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Abstract 

     Asphalt binder of five samples were taken from different parts of Canada. Thin 

films samples (l mm) were prepared by heating onto glass slides at 150°C for 10 

min. Structural studies of asphalt in crude oil were performed by X-ray diffraction 

(XRD). The JadeTM software program was used for the initial analysis. XRD was 

performed with copper K-α radiation at 40 kV and 40 mA at a scan rate of 0.001° 

2θ per second. The XRD data were first fitted with the Pearson VII features and 

then with pseudo-Voigt features and then modeled in the Mathematica© using the 

Fermi Generalized Function (GFF). The results are discussed in terms of their 

accuracy with different combinations of backgrounds such as (Linear, Level, 

Fixed, Parabolic, 3rd order Polynomial, 4th order Polynomial).  

         The outcomes discussed are related to the accuracy of profile fitting when 

the exponents of Pearson VII and pseudo- Voigt Lorentzian differ. The Lorentzian 

values of Pseudo- Voigt are 0.4, 0.7, and 0.9 whereas the Exponent values of 

Pearson VII are 0.6, 0.8, and 1.2, and 3 backgrounds (4th order polynomial, 3rd 

order polynomial, and parabolic) were applied in profile fitting. Further, profile 

fitting and accuracy extend to crystallite parameters calculated results. 
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Chapter 1 

 

              1.1 Introduction 

          Asphalt is a mixture of aggregates, binder and filler, used for constructing 

and maintaining all kinds of roads, air ports, parking areas, etc. Typical asphalt 

mixtures are aggregates of crushed rock, sand and gravel. In one of its forms, it 

has several mixtures of hydrocarbons called bitumen. Asphalt binder is a 

powerful, versatile weather-resistant chemical binding that adapts itself to a 

variety of uses. It connects crushed stone and gravel (commonly known as 

aggregates) in hard surfaces, roads, streets, and airport operation routes. Asphalt is 

obtained either from natural sediments such as native asphalt or as a by-product of 

the petroleum industry (petroleum asphalt) [1]. 

          Asphalt is one of the oldest engineering materials in the world, having been 

used since the beginning of known civilization, around 6000 BC. As early as 2600 

BC, the Egyptians used asphalt as waterproofing. In many ancient civilizations, 

asphalt was widely used as a mortar for building and paving blocks used in 

temples, irrigation systems, reservoirs, and highways. 

       The asphalt utilized by early civilizations occurred naturally and was found in 

geological strata either as soft mortar or hard black veins, which were embedded 

in brittle rock formations (also known as asphalt charcoal). Natural asphalt was 

formed when the crude oils were working their way through the cracks of the 

surface of the earth. The work of the sun and wind removed oil and light gases, 

leaving black residues. The discovery of asphalt during the refining of crude oil, 
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along with the increasing popularity of cars, has led to a significant expansion in 

the asphalt industry. Modern petroleum-derived asphalt has the same strong 

qualities as natural asphalt, with free of organic impurities and minerals [2]. 

        Most of the asphalt produced today is used for highways. Asphalt paving 

materials are a sloping black mixture of asphalt cement, sand, and crushed rock. 

After being heated, hot fumigation is drowned on the road, level trickled, then 

compressed by a heavy stroller. Asphalt is also used for expansion joints, concrete 

road, airport runways, tennis courts, playgrounds and floors in buildings. Light 

forms of petroleum asphalt, called road oils, are sprayed on roads to control dust 

and connect gravel. Another major use of asphalt is in asphalt shingles and rolled 

on roofing materials, which usually consists of saturated fibres with asphalt. 

Additional asphalt applications include tunnels, bridges, dams, reservoirs, 

stainless steel and rust-resistant metal tubes, automotive sub-sections, and 

soundproofed walls and ceilings. 

1.2 Types of Asphalt 

          Asphalt is a highly recycled, reused and versatile pavement material. It is 

used on 94% of the 2.6 million paved roads in America. There are several 

different types of asphalt pavement, including the following [3]: 

1. Porous asphalt: Porous asphalt has existed since the mid-1970s and is mainly used 

in parking lots to allow water to drain through the road. This road-lining solution 

is cost-effective and can last more than twenty years. 

http://www.crisdel.com/services/asphalt-paving
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2. Quiet asphalt: By applying a combination of asphalt or an open layer matrix, this 

type of pavement with asphalt considerably reduces noise inside and outside 

residential areas and shops.  

3. Thin overlays: Thin overlays improve ride quality and reduce pavement distress, 

noise levels, and life-cycle costs. It is produced by using warm-mix asphalt and 

recycled materials. 

1.2.1 Hot Mix Asphalt (HMA) 

         Asphalt hot blending is the most commonly used flex plaster in the United 

States. It is also known as bitumen, or sometimes just a hot mixture. The (HMA) 

are mainly classified as thick gradient mix, stone matrix mixes, and open hot mix 

asphalt. There are also other types of asphalt, but they are limited to maintenance 

and rehabilitation [4]. 

 

1.2.1.1 Hot mix asphalt: Dense mixture 

        Dense mixture is the most widely used of the hot mix asphalts because it 

provides excellent sealing properties that allow water to escape from the surface. 

However, this type of asphalt is ideal for all traffic conditions.  

 

1.2.1.2 Hot mix asphalt: Stone asphalt matrix 

         The stone asphalt matrix combination has been developed to maximize 

tenacity and achieve high durability. Because of the manufacturing process, this 

asphalt mixture is more expensive than ordinary mixed dense mixtures. Its design 

based on high asphalt content, modified asphalt binder, and fiber. Stone asphalt 
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matrix has been used since 1980 and can be found in many road and trail 

applications. 

         Metal fillers and additives are used to reduce the exhaust gas of the asphalt 

binder during construction while increasing the amount of asphalt binder used in 

the mixture and improving the durability of the mixture. 

 

1.2.1.3 Hot mix asphalt: Open-graded mixes 

         The main difference between open-graded mixes and the two types of 

asphalt listed above is the permeability characteristic. Open-graded mixes are 

designed with powder stone and a few grains of sand. There are two 

classifications for this type of mix, the most popular one is cycle open friction 

gradient. 

 

1.2.2 Cold mix asphalt (CMA) 

        Cold asphalt mixing is a combination of mineral aggregates and emulsifying 

or reducing asphalt with additives. The pool can be made of raw materials or 

asphalt pavements, also known as asphalt plants. The last option is usually used to 

save money. Cold mixtures can be produced on-site or at a central location and 

then transported to the construction site. The flexibility to produce this kind of 

asphalt outside the construction site is particularly useful for long distance roads 

[5]. 

        Asphalt cold blends are a kind of asphalt that is usually used as cool mixtures 

in rural low trafficked streets. Cold mixtures are also used to repair worn road 
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surfaces and bores when the hot mixture is not readily available and as temporary 

patches. Additionally, this type of asphalt can be used for the binder, base, top 

courses and leveling as well as a structural overlay. Cold-mixing materials are 

durable and flexible, which means that they can heal themselves under the 

pressure of icy thaw cycles. This makes cold mixtures ideal for non-technical 

methods. 

        As with any other form of an overlay, asphalt should only be applied to a 

pedestal in cold conditions. If any damage occurs to the base or pavement, repairs 

should be performed before applying the overlay to achieve the best results. The 

emulsion of the tack coating, particularly in areas with curves or grading, is also 

recommended. 

        The life expectancy of cold mix asphalt is around one year. It is very 

important to use high-quality materials that are properly compacted in order to get 

the most out of it. 

 

1.2.3 Petroleum Asphaltene 

        Petroleum asphaltene is a specific class of petroleum liquids that is, 

according to Sheu (2002) [6], not only the most refractory but also generally the 

heaviest of all oil components. The properties of asphaltene encompass both 

structure and molecular weight. Nellensteyn believed asphaltenes to be high 

molecular hydrocarbons that create a colloidal system which becomes adsorbed 

by surface components. Since that time, numerous researchers have strived to 

better define the molecular weight, structure, etc., of asphaltene, as they contend 
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that it is an important base in numerous applications and also improves the 

production efficiency of petroleum products [7].  

 

1.2.4 Asphalt Cement 

        Although it can be composed of a variety of substances, asphalt cement is 

made primarily of bitumen, resins, and absorbed gas. The distillation process for 

this type of asphalt can be naturally occurring and lead to the formation of asphalt 

lakes, or it may occur during the petroleum refinement phase. Moreover, the 

distillation process and type of crude are instrumental in defining both the content 

and fractional proportions of the various primary and secondary compounds found 

in asphalt cement [8].  

         Asphalt cement typically undergoes physical and chemical alterations over 

the course of time, mainly due to the different reactions of its contents. The most 

common alteration is stiffening that occurs as the asphalt ages. In order to create 

different asphalt cement grades, heavy residues are further processed during the 

refining process. Asphalt cement is currently marketed as “performance grade” 

(PG) binders and is used according to the traffic load and weather conditions of 

the intended locations [9].  

 

1.3 Performance grade (PG) and Asphalt Binder Pavement 

        Performance grade (PG) binders and PBA binders are conceptually similar. 

The PBA binders are a major building block for the PG System. PBA binders, 

mostly based on the traditional viscosity testing protocols, introduces the concept 
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of specifying binders based on the project climatic conditions and binder 

performances in the pavement. Later, PBA binders adopted some of the 

fundamental properties (stresses and strains) binder tests developed for PG 

System. The current PBA binders has evolved to exclusively characterized 

polymer-modified binder. It is expected that the PBA binders will be replaced by 

the PG Grades for modified binder (PG Modified) in the near future [10].  

