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Abstract

The rapid advancements in communication and networking technologies boost the capac-

ity of wireless networks. Multi-hop wireless networks are extremely exciting and rapidly

developing areas and have been receiving an increasing amount of attention by researchers.

Due to the limited transmission range of the nodes, end-to-end nodes may situate beyond

direct radio transmission ranges. Intermediate nodes are required to forward data in order

to enable the communication between nodes that are far apart. Routing in such networks

is a critical issue.

Opportunistic routing has been proposed to increase the network performance by uti-

lizing the broadcast nature of wireless media. Unlike traditional routing, the forwarder

in opportunistic routing broadcasts date packets before the selection of the next hop.

Therefore, opportunistic routing can consider multiple downstream nodes as potential

candidate nodes to forward data packets instead of using a dedicated next hop. Instead

of simply forwarding received packets, network coding allows intermediate nodes to com-

bine all received packets into one or more coded packets. It can further improve network

throughput by increasing the transmission robustness and efficiency. In this dissertation,

we will study the fundamental components, related issues and associated challenges about

opportunistic routing and network coding in multi-hop wireless networks.

Firstly, we focus on the performance analysis of opportunistic routing by the Discrete

Time Markov Chain (DTMC). Our study demonstrates how to map packet transmissions
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in the network with state transitions in a Markov chain. We will consider pipelined

data transfer and evaluate opportunistic routing in different wireless networks in terms

of expected number of transmissions and time slots.

Secondly, we will propose a regional forwarding schedule to optimize the coordination of

opportunistic routing. In our coordination algorithm, the forwarding schedule is limited

to the range of the transmitting node rather than among the entire set of forwarders.

With such an algorithm, our proposal can increase the throughput by deeper pipelined

transmissions.

Thirdly, we will propose a mechanism to support TCP with opportunistic routing and

network coding, which are rarely incorporated with TCP because the frequent occurrences

of out-of-order arrivals in opportunistic routing and long decoding delay in network coding

overpower TCP congestion control. Our solution completes the control feedback loop of

TCP by creating a bridge between the sender and the receiver. The simulation result

shows that our protocol significantly outperforms TCP/IP in terms of network throughput

in different topologies of wireless networks.
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Chapter 1

Introduction

1.1 Background

Did you know there are nearly four billion people for whom connectivity with the

Internet is not an option? The multi-hop wireless mesh network can empower users

to share photos, videos, music files, apps, and text without ever touching the Internet

and meet the demand of a seamlessly connected world. It has emerged as an important

technology in the computer networking and becomes an essential part of daily lives of

many people around the world such that an unlimited number of people can communicate

with one another freely and easily, in an unrestricted way.

A multi-hop wireless mesh network, wireless mesh in short, is a wireless data commu-

nication network in which end-to-end nodes are situated beyond direct radio transmission

ranges. Intermediate nodes are required to forward data in order to enable communica-

tion between nodes that are far apart. Compared to single-hop wireless networks, such as

Wi-Fi, Bluetooth, and cellular networks, multi-hop wireless networks can have extended
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communication ranges. Furthermore, they can provide coverage in hard-to-wire areas

and improve the network throughput by short distance with reliable transmissions. The

distinct features and critical design factors of multi-hop wireless networks also pose many

problems. Routing is a central problem in wireless mesh. Routing algorithms will select

a subset of intermediate nodes to create a path such that these intermediate nodes can

forward packets from the source to the destination. The routing process can be decoupled

from forwarding, ie., using IP or a variant to forward data independently, e.g., DSDV [79]

and AODV [80]. Alternatively, routing can be coupled with forwarding so that forward-

ing and routing are done by the same module, e.g., DSR [50]. The determination of

routing in wireless mesh can incorporate many factors. These include types of topolog-

ical information, weighted or not and by what, using nodal position or not, number of

routes permitted, energy awareness, network coding opportunity, security, and timing of

exchanging such information [3, 4, 12,75].

Most routing solutions are called traditional routing because they follow the Internet

architecture of determining routes before forwarding data packets along the routes. Tradi-

tional routing pre-selects a fixed routing path before the source node starts transmissions.

Each node in a route uses a pre-selected neighbour as the next-hop to forward data packets

towards the destination. Once all next-hops have been selected, all packets transmitted

between the source and the destination follow the same path. These routing solutions

borrow ideas from the routing protocols for wire-line networks, and do not adapt well to

the dynamic wireless environment where transmissions failure occur frequently. Wireless

mesh networks are built on top of wireless links, and no longer have the constraints of

point-to-point links prevalent in the Internet. In particular, wireless links are broadcast

and subject to channel fading, which causes an uncertain number of nodes to receive a
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single transmission. In wireless networks, when a node transmits a data packet, multiple

nodes can overhear the transmission, which can compensate for the transmissions failure

to the pre-selected next-hop. However, traditional routing can not utilize this broadcast

nature of wireless mesh, because it dictates that all nodes without a matching receiver

address should drop packets, and only the node that the routing module decides to be

the next hop can keep packets for subsequent forwarding.

Opportunistic routing (OR), also referred as opportunistic data forwarding, diversity

forwarding [10] or any-path routing [11, 86], is being investigated to increase the perfor-

mance of wireless mesh networks by taking advantage of the broadcast nature in wireless

mesh. In OR, the next-hop forwarder is decided after the sender broadcasts the data

packets. Multiple downstream nodes in addition to that matching receiver will receive

these packets and be potential forwarders. One of these potential forwarders, which is

‘closest’ to the destination, will be selected to forward packets. The on-the-fly selection

of the next-hop is the fundamental principle of opportunistic routing. Since multiple

downstream nodes are potential next-hop forwarders, opportunistic routing can reduce

the possibilities of re-constructing paths or re-transmitting packets due to link breakage

on a pre-selected path. A set of intermediate nodes between a source and a destination

can be selected as potential forwarders. These selected nodes are called candidate nodes.

Candidate selection algorithms choose the candidate nodes and give the proper priority

to each candidate. A good routing metric can be used for the selection of candidate nodes

and ordering the priority of each node [24, 99, 102]. The highest priority of a node may

indicate that this node is ‘closest’ to the destination. When opportunistic routing was

proposed, the typical routing metrics are from traditional routing protocols, for example,

the hop count metric or the expected number of transmission. After the selection of can-
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didate nodes, opportunistic routing allows any selected node to forward packets according

to the coordination algorithm, which is used by nodes to avoid duplicate transmissions

and also guarantee that at least one node will forward packets to downstream nodes.

For a better understanding of the inherent benefit of opportunistic routing, we use

the example in Figure 1.1, inspired by ExOR [10], to elaborate how opportunistic routing

works. It presents the process of opportunistic routing and shows its advantages com-

pared to traditional routing. In this example, the packet delivery probability is shown

over the link. Traditional routing chooses the shortest path, S −A−B −D, to transmit

packets. When S sends packets to node A, data packets are transmitted by broadcast-

ing. Downstream nodes (B or D) may receive some packets. Neither node B nor D is

selected as the next hop of the source; even though they receive some packets, these pack-

ets have to be retransmitted by node A. Therefore, the traditional routing scheme has

many unnecessary transmissions and wastes network resources. In contrast, opportunistic

routing can increase the performance of packet transmissions by taking advantage of the

broadcast nature of wireless media, specifically long-distance transmissions. ExOR uses

the Expected Transmission Count (ETX) [23] as the routing metric, which calculates the

average number of transmission that a packet requires to be received by the destination.

The ETX value of a corresponding link is the reciprocal of the packet delivery probability

of that link. The ETX value on a path can be derived by adding up all ETX values

links on this path. The definition of an ETX value of a node is the minimum ETX value

of paths from this node to the destination. The intermediate nodes with an ETX value

smaller than that of the source will be selected as candidate nodes. In this example, the

candidate nodes are {A,B, F,D}. Each intermediate node will be assigned a priority

based on its ETX value. Nodes with a small ETX value will be assigned a high priority.

4



Therefore, The order of the priority is D > B > A > F . After the source node sends

packets, multiple candidate nodes are involved in receiving and forwarding packets. In

ExOR, the high priority node will forward the received packet first, e.g., if both nodes

A and B receive a packet from the source, node B will forward this packet first. When

node A overhears node B’s transmission, it discards the same packet since node B has

forwarded this packet to downstream nodes. If node D receives this packet from the

source, neither node A nor B will forward the same packet.

DB0.8 0.8

0.2

0.3

E F
0.8

0.8 0.6 0.6

A

ETX=4.16 ETX=2.91

0.8

ETX=3.75 ETX=2.5 ETX=1.25 ETX=0

S

Figure 1.1: An example of opportunistic routing.

With a coordination algorithm, all nodes that have received data packets from up-

stream nodes will decide whether to forward packets, discard packets or wait for others

to transmit. To coordinate transmissions, a node can send extra coordination messages

or combine coordination messages with data packets. The coordination message informs

other nodes whether it has received packets or not; it is an accurate way to coordinate

the nodes in the system if the coordination message is not lost. However, extra co-
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ordination messages require network resources and may slow down the transmission of

data packets because the data packets are usually sent out only after a node receiving

the coordination message. On the other hand, most opportunistic routing protocols join

coordination messages with data packets instead. To increase the successful receiving pos-

sibility of coordination information and to reduce the amortized overhead, opportunistic

routing protocols often transmit a batch of data packets together in a round; packets in

that batch always carry the same coordination message, such as ExOR [10], SOAR [83],

ROMER [97]. The coordination messages can be received even if only one of the data

packets in that batch is received. However, such a reliable coordination mechanism is

often complex and requires specialized MAC protocol support, which is difficult to carry

out accurately. Furthermore, the coordination mechanism may prevent spatial channel

reuse and thus underutilizes the wireless medium. For example, when multiple packets

can be simultaneously transmitted by the corresponding nodes, the coordination algo-

rithm still requires the high-priority node to transmit first and the low-priority node to

hold the transmission. In general, opportunistic routing often requires a strict coordina-

tion on packets in order to avoid redundant transmission [10, 15, 24], this property limits

the performance and the use of opportunistic routing [18]. As discussed in [18], network

coding can be used to resolve the shortcoming of opportunistic routing.

Network coding is proposed by Ahlswede et al. in 2000 [2]. They prove the value

of network coding and provide theoretical bounds on the capacity of wireless networks.

It is a networking technique where data packets are encoded and decoded to increase

network throughput, reduce delays and improve network robust [44,46,56,63]. Researchers

have extended this technique to a variety of areas including content distribution [32],

security [14, 45], and distributed storage [48]. Without network coding, data packets are
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cached and forwarded to downstream nodes. If a node receives several packets, it forwards

them one after another and queues packets that have not received by downstream nodes in

the meantime. Therefore, it requires separate transmissions for each packet. In network

coding, algorithms are used to code data packets and these coded packets are forwarded

to the destination. After receiving coded packets, the destination decodes them using

the same algorithm. Network coding applies algebraic algorithms to code data packets;

each coded packet randomly combines partial information of different data packets, which

further extends the distribution of data packets in the network. In general, two different

types of network coding can be applied, namely inter-flow network coding and intra-flow

network coding. While the former mixes packets from different sources, the latter focuses

on coding packets from the same source. When packets from the same flow are coded,

each coded packet is equally beneficial. Nodes do not necessarily forward packets as what

are generated by the source; they can transmit a combination of packets. Since no special

coded packet is dispensable and the deficit information from lost packets can be easily

filled by following coded packets, network coding can eliminate the hop-by-hop feedback

mechanism used in traditional forwarding and still achieve reliability in the network. An

example of the intra-flow network coding is shown in Figure 1.2.

D
0.5 0.5

S A

Figure 1.2: An example of intra-flow network coding.

In this scenario, source node S will send n packets to destination D via intermediate

node A. The packet delivery probability is 50% in both directions. Without network
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coding, the source node requires a transport layer ACK to learn whether each packet is

received by the destination. Thus the expected number of transmissions will be 4n+4n (n

data packets, n ACKs). Network coding allows both the source and intermediate nodes

to make random linear combination of received packets. Once the destination receives n

independent coded packets, it can decode n original packets. Then the destination send

one ACK for all n packets. The expected number of transmissions will be 4n+ 4.

Generally, opportunistic routing allows multiple nodes to overhear packet transmis-

sions and the next-hop forwarder is decided after the sender broadcasts data packets. The

on-the-fly selection of the next hop will increase the network throughput by opportunity

gains. However, performing opportunistic routing requires coordination among the links

and the design of a specialized MAC protocol, which may prevent spatial channel reuse

and thus underutilizes wireless medium. It also requires all of the next-hop nodes to be

able to overhear each other, which may not be always possible. Network coding can be

used to resolve the shortcomings of opportunistic routing. Network coding increases the

transmission capacity of the data communication network as well as its robustness [57].

When packets from the same flow are coded, each coded packet is equally beneficial and

inherently different. Therefore, opportunistic routing with network coding does not rely

on a complex coordination mechanism to avoid or minimize duplicate transmissions. This

simplifies the scheduling since different nodes do not need to exchange information about

which packets they have transmitted and received. This property of random network

coding eliminates unnecessary feedback and overhearing requirements in opportunistic

routing, and makes the design of the MAC layer independent of the other layers.
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1.2 Motivation and challenges

1.2.1 Performance analysis of opportunistic routing

Opportunistic routing has shown a great potential performance in simulation and

test-bed. To further investigate the advantage of opportunistic routing, many researchers

place effort in analytical models. Batch-based coordination is one of the investigated

topic in opportunistic routing, where the inherent interaction among packets in a batch

affect the performance of opportunistic routing. However, previous works assume that

packet transmission is independent, so they only analyze a single packet transmission in

the network. Such studies focus on the end-to-end transmission cost of a packet and

accumulate this cost for a batch of packets. These analytical models usually require

strong assumptions, such as conflict-free schedules access, no interference and no collision.

Furthermore, most studies of opportunistic routing only analyze the throughout of the

network in terms of the expected number of transmissions but not the transmission time

since accumulating transmission time of a batch of packet would yield a poor prediction

of packet transmissions where packets are transmitted in a pipelined manner. A more

accurate analysis model is needed to better quantify the benefits of opportunistic routing

and investigate the effect of batch-based transmissions. Indeed, such analysis model can

be considered as an important next step towards modelling general scenarios.

In this dissertation, we will develop an analysis model based on a discrete time Markov

model and show how it estimates the performance of opportunistic routing. To the best

of our knowledge, this work is the first study investigating the effect of batch-based trans-

missions. Our model adheres to pipelined data transmission and maps the network state

of packet advancement using the Markov model. Furthermore, our model is indepen-
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dent of network topologies and candidate selection algorithms. The input parameters of

our analysis model are number of nodes, batch sizes, packet delivery probabilities, and

pipeline sets.

1.2.2 Reliable opportunistic data forwarding

As stated earlier, opportunistic routing often provides a significant throughput gain

compared to traditional routing since it uses multiple potential paths for delivering packets

to the destination. When a packet is transmitted, all candidates that successfully receive it

will coordinate with each other to determine which one will actually further forward while

the others will simply discard the packet. Coordination among these multiple candidates

is a crucial issue in order for its overhead not to overwhelm its opportunisty gains. The

classic coordination algorithm creates a transmission schedule, where candidates transmit

packets in order. High-priority nodes forward packets first, and low-priority nodes only

send packets that are not received by higher-priority ones. Only one forwarder is allowed

to transmit at any given time; the others listen to learn whether packets are overheard

by higher-priority nodes. Candidates go in rounds until all packets reach the destination.

Although this transmission schedule can obatin opportunistic throughput gains, it may

lose some of the desirable features of the current 802.11 MAC. In particular, the coor-

dination may prevent forwarders from exploiting spatial channel reuse, where multiple

packets can be simultaneously transmitted by their corresponding forwarders.

To increase spatial channel reuse for a deeper pipelined transfer; a forwarder should

coordinate the priority scheduling only within its transmission range. That is, the coor-

dination of opportunistic data forwarding is limited to the greatest possible range of the
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transmitting nodes rather than among the entire set of forwarders. This way, a node’s

mandatory waiting time is reduced. In this dissertation, we will propose a tighter schedule

than ExOR in order to achieve better spatial channel reuse, called ExOR Compact. In

particular, the schedule is confined to a subset of the forwarders that are within range of

the transmitting node so that the waiting time is only a function of this range rather than

of the entire forwarder list. It facilitates a pipelined data transfer with higher throughput

than ExOR. To moderate the effect brought by the denser network activities, ExOR Com-

pact uses random linear network coding to code packets so that downstream nodes are

less sensitive about the lose of specific packets, which potentially alleviates transmission

collisions and improves the robustness of data forwarding.

1.2.3 TCP adaptation with opportunistic routing and network

coding

The broadcasting nature of wireless links naturally supports both opportunistic rout-

ing and network coding, and many studies focus on improving UDP performance in multi-

hop wireless networks. However, opportunistic routing and network coding are inherently

unsuitable for TCP for a number of reasons. The frequent dropping of packets and out-

of-order arrivals overpower TCP’s congestion control. Specifically, opportunistic data

forwarding does not attempt to forward packets in the same order as they are injected in

the network, so the arrival of packets will be in a different order. Network coding also in-

troduces long coding delays by both the encoding and the decoding processes; besides it is

possible along with some scenarios of not being able to decode packets. These phenomena

introduce duplicated ACK segments and frequent timeouts in TCP transmissions, which
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reduce the TCP throughput significantly.

Majority of previous research on opportunistic routing and network coding was not

designed for TCP. Other studies modified TCP protocols by incorporating network cod-

ing into TCP protocols; they created different variants of TCP protocols to improve

throughput. However, TCP protocols (especially, TCP Reno) are widely deployed in cur-

rent communication systems, it is not easy to modify all TCP protocols. Therefore, we

propose an adaptation layer, called TCPFender, functioning below TCP Reno. It adds

a thin layer above the network layer to cooperate with TCP’s control feedback loop to

make the TCP’s congestion control work well with opportunistic routing and network

coding. TCPFender uses a novel feedback-based scheme to detect the network congestion

and distinguish duplicated ACKs caused by out-of-order arrivals in opportunistic routing

from those caused by network congestion. With the help of this adaptation, we do not

need to make any change of TCP Reno itself while taking advantage of both opportunistic

routing and network coding.

1.3 Research contributions

This dissertation presents the following novel contributions to research of computer

networking.

• We will propose a discrete time Markov model to study the performance of op-

portunistic coding in multi-hop wireless mesh networks. It takes into account the

interference model, call Protocol Model, to analyze the pipelined data transfer and

considers the throughput and the end-to-end delay in both opportunistic routing

and traditional routing. We verify the validity of the analytical model by computer
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simulation on both NS-2 and Java project.

• We will propose ExOR Compact as a joint opportunistic routing and network cod-

ing technique to improve network performance. It creates a regional transmission

schedule to confine the waiting time being only a function of the current forwarder

rather than of the entire forwarder list and facilitating the pipelined data transfer.

We evaluate the performance of ExOR Compact using simulation in NS-2.

• We will propose TCPFender to cooperate with TCP control feedback loop and

support TCP to take advantage of both opportunistic routing and network coding.

It will compare TCPFender with other baselines in aspects such as throughput,

end-to-end delay and evolution of TCP congestion window.

1.4 Thesis outline

The rest of this dissertation is organized as follows.

Chapter 2 provides a review of the studies on opportunistic routing and network

coding. We highlight the fundamental components and challenges of opportunistic rout-

ing and network coding. By comparing current studies in this area and explaining the

motivation and interaction effect of the joint protocols, we discuss the advantage and

disadvantage of these two techniques.

In Chapter 3, an analytical model is proposed to study the performance of oppor-

tunistic routing in multi-hop wireless mesh networks. The network states of packet ad-

vancement are mapped by a Markov chain and the states in the Markov chain denote

all valid progression of opportunistic routing. The state transition of a Markov chain
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represents packet transmissions in the wireless mesh networks. Our models take into

account the theory of the absorbing matrix and enable the estimation of the number of

state transitions in an efficient way.

After studying the performance of opportunistic routing, Chapter 4 presents ExOR

Compact, a protocol joint opportunistic routing and network coding. It is motivated

by improving the spatial channel reuse of opportunistic routing and providing reliable

transmissions. We propose an adaptive forwarding schedule that enables nodes in the

forwarder list to transmit packets effectively.

