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Abstract

Patchydistributions of organismsare a longrecognized attribute of terrestrialand

aquaticecosystems. Quantitativedescriptionsof spatialvariance provideclues10

processesthatgeneratepatchiness. In aquaticenvironments, greatereffort has focussed

on quantifyingspatialvariancein distributionsof planktonthan on quantifyingspatial

variancein distributionsof mobileorganisms. To evaluate the relativeimportanceof

biologicaland physicalprocessesthat generatevariance, a theoreticalframeworkwas

developedthat combinesdemographic, growth, and kinematicrates in dimensionless

ratios. Ratio valuesare then plottedas a functionof temporal and spatial scale.

Applicationof this techniqueidentifiedkinematics as thedominantprocessinfluencing

capetin (Mal/orus viffosus) distributionalong the coastduringthe spawningseason.

Hydroacousticdistributiondata of capelinand Atlanticcod (Gadus morhua)were

analyzedto examinehow shoaling,schooling,and the aggregativeresponseof

predatorscontributeto the spatialvarianceof mobile,aquaticorganisms. A

characteristicscaleof patchinesswas not observedat the temporalscale of a single

transect (ca. I hour) or at the scaleof a survey(l,,'" 2 weeks). On average, spatial

varillncedecreasedslightlyover intermediatescales (10 km - 0.5 km)and then dropped

rapidlyat smaller scales. Data manipulationsand computer simulationsdemonstrated

that shoalingpotentiallyincreasesspatial varianceat intermediate scales, and thai

schoolingpotentiallyreducesspatialvarianceat scalessmallerthan aggregationsizes.

There was no evidenceof an aggregativeresponseby cod 10concentrations of capelin

throughoutthe analyzedscale range (20 m - 10km). This unexpected lack of spatial

association betweenpredatorandprey was explainedusingestimates of foraging
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energetics to showthatcodwere not constrained by physiologyto track prey during the

capclin spawningseason.

Theoreticaland empiricalresultsof this studyhave increasedknowledge of

scale-dependent spatialvariance in mobile. aquatic organismsand provided insight to

the biological processesthat potentially generate thesepatterns. Scale-dependent plots

of spatial variancecombinedwith rate diagrams can be used to evaluate the relative

importanceof biologicaland physical processes that influenceorganism dispersion as a

functionof spatialand temporalscale.
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Ch apter 1. Background and Approach

l.llnlroduclion

Heterogeneityin spatial distributions of organisms is a long-recognized attribute

of both terrestrial (Watt 1925, 1947) and aquatic(Hensen 1911; Hardy 1935. 1936)

ecosystems. Quantifying spatial heterogeneity as a function of scale has been used to

judge the applicabilityof small scaleexperiments to larger scale natural settings

(Mercer and Hall 1911), to ident ify domains of equivalent spatial variability (Fairfield

Smith 1938), to identify scalesof maximum heterogeneity (Greig-Smith 1952; Kershaw

1957), and to provide clues to biological or physical processes that generate observed

spatial variance pattems (Greig-Smith 1983;Denman and Powell 1984: Legendre and

Demers 1984; Mackaset al. 1985).

In aquatic ecosystems, well establishedtheory slates that spatia l variance of

passive particles is determined by the surroundingflow field. Energy that creates

spatial variance patterns originates at large scales (e.g. eddies, gyres) and is transferred

by turbulent advection to successively smaller scales until viscous dissipation becomes

important (Kolmogorov 1941; Okubo J980). This cascade of energy is characterized

by a power function where the spatial variance of a passive particle is proportionalto

the inverse of scale (wavenumber or frequency) raisedto a negative exponent. When

the logarithm of variance is plotted as a function of 'ogarithm of frequency, the slope of

the line is equal to the exponent. A decreasein spatial variance with scale is commonly

observed among passive particles and organisms in marine and freshwater environments

including surfacewater temperature (Saunders 1972; Fasham and Pugh 19'16; Estrada



and Wagensburg 1977; Richerson et al. 1978;Star andMullin 1979: Weber et al.

1986), sea level (Wunsch 1972), andphytoplankton(Platt et al. 1970; Platt 1972;

Powell et al. 1975: Fasham and Pugh1976; Denman1976; Estrada andWagensburg

1977;Horwood1978:Weberet al . 1986).

The spatial variance pattern of at least one mobile aquatic organismwas foundto

differ from thatof passivetracers. The rateof changein spatial varianceof Antarctic

krill (Euphausia superha) with changein spatial scalewas on average lowerthan thatof

surface temperatureor phytoplanktonover resolutionscales of 2 km to 100km (Fig. 6,

w eber et aI. 1986). The magnitudeof averagespatialvariancein krill was lessat large

scalesandgreater at smallscales thansurfacetemperature or phytoplankton. Weber et

al. (1986)attributedthe increased spatial variability of krill at smaller scalesto an

unspecified behavioural mechanism. In a subsequent study, Levin et al. (1989)

extended the sampling resolution to 200 m andobserveda shallow negative slopein

krill spatial variancedown to scalesof 1 km. The slightnegative slopeof krill spatial

varianceplots wasobservedin both studies but processesinfluencing spatialvariance

patterns and thegenerality of thesepatterns havenot been systematically investigated

for mobileaquaticorganisms.

Early studies that quantified variability in organismdistribution focusedon spatial

and temporal distributionsof phyto-and zooplankton(e.g. Gran and Braarud1935;

Riley and Bumpus1946; Bainbridge1957; Cassie1960). Plankton were treatedas

passive particleswith short turnover times. Statisticalindicesand descriptive models

usedto quantifyvariancein plankton distributions are not directly applicable to

long-lived organismsthat can move independentlyof the surroundingfluid. Spatial



variance modelsof terrestrial systems are also not directly transferable to aquatic

environments as they are limited to two dimensionsand oftenassume homogeneous

environments (e.g. Wiens 1976; Hassell and Anderson 1988). As a result, there is a

limited number of models that quantify spatialvarianceof mobileorganisms in aquatic

environments.

Spatial variancestudiesof mobile, predator-prey systemsin fluid environments

are also rare. Spatialand temporal variability in the density of prey may ultimately

determine foragingsuccessof a predator. In thenorthwestAtlantic, predator-prey

spatial variancestudies are limited to seabirds-pelagicfish (Schneider and Piatt 1986;

Schneider 1989)and demersal-pelagic fish (Roseand Leggett 1989, 1990) . Theseand

other similar studiesrlemonstrate that observedspatial variance in the distribution of

mobile aquaticorganisms is dependenton the spatial and temporalscale of

measurement (Schneiderand Duffy 1985; Schneider 1989; Piatt 1990;Rose and

Leggett 1990). Therefore, to examine the spatialdynamicsof mobile predator-prey

interactions it is imperativeto quantify spatialassociationsof predator with prey over a

wide range of scalesand to explicitly report spatial and temporal scalesof

measurement.

These observationswere used to formulate an approach to evaluate

scale-dependentspatial variance in the distributionof mobile, interacting organisms:

I) Use previous knowledge to evaluate the relative importanceof biological and

physicalprocesses that potentially generate spatialvarianceas a function of

scale.



2) Conduct preliminarysampling toverify surveydesign, sampling scale, and

analytictechniques.

3) QUMtify spatialvariancein the quantityof interestas a functionof scale.

4) Confirm hypothesizedvariancegeneratingprocesses.

~) Generalizeresultsfrom specificcases andidentifythe next analyticsteps.

This thesisis dividedinto eight chapters. The remainderof this chapter reviews

effortsto characterize spatialvarianceindistributionsof aquaticorganisms andin

interactionsof predators with their prey. Background is providedon Atlanticcod

(Gadus morhua) and capelin (Mallo/us villosus) which are usedas an exampleof a

mobile predator-prey pair. The secondchapterusesdimensionless ratios of rates to

quantify therelative importanceof processesthat potentiallygenerate spatialand

temporal variancein allY biologicalquantity of interest. Thismethodis then usedto

identify dominant biological processesinfluencing spatialvariancepatternsof cod and

capelin at logistically feasible samplingscales. Chapters3 and 4 quantify variancein

the distribution of capelin and cod from relativedensity datacollectedusing

hydroacoustics in Conception Bay, Newfoundland. Spatialvariancepatternsobserved

in thedistribution of codand cepelin are comparedto thoseof drifting particles and

other mobile species. Chapter5 focuseson scalesof spatialassociation betweencod as

predator andcapelin as prey. Observedpatterns of spatialassociationbetweenthe two

species are interpretedusing bioenergeticcalculations. A particle simulator is used in

Chapter 6 to confirm the influenceof hypothesized biologicalprocessesfromChapters

3 and4 on spatialvariancepatternsof mobile aquaticorganisms. Chapter 7 reviews



the treatmentof spatialvariance in ecology and speculates whereprogress in the

predictionand analysisof spatial variancewill continue. The final chapter summarizes

contributions of this thesis.

1.2 Characteridng spatia l variance in organism distr ibution

Early efforts to verbally describe distributional patterns of organisms were indirect

methods of examining spatial variance at one or morescales. Numerictechniques

attempted a moreexact detectionand descriptionof spatial varianceby comparing

empirical indicesof aggregation to an expected value under the assumption of

randomness. These indices assess varianceat a singlescale for each calculation. To

quantify spatial variance as a function of scale, quadrat size can be sequentially

increased from the sampleresolution to one half of the sample range (Greig-Smith

1952). A chronologie detailing of the developmentof statistics measuring departure

from randomnessand determining scale will be reviewedin the penultimate chapter.

The ability to detect concentrations of spatial variance has largely been determined

by available samplingtechnology. Early surveysbasedon net samples found that

spatial variance in planktondistributions peaked at the scaleof tens of kilometers

(Bainbridge 1957; Cushingand Tungate 1963; Steele 1974). The developmentof in

vivo fluorometry(Lorenzen 1966), the Longurst-Hardyplankton recorder (Longhurst et

al. 1966), and applicationof the Couller counter (Sheldon and Parsons 1967) 10

plankton samplingdramatically increased the resolution of horizontal sampling in

aquatic environments(cf. Fig. I , Denman and Mackas 1978). Subsequent analysis

resulted in a reduction in estimatesof phytoplanktonpatch sizes (cf. Table I, Legendre



and Demers 1984). The application of spectral analysis to phytop lankton data (pIau

1972; Platt and Denman 1975) facilitated the analy sis of spatial variance over a

continuous range of spatial scales. Spectral analyses of phytoplankto n counts and other

passive particle data confirmed that spati al varia nce peaked at low frequencies (large

scales) and monotonically decreased to high frequencies (small scales) (e .g . Denman

and Platt 1975; Fasha m 1978).

Efforts to explain biological spatial variance commonly match characteristic scales

of biological pattern to dominant physical processes at the same scale. The

hypothesized coupling of biological patterns to physical precesses is most common in

pelagic co mmunities comprised of phytoplank ton (e.g . Denman and Powe ll 1984),

zooplankto n (e.g . Legendre and Demers 1984), and larval fish (e .g . Shepe rd et al,

1984; Stssenwine 1984). One of the first studies directly coupling physical to

biological processes wasGran and Braarud (1935) who explained the low abu ndance of

phytoplankton in the Bay of Fund y by the lack of vertical stability in the wa ter column.

This observa tion and other physical-blolcgical coupled studies (Bigelow et al. 1940;

Riley 1942) were used in the develop ment of the critical depth concept (Sverdrup

1953) . The importance of physical-bic logical coupli ng in marine ecosys tems has been

reviewed by Walsh (1981), Denman and Powell (1984), and Mackas et al. (1985).

An implicit assumption in this matching approach is that biological pattern is

directly coupled to physical processe s at the same scale. This has been de monstrated in

descriptions of plant communitie s with reference to environmental gradients (e.g.

Greig-S mith 1952; Kershaw 1958), and the coupli ng of spatial variance patt erns in

passive tracers to flow structures in fluid environments (e.g. Denman and Powell 1984;



Mackaset aI. 1985). Thismay notbe truein all cases. Thereisboththeoretical (e.g.

May1976) andexperimental(e.g.Dwyer and Perez1983)evidence 10suggest that

non-linear relationships occurbetween ecosystem components. Anaquatic example is

growth of phytoplankton alteringthetransmission of lightinthe water column due to

self shading (Shigesada and Okubo 1981). Theassumption of directcouplingat a

singlescalealsoexcludes multipleprocesses influencing pattern at a singlescale, and

thepropagation of effects acrossspatial or temporal scales(e.g. adultcohortsize

establishedalan early lifehistorystage).

Asecond assumption ofthis matchingapproachis thatthe couplingofbiological

spa!ial variance to anyvariancegenerating processoccursata characteristic scale.

Single plotsofvariance as a function of scaleshow concentrations ofspatial variance

among terrestrial(Greig-Smith 1952; Kershaw 1957)andmarine (Grassle et aI. 1975;

Schneider1989; Roseand Leggett 1990) organisms. Butinallstudies, scales or"

maximum spatial variance differamongtransects. In thefewstudiesthat increase the

temporalscaleby averaging multiple plots (Weberet al. 1986; Schneider 1994a), these

scale-dependent concentrations of spatial varianceoftendonotoccur. It remains

unclear whether variance in thespatial distributionof mobileaquaticorganisms occurs

at characteristic scales.

A thirdassumption in this matching approach is thatthecreationof biological

spatial variance is generated exclusively byphysicalprocesses. Biological processes

canalsoinfluence spatial variance overa rangeofscales. Phytoplankton critical patch

sizeis a classic example. Onetheory is thatu re sizeof a phytoplankton patchis

detenninedbythe opposing forcesof horizontaldiffusion and phytoplankton



reproductiverates (Skellam1951; Kiersteadand Siobodkin1953). The criticalpatch

size theory waslater expanded to includeherbivore grazing(O'Brienand Wroblewski.

1973a; Wroblewski et al. 1975). The assumption that spatialvarianceof passive

tracers is generated exclusively by physicalprocessesis alsocontradictedby the idea

that the dominating process detennining phytoplankton spatialvarianceswitches

between physicalandbiologicalprocessesover time (Demers and Legendre 1979,

1981). Relianceon matching biological pattern to physicalprocesseswas due, in part,

to a lack of analytictools thatquantify the relativeimportance of variancegenerating

processes. The relative influenceof biological andphysicalprocesseson spatial

varianceof mobile aquatic organisms hasnot beenextensively studied.

Initial attempts todescribe spatial varianceof mobileaquatic organisms also

lookedfor characteristic scales of maximumspatialvariance. The first diagrammatic

portrayal of scale-dependent biological variancewas Hauryet al.' s (1978) conceptual

modelof macrozooptankton biomassdistribution. Dominantfeaturesin the

zooplankton diagram(cf. Fig. I, Haury ct al . 1978) matched dominant physicalfeatures

in the originalStommel diagram of sea level (cf. Fig. I, StommeI1963). Magnitudes

of zooplanktonbiomass varianceor sea level variancewerenot quantifiedin either

diagram. Oneof Stomme1's (1963) major points was thatthis task was virtually

impossiblegiven the numberof required measurements. Hauryet al. (1978)includeda

relative 'measure of biological importance' whenestimating magnitudes of zooplankton

variance. Theunits of 'importance' were not quantified. More recently, Marquet et al.

(1993)advocatethe useof Stommel diagrams to characterize spatialand temporal

variance of biologicaland physicalquantities. They recommend the use of spectral



analysis to quantifyscale-dependent spatial and temporal variancedespite restrictive

essumpuons of the techniqueanddifficultiescollecting synoptic dataat large scales.

Evidence fromspectralanalysesshowsthat spatial variancepatternsof mobile

organismsdo not match thoseof passivetracers in the surroundingfluid. Weberet al.

(1986)examinedspatial varianceof Antarctickrill (Euphausiasuperba) in relation to

surfacetemperatureand chlorophyll fluorescence as a measureof phytoplankton

abundance. This study wasthe first comparison of spatial variance patternsof mobile

organismsto passive tracers in an aquaticenvironment. 11wasalsothe first

exeminauon of scale-dependent spatial variance at more than one temporalscale. The

rate of change in krill spatialvariancewith change in spatial scale was lower than that

of either surface temperature or phytoplanktonover resolution scalesof2 km to 100

Jun. The magnitudeof averagespatialvariancein krillwas smallerat low frequencies

(largescales) andgreater at high frequencies (small scales) than surface temperature or

fluorescence. Weber et al. (1986)attributedincreasedspatial varianceof krill

abundanceat smaller scalesto an unspecified behaviouralmechanism. In a subsequent

study, Levin et at. (1989)extended sampleresolution to 200 m andobserveda shallow

negative slope in krill spatialvariancedown to scales of 1 km. Spatial variance

dropped rapidly at scalessmaller than 1 km (cf. Fig. 4, Levin et at. 1989). The abrupt

change in spectraldensity slopeimpliesthat different processes maybe influencing

spatialvariance over different rangesof scales. Potential variancegenerating

mechanisms includephysicalas well as biological processes. These two studiesclearly

demonstratethe scale dependence of spatialvariance and the necessity of muttl-scete

observations in distributional studiesof aquaticorganisms.
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SlUdiesof !hespatial variance of mobile aquatic organisms have largely been

limited to si ngle taxonomic groups. Weber et at (1986) and Levin et al, (1989)

quantified spatial variance of krill biomass over a widerange of scales. A series of

studies examined scale-dependent spatial variance of marine birds and the association

with pelagic schooling fish and physical Ilow struct ures (Schneider and Pia tt 1986;

Schneider 1989; Piatt 1990), This approach was usedto examinepredator-prey

associations of Atlantic codwith capelin as a function of spatial scale (Rose and Leggett

1990). To confirm the generality of patterns obse rved within groups of mobile

organisms. a comparison is required of scale-dependent spatial variance across

taxonomic groups at temporal scales greater than that of a single transect

1.3 Scale-dependent predator-p rey interactions

The scale-dependenceof spatial variance in the distributionof a single species also

applies to predator-prey interactions. Analytictechniques used 10 quantify interactions

of predators with prey havelargelybeenadopted fromsingle speciesstudies. The

traditionalgoal of thesestudiesis to identify scalesof maximum association between

predator and prey. Having identifieda characteristic scaleof interaction, dominant

physical processesat thesamescale are often proposedas mechanismsthat concentrate

prey. This matching approach has been successful when prey organismsmove

passively with thesurrounding fluidbut maynot applywhen organismscan move

independent of fluidmotions.

The temporalscaleof spatial sampling potentially influences observedspatial

variance patterns of predator-prey interactions. Identification of a characteristic scale
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of spatialassociationbasedona single or limitednumber of samples implicitly

represent s short temporal scales. Among studies that present results from multiple

transects (Schneider and Piatt 1986; Weberet aI. 1986; Schneider 1989; Roseend

Leggett 1990) the scaleof maximumspatial association differs among transects. With

the exception of the study by Weber et aI. (1986) , there has not been a combining of

association values froma numberof transects to examinespatial scalesof association

between aquatic predators and prey at larger tempor al scales.

Temporal and spatial scales used in theoretical predator-prey modelsfrequently

differ from those used to test predictions in the laboratory or field (Kare iva 1989.

1990). The temporal resolutionofpo putation-Imeracuon models is implicitly set at the

generation time of the predator. But the temporal scale of surveytransects is typically

short relative to the life spanof the predator or even the prey. Field and laboratory

observations are commonly conducted at temporal scales equivalent to that of a foraging

bout. In addition, the range of spatial scales used to formulate predator

aggregative-response models have also differed from those tested in the field.

Theoretical descriptions of aggregattve responsesby predatorsare basedon changes in

prey density at a singlespatial scale (e.g. Holling 1965, 1966; Murdochand Oaten

1975). Field studies identify the type of response and range of spatial scales over

which aggregative responses occur (e.g. Heads and Lawton 1983; Piatt 1990). To

ensure compatibilitybetween theoretical models and empirical experiments the spatial

and temporal scale of both theory and observation must be explicitly stated when

quantifyinginteractions betweenpredators and prey.

Predator-prey interactions among mobileaquatic organisms potentiallyoccur over
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a wide range of spatial and temporal scales. Therefore scales of maximumassociation

between predator and prey canonly beconfirmedby analyzing varianceovera

continuous range of spatial and/or temporal scales. Biological processesmustnot be

excluded whendetermining mechanisms that createobservedpatternsof spatial

variance.

1.4 Cod·Capelin interactions in the n orthwest Atlantic

Capelin are a pelagic, schooling osmeridspeciesinhabitingsub-Arcticand Arctic

watersin the Atlantic and Pacific oceans (Jangaard 1974). In the northwest Atlantic,

adult capelin (?3 yr) m'gratefrom offshore to coastal waters to spawn ongravel

beaches duringlate June andJuly (Templeman 1948; Carscadden 1983). Spawning

mortality exceeds80% (Carscadden and Miller 1980). Eggs hatch withinthe beach

gravelin 9·20 days (Templeman 1948; Frank andLeggett 1981)and larvae are

transported offshore (PortierandLeggett1982, 1983). Survivingadults and juveniles

remain offshore duringfal l andwinter(Bigelowand Schroeder 1963;Bailey er aI.

1977). During the spawningseasonAtlantic cod, a semi-demersalgadoid, complete a

post-spawningmigration to coastalwaters to feedon capelinalongthe coast of

Newfoundland(Templeman 1979; Akenhead et al. 1982; Lilly 1987; Rose 1993).

Capelin have formed the basis of a multimillion dollar commercial fishery (Anon. 1980;

Carscadden 1983) andare a keyforagespecies for marine mammals , fish and marine

birds (Wintersand Carsceddec 1978; Baileyet aI. 1977).

Capelin are a major preyof cod in offshore [Turuk 1968; Campbell and Winters

1973; Stanek 1975 ; Minet andPerodou1978; Lilly et al. 1984;Lear et aI. 1986; Lilly
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1986, 1987, 1991) and coastal(Thompson 1943; Templeman 1965; Aggettet al. 1987;

Lilly 1987;Methven and Piatt 1989)waters. But the proportion of capelin reported in

cod diet studies differs dependingon the geographic area and lime of year that samples

were obtained. In NAFQ Divis ions 2J and 3KLNO, Campbell and Winters (1973)

estimatedIhat capelincomposed32% by volume of cod diet annually. Minetand

Perodou (1978) found that capelincomprised56% by weight of cod diet from a set of

stomachs sampled during winter and summer in NAFO Divi sions 2Jand 3K. Annual

consumptionof capelin by cod was then estimated to be 28% by weightunder the

assumption that capelinare not consumed duringspringand fall. Thisestimateformsa

minimumasLilly (1987) found thatcapelincomprised 15% by weightof codstomach

contentscollected in NAFO Division 3L, and 16% (1982) to 36% (1985)by weightof

cod stomachssampledduring autumn in NAPODivisions2Jand 3K.

Thereare few publishedstudieson the foodof cod from inshoreNewfoundland

areas (Lillyand Botla 1984). Using a seriesof stomach samples fromcod caughtin

cod traps,Templeman (1965) found that capelinformed 96% of codstomach contents

by volumeduring June to August, and 55% from Mayto November. Capelin

represented 99% by weightof codstomachcontentsfrom trapssampledin July 1968

and 1969 (Lilly and Flemming 1981).

Thereis littledoubt that codfeed heavily on capelin but the dependenceof cod

diet on capelin abundanceand availability has not been clearly demonstrated. Concern

about theimpactof reductionsincapelinabundanceon cod dynamicsappearedas early

as 1835 (Akenheadet al . 1982). The limitedresults that indicatecapelinare important

to codgrowth and survivalare correlativeand largely focusedon changesin
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commercialcatchesor growth ratesof cod in responseto changes in capelinabundance.

Using commercial catch data from 197010 1978,Akenheadet al. (1982) found that

fluctuations in capelinbiomasswere not related to catchor growth rates of cod in

NAFO Divisions 2J3KL. Indices of capelinabundance explained35 %of the variation

in codinshorecatches from 1975 to 1984 (Lear et al, 1986). Agge~t et aI. (1987)

observed a correlation of 0.5 (25 % of explained variance) between cod catches in

inshore traps and the proportionof capeJinfoundin cod stomachs. Roseand Leggett

(1989) foundthat correlations between hydroacoustic abundance estimatesof cod and

capelin rangedfrom0.3 to 0.6. Thesevalues were within the 0,2 to 0.9 range of

correlations observedby Lilly ~ 1 99 1 ) between cod stomachfullnessindex andannual

estimatesof capeltn biomassfrom 1978to 1986. Sheltonet al. (991) foundno

relationshipbetween cod growth and capelin abundancebut founda large probabilityof

Type II error, failure to detect a realresponse. A commonstatementat the end of all

thesecorrelativestudies is a call for quantltauve, causalexamination of e- importance

of capelinto the growthand population dynamicsof cod.

Spatial associationsbetweenAtlantic cod and capelindensities havebeen

examinedin the northern Gulf of 51.Lawrence. Roseand Leggett (1989) found that

positivecorrelations betweenpredatorand prey were a functionof high prey densities

(> 100 capelin/ lOS mJ water) and the presenceof favourable water temperatures (1-9

OC). Codand capelin densities were not correlated at temperaturesoutsideof this

range. At the temporal scaleof a day, spatialcoherence betweencod and capelin was

positiveat spatial scales ranging from 4 and 10 km and negativeat scalesless than



capelin aggregation dimension s (3-5 km) (Rose and Leggett 1990). On a single

occasionwhen cod wereactively feedingon capelin, predatorand prey werecoherent

at a scale of 3.5 m (Rose and Leggett 1990).

IS



Chapter 2. Evaluating Spatial Variance

2.1 Introduction

Recent publications (e.g . Wiens 1989; Menge and Olson 1990; Holling 1992;

levin 1992) re-iterate theimportance of scale in thedescription of ecological

variability. TIle sca le-dependenceofbioJogicaJand physical measurement is well

recognized in both aquatic (Stommel 1963; Smith 1978: Steele 1978a) and terrestrial

(Watt 1925. 1947; Greig·Smith 1952; Urban et al. 1987) ecosystems. Many techniques

have been developed to quantify scalc-dependent ecological pattern (see reviews in Plait

and Denman 1975; Ripley1981: Greig-Smith 1983) and standarddata sets are regularly

used 10 comparethe consistencyof spatialand temporal patternsamong techniques (e.g.

O'Neill et al. 1991; Cullinan and Thomas 1992; Tumer et al. 1992). Despite efforts to

quantify and compare scale-dcpendent spatial variance, there has not been a

concomitant development of techniquesthatevaluate the relativeimportance of

processes thai generate spatial variancepatterns.

Scale-dependenl physicalor biologicalpatterncan besummarizedin a diagramby

plotting varianceof a quantity as a function of spatial and temporalscale. The first

diagrammatic descriptionsof scate-dep-ndent physical variability were estimates of sea

level and deepocean current variance(Stommel 1963). Haury et el. (1978) used this

presentation10develop a conceptual model of zooplanktonbiomass variability. This

wasthe first comparison of biological variance across a wide range of scales and

remains theonly published Stommel diagramof an ecologicalvariable (Marquet et al.

1993). Variations of Slommeldiagramsshow concentrations of spatial and temporal



11

variability as a function of space and time scale for aquatic (e.g. Steele 1978b, 1989;

Harris 1986; Dickey 1990) and terrestrial (e.g. Delcourt et at. 1983) ecosystems.

