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Abstract

In the microelectronics industry, thermal issues due to self-heating are major prob-

lems that a�ect the performance, e�ciency, and reliability of devices. The recent

trend of producing advanced devices with smaller sizes, high power densities, and

extreme performance makes thermal management an increasingly important factor in

the development of microelectronic systems. In most applications, the microelectronic

systems are modeled as rectangular 
ux channels, where heatis generated in one or

more small heat-source areas and 
ows by conduction throughthe system to spread

the heat into a larger convective heat-sink area, where the generated heat is then

transferred by convection into an ambient 
uid.

In this work, analytical solutions for the temperature distribution and thermal

resistance in three-dimensional (3D) 
ux channels with nonuniform properties and

complex structures are obtained. First, general analyticalsolutions in 3D isotropic


ux channels with nonuniform heat transfer coe�cients along the sink plane are pre-

sented using the method of separation of variables combinedwith the method of least

squares. Di�erent parametric studies have been conducted to study the e�ect of di�er-

ent variable heat transfer coe�cient functions with the same average conductance on

the temperature �eld. Second, general analytical solutions of 3D isotropic 
ux chan-

nels with temperature-dependent thermal conductivities and a uniform heat transfer

coe�cient along the sink plane are presented by means of the Kirchho� transform

method. The solutions are used to study the e�ect of the temperature-dependent

thermal conductivity on the temperature rise and thermal resistance for di�erent con-

ductivity functions. Third, general analytical solutions in 3D 
ux channels of mul-

tilayered structures consisting of a �nite number of orthotropic layers with constant

and temperature-dependent thermal conductivities are obtained. All the analytical

solutions have been veri�ed by conducting numerical simulations based on the �nite

element method (FEM) using the Analysis of Systems (ANSYS) software package.
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Statement of contribution

This thesis contributes to the area of heat transfer. It introduces analytical solutions

for the temperature distribution and thermal resistance in3D 
ux channels with

nonuniform properties and complex structures. This contribution includes developing

analytical solutions for the temperature �eld in 
ux channels with nonuniform heat

transfer coe�cients, multilayered structures with orthotropic conductivity tensor and

interfacial conductance, nonlinear conduction in single and multilayered structures.

A variety of di�erent mathematical models, techniques, andtransformations are used

to illustrate the construction of the developed analyticalsolutions. Moreover, numer-

ical simulations based on the FEM are conducted in order to verify these analytical

solutions and to demonstrate their robustness.

This work is considered of signi�cant importance for thermal analysts and engineers

in the microelectronics industry as it provides computational algorithms and tools for

obtaining the precise thermal behavior and the optimal con�guration of the micro-

electronic devices rather than conducting the challengingexperimental work. In fact,

the developed analytical solutions can be used in other transport phenomena, such as

mass transfer according to some analogies that can be made between the transport

phenomena laws.

The �ndings presented in Chapters 2-6 are considered original scholarship and distinct

contributions to knowledge.
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Chapter 1

Introduction and Overview

1.1 Motivation

In the electronics industry, the development of electronicequipment has come a long

way from large and low power performing devices to advanced devices with smaller

sizes and high power densities. In the past few decades, the development of electronic

devices has received signi�cant attention in producing smaller, more 
exible, and

higher power density devices. This includes the development of new materials, tools,

processes, and design methodologies [1, 2].

As electronic devices are rapidly shrinking in size while their power density contin-

ues to increase, thermal management becomes an increasingly important factor in the

development of electronic devices to improve their functionality, performance, and re-

liability. In most electronic devices, such as transistors, light emitting diodes (LEDs),

integrated circuits (ICs), and microprocessors, heat is generated by the 
ow of an elec-

trical current in the device, where the amount of the generated heat is proportional

to the power output of the device.

In many electronic devices, the geometry of the device is considered as a 3D
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1.2 Objectives

In the modern microelectronics industry, the development of microelectronic systems

involves using new anisotropic materials, multilayered structures, di�erent heat-sink

structures, and di�erent cooling techniques in manufacturing the electronic systems.

In particular, the di�erent heat-sink structures and the di�erent cooling techniques

might present a nonuniform heat transfer coe�cient along the sink plane. Further,

some anisotropic materials with di�erent thermal conductivities in the three spatial

directions (orthotropic) have received signi�cant attention in the development of mi-

croelectronic systems of single or multilayered structures. In most of these materials,

the thermal conductivities are temperature dependent. Hence, the development of an-

alytical solutions for the temperature �eld of such complexstructures becomes more

challenging. In most cases, the development of analytical solutions for the temper-

ature distribution in the microelectronic systems requires the employment of some

advanced mathematical transformations and techniques. The main objectives of the

present work are as follows:

� Develop analytical solutions for the temperature distribution and total ther-

mal resistance of an isotropic 3D 
ux channel with a nonuniform heat transfer

coe�cient along the sink plane and study the e�ect of di�erent heat transfer

coe�cient distributions on thermal analysis, see Fig. 1.2a.

� Present analytical solutions for the temperature distribution and total thermal

resistance of an isotropic 3D 
ux channel with a temperature-dependent thermal

conductivity and study the e�ect of di�erent temperature-dependent thermal

conductivity functions on thermal analysis.

� Develop analytical solutions for the temperature distribution and total thermal

resistance of a multilayered 3D 
ux channel, consisting ofN -layers of orthotropic
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where � is the material density, cp is the speci�c heat constant, _g is the internal

heat generation rate per unit volume, and��k is the thermal conductivity tensor of

the material. In the steady-state case with no internal generation, the general heat

conduction equation reduces to:

r � (��k r T) = 0 : (1.2)

The thermal conductivity of the medium is presented in tensor form and is kept

included within the divergence operator (r� ) to account for anisotropic materials and

temperature-dependent thermal conductivity relationships. The general form of the

thermal conductivity tensor ��k is considered as a second-order tensor that involves nine

components given by [5, page 615]:

��k =

2

6
6
6
6
4

k11 k12 k13

k21 k22 k23

k31 k32 k33

3

7
7
7
7
5

; (1.3)

where f kij g3
i;j =1 are the conductivity coe�cients with i; j corresponding to the three

Cartesian coordinatesx; y, and z, i.e., x � 1; y � 2; z � 3. Moreover, the conductivity

coe�cients kij might be constants or presented as temperature-dependent functional

relationships, i.e.,kij = kij (T), depending on the material's properties. Furthermore,

when the o�-diagonal elements of the conductivity tensor matrix vanish, i.e., kij = 0

for i 6= j , the system is called orthotropic and the conductivity tensor matrix becomes:

��k =

2

6
6
6
6
4

k11 0 0

0 k22 0

0 0 k33

3

7
7
7
7
5

=

2

6
6
6
6
4

kx 0 0

0 ky 0

0 0 kz

3

7
7
7
7
5

; (1.4)
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and the steady-state conduction equation becomes:

@
@x

�
kx

@T
@x

�
+

@
@y

�
ky

@T
@y

�
+

@
@z

�
kz

@T
@z

�
= 0: (1.5)

Moreover, in the case of equal diagonal components in the orthotropic system, i.e.,

kx = ky = kz = k, the system is called isotropic and the steady-state heat conduction

equation reduces to:

r � (k r T) = 0 ; (1.6)

which is reduced in the case of constant thermal conductivity to the Laplace equation

given by:

r 2T = 0: (1.7)

1.3.2 Boundary Conditions

The main linear boundary conditions that may appear on the system's boundaries

can be classi�ed into three types:

1. Boundary conditions of the �rst type (prescribed temperature or

Dirichlet conditions) .

This boundary condition is considered when the temperaturedistribution is

speci�ed along the boundary surface as:

Tjboundary = T0; or Tjboundary = f (r̂ ); (1.8)

where the boundary temperature can be a constant or changingwith position

according to the functionf (r̂ ), where r̂ is the position vector (r̂ = ( x; y; z)).
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2. Boundary conditions of the second type (prescribed heat 
ux or Neu-

mann conditions) .

This boundary condition is considered when the heat 
ux is speci�ed along the

boundary surface as:

kn
@T
@n

�
�
�
�
boundary

= q; or kn
@T
@n

�
�
�
�
boundary

= g(r̂ ); (1.9)

where@=@ndenotes the derivative along the outward normal at the boundary

surface andkn is the normal thermal conductivity component. The heat 
ux

at the boundary surface can be a constant or changing with position according

to the function g(r̂ ). As a special case, when no heat 
ow enters or leaves the

system though the boundary surface, the surface is called adiabatic or perfectly

insulated, i.e.,
@T
@n

�
�
�
�
boundary

= 0: (1.10)

3. Boundary conditions of the third type (convection or Robin condi-

tions) .

This boundary condition is considered when the heat is transferred from a con-

ductive medium into a surrounding ambient 
uid, de�ned by:

� kn
@T
@n

�
�
�
�
boundary

= hs(Tjboundary � T1 ); (1.11)

whereT1 is a reference temperature of the surrounding ambient 
uid and hs is

the heat transfer coe�cient which is usually taken as a constant. However, it

can be a function of positionhs(r̂ ) with nonuniform values along the boundary

surface.
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1.3.3 Thermal Spreading Resistance

Thermal resistance is a measurement of a temperature gradient that represents how

an object resists a heat 
ow. In modeling microelectronic devices and cooling sys-

tems, the measurement of the thermal resistance plays a signi�cant role in the thermal

management of the systems as it gives an index of the e�ectiveness of the cooling sys-

tems, where it is always desirable to minimize the thermal resistance of the system.

Thermal spreading resistance (TSR) occurs as heat 
ows by conduction from a small

source to a larger sink with di�erent cross-sectional areas, as shown in Fig. 1.3. Ther-

mal spreading resistance is an increasingly important topic in thermal management

of microelectronic systems because, in some cases, it has a large contribution of more

than 50% to the total thermal resistance.

For a single heat source spreading heat to a larger extended sink area, the total

thermal resistance of the system can be de�ned as [7, 8]:

Rt =
Tc � T1

Q
; (1.12)

whereTc is the mean temperature over the heat-source area, andQ is the total heat

input of the system.

1.4 Methodology

Throughout the thesis, the following mathematical methods, techniques, and transfor-

mations are used to obtain the solutions for the temperaturedistribution and thermal

resistance of the di�erent models under study.
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the exception of a single nonhomogeneous boundary condition;

� For transient problems, all the boundary conditions are homogeneous and the

initial condition is nonhomogeneous.

If the above requirements are not satis�ed, other approaches have to be applied �rst

before using separation of variables, such as the principleof superposition, shifting,

splitting the problem, using mathematical transformations, or other mathematical

techniques.

The application of the separation of variables method to a linear PDE de�ned

in an orthogonal coordinate system (like, Cartesian, cylindrical, and spherical co-

ordinate systems) can be applied by expressing the dependent variable of the PDE

in a separable form of the orthogonal coordinates. For example, when considering

the linear steady-state heat conduction equation in the Cartesian coordinate system,

represented by the Laplace equation given in Eq. (1.7), the method of separation of

variables can be employed to obtain a general series solution of the problem. This

solution can be obtained by assuming that the solution will take the following product

form:

T(x; y; z) = X (x) � Y(y) � Z (z); (1.13)

and when substituting this form into the Laplace equation, we can obtain a system

of ODEs, each of its equations depends on one variable and separation constants [11].

Moreover, the use of the method of separation of variables reduces the PDE into a

system of ODEs that involves the well known Sturm-Liouvilleproblem. The general

Sturm-Liouville equation for u(x) de�ned on the interval [a; b] can be expressed by

the following linear homogeneous ODE [10, 12, 13]:

d
dx

�
p(x)

du
dx

�
+ [ v(x) + �w (x)]u(x) = 0 ; (1.14)
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subject to boundary conditions of the following types:

1. A1u(a) + A2u0(a) = 0 ; A2
1 + A2

2 > 0,

2. B1u(b) + B2u0(b) = 0 ; B 2
1 + B 2

2 > 0,

3. u(a) = u(b) and p(a)u0(a) = p(b)u0(b);

4. u(a) and u0(a) are �nite with p(a) = 0,

5. u(b) and u0(b) are �nite with p(b) = 0,

wherep(x), v(x), w(x), and p0(x) are real-valued continuous functions over [a; b] and

p(x) > 0 and w(x) > 0 over (a; b). The Sturm-Liouville problem is called regular

when the boundary conditions associated with Eq. (1.14) areof the �rst two types and

p(x) > 0 andw(x) > 0 over the bounded interval [a; b], which we are mainly concerned

with in this work. The values of� for which the regular Sturm-Liouville problem has a

nontrivial solution are called the eigenvalues, and the corresponding solutionsu(x; � )

are called the eigenfunctions. A regular Sturm-Liouville problem has an in�nite set

of real eigenvalues that are arranged in ascending order� 1 < � 2 < � 3 < : : : , i.e.,

� i < � i +1 (i = 1; 2; 3; : : : ) and � i ! 1 as i ! 1 [12, 14]. Moreover, the set

of corresponding eigenfunctionsui (x; � i ) is an orthogonal set with respect to the

weighting function w(x), i.e.,

� b

a
un (x; � n )um (x; � m )w(x)dx =

8
>><

>>:

0; n 6= m;

N (� n ); n = m;
(1.15)

whereN (� n ) is the norm of the eigenfunctionun (x; � n ).

When considering the steady-state heat conduction equationgiven in Eq. (1.7)
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(Laplace equation), de�ned on a 3D �nite rectangular domainin the Cartesian co-

ordinate system subject to linear boundary conditions of the types presented in Sec-

tion 1.3.2 with all homogeneous boundary conditions exceptone nonhomogeneous

boundary condition, the application of the separation of variables method will reduce

the PDE into a system of ODEs. This system involves the regular Sturm-Liouville

problem in the homogeneous directions of the form:

d2u
dx2

+ �u = 0; a � x � b; (1.16)

with respect to the following boundary conditions:

A1u(a) + A2u0(a) = 0 ; A2
1 + A2

2 > 0; (1.17)

B1u(b) + B2u0(b) = 0 ; B 2
1 + B 2

2 > 0: (1.18)

This problem has nontrivial solutions for positive values of � (and � = 0 when A1 =

B1 = 0) and the general solutions can be expressed as:

ui (x) = Ci cos(
p

� i x) + D i sin(
p

� i x); for positive � i ; (1.19)

ui (x) = C0 + D0x; for � 0 = 0 (when A1 = B1 = 0) ; (1.20)

where the eigenvaluesf � i g
1
i =0 are obtained based on the speci�c boundary conditions

of the problem, which can be obtained explicitly or can be represented by a transcen-

dental equationF (� i ) = 0 [5].

Once the solutions of the ODEs are obtained, the principle ofsuperposition can be

used to represent the general solution of the original PDE, where the nonhomogeneous

direction boundary conditions are used to �nd the unknown coe�cients in the gen-

eral solution. It is worth mentioning that the de�nition of t he boundary conditions
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by Laplace's equation:

r 2� =
@2�
@x2

+
@2�
@z2

= 0; (1.21)

with respect to the following boundary conditions. Along theline z = 0, the boundary

condition is given by:

� k
@�
@z

�
�
�
�
z=0

=

8
>><

>>:

q; 0 < x < a

0; a < x < c:
(1.22)

Along the two side edges, the boundary conditions are given by:

@�
@x

�
�
�
�
x=0

= 0; (1.23)

� k
@�
@x

�
�
�
�
x= c

= he� (c; z); (1.24)

wherehe is the lateral heat transfer coe�cient, which is consideredconstant. More-

over, the convective-cooling boundary condition along theline x = c can be turned

to an adiabatic condition whenhe ! 0. Along the line z = t, a convective-cooling

boundary condition is considered, given by:

� k
@�
@z

�
�
�
�
z= t

= hs� (x; t ): (1.25)

The sink heat transfer coe�cient hs is of most importance as it plays the major role in

removing the heat out of the system. This coe�cient might be de�ned as a constant

or as a function of position (hs � hs(x)), where the two di�erent de�nitions have

signi�cant e�ects on the representation of the general solution. For the time being,

we will consider a constant value of the sink heat transfer coe�cient and proceed to the

general solution of the problem. The method of separation ofvariables can be used to

obtain the general solution of the problem, where we attemptto determine solutions
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in the product form � (x; z) = X (x) � Z (z) [6, 11, 15, 16]. Applying the method of

separation of variables and using the side boundary conditions (homogenous-direction

boundary conditions) yield the following general solution:

� (x; z) =
1X

m=1

cos(� mx) [Cm cosh(� mz) + Dm sinh(� mz)] ; (1.26)

where� m are the eigenvalues in thex-direction, which can be obtained by solving the

following transcendental equations:

� m sin(� mc) =
he

k
cos(� mc); m = 1; 2; : : : ; (1.27)

Cm and Dm are the Fourier coe�cients. The following result is obtained for the

Fourier coe�cients when the sink boundary condition is applied (Eq. (1.25)):

Dm = � � mCm ; (1.28)

where� m is the spreading function de�ned by:

� m =
� m tanh(� m t) + [ hs=k]
� m + [ hs=k] tanh(� m t)

: (1.29)

Thus, the general solution can be rewritten as:

� (x; z) =
1X

m=1

Cm cos(� mx) [cosh(� mz) � � m sinh(� mz)] : (1.30)

Finally, the nonhomogenous boundary condition, given in Eq.(1.22), is used to �nd
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the Fourier coe�cients Cm by taking Fourier series expansions of the boundary con-

dition and using the orthogonality of the eigenfunctions toget:

Cm =
q

k� m � m

� a
0 cos(� mx) dx

� c
0 cos2(� mx) dx

=
2qsin(� ma)

ck� 2
m � m

; (1.31)

which completes the representation of the general solutionas an exact in�nite series

analytical solution. On the other hand, when the sink heat transfer coe�cient is

de�ned as a function of position (hs(x)), the general solution of problem can not be

represented as an exact in�nite series analytical solutionanymore since the classical

representation of the in�nite Fourier series solution is violated. This can be seen

clearly when we employ the sink boundary condition to �nd a relationship between the

Fourier coe�cients Cm and Dm , where the relationship represented by the spreading

function becomes a function ofx as:

� m = � m (x) =
� m tanh(� m t) + [ hs(x)=k]
� m + [ hs(x)=k] tanh(� m t)

; (1.32)

and this violates the assumptions of the separation of variables methodology as the

Fourier coe�cients are no longer constants. However, an approximate solution of the

problem can be constructed based on the separation of variables methodology. This

approximate solution might be constructed as:

� (x; z) =
MX

m=1

Cm cos(� mx) [cosh(� mz) � � m (x) sinh(� mz)] ; (1.33)

This solution is constructed by following a similar technique to some variational cal-

culus methods that usually used for obtaining approximate solutions, like the Ritz

method and the Kantorovich method [15, 17], in which a general form of an approxi-

mate solution is constructed with unknown coe�cients or functions that are usually
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determined using variational calculus. However, in our solution, we apply the method

of least squares to �nd the unknown Fourier coe�cientsCm with an extension to 3D

problems, as we will see in Chapters 2 and 3.

1.4.2 Least Squares Method

The method of least squares is a widely used method in approximating functions,

and it is considered a standard technique in regression analysis, data �tting, and

approximating a function by a combination of other functions. Least squares problems

can be classi�ed into linear least squares and nonlinear least squares, depending on

the general form of the modeling (approximating) function.We will focus on linear

least squares, where the modeling function can be expressedas a linear combination

of some linearly independent set of functions. For example,a one-dimensional (1D)

modeling function can be expressed in the form:

~u(x; c1; c2; : : : ; cM ) =
MX

j =1

cj ' j (x); (1.34)

where f cj g
M
j =1 are the modeling-function parameters to be determined. Fordis-

crete data represented by a set of points (x i ; yi ), i = 1; 2; : : : ; N , the least squares

method can be applied to �nd the best approximate continuousmodeling function

~u(x; c1; c2; : : : ; cM ). The idea behind the method of least squares is to determinethe

values of the parametersf cj g
M
j =1 such that the modeling function minimizes the sum

of the squares of the residuals represented by [18]:

I =
NX

i =1

r 2
i ; (1.35)
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wherer i is the residual de�ned by the di�erence between thei th discrete valueyi and

the corresponding value predicted by the modeling function, i.e.,

r i = yi � ~u(x i ; c1; c2; : : : ; cM );

r i = yi �
MX

j =1

cj ' j (x i ): (1.36)

The modeling-function parametersf cj g
M
j =1 are obtained to minimize the sum of the

squared residualsI represented in Eq. (1.35) by setting the gradient ofI with respect

to the parameters to zero:

@I
@cm

= 2
NX

i =1

r i
@ri
@cm

= 0; m = 1; 2; : : : ; M; (1.37)

which leads to the following system:

MX

j =1

cj

 
NX

i =1

' j (x i )' m (x i )

!

=
NX

i =1

yi ' m (x i ); m = 1; 2; : : : ; M: (1.38)

Equation (1.38) represents a system ofm-equations andm-unknown parameters that

has to be solved for the parametersf cj g
M
j =1 . These equations are called the normal

equations for the least squares problem [18, 19].

The same procedure can be used for approximating a continuous function u(x)

de�ned on a bounded interval [a; b] by a linear combination of other functions as

de�ned in (1.34). This can be done by viewing the functionu(x) as a vector of

in�nitely many points. Hence, the sum of the squared residuals can be de�ned in an

integral form as [19]:

I =
� b

a

"

u(x) �
MX

j =1

cj ' j (x)

#2

dx; (1.39)
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and the parameters of the modeling functionf cj g
M
j =1 are found to minimize I us-

ing [20]:
@I

@cm
= 0; m = 1; 2; : : : ; M; (1.40)

which leads to the following linear system of normal equations, represented by:

MX

j =1

cj

� b

a
' j (x)' m (x)dx =

� b

a
u(x)' m (x)dx; m = 1; 2; : : : ; M: (1.41)

Furthermore, the least squares method can be used, in general, for a multidimensional

function u(~x) de�ned on a bounded domain 
 by considering:

I =
�



[u(~x) � ~u(~x; c1; c2; : : : ; cM )]2 d
 ; (1.42)

and following the same procedure for the 1D least squares method.

1.4.3 Stretched Coordinate Transformations

Stretched coordinate transformations are mathematical transformations that can be

used to transform a system of governing equations de�ned on aphysical domain

into an equivalently convenient system de�ned on a new logical domain. Under this

kind of transformation, the physical domain can be extendedor squeezed in one or

more directions to obtain the new logical domain, in which the transformed governing

equations are presented in a simpler form [21]. We will con�ne our attention to the

use of stretched coordinate transformations for the heat conduction equation of an

orthotropic medium. Consider the 3D steady-state heat conduction equation for an

orthotropic medium with constant thermal conductivities given by:

kx
@2T
@x2

+ ky
@2T
@y2

+ kz
@2T
@z2

= 0; (1.43)
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de�ned on the following rectangular domain:

0 < x < c; 0 < y < d; 0 < z < t: (1.44)

The stretched coordinate transformations can be applied tothis system by considering

the following new independent variables� 1, � 2, and � 3 de�ned by [5]:

� 1 = x
p

k0=kx ; � 2 = y
q

k0=ky; � 3 = z
p

k0=kz; (1.45)

wherek0 is a reference conductivity. Under these transformations, the heat conduction

equation for the orthotropic medium given in Eq. (1.43) is transformed to the following

heat conduction equation with isotropic properties:

k0

�
@2T
@�21

+
@2T
@�22

+
@2T
@�23

�
= 0; (1.46)

de�ned on the following transformed logical domain:

0 < � 1 < c
p

k0=kx ; 0 < � 2 < d
q

k0=ky; 0 < � 3 < t
p

k0=kz: (1.47)

1.4.4 Kirchho� Transform

When thermal properties of a material vary with temperature,the general heat con-

duction equation becomes nonlinear, and the general heat conduction equation for an

isotropic medium becomes of the form [16]:

� (T)cp(T)
@T
@t

= r � (k(T) r T) + _g; (1.48)
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where � (T), cp(T), and k(T) are temperature dependent. In particular, the thermal

conductivity of any material depends on the chemical composition, physical structure,

and state of the material. Moreover, it also depends on the temperature variation

interval under consideration [6]. In most cases, the thermal conductivity varies with

temperature according to some functional relationship, e.g.,

k(T) = k0[1 + !T ]; (1.49)

wherek0 is a reference conductivity, and! is the temperature coe�cient of thermal

conductivity. When the temperature variation interval under consideration is not

too wide or the functional dependency of the thermal conductivity on temperature

is not too strong, the variation of thermal conductivity with temperature may be

neglected and it can be approximated by a constant [6, 16]. However, when the tem-

perature variation interval is wide or the functional dependency between the thermal

conductivity and temperature is quite strong, the assumption of a constant thermal

conductivity becomes unacceptable.

The Kirchho� transform is considered a convenient method for solving nonlin-

ear transient and steady-state heat conduction problems with temperature-dependent

properties. However, the method is more attractive for solving steady-state problems,

as the method can be used to obtain exact solutions without considering any assump-

tions or approximations [16]. The idea behind the Kirchho� transform is to present a

new variable as an integral function of the temperature-dependent thermal conductiv-

ity, where the nonlinear system can be transformed under theKirchho� transform into

a linear system in terms of the new variable. Moreover, the linearized system can be

solved using existing analytical methods for solving linear problems, after which the

solution of the linear system can be transformed back to the solution of the nonlinear
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system through the inverse Kirchho� transform. The original Kirchho� transform is

presented by de�ning a new dependent variable in the form [15, 16, 22, 23]:

U = K f Tg =
1
k0

T�

0

k(� )d�; (1.50)

whereU � U(T), and k0 is a constant reference conductivity. We will only present the

application of the Kirchho� transform to the nonlinear steady-state problems with no

heat generation term, de�ned by:

r � (k(T) r T) = 0 : (1.51)

From Eq. (1.50), we have the following relation [24, 25]:

dU
dT

=
k(T)
k0

: (1.52)

Hence, using the result in Eq. (1.52), we get the following relations:

r U =
dU
dT

r T =
k(T)
k0

r T; (1.53)

r 2U =
1
k0

[r � (k(T) r T)] : (1.54)

In other words, the nonlinear heat equation given in Eq. (1.51) can be transformed

under the Kirchho� transform de�ned in Eq. (1.50) to the Laplace linear equation in

terms of the new variableU:

r 2U = 0; (1.55)

which can be solved using the existing analytical methods for solving linear problems,
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provided that the boundary conditions can be transformed into linear boundary con-

ditions. The boundary conditions associated with the problem can be transformed

under the Kirchho� transform according to their types. Now, we will examine the

transformation for the di�erent linear types of boundary conditions presented in Sec-

tion 1.3.2. To illustrate the application of the transformation to the boundary condi-

tions with a practical example, we will assume that the thermal conductivity depends

on temperature in the form presented in Eq. (1.49). The boundary conditions can be

transformed under the Kirchho� transform as follows [16]:

1. Prescribed temperature .

For a prescribed temperature boundary condition addressedby:

Tjboundary = f (r̂ ); (1.56)

the boundary condition can be transformed directly under the Kirchho� trans-

form by substituting the function f (r̂ ) into the Kirchho� integral given in

Eq. (1.50), i.e.,

Ujboundary =
1
k0

f (r̂ )�

0

k(� )d� =

f ( r̂ )�

0

(1 + !� )d� = f (r̂ ) +
!
2

f 2(r̂ ); (1.57)

which is again a prescribed temperature boundary conditionfor the new variable

U. Moreover, when the temperature along the boundary is considered to be

constant, i.e.,f (r̂ ) = T0, the transformed boundary condition is also a constant

temperature along the boundary given by:

Ujboundary = T0 +
!
2

T2
0 : (1.58)
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2. Prescribed heat 
ux .