In Chapter 5, we propose TCPFender as an adaptation layer to support TCP with

opportunistic routing and network coding. TCPFender completes the control feedback

loop of TCP by creating a bridge between the adaptation modules of the sender and

the receiver. The sender adaptation layer in TCPFender differentiates duplicate ACKs

caused by network congestion from those caused by opportunistic data forwarding, and

the receiver side releases ACK segments whenever receiving an innovative packet. Our

algorithm is designed generally enough to not only support opportunistic routing and

network coding, but also any packet forwarding techniques that can cause many dropping

packets or out-of-order arrivals.

Finally in Chapter 6, we conclude and summarize the contributions presented in this

dissertation, and discuss several potential extensions to our research.

14



Chapter 2

Related Work

2.1 Opportunistic routing

The basic idea of opportunistic routing is to utilize all downstream nodes as potential

forwarders and coordinate transmissions among forwarders. The route of packet transmis-

sions is not predetermined and can be updated according to the change of link qualities

for different packets of different flows. In opportunistic routing, a set of intermediate

nodes between a source and a destination can be selected as potential forwarders, which

are called candidate nodes. Candidate nodes are ordered by their abilities to transmit

packets towards the destination according to routing metrics, for example, the hop count

metric or the expected number of transmission. The highest ability of a node can indicate

that this node is closest to the destination, has highest link quality towards the destination

or requires the lowest power consumption, etc. After the selection of candidate nodes, op-

portunistic routing allows any selected node to participate in forwarding packets according

to the coordination algorithm or forwarding schedule, which is abided by forwarders to
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avoid duplicate transmissions and also guarantee of at least one node forwarding packets

to downstream nodes. With a coordination algorithm, the forwarders that have received

data packets from upstream nodes should decide to forward the packets, discard packets,

or wait for others’ transmissions.

2.1.1 Metrics in OR

A good routing metric has a high impact on candidate selections and the design of

the coordination algorithms. In this section, we mention two popular routing metrics in

opportunistic routing.

• Expected transmission count (ETX) [23] calculates the average number of trans-

mission that a packet required to be received by the destination. Assume that the

link delivery probability between two nodes i and j is Pi,j. The ETX value of this

corresponding link is

ETX(i, j) =
1

Pi,j

(2.1)

The ETX value on a path can be derived by adding up all ETX values of each link

on this path. The definition of an ETX value of a node is the minimum ETX value

of paths from this node to the destination.

• Expected any-path transmissions (EAX) [102] metric is designed for opportunistic

routing, which considers multiple paths from the source s to the destination d.

EAX(s, d) =
1 +

∑|Cs,d|
i EAX(Cs,d

i , d)× pi ×
∏i−1

j=1(1− pi)

1−
∏|Cs,d|

i (1− pi)
(2.2)

Here, the Cs,d is the set of candidate nodes from s to d and | Cs,d | is the number

of candidate nodes from s to d. Cs,d
i is one of the candidate nodes in Cs,d with the
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priority of i (with 1 being highest priority). The pi is the packet delivery probability

from s to node Cs,d
i .

2.1.2 Candidate selection in OR

The aim of the candidate selection algorithm is to minimize the transmission cost

in terms of the expected transmission transmissions, power consumption or transmission

distance, etc. A good candidate selection also needs to assign a priority to each candi-

date node. In this part, we list two basic and popular candidate selection algorithms in

opportunistic routing:

• The candidate selection algorithm in ExOR uses ETX as a routing metric. Each

node finds the ETX value of all paths from itself to the destination. This minimum

ETX value of a path is the ETX value of this node. The priority of each candidate

is decided by the ETX value of the node; a node with a small ETX value has a high

priority. Then, all nodes with a smaller ETX value than the source will be selected

as candidate nodes.

• The EAX metric is proposed by OAPF [102]. It decides the candidate nodes and

priorities based on the packet delivery probability on multiple paths. The selection

of candidate nodes begins from the selection of initial candidates Cs,d, which have

a smaller ETX than the source ETX(s, d) > ETX(j, d), where j is a node in

the initial candidates Cs,d. The final candidate nodes will be the subset of the

initial candidate set. Note that the candidate selection for all the nodes in Cs,d

will be finished before s selecting its candidates. Therefore, the candidate selection

process is repeated from the destination to the source. After the selection of the
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initial candidate set, OAPF candidate selection algorithm selects the best candidate,

which can reduce ETX(s, d) the most. This one is added to the final candidate set.

This process is repeated until adding any node in the final candidate set can not

reduce the expected number of transmission any further.

2.1.3 Forwarding schedule in OR

Forwarding schedule is the coordination mechanism between nodes to clarify whether

to forward packets, discard packets or wait for other transmissions. To coordinate between

different intermediate nodes, nodes need to send control messages or set timers. The

control message informs other intermediate nodes whether it has received packets or

not; it is an accurate way to make a coordination between each node given that the

control message is not lost. However, the control message requires additional network

resources and may slow down the transmission of data packets because the data packets

are usually sent out after a node receiving the control message. In addition to control-

message based schedules, timer-based forwarding schedules do not rely on any control

message, the coordination algorithm is joined with data forwarding instead. When a

data packet is sent, the sender sets a timer. If none of downstream candidates receives

this packet before the timer expires, the sender will retransmit the previous packet. If

one of the downstream candidates receives this packet, the downstream candidates will

forward this packet to the destination. If more than one downstream candidate receives

this packet, only the highest priority node will forward this packet. The other candidates

reset the timers after overhear the transmission from that highest-priority candidate.

• Control-message based schedules require an explicit control packet; for example,
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Acknowledgement (ACK) or Request-To-Send (RTS) and Clear-To-Send (CTS).

When candidate nodes receive a packet, they will return a short acknowledgement

message to the sender. The ACK is sent out in an up-down order, in which the

highest priority node sends ACK first and lowest priority node sends the last. The

priority of candidates is decided by the routing metric. After downstream nodes

send out the acknowledgement, the sender of the data packet and other candidate

nodes will know which candidate nodes have received this data packet. Then, the

candidate node with the highest priority will forward the packet. The other nodes

will discard this packet. This algorithm is first proposed in Selection Diversity

Forwarding protocol (SDF) [60].

• Timer-based schedules have no extra control packet and are easy to implement. The

overhead for this algorithm is the waiting time. Each candidate node will have a

priority based on the routing metric. After a data packet is sent out, candidate

nodes will assign a timer if they received the packet. The highest priority node

has the shortest timer. After the timer expires, this node will forward the received

packets. Since the timer at the high priority node will expire earlier, the high

priority node can send packets first and in turn the low priority node can overhear

the transmission from the high priority node. If the high priority node already sent

out a packet, the low priority node will discard the same packet.

2.1.4 Opportunistic routing protocols

Selection Diversity Forwarding (SDF) [60] incorporates the concept of selection diver-

sity into the framework of routing. The coordination of SDF is that a node performs a
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forwarding decision based on multiple responses, which are subsequent acknowledgements

from a number of candidate nodes. When a sender forwards a packet, a set of downstream

nodes may receive this packet. The header of this packet contains a list of potential re-

ceivers and also indicates their priorities. The potential receivers in the packet’s header

are listed in a consecutive order based on the priority of each receiver. The potential re-

ceivers return acknowledgements in this consecutive order. In this way, collisions between

acknowledgements are mitigated.

ACK
ACK

ACK

Forwarding order  FO

FOA

Sender

Time

Data

forward decision

A B C

Candidate nodes

Forwarding order ACK
data packet forwards

Figure 2.1: An example of of selection diversity forwarding.

After receiving acknowledgements, the sender chooses the ‘best’ candidate node and

sends the Forwarding order that grants the responsibility for onward transmission from

this selected node. One example of this process is presented in Figure 2.1. The sender

transmits a data packet, and three downstream nodes receive it. Each of them will respond

with a respective acknowledgement. After the sender receives all acknowledgements, it

20



will choose one downstream node as the next-hop forwarder and send the Forwarding

order to the selected node C. Finally, the selected node C will return a Forwarding or-

der acknowledgement and further forward the data packet. SDF assumes that control

messages are characterized by low energy and short duration compared to data pack-

ets. Therefore, the mechanism of SDF can improve the robustness of multi-hop wireless

networks and increase the throughput.

The ExOR (Extreme Opportunistic Routing) [10] protocol is an integrated routing and

MAC protocol. In wireless networks, when a node transmits a data packet, multiple nodes

can overhear the transmission. Traditional IP forwarding dictates that all nodes without

a matching receiver address should drop it, and only the node that the routing module

decides to be the next hop can keep it for subsequent forwarding . However, ExOR allows

multiple overhearing downstream nodes to coordinate forwarding, utilizing the transient

high quality of long links. In ExOR, each source nodes specifies a subset of nodes of the

network that are on or around the path from the sources to the destination. The nodes

are called potential forwarders, and are determined by a link-state-like routing protocol.

When the source sends data packets to the destination, the forwarders that are ‘close’

to the destination have a high priority in forwarding packets towards the destination.

When a low-priority forwarder overhears that a high-priority one has forwarded a packet,

it knows that it no longer needs to.

To achieve the mechanism above, ExOR has three important features:

• Batch map: The data are grouped in batches for a smaller amortized overhead.

The source node collects a batch of packets and prepends an ExOR header to each

packet of the batch, which contains a batch ID and a batch map. The batch map
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indicates, for each packet in a batch, whether a higher-priority node has received a

copy of that packet or not.

• Forwarder list: It contains a copy of the prioritized list of nodes. For a given batch,

all nodes have the same forwarder list, which is generated by the source node.

• Forwarding timer: It indicates the time at which the node predicts that it should

start forwarding packets to downstream nodes. Each node sets its timer far enough

ahead to give higher-priority nodes enough time to send packets. The timer will be

adjusted when a node hears other nodes’ transmissions.

Simple Opportunistic Adaptive Routing (SOAR) [83] is a proactive link state routing

protocol. Every node periodically measures and disseminates link quality in terms of ETX.

Based on this information, a sender selects the default path and a list of forwarding nodes

that are eligible for forwarding the data packet. It then broadcasts data packets including

this information. Upon hearing the transmission, the nodes not on the forwarding list

simply discard the packet. Nodes on the forwarding list store packets and set forwarding

timers based on their priorities to the destination. A node closer to the destination

uses a smaller timer and forwards the packet earlier. Upon hearing this transmission,

other nodes will remove the corresponding packet from their queues to avoid duplicate

transmissions. Compared to ExOR, SOAR optimizes its candidate selection algorithm

and increases the stability of the coordination algorithm. In the candidate selection

algorithm of SOAR, each node maintains a routing table with the format: <destination,

default path, candidate list>, where the default path is the shortest path from the current

node to the destination and the candidate list includes a list of next-hop nodes that are

eligible to the following transmission. The candidate selection algorithm of SOAR will
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constrain the potential nodes involved in forwarding packets to be near the default path,

this candidate selection algorithm simplifies coordination since all the potential nodes are

close to nodes on the default path. Therefore they can hear other transmissions with a

high probability and utilize these transmissions to coordinate between nodes in a cheap

and distributed way.

Cooperative Opportunistic Routing in Mobile Ad hoc Networks (CORMAN) [90] uses

a lightweight proactive source routing protocol so that each node has a complete knowledge

of how to forward data to all other nodes in the network at any time. Proactive source

routing (PSR) [91] is a kind of path finding and link-vector algorithms [76] [30]. When a

flow of data packets are transmitted towards the destination, the route information in an

intermediate node will be carried by data packets to other intermediate nodes. Each node

periodically exchanges route information, which converges after the number of iterations

equal to the network diameter. In this way, each node has a spanning tree of the network

indicating the shortest paths to all other nodes. If the link conditions change, packets

will be forwarded along the new route and such updated information will be rapidly

propagated upstream. Therefore, all upstream nodes learn about the new route at a

rate much faster than via periodic route exchanges. It takes advantage of opportunistic

routing and allows nodes that are not selected on the shortest paths to retransmit data

packets if they believe certain packets are missing.

Resilient Opportunistic Mesh Routing (ROMER) [97] tries to forward the packets

simultaneously along multiple paths. It incorporates a credit-based approach to limit

the number of transmissions that a packet is required to reach the destination along more

than two paths. The credit-based approach allows each packet to build its own forwarding

candidates on the fly. The packet can be forwarded on different paths offered to resist
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against channel fluctuation or node outages.

2.1.5 Analytical models of opportunistic routing

In most works found in the literature, simulation performance and test-bed are used

to prove the validation of opportunistic routing. Other research works on developing an

analytical model to quantify various transmission cost of opportunistic routing. Most an-

alytical models produce useful opportunistic forwarding metrics to compute the expected

number of transmissions in opportunistic routing, like regional opportunistic forwarding

metrics: EDP [24], OEOT [99] and end-to-end opportunistic forwarding metrics: ETX [23]

and EAX [102]. Other analytical models work on computing the optimal positions of the

candidates or developing an unified theoretical framework to quantify various transmission

cost of opportunistic routing. Especially, [66] [25] utilize the Markov Chain to formulate

the end-to-end transmission cost and provide insighting understanding of opportunistic

routing.

Expected Distance Progress (EDP) [24] considers the node positions and link delivery

probabilities. It uses the average distance advancement of the transmitted packets as

opportunisty metrics. Opportunistic Effective One-hop Throughput (OEOT) [99] char-

acterizes the tradeoff between packet advancement and the medium time cost under dif-

ferent transmission rates. It carries out a study on the impacts of multiple rates, as

well as candidate selection. Expected Any-path Transmission (EAX) [102] calculates the

expected number of transmission in multi-path transmission, it is a basic opportunistic

metric in opportunistic routing. Successful transmission rate (STR) [64] captures the

expected successful delivery probability from an intermediate node to the destination and
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considers the priorities of nodes based on this possibility. The least-cost opportunistic

routing (LCOR) [26] is a candidate selection algorithm to find out the minimum number

of transmission. The candidate selection algorithm is repeated over iterations and all

possible candidate nodes will be recalculated in each iteration, Therefore, it may cause

a large amount of computational delay for ad hoc network. The minimum transmission

selection (MTS) [65] is another candidate selection algorithm, which can minimize the ex-

pected number of transmission in LCOR by the perfect ACK assumption that all ACKs

will be successfully received by corresponding nodes. Compared to LCOR, it has shorter

execution time and has the almost same performance in terms of expected number of

transmissions.

Luk et al. [74] investigate the effects of node density, transmission power and packet

delivery rates by analyzing the average distance gain using lognormal shadowing and

Rayleigh fading models. They find that the efficiency of opportunistic routing is high

when radio propagation environment is dominated by lognormal shadowing. Opportunis-

tic routing does not perform well where the environment dominated by Rayleigh fading.

Cerda-Alabern et al. [16] [17] study the position of the candidates in order to maximize

the each transmission progress towards the destination. They propose an equation to

analyze the distances of the candidates in opportunistic routing such that per transmis-

sion progress towards the destination is maximized. Based on these maximum progress

distances, they compute the best position for candidate nodes in order to optimize the

packet forwarding towards the destination and also propose a lower bound to the expected

number of transmissions required to deliver one packet to destination.

Two analytical models have been proposed in [66] [25] using a Markov Chain to eval-

uate the performance of opportunistic routing under a perfect coordination, which means
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that more than one candidate receives a packet, only the highest priority node forwards

this packet while other candidates drop the same packet. [66] utilizes the random walk to

formulate the end-to-end transmission cost and also extends the random walk theory from

undirected graphs to directed graphs. The model proposed in [25] considers the failure of

transmission and limits the number of re-transmission for each intermediate node. Survey

of opportunistic routing protocols can be found in [11,19,43,73,81].

To our best knowledge, all previous analysis models assume that individual transmis-

sion of each packet will not affect other packet transmissions thus only analyze one packet

transmission in a network, batch-based transmissions are not considered. However, most

opportunistic routing protocols require transmission of a batch of packets together to

minimize the cost of transmission coordination. Therefore, In Chapter 3, we will propose

an analysis model based on the Markov chain to simulate the multi-packet progression

process in the network. Compared to previous analysis models of one single packet, our

model can consider the interference between packets in a batch and calculate both the

expected number of packet transmission and time slots.

2.2 Network coding

Network coding represents an innovative idea introduced by Ahlswede et al. in 2000 [2].

It has emerged as an important potential approach to the operation of communication

networks, especially wireless networks. The major benefit of network coding comes from

its ability to code data, across time and across flows. It makes data transmission over

lossy wireless networks robust and effective. There has been a rapid growth in the theory

and potential applications of network coding. These research can be summarized in two
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types of network coding: inter-flow network coding that mixes packets from different

sources and intra-flow network coding that is about fusing packets from the same source.

One of the most popular examples demonstrating the gain of inter-flow network coding

is presented in Figure 2.2.
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S A D

S A D

S A D

2

1 xor 21

1 1

1 xor 2

2

2

With network codingWithout network coding

Figure 2.2: An example of inter-flow network coding.

In this scenario, there are three nodes in this topology. The source node S and the

destination nodeD want to exchange packet 1 and 2 via the intermediate node A. Without

network coding, four transmissions are required to finish exchanging packets. Network

coding can decrease the number of transmissions to three. Specifically, the intermediate

node A mixes packets 1 and 2 together and sends a packet (1 xor 2) out. The S and D,

which already have packet 1 and 2 separately, are able to decode its required packet 2 and

1 respectively. In general, the linear network coding is different from the xor operation

by a linear combination of the data, which interprets data over some finite fields, e.g.,

GF (2s). It allows a much larger degree of flexibility to combine packets. With the linear
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network coding, coded packets are linear combinations of original packets. The coding

process of addition and multiplication is performed over the finite field. The finite field

or Galois field is a field that contains a finite number of elements. A finite field is a set on

which the operation of multiplication, addition, subtraction and division are defined and

satisfy certain basic rules [67]. Addition is the standard bitwise xor. Division is computed

by the Euclidian algorithm [28]. Both multiplication and division can be implemented

efficiently with s shifts and additions [89].

The primary work of this thesis deals with intra-flow network coding, where packets

from the same flow will be coded. Each coded packet contains parts of information from

different original packets; no coded packet is special or indispensable. Thus, even though

some packets are lost, the sender can keep forwarding coded packets without learning

which packets are lost. The subsequent coded packets can compensate for the losses of

previous coded packets. The detail discussion about intra-flow network coding as follows.

2.2.1 Encoding at source

Assume that the number of original packets are defined as O1,O2,...,On and each

packet consists of L bits. Original packets will be divided into several symbols with

the same length. When original packets to be combined do not have the same size,

or the length of the original packets can not be equally divided into symbols with the

same length, the shorter packets are padded with trailing 0s. The s consecutive bits of

a packets are defined as a symbol over the finite field GF (2s); therefore, each packet

consists of K = L/s symbols. In linear network coding, each packet through the network

is associated with a sequence of coefficients g1, g2, ..., gn in GF (2s). The coded packet
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is equal to C =
∑n

i=1 g
iOi. The summation will occur at every symbol position k; for

example, the coded symbol Ck =
∑n

i=1 g
iSi

k, where Sk and Ck is the kth position of

original symbol and coded symbol respectively. We show one example of the encoding

process in Figure 2.3.

After packets are coded together, each coded packet contains both a set of coefficients

G = {g1, g2, ..., gn}, called encoding vector and coded data C =
∑n

i=1 g
iOi, called infor-

mation vector [28]. The encoding vector is used by receivers to decode original packets.

For example, the encoding vector G = {0, ..., 1, ..., 0}, where the 1 is at the ith position.

It means that the information vector is equal to the original packet Oi.

In the linear network coding, the selection of the coefficients for each linear combina-

tion is an important issue for practical considerations. A simple algorithm is that each

node in the network selects random coefficients over the field GF (2s) in a completely

independent and decentralized manner [37]. With the random network coding, there is

a still certain probability of selecting linearly dependent combinations. However, this

probability can be reduced by choosing large field size 2s [28]. Simulation results show

that even for small field sizes (for example, s = 8), this probability is still negligible [93].

2.2.2 Recoding at intermediate nodes

The encoding process in linear network coding can be performed recursively. There-

fore, the intermediate node can recode the coded packet. Consider that a node receives a

set of coded packets (G1, C1), ..., (Gm, Cm), shown in Figure 2.4, where Gm is the encoding

vector and Cm is the information vector. This intermediate node will generate a new set

of coefficients H = {h1, h2, ..., hm} and compute the linear combination RC =
∑m

i=1 h
iCi.
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Figure 2.3: An example of encoding in network coding.

