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Abstract

Tropical forests provide many ecosystem services to human beings, many of which

are mediated by animals. Nonetheless, there are few software tools that allow

ecologists to explicitly include animals in forest models. I developed packages to

implement individual-based models of trees and animals. The animal model fo-

cused on arboreal seed dispersers and includes a decision-making algorithm based

on the behaviour of primates. I first describe the models independently and pro-

vide examples of how the software can be used to address questions of ecological

concern, such as the effect of selective logging on carbon stocks, how deforestation

and fragmentation affect animal movement and the impacts of defaunation on seed

dispersal. Finally, I describe how to integrate seed dispersers into forest models. I

found that this integration is not always necessary and provide guidelines on how

to decide if seed dispersal should be explicitly modelled.
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1 Introduction

1.1 Tropical Forests as Complex Systems

Conceptual advances in the science of complex systems have equipped ecologists

with new tools and approaches to investigate ecosystems. One of these approaches

is looking at ecosystems as Complex Adaptive Systems (CAS), in which the prop-

erties of a system are considered as emergent from the interactions among its

adaptive components (Green et al., 2005). In Ecology, organisms are usually the

adaptive components, since they change their behaviours in response to changes

in the physical and biotic environments around them. One example of adaptive

behaviour is movement: animals decide where and when to move based on the

information they have of their surrounding environment and on their needs (Av-

gar et al., 2013). Each individual is also part of the biotic environment of other

organisms, creating a circular relation of causality that results in emergent prop-

erties (Grimm and Railsback, 2005), such as the spatiotemporal distribution of

trees and processes like seed dispersal (Messier and Puettmann, 2011).

1.1.1 Ecosystem Processes, Functions and Services

The Ecosystem Services Framework (Groot et al., 2012) is an approach for under-

standing the “ecological characteristics, functions, or processes that directly or in-

directly contribute to human well-being” (Costanza (2012), page 27). These func-

tions and processes underpin the goods and services that nature provides to hu-

mans (Groot et al., 2010) and upon which human well-being depends (Millennium

Ecosystem Assessment, 2005). As we improve our understanding of ecosystem

functions, the connections to ecosystem services become clearer (Loreau, 2010).

Balvanera et al. (2006) analyzed 446 studies measuring biodiversity and some kind

of ecosystem function or biodiversity and an ecosystem service. They concluded

that species diversity is positively related to the provision of supporting services
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(e.g., production of food or wood), as these are largely based on ecosystem pro-

ductivity. Regulatory services followed the same trend. For example, they found

that increased plant diversity was associated with lower crop damage from pests

and reduced abundance of invasive species. Although the the relationship between

biodiversity and ecosystem services is well supported, Gamfeldt and Roger (2017)

clarifies that this relationship does not change with the number of functions. The

results obtained from their simulations contradict the intuitive claim that a greater

number of ecosystem functions necessarily requires higher biodiversity. In order to

better support natural resources management, they emphasize the need to identify

and understand the mechanisms underlying ecosystem services.

The quantification of ecosystem services is often very challenging due to the

many nonlinear relationships between dynamic ecosystem properties and the re-

sulting services (Limburg et al., 2002). Modelling is essential for ecosystem services

valuation and several approaches have been developed (Kareiva et al., 2011). How-

ever, they have rarely included adaptive behaviour as defined by the CAS view.

Nelson et al. (2009) divide ecosystem services models into broad or small scale

assessments. Broad scale models use a benefit transfer approach: small spatial

units are classified according to habitat types and several services are estimated;

after establishing the relationships between the services and the habitat types,

the models are used to estimate the same services for broader areas based on

habitat maps. These models generally assume that every hectare in each habi-

tat type is equivalent and, since the mechanisms generating the services are not

modelled, their ability to generate predictions in new scenarios is limited. Troy

and Wilson (2006), for example, used GIS techniques to estimate ecosystem ser-

vices for three study sites in the USA. They mapped land cover, aquatic resources

and the estimated economic values for ecosystem services. The results offer the

estimated value derived from all services in US dollars by hectare. However, the

spatial analyses contribute very little to understanding the mechanisms generating
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specific services and how their provision might change over time.

Models categorized as small scale assessment carefully model one single ser-

vice in small areas, but produce “ecological production functions” that attempt

to capture how the service depends on several environmental and ecological vari-

ables instead of only on habitat type. Models in this category are better suited

for estimating services under changing conditions because the independent vari-

ables used as input are more closely related to the actual mechanisms than habi-

tat type alone. However, their ability to elucidate the mechanisms underlying

observed relationships is still limited, since they are usually aggregated at popu-

lation or species levels (Grimm et al., 2017). Ricketts et al. (2004) for example,

used artificially augmented pollination of coffee plants near and far from forests

to demonstrate that wild bees from nearby forest patches provide an economically

quantifiable service, but adaptive behaviour was not represented in the model.

Nelson et al. (2009) suggested that ecosystem services models must combine “the

rigor of the small-scale approach with the breadth of broad-scale assessment” and

offer a framework (called “inVest”) to do so. Ricketts et al. (2004) used “in-

Vest” to model five ecosystem services under different land-use change scenarios

in Sumatra. The model helped to reinforce the conservation value of the Suma-

tran tiger habitat, but the production functions were based on land cover and

related environmental variables, without any representation of the agents involved

in the provision of those services. After analyzing different approaches to ecosys-

tem services modelling, Rieb et al. (2017) argue that, in order to improve scientific

understanding and decision-making, future models need to advance beyond using

land use or land cover categories as a proxy for ecosystem services.

The importance of animals for the functional maintenance of ecosystems is

documented (Estes et al., 2011; Redford, 1992; Ripple et al., 2014; Wilmers and

Schmitz, 2016) and their explicit consideration is thought to be valuable in the

study and quantification of ecosystem services (Filotas et al., 2014; Limburg et al.,
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2002) because the resulting models respond better to environmental changes.

Railsback and Johnson (2011) for example, explicitly modelled the population

densities and foraging behaviour of birds to quantify how forested patches con-

tribute to pest control in coffee farms. Their final model was able to reproduce

several observed patterns and they concluded that a useful model for their context

required the birds to have some ability to evaluate habitat quality and make in-

formed decisions. Similarly, population models of stream fish also perform better

when using an individual-based approach (Railsback et al., 1999).

Grimm et al. (2017) argue that, modelling the adaptive agents that constitute

ecosystems and letting system dynamics emerge from individual activities is the

most productive way to integrate ecological levels (i.e., individual, population,

community, ecosystem) and produce better mechanistic models that are capable

of predicting changes in ecosystem services in response to environmental changes.

Many of the processes observed at the higher organizational levels depend on

the actions taken by individuals. At the same time, individuals are often where

ecological theory can be most strongly linked to reality, as researchers can mea-

sure and model individual mechanisms in laboratories or using field observations.

Levey et al. (2005) provides a good example of how easily observed individual

behaviours (bird movement) can be scaled to model landscape-level mechanisms

(seed dispersal) even in conditions unknown to the model. In addition, one of

the biological theories we have most confidence in is that individuals behave to in-

crease their future fitness (Grimm et al., 2017; Grimm and Railsback, 2005; Grimm

et al., 2005; Railsback and Johnson, 2011; Topping et al., 2012). These principles

guide individual-based modelling and, despite usually requiring more data, could

complement the more aggregated integration suggested by Nelson et al. (2009),

resulting in models that are more mechanistic and suitable to address the demand

to explain and predict how ecosystem service change in response to climate and

land-use change (Grimm et al., 2017).
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1.1.2 Individual-Based modelling

Individual-based models (IBMs) are representations of systems of individuals and

the environment they live in, in which the system-level properties arise from the

decisions of the individuals (often referred to as agents) and their interactions with

other individuals and the environment (Railsback and Grimm, 2012). Individual-

based ecology is the study of ecological systems from a CAS perspective and is

built around IBMs (Grimm and Railsback, 2005). In individual based-ecology, the

adaptive behaviours of individual organisms are explicitly modelled as decision al-

gorithms, allowing variability among individuals. In IBMs, ecological processes

that emerge from individual behaviours, such as seed dispersal, respond well to

environmental changes because these affect the actions taken by individuals. Ecol-

ogists often summarize the effects of animals and plants on ecosystem functions

by grouping species into functional groups (McGill et al., 2006). This strategy

is compatible with IBMs, in which the agents can belong to functional instead

of species and even represent groups of organisms (i.e., “collectives” such as fish

schools or bird flocks).

1.2 Carbon Sequestration as a key process for conservation

Tropical forests store enormous amounts of carbon as tree biomass and in the

organic matter of soils and other plants (Betts et al., 2008). As plants grow

they convert atmospheric CO2 into organic materials (i.e., carbon sequestration),

which naturally decay later on, returning the carbon dioxide to the atmosphere.

The role of forests in the global carbon cycle is determined by how the vegetation

and soil stocks change over time. This depends on how fast CO2 is converted into

biomass; how much is naturally released by respiration, decomposition and other

processes; how large the stocks are and how much is released by extreme events,

natural or otherwise (Daz et al., 2009). Through carbon dioxide absorption and
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storage, tropical forests provide an essential service to the maintenance of the at-

mospheric CO2 concentrations. Carbon storage is a good indicator of the stature

and intactness of tropical forests (Asner et al., 2018). Carbon stocks are frequently

used by conservationists as a target for conservation measures as these are posi-

tively related with biodiversity and ecosystem functions (Berenguer et al., 2014;

Daz et al., 2009). An important example is the conservation framework devised

by the United Nations Framework Convention on Climate Change (UNFCCC)

as a mechanism to reduce emissions from deforestation and forest degradation

(REDD+)(UNFCCC, 2007), which was recently included in the UN agreement in

Paris, signed by most member countries (UNFCCC, 2015). REDD+ initiatives

are meant to let developed countries financially support developing economies to

use their forest resources more sustainably while still growing economically and

carbon stocks play a central role in negotiations.

Many of the processes related to the population dynamics of tree species and

the maintenance of carbon stocks are mediated by animals (Reiss et al., 2009;

Schleuning et al., 2011). Examples include pollination (Kremen et al., 2007),

decomposition (Larsen et al., 2005), nutrient cycling (Nichols et al., 2008), seed

dispersal (Sekercioglu, 2006) and seed burial (MacMahon et al., 2000; Nichols

et al., 2008). Therefore, the inclusion of animals in forest models is relevant

to elucidate mechanisms and produce predictive tools that encompass animal-

mediated services.

1.2.1 Seed-dispersal as a selected process for Carbon stocks mainte-

nance

Throughout this thesis, I use seed dispersal as an example of animal-mediated

process within individual-based forest models. Seed dispersers contribute to drive

how aspects of the plant community (i.e., richness, relative abundance and spatial

distribution of species) change over time (Levine and Murrell, 2003a). Community
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composition, in turn, affects ecosystem properties (Wall et al., 2005). Although

plants rely on a variety of dispersal mechanisms, zoochory ( i.e., dispersal by an-

imals) is recognized as important (Lambert and Chapman, 2005). With 95% of

the tropical seeds being moved by animals (Terborgh et al., 2002), taking their

movement into consideration is important to understand spatial patterns in plant

communities, but also very difficult (Bialozyt et al., 2014b). Peres et al. (2016)

show that dense-wooded tree species in the Amazon forest are replaced by light-

wooded species as large seed dispersers (i.e., tapirs and spider monkeys) are re-

moved, resulting in carbon losses that could range between US$ 5.9 trillion and

US$ 13.7 trillion in the world’s carbon markets. The dispersers model developed

on Chapter 3 is loosely based on primates, therefore focusing on primary disper-

sal (i.e., the displacement of seeds from the parent tree to a surface, usually the

ground, Chambers and MacMahon 1994). Everyday, primates move billions of

seeds in tropical forests and account for a large proportion of seed dispersal (Lam-

bert and Chapman, 2005). In the Amazon, Howler (Allouatta spp.) and Spider

(Ateles spp.) monkeys are good model organisms to study primary seed dispersal

not only because of the significant proportion of seed dispersed by them, but also

because they are preferred targets in bushmeat trade and are very sensitive to

anthropogenic disturbance (Lambert and Chapman, 2005; Redford, 1992).

Given the role of seed dispersal in the structure of the forest communities (Howe

and Miriti, 2000, 2004; Wang and Smith, 2002), it is reasonable to hypothesize

that reductions in the dispersers populations will have a negative effect on carbon

related services. Redford (1992) highlighted the dangers that defaunation imposes

to the provision of essential ecosystem processes. More recently, Bello et al. (2015)

studied the effects of removing large seed dispersers on tropical forests carbon

storages. They simulated local extinction of trees dispersed by large vertebrates

using data from 31 communities in the Brazilian Atlantic Forest and concluded

that extirpation of animals may significantly erode carbon stocks. Wilmers and
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Schmitz (2016) provide an example of the magnitude that animals can have on the

carbon cycle. Their study estimated that gray wolves could increase net ecosystem

productivity by 24 to 52 g C.m-2.yr -1 in the Isle Royale National park forest. The

synthesis presented by Schmitz et al. (2014) highlights that animals affect local

and regional carbon cycles through a variety of mechanisms (e.g., by consuming

plant biomass, facilitating wildfires and influencing biophysical conditions through

destruction of vegetation). They advocate that natural resources management will

benefit from improved quantitative understanding of how animals drive carbon

sequestration and storage.

1.3 Impacts of anthropogenic disturbances on the carbon

cycle

Human-induced habitat changes severely disrupt tropical forests, threatening bio-

diversity, species interactions and ecosystem functions (Morris, 2010). Zarin et al.

(2015) compiled several datasets and estimated the average carbon dioxide emis-

sions from gross tropical deforestation alone to be 2.270 Gt CO2 y-1. Berenguer

et al. (2014) reported the effects of forest degradation (fires, fragmentation and se-

lective logging) on above ground carbon stocks. Berenguer et al. (2014) found that

those forests which had experienced both logging and fires, for example, stored

40% less carbon than primary forests.