For a prescribed heat 
ux boundary condition addressed by:

k(T)
@T
@n

�
�
�
�
boundary

= g(r̂ ); (1.59)

which is a nonlinear boundary condition, the transformation of this kind of

boundary conditions is straightforward, by using the following result:

k(T)
@T
@n

= k(T)
@T
@U

�
@U
@n

= k0
@U
@n

: (1.60)

Thus, the transformed boundary condition is addressed by:

k0
@U
@n

�
�
�
�
boundary

= g(r̂ ); (1.61)

which is a linear boundary condition forU.

3. Convection boundary conditions .

Although the prescribed temperature and prescribed heat 
uxboundary con-

ditions can be transformed easily into linear boundary conditions through the

Kirchho� transform for the new variable U, this is not the case, in general, when

considering a convection boundary condition of the form:

� k(T)
@T
@n

�
�
�
�
boundary

= hs(Tjboundary � T1 ); (1.62)

and when the Kirchho� transform is considered, the boundarycondition can be

transformed to:

� k0
@U
@n

�
�
�
�
boundary

= hs(K � 1f Ujboundary g � T1 ); (1.63)
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which is a nonlinear boundary condition, sinceK � 1f Ug is, in general, a nonlinear

function of U. In fact, when convection boundary conditions are present in

the problem, the transformed boundary conditions are, in general, nonlinear

boundary conditions [16, 22].

1.4.5 Finite Element Method and ANSYS Software

Although the scope of this work is to obtain analytical solutions for the temperature

distribution and thermal resistance in various 
ux channelproblems, veri�cations of

the developed analytical solutions have been conducted in comparison with solving

the problems numerically based on the FEM using the ANSYS commercial software

package. The FEM is a powerful and widely used numerical method for solving initial-

and boundary-value problems arising in di�erent real-lifeproblems. The main idea

of the FEM is to divide the physical domain of the problem into a�nite number of

subdomains (elements) for which the solution is approximated over these subdomains

based on some basis functions using the variational or weighted residual methods [26{

28]. The ability to discretize complex and irregular domains and the 
exibility of

re�ning the grid in regions of interest with the FEM make the method an attractive

analysis tool for many problems.

Solving practical problems using the FEM requires either thedevelopment of an

FEM computer program or the use of available FEM software products, packages, and

libraries. ANSYS is a �nite element analysis software used to simulate a wide variety

of engineering disciplines including 
uid dynamics and thermal analysis. The software

has been developed extensively over the past few decades to include several physical

phenomena and to improve the power of solving complex systems. Nowadays, ANSYS

with its user friendly interface (Workbench) is consideredone of the most trusted and

widely used numerical simulation software packages [28, 29].
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In thermal analysis simulations, the construction of the solution using the ANSYS

software can be summarized by the following three steps [28]:

1. Preprocessing .

The �rst step corresponds to the model generation process, in which the ge-

ometry of the problem is determined and the material properties are de�ned.

Moreover, the �nite element mesh is generated in this step, where many options

can be speci�ed within the meshing generation process such as element type,

mesh re�nement regions, real constants required by the element type, etc.

2. Solution Processing .

In this step, the boundary conditions of the problem are speci�ed along the

geometry boundaries and the solution can be obtained.

3. Postprocessing .

In this step, the results are reviewed and can be exported into result �les in

tabular format which can be used for data analysis purposes.

1.5 Thesis Organization

This thesis is presented in a manuscript (research paper) format. It contains seven

chapters including �ve chapters that are published (3), accepted (1), and submitted (1)

to international peer-reviewed journals. In Chapter 1, an introduction and overview

is presented. This chapter summarizes the motivations, objectives, and literature

review of the problems addressed in this thesis. It also presents the mathematical

methods, techniques, and transformations used throughoutthe thesis to address the
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problems under study. Chapter 2 is published in the IEEE Transactions on Com-

ponents, Packaging and Manufacturing Technology [30]. In this chapter, the tem-

perature distribution and thermal resistance of a 3D 
ux channel with a nonuniform

heat transfer coe�cient along the sink plane are modeled andanalyzed analytically.

The solutions are obtained by using the method of separationof variables combined

with the method of least squares. A single concentric heat source is considered in the

source plane, while the conductance along the sink plane is modeled by a symmet-

ric 1D conductance function. Chapter 3 is submitted to the ASME-Journal of Heat

Transfer. In this chapter, analytical solutions for the temperature distribution and

thermal resistance of a 3D 
ux channel with eccentric heat source and a variable heat

transfer coe�cient that varies in the two horizontal dimensions are developed by us-

ing the method of separation of variables combined with the method of least squares.

Chapter 4 is accepted for publication in the AIAA-Journal of Thermophysics and

Heat Transfer. In this chapter, analytical solutions for thetemperature distribution

and thermal resistance of a 3D 
ux channel with temperature-dependent thermal

conductivity are discussed and used to study the e�ect of thetemperature-dependent

thermal conductivity on the temperature rise and spreading resistance for di�erent

conductivity functions. Chapter 5 is published in the ASME-Journal of Heat Trans-

fer [31]. In this chapter, general analytical solutions forthe temperature distribution

and thermal resistance of a multilayered orthotropic system are obtained. The sys-

tem is considered as a compound 3D 
ux channel consisting ofN -layers with di�erent

thermal conductivities in the three spatial directions of each layer. A single eccentric

heat source is considered in the source plane, while a uniform heat transfer coe�cient

is considered along the sink plane. The solutions account for the e�ect of interfacial

conductance between the layers and for considering multiple eccentric heat sources in

the source plane. Chapter 6 is published in the AIAA-Journal of Thermophysics and
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Heat Transfer [32]. In this chapter, analytical solutions for the temperature rise and

thermal resistance of a multilayered 3D 
ux channel with orthotropic temperature-

dependent thermal conductivities are addressed by means ofthe Kirchho� transform.

Chapter 7 summarizes the problems considered in this thesisand presents suggestions

for further investigation.

1.6 Literature Review

Thermal analysis and thermal resistance in microelectronic devices have been studied

extensively in the past few decades. The signi�cant importance of thermal man-

agement in microelectronics has served to put considerabledemands on researchers

to conduct di�erent analytical, numerical, and experimental studies in the �eld of

thermal analysis. For the analytical studies, which are thescope of this thesis, the

geometry of the microelectronic devices is usually considered as a rectangular 
ux

channel or a cylindrical 
ux tube. A general review of the literature on thermal

analysis and thermal spreading resistance shows that several analytical solutions have

been developed for obtaining the precise thermal behavior and thermal resistance of

di�erent 
ux channels and 
ux tubes with di�erent structure s.

Kennedy started the research on thermal spreading resistance of cylindrical shaped

semiconductor devices [33]. He obtained analytical solutions for the temperature

distribution and thermal resistance in a �nite 
ux tube with a constant heat 
ux over

a part of one end and an isothermal-sink boundary condition along the other end.

Thereafter, a number of relevant analytical studies have been presented on thermal

analysis and thermal spreading/constriction resistance in di�erent systems with �nite

and semi-in�nite domains [7, 8, 34{59].

A general literature review on thermal analysis and thermalspreading resistance
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of microelectronics in the past �fty years is discussed in detail in a recent review

paper [60]. The authors presented a review of the most important research studies on

thermal spreading/constriction resistance in the past �vedecades starting from the

work of Kennedy in 1960 up to the most recent studies. However,in the following

subsections, we will describe and focus on some studies thatare related directly to

the scope of this thesis.

1.6.1 Single-Layer Flux Channels

Di�erent analytical solutions for the temperature �eld and thermal resistance have

been investigated for single-layer 
ux channels with di�erent aspects. Such aspects

include: considering isotropic materials [7, 36{38, 51, 58], anisotropic materials [49,

51, 54, 57], materials with temperature-dependent thermalconductivity [57, 58], con-

centric heat source [36{38, 49], eccentric heat source [7, 51, 54, 57, 58], single heat

source [36{38, 57], multiple heat sources [7, 49, 51, 54, 57,58], isothermal-sink bound-

ary conditions [37, 57], convective-sink boundary conditons [7, 36, 38, 49{51, 58], and

others.

Kadambi and Abuaf started the research on obtaining analytical solutions for the

temperature �eld in 3D �nite rectangular 
ux channels with convective sink for the

�rst time [36]. They obtained analytical solutions for the transient and steady-state

temperature �eld in 2D and 3D rectangular isotropic 
ux channels with a concentric

iso
ux heat source, convective sink, and insulated sides. Asimilar model has been

analytically studied by Krane [37], but changes the heat-sink boundary condition to

an isothermal boundary condition.

Muzychka et al. [7, 8, 49{53] have done extensive research ondi�erent thermal

spreading resistance problems, including di�erent geometries, boundaries, and prop-

erties. Muzychka et al. [7] developed a general solution forthe spreading resistance of
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a rectangular eccentric heat source with convective-sink boundary conditions. Their

solution accounts for multiple discrete heat sources distributed over the source plane

and for compound 
ux channel structures consisting of two isotropic layers in per-

fect contact. They extended their solution to account for transversely isotropic and

compound systems in [49]. Moreover, Muzychka et al. [51] presented the in
uence

coe�cient method as an e�cient and convenient method for calculating the tempera-

ture �eld in the source plane for multiple iso
ux heat sources in isotropic, transversely

isotropic, and compound 
ux channels.

Ditri [57] studied a single-layer 
ux channel with orthotropic temperature-dependent

thermal conductivities and a �xed-temperature boundary condition along the sink

plane. Bagnall et al. [58] studied the temperature rise in problems with temperature-

dependent thermal conductivities and convection boundaryconditions along the sink

plane using the Kirchho� transform. Gholami and Bahrami [54] obtained analytical

solutions for the spreading resistance of a single orthotropic 
ux channel with di�erent

constant thermal conductivities in the three spatial directions (i.e., kx 6= ky 6= kz),

and discrete inward and outward heat 
uxes along both sides of the channel.

Although many analytical studies have been done on di�erent aspects of thermal

spreading resistance and thermal management, attention hasbeen focused on prob-

lems with a uniform heat transfer coe�cient, uniform temperature, and uniform heat


ux boundary conditions along the sink plane. Recently, Razavi et al. [61] studied

the thermal resistance of a 2D 
ux channel with nonuniform heat transfer coe�cients

along the sink plane. However, usually the heat sources are ofdi�erent dimensions in

both horizontal directions compared to the dimensions of the horizontal cross section

of the 
ux channel. Hence, the nature of heat 
ow is 3D through the 
ux chan-

nel. Moreover, analytical solutions for the temperature �eld and thermal spreading

resistance in 
ux channels with temperature-dependent thermal conductivities and
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convective boundary conditions are limited [58] because ofthe restricted applicability

of the Kirchho� transform to boundary conditions of the �rst and second kinds.

1.6.2 Multilayered Flux Channels

In the microelectronics industry, multilayered structures are found extensively, where

the microelectronic device/system is manufactured as a compound system of di�erent

materials. A variety of analytical studies have been conducted for the temperature

�eld and thermal resistance in multilayered 
ux channels.

Kokkas [35] studied thermal analysis in multilayered rectangular structures with

isotropic materials and isothermal-sink boundary conditions. Bonani and Ghione [56]

used the Kirchho� transform to study a composite medium consisting of two perfectly

attached layers with temperature-dependent and piecewiseinhomogeneous thermal

conductivity. Yovanovich et al. [38] obtained a general analytical solution for the

spreading resistance of an iso
ux rectangular concentric heat source on a two-layer


ux channel with isotropic properties and a convective-sink boundary condition. In

Muzychka et al. [7, 49], the authors extended their solutionto account for eccentric

heat sources and transversely isotropic compound systems.

Recently, Muzychka et al. [8] analytically modeled the thermal spreading resis-

tance of compound transversely isotropic two-layer systems with equal thermal con-

ductivities in the in-plane directions that are di�erent than the through-plane thermal

conductivity (i.e., kx = ky 6= kz). Bagnall et al. [59] developed an analytical solution

for the thermal spreading resistance in multilayered 
ux channels with isotropic and

transversely isotropic properties. Their solution accounts for the e�ect of the interfa-

cial conductance between the adjacent layers.
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Recently, a variety of new materials have emerged in the microelectronics indus-

try with properties superior to Silicon, enabling new devices with extreme perfor-

mance. Such materials include� -Gallium-oxide (� -Ga2O3) [62] and Black Phosphorus

(BP) [63], which are acknowledged to have orthotropic thermal conductivity tensors

with di�erent thermal conductivities in the three spatial directions. A review of the

literature reveals that analytical solutions for the temperature �eld and thermal resis-

tance of multilayered othrotropic systems with di�erent thermal conductivities in the

three spatial directions, i.e.,kx 6= ky 6= kz in each layer, have not yet been analyzed.
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Chapter 2

Thermal Resistance of a 3D Flux

Channel with Nonuniform Heat

Convection in the Sink Plane

2.1 Introduction

Thermal spreading resistance is an increasingly importanttopic in thermal manage-

ment and thermal analysis of mechanical and electronic devices because, in some

devices, more than 50% of the total thermal resistance is con�ned in spreading re-

sistance. Thermal spreading resistance occurs when heat enters the system through

a small region and 
ows by conduction. A proper analysis of the temperature rise

and thermal resistance is essential for designing a durabledevice. For this purpose,

di�erent analytical, experimental and numerical methods are used to determine the

Published in the IEEE Transactions on Components, Packaging and Manufacturing Technol-
ogy [1].
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precise thermal behavior of the device. For the analytical methods, the geometry of

the device is usually simpli�ed to a rectangular 
ux channel or a cylindrical 
ux tube

in order to accommodate the Cartesian or cylindrical coordinate systems.

Kennedy [2] began the research on the thermal spreading resistance of cylindrical

shaped semiconductor devices. Ellison [3{5] analyticallystudied the thermal spread-

ing resistance in electronic devices. Yovanovich [6{9] studied di�erent spreading resis-

tance problems for more than forty years. Lemczyk and Yovanovich [10, 11] studied

the thermal spreading/constriction resistance in systemswith convective boundary

conditions. Muzychka et al. [12{14] and Muzychka [15] have done comprehensive re-

search on di�erent aspects of thermal spreading resistanceproblems including di�erent

geometries, boundaries, and properties. Muzychka et al. [12] modeled and obtained

a solution for the spreading resistance of rectangular 
ux channels with eccentric

heat sources, adiabatic edges and a uniform heat transfer coe�cient along the sink

plane. Furthermore, they studied the e�ects of geometry andedge cooling on ther-

mal spreading resistance [13]. Muzychka [16] developed a computationally e�cient

method for calculating the temperature of 
ux channels withdiscrete heat sources

and uniform conductance along the sink plane. Recently, Muzychka et al. [14] analyt-

ically modeled the thermal spreading resistance for a two-layer transversely isotropic

system with interfacial resistance between the layers. Muzychka [15] also developed

a similar model for cylindrical 
ux tubes. Bagnall et al. [17] studied the e�ect of

temperature-dependent thermal conductivity on the temperature rise in systems with

a uniform heat transfer coe�cient along the sink plane wherethe Kirchho� transform

has been used to linearize the heat conduction equation. Moreover, they developed

an analytical solution for spreading resistance in multilayered 
ux channels by �nding

a recursive formula for solving problems with an arbitrary number of layers [18].
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Although many comprehensive studies have been done on di�erent aspects of ther-

mal spreading resistance and thermal management, attention has been focused on

problems with a uniform heat transfer coe�cient along the sink plane. However, in

most devices, the sink con�guration is not uniform, which can help in reducing the

material and distributing convection cooling based on the temperature distribution

along the sink plane where intense cooling is more necessaryin high-temperature re-

gions than low-temperature regions, as shown in Fig. 2.1. Recently, Razavi et al. [19]

studied the thermal resistance of a two-dimensional (2D) 
ux channel with nonuni-

form heat transfer coe�cient along the sink plane. However, in most devices, the

heat sources are of di�erent dimensions in both the horizontal directions compared

to the dimensions of the horizontal cross-sectional of the device, and the heat-source

area is much smaller than the cross-sectional area. Hence, the nature of heat 
ow

is three-dimensional (3D) through the 
ux channel. The aim of this study is to an-

alytically investigate the e�ect of a nonuniform heat transfer coe�cient along the

sink plane of a 3D 
ux channel on thermal resistance. In orderto develop analytical

solutions for such problems, the method of separation of variables, along with the

method of least squares, is used. Then the analytical solution is used to evaluate

and study the dimensionless total thermal resistance of di�erent heat-source-size and

channel-thickness aspect ratios for di�erent Biot numbersand di�erent conductance

distribution pro�les along the sink plane.

Figure 2.1: Flux channels with a nonuniform heat transfer coe�cient.
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2.2 Mathematical Theory

In this section, the problem under consideration is modeledand illustrated mathe-

matically where the governing equation of the temperature distribution as well as the

boundary conditions are stated, after which the analyticalsolution of the problem

is presented. The total thermal resistance is then presented based on the analytical

solution, and the nondimensional total thermal resistanceas a function of some aspect

ratio factors is then introduced.

2.2.1 Problem Statement

The system under consideration is a 3D rectangular 
ux channel with a concentric

heat source, convective cooling along the lateral edges anda variable heat transfer

coe�cient along the sink plane, as shown in Fig. 2.2. The system is modeled in

Cartesian coordinates such that the origin is at the center of the heat source.

The heat conduction in the 
ux channel is governed by Laplace's equation:

@2T
@x2

+
@2T
@y2

+
@2T
@z2

= 0; (2.1)

or, by de�ning the temperature excess� = T � T1 :

@2�
@x2

+
@2�
@y2

+
@2�
@z2

= 0; (2.2)

with respect to the following boundary conditions based on the con�guration shown in

Fig. 2.2 and by using the symmetry of the system in thex- and y-directions. Along the

source plane, a discrete heat 
ux is speci�ed over the heat-source region, whereas the

area outside the heat-source region is considered as adiabatic. Hence, the source-plane
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boundary condition is given by:

� k
@�
@z

�
�
�
�
z=0

=

8
>><

>>:

q; inside source region,

0; outside source region.
(2.3)

Convective cooling boundary conditions are taken along thelateral edges of the sys-

tem. However, since the symmetry of the system is considered,only a quarter model

is required to be solved; therefore, the boundary conditions along the planesx = c

and y = d are given by:

@�
@x

�
�
�
�
x= c

= �
he

k
� (c; y; z); (2.4)

@�
@y

�
�
�
�
y= d

= �
he

k
� (x; d; z): (2.5)

These convective cooling boundary conditions can be turnedto adiabatic conditions

when he ! 0. The boundary conditions along the center planes of the system (x = 0

and y = 0) are as follows:

@�
@x

�
�
�
�
x=0

= 0;
@�
@y

�
�
�
�
y=0

= 0: (2.6)

Along the sink plane, a variable heat transfer coe�cient varying in the x-direction

exists, and the boundary condition is given by:

@�
@z

�
�
�
�
z= t

= �
h(x)

k
� (x; y; t): (2.7)

To de�ne the variable heat transfer coe�cient h(x), a modeling function changing in

the x-direction is used to de�ne a wide variety of di�erent conductance distributions
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along the sink plane:

h(x) = h0

h
1 �

� x
c

� pi
; (2.8)

whereh0 is a reference conductance representing the maximum heat transfer coe�cient

in the central region of the sink plane (whenx = 0). To change the con�guration of

the conductance along the sink plane, the power in the sink-conductance functionp

has to be changed. Di�erent conductance pro�les can be obtained by changing the

value of the powerp, which would vary the conductance pro�le from intense cooling

in the central region for p < 1, a linear pro�le when p = 1 or a parabolic pro�le

for p = 2 up to uniform conductance whenp ! 1 . It is clear from Eq. (2.8) that

the total conductance (averaged along the sink plane) depends on the value ofp,

while the maximum conductance in the central regionh0 is the same for all values

of p. However, it is more appropriate and meaningful to present the system with

a constant total conductance for all values ofp in order to study the e�ect of the

di�erent conductance distributions with the same total conductance. This can be

done by integrating and averaging the conductance in Eq. (2.8) over half of the 
ux

channel and then presentingh0 in terms of the total averaged conductance�hs:

�hs =
1
c

� c

0
h(x)dx =

p h0

p + 1
: (2.9)

Hence, the conductance function in Eq. (2.8) can be rewrittenas:

h(x) =
(p + 1) �hs

p

h
1 �

� x
c

� pi
: (2.10)

Figure 2.3 shows di�erent nonuniform heat transfer coe�cient distributions along the

sink plane for di�erent values of the parameterp with same total averaged conductance

as de�ned in Eq. (2.10).
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Figure 2.3: Variable heat transfer coe�cient function alonghalf of the sink plane for
di�erent values of p.

2.2.2 General Solution

The general solution of Laplace's equation given in Eq. (2.2) may be found by using

the method of separation of variables, where the solution isassumed to have the form

� (x; y; z) = X (x) � Y(y) � Z (z) [20{22]. Applying the method of separation of variables

and using the boundary conditions along the planes (x = 0; x = c) and (y = 0; y = d)

yield the following general solution:

� (x; y; z) =
1X

m=1

1X

n=1

cos(� mx) cos(� ny) [Cmn cosh(� mn z) + Dmn sinh(� mn z)] ; (2.11)

where � m and � n are the eigenvalues in thex- and y-directions, respectively, which

can be obtained by solving the following transcendental equations numerically:

� m sin(� mc) =
he

k
cos(� mc); m = 1; 2; : : : (2.12)

� n sin(� nd) =
he

k
cos(� nd); n = 1; 2; : : : (2.13)
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whereas� mn is de�ned by � mn =
p

� 2
m + � 2

n . The following result is obtained for the

Fourier coe�cients when the boundary condition at the sink plane is applied Eq. (2.7):

Dmn = � � mn (x)Cmn ; (2.14)

where� mn (x) is the spreading function de�ned by:

� mn (x) =
� mn tanh(� mn t) + [ h(x)=k]
� mn + [ h(x)=k] tanh(� mn t)

: (2.15)

Thus, the general solution can be rewritten as:

� (x; y; z) =
1X

m=1

1X

n=1

Cmn cos(� mx) cos(� ny) [cosh(� mn z) � � mn (x) sinh(� mn z)] : (2.16)

Finally, the boundary condition at the source plane given by Eq. (2.3) is considered

in order to �nd the Fourier coe�cients Cmn . Usually, when solving 
ux channel

problems with a constant heat transfer coe�cient, the Fourier coe�cients are obtained

directly by taking the Fourier series expansions of the boundary condition at the

source plane (z = 0) and using the orthogonality of the eigenfunctions. However,

since the heat transfer coe�cient h(x) depends on the variablex and so does the

spreading function� mn (x), then the use of the orthogonality of the eigenfunctions in

the x-direction is prevented when following the same procedure for the constant heat

transfer coe�cient. Instead, the method of least squares isused to obtain the Fourier

coe�cients Cmn . The general approximate solution for �niteM; N can be written as:

� (x; y; z) =
MX

m=1

NX

n=1

Cmn cos(� mx) cos(� ny) [cosh(� mn z) � � mn (x) sinh(� mn z)] : (2.17)

The method of least squares can be applied to the general solution given in Eq. (2.17).
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Hence, the following integral (which represents the residual) is de�ned:

I MN =

c�

0

d�

0

�
�

@�
@z

�
�
�
�
z=0

� S(x; y)
� 2

dydx; (2.18)

where S(x; y) is the function de�ning the boundary condition at the source plane

given by:

S(x; y) =

8
>><

>>:

q=k; 0 < x < a and 0< y < b

0; a < x < c or b < y < d:
(2.19)

The �rst derivative of the general solution Eq. (2.17) with respect toz at the source

plane (at z = 0) is:

@�
@z

�
�
�
�
z=0

= �
MX

m=1

NX

n=1

Cmn � mn � mn (x) cos(� mx) cos(� ny): (2.20)

Hence, the residual integral in Eq. (2.18) can be rewritten as:

I MN =

c�

0

d�

0

"
MX

m=1

NX

n=1

Cmn � mn � mn (x) cos(� mx) cos(� ny) � S(x; y)

#2

dydx: (2.21)

The Fourier coe�cients are obtained to minimize the residual I MN by using [23]:

@IMN

@Cij
= 0; i = 1; 2; : : : ; M; j = 1; 2; : : : ; N: (2.22)

The application of Eq. (2.22) yields:

c�

0

d�

0

"
MX

m=1

NX

n=1

Cmn � mn � mn (x) cos(� mx) cos(� ny) � S(x; y)

#

� � ij (x) cos(� i x) cos(� j y) dydx = 0: (2.23)
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Equation (2.23) can be simpli�ed by using the orthogonalityof the eigenfunctions in

the y-direction to get:

MX

m=1

Cmj � mj

c�

0

� mj (x)� ij (x) cos(� mx) cos(� i x) dx =
qsin(� j b)
k� j N (� j )

a�

0

� ij (x) cos(� i x) dx;

(2.24)

whereN (� j ) is the norm of they-direction eigenfunctions which depends on the speci�c

nature of the y-direction eigenvalues:

N (� j ) =

d�

0

cos2(� j y) dy =
1
2

�
d +

he=k
� 2

j + ( he=k)2

�
: (2.25)

Thus, in order to �nd the Fourier coe�cients Cij , a linear system has to be solved for

every j (i.e., for every eigenvalue in they-direction). The linear system is as follows:

A j C j = b j ; (2.26)

whereA j = [ aj
im ] is anM � M matrix whose entries (represented by rowi and column

m) are given by:

aj
im = � mj

c�

0

� mj (x)� ij (x) cos(� mx) cos(� i x) dx: (2.27)

C j = [ C1j C2j : : : CMj ]t is the unknown Fourier coe�cients vector, and b j =

[bj
1 bj

2 : : : bj
M ]t represents the right-hand-side vector whose components are given

by:

bj
i =

qsin(� j b)
k� j N (� j )

a�

0

� ij (x) cos(� i x) dx: (2.28)

It is important to note that the full set of Fourier coe�cient s Cij can be obtained
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by solving N -linear systems using any mathematical software package (for example,

MATLAB) in which numerical integration is used to evaluate the entries of each

system.