These are intuitive diagrams where the boundariesof any feature in a plot indicate the

minimum and maximum scales of variability for the quantity of interest. The

constructionof a true Stommel diagram requires simultaneousvariance estimatesat all

spatial and temporal scales. This is rarely possible at intermediate Of large spatial

scales as the passageof timeduring data collection precludes independent calculation of

spatial and temporal variance. Stommel diagrams summarize scale-dependent

variability in a quantity of interest. They do not indicate the biological or physical

processesthat generate observed patterns.

Asan altemative to infeni ng process from statistical descriptionsof biological

variance, I proposethe useof dimensionlessratios to evaluate the relative importance

of variance generating processes as a functionof scale. Comparisonof scale-dependent

rates in the form of a dimensionless ratio assessesthe selativecontribution of biological

or physical processesin the generation of biological variability. Similar comparisons

using a complete set of ratiosidentify all potential processes that regulate variability in

a biologicalquantity of interest. Dimensionless ratioshavebeen used in ecologyto

identify sourcesof planktonvariability (O'Brienand Wroblewski 1973b; Denman and

Platt 1976;Okubo 1978), examinegrowth andphysiological ratesas a functionof body

size (Gunther 1975; Plait andSilvert 1981; Heusner 1987),summarizespatial

variabilityin marine nekton (Schneider 1991, 1994a),and evaluatecomplex problems

in wildlife management (Schneider et at 1993).

In this chapter I usedimensionless ratios to summarizeknowledge of variance
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generatingprocessesacross spatial and temporalscales. This summary identifies

dominantvariance generatingprocessesat any scaleof interestand can be used to

improve the design of field sampling programs . The application of dimensional

reasoningto evaluatecompeting processescomplements thequantitative descriptionof

scale-dependent biological pattern. It neither replacesstatistical techniques, nor is it

directlycomparable 10them.

2.2 Methods

Prior to any fieldsampling,a crucial task is to identifyvariables to be measured

and appropriatescales of measurement for eachvariable. A scaleof measurementhas

two components•• a resolutionand a range. The resolutionor grain is the minimum

sample unit (e.g. quadrat size) while the range is the maximumextent ofthe sample

(O'Neill 1"1 al. 1986;Wiens 1989). To summarizethe relative importanceof biological

or physical processesthat generate scale-dependent biological variability, I proposea

'generic' procedureconsistingof 4 steps:

1) State the quantity of interest.

2) Writean equation incorporatingall potentialsourcesof variability for this

quantity.

3) Calculate dimensionless ratios.

4) Plot and contour ratio values in rate diagramsusingexisting data.

To illustrate this procedure, I examine the spatial and temporaldynamicsof

capelin biomassdistributionin the northwestAtlantic. From the life history of capelin

described in Chapter I, it is apparent that changesin thedistributionof capelin biomass
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are a result of demographic(recruitment,mortality),growth, and kinematic(active and

passivemovements) processesactingwithina wide rangeof spatialand temporalscales.

The quantityof interest in thisexample is the proportionalrate of change of

capelin biomassin the northwestAtlantic. The raie of changeof biomass has

dimensionstime-r. The biomass B of a groupof organisms i is the productof the

number of animals N multipliedby their individualmass M:

B =I~ NjM i

The concentration of biomass is definedas:

[B] . NVM

(2.1)

(2.2)

where V is the volume occupied. To simplify thenotation a dot over a symbol is used

to signifythe proportional rate of changein the quantityrepresentedby the symbol.

Hence, the proportional rateof changein theconcentration of biomass [!J] is:

[ Li) '[ Br , d~~l
(2.3)

The secondstep is 10writean equationcontainingpotentialprocessesthat affect

the concentration of capelinbiomass. Changein theconcentration of biomass (IJ 1is a

functionof changein biomassdue to recruitmentand mortalityN • somaticgrowth

Nt. the divergencedue to fluid motionsV F and thedivergencedue to individual

motionsrelativeto the fluid V I asshown in Appendix 2.1. Fiveresearchareas are

integratedby theequationthat expressesthe rate of changein biomassconcentration:
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V F V/ (2.4)

fluid behaviour
mechanics

The third step combinesterms fromequation(2.4) to form dtmcnsiontess ratios.

If variables in an equationare dimensionallyheterogeneous, a completeset of ratios is

obtainedby dimensional analysis (Bridgman 1922). If all terms in an equation have the

same units then ratioscan becombined from any pair or group of terms. This

flexibili ty enables the formation of ratios rela tive either to a process of interest (e .g.

Schneider 1992)or to the combination of multipleterms into functionally important

single terms (Fischeret al. 1979). Three ratioscan be formed fromequation (2.4)

relative to the fluid mechanics term Of combinedemographicand kinematicterms to

form populationdynamicsandconstruct a single ratio with somaticgrowth.

In the capelin biomass example, all terms in equation(2.4) have dimensionsof

time" so ratios were formed from the equation. Biological reasoningwas used to select

groups of terms to compare. For example, I was more interestedin comparing the two

kinematic terms, 1/r and V I , than comparingone of the kinematicterms to

demographics IV or somatic growth itt . A formalapproach illustratingthe use of

dimensional analysis to form ratios fromequation (2.4) is providedin Appendix 2.2.

The formal approach ensuresthat redundant ratiosare not included.

The first dimensionless ratio compares somaticgrowth M to the net result of

demographics IV and kinematics V .

(2.5)
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Biomass concentration increasesif animals grow ( hi > 0). increase in number

( til > 0) , or contract into a smaller volume orwater ( V < 0 ). At small time scales

relative to the life spanof the organism,changes in population biomass due 10somatic

growth are limited and the value of lhe ratio is expected to be muchless than 1. Spatial

or temporalvariability of a sample becomesa functionof the change in numberof

individuals or the volume in which they occur rather than a change in mass of

organisms. Over longer temporal scales the value of the ratio is expected to approach

1. Largepositivechanges in growth M and a ratio greatly exceeding I are typical for

long-lived ( tVsmalt) speciesthat are managed in large geographic areas ( V small).

Small changes in somatic growthMcoupled with a ratio much less than 1 ( IVlarge,

Ii small) are expected at spatial and temporal scales associated with thecapelin

spawningseason.

Thedemographic to kinematic ratio relates recruitment and mortalityto

movements.

tV
iT

(2.6)

If the ratio is greater than I then demographics prevail over kinematic processes. A

ratio less than 1 indicates that kinematics will dominate over demographic processes.

Valuesof the ratio can beexpected to be near unity at time scales of a cohort and at

space scalescomparable to the range of the population. In many populations,kinematic

processes dominate at small temporal and spatial scales, whiledemographic processes
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dominate at largertemporal andspatialscales.

The kinematicratiocompareslocomotory velocitiesof the organismto passive

velocitiesdue to fluid motions.

v ,
i/;

(2.7)

rr individual motions dominate,the kinematicratio will exceed 1. The magnitude of

It I is a function of the locomotorycapacityand life historystageof the organism. An

example is the relativemobility of fish larvae comparedto adults. As the mobilityof

an organ ism decreases, V I approaches O. When organisms drift passively with the

fluid, the value of the ratio is much less than 1. Valuesof V F are sensitive to study

locatio n and spatial scale. Lcntie and lotic environments willdiffer in the potential for

passive drift of any organism . Passive drift may also be important to terrestrial

organisms, includingseeds,small insects,and spiders. At largespatial scales, the

rangeof a study mayencompass autonomouscirculationfeaturesassociated with the

fluid (e.g. gyres), therebymakingIi F small and the kinematicratio large. If the value

of the ratio is approximately equal to 1, changesin the distribution of biomassdue to

movement dependon the interactionbetweenbiologicaland physical processes. High,

intermediate, and low valuesof this ratio correspondto Wiebeand Flierl's (1983)

biological, physical-biological,and physicaldistributional mechanisms.

The demographic ratio measuresthe importanceof recruitment ]i.' r relative to

mortality N. . In capelin, as in other commerciallyimportantspecies,mortality N.

is partitioned into natural N", and harvesting N I mortality.
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(2.8)

Over short time scales, this ratio is greater than 1 during the breedingseason of capelin

and less than one during the remainder of the year. At the spatial scale of the

populationrange (l OO' s km) and the temporal scale of a cohort (5 yr), the value of the

ratiowill approachunity. In unexploitedpopulations, maintenance of biomass levelsat

equilibrium is indicated by a value of I . Increased mortality due 10predation or the

onsetof harvesting reduces this value below unity unless a compensatory increasein

recruitment occurs at low densities. Commercial fisheries managers attempt to

maintain the value of thisratio near unity at time scalesof several years by regulating

harvest mortality N J through quotas and gear restrictions.

The fourth step in the procedureis the plotting of each dimensionless ratio as a

functionof spatial (x-axis) and temporal (y-axis) scale using existing data. In many

ecologicalsystems precisionof calculations may be limited by a paucity of data at large

spatialand temporalscales. If data are limitedor unavailable, calculations can be made

at benchmark spatiotemporal scales. Nominal « 1, 1, > I) contours are then drawn

based on thesebenchmarks. If data are available over a wide range of scales,

spatiotemporalscaleswhere transitions betweendimensionless ratio values occur are

marked. Contour linesare then drawn to connect transitionpoints. Locationof

dimensionless ratio contoursare refinedas additionaldata are obtained from field

studies. The inabilityto calculatedimensionlessratio values at a specificscale indica~

a potentially importantresearcharea. This methodcan beused by groupsof

researchersto make perceptions of the relative importanceof competingprocesses
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explicit. Comparisonsof rate diagramsfrom each individualcan beused to highlight

discrepanciesbetweenratio valuesand 10focus the discussionof large researchgroups

on dominantscale-dependentprocesses.

Data from capelinassessmentdocumentsand publishedvelocitiesof theLabrador

and Newfoundland inshore currents wereused10estimatescale-dependent ratiosin rate

diagrams. Order of magnitudecalculationsshowed whetherthe absolutevalue of any

dimensionless ratio was less than, equal 10, or greater than I at a given spatiotemporal

scale. Contour lines markedthe spatialand temporalscaleswhere dimensionlessratios

changed value.

2.3 Results

The major feature in the ratediagramof capelingrowthto populationdynamics

ratio (Fig. 2.1a) reflectsthe persistenceof Newfoundland-Labrador cape1inpopulations

at large scales. At spatialscaleslarger than the continentalshelf and temporalscales

larger than a year the valueof the ratio is greater than 1. This is a result of changes in

the concentrationof biomassdue to somaticgrowth exceedingchangesdue to

populationdynamics. On averagecapetlngrowth, as indicatedby length, increasesa

total of 40,900% or 10,225%of initial hatch lengthper yearduring the first 4 years of

life (Templeman1948). This rateexceedsthat of partial recruitmentto the adult stock

··53% per year (Carscaddenand Miller 1981), spawningmortality_.80% of spawning

stock per Yl',M (Carscaddenand Miller 1980), fishingmortahty -. 0.05% of estimated

biomassper year (Carscaddenet al. 1991), and the net kinematicrate -- 0% because the

populationremainson the continentalshelf. Recruitment,mortalityand kinematicrates
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F1g.2 .1 Contoured rate diagramsof dimensionlessratio values for adult capelin

biomassdistribution in the northwest Atlantic. Ratiosare contouredless than I

« 1), equal to 1 (=1), and greater than I ( > 1). a) Growth to population

dynamics (demographics - kinematics) ratio, -h b) Demographics (recruitment

+ mortality)to kinematic (locomotory + passivemotions) ratio, ~ . Dolled line

indicates shift in contour duringspawning season. c) Locomotoryto fluid

(passive) motion ratio, ~ d) Recruitment to natural plus harvestingmonality

ratio, N::N" Dottedlineindicates scalesof mortality duringspawning season.
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exceedsomaticgrowthrates at smaller scales and the valueof the ratio is less than I.

Values of the demograph ic 10 kinematic ratio (Fig . 2.th) vary depending on

capelio reproductive status. At temporal scales of a year and spatial scales of the

continentalshelfchanges in the concentrationof capelinbiomass due to demographic

processesexceedchangesdue 10kinematics and the value of the ratio is greater Ihan I.

Part ial recruitment to the adult population (4 years) is 53% per year (Car scadden and

Miller 1981). Naturalmortality is typically assumed to be 30% per year in capelin

(e.g. Carscadden and Miller 1980). Changes in the volume occupied by capel in

populations are negligible at these scales and ther efore the value of the kinematic term

is nearzero. At sub-annual scales passive andactive movements of capelin s.crease the

value of the kinematic term and the value of the ratio drops below I. During the

spawning season, the location of the unity contour shifts to the spatial scaleof a

spawning beachor cove (100-1000m) on a day to weekly scale. This is a result of

increasedmortalitydue to spawning_. approximately 2%of spawning fish per day

(Carscadden and Miller 1980) and inshoreharvesting-- 0.001% of totalestimated

biomass per day (Carscaddenet al. 1991). Concentrated predationon capelinby fish,

seabirds and marinemammals also occurs during this period(cf. Carscadden 1983)but

lackof data prevented an estimate of mortality rates due to naturalpredation.

The unity contour in the diagram of the kinematic ratio (Fig. Z.lc) is also located

at the scaleof the entire population. On thecontinentalshelf over an annualcycle.

passive drift associated with the LabradorCurreru-. typical surface speedof inshore

branch 0.1 m S·l (Helbiget el. 1992),is balancedby the annualmigratory cycle of adult

fish (cf. Carscadden1983). At temporal scalesless thana year and a spatial scaleof
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the continental she lf, changes in biomass concentration due to swimming exceed

changes due to passi ve dri ft and the value of the ratio is greate r than 1. At spatial

scales of kilometres to metres and temporal scales of weeks to seconds , potential

changes in the concentrationof biomass due 10 passive drift with tides, currents and

internalwaves(Yao 1986, de Younget al. 1993) exceedchanges due to active

movements. Hence the value of the ratio is less than 1. The dominanceof passive

movementsat these scalesdisappearsduring the spawning season whenaggregationsof

adult capelin migra te to coastal waters .

At the largest scales in the rate diagram of the demograp hic ratio (Fig. 2. 1d),

persistenceof a populationrequiresa balancebetweenrecruitmentand mortality. The

resulting value of the demographic ratio mustequal 1. On an annual scale over the

spatial rangeof the population, recruitmentgenerallyexceedsnatural and harvesting

mortality. Large decreases in recruitmentcombined with increasednatural and

harvesting mortalitymay reduce the value of the ratio below unity at these scalesin any

particular year. For example, capelin recruitment measured as 2-year-oldsdroppedby

a factor of 35 between the 1973and 1916year-classes in NAFO Division 2J3K

(Carscadden and Miller 1981). During the spawningseason, mortality exceeds

recruitment to the adult population. This reducesthe value of the demographicratio to

less than one at spatial scalesof hundredsof metres to tens of kilometresand temporal

scalesof hours to weeks. At the scale of an individual capella (tess than a metre, a few

minutes), changesin biomassdue to natural and harvesting mortalityare greater than

thosedue to recruitment.
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2.4 Discussion

The proposed framework is not a panacea for evaluating pattern generating

processes. It is a technique that summarizes anddisplays existing knowledge of

scele-depencenrprocesses in any ecological system. Rate diagramscan be used to

evaluatet.herelative importance of variance generaling processesat any scaleof interest

and 10 identify sampling scales in process oriented research. Thi s is an iterative

procedure where ratio values and contour locations arc refined as new data are

gathered.

A plotdepicting biological variability as a function of space and time combined

with a set of rate diagrams synthesizes available knowledge of scale-dependent pattern

and process for a biological quantity. Comparison of prominent variance features to

dimensionless ratio values at the same scale identifies processes that ar e likely to

generate spatial or temporal variance in the quantity of interest. This presentation

avoids theassumptionthat a single biological or physical process is directly linked to

pattern at any scale, and that couplingof biological and physical processes occur at

characteristic spatial and temporal scales. To further illustrate the advantages of using

dimensionless ratios, 1constructed a set of zooplankton rate diagrams to identify

potential variance generating processes in the Haury et al. (1978) Stommel diagram of

zooplankton biomass variability (Fig. 2.2a). Dimensionless ratio values were estimated

and nominalcontours « I . I, > 1) were plotted across the same range of scales in a

column of rate diagrams (Fig. 2.2b - 2.2e). Zooplanktonwere assumed tobe an

unexpfoitedpopulationof mid-latitude zooplanktonic organisms with the limited

locomotory capabilityof copepods.



Fig. 2.2 a) Stommeldiagramof zooplanktonbiomassvariabil.ty(from Haury er al.

1978). Nominal contouredratediagrams« 1, =1, > I) of b) growth to

population dynamicsdimensionless ratio,~ c) demographic to kinematic

dimensionless ratio, ~ d) locomotory to fluid (passive) motiondimensionless

ratio, ~ ande) recruitment to natural and harvesting mortalitydimensionless

ratio, N",~·N, . Shadedregions indicate a ratio valuegreaterthan 1.
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The rate diagram of the growth to population dynamics rat io (Fig. 2.2b) shows

greater change in the concentration of biomass due to somatic growth than due to

demographicand kinematicprocessesat spatial scalesup to a kilometre ( 10' em) and

temporal scales from days to a month (l()f s - lQ6s). The value of the ratio is less than

1 at all otherscales. In the demographic to kinematic ratediagram(Fig. 2.2c) at the

scaleof the population, biomasschangesdue to the successionof generationsexceed

biomass changes due to movement. At scales shorter than annua l cycles and small er

than the continentalshelf, biomasschangesdue toswimming and passive movements

dominateoverdemographic changesand the valueof the ratiois lessthan I. The rate

diagra m of the kinematic ratio (Fig . 2 .2d) reflects the locomoto ry capacity of the

organism. Changesin biomassdue to swimmingand diel migrationdominateat scales

of days and hundredsof metres, resultingin a ratiovalue greater than I. At larger

scalespassivemotions associatedwith flow structures(e.g. currents, gyres, upweJling)

determine thedistributionof biomassand the valueof the ratio is reduced below I. In

the rate diagramof the demographic ratio (Fig. 2.2e), changes in biomassdue to

recruitmentand natural mortalityare approximately equal at all spatial scalesover

annual and larger temporal scales. The value of the ratio is greater than I at spatial

scales greater thana kilometre and at temporal scalesof weeks to months as a result of

the turnover in generations. Changes in biomassdue to predationand natural mortality

dominateat all other scales, thereby reducing thevalueof the ratio below 1.

Comparisonof the rate diagrams with the zooplanktonSlommel diagram showed

that of the elevenfeatures in the Stommeldiagram(designated by letters A·K), Sillwere

attributable to dominantprocesses in rate diagramsat the same spatial and temporal
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scales. The remaining five features (C,F,I,J,K) in theStommcldiagram are attributed

10 flu id motions , while plots of rates indicate that demographic processes should prevai l

at [he space and lime scales of these features . Basedon the ralc diag rams, 1

hypothesize that variabilityin zooplanktonconcentrationat the space and time scalesof

featuresC,F.I,J,K in theStommel diagram aredue moreto demographic than to fluid

processes. Biomassdistribution, locomotory capacityand passivedrift data at large

temporal sca les are needed to test this spec ulation.

2.4.11denti rying Appropr iate Sampling Scales

If a research program is focused on a particular process(e.g. somatic growth).

rate d iagrams canbe used to identify relevant sampling scales for a field program. For

example the rate diagram of the growth to population dynamicsratio (Fig. 2 . la)

indicates that somatic growthexceeds demographic and kinematic ratesat a spatial scale

of hundreds of kilometres and a temporal scaleof several years. n lis spatiotemporal

scale is a logical choice of sampling resolutionwhen quantifying the contribution of

somatic growth to changa in capelin biomass concentratice. At smaller spatiotemporal

scales, changes in capelinbiomass concentration are dominatedby demographic and

kinematic processes(i.e. ratio < I). Scales whereinteraction between competing

processes may beimportant are indicated by dimensionless ratio values approximately

equal to 1. Interactions between growth and population dynamic processes are likely to

occur at annualand continental shelf scales (Fig. 2.la).

The plottingof dimensionless ratios can also be used to quantify the range of

scales over whichresearchconclusions can be generalized. Ecosystemprocess models
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shouldnot begeneralized acrossscales, just as regression models should not be

extrapolated beyond limits of sampleddata. For example,the capelin biomass rate

diagrams indicate that a spatialvariance modelfor the eapelin spawningseason oyer

spatial scalesless than 10 kilometresshould includefishingand spawningmortality

(Figs. 2.lb, 2. ld) . Ratediagrams indicatethat expansion of the madel ia annualcycles

over the continentalshelf wouldrequire the inclusion of recruitment and growth

processes (Figs. 2.1a, 2.lh, 2. td).

2.4.2 Evaluat ing Variance Generating Processes

Comparison of ratiosderivedfrom dimensionalanalysis providesconsiderable

insight into the relativeimportance of pattern generatingprocesses. After setting the

temporal and spatialscalesof interest, a setof rate diagramsand order of magnitude

calculations can be usedto identifypotentiallydominantprocessesprior to field

sampling. To illustrateby way of example, what sampling scalesshouldbe used and

which processesshouldbe measured to quantify the spatial varianceof capelin

distributionin nearshore watersduring the spawningseason? Fromcapelinlife history

it is knownthat the spawning seasonlastsapproximately six weeksevery year and

occursalong mostof the Newfoundland coast. Onsetof spawningmay followa south

to north latitudinal trend(Templeman 1948)but suitablespawning habitat is assumed

along the entire coast. Therefore the temporal scaleat which to evaluatecompeting

processes is approximately six weeks. Logistic samplingconstrainuset the spatial

scale to that of a bay(20-40km). At this spatiotemporel scale, the rate diagramof the

growth to population dynamicsratio (Fig. 2.la) indicatesthatdemographic and
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demographic to kinematic rates (Fig. 2.lb ) is near I, indicating that both demographic

and kinematicprocesses maybe important to capelin spatial dynamics during the

spawning season. Further comparison showsthat kinematic processes are dominatedby

divergence due to swimming motions (Fig. 2.lc) and that mortality exceeds recruitment

in the demographic ratio (Fig. 2.1d) at this time or year.

Orderof magnitude calculations can beused to compare the relative importance of

individualmotion V I to mortality iii'"+ iii1 at this scale. Using the relation between

body sizeand swimming speed(Okubo 1987), a IS cmcapelinbas a rangeof

approximately 24 kmday-t. Mortality averagesapproximately 2% day·l due to

spawning (Carscaddenand Miller 1980) and 0.00125 % of the total biomass day. in

NAFO divisions 2J3KLduring 1989 due to harvesting (Carscadden et al. 1991). Using

20 and 40 kilometre.sampling ranges, there is a 60%-119%day·l rate of capelin

divergencecomparedto a total mortality of 2% day·l. At the scale of a bay I research

effort on the spatial dynamics of capelin during the spawning season should begin by

examining kinematics.

Plouing dimensionless ratios within rate diagrams can be used10 define timeand

space scales requiredto manage renewable resources. The ratio of growth to

populationdynamics (equation 2.5) assesses the effects of resource management policy.

Largepositivechanges in somatic growth M combinedwith a ratio greatlyexceeding

I indicatea potentialfor growthoverharvesting. Small changes in somatic growth

coupled witha ratio muchless than 1 indicates recruitmentoverharvesting.

widely-used fishery models (Ricker1954; Bevertonand Holt 1957) were developedfor
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situationswhere M waslarge and the ratio in equation (2,5) greatlyexceeded I. This

is typical for 100g.livOO, demer sal species that are managed over large areas. 10

contrast, heavy fishingpressureon pelagic species increases both N and V as

mortality increasesand the spatial range is contracted to maintain schooldensities

(Murphy 1966; Wintersand Wheeler 1985; Csirke 1988), The size of management

areas for demersal and some pelagic fish stocks are typically on theorder of hundreds

of square kilometres. These are chosen to contain population movements over an

an nual cycle. Thi s reduces the value of the demographic to kinematic ratio (eq uation

2.6) below J and the kinematic ratio (equation 2.7) becomeslarge as V F approaches

O. Wide ranging species (e.g. whales, tuna) clearly require much larger management

areas to maintainsimilarvalues in ratios containingkinematicterms.

The managementof exploitedpopulations is summarized, in part, by the

demographic ratio (equation2.8). Resource populations are regulated through the

allocation of quotas IV t . Naturalmortality N", is rarely measured for commercial

fish stocks. It is traditionally assigned a constantvalue in stock assessments,typically

0.2 year-t for demersalspecies. Fisheries research has largely focusedon recruitment

processes N r in an effort to predictconditions of high recruitment. Fluctuations in

annual recruitment of fish species have ranged froma factor of 2 to a factor of 100

(Cushing 1982)but theprocess is not well understood. The demographic ratio can also

be used to calculate harvestingrates needed to maintainor increase resource levels.

The onset of harvestingdramatically increasesN I relative to N ,. If the recruitment

rate is known, resourcemanagerscan prevent recruitment overharvesting by limiting

harvesting at levels equal to or below recruitment rates during the long-term
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management of the resource.

Contouring dimensionlessratio valuesas a function of spaceand time scales

provides a comprehensivemethodto summarize knowledgeof patterngenerating

processesin complexecologicalsystems. It can beusedby individuals conducting

research programs or by agenciesmanaging renewable resources. This technique

summarizesthe spatialand temporal dynamics of any organism, evaluates the relative

importanceof patterngenerating processesat single or multiplescales, identifies

potential researchareasandappropriatesampling scalesfor fieldstudies. andquantifies

the rangeover which spatioternporal modelscan be generalized. Aquaticexamples

were usedto demonstrate themethodbut the sameproceduresshould beapplicable to

organismsin terrestrialor aerialenvironments.

As a brief terrestrialexample I examine factorsaffecting the rate of change in the

concentrationof seed producing balsamfir (Abies balsamea)trees. The rate of change

in the concentration of trees [N ] is a function of recruitmentN" natural N '" and

harvesting til ~ mortality,and the lateral divergenceof treesdue to seed dispersal AD.

or simply:

[N ] ..N, +NJ7I+ N,, - AD

I NI - N -A

(2.9)

(2.10)

A forest manager 01" conservationist maybe interested in changes in the density of

spruce trees. Changesin densityreflect the relative importanceof demographic and

kinematicprocesses, indicated by the changein numberof trees relative to the areal

spreadof a balsam stand or of the species ~ . If forexamplerecruitment to the balsam

tree population N, is approximately 0.1% year-r, then mortalityN", + tV~ might be

expectedto exceedrecruitmentat smallspatiotemporalscales. At scalesgreater than
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100kilometresand the lifespanof a tree (100years) recruitmentis expected10equal

morta1ity. At spatial and temporalscalesof a single tree values of the ratioare

predicted 10 equal1, althoughsoil conditionsand stand successionstage will influence

localvalues. At annualscalesthe ratio willexceed unity due to blowdown, disease.

insectdamage, and seed movement. At the scale of centuries kinematic changes due to

lateraldivergencemight be expectedto exceedthose due to demographics and the ratio

willbe less than I. This sketch of the relative importance of competing processes in

balsam tree distribution could be depicted in a rate diagram such as Fig. 2.1 or Fig.

2.2, based on estimates of ratesand the resulting dimensionless ratios plottedas a

function ofsca1e.

