlinear boundary condition since, in generaK f g is a nonlinear
function of (K f g8 ). However, for some cases when the temperature distribu-

tion at the boundary can be approximated prior to using the Kichho transform, the
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linear boundary condition:

@ _ , .
kO@nZ:t = hs( j=t T1): (4.25)

This can be seen as a result of considering the approximatelsitemperature as
a reference temperature in the Kirchho transform, where th following relation is
obtained:

jz=t  Tiz=t (4.26)

To summarize, by using the Kirchho transform given in Eq. (416) with a reference

temperature Ty de ned by:

T, = __g+T . 4.27
0 hsC| 1 ( )

the nonlinear system gevin in Egs. (4.1)-(4.4) is transfored to the following linear

system in terms of the apparent temperature:
r2 =o0; (4.28)

with respect to the following boundary conditions:

8
@ 2 g; inside source region,
ko@z = 5 (4.29)
2=0 7 0; outside source region.
in the source plane, and
2D =h((yiD T); (4.30)
@z,_, o ’

along the sink plane, while the lateral-edge boundary conitins are transformed to:
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@ =0; @ =0: (4.31)

@X, =g ¢ @Yy -0.4
Once the solution of the new linear problem is obtained for, this solution can be
transformed easily to the actual temperature of the nonlireg problemT by employing
the inverse Kirchho transform, where the inverse Kirchho K f g is not de ned
explicitly in general. However, the actual temperature cand obtained after nding

the relationship between and T (once the thermal conductivity is speci ed) by using

Eqg. (4.16).

4.2.2 Linear System Solution

The general solution of the linearized system given by Eqs4.28)-(4.31) can be ob-
tained by using the method of separation of variables. By daing ° = T,
the linear system of °is the same as the linear system of but with homogenous
boundary condition at the sink plane. The solution of °is assumed to have the form
Ax;y;z) = X(X) Y(y) Z(z). Applying the method of separation of variables and
using the boundary conditions along the planesx(=0; x = ¢)and (y =0; y = d)

yield the following general solution:

A% y;2) = Ago + Booz
A
+ cOS( mX) [Amocosh( mz) + Bmosinh( 12)]

m=1

+  cos(nY)[Aon cosh(z)+ Bo, sinh( »z)]
n=1
X X

+ cos( mX) cos( nY) [Amn €OSh( mnz) + Bmn sinh( mn 2)];
m=1 n=1

(4.32)
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where ,, = m=c and , = n=d are the eigenvalues in thex- and y-directions,
respectively, and , = P w2+ o2 are the double Fourier expansion eigenvalues.
The general solution contains four components: a uniform w solution, and three
spreading solutions represented by the series componerttattvanish when the heat
ux is covering the whole source-plane surfacez(= 0). For m;n not both equal
to zero, the application of the sink-plane boundary condibn leads to the following

relationship between the Fourier coe cients:

an _ (kO:hs)tanh( t)+1.
Amn - (ko=hs)+tanh( t)’

()= (4.33)

where is the spreading function and refers to any of the eigenvalues,,, ., or
mn- Inthe limit of hg ' 1 | i.e., xed-sink temperature, the spreading function
becomes ( ) =coth( t).
Finally, the boundary condition at the source plane Z = 0) is considered to nd
the Fourier coe cients A, after making use ofB,, = ( )Amn. This can be done
by taking Fourier series expansions of the boundary conditi at the source plane and

using the orthogonality of the eigenfunctions to get:

_ 4Q cos( mXc)sin(G ma) .

Amo acdky m? ((m) 39
and
_4Qcos(nYe)sin(: nb)
o = od n2 ) : (4.35)
and
.1 ol
A 16Q cos( mX¢)sin(; ma)cos(nYe)Sin(z nb) (4.36)

adel‘é mn m n ( mn) ’

whereQ = abqis the total heat input of the ux channel. Now, whenm; n are both
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zeros, the zeroth-order Fourier coe cientsAgg and Bog can be found by applying the
sink-plane boundary condition and taking the Fourier expasion in the source plane

to get:

A =

Boo = (437)

The general solution of %is illustrated along with the Fourier coe cients; hence, the
general solution of can be written as = °+ T, . The solution in the source plane
(z = 0) is of most interest for nding the maximum temperature ard the total thermal

resistance of the ux channel which is addressed by:

b3
(Xy;0)=T; + Ao+  AmoC0S( mX)
m=1

X X X
+ Ao cos(ny)+ Amn €OS( mX) COS( nY): (4.38)

n=1 m=1 n=1

4.2.3 Temperature-Dependent Thermal Conductivity

The thermal conductivity of most materials is temperature dpendent, and varies
with temperature according to speci ¢ functional relatiorships between the thermal
conductivity and the temperaturek(T). In some materials, the thermal conductivity
increases with increasing the temperature (e.g., Aluminumyvhile in other materials,
the thermal conductivity decreases with increasing the teperature (e.g., Silicon).
Di erent dependency functions of the thermal conductivityon temperature can be
found in the literature explicitly or can be obtained by conslering the best curve

tting of experimental data. In this study, we will focus on three general forms of the
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thermal conductivity functions given by [7, 17, 18]:

kl(T) = ko(l + | 1(T To))p, (439)
kao(T) = koexpll o(T ~ To)l; (4.40)
k3(T) = ko ? ; (4.41)

wherekq is a reference constant thermal conductivity! ;;! , are constants called the
temperature coe cients of the thermal conductivity [19]; and p; s are real numbers
representing the exponents in the corresponding functiongt is important to note
that the reference temperatureTy is included in the de nition of the temperature-
dependent thermal conductivities in order to get the same ference thermal conduc-
tivity at Ty, i.e., ki(Tg) = ko, for comparison reasons.

Considering the Kirchho transform in Eq. (4.16), the functional relationship be-
tween the apparent temperature and the actual temperatureT that corresponds to
each of the three general forms of thermal conductivity futions given in Egs. (4.39)-
(4.41) can be obtained explicitly, and then by solving theseelationships for T, the

actual temperatureT can be obtained in terms of the apparent temperature as:

8
1
$To+ = fexpla(  To) 1g; p= 1
T = Kllf g= 3 '11 (442)
“Tot — (Ma(p+ (. To)+1) =) 1; p6 1
1
T=K,¥ g=To+ iIn(1+ Lo To)); (4.43)
g 2
y EToexp(:To 1); s=1 ( )
.BTO u+ S ;. s61

To
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4.2.4 Total Thermal Resistance

For a single heat source spreading heat to a much larger sintea, the total thermal

resistance can be de ned by [9, 13, 20]:

R = ; (4.45)

where T, is the mean temperature over the heat-source contact areaathcan be

de ned by:

T(x;y;0) dA; (4.46)

1
c  Ac

Tc= A
whereA. = abis the heat-source area. It is important to note that it is comlicated
to integrate the solution for T explicitly over the heat-source area because of the non-
linearity of the inverse Kirchho transform functions. Thus, numerical integration
can be used to evaluate the integrals in Eq. (4.46). Howevemese the mean temper-
ature T requires only evaluation of the integrals over the small heaource area, a
good approximation of the temperature eldT(x;y; 0) is the rst-order Taylor series
approximation of the functional relationships between thectual temperatureT and
the apparent temperature (T = K, *f g= ()) around the centroidal temperature
of the linear solution " = (X¢; Ye; 0). Thus, the solution in the heat-source region

can be approximated by:

Txy;0= V+ O xy;0 O: (4.47)

Hence, the mean source temperatuiie can be approximated explicitly by:

Te@pprox)= N+ N ;
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= O+ (Ao + Ty DG

X X o) sin(: x Ye) Sin(3 ob

. 2 Amocos( mXc)sinGz ma) _ Ao, cos(n cgs'n(z nD)
m=1 am n=1 # "

2 xR A cos( mX¢) Sin(% ma)bCOS( n Ye) Sin(% nD) : (4.48)

m=1 n=1 & mBn

where Cis the derivative of any of the inverse Kirchho functional elationships given

in Egs. (4.42)-(4.44) with respect to that can be addressed by:

8
0 2 expl 1(  To)l; p= 1
)= Ky g= (4.49)
Pap+1)( To)+1) P pe 1
%)= Ky f g:§+!z(1 o (4.50)
o v KU gz 2ex(=To ) =t 4.51
3()_ 3 g—.B (1TS) +Ss=(1 s); <61 ( )
0

4.3 Results and discussion

In this section, di erent parametric studies are considekto illustrate the in uence
of the temperature-dependent thermal conductivity on theégmperature rise and total
thermal resistance in ux channels with di erent con gurations. For the purpose of
verifying and demonstrating the computational e ciency ofthe analytical solutions,
numerical analysis has been conducted by solving the profsle numerically based
on the nite element method (FEM) and comparing the numericalresults to the
analytical results. For the analytical results, MATLAB (version 2016b) software is
used to carry out the results [21], while the numerical simations are performed based

on the FEM using the ANSYS commercial software package [22].
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Figure 4.4: Temperature pro le alongx-axis in the source plane (aty = Y.) by
consideringk,(T) with ! ; = 0:1 for the xed-sink-temperature study.

dimensions area = b=1 mm. The center of the heat source is located at the point
(X¢;Ye) = (5;5) mm and the thickness of the channel i$ = 1 mm, as shown in
Fig. 4.3. The di erent thermal conductivity functions given in Egs. (4.39)-(4.41) are
considered with a reference thermal conductivity df, = 150 W/m K. In the source
region, a uniform heat ux ofg= 107 W/m 2 is applied. The analytical solution is used
to compute the temperature pro le along the source plane inatling the centroidal
temperature of the heat source® = T(X¢; Ye; 0)), and the source mean temperature
T. that can be used to obtain the total thermal resistance of theux channel using
Eq. (4.45). The source mean temperature is computed in two y& First, by using
numerical integration to evaluate the source mean tempenate T.. Second, using the
result in Eq. (4.48) by approximating the source mean tempature using the rst-
order Taylor series approximation to geT.(approx.). Furthermore, all the results are
compared to numerical results obtained by solving the systenumerically using the

FEM.
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Figure 4.5: Temperature pro le alongx-axis in the source plane (aty = Y;) by
consideringk,(T) for the xed-sink-temperature study.
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Figure 4.6: Temperature pro le alongx-axis in the source plane (aty = Y.) by
consideringks(T) for the xed-sink-temperature study.