 

1.4 Crude Oil Characterization 

        Petroleum crude oils are complex mixtures containing tens of thousands of 

chemically distinct organic compositions within a dynamic range of 10,000-

100,000 in relative abundance [11,12]. The origins of any given crude oil can 

have a significant impact on the composition. Crude oil widely varies in volatility, 

density, viscosity, and color and may also contain a solution of inorganic gases, 

such as nitrogen, carbon dioxide, and hydrogen sulfide. Water is another 

important component of crude oil. The water has a limited mixing with 

hydrocarbons, and most of it is found in the form of droplets in an emulsion or 

free water phase. Usually, water is separated in a good free-face facility, whereas 

emulsified water removal operations occur in the pre-refining stage. 

      In oilfield operations, crude oils are generally classified based on the viscosity. 

Table 1.1. Correlates the viscosity and density of 3 crude oil types to the °API.  

Light oil or “conventional crude oil” is often produced by primary or secondary 

recovery process without the addition of heat, chemicals or solvents. These oils 

have relatively low viscosity and density. Crude oil that is significantly more 
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viscous and has a lower API gravity (higher density) is called “heavy oil”. These 

oils are typically produced by enhanced oil recovery techniques and require 

thermal stimulation or by addition of chemicals. Bitumen or “extra heavy crude 

oil” are near-solid materials that do not flow freely under ambient conditions. 

They are extremely viscous and are usually extracted from oil sands mining or 

through enhanced oil recovery techniques. Overall, the hydrocarbon (as opposed 

to heteroatom) content of the crude oil may be as high as 97 wt% in the case of 

light oil or as low as 50 wt% in heavy crude oil and bitumen. 

 

Table 1.1: Classification of Crude Oils 

Crude oil type Viscosity (MPa•s) Density (kg/m3) °API 

light oil < 100 < 934 > 20 

heavy oil 100 to 100,000 934-1000 10 to 20 

bitumen > 100,000 >1000 < 10 

                                                        

                                                         

       Hydrocarbon components in crude oil begin with methane (CH4), the simplest 

of all hydrocarbons. Methane is the most common component in petroleum at 

high pressure and temperature conditions. Since methane contains one carbon 

atom, it is often referred to as C1. Similarly, the term C2 is used for ethane 

(C2H6), C3 for propane (C3H8), and so on. In general, the hydrocarbon 
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components in a crude oil may extend up to C200. Hydrocarbons with seven and 

more carbon atoms are usually referred to as C7+ fraction or plus fraction.   

The C7+ fraction is far more complex than lighter fractions due to the larger 

number of isomer combinations available to hydrocarbons with increasing carbon 

number as well as the presence of heteroatoms. A particular C7+ component may 

belong to one of the following component classes: paraffins, naphthenes, 

aromatics, resins and asphaltenes. 

        Paraffins alkanes are straight chain or saturated hydrocarbons, where carbon 

atoms are linked by single bonds. They can be unbranched (normal- or n-

paraffins) or branched (iso- or i-chained). 

         Naphthenes, also called cycloalkanes, resemble paraffin with one or more 

cyclic structures. They are carbon atoms linked to ring structures and by single 

bonds. 

         Aromatics are components with one or more of the cyclic structures that 

contain double bonds. Gasoline is the simplest aromatic component. It may be 

associated with aromatic replacements of the naphthene rings and/or paraffin side 

chains. 

         Resins are very aromatic components and their structure is not well-defined. 

Primarily, they are polar, polynuclear molecules consisting of condensed aromatic 

rings, aliphatic side chains and few heteroatoms. The asphalt-like resin is bigger 

and more intense, as well as more polar and aromatic. Figure 1.1 shows the 

continuum of Saturates, Aromatics, Resins, and Asphaltenes (Sara) In Petroleum. 
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Figure 1.1: Continuum of Saturates, Aromatics, Resins, and Asphaltenes (Sara) In 

Petroleum [13]. 

 

1.4.1 Asphaltenes  

        The difference between asphaltene and asphalt is that asphaltene refers to any 

of the dark organic constituents of crude oils and bitumen that are soluble in 

aromatic solvents but not in aliphatic ones. Furthermore, they are polycyclic 

aromatic compounds composed of fused benzene rings with aliphatic side chains. 

Asphaltenes are defined as a soluble class of petroleum, which precipitate from 

crude oil by adding excessive amounts of solvents such as n-alkane, n-heptane or 

n-pentane, and are soluble in aromatic solvents such as toluene or benzene.  
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On the other hand, asphalt is a sticky, black and highly viscous liquid or semi-

solid, composed almost entirely of bitumen. It is present in most crude petroleum 

and in some natural deposits. Asphalt is not a pure element but instead consists of 

tens of thousands of species that all have similar melting behavior but (usually) 

different chemical structures, sizes, and shapes.  

        Asphaltene species can also share some common features, in that they are 

polynuclear aromatics which contain n-alkane chains, cyclic alkanes, and 

heterogeneous atoms such as sulfur, nitrogen, oxygen, nickel, vanadium, and iron. 

(Moschopedis et al., 1976) created a list of asphaltenes extracted from various 

crude oils worldwide (see Table 1.2). The hydrogen-to-carbon (H / C) atomic 

ratios of C5- asphalt were found to be 1.2 ± 0.5% [11]. A typical asphaltene sulfur 

molecule may contain Theophanes, thiols, sulfides, disulfides and forms of 

oxidation. Nitrogen can also be found as pyrroles and pyridines structures. 

Oxygen has been identified in carboxylic, phenolic and ketonic locations, and 

metals (nickel and vanadium) are present as porphyrins. 

        Asphaltenes are generally claimed to be the “highly polar” fraction in the 

crude oil. This is based on the fact that asphalt is insoluble in n-heptane, non-polar 

solvents. However, asphalt is easily soluble in solvents that are relatively non-

polar, such as benzene, toluene, and dichloromethane, as well as in polar solvents 

such as water, glycerine and methanol. Thus, asphalt can be non-polar and 

chemically polar compared with other components of crude oil.              
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   Table 1.2: Elemental Composition of Various Asphaltenes 

Source Composition (wt %) Atomic Ratios 

 C H N O S H/C N/C O/C S/C 

Canada 79.0 8.0 1.0 3.9 8.1 1.21 0.011 0.037 0.038 

Iran 83.7 7.8 1.7 1.0 5.8 1.19 0.017 0.009 0.026 

Iraq 80.6 7.7 0.8 0.3 9.7 1.15 0.009 0.003 0.045 

Kuwait 82.2 8.0 1.7 0.6 7.6 1.17 0.017 0.005 0.035 

Mexico 81.4 8.0 0.6 1.7 8.3 1.18 0.006 0.016 0.038 

Sicily 81.7 8.8 1.5 1.8 6.3 1.29 0.016 0.017 0.029 

USA 84.5 7.4 0.8 1.7 5.6 1.05 0.008 0.015 0.025 

Venezuela 84.2 7.9 2.0 1.6 4.5 1.13 0.020 0.014 0.020 

 

1.4.2 Molecular Structure 

There is an ongoing debate regarding the molecular composition of asphalt, 

especially in reference to the size of the aromatic groups and how they are linked 

to other structural groups. A molecular model of an asphaltene molecule is 

provided below as (continental) structures and dispersed (Archipelago) structures, 

as shown in Figure 1.2. 
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Figure1.2: Model of asphaltene molecules: a) the “continental” type, and b) the 

“archipelago” type [14] 

        The intensive structure of the molecule represents a typical asphaltene, as the 

nucleus of aromatic contains a large number of fused rings (it usually consists of 

more than seven rings) with aliphatic groups. A condensed structure interpretation 

is supported by data obtained from proton (1H nuclear) magnetic resonance 

spectroscopy, X-ray diffraction, and fluorescence polarization experiments [15]. It 

represents the structure of a typically scattered asphaltene molecule as a collection 

of small aromatic groups linked by bridges. This interpretation is based on the 
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structure of dispersant on data from pyrolysis, oxidation, and thermal degradation 

and small-angle neutron scattering techniques [16]. High-resolution mass 

spectrometry data show that both structures may actually exist in the oil [17]. 

 

1.4.3 Density 

        Gravimetric measurements are typically used to obtain the density of asphalt. 

Solid asphalt from crude oil density is reported to be between 1170 and 1280 

kg/m3 [18]. The density of asphalt with a smaller H / C ratio (more aromatic) is 

greater than asphalt with a larger proportion of H / C. The effective liquid density 

of asphaltene in mixtures was measured using an indirect method [19]. The 

density range reported by this method of 1100-1200 kg/m3 of asphalt came from a 

variety of sources. 

 

1.4.4 Surface Activity 

        Several studies on the characterization of surface active material have 

focused on oil and water interface, including asphaltenes. Asphalt surface activity 

can be attributed to the functional water groups, which are an integral part of the 

structure of hydrophobic hydrocarbons. For example, acidic and basic heteroatom 

groups containing oxygen, nitrogen and sulphur are hydrophilic. Hence, 

asphaltenes behave as surfactants and can adsorb at the water-oil interface. The 

adsorbed asphaltenes contribute to the formation of stable emulsions that make 

oil-water separation difficult and thereby causing problems in downstream 

operations [20]. 
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         The most frequently cited evidence for interface activity of asphaltene is 

based on measurements of interfacial tension. There is a general reduction in the 

concentration of asphalt surface tension between the oil sample (for example, 

mixtures of heptane-toluene) and water [21]. Surface tension in the media can 

result from substances that are very acidic or basic, suggesting that both acidic 

and basic groups interact in the interface [22]. 

         Resins are also considered as one of the active surfaces of crude oil 

components. For example, the creation of films and interfaces of most stable 

emulsions occurs through a combination of asphalt and resins [23]. However, 

according to Gafonova and Yarranton (2001) [24], resins tend to destabilize the 

emulsions model.  Using the thin liquid film-pressure balance apparatus, Taylor et 

al. (2002) [25] observed that toluene-asphaltene films and toluene-bitumen can be 

compressed to the same thickness (8.5 nm bilayer), so it was concluded that the 

surface-active substances were at the front of asphalt bitumen water in the first 

place. In addition, it was noted that upon removal of high molar mass asphaltenes, 

the bilayer decreased from 8.5 nm to 5.1 to 7.3 nm, the film stability will be 

reduced. 