Land-use change commonly results in fragmentation of natural habitats. Forests

are separated into fragments as we build roads, dams, power-transmission lines

or open space for farming, mining and urban expansion. Fragmentation affects

species richness, community composition and animal-mediated services (Schleun-

ing et al., 2011). The resulting changes in resource distribution and landscape

configuration strongly influence the spatial distribution and movement patterns of

forest animals (Garcia et al., 2010). The movement patterns of Howler and Spider
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monkeys, for example, are well studied (Belle et al., 2013; Kowalewski et al., 2014;

Ramos-Fernndez et al., 2004) and known to be related to the spatial configuration

of their habitats (Boyer et al., 2006a; Fiore and Suarez, 2007). As a consequence,

the seed dispersal functions performed by these animals is also affected by habitat

disturbance, creating a feedback mechanism that results in more changes at the

tree community level.

Subtler forms of disturbance, like selective logging, can also affect seed dis-

persers. It is estimated that 30% of all tropical forests are selectively logged

(Pfeifer et al., 2015). Compared to clear cut operations (in which the totality of

an area is deforested), selective logging is considered a low impact activity, since

only a few target trees are removed and most of the forest is left standing (Gibson

et al., 2011a). Recent studies, however, have shown that the impacts of selective

logging on biodiversity (Burivalova et al., 2014; Solar et al., 2015) and long term

consequences for forest structure have been underestimated, even at very low log-

ging intensities (Gatti et al., 2015). In part, the underestimation comes from not

taking the fauna and its roles within the forested ecosystems into consideration

(Bello et al., 2015). Selective logging can directly affect monkeys by targeting

trees that are important for their diets (Felton et al., 2010), but indirect effects

can result from structural modification of their habitat (Azevedo-Ramos et al.,

2006; Johns, 1986).

Selective-logging still is one of the most adopted forest uses for sustainable

management under these programs (Parrotta et al., 2012). In Brazil for example,

Reduced Impact Logging (RIL) is guided by the National Environment Council

(CONAMA) under the Ministry of Environment. In The Amazon, the directions

establish the maximum logging intensity to be 30 m3/ha and the interval between

operations to be between 25 and 35 years (CONAMA-CONSELHO NACIONAL

DO MEIO AMBIENTE, 2009). Other countries adopt similar regulations. Based

on a meta-analysis of more than 50 publications addressing selective-logging in
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tropical forests distributed across 10 countries, Putz et al. (2012) reported that

logging cycles vary from 20 to 40 years in most cases.

1.4 Justification

Both carbon sequestration and carbon stocks are results of the biomass gains at the

individual tree level. As seed dispersal plays such an important role in the plant

community dynamics and dispersers are strongly affected by forest disturbance, it

is essential to understand the effects of disturbance on dispersers and the conse-

quences for forest dynamics and the carbon cycle. The system comprised of trees

and ecologically linked primary dispersers (such as primates) is a model system

to better understand the cascading effects of anthropogenic actions like selective

logging on ecosystem services. The use of a CAS perspective will give the op-

portunity to investigate the relationship between adaptive behaviour (especially

movement) and ecosystem services, an approach that is still new to ecosystem

services modelling, but has the potential to produce more accurate predictions.

Attempts to model forest ecosystems are not new. In the 1970s, the growing

access to computational resources allowed researchers to mathematically repre-

sent multiple interacting processes, leading to the first gap models (Botkin et al.,

1972) and later to simple agent-based models (Huston et al., 1988). These tools

have been used since then to investigate forest succession and long-term ecosystem

dynamics (BEFORE (Rademacher et al., 2004), CAIN (Caspersen et al., 2011),

LINKAGES (Post and Pastor, 1996), FORMIND (Köhler and Huth, 1998)). How-

ever, most of these forest models were developed for temperate forests and do not

explicitly include seed dispersers (although most include mathematical functions

that allow the simulation of seed dispersal at the landscape level, as a decreasing

function of distance). In addition, many are not open-sourced (FORMIND, BE-

FORE, LINKAGES, CAIN) or well documented, making it hard to add function-
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alities. Although FORMIND’s source code is not available, the relatively detailed

model description and previous use for modelling tropical forests make it the best

starting point for this project.

1.5 Objectives

Given the lack of software tools that include seed dispersers in simulations of forest

dynamics and limited availability of tropical forest models that are open-source,

well-documented and extendable enough to include disperser agents, the objective

of this project is to provide software tools able to create individual-based forest

models that explicitly include seed dispersers. Following the general introduction

in this first Chapter, my thesis is divided into three software and one summary

Chapter.

In Chapter 2 I implement an individual-based forest model using FORMIND’s

model description as a starting point. I indicate the few differences in the model

formulation and provide details of my implementation that clarify how the model

works. I also describe some additions I made and provide an example to illustrate

typical model outputs.

In Chapter 3 I develop an individual-based model to simulate seed dispersers.

The model focus on arboreal dispersers such as monkeys and birds. I describe the

model formulation, illustrate how parameter values may affect outputs and provide

a few examples that illustrate how the model can be used to address questions

regarding the effects of environmental disturbances on seed dispersal.

Chapters 2 and 3 illustrate how each model can be used separately, but in

Chapter 4 I describe how they can be integrated to produce individual-based

forest models that explicitly include dispersers movement and behaviour.

In the 5th Chapter I give general guidelines on how to decide if seed dispersal

should be explicitly or implicitly simulated. The examples given throughout this
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thesis were designed to illustrate the software produced and were not intended

to test specific hypotheses since they were not calibrated to specific scenarios.

Nonetheless, several hypotheses which could be tested with my models arose from

this work and I describe them to be addressed in future work. Finally, I provide

links to the software packages I developed, including their source code repositories,

which also contain documentation, tests and installation instructions.

Specific objectives when developing the software were to:

• Package the two models separately, so that they can be used on their own,

in combination with each other or with third-part models;

• Use object-oriented programming, in order to facilitate modification and

extension;

• Make the source code available under the GNU General Public License;

• Provide documentation and tests;

• Host the code on GitHub, for transparent development and to encourage

contributions from users and developers.
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2 Chapter 2: The Trees model

2.1 Model Description

The individual-based forest model structure is largely based on the FORMIND

model (Köhler and Huth, 1998), following the description provided by Fischer

et al. 2015 (see Rüger et al. (2007) for another version and application of FOR-

MIND). Most of the equations used are based on the formulation detailed in the

supplementary material of Fischer et al. (2015). When equations are identical, ref-

erences are provided in squared brackets, indicating the equation number in that

document (e.g., [eq. 15 in Fischer et al. (2015)-S]). A few significant changes were

made to the FORMIND model structure and implementation, which are discussed

in detail in sections 2.2 and 2.3 and also indicated in the appropriate submodel

descriptions in section 2.1.7. The code that implements the model was rewritten

in Python 3 as an Object-Oriented, open-source module (See “Objected-Oriented

implementation” below). The description in sections 2.1.1-2.1.7 follows the ODD

protocol, proposed by Grimm et al. (2010). Although ? used FORMIND to sim-

ulate an African forest, The model is intended represent any tropical forest given

appropriate calibration. Although the parameter values used in the examples pre-

sented in this thesis are within typical observed ranges (according to Fischer et al.

(2015)-S), they were not calibrated to any specific study site. Therefore, these

examples are intended to illustrate how the software works and the typical kinds

of outputs.

2.1.1 Purpose

The Trees model is an individual-based, spatially explicit model developed to

study the long-term impacts of logging and other forms of disturbance on tree

abundances and distributions, carbon stocks and carbon sequestration in uneven-

aged mixed species tropical forests.
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2.1.2 State variables and scales

The model is implemented in three-dimensional space, and is grid and individual-

based. Ecological processes are formulated in three organizational scales: trees,

patches and landscape (table 2.1). Each tree is represented individually from

birth to death. To enable the dynamics of species-rich forests to be simulated

more efficiently, species with similar functional characteristics are grouped in plant

functional types (PFTs). Groups are based on shade-tolerance and maximum

height (however, single species can be represented just as easily). In addition,

cohorts are an extra level that aggregate trees of the same age and PFT within

a patch. However, this level is used for purely computational reasons and no

attributes are accessible (see section 2.2.1 for more details on cohorts and section

2.3 for more details on PFTs).

Patches are squared cells with unique x and y coordinates and area equivalent

to the crown area of a mature tree (parameter a in table 2.1). Patches are divided

in small vertical layers (∆h in Table 2.1) that might have different light availability

due to light diffusion and interception. Light availability is calculated for each

layer, as well as the sum of leaf areas. Patches are linked to their neighbours since

individual trees in one patch may fall into a neighbouring patch. The landscape

is the set of all patches organized in a rectangular grid with periodic boundaries.

Forests are simulated in monthly time steps. The total period of time simulated

can be decades or centuries, depending on the simulation goals. For the logging

example given on section 2.4 the total time was 50 years because that exceeds the

time that most sustainable logging operations wait to revisit a site (CONAMA-

CONSELHO NACIONAL DO MEIO AMBIENTE, 2009).
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Table 2.1: Attributes for each organizational level. Where appropriate, the respec-
tive equation numbers are displayed in squared brackets. Abbreviations appear in
round brackets. See table 2.2 for units.

Tree Patch Landscape

Age Area (a)
Total carbon in
living trees (AGBtotal)[34]

Identification(id)
Cumulative crown
area per layer (CCA)

Total carbon in
dead trees (Sdead)[35]

Patch Position
Total carbon in
fast soil (Ssfast)[36]

Plant functional type (PFT) Seed bank
Total carbon in
slow soil (Sslow)[37]

Position
Leaf area index
per layer (LAI) [8]

Net carbon exchange (NCE)[41]

Diameter at breast
height (DBH) [3]
Height (H) [4]
Crown length (CL) [5]
Crown diameter (CD) [6]
Crown area (CA) [7]
Gross primary
production (GPP) [21]
Carbon emission
through respiration (Cr) [28]
Above ground biomass (B) [31]

Table 2.2: Description of Trees model parameters.
Parameter Description Unit

PTF parameters

Dmax Max DBH increment cm
h0, h1 Height coefficient -
cl0 Crown length coefficient -
cd0, cd1, cd2 Crown diameter coefficient -
ρ Wood density tODM/m

3

σ Ratio of total aboveground biomass to stem biomass -
f0, f1 form factor-stem diameter relationship -
l0, l1 LAI-stem diameter relationship -
Iseed Required radiation for germination %
Nseed Number of seeds added to seed bank 1/ha.year
afruit adjusting factor for number of fruits produced -
m Light transmission coefficient -
Rg Growth respiration fraction -
Mbase Base mortality probability -
DBHmort DBH up until which mortality is increased for small trees cm
DBHfall DBH above which a tree can cause damage if it falls cm
D∆Dmax Diameter at which ∆Dmax is observed cm
∆Dmax Maximum stem diameter increment cm
pmax Max leaf photosynthetic rate µmolCO2

/m2s
disgen Proportion of fruits dispersed by the tree’s dispersal method -
αfruits adjusting factor for fruit production -
α Initial slope of light response curve µmolCO2

/µmolphoton

Global Parameters

∆h Width of layers of aboveground vertical space discretization m
I0 Incoming irradiance on top of canopy µmolphoton/m

2s
k Light extinction coefficient -
a Patch area m2

xmax, ymax Length and width of the grid that represents the landscape patches
lday Period of photosynthetic activity in a day hours
tSdead

Fraction of dead wood decomposed by time steps -
φact Days of photosynthetic activity in each time step days
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2.1.3 Process overview and scheduling

Within each time-step (1 month) the model proceeds in the following order: re-

calculation of light availability within the forest, growth and update of geometrical

characteristics. Mortality and recruitment events occur once a year (every 12 time-

steps). According to the question of interest, this frequency of these events can

be increased, which might capture habitat changes more realistically at the cost

of execution time. This version followed the frequency adopted by Fischer et al.

(2015) and Rüger et al. (2007). Logging events are executed as scheduled (the

default is every 25 years).

Within each patch, all trees compete for light and space following a gap model.

Light availability is assumed to be the main driver of tree growth and forest succes-

sion. For each patch, the light availability is calculated according to an extinction

law that depends on the vertical distribution of the leaf area. Light availability is

then determined for each tree. The same equation is used to calculate the light in-

cidence at the soil level (section 2.1.7, submodel III). Annual growth is calculated

based on the physiological processes of photosynthesis (section 2.1.7, submodels

IV and V) and respiration (section 2.1.7, submodel VI). Growth is expressed as

the monthly increment in aboveground biomass (section 2.1.7, submodel VII).

Biomass acquisition is translated into DBH (Diameter at Breast Height) incre-

ment, which is used to update height, crown area and other geometrical attributes

through allometric equations (section 2.1.7, submodel VIII). Tree mortality can

occur either through self-thinning in dense patches, stochastic mortality, gap cre-

ation by large falling trees or logging (section 2.1.7, submodel II). Recruitment

(section 2.1.7, submodel I) occurs when the light intensity at forest floor exceeds a

PFT-specific threshold (parameter Iseed; see table 2.3). At the beginning of each

year, a PFT-specific number of seeds (defined by parameter Nseed) is randomly

distributed across all the patches. The effective recruitment rates for each PFT
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describes the number of seeds which met the minimum light and space criteria

to grow over the DBH of 1 cm in each year. At the end of each year mortality

events are executed sequentially. If logging operations are scheduled for that year,

they occur after natural mortality events. Figure 2.1 illustrates the order in which

submodels are executed.
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Figure 2.1: Model overview. Boxes correspond to the submodels described in
section 2.1.7. Numbers show the order in which events occur. Blue and red arrows
represent carbon sequestration and emission respectively. After seed dispersal
and recruitment, trees go through the physiological processes leading to growth.
Decomposition follows the update of geometric attributes and, after the mortality
submodel is executed, landscape level carbon balances are updated. The plots at
the bottom display carbon dynamics at the landscape level.
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Table 2.3: Parameter values for six Plant Functional Types (PFTs) used in the
examples.