2.2.3 Total Thermal Resistance

For a single heat source spreading heat to a larger extended sink area, the total

thermal resistance of the system can be de�ned as [18, 24]:

Rt =
Tc � T1

Q
=

�� c

Q
; (2.29)

whereTc is the mean temperature over the heat-source area,�� c is the mean heat-

source temperature excess, andQ = 4qabis the total heat input of the 
ux channel.

The mean source temperature excess is given by:

�� c =
1

Ac

�

A c

� (x; y; 0) dAc; (2.30)

whereAc is the heat-source area. The application of Eq. (2.30) yields:

�� c =
1

4ab

a�

� a

b�

� b

MX

m=1

NX

n=1

Cmn cos(� mx) cos(� ny) dydx

=
1
ab

MX

m=1

NX

n=1

Cmn

� m � n
sin(� ma) sin(� nb): (2.31)

Hence, the total thermal resistance can be obtained by using Eq. (2.29) to get:

Rt =
1

4a2b2q

MX

m=1

NX

n=1

Cmn

� m � n
sin(� ma) sin(� nb): (2.32)
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2.2.4 Aspect Ratios and Dimensionless Resistance

Before beginning to present and analyze the results of the problem, it is clear that the

problem depends on a large number of parameters: the heat-source dimensionsa; b;

the cross-sectional dimensionsc; d; the channel thicknesst; the thermal conductivity

k; the magnitude of the heat 
ux q; heat transfer coe�cient of the lateral edges

he; and the average heat transfer coe�cient at the sink plane�hs. Thus, it is more

convenient to present and study the total thermal resistance in a nondimensional form

as a function of some aspect ratios of the channel dimensionsand some Biot numbers,

which are represented by: the aspect ratio between the heat-source length and the

cross-sectional length� x = a=c, the aspect ratio between the heat-source width and

the cross-sectional width� y = b=d, the aspect ratio between the channel thickness and

the cross-sectional length� x = t=c, the aspect ratio between the channel thickness and

the cross-sectional width� y = t=d, the Biot number in the x-direction Bi e;x = hec=k,

the Biot number in the y-direction Bi e;y = hed=k and the z-direction Biot number

Bi s = �hst=k. This can be done by de�ning the following nondimensional variables:

x � =
x
c

; y� =
y
d

; z� =
z
t
: (2.33)

Hence, the general solution in Eq. (2.17) can be rewritten as:

� (x � ; y� ; z� ) =
MX

m=1

NX

n=1

Cmn cos(� �
mx � ) cos(� �

ny� ) [cosh(� �
mn z� ) � � �

mn (x � ) sinh(� �
mn z� )] ;

(2.34)

where� �
m = � mc and � �

n = � nd are the dimensionless eigenvalues that can be obtained

by solving the following transcendental equations numerically:

� �
m sin(� �

m ) = Bi e;x cos(� �
m ); m = 1; 2; : : : M
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� �
n sin(� �

n ) = Bi e;y cos(� �
n ); n = 1; 2; : : : N (2.35)

while � �
mn is de�ned by � �

mn = � mn t =
p

(� �
m � x )2 + ( � �

n � y)2 and the spreading function

� �
mn (x � ) is given by:

� �
mn (x � ) =

� �
mn tanh(� �

mn ) + Bi s(x � )
� �

mn + Bi s(x � ) tanh( � �
mn )

; (2.36)

where

Bi s(x � ) = Bi s
(p + 1)

p
[1 � (x � )p] : (2.37)

To �nd the Fourier coe�cients Cmn based on the aspect ratio factors, the general

equation for the linear systems given in Eq. (2.24) can be written as:

MX

m=1

Ĉmj � �
mj

1�

0

� �
mj (x � )� �

ij (x � ) cos(� �
mx � ) cos(� �

i x � ) dx� =

sin(� �
j � y)

� �
j N � (� �

j )

� x�

0

� �
ij (x � ) cos(� �

i x � ) dx� ; (2.38)

where

N � (� �
j ) =

1
2

�
1 +

Bi e;y

� � 2
j + Bi 2

e;y

�
: (2.39)

It is important to note that in the linear systems included inEq. (2.38) we solve for the

modi�ed Fourier coe�cients Ĉmn , which are related to the actual Fourier coe�cient

Cmn by Ĉmn = Cmn =� , where� = qt=k.

Finally, the total thermal resistanceRt is nondimensionalized by using the thermal

conductivity k and an intrinsic length scale, which is taken to be
p

ab (i.e.,
p

Ac=2):

R�
t = k

p
abRt : (2.40)



56

Thus, the nondimensional total thermal resistance can be expressed as a function of

the aspect ratio factors as follows:

R�
t =

p
� x � y

4(� x � y)3=2

MX

m=1

NX

n=1

Ĉmn

� �
m � �

n
sin(� �

m � x ) sin(� �
n � y): (2.41)

2.3 Results and Discussions

In modeling heat-sink cooling systems, it is desirable to minimize the total thermal

resistance of the system. We will focus on studying the thermal resistance for 
ux

channels with di�erent conductance pro�les along the sink plane as it gives an index

of the e�ectiveness of the heat-sink cooling systems and theresults can be useful in

thermal design analysis for heat-sink sizing and optimization. In this section, the

dimensionless thermal resistance of the 3D 
ux channel for di�erent aspect ratios

and di�erent conductance distribution pro�les along the sink plane is calculated and

analyzed. First, in order to show the accuracy of the developed analytical solution,

a solution validation study is presented in which the analytical solution is compared

to results obtained by solving the problem numerically. Second, di�erent parametric

studies are then conducted to study the e�ect of the di�erentconductance distribution

pro�les along the sink plane on total thermal resistance fordi�erent values of the

Biot number. Third, a dimensional study is then presented tostudy the e�ect of

the di�erent conductance pro�les on the temperature rise ofthe 
ux channel. For the

analytical solution results, MATLAB (version 2013b) software is used to carry out the

results [25], while the numerical results have been conducted with the �nite element

method (FEM) using the ANSYS commercial software package [26].
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2.3.1 Solution Validation Study

To demonstrate the accuracy and computational e�ciency of the developed analytical

solution, a test study is conducted and compared to the results obtained by solving the

problem numerically with the FEM. The results of the test casestudy are obtained

based on solving a 
ux channel problem that has the followingaspect ratios and

properties: � x = � y = 0:2 , � x = � y = 0:1, Bi e;x = Bi e;y = 0:5, and Bi s = 0:1. For

the variable heat transfer coe�cient at the sink plane, a linear pro�le is considered

with p = 1. The dimensionless total thermal resistance is calculated and compared

both for the analytical and the FEM solutions. The FEM results are obtained with

a tetrahedral mesh and the convergence is checked by re�ningthe mesh, especially

around the heat-source region. The system with a tetrahedral mesh consisting of

183351 elements converged with three digits of precision for the dimensionless thermal

resistance, which is shown in Table 2.1. Regarding the analytical solution results, the

number of terms for each summation in Eq. (2.41) is chosen to be the same,M = N ,

and the convergence is checked by increasing the number of terms in the summations.

It can be seen from Table 2.1 that withM = N = 25, the nondimensional thermal

resistance agrees well with the FEM results with an approximately relative error of

0:1% compared to the �nest mesh result. Furthermore, increasing the the number of

terms in the summations will increase accuracy. For example, with M = N = 40, the

relative error decreases to approximately 0:03%.

2.3.2 Model Parametric Analysis

In this part, the proposed analytical solution is used to �ndand analyze the dimen-

sionless total thermal resistance of a 3D 
ux channel and to study the e�ect of the

di�erent conductance pro�les on thermal resistance for di�erent aspect ratios and Biot
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FEM Analytical
Number of Elements R�

t M = N R �
t

286 0.258199 5 0.264356
636 0.262854 10 0.269531
9822 0.269025 20 0.270850
49109 0.270851 25 0.271011
183351 0.271153 30 0.271112
282386 0.271214 40 0.271206

Table 2.1: Test study dimensionless thermal resistance forFEM and analytical results

numbers. In order to only consider the e�ect of the variable heat transfer coe�cient

along the sink plane, the lateral edges of the channel are assumed to be adiabatic by

assigning thex- and y-direction Biot numbers a very small value, which is taken inthe

rest of this analysis asBi e;x = Bi e;y = 0:001. Hence, the dimensionless thermal resis-

tance is now represented as a function of �ve parameters:� x , � y, � x , � y, and Bi s. First,

a 
ux channel of equal aspect ratios is considered, i.e.,� x = � y = � and � x = � y = � .

Di�erent variable heat transfer coe�cient pro�les along th e sink plane are considered,

including the concave pro�lep = 0:5, the linear pro�le p = 1, the parabolic pro�le

p = 2, and the uniform heat transfer coe�cient p �! 1 . The dimensionless thermal

resistance is calculated for di�erent values of the Biot number, Bi s = 0:1; 1; 5; 10

and with thickness aspect ratio� = 0:1. For calculating the dimensionless thermal

resistance, the number of terms in Eq. (2.41) is taken the same for both the x and y

summations, i.e.,M = N , starting from M = N = 15 and then the number of terms

is incremented until the following stopping criteria are satis�ed

�
�
�
�
R�

t
M +1 � R�

t
M

R�
t

M +1

�
�
�
� � 10� 4; (2.42)

where R�
t

M +1 represents the dimensionless resistanceR�
t calculated by usingM + 1

and N + 1 terms in the summations. Figures 2.4-2.7 show the dimensionless thermal

resistanceR�
t versus the aspect ratio� (� is taken to vary from 0:1 to 1) for the di�erent
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Biot numbers. Moreover, the numerical solution results areobtained using the FEM

for di�erent values of � to validate the analytical results, where both analytical and

FEM results are shown on the same plots. For the FEM numerical results, the results

can be obtained by considering any model that satis�es the nondimensional parame-

ters. For example, considering a 
ux channel model ofa = b= 0:01 m,c = d = 0:1 m,

t = 0:01 m, k = 10 W/m �K, he = 0:1 W/m 2�K, and �hs = 100 W/m 2�K will give the

same value of the dimensionless thermal resistance if we consider the following di�er-

ent model ofa = b = 0:001 m,c = d = 0:01 m, t = 0:001 m,k = 5 W/m �K, he = 0:5

W/m 2�K, and �hs = 500 W/m 2�K, since both the models have the same nondimen-

sional parameters of� = 0:1, � = 0:1, Bi e;x = Bi e;y = 0:001, andBi s = 0:1. However,

we used the �rst model in our numerical simulations and all the results are obtained

by changing the source dimensionsa; b and the averaged heat transfer coe�cient�hs

according to the nondimensional parameters. For the analytical results, the number

of terms used to satisfy Eq. (2.42) varied approximately betweenM = N = 16 and

M = N = 30 depending on the aspect ratio value� , the Biot number value Bi s and

the conductance distribution pro�le along the sink plane determined by the value of

p. In general, usingM = N = 30 for all the analytical results is found to be su�cient

to satisfy Eq. (2.42) and keep the relative error of less than0:2% compared to the

FEM results, as shown in Table 2.2.

In the set of nondimensional parameters, the nondimensional Biot number Bi s is of

particular physical signi�cance as it represents the ratiobetween the one-dimensional

(1D) conduction resistance inside the channel, de�ned byt=(kcd), and the convection

resistance along the sink plane based on the averaged heat transfer coe�cient �hs,

given by 1=(�hscd).

It can be seen from Figs. 2.4-2.7 that the order of magnitude for the dimensionless

thermal resistance decreases by increasing the Biot number, because the Biot number
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is de�ned asBi s = �hst=k and for a �xed-thickness aspect ratio system with �xed ma-

terial properties, increasing the Biot number is equivalent to increasing the averaged

heat transfer coe�cient value �hs. Hence, more heat can be removed from the sys-

tem, so the total thermal resistance is decreased. Moreover, the e�ect of the di�erent

conductance pro�les along the sink plane on thermal resistance is obvious for the dif-

ferent Biot numbers. In particular, for Bi s < 5, the dimensionless thermal resistance

depends strongly on the source-size aspect ratio� and the shape of the conductance

pro�le represented by the value of the powerp. As seen from Figs. 2.4 and 2.5 when

the aspect ratio� has small values, the dimensionless thermal resistance gets smaller

by decreasing the value ofp. However, for large values of� , the dimensionless thermal

resistance gets larger by decreasing the value ofp. The reason behind this is that for

small aspect ratios� (and small thickness ratio� ), the heat 
ow will reach the sink

plane concentrated in the central area of the sink plane, andby decreasing the value

of p, the intense cooling is concentrated in that area as well, which would decrease

the thermal resistance. On the other hand, for a large aspectratio � , the heat 
ow

will constrict to go through the intense cooling area which would increase the e�ort,

and therefore the thermal resistance by decreasing the value of p.

In Fig. 2.4, which shows the dimensionless thermal resistance pro�les for Bi s = 0:1,

one can see the signi�cant di�erence between the di�erent pro�les. For the concave

conductance distribution (p = 0:5), the pro�le has the minimum values of the di-

mensionless thermal resistance when� < 0:6 compared to the other three pro�les.

For the linear conductance distribution (p = 1), the dimensionless thermal resistance

pro�le shows lower values when� < 0:7 compared to using the parabolic conductance

distribution ( p = 2) and the uniform conductance distribution (p ! 1 ). Moreover,

when considering the parabolic conductance distribution (p = 2), the dimensionless

thermal resistance pro�le shows lower values when� < 0:87 compared to using the
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Figure 2.4: Dimensionless thermal resistance forBi s = 0:1 and � = 0:1.
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Figure 2.5: Dimensionless thermal resistance forBi s = 1 and � = 0:1.

uniform conductance distribution. The e�ect of the di�erent conductance pro�les

along the sink plane on thermal resistance gets weaker by increasing the value of the

Biot number, as shown in Figs. 2.6 and 2.7. One can note from Figs. 2.5-2.7 a sud-

den increase in the dimensionless thermal resistance for the nonuniform conductance

distributions when � > 0:8 compared to using the uniform conductance distribution.
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� R�
t (Analytical) R�

t (FEM) Relative Error(%)
0.1 0.176285 0.176325 0.03%
0.2 0.132151 0.132038 0.09%
0.4 0.084396 0.084317 0.1%
0.6 0.062567 0.062476 0.15%
0.8 0.052503 0.052424 0.15%
1 0.059053 0.058995 0.1%

Table 2.2: Relative error of dimensionless thermal resistance between analytical and
FEM results for Bi s = 1, � = 0:1 and p = 2.

The reason behind this is that when considering the uniform conductance distribu-

tion with the uniform heat transfer coe�cient along the sink plane, as the source-size

aspect ratio gets closer to 1, i.e.,� ! 1, the heat 
ow becomes of 1D nature and so

does the thermal resistance (spreading resistance gets weaker). However, this is not

the case when considering the nonuniform conductance distributions, where the heat


ow and the thermal resistance are always multidimensionalfor all the values of� ,

and as the source aspect ratio approaches 1, the thermal resistance increases since

the cooling is concentrated in the central area of the sink plane for the nonuniform

conductance distributions under study. It is important to note that for a �xed p,

the behavior (increasing/decreasing intervals) of the dimensionless thermal resistance

pro�le R�
t with respect to � is not necessarily representing the same behavior for the

dimensional thermal resistance pro�leRt , since
p

ab is used to nondimensionalize the

thermal resistance and hence the dimensional value of the resistance depends on the

value of � .

The e�ect of the thickness aspect ratio� on thermal resistance is also studied

for the di�erent conductance pro�les. Figure 2.8 shows the dimensionless thermal

resistance pro�les for� = 0:2 and Bi s = 1 versus the thickness aspect ratios� (� was

taken to vary from 0:1 to 2). It can be seen that the behavior of the dimensionless

thermal resistance for the di�erent conductance pro�les isdependent on the value of
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Figure 2.6: Dimensionless thermal resistance forBi s = 5 and � = 0:1.
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Figure 2.7: Dimensionless thermal resistance forBi s = 10 and � = 0:1.

the thickness aspect ratio� , where for� < 0:75, the dimensionless thermal resistance

decreases when the value ofp decreases, and this agrees with the previous results

shown in Fig. 2.5 for the small source-size aspect ratio� . However, as the thickness

aspect ratio becomes larger than 0:75, i.e., � > 0:75, the dimensionless thermal resis-

tance increases when the value ofp decreases. The reason is that for this relatively

small �xed value of Biot number Bi s = 1, when the thickness aspect ratio gets larger,
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Figure 2.8: Dimensionless thermal resistance forBi s = 1 and � = 0:2.
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Figure 2.9: Dimensionless thermal resistance for� y = 0:1, � = 0:1 and Bi s = 1.

the value of the averaged heat transfer coe�cient�hs gets smaller, and thus the de-

pendency of thermal resistance on the conductance pro�le becomes stronger, where

for smaller values ofp, heat 
ow should constrict to go through the heat sink, and

this would increase the thermal resistance.

Furthermore, the e�ect of changing one of the heat-source-size aspect ratios (� x or

� y) while �xing the other one is considered. Figure 2.9 shows thedimensionless thermal
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Figure 2.10: Dimensionless thermal resistance for� x = 0:1, � = 0:1 and Bi s = 1.

resistance pro�les for� = 0:1 and Bi s = 1 versus the heat-source-length aspect ratio

� x with a �xed heat-source-width aspect ratio� y = 0:1. Meanwhile, Fig. 2.10 shows

the dimensionless thermal resistance pro�les versus the heat-source-width aspect ratio

� y with �xed heat-source-length aspect ratio� x = 0:1 for the same Biot number and

thickness aspect ratio. It is clear from Figs. 2.9 and 2.10 that the e�ect of changing

the length aspect ratio� x is the one responsible for changing the pattern of the the

dimensionless thermal resistance of the di�erent conductance pro�les.

In the previous discussion, the dimensionless thermal resistance is studied for 
ux

channels with di�erent properties and parameters. However,the dimensional analyt-

ical solution of the temperature distribution presented inSection 2.2.2 can be used

to obtain the temperature distribution in the 
ux channel if desired. A dimensional

study is conducted to study the e�ect of the di�erent conductance distributions on

the temperature rise. A 3D square 
ux channel with side dimensions ofc = d = 0:1 m

and thicknesst = 0:01 m is considered. The heat-source dimensions area = b= 0:02

m. The thermal conductivity of the system isk = 10 W/m �K. A uniform heat 
ux of

q = 104 W/m 2 is applied in the source region. The conductance along the lateral edges
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Figure 2.11: Temperature pro�les along half of the source plane (along the x-axis
when y = 0) for the di�erent conductance distributions.

is he = 0:1 W/m 2�K, and the average conductance along the sink plane is�hs = 100

W/m 2�K. The ambient temperature is chosen of 25� C. Figure 2.11 shows the source-

plane temperature pro�le along thex-axis wheny = 0 for the di�erent conductance

distributions in which the e�ect of the di�erent conductance distributions along the

sink plane on the temperature rise along the source plane is clear.

2.4 Conclusion

In this chapter, an analytical solution of a 3D 
ux channel with a nonuniform heat

transfer coe�cient along the sink plane was presented by using the method of sep-

aration of variables combined with the method of least squares. The nonuniform

heat transfer coe�cient along the sink plane has been modeled by using a conduc-

tance function changing in thex-direction, which can de�ne a wide variety of di�erent

conductance distributions along the sink plane. The proposed analytical solution was

used to �nd and analyze the dimensionless total thermal resistance, where the thermal
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resistance was presented in a nondimensional form as a function of the heat-source-size

aspect ratios, channel-thickness aspect ratios, and Biot numbers. The solution was

validated by comparing the developed analytical solution results with results obtained

by solving the problem numerically using the FEM in which excellent agreement has

been observed, and then, the solution was used to study the e�ect of di�erent conduc-

tance distributions on the dimensionless total thermal resistance of the channel and

the temperature rise.
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Chapter 3

Thermal Resistance of a 3D Flux

Channel with Eccentric Source and

2D Variable Heat Convection

3.1 Introduction

Thermal management of microelectronic devices is considered as a key factor in the

development of microelectronic systems for better performance and device reliability.

In most applications, microelectronic systems are modeled asrectangular 
ux chan-

nels, where heat is generated in a small heat-source area and
ows by conduction

through the system to spread the heat into a larger convective heat-sink area where

the generated heat is then transferred into an ambient 
uid. The heat convection

along the sink plane depends strongly on the sink con�guration, where sometimes

a nonuniform heat transfer coe�cient along the sink plane might be present. For

Submitted to the ASME-Journal of Heat Transfer.
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example, when considering nonuniformly distributed extended surfaces with di�er-

ent lengths or a nonuniform nature of the moving ambient 
uid, the heat transfer

coe�cient along the sink plane becomes nonuniform.

Many relevant studies can be found in the literature on thermal analysis of 
ux

channels. In particular, many analytical solutions for thetemperature distribution and

thermal spreading resistance in 
ux channels have been studied comprehensively [1{

9]. Kadambi and Abuaf [1] obtained analytical solutions for the temperature �eld in

rectangular 
ux channels. Yovanovich et al. [2] obtained general analytical solutions

for temperature �eld and spreading resistance in compound 
ux channels. Muzychka

et al. [3{7] have conducted comprehensive research on di�erent spreading resistance

problems including di�erent geometries, boundaries, and properties. Bagnall et al. [8]

obtained analytical solutions for the temperature rise andthermal spreading resistance

in multilayered 
ux channels. However, in most of the existing work, attention has

been focused on problems with a uniform heat transfer coe�cient along the sink plane.

Recently, Razavi et al. [10] studied thermal resistance of atwo-dimensional (2D) 
ux

channel with a concentric heat source in the source plane anda nonuniform heat

transfer coe�cient along the sink plane.

In this chapter, general analytical solutions for the temperature �eld and thermal

resistance of a three-dimensional (3D) 
ux channel with eccentric heat source and

a variable heat transfer coe�cient that varies in the two horizontal dimensions are

developed by using the method of separation of variables combined with the method

of least squares. These solutions can be used to �nd the optimal con�guration of the

heat sink for many applications.
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3.2 Mathematical Theory

In this section, the mathematical model of the problem underconsideration is pre-

sented along with the governing equation of the temperaturedistribution and the

appropriate boundary conditions. The analytical solutions for the temperature �eld

and total thermal resistance are then obtained using the method of separation of

variables and the method of least squares, in which the two methods are used to

construct a mathematical algorithm for �nding the Fourier coe�cients. Finally, a

nondimensional total thermal resistance is introduced in terms of some aspect ratio

factors.

3.2.1 Mathematical model

The system under study is a 3D rectangular 
ux channel in which heat enters the

system through an eccentric heat source and 
ows by conduction to a larger convective

heat sink with variable heat transfer coe�cient h(x; y) varying in the two horizontal

dimensions. The system is modeled in Cartesian coordinatessuch that the origin is

at the left corner of the source plane, as shown in Fig. 3.1.

The steady-state heat conduction equation of the temperature excess� = T � T1

is governed by Laplace's equation:

@2�
@x2

+
@2�
@y2

+
@2�
@z2

= 0; (3.1)

with respect to the following boundary conditions: in the source plane, a uniform heat


ux q is speci�ed over the heat-source region, where the heat source is considered as

a rectangular shape with dimensionsa and b in the x- and y-directions, respectively,
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while the remainder of the source plane is considered as adiabatic. Hence, the source-

plane boundary condition is given by:

� k
@�
@z

�
�
�
�
z=0

=

8
>><

>>:

q; inside source region,

0; outside source region.
(3.2)

The lateral edges of the system are assumed to be adiabatic. Thus, the lateral-edge

boundary conditions are:

@�
@x

�
�
�
�
x = 0 ; c

= 0;
@�
@y

�
�
�
�
y = 0 ; d

= 0: (3.3)

Along the sink plane, a variable heat transfer coe�cient varying in the x- and y-

directions exists and the boundary condition is addressed by:

@�
@z

�
�
�
�
z= t

= �
h(x; y)

k
� (x; y; t): (3.4)

The variable heat transfer coe�cient function h(x; y) might present along the sink

plane in di�erent distributions according to the sink con�guration when considering

a nonuniform distribution of the extended surfaces (�ns or bins) or according to a

nonuniform nature of the moving ambient 
uid over the sink region. Thus, the heat

transfer coe�cient function depends on the speci�c problemunder study. However,

the general solution for the temperature distribution and thermal resistance can be

obtained in the same manner for any heat transfer coe�cient distribution. In this

study, we will consider two heat transfer coe�cient distributions that are of opposite

nature in distributing the convective cooling along the sink plane, de�ned by:

h1(x; y) = h0 sin
� x�

c

�
sin

� y�
d

�
; (3.5)
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h2(x; y) = h0

h
1 � sin

� x�
c

�
sin

� y�
d

�i
; (3.6)

where h0 is a reference conductance representing the maximum value of the heat

transfer coe�cient in the sink region. It can be seen that the�rst distribution function

h1(x; y) has the maximum conductance in the central region of the sink plane and the

conductance decreases when moving away from the central region, whereas in the

second distribution functionh2(x; y), the maximum value of the conductance is along

the sink boundaries and the conductance decreases when moving towards the central

region. Figures 3.2 and 3.3 show two samples of 
ux channels with extended surfaces

distributed along the sink plane based on the heat transfer coe�cient functions given

by Eqs. (3.5) and (3.6). For the purpose of comparing the e�ect of the di�erent

conductance distribution functions on the temperature �eld and the thermal resistance

of the channel, it is more appropriate to present the distributions with the same total

average conductance. This can be done by integrating the conductance distributions

along the sink plane and �nding the average total conductance �hs as:

�hs =
1
cd

c�

0

d�

0

h(x; y)dydx: (3.7)

Hence, the two conductance functions in Eqs. (3.5) and (3.6) can be rewritten to have

the same average conductance as:

h1(x; y) =
� 2�hs

4
sin

� x�
c

�
sin

� y�
d

�
; (3.8)

h2(x; y) =
� 2�hs

� 2 � 4

h
1 � sin

� x�
c

�
sin

� y�
d

�i
: (3.9)





80

the form of an in�nite Fourier series solution. The solutionis assumed to have the

form � (x; y; z) = X (x) � Y(y) � Z (z) [11{14]. Applying the method of separation of

variables and making use of the lateral-edge boundary conditions along the planes

(x = 0, x = c, y = 0, and y = d) yields the following general solution:

� (x; y; z) = C00 + D00z

+
1X

m=1

cos(� mx) [Cm0 cosh(� mz) + Dm0 sinh(� mz)]

+
1X

n=1

cos(� ny) [C0n cosh(� nz) + D0n sinh(� nz)]

+
1X

m=1

1X

n=1

cos(� mx) cos(� ny) [Cmn cosh(� mn z) + Dmn sinh(� mn z)] ; (3.10)

where � m = m�=c and � n = n�=d are the eigenvalues in thex- and y-directions,

respectively, and� mn =
p

� m
2 + � n

2 (m; n > 0) are the double Fourier expansion

eigenvalues. The relationship between the Fourier coe�cients Cmn and Dmn can be

obtained by applying the sink boundary condition in Eq. (3.4), where the following

result can be obtained:

Dmn = � � mn (x; y)Cmn ; (3.11)

where� mn (x; y) is given by:

� mn (x; y) =

8
>>>>><

>>>>>:

h(x; y)
k + h(x; y)t

; for m = n = 0;


 tanh(
t ) + [ h(x; y)=k]

 + [ h(x; y)=k] tanh(
t )

; otherwise,

(3.12)

where
 refers to any of the corresponding eigenvalues� m , � n , or � mn .