The surface chemistry of the elements active in the oil-water interface has been 

examined as well. Shaw and others (1999) [26] claimed that the active surface or 

interface material components of bitumen in water systems are polar compounds 

and contain oxygen. Wu (2003) [27] developed an experimental methodology for 

isolating interface material from Athabasca bitumen emulsion heavy water. He 

pointed out the elements that interface material analysis contained H / C atomic 
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ratio of 1.13 above the onset of the rains, while the material interfaces isolated 

below the start of precipitation consisting of salts of carboxylic with a ratio H / C 

1.32. A high-resolution mass spectrum analysis shows that the interface material 

is comprised of very intense aromatics in layered structures of O2, O2S and O3S, 

as well as acidic and basic N- and NS-class homogeneous structures [28]. 

 

1.5 Asphalt Physical Properties 

        Asphalt can be classified by chemical composition and physical properties. 

The road-lining industry usually relies on the physical characteristics of 

performance marking, although the physical properties of asphalt are a direct 

result of their chemical composition. The most important physical properties are 

as follows: [29] 

• Durability. Durability is a measure of how the physical properties of asphalt are 

altered with age (sometimes referred to as curing). In general, the viscosity 

increases as an asphalt binder becomes stronger and more brittle. 

• Study of flow properties. Rheology is the study of deformation and flow of 

matter. The deformation and flow of asphalt binder are important in pavement 

performance. If they are deformed and flowing, they can be too susceptible to 

vandalism and bleed, while those that are severely severe may be prone to fatigue 

cracking. Rama is closely related to deformation as biologically documented 

asphalt. The rheological properties of asphalt binder vary with temperature, so the 

rheological characterization involves two main considerations. First, for a 

complete description of the asphalt binder, its rheological properties must be 
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studied over the temperatures that may be encountered during their lifetime. 

Second, to compare the different asphalt folders, their properties must be 

measured at some common reference temperature. 

• Safety. Asphalt cement, like most other materials, lets off steam when heated. At 

very high temperatures (much higher than those experienced in the manufacture 

and construction of (HMA), asphalt cement can release enough steam to increase 

the volatile concentration directly above the asphalt cement to the point where it 

will be ignited (flash) when exposed to a spark or open flame. This is called the 

flash point. For safety reasons, the flash point of asphalt cement is tested and 

controlled. 

• Purity. Asphalt cement must contain mostly unpolluted bitumen, as impurities 

can be harmful to asphalt performance. 

1.6 X-ray Diffraction (XRD)  

         X-ray diffraction depends on the ability of the double wave/particle X-ray to 

obtain information on the structure of crystalline materials. The primary use of 

technology is to identify and characterize compounds based on their diffraction 

patterns [30]. 

       The predominant effect that occurs after an incident beam cooperates with a 

monochromatic X-ray with an aim material is the scattering of those X-rays from 

the atoms within the target material. In materials with a uniform structure (i.e., 

crystalline), dispersed X-rays are exposed to constructive and destructive 

interventions. This is known as the process of diffraction. X-ray diffraction 

crystals are described by the Bragg law (nλ = 2d sin 𝜃 ) this law refers to the 
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wavelength (λ) of the electromagnetic radiation (n) of the diffraction angle 𝜃 and 

d-spacing in a crystalline sample., which gives information on the structure, size 

and shape of a unit cell of material. The intensity or strength of the diffracted X-

rays depends on the type and arrangement of the atoms in the crystalline structure. 

        However, while most materials are not considered single crystals, there are 

some crystals that are small in size and moving in all possible directions. These 

are called polycrystalline compounds or powder. If a powder sample with 

polycrystalline character is randomly arranged in the X-ray beam, the beam will 

understand all possible inter-atomic planes. Moreover, when the experimental 

angle is systematically changed, all diffraction peaks are detected by the powder. 

The (Bragg-Brittano) diffractometer is the most widely used technique for 

diffraction tools. This geometry offers the advantages of a high-precision beam 

intensity analysis at the expense of very accurate alignment requirements and 

carefully prepared samples. In addition, it requires that the distance between the 

source and the sample be constant and equal to the sample distance to the detector.    

Alignment errors often have difficulties in determining the level and 

determination of the wrong quantities. A wrong sample can lead to unacceptable 

errors in the offset test. Restrictions on the flattening, roughness, and positioning 

of samples are excluded in the test sample line. In addition, they often use 

traditional zebra systems on large devices with high energy requirements, as well 

as energy X-ray sources of high X-ray of the flow of the sample, which increases 

the yaw of the detected scanning signals. These sources can have large excitation 
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zones which are often unfavorable for analyzing small sample diffractions or 

characteristics. 

        With multi-faceted X-ray optics, many of these defects and limitations can be 

overcome to promote zebrafish applications. Thus, the multi-ring parallel focus 

becomes a semi-parallel housing with a small distance and can be used as a 

parallel beam shears engineering tool, which greatly reduces and eliminates many 

sources of error in the top position. Here, the technique of baravoxing intensity 

can be used by applying the factors of shape, roughness, flatness and transparency 

position. The United Optics Center connects X-ray sources and spaced 

alignments, and focus on a small packet on the surface of the sample small 

diameter, such as ten-micrometer applications. Both types of optics (polycyclic 

and direct X-ray) have the very high intensity to the sample surface, so zebrafish 

systems can be used as energy sources for low X-rays in order to reduce the size 

of the instrument as well as the cost and performance requirements [31]. 

         X-ray diffraction using X-ray optics has been applied to many different 

types of applications, including thin-film analysis, tissue texture assessment, 

crystalline phase monitoring and structure, and sample strain and strain 

investigation. 

 

1.7 Bragg's Diffraction  

         When the X-ray hits the crystal, the electromagnetic waves (EM) enter the 

crystal structure. Each plane of atoms in the crystal reflects part of the waves. The 

reflected waves of different planes overlap with each other and lead to a so-called 
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reflection beam, which is at a well-defined angle of 2𝜃 to the incident beam, as 

shown in Fig. 1.3. The beam of the incident is diffracted by the crystal structure. 

As can be observed, a portion of the incident beam passes through the crystal and 

part of the dispersion beam. Furthermore, the diffracted beams exist only in 

certain directions. These diffraction trends correspond to well-defined diffraction 

angles of 2𝜃 as shown in Figure 1.3. The diffraction angle, 2𝜃, the X-ray 

wavelength, and the distance between satellites d are known for the diffraction 

planes within the crystal by the diffraction condition of the Bragg’s law equation, 

2d sin θ = nλ. 

       

               Figure 1.3: A schematic illustration of x-ray diffraction by a crystal [32]. 

         When the X-ray beam is on a crystal, a part of it passes while a part of it is 

scattered by a 2𝜃, depending on the wavelength of the X-ray beam and the atomic 

atoms in the crystal causing the diffraction. The surface of the crystal, regardless 
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of its shape, does not affect the diffraction process, since X-rays penetrate the 

crystal and are then dispersed through a series of atomic planes [32]. 

1.8 Objectives of the Research 

         The objective of this research is to investigate XRD analysis on asphalt 

structure, properties and performance. Furthermore, this work is intended to 

develop a main pavement deterioration model for asphalt pavements, focusing on 

the molecular level of asphalt binders. A total of 5 different samples of asphalt 

binders are taken from different parts of Canada and tested in the laboratory for 

aging and investigating the composition of the aggregates at a microscopic level. 

The aging of asphalt specimens is simulated using three of the major 

mathematical functions (pseudo-Voigt, Pearson VII, and generalized Fermi 

function), representing a simulation based on real aging of asphalts from the 

specimens. The XRD data will show that it is possible to differentiate asphalts of 

different standards and classifications through peak centroid and other parameters 

(e.g., aromaticity and crystallite size). 
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Chapter 2 

 

 Literature Review  

          Asphalt binders are most commonly characterized by their physical 

properties. An asphalt binder’s physical properties directly describe how it will 

perform as a constituent in asphalt concrete (AC). Although asphalt binder tests 

and specifications are developed to more accurately characterize asphalt binders 

for use in (AC) pavements, these are specifically designed to understand asphalt 

binders performance parameters, such as rutting, fatigue cracking, and thermal 

cracking. 

 

2.1 Internal Structure of Asphalt 

      Masad, Muhunthan, Shashidhar, and Harman developed computerized 

procedures for the integrated analysis of digital images to determine the internal 

structure of AC. This has been described in terms of the internal structure of the 

overall trend, aggregate gradation, and inter-earned leisure air distribution. They 

found a tendency to prefer the direction of the overall structure of the increase 

with the pressure until a certain pressure was exerted. After that, the overall 

structure was turned more at random. The vacuum distribution in the samples was 

found to be non-uniform, so the focus was more on internal voids in the upper and 

lower parts of the sample wrap pressure. Spaces in percentage measurements 

using an image from computed tomography X-ray images analysis compared well 

with voids percentages measured in the laboratory [33]. 
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        A comparison between the internal structures of the gyratory specimens with 

the field cores showed that the gyratory specimens reached the initial aggregate 

orientation of the field cores at a higher number of gyrations, whereas they 

reached the percentage air voids in cores at a lower number of gyrations. The 

coarse aggregate gradation of gyratory compacted specimens was well captured 

using image analysis techniques. There was no change in gradation with 

compaction. The new procedure’s characterization and image analysis will affect 

many areas of the asphalt binder studies, as these new measures are useful tools to 

describe and compare the asphalt binder materials produced using various 

laboratory equipment, mix designs. In addition, the procedures improve the 

mechanical models by providing specific parameters of internal structure to be 

included in the constituent relations. In this study, attention was limited to 

examining the internal structure of the samples prepared in the laboratory and 

cores recovered from the field. The same techniques, however, will be useful for 

the study of the characteristics of interior materials according to the pressure they 

are under in the field. 