In the analytical solution, the number of terms used in the imite Fourier series

summation of the linear system solution is 500 in each of theramations and then
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Analytical FEM
k(T) Wim K) | T (K) | Tc (K) |Te(@pprox.) (K) | T (K) | Te (K)
Ko 330.249| 324.549 324.549 330.23| 324.349

ki(T);p=1 | 316.552| 314.255 314.405 316.58| 314.193
ki(T);p=2 | 311.598| 310.254 310.376 311.63| 310.225
ko(T);!2=0:1| 313.925| 312.332 312.509 313.96| 312.299
kao(T);!2=0:3| 307.700/ 307.046 307.134 307.72| 307.033
k3(T);s=1 331.827| 325.604 325.522 331.80| 325.380
ks3(T);s=3 335.759| 328.156 327.768 335.68| 327.869

Table 4.1: Source temperatures for the di erent thermal catuctivity functions with
hs I'1 and T; =300 K.

the inverse Kirchho transform is used to obtain the actual emperature (T). A sen-
sitivity study on the number of terms in the series is perford by increasing the
number of terms in the linear solution to 1000 in each summatn and it is found
that the change in the results is very small of a relative errdess than 001%. The
computational time required to nd the temperature of any pant in the source plane
is approximately Q03 s. Furthermore, the FEM numerical results are obtained wita
tetrahedral mesh and the convergence is checked by re ninge mesh. In particular,
most of the re nement is required around the heat-source rem due to the rapid
change in temperature. The system with a tetrahedral mesh gsisting of approxi-
mately 9.2 10* elements is found to be su cient to solve the problem with a vy
small loss in accuracy (relative error of less than:@% compared to using approxi-
mately 1:5 10° elements). Figures 4.4-4.6 show the source plane temperatpro les
along the x-axis wheny = Y, for the three di erent conductivity functions with dif-
ferent parameters. In each of the gures, the e ect of the teperature-dependent
thermal conductivity on the temperature rise is obvious copared to using the con-
stant thermal conductivity, where for the case of considerg k;(T) or ko(T) with the
speci ed parameters, it is clear that the thermal conductiity is an increasing function

with respect to temperature; hence, the temperature rise aund the heat-source area
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is less in magnitude than the temperature rise when considey the constant ther-
mal conductivity, as shown in Figs. 4.4 and 4.5. However, for ¢hcase of considering
ks(T), the thermal conductivity is a decreasing function of temerature. Thus, the
magnitude of the temperature rise is higher than the case olfi¢ constant thermal
conductivity, as shown in Fig. 4.6. Moreover, it can be seenofn Figs. 4.4-4.6 that
the temperature distribution in the source plane is highlydcalized at and around
the source region, while the surface temperature away frorhd heat source is at or
near 300 K, which is the temperature of the sink plane. The rean behind this is
the large value of the heat transfer coe cient along the sinkplane (in the limit of
hs '1 ) [23]. For the ux channel con guration shown in Fig. 4.3 with k, = 150
W/m K, increasing the heat transfer coe cient leads to less spagling of the heat ow.
On the other hand, decreasing the heat transfer coe cient lds to a wider spreading
through the channel. Hence, the surface temperature beconwfsa di erent nature
as we will see in the next convective-sink study. Furthermer the centroidal and the
mean source temperature of the analytical and the numericegsults for the di erent
thermal conductivity functions are given in Table 4.1 for comparison. The agreement
between the analytical and the FEM results is considerably we good with a relative
error of less than Q1% for all the results. It is worth mentioning that in computing the
mean source temperature, the closed-form analytical appimate averageT .(approx.)
presented in Eq. (4.48) has a very good agreement with the nmesource temperature
T. obtained by using the numerical integration with a relativeerror of less than 01%.
The most important advantage of this closed-form analytideapproximation for the
mean source temperature is the shorter computational timeompared with using the
numerical integration. For example, the computational tine required to compute the
mean source temperature using Eq. (4.48) is found to be apghmmately 0:05 s, while

the computational time when using the numerical integratin is found to be more
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than 10 s for some cases.

4.3.2 Convective Sink

In the second study, the analytical solution is used to studyhe in uence of the
temperature-dependent thermal conductivity for ux chanrels with a uniform heat
transfer coe cient along the sink plane. The same previousux channel shown in
Fig. 4.3 with the same channel's con guration is consideredibby assuming a uniform
heat transfer coe cient along the sink planehs = 500 W/m 2 K. For this ux chan-
nel, the average sink-plane reference temperature can bdashed using Eq. (4.27) as
To = 500 K which has been used as the reference temperature in tkegchho trans-
form. In the analytical solution, the number of terms used ithe in nite Fourier series
summations for the linear system solution is taken the same ghe previous study of
500 terms in each of the summations without any loss in accuyaand the computa-
tional time required to compute the temperature at any poinin the source plane is of
approximately 0.03 s. Further, the FEM results are obtained with a tetrahedraimesh
consisting of approximately @ 10* elements. Figures 4.7-4.9 show the source plane
temperature pro les along thex-axis wheny = Y, for the three di erent conductivity
functions with di erent parameters, where the e ect of the emperature-dependent
thermal conductivity on the temperature rise can be seen.

The accuracy of the analytical solution by using the averag&nk plane as a ref-
erence temperature in the Kirchho transform can be seen inable 4.2. The results
show very good agreement between the analytical and FEM retubf a relative error
within 0:2% for all the results. However, it is more advantageous to csider the
analytical solutions since the numerical solutions are tiemconsuming and less exible
for optimization studies compared to using the closed-formnalytical solution.

Although the previous study shows the use of the Kirchho trasform for solving
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Figure 4.7: Temperature pro le alongx-axis in the source plane (aty = Y;) by
consideringk,(T) with ! ; = 0:1 for the convective-sink study withhs = 500 W/m 2 K.
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Figure 4.8: Temperature pro le alongx-axis in the source plane (aty = Y.) by
consideringk,(T) for the convective-sink study withhg = 500 W/m 2 K.

spreading heat problems with convective-sink boundary cditions, the applicability

of the method may have larger errors for some cases, such ageswely thin ux
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Figure 4.9: Temperature pro le alongx-axis in the source plane (aty = Y.) by

consideringks(T) for the convective-sink study withhs = 500 W/m 2 K.

Analytical FEM
k(T) Wim K) | T (K) | Tc (K) |Te(@pprox.) (K) | T (K) | T. (K)
Ko 539.506| 533.435 533.435 539.49| 533.22

ki(T);p=1 519.835| 517.684 517.799 519.98| 517.778
ki(T);p=2 | 513.424| 512.228 512.317 513.57| 512.347
ko(T);!2=0:1| 515.995| 514.640 514.769 516.1 | 514.708
ko(T);!,=0:3| 508.512| 507.981 508.039 508.58| 508.039
ks(T);s=1 541.109| 534.590 534.538 541.07| 534.349
ks(T);s=3 544.904| 537.276 537.0455 544.8 | 536.956

Table 4.2: Source temperatures for the di erent thermal caductivity functions with
hs =500 W/m? K and T; =300 K.

channels and weak conduction/convection e ects, where th&nk-plane temperature
distribution becomes highly nonuniform. Hence, the use of ¢happroximate uniform
average sink temperature in the de nition of the Kirchho transform may produce un-
reliable results. To examine this, one study is conducted &ee the e ect of changing

the thickness of the channel on the analytical results. Theame previous channel's
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Figure 4.10: Relative error of the centroidal temperature leeen analytical and FEM
results by consideringk,(T) with ! ; =0:1, andp = 1.
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Figure 4.11: Relative error of the centroidal temperature ieen analytical and FEM

results by consideringks(T) with s = 3.

con guration of the convective-sink example is considerdalt with varying the thick-

ness of the channel as:05 t 5 mm. Figure 4.10 show the relative error of the
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centroidal temperature between the analytical and numerat results for di erent val-

ues of the thicknesg by considering the thermal conductivity functionk,(T). One
can see that the relative error of the centroidal temperater between the analytical
and FEM results increases as the thickness of the channel d=asges.

Another study is conducted to see the e ects of the heat-sowggosition and the
weak conduction/convection on the analytical results. Theon guration shown in
Fig. 4.3 is considered with the same heat source dimensiong the center is located
at the point (X¢;Y:) = (2;5) mm. The e ects of the weak conduction/convection
on the centroidal temperature of the heat source are examuhe The heat transfer
coe cient along the sink plane is varied as 10 hs  10° W/m ? K, whereas the
ratio between the heat transfer coe cienthg and the reference thermal conductivity
ko is kept xed (ko=hs = 0:3). Figure 4.11 shows the relative error of the centroidal
temperature between the analytical and numerical resultof di erent values of the
heat transfer coe cient by considering the thermal conduawity function ks(T) with
s = 3. One can see that the relative error of the centroidal tengrature between the
analytical and FEM results increases as the heat transfer coent (and the reference

thermal conductivity) decreases.

4.4 Conclusion

In this chapter, the e ects of temperature-dependent therral conductivities on the
temperature rise and thermal resistance of a 3D ux channelag studied analytically
by means of the Kirchho transform for di erent thermal conductivity functions. A
signi cant change in the temperature rise and thermal resiance has been observed
when considering di erent thermal conductivity functionscompared to using a con-

stant thermal conductivity. The results were validated by omparing the analytical
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results with results obtained by solving the problem numecally based on the FEM
using the ANSYS commercial software package [22] in which a veggod agreement
has been shown. In addition, the computational e ciency of ging the analytical

solution was illustrated in comparison with using the numecal solutions. Moreover,
a closed-form analytical approximation of the mean sourcermperature that can be
used in computing the total thermal resistance was preseiteand found to approxi-

mate the actual mean source temperature with good accuracydatess computational

time.
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Chapter 5

Spreading Resistance iIn
Multilayered Orthotropic Flux
Channels with Di erent
Conductivities in the Three Spatial

Directions

5.1 Introduction

Thermal management is considered as a key factor in the demainent of power devices
and microelectronic systems for better performance and deg functionality. A good

understanding of the e ects of materials' properties usedf designing the device on
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temperature rise and thermal resistance is essential to dgs a durable device. Ther-
mal spreading resistance, which occurs when heat enters thgstem through small
region(s) and ows by conduction through the system to sprehthe heat out into
a larger heat-sink area, is an increasingly important topin thermal management.
There have been some interesting and new materials that haeenerged recently in
the development of microelectronic devices due to their sepor properties. These
materials include -Gallium-oxide ( -Ga,0O3) [2], Black Phosphorus (BP) [3{5], and
Tungsten telluride (WTe,) [6], which are known to have anisotropic thermal conduc-
tivity tensors. In particular, -Ga,O3 is considered an attractive material for high-
power device applications, such as eld-e ect transistor¢FETs) and light-emitting
diodes (LEDs), due to its superior material properties [2,,8B]. Despite the fact that

-Ga,03 has excellent electrical properties, it has relatively lowhermal conductivi-
ties that range from 11 W/mK to 27 W/m K at room temperature along the three
principal directions [7]. Hence, thermal management in-Ga,O3-based power devices
is essential. Black Phosphorus has also attracted much atteon in the development
of microelectronic devices and is considered a promisingrseonducting material for
the new generation of smaller and exible devices.

Di erent analytical and numerical studies have been condued to study the tem-
perature rise and thermal resistance for di erent heat spegling problems. However,
numerical methods are less e cient for most problems compad to using a closed-
form analytical solution since they are time consuming andra less exible for the
optimization of the device layout to reduce thermal resistace [9].

Many relevant studies can be found in the literature on thisdpic. Kennedy
[10] started the research on thermal spreading resistanckoylindrical shaped semi-

conductor devices. Kokkas [11] studied thermal analysis multilayered rectangular
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structures with isotropic materials. Yovanovich [12{14] &idied di erent spreading re-
sistance problems including ux channels and ux tubes withnite and semi-in nite
geometries. He summarized the most important models of theaispreading resis-
tance for more than forty years in a review paper [15]. Muzykh et al. [16{21] have
done extensive research on di erent thermal spreading reg&ance problems, including
di erent geometries, boundaries, and properties. In mostfahe existing work, atten-
tion has been focused on problems with isotropic material&holami and Bahrami [22]
obtained analytical solution for the spreading resistancef a single-layer ux channel
with orthotropic properties. Recently, Muzychka et al. [1Panalytically modeled the
thermal spreading resistance for compound transverselyisopic two-layer systems
with equal thermal conductivities in the in-plane directims that are di erent than
the through-plane thermal conductivity (i.e.,ky = ky 6 k;). Bagnall et al. [23] devel-
oped an analytical solution for the thermal spreading resence in multilayered ux
channels with isotropic and transversely isotropic propges.