The useof dimensionless ratios is highly useful to researchers collecting datain

diverseecosystems, such as the Long-TermEcological Research (LTER) sites (d.

Magnuson et aJ. 1991). Variancegeneratingprocesses of severalspeciescan be

summarizedand comparedwithinor amongterrestrialand aquaticenvironments over a

widerangeof spatialand temporal scales.



38

Appendix 2.1 : Spatia l Dynamics of Biomass

OIanges in theconctnua tion of biomass [ !J] of an organismin a fluid

environment are a function of recruitment N•• natural fJ.. and harvesting N J

mortality, somat icgrowth M • divergencedue to molions within the fluid V F . .., d

divergence due to individualmotionsrelative to the fluid II , :

{B] - liIr- Nm- N I +M - 11 ,-V,

Definition of terms:

IS] instantaneous timerate of change in concentration of biomass.

Dimensions are time-t,

' d(NN)
IBJ-I Br ' dl!! _ (N M)- --.2:..

d l V dt

til· tV,- N .. - IVI instantaneoustime rate of change in biomassdue to births( r ).

natural. mortality ( m ) and harvesting mortality( f ). Dimensions

are time-I,

M instantaneous timerate of change in populationbiomassdue to

growth. Dimensions areume-,
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instantaneous time raleof changein volumeoccupied bya group of

organismsdue to the velocity of the fluid Ii"F andthe velocity of

individualsrelative to the fluid V I. Thedivergencetheorem can

be used to describethe kinematicsof biomass in a fluid

environment (Schneider1991). This theorem relates the local rate

of changein a volume 7.- occupiedby a groupof organisms10

horizontal u .. ¥r .u ...t.- and vertical w " ~ velocities in an x,y,z

co-ordinatesystem. Incompactnotation, the rateof change in

volumeoccupiedV is Ii .. (r::j • 1I) where u is the vector of

velocities(u,v,w), thedot Indicates scalar multiplication, andv is

the gradientoperator (see Dutton 1976. chapter S). Dimensions are

Ji -v-I~ _~+~ + ~ - Q .t1
d! o X oy 02:

Thisequation statesthat rateof changein the volume occupied by a

givenpopulation i.:iequalto the divergenceof thepopulation.where

divergence canbepositive(diverging) or negative(converging).

Movementof the populationin a fluid environment is a result of

displacementdue to motions of the fluid U F andmovement of

individuals relativeto the fluid u 1 . For manyterrestrialorganisms

Ii F .. 0 anddivergenceis a functionof organismlocomotion.
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Appendix 2.2: Dimensional Ana lysis

Dimensionless ntios are c:ak:ulated by constructing a two-waylable wherethe

variablesof interest arecolumll!and all funda mentaldimensions (e.g. mass, length ,

time, number oforganisms) arerows. Exponentsofeach variable form theelements of

a dimensional matrix (e.g. volun.c:has dimensions lengthS). Variables are then

combined using the linear algebra(Langllaar1980) or the successiveelimination

method(Taylor 1974) to makeall valuesof exponents zero. This results ina set of

dimensionless products.

In the capelin biomass enmple, quantities of interest are: demographicN •

growth M. andkinematic V rates. The fundamenl.a.1 quantities are: length L. mass

M • time T . and number of organisms '* . Th e dimensional matrix is:

tV M V
Dimension L 0 0 0

M 0 0 0

T - 1 -1 -1

• 0 0 0

SinceaUquantities are rates, dimensionsother than time canbe dropped. Dividing

through by Vthe revisedmatrixbecomes:

Dimension T

tV
V
o

AI
V
o



41

Dimensionally homogeneous terms can becombinedto form logical groups(Fischeret

al. 1979). Demographics andkinematics an:combinedto form the quantitypopulation

dynamics N- V withdimensions time-t . Replacing N and Ii by N- V and

dividing theoriginal matrix by N - Ii the revisedmatrix becomes:

Dimension

M
!i - v

T 0

Analysis resultsin two ratios:

fI
V

Ratioof demographics (recruitment, naturalmortality, harvesting monality)

to kinematics (active movement, drift).

Ratioof growth to populetion dynamics (demographics, kinematics),

Two additionalratios result if demographic and kinematic processes are examined

individually.

tVr Ratio of recruitment to natural andharvesting mortality.
N",+N ,

Ii I Ratioof locomotory to fluid(passive) motions.

i';



Chapter 3. Influence of Flow Gradients

3.1 Introduction

Theory ar.d observationsuggest eastern and northeastern Newfoundland coastal

waters have an anisoeoptc horizontal thermal structure e - greater spatial variation

across thanalong the continental shelf. The late spring to autumnpressure gradient

caused by the Bermuda high results in episodic upwelling through local southwesterly

winds (Frank and Leggen 1982; Taggart and Leggett 1987; Schneider and Merlwen

1988) and propagating internalwaves (Yao 1986; de Young et al, 1993). The

anisotropic physical structure of coastal waters is also augmented by the southward flow

of the inshore branchof the Labrador Current (Petrie and Anderson 1983). Anisotropic

physical gradien ts have been sho wn to influence the diszri"'ulion of ph ytoplankto n

(lverson et al . 1979; Denman and Powell 1984; Mackas et al . 1985), zooplankton

(Hermanet al. 1981; Maclw 1984; IbanezandBoucher 1987), and seabirds (Schneider

and Duffy 1985; Briggs 1986; Schneider et al. 1988).

little work has focusedon anisotropic concordance of physical gRdients wilh fish

distributions (e.g . Olson and Backus 1985). Capelin are a stenothermal species

(fempleman 1948; Scott and Scott 1988; Rose and Leggett 1989) and re.pond to

displacements of horizontal (Buzdalin and Burmaldn 1976; Schneider and Methven

1988) and vertical (Methven and Piatt 1991) thermal gradients Therefore a horizontal

concentrating of capelin is predicted at a warm/cold water front The resulting capelin

distribution is hypothesiz.'"dto be patchy at the scale Clf upwellingcross-shore and

patchy at the scale of a capelln aggregation longshore. Schneider and Methven (1988)
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and Schneider (1989)examined capelin distributionduring upwelling and non-upwelling

periods in the Avalon Channel. Cape lin aggregatio ns were conce ntrated at the

warm/cold water interface at the scale of upwelling, but analyses were restricted to

c.oss shore transects. The potential anisotropicdistribution of capelin aggregations has

not beenexamined in coastalNewfoundland waters.

This chapter quantifies spatial variance in capelin distributionas a function of

spatial scale. Long and cros s shore spatial variabil ity is compared and con trasted to

spatial variance pattern s of coastal sea surface temperature s. Sea surface temperatures

are usedas an example of a passive tracer of the surrounding fluid. Spatial variance

patterns of capelin aggregations in synoptic long and cross shore transect pairsare then

examined for anisotropy.

3.2 Methods

Hydroacoustic survey were co nducted along the northwest ern shore of Conception

Bay, Newfoundland , from Ochre Pit Cove to Bayde Verde (Fig. 3. 1). T ransects were

oriented paralle l and perpendicu lar to shore , the majority forming a large letter -E"

(F ig. 3. 1). The location of fishing gear in the area dictated the proxi mity of long and

cross shore transects to the coastline . Transec t length wasset at 10 kilometres, a

distance corresponding to approximately twice the first internal radi us of defor mation

(Rossby radius) at this latitude (Sch neide r and Methven 1988).

Sea surface temperature (± 0.1 "<:)was recorded at 60 second intervals using a

su rface towed thermistor. At the start and end of each transect, water temperature (±

0 .1 "C) was measured al S m depth intervals using an ElL MCS Salinometer
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~~ B~deV"de4 Bleffz:-

7 LJ
C3Head L2

Ochre Pit Ll C2
Cove
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54 53

Longitude (degreesW)

52

Fla:.3.1 Location of acoustic transects surveyed along the northwestern shoreof

Conception Bay,Newfoundland. LI, L2. and L3 arelongshore transects. CI,

C2, andC3arecrossshore transects.
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(calibratedto 0 "C). A surveyspeed of 3.6 m S·I minimizedwater surface disturbance

and dis ruption of near-surface capelin distribution. Echograms of capelin were

obtained using a SOkHz Furuno 410 paper recording sounder with a beam angle of 190.

Interpretationof traceson echogramsas capelinwas supportedby: simultaneous

viewing of near-surfacecapelinaggregations andtracesonechograms, capture of

capelin using hook and line while recording traceson echogram, observation and

sampling o f capeli n as the overwhelmingl y dominant species in commerc iallraps in the

samplingarea, and similarity of echogram traces with those of capclin reported in

Newfoundland waters (Atkinsonand Carscadden1979; Whitehead 1981; Piatt 1990).

Numbersof discretecapelinaggregations werecounted in 100 m horizontalby 5 m

vertical blocksfrom theechogramof each transect. AI, transectrecords were scored

by one reader and independently verified by another. Wave noiseon sounder records

was usuallydistinguishablefrom fish at the surfacebut if the two readers disagreed,

traces wereassumedto be wave noise. The use of a commercial echo-sounder

precluded thecalculationof absolutecapelin abundancebecauseof an uncalibrated time

varied gain (TVG). Individual traces were scored equally with contiguous marks on the

echogram. The equivalence of single and contiguousechogram traces may result in

lowering of mean groupabundanceand a subsequentunderestimateof variance, but this

bias is assumedconstant acrossall spatial scales.

Centered spectralanalysiswas usedas an exploratorytool to examine

scale-dependent spatialvariability in capelin distribution and sea surface temperature

data. The spectraldensityof a continuously recordedvariable indicates how the

varianceof a data series is distributed over a rangeof frequencybands (Jenkins and
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Watts 1968; Koopmans 1974; Chatfield 1980). The range of frequencybands is

determined by the length of the series and the sampling resolution. The observational

window for any series extends from hatf the length of the series to twice the sample

resolution. Spectral densities were estimated using BMDP IT statistical package (Dixon

1983). A preliminary analysis used three smoothing windows between 0.04 10 0.15

cycles km-'. A smoothing windowof 0.10 cycleskm-! waschosenas a compromise

between accuracy and smcctheess and was used in comparative analyses. All spectral

density estimateswere normalizedto permit direct comparison of survey transects

(Denman 1975).

3.3 Results

A totalof 32 transects, 20 longshore and 12 cross shore, were surveyed between

June 26 and July IS, 1990 (Table 3.1). All transects were surveyed between dawn and

dusk (05:30 -- 21:30 NOT)over three week periods. Speedover bottom in all transects

averaged 3.58 m S·1 witha rangeof 2.58 m S·l to 5.01 m Sol. Spatial resolution of

capelin distribution data was set at 100 m horizontalby 5m verticalblocks with a

corresponding horizontal temporal resolution of 27.9 seconds. Transects were

temporally separatedby a minimum of 50 minuteswhile water column temperature was

profiled.

Capelin group distributions were hypothesized to have a Poisson distribution. A

G·test with Williams' correction(Sokal and Rohlf 19BI) wascarried out on the

frequency distribution of capelin groups (3664 blocks had 0 capelin present, 683 blocks

had 1 group, 81 blocks had 2 groups and 6 blockshad 3 groups; coefficient of
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Table3.1. Start andendlocations of acoustictransects sampled in northwestern
Conception Bay, 1990. Longshore transects aredesignated Ll , L2, or l3
followedbya transect number. Crossshoretransects aredesignated Cl, C2, or
C3 followed by a number. Sumis thetotalnumber of capelin aggregations
observed overthelength of thetransect. Mean is theaverage number of capelin
aggregations observed per 100m horizontal block.

Start Eod Transect- Date Start Sum Moan
Number Time

OchrePit Cove 81uffHead L1·1 26/6 12:35 29 0.305

Bluff Head Ochre Pit Cove Ll-2 2616 14:00 35 0.368

OchrePit Cove BturrHead LI-5 27/6 7:56 0.070

OchrePit Cove Bluff Head L1-7 4/7 7:04 22 0.214

OchrePit Cove BluffHead L1-11 4n 11:13 0.091

OchrePit Cove BluffHead Ll-15 sn 9:48 0.057

OchrePit Cove BluffHead LI-19 12/7 15:32 0.010

BluffHead Hayde Verde L2-16 sn 10:40 26 0.260

BluffHead Bayde Verde L2-20 12n 16:28 0.010

BaydeVerde BMfHead L2-23 13n 8:51 75 0.528

Bluff Head Bayde Verde L2-26 13/7 12:28 52 0.482

Bayde Verde BluffHead L2-31 14/7 5:50 42 0.372

Bluff Head Bayde Verde L2-32 14/7 7:03 0.059

BaydeVerde Bluff Head L2~35 14/7 18:15 59 0.450

BaydeVerde Capelin Cove LJ-27 13/7 13:37 19 0.275

Capelin Cove Bayde Verde LJ-28 13/7 15:09 24 0.338
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Table3.1 (cont'd) Start andendlocations of acoustic transects sampled in northwestern
Conception Bay, 1990. Longshore transects aredesignated Lt, L2, or L.1
followed bya transect number. Crossshoretransects aredesignated Ct, C2, or
C3 followed by a number. Sumis thetotal number of capelin aggregations
observed over thelength of thetransect. Mean is theaverage number of capelln
aggregationsobserved per 100m horizontal block.

Capelin Cove BaydeVerde LJ-33 14/7 8:13 11 0.149

BaydeVerde Capelin Cove LJ-34 14/7 9:57 12 0.200

Bayde Verde Capelin Cove LJ-37 14/7 20:42 21 0.300

Capelin Cove BaydeVerde LJ -38 14/7 21:32 40 0.571

OchrePit Cove offshore CI -3 26/6 15: 15 0 .093

offshore OchrePit Cove Cl·4 2616 16:23 13 0 .130

offshore OchrePit Cove C!· 10 4/7 10:12 17 0.167

offshore OchrePit Cove Cl·14 4/7 14:40 0 .031

Bluff Head offshore C2-8 4/7 8:07 70 0.680

BJuffHead offshore C2· 12 4/7 12:14 20 0.194

Bluff Head offshore C2-24 13/7 10:35 11 0.113

offshore Bluff Head C2-25 13/7 11:34 16 0.170

BaydeVerde offshore C3-21 13/7 6:36 29 0.246

offshore Bay~1' Verde C3-22 13/7 7:43 52 0 .416

Bay deVerde offshore C3-29 13/7 15:59 0 .051

offshore BaydeVerde C3-30 13/7 16:59 13 0.161
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dispersion = 1.035 (A value of 1 indicates a randomdistribution» . The observed

distribution did not deviate significantly from a Po isson distribution (0=3.978 . df=2,

0=4434 , p - O.1368) allowing for a 5 % Type I error .

Centered, normalized capelin and surfacetemperature spectral densityestimates

werecalculated for transects having more than I capelinaggregation(30 of 32).

Pattern detect ion in spectral density plots was partially dependent on presentation.

Plots of spectral densitiesas a function of frequency (Fig. 3.2a) compressedspatial

variability distributionpatternsat frequencies less than I cycle km- and obscured

patternsat frequencies greater than 1 cycle km-r. Commonlogarithms of spectral

density estimatesplottedas a functionof frequency only expanded patternsat mid(I

cycle km-r) 10high (5 cycles km-t) frequencies (Fig. 3.2b). Transformingspectral

density estimates and frequencies to commonlogarithms (Fig 3.2c) provideda workable

compromise. The distribution of spatial variance wasdiscemableat all frequenciesand

plots were comparable to thoseof Weberer al. (1986). The slopeof the curve is equal

to the exponent of a power function across all frequencies but areas under the curve do

not represent equal contributions to the sample variance(Denman, 1975).

Spatial variability C'. capelindistribution in long and cross shore transects was

approximatelyuniform over scalesranging from 10 km to 200 m (Fig. 3.3 a-f).

Spectral density estimates were larger and curves weresmoother at frequencies less

than 1 cycle km-' in all 6 sets of long and cross shore transects. Episodicvariation in

any single transect wasobserved at frequencies greater than I cycle km-t, Using the

colours of the visible spectrumto designate dominant scales of variance. the slight

negative slope and 'Ion-uniform variation at high frequenciesis characterizedas being



50

., 10E
""".,
Q) o , 2 J' 5

U :6>.
o

N;::;
0 ,,'
'iii

10·'c
Q) a 1 2 J 4 5

0

~ :: LSJo
Q)
Q. ,,'(f)

10. 2

10· ' ,,' tc'

Freque ncy (cyc les km -1)
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frequency. b) Loglospectraldensities plottedas a function of frequency. c) LoglO

spectral densitiesplotted asa function of loglo frequency.
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pink with blue ripples. Pink refers to a slight negative slope from large to small scales.

Blue ripples refers to the aperiodic peaksof spatial variance observed at small scales.

The distribution of spatialvariancedid not qualitatively differ betweenlong- and cross

shore transects.
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Fig. J .J Capclin aggregation spectral densityestimates (bandwidth 0.10, centered,

normalized)ploned as a function of frequency. Longshore transectsa) LI, b) L2,

c) L3 are contrasted with cross shore transects d) Ct , e) C2, and t) C3. Periods

(Iem)areshownon the upper X axis.
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If capelin distribution is lightlycoupledto near-surface water temperatures then

JoogshoR:transectswerepredicted10 have relatively constantvariance over a large

rangeof scales whilecross shore variancewas predicted to peak at the frequency

corresponding to theRossby radius (approximately 0.2 cycles Iun-I at 470north

latitude). Consistentspectraldensitypatternswere not observedamong7 synoptic

pairs or long- and cro ss shore capelin distributio n plots (Fig. 3.4) . Cross shore spec tra

exceededlongshore spectra in only 4 of the 7 pairs at frequencies greater than 0.2

cycles km-r. Long- andcross shorespectra were highly variable at frequencies greater

than 1 cycle km-r. Time intervals between long. andcross shore transectsdid not

exceed75 minutes. Uttle evidence of anisotropic capelin distribution wasobserved in

long-andcrossshoretransect pairs.

long· and cross shore surface temperatures were relatively consistent (range 7 ec

- II "C) throughout the: survey period. Temperaturefluctuations on any repeated

transectwere limited to 2OC over thethree week periods. Strong upwelling events,

indicatedby largecross shoresurfacetemperaturediscontinuities, were not observed at

thetimesof sampling. Verticaltemperature profiles were alsoconsistentthroughout

thestudy. A temperaturedrop of 70<:usuallyoccurredin the upper 35 m with a strong

thermocline between IS and 25 m. Transectssurveyed d...ringor immediately after

wind eventshad uniform temperatures to 5 m depth, then droppedin a series of 1OC

temperature steps for each10 metersin depth. Near-bottomtemperaturestypically

rangedbetween OOC and 1<>C. Surface temperaturesat inshore transectsvaried little or

not at all withinone day. Between days surfacecoolingor warming wasobserved,



Fig. 3.4 Synoptic long (solidline)andcross (crossedline) shorecapelinaggregation

spectraldensityestimates(bandwidth 0.10, centered, normalized) plotted as a

functionof frequency. Transectnumbers correspond to those listedin Table I. a)

LongshoretransectLI-2, cross shoretransect CI-3. b) Longshore transectLl-7,

crossshore transectC2-8. c) Longshore transectLl-Ll, cross shore transects

CI-lOand C2-12. d) Longshore transect 12-23, cross shore transectC3-22. e)

LongshoretransectU-26, crossshore transectC2-25. f) Longshore transect

1.3-28,cross shore transectC3·29.
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and between weeks surface temperatures fluctuated 2"C while all other depths warmed

3-4"C. Temperature samplingwas thus considered synoptic over temporal scales of

minutes, hoursand days.

Surface temperature spectraldensity estimatesamong long andcross shore

transects were greatest at the largest sampling scales (10 km) and generally decreased

monotonically with sampling frequency (Fig. 3.5 a-f). Large portions of the sample

variance were found at scetes greater than 1 km in all 6 sets of long and cross shore

transects. This r:>~tem is a characteristic "red" spectrum where large portions of the

sample varianceare found allow frequencies and rapidly decreaseas frequency

increases. Anisotropic surfacetemperature gradients predictlonger dominantscalesof

spatial variance relative to cross shore scales but distinct peaks in cross shore spectra at

the scale of the Rossby radius (0.2 cycles km-i}were not observed. Contrary to

prediction, spectraldensity patterns observed in longshore transects did not qualitatively

differ from cross shore transects.

Average long and cross shore surface temperature spectral density plots wcre

steeper than long and cross shore capelin distribution spectral density plots (Fig. 3.6).

Surface temperature spectra spanned approximately 2.5 orders of spectral density

magnitude with a longshore spectrum slope of -1.38 and a cross shore spectrum slope

of -1.31. Average longshore spectral density estimates were not significantly different

from average cross shore estimates (F =O.OI, p =O.906, n=98). Therefore, long and

cross shore average spectral density estimates were used to calculate an overall surface

temperature slope of -1.35. Average long and cross shore capelin distribution spectra

were much flatter than surface temperature spectra, spanning a single order of
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Fig. 3.5 Surfacetemperaturespectraldensity estimates (bandwidth 0.10, centered,

normalized) plotted as a function of frequency. Longshore transects (a-L l , b-Lz,

coW) are contrasted with cross shore transects (d-C I, e-C2, f-C3). Periods (km)

are shown ontheupperX axis.

magnitudeand havingaverage slopesof -0.44 and -0.37. Longshore spectraldensity

estimates did not differ from cross shore estimates (F =O.34 , p=O .563, n= 98) and

were combined 10calculate an averageslopeof -0.40.
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Observedisotropiccapelin aggregationdistributions promptedquestions about the

scales of temporalvariance within the 10 km samplelength. Plots of capelln

aggregationabundance as a function of distance fromorigin were used to matchcapelin

distributions along repeated transects. Twenty- two repeated transect pairs from the 30

transectshad start timeintervals ranging from50 minutes to 17 hours. Based on the

averagespeedof the survey vessel, a kilometer was travelled in 4.7 minutes.

Echograms of the twotransects were overlaid ar.dthe absolutedifference in number of

capelinaggregations wereenumeratedin 4.7 minute blocks. Differences in the number

of capelinaggregationsobserved at the same location were predicted to increase as the

time intervalbetweentwo samples increased. The resultingplot showed no consistent

divergencewith time (Fig. 3.7). Differences at each block were assumed to be

independent observations. However, a frequency histogram of the absolute differences

in capelinabundancesper block was not normallydistributed. Association between

time intervaland absolutedifferences in capelinaggregations per 4.7 minuteblock was

assessed usingKendall' s coefficientof rank correlation (r), No significantcorrelations

were found betweenthe two variables when all transects were examined as a single

group (1'=0 .0232, p=0.643, n=20 5), among longshore transects('t =0 .00043,

p= O.995, n::::l l00), or when cross shore transectsweregrouped together (t=-0.0024,

p=O.973, n= 105). Therefore, basedon graphicalinterpretation and rank correlations,

there wasno observedincreased divergence with increasedstart time interval among

repeated transects.
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3.4 Discussion

Averagecapelin spatial variance in 20longand12 crossshore transects decreased

approximately one-halfanorder of magnitude between 10 kmto 200 mscales (Fig.

3.6). Cross shore spectraldensity estimates were qualitatively similar to longshore

estimates, indicatingisotropic capellnvariability duringthe sampling period. Large

scale surfacetemperature variationexceededsmall scale variation in all surveyed

transects. Surfaceand verticaltemperature profiles providedno evidenceof upwelling

along sampled transects.
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Characteristiccapelin aggregationsizes or inter-aggregation distances were not

observedin long or cross shorecomposite spectraldensityplots. Scale-dependent

peaks in spatial variance wereobserved in single transects, but there peaks occurred

throughout the 10 km to 200 m scale range . In general. spectral density estimate s were

greatest at a scale of 10km and decreased monotonically to a scaleof 1 km. At scales

less than I km, variable amplitude peaks were observed in all 6 sets of spectral density

compositeplots. This result contrasts with other studies in the northwest Atlantic

which identify characteristic capelin patch sizes. Schneiderand Piatt (1986) report

highly aggregated capelin schools ranging in size from 1.25 to 15 km. Schneid er

(1989)alsoobserved peaks incapelin spatialvariance at600·1000 m and2-6 kmin the

Avalon Channel. The latter patch size matched the scaleof wind induced upwellingat

thestudy site. Am:rcgation dimensions of 3.5 m and 1-4 Jonwere reponed for capc1in

in the northernGulfof 81. Lawrence (Rose andLeggett 1990). Characteristic capelin

patch sizesduring the presentstudy areoutside the rangeof sampling(larger than 10

kmor smallerthan200 m), are temporally very brief (on the order of minutes), or do

notexist.

Littleevidence was found to support the hypothesizedanisotropic capelin

distributionin nearshore waters. One possible explanation is the potential for large

Type II error (failureto detecta real effect) in non-synopticlong and cross shore paired

transectdata. A threehour time interval oflenoccurredbetweenthe start of the first

transect andthe end of the second. Paired longand cross shore transectswere

interruptedat theirjunction by a hydrography station thatprofiled water temperature.

Given thenarrow swath widthof theacoustic samplingcone, little lateral movement by
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capelinwould be required to changedistributionalpatternsover a threehour sampling

period . Alternatively, anisotropicdistributions of capelinmaybe a response to

horizontal thermal discontinuities caused by upwelling. While previous research has

focused on capelin distributions in response to episodicupwellingevents(e.g.

Templeman 1948 ; Schneider and Methven 1988; Schneider 1994c). this study shows

that predictable gradients in distribution do not occur during non-event periods.

Observedsurfaceandupperlayer water temperatures alonglong andcross shore

transectswere within preferredtemperatures (S·100(;) reportedfor capelin (Templeman

1948; Rose and Leggett 1989). Isotropic capelin distribution is expected in a

homothermalupperwatercolumn and the orientation of capelinsampling is therefore

not restrictedby coastalconfiguration, unless strong upwellingconditions prevail.

scate-depeedemspatial variabilityof capelin and seasurface temperature were

similar to thoseobservedfor krill and sea surface temperature in the AntarcticOcean

(Weberct at. 1986; Levin et aI. 1989). Average long andcross shore capelin spectra

had slight negative slopes and high frequencyvariation (pinkspectrawith blue ripples)

while surfacetemperaturespectra peakedat low frequencies and decreased

monotonically to high frequencies(red spectra). Capelin spectral averageslope (-0040)

wassteeper than the average (-0.18) but withinthe range (0.1t to -0.70) observed for

krill. Similarly, northwest Atlanticsurface temperature spectral averageslope (-1.35)

matched the surfacetemperaturespectralaverageslope(mean-1.66, range ..Q.74 to

-2.48) of the Antarctic. The similarity of capelinand krill spectraand their contrast

with surfacetemperature spectraindicatethai biologicalprocessesmay influence spatial

variance patternsof mobile aquaticorganisms. This hypothesisis examined in Chapter
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4.

As a caveat, capelinand krill average spectraldensity slopes may not be directly

comparable as it is unclear whether krill data had low frequencyvariation removed

(termed pre-whitening in spectraljargon) prior 10spectral analysis. Capelin data were

not pre-whitened and maybealiasedby spatialvarianceat frequenciesbelow the

sampling window. Potentialaliasingof low frequencyspectraldensity estimates was

checked by combining the data from two consecutive longshoretransects. Capelin

spectral density estimatesof the combined transectexceededthose of composite or

average capelinspectraldensities at scaleslarger than 10km, indicating low frequency

trends may still exist in the data.