        In the past, Caltrans has classified binders using viscosity grading based on 

the aged residue (AR) system. More recently, Caltrans used the performance 

graded (PG) system.  For polymer modified binder, Caltrans has also used the 

performance-based binder(PBA) system [34]. 
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2.2 Self-Association and Molar Mass 

        The molar mass of asphaltene has been a controversial issue for many years. 

Two of the main causes of the controversy are the polydisperse nature of the 

asphaltene and the association behavior of asphaltenes even at low concentrations. 

As a result, any experimental technique for measuring the molar mass is 

uncertain. The development of advanced mass spectrometry techniques in recent 

years has helped to reach a consensus on asphaltene molecule (or monomer) 

molar mass. Mullins (2010) summarized some experimental techniques (classified 

as mass spectrometry and molecular diffusion methods) to report the molar mass 

of asphaltene, using monomers in the range from 400-1000 g / mol [35]. 

        Since the asphaltene can be associated with each other even in dilute 

solutions, a number of studies have been conducted to investigate the behavior of 

self-association. Self-association has been experimentally observed from the 

trends of asphaltene apparent molar mass with concentration. The apparent molar 

mass is the product of the monomer molar mass and the aggregation number of 

the self-associated asphaltenes. Some of the experimental methods used to 

observe the asphaltene self-association are vapor pressure osmometry, interfacial 

tension measurements from a drop volume tensiometer (Yarranton et al., 2000) 

[36], small-angle X-ray and neutron scattering measurements (Shaw et al., 1995; 

Spiecker et al., 2003) [37,38]. Differential scanning calorimetry (Anderson & 

Birdi, 1991) [39] dielectric spectroscopy (a two-step laser mass spectrometry) and 

Fourier transform ion cyclotron resonance mass spectrometer [40]. 
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Vapour pressure osmometry provides what is probably the most direct measure of 

asphaltene association. For example, the apparent molar mass of asphaltenes in 

toluene increases from approximately 1000 to 5000+ g/mol as the concentration of 

asphaltenes increases from 2 to 40 g/L. In most cases, at concentrations above 10 

g/L, the apparent molar mass approaches a constant value in the order of 5000 to 

10,000 g/mol. Hence, self-associated asphaltenes consist of three to ten molecules 

per aggregate on an average. Also, the extent of asphaltene self-association has 

been found to decrease in better solvents (such as toluene), at higher temperatures 

and with increasing resin content [41]. 

         The relative significance of the forces holding the aggregates together is 

unknown. A molecular mechanics investigation of asphaltene aggregation has 

emphasized the importance of hydrogen bonding [42]. Hydrogen bonding among 

asphaltene molecules is likely due to heteroatoms in functional groups. However, 

since asphaltenes consist mainly of carbon and hydrogen atoms, it is also 

important to consider van der Waals interaction forces. Although van der Waals 

forces are very weak, its overall contribution could be significant once the 

asphaltene molecules are highly packed [43]. 

 

2.3 SAXS and SANS 

Herzog et al. (1988) achieved small-angle x-ray scattering (SAXS) experiments 

using a synchrotron x-ray source for some asphaltene dispersions in organic 

solvents as well as natural solvents (maltenes). They interpreted asphaltene 

species as thin, large and porous particles with varying radius and a lateral 
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extension possibly greater than 80nm [44]. This interpretation has been supported 

by several other experimental observations including those by Xu et al. (1995) 

[45], who used SAXS to demonstrate the existence of particles with sizes ranging 

from 3 to 15nm in crude oils diluted in aromatic solvents. Small angle neutron 

scattering (SANS), used by Ravey et al. (1988) [46], revealed particle sizes in this 

same size range. Also, they concluded that the physical dimensions and shape of 

the asphaltene aggregates was a function of solvent and temperature of 

investigation. XRD was used by Siddiqui et al., (2002) [47] to investigate the 

structure characterization and the aging pattern of asphalt binders. Asphaltene has 

high resistance to cracking. As a result, it is difficult to biodegradable, due to 

presence of heavy metal components. On the other hand, the presence of high 

percentage of asphaltene has an advantage in obtaining quality pavements in hot 

and cold locations. 

 

2.4 X-ray Spectral Line Shape Analysis of Asphalt Binders 

         A comparison was made by Siddiqui et al., [47] between XRD pattern fit by 

Pearson VII and pseudo-Voigt directly on the generalized Fermi function 

modeling and measurement of aromatic crystalline parameters. They can be 

explained by the mixed results of the data function for Generalized Fermi 

Function to the Pearson VII function results and the results in the pseudo-Voigt 

functions peak and installation profile, which were not similar to the XRD data 

format. 
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        A total of 17 samples were obtained from the two assays of different sites at 

a low temperature and at one week of age. The analysis of the results suggests that 

the aging process can affect the X-ray data due to changes in chemical 

(oxidation), aromatic calculation and crystalline parameters. The results showed a 

correlation between Pearson VII, pseudo-Voigt and GFF crystal size in some of 

the parameters (dγ, La, Lc, M) more than others (fa, dm), as well as in some of the 

properties of experiments on the XRD asphalt binders.  Figure 2.1 illustrates a 

cross section of asphaltene cluster structure model, whereas, La is the aromatic 

sheet diameter, Lc approximate height of aromatic sheet stack, dm presents 

distance of inter-aromatic layer, dγ presents distance of inter-chain and M 

approximate number of related aromatic sheets in the stacked cluster. The 

molecules-associated asphaltene groups with aromatic plates stacked relatively 

stable up to 150°C, and the distance between the aromatic platelets (dm) and the 

number of aromatic leaves in the cluster of one group (M) was uniform in these 

asphaltene species. 
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             Figure 2.1: The cross section of asphaltene cluster structure model [47] 

  

        Further analysis of results obtained in this research shows that XRD provides 

insight into the structural properties of asphalt and synthetic binders, which is 

important for understanding the aging process of asphalt folders and asphalt 

pavement cement. Since the results for the XRD binder asphalt in the previous 

civil engineering tests were completed. Hence, it is reasonable to expect in the 

future that the asphalt binder XRD results play a role in the prediction of the 
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performance and durability of asphalt in the roadway, and asphalt binder 

conversion into fuel lighter [48]. 

 

2.5 Aging of Asphalt Binder 

         The aging of asphalt materials in the field as well as during the accelerated 

aging in the laboratory is a very complex process. It is generally agreed that the 

aging process is carried out in two separate steps: (1) during construction (mixing, 

placing and printing); and (2) during the shelf life of the plaster. This aging 

generally results in a change in the molecular size distribution of the asphalt 

binder. In particular, an increase in the molecular size leads to an increase in the 

viscosity of the asphalt binder, whereas in the field, this leads to fragility and 

failure [49,50]. 

      The asphalt aging is one of the main factors that are responsible for the 

deterioration of pavement of asphalt in the roads, and it decreases under heavy 

traffic conditions. The aging method of asphalt binder has been studied 

extensively by [51]. The majority of the procedure involves a temperature of 

about 100°C to 200°C. It found by the author that the correlation of the laboratory 

method relative to the aging field was almost created on the basis of the number of 

factors that are limited to left without consideration and this includes penetration, 

softening, etc. It was observed and analyzed from the research that the use of 

(XRD and GFF analysis) the effects of the aging of asphalt binder caused by 

improper mix and weather changes in the petroleum asphalts of the Canadians that 

have been used to construct all of the transportation road networks.  
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2.6 XRD 

      Since the mid-1900s, X-ray diffraction has been developed to the point that it 

can now be used across a broad spectrum of research fields. For instance, Ergun 

and Tiensuu (1959) [52] applied XRD to investigate the structure of coal. The 

researchers found the method useful for measuring the distance between aromatic 

layers in relation to the grapheme (002) band that manifests at around 26°, as well 

as for measuring the distance between aliphatic layers that manifests at around 

20°. Moreover, XRD has been found to offer important details about asphaltene’s 

internal structure, including for the extraction of molecular crystallite parameters 

in relation to aggregates [53]. 

Because asphaltene aromatic cores can be arranged to create a stack of aromatic 

sheets, we can use XRD analysis, as stacking enables the formation of crystallites. 

Siddiqui et al. (2002) stated that XRD can also be used to analyze additional 

crystallite parameters like polar aromatics, naphthene aromatics, and saturate 

fractions; they applied the approach to Arabian asphalts [47].  The atoms of a 

crystalline material are arranged in a regular repetitive pattern, which includes 

high-order crystals and three-dimensional structures. When an X-ray beam hits 

such a structure, electrons vibrate along the path at the same frequency as the 

incident X-ray. These vibrating electrons absorb a part of the X-ray energy and 

serve as a source for new wave fronts. Energy is then emitted as X-radiation from 

the same frequency and wavelength absorbed. The waves normally overlap with 

one another and no detection packet is emitted. However, if the wavelength, 

frequency, and structure of the crystal and angle of the action are correct, those 
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involved in this stage will wave and mutually reinforce each other, leading to a 

beam that can be detected [54].                                                          

        Figure 2.2 shows the mean profiles obtained from CAP 50/70 produced by 

the Repar and Replan Refineries. The profiles were obtained in 0, 60, 120, 180, 

210, 330, 390 and 430 days. Each profile, for each date, is an average profile from 

ten profiles (n=10) [50]. 

 

   

    Figure 2.2: Means profiles from cap 50/70 by Repar refinery in each time [55]. 

       

         The structural studies of asphaltenes crude oil were carried out from the X-

ray diffraction. XRD was performed with copper K-α radiation works at 40 kV 

and 40 mA, with 0.001degrees 2θ sampling rate per second. XRD data processing 

was used for the first time with the characteristics of the Pearson VII, 
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subsequently with pseudo-Voigt features, and then in Mathematica © modeling of 

the generalized Fermi function (GFF). These also contain several different 

backgrounds (linear, exponential, and Lorenzian). The results are discussed based 

on their accuracy with different sets of background and line profiles [56].  