Plant Functional Type

Parameter PFT1 PFT2 PFT3 PFT4 PFT5 PFT6

Dmax 145 120 80 80 47 16
h0 3.28 4.64 4.82 4.27 4.35 3.0
h1 0.57 0.41 0.44 0.43 0.34 0.60
cl0 0.80 0.80 0.30 0.30 0.30 0.30
cd0 0.60 0.60 0.60 0.60 0.60 0.60
cd1 0.68 0.68 0.68 0.68 0.68 0.68
cd2 0 0 0 0 0 0
ρ 0.55 0.54 0.41 0.40 0.52 0.47
σ 0.70 0.70 0.70 0.70 0.70 0.70
f0 0.77 0.77 0.77 0.77 0.77 0.77
f1 -0.18 -0.18 -0.18 -0.18 -0.18 -0.18
l0 2.0 2.0 2.0 2.0 2.0 2.0
l1 0.10 0.10 0.10 0.10 0.10 0.10
Iseed 0.03 0.01 0.05 0.02 0.03 0.02
Nseed 30 156 21 300 2 200
m 0.5 0.5 0.5 0.5 0.5 0.5
rg 0.25 0.25 0.25 0.25 0.25 0.25
Mb 0.015 0.03 0.029 0.04 0.021 0.045
D∆Dmax 0.41 0.41 0.28 0.28 0.37 0.28
∆Dmax 0.01 0.01 0.01 0.01 0.01 0.01
pmax 2.0 3.1 6.8 11 7 12
α 0.36 0.28 0.23 0.20 0.30 0.20

2.1.4 Design concepts

• Emergence: Patch level state variables such as light availability at the ground

level and vertical layers, as well as landscape level variables such as carbon

stocks and net carbon exchange, depend on the abundance and spatial dis-

tribution of individual trees.

• Sensing : Individuals sense their size (biomass), which affects growth.

• Interactions : Trees in the same patch compete for light and space (self-

thinning). Trees in different patches may interact when tall trees fall and

damage smaller ones.
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• Stochasticity : All mortality processes are described as probabilities. Seed

dispersal can follow a random distribution depending on dispersal mode

(uniform or power distribution).

• Collectives : Cohorts are collectives of trees with the same age and Functional

Type which are located in the same patch. Trees in the same cohort have

the same size.

• Observation: Observations can be made at the individual (Biomass, Leaf

Area and any other individual attribute), population (Abundance, totals and

summary statistics for any individual attribute) or landscape levels (Abun-

dance per PFT, totals and summary statistics for any individual attribute,

Net Carbon Exchange per year and total carbon stocks in soils, deadwood

and living aboveground biomass). Outputs can be recorded hierarchically

in a HDF5 database (The HDF Group, 2018). Some plotting functions are

also available for the most commonly used data.

2.1.5 Initialization

A simulation can be started with a treeless area, in which case a seed bank is

generated by randomly distributing a predefined number of seeds (Nseed) across

all patches. The total number of seeds is a PFT-specific parameter (Nseed) and

a uniform distribution is used to determine the position of each seed in the grid.

The model can also reconstruct an existing forest from a data file containing

information about trees (position in space, id, age, DBH and the PFT to which

they belong), the seed bank (how many seed of each PFT are available in the soil)

and landscape level carbon stocks. This information can be generated by pausing

and saving an ongoing simulation. To test different scenarios on a mature forest, a

combination of the two features can be used in order to reduce computation times:

starting from a clear area, the model runs for a long period (e.g., 300 years) and
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the resulting forest can be saved and used multiple times as the starting point of

different scenarios that run for shorter periods of time (e.g., 50 years).

2.1.6 Input

The position and other attributes of all trees can be saved and used as an input,

allowing simulations to be paused and continued. Other than that, no other inputs

are used. Site conditions are assumed to be homogeneous and there is no inter-

annual variability of environmental conditions.

2.1.7 Submodels

The submodels are summarized in figure 2.1.

I. Recruitment

Seed dispersal can be implemented by two methods. The first (external

seed rain) randomly places seeds across the entire landscape, using the Nseed

parameter to determine the number for each PFT. The second (implicit seed

dispersal) uses a power distribution to disperse the seeds around each tree,

based on the fruits available. Each fruit is assumed to contain only one seed.

The number of fruits for each tree is calculated by

Nfruits = DBH · afruits, (1)

where DBH is the Diameter at Breast Height and afruits is an adjusting

factor (i.e.: it controls the slope of the linear relationship between DBH and

Nfruits). Only trees with DBH above 10 cm produce fruits in this version.

Chapter 3 describes a third dispersal method (explicit seed dispersal), in

which fruits are eaten by explicitly modelled dispersers. In that case, a PFT
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specific parameter disgen determines what proportion of the fruits will be

dispersed by the tree’s power function (referred to as generic dispersal in

Chapter 3) and what proportion of the fruits will remain available for the

dispersers to eat.

The probability density distribution for the power function is given by:

P (x; a) = ax(a−1). (2)

Each PFT has a light requirement for germination (Iseed). At the beginning of

each timestep, light incidence at the floor level is calculated (at a patch level).

In each patch, all seeds have their PFT-specific light requirement tested

against the light incidence. If Ifloor > Iseed, then the vertical layer closest

to the soil (i.e., the one that the seedling will occupy if it is established) is

checked for space. If that layer is not yet fully occupied by seedlings, the

current seed is then converted into a small tree with DBH=1cm.

II. Update of geometric attributes

A series of allometric equations is used to define the attributes of a tree.

Trees are represented as two cylinders (one for the stem and another for the

crown) and are addressed by the index i when applicable. See Figure 2.2 (a)

for an illustration.
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Figure 2.2: Geometrical representation of each tree and vertical stratification. a)
Trees are represented as two superimposed cylinders. The crown diameter and
length, DBH and tree height are geometrical attributes used in the calculation
of biomass. b) Vertical stratification used to calculate photosynthesis for each
individual (Pi). Crown Length is divided into layers. Light incidence is higher
at the top (layer zero) due to self-shading. c) Taller trees (i = 1) limit the
photosynthetic activity of smaller individuals (i = 2).

When an individual grows (submodel VIII), the biomass gain is translated

into DBH increment by the following equation:

DBH =

√
B

π
4
·H · f · ρ

σ

, (3)
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where B is the new biomass, H is the height of the tree, f the form factor

that for the idealized cylindrical shape assumed for the stem, ρ the wood

density and σ the fraction of stem wood biomass from total tree biomass

[derived from eq. 5 in Fischer et al. (2015)-S].

All the other geometrical characteristics are updated based on the new DBH

as described below.

Height(H) [eq. 1 in Fischer et al. (2015)-S] is determined by:

H = h0 ·DBHh1 , (4)

where h0 and h1 are type specific parameters.

Crown length (CL) [eq. 2 in Fischer et al. (2015)-S] is a function of height,

with c denoting the type-specific parameter that defines the relationship.

CL = c ·H. (5)

Crown diameter [eq. 3 in Fischer et al. (2015)-S] is proportional to stem

diameter, where cd is another type-specific parameter.

CD = cd ·DBH. (6)

Since the crown is represented as a cylinder, crown area (CA) [eq. 4 in

Fischer et al. (2015)-S] is

CA =
π

4
· CD2. (7)
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The leaf area index of a tree (LAI) [eq. 8 in Fischer et al. (2015)-S] represents

the total amount of leaf area per unit of crown projection area, which relates

to the photosynthetic capacity. It is calculated as a function of DBH,

LAI = l0 ·DBH l1 , (8)

where l0 and l1 are PFT-specific parameters.

III. Tree mortality Mortality is based on section E1 in Fischer et al. (2015)-S,

but includes additional mortality risks to small trees following Rüger et al.

(2007) and excludes deterministic mortality.

(1) Background mortality: each tree has a base mortality (mbase) specific

to its PFT. The background mortality mB for big trees is simply mbase.

Those trees with DBH below the DBHmort threshold have higher background

mortality:

mB =

 mmax −mmax · DBH
DBHmort

+mbase, if DBH<DBHmort

mbase, else

 (9)

where mmax is the maximum size-dependent mortality of small trees and

DBHmax is the DBH up to which tree mortality is increased.

(2) Self-thinning: Mortality is increased for trees in dense patches due to

competition for space. Crowding based mortality, mC , is modelled as

mC = 1 − 1

CCAmax

, (10)
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where CCAmax is the maximum Cumulative Crown Area (which sums the

crown areas of all trees with the crowns in that height layer).

(3) Damage mortality

When a large tree dies, it might fall and impact its neighbours. Large

trees are those with DBH above the size threshold defined by the param-

eter DBHfall. Damage is inflicted on the small trees (DBH < 50 cm) at

least 1 m shorter than the falling tree if they are located on the area where

the crowns is going to land. Damage is expressed as the ratio between the

crown projection area of the falling tree (see submodel VIII for details on

the calculation of CA) and the patch area (parameter a). The direction of

the fall is chosen randomly with equal probability. The damage mortality

probability is

mD =
CA

a
. (11)

The tree mortality processes are executed sequentially for each tree. A ran-

dom number between 0 and 1 is drawn from a uniform distribution and the

tree dies if the number is lower than mB, otherwise the process is repeated

for mC and mD. When a tree dies, its carbon content (44% of the biomass,

according to Fischer et al. (2015)) is transferred to a temporary stock Smort,

which is subsequently used to update the dead wood stock Sdead as described

in equation 35.

IV. Competition for light

Each patch is vertically divided in small layers of width ∆h (see figure 2.2).

Light availability is calculated for the individuals within each patch taking
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into consideration the canopy layers they occupy. If a patch has only one tree,

all the light will be available to that individual. Due to self-shading, higher

stratifications of the crown intercept more light, reducing the availability for

the layers below. Similarly, with the addition of other trees to the same

patch, the tallest ones shade the smallest.

For each patch and height layer, the leaf area accumulated by all individuals

is calculated. Each tree contributes parts of its crown leaf area to those

height layers which are occupied by its crown. The bottom and top layers

[eq. 31 and 32 in Fischer et al. (2015)-S] are defined by:

ltop =
H

∆h
, (12)

and

lbottom =
H − CL

∆h
, (13)

where H is the tree’s height and CL its crown length.

A tree’s leaf area index (LAI) [based on eq. 34 in Fischer et al. (2015)-S]

contributes equally to each of the patch layers between lbottom and ltop:

LAl =
LAI · CA
ltop − lbottom

, (14)

where LAl is the tree’s contribution to the leaf area of vertical layer l of that

patch and CA is its crown area. The multiplication of LAI by CA gives the

leaf area of a single tree in m2.
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To calculate the leaf area per layer (l) at the patch level LAPl [based on eq.

35 in Fischer et al. (2015)-S], the contribution of each tree’s leaf area per

layer (LAl) relative to the patch area (a) is summed,

LAPl =
1

a

∑
all individuals
w/ crown in l

LAl (15)

.

With this information it is possible to calculate the radiation that each tree

is able to intercept at the top of its crown (Itop) [eq. 36 in Fischer et al.

(2015)-S],

Itop = Imax · exp

−k ·
∑
l>ltop

LAPl

 , (16)

where Imax is the irradiance above the forest canopy and k the light extinction

coefficient. Note that only those layers above ltop are used.

V. Photosynthesis

Photosynthesis is based on the incoming irradiance at the top of each tree

(Itop). Following the approach described by Thornley and Johnson (1990)

[and eq. 37 in Fischer et al. (2015)-S], the cylindrical crown is considered

as a stack of thin disks. The photosynthesis of each disk is modelled by a

Michaelis-Menten function describing the relationship between the radiation

available at the top of each disk I(L) and its photosynthetic rate P (I):

P (I) =
α · I(L) · pmax
α · I(L) + pmax

, (17)
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where α is the initial slope of the light response curve and pmax is the maxi-

mum rate of photosynthesis. The incident irradiance [eq. 38 in Fischer et al.

(2015)-S] on the surface of a leaf is:

I(L) =
k

1 −m
· Itop · e−k·L, (18)

where Itop is the irradiance incident on the tree crown, k the light extinction

coefficient and m the light transmission coefficient of leaves. Since all leaves

are assumed to be distributed homogeneously within the crown, the higher

ones will shade the ones below. Thereby, L = 0 represents the top of the

individual and L = LAI represents the bottom, with LAI being the leaf area

index (eq. 8).

The photosynthetic rate per individual (Pi) [eq. 39 in Fischer et al. (2015)-S]

is obtained by integrating equation 17 over the individual’s leaf area index:

Pi =

∫ LAIi

0

P (I(L))dL. (19)

The integration results in [eq. 40 in Fischer et al. (2015)-S],

Pi =
pmax
k

· ln
α · k · Itop + pmax(1 −m)

α · k · Itope−k·LAIi + pmax(1 −m)
. (20)

VI. Gross production



30

Equation 20 gives the photosynthetic rate in µmolCO2/m
2s. The Gross Pri-

mary Production (GPP) [eq. 42 in Fischer et al. (2015)-S] per tree per year is

calculated by multiplying the individual photosynthetic rate Pi by the crown

area (CA) and a conversion coefficient (codm) that transforms absorbed CO2

to tons of organic dry mass per year (tODM/y) :

GPPi = Pi · CA · codm. (21)

In the conversion factor [based on eq. 41 in Fischer et al. (2015)-S], 3600

accounts for the conversion from seconds to hours and lday represents the

average daylight period. The parameter φact gives the number of days in

which there is photosynthetic activity within a time step. For tropical en-

vironments, trees are assumed to do photosynthesis every day of the year.

The final components 0.63 · 44 · 10−12 include the molar mass of CO2, the

conversion from grams of CO2 to grams Organic Dry Matter (44%) and the

conversion from grams to tonnes :

codm = 3600 · lday · φact · 0.63 · 44 · 10−12. (22)

VII. Respiration

Respiration is divided into two components: growth and maintenance. Growth

respiration is assumed to be a constant fraction of the GPP that is used dur-

ing the build up of new biomass and is defined by the parameter Rg.