The new corresponding encoding vector G′ is not simply equal to H, since the coefficients

need to be generated with respect to the original packet O1, O2, ..., On, the new encoding

vector will be G′ =
∑m

i=1 h
iGi [28]. This operation can be repeated at intermediate nodes

several times in the network.

2.2.3 Decoding at destination

Assume that the destination node receives a set of coded packets (G1, C1), ..., (Gm, Cm).

In order to decode the original packets, the destination node needs to solve the linear sys-

tem Ci =
∑n

i=1G
iOi, where Gi = g1i · · · gni .

C1

...

Cm

 =


g11 · · · gn1

...

g1m · · · gnm

×

O1

...

On

 (2.3)
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Figure 2.4: An example of recoded in network coding.

The unknowns areOi and this system is a linear system withm equations and n unknowns.

If the number of received packets in the destination node is equal to or larger than the

number of unknowns, the destination has a chance of decoding all original packets. Here,

the decoding condition that the number of received packets is larger than the number of

unknowns (m < n) is not sufficient, because some of the coded packets may be linearly

dependent.

The destination node will solve a set of linear equations. This process can be done

as follows. It stores the encoded vectors from the received coded packets in a decoding

matrix [28]. When an encoded packet is received, the encoded vector of this packet will

be inserted as the last row of the decoding matrix. Then this matrix will be transformed

based on current the encoded vectors, the matrix will be transformed to a reduced row

echelon form using Gaussian elimination, where the leading term of each row is 1 and the

position of the leading terms moves to the right. A received packet is called innovative

if its encoded vector increases the rank of the matrix. As soon as the matrix contains n

rows, where n is number of original packets, the destination node can decode all original
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Table 2.1: Definitions used in the thesis

Term Definition

Original Packet An uncoded packet.

Coded Packet The linear combination of original packets or coded packets.

Innovative Packet
A packet is innovative to a node if this packet is linearly independent

from its previously received coded packets.

Coefficient A value gi in field GF (2s) for coding or recoding.

Encoding Vector A set of coefficients carried by each coded packet.

Information Vector The coded information from one or more original packets.

packets. The size of the decoding matrix has great impact on the decoding delay at

the destination [22]. For practical considerations, this size of decoding matrix should be

limited. Therefore, packets are usually grouped into batches or generations, and only

packets of the same generation can be combined. The size of batches also has significant

impact on the performance of network coding [29].

2.2.4 Network coding protocols

The research of network coding starts after the seminal paper of network information

flow by Ahlswede et al. [2]. They propose a new idea that intermediate nodes in the

networks do not have to forward the same packets as the source generated, instead, they

can forward any combination of these packets by mixing them. It establishes the value

of network coding and improves theoretical bounds on the capacity of such networks.

The following research [5,47,56,63,68,78,98] shows that the linear coding is sufficient to
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achieve the maximun network capacity in multicast traffic transmissions.

Jaggi et al. [46] propose deterministic polynomial time algorithms to design linear

codes for directed acyclic graphs with edges of unit capacity. It proves that the cod-

ing and decoding can be done in polynomial time. The efficiency of the random linear

network coding are proved by [38]. It presents a distributed random linear network cod-

ing approach for transmissions and compression of information from multi-source. Each

node will independently and randomly select linear mappings from data packet over the

finite field. The authors demonstrate that this approach can take advantage of redundant

network capacity to improve success decoding probabilities and robustness.

Subsequently, researchers have extended network coding to a variety of areas, includ-

ing the security [14, 45] and the distributed storage [48]. Additionally, Gkantsidis et

al. [32] show how to extend the ideas of network coding to design a peer-to-peer system

for content distribution. They improve both the speed of content distribution and the

reliability of the system. Some research uses network coding to mix symbols instead

of packets [53, 95, 101], i.e. analog network coding [53] encourages strategically picked

senders to interfere. Instead of forwarding correct packets, intermediate node can forward

the interfering signals. The destination leverages network-level information to cancel the

interference and recovers the signal. Their work show that forwarding signals instead of

packets can double the capacity of the network. A survey on unicast, multicast and broad-

cast applications of network coding for wireless networks can be found in [9,27,41,75,77].
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2.3 Opportunistic routing with network coding

2.3.1 Intra-flow network coding

Generally, opportunistic routing allows multiple nodes to overhear packet transmis-

sions and be involved in further forwarding packets. With intra-flow network coding,

packets from the same flow are coded; each coded packet is equally beneficial and inher-

ently different. Since no special coded packet is dispensable, the deficit information from

lost packets can be easily filled by following coded packets. The combination of these two

ideas in a natural fashion to provide opportunistic routing without a coordination and

exploit opportunisty gains inherent in wireless media. This idea has received considerable

attention from the research community and a significant amount of research has been

conducted on different points of view [32,51,54,58,69,70,94].

Despite the simplicity of jointing opportunistic routing with network coding, one chal-

lenge of much of the literature on this area is how many coded packets should be trans-

mitted in each forwarder. An ideal number of coded packets can not only avoid duplicate

transmissions but also guarantee the successful decoding. There are two ways to estimate

the number of coded packets. The first type computes the offline expected number of

transmissions based on the average link loss rates. In such case, end-to-end feedback is

required to acknowledge the successful decoding. The second type requires intermediate

nodes to detect the real-time link quality by hop-by-hop feedback, which will piggyback

on data packets. We will discuss these two types of protocols in section 2.3.1.1 and

section 2.3.1.2, shown in Figure 2.5.
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Figure 2.5: Opportunistic Routing with intra-flow network coding protocols.

2.3.1.1 End-to-end feedback based forwarding schedule

MORE (Mac-independent Opportunistic Routing and Encoding) is a practical oppor-

tunistic routing protocol with intra-flow network coding [18]. It is the first paper that

works on opportunistic routing with network coding and has a seminal effect in this area.

MORE selects potential candidates at the source before data transmissions, these candi-

dates are ‘closer’ to the destination than the source. Then data packets from the upper

layer will be grouped into batches and coded packets will be generated according to the

packets in that batch. Coded packets will be forwarded with the order of batch index, in

which the transmission of the next batch of coded packets begins after all coded packets

from the previous batch reach the destination. The source node keeps transmitting the

current batch via candidate nodes until the destination node can decode all packets. One

challenge of this mechanism is how to avoid duplicate transmissions and also guaran-

tee reliable transmissions. MORE proposes a transmission credit system to control the

number of data transmissions, which is calculated based on how effective it would be in

forwarding coded packets to downstream nodes. The transmission credit system has three
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important aspects:

- For each node j, calculate the number of packets that j must forward:

Li =
∑
i>j

(zi(1− εij)
∏
k<j

εik) (2.4)

Note that i < j denote that node i is closer to the destination than node j (i has a

smaller ETX than j) and εik denote the loss probability in sending a packet from i

to j.

- The expected number of transmissions that j must make is:

zj =
Lj

(1−
∏

k<j εjk)
(2.5)

- The TXcredit of node j:

TXcreditj =
zj∑

i>j zi(1− εij)
(2.6)

The intermediate node j keeps a credit counter and increases the counter by its

TXcredit when receiving an innovative coded packet. The intermediate node sends

a coded packet when the counter is positive. After the node sends a coded packet,

it decreases the counter by 1.

MORE also supports the multicast transmission, which has three important modifi-

cations compared to the unicast transmission. First, the candidate nodes are the union

of the candidates of different unicast traffic. Second, the transmission credit value is

calculated from the maximum of transmission rates of different unicast traffic. Third,

the source transmits the next batch until the packets in the previous batch reach all

destinations.
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The main drawback of MORE is that the source simply keeps transmitting coded

packets belonging to one batch until the acknowledgment of this batch from the desti-

nation has been received. The transmission of the next batch will be suspended while

awaiting the acknowledgment. It is a ‘stop-and-wait’ design, which is unable to be ap-

plied in large scale networks. CodeOR (Coding in Opportunistic Routing) [69] proposes

a mathematical analysis, which demonstrates that this ‘stop-and-wait’ mechanism slows

down the network traffic, especially in a topology with the large or long diameter. Thus,

in CodeOR, it allows the source to transmit multiple batches in the way of a sliding win-

dow to alleviate this problem. The proper window size is estimated by applying the ideas

of TCP flow control. But it performs the flow control on batches rather than on packets,

where the sending window limits the number of outstanding batches that the source can

transmit at any time in the network.

It studies the impact of the window size on throughput and estimates the proper

window size to be approximately equal to the delay-bandwidth product between the

source and the destination. Since multiple batches of coded packets can simultaneously

transmit in the network, it is intuitive that CodeOR outperforms MORE on large-scale

networks.

PipelineOR [72], inspired by MORE, uses the same coordination mechanism. It allows

the intermediate nodes to be responsible for the packet transmission on behalf of the

source when these intermediate nodes receive all packets in a batch. The source node can

transmit the next batch of packets when more than two intermediate nodes receive all

packets from the previous batch. Thus, the batches of packets can be transmitted in a

pipelined manner.

SlideOR proposes the online network coding for opportunistic routing [71], in which
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the most useful packets will be encoded and other redundant information can be easily

eliminated. SlideOR, instead of coding packets from separate batch, creates a sliding

window to encode most useful packets. Original packets from a sliding window are coded

together; since sliding windows can overlap with each other, a coded packet from one

sliding window may be useful towards decoding the packets from another sliding window.

It uses a ‘seen’ mechanism to differentiate how a useful packet. If a packet is already

‘seen’ instead of being decoded, this packet will not be encoded by the source any more.

In Figure 2.6, the sender transmits 6 packets, the second transmission is lost and the

decoding matrix is shown on the left. The receiver can decode packets 1, 2 and 3. Even

though packets 4 and 5 cannot be decoded right now, they can be decoded after other

‘unseen’ packets arrival. Therefore, the sender only needs to send the unseen packet 6.

Figure 2.6: An example of online network coding in SlideOR.

MIXIT [54] operates network coding on small groups of bits, called symbols. A packet

consists of multiple symbols and a symbol is the smallest transmission unit over the

wireless link. MIXIT allows intermediate nodes to opportunistically transmit groups of

coded symbols to their destination. With such a simple modification, it can utilize correct

symbols in a corrupted packet, therefore achieve high throughput. In other research,

38



each intermediate node forwards a packet only if this packet has no errors. In contrast,

MIXIT takes a much looser approach: the intermediate nodes do not attempt to recover

from any errors by themselves. It incorporates an end-to-end error correction component

that the destination will use to correct errors and decode original packets. Even none

of intermediate nodes receives the whole packet correctly, as long as all the individual

symbols in this packet are received correctly by intermediate nodes separately, these

symbols can be use to decoded original packets at the destination. One example is shown

in Figure 2.7. The source node sends two packets and two intermediate nodes receive

these two packets with errors. A shaded cell represents an error symbol. Intermediate

nodes can still recode the correct symbols and send them to the destination.
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Figure 2.7: An example of symbol-level network coding.

Garrido et al. [31] propose a Cross-Layer Opportunistic Routing (CLOR) to balance

the transmissions between intermediate nodes based on the quality of wireless links. The

transmission opportunity of an intermediate node not only depends on the quality of the

link from itself to a downstream node, but is also affected by the proportion of this link

quality in the sum of the quality for all links in the network. The transmission opportunity
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of a node i is calculated by

Pi =
1

FERr
i

× 1∑N
j=1(

1
FERr

j
)−r

(2.7)

The FER is frame error rate for the link. The parameter r is the delivery ratio from a

particular sender at any time. The r parameter in this equation is to give a priority to

high quality links. The larger value it is, the higher transmission opportunity is given to

this link.

2.3.1.2 Hop-by-hop feedback based forwarding schedule

MORE and similar protocols compute offline the expected number of transmissions

before data transmissions by periodic measurements of average link loss rates. Although

attractive due to the simply coordination mechanism and low overhead, these solutions

may suffer performance degradation in dynamic wireless networks where the link quality

changes frequently. The performance of these solutions heavily depends on the accuracy of

the measurement. CCACK (Cumulative Coded ACKnowledgment) [58] provides real-time

feedback to estimate the link loss rate between intermediate nodes. It can acknowledge

received coded packets to upstream nodes with negligible overhead by utilizing a null

space-based (NSB) coded feedback vector to represent the entire decoding matrix.
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Figure 2.8: An example of null space-based (NSB) coded feedback.
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In CCACK, each coded packet has two coding vectors: forwarding coding vector

and ACK coding vector. The forwarding coding vector is used to recode or decode the

payload of data packets by any downstream node or the destination respectively. The

ACK coding vector is used by the upstream node to check whether data packets are

received by downstream nodes. The inner product of the ACK coding vector with the

encoding vector of each received coded packet is zero. i.e., if a vector x is from the null

space of the decoding matrix A, then AxT = 0, where xT is the transpose of x. In Figure

2.8, the left graph shows three coded packets with corresponding forwarding vectors.

The right graph shows the ACK coding vector according to two coded packets. Sender

s transmits three coded packets to Receiver r and two of them are successful received.

Receiver r will compute the null space for received coded packets, pick one vector from the

null space and send it back to s. Then sender s multiples this vector with the forwarding

vector of each coded packet it has sent. If all results are zero, Sender s can infer that all

packets have been received with a high probability. Otherwise, it keeps sending packets

to the receivers. In this case, the third coded packet is lost and the inner product of

the third forwarding vector with the ACK vector is not zero. With such a mechanism,

CCACK can make real-time detection of the link quality and dynamically update the

number of coded packets to be transmitted in each forwarder.

UNIV [55] considers the correlation among the wireless links and proves the number of

coded packets to be sent not only depends on the link quality, but also on the correlation

among the links. In a general network, the links will have different correlations and the

correlations can change over time. UNIV studies three types of correlation. The first

is that the links are independent, in which the reception process is independent among

the links. The second one is that the links are positively correlated or correlated, which
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means that if one link is inactive, the other one will be inactive. The third case is that the

links are negatively correlated or uncorrelated, which means that if one link is active, the

other one will be inactive. Their work estimates the link quality in these three correlation

cases and considers the coded feedback approach in different channel conditions.

The hop-by-hop feedback from downstream nodes can help upstream nodes to detect

the link condition and improve the utilization of limited network resources. However,

any node could be selfish and let itself deviate from the communication protocol if this

deviation is helpful to itself. Therefore, Chen et al. [21] propose an incentive-compatible

communication protocol to make nodes follow the protocol faithfully. They model the

packet forwarding procedure by a game-theoretic model. The players of this game are the

nodes that are following the MORE protocol to forward the packets. The game is divided

into stages, where each stage represents a very short period of network transmissions. The

forwarding scheme consists of two parts: the data transmission as MORE and the report

transmission after a short period of data transmissions. The report is used to make sure

that each intermediate node faithfully sends the required number of data packets.

Radunovic et al. [82] propose an optimization framework for opportunistic routing

based on network utility maximization. It uses network coding to simplify the routing

problem and analyzes the flow control, routing, scheduling, and rate adaptation schemes

in opportunistic routing. This framework considers a primal-dual problem. The primal

formula analyzes the optimization problem as a function of the transmission rates of

various flows in the network. The dual formula uses the queue lengths in each node as

variables. The framework derives a credit mechanism, a TCP-like sliding window model,

to decide how many packets should be forwarded by each node. This credit mechanism

guarantees that the destination will receive as enough linear combinations of coded packets
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as the number of original packets. It also considers the flow control algorithm and analyzes

fairness to maximize the aggregate utility of end-to-end flows.

Soldo et al. [86] study the optimization problem of opportunistic routing and conges-

tion control in wireless mesh networks with intra-session network coding. The optimiza-

tion problem aims at maximizing the aggregate utility as a function of the number of

linearly independent packets. The dual problems are decomposed to three parts: conges-

tion control, wireless interference and the routing selection. To achieve the network utility

maximization, this framework requires two types of feedback: the end-to-end feedback to

adjust the sending rate of the source based on what is actually received by the destina-

tion. The hop-by-hop feedback to guarantee that the information transmitted from the

upstream nodes are useful to downstream nodes.

MIC-NCOR [15] is a candidate selection algorithm to allocate traffic among candidate

nodes and approach optimal performance. It creates a relationship tree to describe the

child-parent relations along the path from the source to the destination. The cost of

a node is the sum of the costs of its constituent hyperlinks for delivering one unit of

information from the source to itself. The calculation of a given node is iteratively made

from the destination and back to the source. These nodes that create the path with

the minimum cost can be chosen as candidate nodes. For more details on opportunistic

routing with intra-flow network coding, we refer the readers to [63,92].

2.3.2 Inter-flow network coding

COPE [8] is the prominent study in inter-flow network coding. It is the first network

coding architecture that supports unicast transmissions by performing coding of packets
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from different sources. COPE incorporates three main techniques. First is opportunis-

tic listening. Each node can overhear packets from the neighbours’ transmissions and

keep these packets for a while to decode following coded packets. Second is opportunis-

tic coding. COPE aims to maximize the number of original packets delivered in a single

transmission, the sender should ensure that the receiver has enough information to decode

original packets. Packets from multiple unicast flows may be coded together at some inter-

mediate nodes and decode at the next hop where the paths will diverage. Opportunistic

coding will try to guarantee the coded packets can be decoded successfully. Otherwise,

unneeded data will be forwarded to areas where there is no interested receivers. Third is

about learning neighbour state, it is used by nodes to exchange information about what

packets their neighbours have.

In COPE, the paths of flows are decided by the routing protocol. Hence, the coding

opportunities depend on the current topologies formed on the paths. Coding opportuni-

ties in this case are limited by the fixed path routing. BEND [100], as an advancement

of COPE, is the first attempt to combine opportunistic forwarding and practical net-

work coding in wireless mesh networks. It can employ the diversity of different potential

forwarders and unify the needs of traffic separation and concentration. In multi-hop wire-

less mesh networks, traffic flows should be separated to minimize the interference among

them. Conversely, for network coding to function, the same traffic flows are expected to

be jointed at some points. These two needs were difficult to balance before. Therefore,

BEND proposes a second-next-hop coding mechanism where a node will combine two

packets only if the next hop of the first packet is the previous hop of the second packet

or one of its neighbours. To increase traffic separation, BEND defines helper nodes that

overheard the packets but are not selected as the next hop in the route. These helper
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nodes can receive original packets, encode these packets and forward them if the selected

nodes do not receive packets. However, these helper nodes are only allowed to encode

original packets. If they receive a coded packet, they need to discard it. In addition, a

helper node is allowed to forward packets only if this helper is one-hop away from the

selected node. This guarantees that the packet propagation is restricted within a band

along the route without flooding in the network.

Inter-flow Network Coding based Opportunistic Routing (INCOR) [103] is designed

to further reduce the expected number of transmissions for each packet. It presents

a new metric called Coding-based Expected Transmission Count (CETX) to determine

the priority of the forwarders. The CETX metric computes the expected transmission

number required to deliver one packet to a destination when inter-flow network coding

is incorporated. NC-MAC [6] improves the efficiency of coding decisions by verifying the

decoding of packets before they are transmitted. The scheme focuses on improving correct

decoding probability at the destination.

The coding-aware opportunistic routing mechanism will take into account available

coding opportunities when they make routing decision. These routing protocols will se-

lect routes in a way that the flows intersect at some joint nodes to maximize the probability

of the packets of multiple flows being combined together. However, if the flows are close

to each other, the interference at the joint nodes may be a bottleneck in the network

and lead to degrading the performance. Therefore, coding-aware opportunistic routing

protocols need to consider the trade-off between coding opportunities and the interfer-

ence. CAOR (Coding Aware Opportunistic Routing) [95] can improve the performance

by selecting routes with joint intermediate nodes for different flows. It proposes a local-

ized coding-aware opportunistic routing mechanism, which aims at increasing the coding
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opportunities when multiple simultaneous unicast flows exist. The amount of coding op-

portunities is measured by how many original packets can be successfully delivered in a

single transmission.