Observationsof pre-spawning capelinover a range of spatialscaleshas generated

hypotheseson potential foraging strategiesof capelinpredators. AI temporal scales of

hours to weeks, the slightdecreasein capella spatialvariancefrom large (to km) to

small (200 m) scalesindicatesthai net foraging benefits wouldbe highest at the smallest

scale that providesa full ration. Higher energetic demandscoupled with small

increases in capelin spatialvariancewould result in lower net foraging benefits if

predators increasetheiraveragescaleof foraging. Episodic concentration of capelin

spatial variance at singlescalesleads to the predictionthat predatorswill shift to larger

foraging scales to exploit temporally brief concentrationsof capelin. Therefore,

capelln-predatorcoherenceis predictedto concentrateat small spatial scalesat the

temporal scale of a spawning season(approximately6 weeks every year). Howeverat

the scale of a foraging bout (minutes to hours), coherencemaybe episodically

concentratedat any singlespatial scale. These hypotheses are examined in Chapter 5.



Chapter 4. Spatial Variance of Mobile Aquatic Organisms

4.1 Introduction

Analyses of krill density distributions (Weber et al. 1986; 1evtn et a1. 1989)

indicate that spatial varianceof mobile aquatic organisms differs from that of passive

tracers (cr. Chapter 1). Mackas and Boyd (1979) were the first to attribute the inc rease

in zooplank ton spatial variance, relative to passive tracers , to locomotory behaviou r .

Examination of biologicaland physical processesusingdimensionless ratios (Chapter 2)

confirmed the importan ce of individual motion indepe ndent of the fluid in the

generation of capelin spatial variance.

This chapter examines two kinematic processes that potentially influencespatial

variance of mobile aqu atic organisms at intermediat e and small spatial scales: shoa ling,

and schooling. Shoaling, definedas the convergence of organisms independent of fluid

motion, increases small scale spatial varianceby altering local densities. Mobility o f

benthic macrofauna led Jumars (1976) to postulate thatdistributionalvariability was

locally decoupled from structural features in the environment. By extension, if

scale-dependent spatial variance is a function of mobility, then slopesof spatial variance

plots should decrease as organism mobility increases (cf. Fig. 8, Fasham 1978). This

trend is consistently observedwhen comparingspatial variance patternsof passive

tracers such as surface temperatureand phytoplankton to zooplankton(Mackasand

Boyd 1979; Star and Mullin 1981; Tsuda et al. 1993). This trend does not extend to

spatial variance patterns of larger I more mobileorganisms. For example, average

slopes of capelin spectraldensity plots in the southern Labrador Current (Schneider
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1994a ; Chapter 3) did not differ from those of kri ll in the Antarc tic OCean (Weber et al.

1986; Levin et at. 1989) over scalesof 1 km to 15 km, Patterns in capelin spatial

variance co uld not be attributed to passive motion associated with the surrounding fl uid

as they did not matchspatialvariance patternsof surfacetemperature(Chapter 3). Nor

did spatia l variance peak at the 5 km scale of coas tal upwelling (Schneider 1994a;

Chapter 3) predicted from physical theory (Schneider and Methven1988).

Schooling is a second process that potent ially influences spatia l variance of mobile

organ isms at smal l spat ial scales . In contrast to shoaling , schooling is defined as the

coord inated movement of a group of aquati c organisms (Pitc her 1986). At scales

smaller than the size of an aggregation, even spacingof individuals within groups

(Weihs 1973. 1975; P itcher 1986) shou ld reduce spatial variance of shoaling organisms.

This woul d result in a steeper slope in the spatial variance plot be low the scale of an

aggregation. levin et at (1989) observed a steeper slope at scales less than 1 km than

those larger than 1 km in a spectral density plot of krill density . The prese nce of a

change in slope or transition region at the 1 km scale was not emp hasized in their st udy.

Their co mputer simulation using Mangel 's (1987) 'patch within patch' mode l also

showed a slight dec rease in spat ial variance from large to small scales but did nol

generate a transition at any scale. Th is result is no t unexpected because the spat ial

range of the simulatio n did not extend to scales small enoug h to encompass krill

movement into shoals (100 m), Levin et al . 's (1989) proposed factor influencing spatial

variance.

Patterns of spa tial variance at small scales co uld also be an artifac t of using

spectraldecomposition techniques to analyze count data . At high sampling resolution ,
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countsof rare speciesoften contain long stretches of zero counts interruptedby patches

of nonzero counts . This contrasts with the continuou s presence of physical quantities

such as sea surface temperature or salinity. Sampling resolution and organism

abundance together determine the mean abundance of any quantity in transectcount

data. Fasbam (1978) found that a decrease in mean abundancecauseda reduction in

the slope of planktonpower spectra when patchy distributions weresimulatedas doubly

stochastic processes. The influence of sampling resolutionand the uscof a zero

boundedvariate on spectral density estimatesof a continuous data series has net been

examinedfor highl y mobileorganisms.

Relative densityestimates of capelin and Atlantic cod are used to evaluate the

influence of shoalingand schooling on scale-dependent spatial varianceof mobile

marine organisms. Capelin andAtlantic codwere chosen to represent pelagic and

semi-demersal mobile aquaticorganisms. The contrasting life histories of these two

speciesalso permit an investigationof whether the spatial variance of a predatoris

influencedby that of its prey (Chapter5}

4.2 Methods

4.2.1 Sampling Procedure

Hydroacoustic surveys wereconductedalong the western coast of Conception

Bay. Newfoundlandduring the latter half of July and the first week of August, 1991.

Linear transects were oriented parallelto the coast within the 100m depth contour

when possible. Stationary fishing gear adjacent to the coast restricted the proximity of
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transectsto shore. The majority of transectswere run during theday but collectively

transects span all 24 hours in a day. Transect lengths among the 19 transectsused in

the analysis varied from 5.5 km to 22.7 km (Table 4, 1). Capelin and cod relative

density distributions were surveyedusing a 120kHz echosounder(Model 105.

Biosonics, Seattle,Washington) witha single-beam220 transducer mounted in a towed

V-fin. Pulse widthwas 0.8 msand generatedat 2 5.1, Data wereheterodynedto 10

kHz using a Biosonics model l?! interface and stored on digital audio tapes for echo

integrationprocessing. A calibrationtone was recordedat the beginningof each day to

standardizeplayback amplitudelevels. The V-fin was towed at a depth of

approximately 1.5 m and at a speed of 2.5 m S-l , A pairof 95 Newton expansion

springswas used to decouplemotionsof theboat from that of theV-fin in order to

enhance transducer stability. Surface temperaturewas continuouslymonitoredusinga

towedthermistor andelectronically recordedat 100 m intervals.

4.2.2 Analys is

Acoustic data were integratedusinga Blosontcs221 echo integratorwhich

digitallysamples voltagesat 25 kHz. Relative fish density (R D) estimateswere

calculatedfrom 20 log R amplifiedtarget voltages (V) using an equationfrom

Burczynski(1982):

(4. 1)
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Table 4.1. Date, starttime, end lime. anddistanceof hydroacoustic

transectsin Conception Bay, Newfoundland,1991.

Transect Date Start time Endtime Distance

(month/day) (m)

9101 7/19 10:47 12:04 11668

9105 7120 12:47 13:27 5556

9106 7120 13:43 14:36 7223

9107 7/20 15:05 15:59 8519

9109 7123 10:17 11:12 8334

9110 7/23 11:39 14·;04 19631

9112 7/23 17:22 19:53 23335

9113 7/24 10:36 13:51 20742

9115 7/24 14:04 16:10 19816

9122 7/25 21:03 23:47 22780

9123 7125 23:59 02:35 20372

9124 7/26 02:44 04:37 14631

9125 8101 11:26 12:43 10927

9129 8/02 07:43 09:20 10742

9130 8102 09:34 10:33 8519

9131 8102 10:44 11:47 6667

3132 8/02 12:32 13:54 9075

9133 8/02 18:00 20:01 9445

9134 8/02 20:08 21:02 8890
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where: R D I .~ .• is the relative fish densityof species t in horizontal bin x (m)at

depth interval z (m), (LV~)~ .• is the squared sample voltages of species l in

hori zontal bin x (m) at depth interval z (m) , K 1V C is an empi ricallyde termined

constantthat compensates the 20log R + 2aR amplifier gain for the attenuation of

sound a in seawater over R metres, K s is an empirically determinedconstant that

cancels system parametersto theoretical values. p. is the number of echo sounder

pulses in each horizon tal bin, andN Jt • • is the nu mberof sampled voltagesinhorizontal

bin x at dep th interval 2; •

Data were stratifiedin 10 mhorizontal by 5 mverticalbins toa maximumdepth

of t12m. To prevent integrationof surfacenoise orbottomechoesthetop 2 mand

bo ttom I m of the wa ter colum n were not included . Each bin was classified as cod or

capelln. Cod were di stinguishedfrom capelin by: a) classification oftargetsviewed on

an oscilloscope based on signal properties(Rose andLeggett 1988a); b) simultaneous

viewing of near-surface capelin aggregationsin the water and tracesonoscilloscope and

echograms; c) capture ofcapelinand codusing hookand linewhile recordingtraces on

echograms; d) observa tionand sampling of capelin and codas the overwhelmingiy

dominant speciesin commerclal uaps in thesamplingarea; and e) similarity of

echogramtraceswith those of capelln andcod reported in northwestAtlantic waters

(Atkinson and Carscadden 1979; Whitehead 1981; Piatt 1990; Rose 1992). Relative

fish densities wereintegrated vertically loa maxi mum depth of 112 mand Ihensummed

for each 10 m horizontaldistance10analyzehorizontal variation of capelin relative to

cod .

Univariatespectral analysis was usedto examine scale-dependent spatial



69

variabilityof cod and capelindensity distributions. The power spectra of each species

was calculated for each transect using the BMDPlT statistical package. Deing

consistentwithChapter3, a smoothing windowoCO.O l cycles m-t was chosen for

comparative analyses as a compromise betweenaccuracy and smoothncse. All spectral

density estimates werestandardized10permitdirectcomparisonof surveytransects

(Denman 1975). Spectral density estimates of capelin, cod. andsurfacetemperature

from each transectwerecombined andthen averagedat a resolution 0(0,0001 cycles

molto produce averagespectraldensityvaluesand plottedas a functionof frequency.

The influence of zeros in high resolutioncount dataon patterns of spatial variance

wasinvestigated by replacingvaluesof a continuous dataseries with zeros. The

divisionof a continuousdata series intodiscretepatches is analogous to shoalingby

organisms. A 10 km sea surface temperature record witha resolution of 233 m (n=44

datapoints)was usedas the originalcontinuousdata series. In each of eight

simulationsa single temperature value(representing 2.3% of thedata) waschosenat

random andreplacedwith a zero. The resultingspectraldensity estimateswere

standardizedby the varianceand plottedas a functionof frequency in a common

log-logplot. The effects of schoolingon patternsof spatial variance weresimilarly

investigatedby randomly substitutingtwo consecutive zeros in theoriginal surface

temperaturedata series. Consecutivezero countsresult when mobile organisms

actively formaggregations and move,creating 'empty' areas along surveytransects.

Theschoolingdatamanipulation wasrepeatedeight timesand power spectrawere

normalizedand plotted as a function of frequency.
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4.3 Results

4.3.1 Spatial Variance Patterns

At the temporal rangeofa singletransect (ca. 1h), concentrationsof capelinand

cod spatial variance occurred throughoutthe sampled spatialrange. Spatialscalesof

maximum spectraldensitywere not consistent amongspatiallyseparatedtransects,nor

within anyseriesof replicated transects. Withinthe20 m to IOkm rangeof analyzed

spatial scales, sharppeaks of capclin spatial varianceoccurredin five of 19 transects.

Broader peaks of spatialvariancewere observedin seven of 19 transects. No

concentrations of spatial variance were observed in theremainingseven transects.

Amongthecod spectraldensityplots, only twotransects contained sharp peaksof

spatial variance. Anadditional seven transects containedpeaks in spectraldensity plots

spread overa broader range of frequencies. To provide a representative sample of

spatial variancepanems, spectral densityestimates of capelinandcod were plottedasa

function of frequency for four replicatesof a 20 km transect. Spatial variabilityof

capelin in three of four transects (Fig. 4.la ) wassimilar at all scales ranging from5()(X)

m to 100mand thenrapidly decreasedat smaller scales. Small peaks in spatial

variancewereobservedin spectral density plots of singletransects at scalesless than 90

m. In contrast , twodistinct patternswere present in the plots of cod spectraldensities

(Fig. 4.l b). Two transects hadslight negative slopesdownto approximately 80 mand

then a sharp declinein spatial varianceat smallerscales, Spatialvarianceof the

remainingtwo transects wasapproximately uniformacrossthe rangeof sampled scales.

A characteristic patternof capelin or codspatial variance wasnot presentamongthe 19
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Fig. 4.1 Spectral density estimates of (A) capelin and (8) Atlantic cod (bandwidth

0. 01, centered, normalized) plo tted as a function of frequency. Periods (m) arc

shown on the upper X axis. Each graph contains four repetitions of a 20 km

transect with a sampling resolution of 10 m locatedalong the western shore of

Conception BayI Newfoundland, Canada.
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transects surveyed in Conception Bay.

Spatial variancepatterns of capelin and cod over longer temporal scales were

examinedby averaging spectral density estimates in 0.0001 frequency bins and plotting

lhem as a function of frequency . Acharacteristic scaleof aggregation, indicatedby a

peak in spatial variance. wasnot observed in the average power spectra of capelin or

cod (Fig. 4.2), Average spatial varianceplots of capelin and cod contained two regions

of differing slopes separatedby a transition region. Slight negative slopes (capclln,

~O .2 1; cod, .(l.18)observedat large scalesincreasedto steeperslopes (capella,-1.05;

cod , -1.08) at scalessmaller than that of transitionregions (capelin e, 400 m; cod == 90

m). Anaveraged seasurfacetemperature plot wasadded to thesamegraph tocompare

these spatial variancepatterns to those of passive tracers (Fig. 4.2). The steep

monotonic slopeof the surface temperature power spectrumH.06) contrasted to the

boomerang-like shape of the capelin and cod power spectra. Average spatial variance

of sea surface temperature was concentrated at large scales, a 'red' spectrum in the

jargon of spectral analysis. Capelin and cod average spectraldensity plots had slight

negative slopes over a broadrange of scales and then decreased rapidly at small scales.

Scales of transition regions in average (n= 19) spectral density plots (Fig, 4.2)

were compared to tabulations of capelin and cod aggregation s;.:es. Cumulative

frequencydistributions of capclin (Fig. 4,3a) and cod (Fig. 4.3b) aggregation sizes

(definedas the number of contiguous 10 m blocks with fish present) showed that 98%

of capelinaggregations were'S 400 m (0:0:2247)and 92.3% of cod aggregations were

'S 100 m (n = 642). Distances between aggregations of capelin averaged 46.3 m (±

2.0S.E .l
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normalized) plo tted as a functionof frequency. Periods (m)are shown on the
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comparedto 242 .5 m (± 24.5 S,E.) for cod. Transitionscales in averagespectral

density plots matchedinflection pointsin cumulative frequencydistributionsof species

aggregation sizes.

4.3.2 Effect of Zeros

The influence of zeros in count data on patterns of spatial variance was examined

by randomly replacing values in a surface tempera ture data series with zeros. Spectral

analysis of manipulated surface temperature series showed thai substitution of a sing le

zero flattens slopesof power spectra. The slope of thespectraldensityplot from the

original temperature series (Fig. 4.4a) was · 2.57 (n =22, r2= O.962) compared to an

averageof -0.36 (n= 176, rl = O.727) in the manipulatedtemperature series (Pig. 4.4b).

Changesin slopewere related to the proportionof zerossubstituted in the continuous

data series. Similardata manipulations and calculations were madeusing two other

transects20 km in length with a measurementresolution of 100 m to determinethe

consistency of this result. Increasesin spectral densityestimates at small scales

occurred in all simulationsrelative to estimatesfromthe original series.

The substitution of two consecutivezerosin surface temperature series resulted in

the formationof a transitionregionand a decreasein spatial variance at scales below

the transition. Slopes fromplotsof spatial varianceas a functionof frequency (Fig.

4.4c) decreased slightly at large scalesand then dropped sharply belowthe transition

scaleof 400 m. The locationof the transitionfrequency was partially influenced by the

choice of bandwidth usedin spectral analysis. A widerbandwidth smoothed the curve

byaveraging a larger number ofpe riodogramestimates, often shiftingthe location of
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Fig. 4.4 Spectraldensity estimatesof (A) original surface temperatureseries (length 10
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the transition to a higher frequency (smaller scale). Similar patternswere consistently

observed when data manipulations were repeated using two longer surface temperature

data series (20 kIn) with a higher samplingresolution (100 m). Spectral density plots of

manipulated data series resembledpatterns observed for capelin and cod.

4.4 Discussion

Spectral analysis of capelinand Atlantic cod relative density data showed that

slopes and shapes of spectral density plotswere similar to those previously reported for

of other mobile marine organisms. At the temporalscale of a single transect spatial

variance could be concentrated at anyscale. Similar episodicconcentrations of spatial

variance have been observed in benthic megafauna (Orassleet at 1975), marine birds

(Schneider and Duffy 1985; Schneider 1989), and fish (Schneider 1989; Roseand

Leggett1990). Evaluationsof spatial variance at larger temporalscalesare less

common. Whenspectral density estimates from individualtransects were averaged,

capelinand cod spatial variancedecreased slightly fromlarge (10 km) 10 smaller

(400-90m) scales and thendroppedrapidly at scales smallerthantransition regions.

Theslightnegativeslopes of capelin andcod spectraat larger scalescontrasted to the

moresteeplynegativeslopeof theaverage spectrum of surface temperature,used as an

example of a passive tracerof the surrounding fluid. Observed spectral density slopes

of capeUn and cod wereconsistentwith those of krill in the Antarctic (Weberet at

1986; Levin et al. 1989). The similarity of slopes in krilland fishspectral density plots

contradicts the speculationthai the slope of spatial variance becomes flatteras organism

mobility increases.
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A variety of physical, physlcal-blologlcal, and biologicalprocessesare

hypothesized to increase spatialvarianceat small scales. Basedon dye andbuoy

observations, Lang muir circulation was proposed as a physical process that injects and

transfers kinetic energyof passive tracersfromsmall to larger scales (Liebovich t983;

Weller and Price 1988) . This transfer is opposite to the 't urbulent energy casca de '

commonly assumed for passive tracers in fluids (cr. Fig. 2, Mackas et a1. 1985). Rose

and Leggett (l988b, 1989)suggestedthat a combinationof biological andphysical

processesinfluencethe spatialvariance and distribution of Atlanticcod. Distributionof

cod was attributed to an aggregative response to concentrations o f prey , constrained by

watercolumn thermal structure. Weber et aI. (1986) proposedthat swimming

behaviour was responsible for the small scale variability in krill biomassdistribution

that could not be attributedto physical processes. Amongbiologicalprocessesthe most

commonly proposed mechanism creating spatial varianceat small scalesis behaviour

facilitated by the ability of organismsto moveindependentof the fluid (Mackasand

Boyd1979; Star and Mullin1981; Mackasct al. 1985). Scalingarguments(Schneider

1994a; Chapter 2) indicate that amongnekton, locomotion relative to the surrounding

fluid is the primarysource of spatial varianceat small scales.

In addition 10 the proposedkinematicprocesses, I found that observedpatternsof

capclin and cod spatialvariancecould be approximatedby randomly substituting zeros

in a surfacetemperature dataseries. Substitutionof a single zero in the surface

temperature series is analogous10the divergenceof organisms from a point to form

two shoals. The resulting reduction in spectraldensity slope was biologically

interpretedas an injection of spatialvarianceat intermediate scalesdue to shoaling. In
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thesecond setof simulations, thesubstitution of twozerosasa blockis analogousto

thedivergenceof organismsfroma point, formingtwoshoalsandmoving as schools.

Spatialvariancein spectral densityplotsof thesemanipulatedseriesdecreased at

frequencieshigherthana transition region. This patternwassimilar to thedrop in

spatial variance in theaverage spectral density plots of capelinandcod. I attributethe

rapiddropin spatial variance at small scales10uniform spacingoffish withinschools.

Experiments using livefishto test the reduction of spatial variance at small scalesdue

to shoalingor schoolinghavenot beenconducted (cr. Pitcherand Parrish1993).

Thepresenceof zerosin countdatapotentially introducesanadditional sourceof

variancewhen analyzed withspectral decomposition techniques. Zerocounts in

transect datacanarisefrom twosources: highresolution sampling, andconvergent

behaviour of animals. High resolutionsampling (smallbin sizes)combinedwithlow

organismabundance lowers themean abundance persamplethereby Increasingthe

probability of getting a zerocount. Fasham (1978) showedthatas the meancount per

sampledecreased, slopes of spectral density plotsalsodecreased. 'Zerosin transect

counts canalso'result frombiological processes. Samplingpatchilydistributed

organismssuch as capelin willresult in a higher proportion of zeroscompared to the

proportionof zerosin counts of more uniformly distributedorganisms (e.g. gelatinous

zooplankton, cf. Schneider and Bajdik 1992). Theseeffects areamplifiedwhen mean

abundances arelow.

Twomethods canbeusedto separate biologicalspatial variance fromsampling

artifacts. The first methodsubtracts sampling errorvariance from thetotalvariance in

a series. Mackas (1917) proposedthatIhe totalvariancein zooplankton distribution
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data wasan additive functionof variance: due to patches formedby the organism and

variancedue to random sampling error. Ria! due to sampl ing error is a funct ion of the

mean organis m count and the number of frequencies analyzed. When biaJ due to

sampling error is large, a Poisson-distributed variancecomponent can besubtracted

from spectraldensity estimates at each frequency (Mackas 1917). Adjusting spectral

density estimates by subtracting an error component will have a greater effect at high

frequencies. Spectra l density estimates generally do not require bias correction except

in the vicinity of sharp spectral peaks (Mackas 1977). A second approac h to isolating

biological spatial varianceis 10examine the probability of getting a zerocount as a

function of sample mean. The probability of encou ntering patchilydistributed

organismscan bemodeledas a Poissonpoint process. A Poisson distributionis a

ccnvenlen theoretical distribution used to describe the number of times a zero count

potenliallyoccurs in rare and randomlydistributed organi.sms. If the accepted

probability of randomlyobtaininga zero count in a Poissonprocess is arbitrarily set to

0.05, then spatialvariance canbeassessedat sampling resolutions with meancounts

equal to or greater than three (cf. Fig. 5.3, SokaI and Rohlf 1981). A plot of mean

count as a function of sample size will identify the minimum resolution (measurement

frequency)at which the meancount per sampleequals three. Tbis scalecan then be

usedto define a minimumscale of biologicalinterpretation. An increasein slopeof

spectral density plots is inevitablebelow this resolution, due to an increasednumber of

rando m zero counts. Caution must be exercised if spectraldensity estimatesare

biologically interpretedat scalessmaller thanthe minimum interpretation scale.

Spectraldensity and coherenceestimatesof capelin and codwere not adjusted for
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random samplingerror in this study. Capelin andcod power spectra did not contain

strong peaks similar to those seen in plotsof passive tracers. In addition, plolting mean

density as a function of bin sizewas not possible due to a lack of absolute fishdensities.

Species specific target strengths are neededto convert relative to absolute densities.

Target strengths were not measuredin this study. Despite the lack of target strengths,

concentrations of capeIin and cod were not predicted to drop below 3 fish per bin

withinaggregationsbecauseaggregation sizesof both species wereat least nine times

larger than the sample resolution. At scales smaller than the scaleof transition,

interpretation of spectral density plots was restricted 10 a comparison of slopes in

average spectral density plots.

Comparisonof results from this study to spatial variancepatterns of Antarctickrill

(Weberet al. 1986; Levinet aI. 1989) revealedsimilar features in spectraldensity

plots. At the temporal scaleof a single transect, episodicconcentrations of spatial

varianceoccurredin plots of capelin,cod, and krill . Characteristic patch sizes,

indicatedby concentrations of spatialvarianceat a singlescale, werenotobserved. At

larger temporalscales, averagespectraldensity plotscontainedtwo regionsof differing

slopesseparated by a transition region. Spectraldensityslopesof theseplotswere less

than thoseof passiveparticles at large spatialscales, but the reduction in slopedid not

increaseas organismmobility, basedon body size, increased. At scales smaller than

the transition region, slopesof spectraldensity plots were steeper than thoseat large

spatialscales.

To assess whether thesepatterns occur moregenerally amongmobileaquatic

organisms, all available estimatesof spatialvariancewere plottedin a singlediagram.
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Figure 4.5 contains average spectraldensity estimatesof phytoplankton, Antarctic krill,

capel la, Atlantic cod, and two marine birds -- commo n mums (Uria aalge) and

Atlan tic puffins (Frarercula arc/iea) . Murre s and puffins nest on rocky areas along the

Newfoundlandcoastline, feeding extensively on capelinwhile rearing chicks (Brown

and Nettleship 1984). Spectral density estimates of murre! and puffins (bandwidth 0. 1)

from 35 transects were standardized and then averaged over 0.0 1 cycle krn- bins (D.

Schneider unpublished data). A conspicuous fea ture of Fig. 4.5 is the pairing of

spectral density plots by taxonomic group. Spectral density plots of murres and puffins

overlap, as do the two krill spectraand the two plotsof capelin and cod , Magnitudesof

marine bird spectral densities were intermediate betweenthose of plankton and fish.

Thi s is attributed in part to dif ferences in mean abundances. Data series with small

ab undances typically have low means and variances . Spec tral density estimate'. rise

when divided by a low variance to standardize variances among transects.

As expected, the spectral density slopes o f phytoplankton differed from those of

mobile organ isms at large and intermed iate scales. At scales larger than transition

regions, the slope of the phytoplankton spectra l density plot was always steepe r than

slopes of mobile organism plots. Spatia l varia nce patterns of mobile aquatic organ isms

did not follow the ' turbulent energy cascade' proposed for pass ive tracers of the

surro unding fluid. T he reduced slope among mobile organisms is consis tent with the

hypothesized injection of kinetic energy due to the conve rgence of individuals into

shoals at trans ition scales .

The most interesting feature in Figure 4.5 is the similari ty of spatial variance

pattern s amo ng mobile organis ms. Average power spectra o f krill , mari ne birds and
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Ag.4.5 Average spectral density estimates of capelin (broken line), Atlantic cod ,
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phytoplankton (Weberet al. 1986) plottedasa function of frequency.

Phytoplankton is plaitedas a dotted line to distinguish spectral densityplots of

mobile organismsfrom passive tracers of the surrounding fluid. Periods (km) are

shownon the upper Xaxis.
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fish all contained two regions of differing slopes separated by a transition region. The

steeper slopes of spectral density plots below transition regions were interpreted as

reductions in spatial variance due to the regular spacingof organismswithin

aggregations. The anomalous dip in the power spectraof common murres is atlributed

to the association of murres with upwellingevents at the spatial scale (S km) of a

Rossby radius (Schneider 1989).