Maintenance respiration (Rm) [eq. 44 in Fischer et al. (2015)-S] is calculated
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based on the estimated diameter growth,

Rm =

(
GPP − Bi,est −Bi

1 −Rg

)
, (23)

where Bi is the current biomass of tree i (see equation 31) and Bi,est is

the estimated biomass of the same tree after taking into consideration the

diameter growth. The latter is calculated using equation 31, however the

DBH used as the input corresponds to the current diameter plus the diameter

increment,

Bi,est = B(DBHi + g(DBHi)) (24)

The growth function used in the equation above is designed to match empiri-

cal measurements [eq. 48 in Fischer et al. (2015)-S]. The diameter increment

is given by:

g(DBH) = α0 ·DBH ·
(

1 − DBH

Dmax

)
· e−α1·DBH (25)

α0 =
e

Dmax−2·(D∆Dmax·Dmax)
Dmax−(D∆Dmax·Dmax) ·Dmax · ∆Dmax

(Dmax− ∆Dmax ·Dmax) ·D∆Dmax ·Dmax
(26)

α1 =
Dmax− 2 · ∆Dmax ·Dmax

Dmax ·D∆Dmax ·Dmax · (D∆Dmax ·Dmax)2
(27)

Where Dmax is the maximum diameter a tree can reach, ∆Dmax is the

maximum increment and D∆Dmax is the stem diameter which reaches ∆Dmax.
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See Köhler and Huth (1998) for more information on how these parameters

can be estimated from field measurements.

The equivalent maintenance respiration in tons of organic dry mass is then

calculated using the same conversion coefficient used for GPP,

Rm = rm ·Bi · codm. (28)

VIII. Biomass increment

The biomass increment [eq. 43 in Fischer et al. (2015)-S] can be calculated

by subtracting the yearly respiration value from GPP,

Binc = (1 −Rg)(GPP −Rm). (29)

The new biomass of a tree is then determined by,

Bnew = Bold +Binc. (30)

IX. Growth

The biomass is updated based on the DBH increment. By rearranging equa-

tion 3, the following equation is obtained,

B =
π

4
·DBH2 ·H · f · ρ

σ
, (31)
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where H is the height of the tree, f a form factor that compensates for the

idealized cylindrical shape used to represent the stem, ρ the wood density

and σ the fraction of stem wood biomass from total tree biomass.

X. Carbon balance

Carbon is stored in four different stocks:

• AGBtotal: Living trees, which is the sum of the carbon in each living

tree.

• Sdead: Deadwood, which equals to the total carbon in dead trees.

• Sfast: Fast decomposing soil stock, which equals to the amount of carbon

resulting from quick decomposition of dead trees.

• Sslow: Slow decomposing soil stock, which equals to the amount of car-

bon resulting from slow decomposition of dead trees.

The dynamics of the total aboveground biomass stock AGBtotal is determined

by the difference between the total carbon captured (see submodel IV-Growth

above) as Gross Primary Production ( CGPP ) [page 28 in Fischer et al. (2015)-

S] and total carbon emissions from tree respiration (CR):

CGPP = 0.44 ·
Nt∑
i=1

GPPi, (32)

CR = 0.44 ·
Nt∑
i=1

(Rm,i +Rg,i · (GPPi −Rm,i)), (33)

AGBtotal = CGPP − CR. (34)
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The following equations [in page 27 of Fischer et al. (2015)-S] calculate the

amount of carbon for each of the remaining stocks,

Sdead = Smort − (tSdead−A + tSdead−Sslow
+ tSdead−Sfast

) · Sdead, (35)

Sfast = tSdead−Sfast
· Sdead − tSfast−A · Sfast, (36)

Sslow = tSdead−Sslow
· Sdead − tSslow−A · Sslow, (37)

Where Smort is the total carbon from trees that died in the past time step.

The transition rates [in page 27 of Fischer et al. (2015)-S] depend on how

quickly dead wood is decomposed, which is represented by the parameter

tSdead
. It is assumed that 70% of the dead wood emissions go directly to

the atmosphere and the other 30% are distributed between the fast and slow

decomposing soil stocks. These rates are based on empirical measurements

(see Fischer et al. (2015) for details).

tSdead−A = 0.7 · tSdead
, (38)

tSdead−Sslow
= 0.015 · 0.3 · tSdead

, (39)

tSdead−Sfast
= 0.985 · 0.3 · tSdead

. (40)

Net carbon exchange [eq. 51 in Fischer et al. (2015)-S] is calculated by sub-
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tracting emissions (living trees and stocks) from the total carbon absorption,

NCE = CGPP −CR− tSdead−A ·Sdead− tSdead−A ·Sfast− tSdead−A ·Sslow. (41)

XI. Logging

The model keeps track of harvestable trees that comply with defined criteria

for the logging scenarios (e.g., commercial PFTs, minimum and maximum

allowed DBH thresholds for harvesting). Logging events are scheduled ac-

cording to the frequency determined for the scenario (e.g., every 25 years).

Before the logging module is applied, the minimum criterion (i.e., minimum

number of trees to be extracted per hectare) is evaluated. If the minimum

criterion is met, a logging operation takes place; otherwise logging is omitted.

Patches are visited randomly and the largest harvestable tree on the patch is

logged, until all patches have been visited at least once or the harvest target

has been met. Then, patches are revisited randomly until the harvest target

is met.

2.2 Details of implementation

The model was written in the Python 3 programming language. Six PFTs were

used in the example on section 2.4. The model outputs are stored in a HDF5

database. There are plotting functions to generate static plots and also a tool for

interactive visualizations (see section 2.3.1). Figure 2.3 contains the UML (Unified

Modelling Language) class diagrams illustrating the internal organization of the

trees-ibm package (see Chapter 5 and table 5.1 for details on the packages.)



36

Figure 2.3: Class diagram for the Trees-IBM package. Following the UML (Unified
Modelling Language) standards, each class is represented by a block divided into
three sections: the class name at the top, followed by the corresponding attributes
in the middle and the methods at the bottom.

2.2.1 Cohorts

In order to enhance computational performance, individual trees with the same

characteristics are treated as collectives (cohorts). Each cohort contains individ-

uals located in the same patch that have the same type (PFT) and age. Large

trees (with DBH > 40 cm) often do not have similar individuals close enough to

form a cohort.

In each cohort, one tree is chosen and its biomass calculated. From the biomass

all other morphological variables such as DBH, height, crown diameter, crown

depth, and stem volume are derived and transferred to the other individuals in the

same cohort. Since environmental conditions (e.g., light availability) are defined

at the patch level and trees with same type and age will grow at equal rates under
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equal conditions, all geometric attributes will change by an equal amount for all

trees in a cohort. Therefore these are calculated only once and the values are

copied to the remaining members. Execution time was reduced by almost 60%

with the adoption of this strategy.

2.2.2 Scaling

One of the drawbacks of spatially explicit models is that the execution time gener-

ally increases with the area simulated, since more elements need to be represented.

In this model, space is represented by a square grid in which each patch is rep-

resented by a cell in the grid. That cell represents an area usually equal to the

crown area of a big tree (e.g., 20m x 20m), in order to capture the local competi-

tion for light accurately. Figures 2.4 and 2.5 show how execution time and RAM

memory use increase as the simulated area increases: both relationships are nearly

linear. The simulations were executed on a an iMac with a 3.4 GHz Intel Core i5

cpu and 8 GB of RAM. Future versions of this model will use parallel computing

techniques in order to reduce the execution time for larger areas.
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Figure 2.4: Simulation time increases lin-
early with the area simulated in the Trees
model. The x axis goes from 25 cells (a 5
x 5 grid, equivalent to 1 ha) to 1225 cells (
a 35 x 35 grid, equivalent to 49ha). Each
grid cell is equivalent to 400 mextsuper-
script2.

Figure 2.5: Memory use increases lin-
early with the area simulated in the Trees
model. The x axis goes from 25 cells (a 5
x 5 grid, equivalent to 1 ha) to 1225 cells (
a 35 x 35 grid, equivalent to 49ha). Each
grid cell is equivalent to 400 mextsuper-
script2.
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2.2.3 Tests

One of the difficulties that arise from the bottom-up approach used in individual-

based modelling is that processes that take place at one level of organization

interact with other levels (Thiele et al., 2014), making it harder to understand

what influences the resulting system-level patterns. This section presents several

simplified simulations, breaking down the complexity level present in a typical

use of the model (i.e., the example in section 3.4) to clarify how variability in

PFT parameters (figure 2.6), stand structure (in terms of PFT and stem size

distribution, figure 2.7) and competition (figure 2.8) affect the carbon cycle. At the

same time, figure 2.6 demonstrates how the carbon absorbed during an individual’s

life is slowly but completely released to the atmosphere after death.

Single trees:

Six Plant Functional Types were defined according to the parameter values in

Table 2.3. These were based on the PFTs in Fischer et al. (2015). Results from this

test simulation are found in figure 2.6. For each type, the simulation started with

one single sapling with stem diameter equal to 1 cm and continued for 700 time

steps, during which the individual executed the photosynthesis, respiration and

growth submodels (section 2.1.7). The regular birth and recruitment submodels

described in section 2.1.7 were turned off. At time 700, the tree was killed and its

biomass transferred to the deadwood stock. The simulation continued until time

2000. During this second phase, there was no carbon sequestration (since there

were no living trees anymore) and the carbon in the deadwood was transferred to

the soil stocks and to the atmosphere.

Emissions from the soils further decrease the net carbon balance, which was

negative until the end of the simulation. Given enough time, all the carbon once

captured by the tree during its growth was released to the atmosphere, resulting in

a balance of zero. Finally, these tests illustrate the shape of the carbon absorption
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curve that results from the growth model adopted (equation 25): trees grow faster

when they are young and the net carbon capture rate declines as they approach

the maximum size, which is a largely accepted assumption in plant biology (Carey

et al., 2001; Phillips et al., 2008; Weiner and Thomas, 2001). However, Stephenson

et al. (2014) questioned this assumption based on a substantial amount of data

from many tree species around the globe. Stephenson et al. (2014) argue that

large trees capture significantly more carbon than smaller ones, however, there is

little support for their alternative assertion in the literature so far and the current

version of this model adopts the currently established relationship.

Stands:

Following the more detailed look into how individual trees contribute to the

carbon cycle, this section explores the stand level carbon exchanges that emerge

from the interaction of multiple individuals. The total sequestration and stocks at

a given moment are influenced not only by what kind of trees are in the stand but

also their sizes. Trees grow for 600 time steps (50 years). Each stand is comprised

of 10 trees and there is no competition among them. In figure 2.7 (a) the carbon

sequestration curve follows the same shape seen in figure 2.6 (a), but scaled to

the number of trees: the carbon stocks peaks at approximately 500 t as the trees

reach their maximum size. In figure 2.7 (b), the effect of heterogeneous sizes is

shown to decrease carbon capture rates, which result in lower carbon stocks under

this scenario. When half of the stand is substituted by the less productive PFT2,

the decrease is even more pronounced (figure 2.7 (c)).

In addition to stand composition, competition also affects total carbon seques-

tration. Figure 2.8 shows the results of simulations with 3 trees, each belonging

to a different PFT. In the absence of competition (a), individuals grow with full

resource availability (sunlight). In (b), however, all trees are in the same patch.

The tallest PFT2 individual is not affected, while the individual from PFT3 has
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its maximum sequestration slightly reduced. The smallest tree, however, not only

has its carbon sequestration capacity reduced, but starts to act as a source of

carbon. In this case, the tree is intercepting so little solar radiation that its gross

primary production is lower than the amount of energy it needs for maintenance,

resulting in more emissions through respiration than sequestration. In normal

conditions, such a tree would die and would not act as a source of carbon for long.

Since in this scenario mortality was turned off in order to highlight the effects of

competition on individual carbon exchange, this tree remained in the simulation

functioning as a source.

Variation in net carbon exchange of six plant functional types

Figure 2.6: Carbon sequestration (blue) for single trees of different functional
types and the respective emissions (pink) after death. Each plot show how one
individual’s sequestration capacity reaches a peak and decreases to zero. When
the tree dies (time = 700), all carbon stored as biomass is eventually released.
The y-axis limit was adjusted in order to increase readability of the PFT5 and 6
plots.
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Figure 2.7: Influence of stand composition on carbon exchange and stocks. Stand
(a) has 10 trees of PFT1 and same size, (b) has 10 trees of PFT1 and two initial
sizes and (c) has 5 trees of PFT1 and 5 of PFT2, with two categories for initial
size. Circle sizes indicate initial crown area. Each tree was planted on a different
patch to exclude the effect of competition and highlight the influence of size and
PFT on carbon sequestration.
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Figure 2.8: Effect of competition on individual carbon exchange. Three seeds of
different PFTs were planted in separated patches (a) and in the same patch (b). In
the absence of competition (a), each tree grows to its maximum size. When planted
in the same patch (b), the tallest individual (PFT2) grows to its maximum size,
the PFT3 individual shows a reduced sequestration and the smallest individual
(PFT4) starts to act as a carbon source. Mortality was turned of in order to
highlight the effects of competition. See table 2.3 for PFT parameter values.

2.3 New features

This section describes the main additions of my implementation in relation to

FORMIND.

2.3.1 Object-oriented implementation

Object-oriented programming is a computer programming strategy in which the

entities represented in a program are defined as objects, data-structures that can

hold information in compartments called attributes and code organized in meth-

ods. Objects can exchange information and trigger the execution of specific meth-

ods on each other. These features make object-orientation specially suitable for

individual-based models, with attributes representing individual characteristics

and methods representing their behaviours. The concept of classes is also useful
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to represent hierarchies common in biological systems. These are blueprints (e.g.,

species, genus, etc) from which objects are created, and can be analogous to taxo-

nomic or functional groups. In this model, a base Tree class is defined, which has

all the tree characteristics and processes described in section 2.1.7. Since these

are common to every type of tree, each PFT is represented by its own subclass,

that inherit all the attributes and methods of the base tree, but declares its own

type-specific parameters (e.g., wood density). Each tree is then represented by

an object of the corresponding PFT. Two other classes are included in the model:

the TreeWorld class controls model execution (e.g., by controlling the time) and

manages data (e.g., by writing model outputs to the database); the TreeGrid class

represents space and holds environmental variables (e.g., light).