COPE has two fundamental limitations: the coding opportunity is crucially dependent

on the established routes and the coding structure in COPE is limited within a two-hop

region only. DCAR (Distributed Coding-Aware Routing) [61] is distributed coding-aware

routing system for wireless networks. It incorporates potential coding opportunities into

route selection using the Coding-aware Routing Metric (CRM). The metric takes into

account the ‘free-ride’ benefit of the coding-possible paths: if a new flow can be encoded

with some existing flows, it can free-ride on the bandwidth used by the existing flows. The

source will collect route information about other flows and the topology before the data

transmissions. Therefore, DCAR knows the coding opportunities on the entire path and

eliminates the two-hop coding limitation in COPE. However, DCAR cannot guarantee

successful decoding of coded packets when more than two flows are coded together or

two flows intersect in more than one node. Therefore, Free-ride-Oriented Routing Metric

(FORM) [34] is proposed to iteratively recalculate the route for all existing flows and

attempts to reach the global optimality of the entire network. More interesting papers in

this area, readers are referred to [36, 39, 42, 49, 57, 85, 96, 103] for comprehensive reviews

and taxonomy.

2.3.3 Intra- and inter-flow network coding

I2NC [84] and CORE [59] combine inter-session and intra-session network coding.

Both of them borrow the idea of intra-flow network coding from MORE and combine
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it with idea of COPE to improve the unreliable overhearing mechanism in opportunistic

routing. I2NC uses intra-flow network coding to combine packets within the same flow.

It makes packet transmissions resilient to loss and intermediate nodes can operate coded

packets without knowledge of the decoding buffers of their neighbours. Based only on the

knowledge of the loss rates on each link, intermediate nodes can make a decision on how

much coded packets to create in each flow and what percentage of flows to code together.

CORE (Coding-aware Opportunistic Routing mEchanism) allows nodes in the network

to setup inter-flow coding regions where packets from different flows can be XORed.

Packets from the same flow use random linear network coding for intra-flow coding. It

identifies regions where two or more flows intersect and makes inter-flow network coding

for each flow at the identified regions. Within the identified regions, CORE combines

packets of multiple flows using inter-flow network coding, then separates them before

leaving the region. Furthermore, CORE requires each node to signal to its neighbours

when it receives all degrees of freedom, i.e., it has enough coded packets to recover the

original data. This feedback can reduce energy consumption in the coding region and

to allow next batches of coded packets to be sent into that region. FlexONC [52] joint

cooperative forwarding and network coding with rrecise encoding conditions, it increases

the coding opportunities and combines packets of different flows that are overly optimistic

and would affect the network performance adversely.

CodePipe [62] is a reliable multicast protocol with both intra- and inter-flow network

coding. It proposes a destination-cooperation mechanism for multicast transmissions.

Once a destination has received enough coded packets for decoding, this destination will

proactively participate in packet transmissions by cooperation with the source for other

destinations.
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2.4 Network coding in TCP

A number of recent papers have utilized network coding to improve TCP through-

put. In particular, Huang et al. [40] introduce inter-flow network coding to TCP traffic,

where data segments in one direction and ACK segments in the opposite direction can

be coded at intermediate nodes. The simulation shows that making a small delay at each

intermediate node can increase the coding opportunity and increase the TCP through-

put. ComboCoding [20] uses both inter- and intra-flow networking to support TCP with

deterministic routing. The inter-flow coding is done between the data flows of the two

directions of the same TCP session. The intra-flow coding is based on random linear

coding serving as a forward-error correction mechanism. It has an adaptive redundancy

to overcome variable packet loss rates over wireless links.

TCP/NC [88] incorporates intra-flow network coding into the TCP-compatible sliding-

window approach. It reuses the congestion control principle of TCP where the number of

packets involved in transmissions cannot exceed the congestion window size. Whenever

the source is allowed to transmit, it sends a random linear combination of all packets in

the congestion window. Such a variant of TCP modifies the ACK feedback mechanism.

The destination acknowledges the degree of freedom and not original packets. If a received

packet increases the degree of freedom in the decoding matrix, this packet is an innovative

packet and defines as being ‘seen’ by the destination. The destination node will generate

an acknowledgment whenever a coded packet is seen instead of producing an original

packet.

TCP-FNC [87] introduces online network coding to TCP/NC, where the coded packets

is restricted to a small group of packets in the congestion window. It can efficiently control
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the waiting time of decoding when the congestion window is large. Furthermore, the

progressive decoding algorithm in a small group of coded packets can reduce computation

delay. It can be applied to loss-based congestion control, but it does not take advantage

of opportunistic routing. Since TCP-FNC is based on traditional IP forwarding, it is

easily affected by link quality variation. TCP-VON [7] also incorporates online network

coding into TCP. In TCP-VON, the sender transmits redundant coded packets when

it detects packet losses from an acknowledgement. Otherwise, it transmits innovative

coded packets. It can dynamically update the transmission rate of data packets based

on the acknowledgement. However, these protocols are variants of RTT-based congestion

control TCP protocols, e.g., Vegas, which limits their applications in practice since most

TCP protocols employ loss-based congestion, e.g., Reno. Therefore, we will propose an

adaptation layer functioning below TCP Reno in Chapter 3. With this adaptation layer,

TCP Reno does not make any change to itself and it can take advantage of both network

coding and opportunistic routing.
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Table 2.2: A summary of opportunistic routing and network coding studies.

Protocol
TR/
OR1 NC

Intra/
Inter

UDP/
TCP

Coding-
aware

Multicast/
Unicast2

Evaluation
method3

ExOR OR No - UDP - Unicast Experiment

SOAR OR No - UDP - Unicast
Experiment
Simulation

CORMAN OR No - UDP - Unicast Simulation

SDF OR No - UDP - Unicast Simulation

MORE OR Yes Intra UDP No Both
Experiment

Analytical Model

CCACK OR Yes Intra UDP No Both
Simulation

Analytical Model

CodeOR OR Yes Intra UDP No Unicast Simulation

SlideOR OR Yes Intra UDP No Unicast Simulation

MIXIT OR Yes Intra UDP No Unicast Experiment

ONCR OR Yes Intra UDP No Unicast
Experiment

Analytical Model

NCOR OR Yes Intra UDP No Unicast Simulation

[51] TR Yes Intra Both No Unicast Experiment

COPE TR Yes Inter Both No Unicast Experiment

BEND OR Yes Inter UDP No Unicast Simulation

INCOR OR Yes Inter UDP No Unicast Simulation

NC-MAC OR Yes Inter UDP No Unicast
Simulation

Analytical Model

CAOR OR Yes Inter UDP Yes Unicast Simulation

DCAR TR Yes Inter UDP Yes Unicast
Simulation

Analytical Model

FORM TR Yes Inter UDP Yes Unicast
Simulation

Analytical Model

CORE TR Yes Both UDP No Unicast
Experiment
Simulation

I2NC TR Yes Both Both No Unicast
Simulation

Analytical Model

CodePipe OR Yes Both UDP No Multicast Simulation

[40] TR Yes Inter TCP No Unicast Experiment

TCP/NC TR Yes Intra TCP No Unicast
Simulation

Analytical Model

TCP-FNC TR Yes Intra TCP No Unicast
Simulation

Analytical Model

TCP-VON TR Yes Intra TCP No Unicast Simulation

ComboCoding TR Yes Both TCP No Unicast Simulation

1Traditional Routing/ Opportunistic Routing.
2Unicast: one source to one destination. Multicast: one source to multiple destinations
3Evaluation methods include: Experiment, Simulation and Analytical Model.



Chapter 3

Analysis model for batch-based

opportunistic routing

3.1 Background

In opportunistic routing, the next-hop forwarder is decided after the sender broad-

casts the data packets. Multiple downstream nodes in addition to that matching receiver

will receive these packets and be potential forwarders. One of these potential forwarders,

which is the ‘closest’ to the destination, will be selected to forward packets. The on-the-fly

selection of the next-hop is the fundamental principle of the opportunistic routing [25].

Since multiple downstream nodes are potential next-hop forwarders, opportunistic rout-

ings can reduce the possibilities of re-constructing paths or re-transmitting packets due to

link breakage on a pre-selected path. In opportunistic routing, a set of intermediate nodes

between a source and a destination can be selected as potential forwarders. These selected

nodes are called candidate nodes. Candidate selection algorithms choose the candidate
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nodes and give the proper priority to each candidate. After the selection of candidate

nodes, opportunistic routing allows any selected node to forward packets according to the

coordination algorithm, which is used by nodes to avoid duplicate transmissions and also

guarantee that at least one node will forward packets to downstream nodes.

With a coordination algorithm, all nodes that have received data packets from up-

stream nodes will decide whether to forward packets, discard packets, or wait for others

transmissions. To coordinate transmissions, a node can send extra coordination messages

or combine coordination message with data packets. The coordination message informs

other nodes whether it has received packets or not; it is an accurate way to make a co-

ordination between each node given that the coordination message is not lost. Extra

coordination messages require network resources and may slow down the transmission of

data packets because data packets are usually sent out only after a node receives the coor-

dination message. In addition to sending extra coordination messages, most opportunistic

routing protocols [10] [83] [97] join coordination messages with data packets instead. To

increase the successfully receiving possibility of coordination information, they transmit

a batch of data packets together with a same coordination message. The coordination

messages can be received if only one of the data packets in that batch is received.

In batch-based opportunistic routing, the source node transmits a batch of packets

to downstream nodes at the beginning of each round. After the source node finishes the

transmission of packets in that batch, each candidate will prepare to forward its received

fragment of that batch. A same coordination message will be attached in each packet of

that fragment; this coordination message carries information about whether any packet in

that batch has received by any higher priority candidate. The transmission of each round

will begin from the highest-priority nodes who receive any packet in that batch back to the
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source node. Since high-priority candidates forward packets first, low-priority nodes can

avoid duplicate transmissions. The detailed description of the batch-based coordination

can be found in [10]. When a candidate is transmitting a fragment of that batch, all

neighbour nodes will delay their transmissions by setting a timer to avoid interference.

Candidates, which are far away to interfere each other, are scheduled to forward received

packets at the same time; this pipelined transmission is a general situation in opportunistic

routing.

Previous analytical models assume that the packet transmission is independent and

only analyze a single packet transmission in the network. Such studies focus on the end-

to-end transmission cost of a packet and accumulate this cost for a batch of packets.

They only analyze the performance of the network in terms of the expected number of

transmissions but not time slots since accumulating the time slot of a packet for a batch of

packets would yield a poor prediction where packets are transmitted in a pipelined manner.

Furthermore, the batch-based coordination conflicts some of the inherent features of the

802.11 MAC, which may prevent spatial channel reuse and thus underutilize wireless

media [18]. The analysis of a single packet transmission will ignore this problem and

explicitly emphasise the advantage of opportunistic routing. A more accurate analysis

model is needed to better quantify the benefits and the cost of opportunistic routing and

investigate the effect of batch-based transmissions. Indeed, such analysis model can be

considered as an important next step towards modelling general scenarios of opportunistic

routing.

In this chapter, we will propose an analytical model based on the Markov chain to

evaluate the performance of opportunistic routing. Compared to previous analytical mod-

els which only analyze a single packet transmission in a network. Our model has following
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three contributions:

• In wireless mesh network, nodes can make transmissions simultaneously if there are

few destructive interference. Our models simulate the pipelined transmission and

analyze both the expected number of transmission and time slots for a batch of

packets.

• In opportunistic routing, each sender can have multiple potential receivers instead

of a pre-decided receiver in traditional routing. Therefore, if two senders decide to

transmit packets at the same time, they should consider the interference for multiple

receivers. In our model, we will introduce pipeline set to consider the interference

for multiple potential receivers.

• Opportunistic routing transmits a batch of packets together which may prevent

spatial channel reuse. We will discuss the situation where opportunistic routing

sacrifices from simultaneously transmissions to deliver opportunistic gains.

3.2 Description of model

In this section, we describe how to model the progression of packet transmissions in

the network with a Discrete Time Markov Chain. We map the network state of the

packet advancement progression with a Markov chain because the conditional probability

distribution of a future network state depends only on the present network state and

has no dependence of the sequence of states before the present state. The memoryless

characteristic of the Markov chain is similar to the packet transmission progression of

opportunistic routing if there is a strong coordination scheme. Here, a strong coordination
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in opportunistic routing means all nodes can receive the coordination message correctly.

Therefore, if more than one candidate receives a packet, only the highest priority node

forwards this packet while other candidates drop the same packet. It is also the same

assumption used in previous analytical models [66] [25]. As we see, the properties of

packet transmissions are very similar to state transitions of a Markov chain. Therefore,

we use a Markov chain to analyze the performance of opportunistic routing.

Coordination and candidate selection are defined as fundamental elements of oppor-

tunistic routing. Since the ExOR coordination scheme is widely investigated, we validate

the state transition of our Markov chain by it. Our Markov model is independent from

the candidate selection algorithm. In the following description, we use the same candidate

selection algorithm as ExOR. In fact, it supports different candidate selection algorithms.

After choosing a candidate selection algorithm, the number of candidates and the packet

success rate of a link between each candidate are only required input parameters in our

model.

3.2.1 Markov model of packet advancement progress

Here, we illustrate how we can model the packet advancement progression using a

Markov chain. In order to simplify the description of our model, we will give a general

model, then illustrate the model with a simple example.

The general description of our model is defined as follows. For a network with N

nodes, allowing B packets to be transmitted in one batch, and the maximum number

of candidate forwarders of C. The network state can be represented as 〈~P ,~t〉, with

~P = 〈v1, v2, v3, ..., vB〉 and ~t = 〈t1, t2, ..., ti, ..., tB〉. Specifically, ~P denotes the progression
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of each packet and vi represents that packet i is received by node v, which is the highest-

priority node having received this packet. Notation ~t is a binary vector, and its dimension

is also the batch size B. Each element represents whether the corresponding packet will

be transmitted or not, i.e. ti = 1 for packet i being transmitted next. To consider the

expected number of transmissions needed to transport a batch of packets, each network

state only has one packet to be transmitted next. That is, ti ∈ {0, 1} (i = 1, 2, ..., B)

and
∑B

i=1 ti = 1. We use a special vector ~t = 〈0, 0, 0, ..., 0〉 to denote the network

state where all packets have reached the destination. Thus, the initial network state is

〈〈1, 1, 1, ..., 1〉, 〈1, 0, 0, ..., 0〉〉 and the final network state is 〈〈n, n, n, ..., n〉, 〈0, 0, 0, ..., 0〉〉.

The total number of valid states is N = NB×B−NB−1×B+1. Specifically, the number

of all combinations of the values is NB ×B. NB−1×B of these combinations are invalid,

i.e. those taking the form of vi = n and ti = 1 for i = 1, 2, . . . , B, where packet i has

reached the destination and no longer needs to be transmitted. Note that a more compact

representation of the network state would be 〈~P , t〉, where t ∈ {1, 2, . . . , B} is the index

of the packet to be transmitted next. However, we chose the binary vector form so that

we can use the same notation to analyze the time slot metric where each network state

can have more than one packet to be transmitted as we will see shortly.

One example to illustrate the network state is shown in Figure 3.1. It is a linear

topology with N = 4, B = 2 and C = 2. The transmission range is up to two hops.

Assuming that the packet success rate in one-hop link is p1 and in two-hop link is p2.

Therefore, each transmission can reach as far as two-hop down from the sender with the

possibility of P2 = p2. The possibility of reaching only one-hop away is P1 = p1× (1− p2)

and the transmission fails to reach any node with possibility of P0 = (1−p1)×(1−p2). In

the figure, the current packet transmission progressing of the network can be represented
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by 〈〈2, 3〉, 〈0, 1〉〉. Specifically, 〈2, 3〉 represents the current network state where packet

1 reaches node 2 and packet 2 reaches node 3. The second element 〈0, 1〉 describes the

schedule of opportunistic forwarding, where packet 2 is scheduled to be transmitted next.

Si:

P1 P2

41 2 3

Figure 3.1: An example of network state.

(a)

<1,1>,<1,0> <2,1>,<1,0> <3,1>,<1,0> <4,1>,<1,0>

<4,4>,<0,0>
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<1,4>,<1,0>

<1,1>,<0,1> <2,1>,<0,1> <3,1>,<0,1>
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<1,4>,<1,0>

<1,3>,<1,0>

<1,2>,<1,0>

<1,1>,<1,0>

(b)

<2,1>,<1,0> <3,1>,<1,0> <4,1>,<1,0>

<3,1>,<0,1><2,1>,<0,1><1,1>,<0,1>

<4,4>,<0,0>
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(c)

<4,1>,<1,0><3,1>,<1,0><2,1>,<1,0><1,1>,<1,0>

<1,2>,<1,0>

<1,3>,<1,0>

<1,4>,<1,0>

<1,1>,<0,1> <2,1>,<0,1> <3,1>,<0,1> <4,1>,<0,1>

<4,4>,<0,0>

Figure 3.2: The first three steps of state transitions in a Markov chain.

Each state in our Markov chain represents a network state of packet transportation.

The state transition is triggered by packet transmissions. We use the same coordination

scheme in ExOR [10]. After a sender transmits a batch of packets, a subset of down-

stream nodes can receive some packets. The highest-priority node in these nodes would
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be scheduled to transmit packets subsequently. Among all received packets by this node,

the packet with the smallest index will be transmitted first. The remaining packets will

be transmitted successively with increasing indices. After the highest priority node has

transmitted all received packets, the next high-priority node on the sender’s candidate

list will transmit its received packets that are not received by higher-priority nodes. After

it finishes, the next node on the list starts. This continues until all nodes on the list have

attempted to transmit their packets.

In the linear network topology depicted in Figure 3.1, the packet progression of op-

portunistic routing can be mapped to the state transition of a Markov chain. The detail

description of the first three state transitions is shown in Figure 3.2. There are two planes,

the white plane represents packet 1 is to be transmitted and the dark plane represents

packet 2 is to be transmitted. The x axis shows the progression of packet 1 from node

1 to node 4 and y axis shows the progression of packet 2 from node 1 to node 4. The

bottom-left state is the initial state 〈〈1, 1〉, 〈1, 0〉〉 and the top-right state is the final state

〈〈4, 4〉, 〈0, 0〉〉. Because transitions in the x and y axes are monotonic in that they are

always left to right or bottom to up, after a number of state transitions, the network

state will eventually change from the initial state to the final state. The state does transit

between the two planes back and forth. When a packet has reached the destination, it no

longer needs to be transmitted. So there is no possibility to reach the states with the red

color border.

Figure 3.2(a) shows the first step of state transitions from the initial state; Figures

3.2(b) and 3.2(c) show all possible state transitions for second and third steps. In Figure

3.2(a), as node 1 transmit packet 1, the initial state 〈〈1, 1〉, 〈1, 0〉〉 can transmit to the

three states of 〈〈1, 1〉, 〈0, 1〉〉, 〈〈2, 1〉, 〈0, 1〉〉 and 〈〈3, 1〉, 〈0, 1〉〉 with probabilities P0, P1, P2,
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respectively. The state transition to 〈〈3, 1〉, 〈0, 1〉〉 represents that packet 1 reaches node

3 with the probability of P2 as defined previously. Alternatively, the state can transmit

to 〈〈2, 1〉, 〈0, 1〉〉 if the packet 1 reaches node 2 but not node 3. The probability of this

state transition is P1. If the packet 1 has no progression, the initial state will transit to

〈〈1, 1〉, 〈0, 1〉〉 and the probability is P0. After the sender transmits the first packet, it will

send the second packet. Therefore, all three next states are in dark plane.

Figure 3.2(b) shows all possible state transitions after the first step. For example,

if the state transmits to 〈〈1, 1〉, 〈0, 1〉〉 in the first step, the second step can transit to

〈〈1, 1〉, 〈1, 0〉〉, 〈〈1, 2〉, 〈1, 0〉〉 and 〈〈1, 3〉, 〈1, 0〉〉. Figure 3.2(c) shows all possible state

transitions after the second step. The state transitions in the third step are similar to

two previous steps, but it also shows two special cases. The first special case is where a

small-index packet is transmitted and gets ahead of large-index packets, e.g., the state

transition from 〈〈1, 2〉, 〈1, 0〉〉 to 〈〈2, 2〉, 〈1, 0〉〉 or 〈〈3, 2〉, 〈1, 0〉〉. If packet 1 reaches node

2, it will be transmitted subsequently since it will be the smallest index in node 2. There-

fore, the state transition mapping this transmission will be 〈〈1, 2〉, 〈1, 0〉〉 to 〈〈2, 2〉, 〈1, 0〉〉.