Transition regions in spectral densityplots of mobile organisms naturally

demarcate domains of spatial variance. Ranges of these domains can be formalized

using fractal geometry (Mandelbrot 1982). The degree of self-similarity across spatial

scales is quantified by converting slopes of spectral density plots to Hausdorf or fractal

dimensions (Bradburyet aJ. 1984; Sugihara and May 1990; Schroeder 1991). A

constant value over a range of scalesdefinesa domain that may be generated by a

single process (Sugihara and May 1990). Large changes in fractal dimensions indicate

scales where there maybe a shift in processes that generate spatial variance

(Mandelbrot 1982). Among capelin and cod, I found evidence ofa shirt from shoaling

to schooling at scales smaller than transition regions.

Spatial variance domains have two important implications. First, spatial variance

domains limit the rang",of research conclusions (Sugihara and May 1990). Ecosystem

process models should not be extrapolatedbeyond domain boundariesjust as regression

models should not be generalized beyond limitsof sampled data. A second practical

application of spatial variance domains is the reduction of field survey costs. By setting

sample resolution equal to the smallest spatial scalewithin a domain, survey costs are

minimized and the results can beextrapolated throughout the domain. This indicates
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that a wider application of fractal geometry may provide clues to processes thai

influencespatialdistributionsof organismsand be used to delineatethe rangeof scales

over which they operate.

Spectralanalysis was chosenas an analytictool because it has the advantageover

othertechniques of simultaneously analyzing variance at severalscales. Advantages

anddisadvantages of statisticaltechniques used to describespatial patterns are evaluated

in Chapter7. Despite this advantage, the sensitivity of spectralanalysis to the presence

of zeros prevents it from being ideally suited to theanalysis of patchily distributed, rare

organisms. I suggest there is a needfor beuer quantitative tools thatassessspatial and

temporal variance of count data.



Chapter 5. Spatial Coherence of Mobile Aquatic Organisms

5.1 Introduction

Quantifyinginteractionsbetweenpredatorsand prey continues as a dominant

themein ecology. Theoreticalmodels of Ihis interactionhave largely been limited10

either the spatial scaleof an individualorganismor \0 thatof the population(for

reviewssee Levin 1976; Chesson 1978; Taylor 1988, 1990; Hastings 1990; Reeve

1990: Kareiva1990;Berryman1992). At thesetwo spatial scales the dependenceof

observedpatternson measurementscalehas been identified (Waage 1979: Morrison

and Strong 1980; Heads and Lawton 1983; Hanski 1991) and the necessity of multiscalc

quantification of predator-prey theory is regularly expressed in the literature (e.g.

Hasselland May 1973; Anderson andMay 1985;Holdbrookand Schmitt 1988; Karciva

1990; Aronson1992: Schneider 1994a). Quantifying the scale-dependcnce of

predator-prey interactions requirescomparison of results over a wide rangeof spatial

scales.

Severalrecentstudieshave examinedwhethermobile, aquaticpredators are

associatedwith prey at characteristic spatial scales (Table 5.1). All fieldsurveyscited

report spatialscalesof maximumassociation between predatorsand prey. These

conclusionsarebasedon singleor a limitednumberof transects which implicitly

representshort temporal scales. Scalesof maximumpredator-prey association were

then matched to dominant physicalprocessesto explain observedpatterns of biological

variance. This approach assumes thatbiological patternis created by physical

processes at the samescale. Direct coupling betweenbiologicaland physical processes
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Tab le 5.1. Spatial scales of maxi mum ccvariation amo ng mob ile, aquatic predators and their prey .

Predatcr !'<ey Scal e of maximum cevariation Source

> 100 km 100 to 10 !un 10 to lkm lkm to 100m < 100m

Zooplankton Phytoplankton Ikm Mackasand Boyd 1979

Zooplanl..1On Phytoplankton IOkm 1 km < l km SWand Mullin 198 1

Krill Phytoplankton 2.5 kin Weber et aI. 1986

Kri ll Phytoplankton SOO km Miller and Montei ro 1988

Birds ZOOplankton 10 to 100 km Heinemann et al. 1989

Birds Zoop lankt on >S km Hunt et al. 1990

Fish Fis h 10 to 20 km < S km 3.5 m Roseand Leggett 1990

Birds Fish > 1 km SafinaandBurger 1985

Birds Fish 2 to 6 km 0.25 km Schneider and Pia tt 1986

Birds FUh > 1 km Safinaand Burger 1988

Birds Fish Skm Schneider 1989

Bird s Fish > l km Erikstadet al , 1990

Birds Fish S km Piau 1990
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at thesamescale is ol'lenhypolhesize:lwhen p~y organisms. suchas phytoplankton.

movepassively with the sunounding fluid (e.g. Legendreand Demers 1984; Mackas et

aI. 1985). The previouschapter demonstrated thai spatialvariancepatternsof

organisms that moveintlependenlof the fluid do not commonlymalchthoseof physical

quantities (see also Weber et aI. 1986; Levin et al. 1989; Schneider 1994: ).

Characteristic scalesof interactionbetween predators and prey may also be

influencedby biologicalprocesses such as the aggregatlveresponse of predators to

concentrations of prey (Holling 1965, 1966; Murdoch and Dalen 1975).

Concentrations of prey potentially influence the spatial variance paUems o{prcdalors

and the scaleof maximum spatial association between predators and prey. The

influence of aggregativeresponses on lite spatial varianceof mobilepredator-prey

interactions have not been examined over a wide range of scales.

Twodifferent sca.les or maximumspatial association were predicted to occur

betweenAUanticcodand capclin at thetemporalscalc of .l foragingbout, Spatial

associationbetweenpredator and preycould peakat the scale of maximumpO;)' spatial

variance (Fig. 5.1) which maximizespotential contact rateof predator with prey. If the

sca1e of maximum predator-prey spatialassociation does not matchtml of maximum

prey spatial variance, then I predicted spatial associationbetweenpredators and prey to

peak at analternate scale that maximizes net energetic benefit to the predator (Fig. S,1).

Relative density estimates of capelin and Atlantic cod were used to examine

scale-dependentspatial associations between a mobile aquatic predatorand its prey.

Scale-dependentpatterns of capelin spatial variancewerecompared to measures of
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spatial association (coherence)between capelin and Atlantic ":0<:1. Low coherence

values betweenpredatorand prey prompted an examination of cod foragingenergetics

to see if codwere obligatedto track capelin during the spawning season.

5.2 Methods

5.2.1 Spatial Coherence

The data set used in this analysis is identical to that used to examine spatial

varianceof capelinand cod in the previouschapler. Spatialassociation between

predator and preywasquantifiedusing bivariatespectral analysis. Spatialassociation

between two series is measured usi ng coher ence and phase . Cohe rence measures the

strength of association betweentwo variables as a functionof frequency and is

analogous to a squaredcorrelation, with potential valuesranging from 0 to 1. Phase

indicates the sign of correlation between two data series. Two series that aTC less than

90"out of phase are positivelycorrelatedand termedin phase. Twoseries thatare

greater than 9Qooul or phaseare negatively correlatedandtermed outor phase. A

smoothing window oro .OJcyclesm-' wasusedin comparative analysesto provide a

compromisebetween accuracy and smoothness. All spectral density estimateswere

standardizedto permitdirect comparison or surveytransects. The analytic window

extendsfrom20 m 10 10 km. Spectraldensityestimates,coherence, and phase values

from all transec ts werecombinedand thenaveraged at a resolution orO.OOO I cycles m-'

to produce averagespectral density, coherence...ad phase values. These valueswere

plottedas a function or frequency.
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5.2.2 Bioenergetic Calculat ions

Estimates of daily ration from cod fceding models were compared to surplus

energycalculations basedon glut foragingon capelin at approximately 40<::. Glut

foraging is definedas feedingto repletion. Meancod length was used to estimate

weight of a predator U:Ji.1g the weight· length relationship from Bishop et aI. (1993):

l ogW " 3.0879 10g L-5.2 106 (5.1)

where log \..' is the commonlogarithmof fish weight(kg) and log L is the common

logarithm of fish length (em). Estimateddaily ration as a function of temperature was

calculatedusing (JobJing1988):

In Fl " (O . I0 4 T- O,OOOI 12 T 3- 1.5 ) +O .B0 2In :..Y (5.2)

where FJ is food intake(kJ day·l), T is temperature (OC), and W is mass of fish (g).

This estimate was compared to the average amount of food eaten YI (g day-') by the

fl h fish using (Waiwood et al . 1991):

(5.3)

where PI represents the probabilityof feeding(fable S. Waiwoodet al, 1991)at

temperature } and x. is the natural logarithm of fish mass(g).

Calculatedestimatesof cod daily ration werecompared10 estimatesof surplus

energy £!ow (kJ) available to cod from a glut feedingon capelin. Bioenergetic

calculations were basedon Winberg (1956):

6w - p R-T (5.4)

where p is a dimensionless coefficient correctingfor the unassimilated proportion of

ration R (kJ) and T (kJ) is metabolic dissipation, In thesecalculations p was set at
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301 (Brettand Groves1979). Following Ken (1971), themet.abolic component T

was sepanted inlOmaintenance T • • digestion T• • andexternAl activities T, (l.e.

swimmin&).

(S.S)

Maintenancecosts T . '" R_ .... (kcal day l) were estimatedusing an equation from

IOOling (1982):

(5.6)

where W is fish mass(g). Calorific estimateswere convertedto Sf unitsusing4. 184J

cal-t, Digestion cosLt T. wereset atl l .~"orlngesredenergy basedon laboratory

experimentsconductedwithjuvenile codal 7<C (Soofiani and Hawkins 1982). Gastric

emptying ofa fullcodstomachat S"Cwas2l atS8hounor 2.42days (Tyler 1970).

Meanbody lengths of capelinandcodwereusedto cstimaleS\i.'imming speeds using an

"l",tion fromObobo(1981),

(S.1)

wbere 1/ is speed(em1"1)andL is totaIlmglhof fish(em). Maximumpotentialrange

of a foragingcodwas calculatedby multiplyingswimming speedby the numberof

seconds inadly. Swimmingcostsfor cod T, were estimatr.d using results (rom

respirometer experiments. Amountof oxygenconsumed VO a emg OJ kg.1h·l) ata

given temperature wascalculatedusing fishswimmingspeed U in bodylengths per

second(SoofianiandPriede 1985):

(S.8)
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Oxygen consumedwasconvened to energy using an oxycalorificcoefficientof 3.36 cal

kg-I (mg OJ -I (Brett 1973).

5.3 Results

5.3.1 Spatial Va riance Patterns

At the temporal resolution of an individual transect (ca. 1 hour), a characteristic

pattern of capelin spatialvariance was not present among the 19 transects surveyed in

Conception Bay(Chapter4). Concentrations of spatial variance were observed in

individual transects (Fig. 5.2a) but frequencies of maximum spectral density were net

consistentamongspatially or temporally separatedtransects. Coherence values

between cod and capeJin were generally below 0.2 in all transects. Only three of the 19

transects contained recognizable peaks of coherence at any scale (Fig. S.2b). In all

uansecu, phasespectra of capelin and codoscillated in and out of phase over the range

of analyzedspatial scales (Fig. S.2e).

To examinepatterns of spatial association over longertemporal scales, spectral

densityestimates of c:apelin andcodrelativedensitiesfromall transects wereaveraged

overo.(XXn frequency bins andplotted as a function of frequency. As shown in the

previous chapter, averagespatial variance plots of capelin and cod(Fig. 5.3a) contained

two regions of differing slopes separated by a transitionregion. A peak in spatial

variance indicating a characteristic scale of aggregation was not observed in the average

power spectraof either capelin or cod. Coherence between the t'NOspecies was

uniformlynear zero (Fig. 5.3b) and in phase (Fig. 5.3c). A characteristic
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Fig. 5.2 (a) Spectraldensityestimatesof capelin(brokenline) and Atlanticcod (solid

line) froma 6 km transectplottedasa function of Frequency (bandwidth 0.01,

centered,normalized). Periods(m)are shown on upperX axis. (b) Coherence of

capelinand Atlanticcod plottedas a functionof Frequency. (e) Phaseestimatesof

capelin and Atlantic cod plotted as a function of frequency.
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Fig. 5.3 (a) Averagespectral density estimates ofcapelin(brokenline)and Atlanticcod

(solid line) plotted as a function of frequency (averaged over 0.0001 cycle bins).

Periods(m) are shownon upperX axis. (b) Average coherence of capelinand

Atlantic cod. (c) Average phaseestimatesof capelinand Atlantic cod. Area

betweendotted lines marks regionof positivespatialassociation.
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scale of spatial association berweeacapelin and cod was not observed at the temporal

scale of an individual transect (appro.:imatp.ly I hour) or at the scale of averaged

transects (approximatcly 2 weeks).

5.3.2 Bioener getic Calculations

One potential explanatio n for the lack of spatial coherence is thai cod do not need

to track abundantand mobile prey such as capelin. To lest this I compared energetic

estimates from cod consumption models 10 empirical back-calculations of cod foraging

oncapelin.

A sampleof 132capelincaughtnearshore had a meanlength (± S.E.) of 15.36 ±

O.IS em. A sample of 140 codcaught in passive fishing traps located in the sampling

area had a mean length of 44,4 ± 0.54 em. Based on the sample, cod trapscatch fish

greater than 34 em in length. Lilly (1987) has shewn that cod less than 3S em in length

do not feedon adult capelin. Using ihe weight-length relationship from Equation 5.1.

themass of a 44 .4 em codWl! estimatedat 752.2 g. Iobling's (1988) foodint:l.ke

model (equation5.2) wasustd to calculate that a 752.2 g fish would ingest 68_07kl

day-I at 4aC. This is 45~ higher lhanthe 11.16 g day l or 46.81 kJ day ' calculated

from Waiwood et al. ' s (1991) ' average food eaten' model (equation 5.3). Mass eaten

was converted to energy derived from capenn using 1004 calories g-I wetcapclin

(Jenkins, 1975). If mass eaten wasconverted to energy using Tyler' s (1973) original

conversion factor of 4610 calories gol of dry shrimp Panda/usmonragui (Leach) and a

dry to wet mass ratio of 0.27, the amount of energy required was increasedto 58.11 kJ

day-t, Consequenlly, energy requirementsfor a 752.2 g cod ranged between .s8 kJand
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68 k1per day .

Energy ingested by cod foragingon capelin was calculated by multiplying

numbersof fresh capclin observed in rod stomachs by the average energycement of a

single c:apelin. Net energetic gain was calculatedby subtractingmetabolic costsof

egestion, excretion, maintenance, digestionand foraging from totalenergy ingested.

Calculations of energetic cosurepresent maximum energy demand under hypothetical.

and probably extreme, conditions. Basedon SOstomach samples from cod caught in

rod traps, a glut ration of capelin typicallyranged from eight to 12 fish. Capelin

calorimetric yields fromfresh capelin samples taken during the spawning season ranged

from 3.9 kI g.1(Montevecchi and Piatt 1984) to 4.2 kJ g.1(Jenkins 1975). Using an

average wei capelin weiehl of3 1 g (Jenkins 1975) or a combined maleand female

average of 34 g (Montevecchi and Pian 1984), average energycontent of capelin was

estimatedat 131 to 133Id capt'lin·l • setting average caloric content10 132 kJcapelin·1

and an average ration of eight 1012 capelin, total energy consumptionwascalculatedto

range from IOS7 to 1585 kJ per glut fceding. Egestion and excretionof an

unassimilated portion of the ralion wasestimatedat 317 (8 capelin ration) to 476 kJ (12

capelin ration). Maintenance costs T . of a 752.2 g fish incorporating a 58 hour

gastricemptying period were estimatedat 58 kI (equation 5.6). Digestion costs T.

ranged from 125 kJ (eight capelin) (0 188kJ (12 capeJin). Estimated swimming speeds

(equation 5. 7) were 28.19 em S·l for capelinand 70.23 em S-I fer cod. Swimming

speedsof codmay be lower in cold water. For example, He (1991) observed

maximumsustained swimming speeds of 0.9 to I body lengths per second(B.L. S·I)

when temperaturesrangedfrom -0.3 10 l.a-C. Metabolic costsdue to swimming T 1
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at 1 B.L. S-I were calculatedat 129.42mg O2 kg-' h-I (equation5.8) or 1.82 kJ kg·lhoi.

Therefore if a 44.4em, 752.2 g codswimscontinuously at t body lengthS·I during the

58 hours needed to digest the ration, an additional 79.34 kJ of energy wouldbe

consumed. During lhis perioda predator couldpotentially travel a distance of 38.~6

km swimming at a speed ofone body length per second.

In summary, surplusenergy !::J.w followingthe consumptionof eightto 12 capelin

was estimated at 478 to 784kJ (fab le 5.2) , These estimates include energetic costs of

egestion, excretion, maintenance, digestion, and continuous swimming during ration

assimilation. Thisresult shows thatcod are not required to continuously trackcapelln

at any spatial scaleless tban10 km. Empiricalback-calculations of codglut feeding on

capelin were a minimumof 2.9 timeshigher than those calculated using cod

consumption models. Jobling's model (equation5 .2) estimated a consumptionof 165

kJ compared to the 140 kJcalculated usingWaiwoodet al. 's model (equation 5.3).

Physiological differences betweencodusedin consumption modelexperiments and

those sampled for the empirical model maylimit comparisonbetween the two classesof

models.



Table5.2. Energeticcalculationsof cod glut feedingon capelin basedon

models from Winberg(1956)and Kerr (1971)' ,

Model component 8 capelin 12capetin

Ration( R) 1057 kJ 1585kJ

Bgestion and Excretion ( p ) -317 k1 -476k1

Maintenance ( r . ) -S8kJ -58 kJ

Digestion(T c ) · 125 kJ -188kJ

Swimming ( T F ) -79 kJ -79 kJ

Surplus energy ( /),.w) 478 kJ 784 kJ

• The predator is assumedto bea 44 em, 752 g cod with a clearance rate er
SOC of 58 hours (Tyler 1970). Foragingspeed is set at I body length seccnc-i.
Energetic contentof the rationwascalculatedat J32 kJcapelin-' . Egestion and
excretionwas set at 30% of ration(Brettand Groves 1979). Maintenanceof a
752 g codwas calculated at 24 kJday" (Iobling 1982). Digestionat 7"C was
estimated as 11.85% of ration (Soofiani and Hawkins 1982). Swimming costs
at I body length s- were calculated at 1.37 kJh-I (Soofiani and Priede 1985).

99
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5.4 Discussion

Spatial coherencebetween capelin an<! codwas low at all spatial scalesamong lhe

19 surveytransects. Small concentrationsor peaksof coherence occurred in 3 transects

but scalesof maximumcoherence were not consistent among these transects. When

transects wereaveraged, coherence valueswerenear zero across all sampled spatial

scales. A characteristic scale of spatial associationbetweencapelin and codwas not

observed. In the absence of any consistent spatial association, no atternpl was made 10

determinethe formof a functional aggregative response.

The lack of a characteristic scale in the statistical description of spatial association

betweencapclin and cod was an unexpectedresult. Capelin comprise a major

component of cod diet (Papaya 1962; Lilly 1987, 199 1), especially during the eapelin

spawning season (Thompson 1943; Methven and Piatt 1989). A characteristic scale of

associationwasexpected to fall somewhere within the range of a fewbody lengths lo

the spatial scale of a small bay. Coherence betweenadult capelin and Atlantic codhas

beenobserved at the spatiotemporal scale (length < S m, duration < I hour) of a

foraging bout (Rose and Leggett 1990). This wasobservedonly once, during a short

(185 m) transect in theday whencod wereactively feeding on capelin. I have included

samples from all hours of the day (Table 4.1) to ensure sampling occurred when cod

were actively feeding on capelin.

One possible explanation for the lack of coherence isType II error, failure to

detect a realeffect. Data acquisition and analysis were designed to minimile five

sources of Type II error: scale of sampling, choice of bandwidth, vertical integration

of da;a, the presence of zeros in data, and spectral analysis of non-linear interactions.
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One potential source of Type II error is taking measurements at the 'wrong' scale.

However, this study analyzedmobile predator-preyinteractionsover (OUTorders of

spa tial magnitude (20 m to 10 km). A sampling range of this size is rare within a single

study. For comparison, the 14predator-prey interactionstudiesthat report

'characteristic' scalesof spatialassociation(Table 5.1) collectivelysample 6 orders of

spatialmagnitude.

A second proced ural step which could co ntribute to Type II error is the choice of

bandwidth used in spectral analyses. Bandwidth influences coherence values by setting

the number of adjacent periodograms averaged toestimatespectral densitymagnitude in

each frequencyband (Chatfield 1980). In a seriesof replicatedspectralanalysesthat

differedonly in bandwidth, I found that coherencevalues were lower in replicatesthat

usednarrow bandwidths. Bandwidths are not commonly reportedfor spectral analyses

of biological data. A narrow bandwidth (0.01) wasselectedto minimize biasdue to

smoothing among frequencybands(Diggle1990).

A third potential source of Type Herror is the vertical integration of relative fish

abundancedata. Abundance datawere integrated over the water column to analyze

horizontal variationof cod relative to capelin. Twodimensional transects wcre

analyzedas a one dimensionaldata series. Shoalsizes may be increaseddue 10

horizontal overlap betweenaggregations that are verticallyseparatedin the water

column. This is more likely amongcapclin whereaggregations form near the surface

and near the thermocline (Methven andPiatt 1991). In spectralanalysisthe combining

of vertically separated shoals to larger aggregationspotentially increasesthe scaleof

maximumassociation betweenthe predatorand prey. At smallscales this maymask
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coherence between thetwospeciesbutstronginteractions wouldremaindetectable in

spectral density plots. The influenceof verticallyintegratingabundancedata on spatial

variance patterns of predators and prey could be examinedby computing the power

spectra and coherence in two dimensions (Ford 1976; Ripley 1981) andcomparing

results to the one dimensionalcase. A two dimensionalspectral analysis was not

conductedbecause of the requirement ofa square data matrix (Ripley 1981). In any

transect longer than 112 m, the padding of the vertical dimension with zeros would

potentiallyinfluence spectral density estimates.

Thepresence of zeros in a discretedataseriesis a fourthpotential sourceofType

II error. Coherence valuescan be lowered byrandom sampling error of a Pclsscn

process (Mackas 1917). As a compromise between high sample resolution and

reducing the probabilityof getting a zero count, minimum bin size wasset at 10m.

The fifth potential source of Type II error is the presenceof non-linear interactions

between predator and prey. Spectral analysis fits a linear relationship between two

variables. Aperiodic, non-linear interactionsare underestimatedand result in lower

coherenceestimates (Star and Cullen 1981).

I can neither eliminate nor quantify the amount ofTypc!I error in this analysis.

Where possible, data acquisition and analytic procedureswere designed to minimize

Ty ,')C II error. A similar approach using spectralanalysis has shown that scales of

maximumassociationexist between marine birds and capelin (Schneider 1989). The

same potential sources of Type II error exist in the analysis (If marine bird data, yet

scales of spatial associationbetween predators and concentrationsof prey were

detected. This result was later confirmed using variance10mean ratios (Piatt 1990).
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As an alternative to Type II error, the lackof spatialassociationbetweenpredator and

prey in this studycould bedue thebiologyof the organisms.

A simple biological explanation for low coherence between capelin end cod is

physiologicalconstraintsimposedon codwhileforaging. If energeticcosts of tracking

prey over large distancesexceed netenergygainedby consumingprey, then thespatial

coupling of cod to capelin is potentially restrictedto scalessmaller than those analyzed

in this study (20 m). Bioenergeticcalculationsdo not support the hypothesisthat

foragingcod musttrackcapelin aggregations. Energetic costsof continuously

swimmingfor 58 hours were 10%to 14%of the totalenergy used to obtain and

assimilatethe ration. This is a conservativeestimateof cod foraging activity. Tracking

studiesof Atlantic cod showthat cod do notswimcontinuously throughout the day

(Hawkins et el. 1985; Keatset al, 1987)or after feeding (Clarkand Green 1990). If

our assumptionsconcerning swimming costsare correct, then the energeticcostof

digestionwas 1.6 to 2.4 times higher thanthe cost of finding the ration. Ourestimate

of energeticcostsof swimming (1.37 kJ h·l) agreedwell with the 1.33kJ h-I calculated

usingTytler's (1969)oxygen consumptionmodelfor haddockMelanogrammus

aeglefinus(l.), another gadoid. The energeticcostof swimming represents a small

proportion of the total energy usedwhen cod forageon capelin. I conclude that the

lack ofcoherencebetweencapelinand cod was not due 10physiologicalconstraints

Imposedon foraging predators.

The lack of coherenceand bioenergetic calculationsare consistentwith fishers'

observations of cod-capelin interactions. The term 'logy' or 'foggy' is used todescribe

fish that are resting on bottom(Storyet al. 1990). As the endof the capelin spawning
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seasceapproaches, codan:described asbeing 'gluttedwithcapelln'. Codcannot be

ca~ght wilbjiuer, baited hookor trawllines because they havereducedfeeding and

are IlOtmoving largedistances (Cbes andGordbc:ksoa,Ca~ish . Newfoundland,

penonaJ communication).

Differences in energy estimatesbetween foodintake models and glut feedi ng

caJculations deservescomment, Estimates fromfoodintake models werealleasl3

times smallerthan those fromglutfeeding calculations. The foodintake models

(1obJing 1988; Waiwood et al. 1991) were basedon laboratory studies of captivefish

which werefeddaily. Someof the fishused in the laboratory experimentshad been

held in captivity for aperiodoful) to 4 years (Waiwoodetal. 1991). Energeticgains

fromglut fceding were calculated by estimatingtheamount of energyconsumed ina

capelin rationand thensubtnetingcncrzJ'required10maintain theanimal, 10 digest and

clear ingested materiil, and tocontinuously swimwhile therationwasclearedfromthe

stomach. Feeding efficiency (7x 100%) duringthisperiod rangedfrom4SS to

491 dependingon capelin rationsize. Thisis more thandouble !he20%observed at

1«; {l)I' codfcedingonfish pellets(Hawkinse aI. 1985). Bulourcalculations

efllXllJlpas51 short, intensive feeding period in thewild. Codsampledforthese

calculationshadprobably completeda post-spawning migrationfromoffshore banks

(Ro~ 1993). Thesefishfeedonlocalcoecenmticns of pre-spawning capelin in coastal

waers to replenish depleted somatic andreproductive energy reserves (Turok 1968). 11

is also unlikely lhat activity levels andreproductive cyclesof cod usedin laboratory

experimentswould match thoseof wild-taught fish. Differences inenergeticintakead

feeding efficiency estimates areattributed 10 thetimeof samplingand physiclcgical
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differencesamonganimals used in the two types of models.