 

2.7 Modeling Asphalt as a Cubic Material (Yen Model) 

       XRD Asphaltene has four peaks. The first peak gamma is the packing 

distance of saturated structures derived from X-rays diffused by aliphatic chains 

or saturated rings. The peak of graphene (002) is derived from the X-ray 

diffraction by aromatic particle stacks. The peak (10) and (11) in the X-ray 

diffraction are from the air cell of the aromatics (see Fig. 2.3). This corresponds to 

the first and second neighbors closest to the ring compounds [57]. 

 

                        

 Figure 2.3: X-ray diffraction pattern peaks and corresponding planes [57] 



33 
 

         In general, sharp XRD pattern peaks have highly crystalline samples with a 

high degree of remote control. In the case of asphalt, solid crystals have a good 

long-term yield in some directions, while in others only in a short-range order. 

This is the obvious reason why there are sharp peaks in all diffraction patterns. 

 

2.8 Modified Yen model (the Yen-Mullins model) 

        In recent years, there has been renewed research interest around asphaltene 

properties, with a focus on molecular weight and structure. Mullins (2010) 

discussed how long-standing disputes over asphaltenes molecular weight are 

beginning to be resolved through the application of various accepted techniques. 

Despite these promising change, asphaltene properties remain for all intents and 

purposes still lacking in a clear definition due mainly to the complexity of the 

material’s structure. Figure 2.4 provides some details about its properties. 

In exploring the many facets of asphaltene, we can use the modified Yen 

model (the Yen-Mullins model) to deal with the enormous amount of data [35]. 

The modified Yen model represents a first principle approach and can thus be 

applied towards asphaltene properties in bulk as a way to break down the analysis 

into more manageable portions. 
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             Figure 2.4: The Yen–Mullins Model [58] 

         Mullins and colleagues had further investigated asphaltene, discovering that 

the asphaltene nanoscience model can be correlated to the modified Yen model. 

This is an exciting discovery, as it may prove to resolve, on the nano-scale, many 

contentious issues regarding the behavior of compounds, including composition 

and structure [58]. 

 

2.9 Asphalt Chemical Components and Modification Efforts 

        Most asphalt particles mainly composed of carbon and hydrogen contain one 

or more elements of sulfur, nitrogen and/or oxygen. The reaction of heterodoxies 

and hydrocarbons leads to the unique chemical and physical properties of various 

asphalt mixtures [59,60]. 

         Research carried out in the Netherlands has shown that nano coat 

modifications improve some properties of asphalt mats and asphalt mixtures, but 

further research is needed before they can be applied extensively [61].         
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       In China, similar studies were carried out on calcium carbonate-nano (nano-

CaCO3)-modified asphalt [62]. It was discovered that the nano-CaCO3 can 

improve the asphalt resistance as well as improve the low-temperature hardness. 

The mixture of nano-CaCO3 and asphalt has been shown to form a uniform and 

constant system which improves the asphalting temperature at high temperatures. 

However, the mechanism of the behavior of asphalt materials with this 

modification is not well understood. 

        Also in China, the (montmorillonite) has been modified by the properties of 

styrene-butadiene-styrene (SBS) modified asphaltic polymers by dissolving the 

mixture with various contents of sodium montmorillonite (Na-MMT) and organic 

montmorillonite (OMMT) [63]. It was found that the addition of Na-MMT and 

OMMT increases the modified asphalt viscosity of the asphalt. Therefore, 

compared to the original asphalt or modified asphalt SBS, MMT-modified asphalt 

may form an intercalated structure. OMMT modified asphalt proved to be an 

impregnated structure, while asphalt and octodide can form a laminated structure 

[64]. 

 

2.10 Low Temperature and Fatigue Cracking in Asphalt Pavement  

         Low-temperature cracking, also known as heat cracking or cold cracking, is 

one of the main limitations observed on asphalt pavements, especially in North 

America, due to unusually large temperature drops that can occur at regular 

intervals in the cold winter months. However, this type of distress is also observed 
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in other parts of the world where the temperature not often falls below freezing, 

such as in desert climates due to large, absolute, daily temperature fluctuations.  

This form of pavement distress has been recognized as a commonly existing 

problem which is induced by the effects of temperature and the quality of the 

asphalt pavement. Fatigue cracking is closely associated with repeated traffic 

loads flexing the asphalt pavement layer which is capable of causing jagged 

cracks that eventually interconnect to form a pattern often referred to as “alligator 

cracking”., as shown in Figure 2.5 [65].         

  

 

Figure 2.5: Alligator-type fatigue cracks typically due to load (traffic) distress 

[66]. 
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            Figure 2.6: Longitudinal and transverse cracks typically due to thermal effects [67]. 

 

          In the last two decades, important research has shown that the mechanism 

of these types of road failure (that is thermal cracking) occurs when "internal 

stress is built up and the deflation-induced low-temperature strength exceeds or 

the cooling rate rises significantly” [68]. Essentially, as the temperature drops, this 

leads to stress growth and consequently results in stress relaxation which 

ultimately causes a microcrack (small crack) to develop at the edge of the surface 

of the pavement. Figure 2.6 illustrates fatigue cracks typically due to load (traffic) 

distress. More importantly, repeated thermal stress and repeated loading effect can 

have a significant impact on the asphalt pavement, as the entire asphalt mix has 

been weakened by traffic loads, potentially resulting in road failure [69]. 
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2.11 Morphological Characterization 

         The morphology was characterized as modified nanoclay asphalt, using X-

ray diffraction techniques (XRD). XRD was utilized to provide a quantitative 

analysis of the distance of exhibition buildings and to provide a means for 

determining the extent of the dispersion of nanoclay in a binder. The XRD was 

individually performed on the original binder and nanoclay a prior to the modified 

nanoclay binder also being tested. The first provided a useful guide for the 

interpretation of combined XRD peaks arising from the modified binder test. 

These tests were performed only on a nanoclay modulation because the impulse 

was to verify the efficiency of the nanoclay dispersion rate initiated by the mixing 

process. A higher dispersion rate is required, as nanoclays tend to bond because of 

their inherent electrostatic charge. 

       XRD points out that nanosize particles are uniformly dispersed in the asphalt 

matrix. This confirms that the mixing technique used is effective to create the 

peeling of nano-particles within the asphalt matrix [70]. 
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Chapter 3 

Methodology  

 

3.1 Instrument and measuring principle 

        The XRD diffraction pattern analysis is based on the constructive 

interference of monochromatic X-rays from crystalline samples: an X-ray is 

generated by a cathode ray tube, filtered to produce monochromatic radiation, and 

then directed to the sample. The interaction between the incident beams and the 

specimen leads to beam deflection when the Bragg’s law is satisfied (nλ = 2d 

sin 𝜃 ). This law refers to the wavelength of the electromagnetic radiation of the 

diffraction angle and d-spacing in a crystalline sample. 

         The characteristic X-ray diffraction pattern produced by typical XRD 

analysis provides a unique "fingerprint" of the crystals in the sample. Given a 

corresponding interpretation in comparison to standard reference patterns and 

measurements, this footprint makes it possible to determine a crystalline form. 

 

3.2 Demonstration of X-ray diffraction 

         The objective here is to observe one method of evaluating atomic crystalline 

structure by using X-ray diffraction to understand the use of Bragg's law and its 

relation to the crystal structure. X-ray diffraction can be used to determine the 

crystal structure of lattice materials and laboratories. This information can then be 

used to determine the material for analysis since every element in the periodic 
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table has a unique combination of capillary structure and is labeled at room 

temperature.  

When an X-ray is directed at a crystal, the beam hits the atoms and produces two 

types of X-rays: white X-rays and X-rays. White X-rays comprise a wide range of 

wavelengths and are irrelevant in this experiment. Line X-rays occur when an 

electron is released from an inner shell of an atom. Bragg’s law is used to 

determine the crystal parameters of the characteristic interference pattern. X-rays 

that strike the crystal have a wavelength almost equal to the distance between the 

atoms in the crystal lattice. 

         Bragg’s law can be visualized by looking at a cubic crystal lattice consisting 

of parallel planes of atoms. This occurs when the incident beam reaches the 

parallel planes at certain angles, known as the Bragg angles. In the case of non-

reflection, the waves leave the crystal from the phase and mutually cancel each 

other out. Figure 3.1 shows the reflection of X-rays in the (Miller indices hkl) 

reflected planes of the crystal [71]. 
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            Figure 3.1: Reflection of X-rays in the (hkl) planes of a crystal [32] 

        In order to understand the origin of the diffraction and the presence of certain 

angles of refraction, the X-ray beam will penetrate the crystal structure and be 

reflected by a certain number of atomic planes (see Figure 3.1). We can consider 

the X-ray beam as many parallel waves in phase. 

         The diffraction includes the waves reflected by the different atomic planes in 

the crystal. For the sake of simplicity, let us consider two waves, A and B (in X-

ray), reflected by two successive atomic planes in the crystal. Wave A is reflected 

first from plane 1, while wave B is shown from plane 2, as illustrated in Fig. 3.1. 
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         Note that the θ is not the angle between the incident beam and the sample 

surface, but the angle between the incident beam and the crystallographic plane 

that generates diffraction. Diffractometers can have various types of geometric 

arrangements to enable collection of X-ray data. The majority of commercially 

available diffractometers use the Bragg–Brentano arrangement, in which the X-

ray incident beam is fixed, but a sample stage rotates around the axis 

perpendicular to the figure plane of Figure 3.2 in order to change the incident 

angle. The detector also rotates about the vertical axis in the plane of the figure, 

but the angular displacement is twice that of the sample to maintain the angular 

correlation of θ–2θ between the sample and the rotation detector. 

.  