This approach makes it straightforward to extend or modify the model for

purposes other than those addressed in this project. The example below shows

how to modify the default Tree class to create a new one with a different submodel

for maintenance respiration (Rm). If the modeller has multiple PFTs defined as

sub-classes of the Tree class, all of them will be changed. Selected PFTs can be

modified just as easily.

# Makes the package containing the Trees model available

import trees_ibm

# Creates a custom tree class that inherits from

# the default Tree class in the package

class MyCustomTree(trees_ibm.Tree):

# At this point, the custom class is identical to the default class

def __init__(self,position,world,dbh,age=0,id=None):

# Adds two new parameter

# These will be used in our respiration submodel

self.rm_alpha=0.0001

self.rm_beta=0.85
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# Passes the required parameters to the parent class

super().__init__(position=position,world=world,dbh=dbh,id=id)

#overwrites the original submodel for calculating maintenance respiration

def calculate_rm(self):

# Calculates the maintenance respiration using

# the new parameters

rm=self.rm_alpha*self.AGB**self.rm_beta

return rm

The rest of the code does not need any modifications. Therefore, if a user

would like to compare the effects of two competing submodels on the simulation

results, for example, the rest of the code can be kept untouched.

2.3.2 Interactive visualization of model outputs

An interactive visualization tool is included in the package. It reads the simulation

results stored in the database generated by the model to display a dashboard in

a browser. The spatial distribution of the trees, DBH and age distributions, Net

Ecosystem Exchange, total carbon stocks, population sizes for each PFT and the

carbon flow between different stocks is shown over time in animated plots. The

user can also pause the animation or select any specific time step. In addition, it

is possible to zoom on a group of trees and see individual attributes (figure 2.9).
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Figure 2.9: Example of output visualization. The top left plot shows the spatial dis-
tribution of trees, coloured by PFT. Extra information about one individual can be
obtained by clicking on it. The top right plot shows landscape level carbon flow, with
sink periods as blue and source periods as pink. The histograms in the middle show age
and DBH distribution. The bottom left plot shows landscape level carbon stocks (only
for living trees in this example). The bottom right plot shows population sizes for each
PFT. Each plot shows a legend when the users positions the mouse over it. Specific
time steps can be selected from the drop down box at the top. The play button starts
an animation that shows progress over time.
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2.3.3 Interactive PFT calibration tool

The use of Plant Functional Types is a flexible strategy that allows the representa-

tion of tree communities at different detail resolutions. Virtually, it is possible to

create one class for each plant species in a community (or even more, to represent

intraspecific patterns), however, in species-rich communities, functional types are

often used to group species with similar characteristics (Fischer et al., 2016; Pi-

card and Franc, 2003). The number and characteristics of the PFTs can strongly

influence competition and forest dynamics (Köhler and Huth, 1998). It can be

challenging to choose how many functional types to use and to estimate the pa-

rameter values that best represent field observations, specially when data is scarce

or classification schemes for the same study site disagree (Picard et al., 2012).

As pointed by Fischer et al. (2016) and Gourlet-Fleury et al. (2005), the issue of

choosing a suitable number of PFTs for any specific research question is not re-

solved. The package developed for this project includes an interactive tool (figure

2.10) that aims to facilitate the determination of type-specific parameters based

on commonly measured variables, such as maximum DBH or maximum height.

Similarly to the visualization tool described above, it runs on a browser and allows

the user to visualize how each parameter affects the selected patterns.

2.4 Example

To illustrate the use of this model, two scenarios were run. Both simulate 1 ha

of forest composed of trees of 6 different PFTs (Table 2.3). To examine the effect

of logging on carbon stocks, a harvest operation was executed at time 0 in one

of the simulations, removing 30 cubic meters of timber. The simulations ran for

50 years (600 months) and, except for the logging event, were identical. Before

these simulations, the model ran for 500 years starting from an empty landscape,

in order to provide a mature forest to serve as basis for this example. The same
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Figure 2.10: Interactive PFT calibration tool. Carbon sequestration, Height and
DBH for one tree are updated as parameter values change. This tools is useful
to explore the relationship of between PFT level parameters and characteristics
of the trees. Parameter values can be exported and used to create PFTs in the
model.

random seed was used to guarantee the same outputs from stochastic processes.

The undisturbed scenario presented lower carbon sequestration than the selec-

tively logged forest during certain periods of time. This happens because the gaps

open by logging give space for new trees to grow, increasing carbon sequestration.

As time passes, succession takes place in the disturbed area and the initial addition

to the total absorption fades away. By the end of the simulation (50 years after

cut), the value was nearly twice as large for the undisturbed scenario (figure 2.11).

Given the natural oscillations in net carbon exchange, the impacts of logging are

more evident on the carbon stocks (figure 2.12), where after 50 years, the logged

forest stored almost 200 tC less than the undisturbed forest. Finally, figure 2.13

shows that both the age structure and the stem diameter distribution are slightly
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different in both scenarios.

Figure 2.11: Net carbon exchange in undisturbed (a) and selectively logged (b)
forest. After 50 years, the amount of carbon absorbed by the logged forest was
approximately 50% of the value absorbed by the undisturbed forest.

Figure 2.12: Carbon stocks in an undisturbed (a) and selectively logged (b) forest.
The undisturbed forest stored nearly 200 tC more than the disturbed forest 50
years after the logging event.
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Figure 2.13: Age and stem diameter distributions after 50 years simulation in
undisturbed (a and c) and selectively logged forest (b and d).

Although this example used parameter values based on the calibrations per-

formed by Fischer et al. (2015) and Rüger et al. (2007), the purpose here is only to

illustrate the model outputs and its possible use for tracking the impacts of logging

and other forms of disturbance. As shown in section 2.2.3, carbon exchange varies
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with the properties of functional types and calibration is crucial for an accurate

representation of specific study sites.
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3 Chapter 3: Seed Dispersers model

3.1 Model Description

3.1.1 Purpose

The purpose of the model developed in this chapter is to simulate seed dispersers at

an individual level, using a decision algorithm based on energy levels. The model

is spatially explicit and the dispersal areas result from the movement patterns of

the dispersers. Agents move from tree to tree, mimicking arboreal animals such

as birds and monkeys. The model can be coupled to the Trees model described

in the previous chapter to link disperser movement and population dynamics to

the dynamics of the tree community and the associated carbon stocks. It can also

be used independently to model the relationships between animal movement and

behaviour and seed dispersal.

3.1.2 Entities, State Variables and scales

The model is comprised of seed dispersers, trees and a landscape divided into

patches. The patches and trees are derived from those described in Chapter 2 in

order to facilitate integration. Only a subset of the attributes and methods in the

Trees model is relevant to the dispersers model and the landscape simply provides a

bi-dimensional coordinate system for movement. The patches include resistance

as an additional attribute that increases the difficulty of moving through areas

without trees (see the Foraging and Roaming submodels described in section 3.1.6).

The Trees model only needs to provide fruit availability (see eq. 1), position and

functional type of trees. The disperser model can obtain the necessary information

directly from the Trees model, from files or user-defined functions.

The disperser agents include an attribute energy that keeps track of energy

levels. During each time step, individuals can gain or lose energy depending on
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their activity. Position is also recorded at each time step and is the centre of

the current tree. Although the spatial scale is the same as the Trees model, the

temporal scale is much smaller, with each time step representing 30 min of the

activity.

3.1.3 Process Overview and Scheduling

The model assumes an activity period of 12 hours, which is represented by 24

time steps. Only the portion of the day in which agents are active is simulated.

Figure 3.1 illustrates how agents choose their actions. There are three activities

a disperser can choose from: feeding, resting and moving. Agents gain energy

through the feeding activity and lose energy when moving and, to a lesser extent,

resting. Additionally, the activity defecation is selected at the end of each time

step. When fruits are ingested, they pass through the disperser’s digestive system

and, after a period of time tgut, become ready to be expelled. The frequency with

which individuals deposit seeds is therefore dependent on gut passage time (tgut)

and on the amount of food ingested. If and individual does not ingest any food, it

will not defecate. All individuals use the same decision algorithm to decide what

action to take (see figure 3.1). All choices are made according to the individual’s

energy level and how it compares to two thresholds (elevel1 and elevel2 on table

3.1). If the energy is below elevel1, the agent is hungry and will forage or eat; if

the energy is above elevel2, agents may choose to rest or roam without targeting

feeding trees (see section 3.1.6 for details on the different kinds of movement). This

approach is based on the strategy adopted by Bialozyt et al. (2014a). Animals

can have several incentives to move, including predator avoidance or the search for

food, mates and other resources (Boyer et al., 2006b; Gursky-Doyen and Nekaris,

2007). This model focus on search for food as it does not include predators or

explicit reproductive encounters. Energy is only used for the individual’s daily

activities as described above. In reality, animals allocate their energy to growth,
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reproduction and maintenance (van der Vaart et al., 2015), but in this model

growth is not simulated and reproduction happens at the population level (see

Population growth in section 3.1.6), so the two energy thresholds simplify energy

use to maintenance, but still allow individual decision making. This approach has

been used by Bialozyt et al. (2014a) to successfully approximate the movement

and seed dispersal patterns of two tamarin species (Saguinus mystax and Saguinus

nigrifrons). The model also keeps track of months and years, which is useful to

schedule reproduction events. Seed dispersal models like this are normally used

to simulate short periods of time (30 days) because that is enough to obtain seed

deposition patterns (Bialozyt et al., 2014a; Boyer et al., 2006b; Caughlin et al.,

2015). As a consequence, they do not include reproduction. But if long-term

impacts are to be modelled, some sort of population dynamics model becomes

necessary. This model includes a simple energy-based population growth submodel

that allows longer periods of times to be simulated (see section 4.2 for an example

and section 5.1 for a list of hypotheses that would require this feature).
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Figure 3.1: Internal decision algorithm used by seed dispersers. Agents choose
their actions based on two energy thresholds. The algorithm is repeated until the
defined number of time steps (n) is reached. The current iteration is indicated by
i.
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3.1.4 Design Concepts

• Basic Principles : I assumed that the main incentive for dispersers to move

is the search for food. Although anti-predation behaviours and mating are

important movement incentives (Boyer et al., 2006b; Nathan et al., 2008),

these were not included in this model.

• Emergence: Since each individual’s movement step is determined by the

decision algorithm, the home range and average daily path length at the end

of the simulation period emerge from the agents behaviour. Seed dispersal

distances and kernels reflect movement patterns. Furthermore, the spatial

distribution of trees and fruit abundance will also change model outputs.

• Adaptation: Agents alter their behaviour in response to their internal en-

ergy and the available energy (in form of fruits) in their surroundings. The

decision process is guided by their energy levels and two thresholds depicted

in figure 3.1. If the energy level falls below 0, the individual dies from star-

vation.

• Objectives : The main objective of the seed dispersers is to maintain their

energy level above elevel1. Below this threshold, agents feel hungry and search

for trees with fruits. In addition to foraging, animals engage in a variety of

activities during their daily routine. In order to represent these in the model,

agents can rest and move without the goal of finding food if energy levels

are above level 2. The actual dispersal of seeds is unintentional and results

from foraging behaviour and regular defecation.

• Sensing : At any given time step, agents are assumed to know the trees within

a radius (parameter r, action radius) of their current position. They also

know the number of fruits in each tree and their distance from the current

position. In this version of the model agents are assumed to know these
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values accurately, which can be interpreted as having a good knowledge of

their territory. Alternatively, noise can be added to these values in order

to represent an imperfect assessment of the environment. This information

is used by submodel Foraging to calculate the value for each tree, which

will determine the individual’s movement. These simplifications abstract

the complex cognitive processes that animals use to map their environments

(Janson and Byrne, 2007), but similar assumptions have produced realistic

movement patterns (Boyer et al., 2006b).

• Collectives : Although the agents in this version of the model represent indi-

viduals, they can also represent collectives (groups of dispersers), in which

case the relevant parameter values should be adjusted ( e.g., maximum num-

ber of fruits).

• Stochasticity : After their energy reaches elevel2, the choice of activity is ran-

dom (Bialozyt et al. (2014a) found that the stochastic selection of activities

after satiation better approximated the behaviour of their observed primate

species). Stochasticity is also involved in the mortality submodel, the posi-

tion of new agents resulting from the population growth submodel and the

position of dispersed seeds (both those dispersed by the agents and those

dispersed by the trees’ generic dispersal methods). Details about these sub-

models can be found in section 3.1.6.

• Observations : The location and energy of every disperser is recorded in each

time step. Regarding the seeds, their initial and final location are recorded,

alongside with the identification number of the parent tree and the mode

of dispersal. The trees can have a dispersal method that is independent of

the seed dispersers (see submodel Generic seed dispersal and Recruitment in

the Trees model), representing all other dispersal means (e.g., wind, other

seed dispersers that are not focal to the simulation and therefore are not
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explicitly represented, etc). The model includes functions to calculate four

outputs:

– Home range: The home range for each individual is estimated as the

convex hull of all the points visited during the simulation. The output

is the average of the home ranges of all agents.

– Path length: The euclidean distance between initial and final position

is recorded for every movement. This output is the average value for

all movement steps performed by all agents during the simulation.

– Seed dispersal distance: The average euclidean distance between the

parent tree and the position where each dispersed seed was deposited.

– Dispersal area: The dispersal area (or seed dispersal) for each tree

is estimated as the convex hull of all the seeds dispersed during the

simulation (calculated with the coordinates of each seed dispersed by

an animal). This output is the average area for all trees.

These summary outputs are the main metrics used throughout this chapter.

Distances and areas are measured by counting grid cells. For all simulations,

each cell has a side of 20 meters (and area of 400 m2). All data used to

compute model outputs are recorded in a database (HDF5) and the seed

data can also be saved separately in a file (.json file), which can be used as

input for the Trees model described in chapter 2.