In this chapter, general analytical solutions for the tempm@ature distribution and
thermal resistance in a multilayered orthotropic ux chanrel consisting ofN -layers
with di erent thermal conductivities in the three spatial directions (i.e., ks 6 k, 6
k;) in each layer are obtained. The solutions account for the ect of interfacial
resistance or contact conductance between the adjacentéag. Moreover, an extension
of the problem to consider multiple eccentric heat sources the source plane is also

considered.
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5.2 Mathematical Theory

In this section, the problem statement is mathematically iustrated by the governing
equations of temperature distributions along with the apppriate boundary condi-
tions, then the analytical solution of the problem is presdad after applying special
transformations on the governing equations. The total thenal resistance is then in-
troduced based on the analytical solution of the temperaterdistribution. Then the

solution is extended to account for multiple heat sources ithe source plane.

5.2.1 Mathematical Formulation of the Problem

The problem under consideration is a three-dimensional (3Dectangular ux chan-
nel consisting ofN -layers with an eccentric heat source in the source plane alad
convective cooling along the sink plane, whereas all the éail edges are assumed to
be adiabatic. Each layer is assumed to be orthotropic with drent thermal con-
ductivities in the three spatial directions ;y; z). An interfacial contact conductance
h¢, is considered between the adjacent layers (layeand i + 1) to model the e ects
of surface roughness, imperfect contact, or the intrinsichonon mismatch between
dissimilar materials, as shown in Fig. 5.1. The system is mddd using a local system
of coordinates for each layer in which they-plane have the same coordinates in all
the layers with 0< x < c and 0<y < d, while the through-plane direction g) is
di erent for each layer. This approach is used as it facilitees the stretched coordinate
transformations and produces a convenient form of the gemésolution [19].

By de ning the temperature excess = T T; relative to the ambient temperature
(Ty ), the governing equation in each layer is Laplace's equatioHence, the following

system of equations represents the governing equations fbe N -layers:
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@ 1 @ 1 @ 1

Kixy——=+ kiy—s+ Ki,—==0; 0<z,<ty;

1,X@% 1,y@9 1,2@% 1 1
@ 2 @ 2 @

kox 224 K 224 1,2 220: 0<z,<ty

2,X@% 2,y@9 2,2@? 2 2

kN;x%+ kN;y@@—;"'kN;z%é\l:O; O<zy <ty; (5.1)

with di erent thermal conductivities in each direction, i:e:; ky 6 ky 6 k, for each layer.
The following boundary conditions based on the con guratio shown in Fig. 5.1 are
considered. In the source plane, a uniform heat ux is spe@d over the heat-source
region where the heat source is considered as of rectanguhape with dimensionsa

and b in the x- and y-directions, respectively, while the remainder of the soce plane

is considered as adiabatic. Hence, the source-plane bournydeondition is given by:

8
@ 2 g; inside source region
1 b )
kl;Z@Z = 3 (5.2)
Z1 = 0

© 0; outside source region.

At the interface between the adjacent layers, the followingonditions are considered
(fori=1;2;:::;N 1), representing the continuity of heat ux and the temperatire

drop due to the interfacial conductance, respectively:

) @ - k. @i+1 B
kl;z @izzi _y k|+1 ’Z—@izkl yt =0 ’ (5-3)
ki;z%szi . = hg [i(Xy:t) i+ (Xy;0)]: (5.4)

The temperature drop condition in Eqg. (5.4) might be replaa# by the following con-

dition in the case of a high value of the interfacial conductecehg, !1 (continuity
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of temperature excess):

OGY;it) = i (X y; 0): (5:5)

Along the sink plane, a uniform heat transfer coe cienthg exists and the boundary

condition is given by:

@

kn-
N @r

= hs n(X;Y;tN): (5.6)

ZN = tn

The lateral edges of the system are assumed to be adiabatidiellateral-edge bound-
ary conditions are:
@ =0; @ =0; i=1;2:::;N: (5.7)
@Xx=0;c @yy=0;d
The problem statement along with the governing equations anboundary conditions
is now completely illustrated. We then proceed to apply sttehed coordinate trans-

formations in order to present the problem in a simpler soltde form.

5.2.2 Transformations (Stretched Coordinates)

Stretched coordinate transformations can be used as a poWw#technique to transform
orthotropic systems into equivalent isotropic systems [24 Muzychka et al. [19, 25]
implemented a system of stretched coordinates for a ux chael consisting of two
transversely isotropic layers with equal in-plane thermatonductivities k, = Ky that

are di erent than the through-plane conductivity, i.e., ky = ky 6 k,, of each layer.

The application of the following transformations for eachdyer (fori =1;2;:::;N):

q q
Layeri: yi=y= Ky=kx; i=2z= K=kx; (5.8)
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leads to the de nition of the following e ective isotropic properties:

q
Layeri . ki = P ki;x ki;z; i = t= ki;z:ki;x; di = d= ki;y :ki;x: (59)

Under these transformations, the system of governing equatis in Eq. (5.1) becomes:

@ ,0 @

@x @y @ 0 O<x<c O<yi<di 0<i<t (5.10)

Although the direct application of the transformations in Eq (5.8) is able to trans-
form the governing equations in Eq. (5.1) into an equivalentet of equations given
in Eq. (5.10) with isotropic properties, a problem appears ken trying to transform
the interface boundary conditions given by Egs. (5.3) and (&) using these transfor-
mations because we have di erent stretched coordinates ie y-direction for each
layer with di erent dimensions. In other words, eachy;'s coordinates are di erent. It
is important to note that when the in-plane conductivities @& equal, i.e. kix = Kiy,
in each layer, the new stretched coordinates in thg-direction are the same for all
the layers and equal to the original coordinate, i.e.y; = y; hence, the interface
boundary conditions can be transformed directly as in [1952 However, in order to
solve the problem in general with di erent conductivities m the three directions, a
second transformation is applied. The-direction stretched coordinatesy;) in layers
i =2;3;:::;N can be transformed to the stretched coordinate of the rst kger (y1)
by using:

Y

yi=" iy, with i=m; i=2;3::;N: (5.11)
k1;yki;x

Hence, the system of equations and boundary conditions givenEgs. (51) (5:7)

can be transformed by using Egs. (5.8) and (5.11) into the folving system:
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@ 1 @, @._,.

@ @ @ O 0<ict

@i, 1@, @;__., 0< i<t

@’%+_i@%+ @iz_o’ 1=2;3::;N 12

with 0 <x<c¢ and O<y; < d;, and subject to the following boundary conditions:

8

@, 2 g; inside transformed source region,
ki —= = (5.13)

-B 0; outside transformed source region

at the source plane, while the interfacial boundary condibins are transformed to:

@ @i+1
Ki— = ki+ ; 5.14
@ i = l@i"'l i+1 =0 ( :
@i _ - e (Y] -
Ki—— = he [i(yst) i+ (XY 0)]: (5.15)
@i =t
Along the sink plane, we have:
iy SN = he N (G2 th); (5.16)
@n N = IN
and for the lateral-edge boundary conditions, we get:
@ =0; @ =0; i=1;2:::;N: (5.17)
@szo;c @yylzo;dl

The problem is now in a convenient solvable form. To summaazthe multilayered
system of orthotropic layers represented by Egs. (5.1)-®. has been transformed
into an equivalent, simpler system of equations given by Egé.12)-(5.17) using two
transformations. The two transformations associated witkqgs. (5.8) and (5.11), which

represent an expansion of the ones introduced by Muzychkaat in [19, 25], can be
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combined by applying only one transformation given by:

q q
Layeri: yi1=y= Kkuy=kix; i=2z= kiz=kx; (5.18)

after which, some simple mathematics can be used to obtainethform given in

Egs. (5.12)-(5.17). It is important to note that although the transformed system
is not fully isotropic (because of the existence of the paraaters ;), the general solu-
tion can be obtained using the method of separation of varidds in the same manner
of solving isotropic system with a slightly di erent form, & we will see in the following

section.

5.2.3 General Solution

The general solution of the rst layer temperature excess slribution ; can be found
by using the method of separation of variables [26{28], wheethe solution is assumed
to have the form 1(x;y1; 1) = X1(X) Yi(y1) Zi( 1). Applying the method of
separation of variables to the rst governing equation in Eq(5.12) and using the
boundary conditions along X = 0; x = ¢) and (y; = 0; y; = d;) yields the following

general solution:

(X y1; 1) = Aéo+ Béo 1
X -
+ cos( ;X) ApoCosh( g, 1)+ Baosinh( f 1)

m=1

+ COS( %Y1) Aén COSh(% 1) + Bén Sinh( r% l)
n=1
N
+ cos( mX)cos( y1) AL, cosh( . 1)+ Br,sinh( 1, 1) ;

m=1 n=1

(5.19)
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P :
where 1 = m=c, !=n=d,and }, = ( 1)2+( })2 The general solution

contains four components: a uniform ow solution, and threespreading solutions
represented by the series components that vanish when thealwsource area is equal

to the sink-plane area (the heat ux is distributed over the atire source-plane surface

can be obtained by solving the corresponding governing edieas given in Eq. (5.12)
also by using the method of separation of variables. It is ingptant to note that
in these layers, the governing equations of are di erent in the general form than
the rst one of ;. However, the general solution of; may be obtained in the same
manner with new eigenvalues that can be related to the eigexiues of the solution of
1. This can be done by assuming the general solution to have tfem (X;y1; i) =
Xi(x) Yi(y1) Zi( i). Applying the method of separation of variables to the goveing
equations in Eq. (5.12) and using the boundary conditions@hg (x =0; x = ¢) and

(y1 =0; y; = dy) yield the following general solution for theith layer:

(X Y1; 1) = Abg + Bhg i

x

+ cos( 1x) Al jcosh(' )+ B! sinh( | )
m=1

+ COS( r:1Ly1) AiOn COSh(:] i)+ Bé)n Sinh( :1 i)

n=1
x % _ . . .
+ COS( lmx) COS( %yl) AImn COSh( rlnn i)+ B:nn Sinh( rlnn i) ;
m=1 n=1
(5.20)
where |, = 4, 1= ;= ,and .= Lo+ 5= (5)?+( )%= . Equa-

tions (5.19) and (5.20) represent the general solution of¢temperature excess in the
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rstand ith (for i =2;3;:::;N) layers, respectively, after applying the lateral bound-
ary conditions. The interfacial and sink-plane boundary aealitions are then used to
nd a relationship between the Fourier coe cients Al and B! . in each layer. We
follow the work of Muzychka et al. [19] and Bagnall et al. [23h which the relationship

is represented by a spreading function;( ') de ned by:

i B:nn
()= e, (5.21)
| Alnn
where ' refers to any of the eigenvalues!,, |, and | . Firstly, for m;n not both

equal to zero, in order to nd the relationship between thath-layer Fourier coe -
cients (Al . and B! ), represented by the spreading function;( ), it is important
to note that the Fourier coe cients of ; depend on the Fourier coe cients of .,
(i,e., Al andB! depend onA*1 and B'*1) when applying the interface boundary
conditions; hence, the spreading function;( ') depends on the next layer's spreading
function .1 ( '*1). Thus, we start with nding the spreading function of the N th-
layer solution, and then a backward recursive formula can bebtained to nd ().
The application of the convection boundary condition at thesink plane (y = tn)
given by Eq. (5.16) leads to:

Ban _ " tanh( Mty) + [he=ky],

VO AN T W ek @nh( Vi) (5:22)

Now, the application of the continuity of heat ux and the temperature drop boundary
conditions, represented by Egs. (5.14) and (5.15), leads tbe following backward

recursive relationship:

_ Ik D =(kia M)+ (ki '=he) e (MItanh( )+ ()
[ D=k ")+ (ki =he) o (FOI+ L (Ftanh( )’

(" (5.23)



145

which is simpli ed in the case of continuity of temperature Bcess boundary condition
into(ashg, '1 ):

_ (ki ) =(kia "Hltanh( ')+ i ()

)% )= O e T taR( 1)’ (624

Finally, the boundary condition at the source plane is used tad the Fourier coef-
cients Al after making use of8! =  ;( )AL, starting from nding Al and
then a forward recursive formula can be used to obtain thih-layer Fourier coe -

cientsAl if desired. The Fourier coe cients in the rst layer (Al ) are obtained by

mn

taking Fourier series expansions of the boundary conditicat the source plane given

by Eq. (5.13) and making use oBY = ;( 1Al to get:
Xc+a=2
cos( L x) dx .
AL = bg X. a=2 m _ 4Qcos( LX¢)sin(3 %a) (5.25)
MO dke oo L) o co( ix) dx acdlq ((1)2 (L) '
and
Vc+b=2 L
_ cos( ,y1) dy =\ .
AL = aq Y. b= nyis = _ 4Q cos(}Ye)sin(3 b (5.26)
Tockida(d) Scog( tyy) dy bedik( ) 1(7) '
and
Yetb2  Xo+a=2
_ cos( & x)cos( ty;) dxdy,
AL = g Y. b=2 X, a=2 .
ok aCan) F Scog( fx) cof( fys) dxdys
_16Q cos( 1 Xc)sin(3 Ha)cos( rYc)sin(3 1b) (5.27)
abedk 5, & & 1( mn) ’ '
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where = P kiy=kix, b= b=, Y. = Y.=, and Q = abgqis the total heat input

of the ux channel. Equations (5.25)-(5.27) represent the durier coe cients of the

rst-layer solution for m; n not both equal to zero. To nd the Fourier coe cients of

the other layers, the following forward recursive formulaan be used:
0 1

Al @cosh( 't)  i()sinh('t) o :

i+1

1+ ki+?1ci i+1( i+1)

Al = (5.28)

When m; n are both zeros, the zeroth-order Fourier coe cients in the rst layer
(A}, and B},) can be found by applying the sink-plane boundary conditioand taking
the Fourier expansion in the source plane after relating theoe cients between the

adjacent layers to get:

1
At = et

|
+
|
+
S|

1
BOO

— (5.29)

Moreover, the zeroth-order Fourier coe cients in the otherlayers (AL, and B/),) can

be obtained as:

" #
Q X'y 1 oty 1
Al = —t — + —+ —
®ed o kohg o ky o hs
| Q
[ < .
Boo= ook (5.30)

From the previous discussion, the analytical solution forhie temperature excess
in each layer is illustrated completely along with the proprerecursive formulas, which
can be used for nding the Fourier coe cients. However, the dation in the rst
layer 1(X;y1; 1) (in particular, the solution in the source plane at ; = 0) is of most

interest for nding the maximum temperature and the total thermal resistance of the
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ux channel, which is addressed by:

1(%y1;0) = Age+  Afocos( ;X)
m=1

X XX
+  Ag,cos(pyy) + A}, cos( mx)cos( y1); (5.31)

n=1 m=1 n=1

and can be transformed back for convenience to the originadardinates, i.e.,x and

y, by making use of Eq. (5.8) to get:

1(Xy;0) = Adp + Al ocos( 1X)
m=1

X X %
+ Agcos(py=)+ Ann €OS( mx)Cos(py=):  (5.32)

n=1 m=1 n=1

5.2.4 Total Thermal Resistance

For a single heat source spreading to a larger extended sinlea, the total thermal
resistance can be de ned by [16, 19]:
Tc Tl

R: = = °
QT Q

whereT, is the heat-source contact mean temperature,. is the mean heat-source
contact temperature excessRjp is the one-dimensional (1D) resistance anBs, is

the spreading resistance. The mean source temperature esses given by:
1(x;y; 0) dA; (5.34)

1
C_AC A

C
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where A; = abis the heat-source area. The application of Eq. (5.34) to theource-

plane solution given by Eq. (5.32) yields:

cos( L X¢)sin(3 La) o R AL cos(tYc)sin(3 b
On

1 X 1
¢c=Agpt?2 Ao

al b1l
m=1 m n=1 n
xR cos( 1 X)sin(t La)cos(lY,)sin(: b
ca® % pa, Cos(RXSinG ) cos(aYosin; 1) 5.35)
. anby
m=1 n=1
Thus, the total thermal resistance can be obtained by usingde (5.33) as:
b3 b3 X X
Ri= Rip + Rmo + Ron + Rmn; (536)
m=1 n=1 m=1 n=1
where,
" #
1 Xty o ty 1
Rip = — —+ — o+ —+ = .37
PTced | ko h ky hs (5.37)
and
8cod( LX.)sin’(: La
o= B RXISING 1), 5.38)
accdike ()% 1( &)
and
8 2cod( Y,)sin’(: ip
Ron = C 1°)3 (12 " ); (5.39)
bPedka( 7)® 1( 1)
and
R = 64 2cog( LX) sin*(3 La)cos( tYc)sin®(3 rl,b): (5.40)

a?tredky 1o ( 5)A( D2 1 k)
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problem as one problem in which the Fourier coe cients are tde calculated for only
one solution instead of nding the Fourier coe cients for N. problems and then us-
ing the superposition. In fact, the same result can be obta& when the individual

solutions of the superposition are combined together intane solution. The general
solution of the multiple-heat-source problem is the same dle general solution for
the single-heat-source problem given in Egs. (5.19) and 28) with the same spread-
ing functions given in Egs. (5.22) and (5.23). However, the bndi erence is in the

Fourier coe cients; more precisely, the Fourier coe cients of the rst-layer solution

ALl since all the other Fourier coe cients depend oM} by a recursive formula or
a spreading function. Form;n not both equal to zero, the Fourier coe cients of the
rst-layer solution of the multiple-heat-source problem an be obtained by using the

new boundary condition in the source plane Eg. (5.41) to get:

4pc b g cos( L X¢)sin( Ha)
- _

1 -
AmO_ Cdkl( %,])2 1( %q) l (542)
and
Re 1V Vein(l 1
4 1a,-q cos(,Y¢)sin(; ,h)
1_ s :
Ao = (I (D (543
and .
16 9 cos( - Xg)sin(5 La)cos(iYq)sin(3 1h)
Al = —L : (5.44)

m Cdkl r:TLm 1m % 1( r]fm)

Regarding the Fourier coe cients of the other layers, the sae recursive formula in
Eqg. (5.28) can be used to nd them after replacing\*? and Al by A "1 and A,

respectively. Moreover, the zeroth-order Fourier coe ciets of the rst-layer solution
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(A5 and B3) are obtained as:

R
. #
R A x t 1 oty 1
0= Tt o=t =
cd =1 k| hq kN hs
R
_Q
Boi= “——: 4
00 Cdkl (5 5)

While the zeroth-order Fourier coe cients in the other layes (A, and B,)) can be

obtained as:
R
o #
i j=1 QJ X 1 t| 1 tN 1
Ao Tt o=t =
cd - ki hg Ky hs
R
9
Bj= ™ . 5.46
00 Cdk ’ ( )

where Q; = g g is the total heat input of the jth heat source. Furthermore, the

solution in the source plane can be addressed by:

1(%Y;0)= Agg+  Appcos( pX)
m=1

R s
+ Aorcos(ty=)+ AL cos( }x)cos(ly=): (5.47)

n=1 m=1 n=1

Finally, the total thermal resistance for the multiple-heatsource problem can be

de ned as [22]:
R, = <. (5.48)

where  is the mean temperature excess of all the heat sources, asrosl by:
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¢~ 1(Xy; 0) dAg ; (5.49)

5.3 Results and Discussion

In this section, dierent validation and parametric studies are used to verify and
demonstrate the computational e ciency of the developed aalytical solutions. For
the purpose of verifying the analytical solutions, numera analysis has been con-
ducted by solving the problems numerically using the nite ement method (FEM)
and comparing the numerical results to the analytical restd. MATLAB (version
2016b) software is used to carry out the analytical result29], while the numerical
simulations are performed based on the FEM using the ANSYS comroel software

package [30].

5.3.1 Single Heat Source

We start our investigation by considering an idealized sig gate eld-e ect tran-
sistor model consisting of three layers of Aluminum oxide, Btk Phosphorus, and
-Gallium-oxide (Al,O3/BP/ -Ga,0s3). The structure of the model is hypothetically
constructed base on two di erent eld-e ect transistor mocdels that have been dis-
cussed in [5, 7]. We have considered this hypothetical sttuce in our investigation
in order to develop a multilayered structure with enough copiexity to demonstrate
the accuracy and computational e ciency of the analytical slutions. The model has
side dimensions of =28 mandd =10 m, while the heat-source (gate) dimensions
areofa=2 m,andb=1 m. The center of the heat source is located at the point
(X Ye)=(10 m, 5 m), as shown in Fig. 5.3. The multilayered structure consists

of Al,O3 as the rst layer of thicknesst; =3 m with isotropic thermal conductivities
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thicker layers are chosen in this model to consider the 3D nat of each layer and
to guarantee the convergence of the numerical FEM solutionrfoomparison reasons.
The heat transfer coe cient along the sink plane is consided ashs = 10 W/m 2 K
and the ambient temperature is of 25C. A uniform heat ux of q= 10° W/m?2 is
applied in the source region which corresponds to a unifornower dissipation of 1
W/mm (normalized to the gate length a). The interfacial conductance associated
with the Al,Os/BP interface he, is xed at the value of h,, = 108 W/m 2 K, while
the interfacial conductance associated with the BP/-Ga,O3 interface h, is varied as
10 <hg <1 W/m?2K, where the case oh, ! 1 indicates that the e ect of the
interfacial conductance is neglected and the continuity démperature boundary con-
dition is considered. The analytical solution is used to copute the average T) and
centroidal (T = T(X; Ye; 0)) temperatures of the heat source and the total thermal
resistance of the system for di erent values of the interfaal conductanceh.,. The
results are compared to numerical results obtained by sahg the system numerically
using the FEM. In the analytical solution, the number of termsused in the in nite
Fourier series summation is chosen of 1000 in each of the suations and the compu-
tational time required to nd any of the results (T, T or R, ) is found of approximately
0:4 s. The number of terms is chosen based on a sensitivity stutly see the e ect
of increasing the number of terms on the average and centraldemperatures and
it is found that 1000 terms in each of the summations convergevith a very small
relative error of less than @05% compared to using ¥oterms. Figure 5.4 shows the
e ect of increasing the number of terms on the average and deridal temperatures
of the heat source forh,, = 10°® W/m 2 K. Furthermore, the FEM numerical results
are obtained with a tetrahedral mesh and the convergence isecked by re ning the
mesh. In particular, most of the re nement is required aroud the heat source and in-

terfacial contact regions due to the rapid change in tempettiare around these regions.
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The system with a tetrahedral mesh consisting of approximaly 38 1 elements is
found to be su cient to solve the problem with a very small los in accuracy (relative
error of less than @M% compared to using approximately :©6 1 elements) with
computational time of approximately 3 min. The analytical aad numerical results of
the average and centroidal temperatures of the heat sourcedathe thermal resistance
of the system for di erent values of the interfacial condu@nceh., are shown in Ta-
ble 5.1 and Table 5.2, respectively. The agreement betwedmetanalytical and FEM
results is considerably very good with a relative error of 8 than 03% for all the re-
sults. In addition, the e ect of increasing the value of thenterfacial conductanceh,,
is obvious, where both the temperature rise in the heat-sate region and the thermal
resistance of the system decrease by increasing the valuentérfacial conductance.
The minimum values are recorded whehg, !'1