Similarly, if packet 1 reaches node 3, it will be transmitted subsequently since node 3 has

higher-priority than node 2. The state transition will be 〈〈1, 2〉, 〈1, 0〉〉 to 〈〈3, 2〉, 〈1, 0〉〉.

The second special case is that a packet reaches a node that is one-hop away from the des-

tination. In this case, there are no two-hop receptions any more, e.g., state 〈〈1, 3〉, 〈0, 1〉〉

can only transit to 〈〈1, 3〉, 〈1, 0〉〉 or 〈〈1, 4〉, 〈1, 0〉〉.

Our model is in fact a general mathematical analysis for different types of forwarding

protocols. Besides opportunistic routing protocols, it can also map the progression of

packet transmissions of traditional routing protocols. The illustration of state transitions

is shown Figure 3.3. In traditional routing, the routing path is pre-defined before the
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source sends packets. The traditional routing protocols will first transmit the packet with

the smallest index in a batch, then move to the next one. Note that there is no pipeline

transmission in the Figure because this topology is too short to allow multiple transmis-

sions without interferences. As we will see later, our model can be further generalized

to incorporate pipeline transmissions for both traditional and opportunistic routing for-

warding. Only seven states are valid in this example. Each node forwards packets to a

dedicated next-hop forwarder; if the transmission fails, the sender will retransmit packets.

Therefore, each state only has two out-going edges with nonzero probabilities. Note that

in this case the packet reception probability can be either a single transmission attempt

or a compound of retransmits.

<1,1>,<1,0> <2,1>,<1,0> <3,1>,<1,0>

<4,1>,<1,0>

<4,4>,<0,0>

x

z

y

<4,1>,<0,1>

<4,2>,<0,1>

<4,3>,<0,1>

Figure 3.3: All state transitions of traditional routing in a Markov chain.
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3.2.2 Metrics of opportunistic routing

3.2.2.1 Expected number of transmissions

The expected number of transmissions provides an understanding of the efforts re-

quired to successfully deliver a batch of packets from a source to a destination. This

metric is the an important parameter to evaluate opportunistic routing protocols. Us-

ing this metric, opportunistic routing protocols can show great improvement compared

to traditional routing protocols because they can reduce the number of transmissions

significantly.

This metric can be derived from our model based on the theory of Markov chain.

The initial state of the Markov chain is 〈〈1, 1, 1, ..., 1〉, 〈1, 0, 0, ..., 0〉〉 and final state is

〈〈n, n, n, ..., n〉, 〈0, 0, 0, ..., 0〉〉. The expected number of state transitions from the initial

state to the final state is the average number of transmissions for the source to transmit a

batch of packets to the destination. For example, in the Markov chain in Figure 3.2, the

initial state is 〈〈1, 1〉, 〈1, 0〉〉 and the final state is 〈〈4, 4〉, 〈0, 0〉〉. Two packets need to be

transmitted from the source node 1 to the destination node 4. If the packet transmission

fails, the state will move along the z axis (i.e. between planes) and not transit towards

the final state. If the packet makes any progress, the state will transit towards the final

state along either the x axis or y axis. Eventually, when all packets reach the destination,

the state will transit to the final state. In each state transition, only one packet will be

transmitted. Therefore, the expected number of packet transmissions is exactly same as

the expected number of state transitions.
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3.2.2.2 Expected number of time slots

In this section, we will consider the other metric to analyze opportunistic routing.

The expected number of time slots will calculate how many time slots required to forward

a batch of packets from the source to the destination. Without the pipelined transfer,

the expected number of time slots is the same as the expected number of transmission.

Due to spatial separation, several nodes can make wireless transmissions simultaneously if

there are few destructive interferences. In our model, we consider the interference model

proposed in Gupta and Kumar [35], called the Protocol Model. Suppose node i transmits

to node k. This transmission is successfully received by node k if

|Xj −Xk| ≥ (1 + ∆)|Xi −Xk| (3.1)

for other nodes j simultaneously transmitting over the same channel. Xi is location of

node i and |Xi − Xj| is the Euclidean distance between the two nodes. ∆ is chosen by

the protocol to prevent a neighbouring node from transmitting on the same time. In this

model, any pair of nodes i and j can make simultaneous transmissions if they satisfy the

Equation 3.1.

Our model considers multiple packet transmissions into one state transition. The

network state can still be represented as 〈~P ,~t〉, where ~P = 〈v1, v2, v3, ..., vB〉 and ~t =

〈t1, t2, t3, ..., tB〉. That is, ~P denotes the progression of each packet and ~t represents which

packets will be transmitted next. Unlike the previous network formulation, more that

one ti can be equal to 1. It represents that more than one packet will be transmitted

in one time slot. Each state can have more nonzero possibilities of going to other states

since multiple packet transmissions are considered in one state transition. As a result,

the number of state transitions represents the number of time slots in the network.
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In traditional routing, node i can transmit packets to node k while node j transmitting

packets if node j can not interfere the transmission from node i to k. In opportunistic

routing, node i can have more than one potential receivers k = k1, k2, k3, ..., kx. If nodes

i and j should satisfy the Equation 3.1 for all potential receivers to make simultaneous

transmissions. The possibility of simultaneous transmissions is greatly limited. Especially,

some of potential receivers are a little bit far away from the sender and have small possi-

bilities to receive packets. Considering these potential receivers, opportunistic routing will

extend the interference range and reduce the possibility of simultaneous transmissions.

On the other hand, if only one potential receiver kx is considered to decide whether nodes

i and j can make simultaneous transmissions, the receiving process for other potential

receivers will be interfered. In this case, only one receiver is utilized for packet trans-

missions. Opportunistic routing can not consider multiple potential receivers where the

advantage of it will be limited. Therefore, there is tradeoff between opportunistic gains

to reduce the number of transmissions and the utilization of simultaneous transmissions.

The pipeline set decides which transmissions can happen at the same time according

to the interference model. We define ~Sk
i = 〈Sk

i,1, S
k
i,2, S

k
i,3, ..., S

k
i,j, ..., S

k
i,n〉

T
, which is a

binary vector and represents whether the transmission from node i to node k can happen

simultaneously with the transmission from j to k. We use Sk
i to denote the pipeline set of

nodes that can transmit at the same time with the transmission from i to k. For instance,

~Sk
i = 〈0, 0, 0, 0, 0, 0, 1, 1, 1, 1〉T , the pipeline set Sk

i = {7, 8, 9, 10}. In opportunistic routing,

each transmitting node i can have multiple potential receivers k1, k2, ..., kx; each receivers

can have its own pipeline set Sk
i . Note that there can be many ways for a node i to define

its pipeline set. Here, we consider two extreme cases, S∩i = Sk1
i ∩ Sk2

i ∩ Sk3
i ∩ . . . S

kx
i and

S∪i = Sk1
i ∪ Sk2

i ∪ Sk3
i ∪ . . . S

kx
i . We will compare the performance of opportunistic routing
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in these two extreme cases.

3.3 Solving matrix

3.3.1 Transition matrix

The transition matrix consists of the transition probabilities between network states.

We have two sets of network states. The first set of network states considers the number

of packet transmissions, each state transition represents one packet transmissions. The

second set of network states considers the number of time slots, each state transition

represents one time slot. Some network states of time slots will be same as the network

states of packet transmissions if only one packet can be transmitted in these network

states. In both sets of network states, the initial state and the final state are same and

the final states 〈〈n, n, n, ..., n〉, 〈0, 0, 0, ..., 0〉〉 is an absorbing state, where the transition

probabilities from an absorbing state to other states are always zero and the probability

to itself is always 1. In this section, we defined two transition matrices Mtx and Mtime to

consider the transition probabilities in these two sets of network states.

First, we define the transition probability of Mtx. In essence, these transitions cor-

respond to the events of a packet being transmitted by a node and received by another.

Specifically, assume packet i is transmitted by node vi and received by node vi
′. Re-

call that vi has a fixed set of candidates {c1, c2, . . . , cCi
}, where their priorities increase

from c1 to cCi
. Each vi can have a different set of candidates and Ci is the number

of candidates of vi. Furthermore, we denote the link reliability between vi and these

candidates as {π1, π2, . . . , πCi
}. Therefore, the probability of packet i being received

64



by candidate vi
′ but none of the higher-priority candidates of vi is defined as Ti in

Equation 3.2. Here, Sx is 〈〈v1, v2, . . . , vi, . . . , vB〉, 〈t1, t2, . . . , ti, . . . , tB〉〉,ti = 1 and Sy

is 〈〈v1′, v2′, . . . , vi′, . . . , vB ′〉, 〈t1′, t2′, . . . , ti′, . . . , tB ′〉〉. The first case means the packet is

received by the n-th highest priority vi
′, but none of higher-priority node from n + 1 to

Ci receives it. These nodes with the priority from 1 to n− 1 may or may not receive this

packet. With the assumption of strong coordination, all nodes can know the coordination

message correctly. The n-th highest priority node will keep this packet and other priority

nodes from 1 to n− 1 will drop the same packet. Therefore, the probability of the state

transition from Sx to Sy is the multiplication of the packet success rate from vi to vi
′

and the packet fail rates from vi to other higher-priority nodes from n + 1 to Ci. The

second case is that the packet fails to reach any candidate of vi. Apparently, this matrix

is N × N, where N = NB × B − NB−1 × B + 1. Each row has at most C + 1 non-zero

entries because a transmission can only involve that many nodes. Thus, it is a very sparse

matrix. Equation 3.3 is an example of Mtx for the 4-node linear network topology in Fig-

ure 3.1. In particular, the transition probability between two states Sx and Sy has three

general cases. Probability P0 means packet i makes no progress in advancing towards the

destination. P1 means packet i is received by the next hop but no further. P2 means the

packet is received by the 2nd next hop. In this example, we consider the transmission

range up to two hops. Our model supports the transmission range up to the diameter of

the network.
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P{Sx → Sy} = Ti =



πn

Ci∏
k=n+1

(1− πk) for vi
′ = vi + n

Ci∏
k=1

(1− πk) for vi
′ = vi

0 otherwise

(3.2)
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P =



〈1,1〉,〈1,0〉

〈1,1〉,〈0,1〉

〈1,2〉,〈1,0〉

〈1,2〉,〈0,1〉

〈1,3〉,〈1,0〉

〈1,3〉,〈0,1〉

〈1,4〉,〈1,0〉

〈2,1〉,〈1,0〉

〈2,1〉,〈0,1〉

〈2,2〉,〈1,0〉

〈2,2〉,〈0,1〉

〈2,3〉,〈1,0〉

〈2,3〉,〈0,1〉

〈2,4〉,〈1,0〉

〈3,1〉,〈1,0〉

〈3,1〉,〈0,1〉

〈3,2〉,〈1,0〉

〈3,2〉,〈0,1〉

〈3,3〉,〈1,0〉

〈3,3〉,〈0,1〉

〈3,4〉,〈1,0〉

〈4,1〉,〈0,1〉

〈4,2〉,〈0,1〉

〈4,3〉,〈0,1〉

〈4,4〉,〈0,0〉

〈1,1〉,〈1,0〉 0 P0 0 0 0 0 0 0 P1 0 0 0 0 0 0 P2 0 0 0 0 0 0 0 0 0

〈1,1〉,〈0,1〉 P0 0 P1 0 P2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

〈1,2〉,〈1,0〉 0 0 0 P0 0 0 0 0 0 P1 0 0 0 0 0 0 P2 0 0 0 0 0 0 0 0

〈1,2〉,〈0,1〉 0 0 P0 0 P1 0 P2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

〈1,3〉,〈1,0〉 0 0 0 0 0 P0 0 0 0 0 0 0 P1 0 0 0 0 0 P2 0 0 0 0 0 0

〈1,3〉,〈0,1〉 0 0 0 0 P0 0 P1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

〈1,4〉,〈1,0〉 0 0 0 0 0 0 P0 0 0 0 0 0 0 P1 0 0 0 0 0 0 P2 0 0 0 0

〈2,1〉,〈1,0〉 0 0 0 0 0 0 0 0 P0 0 0 0 0 0 0 P1 0 0 0 0 0 P2 0 0 0

〈2,1〉,〈0,1〉 0 0 0 0 0 0 0 P0 0 P1 0 0 P2 0 0 0 0 0 0 0 0 0 0 0 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

〈4,4〉,〈0,0〉 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1


(3.3)
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Next is the transition matrix of Mtime used to calculate the expected number of time

slots. In the state transition corresponding to one time slot, multiple packets may be

transmitted. We describe the probabilities between this state transition as

P{Sx → Sy} =
B∏
i=1

T ti
i . (3.4)

Here, Sx is 〈〈v1, v2, . . . , vi, . . . , vB〉, 〈t1, t2, . . . , ti, . . . , tB〉〉 and

Sy is 〈〈v1′, v2′, . . . , vi′, . . . , v′B〉, 〈t1′, t2′, . . . , ti′, . . . , tB ′〉〉. Recall that ti ∈ {0, 1} (i = 1, 2, . . . , B)

represents whether packet i is being transmitted. In the state Sx, it can have more than

one ti = 1. Here Ti is from Equation 3.2 which is the probability of the state transition

where only one packet is transmitted. Each factor of Equation 3.4 corresponds to the

progression of a packet being transmitted. Thus, it can represent the probability of a

state transition where multiple simultaneous transmissions occur.

3.3.2 Analysis of expected number of state transitions in the

Markov chains

With these two transition matrices, we can calculate the expected number of packet

transmissions and the expected number of time slots, respectively. The value in the first

row and last column of the transition matrix represents the probability that the initial

state goes to the final state by one step. In general, this value in the k-th power of

the transition matrix represents the probability that the initial state transits to the final

state in at most k steps, noticing that the final state is absorbing. Recall that one state

transition corresponds to either one packet transmission or one time slot in these two

matrices. Thus, we can obtain the expected number of packet transmissions and the

expected number of time slots by calculating the expected number of state transitions
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from the initial state to the final state. Because these matrices are the same in nature,

we do not distinguish them in the rest of this section.

Observe that the matrix is absorbing as all states can go to the final state, such a

matrix has a canonical form as

P =

 Q R

0 I

 . (3.5)

The number of columns of R and I is equal to the number of absorbing states in P . I, an

identity matrix, represents that the probability of an absorbing state to itself is always 1.

The probability of reaching the final state from the initial state in k steps is the value in

the first row and last column of k-th power of the transition matrix:

P k =

 Qk (I +Q+ ...+Qk−1)×R

0 I

 . (3.6)

When k →∞, P k has a limit

P k→∞ =

 0 R̂

0 I

 . (3.7)

Here, the number of columns of R̂ is equal to the number of absorbing states. The sum of

each row of R̂ is equal to 1. Thus, all states will eventually transit to one of the absorbing

states. In our case, we only have one absorbing state, the limit is

P k→∞ =

 0(N−1)×(N−1) 1(N−1)×1

01×(N−1) 11×1

 . (3.8)

That is, only the last column is 1, with the rest of the matrix being all 0s. Therefore,

the probability of transiting from initial state to the final state in ‘exactly k steps’ can be
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described as

P [X = k] =
[(
I +Q+ ...+Qk−1)×R]

1,1

−
[(
I +Q+ ...+Qk−2)×R]

1,1

=
[
Qk−1 ×R

]
1,1
.

(3.9)

That is, since the final state is absorbing, if the network state goes to the final state in

k − 1 steps, it will still stay there. The difference is Equation refeq:probabilityK is the

probability that the chain transits to the final state in k steps but not sooner.

We are interested in how long it takes the Markov Chain to go from 〈〈1, 1, 1, ..., 1〉, 〈1, 0, 0, ..., 0〉〉

to 〈〈n, n, n, ..., n〉, 〈0, 0, 0, ..., 0〉〉. This average number of transitions can be calculated [33]

as

E[X] =
∞∑
k=1

(k × p[X = k])

=
[F 2 ×R]1,1
[F ×R]1,1

= F1,1,

(3.10)

where F = I + Q + ... + Qk−1 + .... Note that F × (I − Q) = (I − Q∞) = I. Therefore

F = (I − Q)−1. The number of state transitions from the initial state to the final state

can be obtained by calculating the inverse matrix of the transition matrix, where the time

complexity is O(N3).

For lower computation cost, we choose iteratively multiply the transition matrix until

the probability of transition from 〈〈1, 1, 1, ..., 1〉, 〈1, 0, 0, ..., 0〉〉 to 〈〈n, n, n, ..., n〉, 〈0, 0, 0, ..., 0〉〉
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is sufficiently close to 1 (i.e. within 1 − ε). The iterative calculation can be described as

follows. The expected number of state transitions is

E[X] =
T∑

k=1

(k × p[X = k]), (3.11)

with P [X = T ] ≥ 1 − ε. As a result of replacing inversion with multiplication, the time

complexity reduces to O(N2). For our problem, O(N2) is acceptable for the estimation of

transitions where N is of the order of 105 or less. For greater value of N , we further resort

to a sampling technique using random walk.

The starting point of the random walk is 〈〈1, 1, 1, ..., 1〉, 〈1, 0, 0, ..., 0〉〉, and the end

point is 〈〈n, n, n, ..., n〉, 〈0, 0, 0, ..., 0〉〉. Each step is dictated by the probability of the

state transition. For each walk, we record the number of steps taken with the given

parameter values of N , B and C. We perform a large number of random walks, the

mean of these samples will give us a good estimation of the expected number of state

transitions. The time complexity further reduces to O(N).

3.4 Simulation results

This section presents analytical results and simulation results from NS-2 [1] to evaluate

the model of opportunistic routing. The analytical model will be calculated by two

methods: the iteratively multiplication and the sampleing technique using random walk.

We first compare the iteratively multiplication and sampleing technique in Section 3.4.1

and show the random walk can generate results close to the the iteratively multiplication.

Since the time complexity of random walk is O(N), we will use random walk to reflect

analytical results in following works. In Sections 3.4.2, 3.4.3 and 3.4.4, we will compare
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the analytical results with the simulation results in different scenarios to evaluate the

precision of the models. Then, we will discuss the advantage and cost of opportunistic

routing.

In linear topologies, we consider networks of N nodes (N = 10, 15, 20, and 25) with

different batch sizes from 10 to 100. The packet success rates of each link are indicated in

the Table 5.1. We consider five different groups of packet success rates. The comparision

of analytical models and NS2 simulation in linear topology can not only prove the precision

of the models but also show the pros and cons of opportunistic routing. In grid topologies,

we consider two different pipeline sets and packet success rates are specified in Figure 5.5.

We will extend the number of nodes from N = 10× 10 to N = 20× 20 for discussing the

performance of opportunistic routing and the precision of our models in different network

diameters with a same network density. Free space and two-ray ground propagation,

consider the received power of the sender as a deterministic function of distance. These

two models consider the communication range as a perfect distance. If a node is located

within this distance, it will receive the transmitted packet, whereas the nodes outside this

range will not receive the packet. In reality, due to multipath propagation effects, the

received power at a certain distance is a random variable. Therefore, we have used the

shadowing propagation model, which considers the received power as a random variable

due to fading effects. Our model uses the same propagation model and parameters as

in [25]. We will consider a square with sides equal to 1000m. The number of nodes in

our random topology varied from N = 30 to 50 nodes. The source node is located at the

bottom-left and the destination node is located at the top-right. We will show how the

performance of opportunistic routing in the topology with a constant network diameter

but different network densities.
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Table 3.1: Packet success rate

One-hop Two-hop

100% 50%

90% 45%

80% 40%

70% 35%

60% 30%

For each scenario, one FTP application sends long files from the source to the des-

tination. The source node emits a batch of packets continuously until the end of the

simulation, and each simulation lasts for 100 seconds. All the wireless links have a band-

width 1Mbps and the buffer size on the interfaces is set to 100 packets. All nodes operate

in the 802.11 broadcast mode. The results of each scenario is the average of 100 runs.

40%

40% 20%

25%

20%

30%

25%
15%

S

D

Figure 3.4: The grid topology.