Finally, the source-plane boundary condition is used to �nd the Fourier coe�cients

Cmn by means of the method of least squares. The method of least squares is used
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to �nd the Fourier coe�cients because of the existence of thevariable conductance

function h(x; y) in the general solution. The general solution in Eq. (3.10)is presented

in an in�nite series form; however, in practical applications we consider a �nite number

of terms to calculate the results provided that the number ofterms is su�cient to

represent the solution without loss of accuracy. The general approximate solution for

�nite M and N eigenvalues in thex- and y-directions, respectively, can be rewritten

after making use of Eq. (3.11) as:

� (x; y; z) = C00 [1 � � 00(x; y)z]

+
M � 1X

m=1

Cm0 cos(� mx) [cosh(� mz) � � m0(x; y) sinh(� mz)]

+
N � 1X

n=1

C0n cos(� ny) [cosh(� nz) � � 0n (x; y) sinh(� nz)]

+
M � 1X

m=1

N � 1X

n=1

Cmn cos(� mx) cos(� ny) [cosh(� mn z) � � mn (x; y) sinh(� mn z)] :

(3.13)

The method of least squares can be applied to the general solution given in Eq. (3.13)

by considering the source-plane boundary condition in Eq. (3.2). This can be done

by de�ning the least squares integral [15, 16]:

I MN =

c�

0

d�

0

�
�

@�
@z

�
�
�
�
z=0

� S(x; y)
� 2

dydx; (3.14)

where S(x; y) is the function de�ning the boundary condition at the source plane

given by:

S(x; y) =

8
>><

>>:

q=k; inside source region,

0; outside source region.
(3.15)
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To simplify the least squares integral, the �rst derivativeof the general solution in

Eq. (3.13) with respect toz at the source plane (atz = 0) can be found as:

@�
@z

�
�
�
�
z=0

= � C00� 00(x; y) �
M � 1X

m=1

Cm0� m � m0(x; y) cos(� mx)

�
N � 1X

n=1

C0n � n � 0n (x; y) cos(� ny) �
M � 1X

m=1

N � 1X

n=1

Cmn � mn � mn (x; y) cos(� mx) cos(� ny):

(3.16)

Thus, the least square integral in Eq. (3.14) can be rewritten in a compact form as:

I MN =

c�

0

d�

0

"
M � 1X

m=0

N � 1X

n=0

Cmn  mn (x; y) � S(x; y)

#2

dydx; (3.17)

where mn (x; y) is the Fourier coe�cient's corresponding function given by:

 mn (x; y) =

8
>>>>>>>>>><

>>>>>>>>>>:

� 00(x; y); for m = n = 0;

� m � m0(x; y) cos(� mx); for m 6= 0; n = 0;

� n � 0n (x; y) cos(� ny); for m = 0; n 6= 0;

� mn � mn (x; y) cos(� mx) cos(� ny); for m 6= 0; n 6= 0:

(3.18)

The least squares Fourier coe�cients are obtained to minimize the least squares inte-

gral I MN using [17, 18]:

@IMN

@Cij
= 0; i = 0; 1; : : : ; M � 1; j = 0; 1; : : : ; N � 1: (3.19)

The application of Eq. (3.19) yields:
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c�

0

d�

0

"
M � 1X

m=0

N � 1X

n=0

Cmn  mn (x; y) � S(x; y)

#

 ij (x; y)dydx = 0; (3.20)

which can be simpli�ed to:

M � 1X

m=0

N � 1X

n=0

Cmn

c�

0

d�

0

 mn (x; y) ij (x; y)dydx =
q
k

� X c+ a=2

X c � a=2

� Yc+ b=2

Yc � b=2
 ij (x; y)dydx:

(3.21)

Equation (3.21) represents a system ofMN linear equations, where each equation

is obtained by considering di�erent values ofi and j for i = 0; 1; : : : ; M � 1 and

j = 0; 1; : : : ; N � 1. The system of linear equations has to be solved for the Fourier

coe�cients which can be represented in a matrix form as:

AC = b; (3.22)

whereA is an MN � MN matrix whose components are represented by de�nite inte-

grals, which can de�ned by:

A =

c�

0

d�

0

	 t (x; y)	( x; y)dydx; (3.23)

where 	( x; y) is vector-valued function ofMN components given by:

	( x; y) = [  00  01 : : :  0N � 1  10  11 : : :  1N � 1 : : : : : :  M � 1N � 1]; (3.24)

C is the unknown Fourier coe�cients vector de�ned as:

C = [ C00 C01 : : : C0N � 1 C10 C11 : : : C1N � 1 : : : : : : CM � 1N � 1]t ; (3.25)



84

and b is the right-hand-side vector given by:

b =
q
k

� X c+ a=2

X c � a=2

� Yc+ b=2

Yc � b=2
	 t (x; y)dydx: (3.26)

It is worth mentioning that the linear system matrix A and the right-hand-side vector

b are presented in the form of de�nite integrals of a matrix-valued function and vector-

valued function, respectively, where the integrals are applied componentwise to the

component functions. Thus, numerical integration can be used to evaluate the entries

of the linear system using any mathematical software package (e.g., MATLAB) and

then the Fourier coe�cients Cmn can be obtained by solving the resultant linear

system.

From the previous discussion, the general solution of the temperature excess�

is illustrated along with a mathematical linear system thathas to be solved for the

Fourier coe�cients. The solution in the source planez = 0 is of most interest for

�nding the maximum temperature and the total thermal resistance of the 
ux channel,

and is given by:

� (x; y; 0) = C00+
M � 1X

m=1

Cm0 cos(� mx)+
N � 1X

n=1

C0n cos(� ny)+
M � 1X

m=1

N � 1X

n=1

Cmn cos(� mx) cos(� ny):

(3.27)

3.2.3 Total Thermal Resistance

The total thermal resistance of the system under consideration can be properly de�ned

as [3, 6]:

Rt =
Tc � T1

Q
=

�� c

Q
; (3.28)

whereTc and �� c are the mean temperature over the heat-source area and the mean

heat-source temperature excess, respectively, andQ = abqis the total heat 
ow rate
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into the 
ux channel. The mean source temperature excess is addressed by:

�� c =
1

Ac

�

A c

� (x; y; 0) dAc =
1
ab

� X c+ a=2

X c � a=2

� Yc+ b=2

Yc � b=2
� (x; y; 0)dydx: (3.29)

The application of Eq. (3.29) to the source-plane solution in Eq. (3.27) yields:

�� c = C00 + 2
M � 1X

m=1

Cm0
cos(� mX c) sin( 1

2 � ma)
a� m

+ 2
N � 1X

n=1

C0n
cos(� nYc) sin( 1

2 � nb)
b�n

+ 4
M � 1X

m=1

N � 1X

n=1

Cmn
cos(� mX c) sin( 1

2 � ma) cos(� nYc) sin( 1
2 � nb)

a� mb�n
: (3.30)

3.2.4 Dimensionless Resistance

As the general expression of the thermal resistance depends on a large number of

parameters, it is more appropriate to present the results ina general dimensionless

form in terms of some aspect ratio factors. This can be done byconsidering the

following nondimensional variables:

x � =
x
c

; y� =
y
d

; z� =
z
t
; (3.31)

which leads to the following e�ective nondimensional parameters:

� x = a=c; �y = b=d; �x = t=c; �y = t=d; Bis = �hst=k; (3.32)

where� x and � y are the aspect ratios between the heat-source dimensions and the hori-

zontal cross-sectional dimensions.� x and � y are the aspect ratios between the channel

thickness and the horizontal cross-sectional dimensions in the x- and y-directions,

respectively, whileBis represents the Biot number based on the total average heat

transfer coe�cient. Thus, the general solution in Eq. (3.13) can be rewritten in terms
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of the nondimensional variables as:

� (x � ; y� ; z� ) = C00 [1 � � �
00(x

� ; y� )z� ]

+
M � 1X

m=1

Cm0 cos(� �
mx � ) [cosh(� x � �

mz� ) � � �
m0(x � ; y� ) sinh(� x � �

mz� )]

+
N � 1X

n=1

C0n cos(� �
ny� ) [cosh(� y � �

nz� ) � � �
0n (x � ; y� ) sinh(� y � �

nz� )] +

M � 1X

m=1

N � 1X

n=1

Cmn cos(� �
mx � ) cos(� �

ny� ) [cosh(� �
mn z� ) � � �

mn (x � ; y� ) sinh(� �
mn z� )] ;

(3.33)

where � �
m = � mc = m� and � �

n = � nd = n� are the dimensionless eigenvalues in

the x- and y-directions, respectively, and� �
mn = � mn t =

p
(� �

m � x )2 + ( � �
n � y)2 are the

dimensionless double Fourier expansion eigenvalues. The Fourier coe�cients function

� �
mn (x � ; y� ) is rewritten as:

� �
mn (x � ; y� ) =

8
>>>>><

>>>>>:

Bi (x � ; y� )
1 + Bi (x � ; y� )

; for m = n = 0;


 � tanh(
 � � 
 ) + [ Bi (x � ; y� )=� 
 ]

 � + [ Bi (x � ; y� )=� 
 ] tanh(
 � � 
 )

; otherwise,

(3.34)

where
 � refers to any of the corresponding dimensionless eigenvalues � �
m , � �

n , or � �
mn

and � 
 is the corresponding thickness-aspect ratio, i.e.,� 
 = � x for � �
m , � 
 = � y for

� �
n , and � 
 = 1 for � �

mn . The function Bi (x � ; y� ) represents the nondimensional heat

transfer coe�cient function h(x; y), where the two functions considered in this study

given by Eqs. (3.8) and (3.9) can be represented as:

Bi 1(x � ; y� ) = Bis
� 2

4
sin(x � � ) sin(y� � ); (3.35)
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Bi 2(x � ; y� ) = Bis
� 2

� 2 � 4
[1 � sin(x � � ) sin(y� � )] : (3.36)

To �nd the Fourier coe�cients Cmn based on the nondimensional representation,

the general equation of the linear system in Eq. (3.21) can berewritten as:

M � 1X

m=0

N � 1X

n=0

Ĉmn

1�

0

1�

0

 �
mn (x � ; y� ) �

ij (x � ; y� )dy� dx� =
� X �

c + � x =2

X �
c � � x =2

� Y �
c + � y =2

Y �
c � � y =2

 �
ij (x � ; y� )dy� dx� ;

(3.37)

where

 mn (x; y) =

8
>>>>>>>>>><

>>>>>>>>>>:

� �
00(x

� ; y� ); for m = n = 0;

� �
m � �

m0(x � ; y� ) cos(� �
mx � ); for m 6= 0; n = 0;

� �
n � �

0n (x � ; y� ) cos(� �
ny� ); for m = 0; n 6= 0;

� �
mn � �

mn (x � ; y� ) cos(� �
mx � ) cos(� �

ny� ); for m 6= 0; n 6= 0:

(3.38)

It is important to note that the nondimensional linear system equation (3.37) is pre-

sented in terms of the modi�ed Fourier coe�cients that can berelated to the ac-

tual Fourier coe�cients as Ĉ00 = C00k=qt, Ĉm0 = Cm0k=qc, Ĉ0n = C0nk=qd, and

Ĉmn = Cmn k=qt for both m 6= 0 and n 6= 0.

Finally, the total thermal resistanceRt is nondimensionalized by using the thermal

conductivity k and an intrinsic length scale which is taken to be
p

ab (i.e.,
p

Ac) to

get:

R�
t = k

p
abRt : (3.39)

Thus, once the linear system is solved for the modi�ed Fourier coe�cients Ĉmn , the

nondimensional total thermal resistance can be expressed in terms of the aspect ratio

factors as:
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R�
t =

p
� x � y

p
� x � y

"

Ĉ00 +
2

� x � x

M � 1X

m=1

Ĉm0
cos(� �

mX �
c ) sin( 1

2 � �
m � x )

� �
m

+
2

� y � y

N � 1X

n=1

Ĉ0n
cos(� �

nY �
c ) sin( 1

2 � �
n � y)

� �
n

+
4

� x � y

M � 1X

m=1

N � 1X

n=1

Ĉmn
cos(� �

mX �
c ) sin( 1

2 � �
m � x ) cos(� �

nY �
c ) sin( 1

2 � �
n � y)

� �
m � �

n

#

: (3.40)

3.3 Results and Discussions

In this section, di�erent parametric studies are conductedto validate the analytical

solution and to study the e�ect of the di�erent conductance distribution pro�les along

the sink plane on the thermal resistance and temperature rise. First, the analytical

solution is used to calculate and study the dimensionless thermal resistance of a 3D


ux channel for di�erent aspect ratios and di�erent values of the Biot number where

the results are compared with numerical simulation results. One parametric dimen-

sional study is then presented to see the e�ect of the di�erent conductance pro�les

on the temperature distribution along the source plane. Forthe analytical solution

results, MATLAB (version 2016b) software is used to carry outthe results [19], while

the numerical results are conducted based on the �nite element method (FEM) using

the ANSYS commercial software package [20].

3.3.1 Dimensionless Parametric Analysis

We start our investigation by considering the developed analytical solution to evaluate

the dimensionless total thermal resistance of a 3D 
ux channel and to study the e�ect

of the di�erent conductance pro�les on the thermal resistance for di�erent aspect

ratios and di�erent Biot numbers. The analytical dimensionless thermal resistance

presented in Eq. (3.40) can be seen as a function of seven parameters: X �
c , Y �

c , � x ,
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� y, � x , � y, and Bi s. In this study, we consider a channel 
ux of equal aspect ratios,

i.e., � x = � y = � and � x = � y = � , and a centered heat source ofX �
c = Y �

c = 0:5. The

two variable heat transfer coe�cient pro�les along the sinkplane given by Eqs. (3.8)

and (3.9) are considered and compared with using a uniform heat transfer coe�cient

along the sink plane�hs. The dimensionless thermal resistance is calculated for di�erent

values of the Biot number:Bi s = 0:1; 1; 10 and with a thickness-aspect ratio �xed as

� = 0:1. The dimensionless total thermal resistance is calculated for di�erent values

of the aspect ratio� (� is taken to vary from 0:1 to 1) and the analytical results are

compared to the FEM numerical solution results. Regarding the analytical solution

results, the number of terms for each summation in Eq. (3.40)is taken the same, i.e.,

M = N , and the convergence is checked by increasing the number of terms in the

summations starting fromM = N = 10 and then the number of terms is incremented

until the following stopping criteria are satis�ed [21]:

�
�
�
�
R�

t
M +1 � R�

t
M

R�
t

M +1

�
�
�
� � 10� 3; (3.41)

where R�
t

M +1 represents the dimensionless resistanceR�
t calculated by usingM + 1

and N + 1 terms in the summations. Moreover, the FEM results are obtained with a

tetrahedral mesh and the convergence is checked by re�ning the mesh. In particular,

most of the re�nement is required around the heat-source region. Table 3.1 shows

the convergence of the analytical and the numerical dimensionless thermal resistance

of one sample of the conducted studies for� = 0:4 and Bi s = 0:1 when considering

h1(x; y) as the heat transfer coe�cient along the sink plane. It can be seen that with

M = N = 20, the dimensionless thermal resistance has very good agreement with the

FEM results with a relative error of approximately 0:1% compared to the �nest mesh

result.
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FEM Analytical
Number of Elements R�

t M = N R �
t

14842 0.619830 5 0.619728
34443 0.631640 10 0.636532
43882 0.636269 15 0.640422
119160 0.639505 20 0.641298
282386 0.641478 25 0.641519
482386 0.641934 30 0.641675

Table 3.1: Convergence study of the dimensionless thermal resistance for the analytical
and the FEM results with Bi s = 0:1, and � = 0:4 when consideringh1(x; y).

0.1 0.2 0.4 0.6 0.8 1

0.5

0.7

0.9

1.1

1.3

Figure 3.4: Dimensionless thermal resistance forBi s = 0:1 and � = 0:1.

Figures 3.4-3.6 show the dimensionless thermal resistanceR�
t as a function of

the aspect ratio � for the di�erent values of the Biot numbers where both of the

analytical and the FEM results are shown on the same plots. Forthe analytical

results, the number of terms used to satisfy Eq. (3.41) is found to be varying between

M = N = 15 and M = N = 30 depending on the aspect ratio value� where

more terms are required for the smaller values of� . It is important to note that

the behavior (increasing/decreasing intervals) of the dimensionless thermal resistance

pro�le R�
t with respect to � is not necessarily representing the same behavior of the

dimensional thermal resistance pro�leRt since
p

ab is used to nondimensionalize the
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Figure 3.5: Dimensionless thermal resistance forBi s = 1 and � = 0:1.
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Figure 3.6: Dimensionless thermal resistance forBi s = 10 and � = 0:1.

thermal resistance; hence, the dimensional value of the resistance depends on the

value of � .

One can see from Figs. 3.4-3.6 that the order of magnitude for the dimensionless

thermal resistance decreases when the Biot number increases. Furthermore, the e�ect

of the di�erent conductance pro�les along the sink plane on the thermal resistance is

obvious for the di�erent Biot numbers. Although the total average conductance of the
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di�erent conductance pro�les is the same and equals to the uniform conductance value

�hs, the thermal resistance is strongly dependent on the distribution of the conductance

pro�le along the sink plane. In particular, for � < 0:8, the thermal resistance has

minimum values when usingh1(x; y) as the conductance pro�le compared with using

uniform conductance along the entire sink plane orh2(x; y). The reason behind this

is that by considering the distribution of h1(x; y), the intense cooling area is located

directly under the heat-source region. However, for the larger values of the aspect

ratio, i.e., � > 0:8, the thermal resistance has minimum values when using the uniform

conductance pro�le. It is worth mentioning that the heat 
ow mechanism through

the channel is di�erent for the three conductance distributions. For example, when

considering the uniform conductance along the sink plane, as the heat-source aspect

ratio � increases to cover the source-plane area, i.e.,� = 1, the nature of the heat 
ow

becomes one-dimensional (1D). However, this is not the case when considering the two

other distributions h1(x; y) and h2(x; y) where the 
ow is always multidimensional for

all the values of� , as we will see in the next section.

3.3.2 Source-Plane Temperature

In this part, a dimensional study is conducted to see the impact of the variable heat

transfer coe�cients on the temperature distribution along the source plane. A 3D

square 
ux channel with side dimensions ofc = d = 0:1 m and thicknesst = 0:01 m

(� = 0:1) is considered. In the source plane, the heat-source center is located at the

point (X c; Yc) = (0 :05 m; 0:05 m) where two di�erent dimensions of the heat source

are considered. First, we consider a small heat source of dimensionsa = b = 0:02 m

(� = 0:2). Then a large heat source that covers the whole source plane of dimensions

a = b = 0:1 m (� = 1:0) is considered. The thermal conductivity isk = 10 W/m �K.

A uniform heat 
ux of q = 104 W/m 2 is applied in the source region. Along the
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(a) (b)

Figure 3.7: Color-map plots of the temperature distributionalong the source plane
when consideringh1(x; y) as the heat transfer coe�cient. (a) � = 0:2. (b) � = 1:0.

(a) (b)

Figure 3.8: Color-map plots of the temperature distributionalong the source plane
when consideringh2(x; y) as the heat transfer coe�cient. (a) � = 0:2. (b) � = 1:0.

sink plane, the di�erent heat transfer coe�cients represented by h1(x; y), h2(x; y) and

the uniform heat transfer coe�cient �hs are considered with average conductance of

�hs = 100 W/m 2�K ( Bi s = 0:1). The ambient temperature is chosen as 25� C.
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(a) (b)

Figure 3.9: Color-map plots of the temperature distributionalong the source plane
when considering a uniform heat transfer coe�cient�hs. (a) � = 0:2. (b) � = 1:0.

The developed analytical solution is used to evaluate the temperature distribution

along the source plane for the di�erent conductance functions. Figures 3.7-3.9 show

the source-plane temperature distributions for the di�erent conductance functions.

One can observe how the di�erent conductance pro�les along the sink plane a�ect

the temperature distributions along the source plane. In particular, for the small

heat-source case, i.e.,� = 0:2, the temperature rise inside the heat-source area records

the minimum values when consideringh1(x; y) as the conductance pro�le. On the

other hand, for the large heat-source case, i.e.,� = 1:0, the nature of the tempera-

ture distributions is signi�cantly di�erent for the three c onductance pro�les. When

consideringh1(x; y) as the conductance pro�le, the temperature distribution records

the minimum values in the central region (intense cooling region) and the maximum

values along the corners of the source plane, whereas the temperature distribution

records the maximum values in the central region of the source plane when consid-

ering h2(x; y). However, the temperature distribution has a uniform valuealong the
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source plane when considering the uniform heat transfer coe�cient �hs.

3.4 Conclusion

In this chapter, analytical solutions for the temperature �eld and thermal resistance

of a 3D 
ux channel with eccentric heat source and a variable heat transfer coe�cient

that varies in the two horizontal dimensions were developedby using the method

of separation of variables combined with the method of leastsquares. Two di�erent

variable heat transfer coe�cients were considered in this chapter to study the e�ect of

the variable conductance distribution along the sink planeon the temperature distri-

bution and the thermal resistance of the 
ux channel compared with using uniformly

distributed conductance along the sink plane. The thermal resistance was presented

in a general dimensionless form as a function of the heat-source aspect ratios, the

channel-thickness aspect ratios, and the Biot number. The analytical solution results

were validated by comparing the developed analytical solution results with the results

obtained by solving the problem numerically based on the FEM using the ANSYS

commercial software package [20] where very good agreementwas found. Di�erent

parametric studies were conducted to study the e�ect of the di�erent conductance

distributions on the dimensionless total thermal resistance of the channel and the

temperature distribution along the source plane. It was observed that although the

total average conductance of the di�erent conductance pro�les are considered to be the

same, the temperature distribution and the thermal resistance are strongly dependent

on the distribution of the conductance pro�le along the sinkplane.
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Chapter 4

E�ect of Temperature-Dependent

Thermal Conductivity on

Spreading Resistance in Flux

Channels

4.1 Introduction

Accurate thermal analysis of microelectronic devices is considered as a key factor in

the development of electronic systems for better performance and device reliability.

In many materials used in the microelectronics industry, the thermal properties vary

with temperature. In particular, the thermal conductivity of most of the materials are

temperature dependent, and the assumption of constant thermal conductivity within
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the whole temperature variation interval when consideringthermal management may

lead to unacceptable errors in the temperature distribution �eld, and so, in thermal

analysis [1, 2]. Therefore, a good understanding of the e�ects of the material's prop-

erties used for designing the device on the temperature riseand thermal resistance is

essential to design a durable device. Most electronic systems are modeled as rectan-

gular 
ux channels or cylindrical 
ux tubes, where heat enters the channel through

small region(s) and 
ows by conduction through the system tospread the heat out

into a larger heat-sink area, which gives rise to thermal spreading resistance.

The temperature-dependent thermal conductivity producesa nonlinearity in the

heat conduction governing equation and this makes the problem complicated to be

solved directly. Usually, numerical methods are used to solve nonlinear conduction

problems; however, in most applications, the numerical methods are computationally

expensive and less 
exible for the optimization studies of the device layout to re-

duce thermal resistance. The Kirchho� transform method is an attractive technique

for dealing with nonlinear conduction problems with temperature-dependent thermal

conductivity since it provides a convenient way to linearize the governing equation

and then the solution of the linearized system can be transformed back to the solu-

tion of the nonlinear problem in an exact manner [3{6]. The Kirchho� transform was

introduced by Kirchho� in 1894, and since its introduction it has been widely used

to solve heat conduction problems in which the thermal conductivity of the materials

depends on temperature [7]. Although the Kirchho� transformis considered a pow-

erful technique in solving nonlinear conduction problems,its applicability has some

restrictions. In particular, when the boundary conditionsof the problem are Dirich-

let (�rst kind) or Neumann (second kind), the Kirchho� transf orm will transform

the boundary conditions to linear boundary conditions thatcan be used directly to

solve the transformed linear system. However, this is not thecase when considering
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convective boundary conditions (third kind or Robin), as the transformed boundary

conditions become nonlinear boundary conditions, and thisproduces a di�culty when

trying to solve the transformed linear problem [3, 4].

Many relevant studies can be found in the literature on thermal analysis of 
ux

channels. In most of the existing work, attention has been focused on problems with

constant thermal conductivities. Yovanovich studied di�erent spreading resistance

problems for more than forty years, and he summarized the most important mod-

els of thermal spreading resistance in a review paper about contact, gap and joint

resistance in [8]. Muzychka et al. [9{14] have done comprehensive research on di�er-

ent aspects of thermal spreading resistance problems including di�erent geometries,

boundaries, and properties. Bagnall et al. [15] developed an analytical solution for

the spreading resistance in multilayered 
ux channels withisotropic and transversely

isotropic properties. Bonani and Ghoine [1] applied the Kirchho� transform to a

composite medium with temperature-dependent and piecewise inhomogeneous ther-

mal conductivity for a �xed-sink-temperature boundary condition. Ditri [16] studied

a single-layer 
ux channel with orthotropic temperature-dependent thermal conduc-

tivities and a �xed-temperature boundary condition along the sink plane. A review of

the literature reveals that analytical solutions for the temperature �eld and thermal

spreading resistance for 
ux channels with temperature-dependent thermal conduc-

tivities and convective boundary conditions are limited. Recently, Bagnall et al. [7]

applied the Kirchho� transform to problems with convectionboundary conditions to

study the temperature rise.

In this chapter, the Kirchho� transform is used to study the e�ect of the temperature-

dependent thermal conductivity on the temperature rise andthermal resistance of a

three-dimensional (3D) 
ux channel for di�erent conductivity functions. The Kirch-

ho� transform is used to transform the nonlinear conductionproblem into a linear
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problem, after which the solution of the linear problem is presented and used to

�nd the solution of the original nonlinear problem by means of the inverse Kirchho�

transform. Moreover, explicit approximation of the total thermal resistance of the

nonlinear problem is developed.

4.2 Mathematical Theory

The model under consideration is a 3D rectangular 
ux channel in which heat enters

the system through an eccentric heat source and 
ows by conduction to a larger

convective heat sink, as shown in Fig. 4.1. This model represents the general layout

of many applications including heat spreaders, semiconductors and microelectronic

devices.