      

            Figure 3.2: Geometric arrangement of x-ray diffractometer [72] 
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    XRD patterns of Canadian asphalt binder have similarities and show at least 3 

peaks which provide at least three maxima which could be seen at 20° gamma 

approximately, 002 graphene at 25° and 44° (10) band is a weak indicator of a 

broad peak (11) which is position in the middle at 2θ=80° is seen. These broad 

features show that there is a partial ordering in the asphaltene. The distance 

median is indicated using the graphene band (002) maximum which is seen at of 

around 25° of the 2θ axis than the line the sheet aromatic of asphaltene that is 

calculated by a Bragg equation. The peak (002) is seen around 2θ=25°, showing 

an interlayer spacing nearly about 3.55°. The peak (002) represents the space that 

exists between the condensed layers of the aromatic structure. As seen in the 

literature review, a single graphite crystal structure with an interlayer spacing of 

about 3.35° and an amorphous carbon which is an interlayer distance of about 

3.55°. The value of dm is associated with the thickness as well as the size of the 

aromatic sheets. The distance of the interlayer of the asphalt of the Canadian 

samples can be seen in the range of amorphous materials of small order. The 

average of the distance between the saturated portions (aliphatic chains, 

condensed saturated rings) molecules or interchain layer distance is given by the 

relationship:  

dγ = (5 𝜆)/8𝑠𝑖𝑛𝜃.                                                                                                (3.1)      

 where dγ is the interchain layer distance and (λ) is the wavelength of the CuKα 

radiation (and 𝜃is the Bragg’s angle). 
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The average height of the stack of aromatic sheets perpendicular to the sheet plane 

was determined using the following formula: 

𝐿 𝑐 =  0.9𝜔 𝐶𝑂𝑆𝜃 =  
0.45

𝐵1/2  
  .                                                                                      (3.2)                                                                              

       Where ω is the FWHM value obtained using the (002) band. The aromaticity 

of asphalt molecules fa is calculated from the area (A) of resolve peaks for the (γ) 

and graphene bands using the following equation: 

fa= 
A(002)   

(A(002) +Aγ) 
=

𝐶𝐴

𝐶𝐴+𝐶𝑆
 .                                                                                  (3.3) 

         Where fa is the percentage of carbon atoms in aromatic structures, CA is the 

number of aromatic carbon atoms, Cs is the number of saturated carbon atoms, A 

(002) is the area of the graphene band, and A(γ) is the area of the (γ) band. The 

distance between the aromatic sheets dm was calculated according to Bragg’s law 

using the following equation: 

dm=
𝜆

2𝑠𝑖𝑛𝜃  
 .                                                                                                         (3.4) 

         where dm is the interlayer distance and (λ) is the wavelength of the CuKα  

radiation (and 𝜃 is the Bragg’s angle). 

       The average number of aromatic sheets in a stacked cluster Me was calculated 

from the values of Lc and dm by using the following equation: 

Me=
𝐿𝑐

𝑑𝑚
 +1.                                                                                                          (3.5) 

        The diameter of the average layer in the aromatic sheets can be calculated by 

using the Scherrer’s crystallite size equation in the following formula: 

L𝑎  =  
1.84λ 

𝜔 COSθ
 =  

0.92

B1/2 
 .                                                                                       (3.6) 
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       where 𝐵1/2 is the full width at half maximum (FWHM) for the (11) band, and 

(ω) is the bandwidth. 

 

3.3 Sample preparation for XRD 

The sample of the asphalt binder is prepared in a thin film on the side of the glass 

holder by heating up to 150°C for about 10 minutes in an oven and this followed 

by air cooling and removal from the atmosphere of the room. Table 3.1 shows the 

specimen collected from specific location and all the samples follow the PG 

standard set by CGSB. 

                Table 3. 1 Pertinent Asphalt Binder Properties  

Asphalt 

Binders 

Source Modification 

Type 

Grades 

L3 Cold lake Straight  

PG 46-34 

L5 unknown Oxidized PG 64-34 

L6 unknown straight PG 64-28 

L7 Cold lake Straight 

(Hearst, 

Ontario) 

PG 52-34 

655-1 Unknown SBS PG 64-34 
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3.4 Method of thin film XRD 

        In this section, structure types will be defined to make it more appropriate to 

perform a suitable X-ray diffraction experiment. Generally, X-ray diffraction 

experiments are similar in that they produce a three-dimensional distribution of 

the intensity that reflects the three-dimensional nature of the material under 

investigation [73,74]. There are different special factors that need to be considered 

when using the sample of XRD thin film. A high angular resolution is needed to 

the fact that the peak from the semiconductor materials is very sharp because of 

the fact that the material has low defect densities. In addition, the numbers of 

monochromator crystals in multiple forms are used to give a very high collimated 

X-ray beam to the measurement. Before the XRD, each of the samples was put on 

one glass side and annealed at 150°C for about 10 minutes so to create a thin film 

that has a thickness of about 1mm. The X-ray measurement is run on a Rigaku 

D/Max-2200v-PC through the monochromatic Cu-K-α radiation operation at 

40kV and 40mA. The category of the scan used is about 5-110°2θ at a rate of 

0.01/s and a time of 5 s/step. Samples were aged for one week and then analyzed 

at room temperature of 20°C. The width is at half maximum (FWHM), and the fit 

of the profile is obtained of a Pearson VII and pseudo-Voigt profile which have a 

background that is fixed ranging over 5 to 35°2θ and 60 to 110°2θ. The pattern of 

the X-ray creation and analysis were performed using a Jade version 6.1 software 

package incorporation the Pearson VII and pseudo-Voigt functions. The data that 

have been collected were normalized, and has a background that was common and 

compared the features using the four main peaks that were measured, i.e. gamma, 
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(002) graphene, (10) and (11). The diffraction of all X-rays used samples in an 

aluminum holder with dimension of 25 mm diameter and thickness of 1mm [75]. 

. 

3.5 Instruments for X-ray thin-film measurements 

        In general, the X-ray diffractometer, which allows a wide range of 

measurements, is a complex instrument consisting of various components 

including a measurement axis, position adjustment axes, optical elements, and so 

on. Figure 3.3 shows X-ray thin-film diffractometer equipped with a 2 ϴ χ axis. 

 

 

 Figure 3.3: X-ray thin-film diffractometer equipped with a 2 ϴ χ axis (SmartLab) 

[76]. 
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3.6 Spectral Line Shapes Modeling Using Mathematical Functions 

         The separation of the band (002) and gamma band in the manner seen above 

to determine the aromaticity and crystalize size parameters 

 

3.7 Line Shape Analysis Using Peak Search and Profile Fit 

     The XRD spectra were peak searched using a parabolic filter (10,000 raw data 

points, screened out Ka-2 peaks, peak location summit, threshold sigma 3.0, 

intensity cutoff 0.1 percent, range to find background 1.0, points to average 

background 7) over the angular range of 5° to 110°.  

 

         The full width at half maximum (FWHM) and profile fits were obtained by 

using either Pearson VII or pseudo-Voigt function (fixed background, exponent = 

0.6, 0.8, 1.2 and Lorentzian = 0.4, 0.7, 0.9) over the ranges 5o to 35° 2θ and 60° to 

110° 2θ on the XRD line spectra of interest. The XRD spectra were also modeled 

in Mathematica using a generalized Fermi function (GFF).  
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Chapter 4 

 Results and Discussion 

        Four key peaks are present in the XRD patterns of the asphaltene binders 

(Gamma, (002) graphene, (10), (11)) just as Yen model describes it as shown in 

figure 2.3. The data From Table 4.1 show that the values of GFF range between fa 

= 0.363 to 0.96 and dm = 4.795 to 5.539 meaning that the profile fitting is not as 

consistent as P and V because XRD patterns are asymmetric. 

4 .1 XRD Patterns 

        XRD patterns collected for the 5 asphalt binders were generated by standard 

processes as described in the JadeTM Software (version 6.1). The figures from 

(4.1) to (4.5) illustrate results for the asphalt samples (L3, L5, L6, L7, as well as 

655-1). 

 

             Figure 4.1a: Specimen L3 (4th order background, Lorenzian =0.4)  
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             Figure 4.1b: Specimen L3 (parabolic background, Lorenzian =0.7) 

 

 

Figure 4.2: Specimen L5 (3rd Order Background, Lorenzian =0.9) and L5 of XRD 

(3rd Order Background, Lorenzian, Lorenzian =0.9) 
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Figure 4.3: Specimen 655-1 (4th Order Background, Lorenzian =0.9) and 655-1 of 

XRD (Parabolic Background, Lorenzian =0.4) 
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Figure 4.4: Specimen L6 (Parabolic Background, Lorenzian, Lorenzian =0.9) and 

L6 of XRD (4th Order Background, Lorenzian =0.4) 
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Figure 4.5: Specimen L7 (3rd Order Background, Lorenzian =0.9) and L7 of XRD 

(4th Order Background, Lorenzian =0.4) 
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4.2   XRD types with Different Backgrounds and Effect of Backgrounds 

          As shown in Figure 4.6, profile function that is either Pearson VII or 

pseudo-Voigt was used to fit the XRD data. 

We will discuss the four different types of samples and data are fitted to obtain the 

best peaks, we initially use all backgrounds such as (Fixed, Level, Linear, 

Parabolic, 3rd order, 4th order).  The samples which we worked on are (L3, L5, L6, 

and L7). 

        From the results, we found that the best backgrounds we used are 

(Parabolic, 3 rd order, 4 th order) because they are giving the obvious peaks 

for the (γ) and (002) graphene. These are shown in figures (4.1 to 4.6). Table 

4.1 shows the percent of error for the parameters ranging between 4.54 and 

5.25, where the highest value is 1.2 at 4th order and less value is 4.54 at the 

3rd order, for each of the Pearson VII and Pseudo-Voigt. 

.  