Finally, one more study is conducted by changing the thermaloaductivities of
the rst layer to kix = 50, ki, = 25, ki, = 15 W/m K. Although the thermal
conductivity of the rst Al ,O3 layer is isotropic, this study is conducted as a validation
study of the analytical solution with orthotropic properties in all the layers. The
analytical and numerical results of the average and centdal temperatures of the heat
source for di erent values of the interfacial conductancé., are shown in Table 5.3
with very good agreement. Moreover, the e ect of changing ththermal conductivities
on the centroidal and average temperatures is obvious compd to considering the

isotropic values with di erences of approximately three dgrees.

5.3.2 Multiple Heat Sources

To demonstrate the computational e ciency of the developedanalytical solution for
multiple-heat-source problems, the same previous model fthe single-heat-source

problem with the same channel con guration and thermal progrties shown in Fig. 5.3
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Figure 5.4: Analytical centroidal and average temperaturesf the single-heat-source
problem computed as a function of the number of terms in the sumations forh;, =

10° W/m 2 K.

Analytical FEM

he, Wm2K) |T(C)|T(C)|[T(C)[T(C)
109 72.985| 68.356| 73.031| 68.227

5 10 67.224| 62.596| 67.271| 62.467
107 66.500 | 61.871| 66.547 | 61.743

5 10 65.919| 61.291| 65.966 | 61.162
108 65.846 | 61.218| 65.893| 61.089

1 65.773| 61.145| 65.827 | 61.083

Table 5.1: Centroidal and average temperatures of the siegheat-source validation
study for he, = 108 W/m 2 K and di erent values of the interfacial conductanceh,,.

Analytical FEM

he, (W/m 2K) | Rip (KIW) | Rgp (KIW) | R (KIW) | Ry (K/W)
10° 9564.8 12113 21678 21614

5 1¢ 6707.7 12090 18798 18733
10/ 6350.5 12085 18436 18371

5 10 6064.8 12080 18145 18081
10° 6029.1 12080 18109 18045

1 5993.4 12079 18072 18042

Table 5.2: Thermal resistance of the single-heat-sourcelidation study for h,, = 108
W/m 2 K and di erent values of the interfacial conductancen, .
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Source] [& (M) (B (M) [ Xq (M) [ Yo ( m) [ q (Wim?)
1 1 1 5 6 8 10°
2 2 1 10 5 1 10
3 1 2 15 4 9 1C¢
4 2 2 20 8 85 10°
5 1 3 25 2 7 10

Table 5.4: Heat-source dimensions and properties of the nmiple-heat-source problem.

Analytical FEM Relative Error
he, (W/m?2K) | R, (KIW) [R, (K/W) (%)
10° 11728 11720 0.07%
5 10 8860.8 8853.9 0.08%
10/ 8501.5 8494.8 0.08%
5 10 8213.9 8207.1 0.09%
10° 8177.9 8171.2 0.09%
1 8141.9 8136.2 0.07%

Table 5.5: Thermal resistance of the multiple-heat-sourcalidation study for h, =
10 W/m 2 K and di erent values of the interfacial conductanceh,, .

can be considered as a superposition of ve single-heat-smi solutions; hence, the
number of terms for the multiple-heat-source is chosen asetlsame number of terms
used for the single-source problem and is found to be su cieto obtain the results.
This can be seen from Fig. 5.6 which shows a sensitivity studf/increasing the number
of terms on the centroidal temperature of each heat sourcerflo,, = 106 W/m 2 K. In
addition, the problem is solved numerically using the FEM wh a tetrahedral mesh
consisting of approximately 6 10° elements with computational time of approximately
7 min. The total thermal resistanceR, of the analytical and numerical results for
di erent values of the interfacial conductanceh., are shown in Table 5.5. The results
show very good agreement between the analytical and numetisolution results with
a relative error of less than @%. Moreover, the centroidal and average temperatures
of each heat source for one value of the interfacial conduntz h,, = 10® W/m 2 K

are shown in Table 5.6.



160

159

150

Temperature (°C)
[ =
w SN
o o
Q\
~,

[N
N
o

''''''

———

- e em mm omm omm Em mm o wm omm mm mm mm

— Source 1
= = Source 2
........ Source 3
===:Source 4
===-Source 5

10t

102
Number of terms

10°

10*

Figure 5.6: Analytical centroidal temperature of each heat swoce in the multiple-

heat-source validation study computed as a function of theumber of terms in the
summations forh., = 106 W/m 2 K.

Analytical FEM
Sourcej | T (C)[T(C)|T(C)|T(0C)
1 129.12| 126.33| 129.20| 126.25
2 143.82| 139.25| 143.93| 139.40
3 144.85| 140.71| 144.83| 140.59
4 157.52| 151.64| 157.79| 151.56
5 146.19| 142.86| 146.37| 142.83

Table 5.6: Centroidal and average temperatures of each hesdurce in the multiple-
heat-source validation study forh,, = 108 W/m 2 K and hg, = 10°® W/m 2 K,

From the previous discussion, the computational e ciency bthe developed ana-

Iytical solution is obvious compared to solving the problemumerically. In particular,

when the problem contains multiple heat sources in the sow@lane, a large number

of elements is required around each heat source and along tbg channel to solve

the problem numerically using the FEM which will increase theomputational time

and the complexity of the problem. However, in the analyticakolution, the same

number of terms in the summations as used to solve the singleat-source problem
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is found su cient to solve the multiple-heat-source problen without loss of any ac-
curacy. Further, the complexity of the problem for solving he multiple-heat-source

problem is found to be about twice that for solving the singkbeat-source problem.

5.4 Conclusion

In this chapter, general analytical solutions for the tempature distribution and ther-
mal resistance of a 3D multilayered orthotropic ux channelonsisting ofN -layers
with interfacial conductance between the layers were deegled. The solutions ac-
count for using anisotropic materials with di erent thermd conductivities in the three
spatial directions of each layer. The developed solutiongvre extended to account for
problems with multiple heat sources in the source plane. Ths®lutions were validated
by comparing the developed analytical solution results witthe results obtained by
solving the problem numerically based on the FEM using the ANSYSommercial
software package [30] where very good agreement was foundadldition, the compu-
tational e ciency of the developed solutions was also dis@sed in comparison with

using numerical solutions.
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Chapter 6

Spreading Resistance iIn
Multilayered Orthotropic Flux
Channel with
Temperature-Dependent Thermal

Conductivities

6.1 Introduction

In the modern microelectronics industry, as the size of migelectronic devices contin-
ues to decrease with a remarkable growth in power densitigsgermal management of

microelectronic systems becomes more important for maimténg device functionality

Published in the AIAA-Journal of Thermophysics and Heat Transfer [1].
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and reliability. Accurate thermal analysis is considered aa signi cant factor in the
development of microelectronic systems for retaining deé performance and to pro-
duce a durable device. Most microelectronic systems are nebetl as rectangular ux
channels, where heat enters the channel through small heatusce(s) and ows by
conduction through the system to spread the heat into a largeonvective heat-sink
area, and this process gives rise to thermal spreading résce. The multilayered
structure is a widely used structure in the microelectronicndustry where devices are
designed as a compound system of attached layers of di eremiaterials. Recently,
some anisotropic materials have received exceptional aiten in the development
of the microelectronics in which the thermal conductivity aries with direction [2].
Orthotropic materials are of particular interest, where tle thermal conductivity in
these materials is di erent in the three principal spatial drections. Such anisotropic
materials include -Gallium-oxide ( -Ga,Os3) [3, 4], and Black Phosphorus (BP) [5].
The orthotropic di erent thermal conductivities in many materials are varying with
temperature and usually are approximated by constant theral conductivities. How-
ever, the assumption of constant thermal conductivities \thin the whole temperature
variation intervals may lead to unreliable results in thermal analysis [6, 7].

When considering temperature-dependent thermal conductiies in multilayered
orthotropic structures, the governing heat conduction eations of the system become
nonlinear. In general, analytical solutions of nonlinearystems are challenging, and
usually numerical methods are used to solve the nonlinearstgms. However, when the
problem under consideration is complex, the numerical mettle are computationally
expensive and less exible for optimization studies. Morger, the complexity of
solving nonlinear systems numerically is larger than solgnlinear systems. Hence,
analytical solutions (if possible) are advantageous for @senting accurate results and

for saving computational work.
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The Kirchho transform method is considered as an attractie technique for solv-
ing nonlinear conduction systems with temperature-deperdt thermal conductivities,
because it can be used to transform the nonlinear governingsgem of equations into
a linear system of equations that can be solved using exigiranalytical solutions
of linear systems, and then the solution of the linearized sem can be transformed
back to get the solution of the original nonlinear system usg the inverse Kirchho
transform [8{11].

In the past few decades, analytical solutions of the tempdtae distribution and
thermal spreading resistance in ux channels have been sied comprehensively, and
many related studies can be found in the literature. Howevem most of the existing
work, attention has been focused on problems with constanbhérmal conductivities.
Yovanovich studied di erent problems on spreading resistee in ux channels and
ux tubes, and he summarized the most important models of thenal spreading re-
sistance for more than 40 years in a review paper [12]. Muzkehet al. [13{18] have
conducted comprehensive research on di erent spreadingsigance problems includ-
ing di erent geometries, boundaries, and properties formgle and multilayered struc-
tures. Bagnall et al. [19] studied temperature rise and thaeral spreading resistance in
multilayered ux channels with constant isotropic and trarsversely isotropic thermal
conductivities. Bonani and Ghione [6] used the Kirchho trasform to study a com-
posite medium consisting of two layers with temperature-geendent and piecewise in-
homogeneous thermal conductivity. Ditri [20] studied a sgle-layer ux channel with
orthotropic temperature-dependent thermal conductivitts and a xed-temperature
boundary condition along the sink plane. Bagnall et al. [2Htudied the temperature
rise in problems with temperature-dependent thermal condtivities and convection

boundary conditions along the sink plane using the Kirchhotransform.
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In this chapter, the Kirchho transform is used to obtain gereral analytical so-
lutions of the temperature rise and thermal resistance in a uitilayered orthotropic
ux channel consisting of N composite layers with di erent temperature-dependent
thermal conductivities in the three spatial directions of ach layer. The Kirchho
transform is used to transform the nonlinear system into arlear system, and then
stretched coordinate transformations and the method of semtion of variables are
used to solve the linear system, where the solution the linesystem is used to nd the
solution of the original nonlinear system by means of the iesvse Kirchho transform.
Moreover, an e cient approximation of the total thermal resistance of the nonlin-
ear system is presented. The solutions have been extendedatzount for multiple

eccentric heat sources in the source plane.