In many applications, the thermal conductivity of the used materials is tempera-

ture dependent and can be represented by a functional relationship k(T). Hence, the

steady-state heat conduction is governed by the following nonlinear heat equation:

r � k(T)r T = 0; (4.1)

with respect to the following boundary conditions (see Fig. 4.1). In the source plane,

a uniform heat 
ux is speci�ed over the heat-source region, where the heat source is

considered as of rectangular shape with dimensionsa and b in the x- and y-directions,

respectively, whereas outside the heat-source region is considered as adiabatic. Hence,

the source-plane boundary condition is given by:

� k(T)
@T
@z

�
�
�
�
z = 0

=

8
>><

>>:

q; inside source region,

0; outside source region.
(4.2)
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@T
@x

�
�
�
�
x = 0 ; c

= 0;
@T
@y

�
�
�
�
y = 0 ; d

= 0: (4.4)

The problem statement is illustrated along with the nonlinear governing equation

and boundary conditions. It is important to note that the nonlinearity of the problem

makes it di�cult to be solved analytically. However, this problem can be linearized

and solved by means of the Kirchho� transform.

4.2.1 Kirchho� Transform

The Kirchho� transform is considered a convenient method for solving heat conduction

problems with temperature-dependent properties, which can be applied for solving

nonlinear steady-state and transient problems [3]. However, the method is more

attractive for solving steady-state problems in the context of obtaining fully exact

solutions without considering any assumptions or approximations.

The Kirchho� transform can be used to linearize the nonlinear heat conduction

equation in Eq. (4.1) by transforming the nonlinear system with the temperature-

dependent thermal conductivity into another linear systemwith a constant thermal

conductivity. This can be done by introducing a new variable� , which can be de�ned

in its general form as:

� = K f Tg = A +
1
C

T�

B

k(� )d�; (4.5)

whereA, B , and C are constants that can be chosen arbitrarily. Kirchho� originally

introduced the transform in 1894 of the form:

U =
1
k0

T�

0

k(� )d�; (4.6)

with k0 as the thermal conductivity evaluated at 0, i.e.,k0 = k(0). However, the
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general form in Eq. (4.5) can be seen as a result of applying the so-called Hopf-

Cole transformation [17]. The Hopf-Cole transformation was originally presented to

linearize the viscous Burgers' equation into a linear di�usion equation, by introducing

new variables that would eliminate the nonlinear terms whenthe equation is presented

in terms of the new transformed variables. By following the Holf-Cole method, the

nonlinear heat conduction equation given by Eq. (4.1) can berewritten as:

k(T)r 2T +
dk
dT

 �
@T
@x

� 2

+
�

@T
@y

� 2

+
�

@T
@z

� 2
!

| {z }
(r T �r T )

= 0; (4.7)

which shows the nonlinearity clearly. It is desirable to introduce a transformation of

the form:

T =  (� ); (4.8)

such that the nonlinear term represented by the second term in Eq. (4.7) is eliminated

when using the new variable� . It follows from Eq. (4.8) that,

r T =  0r �; r 2T =  0r 2� +  00r � � r �; (4.9)

where the derivatives of are with respect to the new variable� , i.e.,  0 = d =d� and

 00= d2 =d� 2. Thus, the nonlinear conduction equation in Eq. (4.7) is transformed

under the new variable� to:

k( ) 0r 2� +
�
k( ) 00+

dk
d 

 02

�
r � � r � = 0: (4.10)

It can be seen that the second nonlinear term in Eq. (4.10) corresponds tor � � r �
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vanishes when
�
k( ) 00+

dk
d 

 02

�
= 0; (4.11)

which can be rewritten as:
d
d�

�
k( )

d 
d�

�
= 0: (4.12)

Integrating Eq. (4.12) with respect to� yields:

k( )
d 
d�

= C; (4.13)

whereC is the integration constant. Furthermore, the result in Eq.(4.13) implies that

the coe�cient of the Laplacian term r 2� in Eq. (4.10) is constant, i.e.,k( ) 0r 2� =

Cr 2� . Equation (4.13) can be rewritten in a separable form and integrated from� 0

to � to get the general formula of the new variable� as:

� = � 0 +
1
C

 (� )�

 (� 0 )

k( _ )d _ ; (4.14)

where � 0 and  (� 0) can be chosen to be any arbitrary constants. Hence, the general

formula in Eq. (4.14) can be written as:

� = A +
1
C

T�

B

k(� )d�; (4.15)

which is the general form of the Kirchho� transform presented in Eq. (4.5) where 

is just the inverse Kirchho� transform, i.e.,  = K � 1. As a convenient choice and to

give the new variable� the dimension of temperature, in order to keep the physical

meaning of the problem, the constants can be chosen asA = B = T0, whereT0 is a

convenient reference temperature depending on the problemto be investigated and
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C = k(T0) = k0 is the thermal conductivity evaluated at T0. Therefore, the new

variable � (usually referred to as the apparent temperature) can be written as:

� = K f Tg = T0 +
1
k0

T�

T0

k(� )d�: (4.16)

As a result, when applying the Kirchho� transform given by Eq.(4.16) to the nonlinear

heat conduction equation in Eq. (4.1), the nonlinear equation is transformed into the

linear Laplace's equation:

r 2� = 0: (4.17)

From the previous discussion on the Kirchho� transform, onecan see the impor-

tance of this transform for solving nonlinear heat conduction problems by transforming

them into linear problems in terms of the new variable� . The linearized problem can

be solved using the existing analytical methods for solvinglinear problems provided

that the boundary conditions can be transformed into linearboundary conditions.

In heat conduction problems, the linear boundary conditions are of three main

kinds: prescribed temperature (Dirichlet or �rst kind) boundary conditions, pre-

scribed heat 
ux (Neumann or second kind) boundary conditions, and convective

(Robin or third kind) boundary conditions. For boundary conditions of the �rst and

second kinds, the boundary conditions can be transformed directly through the Kirch-

ho� transform into linear boundary conditions in terms of the new variable� . This

can be seen by considering the following boundary conditions:

Tjboundary = Tb; (prescribed temperature); (4.18)

which can be transformed through the Kirchho� transform into:
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� jboundary = K f Tbg = T0 +
1
k0

Tb�

T0

k(� )d� = � b; (4.19)

which is again a prescribed temperature boundary conditionafter evaluating the def-

inite integral. The boundary condition of the second kind inthe form:

k(T)
@T
@n

�
�
�
�
boundary

= q; (prescribed heat 
ux); (4.20)

can be transformed through the Kirchho� transform into (using Eq. (4.13))

k0
@�
@n

�
�
�
�
boundary

= q; (4.21)

where@=@ndenotes the derivative along the outward normal at the boundary surface.

More details about the transformations of the boundary conditions of the �rst and

second kinds can be found in [3].

Although the boundary conditions of the �rst and second kindscan be transformed

easily into linear boundary conditions through the Kirchho� transform, in general, this

is not the case when considering a boundary condition of the third kind which has

the form:

� k(T)
@T
@n

�
�
�
�
boundary

= hs(Tjboundary � T1 ); (4.22)

and when the Kirchho� transform is considered, the boundarycondition is trans-

formed to:

� k0
@�
@n

�
�
�
�
boundary

= hs(K � 1f � jboundary g � T1 ); (4.23)

which is a nonlinear boundary condition since, in general,K � 1f � g is a nonlinear

function of � (K � 1f � g 6= � ). However, for some cases when the temperature distribu-

tion at the boundary can be approximated prior to using the Kirchho� transform, the
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linear boundary condition:

� k0
@�
@n

�
�
�
�
z= t

= hs(� jz= t � T1 ): (4.25)

This can be seen as a result of considering the approximate sink temperature as

a reference temperature in the Kirchho� transform, where the following relation is

obtained:

� jz= t � T jz= t : (4.26)

To summarize, by using the Kirchho� transform given in Eq. (4.16) with a reference

temperature T0 de�ned by:

T0 =
1
hs

Q
cd

+ T1 ; (4.27)

the nonlinear system gevin in Eqs. (4.1)-(4.4) is transformed to the following linear

system in terms of the apparent temperature� :

r 2� = 0; (4.28)

with respect to the following boundary conditions:

� k0
@�
@z

�
�
�
�
z = 0

=

8
>><

>>:

q; inside source region,

0; outside source region.
(4.29)

in the source plane, and

� k0
@�
@z

�
�
�
�
z = t

= hs (� (x; y; t) � T1 ) ; (4.30)

along the sink plane, while the lateral-edge boundary conditions are transformed to:
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@�
@x

�
�
�
�
x = 0 ; c

= 0;
@�
@y

�
�
�
�
y = 0 ; d

= 0: (4.31)

Once the solution of the new linear problem is obtained for� , this solution can be

transformed easily to the actual temperature of the nonlinear problemT by employing

the inverse Kirchho� transform, where the inverse Kirchho� K � 1f � g is not de�ned

explicitly in general. However, the actual temperature can be obtained after �nding

the relationship between� and T (once the thermal conductivity is speci�ed) by using

Eq. (4.16).

4.2.2 Linear System Solution

The general solution of the linearized system given by Eqs. (4.28)-(4.31) can be ob-

tained by using the method of separation of variables. By de�ning � 0 = � � T1 ,

the linear system of� 0 is the same as the linear system of� but with homogenous

boundary condition at the sink plane. The solution of� 0 is assumed to have the form

� 0(x; y; z) = X (x) � Y(y) � Z (z). Applying the method of separation of variables and

using the boundary conditions along the planes (x = 0; x = c) and (y = 0; y = d)

yield the following general solution:

� 0(x; y; z) = A00 + B00z

+
1X

m=1

cos(� mx) [Am0 cosh(� mz) + Bm0 sinh(� mz)]

+
1X

n=1

cos(� ny) [A0n cosh(� nz) + B0n sinh(� nz)]

+
1X

m=1

1X

n=1

cos(� mx) cos(� ny) [Amn cosh(� mn z) + Bmn sinh(� mn z)] ;

(4.32)



113

where � m = m�=c and � n = n�=d are the eigenvalues in thex- and y-directions,

respectively, and� mn =
p

� m
2 + � n

2 are the double Fourier expansion eigenvalues.

The general solution contains four components: a uniform 
ow solution, and three

spreading solutions represented by the series components that vanish when the heat


ux is covering the whole source-plane surface (z = 0). For m; n not both equal

to zero, the application of the sink-plane boundary condition leads to the following

relationship between the Fourier coe�cients:

� (
 ) = �
Bmn

Amn
=

(
k 0=hs) tanh( 
t ) + 1
(
k 0=hs) + tanh( 
t )

; (4.33)

where � is the spreading function and
 refers to any of the eigenvalues� m , � n , or

� mn . In the limit of hs �! 1 , i.e., �xed-sink temperature, the spreading function

becomes� (
 ) = coth( 
t ).

Finally, the boundary condition at the source plane (z = 0) is considered to �nd

the Fourier coe�cients Amn after making use ofBmn = � � (
 )Amn . This can be done

by taking Fourier series expansions of the boundary condition at the source plane and

using the orthogonality of the eigenfunctions to get:

Am0 =
4Q cos(� mX c) sin( 1

2 � ma)

acdk0� m
2� (� m )

; (4.34)

and

A0n =
4Q cos(� nYc) sin( 1

2 � nb)

bcdk0� n
2� (� n )

; (4.35)

and

Amn =
16Q cos(� mX c) sin( 1

2 � ma) cos(� nYc) sin( 1
2 � nb)

abcdk0� mn � m � n � (� mn )
; (4.36)

whereQ = abqis the total heat input of the 
ux channel. Now, whenm; n are both
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zeros, the zeroth-order Fourier coe�cientsA00 and B00 can be found by applying the

sink-plane boundary condition and taking the Fourier expansion in the source plane

to get:

A00 =
Q
cd

�
t
k0

+
1
hs

�
;

B00 = �
Q

cdk0
: (4.37)

The general solution of� 0 is illustrated along with the Fourier coe�cients; hence, the

general solution of� can be written as� = � 0+ T1 . The solution in the source plane

(z = 0) is of most interest for �nding the maximum temperature and the total thermal

resistance of the 
ux channel which is addressed by:

� (x; y; 0) = T1 + A00 +
1X

m=1

Am0 cos(� mx)

+
1X

n=1

A0n cos(� ny) +
1X

m=1

1X

n=1

Amn cos(� mx) cos(� ny): (4.38)

4.2.3 Temperature-Dependent Thermal Conductivity

The thermal conductivity of most materials is temperature dependent, and varies

with temperature according to speci�c functional relationships between the thermal

conductivity and the temperaturek(T). In some materials, the thermal conductivity

increases with increasing the temperature (e.g., Aluminum), while in other materials,

the thermal conductivity decreases with increasing the temperature (e.g., Silicon).

Di�erent dependency functions of the thermal conductivityon temperature can be

found in the literature explicitly or can be obtained by considering the best curve

�tting of experimental data. In this study, we will focus on three general forms of the
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thermal conductivity functions given by [7, 17, 18]:

k1(T) = k0(1 + ! 1(T � T0))p; (4.39)

k2(T) = k0 exp[! 2(T � T0)]; (4.40)

k3(T) = k0

�
T0

T

� s

; (4.41)

wherek0 is a reference constant thermal conductivity;! 1; ! 2 are constants called the

temperature coe�cients of the thermal conductivity [19]; and p; s are real numbers

representing the exponents in the corresponding functions. It is important to note

that the reference temperatureT0 is included in the de�nition of the temperature-

dependent thermal conductivities in order to get the same reference thermal conduc-

tivity at T0, i.e., ki (T0) = k0, for comparison reasons.

Considering the Kirchho� transform in Eq. (4.16), the functional relationship be-

tween the apparent temperature� and the actual temperatureT that corresponds to

each of the three general forms of thermal conductivity functions given in Eqs. (4.39)-

(4.41) can be obtained explicitly, and then by solving theserelationships for T, the

actual temperatureT can be obtained in terms of the apparent temperature� as:

T = K � 1
1 f � g =

8
>><

>>:

T0 +
1
! 1

f exp[! 1(� � T0)] � 1g; p = � 1

T0 +
1
! 1

�
(! 1(p + 1)( � � T0) + 1) 1=(p+1) � 1

�
; p 6= � 1

(4.42)

T = K � 1
2 f � g = T0 +

1
! 2

ln(1 + ! 2(� � T0)) ; (4.43)

T = K � 1
3 f � g =

8
>><

>>:

T0 exp(�=T0 � 1); s = 1

T0

�
(1 � s)�

T0
+ s

� 1=(1� s)

; s 6= 1
(4.44)
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4.2.4 Total Thermal Resistance

For a single heat source spreading heat to a much larger sink area, the total thermal

resistance can be de�ned by [9, 13, 20]:

Rt =
Tc � T1

Q
; (4.45)

where Tc is the mean temperature over the heat-source contact area that can be

de�ned by:

Tc =
1

Ac

�

A c

T(x; y; 0) dAc; (4.46)

whereAc = ab is the heat-source area. It is important to note that it is complicated

to integrate the solution forT explicitly over the heat-source area because of the non-

linearity of the inverse Kirchho� transform functions. Thus, numerical integration

can be used to evaluate the integrals in Eq. (4.46). However, since the mean temper-

ature Tc requires only evaluation of the integrals over the small heat-source area, a

good approximation of the temperature �eldT(x; y; 0) is the �rst-order Taylor series

approximation of the functional relationships between theactual temperatureT and

the apparent temperature� (T = K � 1
1 f � g =  (� )) around the centroidal temperature

of the linear solution �̂ = � (X c; Yc; 0). Thus, the solution in the heat-source region

can be approximated by:

T(x; y; 0) =  (�̂ ) +  0(�̂ )( � (x; y; 0) � �̂ ): (4.47)

Hence, the mean source temperatureTc can be approximated explicitly by:

Tc(approx.) =  (�̂ ) +  0(�̂ )( �� c � �̂ );



117

=  (�̂ ) + ( A00 + T1 � �̂ ) 0(�̂ )

+  0(�̂ )

"

2
1X

m=1

Am0
cos(� mX c) sin( 1

2 � ma)
a� m

+ 2
1X

n=1

A0n
cos(� nYc) sin( 1

2 � nb)
b�n

+ 4
1X

m=1

1X

n=1

Amn
cos(� mX c) sin( 1

2 � ma) cos(� nYc) sin( 1
2 � nb)

a� mb�n

#

; (4.48)

where 0 is the derivative of any of the inverse Kirchho� functional relationships given

in Eqs. (4.42)-(4.44) with respect to� that can be addressed by:

 0
1(� ) = K

0� 1
1 f � g =

8
>><

>>:

exp[! 1(� � T0)]; p = � 1

(! 1(p + 1)( � � T0) + 1) � p=(p+1) ; p 6= � 1
(4.49)

 0
2(� ) = K

0� 1
2 f � g =

1
1 + ! 2(� � T0)

; (4.50)

 0
3(� ) = K

0� 1
3 f � g =

8
>><

>>:

exp(�=T0 � 1); s = 1
�

(1 � s)�
T0

+ s
� s=(1� s)

; s 6= 1:
(4.51)

4.3 Results and discussion

In this section, di�erent parametric studies are considered to illustrate the in
uence

of the temperature-dependent thermal conductivity on the temperature rise and total

thermal resistance in 
ux channels with di�erent con�gurations. For the purpose of

verifying and demonstrating the computational e�ciency of the analytical solutions,

numerical analysis has been conducted by solving the problems numerically based

on the �nite element method (FEM) and comparing the numericalresults to the

analytical results. For the analytical results, MATLAB (version 2016b) software is

used to carry out the results [21], while the numerical simulations are performed based

on the FEM using the ANSYS commercial software package [22].
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Figure 4.4: Temperature pro�le alongx-axis in the source plane (aty = Yc) by
consideringk1(T) with ! 1 = 0:1 for the �xed-sink-temperature study.

dimensions area = b = 1 mm. The center of the heat source is located at the point

(X c; Yc) = (5 ; 5) mm and the thickness of the channel ist = 1 mm, as shown in

Fig. 4.3. The di�erent thermal conductivity functions given in Eqs. (4.39)-(4.41) are

considered with a reference thermal conductivity ofk0 = 150 W/m �K. In the source

region, a uniform heat 
ux of q = 107 W/m 2 is applied. The analytical solution is used

to compute the temperature pro�le along the source plane including the centroidal

temperature of the heat source (̂T = T(X c; Yc; 0)), and the source mean temperature

Tc that can be used to obtain the total thermal resistance of the
ux channel using

Eq. (4.45). The source mean temperature is computed in two ways. First, by using

numerical integration to evaluate the source mean temperatureTc. Second, using the

result in Eq. (4.48) by approximating the source mean temperature using the �rst-

order Taylor series approximation to getTc(approx.). Furthermore, all the results are

compared to numerical results obtained by solving the system numerically using the

FEM.
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Figure 4.5: Temperature pro�le alongx-axis in the source plane (aty = Yc) by
consideringk2(T) for the �xed-sink-temperature study.
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Figure 4.6: Temperature pro�le alongx-axis in the source plane (aty = Yc) by
consideringk3(T) for the �xed-sink-temperature study.

In the analytical solution, the number of terms used in the in�nite Fourier series

summation of the linear system solution is 500 in each of the summations and then
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Analytical FEM
k(T) (W/m �K) T̂ (K) Tc (K) Tc(approx.) (K) T̂ (K) Tc (K)

k0 330.249 324.549 324.549 330.23 324.349
k1(T); p = 1 316.552 314.255 314.405 316.58 314.193
k1(T); p = 2 311.598 310.254 310.376 311.63 310.225

k2(T); ! 2 = 0:1 313.925 312.332 312.509 313.96 312.299
k2(T); ! 2 = 0:3 307.700 307.046 307.134 307.72 307.033

k3(T); s = 1 331.827 325.604 325.522 331.80 325.380
k3(T); s = 3 335.759 328.156 327.768 335.68 327.869

Table 4.1: Source temperatures for the di�erent thermal conductivity functions with
hs �! 1 and T1 = 300 K.

the inverse Kirchho� transform is used to obtain the actual temperature (T). A sen-

sitivity study on the number of terms in the series is performed by increasing the

number of terms in the linear solution to 1000 in each summation and it is found

that the change in the results is very small of a relative error less than 0:01%. The

computational time required to �nd the temperature of any point in the source plane

is approximately 0:03 s. Furthermore, the FEM numerical results are obtained with a

tetrahedral mesh and the convergence is checked by re�ning the mesh. In particular,

most of the re�nement is required around the heat-source region due to the rapid

change in temperature. The system with a tetrahedral mesh consisting of approxi-

mately 9:2 � 104 elements is found to be su�cient to solve the problem with a very

small loss in accuracy (relative error of less than 0:05% compared to using approxi-

mately 1:5� 105 elements). Figures 4.4-4.6 show the source plane temperature pro�les

along the x-axis wheny = Yc for the three di�erent conductivity functions with dif-

ferent parameters. In each of the �gures, the e�ect of the temperature-dependent

thermal conductivity on the temperature rise is obvious compared to using the con-

stant thermal conductivity, where for the case of considering k1(T) or k2(T) with the

speci�ed parameters, it is clear that the thermal conductivity is an increasing function

with respect to temperature; hence, the temperature rise around the heat-source area
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is less in magnitude than the temperature rise when considering the constant ther-

mal conductivity, as shown in Figs. 4.4 and 4.5. However, for the case of considering

k3(T), the thermal conductivity is a decreasing function of temperature. Thus, the

magnitude of the temperature rise is higher than the case of the constant thermal

conductivity, as shown in Fig. 4.6. Moreover, it can be seen from Figs. 4.4-4.6 that

the temperature distribution in the source plane is highly localized at and around

the source region, while the surface temperature away from the heat source is at or

near 300 K, which is the temperature of the sink plane. The reason behind this is

the large value of the heat transfer coe�cient along the sinkplane (in the limit of

hs �! 1 ) [23]. For the 
ux channel con�guration shown in Fig. 4.3 with k0 = 150

W/m �K, increasing the heat transfer coe�cient leads to less spreading of the heat 
ow.

On the other hand, decreasing the heat transfer coe�cient leads to a wider spreading

through the channel. Hence, the surface temperature becomesof a di�erent nature

as we will see in the next convective-sink study. Furthermore, the centroidal and the

mean source temperature of the analytical and the numericalresults for the di�erent

thermal conductivity functions are given in Table 4.1 for comparison. The agreement

between the analytical and the FEM results is considerably very good with a relative

error of less than 0:1% for all the results. It is worth mentioning that in computing the

mean source temperature, the closed-form analytical approximate averageTc(approx.)

presented in Eq. (4.48) has a very good agreement with the mean source temperature

Tc obtained by using the numerical integration with a relativeerror of less than 0:1%.

The most important advantage of this closed-form analytical approximation for the

mean source temperature is the shorter computational time compared with using the

numerical integration. For example, the computational time required to compute the

mean source temperature using Eq. (4.48) is found to be approximately 0:05 s, while

the computational time when using the numerical integration is found to be more
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than 10 s for some cases.

4.3.2 Convective Sink

In the second study, the analytical solution is used to studythe in
uence of the

temperature-dependent thermal conductivity for 
ux channels with a uniform heat

transfer coe�cient along the sink plane. The same previous 
ux channel shown in

Fig. 4.3 with the same channel's con�guration is considered but by assuming a uniform

heat transfer coe�cient along the sink planehs = 500 W/m 2�K. For this 
ux chan-

nel, the average sink-plane reference temperature can be obtained using Eq. (4.27) as

T0 = 500 K which has been used as the reference temperature in theKirchho� trans-

form. In the analytical solution, the number of terms used inthe in�nite Fourier series

summations for the linear system solution is taken the same as the previous study of

500 terms in each of the summations without any loss in accuracy and the computa-

tional time required to compute the temperature at any pointin the source plane is of

approximately 0:03 s. Further, the FEM results are obtained with a tetrahedralmesh

consisting of approximately 9:2� 104 elements. Figures 4.7-4.9 show the source plane

temperature pro�les along thex-axis wheny = Yc for the three di�erent conductivity

functions with di�erent parameters, where the e�ect of the temperature-dependent

thermal conductivity on the temperature rise can be seen.

The accuracy of the analytical solution by using the averagesink plane as a ref-

erence temperature in the Kirchho� transform can be seen in Table 4.2. The results

show very good agreement between the analytical and FEM results of a relative error

within 0:2% for all the results. However, it is more advantageous to consider the

analytical solutions since the numerical solutions are time consuming and less 
exible

for optimization studies compared to using the closed-formanalytical solution.

Although the previous study shows the use of the Kirchho� transform for solving
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Figure 4.7: Temperature pro�le alongx-axis in the source plane (aty = Yc) by
consideringk1(T) with ! 1 = 0:1 for the convective-sink study withhs = 500 W/m 2�K.
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Figure 4.8: Temperature pro�le alongx-axis in the source plane (aty = Yc) by
consideringk2(T) for the convective-sink study withhs = 500 W/m 2�K.

spreading heat problems with convective-sink boundary conditions, the applicability

of the method may have larger errors for some cases, such as extremely thin 
ux
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Figure 4.9: Temperature pro�le alongx-axis in the source plane (aty = Yc) by
consideringk3(T) for the convective-sink study withhs = 500 W/m 2�K.

Analytical FEM
k(T) (W/m �K) T̂ (K) Tc (K) Tc(approx.) (K) T̂ (K) Tc (K)

k0 539.506 533.435 533.435 539.49 533.22
k1(T); p = 1 519.835 517.684 517.799 519.98 517.778
k1(T); p = 2 513.424 512.228 512.317 513.57 512.347

k2(T); ! 2 = 0:1 515.995 514.640 514.769 516.1 514.708
k2(T); ! 2 = 0:3 508.512 507.981 508.039 508.58 508.039

k3(T); s = 1 541.109 534.590 534.538 541.07 534.349
k3(T); s = 3 544.904 537.276 537.0455 544.8 536.956

Table 4.2: Source temperatures for the di�erent thermal conductivity functions with
hs = 500 W/m 2�K and T1 = 300 K.

channels and weak conduction/convection e�ects, where thesink-plane temperature

distribution becomes highly nonuniform. Hence, the use of the approximate uniform

average sink temperature in the de�nition of the Kirchho� transform may produce un-

reliable results. To examine this, one study is conducted tosee the e�ect of changing

the thickness of the channel on the analytical results. The same previous channel's
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Figure 4.10: Relative error of the centroidal temperature between analytical and FEM
results by consideringk1(T) with ! 1 = 0:1, and p = 1.
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Figure 4.11: Relative error of the centroidal temperature between analytical and FEM
results by consideringk3(T) with s = 3.

con�guration of the convective-sink example is consideredbut with varying the thick-

ness of the channel as 0:05 � t � 5 mm. Figure 4.10 show the relative error of the
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centroidal temperature between the analytical and numerical results for di�erent val-

ues of the thicknesst by considering the thermal conductivity functionk1(T). One

can see that the relative error of the centroidal temperature between the analytical

and FEM results increases as the thickness of the channel decreases.