3.1.5 Initialization

The distribution of the trees within the landscape is read from a file (alternatively

it can be randomly generated at the beginning of a simulation). The total number

of dispersers can be defined prior to the simulation to reflect the densities found

in the field (Levi and Peres (2013) and Stevenson et al. (2000) report primate
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densities around one individual per hectare, which I adopt in the examples). The

individuals are assigned an initial tree randomly. When the population growth

feature is used, the new individuals will be randomly assigned to available trees.

Initial values of the parameters described in table 3.1 are also set at the begin-

ning of the simulation. The model supports the creation of new types of trees

and dispersers. All examples in this chapter and the next only used functional

types for trees (similar to those described in Chapter 2), but groups with different

parameters can also be created to represent multiple disperser functional types.

Table 3.1: Model parameters and descriptions for the Dispersers model. Default
values are based on the model described in Bialozyt et al. (2014a)

.

Parameter Description Unit Default value

r action radius m 50
elevel1 energy threshold 1 energy units 80
elevel2 energy threshold 2 energy units 150
efeed energy gained per fruit energy units 8
erest energy lost per resting step energy units 0.7
etravel energy lost per travel energy units 1.6
rp resistance penalty - 1.2
w width of defecation area grid cells 2
er minimum energy for reproduction energy units 60
c1 cost to produce 1 individual energy units 70
c2 energy used per individual energy units/ individual 840
tmax maximum time on the same tree time steps 5
mb background mortality - 0.03
tgut gut passage time time steps 2

3.1.6 Submodels

• Foraging

When energy levels are below elevel1, agents will search for food. The equa-

tion below is used to calculate the value of all trees within a radius r. This

assessment is inspired by the model developed by Boyer et al. (2006b) and

reflects an effort to minimize energy waste. When foraging, agents will prefer
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the closest tree that has the most fruits. Agents also consider the landscape

resistance. Patches without any trees represent a greater energy cost to cross

and are avoided (see figure 3.2 for an illustration). Considering these factors,

the disperser calculates the value of each tree as

value =
nfruits

distance+ resistance · rp
, (42)

where distance is the euclidean distance between the tree and the agent and

resistance is the sum of the resistance value for each patch between the tree

and the agent. All patches with at least one tree have resistance equal to 0

while those without any trees have resistance equal to 1. The constant rp,

resistance penalty, adjusts the added cost of empty patches.
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Figure 3.2: Tree values as perceived by a foraging disperser. Circles indicate
trees and number within show the fruit availability. A foraging agent will select
a different tree (indicated by the red circle) depending context. In a) the empty
middle patch adds a resistance cost to the furthest tree, reducing its value. If the
patches were not isolated (b), that tree would be selected because trees that are
closer have less fruits available (0, 6 and 10). The depletion of resources (c) in one
tree (i.e., by competing agents) may also alter the destination choice.

• Roaming

If individuals are not hungry, they might still move without the goal of

obtaining food. In this travel mode, the fruit availability is not considered,

so individuals may use non-fruiting trees as well. Distance and landscape
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resistance are still considered:

valueroaming =
1

distance+ resistance · rp
. (43)

• Defecation

Defecation happens at the end of each time step and the seeds that have

passed through the digestion process (if any) are expelled. Since a time

step represents a period of 30 min, seeds are deposited between the current

position and the disperser’s position at the beginning of that time step.

The area of possible deposition is represented by a rectangle of length equal

to this distance and with a width defined by parameter w (see figure 3.3).

Given the 30 min temporal resolution in this model, this approach relaxes

the assumption that dispersers move linearly from one tree to the next and

considers that individuals might have moved within the rectangular area in

the last 30 min.

Figure 3.3: Seed deposition between two trees. Points represent location of seed
within the possible rectangular area between tree a and tree b. Empty circles
represent other trees.

• Generic seed dispersal In order to account for seeds that are dispersed by

means other than the modelled dispersers (e.g., wind), each tree type can



63

have a generic dispersal method defined as a power distribution (eq. 2).

A proportion gendis of each tree’s seeds are dispersed according to that

distribution, leaving the rest available for the disperser agents to consume.

A value of 1 indicates that the tree is exclusively dispersed by other means.

• Population growth

Reproduction is not explicitly modelled as a behaviour of the agents. In-

stead, I use a simple population growth model based on the classic Verhulst

logistic model. The maximum population size (i.e., the carrying capacity

K) is limited by the amount of fruits available in the landscape (eq. 1 de-

scribes how fruits are produced in the Trees model.) and potential growth

depends on the total energy reserves in the disperser population (Er). Only

the energy of individuals above a threshold is counted towards the total,

Er =
N∑
i=1

 edi − er, if edi > er

0, else

 , (44)

where N is the number of dispersers in the population, edi is the energy level

of the ith disperser and er is the minimum energy required for reproduction. I

assume that population level reproduction is related to Er, with the number

of births given by

∆N =
Er
c1

·
(K −N

K

)
, (45)

where c1 is the energy cost to produce a new individual. The carrying

capacity K calculated as,
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K =
nfruitsL · efeed

c2

. (46)

In the equation above, nfruitsL is the number of fruits available in the whole

landscape, efeed is the energy gained by each fruit consumed and c2 is the

average energy used by a disperser between reproduction periods. Parame-

ters c1 a c2 relate to the average energy used by an individual throughout

the year. In the examples presented in this and the following Chapter, the

average energy was around 70, which is the value used for c1, while c2 was set

to 840 (12*70). However, these parameters can be calibrated using census

data for specific species/study areas. The total energy cost used for repro-

duction is equally divided and subtracted from the energetic reserves of all

individuals who contributed to the total energy Er.

• Mortality

Agents can die of starvation (if their energy levels falls below 0) and are also

subject to stochastic mortality with probability mb. Once a year, a random

number is drawn from a uniform distribution for each agent. If that number

is ≤ mb, the agent is removed from the population.

3.2 Details of implementation

The Dispersers model was also written in the Python 3 programming language,

taking advantage of object-oriented programming (see figure 3.4 for the class dia-

gram). The individuals are represents by instances of the Dispersers class. Each

activity is defined as one method and the decision algorithm illustrated in figure

3.1 is implemented by the schedule method, which defines the order and condi-

tions for the activities to be executed. The current decision algorithm is designed



65

to capture the behaviour of arboreal primary-dispersers with a level abstraction

enough for it to be used to represent a variety of species. However,the code design

makes it easy to modify the decision algorithm and make it more specific to a given

species or group of species. Simple modifications (e.g.: changing the order of ac-

tivities) can be done by creating a subclass of the Dispersers class and modifying

only a few lines of code in the schedule method. More complex modifications can

be done by adding new activities (i.e.: new methods in the subclass) or modifying

the existing ones.

In addition to the Dispersers class, a SimpleTree class is also included. This is

a simplified version of the the trees described in Chapter 2 and were included to

allow the Dispersers model to be used independently of the Trees model. If the

user does not need to simulate the population dynamics of trees to address the

question, only the Dispersers package needs to be installed. However, the code was

designed to allow the integration with the Trees model (more details on Chapter

4).

Figure 3.4 contains the UML (Unified Modelling Language) class diagrams

illustrating the internal organization of the dispersers package (see Chapter 5 and

table 5.1 for details on the packages.)
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Figure 3.4: Class diagram for the Dispersers package. Following the UML (Unified
Modelling Language) standards, each class is represented by a block divided into
three sections: the class name at the top, followed by the corresponding attributes
in the middle and the methods at the bottom.

3.3 Influence of main parameters

This section explores how model outputs (described in the Observations section)

are affected by the main individual parameters.

As the amount of energy lost during resting periods gets closer to zero (fig.

3.5), the path length and dispersal distance slightly increase. Home range is

not affected, while dispersal area decreases for values close to zero. All outputs

were affected positively (with two to four-fold increments) as the radius action

parameter, r, increased. This can be explained by the way the radius limits

the movement possibilities, as only trees within that distance are perceived and

evaluated by the dispersers. This was the only parameter to affect the home range,

which showed large variations but no increases or decreases for other parameters.

Given enough time and energy, agents are likely to explore the totality of their

territory since resources were uniformly distributed in these simulations and there
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was no shortage of fruits. The average path length and dispersal distance increase

approximately 1.5 times as the energy gained from each fruit (efeed) varied from

0 to 10. This relationship followed a saturation curve and fits the expectation

that agents need to spend less time feeding and have more time free to roam their

territories. Similarly, figure 3.6 shows that these values also increased as the costs

of travelling (etravel) decreased although the change in magnitude was less and

the relationship more linear. As the energy costs associated with travelling and

resting approached zero, the dispersal area was reduced. The dispersal distance

was slightly reduced as the threshold value elevel1 increased, but this parameter

did not affect other outputs.

Figure 3.7 illustrates how the logistic population growth submodel presented

in equations 44 to 46 responds to resource availability. The carrying capacity

is set by the total energy available in the landscape. For this experiment, an

initial population of 10 dispersers was placed in a 100ha landscape. For each

scenario, only a percentage (20-100%) of the trees had fruits. For the purposes

of this experiment, fruit production was fixed to 15 fruits per month throughout

the year because the goal here was simply to demonstrate how the population

growth submodel works. In experiments where a complete forest model is used

to simulate the trees (like in the example presented in Chapter 4), the number of

fruits produced per tree is calculated using equation 1. Therefore, heterogeneous

fruit distributions might emerge, according to the aspects of the tree community

(e.g., abundance and spatial distribution of each PFT, tree size and time of the

year). Consequently, the total available energy in the landscape and the carrying

capacity fluctuate according to the tree community dynamics.
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Figure 3.5: Effects of energy costs associated with resting, action radius and
energy gains per fruit on animal movement and seed dispersal metrics. Bigger
action radius result in higher seed dispersal and animal movement metrics. Higher
energy gains per fruit result in similar effects. Changes in the amount of energy
lost when resting only affect the metrics slightly, decreasing dispersal area as the
cost of resting approaches zero and increasing all others by small quantities.
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Figure 3.6: Effects of main parameter values on animal movement and seed dis-
persal metrics. Increasing the first energy threshold and decreasing the cost of
travelling only affect seed dispersal and movement metrics slightly.
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Figure 3.7: Resource availability limits population size.

3.4 Examples

3.4.1 Effects of defaunation on seed dispersal

The decline of animal populations due to human activities is a widespread and

yet cryptic form of environmental degradation (Galetti and Dirzo, 2013). Differ-

ent from fragmentation, deforestation and other consequences of land-use change,

defaunation (the human-driven extinction or extirpation of large and medium ver-

tebrates) is less evident from direct observations and often considered an invisible

threat (Phillips, 1996). The loss of such animals affects the ecosystem functions

they perform, such as seed dispersal (Vidal et al., 2013b). One application of the

dispersal model is to investigate the effects of defaunation on seed dispersal. The

simulation described below used a landscape of 50 ha in which trees were uniformly

distributed. Half of the trees had fruits (5 fruits each) and at the beginning of

each simulation the corresponding number of dispersers was randomly distributed

among the all trees. The simulation period was 10 days.

All model outputs drop drastically at low densities (approximately 15 dis-

persers). Home range increased 60% until this threshold, with path length and

dispersal distance showing the same pattern with less evident increases (fig. 3.8).
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This can be explained by scramble competition, which increases the per capita re-

source availability and allows individuals to reach their satiation threshold elevel1

quicker, giving them more time to roam their territories. Although these sum-

mary metrics only show a significant drop after a threshold, the total number of

dispersed seeds declines linearly with the population (fig 3.9). This is likely to

have strong negative effects on the establishment rates of those trees that rely on

zoochory, favouring wind-dispersed species.
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Figure 3.8: Effects of disperser densities on animal movement and seed dispersal
metrics. Low disperser densities decrease the seed dispersal and animal movement
metrics. As population densities are reduced, home range and path length slightly
increase until the number of dispersers reaches 12 individuals. At this point, home
range, path length, dispersal distance and dispersal area all drop significantly.
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Figure 3.9: Linear effect of population size on the number of dispersed seeds.
The deforestation gradient goes from 100 ha of forest to 10 ha. For the isolation
gradient, each of the two fragments has an area of 8 ha and the total area is kept at
16 ha (two fragments) for all levels of isolation. The total area in the fragmentation
gradient is also 16 ha and kept constant for all levels of fragmentation (number of
fragments). The distance between adjacent fragments is kept constant (100 m).

3.4.2 Effects of degradation and fragmentation on seed dispersal

Habitat degradation and fragmentation impose limitations on seed dispersal and

can also affect post-dispersal demographic processes, such as germination and

seedling establishment. This section explores the effects of deforestation and frag-

mentation on the model outputs through three gradients. The first gradient (fig

3.10 a) is simply the reduction of the forested area, representing deforestation.

The other two gradients account for two aspects of fragmentation: isolation, for

which the distance between two fragments of equal area is gradually increased (fig

3.10 b) and the number of fragments, which kept the total area and distance be-

tween any two adjacent fragments constant. The initial forested area in gradient

a was 100 ha, while the total forested area in b and c was 16 ha. The distance
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between adjacent fragments in the fragmentation gradient was 100 m.

Figure 3.10: Illustration of the degradation, isolation and fragmentation gradients
used for simulations.

All outputs declined with increasing deforestation, isolation and number of

fragments (figure 3.11). Isolation caused a gradual decrease, while both defor-

estation and the number of fragments resulted in abrupt decreases early in the

gradient. The home range was the least affected output in all cases. These results

indicate the potentially disrupting effects that even low intensity disturbances can

have on dispersers movement and seed dispersal.
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Figure 3.11: Negative effects of degradation, number of fragments and isolation on
seed dispersal and animal movement metrics. Forest degradation and number of
fragments drastically decrease outputs even at low levels of disturbance. Fragment
isolation reduces all metrics more linearly.