6.2 Mathematical Theory

In this section, we present the mathematical formulation athe problem including the
nonlinear governing equations of the temperature distriiion for the multilayered

structure along with the appropriate boundary conditions.Then the analytical solu-
tion of the problem is illustrated after making use of the Kichho and the stretched
coordinate transformations. The analytical solution is ten used to present the total
thermal resistance of the system. Finally, an extension of ¢hsolution to account for

multiple heat sources in the source plane is introduced.

6.2.1 Problem Statement

The system under consideration is a composite three-dimémsal (3D) rectangular
ux channel consisting of N bonded layers, which represents the general geometry

of many modern microelectronic devices. The heat enters tlsgstem from a small
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heated spot represented by an eccentric heat source of a eagjular shape and ows
by conduction through the layers to reach a convective heaink with a uniform heat
transfer coe cient. Furthermore, all the lateral edges areassumed to be adiabatic,
and the adjacent layers are assumed to be in perfect contacithvno interfacial re-
sistance. The layers are assumed to be of di erent thermal gperties. In particular,
the material of each layer is assumed to be orthotropic, witli erent temperature-
dependent thermal conductivities in the three spatial diretions (X;y; z;), as shown in
Fig. 6.1. For convenience, the system is modeled using a losgstem of coordinates
in each layer with di erent through-plane (vertical) coordnates 0< z; <t; and the
same in-plane (horizontal) coordinates with & x < ¢ and 0<y < d for all the
layers.

The steady-state heat conduction in each layer is governed la nonlinear heat
equation because of the dependency of the thermal condudies on temperature.
The general system of nonlinear equations that representiet governing equations
of heat conduction in the N-multilayered structure with orthotropic temperature-
dependent thermal conductivities can be addressed by:

@@x ki;X(Ti)%; + @@y ki;y(Ti)%; + @@?z ki;Z(Ti)%; =0; 0<z;<t;; (6.1)
fori =1;2;:::;N. The boundary conditions of the system are addressed basettbe
general nature of heat ow in the ux channel, where heat ents the system from the
source region and is removed from the system by convectiorrdiagh the sink plane.
In the source plane, a uniform heat ux is speci ed inside theectangular heat-source

region, whereas the remainder of the source plane is consateas adiabatic. Hence,
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the source-plane boundary condition is given by:

8
@T 3 g; inside source region,
kl;Z(Tl)@ = B (62)
z1 =0

~ 0; outside source region.

The interface boundary conditions between the adjacent lays (fori =1;2;:::;N 1)

are the continuity of heat ux and the continuity of temperature, respectively:

i i
Ge(Mgy = keaa(Ta) it (6.3)
zZi =t ziv1 =0
Ti(x;y;t) = T+ (X;y; 0): (6.4)

Along the sink plane, a convection boundary condition with a niform heat transfer

coe cient hg exists, and the boundary condition is given by:

e (TN)% L =heoyit) T (6.5)

The lateral edges of the system are considered as adiabatience, the lateral-edge

boundary conditions are:

@- =0; @ =0; 1=1;2:::;N: (6.6)
@X, -0:¢ @Y, -0.4
The governing equations along with the boundary conditionsf the temperature
distribution in the multilayered system are completely ilustrated in Eqgs. (6.1)-(6.6).
Although the general form of the governing equations in Eq. (6) governs the problem
for di erent thermal conductivity functions in the three spatial directions of each

layer (kix (T;) & kiy (Ti) & ki, (Ti)), the analytical solution of the proposed problem

requires that all the thermal conductivity functions in the system must depend on
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temperature in the same manner [6, 20]. In other words, thergerature-dependent

thermal conductivities can be written as:
Kiw (T) = K%, R(T); (6.7)

whereu refers to any of the coordinates; y or z;; k?, is a constant thermal conductiv-
ity; and Q(T) is a functional relationship of temperature, for example(,%(T) =1+ T.

Under this assumption, the governing equations in Eq. (6.1)aa be rewritten as:

Q(T) k0 @

Q(T) iz @Z

Q(T,)%Z =0; O<z;<t;:

|x @X ')’@

(6.8)

We then proceed to obtain the analytical solution of the prolem using some mathe-

matical transformations.

6.2.2 Kirchho Transform

The Kirchho transform is considered to be a powerful methodor linearizing nonlin-
ear heat conduction problems with temperature-dependeniérmal conductivity. The
idea behind the Kirchho transform is to present a new variake (usually referred to
as the apparent temperature) as an integral function of theemperature-dependent
thermal conductivity, where the nonlinear system can be trzsformed under the Kirch-
ho transform into a linear system in terms of the new variabé . Furthermore, the
linearized system can be solved using existing analyticalethods for solving linear
problems, and then the solution of the linear system can beamsformed back to
the solution of the nonlinear system through the inverse Kehho transform. The
Kirchho transform can be found in the literature in many forms depending on the

problem under investigation [9, 21{23]; however, all formshare the same general
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idea. For the multilayered system, the following general fm of the Kirchho trans-
form is considered in each layer because it facilitates theuftilayered structure and
the transformation of the convective boundary condition @ng the sink plane:

Ti

= KfTig= To+ K()d: (6.9)

To
where Ty is a convenient reference temperature. Applying the Kirchhdransform
given by Eq. (6.9) to the nonlinear system, Eq. (6.8), the ndimear system is trans-
formed into a linear orthotropic system of equations with agstant thermal conduc-

tivities given by:

p@i

@i, @
I;X@%

@i, 0@
" @9

k i;z @_%

+ k + k =0; for i=1;2:::;N: (6.10)
Moreover, the boundary conditions of the nonlinear systenratransformed through
the Kirchho transform into the following boundary conditions. The source-plane

boundary condition in Eq. (6.2) is transformed to:

8
2 g; inside source region
2t = ’ 6.11)
@z, 3 (6.
Z1 =

~ 0; outside source region.

The interface boundary conditions in Egs. (6.3) and (6.4) artransformed to [6]:

k|Oz %:Z = k?+1;z%; o ; (612)
Zi =t Zi+1 =
OGYit) = s (X Y;0): (6.13)

The lateral-edge boundary conditions in Eq. (6.6) are trafigrmed to:
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@i _0- @i

@Xx=0;c ; @yyzo;dzo; i=1;2:::;N: (6.14)
Although the source plane, interfacial, and lateral-edge biadary conditions are
transformed easily into linear boundary conditions throuly the Kirchho transform,
this is not the case, in general, when considering the contige sink-plane boundary
condition. In fact, when convective boundary conditions ftird kind or Robin) are
present, the transformed boundary conditions are, in gerar nonlinear boundary

conditions [9, 10]. This can be seen by considering the siplane boundary condition:

kN;Z (TN )g—g = hs (TN (X, Y, tN) T]_ ) . (615)

ZN = tn

When the Kirchho transform is considered, the boundary conidion is transformed

to:
kO @N

Nz @g =hs K ' v(y;tn)g Too; (6.16)

N =ty

which is a nonlinear boundary condition becausé f ygis, in general, a nonlinear
function of \, and this makes it di cult when trying to solve the transformed linear

problem. However, when the temperature distribution alonghte sink plane can be
approximated before using the Kirchho transform and used @a reference tempera-
ture Ty in the de nition of the transform, Eq. (6.9), the transform can be applied for

the convective boundary condition in Eq. (6.15) to get a liner transformed bound-

ary condition [21]. By considering the problem under studyheat enters the system
through the small heat-source region and ows by conductioto spread the heat out

from the heat-source area into the larger heat-sink area. Hes the temperature along
the sink plane can be approximated by the mean sink-plane t@mrature using the

conservation of energy, and then the approximated tempenae can be used as the
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reference temperature in the Kirchho transform, i.e.,

= . 1
To=TNjz=t = h—%+ Ty : (6.17)
s

Thus, when the approximated sink-plane temperature in Eq.6(17) is used as the
reference temperature in the Kirchho transform Eq. (6.9), he convective boundary
condition in Eq. (6.15) can be transformed into the followig approximate linear

boundary condition [21]:

ko @N

Nz @g =hs(n(XY;tn)  T1): (6.18)

ZNy = tn

To summarize, by considering the average sink temperature ded in Eq. (6.17)
as a reference temperature in the Kirchho transform, the nalinear system Egs. (6.1)-
(6.6) is transformed to the linear system represented by Eq$.10)-(6.14) and Eq. (6.18).
Once the solution of the linearized system is obtained, thelsition can be transformed
to the approximate actual temperature of the nonlinear prolem by employing the
inverse Kirchho transform. It is worth mentioning that the explicit functional rela-
tionship between the actual temperaturél; and the apparent temperature ; depends
on the speci ¢ nature of the temperature-dependent functio K(T). Di erent de-
pendency functions of the thermal conductivity on temperatre can be found in the
literature [21, 23, 24]. In this study, we will consider thre general forms of the thermal

conductivity functions given by:

R(T)=1+ 1T To); (6.19)
Ro(T) =exp[! 2T To)l; (6.20)
Ry(T)= ° ", (6.21)

T
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where! 1, ! , are dependency parameters called the temperature coe cienof ther-
mal conductivity [11], and s is a real-number exponent. The functional relationship
between the apparent temperature; and the actual temperatureT; can be obtained
for the three general conductivity functions using Eq. (6)9 and then the actual tem-
perature T; can be obtained in terms of the apparent temperature, that represents
the inverse Kirchho transform by solving the relationshigs for T; to get the following

results for the three general functions, respectively:

1 hp i
T = K, 9= To+ —  24(i To)+1 1; (6.22)
‘1
T =K, ig=To+ Iiln(1+ Lo(i To)); (6.23)
g
. 2 Toexp(i=To 1) s=1 620
Ti=Kzfig= _ 1=(1 s) 6.24
.BTO &+ S ; s61
To

6.2.3 Linear System Solution

The solution of the nonlinear system requires nding the sation of the linearized
system for the apparent temperature rst, and then, by usingany of the functional
relationships in Eqgs. (6.22)-(6.24) that corresponds to thused conductivity func-
tion, these solutions can be transformed to the solution ohé nonlinear system. The
general solution of the linearized system can be obtained lwging stretched coor-
dinate transformations combined with the method of separain of variables. The
application of the following stretched coordinates transtmations for each layer (for

i=1;2:::;N),

q q
Layeri: y1=y= k},=k,; i=2z= k¥=K; (6.25)
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leads to the de nition of the following e ective properties

. 9 kK%, a4 q —
Layeri: k= k% kY; = o == kP, =k; d=d= k{ =ki,:

1y ™Nix

(6.26)
Hence, the linear system of equations and boundary condit®f ; can be trans-

formed under Eq. (6.25) into the following system:

@ , @, @ _ .

ex’ @y @ O 0<ic<h

@, 1@ @ .. 0< i<t

@%+_‘@%+ @iz_o’ 1=2;3::;N (627

with 0 < x<c¢ and O0<y; < d, and subject to the following boundary conditions:

8
@, 2 g; inside stretched source region,
ki == = (6.28)
@1 1=0 3

© 0; outside stretched source region,

in the source plane, whereas the interfacial boundary comidins are transformed to:

@i @i+1
Ki — = K+ ; 6.29
I@i .y Il@i+1 - ( )
iGYLt) = 41 (XY 0): (6.30)
Along the sink plane, we have:
WS = hwystn) T (6.31)
@n N = In

and for the lateral-edge boundary conditions, we get:
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@ =0 @ =0: i=1:2:::N: (6.32)
@Xx=0;c @yy1=0;d
By introducing %= ; T;,the linear system of ?is the same as the linear system

of ; but with a homogenous boundary condition along the sink plan The application
of the method of separation of variables by assuming the geaksolution in each layer
to have the form Ax;y1; i) = Xi(x) Yi(y1) Zi( i) and using the boundary conditions
along x =0; x = ¢) and (y. = 0; y; = d) yield the following general solutions for

i=1;2;::::N:

% y1; 1) = Ao+ Big |

X

+ cos( 1x) Al cosh(! )+ Bl sinh( | )
=1

3

+ COS( r11yl) Ai()n COSh(L i)+ BiOn Sinh(:] i)
n=1
X . . . .
+ cos( mx)cos( ay1) Ap, cosh( i)+ By, sinh( 1 1)

m=1 n=1

(6.33)

where |, | and | arethe corresponding eigenvalues in each layer. The eiggimes

in the rst layer are de ned by:
1 — - 1 _ —A- 1 _ P 11\2 1\2-
m — M =C; n=n= d1 mn ~ ( m) +( n) ' (6-34)

whereas the eigenvalues in the other layers can be relatedthe eigenvalues of the

rst layer as:

q— r
. . 1 . i . 1
= h=ﬁ:i%; = mot 2= ()2 =(hE 0 (6.35)
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The interfacial and sink-plane boundary conditions are theeused to nd a re-
lationship between the Fourier coe cients Al and B!, in each layer. We follow
the work of Muzychka et al. [17] and Bagnall et al. [19] in whitthe relationship is

represented by a spreading function;( ') de ned by:

B .

()= Y (6.36)

where ' refers to any of the eigenvalues!., !, or ! . For m;n not both equal

ne
to zero, we start with nding the spreading function of the N th-layer solution by

applying the convection boundary condition at the sink plaa Eq. (6.31) to get:

Ban _ " tanh( “ty) +[hs=ky].

AN T N+ [he=kyJtanh( Nty) (6.37)

N ( N):

The application of the interfacial boundary conditions Eqs(6.29) and (6.30) leads to

the following backward recursive formula for nding i( '):

= [(ki i):(ki+1 i”)]tanh( iti)+ i1 ( i+1)-
[(ki )=(kiza "]+ i ( *)tanh( ')

(" (6.38)

Finding the total thermal resistance and the maximum tempetare of the channel
requires obtaining the solution in the rst layer ; (in particular, the solution at
1 = 0). Hence, the Fourier coe cients Al and Bl are of most interest. The

Fourier coe cients of the rst-layer solution (Al ) are obtained by taking Fourier

series expansions of the boundary condition at the sourcepék Eq. (6.28) and making

use ofBr = 4( HAL to get:
Xc+a=2 L
cos( »,X) dx ,
AL = bg X. a=2 m _ 4Qcos( L X)sin(z La). (6.39)

MO dky b o(h) gco( Ex)dx acdk ((R)? i( L)
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and
Vc+b:2 L
_ cos d _
AL = aq Y. b2 (ny2) dys _ 4Q cos(}Ye)sin(3 b (6.40)
"% i (D Soos( 2y dys bedk( 97 (4
and
Yetb2  Xo+a=2
_ cos( L x)cos( ty;) dxdy,
AL = g Y. b=2 X, a=2 .
™ ke hn 1 ) S Scog( Lx)coP( tyr) dxdy;
_16Q cos( 1 Xc)sin(3 :a)cos(tYe)sin(3 b (6.41)
- adeK %1n 1m % 1( r}ﬁn) ’ .
where = P Kiy=kix, b= b=, Y. = Y= , andQ = abqjis the total heat input of the

ux channel. When m; n are both zeros, the zeroth-order Fourier coe cients in the
rst-layer solution (A}, and BJ,) can be found by applying the sink-plane boundary

condition and taking the Fourier expansion in the source pte after relating the

coe cients between the adjacent layers to get:

" t
a1
®ed ok ohs
1 - Q.
Bo= ok (6.42)

The solution in the source plane at; = 0 is of most interest, which can be addressed

in terms of the original coordinates, i.e.x andy, by:

Ps
1(GY;0)=T1 + Ajg+  Agecos(mX)+  Ag, cos(py=)
m=1 n=1
X X
+ Al cos( L x)cos(lty=):

m=1 n=1

(6.43)
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Thus, the solution of the nonlinear problem in the source pte T.(x;y;0) can be
obtained by substituting the solution of the linear system igen in Eq. (6.43) into the

corresponding functional relationships in Egs. (6.22)-(84).

6.2.4 Total Thermal Resistance

For a single heat source spreading heat to a larger sink ar¢le total thermal resis-

tance can be de ned by [13, 17, 25]:

Ri = ; (6.44)

whereT, is the mean temperature over the heat-source area de ned by:

Te = Ti(x;y; 0) dA; (6.45)

1

Ac A,
with A = abis the area of the heat source. It can be seen that the solutidn(x;y; 0)
is complicated to be integrated explicitly over the heat-sgce area because of the
complexity of the inverse Kirchho transform functions. Thus, numerical integration
can be used to evaluate the integrals in Eq. (6.45). However,gaod approximation
of the temperature eld Ty(x;y;0) is the rst-order Taylor series approximation of
the functional relationships between the actual temperate T, and the apparent
temperature ; denoted by the inverse Kirchho transformK * around the centroidal

temperature of the linear solution”; = 1(X¢; Y¢; 0). Thus, the solution in the heat-

source region can be approximated by:
Ta(xy;0) = K g+ K ¥ g(1(xy;0)  "); (6.46)

whereK 1! stands for any the functional relationships in Eqgs. (6.2206.24) andK 1
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is the derivative of the functional relationships with respct to the dependent variable

. Hence, the mean source temperatufg can be approximated explicitly by:

N

Tc(approx.) = K ' Alg+ K f Alg( c 1) (6.47)

where . is the mean temperature of the linear solution over the heawurce area that
can be calculated by:

cos( L Xc)sin(3 ~a) o R AL cos(tYc)sin(3 1b)
On

1 X 1

_ a4 . v
=1 n=1

L8R cos(EXgsinG ha)cos(AYo)singg i) (6.48)
mn a %qb%

m=1 n=1

6.2.5 Extension to Multiple Heat Sources

In many applications, heat enters the system through multile heat sources distributed
along the source plane instead of a single heat source. Weesxt the problem to
contain a nite number of N rectangular heat sources distributed nonuniformly along
the source plane, as shown in Fig. 6.2. With this extension, thenly change that
happens to the problem statement is in the source-plane badery condition. The
new source-plane boundary condition is expressed by comsidg a uniform heat ux
g distributed over the jth heat source (forj = 1;2;:::;Nc), and outside the heat-
source regions, the surface is considered as adiabatic. $hilne source-plane boundary

condition Eq. (6.2) is rewritten as:

g, inside]jth source region,
oy @ = (6.49)

@z z1=0 S 0; outside source regions.

Applying the Kirchho transform Eg. (6.9) to the new extended problem with a
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where the Fourier coe cients of the multiple-source problm are given by,

4P° bq cos( X )sin(3 L&)
=1 :

1
Amo_ Cdk]_( ]r_n)z 1( ]rh) y (653)
and
LN W\t
. 1aiq COS(n Cj)SIn(2 nh)
_ = .
Ao = (I (D (659
and o
16 __c g cos( 3 X¢)sin(3 La)cos( 1Y, )sinG: ih)
ALl =17 : (6.55)

m cdky r%m %1 r11 l( %wn)
Moreover, the zeroth-order Fourier coe cients of the rstdayer solution (A, and B3

are obtained as:

Pc
#

ppom X w1
00 cd | K, hg '

Fc

9
1_ 1= .
Bob = g (6.56)

Furthermore, the same functions that represent the inverd€irchho transform can be
used to nd the source-plane solution for the actual tempetare T, (x;y; 0). Finally,

the total thermal resistance for the multiple-heat-sourceroblem can be de ned as [2]:

(6.57)

whereT, is the mean temperature of all the heat sources, de ned by:
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c= M | . T1(x;y; 0) dA; : (6.58)
i

6.3 Results and discussion

In this section, di erent parametric studies are considexto validate the developed
analytical solutions and to demonstrate their computatioal e ciency. Further, the

in uence of the di erent temperature-dependent thermal caductivity functions on

the temperature rise and the total thermal resistance is alsdiscussed. The ana-
lytical solution results are compared with numerical solubon results that have been
conducted by solving the problem numerically based on the ite element method
(FEM). For the analytical results, MATLAB (version 2016b) sotware is used to carry
out the results [26], while the numerical results are obtagd based on the FEM using

the ANSYS commercial software package [27].

6.3.1 Single Heat Source

We start our investigation by considering a multilayered 3Drectangular ux channel
consisting of three layers with orthotropic temperature-dpendent thermal conduc-
tivities in which heat enters the system from a rectangularisgle heat source and
ows by conduction through the channel to reach a convectivleat sink. The heat
source is of dimensiona =1 mm, and b= 2 mm with its center located at the point
(X¢; Yo) = (15 mm; 4 mm), while the side dimensions of the channel are= 30 mm
and d = 10 mm, as shown in Fig. 6.3. In each layer, the orthotropic ttrenal conduc-
tivities are presented as a product of di erent constant themal conductivities in the
three spatial direction times any of the temperature-depelent conductivity functions

given in Egs. (6.19)-(6.21). The rst layer is considered dhicknesst; = 1 mm and
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along the sink plane, a heat transfer coe cient ohs = 200 W/m 2 K exists. The am-
bient temperature is of 300 K. The developed analytical sdion is used to compute
the centroidal (f' = T(X.; Y; 0)) and the average T) temperatures of the heat source
for the three general forms of the thermal conductivity funitons Egs. (6.19)-(6.21)
with di erent parameters. The average sink plane referendemperature is obtained
using Eq. (6.17) asly = 333:3 K, which has been used as the reference temperature
in the de nition of the Kirchho transform. The analytical s olution is addressed by
obtaining the linear system solution rst, and then the invese Kirchho transform is
used to obtain the solution of the actual temperature. The nmber of terms used to
truncate the in nite Fourier series summations of the lineasystem solution is 1000
in each of the summations, and the computational time requed to nd the temper-
ature of any point in the source plane is found of approximale 0:4 s. Moreover, a
convergence study on the number of terms in the series is mgrhed by increasing
the number of terms, and it is found that the change in the redts is negligible. The
average source temperature that can be used to nd the totahermal resistance of
the channel is computed using the two previously addressedethods, rst by per-
forming numerical integration over the source contact aret get T, and second by
considering the result in Eq. (6.47) where the average soartemperature is approxi-
mated using the rst order Taylor approximation to getT¢(approx.). It is found that
the approximate average has good agreement with the numetlly integrated average
with shorter computational time compared to using the numecal integration of the
analytical solution. Furthermore, the analytical resultswere validated by numerical
results obtained by solving the system numerically using ¢hFEM. In the numerical
solution, the results were obtained with a tetrahedral meskith high element den-
sity around the source region, and the convergence was chextky re ning the mesh,

where a mesh consisting of approximately:2 1 elements is found to be su cient
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Figure 6.4: Temperature pro le alongx-axis in the source plane (aty = Y;) by
considering the thermal conductivity functionk,(T) for the single-source study.

to simulate the problem. The analytical and the numerical rgults of the average and
the centroidal temperatures of the heat source for the thregeneral forms of thermal
conductivity functions with di erent parameters are shownin Table 6.1, where a very
good agreement between the analytical and the numerical s can be observed.
Figures 6.4-6.6 show the temperature pro les along the so@@lane in the x-
axis direction that passes through the heat-source centergi, wheny = Y., for the
three di erent conductivity functions with di erent param eters. In these gures,
the e ect of changing the temperature-dependent thermal cwluctivity function on
the temperature rise is clear compared to using constant threal conductivities, i.e.,
Q(T) = 1. Moreover, when consideringk:(T) or ko(T) as the temperature-dependent
thermal conductivity function, it can be seen from the de niion of these functions that
the thermal conductivity is an increasing function with repect to temperature; hence,
the temperature rise along the source region is less in magule than the temperature

rise when considering constant thermal conductivities, aghown in Figs. 6.4 and 6.5.
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Figure 6.5: Temperature pro le alongx-axis in the source plane (aty = Y;) by
considering the thermal conductivity functionk,(T) for the single-source study.