73



  One−hop: 60% 

 Two−hop: 30%

0

500

1000

1500

0

500

1000

1500

20 40 60 80 100

10 Nodes Linear Topology

  One−hop: 70% 

 Two−hop: 35%

0

500

1000

0

500

1000

20 40 60 80 100

 

  One−hop: 80% 

 Two−hop: 40%

0

300

600

900

0

300

600

900

20 40 60 80 100

 

  One−hop: 90% 

 Two−hop: 45%

0

250

500

750

1000

0

250

500

750

1000

20 40 60 80 100

 

    One−hop: 100% 

 Two−hop: 50%

0

250

500

750

0

250

500

750

20 40 60 80 100

 

  One−hop: 60% 

 Two−hop: 30%

0

500

1000

1500

2000

0

500

1000

1500

2000

20 40 60 80 100

N
u

m
b

e
r
 o

f 
T
r
a
n

s
m

is
s
io

in
s 15 Nodes Linear Topology

  One−hop: 70% 

 Two−hop: 35%

0

500

1000

1500

2000

0

500

1000

1500

2000

20 40 60 80 100

 

  One−hop: 80% 

 Two−hop: 40%

0

500

1000

1500

0

500

1000

1500

20 40 60 80 100

 

  One−hop: 90% 

 Two−hop: 45%

0

500

1000

1500

0

500

1000

1500

20 40 60 80 100

 

    One−hop: 100% 

 Two−hop: 50%

0

500

1000

0

500

1000

20 40 60 80 100

N
u

m
b

e
r
 o

f T
im

e
 S

lo
ts

   

  One−hop: 60% 

 Two−hop: 30%

0

1000

2000

3000

0

1000

2000

3000

20 40 60 80 100

20 Nodes Linear Topology

  One−hop: 70% 

 Two−hop: 35%

0

1000

2000

0

1000

2000

20 40 60 80 100

 

  One−hop: 80% 

 Two−hop: 40%

0

500

1000

1500

2000

0

500

1000

1500

2000

20 40 60 80 100

 

  One−hop: 90% 

 Two−hop: 45%

0

500

1000

1500

2000

0

500

1000

1500

2000

20 40 60 80 100

 

    One−hop: 100% 

 Two−hop: 50%

−500

0

500

1000

1500

2000

−500

0

500

1000

1500

2000

20 40 60 80 100

 

  One−hop: 60% 

 Two−hop: 30%

0

1000

2000

3000

4000

0

1000

2000

3000

4000

20 40 60 80 100

Batch Size

25 Nodes Linear Topology

  One−hop: 70% 

 Two−hop: 35%

0

1000

2000

3000

0

1000

2000

3000

20 40 60 80 100

Batch Size

 

  One−hop: 80% 

 Two−hop: 40%

0

1000

2000

3000

0

1000

2000

3000

20 40 60 80 100

Batch Size

 

  One−hop: 90% 

 Two−hop: 45%

0

1000

2000

0

1000

2000

20 40 60 80 100

Batch Size

 

    One−hop: 100% 

 Two−hop: 50%

0

1000

2000

0

1000

2000

20 40 60 80 100

Batch Size

 

Transmissions Difference Time Slots Difference Opportunistic Routing Tradtional Routing (IP)
Transmissions

Time Slots

Figure 3.5: The expected number of transmissions and time slots for linear topologies.
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Figure 3.6: The difference between analytical model and NS2 simulation.
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Table 3.2: Comparison of iterative multiplication and random walk

N = 5 N = 6 N = 7 N = 8 N = 9 N = 10

B = 2 0.00020 8.88 0.00012 11.10 0.00018 13.33 0.00001 15.55 0.00005 17.77 0.00011 20.00

C = 1 B = 3 0.00018 13.33 0.00033 16.66 0.00011 20.00 0.00007 23.33 0.00010 26.67 0.00006 30.02

B = 4 0.00005 17.77 0.00007 22.21 0.00010 26.67 0.00006 31.11 0.00006 35.56 0.00006 40.00

B = 5 0.00007 22.21 0.00005 27.77 0.00008 33.33 0.00012 38.89 0.00007 44.45 0.00011 50.21

N = 5 N = 6 N = 7 N = 8 N = 9 N = 10

B = 2 0.00018 6.95 0.00049 8.59 0.00004 10.20 0.00011 11.83 0.00041 13.47 0.00004 15.08

C = 2 B = 3 0.00009 10.42 0.00028 12.88 0.00001 15.30 0.00045 17.76 0.00005 20.19 0.00011 22.63

B = 4 0.00040 13.91 0.00012 17.16 0.00013 20.41 0.00037 23.66 0.00052 26.92 0.00016 30.17

B = 5 0.00002 17.37 0.00008 21.46 0.00021 25.51 0.00038 29.59 0.00041 33.65 0.00007 37.69

N = 5 N = 6 N = 7 N = 8 N = 9 N = 10

B = 2 0.00028 6.17 0.00031 7.50 0.00036 8.81 0.00034 10.14 0.00041 11.46 0.00040 12.78

C = 3 B = 3 0.00032 9.25 0.00032 11.25 0.00034 13.22 0.00036 15.21 0.00033 17.21 0.00038 19.18

B = 4 0.00023 12.36 0.00038 15.00 0.00041 17.60 0.00026 20.28 0.00021 22.92 0.00017 25.59

B = 5 0.00032 15.42 0.00029 18.76 0.00031 22.03 0.00045 25.35 0.00037 28.68 0.00029 31.96

N = 5 N = 6 N = 7 N = 8 N = 9 N = 10

B = 2 0.00030 5.95 0.00038 7.19 0.00042 8.41 0.00039 9.64 0.00040 10.86 0.00044 12.08

C = 4 B = 3 0.00034 8.91 0.00034 10.80 0.00038 12.63 0.00044 14.44 0.00041 16.29 0.00047 18.11

B = 4 0.00030 11.90 0.00028 14.39 0.00037 16.85 0.00045 19.26 0.00023 21.71 0.00037 24.15

B = 5 0.00036 14.86 0.00044 18.01 0.00029 21.05 0.00038 24.09 0.00044 27.15 0.00029 30.19
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Figure 3.7: The expected number of transmissions and time slots for grid topologies.

3.4.1 Numerical comparison of iterative multiplication and ran-

dom walk

In this section, we will evaluate our Markov models by iterative multiplication and

random walk. Specifically, we are interested in the number of state transitions required to

transfer a batch of data packets in a given network. Recall that the open form value of the

expected steps of transitions has a computation complexity of O(N3), which is prohibitive

for large N. Even for moderately large N, the iterative multiplication estimation, which

requires O(N2), would need a great amount of CPU time. Resorting to random walk as a

sampling technique, we can further reduce the time-complexity to O(N). A random walk

is a mathematical formalization of a path that consists of a succession of random steps. In

our test, each step represents one state transition. For smaller N (N < 105), we compare
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the expected number of transitions from the iterative multiplication with that obtained

from random walk. The results show that the normalized relative error is negligible. i.e.

less than 0.1%. For the large N (N > 105), we use the random walk to show the expected

number of state transitions.

The numerical comparisons of iterative multiplication and random walk are conducted

in linear networks, the packet success rates are 90% for one hop, 30% for two hops, 15%

for three hops and 5% for four hops. To reduce the memory requirement and speed up

the calculation of the transition matrix, we used Compressed Sparse Row to represent a

sparse matrix by three one-dimensional arrays [13].

We set 1 − ε = 0.999 to control the termination of iterative multiplication and take

10,000 samples of random walk. Because two transition matrices Mtx and Mtime are the

same in nature, we only show the difference between iterative multiplication and random

walk for Mtx. The difference of the expected number of state transitions between these

two methods is shown in Table 5.1 with different parameters N , B and C. In each table

cell, the value on the right is the expected number of state transitions from the random

walk process and the value on the left is the normalized relative error between these two

methods:

ε =

∣∣∣∣τ1 − τ2τ1 + τ2

∣∣∣∣, (3.12)

where τ1 and τ2 are mean number of transitions from the iterative multiplication and the

random walk, respectively. From the results, we observe that the expected number of

transitions increases with the increment of N and B and decrease with the increment of

C. The normalized relative error is always less than 0.1%, it shows that random walk can

generate results close to the iterative multiplication reliably.
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3.4.2 Simulation results for linear topologies

In this section, we will analyze the performance of opportunistic routing in four lin-

ear topologies with different link qualities and batch sizes. Figure 3.5 shows the expected

number of transmissions and time slots for opportunistic routing and traditional rout-

ing. The grey bar and black bar show the difference between them by the number from

traditional routing minus that from opportunistic routing.

As a first observation, all grey bars are positive since opportunistic routing always

has a smaller number of transmissions than traditional routing in all cases. In addition,

increasing the number of nodes or increasing batch sizes causes a greater difference. Fur-

thermore, when the link quality is good, the advantage of opportunistic routing is not

as remarkable, specially when the number of nodes is 10. This is due to the fact that

opportunistic routing would utilize pretty much the same nodes as traditional routing as

potential forwarders when the link quality is high. When the link quality is not good,

opportunistic routing shows more advantage than traditional routing.

The other metric that can be derived from the proposed model is the expected number

of time slots. In linear topologies, we only consider the pipeline set S∪. We can observe

that some black bars are less than 0; it shows that opportunistic routing would have a

larger number of time slots than traditional routing. Observing these figures from left to

right, the value for each black bar decreases while the link quality becomes better. These

phenomenon are remarkable when the number of nodes is 25 since traditional routing has

more number of pipelined transmissions than that of opportunistic routing.

In the linear topologies with 10 nodes, we can observe that the number of transmission

and time slots for traditional routing are close. For opportunistic routing, the lines for the
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number of transmission and time slots are overlapped since few simultaneous transmis-

sions occur. This is because that the network diameter is short and nodes will interfere

with each other if multiple nodes make simultaneous transmissions. When the number of

nodes increases to 25, the difference between the number of transmissions and the number

of time slot for traditional routing shows that traditional routing has many simultaneous

transmissions. In opportunistic routing, the difference between the number of transmis-

sion and the number of time slot is not remarkable. However, the difference increases

from the right to left. It shows that opportunistic routing can have more pipelined trans-

missions when the link quality is not good. Considering both the number of transmissions

and time slots, opportunistic routing greatly outperforms traditional routing under the

short network diameter topology with low quality links.

Next, Figure 3.6 shows the precision of our models in linear topologies. The difference

between the NS2 simulation and analytical models for the expected number of transmis-

sions and time slots are plotted as bars. The difference is negligible and ranges from

1× 10−3 to 1× 10−2. This small difference results from experimental scenarios in which

a transmission may collide with another, consequently requiring retransmission of the

packet, a situation not captured by the Markov model.

3.4.3 Simulation results for grid topologies

Figure 3.7 show the expected number of transmissions and time slots for both op-

portunistic routing and traditional routing in two grid topologies. Here, we consider two

pipeline sets S∩ and S∪ for opportunistic routing. We can observe that opportunistic

routing has better performance than traditional routing in both cases. We also plot the
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difference between two pipeline sets S∩ and S∪. Opportunistic routing with these two

pipeline sets has almost the same expected number of transmissions (S∪ has a little bit

more number of transmissions in NS-2 simulations). S∪ has a smaller number of time

slots. This is because S∪ allows more nodes to transmit packets simultaneously, it will

require less time slots to transmit a batch of packet. On the other hand, the pipeline set

S∪ involves more nodes and increases the probability that a transmission collides with

another, consequently requiring more packet retransmissions. The difference between an-

alytical results and simulation results are plotted at the bottom. The difference between

them is also very small and ranges from 1× 10−3 to 1 × 10−2. The relative difference of

the pipeline set S∪ is higher than others because it involves more candidates and causes

more collision of transmissions in NS2 simulation, which is not captured by the Markov

model.

Considering the performance change where the number of nodes in grid topologies

increase from 10×10 to 20×20, the network density is constant but the network diameter

increases. The long topology is almost double the number of transmissions since the

network diameter is double. However, the number of time slots sluggishly increase from

the short topology to the long topology since the long topology increases the possibility of

simultaneous transmissions and pipelined transmissions only consume one time slot. The

increment of time slots in opportunistic routing is more obvious. This is because that few

simultaneous transmissions occur in opportunistic routing. Since the density of this grid

topology is constant, we can predict that the number of time slots of opportunistic routing

will be larger than that of traditional routing if the network diameter keeps increasing.
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3.4.4 Simulation results for random topologies

We analyze the performance of opportunistic routing in random topologies. In Fig-

ure 3.8, there are 30 nodes randomly located in a square. The top graph show the

expected number of transmissions and time slots. As a first observation, opportunis-

tic routing always has smaller number of transmissions than traditional routing. Two

different pipeline sets of opportunistic routing has almost the same number of packet

transmissions. In the analytical models, the total number of transmissions can not be

directly affected by whether the pipelined transmission is enable or not. The following

three graphs show how many pipelined transmissions occur for traditional routing and

opportunistic routing. Opportunistic routing requires a batch of packets transmitting to-

gether which limits the simulation of pipelined transmissions. Therefore, in most of case,

only one transmission happens in one time slot. Obviously, opportunistic routing with S∩

is even worse than opportunistic routing with S∪ since the pipeline set S∩ further limits

the opportunity of pipelined transmissions.

Figure 3.9 show the expected number of transmissions and time slots for other two

random topologies. In a constant square area, the performance of opportunistic routing

and traditional routing will be slightly improved by increasing the number of nodes in

the topology. Since it potential increase the probability of finding better candidates.

Figure 3.10 show the difference between analytical models and simulation results. The

difference between them is also very small and proves the precision of our models. In NS-2

simulation, the S∪ has more collision and requires some retransmissions which causes the

difference is larger than another case.
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Spatial channel reuse problem in opportunistic routing:

In all simulation results and analytical results, opportunistic routing has better perfor-

mance than traditional routing in terms of the expected number of transmissions. Oppor-

tunistic routing outperforms traditional routing under study by delivering packets on low

quality links, but when the link qualities are high, traditional routing can have a smaller

number of time slots. The reason is that opportunistic routing will sacrifice from spatial

channel reuse inherently. Recall that opportunistic routing imposes a coordination mech-

anism to obtain opportunistic gains (e.g., reduce the number of transmissions). Each node

transmits packets in order. A node transmits a batch of packets to its downstream nodes,

each downstream node will receive a ‘fragment’ of the batch due to instantaneous link

quality. After the batch of packet is transmitted, the next high-priority node can transmit

the received fragment of the batch. When the link qualities are high, the fragments are

almost the entire batch, and the next highest-priority would forward its fragment/batch

further down. The distribution of packets is limited and will be concentrated to a group

of adjacent nodes. When the link qualities are low, packets in a batch have a high prob-

ability to be distributed in the long area where nodes many simultaneous transmissions

can occur. Therefore, the coordination mechanism of opportunistic routing potentially

prevents nodes from exploiting spatial channel in a network with stable links. Taking

an extreme case as example, consider the scenario where link success rates are 100% for

all links. Traditional routing and opportunistic routing will use the same nodes as for-

warders. In opportunistic routing, after a node sends a batch of packets, only the highest

downstream node will forward the whole batch of packets since the highest downstream

node can receive all of them. Because the packets of a batch can not be separated to

nodes whose distance are far away than interference ranges, opportunistic routing has no
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simultaneous transmission. Therefore, it eventually requires more time slots to transmit

a batch of packets from the source to the destination. We can observe that increasing the

number of nodes or batch sizes will make the spatial channel reuse problem more serious.

3.5 Summary

Opportunistic routing has a great impact on network performance as it can increase

reliability of wireless networks and reduce the amount of consumed resources. However,

most existing research focuses on analyzing the transmission of one packet in opportunistic

routing, which ignores pipelined data transfer.

In this chapter, we proposed Markov models that enable the evaluation of opportunis-

tic routing for different wireless networks in terms of the expected number of transmissions

and time slots. The network states of packet advancement are mapped by a Markov chain

and the states in the Markov chain denote all valid progression of opportunistic routing.

The state transition of a Markov chain represents packet transmissions in the wireless

mesh networks. When only one packet is transmitted in each state, the total number of

state transitions estimates the expected number of packet transmissions. When all pos-

sible simultaneous transmissions are considered in each state, the total number of state

transitions estimates the expected number of time slots. Our models take into account

the theory of the absorbing matrix and enable the estimation of the number of state

transitions in a very effective way. Iterative multiplication replaces inversion of matrix

and provides accurate estimation results. Resorting to random walk, the time complexity

of estimation can be further reduced to O(N). Given the link quality of wireless mesh

networks and the coordination mechanism, our models are independent from network
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topologies and candidate selection algorithms. The only inputs in our models are the

number of nodes in the network, batch sizes and pipeline sets. Therefore, our analyti-

cal models are valid for different type of network scenarios and for different batch sizes

of packets. Furthermore, our analytical models consider pipelining, and it does not only

present the advantage of opportunistic routing but also explores the spatial reuse problem.

Considering different coordination mechanisms, the proposed models can simulate differ-

ent network transmission process in wireless mesh networks including both opportunistic

routing and traditional IP forwarding.
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Figure 3.8: The expected number of transmissions and time slots for the random

topology with 30 nodes.
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Figure 3.9: The expected number of transmissions and time slots for the random

topologies with 40 and 50 nodes.
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Chapter 4

ExOR Compact

4.1 Overview of ExOR Compact

Opportunistic routing can provide a significant throughput gain compared to tradi-

tional routing. The important reason is that each transmission may have more indepen-

dent chances of being received and forwarded, it takes advantage of transmissions that

reach unexpectedly far, or fall unexpectedly short. Multiple downstream nodes in addi-

tion to the matched receiver in the routing module will receive packets and be potential

forwarders. After the sender forwards packets, One of these potential forwarders, which is

closest to the destination, will be selected to be the next-hop forwarder. Such on-the-fly

selection of the next-hop is the fundamental principle of opportunistic routing. Since

multiple downstream nodes are potential next-hop forwarders, opportunistic routing can

effectively reduce the possibilities of unnecessarily reconstruction path or retransmission

due to link breakage on a pre-selected path. However, since more than one node are

potential forwarders, an effective coordination mechanism is required to find this closest
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node, avoid other nodes transmitting duplicate packets and also guarantee at least one

node forwarding packets to downstream nodes. Such reliable coordination mechanism is

often complex and different to carry out accurately, which limits the performance and the

use of opportunistic routing protocols.

The current opportunistic routing protocol, ExOR, proposes a batch-based coordi-

nation. It creates a transmission schedule, which goes in rounds. In each round, each

forwarder has one chance to forward the received packets. Forwarders transmit packets in

order, and only one forwarder is allowed to transmit at any given time. The others listen

to learn which packets were overheard by each node. The high-priority nodes forward

packets first, and the low-priority nodes send packets that are not received by higher

priority ones. This coordination among these multiple forwarders is a crucial issue in

order for its overhead not to overwhelm its potential gains. The main overhead is that

the transmission delay of forwarders are waitting to transmit packets. If two packets are

far away and their corresponding forwarders can simultaneously transmit them without

interference, the coordination of opportunistic routing in this situation will prevents the

forwarders from exploiting spatial channel reuse. Therefore, opportunistic routing still

has room for improvement about its coordination for better spatial channel reuse.

ExOR Compact, as with ExOR and MORE, uses the ETX metric [23] to reflect loss

rate. Each node periodically measures link qualities in terms of ETX. Based on this

information, the source node determines a set of forwarders for a route to the destination,

and sends data packets with the forwarder list embedded in its packet header. As the

most important difference from ExOR, our proposal lets each forwarder create its own

regional transmission schedule based on the forwarder list received from the source node.

That is, the schedule is confined to a subset of the forwarders that are within range of
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the transmitting node so that the waiting time is only a function of this range rather

than of the entire forwarder list. As such, it facilitates a data transfer pipeline for higher

throughput than ExOR. To moderate the effect brought by the denser network activities

as above, ExOR Compact uses random linear network coding to mix information among

packets so that downstream nodes are less sensitive about receive particular packets.

Furthermore, thanks to the deferring of packet forwarding at lower-priority nodes, ExOR

Compact tends to capture more coding opportunities than MORE.

4.1.1 Design challenges

To realize the general design of ExOR Compact, we must address the following chal-

lenges.

• To increase the spatial channel reuse for a deeper pipeline, a forwarder should co-

ordinate a priority scheduling only among the downstream forwarders within its

transmission range. How exactly are downstream forwarders aware of this range

and which other forwarders are part of this coordinated effort?