4 Chapter 4: Integrated Model

This chapter discusses a procedure for explicitly including seed disperser move-

ment into the individual-based forest model described in Chapter 2. Seed dispersal

is usually simulated by dispersal kernels, mathematical functions that describe the

probability of a seed being deposited at a particular distance from the parent tree

(Morales and Carlo, 2006). The characteristics of these functions (for example

scale and shape) can affect ecological patterns such as population dynamics, car-

rying capacity and community composition (Levin et al., 2003; Levine and Murrell,
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2003b). For animal-dispersed plants (i.e., most woody species), kernels are func-

tions of seed traits and frugivore behaviours that determine movement patterns

(Nathan and Muller-Landau, 2000), both of which are highly variable and difficult

to quantify (Howe and Smallwood, 1982; Patterson et al., 2008). Most simulation

studies use fixed kernels, without including adaptive behaviour and assuming that

dispersal is uniform throughout the simulation, but in changing environments the

kernel characteristics are likely to be variable. Levey et al. (2005) illustrates that

algorithms that capture small-scale movement well enough can be used to scale

long distance seed dispersal with a high degree of accuracy. The study used easily

observed behaviours at the scale of 20 m to estimate the seed rain at the landscape

scale, accurately predicting the effect of corridors on seed dispersal. By integrat-

ing the two models previously discussed in chapters 2 and 3, seed dispersal can be

simulated explicitly, incorporating the adaptive characteristics of individual-based

models into the seed dispersal process.

4.1 Model integration

One of the biggest difficulties in explicitly including animals into an individual-

based forest model such as the one described on Chapter 2 is the difference in

scales. Forest gap models usually operate on yearly time steps and divide the

space into patches that can accommodate several trees, depending on their size,

while animals must be modelled at much finer scales in order to capture changes

in the agent states. The Trees model described in this thesis can operate at time

steps of one year or one month. Finer time steps are possible, but come at the

expense of computational time. Since the dispersers model operates at 30 min

time steps, the integration needs to deal with processes occurring with different

frequencies.

The integration uses multiple inheritance, a feature in many object-oriented
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programming languages that allows a new object to inherit characteristics from

multiple parents. Both models were implemented as independent packages and

include a World class (among others), which coordinates the agents and con-

trols the execution of events during a simulation. By importing these classes, a

new Integrated World is created, inheriting from the Tree World and Dispersers

World. The code below demonstrates how a new class implementing the integra-

tion represented in figure 4.1 is created. The events executed by the Tree World

or Dispersers World can be rearranged in a variety of ways. Figure 4.1 illustrates

the arrangement used in this chapter’s demonstration. Different arrangements can

be easily obtained by modifying the order or location of method calls.

Figure 4.1: Frequency with which events are executed in the integrated model used
in this chapter. 1) indicates methods inherited from Tree World and 2) indicates
methods inherited from Dispersers World.

import trees_ibm

import dispersers

class Integrated_World(dispersers.world.Dispersers_World,trees_ibm.world.Tree_World):

def __init__(self,topology, parent_tree_class):

super().__init__(topology,parent_tree_class)

def model_status_from_file(self,input_file):

trees_ibm.world.Tree_World.model_status_from_file(self,input_file)
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def

run_trees_simulation(self,logging_settings,dispersal_settings,produce_fruits,h5file):

trees_ibm.world.Tree_World.run_simulation(self,n=1,logging_settings=logging_settings,

dispersal_settings=dispersal_settings, produce_fruits=produce_fruits,

increment_time=False,h5file=h5file)

def run_integrated_simulation(self,n,logging_settings,dispersal_settings,h5file):

for step in range(n):

dispersers_ids=list(dispersers.PrimaryDisperser.Instances.keys())

for ind in dispersers_ids:

d=dispersers.PrimaryDisperser.Instances.get(ind)

d.schedule()

self.add_ind_entry(ind_id=d.id,

initial_x=d.previous_position[0],

initial_y=d.previous_position[1],

final_x=d.position[0],

final_y=d.position[1],

energy=d.energy)

if self.day==1 and self.step==1:#every month

self.parent_tree_class.ProduceFruits()

self.parent_tree_class.DisperseSeeds()

if world.month==1: #every_year

self.run_trees_simulation(logging_settings=logging_settings,

dispersal_settings=dispersal_settings,produce_fruits=False,

h5file=h5file)

self.increase_dispersers_population()

self.add_pop_entry()

self.increment_time()
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4.2 Example: Selective Logging

In order to demonstrate how the integrated model is applied, I use a selective log-

ging case study similar to the one presented in Section 2.4. This example investi-

gates how logging intensity and frequency affect carbon stocks and seed dispersal

during a 55 year simulation. This time span is long enough to encompass the

commonly adopted 30 years logging cycle CONAMA-CONSELHO NACIONAL

DO MEIO AMBIENTE (2009), while also accommodating cycles that are shorter

and longer than the usual. Starting from a 16 ha clear area, the Trees model

was executed on its own for 300 years in order to produce a mature forest. This

initial simulation uses the same 6 PFTs as Chapter 2 and seed dispersal was mod-

elled using the external seed rain mode described in Section 2.1.7-I (Recruitment).

The resulting mature forest is used as the starting point for the selective logging

scenarios, which use the integrated model and explore a factorial design with 3

logging intensities (30, 60 and 120 m3/ha), 3 logging frequencies (every 10, 25 and

50 years) and a control, with logging intensity set to 0. The first logging oper-

ation is executed at the beginning of year 6, making the frequencies equivalent

to a total of 5, 2 and 1 logging events, respectively. As described in submodel

2.1.7-XI, trees are logged randomly within the landscape until the volume quota

is met (assuming there are enough trees that fit the diameter limits). In order to

obtain the mean and variance for output values, each scenario was executed 30

times using the parameter values listed on table 4.1.



80

Table 4.1: Integrated model parameters. The parameters for the integrated model
are the same as those used for the Trees and the Dispersers models described in
chapters 2 and 3, respectively. Complete descriptions and units are found in tables
2.2 and 3.1.

Plant Functional Type

Parameters PFT1 PFT2 PFT3 PFT4 PFT5 PFT6

Dmax 145 58 58 44 16 16
h0 3.3 4.6 4.8 4.3 4.3 3.0
h1 0.60 0.4 0.4 0.4 0.3 0.60
cl0 0.80 0.80 0.30 0.30 0.30 0.30
cd0 0.60 0.60 0.60 0.60 0.60 0.60
cd1 0.68 0.68 0.68 0.68 0.68 0.68
cd2 0 0 0 0 0 0
ρ 0.55 0.55 0.41 0.40 0.52 0.47
σ 0.70 0.70 0.70 0.70 0.70 0.70
f0 0.77 0.77 0.77 0.77 0.77 0.77
f1 -0.18 -0.18 -0.18 -0.18 -0.18 -0.18
l0 2.0 2.0 2.0 2.0 2.0 2.0
l1 0.10 0.10 0.10 0.10 0.10 0.10
Iseed 0.03 0.01 0.05 0.02 0.03 0.02
Nseed 20 15 21 50 2 200
m 0.5 0.5 0.5 0.5 0.5 0.5
rg 0.25 0.25 0.25 0.25 0.25 0.25
Mb 0.015 0.03 0.03 0.04 0.021 0.045
D∆Dmax 0.33 0.34 0.23 0.60 0.33 0.60
∆Dmax 0.012 0.012 0.019 0.029 0.011 0.029
pmax 2.0 3.1 6.8 11 7 12
α 0.36 0.28 0.23 0.20 0.30 0.20
αfruits 0.7 0.7 0.7 0.7 0.7 0.7
gendis 0.0 1.0 0.2 0.2 0.2 0.2
Adisp 0.03 0.2 0.2 0.2 0.2 0.2
Nfruit 30 30 30 30 30 30

Dispersers parameters

r 50
elevel1 80
elevel2 150
efeed 8
erest 0.7
etravel 1.6
rp 1.2
w 2
er 60
c1 70
c2 840
tmax 5
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Figures 4.2-c and d show that selective logging reduces carbon stocks and

the dispersers populations even at mild intensities. Scenarios with the highest

logging intensity and frequency resulted in carbon stocks 3.5 times lower than the

control with dispersers populations 2.5 times smaller. Intermediate intensities and

frequencies also resulted in reductions in carbon stocks and disperser population

sizes, except for the scenarios with lowest logging intensity (30 m3/ha), which

remained close to the control (15% lower) at low and medium frequencies (50

and 25 years). It can take decades for carbon stocks to recover from a single

logging event (Figure 4.2b). It took 35.5 years (sd=11.49) on average for the

carbon stocks to recover from an operation that removed 30 m3 of timber per

hectare. The required time increased to 41.0 (sd=11.75) and 54.3 (sd=8.81) years

as intensities increased to 60 and 120 m3/ha.
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Figure 4.2: Increasing logging frequency and intensity decreases carbon stocks
and dispersers populations. a) the spatial configuration of the initial 16 ha forest
plot, b) time taken for carbon stocks in the living trees to recover after a single
logging event. c) the effect of frequency and intensity on the population size of
seed dispersers. d) the effect of frequency and intensity on carbon stocks. Carbon
stocks are shown in term of aboveground biomass of living trees. The model was
run 30 times for each treatment. Error bars represent standard deviation.

Selective logging affects only a subset of the measured seed dispersal charac-

teristics (figure 4.3). The number of dispersed seeds decreases as logging intensity

and frequency increase. Average path length and home range were slightly higher

at the 120 m3/ha intensity, which was expected since dispersers need to travel

further if trees are more sparsely distributed. The small effect suggests that even

the most severe of the scenarios did not disturb the habitat structure enough to

affect movement patterns (see Model improvements below). The seed displace-
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ment metrics (average dispersal distance and dispersal area) are not affected by

any of the scenarios, indicating that some aspects seed dispersal services can still

be maintained at these levels of selective-logging.
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Figure 4.3: The long term effects of logging on seed dispersal are weak. The
number of seeds dispersed (a) in the final year decreases with more frequent and
intense logging events. Disperser movement is also affected to a lesser extent (b
and c), particularly by the strongest disturbance scenario (120 m3/ha every 10
years). Average dispersal distance (d) and area (e) are not affected.The model
was run 30 times for each treatment. Error bars represent standard deviation.

The impacts of logging on the same dispersal metrics could not be detected

immediately after the cut (fig. 4.4). This indicates that the changes detected at the
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end of the simulated period are cumulative and that short-term monitoring might

not be suitable for properly detecting the effects of selective-logging (Sebbenn

et al., 2008).

Figure 4.4: Immediate impacts of logging are not detectable. Dispersal metrics
calculated immediately before and 1 year after logging do not show differences.
The model was run 30 times for each treatment. Error bars represent standard
deviation.
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4.3 Model improvements

Although the parameter values used in table 4.1 produced results that were bio-

logically sensible (e.g.: carbon stocks and net emissions per ha compared to the

results found by Fischer et al. (2015); Rüger et al. (2007)), there are many other

parameter combinations that may also produce acceptable outputs. For exam-

ple, section 3.2 demonstrates how some of the dispersers parameters can influence

movement metrics. Depending on those values (i.e., depending on the type of

dispersers modelled), the same levels of disturbance might have bigger or smaller

effects on seed dispersal services. Figure 4.5 depicts modelling as an iterative

process, with data being used at different stages in order to refine and improve

models. Future versions of the models described here will benefit from field data

for calibration and validation. The code structure adopted facilitates adjustments

to specific cases, for example, not only different parameter values, but also other

minimum modifications, such as a different number of PFTs or different disperser

decision algorithms, can be incorporated with few lines of code.

Figure 4.5: The modelling cycle (adapted from Schulze et al. (2017).

Future work will also focus on performance improvements. The 300 simulations

used in this example ran in parallel using Cedar, one of Compute Canada’s high

performance clusters and were completed in approximately 20 hours. On a modern

desktop computer (an iMac with a 3.4 GHz Intel Core i5 cpu and 8 GB of RAM),
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one single integrated simulation took on average 5 hours to run. Considering that

hundreds of simulations are usually required, better performance would allow users

without access to supercomputers or cloud infrastructure to use the models more

easily.

Figures 4.6 and 4.7 show the execution time profiles for the Trees model and

the integrated model respectively. Faster methods to calculate the environmental

variables should be the focus of future optimization for the Trees model. Specif-

ically, the functions that calculate cumulative crown and leaf area for each patch

could be rewritten with more efficient algorithms and/or in a compiled language,

such as C or Fortran. For the disperser model, the decision algorithm takes most

of the execution time and should be the focus of optimization efforts. Figure 4.7

also shows that, in the integrated model, only approximately 3 % of the time

is spent on the trees (10 minutes in a 5 hour simulation). In situations where

implicit seed dispersal can be used, only the Trees model is necessary, which re-

sults in lower simulation times. See section 5.4 for guidelines on how to decide if

seed dispersal can be simulated implicitly (i.e., without explicitly modelling the

disperser agents).
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Figure 4.6: Trees model execution time profile. Each arc represents a function or
method executed during a simulation. The time spent in each function is denoted
by the angular width of the arc. The circle in the middle corresponds to a root
function, then the functions those functions call, and so on.
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Figure 4.7: Integrated model execution profile. Most of the time is spent simulat-
ing the dispersers. Only 3% of execution time is spent on the trees.
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5 Summary and conclusions

The key contributions of this project were:

• The software package that implement the models discussed Chapters 2 and 3;

• The procedure for including animals in forest models described and exemplified

in Chapter 4;

• Hypotheses to be addressed in future work.

5.1 Future Directions

The inclusion of seed dispersers into individual-based forest models opens possibili-

ties to explore a variety of real-world scenarios using the complex adaptive systems

approach. This section describes some of the questions that have been recently

raised in the literature, starting with concerns regarding selective-logging. For each

of these topics I suggest a few hypotheses that could be tested using the integrated

model and the general guidelines described in Section 5.2-Recommendations. The

current version of the software packages would be sufficient to assemble the in-

tegrated model for some of the hypotheses, while others would require minimum

additions to the code base (indicated when applicable). Appropriate parameter

estimations would be required for all the cases.

In the study case presented in section 4.2, the seed dispersal collapse that is

expected as a consequence of population declines (Pérez-Méndez et al., 2016) did

not happen. Although the total number of seeds dispersed significantly decreased

with logging intensity and frequency, dispersal length and dispersal area did not

differ significantly from the control. Those simulations assumed that all dispersers

in the landscape had the same characteristics and equivalent dispersal functions.