On average, a characteristicscale of spa tial associationbetween capel in and cod

wasnot observed over a measurement window spanning four orders of spatial

magnitude. Low coherence between predators and preyacrossa rangeof spatial scales

has alsobeenobservedin zooplanktonfeedingon phytoplankton(Starand Mullin

1981), birds preying on leaf miners (Headsand lawton 1983), multiple predators

feeding on brittle stars (Aronson 1992), and parasites feeding on ehrysomelids

(Morrison and Strong 1980, 1981). For cod , an explanation o f this lack of association

was derived (rom energetic calculations. Theseshowed that coddonot needto be

spatiallycoupled withprey at scales Jess than 10km. Hence cod canfunction

successfullyas ' sit and wait' predators, The physiology of the predator, rather than

spatialdistribution patterns of theprey. explainedthe absence of 3. class ic form of

populationinteraction at small scales. This chapcer illustrates that aggregative

responsesof predators do not occur at allspatial scales. I speculate that aggregative

responses may onlyoccurover a smallrangeofspatial andtemporalscales.



Chapter 6. Shoaling and Schooling Simulation

6.1 In trodud ion

Spatial variance in thedistributio ns of mob ile organismsdi ffers from that of

passiv e tracers of the surrounding fluid (Chapters 3. 4). Datamanlpulauon s (Chapler

4) d emonstra ted that shoaling andschoo lingwere twokinematic processes capable of

gen erating slight negative slopes in spa tial variance plots of mobile organism

distributions . In general, theoretical models of kinematics have not been used10

examinethe scale or scalesat whichspat ialvariance is generated.

Increased spatial variance al intermediate scales among mobile organisms is

potentially createdin two ways. Spatial variancemaybe generatedat a single small

scale and then propagated to huger scales. This hypothesis is opposite to Ihe 'turbulent

energy cascade' commonly assumedfo r spatial variance patterns of passive tracers in

fluid s (ef. Fig , 2, Macbs et al. 1985). Although one excepdon is thegenenlion o f

larg e scalepattern from the interaction of passive particles with Langmuir circulation

(Liebovich 1983; Weller and Price J9 88 ; Schneiderand Bajdik 1992). Alternatively.

spatial variancemay beindependenllygeneratedat several scales by a vari ety of

kinematicprocesses. The creationand possible transfer of spatial variance to larger

sc-..es has no t been quantified for mob ile aquatic organisms.

In this chapter a particle interaction model isdeveloped to simulate fi sh

kine matics. The simulator is used10 track changes in spalial variance of mobile aq uatic

org anisms due 10shoaling and schooli ng. Slopes of spatial variance plots are predicted

to decreasewithan increase in shoaling andschooling. Shoaling isdefined as the
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convergence of organisms independent of fluid motio ns. Schooling is d i fferentiated

from shoaling by the coordinated movement ofa group of aquatic organisms (pitcher

1986; Pitch er and Parrish 1993). Models of the forma tion and maintenanceof fi sh

shoal structurehave beenbasedon oppo sing forcesof attraction and repulsion between

individuals (Parr 1927; Breder 1954;Jacobson 1990). Magnitudesof for•es are a

function of distance betwee n individ u als, cancelling at an equilibriumd istance equal to

the mean distance between members oran ag gregation . Breder (1954) based the

repu lsion forceon Coulomb's Jawof magnetism and electrostatics such thai the

repulsive force bet ween two fish was proporti onal to the inve rse of the d istance

squared. This maintains a minimum inter-fish distance betweenall membersof a shoal.

Th e schoolingcomponent of a simula tionmodel should result in polarized aggregations

of fishmovingin a coordinatedfashion . Jacobson(1990) includeda cohesion

component inhissimulator butimposedaconstantfish speedandreflec tive boundaries

within the model domain. The useof closed boundariesdisproportionately increased

boundary effectsand restrictedthe ran ge of spatial scalesexamined. To quantify the

effects of shoaling andschoolingon spatial variance, a shoaling component based on

attraction-repulsion forces should be integrated with.a schooling component that is

unrestricted in spatialrange.

6.2 Mobile Particle Interaction Model

6.2.1 Model Development

ConsiderN fish at positions r; . 1- I .... , N in a two dimensional plane (Fig.
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FJg. 6.1 Schematic diagramof attractive andrepulsiveforces betweenfish i and fishj .

6.1). All symbols are listed in Appendix 6 . 1. Th e force F on the r t h fish a t r: due

10 attraction A and repulsion R from the Jth fish at r;. J. I •. . .•N - I is

defined as

(6.1)
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where m isthe exponentofattractionand n is the exponentof repulsion. The force

on the t th fish dueto the other N fishwithin an interactiondistance is the sum of

forces

F;- l~ F 11

'"
Thevelocity V ofthetth fishis defined as

The acceleration ii of the rt h fish is defined as

Theaccelerationof thet th fishcan bedecomposed intothreeparts

If:-F;+f,'"$;(!)

(6,2)

(6.3)

(6.4)

(6.5)

where h isa frictional forceopposingthe motionof fish t and~ is a random force

actingon thel th fish. The magnitudeof the frictionalforce iscalculated using

(6.6)

where P I is the densityof thefluid, S is the wettedsurfacearea, and C, is thedrag

coefficient. By combiningparametersinto a single frictionparameter C this equation

simplifies to

(6,7)
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The random forcehas magnitude a so that

~(!) -Q""€: (I)

where ~ is a random vector withunit variance expressedas

<~(!) f.{!» - I

(6 .8 )

(6 .9)

The random forceactingon the lth fish is unccrreteted with the force actingon any

other fish j

(6.10)

It is assumed that there is a characteristic period -c, termeda relaxationtime constant,

when fishrespondto a change in thedistribution of conspeciflcs. During this period

the random forceis correlated to previous timestepsand after which it becomes

uncorretated•

<~ ( t )~cr» " l if 11'1<1:

<~ ( ! ) ~(t' » .. O i f It' I >1:

(6.11 )

(6 .12)

There are six parameters in our problem: A, R , m , n, a . and C. But only four

of theseparameters areindependent, given the dynamicalrelationshipamoog variables

(equation 6.S). The problem canbe nondimensionalized 10express it in terms of the

four independentparameters, First, consider a dimensionally equivalent equation to

(6.S) :

d2 r , A R (de,),
-"---+ a ~- C ­
d t 2 r '(' r: dl

Let r v qr " and t " p f,then

(6 .13)
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(6.14)

(6.15)

choose p and q so that

(6.16)

10 remove thecoeff'cen t from theattractive force. and

p 'a
- -I

q

(6.17)

to remove the coefficient fromthe random force. Solve Equations (6.16) and (6. 17) for

(6.18)

andp

(6.19)

Providing m "" O.n 'f-0, then

(6.20)

(6.21)
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Assign

R(A)·'r - a a
on.

Which simplifies Equation (6.21) 10

Thenondimensional velocity of the Ilh fish is

In nondimensional variables theequations of motionnow become:

dV; -:: -: ­"'di"" -Fl + t , -t.

where

(6.22)

(6.23)

(6.24)

(6.25)

(6.26)

(6.27)

(6.28)

and~ is a random number withvariance I asexpressed in Equations (6.9), (6.10),

(6.11) , on. (6.12).
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6.2.2 Model domain

Acoustic survey datafromcontinental shelf watersare modeledas a

unidimensionalcut througha large, horizontal 2-dimensionalplane. It is not necessary

to modelall fishon a continentalshelfbecausefishvisuallydetectconspeclt lcs over

smalldistancesrelative 10 the breadth of theocean. The detectiondistance usedin the

modelcan bealtered to representother sensory mechanisms in fish.

The x dimension in the modelis set to approximate the length of a typicalacoustic

transect withboundaries imposedat x=Oand xe L, Channel length L was setat 1000

m to span three ordersof magnitude for spatial varianceanalysis. This also ensures

thai L will bea minimumof two orders of magnitude greater than the distance over

which two fish can interact. The y boundaries are imposed at y=Oand y= Y where Y

is the widt h of jhc modeldomain. Channel width is set to ensurea large separation

betweenboundariesrelative to the maximuminteraction distance betweenany two fish.

Channelwidthused in the simulations was40 m, a minimum of 5 times the maximum

fish interaction distanceof 8 m (see below).

Periodic boundary conditionswere usedto minimize perimeter effects in a two

dimensional, horizontal plane. A periodicboundary conditionassumes identical

channelsto all sides of the model channel. The modeldomain was set to simulatea

hydroacousticsurvey transectin open water whilemaintaining fish density. Simulating

a nearshore environment or a verticalprofile(i.e. x-z plane) wouldrequire reflective

boundaryconditionsat one (i.e. coastline) or more (i.e . surface andbottom)

boundaries. Reflective.boundaryconditions increaseedge followingbehaviour(e.g.

Jacobson 1990). Edge following behaviourwillenhancethe development of fish
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schools. The magnitudeof this effect is dependenton the perimeter to surfacearea

ratio. In a two dimensionalplane of width L and length n L I the perimeter scalesby a

{actor of 2 + 2 n as the surfacearea scalesby a factorof length nl.• Under periodic

boundaryconditions, if a fishcrossesan upper or lower boundary it retains its

x-coordinate and the new y coordinateis the originJ1y coordinate ± the width of the

channel. This positions the fish at an identicaldistanceinside the channel from the

opposite boundary. Analogous conditions are set at the ends of the channel at y=O and

y""Y.

6.2 .3 Model parameters

The biological premise for the simulator is that fish are attracted to conspecifics

but maintaina minimumdistancebetweenindividuals. F('TCfSof attraction and

repulsion are inverselyproportional10 distance, with the forceof attractiondominating

at large distances and the forceof repulsion dominating at smalldistances. The net

force is zeroat the mean inter-fish distancewithinfish sc hools (Fig. 6.2),

Valuesof parametersare basedon experimentsor empirical observationsof

pelagic, schooling fish. All parameter valueswereset tn approximatecapelin

morphologyand behaviour (Table6.1). Inter-fish spacing, also termed

nearest-neighbor distances,have been reported for enclosed (e.g. Pitcherand Partridge

1979; Partridge1980) and free swimming (e.g. Satre and Gj"sleter 1975; Misund

1993)fish schools. For a varietyof species, values approximate one bodylength

between individualswhen measuredin two or in threedimensions. Attractiveand

repulsive forces werebalanced so that inter-fish spacingwithin schools equaledone
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Fig. 6.1 Attractive, repulsive, andnet forceasa function of distancefromEquation

(1). The attractive force is inversely proportional10 the distance between two fish

(i.e. A=l , m= I) . The repulsiveforceis inversely proportional 10the squareof

the distancebetween two fish (i.e. R= 1, n=2) .
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Table 6.1. Model parameters and values used in themobile aquatic organism simulator.

Name Symbol Equation Volue Reference

attractive force A 6. 1 Brede r 1954

repulsive force R 6. 1 Breder 1954

attractive exponent 6.1 Breder 1954

repulsive exponent 6. 1 Breder 1954

density of fluid P, 6.6 1000 kg m-'

surface area of fish S 6.6 0.01 m' Webb 1975

drag coefficient C, 6.6 0.015 Denil 1936-1938

friction parameter C 6.7 0.075 kg m ol

relaxationtime constant 6.11.6.12 0.'25 Aold 1984

bodylength (16 em). The relative magnitudes of attraction and repulsion forces

between fish have not been quantified and were arbitrarily set to I. To make the

attractiveforceact over a greater distance lhan therepulsiveforce, attraction between

fish wasset inversely proportional to the separation distance(l.e. m= I) and repulsion

was set inversely proportional to the .separation distance squared (i.e. n:: 2). A

maximum interaction distance was set al 8 m to approximate the visual detection range

of fish (Anthony 1981). Swimming speedsfor clupecidfishes, a similarbody form to

capelin, havebeen reported 10range from under I to over 7 body lengths second!

(Beamish 1978). A speedof 310 4 body lengths second- is a valid estimateof

sustained school swimming speedamong c1upeoid fishes (Blaxter 1967). Particle
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speedsin the simulatorwere limited to a maximumof 6.25 body lengths or I metre

seconds. The friction parameter C was set at 0.075. This is a conservative value

based on a fish lengthof 16 em, a sea water density of 1000kg ms, a weltedsurface

areaor 0.01 m2 (0.4 x (0.16 mp) (Webb 1975), and a drag coefficient oiO.015. The

dragcoefficientwasbasedon dead dragmeasurementsof 10em pelagic fish models

towedat a speedof 10body lengths second-' with a Reynolds number 1.0 x I().l (Deoil

1936-1938). The reJaxation time constant 1: wasset at two time increments. Aoki

(1984)foundthat values of 'c were approximately 2 seconds for 8 memberfish schools

of juvenile mullet(MugUcephalus) and tamoroko (Gnathopogon elongamselongatw).

6.2.4 Simulations

A totalof 800particles representingcapelinwere randomly placed throughout the

modeldomain representinga density of 1 fish per:;Om7 water. This density in two

dimensionsapproximatesthe mean lowerdensity of capelin(200 fish/lOSmt wateror 1

fish/63 m2) measuredin the nonhero Gulfof SI. Lawrenceby Rose and Leggett(1990).

Simulationswere run for 600 seconds at 0.1 second increments. Particle velocities and

frictionalforceswerechecked to ensurethat random forcesdid not artificiallyinflate

values. If the x or y component of particle velocity exceededa maximum velocity

(Vmax= I ms-'), velocity was reset to Vmax andmultipliedby a random component.

Frictionwas recalculated based on thenew velocity. In the standardsimulation run,

positionsof eachparticlewere recorded at time iterations 0, 1000, 2000, and 6000for

comparisonof spatial variance patterns over time. For each set of reportedpositions,

particleswerecountedat a resolution of 1 metre alonga 20 m swath centeredat the
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middle of the domain. This width correspondsto the swath of a 22- transducer

sounding at a depth of approximately SOm. Studies in the Gulf of 51. Lawrenceand

off Newfoundland have observed most capelin at depths less than SOm (Bailey er al.

1m; Atkinsonand Carscadden 1979; Methven and Piatt 1991).

Spectralanalysis (Jenkins and Walts 1968; Koopmans 1974; Chatfield 1980) was

used 00 examine spatial variance of fish distributions as a function of time. This

techniqueestimates scale-dependent variance of a continuously recorded variableover a

rangeof frequency bands. The rangeof frequency bandsextends from half thelength

of the seriesto twice the sample resolution. A smoothing window of 0.01cycles m-'

was used in comparativeanalyses to provide a compromisebetween accuracy aud

smoothness. All soectraldensity estimateswere standardized10permit direct

comparison of sample transects (Denman 1975).

6.3 Results

Velocities and frictional forces of particlesin the simulationmodel mimicked

those reportedin the literature for small-bodied, pelagic fish. The u and v velocity

componentsof eight particles over 250 time steps (Fig. 6.3) oscillated between 0 and 1

m 5.1, the maximum velocity permitted in the simulation. Magnitudes and signs of the

equivalent frictional forces (Fig. 6.4) fluctuated in synchrony with velocity components.

Groups of particles, representing shoals of fish, formed rapidly once a simulation

was started. Using the results of a singlesimulation run as an example, initial particle
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Fi&.6.3 Velocities of eight particles, u component and v component, from the first 250

timesteps.
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Time step (0 .1 s )

111:. 6.4 Frictionof eight particles. u componentand v to mponent. from the first no
time steps.

positionswereassignedrandomly(Fig. 6.Sa). Separate shoalsof fishbegan to form

after approximately the50th time itera tion (Fig. 6.Sb)andwereclearly separatedby the

lOOth time iteration (Fig. 6.5c). This basic structure wasmaintained through the

remainder of each simulation (Fig. 6.6). As time elapsed, single individualswould join

larger shoalsand the spacingamong individuals became more uniform within shoals.
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Onceformed,shoalsof fish movedin the x and y directions as polarizedschools but

did not travel large distances. In Figures 6.S and 6.6 it appearsthat there was more

movement in the y thanin the x direction. Given the sizeof the channel (1000 m long,

40 m wide), particleswere more likely to crossboundariesat the 'top' (y=40) and

'bottom' (y=O) of thechannel than at the ends (x=O, x= 1000)of the channel. The

apparent increasedmovementin the y direction is also attributedto the dimensions of

the graphic presentations (16 em by 4 em) relative to the actualchannel proportions.

Spatialvariancepatternsin the distributionsof panicles changedover time. The

powerspectraof the initialdistribution of particleswas flatacrossall scalesin the

simulations (e.g. Fig. 6.7a). This pattern,calleda whitespectrum,is commonlyfound

in a randomlydistributedseries (Schroeder1991). Early in the simulations, spatial

variancedecreasedandthen increased at large scales, increasedto a plateau over a

broad range of Intermediatescales, and decreasedat scalessmaller than 10 m. The

drop in spatial variance at scales smaller than10moccurredafter tbe SOth time

iteration (Fig. 6.7b). As the simulationprogressed(Fig. 6.8), slopes of spectraldensity

plots becamesteeperat scalessmaller than 10 m until time == 6000 (-0.66, n=5 1,

r2=0.62) and decreasedslightly until the completionof the run at ume e 12000(-0.72,

n= SI , r2=:::O.65).

To examine the sensitivityof spectraldensityestimatesto sample resolution, the

width of the sample swathwasreduced from20 m to 10 mand spatial variancesof

particledistributionswere recalculated. Slight variationsin the magnitude and shifts to

smaller scaleswere observed in peaksand troughs of spectraldensity plots sampled
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using the reduced swath width(Fig. 6.9). Spectraldensityestimatesdid not

significantlydiffer between plots basedon the 20 m (Fig. 6.8) or 10 m swath (Fig. 6.9)

width (F-=O.058,p= O.81, df=493).

6.4 Discussion

The particle simulator used in this study was developed to provide a tool to

examine the effects of shoalingand schooling on spatial variancepatternsin mobile

aquaticorganisms. The formof the model was derivedusing biologicalreasoningand

parameterized using experimentalvaluesfrom pelagic fish studies. The formation of

the model was not an attempt to importand directlyapply a physical 1aw to a biological

system. Parr (1927) was the first toproposethat spacingof fish withinschools wasa

balancebetween attractiveand repulsive forces. This was used by Breder (1954) who

applied Coulomb's law of electrostaticsto construct and parameterizea schooling

model. Breder's model formalizedperceptionsof biologicalprocessesthat influence

schooling of fish. In contrast to Breder's application of theoretical physical models to

fish schoolingbehaviour, Aold (1984) formulated two theoretical models(linear

differential equations)basedon spectral analysesof empiricalfish schooling data,

Aold's models describeinter-fish spacing as a function of spatial scale. The approach

of this study was to combine a theoreticalkinematicmodel with an analysisof spatial

variance as a function of scale.

Modeling studies of schooling have traditionallyfocusedon processesthat

contribute to the formation and maintenanceof uniformspacingamongindividuals

within schools (e.g. Breder 19S4j Gerritsen and Strickler 1977j DeAngelis 1978j Aoki
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Fig. 6.7 Spectraldensity estimates of particles representingcapelin, plottedas a

function of frequency (bandwidth O.OJ, centred, normalized). Graphs are

particlespositions at timestepsa) 0, b) 50, c) 100, and d) 250. Periods(m) are

shownon upperX axis.
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F1g.6.8 Spectraldensityestimatesof particles representing capclin, plotted as a

function of frequency (bandwidth O.oI, centred, normalized). Graphsare

particles positions at time stepsa) 0, b) 2000, c) 4000, and d) 6000. Swath width

wasset at 20 m. Periods (m) are shown on upperX axis.
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Fig. 6.9 Spectraldensity estimatesof particlesrepresenting capelin, plotted as a

functionof frequency (bandwidth 0.01, centred, normalized). Graphsare

particles positionsat time steps a) 0, b) 2000,c) AOOO, and d) (j': ~O. Swathwidth

was reducedto 10m. Periods(m)are shownon upperX axis.
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1982, 1986; Jacobson 1990). Thesemodels can be classifiedas analytic or simulation

models. Analyticmodels are continuous in timeor space but are restricted in the

numberof possible interactions between model components. Okubo (1986)reviews

analytic models of animal grouping, including schooling by fish. Simulationmodels

permit a wide array of interactions between modelcomponents but use discretelime

and spaceincrements. Sample resolution in simulationmodels is determinedby the

temporalor spatialdimensions of cells in the model. Simulation models are frequently

usedwhen manipulative experimentsare not logistically feasible (e.g. Thompson et al.

1974), Simulated resultsare compared toempirical observations to evajua'e

understanding of processesthai createpatterns(e.g. Levinet al. 1989; Roseand

Leggett1990). Mismatch of simulated andobservedresults indicates potential research

areas. Simulation models are also usedto evaluateaccuracyand precisionof sampling

gearand surveydesigns(e.g. Wiebe 1971; Fiedler 1978).

In this study. spatialvariancepatternsof simulatedcapelin distributions wcre not

sensitive to a 50% reduction in sample transectwidth. Application of this result to

acousticsurveydesign meansthat abundance estimatesand the resulting spatial variance

descriptions of aggregated organismsare notoverly sensitiveto transducer beamangle.

Butcomparison of a reduced swath width in a single transect does not indicate how

precision of an abundanceestimatemaybe affectedby the number of transectssurveyed

(e.g. Smith 1978) or the designof the survey(e.g. Fiedler 1978). Abundanceestimates

basedon the samplingof naturally distributedpopulations are subjcct to errors that may

reduceaccuracyor precision of estimates. Precision is potentially affectedby organism

spatial distribution and variability in thesampling technique (ray lor 1953; Wiebe1971;
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Cramand Hampton 1976). Fiedler (1978) found that patchy distributionsof anchovy

(Engrau1iJmordtu) and survey sampledesign can bemajor sources of error in

population estimates.

Simulationmodel resultsdemonstrate that shoaling and schoolingincreasespatial

variance of mobile organismsat intermediate scalesand decreasespatial variance at

small scales relative to spatial variance patterns of randomly distributed particles.

Slopes of spectral density plots were tess thanthose of passive particlesat intermediate

scales and similar at small scales (cr. Denman and PoweJl1984j Mackaset al. 198~) .

Slight negative slopesover a broadrangeof scales and a rapiddecreaseat smaller

scalesis consistentwith average spatial variance patterns in other mobile aquatic

organisms: Antarctic krill (Weber et aI. 1986; Levinet al. 1989), fish (CI\apterJ, 4;

Schneider 1994a), and marine birdJ (Chapter 4). Reduced slopes at intenn ediate scales

is consistent with the hypothesized injectionof kineticenergy due 10the convergence of

individualsinto shoals and coordinated movement or schools.

Three tines or evidencesupport the hypothesis that spatial variancein mobile

aquaticorgar,ismscan begenerated by kinematic processes at local scalesand

lranSrerr.:d 10 larger scales. One line or evidence usedscalingarguments to showthat

for organisms greater than several centimeters in length, kinetic energydue 10

locomotion exceeds that due 10 flowor thesurroundingfluid (Schneider 1994a). This

create!spatialvarianceat the spatial scaleor animalmovement. Another line or

evidenceis the results or computer simulationsthatdemonstrate thai largescale spatial

structure in populations can result frommovement and interactions or organisms at

small scales(Satch 1989, 1990; Hassellet at 1991). This generatesspatial varianceat
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the scaleof an aggregation. A third line of evidence is local interactionby organisms

with largescale fluid structures (water or air) resultingin movement and convergence

of organisms at large spatial scales. The use of timed or directed motion to interact

with fluid structures has been observed in zooplankton(Cronin and Forward 1979:

Frank and Leggett 1983), fish (Harden-Jones et al. 1978; Amold and Cook 1984;

BoehlertandMundy 1988),and marine birds (Richardson 1978; Btomqvist andPeters

1984). Therefore, spatial variance of mobile aquaticorganismscan begeneratedby

several kinematic processesat different spatial scales: formation of shoals independent

of fluid motions, polarized movements of schools. and migration resulting in large scale

population convergences. Spatial variance generated by shoaling , schooling , and

migration at small scales potentially generateslarge scale spatial variance in mobile

aquatic organisms.

Application of this particle simulator is not limited to examining scale-dependent

spatial varianceof mobile, aquatic organisms. Tailoring model parameters to any

species of interest facilitates theoretical predictionof shoal sizes, shoal distribution, and

inter-shoaldistances (d. Nero and Magnuson1992). Addition of a second setof

particles and rules of interaction enablesthe simulation of predator-prey interactions

and the calculation of potential encounter rates of predators with prey (cr. Schneider et

al. 1987). Adding two dimensional equations of motion (cf. Dutton 1976) wouldenable

the calculation of passive organism spatial variance (e.g. phytoplankton, fish eggs) and

predator-prey interactions in known flow regimes. The influence of fluid motions011

the spatialvarianceof organism density is expectedto increase as organism mobility

decreases(cf. Chapter 2).



131

Appendix 6.1 List of symbols

N numberof fish.

fish indexnumber. Valuesrange from 1 to N .

fish index number. Valuesrange from 1 10 N - I

r j positionof fish t. Dimensions are length.

'F;'; mass specific net force on fish l duetoall other fish J. Dimensions are

LT"1.

A massspecificattractiveforceat unit distance. Dimensions are LT·2.

R massspecificrepulsiveforceat unitdistance. Dimensions are LT",

exponent ofattraction.

exponentof repulsion.

velocityofthelth fish. Dimensions are LT·I,

accelerationof the tt h fish. Dimensions are LT·' .

quadratic frictional force opposingthemotion of fish t • Dimensionsare

MLT·' .

~(t ) massspecificrandomforceactingonthei th fishat time t . Dimensions

areLT" .

P I density of fluid. Dimensions are ML.J.



132

A surface area offish. Assumed lobe 40 % of length squared. Dimensions

are La.

CI drag coefficient. Dimensionless number.

c friclionparameter. Dimensionsare ML ·I.

magnitude of random force $;.

relaxation time constantdetermining the period of the random force ~ .

Dimensions are T.

~ ( ! )

"
p

randomvector ~ .

nondimensional unitdistance.

nondimensional time increment.

timeincrement constant. Dimensionsare T.

distanceincrementconstant. Dimensions are L.

nondimensional constantof repulsive force.

ncndimensionalconstant of frictional force.



Chapter 7. Spatial Variance in Ecology

7.1 Introduction

The investigation of spatial varianceis nearly a centuryold. During this time the

concepthas evolvedfrom being treatedas a statistical nuisance(Cassie 1963; Steele

1976) to being recognizedasa biologicallyimportantquantity(Huffaker 1958; Lasker

1975;Platt andHarrison 1985). Concomitant with this change was the realizationthai

observed patterns of spatial variancearedependent on the scale of measurement.

Recentadvancesin computinghardware(speedand memory), the introduction of

spatially explicitsoftware(e.g. Geographic Information Systems), and a large increase

in scale-sensinvestudies(e.g. Wiens 1989; Mengeand Olson 1990; Holling 1992;

Levin 1992)shouldaccelerate the understandingof spatialvariance patterns in

biological quantities suchas density, mortality, andrecruitment.

The dependence of spatial patterns on measurement scalewas first investigated in

agricultural experiments. To improve statistical control in agricultural uniformity

trials, a varietyof plotsizeswere usedto isolate the 'best' scale (Mercerand Hall

1911). Results of theseexperiments werethen usedto developan empiricalrelation

between plotsizeand variability among plots (Fairfield Smith1938). Characterizing

spatialvarianceas a function of plot sizewaslaterapplied10naturallydistributedplants

usingnested(Greig-Smith 1952)and contiguous (Kershaw 1957)quadrats.