• When we have a busy opportunistic forwarding pipeline, we face a higher risk of

lower-priority nodes ending up transmitting before higher-priority nodes by mistake.

This can be especially problematic in that our design leaves the link layer indepen-

dent in medium access control. If such reverse-ordered transmissions happen, how

to we handle them?

• Recall that ExOR’s scheduling is centered around the crucial feedback mechanism

of batch map. It would, however, be difficult to map the reception of coded packets

by downstream forwarders because representing the decoding matrix of a forwarder
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takes up much packet header space. How do we devise an efficient way to summarize

the received coded packets and feed it back to upstream forwarders?

These challenges are addressed in the rest of this chapter.

4.2 ExOR Compact algorithm

4.2.1 Regional forwarding schedule

ExOR Compact is inline with the prioritization design in the original ExOR. The

forwarders for a source-destination pair coordinate among themselves to decide in what

order they should forward packets and which packets. The network runs a link-state

routing with ETX as the link metric. When a source R node has data to send to a

destination D, it composes a forwarder list, which is a subset of nodes that have a lower

ETX value towards D. This subset should contain nodes on the shortest path plus some

redundant nodes near the path. Figure 4.1 shows an example, where S decides that

its forwarding list has 14 nodes (including S and D). The idea of forwarding list is for

a lower-priority forwarder to defer to higher-priority forwarders’ transmission; and only

transmits when it knows the higher-priority forwarders have missed some packets.

For the convenience of subsequent description, we provide some notations. Given a

source node S that intends to send data to destination D, the routing module of S can

decide a forwarder list 〈F1, F2, . . . , FS〉, where F1 = S and F14 = D. For a given forwarder

Fi on this list, we define its upstream neighbors as the subset of the upstream forwarders

that can transmit to Fi directly, denoted Fi ↑. For example in Figure 4.1, F5 ↑ can be

{F1, F2, F3, F4}, F6 ↑ can be {F2, F3, F4, F5, }, F7 ↑ can be {F3, F4, F5, F6}, F8 ↑ can be
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Figure 4.1: Example of regional forwarding schedule

{F4, F5, F6, F7}, F9 ↑ can be {F5, F6, F7, F8} and F10 ↑= {F5, F6, F7, F8, F9} Similarly, we

define the downstream neighbors of Fi as the subset of the downstream forwarders that

Fi can transmit to directly, denoted Fi ↓. In the figure, F1 ↓= {F2, F3, F4, F5},F2 ↓=

{F3, F4, F5, F6},F4 ↓= F5, F6, F7, F8, F9} and F5 ↓= {F6, F7, F8, F9, F10}

All forwarders (include S and D) transition among three states, i.e. idle, receiving and

sending in Figure 4.2. A forwarder Fi is initially idle until it receives a packet, starting

processing its fragment of packets. At this point, it sets a timer τ using the following

rules.

• If this packet is from a downstream forwarder, it does nothing.

• If this packet is from an upstream forwarder, say Fa (1 ≤ a < i), it needs to wait

for nodes in a subset of nodes in its upstream and downstream neighborhoods to

transmit before itself. Thus, it sets

τ = (|Fa ↓ −Fi ↑ −Fi|+ |Fi ↑ ∩Fa ↑ |)× Tc (4.1)

where Tc is set to the time for Fi to transmit three data packets. The timer starts

counting after it assumes Fa has completed its fragment. Furthermore, it maintains
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Figure 4.2: State transition of a forwarder

a set Fi of nodes from which it has received from. At this point, Fi = {Fa} Also,

we call Fa the fragment tail, which the lowest-priority node Fi has received so far,

and will be updated as it receives more packets.

Since this point, Fi may receive more packets from either direction. It updates τ using

the following rules.

• If the packet is from a downstream node, denoted Fb, we update Fi by removing

any forwarder with priority higher than or equal to Fb. Then, we update τ based
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on 4.2.

• If the packet is from an upstream node, we denote it Fa. If Fa has a higher priority

than the current fragment tail, it does nothing. Otherwise, we add Fa to Fi. In

addition, we update τ to(∣∣∣∣∣ ⋃
F∈Fi

(F ↓ −Fi ↑ −Fi)

∣∣∣∣∣+ |Fi ↑ ∩Fa ↑ |

)
× Tc, (4.2)

and set Fa as the new fragment tail. After Fi sends packets, the fragment tail will

be reset. (Here, 4.1 is a special case of 4.2)

Consider an example in Figure 4.1. After the source node F1 forwards packets,

F2, F3, F4 and F5 could receive packets with different possibilities. If F2 receives packets,

it sets τ2 = (0 + 3) × Tc based on (1). Similarity, τ3 = 2 × Tc, τ4 = 1 × Tc, τ5 = 0 × Tc.

Then, F5 could forward packets first. After F5 forwards packets, nodes in F5 ↓ could

receives packets opportunistically. If some of them receives packets, the timer is like:

τ10 = 0× Tc, τ9 = (1 + 0)× Tc, τ8 = (2 + 1)× Tc, τ7 = (3 + 2)× Tc, τ6 = (4 + 3)× Tc. At

the same time, nodes in F5 ↑ could overhear packets from F5, the timers for its upstream

forwarders will be updated. Based on (2), the timers are updated to : τ4 = 0, τ3 = 1, τ2 =

2, τ1 = 3, τ0 = 4. Then, F4 and F10 could forward packets synchronous since they are out

of transmission range.

Our regional schedule not only improves the spatial reuse, but also potential increases

the coding opportunities at intermediate nodes, because each node could forward packets

after receiving packets from all upstream forwarders.

95



4.2.2 Schedule remedy mechanism

The regional forwarding schedule could allow nodes, which are out of transmission

range, to forward packets at the same time. It also incurs many contentions in the

MAC layer since more forwarders evolve in data transmissions at the same time. And

our opportunistic forwarding protocol is the MAC-layer-independent. Once packets are

pushed to the MAC layer, they are out of control by the opportunistic forwarding mod-

ule. Unfortunately, those packets could be delayed by the MAC layer collisions and it

causes lower-priority nodes ending up transmitting before higher-priority nodes by mis-

take. Furthermore, the delayed packets in the MAC layer of higher-priority nodes could

not carry information of new arriving packets from lower-priority nodes, those delayed

packets could activate lower-priority nodes to retransmit its previous fragment.

So we proposed the First Packet Detection mechanism. When a routing module is

ready to send a fragment of packets, it only pushes the first packet in the fragment to the

MAC layer, after the MAC layer forwards this packet, the MAC layer will give a feedback

to the routing module, then the routing module will push the remaining packets to the

MAC layer. Even though the lower priority nodes send packets first, the higher priority

nodes could update the remaining packets in routing module and give lower priority nodes

correct feedback.

4.2.3 Feedback on received coded packets

The random linear network coding could avoid duplicate transmissions, but it is dif-

ficult to summarize the received packets and feedback it to upstream forwarders. ExOR

uses the batch map to describe which packets are received by higher-priority nodes. In
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ExOR Compact, we use the number of innovative packets (the degree of freedom of

decoding metric) as an indicator. Each forwarder would overhear a packet from both

higher-priority nodes and lower-priority nodes, and keep it in its receiving queue if it is

innovative for current receiving queue. When a forwarder is active to deliver packets, it

only checks how many innovative packets are not received by high priority nodes, then re-

coded all packets in its receiving queue and forwards corresponding number of unreceived

innovative packets. To recover the packet loss by the unreliable link quality, we use the

credit mechanism of MORE [18] to calculate how many coded packets a forwarder should

transmit for delivering one innovative packet to one of the downstream nodes.

4.3 Performance evaluation

To evaluate ExOR Compact experimentally, we use the Network Simulator 2 [1] to

compare the performance of ExOR Compact to traditional IP forwarding and ExOR.

S

P1

P2

D

Figure 4.3: short-distance belt topology
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Figure 4.4: long-distance belt topology.

4.3.1 Experiment settings

The link layer of the simulated wireless nodes is the standard 802.11 DCF, where

we use the reliable unicast (with up to 7 retransmissions) for IP forwarding and the

unprotected broadcast for ExOR and ExOR Compact. The data rate is the base 1Mbps;

the relative performance of all tested protocols will remain similar for higher data rates.

The propagation model is the ns2 built-in two-ray ground model, which translates to a

transmission range of approximately 250 meters.

We test the protocols in two topologies, depicted in Figures 4.3 and 4.4. The first sce-

nario, called short topology, has 8 nodes deployed in 4 stages. The source and destination

nodes are at the 1st and 4th stages, respectively, and three more nodes are at stages 2

and 3. The second scenario, called long topology, has 20 nodes deployed in 8 stages, where

we have six intermediate stages of 3 nodes each. In either case, the inter-stage distance

is 100 meters, and the intra-stage distance is 100 meters.

To simulate link quality variation, we added a link reliability probability p to the MAC

receiver code, so that a packet would dropped with a probability of 1 − p even if it is
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received by the PHY correctly. The simulation is conducted for various p values for the

three protocols. Specifically, we have two such probabilities in each simulation scenario.

When two nodes are in the same stage or 1 stage apart, it is p1, and when they are two

stages apart, it is p2. Their values are summarized in Table 4.1.

p1 100% 80% 60% 40% 20%

p2 50% 40% 30% 20% 10%

Table 4.1: Link reliability

In each simulation, we run one of the tested protocols (IP forwarding, ExOR, or ExOR

Compact) with one column of link parameters in Table 4.1. The source node needs to

send 1MB of data to the destination. It divides the data into packets of 1024 bytes each.

The data packets are injected as a CBR User Datagram Protocol flow at the rate of 20

packets per second.

• In IP forwarding, the route is selected with the minimum end-to-end ETX met-

ric [23]. In order for the destination to receive 1000 packets in total, the source may

need to inject more packets for scenarios with less reliable links.

• In ExOR’s design, each batch only forwards 90% of its data packets opportunis-

tically, with the remaining 10% forwarded by traditional IP forwarding. In our

simulation, and as in the original ExOR [10], the source sends 1.1MB of data in

10 batches of 110 packets each, and a batch is completed as long as 100 packets

are delivered to the destination opportunistically. (This change would give ExOR a

performance advantage apparently because the 10% data transported by IP would
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Figure 4.5: Data throughput

incur a fairly large overhead.)

• Because ExOR Compact provides a reliable data forwarding service, the source

node’s application layer agent only needs to push down the 1000 data packets. The

network layer mixes the packets with network coding and forwards them opportunis-

tically. The destination is ensured to receive and decode them for its application

layer.
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4.3.2 Results

To compare ExOR Compact to IP forwarding and the original ExOR, we measure

their data transportation capacity, overhead in terms of transmissions at the link layer,

and the end-to-end delay at the application layer.

The data transfer capacity is measured by the inverse of the amount time used to

deliver 1MB of application-layer data. We tested the three protocols under the link

reliability probabilities in Table 4.1 in both short and long topologies, where each scenario

is repeated 10 times. The average throughput and standard deviation are plotted in

Figure 4.5 for the short topology (left) and right topology (right). Generally, the short

topology allows all protocols to have a higher throughput because of the lesser effect of

intra-flow interference. For both throughput plots, the data transfer capacities decrease

with an increasing link error. In each particular scenario of comparison among the three

protocols, ExOR Compact offers the highest throughput, while IP forwarding has the

lowest. Furthermore, in the long topology, ExOR Compact’s explicit exploitation of

spatial channel reuse gives it a greater margin over the original ExOR.

Next, we show the overhead for these protocols to achieve the data transfer throughput

in terms of the total number of transmissions at the link layer as in Figure 4.6. Here

again, each data point is 10 repeats of the same scenario. We can observe that the long

topology entails a greater amount of efforts for each protocol to fulfill the 1MB of data

transportation requirement. Unsurprisingly, the more reliable the links are, the smaller

the total number of transmissions. In addition, the more efficient spatial channel reuse of

ExOR Compact in the long topology allows it to further save the work at the link layer.

Note that the distributions of the number of transmissions among nodes are different
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Figure 4.6: Number of transmissions

across the three protocols. That is, IP forwarding would concentrate much of its work

around the source node as a fraction of packets are lost every hop along the path to the

destination, especially for unreliable links. In contrast, both ExOR and ExOR Compact

have an even division of labour. As we are curious about how many data packets are

injected by the source nodes, we summarize the measurements in Table 4.2 for different

link reliability settings in both topologies.
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100%, 50% 80%, 40% 60%, 30% 40%, 20% 20%, 10%

short 1028 1320 1820 2441 4160

long 1621 2140 3132 4640 10410

Table 4.2: Total number of packets injected
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Figure 4.7: End-to-end delay

Using a tighter spatial channel reuse and network coding, ExOR Compact offers a

high-throughput, reliable data transfer service with fewer transmissions. The cost is that

the majority of the packets of a batch can only be decided when the entire batch has

been received by the destination. We are interested in this inevitable extra delay, and

plotted the measurement on all protocols. Figure 4.7 depicts the delays in the short and

long topologies. Note that, although traditional IP forward may have a very low delay, it

has a very large number of dropped packets when the links are unreliable. Such dropped

packets effectively have an infinite delay which are not included in the figures.
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4.4 Summary

Opportunistic routing has shown great improvement compared to traditional rout-

ing. It takes advantage of the broadcast nature of wireless media and utilizes multiple

downstream nodes to forward data packets. It transmits each packet fewer times than

traditional routing, which should cause less interference.

The key challenge in opportunistic routing is ensuring that only the best receiver

of each packet forwards it. In order to avoid duplication, ExOR operates on batches

in order to reduce the communication cost of agreement. However, it imposes a strict

scheduler on forwarders access to the medium. Although the medium access scheduler

delivers opportunistic throughput gains, it can not exploit the spatial channel reuse when

multiple packets can be simultaneously received by their corresponding receivers.

Our work is motivated by the improving the spatial channel reuse of the timer-based

opportunistic routing. We proposed an adaptive forwarding schedule that enables nodes

in the forwarder list to transmit packets efficiently. The schedule is confined to a subset of

the forwarders that are within range of the transmitting node so that the waiting time is

only a function of this range rather than of the entire forwarder list. As such, it facilitates

a data transfer pipeline for higher throughput than ExOR. Compared to IP forwarding

and ExOR, we can also observe a greater amount of improvement in long topology.
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Chapter 5

TCPFender

5.1 Overview of TCPFender

In this chapter, we introduce TCPFender as an adaptation layer above the network

layer, which hides opportunistic routing and network coding from the transport layer.

The process of TCPFender is shown in Figure 5.1. It confines the modification of the sys-

tem only under the network layer. The goal of TCPFender is to improve TCP throughput

in wireless mesh networks by opportunistic routing and network coding. However, op-

portunistic routing in wireless networks causes many dropped packets and out-of-order

arrivals, and it is difficult for TCP sender to maintain a large congestion window. Espe-

cially the underlying link layer is the stock IEEE 802.11, which only provides standard

unreliable broadcast or reliable unicast (best effort with a limited number of retransmis-

sions). TCP has its own interpretation of the arrival (or absence) of the ACK segments

and their timing. It opens up its congestion window based on continuous ACKs coming

in from the destination. The dilemma is that when packets arrive out of order or are
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dropped, the TCP receiver cannot signal the sender to proceed with the expected ACK

segment. Unfortunately, opportunistic routing can introduce many out-of-order arrivals,

which can significantly reduce the congestion window size of regular TCP since it increases

the possibility of duplicated ACKs. Furthermore, the long decoding delay for batch-based

network coding does not fare well with TCP, because it triggers excessive time-out events.

TCPFender adaptation layer at the receiving side functions over the network layer

and provides positive feedback early on when innovative coded packets are received, i.e.

suggesting that more information has come through the network despite not being decoded

for the time being. This process helps the sender to open its congestion window and trigger

fast recovery when the receiving side acknowledges the arrival of packets belonging to a

later batch, in which case the sending side will resend dropped packets of the unfinished

batch. On the sender side, the ACK signalling module is able to differentiate duplicated

ACKs and filter useless ACKs (shown in Figure 5.1).

Figure 5.1: TCPFender design scheme.
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5.2 TCPFender algorithm

To better support TCP with opportunistic routing and network coding, TCPFender

inserts the TCP adaptation layer above the network work layer at the source, the for-

warder, and the destination. The main work of the TCP adaptation layer is to interpret

observations of the network layer phenomena in a way that is understandable by TCP.

The network coding module in the adaptation layer is based on a batch-oriented network

coding operation. The original TCP packets are grouped into batches, where all packets

in the same batch carry encoding vectors on the same basis. At the intermediate nodes,

packets will be recoded and forwarded following the schedule of opportunistic data for-

warding proposed by MORE, which proposes a transmission credit system to describe the

duplication of packets. This transmission credit system can compensate the packet loss,

increase the reliability of the transmission, and represent the schedule of opportunistic

data forwarding. The network coding module in the destination node will try to de-

code received coded packets to original packets when it receives any coded packet. The

ACK signalling modules at the source and the destination are responsible for translation

between TCP ACKs and TCPFender ACKs.

5.2.1 Network coding in TCPFender

We implement batch-oriented network coding operations at the sender and receiver

to support TCP transmissions. All data pushed down by the transport layer in sender

are grouped into batches, and each batch has a fixed number β (β = 10 in our imple-

mentation) of packets of equal length (with possible padding). When the source has

accumulated packets in a batch, these packets are coded with random linear network
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coding, tagged with the encoding vectors, and transmitted to downstream nodes. The

downstream nodes are any nodes in the network closer to the destination. Any down-

stream node can recode and forward packets when it receives a sufficient number of them.

We use transmission credit mechanism, as proposed in MORE, to balance the number of

packets to be forwarded in intermediate nodes.

We make two important changes to improve the network coding process of MORE

for TCP transmissions. For a given batch, the source does not need to wait until the

last packet of a batch from the TCP before transmitting coded packets. We call this

accumulative coding. That is, if k packets (k < β) have been sent down by TCP at a

point of time, a random linear combination of these k packets is created and transmitted.

Initially, the coded packets only include information for the first few TCP data segments

of the batch, but will include more towards the end of the batch. The reason for this

“early release” behaviour is for the TCP receiving side to be able to provide early feedback

for the sender to open up the congestion window. On the other hand, we use a deeper

pipelining than MORE where we allow multiple batches to flow in the network at the same

time. To do that, the sending side does not need to wait for the batch acknowledgement

before proceeding with the next batch. In this case, packets of a batch are labeled with a

batch index for differentiation, in order for TCP to have a stable, large congestion window

size rather than having to reset it to 1 for each new batch. The cost of such pipelining is

that all nodes need to maintain packets for multiple batches.
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5.2.2 Source adaptation layer

The source adaptation layer buffers all original packets of a batch that have not been

acknowledged. The purpose is that when TCP pushes down a new data packet or pre-

viously sent data packet due to a loss event, the source adaptation layer can still mix

it with other data packets of the same batch. The ACK signalling module can discern

duplicated ACKs which are not in fact caused by the network congestion. Opportunistic

data forwarding may cause many extra coded packets, specifically when some network

links are of the high quality at a certain point. This causes the destination node to send

multiple ACKs with same sequence number. In this case, such duplicated ACKs are not a

signal for the network congestion, and should be treated differently by the ACK signalling

module in the source. These two cases of duplicated ACKs can actually be differentiated

by tagging the ACKs with the associated sequence numbers of the TCP data segment.

These ACKs are used by the TCPFender adaptation layer at the source and the destina-

tion and should be converted to original TCP ACKs before being delivered to the upper

layer.

The flow of data or ACKs transmissions is shown in the left of Figure 5.1. Original

TCP data segments are generated and delivered to the module of network coding and

opportunistic forwarding. Here, TCP data segments may be distributed to several batches

based on their TCP segment sequences, so the retransmitted packets will be always in

the same batch as their initial distribution. After the current TCP data segment mixes

with packets in a batch, TCPFender data segments will be generated and injected to the

network via hop-by-hop IP forwarding, which is essentially broadcasting of IP datagrams.

On the ACK signalling module, when it receives TCPFender ACKs, if the ACK’s sequence
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number is greater than the maximum received ACK sequence number, this ACK will be

translated into a TCP ACK and delivered to the TCP sender. Otherwise, the ACK

signalling module will check whether this duplicated ACK is caused by opportunistic

data forwarding or not. Then it will decide whether to forward a TCP ACK to the TCP

or not. The reason for differentiating duplicated ACKs at the source instead of at the

destination is to reduce the impact of ACK loss on TCP congestion control.