365 - T .

360

w w
a1 a1
o o1

Temperature (K)
w
N
o

330 1 1 1
5 10 15 20 25

x(mm)

Figure 6.6: Temperature pro le alongx-axis in the source plane (aty = Y.) by
considering the thermal conductivity functionks(T) for the single-source study.

However, for the case of considerinks(T), the thermal conductivity is a decreasing

function with respect to temperature, and one can see from Fif.6 that the magnitude
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Sourcej | g (mm) | B (mm) | X (mm) | Yy (mm) | g (W/m 2)
1 2 1 5 5 9 10
2 1 1 10 6 8 1¢
3 1 2 15 4 1 10
4 2 2 20 8 2 107
5 1 3 25 2 7 1C¢

Table 6.2: Heat-source dimensions and properties of the nmiple-heat-source problem.

R(T) T, (K) (Analytical) | T, (K) (FEM) | Relative Error

kMy=1 437.900 437.479 0.1%
Ri(T);! 1 =0:05 435.0269 434.895 0.03%
Ri(T);'.=0:1 433.674 433.739 0.02%
Ro(T);!,=0:05 434.651 434.531 0.03%
Ro(T);1,=0:1 432.967 432.976 0.01%
Rs(T);s=1 438.137 437.679 0.1%
Ry(T);s=3 438.6549 438.121 0.1%

Table 6.3: Average temperature of all the heat sources of theuttiple-source study
for the di erent thermal conductivity functions.

Both analytical and numerical solutions of the multiple-sarce problem have been
conducted, where, in the analytical results, the number oktms in each of the trunca-
tions of the in nite Fourier series summation is taken the sae number of terms used
for the single-source problem of 1000 terms, and the comptitenal time required to
nd the temperature at any point in the source plane is found bapproximately 0.7
s. The number of terms is chosen according to the fact that thmultiple-heat-source
solution of the linear system can be considered as a supeipos of ve single-heat-
source solutions; hence, the number of terms for the multglheat sources is chosen
as the same number of terms used for the single-source probland is found to be
su cient to obtain the results. In the numerical results, a tetrahedral mesh con-
sisting of approximately 46 1 elements is found to be su cient to simulate the

problem. According to the new source-plane con guration, # average sink-plane
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reference temperature that has been used as the referenamperature in the Kirch-
ho transform is found of To = 425 K using Eq. (6.50). Table 6.3 show the average
temperature of all the heat sources for the analytical and muerical solution, where
very good agreement can be observed.

Finally, it is worth mentioning that, in all of the previous analyses for the single-
and the multiple-source problems, although the numericalotutions of the problem
are exible and has good agreement with the analytical soligns, the computational
time required to obtain the numerical results is much largethan the computational
time for the analytical solution. Moreover, simulating thenonlinear problems with
temperature-dependent thermal conductivities numericBl requires more time than

simulating the linear problems with constant thermal condctivities.

6.4 Conclusion

In this chapter, general analytical solutions for the temp@ature distribution and the
total thermal resistance of a 3D multilayered ux channel wth orthotropic temperature-
dependent thermal conductivities using the Kirchho trangorm were developed. Dif-
ferent thermal conductivity functions were considered totady the e ect of changing
the temperature-dependent conductivity function on the teperature rise and the
total thermal resistance. An extension of the solutions forrpblems with multiple
heat sources in the source plane was illustrated. All the arydilcal results have been
validated with numerical results obtained by solving the psblem numerically with
the FEM, where very good agreement has been shown. Furtheretltomputational

e ciency of the developed analytical solution is also addesed.
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Chapter 7

Conclusions and Future Work

7.1 Summary and Conclusions

In this thesis, we obtained analytical solutions for the teqerature distribution and
thermal resistance of 3D ux channels with nonuniform propeies and complex struc-
tures. These solutions can be very useful for thermal engers in thermal design
analysis and optimization of microelectronics and coolingystems.

In Chapters 2 and 3, we obtained analytical solutions for théeemperature eld
and total thermal resistance of a single-layer isotropic x channel with nonuniform
heat transfer coe cients along the sink plane. The solutios in Chapter 2 account for
a concentric heat source, convective cooling along the sigldges, and a variable heat
transfer coe cient varying in one direction along the sink egion. The solutions were
obtained using the method of separation of variables comigid with the least squares
method. In Chapter 3, we generalized the solutions to accaduior an eccentric heat
source and a 2D variable heat transfer coe cient varying in e two horizontal di-
rections along the sink plane. Furthermore, we used thesdgmns to conduct some

parametric studies in order to examine the e ects of the di eent variable heat transfer
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coe cient functions with the same average conductance on thtemperature distribu-
tion and thermal resistance of the ux channel. The resultstow that although the
average total conductance for the di erent variable heat tansfer coe cient functions
was xed at constant value, the temperature distribution aml total thermal resistance
are strongly dependent on the distribution of the conductare pro le along the sink
plane.

In Chapter 4, we presented the general solutions of a 3D isopic ux channel
with temperature-dependent thermal conductivity and consnt heat transfer coe -
cient along the sink plane. The solutions were presented byeans of the Kirchho
transform and the inverse Kirchho transform. The Kirchho transform was used to
linearize the nonlinear conduction system, where the solah of the linearized system
is obtained using the method of separation of variables. Thewe used the solution
of the linearized system in obtaining the solution of the aginal nonlinear system
through the inverse Kirchho transform. In the general de ntion of the Kirchho
transform, the approximate sink plane temperature was usedss a reference temper-
ature in order to consider the convective boundary conditiothrough the Kirchho
transform method. We also presented an explicit approximenn for the total thermal
resistance based on the solution of the linearized systemdatie functional relation-
ships between the actual temperature and the apparent temgure. In addition, we
used these analytical solutions to study the e ects of tempature-dependent thermal
conductivity functions on the temperature rise and thermaresistance. The results
show noticeable di erences in the temperature distributin and thermal resistance for
the di erent temperature-dependent thermal conductivity functions compared with
using a constant thermal conductivity.

In Chapters 5 and 6, we studied 3D ux channels of multilayekstructures consist-

ing of a nite number of orthotropic layers with constant andtemperature-dependent
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thermal conductivities, respectively. In Chapter 5 we presited analytical solutions
for the temperature distribution and thermal resistance othe multilayered structure
with interfacial conductance between the adjacent layersnd a uniform conductance
along the sink plane. The solutions account for multiple eeatric heat sources in the
source plane. The results show how the analytical solutiomser signi cant compu-
tational savings over the numerical FEM solutions.

Finally, in Chapter 6 we presented the general solutions of rilayered orthotropic
ux channels with temperature-dependent thermal conductiities by making use of
the solutions presented in Chapters 4 and 5. The Kirchho trasform method pre-
sented in Chapter 4 was used to transform the nonlinear goveng equations of the
multilayered temperature-dependent orthotropic systenmto a linear system with con-
stant thermal conductivities, representing a special casgf the system discussed in
Chapter 5. Although the solutions presented in Chapter 6 arebtained for multilay-
ered orthotropic systems with temperature-dependent thaeral conductivities, some
restrictions on the system exist for obtaining the generalnalytical solutions in this
way. First, all the adjacent layers have to be perfectly attdeed with no interfacial
conductance between the layers. Second, all the thermal cuetivity functions in the

system must depend on temperature in the same manner.

7.2 Suggestions for Future Research

In the present research, analytical solutions for the tempature distribution and

thermal resistance in di erent types of ux channels have ben developed. However,
many aspects of thermal issues and thermal analysis in mietectronic devices need
further investigations, which would benet the overall eld of thermal management

in microelectronics and some other disciplines. Some of seeaspects are listed here
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as suggestions for future research:

Analytical solutions for the temperature distribution and thermal resistance in
a cylindrical shaped ux tube with a circular heat source in he source plane

and a nonuniform heat transfer coe cient along the sink plae.

Analytical solutions for the temperature distribution and thermal resistance in a
multilayered ux tube consisting of a nite number of layerswith temperature-

dependent thermal conductivities.

Analytical solutions for the temperature distribution and thermal resistance in

multilayered ux tubes of orthotropic materials.

Analytical solutions for the temperature distribution and thermal resistance
in ux channels and ux tubes chosen in di erent orientations of orthotropic

materials.

Analytical optimization studies for the multiple-heat-souce distribution along

the source plane.

For cylindrical shaped ux tubes (which represent the othegeneral geometry of
microelectronic devices) with a uniform heat transfer coecient along the sink plane,
the heat ow mechanism is similar to that for rectangular shped ux channels. In
addition, the general solutions for the temperature distbution and thermal resistance
in ux tubes can be obtained using the method of separation ofariables, where
the solutions are represented in terms of the orthogonal sef Bessel's functions.
However, when the distribution of the heat transfer coe ciem along the sink plane
is nonuniform, the direct application of the method of sepation of variables is not

possible. Nevertheless, the analytical solution procedwsréor rectangular ux channels
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with nonuniform heat transfer coe cients, presented in Chaters 2 and 3, can be
followed to obtain the analytical solutions for cylindricd ux tubes.

Similarly, the developed analytical solutions in Chapters and 6 for the multilay-
ered ux channels with orthotropic and temperature-depenent thermal conductivities
construct mathematical procedures that can be followed tobtain the analytical so-
lutions for similar ux tube models. Moreover, when the ux dannel or ux tube is
constructed from orthotropic materials in di erent orientations, the thermal conduc-
tivity tensor may have nine nonzero components and this reges the use of other
mathematical transformations besides the stretched coardite transformations in or-
der to obtain the analytical solutions for the temperature dtribution and thermal
resistance in the channel.

Finally, the developed analytical solutions can be used to rduct analytical op-
timization studies for the best distribution of the heat souces along the source plane

for which the temperature excess is minimized.
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