Development in theanalysis of scale-dependent varianceoccurredin thefollowing

twentyyearsbut four contributions in 1978consolidatedtheconceptof scalein

ecolo1;Y. Plrst, Smith(1978)explicitlyrecognized thescale-dependence of
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measurement and stressedtheimportance of choosingan appropriate measuring

frameworkrelative 10theorganismof interest. The secondcontribution was a proposal

by Shugart (1978) that the spatial and temporal range of biologicalquantities ate

dependent on its level of organization. This introducedSimon's (1962)concept of

hierart hy to ecology. Haury et al , (1978) adapted a schematicdiagram by Stommel

(1963) to show how the variance of a biological quantity is linked to the spatial and

temporal scalesof physical processes. Steele (1978b) extended the linkage of spatial

and temporalscale to include the nIUSof an organism.

This chapter reviewsthequantificationof spatialvariance at a single scaleand

then as a functionof scale. I summarize progress in theanalysis of spatial variance and

conclude by speculating where current analyticallUndsarc headed.

7.2 Spatial var iance at single scales

Certainly themost common use of a variance is to measurethe precision of a

mean. Variance $ 2 of a quantity x is a measure of dispersion andis definedas the

averagesumof squared deviances froma sample mean x:
(7.1)

1be varianceof a quantity is usedto estimateconfidence interva lsof sample meansfor

ecological variables. What is not usually considered when making these calculations is

thatthe magnitude of a variance is dependenton the spatial and temporal scaleof

sampling.

Another common useof variancein ecology hasbeento quantify the degree to
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which organismsare aggregated. The most commontechniquewas to compare an

observed index of aggregation to an expectedvalue under the assumption of

randomness. Theseindices were largely basedon varianceto mean ratios (Fisheret al.

1922; Clapham 1936; Blackman 1942). Expectedvaluesweretypically calculatedfrom

a Poissondistribution (i.e. events are rare and random occurrences). The expected

value of the varianceis equal to the mean, and hence the ratio of the variance to the

mean is expected to beunity. Attributes ora "perfectcoefficient- {i.e. index) were

compiledby Taylor (1984)whosupplemented those listedby Green (1966) and

Lefkovitch (1966). Curtisand Mcintosh (1950) demonstrated the dependence of

several indiceson measurement scale. Patiland Stiteler(1974)speculatedthat variance

10 meanratioswerea function of measurement scale, bUIdevelopedthe idea no further.

A chronologie detailing of the development of varianceto meanindices of aggregation

and their equivalencescan be found in Pielcu (1969), Ripley (1981), and Greig-Smith

(1983) .

Morisita (1954. 1959a) developed an index J I basedon Simpson's (1949)

measureof diversityx ,

(7.2)

where n l (i "" 1.2 . 3•.•.• q ) is the number of individualsin q quadrats and N is

the totalnumber of individualsobserved. Morisita (1959b)recognized the dependence

of variance to meanindiceson measurement scale and specifically designed JI to be

independentof sample resolution. Morisita's indexcomparesdensityvariances of
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organisms among patches. Values of theindex are independentof sample size as long

as quadra t sizes are smaller than patches. Ind ex values areless than 1 in regular

distribution s, approach I in random distributi ons. and exceed 1 in con tagious

distributions. Palil and Stiteler (1974) caution that lhis Indexassumes sample quadrilts

occur within large patches andmat the distribution of organismsis randomor regular

withinpatehes.

In an attempt to relate spatial distribution to density-dependent behaviour. Lloyd

(1967) developed an index of aggregation that measures meancrowding m relat ive to

afocalcrganism:

17.3)

An index of patchincu was fonnedby the ratio of meancrowding m to average

abundance :r. Uoyd (1967) usedtheequivalence o f m to J. 10 clai m thai the mean

crowdi ng index m wasalso independent o f sample s be,and therefore quadrat size

could be set at a spatial scale equivalent to the study organism's 'ambit' . lwao (1968,

1970) linearly regressed m on x and used theintercept a as an ind icator of

aggregation size. Confusionover assumptionsof the method have resultedin

inappropriateconclusions when applied to field data (e.g. Byerly er at. 1978; Gutierrez

et al. 1980).

As an alternative to developing an index from c' variance to mean ratio, Ta ylor

(1961) described !.hevariance of a quantity as a functionof the mean. Taylor' .' Power

Lawstales that variancein the local density of many species x is proportional to the
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meandensi ty X . raised to anempiricallydetermined exponent11:

Var (x ) i!l X ~ (7.4)

Theexponent (3 is usedto quantifythedegree ofaggregationin a population. A Il

valuenear 0 indicatesa regulardistribution, a value equal10 1 indicates a random

distribution,and a value greaterthan I indicatesan aggregateddistribution. The filof

this relationhas beencheckedin a diverse set ofpopulations (e.g. Taylor 1961; Taylor

et al. 1978) and shown to requirespecial treatment at lowmean abundances (Taylor and

Woiwod 1982; Routledgeand Swartz 1991). Taylor andTaylor (1977) postulated that

thisrelation results from the balance of attractive and repulsive behavioursamong

individuals that areattempting to maximize resourceconsumption. This hypothesiswas

questionedby Andersonet aI. (1982) whoshowed that the relationship between the

varianceandmeandensitycanarisefrom stochasticdemographics, rather man complex

behaviours.

The detectionof a general relationbetweenthe varianceandthe mean of a

population retains il~ appeal. Routledge and Swartz (1991) advocate the use of

Bartlett's (1936)quadratic relationship(see below) overTaylor's Power Law to model

thevarianceas a function of themean. In response, PerryandWoiwod(1992)

comparethefit of quadratic, power, splitdomain(Woiwod andPerry 1989), and

generalized linear models (McCullaghend Neider 1983). Usinga ratio of deviances,

theyfound that Taylor's power relationshipandthe generalized lineaemodel were the

bestfitting models. The generalizedlinear modelhas theaddedadvantageof not

requiringstationary variance.

A sixthmethodto quantify spatialvariancein abundance ata single scale is the
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use of theparameter k from the negative binomial distribution (waters 1959). The

application of k as an index of dispersion wasadopted fromBartlett's (1947)general

expression of variance:

(1.5)

where c is a regressionconstant. Low valueso f /..: indicate an aggregateddistribution

while highvalues are indicativeof a more random distribution. The maximum

likelihoodestimate of k: is foundby iteration or numerical maximization(Ripley

1981). Resultsfrom anaphid densitystudy (Anscombe 1948)instigatedan

unsuccessful search by many ecologists for a constant k value among populations. If

found, a robu st index of aggregation such as k could be usedto compare population

distributionsat different locations or times. Kuno (1968)andHill (1973) proposed that

random removalof individualsdoesnot change observedpatterns or thevalueof k.
Pielou (1969) provideda proof to show that this is true only when theoriginal

populationhas a negativebinomialdistribution. Even this result doesnot apply to

count data(Ripley 1981)becauseCOUIit,<:of organisms can notbe less than zero. A

random thinning of individuals lowers the mean, creates zerocounts, eliminatespatches

of organisms, and changes the variance. Without all increase in sampleresolution to

compensate for the increasednumberof zerosdue to thinning, spatial variancewill

increaseat small scales (Chapter 4).

At the sametime as these empiricalmeasures were beingproposed, there were

continuingattempts to usetheoretical frequency distributionsto describespatial

variance. Thi s line of research hasbeen reviewed by Rogers (1974), Douglas (1979),
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and Greig-Smith (1983). Motivations (or fitting theoretical distributions 10empirical

observations include population descriptionwith a limited number of panuneters and

interpretation of parameter values (or clues to processes thai determine spatial structure.

Thenegative binomial distribution wasone of the first theoretical distributions used in

ecology (Student 1907j Greenwoodand Yule 1920). It is commonly used to describe

thedegreeof aggregationin aquatic organisms(e.g. Taylor 1953; Houserand Dunn

1967), despite criticisms of its biological basis (Williams 1964). The P6lya-Aeppli

(Nlya 1931), Neyman A, B, C (Neyman 1939), and Thomas double-Poisson (fhomas

1949)frequency distributions all assume a Poisson processof clusteredorganismsbut

differ in assumptions concerning the distribution of organisms within clusters.

Comparisons of negative binomialdistributions 10 other distributions based on Poisson

processes have concludedthat the negative binomial distribution is usually the most

applicable theoretical frequencydistribution,but no single frequencydistribution is

applicable to all .~ata (Bliss 1941: McGuireer al. 1957; Brownand Cameron 1982).

Thedependenceof spatial variance on scale of measurementhas restricted the

applicationof theoretical frequencydistributions to organislT'density data. Sample

resolution was found 10influence the fit of any theoretical frequencydistribution

(Numataand Suzuki 1953; Iwata 1954; Pielou 1957) and to affect the subsequent

interpretation of spatial variance patterns, Altering sample resolution may alter the fit

of a theoretical frequency distribution to the data, or increase the numberof

distributions lhat fit the data equally well. Ambiguous identification of appropriate

theoretical frequency distribution modelslimiL~ their use as descriptive summaries, or

as clues to identifying potential variance generaling processes.
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Thecriticism thatmeasuresof aggregationare dependenton scale of measure

applies to all methods of quantifying spatial variance of organismdistribution at a single

scale. Therefore, co mparisons of aggregation indices among populations are only valid

if made at the same spatial scale. The next logical step was to examine spatial variance

in populationdispersion as a functionof scale.

7.3 Spat ial variance at several scales

Pattern analysis (Greig-Smith 1952) was the first formal method to evaluate spatial

variance as a function of scale. Organisms arecounted in a grid of contiguous

quadrats, with the resolution of the grid decreasing by a (acto r of two at each count

iteration. The mean square froman analysis of variance is then plotted againstsample

resolution(ie. inverse of quadrat size). If thedistribution of organisms is randomover

the entire grid then the meansquareddeviationis independent of resolution and the

variancewill tqual themean. A patchy distribution will producea peakof the mean

squareat the quadrat size of a patch. Kershaw(J9S7) extended this method by using

linear transectsof rectangular, contiguous quadrats rather than a grid of square, nested

quadrats. This alterationof quadrat shape and layout enabled sampling of larger scales

with less effort and facilitated analysis alongobvious environmental gradk-us .

Kershaw's transect approach was usedto examine spatial variance in numerous plant

communities (for examples see Greig-Smith 1983) and adapted to other measures of

spatial variability (e.g. Morisita 19S9a; Iwao 1972). Pattern analysis has the advantage

over earlier methods of explicitly including spatial scale in the analysis. The method

wasused to identify the scaleof maximum variability in any quantityof interest. It can
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beused to set the sampling scalefor manipulative experiments, and to provide clues to

variancegenerating processesby matchingdominant scalesof biologicalvarianceto

physicalprocessesat the samespatial scale.

Ploltingmeansquaresas a function of quadratsizedoeshavelimitations. Pielou

(1969)cites five drawbacksof Greig-Smith's method: 1. calculated mean squareslU'C

not independent thereby preventing variance-ratio tests, 2. entire sites must be sampled

within a grid (but thisdoes not apply to transects), 3. observedpeaks in plots are

influenced by shape of samplequadrat (rectangular or square), 4. intermediate quadrat

Si7.eS between quadrat size doublings are not assessed, and 5. distributionalpatternsof

thepresenceor absence of organisms are indistinguishable in meansquareplots. An

important drawbackomitted by Piclou was the sensitivityof meanand variance

estimates to size of the originalquadrat and the location of sample grid (Skellam 1952).

Usher(1969)and Hill (1973) proposedtwo different techniques to compensatefor the

dependence on samplestart location but thesehave not beenwidelyused. Ripley

(1981)and (;reig-Smith (1983)provideadditionalexamplesand detail studiesthat

examine othercaveatson pattern analysis.

One method th..t simultaneouslyexamines a wide rangeof spatial scalesand is not

sensitiveto sample start location is spectralanalysis. The varianceof a continuously

recorded variable (e.g. organism density), is represented by a set of sine and cosine

waves summedover a range of measurement frequencies. The resulting spectral

density estimatesare plotted as a function of frequency, the inverseof spatialor

temporal scale. Peaksin spectraldensity plOISare interpreted as dominantscalesof

pattern. This technique has been widely used by oceanographers and limnologists to
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examine scale-dependentspatial variance of passivetracers of the fluid (e. g. surface

water temperature - Fasham and Pugh 1976; Richerson er aI. 1978) or organisms in

fluid environmenlS(e.g . phytoplankton - Platt el al. 1970; Powell et al. 1975). The

equivalenceof spectralanalysis to other indicesof aggregationis shownin Ripley

(1981) and Schneider (l 994b).

Spectraldecomposition techniques are not ideally suited10 the analysis of patchily

distributed, rare organisms. Continuous processes arc well described by sine and

cosine functions but the non-Gaussian character of point processes, such as mobile

organism counts, limit the use of spectral models (Bartlett 1975). Biological density

data rarely provide long temporal or spali41series and often violate other assumptions

of regularsampling intervals and stationarityof means. The partitioning of variance

among frequenciesby spectral analysis is sensitive to low means (Fasham 1978)and to

the presenceof zeros in count data (Chapter 4). Coherence can belowered by random

sampling error in a Poisson process(Mac:kas1977), and does not adequately reflect

non-linear relationships between two variables (Starand Cullen 1981). Despite these

limitations, spectralanalysis is at least as reliable as other methods(Ripely 1981) and

may beused to demarcate domains of spatial variance (Chapter4).

Recently there have been several attempts to predict change in spatial variance at a

single scale and across scales. Predictions of change in spatial varianceare formulated

using biological or physical processes that are capable of generating or reducing spatial

variance in the quantity of interest. The ability to predict change in scale-dependent

spatial variance is important in several ecological contexts including: effects of

predatorson the stability of prey populations (Pacala et al . 1990; Hassellet al. 1991),
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effectsof habitat fragmentationon populationstability(Kareiva 1990);

density-dependenteffects of crowding on reproduction and growth (Stephen 1929;

Connell 1961), and the effects of predator searching(Salt 1974) and encountering

resources (Possingham 1989). Schneider(1992)foundthai changes in spatialdensity

variance of bambooworms Clymenella torquaJa could be predicted from the foraging

dispersion of an avian predator, the short-billed dowitcher Limnodromus griseus, at the

spatial scale of intertidal flats (0.2-3 km1) but not at the scale of plots (I hal within

flats. Similarly, Schneider and Bajdik(1992) attempted to predict changes in spatial

variance in countsof gelatinous zooplankton basedon wind-induced Langmuir

circulationcells. They found that variance in countswas proportional to spatialscale

during a windevent, but the magnitudeof changewas not easily predicted. These two

examplesillustrate that predictingchangesin spatialvarianceis difficult,and that

methods to predictchanges in spatialvarianceacross scales requiredevelopment.

7.4 The analysts of spatia l var iance

Progressin assessingspatialvarianceof ecological quantitieshas been markedby

transitionsfromverbal acknowledgement tographicalmodels, and fromgraphic to

formal modelsof patternand process. Transitions from verbal to graphicaland formal

modelshave not been synchronous in all areasof ecology. Howeverawareness of

spatialvarianceis rapidly spreading. A computer scanof Currentconunuusing

keywords 'spatial' and 'variance' in June 1994 resultedin 371 titles from 225different

journalspublished sinceSeptember 1992.

A majoradvancein the analysis of spatial variancewasthe recognition that



144

measuresof variancedepend on the scale of observation. This represented a change

from treating variance as a statistical detail to treating it as a biologically important

quantity (Steele 1976). One response to this realization was to re-analyze data al a

different scale and compare thesecond set of results to the original. In aquatic systems,

Fairweatherand colleagues (Fairweather er al. 1984; Fairweather 1988) and Schmitt

(1982, 1985) both found that the sign of association between predator and prey changed

from negative 10 positive when the scale of observation was increased. A second

response has beento report the analysisof biological quantities at two or morescales

(e.g . Pmel-Alleul and Pont 1991; Ives et al. 1993). This approach increases the

number and range of observation .scales. It does not indicate if observations were set at

scalesof maximum spatial variance.

The analysis of spatially indexed data has matured from verbal descriptions at

discretescaleslOgraphic representations of spatial varianceas a continuousfunction.

This was initiatedby the development of patternanalysis (Greig-Smith 1952) and later

expanded to includeother measuresof spatial variance plotted as a function of scale.

The computational burden of this approachhas been significantlyreducedwith the wide

availability of statisticalsoftwarepackages. Large, spatially explicit data sets are

routinelyanalyzed using geostatistical techniques (e.g. Rossiet a!. 1992) which are

often incorporated in geographic information systems(GIS). In oceanography spectral

analysisis commonly used10 describe scale-dependent biological pattern in the

frequencydomain(e.g. Mackas and Boyd 1979; Weberet al . 1986). The frequency of

maximumspatialvariance can then beconvertedto a length scalefor biologicalor

physicalinterpretation.
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The most important recent developmentl n the characterization of spatial variance

has been the idea of formally expressingbiologicalpauem and processes that generate

varianceas a functionof scale. Empiricalindices of spatial variance (e.g. variance to

meanratios,Lloyd's meancrowding index rn , Moristta's /6 ) that wereimplicitly

calculatedat single scales are now explicitlycalculatedas a function of scale (e.g.

SchneiderandPiatt 1986). Similarly, theexponent fl from Taylor's PowerLaw and

slopes of spectral density plots can be used to quantify changes in spatial variance with

changesin scale. I could not findany research report in whichparametersof a

theoretical frequency distribution were expressedas a function of scale in an equation

or as a graph. To provide an example, the parameter k from the negative binomial

distribution could beestimated using momentratios (Ord 1972) and expressedas a

function of measurementscale L:

k =a LIl (7.6)

Estimating It at different scales is accomplished by grouping contiguous values in

increasing quadrat sizes or comparing values over larger separation distances. This

relation could be used to calculate an expected variance at one scale based on an

observed varianceat another scale. Alternatively, the exponent ~ could also be used

as an index r f Ihe dependence of k on measurementscale. If 13 equals 0 then k is

independentof spatial scale. As the value of [l approaches I , k becomes directly

proportional to the scale of observation L .
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7.5The nextsteps

The trciImentof a1e-depcndentspatial variance has evolvedsinceib m:ognitLoo

as a biologically important quantity. Increased awmoessof theimportance ofscaJcin

themeasurement of spatial or temporalvariance willensurethat thisprogress

continues. Further development of quantitativetools willhelp standardizetheanalysis

of spatial variance. Application of newtechniques willimprove sample design and

subsequent dalaanal)'3is.

A simple and usefulstandardizationis the explicittreatment of measurement scale

in sample design. Explicit treatment eliminates anynoveltyassociatedwith scaleand

obligatesthereportingof all measurement scales in results. A second developmentin

thestandardization of surveydesign would be theuseof scale-depcndenlspatial

variance 10 determine the resolution andnumber(or frequency) of samplesneeded10

obtain a pre-determ.inedprecision of parameter estimates. If the varianceof a quantity

is dependent onscaleof measurement thenprecisionof parameterestimatesalso

dependsonmeasurement sc:aIe. Onemethod to maximize precision of parameter

estimates j•.~ confinesampling to establisheddomains of spatialvariance(Chapter 4).

Spatialvariance domainsminimize changes inspatial variance acrossscaJes whkh

maximizesprecisionof parameterestimates withindomains, If domainsof spatial

varianceareverysmallthen the rangeof sampling should be set to minimizethe rateof

change in spatialvarianceacross spatialscales. Minimizing the rateof change in

spatialvariance, by selecting a narrow sample range,abo maximizes precisionof

parameter estimatesand potentially increases theabilitytotheoreticallypredict sources

of spatialvariance.
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Overall,the standardization of analytictechniques willenhancecomparison of

patternand processamongdiverse ecosystems. A statisticaltool that analyzes

continuousor discretedata types across a wide range of spatialand temporal scales

would reduceproblemsassociatedwith low meansand zeros in count data (Chapter4)

and simplifycomparisons of patternsobservedat differentlocationsor scales.

Legendre and Fortin (1989) provide a comprehensive summary oftcehniques used 10

analyzevariance in organismdistributionsas a functionof locationor as a functionof

scale. Despiteambiguityin their use of geographiclocationand S4latial scale. they

demonstratethe feasibilityof explicitly includingspatial variables(location, sample

resolution) in theanalysisof organismdistributions. By including measurement

variables,thedependence of observedpatternson measurement scalecan be tested

directly.

The mostchallenging taskahead is to develop the theoryand quantitative methods

neededto predictchangesin spatialvarianceof biologicalquantitiesas a functionof

scale. Successful completion of thisgoal requires: numerical methodsthatanalyze

continuous anddiscretedensitydata, additional quantitative descriptionsand

comparisons of scale-dependent variancepatterns,toolsto quantifythe relative

importance of variancegeneratingprocesses, and furtherattemptsto predictchangesin

spatialvariance. In combination, theseelements will solidifythe theoryof spatial

variancein ecology.



Chapter 8. Summary

Capelin and Atlantic cod in coastal waters of NC\-foundlandwere selected as

being representative of interacting, mobileaquatic organisms. Relative density d3ta

from a seriesof hydroacoustic transectswereanalyzedto examine spatial varianceas a

function of scale. Theore ticaland empirical results of lhis study have increased

knowledge of scaIe-dependent spatialvariance in mobileaquatic organismsand

provided insight 10 the biological processes that generate these patterns.

The application of dimensionless ratios in rate diagrams is one of the first methods

to quantify and summarize the relativeimportance of biological and physical processes

thatgeneratescale-dependent spatial and temporal variance. This procedurecan be

applied to organisms in aerial, aquatic, or terrestrial environments and used 10compare

variance generating processes among diverse ecosys tems. Rate di3grams prov ide an

alternative 10 inferring variance generating processes from scalesof maximum

biological variability.

Capelin and codrelative density variance wasquantifiedand compared to that of

planktonand marine birds over four orders of spatial magnitude at two different time

scales. Datamanlpulaticnsand computer simulations were suecessfully used to

demonstratethat shoaling and schooling, two biological processes, influence

intermediate and smail scalespatial variance in all mobile aquatic organisms.

Aggregative behaviour and organism locomotion were previouslyhypothesized to

account for differences in spatial variance between passive tracers and mobile

organisms, but were not quantitatively examined.

Energetic calculations verified the absence of a maximum scale of spatial
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association between cod as predator and capelin as prey . Previous work on codand

capelin attributedpoor spatialassociationto species-specific thermal responsesto wind

induced upwelling. This did not explain observed results . An alternate explanation is

lhat cod are not constrainedby physiological requirements to aggregate relative to their

prey. In general, aggregative responses by aquatic predators do notoccurat aUspatial

scalesandmayonlyoccurover a limitedrangeof scales. Numerousinteraction studies

have reportedcharacteristicscalesof spatial associationbetweenmobile predatorsand

their prey . These conclusions are typicallybased on analyses of single or a limited

number of transects,implicitlyrepresentingshort temporalscales. Comparisonof

results amongthese studiesis hamperedby failureto explicitlyreport spatial and

temporalsampling scales.

A reviewof spatialvariance research revealed that numeroustechniques have

beenused to quantify variancein biologicallyimportantquantities. Howevera limited

numberof quantitativetools are available to evaluate processes thatgenerate spatial and

temporalvariance. As an alternativeto simplystating that scale is important, essential

researchgoalswere identifiedand a potentialresearchprogramwas proposed.



Referenc es

Aggett, D. Gaskill, H.S. , Finlayson, D. , May, S.• Ca mpbell, C. and Bobbitt. J. (Lear ,

W.H . and Rice,J.C . (eds.» . 1981. A study of factors influencing availability of

cod in Conception Bay, Newfoundland, in 1985. Can. Tech. Rep. Fish. Aquat.

Sci. 1561.

Akenhead, S.A. , Carscadden, 1•• Lear, H., Li lly , G.R. and Wells. R. 1982.

Cod-eapelininteractions off northeastNewfoundland and Labrador, pp. 141-14R.

In Mercer, M.e. (ed.) Mutt/species approaches lo fisherles managemenladvtce.

Can . Spec. Publ. Fish. Aquat. Sci. ~9.

Anderson, R.M. and May, R.M. 1985. Helminthinfections of humans. Adv. Paraaltcl.

24: 1-102.

Anderson , R.M. , Gordon, D.M ., Crawley, M.J. and Hassell, M.P. 1982. Variability

in the abundance of animal and plant species. Nature 196: 245-248.

Anon. 1980. Nonhwest Atlantic Fisheries Organization, ScientificCommercial S Doc.

801ll11. 31p.

Anscombe, F.J. 1948. On estimatingthe populationof aphids in a potato field. Ann.

Appl. Biul. 35: 567·571.

Anthony, P.O. 1981. Visulllcontrast thresholds in the codGadusmomua L. J. Fish

BioI. 19, 87-103.

Aoki, I. 1982. A simulationstudy on the schoolingmechanism in fish. Bull. Jap. Soc.

Sci. Fish. 48, 1081-1088.

Aolci,l. 1984. Internaldynamics of fish schools in relation 10inter-fishdistance. Bull.

lap. Soc. Sci. Fish. .so,751-758.



lSI

Aoki, I. 1986. A simulation experimenton individual differences in schooling

behaviour of fish. Bull. l ap . Soc. Sci . Fish. 51, 1115-1119.

Arnold , O.P. and Cook, P.H . 1984. Fish migration by selective tidal stream transport:

first results witha computer simulation model for the Europeancontinentalshelf, pp.

2ZJ·261. In McCleave. I.D., et at (cds.) Mec1umismsof Migrarionin Fishes.

PlenumPress,New York.

Aronson , R.B. 1992. Biology of a scale-independent predator-prey interaction. Mar.

Bcol. Prog. Ser. 89: 11-13.

Atkinson, 0.8. and I.E. Carscadden. 1979. Biological characteristicsof inshore

capelin, Mallo/usvil/osUJ (MOiler), June-July 1m . Can. Tech. Rep. Fish. Aquat.

Sci. 881.

Bailey, D.J.F., Able, K.W. and Leggett, w.e. 1977. Seasonal and vertical distribution

and growth of juvenile and adult capelin (Mallorus viIlosus) in the St. Lawrence

estuary and western Gulf of 81. Lawrence. J. Fish. Res. Board Can. 34:

2030-2040.

Bainbridge, R. 1957. The size and shape and density of marine phytoplankton

concentrations. BioI.Rev. 32: 91-115.

Bartlett, M.S. 1936. Some notes on insecticide tests in the laboratory and in the field.

Supplementto 1. R. Statist. Soc. 3: 185-194.

Bartlett, M.S. 1947. The use oftran sfonnations. Biometrics 3: 39·52.

Bartlett, M,S. 1975. TheSill/Is/leal analysis of spalial pauem, Chapman and Hall,

London.



152

Beamish, P. W.H. 1978 . Swimming capac ity , pp. 101· 187.10 Hoar, W.S. and Randall ,

0 .1. (cds.) Fish Physiology. Academic Press, New York.

&nyman , A.A . 1992 . The:origin s and evolutio n ofpredator-prcy theory. Ecology 73 :

153Q.1535.

Bevenon. R.I.H. and Holt, 5.1. 1951. On the dynamics of exploited fish populations.

Fish. Invest. London 1.

Bigelow, H.B. andSchroederI W.C. 1963. FamilyOsmeridae. In Fishes of the Western

Nonh Atlantic. Mem, Sears. Found. Mar . Res, 1(3) : 553-597.