Another study is conducted to see the e�ects of the heat-source position and the

weak conduction/convection on the analytical results. Thecon�guration shown in

Fig. 4.3 is considered with the same heat source dimensions but the center is located

at the point (X c; Yc) = (2 ; 5) mm. The e�ects of the weak conduction/convection

on the centroidal temperature of the heat source are examined. The heat transfer

coe�cient along the sink plane is varied as 10� hs � 103 W/m 2�K, whereas the

ratio between the heat transfer coe�cient hs and the reference thermal conductivity

k0 is kept �xed ( k0=hs = 0:3). Figure 4.11 shows the relative error of the centroidal

temperature between the analytical and numerical results for di�erent values of the

heat transfer coe�cient by considering the thermal conductivity function k3(T) with

s = 3. One can see that the relative error of the centroidal temperature between the

analytical and FEM results increases as the heat transfer coe�cient (and the reference

thermal conductivity) decreases.

4.4 Conclusion

In this chapter, the e�ects of temperature-dependent thermal conductivities on the

temperature rise and thermal resistance of a 3D 
ux channel was studied analytically

by means of the Kirchho� transform for di�erent thermal conductivity functions. A

signi�cant change in the temperature rise and thermal resistance has been observed

when considering di�erent thermal conductivity functionscompared to using a con-

stant thermal conductivity. The results were validated by comparing the analytical
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results with results obtained by solving the problem numerically based on the FEM

using the ANSYS commercial software package [22] in which a verygood agreement

has been shown. In addition, the computational e�ciency of using the analytical

solution was illustrated in comparison with using the numerical solutions. Moreover,

a closed-form analytical approximation of the mean source temperature that can be

used in computing the total thermal resistance was presented and found to approxi-

mate the actual mean source temperature with good accuracy and less computational

time.
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Chapter 5

Spreading Resistance in

Multilayered Orthotropic Flux

Channels with Di�erent

Conductivities in the Three Spatial

Directions

5.1 Introduction

Thermal management is considered as a key factor in the development of power devices

and microelectronic systems for better performance and device functionality. A good

understanding of the e�ects of materials' properties used for designing the device on

Published in the ASME-Journal of Heat Transfer [1].
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temperature rise and thermal resistance is essential to design a durable device. Ther-

mal spreading resistance, which occurs when heat enters thesystem through small

region(s) and 
ows by conduction through the system to spread the heat out into

a larger heat-sink area, is an increasingly important topicin thermal management.

There have been some interesting and new materials that haveemerged recently in

the development of microelectronic devices due to their superior properties. These

materials include� -Gallium-oxide (� -Ga2O3) [2], Black Phosphorus (BP) [3{5], and

Tungsten telluride (WTe2) [6], which are known to have anisotropic thermal conduc-

tivity tensors. In particular, � -Ga2O3 is considered an attractive material for high-

power device applications, such as �eld-e�ect transistors(FETs) and light-emitting

diodes (LEDs), due to its superior material properties [2, 7, 8]. Despite the fact that

� -Ga2O3 has excellent electrical properties, it has relatively low thermal conductivi-

ties that range from 11 W/m�K to 27 W/m �K at room temperature along the three

principal directions [7]. Hence, thermal management in� -Ga2O3-based power devices

is essential. Black Phosphorus has also attracted much attention in the development

of microelectronic devices and is considered a promising semiconducting material for

the new generation of smaller and 
exible devices.

Di�erent analytical and numerical studies have been conducted to study the tem-

perature rise and thermal resistance for di�erent heat spreading problems. However,

numerical methods are less e�cient for most problems compared to using a closed-

form analytical solution since they are time consuming and are less 
exible for the

optimization of the device layout to reduce thermal resistance [9].

Many relevant studies can be found in the literature on this topic. Kennedy

[10] started the research on thermal spreading resistance of cylindrical shaped semi-

conductor devices. Kokkas [11] studied thermal analysis inmultilayered rectangular
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structures with isotropic materials. Yovanovich [12{14] studied di�erent spreading re-

sistance problems including 
ux channels and 
ux tubes with�nite and semi-in�nite

geometries. He summarized the most important models of thermal spreading resis-

tance for more than forty years in a review paper [15]. Muzychka et al. [16{21] have

done extensive research on di�erent thermal spreading resistance problems, including

di�erent geometries, boundaries, and properties. In most of the existing work, atten-

tion has been focused on problems with isotropic materials.Gholami and Bahrami [22]

obtained analytical solution for the spreading resistanceof a single-layer 
ux channel

with orthotropic properties. Recently, Muzychka et al. [19] analytically modeled the

thermal spreading resistance for compound transversely isotropic two-layer systems

with equal thermal conductivities in the in-plane directions that are di�erent than

the through-plane thermal conductivity (i.e.,kx = ky 6= kz). Bagnall et al. [23] devel-

oped an analytical solution for the thermal spreading resistance in multilayered 
ux

channels with isotropic and transversely isotropic properties.

In this chapter, general analytical solutions for the temperature distribution and

thermal resistance in a multilayered orthotropic 
ux channel consisting ofN -layers

with di�erent thermal conductivities in the three spatial directions (i.e., kx 6= ky 6=

kz) in each layer are obtained. The solutions account for the e�ect of interfacial

resistance or contact conductance between the adjacent layers. Moreover, an extension

of the problem to consider multiple eccentric heat sources in the source plane is also

considered.
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5.2 Mathematical Theory

In this section, the problem statement is mathematically illustrated by the governing

equations of temperature distributions along with the appropriate boundary condi-

tions, then the analytical solution of the problem is presented after applying special

transformations on the governing equations. The total thermal resistance is then in-

troduced based on the analytical solution of the temperature distribution. Then the

solution is extended to account for multiple heat sources inthe source plane.

5.2.1 Mathematical Formulation of the Problem

The problem under consideration is a three-dimensional (3D) rectangular 
ux chan-

nel consisting ofN -layers with an eccentric heat source in the source plane anda

convective cooling along the sink plane, whereas all the lateral edges are assumed to

be adiabatic. Each layer is assumed to be orthotropic with di�erent thermal con-

ductivities in the three spatial directions (x; y; z). An interfacial contact conductance

hci is considered between the adjacent layers (layeri and i + 1) to model the e�ects

of surface roughness, imperfect contact, or the intrinsic phonon mismatch between

dissimilar materials, as shown in Fig. 5.1. The system is modeled using a local system

of coordinates for each layer in which thexy-plane have the same coordinates in all

the layers with 0 < x < c and 0 < y < d , while the through-plane direction (z) is

di�erent for each layer. This approach is used as it facilitates the stretched coordinate

transformations and produces a convenient form of the general solution [19].

By de�ning the temperature excess� = T � T1 relative to the ambient temperature

(T1 ), the governing equation in each layer is Laplace's equation. Hence, the following

system of equations represents the governing equations forthe N -layers:
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k2;x
@2� 2

@x2
+ k2;y

@2� 2

@y2
+ k2;z

@2� 2

@z22
= 0; 0 <z 2 < t 2;

...
...

kN;x
@2� N

@x2
+ kN;y

@2� N

@y2
+ kN;z

@2� N

@z2N
= 0; 0 <z N < t N ; (5.1)

with di�erent thermal conductivities in each direction, i:e:; kx 6= ky 6= kz for each layer.

The following boundary conditions based on the con�guration shown in Fig. 5.1 are

considered. In the source plane, a uniform heat 
ux is speci�ed over the heat-source

region where the heat source is considered as of rectangularshape with dimensionsa

and b in the x- and y-directions, respectively, while the remainder of the source plane

is considered as adiabatic. Hence, the source-plane boundary condition is given by:

� k1;z
@�1
@z1

�
�
�
�
z1 = 0

=

8
>><

>>:

q; inside source region,

0; outside source region.
(5.2)

At the interface between the adjacent layers, the followingconditions are considered

(for i = 1; 2; : : : ; N � 1), representing the continuity of heat 
ux and the temperature

drop due to the interfacial conductance, respectively:

ki;z
@�i
@zi

�
�
�
�
zi = t i

= ki +1 ;z
@�i +1

@zi +1

�
�
�
�
zi +1 = 0

; (5.3)

� ki;z
@�i
@zi

�
�
�
�
zi = t i

= hci [� i (x; y; t i ) � � i +1 (x; y; 0)] : (5.4)

The temperature drop condition in Eq. (5.4) might be replaced by the following con-

dition in the case of a high value of the interfacial conductancehci �! 1 (continuity
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of temperature excess):

� i (x; y; t i ) = � i +1 (x; y; 0): (5.5)

Along the sink plane, a uniform heat transfer coe�cienths exists and the boundary

condition is given by:

� kN;z
@�N
@zN

�
�
�
�
zN = tN

= hs� N (x; y; tN ): (5.6)

The lateral edges of the system are assumed to be adiabatic. The lateral-edge bound-

ary conditions are:

@�i
@x

�
�
�
�
x = 0 ; c

= 0;
@�i
@y

�
�
�
�
y = 0 ; d

= 0; i = 1; 2; : : : ; N: (5.7)

The problem statement along with the governing equations and boundary conditions

is now completely illustrated. We then proceed to apply stretched coordinate trans-

formations in order to present the problem in a simpler solvable form.

5.2.2 Transformations (Stretched Coordinates)

Stretched coordinate transformations can be used as a powerful technique to transform

orthotropic systems into equivalent isotropic systems [24]. Muzychka et al. [19, 25]

implemented a system of stretched coordinates for a 
ux channel consisting of two

transversely isotropic layers with equal in-plane thermalconductivities kx = ky that

are di�erent than the through-plane conductivity, i.e., kx = ky 6= kz, of each layer.

The application of the following transformations for each layer (for i = 1; 2; : : : ; N ):

Layer i : yi = y=
q

ki;y =ki;x ; � i = zi =
q

ki;z =ki;x ; (5.8)
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leads to the de�nition of the following e�ective isotropic properties:

Layer i : ki =
p

ki;x ki;z ; �t i = t i =
q

ki;z =ki;x ; �di = d=
q

ki;y =ki;x : (5.9)

Under these transformations, the system of governing equations in Eq. (5.1) becomes:

@2� i

@x2
+

@2� i

@y2i
+

@2� i

@�2i
= 0; 0 < x < c; 0 < y i < �di ; 0 < � i < �t i : (5.10)

Although the direct application of the transformations in Eq. (5.8) is able to trans-

form the governing equations in Eq. (5.1) into an equivalentset of equations given

in Eq. (5.10) with isotropic properties, a problem appears when trying to transform

the interface boundary conditions given by Eqs. (5.3) and (5.4) using these transfor-

mations because we have di�erent stretched coordinates in the y-direction for each

layer with di�erent dimensions. In other words, eachyi 's coordinates are di�erent. It

is important to note that when the in-plane conductivities are equal, i.e.,ki;x = ki;y ,

in each layer, the new stretched coordinates in they-direction are the same for all

the layers and equal to the original coordinate, i.e.,yi = y; hence, the interface

boundary conditions can be transformed directly as in [19, 25]. However, in order to

solve the problem in general with di�erent conductivities in the three directions, a

second transformation is applied. They-direction stretched coordinates (yi ) in layers

i = 2; 3; : : : ; N can be transformed to the stretched coordinate of the �rst layer (y1)

by using:

yi =
p

� i y1; with � i =
k1;x ki;y

k1;yki;x
; i = 2; 3; : : : ; N: (5.11)

Hence, the system of equations and boundary conditions givenin Eqs. (5:1) � (5:7)

can be transformed by using Eqs. (5.8) and (5.11) into the following system:
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@2� 1

@x2
+

@2� 1

@y21
+

@2� 1

@�21
= 0; 0 < � 1 < �t1

@2� i

@x2
+

1
� i

@2� i

@y21
+

@2� i

@�2i
= 0;

0 < � i < �t i

i = 2; 3; : : : ; N
(5.12)

with 0 < x < c and 0< y 1 < �d1, and subject to the following boundary conditions:

� k1
@�1
@�1

�
�
�
�
� 1 = 0

=

8
>><

>>:

q; inside transformed source region,

0; outside transformed source region
(5.13)

at the source plane, while the interfacial boundary conditions are transformed to:

ki
@�i
@�i

�
�
�
�
� i = �t i

= ki +1
@�i +1

@�i +1

�
�
�
�
� i +1 = 0

; (5.14)

� ki
@�i
@�i

�
�
�
�
� i = �t i

= hci [� i (x; y1; �t i ) � � i +1 (x; y1; 0)] : (5.15)

Along the sink plane, we have:

� kN
@�N
@�N

�
�
�
�
� N = �tN

= hs� N (x; y1; �tN ); (5.16)

and for the lateral-edge boundary conditions, we get:

@�i
@x

�
�
�
�
x = 0 ; c

= 0;
@�i
@y1

�
�
�
�
y1 = 0 ; �d1

= 0; i = 1; 2; : : : ; N: (5.17)

The problem is now in a convenient solvable form. To summarize, the multilayered

system of orthotropic layers represented by Eqs. (5.1)-(5.7) has been transformed

into an equivalent, simpler system of equations given by Eqs. (5.12)-(5.17) using two

transformations. The two transformations associated withEqs. (5.8) and (5.11), which

represent an expansion of the ones introduced by Muzychka etal. in [19, 25], can be
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combined by applying only one transformation given by:

Layer i : y1 = y=
q

k1;y=k1;x ; � i = zi =
q

ki;z =ki;x ; (5.18)

after which, some simple mathematics can be used to obtain the form given in

Eqs. (5.12)-(5.17). It is important to note that although the transformed system

is not fully isotropic (because of the existence of the parameters� i ), the general solu-

tion can be obtained using the method of separation of variables in the same manner

of solving isotropic system with a slightly di�erent form, as we will see in the following

section.

5.2.3 General Solution

The general solution of the �rst layer temperature excess distribution � 1 can be found

by using the method of separation of variables [26{28], where the solution is assumed

to have the form � 1(x; y1; � 1) = X 1(x) � Y1(y1) � Z1(� 1). Applying the method of

separation of variables to the �rst governing equation in Eq. (5.12) and using the

boundary conditions along (x = 0; x = c) and (y1 = 0; y1 = �d1) yields the following

general solution:

� 1(x; y1; � 1) = A1
00 + B 1

00� 1

+
1X

m=1

cos(� 1
mx)

�
A1

m0 cosh(� 1
m � 1) + B 1

m0 sinh(� 1
m � 1)

�

+
1X

n=1

cos(� 1
ny1)

�
A1

0n cosh(� 1
n � 1) + B 1

0n sinh(� 1
n � 1)

�

+
1X

m=1

1X

n=1

cos(� 1
mx) cos(� 1

ny1)
�
A1

mn cosh(� 1
mn � 1) + B 1

mn sinh(� 1
mn � 1)

�
;

(5.19)
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where � 1
m = m�=c , � 1

n = n�= �d1, and � 1
mn =

p
(� 1

m )2 + ( � 1
n )2. The general solution

contains four components: a uniform 
ow solution, and threespreading solutions

represented by the series components that vanish when the heat-source area is equal

to the sink-plane area (the heat 
ux is distributed over the entire source-plane surface

� 1 = 0). The solution for the temperature excess in the other layers (layer 2; 3; : : : ; N )

can be obtained by solving the corresponding governing equations given in Eq. (5.12)

also by using the method of separation of variables. It is important to note that

in these layers, the governing equations of� i are di�erent in the general form than

the �rst one of � 1. However, the general solution of� i may be obtained in the same

manner with new eigenvalues that can be related to the eigenvalues of the solution of

� 1. This can be done by assuming the general solution to have theform � i (x; y1; � i ) =

X i (x) � Yi (y1) � Z i (� i ). Applying the method of separation of variables to the governing

equations in Eq. (5.12) and using the boundary conditions along (x = 0; x = c) and

(y1 = 0; y1 = �d1) yield the following general solution for thei th layer:

� i (x; y1; � i ) = A i
00 + B i

00� i

+
1X

m=1

cos(� 1
mx)

�
A i

m0 cosh(� i
m � i ) + B i

m0 sinh(� i
m � i )

�

+
1X

n=1

cos(� 1
ny1)

�
A i

0n cosh(� i
n � i ) + B i

0n sinh(� i
n � i )

�

+
1X

m=1

1X

n=1

cos(� 1
mx) cos(� 1

ny1)
�
A i

mn cosh(� i
mn � i ) + B i

mn sinh(� i
mn � i )

�
;

(5.20)

where � i
m = � 1

m , � i
n = � 1

n=
p

� i , and � i
mn =

q
� i

m
2 + � i

n
2 =

p
(� 1

m )2 + ( � 1
n )2=� i . Equa-

tions (5.19) and (5.20) represent the general solution of the temperature excess in the
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�rst and i th (for i = 2; 3; : : : ; N ) layers, respectively, after applying the lateral bound-

ary conditions. The interfacial and sink-plane boundary conditions are then used to

�nd a relationship between the Fourier coe�cients A i
mn and B i

mn in each layer. We

follow the work of Muzychka et al. [19] and Bagnall et al. [23]in which the relationship

is represented by a spreading function� i (
 i ) de�ned by:

� i (
 i ) = �
B i

mn

A i
mn

; (5.21)

where 
 i refers to any of the eigenvalues� i
m , � i

n , and � i
mn . Firstly, for m; n not both

equal to zero, in order to �nd the relationship between thei th-layer Fourier coe�-

cients (A i
mn and B i

mn ), represented by the spreading function� i (
 i ), it is important

to note that the Fourier coe�cients of � i depend on the Fourier coe�cients of� i +1

(i.e., A i
mn and B i

mn depend onA i +1
mn and B i +1

mn ) when applying the interface boundary

conditions; hence, the spreading function� i (
 i ) depends on the next layer's spreading

function � i +1 (
 i +1 ). Thus, we start with �nding the spreading function of the N th-

layer solution, and then a backward recursive formula can beobtained to �nd � i (
 i ).

The application of the convection boundary condition at thesink plane (� N = �tN )

given by Eq. (5.16) leads to:

� N (
 N ) = �
B N

mn

AN
mn

=

 N tanh(
 N �tN ) + [ hs=kN ]

 N + [ hs=kN ] tanh(
 N �tN )

: (5.22)

Now, the application of the continuity of heat 
ux and the temperature drop boundary

conditions, represented by Eqs. (5.14) and (5.15), leads tothe following backward

recursive relationship:

� i (
 i ) =
[(ki 
 i ) =(ki +1 
 i +1 ) + ( ki 
 i =hci ) � i +1 (
 i +1 )] tanh(
 i �t i ) + � i +1 (
 i +1 )
[(ki 
 i ) =(ki +1 
 i +1 ) + ( ki 
 i =hci ) � i +1 (
 i +1 )] + � i +1 (
 i +1 ) tanh( 
 i �t i )

; (5.23)
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which is simpli�ed in the case of continuity of temperature excess boundary condition

into (as hci �! 1 ):

� i (
 i ) =
[(ki 
 i ) =(ki +1 
 i +1 )] tanh(
 i �t i ) + � i +1 (
 i +1 )
[(ki 
 i ) =(ki +1 
 i +1 )] + � i +1 (
 i +1 ) tanh( 
 i �t i )

: (5.24)

Finally, the boundary condition at the source plane is used to�nd the Fourier coef-

�cients A i
mn after making use ofB i

mn = � � i (
 i )A i
mn , starting from �nding A1

mn and

then a forward recursive formula can be used to obtain thei th-layer Fourier coe�-

cientsA i
mn if desired. The Fourier coe�cients in the �rst layer ( A1

mn ) are obtained by

taking Fourier series expansions of the boundary conditionat the source plane given

by Eq. (5.13) and making use ofB 1
mn = � � 1(
 1)A1

mn to get:

A1
m0 =

�bq
�dk1� 1

m � 1(� 1
m )

� X c+ a=2

X c � a=2
cos(� 1

mx) dx
� c

0 cos2(� 1
mx) dx

=
4Q cos(� 1

mX c) sin( 1
2 � 1

ma)
acdk1 (� 1

m )2� 1(� 1
m )

; (5.25)

and

A1
0n =

aq
ck1� 1

n � 1(� 1
n )

� Yc+ �b=2

Yc � �b=2
cos(� 1

ny1) dy1

� �d
0 cos2(� 1

ny1) dy1

=
4Q� cos(� 1

nYc) sin( 1
2 � 1

n
�b)

bcdk1(� 1
n )2� 1(� 1

n )
; (5.26)

and

A1
mn =

q
k1� 1

mn � 1(� 1
mn )

� Yc+ �b=2

Yc � �b=2

� X c+ a=2

X c � a=2
cos(� 1

mx) cos(� 1
ny1) dxdy1

� �d
0

� c
0 cos2(� 1

mx) cos2(� 1
ny1) dxdy1

;

=
16Q� cos(� 1

mX c) sin( 1
2 � 1

ma) cos(� 1
nYc) sin( 1

2 � 1
n
�b)

abcdk1� 1
mn � 1

m � 1
n � 1(� 1

mn )
; (5.27)
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where � =
p

k1;y=k1;x , �b = b=� , Yc = Yc=� , and Q = abq is the total heat input

of the 
ux channel. Equations (5.25)-(5.27) represent the Fourier coe�cients of the

�rst-layer solution for m; n not both equal to zero. To �nd the Fourier coe�cients of

the other layers, the following forward recursive formula can be used:

A i +1
mn = A i

mn

0

@cosh(
 i �t i ) � � i (
 i ) sinh(
 i �t i )

1 + k i +1 
 i +1

hci
� i +1 (
 i +1 )

1

A : (5.28)

When m; n are both zeros, the zeroth-order Fourier coe�cients in the �rst layer

(A1
00 and B 1

00) can be found by applying the sink-plane boundary conditionand taking

the Fourier expansion in the source plane after relating thecoe�cients between the

adjacent layers to get:

A1
00 =

Q
cd

"
N � 1X

l=1

� �t l

kl
+

1
hcl

�
+

�tN

kN
+

1
hs

#

;

B 1
00 = �

Q
cdk1

: (5.29)

Moreover, the zeroth-order Fourier coe�cients in the otherlayers (A i
00 and B i

00) can

be obtained as:

A i
00 =

Q
cd

"
N � 1X

l= i

� �t l

kl
+

1
hcl

�
+

�tN

kN
+

1
hs

#

;

B i
00 = �

Q
cdki

: (5.30)

From the previous discussion, the analytical solution for the temperature excess

in each layer is illustrated completely along with the proper recursive formulas, which

can be used for �nding the Fourier coe�cients. However, the solution in the �rst

layer � 1(x; y1; � 1) (in particular, the solution in the source plane at� 1 = 0) is of most

interest for �nding the maximum temperature and the total thermal resistance of the
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ux channel, which is addressed by:

� 1(x; y1; 0) = A1
00 +

1X

m=1

A1
m0 cos(� 1

mx)

+
1X

n=1

A1
0n cos(� 1

ny1) +
1X

m=1

1X

n=1

A1
mn cos(� 1

mx) cos(� 1
ny1); (5.31)

and can be transformed back for convenience to the original coordinates, i.e.,x and

y, by making use of Eq. (5.8) to get:

� 1(x; y; 0) = A1
00 +

1X

m=1

A1
m0 cos(� 1

mx)

+
1X

n=1

A1
0n cos(� 1

ny=� ) +
1X

m=1

1X

n=1

A1
mn cos(� 1

mx) cos(� 1
ny=� ): (5.32)

5.2.4 Total Thermal Resistance

For a single heat source spreading to a larger extended sink area, the total thermal

resistance can be de�ned by [16, 19]:

Rt =
Tc � T1

Q
=

�� c

Q
= R1D + Rsp; (5.33)

whereTc is the heat-source contact mean temperature,�� c is the mean heat-source

contact temperature excess,R1D is the one-dimensional (1D) resistance andRsp is

the spreading resistance. The mean source temperature excess is given by:

�� c =
1

Ac

�

A c

� 1(x; y; 0) dAc; (5.34)
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where Ac = ab is the heat-source area. The application of Eq. (5.34) to thesource-

plane solution given by Eq. (5.32) yields:

�� c = A1
00 + 2

1X

m=1

A1
m0

cos(� 1
mX c) sin( 1

2 � 1
ma)

a� 1
m

+ 2
1X

n=1

A1
0n

� cos(� 1
nYc) sin( 1

2 � 1
n
�b)

b�1
n

+ 4
1X

m=1

1X

n=1

A1
mn

� cos(� 1
mX c) sin( 1

2 � 1
ma) cos(� 1

nYc) sin( 1
2 � 1

n
�b)

a� 1
mb�1

n
: (5.35)

Thus, the total thermal resistance can be obtained by using Eq. (5.33) as:

Rt = R1D +
1X

m=1

Rm0 +
1X

n=1

R0n +
1X

m=1

1X

n=1

Rmn ; (5.36)

where,

R1D =
1
cd

"
N � 1X

l=1

� �t l

kl
+

1
hcl

�
+

�tN

kN
+

1
hs

#

; (5.37)

and

Rm0 =
8 cos2(� 1

mX c) sin2( 1
2 � 1

ma)
a2cdk1 (� 1

m )3� 1(� 1
m )

; (5.38)

and

R0n =
8� 2 cos2(� 1

nYc) sin2( 1
2 � 1

n
�b)

b2cdk1(� 1
n )3� 1(� 1

n )
; (5.39)

and

Rmn =
64� 2 cos2(� 1

mX c) sin2( 1
2 � 1

ma) cos2(� 1
nYc) sin2( 1

2 � 1
n
�b)

a2b2cdk1� 1
mn (� 1

m )2(� 1
n )2� 1(� 1

mn )
: (5.40)
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problem as one problem in which the Fourier coe�cients are tobe calculated for only

one solution instead of �nding the Fourier coe�cients for Nc problems and then us-

ing the superposition. In fact, the same result can be obtained when the individual

solutions of the superposition are combined together into one solution. The general

solution of the multiple-heat-source problem is the same asthe general solution for

the single-heat-source problem given in Eqs. (5.19) and (5.20) with the same spread-

ing functions given in Eqs. (5.22) and (5.23). However, the only di�erence is in the

Fourier coe�cients; more precisely, the Fourier coe�cients of the �rst-layer solution

A � 1
mn , since all the other Fourier coe�cients depend onA � 1

mn by a recursive formula or

a spreading function. Form; n not both equal to zero, the Fourier coe�cients of the

�rst-layer solution of the multiple-heat-source problem can be obtained by using the

new boundary condition in the source plane Eq. (5.41) to get:

A � 1
m0 =

4
N cP

j =1
bj qj cos(� 1

mX cj ) sin( 1
2 � 1

maj )

cdk1(� 1
m )2� 1(� 1

m )
; (5.42)

and

A � 1
0n =

4�
N cP

j =1
aj qj cos(� 1

nYcj ) sin( 1
2 � 1

n
�bj )

cdk1(� 1
n )2� 1(� 1

n )
; (5.43)

and

A � 1
mn =

16�
N cP

j =1
qj cos(� 1

mX cj ) sin( 1
2 � 1

maj ) cos(� 1
nYcj ) sin( 1

2 � 1
n
�bj )

cdk1� 1
mn � 1

m � 1
n � 1(� 1

mn )
: (5.44)

Regarding the Fourier coe�cients of the other layers, the same recursive formula in

Eq. (5.28) can be used to �nd them after replacingA i +1
mn and A i

mn by A � i +1
mn and A � i

mn ,

respectively. Moreover, the zeroth-order Fourier coe�cients of the �rst-layer solution
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(A � 1
00 and B � 1

00) are obtained as:

A � 1
00 =

N cP

j =1
Qj

cd

"
N � 1X

l=1

� �t l

kl
+

1
hcl

�
+

�tN

kN
+

1
hs

#

;

B � 1
00 = �

N cP

j =1
Qj

cdk1
: (5.45)

While the zeroth-order Fourier coe�cients in the other layers (A � i
00 and B � i

00) can be

obtained as:

A � i
00 =

N cP

j =1
Qj

cd

"
N � 1X

l= i

� �t l

kl
+

1
hcl

�
+

�tN

kN
+

1
hs

#

;

B � i
00 = �

N cP

j =1
Qj

cdki
; (5.46)

where Qj = aj bj qj is the total heat input of the j th heat source. Furthermore, the

solution in the source plane can be addressed by:

� �
1(x; y; 0) = A � 1

00 +
1X

m=1

A � 1
m0 cos(� 1

mx)

+
1X

n=1

A � 1
0n cos(� 1

ny=� ) +
1X

m=1

1X

n=1

A � 1
mn cos(� 1

mx) cos(� 1
ny=� ): (5.47)

Finally, the total thermal resistance for the multiple-heat-source problem can be

de�ned as [22]:

R�
t =

�� �
c

N cP

j =1
Qj

; (5.48)

where �� �
c is the mean temperature excess of all the heat sources, as de�ned by:
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�� �
c =

1
N cP

j =1
Acj

N cX

j =1

�

A cj

� �
1(x; y; 0) dAcj ; (5.49)

5.3 Results and Discussion

In this section, di�erent validation and parametric studies are used to verify and

demonstrate the computational e�ciency of the developed analytical solutions. For

the purpose of verifying the analytical solutions, numerical analysis has been con-

ducted by solving the problems numerically using the �nite element method (FEM)

and comparing the numerical results to the analytical results. MATLAB (version

2016b) software is used to carry out the analytical results [29], while the numerical

simulations are performed based on the FEM using the ANSYS commercial software

package [30].