5.2.3 Destination adaptation layer

The main function of the destination adaptation layer is to generate ACKs and detect

congestion in the network. It expects packets in the order of increasing batch index. For

example, when it is expecting the bth batch, it implies that it has successfully received

packets of the previous b − 1 batches and delivered them up to the TCP layer. In this

case, it is only interested in and buffers packets of the bth batch or later. However, the

destination node may receive packets of any batch. Suppose that the destination node is

expecting the bth batch, and that the rank of the decoding matrix of this batch is r. In

this case, the destination node has “almost” received β × (b− 1) + r packets of the TCP

flow, where β× (b−1) packets have been decoded and pushed up the TCP receiver, and r

packets are still in the decoding matrix. When it receives a coded packet of the b′th batch,

if b′ < b, the packet is discarded. Otherwise, this packet is inserted into the corresponding

decoding matrix. Such an insertion can increase r by 1 if b′ = b and this received packet

is an innovative packet. The received packet is defined as an innovative packet only if

the received packet is linearly independent with all the buffered coded packets within the

same batch. In either case, it generates an ACK of sequence number β×(b−1)+r, which
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is sent over IP back to the source node. One exception is that if r = β (i.e. decoding

matrix become full rank), the ACK sequence number is β× (b̂−1)+ r̂, where b̂ is the next

batch that is not full and r̂ is its rank. At this point, the receiver moves on to the b̂th

batch. This mechanism ensures that the receiver can send multiple duplicate ACKs for

the sender to detect congestion and start fast recovery. It also supports multiple-batch

transmissions in the network and guarantees the reliable transmission at the end of the

transmission of each batch.

The design of the destination adaptation layer is shown on the right of Figure 5.1.

The network coding module has two functions. First, it will check whether the received

TCPFender data segment is innovative or not. In either case, it will notify the ACK

signalling to generate a TCPFender ACK. Second, it will deliver original TCP data seg-

ments to TCP layer if one or more original TCP data segment are decoded after receiving

an innovative coded data packet. This mechanism can significantly reduce the decoding

delay of the batch-based network coding. On the other hand, TCPFender has its own

congestion control mechanism, so TCP ACK that is generated by the TCP layer will be

dropped by the ACK signalling module at the destination.

5.2.4 Forwarder adaptation layer

The flow of data at forwarders is shown in the middle of Figure 5.1. The ACK is

unicast from the destination to the source by IP forwarding, which is standard forwarding

mechanism and is not shown in the diagram. The intermediate node receives TCPFender

data segment from below and this segment will be distributed into corresponding batches

and regenerates a new coded TCPFender data segment. This new TCPFender data
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segment will be sent to downstream forwarders via hop-by-hop IP broadcasting based on

the credit transmission system proposed by MORE.

5.3 Performance evaluation

In this section, we investigate the performance of TCPFender through computer sim-

ulations using NS-2. The topologies of the simulations are made up of three exemplar

network topologies and one specific mesh. These topologies are depicted in Figure 5.2

diamond topology, Figure 5.3 string topology, Figure 5.4 grid topology, and Figure 5.5

mesh topology. The packet delivery rates at the physical layer for the mesh topology are

marked in Figure 5.5, and the packet delivery rates for other topologies are described in

Table. 5.1. The source node and the destination node are at the opposite ends of the

network. One FTP application sends long files from the source to the destination. The

source node emits packets continuously until the end of the simulation, and each simu-

lation lasts for 100 seconds. All the wireless links have a bandwidth of 1Mbps and the

buffer size on the interfaces is set to 100 packets. The source node keeps sending packets

for 100 seconds and we calculate the throughput by how many packets received by the

destination in 100 seconds. Here, the packet size is 1000 bytes. To compensate for the

link loss, we used the hop-to-hop redundancy factor for TCPFender on a lossy link. Recall

that the redundancy factor is calculated based on the packet loss rate, which was pro-

posed in MORE [18]. This packet loss rate should incorporate the loss effect at both the

Physical and Link layers, which is higher than the marked physical layer loss rates. The

redundancy factors of the links are thus set according to these revised rates. We compared

our protocol against TCP and TCP+NC in four network topologies. In our simulations,
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TCP ran on top of IP, and TCP+NC has batch-based network coding enabled but still

over IP. The version of TCP is TCP Reno for TCPFender and both baselines. The ACK

packet for the three protocols are routed to the source by the shortest-path routing.

In this section, we examined whether TCPFender can effectively utilize opportunistic

forwarding and network coding. TCPFender can provide reliable transmissions in these

four topologies and the analysis metrics we took are the network throughput and the

end-to-end packet delay at the application layer. We repeated each scenario 10 times

with different random seeds for TCPFender, TCP+NC, and TCP/IP, respectively. In

TCPFender, every intermediate node has the opportunity to forward coded packets and

all nodes operate in the 802.11 broadcast mode. By contrast, for TCP/IP and TCP+NC,

we use the unicast model of 802.11 with ARQ and the routing module is the shortest-path

routing of ETX [23].

S D

Figure 5.2: Diamond topology

S D

Figure 5.3: String topology
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In the diamond topology (Figure 5.2), the source node has three different paths to the

destination. TCP and TCP+NC only use one path to the destination, but TCPFender

could utilize more intermediate forwarders thanks to opportunistic routing. The packet

delivery rates for each link are varied between 20%, 40%, 60% and 80%. We plotted the

throughput of these three protocols in Figure 5.6. In all cases, the TCPFender has the

highest throughput, and the performance gain is more visible for poor link qualities.

Next, we tested these protocols in the string topology (Figure 5.3) with 6 nodes. The

distance between the two nodes is 100 meters, and the transmission range is the default

250 meters. Different combinations of packet delivery rates for 100-meter and 200-meter
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Figure 5.5: Mesh topology

Table 5.1: Packet delivery rate

100m 200 m

100% 80% 60% 40% 20%

80% 60% 40% 20%

60% 40% 20%

40% 20%

distances are described in Table 5.1. As a result, the shortest path routing used by TCP

and TCP+NC can decide to use the 100m or 200m links depending on their relative

reliability. The throughputs of the three protocols are plotted in Figure 5.7, where we

observed how they perform under different link qualities. Except for the one case where

both the 100m and 200m links are very stable (i.e 100% and 80%, respectively), the gains

of having network coding and opportunistic forwarding are fairly significant in maintaining

TCP’s capacity to the application layer. When the links are very stable, the cost of the

opportunistic forwarding schedule and the network coding delay will slightly reduce the

115



Figure 5.6: Throughput for diamond topology

network throughput.

We also plotted these three protocols’ throughputs in a grid topology (Figure 5.4) and

a mesh topology (Figure 5.5). Each node has more neighbours in these two topologies,

compared to string topology (Figure 5.3), which increases the chance of opportunistic

data forwarding. The packet delivery rates are indicated in these two Figures (Figure 5.4

and Figure 5.5). In general, the packet delivery rates drop when the distance between

a sender and a receiver increases. In our experiment, the source and destination nodes

deploy at the opposite ends of the network. The throughput of TCPFender is depicted

in Figure 5.8 and it is much higher than TCP/IP because opportunistic data forwarding

and network coding increase the utilization of network capacity. The gain is about 100%

in our experiment. The end-to-end delays of the grid topology and the mesh topology are

plotted in Figure 5.8. In general, TCP+NC has long end-to-end delays because packets
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Figure 5.7: Throughput for string topology

need be decoded before being delivered to the application layer; this is an inherent feature

of batch-based network coding. TCPFender can benefit from backup paths and receive

packets early, so it reduces the time-consumption of waiting for decoding and its end-to-

end delay is shorter than TCP+NC.

Next, we are interested in the impact of batch sizes on the throughput and the end-

to-end delay. Figure 5.9 shows the throughput of TCPFender in the mesh topology for

batch sizes of 10, 20, 30, ..., 100 packets. In general, batch sizes will have an impact

on the TCP throughput (as exemplified in Figure 5.11). When the batch size is small

(≤ 40), the increment of the batch size can increase the throughput, since it expands
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Figure 5.8: Throughput and delay for grid topology and mesh topology.

the congestion window. However, if the batch size is too large (> 40), the increment

of the batch size will decrease the throughput because the increase of batch size will

amplify the fluctuation of the congestion window and also increase packet overhead by

long encoding vectors. Figure 5.11 also describes how many packets are transmitted in

the network. Each intermediate node will keep all unfinished batches. From Figure 5.11,

since the number of packets transmitted in the network is smaller than two batch sizes,

intermediate nodes only need to keep two batches of packets and the memories required

to store the packets are acceptable. The nature of batch-based network coding will also

introduce decoding delays, so the batch size has a direct impact on the end-to-end delay,

as summaries in Figure 5.9. In Figure 5.10, we plotted the end-to-end delays of all packets

over time in two sample simulations. Note that these tests were done for files that need

many batches to carry. On the other hand, when the file size is comparable to the batch
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size, the file-wise delay will be comparable to the decoding delay of an entire batch, which

may seem relatively large. However, because the file size is small, this delay is not overly

significant as the delay is at the order of its transmission time. Nevertheless, network

coding does add a considerable amount of delay in comparison to pure TCP/IP.
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Figure 5.9: Throughput and delay for different batch sizes
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5.4 Summary

In this chapter, we proposed TCPFender, which is a novel mechanism to support TCP

with opportunistic routing network coding. TCPFender completes the control feedback

loop of TCP by creating a bridge between the adaptation modules of the sender and

the receiver. The sender adaptation layer in TCPFender differentiates duplicate ACKs

caused by network congestion from these caused by opportunistic routing, and the receiver

side releases ACK segments whenever receiving an innovative packet. In current work,

we implemented our algorithm to support TCP Reno. In fact, TCPFender can also

support other TCP protocols with loss-based congestion control (e.g., TCP-NewReno,

TCP-Tahoe). The adaptive modules are designed generally enough to not only support

opportunistic routing and network coding, but also any packet forwarding techniques that

can cause many dropping packets or out-of-order arrivals. One example will be multi-path

routing, where IP packets of the same data flow can follow different paths from the source

to the destination. By simulating how TCP receiver will signal the TCP sender, we are

able to adapt TCPFender to functioning over such the multi-path routing without having

to modify TCP itself.

In the simulation results, we compared TCPFender and TCP/IP in four different

network topologies. The result shows that TCPFender has a sizeable throughput gain

over TCP/IP, and the gain will be very distinct from each other when the link quality is

not that good. We also discussed the influence of batch size on the network throughput

and end-to-end packet delay. In general, the bath size has a small impact on the network

throughput, but it has direct impact on end-to-end packet delay.
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Figure 5.10: Delay for two specific cases with batch sizes of 10 and 40
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Chapter 6

Conclusions and Future Work

In this final chapter, we will summarize the contributions presented in this dissertation

and discuss future work.

6.1 Conclusions

Multi-hop wireless mesh networks aim to enable an unlimited number of people freely

and easily communicate with one another in an unrestricted way and eventually realize

the dream of a seamlessly connected world. However, the distinct features and criti-

cal design factors of multi-hop wireless networks also pose several challenges. Since the

last decade, opportunistic routing and network coding are proposed to improve the per-

formance of wireless networks by proactively exploiting the broadcast nature and space

diversity provided by wireless media. Opportunistic routing considers multiple potential

paths to transmit packets to the destination, the successful rate of each progression of

forwarding can be much improved. Network coding improves throughput performance

and reliability in wireless media. Intra-flow network coding mixes packets from the same
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flow and provides higher resilience to packet losses.

In this dissertation, we described the background of opportunistic routing and network

coding in Chapter 1. Then, we surveyed the main research of this topic in Chapter 2.

In Chapter 3, we described an analytical model to quantify the benefits of opportunistic

routing over traditional routing. After studying the performance of opportunistic routing,

Chapter 4 presented ExOR Compact, which created a regional transmission schedule to

improve the UDP throughput. In Chapter 5, we added an adaptation layer to mask the

packet loss caused by wireless link errors and provide early positive feedbacks to trigger

a larger congestion window for TCP. This adaptation layer functions over the network

layer without any modification of current TCP communication systems.

The following conclusions can be drawn from this dissertation:

• We explain the fundamental idea of opportunistic routing and propose a discrete-

time Markov chain as a general model to map the transmission process of oppor-

tunistic routing. Our study demonstrates how to map packet transmissions in the

network with state transitions in a Markov chain. In our model, we consider the

pipelined data transfer and evaluate opportunistic routing for different wireless net-

works. Our modeling techniques proposed in this thesis provide a comprehensive

framework to study the performance of packet transmissions, and also can be con-

sidered as an important fundamental toward modeling more complicated scenarios

leading to the communication networks with better performance.

• Batch-based coordination is the most frequently investigated topic in opportunistic

routing. The interference between packets in a batch can also affect the performance

of opportunistic routing. Our work is the first study investigating the effect of batch-
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based transmissions of opportunistic routing. We take into account the interference

model, call Protocol Model, to analyze the pipelined data transfer. Our Markov

model is independent from network topology and candidate selection algoritym. The

input parameters are batch sizes, packet success rates, number of nodes, and pipeline

sets. We will analyze how these parameters affect the performance of opportunistic

routing in terms of the expected number of packet transmissions and time slots.

• Our analytical models consider pipelining, and it does not only present the ad-

vantage of opportunistic routing but also explores the spatial reuse problem of it.

It takes into account the theory of the absorbing matrix and enables the estima-

tion of the number of state transitions in a very effective way. Considering different

coordination mechanisms, the proposed models can simulate different network trans-

mission process in wireless mesh networks including both opportunistic routing and

traditional IP forwarding.

• We use computer simulation to verify the validity of the analytical model by both

NS-2 and Java project in different scenarios. The opportunity gain of packet trans-

missions are increasing function of the diversity of transmission paths. In addition,

the difference between the simulation and the numerical results showes that how

collision and retransmissions affect the performance of opportunistic routing.

• We propose ExOR Compact as a joint opportunistic routing and network coding

technique to improve network performance. Coordination of opportunistic packet

forwarding is limited to the greatest possible range of the transmitting node rather

than among the entire set of forwarders. As such, a node’s mandatory waiting time

is reduced. With such a higher degree of spatial channel reuse, ExOR Compact has
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a data pipeline for higher data transfer capacity.

• ExOR Compact is a network-layer-only solution, and it relies on the standard 802.11

MAC to accommodate multiple forwarding activities scheduled at the same time.

Once a packet is given to the MAC, it is completely up to the control of the MAC.

Thus, ExOR Compact keeps packets at the network layer as long as possible so that

a node can make a last-minute change or cancellation.

• A lower-priority forwarder in ExOR Compact will monitor the channel activities to

gauge the number of innovative packets that a higher-priority forwarder has collected

so that it can determine a proper number of coded transmissions to attempt at its

turn.

• We propose TCPFender to incorporated TCP with opportunistic routing and net-

work coding. TCPFender adds an adaptation layer above the network layer to co-

operate with TCP’s control feedback loop. This adaptation layer masks the packet

loss caused by wireless link errors and provides early positive feedbacks to trigger

a larger congestion window for TCP. It can distinguish duplicated ACKs caused by

out-of-order arrivals in opportunistic routing from those caused by network conges-

tion and make the TCP’s congestion control work well with the frequent occurrences

of out-of-order packets in opportunistic routing and long decoding delay in network

coding.

• Opportunistic routing and network coding do not inherently support TCP, so many

previous research on opportunistic data forwarding and network coding were not

designed for TCP. Other studies modified TCP protocols by cooperating network
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coding into TCP protocols; these works created different variants of TCP protocols

to improve the throughput. However, TCP protocols (especially, TCP Reno) are

widely deployed in current communication systems, it is not easy work to modify all

TCP protocols of the communication systems. Therefore, we propose an adaptation

layer (TCPFender) functioning below TCP Reno. With the help of TCPFender,

TCP Reno does not make any change to itself and it can take advantage of both

network coding and opportunistic data forwarding, it is easy to deploy in wireless

mesh networks.

• We compare the throughput of TCPFender and TCP/IP in different topologies

of wireless mesh networks, and analyze the influence of batch sizes on the TCP

throughput and the end-to-end delay. Comparing TCPFender with other baselines

in aspects such as throughput, end-to-end delay and evolution of TCP congestion

window, TCPFender can significantly outperform TCP/IP.

6.2 Future Work

There are various directions to extend our work, which can be briefly outlined as

follows:

• Analytical model of OR with NC – As shown in this dissertation and other related

works, the combination of opportunistic routing and network coding in a single

joint protocol outperforms each of them individually. To the best of our knowledge,

there is no comprehensive analytical model studying the performance under this

joint approach. In future work, our models will be extended to analyze opportunis-
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tic routing with network coding. Both opportunistic routing and intra-flow network

coding take advantage of the broadcast nature of the wireless medium and transmit

data packets as a batch in each round. Network coding randomly mixes a batch

of packets before forwarding them, which can be exploited to avoid or minimize

replicate transmissions. Each coded packet randomly combines partial information

of data packets in a batch, which further extends the distribution of data packets

in the network. Network coding can increase the throughput and the stability of

transmissions. To map opportunistic routing with network coding by a Markov

chain, two important aspects should be considered. First, as network coding fuses

information in the original packets, the Markov model can no longer track individ-

ual original packets without a significant enhancement. Second, the destination is

considered to have received all original packets only if it has accumulated sufficient

evidence to have a full-rank decoding matrix. How quickly this happens is deter-

mined by the way intermediate nodes recode packets and how aggressively they do

it. Thus, coded packets transiting in the network is an important factor of the proto-

col overhead, and estimating how it interacts with the packet delivery performance

is crucial. Further studies will take into account the amount of consumed resources

for opportunistic routing in mobile ad hoc networks and vehicular networks, where

the link quality frequently changes. The dynamic changes of link qualities require

a time-variation matrix to represent the state transition process. We will consider

how to map these dynamic network states into a Markov chain.

• Analytical model of OR with both Intra- and Inter-flow NC – A number of research

have been proposed to combine intra- and inter-flow network coding, however, they
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only explored the coding opportunities along fixed routing path because oppor-

tunistic routing works with these two network coding techniques in different ways.

Opportunistic routing with intra-flow network coding transmits packets in the same

direction, the coordination focused on avoiding duplicate transmissions. The trans-

mission probability of one packet to multiple downstream nodes are considered to

calculate opportunity gains. Opportunistic routing with inter-flow network cod-

ing codes packets from different flows where the directions of them are opposing.

Opportunity gains depend on who are the senders of two packets. When an in-

termediate node receives two packets from two flows and the sender of one packet

is the recevier of another packet, vice versa, the intermediate node will code these

two packets and transmit them by one transmission. We believe that the analytical

model of opportunistic routing with intra- and inter-flow network coding can be an

interesting area of future research investigation, which helps better understand both

approachs and provides more reliable and efficient communication networks.

• Adding Inter-flow Network Coding to ExOR Compact – ExOR Compact proposes

a regional transmission schedule to limit the waiting time being only a function

of the transmission range rather than of the entire forwarder list. The regional

transmission schedule involved only a subset of the forwarders that are within range

of the sender. Whenever the transmission range of two senders has overlapped each

other, packets from different flows can be coded together to further exploit the

coding opportunities in entire network. Thus, it will be interesting to extend ExOR

Compact by including a combination of intra- and inter-flow network coding.

• ExOR Compact works with TCP – Our adaptive forwarding schedule is designed
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generally enough to not just support UDP transmission, but also TCP transmission.

It can adapt TCP congestion window by acknowledgementing the number of inno-

vative packets as the sequence number of TCP. We will discuss TCP performance

in our future work. On the other hand, ExOR Compact can be extended to verify

how multiple flows interact with each other or over more generally any error-prone

wireless networks.

• TCPFender supports RTT-based congestion control – We will consider TCP proto-

cols with RTT-based congestion control and also analyze how multiple TCP flows

interact with each other in a network coded, opportunistic forwarding network layer,

or a more generally error-prone network layer. We will refine the redundancy factor

and the bandwidth estimation to optimize the congestion control feedback of TCP.

Finally, we will propose a theoretical model of TCP with opportunistic routing and

network coding, which will enable us to study TCPFender as a function in various

communication systems.
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