                                 Figure 4.6: Profile fit of asphalt binder 
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4.3 Peak Shape Functions 

As depicted in figures 4.1 to 4.6, we can locate the intensity, Y(i), from the 

ith point’s general form in the (1 ≤ i ≤ n) diffraction pattern, with n 

representing all the measured points and being the contribution summation, 

yk, of the m in each Bragg peak (1 ≤ k ≤ m) and background, b(i) [77]: 

              𝑌(𝑖) = 𝑏(𝑖) + ∑ 𝐼𝑘

𝑚

𝑘=1

[𝑦𝑘(𝑥𝑘) + 0.5𝑦𝑘(𝑥𝑘 + ∆𝑥𝑘)].  (4.1) 

where Ik represents the kth Bragg reflection intensity, 𝑥𝑘 = 2θi - 2θk, and 

∆𝑥𝑘 represents contrasts among Kα1 and Kα2 component Bragg angles in 

the XRD doublet γ and graphene (002) in asphalt binders.  

By applying the Bragg intensity in this equation as a multiplier, we can 

analyze the behaviors of a variety of normalized functions without deferring 

to peak intensity. In other words, we make the assumption that, for each 

case, the peak shape function’s definite integral (working from negative to 

positive infinity) is unity. Based on this approach, we define 4 typical 

empirical peak shape functions (y) as below: 

 𝑦(𝑥) = 𝑝𝑠𝑒𝑢𝑑𝑜 − 𝑣𝑜𝑖𝑔𝑡 = 𝜂
𝐶𝐺

1
2⁄

√𝜋𝐻
exp(−𝐶𝐺𝑥2) + (1 − 𝜂)

𝐶𝐿

1
2⁄

𝜋𝐻′
(1 + 𝐶𝐿𝑥2)−1 (4.2) 

where H and H' indicate FWHM.  

 

 

 

Pearson-VII: 
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𝑦(𝑥) = 𝑃𝑉II(𝑥) =

Γ(𝛽)

Γ(𝛽−
1

2
)

𝐶𝑃

1
2⁄

√𝜋𝐻
(1 + 𝐶𝑃𝑥2)−𝛽. 

(4.3) 

 

GFF: Generalized Fermi Function 

 ℎ(𝑠) =
𝐴

exp(−𝑎(𝑠 − 𝑐)) + exp (𝑏(𝑠 − 𝑐))
  . (4.4) 

 

      where a, b and c are represented the parameters described as 𝑠 =
2sinθ  

λ
, and   

A and c values represent the fit’s amplitude and position. Meanwhile, a and b 

represent the fit’s control shape.  

           𝑋 =
(2θ𝑖− 2θ𝑘)

H𝑘
.                                                                (4.5) 

       where (X) is the XRD Bragg angle of the ith point in the diffraction pattern 

with its origin in the position of kth peak divided by the peak’s FWHM. (2θ𝑖), is 

the Bragg angle of the ith point of the diffraction pattern. (2θk), is the Bragg angle 

of the kth Bragg reflection [35]. 

𝐶𝐺= 4ln 2, while 
√CG

√πH
 indicates the Gauss function normalization factor as: [77]  

∫
√CG

√πH
exp (−𝐶𝐺 

∞

−∞
𝑥2) 𝑑𝑥 = 1.                                                                          (4.6) 

𝐶𝐿= 4, while 
√CL

π𝐻′ indicates the Lorentz function normalization factor as:  

∫
√CL

π𝐻′ exp (1 + 𝐶𝐿 
∞

−∞
𝑥2)−1 𝑑𝑥 = 1.                                                                   (4.7) 
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𝐶𝑃=4(2
1

β⁄
− 1), and [

Γβ

Γ(β−1
2⁄ )

] 
√C𝑃

√πH
 are the Pearson VII function normalization 

factors as follows: [77] 

               ∫ [
Γβ

Γ(β−1
2⁄ )

] 
√C𝑃

√πH
exp (1 + 𝐶𝑃 

∞

−∞
𝑥2)−β 𝑑𝑥 = 1.                                                   (4.8) 

              H = (U tan2 θ + V tan θ + W) 1/2.                                                                     (4.9) 

 

        The Caglioti formula (above) shows that the FWHM as a function of θ for 

Gauss, Pearson VII, Pseudo-Voigt functions. U, V, and W are free variables [77]. 

H′ = 
𝑈

𝑐𝑜𝑠θ
+ 𝑉 𝑡𝑎𝑛θ.                                                                                          (4.10) 

where H′ represents the FWHM function of (θ) in the Lorentz function and U, V 

indicates free variables. 

𝜂 =𝜂𝑜+ 𝜂12θ + 𝜂2θ 2 .                                                                                      (4.11) 

       where,0 ≤ 𝜂 ≤ 1, while 𝜂 represents a mix parameter for the Pseudo-Voigt 

function. In other words, it is the Gauss function’s fractional contribution as part 

of the combined linear Gauss and Lorentz functions, where 𝜂𝑜 , 𝜂1 and 𝜂2 indicate 

free variables. 

𝛽 =  𝛽𝑜 +
𝛽1

2θ
+

𝛽2

2θ2   .                                                                                         (4.12) 

           where 𝛽 Indicates the exponent working as a Bragg angle function as part 

of the Pearson-VII functions, while𝛽𝑜, 𝛽1and 𝛽2 represents are free variables. 
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               Figure 4.7: Gauss and Lorentz peak shape functions [48] 

 

 Figure 4.7 depicts the peak shape functions for both Gauss (dashed-dotted 

line) and Lorentz (solid line) peak shape functions, while the FWHM is 

represented by thick horizontal arrows. 

 As can be seen, the two peak shape functions that are least complex are 

Gaussian and Lorentzian distributions working from Bragg peak intensities. 

Moreover, the Lorentz function shows a sharp peak close to the maximum, with 

lengthy “streams” flowing on both sides close to the base. Conversely, the Gauss 

function around maximum and shows no such streams. Nonetheless, both 

functions can be described as centrosymmetric, in that: G(x) = G (- x) and L(x) = 

L (- x). 
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 The formation of real Bragg peaks is an outcome derived from functions 

ranging from convoluting multiple instrumental to specimen functions. However, 

they cannot be adequately described in XRD as Gaussian and Lorentzian 

distributions. Because peak shapes typically occur among these distributions, they 

can most accurately be described using a mix of the two, such as, for instance 

convoluting the Gauss and Lorentz methods as a variety of proportions. 

Convolution, however, can be a complicated process involving numerical 

integration if any of the peak shape function parameters are modified. Thus, an 

easier version Gauss and Lorentz linear combination – Pseudo-Voigt – can be 

applied. In this pared-down approach, we mix Gaussian and Lorentzian 

compounds (𝜂 to 1- 𝜂 ratio) until the mixing parameter value of '𝜂 shifts to 1 

Gauss from 0 Lorentz, keeping in mind that beyond this range in this formulation, 

𝜂 has no meaning. An additional peak shape function that can be applied is the 

Pearson VII, as presented in Eq. (4.3). 

A brief examination reveals that this is very much like the Lorentz 

distribution, other than for the fact that the exponent (𝛽) in Pearson VII can be 

variable but stays the same (𝛽= 1) in Lorentz. Specifically, Pearson VII offers 

intensity distribution similar to Pseudo-Voigt, in that when (𝛽 = 1), it is the same 

as the Lorentz distribution; furthermore, when (𝛽 ≅ 10), the Gaussian and Pearson 

VII functions are equal. So, if exponents are 0.5< 𝛽 <1 or 𝛽 >10, the peak shape 

exceeds, respectively, the Lorentz and Gauss functions. That being said, 𝛽 values 

only very rarely occur. 
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              Figure 4.1-4.6 illustrates XRD profile-fitting employing Pearson VII. 

However, the Pearson VII and Pseudo-Voigt functions are depicted as 

symmetrical. Peak maximum is calculated from the argument, x, in the four 

empirical functions, as follows: 

x = 0 and 2θ𝑖 =  2θ𝑘· 

Therefore, peak FWHM at a 2𝜃 can be given as in Eq. (4.13): 

FWHM = H = √𝑈 𝑡𝑎𝑛2𝜃 + 𝑉 tan 𝜃 + 𝑊 .                                                      (4.13) 

        The “H” in FWHM is another parameter that can help find the argument’s 

value, which can change with 2𝜃. Being Bragg angle-dependent, the H can be 

depicted as a function related to empirical peak-broadening. As such, it includes 3 

free parameters (namely, U, V, W), but the Lorentzian has only 2. 

4.4 Samples figures with GFF 

          The following figures corresponding to 4 of the 5 samples (L3, L5, L6, and 

L7) of the GFF profile fits from XRD data are shown below. The four peaks in the 

figures represent the γ, (002) graphene, (10), and (11) [ the latter correspond to the 

(100) and (110) planes] are the same as found in the XRD patterns.  
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Figure 4.8: Sample L3 from GFF 

 

 

Figure 4.9: Sample L5 from GFF 
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Figure 4.10: Sample L6 from GFF 

 

 

Figure 4.11: Sample L7 from GFF 
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4.5 Comparing the Results of all Asphalt Samples 

         The observed X-ray diffraction patterns need fitting of the theoretical 

distributions that are very important to acquire information the spectral lines. 

Pseudo-Voigt and Pearson-VII fitting procedures are employed, and the 3 main 

bands γ, (002), and (10) cited at approximately 2𝜃 = 20°, 25°, and 44° were 

employed as the first estimates. 

         It is possible to observe the (004) band on the high 2𝜃 side in some situation 

at 2𝜃 at approximately 53°. Also, by estimating the intensity and peak width, the 

regression can be initiated. On the other hand, on the low 2𝜃 side the baseline is 

not sufficiently well defined. So, one ought to use the high value end of the XRD 

pattern and fix this as a steady baseline. This introduces the possibility for a 

sensible assumption, inspired assumption, of statistical inaccuracies that may 

impact the result for the operator. It’s important to know that the background of 

the samples has a big effect on the results. As we can see from the table 4.1 the 3rd 

order and Parabolic Background have the best results, meanwhile, the 4th order 

has weak Lc and La. Some of the data have similar result in an aromaticity such as 

L5, L7 with Parabolic and 3rd order background respectively. In other hand, the 

samples with 4rt order background have different results. 