5.3.1 Single Heat Source

We start our investigation by considering an idealized single gate �eld-e�ect tran-

sistor model consisting of three layers of Aluminum oxide, Black Phosphorus, and

� -Gallium-oxide (Al2O3/BP/ � -Ga2O3). The structure of the model is hypothetically

constructed base on two di�erent �eld-e�ect transistor models that have been dis-

cussed in [5, 7]. We have considered this hypothetical structure in our investigation

in order to develop a multilayered structure with enough complexity to demonstrate

the accuracy and computational e�ciency of the analytical solutions. The model has

side dimensions ofc = 28 � m and d = 10 � m, while the heat-source (gate) dimensions

are ofa = 2 � m, and b= 1 � m. The center of the heat source is located at the point

(X c; Yc) = (10 � m, 5 � m), as shown in Fig. 5.3. The multilayered structure consists

of Al2O3 as the �rst layer of thicknesst1 = 3 � m with isotropic thermal conductivities
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thicker layers are chosen in this model to consider the 3D nature of each layer and

to guarantee the convergence of the numerical FEM solution for comparison reasons.

The heat transfer coe�cient along the sink plane is considered ashs = 106 W/m 2�K

and the ambient temperature is of 25� C. A uniform heat 
ux of q = 109 W/m 2 is

applied in the source region which corresponds to a uniform power dissipation of 1

W/mm (normalized to the gate length a). The interfacial conductance associated

with the Al 2O3/BP interface hc1 is �xed at the value of hc1 = 108 W/m 2�K, while

the interfacial conductance associated with the BP/� -Ga2O3 interfacehc2 is varied as

106 < h c2 < 1 W/m 2�K, where the case ofhc2 �! 1 indicates that the e�ect of the

interfacial conductance is neglected and the continuity oftemperature boundary con-

dition is considered. The analytical solution is used to compute the average (T) and

centroidal (T̂ = T(X c; Yc; 0)) temperatures of the heat source and the total thermal

resistance of the system for di�erent values of the interfacial conductancehc2 . The

results are compared to numerical results obtained by solving the system numerically

using the FEM. In the analytical solution, the number of termsused in the in�nite

Fourier series summation is chosen of 1000 in each of the summations and the compu-

tational time required to �nd any of the results (T, T̂ or Rt ) is found of approximately

0:4 s. The number of terms is chosen based on a sensitivity studyto see the e�ect

of increasing the number of terms on the average and centroidal temperatures and

it is found that 1000 terms in each of the summations converged with a very small

relative error of less than 0:005% compared to using 104 terms. Figure 5.4 shows the

e�ect of increasing the number of terms on the average and centroidal temperatures

of the heat source forhc2 = 106 W/m 2�K. Furthermore, the FEM numerical results

are obtained with a tetrahedral mesh and the convergence is checked by re�ning the

mesh. In particular, most of the re�nement is required around the heat source and in-

terfacial contact regions due to the rapid change in temperature around these regions.
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The system with a tetrahedral mesh consisting of approximately 3:8� 105 elements is

found to be su�cient to solve the problem with a very small loss in accuracy (relative

error of less than 0:1% compared to using approximately 6:5 � 105 elements) with

computational time of approximately 3 min. The analytical and numerical results of

the average and centroidal temperatures of the heat source and the thermal resistance

of the system for di�erent values of the interfacial conductancehc2 are shown in Ta-

ble 5.1 and Table 5.2, respectively. The agreement between the analytical and FEM

results is considerably very good with a relative error of less than 0:3% for all the re-

sults. In addition, the e�ect of increasing the value of the interfacial conductancehc2

is obvious, where both the temperature rise in the heat-source region and the thermal

resistance of the system decrease by increasing the value ofinterfacial conductance.

The minimum values are recorded whenhc2 �! 1 .

Finally, one more study is conducted by changing the thermal conductivities of

the �rst layer to k1;x = 50, k1;y = 25, k1;z = 15 W/m �K. Although the thermal

conductivity of the �rst Al 2O3 layer is isotropic, this study is conducted as a validation

study of the analytical solution with orthotropic properties in all the layers. The

analytical and numerical results of the average and centroidal temperatures of the heat

source for di�erent values of the interfacial conductancehc2 are shown in Table 5.3

with very good agreement. Moreover, the e�ect of changing the thermal conductivities

on the centroidal and average temperatures is obvious compared to considering the

isotropic values with di�erences of approximately three degrees.

5.3.2 Multiple Heat Sources

To demonstrate the computational e�ciency of the developedanalytical solution for

multiple-heat-source problems, the same previous model for the single-heat-source

problem with the same channel con�guration and thermal properties shown in Fig. 5.3
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Figure 5.4: Analytical centroidal and average temperatures of the single-heat-source
problem computed as a function of the number of terms in the summations for hc2 =
106 W/m 2�K.

Analytical FEM
hc2 (W/m 2�K) T̂ (� C) T (� C) T̂ (� C) T (� C)

106 72.985 68.356 73.031 68.227
5 � 106 67.224 62.596 67.271 62.467

107 66.500 61.871 66.547 61.743
5 � 107 65.919 61.291 65.966 61.162

108 65.846 61.218 65.893 61.089
1 65.773 61.145 65.827 61.083

Table 5.1: Centroidal and average temperatures of the single-heat-source validation
study for hc1 = 108 W/m 2�K and di�erent values of the interfacial conductancehc2 .

Analytical FEM
hc2 (W/m 2�K) R1D (K/W) Rsp (K/W) Rt (K/W) Rt (K/W)

106 9564.8 12113 21678 21614
5 � 106 6707.7 12090 18798 18733

107 6350.5 12085 18436 18371
5 � 107 6064.8 12080 18145 18081

108 6029.1 12080 18109 18045
1 5993.4 12079 18072 18042

Table 5.2: Thermal resistance of the single-heat-source validation study for hc1 = 108

W/m 2�K and di�erent values of the interfacial conductancehc2 .
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Sourcej aj (� m) bj (� m) X cj (� m) Ycj (� m) qj (W/m 2)
1 1 1 5 6 8 � 108

2 2 1 10 5 1 � 109

3 1 2 15 4 9 � 108

4 2 2 20 8 8:5 � 108

5 1 3 25 2 7 � 108

Table 5.4: Heat-source dimensions and properties of the multiple-heat-source problem.

Analytical FEM Relative Error
hc2 (W/m 2�K) R�

t (K/W) R�
t (K/W) (%)

106 11728 11720 0.07%
5 � 106 8860.8 8853.9 0.08%

107 8501.5 8494.8 0.08%
5 � 107 8213.9 8207.1 0.09%

108 8177.9 8171.2 0.09%
1 8141.9 8136.2 0.07%

Table 5.5: Thermal resistance of the multiple-heat-sourcevalidation study for hc1 =
108 W/m 2�K and di�erent values of the interfacial conductancehc2 .

can be considered as a superposition of �ve single-heat-source solutions; hence, the

number of terms for the multiple-heat-source is chosen as the same number of terms

used for the single-source problem and is found to be su�cient to obtain the results.

This can be seen from Fig. 5.6 which shows a sensitivity study of increasing the number

of terms on the centroidal temperature of each heat source for hc2 = 106 W/m 2�K. In

addition, the problem is solved numerically using the FEM with a tetrahedral mesh

consisting of approximately 6� 105 elements with computational time of approximately

7 min. The total thermal resistanceR�
t of the analytical and numerical results for

di�erent values of the interfacial conductancehc2 are shown in Table 5.5. The results

show very good agreement between the analytical and numerical solution results with

a relative error of less than 0:2%. Moreover, the centroidal and average temperatures

of each heat source for one value of the interfacial conductance hc2 = 106 W/m 2�K

are shown in Table 5.6.
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Figure 5.6: Analytical centroidal temperature of each heat source in the multiple-
heat-source validation study computed as a function of the number of terms in the
summations forhc2 = 106 W/m 2�K.

Analytical FEM
Sourcej T̂ (� C) T (� C) T̂ (� C) T (� C)

1 129.12 126.33 129.20 126.25
2 143.82 139.25 143.93 139.40
3 144.85 140.71 144.83 140.59
4 157.52 151.64 157.79 151.56
5 146.19 142.86 146.37 142.83

Table 5.6: Centroidal and average temperatures of each heatsource in the multiple-
heat-source validation study forhc1 = 108 W/m 2�K and hc2 = 106 W/m 2�K.

From the previous discussion, the computational e�ciency of the developed ana-

lytical solution is obvious compared to solving the problemnumerically. In particular,

when the problem contains multiple heat sources in the source plane, a large number

of elements is required around each heat source and along the
ux channel to solve

the problem numerically using the FEM which will increase thecomputational time

and the complexity of the problem. However, in the analyticalsolution, the same

number of terms in the summations as used to solve the single-heat-source problem
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is found su�cient to solve the multiple-heat-source problem without loss of any ac-

curacy. Further, the complexity of the problem for solving the multiple-heat-source

problem is found to be about twice that for solving the single-heat-source problem.

5.4 Conclusion

In this chapter, general analytical solutions for the temperature distribution and ther-

mal resistance of a 3D multilayered orthotropic 
ux channelconsisting ofN -layers

with interfacial conductance between the layers were developed. The solutions ac-

count for using anisotropic materials with di�erent thermal conductivities in the three

spatial directions of each layer. The developed solutions were extended to account for

problems with multiple heat sources in the source plane. Thesolutions were validated

by comparing the developed analytical solution results with the results obtained by

solving the problem numerically based on the FEM using the ANSYS commercial

software package [30] where very good agreement was found. In addition, the compu-

tational e�ciency of the developed solutions was also discussed in comparison with

using numerical solutions.
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Chapter 6

Spreading Resistance in

Multilayered Orthotropic Flux

Channel with

Temperature-Dependent Thermal

Conductivities

6.1 Introduction

In the modern microelectronics industry, as the size of microelectronic devices contin-

ues to decrease with a remarkable growth in power densities,thermal management of

microelectronic systems becomes more important for maintaining device functionality

Published in the AIAA-Journal of Thermophysics and Heat Transfer [1].
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and reliability. Accurate thermal analysis is considered asa signi�cant factor in the

development of microelectronic systems for retaining device performance and to pro-

duce a durable device. Most microelectronic systems are modeled as rectangular 
ux

channels, where heat enters the channel through small heat source(s) and 
ows by

conduction through the system to spread the heat into a larger convective heat-sink

area, and this process gives rise to thermal spreading resistance. The multilayered

structure is a widely used structure in the microelectronicindustry where devices are

designed as a compound system of attached layers of di�erentmaterials. Recently,

some anisotropic materials have received exceptional attention in the development

of the microelectronics in which the thermal conductivity varies with direction [2].

Orthotropic materials are of particular interest, where the thermal conductivity in

these materials is di�erent in the three principal spatial directions. Such anisotropic

materials include� -Gallium-oxide (� -Ga2O3) [3, 4], and Black Phosphorus (BP) [5].

The orthotropic di�erent thermal conductivities in many materials are varying with

temperature and usually are approximated by constant thermal conductivities. How-

ever, the assumption of constant thermal conductivities within the whole temperature

variation intervals may lead to unreliable results in thermal analysis [6, 7].

When considering temperature-dependent thermal conductivities in multilayered

orthotropic structures, the governing heat conduction equations of the system become

nonlinear. In general, analytical solutions of nonlinear systems are challenging, and

usually numerical methods are used to solve the nonlinear systems. However, when the

problem under consideration is complex, the numerical methods are computationally

expensive and less 
exible for optimization studies. Moreover, the complexity of

solving nonlinear systems numerically is larger than solving linear systems. Hence,

analytical solutions (if possible) are advantageous for presenting accurate results and

for saving computational work.
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The Kirchho� transform method is considered as an attractive technique for solv-

ing nonlinear conduction systems with temperature-dependent thermal conductivities,

because it can be used to transform the nonlinear governing system of equations into

a linear system of equations that can be solved using existing analytical solutions

of linear systems, and then the solution of the linearized system can be transformed

back to get the solution of the original nonlinear system using the inverse Kirchho�

transform [8{11].

In the past few decades, analytical solutions of the temperature distribution and

thermal spreading resistance in 
ux channels have been studied comprehensively, and

many related studies can be found in the literature. However,in most of the existing

work, attention has been focused on problems with constant thermal conductivities.

Yovanovich studied di�erent problems on spreading resistance in 
ux channels and


ux tubes, and he summarized the most important models of thermal spreading re-

sistance for more than 40 years in a review paper [12]. Muzychka et al. [13{18] have

conducted comprehensive research on di�erent spreading resistance problems includ-

ing di�erent geometries, boundaries, and properties for single and multilayered struc-

tures. Bagnall et al. [19] studied temperature rise and thermal spreading resistance in

multilayered 
ux channels with constant isotropic and transversely isotropic thermal

conductivities. Bonani and Ghione [6] used the Kirchho� transform to study a com-

posite medium consisting of two layers with temperature-dependent and piecewise in-

homogeneous thermal conductivity. Ditri [20] studied a single-layer 
ux channel with

orthotropic temperature-dependent thermal conductivities and a �xed-temperature

boundary condition along the sink plane. Bagnall et al. [21]studied the temperature

rise in problems with temperature-dependent thermal conductivities and convection

boundary conditions along the sink plane using the Kirchho�transform.
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In this chapter, the Kirchho� transform is used to obtain general analytical so-

lutions of the temperature rise and thermal resistance in a multilayered orthotropic


ux channel consisting ofN composite layers with di�erent temperature-dependent

thermal conductivities in the three spatial directions of each layer. The Kirchho�

transform is used to transform the nonlinear system into a linear system, and then

stretched coordinate transformations and the method of separation of variables are

used to solve the linear system, where the solution the linear system is used to �nd the

solution of the original nonlinear system by means of the inverse Kirchho� transform.

Moreover, an e�cient approximation of the total thermal resistance of the nonlin-

ear system is presented. The solutions have been extended toaccount for multiple

eccentric heat sources in the source plane.

6.2 Mathematical Theory

In this section, we present the mathematical formulation ofthe problem including the

nonlinear governing equations of the temperature distribution for the multilayered

structure along with the appropriate boundary conditions.Then the analytical solu-

tion of the problem is illustrated after making use of the Kirchho� and the stretched

coordinate transformations. The analytical solution is then used to present the total

thermal resistance of the system. Finally, an extension of the solution to account for

multiple heat sources in the source plane is introduced.

6.2.1 Problem Statement

The system under consideration is a composite three-dimensional (3D) rectangular


ux channel consisting of N bonded layers, which represents the general geometry

of many modern microelectronic devices. The heat enters thesystem from a small
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heated spot represented by an eccentric heat source of a rectangular shape and 
ows

by conduction through the layers to reach a convective heat sink with a uniform heat

transfer coe�cient. Furthermore, all the lateral edges areassumed to be adiabatic,

and the adjacent layers are assumed to be in perfect contact with no interfacial re-

sistance. The layers are assumed to be of di�erent thermal properties. In particular,

the material of each layer is assumed to be orthotropic, withdi�erent temperature-

dependent thermal conductivities in the three spatial directions (x; y; zi ), as shown in

Fig. 6.1. For convenience, the system is modeled using a localsystem of coordinates

in each layer with di�erent through-plane (vertical) coordinates 0< z i < t i and the

same in-plane (horizontal) coordinates with 0< x < c and 0 < y < d for all the

layers.

The steady-state heat conduction in each layer is governed by a nonlinear heat

equation because of the dependency of the thermal conductivities on temperature.

The general system of nonlinear equations that represents the governing equations

of heat conduction in the N -multilayered structure with orthotropic temperature-

dependent thermal conductivities can be addressed by:

@
@x

�
ki;x (Ti )

@Ti
@x

�
+

@
@y

�
ki;y (Ti )

@Ti
@y

�
+

@
@zi

�
ki;z (Ti )

@Ti
@zi

�
= 0; 0 <z i < t i ; (6.1)

for i = 1; 2; : : : ; N . The boundary conditions of the system are addressed based on the

general nature of heat 
ow in the 
ux channel, where heat enters the system from the

source region and is removed from the system by convection through the sink plane.

In the source plane, a uniform heat 
ux is speci�ed inside therectangular heat-source

region, whereas the remainder of the source plane is considered as adiabatic. Hence,
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the source-plane boundary condition is given by:

� k1;z(T1)
@T1
@z1

�
�
�
�
z1 = 0

=

8
>><

>>:

q; inside source region,

0; outside source region.
(6.2)

The interface boundary conditions between the adjacent layers (for i = 1; 2; : : : ; N � 1)

are the continuity of heat 
ux and the continuity of temperature, respectively:

ki;z (Ti )
@Ti
@zi

�
�
�
�
zi = t i

= ki +1 ;z(Ti +1 )
@Ti +1

@zi +1

�
�
�
�
zi +1 = 0

; (6.3)

Ti (x; y; t i ) = Ti +1 (x; y; 0): (6.4)

Along the sink plane, a convection boundary condition with a uniform heat transfer

coe�cient hs exists, and the boundary condition is given by:

� kN;z (TN )
@TN
@zN

�
�
�
�
zN = tN

= hs (TN (x; y; tN ) � T1 ) : (6.5)

The lateral edges of the system are considered as adiabatic;hence, the lateral-edge

boundary conditions are:

@Ti
@x

�
�
�
�
x = 0 ; c

= 0;
@Ti
@y

�
�
�
�
y = 0 ; d

= 0; i = 1; 2; : : : ; N: (6.6)

The governing equations along with the boundary conditionsof the temperature

distribution in the multilayered system are completely illustrated in Eqs. (6.1)-(6.6).

Although the general form of the governing equations in Eq. (6.1) governs the problem

for di�erent thermal conductivity functions in the three spatial directions of each

layer (ki;x (Ti ) 6= ki;y (Ti ) 6= ki;z i (Ti )), the analytical solution of the proposed problem

requires that all the thermal conductivity functions in the system must depend on
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temperature in the same manner [6, 20]. In other words, the temperature-dependent

thermal conductivities can be written as:

ki;u (T) = k0
i;u k̂(T); (6.7)

whereu refers to any of the coordinatesx; y or zi ; k0
i;u is a constant thermal conductiv-

ity; and k̂(T) is a functional relationship of temperature, for example,̂k(T) = 1 + T.

Under this assumption, the governing equations in Eq. (6.1) can be rewritten as:

k0
i;x

@
@x

�
k̂(Ti )

@Ti
@x

�
+ k0

i;y
@
@y

�
k̂(Ti )

@Ti
@y

�
+ k0

i;z
@

@zi

�
k̂(Ti )

@Ti
@zi

�
= 0; 0 <z i < t i :

(6.8)

We then proceed to obtain the analytical solution of the problem using some mathe-

matical transformations.

6.2.2 Kirchho� Transform

The Kirchho� transform is considered to be a powerful methodfor linearizing nonlin-

ear heat conduction problems with temperature-dependent thermal conductivity. The

idea behind the Kirchho� transform is to present a new variable � (usually referred to

as the apparent temperature) as an integral function of the temperature-dependent

thermal conductivity, where the nonlinear system can be transformed under the Kirch-

ho� transform into a linear system in terms of the new variable � . Furthermore, the

linearized system can be solved using existing analytical methods for solving linear

problems, and then the solution of the linear system can be transformed back to

the solution of the nonlinear system through the inverse Kirchho� transform. The

Kirchho� transform can be found in the literature in many forms depending on the

problem under investigation [9, 21{23]; however, all formsshare the same general
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idea. For the multilayered system, the following general form of the Kirchho� trans-

form is considered in each layer because it facilitates the multilayered structure and

the transformation of the convective boundary condition along the sink plane:

� i = K f Ti g = T0 +

Ti�

T0

k̂(� )d�: (6.9)

where T0 is a convenient reference temperature. Applying the Kirchho� transform

given by Eq. (6.9) to the nonlinear system, Eq. (6.8), the nonlinear system is trans-

formed into a linear orthotropic system of equations with constant thermal conduc-

tivities given by:

k0
i;x

@2� i

@x2
+ k0

i;y
@2� i

@y2
+ k0

i;z
@2� i

@z2i
= 0; for i = 1; 2; : : : ; N: (6.10)

Moreover, the boundary conditions of the nonlinear system are transformed through

the Kirchho� transform into the following boundary conditi ons. The source-plane

boundary condition in Eq. (6.2) is transformed to:

� k0
1;z

@�1
@z1

�
�
�
�
z1 = 0

=

8
>><

>>:

q; inside source region,

0; outside source region.
(6.11)

The interface boundary conditions in Eqs. (6.3) and (6.4) are transformed to [6]:

k0
i;z

@�i
@zi

�
�
�
�
zi = t i

= k0
i +1 ;z

@�i +1

@zi +1

�
�
�
�
zi +1 = 0

; (6.12)

� i (x; y; t i ) = � i +1 (x; y; 0): (6.13)

The lateral-edge boundary conditions in Eq. (6.6) are transformed to:
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@�i
@x

�
�
�
�
x = 0 ; c

= 0;
@�i
@y

�
�
�
�
y = 0 ; d

= 0; i = 1; 2; : : : ; N: (6.14)

Although the source plane, interfacial, and lateral-edge boundary conditions are

transformed easily into linear boundary conditions through the Kirchho� transform,

this is not the case, in general, when considering the convective sink-plane boundary

condition. In fact, when convective boundary conditions (third kind or Robin) are

present, the transformed boundary conditions are, in general, nonlinear boundary

conditions [9, 10]. This can be seen by considering the sink-plane boundary condition:

� kN;z (TN )
@TN
@zN

�
�
�
�
zN = tN

= hs (TN (x; y; tN ) � T1 ) : (6.15)

When the Kirchho� transform is considered, the boundary condition is transformed

to:

� k0
N;z

@�N
@zN

�
�
�
�
zN = tN

= hs
�
K � 1f � N (x; y; tN )g � T1

�
; (6.16)

which is a nonlinear boundary condition becauseK � 1f � N g is, in general, a nonlinear

function of � N , and this makes it di�cult when trying to solve the transformed linear

problem. However, when the temperature distribution along the sink plane can be

approximated before using the Kirchho� transform and used as a reference tempera-

ture T0 in the de�nition of the transform, Eq. (6.9), the transform can be applied for

the convective boundary condition in Eq. (6.15) to get a linear transformed bound-

ary condition [21]. By considering the problem under study,heat enters the system

through the small heat-source region and 
ows by conductionto spread the heat out

from the heat-source area into the larger heat-sink area. Hence, the temperature along

the sink plane can be approximated by the mean sink-plane temperature using the

conservation of energy, and then the approximated temperature can be used as the
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reference temperature in the Kirchho� transform, i.e.,

T0 = TN jz= t =
1
hs

Q
cd

+ T1 : (6.17)

Thus, when the approximated sink-plane temperature in Eq. (6.17) is used as the

reference temperature in the Kirchho� transform Eq. (6.9), the convective boundary

condition in Eq. (6.15) can be transformed into the following approximate linear

boundary condition [21]:

� k0
N;z

@�N
@zN

�
�
�
�
zN = tN

= hs (� N (x; y; tN ) � T1 ) : (6.18)

To summarize, by considering the average sink temperature de�ned in Eq. (6.17)

as a reference temperature in the Kirchho� transform, the nonlinear system Eqs. (6.1)-

(6.6) is transformed to the linear system represented by Eqs. (6.10)-(6.14) and Eq. (6.18).