But trees rely on a variety of disperser species, with different movement patterns

and preferences (Bascompte and Jordano, 2007; González-Castro et al., 2015).
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Habitat disturbance also affects frugivores in different ways, with large-bodied

species being specially affected (Dirzo et al., 2014; Hansen and Galetti, 2009).

The remaining species tend to be smaller and, although their abundance might

increase (Peres and Dolman, 2000), the seed dispersal effectiveness is not always

compensated (González-Castro et al., 2015; Wotton and Kelly, 2011) since large

species are responsible for the largest fraction of dispersed seeds (Jordano et al.,

2007; Vidal et al., 2013a). As such, splitting seed dispersers into groups (Zamora,

2000) that reflect functional differences related to body size might better capture

the impacts of logging.

Hypotheses:

• Selective-logging results in density compensation by small-bodied frugivores.

• Population declines of large-bodied frugivores reduces dispersal-length and

dispersal area in logged forests.

Required modifications: Add the ability to create functional groups based

on body size. Parameters values related to the seed dispersers could be

obtained for each functional group.

Selective-logging is often followed by increased hunting pressure, driven by

the easier access that roads provide to sites that used to be isolated (Jansen and

Zuidema, 2001).

Hypothesis:

• Hunting following selective logging events significantly reduces average length

of seed dispersal and seed shadow (dispersal area).

Required modifications: Disperser mortality (parameter mb) would be in-

creased after a cut.

Fragmentation is also known to have strong negative effects on seed dispersal

(Bacles et al., 2006). Results from Chapter 3 (section 3.3.2) indicate that the size
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of fragments and distance between fragments affect both disperser movement and

seed dispersal metrics. The integrated model can evaluate how long it takes to

restore the different scenarios presented in figure 3.10 to a reference state. The

different points in the deforestation, isolation and number of fragments gradient

could be defined as initial states for the model. Simulations would then track

the time required for each of these initial scenarios to reach a state in which the

landscape is completely covered by forest again. In addition to forest coverage,

community composition (in terms of abundances by PFT) and carbon stocks can

also be analyzed, as studies suggest that these aspects might be different even

when forest coverage has been restored (Bello et al., 2015; Gibson et al., 2011b).

Hypotheses:

• Restoration time increases as fragment isolation increases.

• Restoration time increases as fragment size decreases.

• Restoration time increases as the total abundance of dispersers decreases.

A meta-analysis done by Gibson et al. (2011b) suggests that once tropical

forests have been sufficiently disturbed, there is no evidence that they can be

restored to sustain the same biodiversity. Studies indicate that defaunation can

lead to changes in the tree community composition, reducing the abundance or

persistence of bigger, animal-dispersed trees and increasing the populations of

smaller, wind-dispersed species (Peres et al., 2016). The integrated model could

be used to simulate landscapes with different levels of defaunation over time.

Hypothesis:

• Tree composition in highly defaunated forests becomes dominated by wind-

dispersed species over time

• Carbon stocks in highly defaunated forests decrease over time.
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5.2 Recommendations

5.2.1 When to use the integrated model

The results presented in the case study show that the simulated levels of selec-

tive logging did not affect seed dispersal metrics and had little impact average

movement metrics. The dispersal kernel changed very little throughout time.It

is important to reiterate that all simulations presented in this thesis have the

purpose of illustrating how the software works and possible outputs. Since these

simulations were not calibrated to reflect any particular site, I do not claim that

the results obtained should be generalized to real-world logging scenarios without

carefully calibrating the model to the corresponding forests. Nonetheless,in situ-

ations where the disturbance does not significantly affect animal movement, it is

advantageous to approximate the seed dispersal kernel generated by the dispersers

as a simple mathematical function and use the dispersal method included in the

Trees model. After using dispersal distance data (i.e., the euclidean distance from

each seed’s deposition site to the correspondent parent tree) to estimate a proba-

bility density function, the parameter α on equation 2 can be estimated. This is

a way to implicitly model seed dispersal and assumes that the fitted function suf-

ficiently approximates dispersal at any time during the simulation. This strategy

significantly reduces the simulation times because the dispersers model is only used

once. After it is verified that the dispersal metrics (i.e., dispersal distance and

seed shadow) have small variance and that disturbance does not affect movement

(figure 5.1-a), the deposition patterns can be used to estimate the kernel function

(figure 5.1-d). Subsequently, only the trees model is used. In cases where animal

movement and seed dispersal are affected by the disturbance, but the variance is

still small (figure 5.1-b), the same strategy can be applied to the period prior to

the disturbance, but inclusion of seed dispersers is recommended after that point.

Finally, if movement and dispersal metrics are highly variable (figure 5.1-c), the
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dispersal kernel will also change frequently; in this case, the integrated model is

recommended for the entire simulation.

Figure 5.1: Guidelines on when to model seed dispersal implicitly (using only the
Trees model) or explicitly (with the integrated model). Implicit dispersal is used
when there is no effect of disturbance on the dispersal metrics (a). For scenarios
where there is an effect of disturbance on dispersal metrics, implicit dispersal is
used before the change if the variance is small (b), otherwise it is recommended
to model dispersal explicitly (c). The dispersers model is used to estimate the
dispersal function for the implicit model implementation.
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Figure 5.2: General guidelines on using the integrated model. The circles represent
the model cycle described by figure 4.5. After adjusting the trees and dispersers
models to the study system, and evaluation simulation is executed using the in-
tegrated model. The outputs are used to decide whether or not explicit seed
dispersal is necessary and the final version of the model is assembled accordingly.

5.2.2 Model calibration

The trade-off between model simplicity and realism is a classical problem in ecolog-

ical modelling. Individual-based models such as the Trees and Dispersers models

presented in Chapters 2 and 3 offer flexibility to be adapted to different environ-

ments and contexts, but the large number of parameters often makes calibration

more difficult than in simpler models. However, most parameters can be obtained

from standard field measurements or estimated from well-known patterns.

In the Trees model, parameters related to morphometric relationships are es-
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timated from standard measurements in forest inventories, such as DBH, tree

height and wood density. Growth-related parameters require repeated diameter

measurements or tree ring data, which can be rare for some sites (Brienen et al.,

2017). The most difficult parameters to estimate are those related to mortality

(i.e., Mb) and birth rates (i.e., Iseed), as well as seed-dispersal (i.e., Nseeds, αfruits).

These are measurements rarely included in typical forest inventories because they

require long-term censuses. However, recent advances in statistical methods are

improving the calibration quality for uncertain parameters (Fischer et al., 2016).

Specifically, Tolson and Shoemaker (2007) developed a collection of stochastic

search algorithms that significantly decrease the computation time required to es-

timate parameter values. By automatically running the model thousands of times

and comparing system-level patterns that are available from inventories and liter-

ature (e.g., relative abundances, average basal area, number of trees per hectare),

these methods provide good estimates for those parameters that are hard to mea-

sure directly (see Lehmann and Huth (2015) for an example applied to forest

models). Furthermore, Bayesian methods have been used in combination with

Markov chain Monte Carlo techniques to assess parameter uncertainty (van der

Vaart et al., 2016).

Most parameters in the Dispersers model are directly measured by field obser-

vations of individual organisms, such as average time spent on each tree (tmax),

the maximum number of fruits a disperser can hold in it’s stomach (fmax) or av-

erage distance travelled per day (which is related to action radius r) (Stevenson

et al., 2000). Parameters related to energy levels are hard to measure directly

and techniques similar to the ones described for forest models can be applied.

Bialozyt et al. (2014a) found the energy gain from each ingested fruit to be one

of the most important parameters in their individual-based primate model and I

observed the same in mine (parameter efeed). In the population growth submodel,

the energy cost to produce one individual (c1), energy used per individual (c2)
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and background mortality (mb) are also critical for population dynamics and can

be calibrated using census data as reference. When population data is missing,

typical density values can be obtained from the literature (e.g., Levi and Peres

(2013) and Stevenson et al. (2000)) and used as approximations. One promising

approach is the inclusion of energy budgets from the Dynamic Energy Budget

framework (Sousa et al., 2010) combined with Approximate Bayesian Computa-

tions to calibrate energy-related parameters (van der Vaart et al., 2016).

5.3 Summary of contributions

Throughout this thesis, I developed software tools to implement individual-based

models of trees and animals that are able to explicitly include animal behaviour

into forest models. Chapter 2 was dedicated to the Trees model. I described the

underlying assumptions and equations, which were based on an existing model

(FORMIND). My goal was to provide a simple implementation that could serve

as a base for modellers wishing to develop individual-based forest models. In

addition to the core processes related to tree recruitment, growth and competition,

the current version includes a logging submodel, which was used to exemplify how

the model works, what are the typical outputs and how it can be applied to Natural

resources management (i.e., selective-logging). The open-source code and object

oriented implementation are flexible enough to add new processes or modify the

current algorithms in order to address the specific needs of modellers. I also

developed interactive tools to help users explore model outputs and understand

the tree parameters.

Differently from forest models, the availability of software that explicitly mod-

els seed dispersers is reduced to source files published as appendices of a few studies

(e.g., Bialozyt et al. 2014a; Boyer et al. 2006b). In Chapter 3, I described a model

that simulates arboreal seed disperser. It individually represents disperser agents
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and their movements, using a decision algorithm inspired by primate behaviour.

The included examples demonstrate how the model can be used to investigate the

effects of anthropogenic disturbance (defaunation, deforestation and fragmenta-

tion) on seed dispersal. Although the decision algorithm is intended to represent

a general arboreal disperser (such as a monkey or bird), the software can be mod-

ified to approximate the behaviour of a particular species more accurately.

The Trees model can be used to simulate tree communities without animals

(like the example in section 2.4, which uses implicit seed dispersal) and the Dis-

persers model can be used without simulating the tree community processes (i.e.,

recruitment, growth, competition, carbon storage, population sizes). However,

one of the main novelties of this project was the explicit simulation of animals

into forest models, discussed in Chapter 4. One of the challenges of integrating

these two kinds of models is that they operate in different time and spatial scales.

Section 4.1 provides an algorithm and code to perform the integration of the Trees

and the Dispersers model, but the same strategy could be used with other animal

models (e.g., a model that explicitly simulates herbivores).

The possibility to explicitly include animals into forest models expands the

tool set available for ecologists to investigate many ecological and natural re-

sources management questions related to emergent properties of ecosystems (see

the hypotheses in section 5.1), including the provision of ecosystem services, such

as climate change mitigation through carbon sequestration. However, the explicit

simulation of animals is not always necessary. In section 4.2, for example, I applied

the integrated model to selective logging scenarios and found that logging activi-

ties did not impact seed dispersal distance and the seed shadow. Given the higher

computational costs of the integrated model compared to the Trees model alone,

once the modeller verifies that the animal-mediated process of interest (e.g., seed

dispersal) is not affected by the disturbance in question (e.g., selective logging),

I recommend the use of a simpler, implicit representation of the process (e.g.,
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implicit seed dispersal as described in section 2.1.7-I, as opposed to the explicit

seed dispersal used in section 4.2). Nonetheless, whether or not animal-mediated

processes should be implicitly or explicitly modelled highly depends on the ques-

tions and systems being investigated and I recommend the procedure described in

section 5.2.1 to be used with appropriate calibrations.

The code that is used as a base to implement each of the models discussed in

Chapters 2 and 3 is organized as independent Python packages (trees-ibm and dis-

persers, respectively). They can be used independently or together to implement

the individual-based models described in this document or variations of them. In

addition, a third package (py-ibm) contains general code that is common to many

IBMs and should facilitate the development of IBMs in Python. All packages

are available (see table 5.1 for links) under the GNU General Public License v3.0

from PyPI, the official Python repository (https://pypi.python.org/pypi) and can

be installed using the python package manager (pip). Figure 5.3 contains the

UML (Unified Modelling Language) class diagrams illustrating the internal orga-

nization of the py-ibm package. Diagrams for the trees-ibm and dispersers can

be found in figures 2.3 and 3.4, respectively. The GitHub repositories include ex-

ample scripts, documentation, detailed installation instructions and requirements,

as well as guidelines for submitting contributions and reporting bugs through

GitHub’s issues and pull requests systems. All code may be freely used, modified

and redistributed.
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Figure 5.3: Class diagram for the Py-IBM package. Following the UML (Unified
Modelling Language) standards, each class is represented by a block divided into
three sections: the class name at the top, followed by the corresponding attributes
in the middle and the methods at the bottom.

Table 5.1: Python packages produced for this thesis. Packages can be downloaded
as compressed files, accessed on GitHub or installed via pip (Python package
manager).

Py-IBM

File https://pypi.python.org/pypi/py ibm/0.1.1
GitHub http://github.com/fsfrazao/Py IBM
pip command pip install py-ibm

Trees-IBM

File https://pypi.python.org/pypi/trees ibm/0.2.2
GitHub http://github.com/fsfrazao/Trees
pip command pip install trees-ibm

Dispersers

File https://pypi.python.org/pypi/dispersers/0.2.2
GitHub http://github.com/fsfrazao/Dispersers
pip command pip install dispersers
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Pérez-Méndez, N., Jordano, P., Garćıa, C., and Valido, A. (2016). The signatures



112

of anthropocene defaunation: cascading effects of the seed dispersal collapse.

Scientific reports, 6.

Pfeifer, M., Lefebvre, V., Turner, E., Cusack, J., Khoo, M., Chey, V. K., Peni, M.,

and Ewers, R. M. (2015). Deadwood biomass: an underestimated carbon stock

in degraded tropical forests? Environmental Research Letters, 10(4):044019.

Phillips, N. G., Buckley, T. N., and Tissue, D. T. (2008). Capacity of old trees

to respond to environmental change. Journal of Integrative Plant Biology,

50(11):1355–1364.

Phillips, O. L. (1996). The changing ecology of tropical forests. Biodiversity

Conservation, pages 291–311.

Picard, N. and Franc, A. (2003). Are ecological groups of species optimal for forest

dynamics modelling? Ecological Modelling, 163(3):175–186.
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