         Meanwhile, for the low 2𝜃 side, because the baseline cannot yet be 

accurately defined, the XRD pattern’s high value must, by default, be applied as 

the baseline. However, the process then involves errors arising from reasonable 

assumption and/or statistical inaccuracies, both of which can skew results. It is 
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worth noting that alterations in the baseline generally had no or only a very minor 

impact on results related to factors like aromaticity 

Table 4.1: The Aromaticity and Crystallite Parameters Calculated with the use of 

Pearson VII, Pseudo-Voigt, and GFF 

Sample Background Exp Lor Error% 

     

RR3L 4th order 0.6 0.4 4.82 

 4th order 0.8 0.7 4.85 

 4th order 1.2 0.9 4.70 

     

 parabolic 0.6 0.4 4.89 

RR5L parabolic 0.8 0.7 5.10 

 parabolic 1.2 0.9 5.28 

     

 4th order 0.6 0.4 5.25 

RR6L 4th order 0.8 0.7 4.8 

 4th order 1.2 0.9 4.93 

     

 3rd order 0.6 0.4 4.54 

RR7L 3rd order 0.8 0.7 4.73 

 3rd order 1.2 0.9 4.56 
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Table 4.2: The Aromaticity and Crystallite Parameters Calculated with the use of Pearson VII, Pseudo-Voigt, and GFF 

Sample fa dm d𝛾 Lc La Me 

 p7 v gf P7 V GF P7 V GF   P7 V GF P7 V GF P7 V GF 

RR3L 4.6 4.6 5.5 6.9 6.7 6.1 6.5 6.8 3.2 13.3 13.9 6.6 2.4 2.5 1.6 4.6 4.6 5.5 

 4.6 4.6 5.5 6.6 6.8 6.1 7.1 6.7 3.2 14.5 13.6 6.6 2.6 2.4 1.6 4.6 4.6 5.5 

 4.6 4.7 5.5 6.6 6.9 6.1 7.3 6.4 3.2 15.0 13.1 6.6 2.6 2.4 1.6 4.6 4.7 5.5 

 
                  

 4.4 4.5 5.4 6.3 6.5 5.9 4.3 4.6 3.1 8.7 9.4 6.4 2.0 2.0 1.6 4.4 4.5 5.4 

RR5L 4.5 4.6 5.4 6.4 6.6 5.9 5.0 4.2 3.1 10.1 8.6 6.4 2.1 1.9 1.6 4.5 4.6 5.4 

 4.5 4.4 5.4 6.4 6.4 5.9 4.9 5.1 3.1 10.1 10.4 6.4 2.1 2.2 1.6 4.5 4.4 5.4 

 
                  

 4.5 4.5 4.8 6.3 6.4 5.3 7.0 6.6 2.8 14.2 13.5 5.7 2.5 2.5 1.6 4.5 4.5 4.8 

RR6L 4.5 4.5 4.8 6.4 6.4 5.3 7.0 6.6 2.8 14.2 13.5 5.7 2.5 2.5 1.6 4.5 4.5 4.8 

 4.5 4.6 4.8 6.4 6.7 5.3 6.8 6.6 2.8 13.8 13.4 5.7 2.5 2.4 1.6 4.5 4.6 4.8 

 
                  

 4.5 4.3 5.2 6.5 6.3 5.7 4.3 4.2 3.0 8.8 8.5 6.2 2.0 2.0 1.6 4.5 4.3 5.2 

RR7L 4.4 4.5 5.2 6.5 6.3 5.7 5.0 4.3 3.0 10.2 8.8 6.2 2.1 2.0 1.6 4.4 4.5 5.2 

 4.5 4.4 5.2 6.6 6.5 5.7 4.2 4.3 3.0 8.7 8.8 6.2 1.9 2.0 1.6 4.5 4.4 5.2 

 4.6 4.6 5.5 6.9 6.7 6.1 6.5 6.8 3.2 13.3 13.9 6.6 2.4 2.5 1.6 4.6 4.6 5.5 
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         Table 4.2 shows the results from calculation of aromaticity (fa) and 

crystallite parameters (the interlayer distance between the aromatic sheets dm, the 

interchain layer distance dγ, the diameter of the aromatic sheets La, the height of 

the stock of aromatic sheets Lc, and the number of aromatic sheets Me ) for 

Pearson VII (P) varying exponent (0.6, 0.8, 1.2), pseudo-Voigt (V) varying 

Lorentzian (0.4, 0.7, 0.9), and Generalized Fermi (GF) Function in 5 samples. 

However, analysis of aromaticity and crystallite size parameters using the XRD 

data were sometimes mixed due to asymmetry in the GFF data and differences in 

calculating background intensity. In general, the results in XRD and GFF 

modeling are approximate there is a little difference between GFF values and 

Pearson VII and pseudo-Voigt values in La values and Lc values. 

       Aromaticity (fa) of approximately values 0.36 for L6 and 0.96 for L5 using 

GFF shows that the data fits were found to be very weak. L6 has a lower value, 

and L5 has the highest value in GFF function. For example, asphalt L6 form the 

presence of the XRD profile, as apparently having a large (002) contribution. 

Nevertheless, when we were using GFF the peak become very wide, and hence 

the (002) contribution become very small, making the aromaticity in the amount 

of only 0.36, while the Pseudo-Voigt and Pearson VII gave consistent aromaticity 

of approximately 0.50 and 0.49 respectively. 

       The same situation, when we see asphalt L7, having a fa of about 0.86 when 

fitted in GFF, and 0.46 and 0.52 are obtained when we were using the same 

procedure for Pearson VII and Pseudo-Voigt functions.  
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In some instance, the (001) band can be found at the (10) peak’s high 2𝜃 

side, positioned at around 53°. Also required to start the regression process are 

rough estimates of the peak width and intensity. Furthermore, as backgrounds can 

cause major problems in XRD patterning of asphaltenes, they could only be 

presented as a “best fit”. Figures below show comparison between different 

backgrounds and functions for the samples.  

 

 

 

Figure 4.12: Aromaticity and crystallite parameters sample L3 calculated using 

Pearson vii, pseudo-Voigt and GFF (4th order background) 
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Figure 4.13: Aromaticity and crystallite parameters sample L5 calculated using 

Pearson vii, pseudo-Voigt and GFF (parabolic background) 

 

Figure 4.14: Aromaticity and crystallite parameters sample L6 calculated using 

Pearson vii, pseudo-Voigt, and GFF (4th order background) 
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Figure 4.15: Aromaticity and crystallite parameters sample L7 calculated using, 

pseudo-Voigt and GFF (3rd -order background) 

  

         However, when using GFF the 𝛾 peak becomes very broad and hence the 

(002) contribution becomes very small. In addition, using the crystallite parameter 

of the interlayer distance (Lc, La) had much higher value of GFF in some samples 

compared to other samples from Pearson VII and pseudo-Voigt. However, the rest 

of the results for all other samples show more consistency. The higher aromaticity 

values for L5 and L7 indicates that distorted X-ray diffraction pattern at low 

angles that has a strong impact on the quality of the fit. For the rest of the samples, 

attempts at fitting an individual peak gave an aromaticity with approximately 

similar results with an error of ±0.1. 
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Figure 4.16: Modified figure of relationship showing crystalline dimension 

(vertical) versus bandwidth (horizontal) [48] 

From Figure 4.5, we can assert that the two key parameters for finding 

crystallite size are Lc and La, despite their sensitivity to FWHM. Specifically, Lc 

shows sensitivity to even minor alterations in 𝛾, such as, for instance, modifying 

28 = 5° to 28 = 6° cuts the height of the stack in half (i.e., 1.5 nm from 3.0 nm). 

However, data involving sheet diameter appear to be not quite as sensitive; the 

only parameter affected seems to be the narrow (10) band. At the same time, we 

can assert that the results differ significantly even terms of trends if the research 

uses XRD and shifts between Pearson VII and Pseudo-Voigt. As shown in detail 

in the previous chapter, the fitting procedure can fall victim to hyper-

simplification, as graphs generally require non-symmetric (002) peaks to be 

created through a number of different factors (e.g., noise in the data residue).



 

71 
 

Chapter 5 

Conclusion 

     Three major functions, which are Pearson VII, Pseudo-Voigt, and Generalized 

Fermi function (GFF) were used to compare XRD pattern profile fits. JadeTM 

XRD software were used with Pearson VII, and Pseudo-Voigt to calculate and 

compare crystallite size and aromaticity values. In addition, Mathematica was 

used to model the XRD data by using a generalized Fermi function with varied 

results comparable to Pearson VII, Pseudo-Voigt functions.  

      The asphalt binder samples were aged for one week. With the passage of time, 

XRD peaks showed that crystallinity increased in tandem with asphalt binder 

aging. Moreover, even small modifications of profile angles resulted in shifts in 

atoms in the planes, thus indicating a direct association between Pseudo-Voigt and 

Pearson VII functions, as well as GFF. 

          The discoveries of this present investigation highlight the expanding 

capacity of XRD to precisely depict the properties (which are auxiliary and 

compositional in nature) in binders of asphalt. The results discovered all vital for 

getting a handle on how pavements and asphalt binders age in a true setting. For 

that reason, extra research is needed to be done in this field, first by identifying 

the potential issues and then determine the additional research to address the 

issues. 
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Recommendations for Future Work 

       As the challenges elevate to extract materials in their purest form, such as 

asphaltene, a new way of designing techniques should be implemented to improve 

the productivity and durability of materials. Develop mix designs for high-

modulus asphalt mixes, including the selection of binder, optimum asphalt content 

for low voids, and required stiffness. Develop an understanding of pavement layer 

bonding. From both a construction and a performance standpoint, it is crucial to 

understand how bonding occurs between pavement layers and its role in pavement 

responses to loads, by studying the structure and composition of the mix samples 

at microscopic level. 
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