Once the solution of the linearized system is obtained, the solution can be transformed

to the approximate actual temperature of the nonlinear problem by employing the

inverse Kirchho� transform. It is worth mentioning that the explicit functional rela-

tionship between the actual temperatureTi and the apparent temperature� i depends

on the speci�c nature of the temperature-dependent function k̂(T). Di�erent de-

pendency functions of the thermal conductivity on temperature can be found in the

literature [21, 23, 24]. In this study, we will consider three general forms of the thermal

conductivity functions given by:

k̂1(T) = 1 + ! 1(T � T0); (6.19)

k̂2(T) = exp[! 2(T � T0)]; (6.20)

k̂3(T) =
�

T0

T

� s

; (6.21)
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where ! 1, ! 2 are dependency parameters called the temperature coe�cients of ther-

mal conductivity [11], and s is a real-number exponent. The functional relationship

between the apparent temperature� i and the actual temperatureTi can be obtained

for the three general conductivity functions using Eq. (6.9), and then the actual tem-

perature Ti can be obtained in terms of the apparent temperature� i that represents

the inverse Kirchho� transform by solving the relationships for Ti to get the following

results for the three general functions, respectively:

Ti = K � 1
1 f � i g = T0 +

1
! 1

hp
2! 1(� i � T0) + 1 � 1

i
; (6.22)

Ti = K � 1
2 f � i g = T0 +

1
! 2

ln(1 + ! 2(� i � T0)) ; (6.23)

Ti = K � 1
3 f � i g =

8
>><

>>:

T0 exp(� i =T0 � 1); s = 1

T0

�
(1 � s)� i

T0
+ s

� 1=(1� s)

; s 6= 1
(6.24)

6.2.3 Linear System Solution

The solution of the nonlinear system requires �nding the solution of the linearized

system for the apparent temperature �rst, and then, by usingany of the functional

relationships in Eqs. (6.22)-(6.24) that corresponds to the used conductivity func-

tion, these solutions can be transformed to the solution of the nonlinear system. The

general solution of the linearized system can be obtained byusing stretched coor-

dinate transformations combined with the method of separation of variables. The

application of the following stretched coordinates transformations for each layer (for

i = 1; 2; : : : ; N ),

Layer i : y1 = y=
q

k0
1;y=k0

1;x ; � i = zi =
q

k0
i;z =k0

i;x ; (6.25)
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leads to the de�nition of the following e�ective properties:

Layer i : ki =
q

k0
i;x k0

i;z ; � i =
k0

1;x k0
i;y

k0
1;yk0

i;x
; �t i = t i =

q
k0

i;z =k0
i;x ; �d = d=

q
k0

1;y=k0
1;x :

(6.26)

Hence, the linear system of equations and boundary conditions of � i can be trans-

formed under Eq. (6.25) into the following system:

@2� 1

@x2
+

@2� 1

@y21
+

@2� 1

@�21
= 0; 0 < � 1 < �t1

@2� i

@x2
+

1
� i

@2� i

@y21
+

@2� i

@�2i
= 0;

0 < � i < �t i

i = 2; 3; : : : ; N
(6.27)

with 0 < x < c and 0< y 1 < �d, and subject to the following boundary conditions:

� k1
@�1
@�1

�
�
�
�
� 1 = 0

=

8
>><

>>:

q; inside stretched source region,

0; outside stretched source region,
(6.28)

in the source plane, whereas the interfacial boundary conditions are transformed to:

ki
@�i
@�i

�
�
�
�
� i = �t i

= ki +1
@�i +1

@�i +1

�
�
�
�
� i +1 = 0

; (6.29)

� i (x; y1; �t i ) = � i +1 (x; y1; 0): (6.30)

Along the sink plane, we have:

� kN
@�N
@�N

�
�
�
�
� N = �tN

= hs(� N (x; y1; �tN ) � T1 ); (6.31)

and for the lateral-edge boundary conditions, we get:



179

@�i
@x

�
�
�
�
x = 0 ; c

= 0;
@�i
@y1

�
�
�
�
y1 = 0 ; �d

= 0; i = 1; 2; : : : ; N: (6.32)

By introducing � 0
i = � i � T1 , the linear system of� 0

i is the same as the linear system

of � i but with a homogenous boundary condition along the sink plane. The application

of the method of separation of variables by assuming the general solution in each layer

to have the form� 0
i (x; y1; � i ) = X i (x) �Yi (y1) �Z i (� i ) and using the boundary conditions

along (x = 0; x = c) and (y1 = 0; y1 = �d) yield the following general solutions for

i = 1; 2; : : : ; N :

� 0
i (x; y1; � i ) = A i

00 + B i
00� i

+
1X

m=1

cos(� 1
mx)

�
A i

m0 cosh(� i
m � i ) + B i

m0 sinh(� i
m � i )

�

+
1X

n=1

cos(� 1
ny1)

�
A i

0n cosh(� i
n � i ) + B i

0n sinh(� i
n � i )

�

+
1X

m=1

1X

n=1

cos(� 1
mx) cos(� 1

ny1)
�
A i

mn cosh(� i
mn � i ) + B i

mn sinh(� i
mn � i )

�
;

(6.33)

where� i
m , � i

n , and � i
mn are the corresponding eigenvalues in each layer. The eigenvalues

in the �rst layer are de�ned by:

� 1
m = m�=c; � 1

n = n�= �d; � 1
mn =

p
(� 1

m )2 + ( � 1
n )2; (6.34)

whereas the eigenvalues in the other layers can be related tothe eigenvalues of the

�rst layer as:

� i
m = � 1

m ; � i
n =

1
p

� i
� 1

n ; � i
mn =

q
� i

m
2 + � i

n
2 =

r

(� 1
m )2 +

1
� i

(� 1
n )2: (6.35)
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The interfacial and sink-plane boundary conditions are then used to �nd a re-

lationship between the Fourier coe�cients A i
mn and B i

mn in each layer. We follow

the work of Muzychka et al. [17] and Bagnall et al. [19] in which the relationship is

represented by a spreading function� i (
 i ) de�ned by:

� i (
 i ) = �
B i

mn

A i
mn

; (6.36)

where 
 i refers to any of the eigenvalues� i
m , � i

n , or � i
mn . For m; n not both equal

to zero, we start with �nding the spreading function of theN th-layer solution by

applying the convection boundary condition at the sink plane Eq. (6.31) to get:

� N (
 N ) = �
B N

mn

AN
mn

=

 N tanh(
 N �tN ) + [ hs=kN ]

 N + [ hs=kN ] tanh(
 N �tN )

: (6.37)

The application of the interfacial boundary conditions Eqs. (6.29) and (6.30) leads to

the following backward recursive formula for �nding� i (
 i ):

� i (
 i ) =
[(ki 
 i ) =(ki +1 
 i +1 )] tanh(
 i �t i ) + � i +1 (
 i +1 )
[(ki 
 i ) =(ki +1 
 i +1 )] + � i +1 (
 i +1 ) tanh( 
 i �t i )

: (6.38)

Finding the total thermal resistance and the maximum temperature of the channel

requires obtaining the solution in the �rst layer � 1 (in particular, the solution at

� 1 = 0). Hence, the Fourier coe�cients A1
mn and B 1

mn are of most interest. The

Fourier coe�cients of the �rst-layer solution ( A1
mn ) are obtained by taking Fourier

series expansions of the boundary condition at the source plane Eq. (6.28) and making

use ofB 1
mn = � � 1(
 1)A1

mn to get:

A1
m0 =

�bq
�dk1� 1

m � 1(� 1
m )

� X c+ a=2

X c � a=2
cos(� 1

mx) dx
� c

0 cos2(� 1
mx) dx

=
4Q cos(� 1

mX c) sin( 1
2 � 1

ma)
acdk1 (� 1

m )2� 1(� 1
m )

; (6.39)
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and

A1
0n =

aq
ck1� 1

n � 1(� 1
n )

� Yc+ �b=2

Yc � �b=2
cos(� 1

ny1) dy1

� �d
0 cos2(� 1

ny1) dy1

=
4Q� cos(� 1

nYc) sin( 1
2 � 1

n
�b)

bcdk1(� 1
n )2� 1(� 1

n )
; (6.40)

and

A1
mn =

q
k1� 1

mn � 1(� 1
mn )

� Yc+ �b=2

Yc � �b=2

� X c+ a=2

X c � a=2
cos(� 1

mx) cos(� 1
ny1) dxdy1

� �d
0

� c
0 cos2(� 1

mx) cos2(� 1
ny1) dxdy1

;

=
16Q� cos(� 1

mX c) sin( 1
2 � 1

ma) cos(� 1
nYc) sin( 1

2 � 1
n
�b)

abcdk1� 1
mn � 1

m � 1
n � 1(� 1

mn )
; (6.41)

where� =
p

k1;y=k1;x , �b= b=� , Yc = Yc=� , and Q = abqis the total heat input of the


ux channel. When m; n are both zeros, the zeroth-order Fourier coe�cients in the

�rst-layer solution ( A1
00 and B 1

00) can be found by applying the sink-plane boundary

condition and taking the Fourier expansion in the source plane after relating the

coe�cients between the adjacent layers to get:

A1
00 =

Q
cd

"
NX

l=1

� �t l

kl

�
+

1
hs

#

;

B 1
00 = �

Q
cdk1

: (6.42)

The solution in the source plane at� 1 = 0 is of most interest, which can be addressed

in terms of the original coordinates, i.e.,x and y, by:

� 1(x; y; 0) = T1 + A1
00 +

1X

m=1

A1
m0 cos(� 1

mx) +
1X

n=1

A1
0n cos(� 1

ny=� )

+
1X

m=1

1X

n=1

A1
mn cos(� 1

mx) cos(� 1
ny=� ): (6.43)
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Thus, the solution of the nonlinear problem in the source plane T1(x; y; 0) can be

obtained by substituting the solution of the linear system given in Eq. (6.43) into the

corresponding functional relationships in Eqs. (6.22)-(6.24).

6.2.4 Total Thermal Resistance

For a single heat source spreading heat to a larger sink area,the total thermal resis-

tance can be de�ned by [13, 17, 25]:

Rt =
Tc � T1

Q
; (6.44)

whereTc is the mean temperature over the heat-source area de�ned by:

Tc =
1

Ac

�

A c

T1(x; y; 0) dAc; (6.45)

with Ac = abis the area of the heat source. It can be seen that the solutionT1(x; y; 0)

is complicated to be integrated explicitly over the heat-source area because of the

complexity of the inverse Kirchho� transform functions. Thus, numerical integration

can be used to evaluate the integrals in Eq. (6.45). However, agood approximation

of the temperature �eld T1(x; y; 0) is the �rst-order Taylor series approximation of

the functional relationships between the actual temperature T1 and the apparent

temperature� 1 denoted by the inverse Kirchho� transformK � 1 around the centroidal

temperature of the linear solution�̂ 1 = � 1(X c; Yc; 0). Thus, the solution in the heat-

source region can be approximated by:

T1(x; y; 0) = K � 1f �̂ 1g + �K � 1f �̂ 1g(� 1(x; y; 0) � �̂ 1); (6.46)

whereK � 1 stands for any the functional relationships in Eqs. (6.22)-(6.24) and �K � 1
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is the derivative of the functional relationships with respect to the dependent variable

� . Hence, the mean source temperatureTc can be approximated explicitly by:

Tc(approx.) = K � 1f �̂ 1g + �K � 1f �̂ 1g( �� c � �̂ 1); (6.47)

where �� c is the mean temperature of the linear solution over the heat-source area that

can be calculated by:

�� c = T1 + A1
00 + 2

1X

m=1

A1
m0

cos(� 1
mX c) sin( 1

2 � 1
ma)

a� 1
m

+ 2
1X

n=1

A1
0n

� cos(� 1
nYc) sin( 1

2 � 1
n
�b)

b�1
n

+ 4
1X

m=1

1X

n=1

A1
mn

� cos(� 1
mX c) sin( 1

2 � 1
ma) cos(� 1

nYc) sin( 1
2 � 1

n
�b)

a� 1
mb�1

n
: (6.48)

6.2.5 Extension to Multiple Heat Sources

In many applications, heat enters the system through multiple heat sources distributed

along the source plane instead of a single heat source. We extend the problem to

contain a �nite number of Nc rectangular heat sources distributed nonuniformly along

the source plane, as shown in Fig. 6.2. With this extension, theonly change that

happens to the problem statement is in the source-plane boundary condition. The

new source-plane boundary condition is expressed by considering a uniform heat 
ux

qj distributed over the j th heat source (for j = 1; 2; : : : ; Nc), and outside the heat-

source regions, the surface is considered as adiabatic. Thus, the source-plane boundary

condition Eq. (6.2) is rewritten as:

� k1;z(T1)
@T1
@z1

�
�
�
�
z1 = 0

=

8
>><

>>:

qj ; inside j th source region,

0; outside source regions.
(6.49)

Applying the Kirchho� transform Eq. (6.9) to the new extended problem with a
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where the Fourier coe�cients of the multiple-source problem are given by,

A � 1
m0 =

4
N cP

j =1
bj qj cos(� 1

mX cj ) sin( 1
2 � 1

maj )

cdk1(� 1
m )2� 1(� 1

m )
; (6.53)

and

A � 1
0n =

4�
N cP

j =1
aj qj cos(� 1

nYcj ) sin( 1
2 � 1

n
�bj )

cdk1(� 1
n )2� 1(� 1

n )
; (6.54)

and

A � 1
mn =

16�
N cP

j =1
qj cos(� 1

mX cj ) sin( 1
2 � 1

maj ) cos(� 1
nYcj ) sin( 1

2 � 1
n
�bj )

cdk1� 1
mn � 1

m � 1
n � 1(� 1

mn )
: (6.55)

Moreover, the zeroth-order Fourier coe�cients of the �rst-layer solution (A � 1
00 and B � 1

00)

are obtained as:

A � 1
00 =

N cP

j =1
Qj

cd

"
NX

l=1

� �t l

kl

�
+

1
hs

#

;

B � 1
00 = �

N cP

j =1
Qj

cdk1
: (6.56)

Furthermore, the same functions that represent the inverseKirchho� transform can be

used to �nd the source-plane solution for the actual temperature T �
1 (x; y; 0). Finally,

the total thermal resistance for the multiple-heat-sourceproblem can be de�ned as [2]:

R�
t =

T
�
c � T1

N cP

j =1
Qj

; (6.57)

whereT
�
c is the mean temperature of all the heat sources, de�ned by:
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T
�
c =

1
N cP

j =1
Acj

N cX

j =1

�

A cj

T �
1 (x; y; 0) dAcj : (6.58)

6.3 Results and discussion

In this section, di�erent parametric studies are considered to validate the developed

analytical solutions and to demonstrate their computational e�ciency. Further, the

in
uence of the di�erent temperature-dependent thermal conductivity functions on

the temperature rise and the total thermal resistance is also discussed. The ana-

lytical solution results are compared with numerical solution results that have been

conducted by solving the problem numerically based on the �nite element method

(FEM). For the analytical results, MATLAB (version 2016b) software is used to carry

out the results [26], while the numerical results are obtained based on the FEM using

the ANSYS commercial software package [27].

6.3.1 Single Heat Source

We start our investigation by considering a multilayered 3Drectangular 
ux channel

consisting of three layers with orthotropic temperature-dependent thermal conduc-

tivities in which heat enters the system from a rectangular single heat source and


ows by conduction through the channel to reach a convectiveheat sink. The heat

source is of dimensionsa = 1 mm, and b= 2 mm with its center located at the point

(X c; Yc) = (15 mm; 4 mm), while the side dimensions of the channel arec = 30 mm

and d = 10 mm, as shown in Fig. 6.3. In each layer, the orthotropic thermal conduc-

tivities are presented as a product of di�erent constant thermal conductivities in the

three spatial direction times any of the temperature-dependent conductivity functions

given in Eqs. (6.19)-(6.21). The �rst layer is considered ofthicknesst1 = 1 mm and
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along the sink plane, a heat transfer coe�cient ofhs = 200 W/m 2�K exists. The am-

bient temperature is of 300 K. The developed analytical solution is used to compute

the centroidal (T̂ = T(X c; Yc; 0)) and the average (T) temperatures of the heat source

for the three general forms of the thermal conductivity functions Eqs. (6.19)-(6.21)

with di�erent parameters. The average sink plane referencetemperature is obtained

using Eq. (6.17) asT0 = 333:3 K, which has been used as the reference temperature

in the de�nition of the Kirchho� transform. The analytical s olution is addressed by

obtaining the linear system solution �rst, and then the inverse Kirchho� transform is

used to obtain the solution of the actual temperature. The number of terms used to

truncate the in�nite Fourier series summations of the linear system solution is 1000

in each of the summations, and the computational time required to �nd the temper-

ature of any point in the source plane is found of approximately 0:4 s. Moreover, a

convergence study on the number of terms in the series is performed by increasing

the number of terms, and it is found that the change in the results is negligible. The

average source temperature that can be used to �nd the total thermal resistance of

the channel is computed using the two previously addressed methods, �rst by per-

forming numerical integration over the source contact areato get Tc, and second by

considering the result in Eq. (6.47) where the average source temperature is approxi-

mated using the �rst order Taylor approximation to getTc(approx.). It is found that

the approximate average has good agreement with the numerically integrated average

with shorter computational time compared to using the numerical integration of the

analytical solution. Furthermore, the analytical resultswere validated by numerical

results obtained by solving the system numerically using the FEM. In the numerical

solution, the results were obtained with a tetrahedral meshwith high element den-

sity around the source region, and the convergence was checked by re�ning the mesh,

where a mesh consisting of approximately 2:5 � 105 elements is found to be su�cient
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Figure 6.4: Temperature pro�le alongx-axis in the source plane (aty = Yc) by
considering the thermal conductivity functionk1(T) for the single-source study.

to simulate the problem. The analytical and the numerical results of the average and

the centroidal temperatures of the heat source for the threegeneral forms of thermal

conductivity functions with di�erent parameters are shownin Table 6.1, where a very

good agreement between the analytical and the numerical results can be observed.

Figures 6.4-6.6 show the temperature pro�les along the source plane in the x-

axis direction that passes through the heat-source center, i.e., wheny = Yc, for the

three di�erent conductivity functions with di�erent param eters. In these �gures,

the e�ect of changing the temperature-dependent thermal conductivity function on

the temperature rise is clear compared to using constant thermal conductivities, i.e.,

k̂(T) = 1. Moreover, when consideringk1(T) or k2(T) as the temperature-dependent

thermal conductivity function, it can be seen from the de�nition of these functions that

the thermal conductivity is an increasing function with respect to temperature; hence,

the temperature rise along the source region is less in magnitude than the temperature

rise when considering constant thermal conductivities, asshown in Figs. 6.4 and 6.5.
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Figure 6.5: Temperature pro�le alongx-axis in the source plane (aty = Yc) by
considering the thermal conductivity functionk2(T) for the single-source study.
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Figure 6.6: Temperature pro�le alongx-axis in the source plane (aty = Yc) by
considering the thermal conductivity functionk3(T) for the single-source study.

However, for the case of consideringk3(T), the thermal conductivity is a decreasing

function with respect to temperature, and one can see from Fig. 6.6 that the magnitude
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Sourcej aj (mm) bj (mm) X cj (mm) Ycj (mm) qj (W/m 2)
1 2 1 5 5 9 � 105

2 1 1 10 6 8 � 105

3 1 2 15 4 1 � 106

4 2 2 20 8 2 � 102

5 1 3 25 2 7 � 105

Table 6.2: Heat-source dimensions and properties of the multiple-heat-source problem.

k̂(T) T
�
c (K) (Analytical) T

�
c (K) (FEM) Relative Error

k̂(T) = 1 437.900 437.479 0.1%
k̂1(T); ! 1 = 0:05 435.0269 434.895 0.03%
k̂1(T); ! 1 = 0:1 433.674 433.739 0.02%
k̂2(T); ! 2 = 0:05 434.651 434.531 0.03%
k̂2(T); ! 2 = 0:1 432.967 432.976 0.01%

k̂3(T); s = 1 438.137 437.679 0.1%
k̂3(T); s = 3 438.6549 438.121 0.1%

Table 6.3: Average temperature of all the heat sources of the multiple-source study
for the di�erent thermal conductivity functions.

Both analytical and numerical solutions of the multiple-source problem have been

conducted, where, in the analytical results, the number of terms in each of the trunca-

tions of the in�nite Fourier series summation is taken the same number of terms used

for the single-source problem of 1000 terms, and the computational time required to

�nd the temperature at any point in the source plane is found of approximately 0:7

s. The number of terms is chosen according to the fact that themultiple-heat-source

solution of the linear system can be considered as a superposition of �ve single-heat-

source solutions; hence, the number of terms for the multiple heat sources is chosen

as the same number of terms used for the single-source problem and is found to be

su�cient to obtain the results. In the numerical results, a tetrahedral mesh con-

sisting of approximately 4:6 � 105 elements is found to be su�cient to simulate the

problem. According to the new source-plane con�guration, the average sink-plane
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reference temperature that has been used as the reference temperature in the Kirch-

ho� transform is found of T0 = 425 K using Eq. (6.50). Table 6.3 show the average

temperature of all the heat sources for the analytical and numerical solution, where

very good agreement can be observed.

Finally, it is worth mentioning that, in all of the previous analyses for the single-

and the multiple-source problems, although the numerical solutions of the problem

are 
exible and has good agreement with the analytical solutions, the computational

time required to obtain the numerical results is much largerthan the computational

time for the analytical solution. Moreover, simulating thenonlinear problems with

temperature-dependent thermal conductivities numerically requires more time than

simulating the linear problems with constant thermal conductivities.

6.4 Conclusion

In this chapter, general analytical solutions for the temperature distribution and the

total thermal resistance of a 3D multilayered 
ux channel with orthotropic temperature-

dependent thermal conductivities using the Kirchho� transform were developed. Dif-

ferent thermal conductivity functions were considered to study the e�ect of changing

the temperature-dependent conductivity function on the temperature rise and the

total thermal resistance. An extension of the solutions for problems with multiple

heat sources in the source plane was illustrated. All the analytical results have been

validated with numerical results obtained by solving the problem numerically with

the FEM, where very good agreement has been shown. Further, the computational

e�ciency of the developed analytical solution is also addressed.
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Chapter 7

Conclusions and Future Work

7.1 Summary and Conclusions

In this thesis, we obtained analytical solutions for the temperature distribution and

thermal resistance of 3D 
ux channels with nonuniform properties and complex struc-

tures. These solutions can be very useful for thermal engineers in thermal design

analysis and optimization of microelectronics and coolingsystems.

In Chapters 2 and 3, we obtained analytical solutions for thetemperature �eld

and total thermal resistance of a single-layer isotropic 
ux channel with nonuniform

heat transfer coe�cients along the sink plane. The solutions in Chapter 2 account for

a concentric heat source, convective cooling along the sideedges, and a variable heat

transfer coe�cient varying in one direction along the sink region. The solutions were

obtained using the method of separation of variables combined with the least squares

method. In Chapter 3, we generalized the solutions to account for an eccentric heat

source and a 2D variable heat transfer coe�cient varying in the two horizontal di-

rections along the sink plane. Furthermore, we used these solutions to conduct some

parametric studies in order to examine the e�ects of the di�erent variable heat transfer
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coe�cient functions with the same average conductance on the temperature distribu-

tion and thermal resistance of the 
ux channel. The results show that although the

average total conductance for the di�erent variable heat transfer coe�cient functions

was �xed at constant value, the temperature distribution and total thermal resistance

are strongly dependent on the distribution of the conductance pro�le along the sink

plane.

In Chapter 4, we presented the general solutions of a 3D isotropic 
ux channel

with temperature-dependent thermal conductivity and constant heat transfer coe�-

cient along the sink plane. The solutions were presented by means of the Kirchho�

transform and the inverse Kirchho� transform. The Kirchho� transform was used to

linearize the nonlinear conduction system, where the solution of the linearized system

is obtained using the method of separation of variables. Then we used the solution

of the linearized system in obtaining the solution of the original nonlinear system

through the inverse Kirchho� transform. In the general de�nition of the Kirchho�

transform, the approximate sink plane temperature was usedas a reference temper-

ature in order to consider the convective boundary condition through the Kirchho�

transform method. We also presented an explicit approximation for the total thermal

resistance based on the solution of the linearized system and the functional relation-

ships between the actual temperature and the apparent temperature. In addition, we

used these analytical solutions to study the e�ects of temperature-dependent thermal

conductivity functions on the temperature rise and thermalresistance. The results

show noticeable di�erences in the temperature distribution and thermal resistance for

the di�erent temperature-dependent thermal conductivity functions compared with

using a constant thermal conductivity.

In Chapters 5 and 6, we studied 3D 
ux channels of multilayered structures consist-

ing of a �nite number of orthotropic layers with constant andtemperature-dependent
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thermal conductivities, respectively. In Chapter 5 we presented analytical solutions

for the temperature distribution and thermal resistance ofthe multilayered structure

with interfacial conductance between the adjacent layers and a uniform conductance

along the sink plane. The solutions account for multiple eccentric heat sources in the

source plane. The results show how the analytical solutionso�er signi�cant compu-

tational savings over the numerical FEM solutions.

Finally, in Chapter 6 we presented the general solutions of multilayered orthotropic


ux channels with temperature-dependent thermal conductivities by making use of

the solutions presented in Chapters 4 and 5. The Kirchho� transform method pre-

sented in Chapter 4 was used to transform the nonlinear governing equations of the

multilayered temperature-dependent orthotropic system into a linear system with con-

stant thermal conductivities, representing a special caseof the system discussed in

Chapter 5. Although the solutions presented in Chapter 6 are obtained for multilay-

ered orthotropic systems with temperature-dependent thermal conductivities, some

restrictions on the system exist for obtaining the general analytical solutions in this

way. First, all the adjacent layers have to be perfectly attached with no interfacial

conductance between the layers. Second, all the thermal conductivity functions in the

system must depend on temperature in the same manner.

7.2 Suggestions for Future Research

In the present research, analytical solutions for the temperature distribution and

thermal resistance in di�erent types of 
ux channels have been developed. However,

many aspects of thermal issues and thermal analysis in microelectronic devices need

further investigations, which would bene�t the overall �eld of thermal management

in microelectronics and some other disciplines. Some of these aspects are listed here
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as suggestions for future research:

� Analytical solutions for the temperature distribution and thermal resistance in

a cylindrical shaped 
ux tube with a circular heat source in the source plane

and a nonuniform heat transfer coe�cient along the sink plane.

� Analytical solutions for the temperature distribution and thermal resistance in a

multilayered 
ux tube consisting of a �nite number of layerswith temperature-

dependent thermal conductivities.

� Analytical solutions for the temperature distribution and thermal resistance in

multilayered 
ux tubes of orthotropic materials.

� Analytical solutions for the temperature distribution and thermal resistance

in 
ux channels and 
ux tubes chosen in di�erent orientations of orthotropic

materials.

� Analytical optimization studies for the multiple-heat-source distribution along

the source plane.

For cylindrical shaped 
ux tubes (which represent the othergeneral geometry of

microelectronic devices) with a uniform heat transfer coe�cient along the sink plane,

the heat 
ow mechanism is similar to that for rectangular shaped 
ux channels. In

addition, the general solutions for the temperature distribution and thermal resistance

in 
ux tubes can be obtained using the method of separation ofvariables, where

the solutions are represented in terms of the orthogonal setof Bessel's functions.

However, when the distribution of the heat transfer coe�cient along the sink plane

is nonuniform, the direct application of the method of separation of variables is not

possible. Nevertheless, the analytical solution procedures for rectangular 
ux channels
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with nonuniform heat transfer coe�cients, presented in Chapters 2 and 3, can be

followed to obtain the analytical solutions for cylindrical 
ux tubes.

Similarly, the developed analytical solutions in Chapters5 and 6 for the multilay-

ered 
ux channels with orthotropic and temperature-dependent thermal conductivities

construct mathematical procedures that can be followed to obtain the analytical so-

lutions for similar 
ux tube models. Moreover, when the 
ux channel or 
ux tube is

constructed from orthotropic materials in di�erent orientations, the thermal conduc-

tivity tensor may have nine nonzero components and this requires the use of other

mathematical transformations besides the stretched coordinate transformations in or-

der to obtain the analytical solutions for the temperature distribution and thermal

resistance in the channel.

Finally, the developed analytical solutions can be used to conduct analytical op-

timization studies for the best distribution of the heat sources along the source plane

for which the temperature excess is minimized.
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