Bigelow, H.B. , Lillick, L,C. and Sears, M. 1940. Phytoplankton and planktonic

protozoa of the offshore watersof the Gulf of Maine. Part t. Numerical

distribution. Trans. Am. Philos. Soc. N.S. 31: 149·191.

Bishop, C.A. , Murphy, BoF. , Davis, M.B., Baird, I .W. and Rose. G.A. 1993. An

assessmentof the codstock in NAFO Divisions 2J+3KL JI,Iorthwest Atlantic

Fisheries Organization Scientific Council Report 93/86.

Blackman, G.B. 1942. Statistical andecological studies in the distribution of species in

plant communities. I. Dispersionas a factor in the study of changes in plant

populations. Ann. Bot. , : 351-370.

Blaxter, I .H.S. 1967. Swimming speedsof fish. FAO Conference on Fish Behavior in

Relation to FishingTechniques and Tactics Review Papers3, 1-32.

Bliss, C.1. 1941. Statisticalproblems in estimatingpopulations of Japanesebeetle

larvae. I . Econ. Entomol. 34: 221-232.

Blomqvist, S. and Peterz, M. 1984. Cyclones and pelagic seabird movements. Mar.

EcoI. Prog. Ser. 10, 85-92.



153

Boehlert,G.W. and Mundy, B.C. 1988. Rolesof behavioraland physicalfactors in

larval and juvenile fish recruitment to estuarine nursery areas. Am. Fish. Soc . Symp.

3,51·67.

Bradbury, R.H., Reichelt, R.E. and Green, D.G. 1984. Fractalsin ecology: methods

and interpretation. Mar. Bcol. Prog. Ser. 14: 295-296.

BredcrJr., C.M. 1954. Equations descriptive of fish schoolsand other aggregations.

Ecology 35: 361·370.

Brett, l .R. 1973. Energy expenditure of sockeye salmon, Oncorhynchusnerka, during

sustainedperformance. J. Fish. Res. Bd. Can. 30: 379-387.

Brett, l .R. andGroves, T.O.D. 1979. PhysiologicalEnergetics. pp. 279-352. In Hoar,

W.S . • Randall, OJ . and Brett, l .R. (eds.) Fish Physiology vel. VII. Academic

Press, New York.

Bridgman. P.W. 1922. Dimensional Analysis. YaleUniversity Press, NewHaven.

Briggs, K.T. 1986.Scales of patchinessin seabirdsoff centralCalifornia. Pac. Seabird

Group Bull. 13: 19-20.

Brown, M.W. and Cameron, E.A. J 98~ Spatial distributionof adultsof Ooenevnus

kuvanae(Hymenoptera: Encyrtidae),an egg parasite of Lymamria dispar

(Lepidoptera: Lymantriidae). Can. Entomol. 114: 1109·1120.

Brown, R.O.B. and D.N. NeUleship 1984. Capelinand seabirds in theNorthwest

Atlantic, pp. 184-194. In Nett1eship, D.N., Sanger, G.A. and Springer, P.F.

(OOs.) Marinebirds:theirfeeding ecology and commercia/fisheriesrelationships.

CanadianWildlife ServicesSpecialPublication.



154

Burczynski, J. 1982. Introduction to the U~~ of sonarsystemsfor estimating fish

biomass. FAO Fisheries Technical Paper 191 (Rev. 1): 49·54 .

Buzdalin, Y.I. and Burmakin, V.V, 1976.0 svyazhi mezbdu temperaturoi

poverxbnosti moryai plotnostyu skoplenii moiviv raioneNyufaundlenda. Trudi

PINRO 37: 57-60.

Byerly , K.F ., Gutierrez, A.P ., Jones, R.E . and Luck, R.F . 1978. A comparison of

sampling methods for some arthropod populations in cotton. Hilgardia 46:

257-282.

Campbell, 1.5. and Winters , a.H. 1973. Some biologica l characteri stics of capclin

(Mal/o/UsviJ/osus) in the Newfoundland area. ICNAF Res. Doc. 73/90,

Carscadden. J,E. 1983. Population dynamics and factorsaffectingthe abundance of

capelin (MallO/us villosus) in the northwest Atlantic. FAD Fisheries Report 291:

789-811.

Carscadden, I.E. and Miller , D.S. 1980. Analytical and acoustic assessment of the

capell n stock in Subarea 2 and Div. 3K, 1979. No rthwest All . Fish. Org. SRC

Doc. 80/13.

Carscadden, I. E. and Miller, D.S. 1981. Analytical assessment of the capelin stock in

Subarea 2 + Div. 3K using SCAM. Northwes t Atl. Fish. Org. SRC Doc. 8114.

Carscadden, J.E., Nakashima , B.S. and Miller, D.S. 1991. Capelin in NAFOdivision

2JK and division 3L. CAFSAC Res. Doc. 91168.

Cassie, R.M. 1960. Factors influencing the distribution pattern of plankton in the

mixing zone between oceanie and harbour waters. N.Z. 1. Sci. 3: 26-50 .



155

Cassie,R.M. 1963. Microdistribution of plankton. Oceanogr. Mar. BioI.Annu. Rev.

1: 223·252 .

Chatfield , C. 1980. TheAnalysIs of Time Series: an tmroduaton. Second edition.

Chapmanand Hall, London.

Chesson, P. 1978. Predato r-prey theory and variability. Annual Review of Ecology and

Systematics9: 323-347.

Clapham, A.R . 1936. Over-dispersion in grass land co mmunities and the use of

statistical methods in plant ecology. J. E~1. 24: 232-251.

Clark, D.S. and Green, I.M. 1990. Activityand movement patterns of juvenile Atlantic

cod, Gadusmarhua, in Conception Bay, Newfoundland, as determined by sonic

telemetry . Can J. Zoot. 68: 1434-1442.

Connell, I. H. 1961. Effects of competition, predation by Thais lapillus, and other

factorson natural populationsof the barnacle Balanus ootanotaes. EcoL Monogr,

31: 61-104.

Cram, D.L. and Hampton, I. 1976. A proposedaerial/acousticstrategyfor pelagic fish

stockassessment. J . Cons. int Bxplor. Mer. 37,91-97 .

Cronin, T.W. and Forward Jr., R.B. 1979. Tidalvertical migration: an endogenous

rhythm in estuarine crab larvae. Science 205, 1020-1022.

Csirke, J. 1988. Small shoaling pelagic fish stocks, pp. "71-302. In Gulland, I .A. (ed.)

Fish PopulcJionDynmnics.John Wileyand Sons, New York, .

Cullinan, V.1. and Thomas, J.M. 1992. A comparison of quantitative methodsfor

examining landscapepatternand scale. Lands. Ecol. 7: 211-227.



156

Curtis.J.T. and McIntosh, R.P. 1950. The interrelation of certainanalyticand

syntheticphylosociological characters. Ecology 31: 434-455.

Cushing, D.H . 1982, Climateand Fisheries . Academic Press, New York.

Cushing,D.H. andTungate, D.S . 1963. Studieson Co/anus patch. J. The identification

ora Co/anuspatch. J. Mar. BioI.Ass. UK. 43: 327-337.

DeAngelis, D.L . 1978. A model for the movement and distribution of fish in a bodyof

water. ORNliTM-6310 . Oak ridge National Laboratory , Oak Ridge.

Delcourt , H.R . , Delcourt, P.A. and Webb , T. 1983. Dynamical plant ecology: the

spectrumor vegetational change in space and time. Quarter. Sci. Rev. 1: J53-175.

Demers, S. and Legendre, L. 1979. Etfetsdesmarees sur la variation circadienne de la

capaclte photosyrnhetiquedu phytoplancton de J'estuaire du Saint-Laurent. J. Exp.

Mar. BioI. Ecol. 39: 87-99.

Demers, S. and Legendre,L. 1981. Mt!lange vertical et capacitephotosynmeuque du

phytoplancton estuarien(estuairedu Saint-Laurent).Mar. BioI.64: 243-250.

Denil, G. 1936-1938. La mecanique du poisson de riviere:qualitenautiquedu poisson;

ses mehodesdes locomotrices; sescapacttes: seslimites; resistancedu fluide; effet

de la vitesse, de la pente; resistancedu scuil. Bruxelles.

Denman, K.L. 1975. Spectralanalysis:A summary of the theoryand techniques.

Fisheriesand Marine ServiceResearch DevelopmentTechnical Report539.

Departmentof Fisheriesand Oceans, Ottawa.

Denman, K.L. 1976. Covariability of chlorophyll and temperature in the sea. Deep-Sea

Res. 23: 539·550.



IS7

Denman,K.L. and Platt, T. 1975. Coherences in the horizontal distributions of

phytoplankton and temperature in the upper ocean. Mem. SOC. R. Sci. Liege 7:

19-30.

Denman,K.L. and Platt, T. 1976.Thevariancespectrum of phytoplankton in a

turbulentocean. J. Mar. Res. 34: 593-601.

Denman,K.L. and Mackas, D.L. 1978. Collection and analysisof underway dataand .

related physicalmeasurements, pp. 85-109. In Steele, J.H. (cd.) SpatialPauemin

Plankton Conununilies. PlenumPress, New York.

Denman,K.L. and Powell,T.M. 1984. Effectsof physicalprocesseson planktonic

ecosystems in thecoastal ocean.Oceanogr. Mar. BioI.Ann. Rev. 22: 125-168.

de Young,B., Otterson, T. and Greatbatch, R.I. 1993.The local and non-local

responseof Conception Bay10wind forcing. 1. Phys. Oceanogr. 23: 2636-2649.

Dickey, T.O. 1990. Physical-optical-biological scales relevant to recruitmentin large

marineecosystems, pp. 82·98. IIISherman,K., Alexander,L.M. andGold, B.D.

(eds.) LargeMarineEcosystems: Patterns. Processes, and Yields. Amer. Assoc.

Advanc. Sci. Publ. No. 90-305,Washington , D.C.

Diggle, P.J. 1990. TimeSeries: a biostatistical introduction. Clarendon Press, Oxford.

Dixon, W.J. 1983. BMDPStatistical Software. University of CaliforniaPress,

Berkeley.

Douglas, I .B. 1979. Analysiswith SturuJard Contagious Distributions. International

Co-operative PublishingHouse.Burtonsville.

Dutton, I.A. 1976. The Ceaseless Wind. Mcflraw-Hill, New York.



IS8

Dwyer , R.L . and Perez , K.T . 1983, An experimental examination orecosyste m

linearization . Am, Nal . 121: 305-323 .

Erikstad, K.Eo, Mourn. T. and Vader, W. 1990. Correlations be tween pdclg ic

dislribution of Com mon and Brunnich's Gutltemots and their prey in the Barents

Sea. Polar Res. 8; 77-87 .

Estrada, M. and Wagensburg, M. 1977. Spectralanalysis of spatial series of

oceanograph ic variab les. J. Exp. Mat . BioI. &oJ. 30: 147·164.

Fai rfield Smith, H. 1938. An empirica l law describing heterogeneity in the yields of

agricult ural crops . J. Agric . Sci. 28: 1-23.

Fairweather, P.G. 1988. Correlationsof predatorywhelks with intertidal prey at

severalscalesof space and time. Mar. Ecol. Prog. Set. 45: 237-243.

Fairweather, P.O. , Underwood, A.J . and Moran, M.l. 1984. Preliminary

investigationsof predation by the whelkMorula marginaiba. Mar. Bcol. Prog.

Ser. 17: 143-156.

Fasham, M.J. 1978. The application of some stochastic processes to the studyof

plankton patchiness, pp. 131-156. In Steele, LA. (00.) Spatial Pauern in Plankton

Communities. Plenum Press, New York.

Fasham, M. l . and Pugh, P.R. 1976. Observations on the horizontal coherenceof

chlorophylla and temperature, Deep-SeaRes. 23: 527·538.

Fiedler, p.e. 1978. The precisionof simulated transectsurveys of northern anchovy,

Engraulismordax, school groups. Fish. Bull. 76, 679-685.



159

Fischer, H. t List,E.J., Koh, R.C.Y., Imberger, J. and Brooks, N.H. 1979.

Dimensional Analysis,pp. 23-29. InMixing in inland and Coastal Waters.

Academic Press, NewYork.

Fisher,R.A., Thornton,H.G. and Mackenzie, W.A. 1922. The accuracyof the plating

method of estimating the densityof bacterialpopulations,withparticularreference

to the use ofThomton's agar medium with soil samples. Ann. Appl. Biol. 9:

325-359.

Ford, c.D. 1976. The canopy ora Scotspine forest; descriptionof a surface of

complex roughness. Agric. Meteorol.17: 9-32.

Fortier, L. and Leggett. w.e. 1982. Fickiantransportand the dispersalof fish larvae

inestuaries.Can. J. Fish. Aqual.Sci. 39: 1150-1163.

Fortier , L. and Leggett, w.e. 1983. Vertical migrations and transport of larval fish in

a partially mixedestuary. Can,J, Fish. Aqua!.Sci. 40: 1543-1555.

Frank,K.T. andLeggeu, w.e. 1981.Windregulation of emergencetimesandearly

larval survival in capelin (Mallo/usvilfosus) . Can. I . Fish. Aquat. Sci. 38:

215-223.

Frank, K.T., and Leggett,W.C. 1982. Coastal water massreplacement: itseffecton

zooplankton dynamics and the predator-preycomplex associatedwith larval

capelin(MallO/usviflosus). Can. J. Fish. Aquat.Sci. 39: 991-1003.

Frank, K.T. and Leggett, w.e. 1983. Multispecies larvalfish associations: accident or

adaptation7Can. 1. Fish. Aquat. Sci. 40, 754-762.

Gerritsen,J. andStrickler, 1.R. 1977. Encounter probabilitiesand community structure

in zooplankton: a mathematical model.J. Fish. Res. Bel. Can. 34, 73-82.



160

Gran, H.H. andB~d. T. 1935. A quantitative studyof the phytoplankton in the&y

of Fundy and theGulf of Maine (including observations on hydrography,

chemistry and turbidity). J . BioI. Bd Can. 1: 279-467.

Grassle.l.F., Sanden, H.L., Hessler, R.R., Rowe, G.T. and McLellan, T. 1975.

Pattern and zonation: a study of thebathyalmegafaunau$ing lhe research

submersible Alvin. Deep-SeaRes.22: 457-481.

Green, R.H. 1966. Measurement of non-randomness in spatial distributions. Res.

Popul. Ecol. 8: 1·7.

Greenwood, M. and Yule, G.U. 1920. An enquiry into the nature of frequency

distributions representative of multiple happenings with particular reference to the

occurrence of multiple attacks of disease or of repeated accidents. J. R. Stat . Soc.

83 : 255-279.

Greig-Smith, P. 1952. The use of random and contiguousquadrats in the study of

structure of plantcommunities. Ann. Bot.Soc. London NS 16: 293-316.

Greig-Smith, P. 1983. Quanrilarive PlantEcology. Third edition. Blackwell Scienlific

Publicalions, Oxford.

Gunther, B. 1975. Dimensional analysis and theory of biological similarity. Phys. Rev.

s,;, 659-699.

Gutierrez, A.P., Summers, e.G. and Baumgaertner, J. 1980. The phenologyand

distribution of aphids in Californiaalfalfaas modified by a ladybird beetle

predation(Coleoptcra: Coccenellidae). Can. EntomoJ. 112; 489-495.

Hanski, I. 1991. Thefunctional response of predators; worries about scale. Trends

Ecol. Evo!.6: 141-142.



161

Harden-Jones, F.R . , Walker , M.G . and Arnold , G .P. 1978. Tactics of fish mo vement

in relationto migrationstrategy and water circulation, pp. 185-207 . In Charnock, H.

and Deacon, G. (eds.) Aavances if: Oceanography. Plenum Press, New York.

Hardy. A.C. 1935. A furtherexample of the patchiness of plankton distribution. Papers

in MarineBiology Oceanography Deep SeaResearch3 (Suppl.) : 7-11.

Hardy. A.C. 1936. Observations on theuneven distributionof oceanic plankton.

DiscoveryRep. 11: 513-538.

Harris, UP . 1986. PhyropJanklOn Ecology: sou au re, Function and Ptuauauon.

ChapmanandHill, London.

Hassell , M.P. andMay, R. 1973. Stability inhost-parasitoid modes. J, Anim. Eccl.

42: 693-726.

Hassell. M.P. and Anderson, R.M. 1988. Predator-preyand host-pathogen interactions,

pp. 147-196 In Cherrett, I.M. (ed.) Ecological Concepts. Blackwell Scien tific

Publications, Oxford.

Hassell, M.P., Comins, H.N. and May, R.M. 1991. Spatial structure andchaos in

insectpopulation dynamics. Nature353: 255-258.

Hastings, A. 1990. Spatial heterogeneity andecologicalmodels. Ecology71: 426-428.

Haury,L.R., McGowan, I .A. and Wiebe, P.H. 1978. Patternsand processes in the

time-space scales of planktondistributions, pp. 277-327. tn Steele, I .H. (ed.)

Spalial Pauem in Plankton Communities. PlenumPress, NewYork.

Hawkins, A.D., Soofiani, N.M. and Smith, G.W. 1985. Growthand feedingof

juvenilecod (GadllSmorhuaL.). I . Cons. lnt. Explor. Mer42: 11-32.



162

He, P. 1991. Swimmingenduranceof theAllantic cod, Gadus momua L., allow

temperatures. Fish. Res. 12: 65-73 .

Heads, P.A. and Law ton, J .H. 1983 . S tudies on the natural enemy complex of the

effects of scale on the detection of aggregativeresponsesand the im plications for

biologicalcontrol. Oikos 40: 267-276.

Hei nemann, D., Hunt, G.L. and Ever son, Y. 1989. The distributionof m arine avian

predato rs and their prey Euphaus ia superba, in Bransfield Strait an d southe rn

Drake Passage, Antarctica. Mar. Ecol. Pro g. Set. 58: 3-1 6.

He lbig, J. , Mertz. G. and Pepin, P. 1992. Environmental influenceson the recruitment

of NewfoundlandlLabrador Cod. Fish. Oceanog. 1: 39-56.

Hensen, V. 1911. Das leben imOlean nach zahlungen seiner Bewohncr. Ubersicht lind

resultatender quantitativenuntersuchungen. Ergcbn. PlanktonExpdn . der

Humboldt StiftungV.

Herman, A .W., Sameoto, D.O. and Longhurst, A.R. 1981. Verticaland horizontal

distribution patternsof copepods near the shelfbreak south of Nova Scotia. Can.

1. Fish . Aquat.Sci. 38: 1065-1076.

Heusner, A.A. 1987. What does the powerfunction reveal about structu re andfunction

In animalsof different size. Annu . Rev. Physiol . 49: 121·133,

Hilt, M.O . 1973. The intensityof spatialpattern inplant communities. J . Ecol. 61:

225-235.

Hol dhrook, S.J. and Schmitt, R.I. 1988. The combined effects of predation risk and

food rewardon patch selection. Ecology 69: 125·134.



163

Holling, e.s.1965. The functional responseof predatorsto prey density andits rolein

mimicry and population regulation, Me m. Entomol. Soc . Can. 45 : 1-60.

Holling. e.s.1966. The functional response of invertebrate predators to prey density.

Mem, Entomol. Soc. Can.48: 1-86.

Holling, e .s. 1992. Cross-scale morphology. geometry, anddynamics of ecosystems,

Eco!. Mon. 62: 447-502.

Horwood , l .W. 1978. Observations on spatial heterogeneity of surface chlorophyll in

one and two dimensions. I . M ar . BioI. Assoc. UK 58: 487·502 .

Houser, A. andDunn, I .E. 1967. Estimating thesize of the thread-finshadpopulation

in BullShoal reservoir from midwater trawl catches.Trans. Am. Fi sh.Soc. 96:

176-184.

Huffake r , C.B. 1958. Expe rimental studies on predation: dispersion factors and

predator-prey oscillations. Hilgardia 27: 343-383.

HUIlI, G.L .• Harri son, N.M. and Cooney, T . 1990. Foragingof Least Anklets:The

influenceof hydrographic structure and prey abundance. Studies in Avian Biology

14: 7-22.

Huxley, J.S. 1932. Problemsof RelatiYeGrowth. Methuen, London.

Ibanez, F . andBoucher, I . 1987. Anisotropyoreccpjemon populations in the

LigurianSea front. Oceanol. Acta. 10: 205-216.

Iverson, R.L., Whitledge, T.E. and Goering, 1.1. 1979. Fine-structure of chlorophyll

and nitrate in the southeastern Bering Sea shelf breakfront. Nature 281: 664-666.



164

Ives, A.R., Kareiva, P. and Perry. R. 1993. Responseof a predator to variation in prey

d ensity at three hierarchical scales: lady beetl es feeding on aphids . Ecology 14:

1929-1938.

lwao, S. 1968 . Anew regression method foranalyzingthe aggregation pattern of

animalpopulations. Res. Popul. Ecol. 10: 1-20.

Iwao, S. 1970. Analysisof spatial pauem s inanimalpopulations: progress of research

in Japan. rpn. Rev. Plant Prot. Res. 3: 41-54.

Iwao , S. 1972. Application of the m" · m method to theanalysis of spatial pa tterns by

changingthequadrat size. Res. Pcpul. Bcol. 11: 240-242.

Iwata, T. 1954. Progress of studieson the populationdistribution in the unit-area

sampling and its criticism. (in Japanese) BioI. Sci. Tokyo 6: 110·116.

Jacobson, P.T . 1990. Pattern and process in the distribution of Cisco, Coregonus

artedii, in Trout Lake, wi sccesln. Ph.D. thesis. University of Wisconsin-Madison.

Mad ison.

Jangaard, P.M. 1974. Thecapelin (Mal/OllISwl/ mUl) biology, distribution,

exploitation, utilization and composition. Bull. Fish. Res. Board Can. 186.

Jenkins, B.W. 197$. A qualitative and q uantitative invcuigation of thebehaviour of the

longhorn SCUlpin, Myoxoctphalus OClodtumspinosus (Mitchell) 1815, with special

referenceto feeding, MSc. thesis, Memorial University of Newfoundland, St.

John's.

Jenkin s, G.M. andWatts, D.G. 1968. Speclral QfWlysfs and its applications.

Holden-Day, San Francisco.



16S

lobling, M. 1982. Food andgrowth relationships of thecod, GadusmomuaL., with

special reference to Balsfjorden, north Norway. 1. Fish BioI. 21 : 357-371.

Jobling , M. 1988. A reviewof the physiologicaland nutritionalenerge tics of cod ,

GadusmorhuaL.• with particular refe rence to growth under fanned cond itions.

Aquaculture 70: 1-19.

Jumars, P.A. 1976. peep-Sea speciesdivers ity: doe s it have a characteristicscale? J.

Mar. Res. 34: 217-246.

Kareiva, P. 1989. Renewingthe dialogue between theoryand experiments in po pulation

ecology, pp. 68-88. In Roughgarden, J•• May, R.M.• and Levin . S.A. (eds.)

PerspectivesinEcological Theory. Princeton University Press, Princeton.

Kareiva, P. 1990. Populationdynamics in spatially complex environments: theoryand

data . Phi.los. Trans. R. Soc. London B 330: 175-190.

Keats, D .W., Steele, D ,H. andSo uth, G.R . 1987. The role of fleshy macroalgaein the

ecology of juvenilecod(GadIlSmorhua L.) in inshore watersoff eastern

Newfoundland. Can. J. ZooI. 65: 49~53 .

Kerr, S .R. 1971. Prediction of fish growth efficiency innature. J. Fish. Res. Bd Can.

U : 809-814.

Kershaw, K.A. 1957. Th e use of coverand frequency in the detection ct peuem in

plant communilies. Erology 38: 291-299.

Kershaw, K.A . 1958. An investigationof the structureof a grassland community. I.

The pattern ofAgrosl/Stenuts. J. Ecol. 46: 571-592.

Kierstead. H. andSlobodkin, L.B . 1953. Th e size of water massescon tainingplankton

blooms. J. Mar. Res. 12: 141-147.



166

Kolmogorov,A.N. 1941.The local structureof turbulenccin an incompressible

viscous fluid (or very large Reynoldsnumbe rs. Abdemiia NaukSS~R Comptes

Rendus (Doklady) 30: 299-303.

Koopmans, L.B. 1974. The s~artJl analysis of tlme seria , AcademicPress, New

York.

Kuno, E. 1968. Studieson the population dynamicsof riceleafhoppers in a paddyfield.

Bull. Kyushu Agric. Exp. Stn. 14: 131-246.

Langhaar, H .L. 1980. Dimenslonal analysisand theIhearya/models. Krieger

Publishing, Huntington, NewYork.

Lasker, R. 1975. Field criteria for lhe survival of anchovy larvae; the relationbetween

inshore chlorophyll maximum layers and successful first feeding. Fish. Bull. 73:

453-462 .

Lear,W.H •• Baird, I .W., Rice. J.e •• Carscadden, J.E ., Ully , a .R. and Akenhcad ,

S.A. 1986. An examinationof factors affectingcatchin the inshore codfishery of

Labradorand eastern Newfoundland. Can. Tech. Rep. Fish . Aqua!. Sci. 1469.

I.etkovitch. L.P. 1966. An indexof spatialdistribution. Res. Popul. Eccl. 8: 89·92 .

Legendre, L. and Demel1,S. 1984. Towards dynamic biological oceanography and

Iimoology. Can. J. Fish. Aquat. Sci . 41: 2·19.

Legendre, P. and Fortin, M.-J. 1989. Spatial pattern and ecologicalanalysis. Vegetatio

80: 107-138.

Levin, S. 1976. Population dynamics models in heterogeneousenvironments. Ann.

Rev. Ecol. Syst. 7: 287-310.



167

Levin, S.A. 1992. Theproblemof patternand scalein ecology. Ecology 73:

1943·1967.

Levin, S.A., Morin, A. and Powell, T.M. 1989. Patternsand processesin the

distributionand dynamics of Antarctic krill. SC-CAMLR-VIIJBG/20: 281-296.

Liebovich, S. 1983. The formanddynamicsof Langmuir circulations. Ann. Rev.

Fluid Mech. 15: 391·427.

Lilly, G.R. 1986. Variability in the quantity of capelinandother prey in stomachsof

Atlanticcodoff southernLabrador andnortheastern Newfoundland(NAFO

Division 2J+3K)duringthe autumnsof 1978-85. NAFOSCRDoc. 86180.

Lilly,G.R. 1987. Interactions between Atlanticcod (Gadus morhua)and capelin

(Ma(fotus villosus) off Labrador andeasternNewfoundland: a review. Can. Tech.

Rep. Fish. Aquat. Sci. 1567.

Lilly,G.R. 1991. Interannual variability in predation by cod(Gadus morhua) on

capelin(MalfOlIU villosus) andotherprey off southern Labrador and ncrtheas.ern

Newfoundland.ICES mar. Sci. Symp. 193: 133-146.

Lilly, a .R. and Flemming, A.M. 1981. Sizerelationships in predation by Atlantic cod,

Gadus momua. on capelin, MoUot/1S vttlosus, and sandlance,Ammooylesdubius,

in the Newfoundland area. NAFOSci. Coun.Studies 1: 41-45.

Lilly, G.R. andBona, J.R. 1984. Foodof Atlanticcod (Gadus morhua L) near

Bonevista, Newfoundland in 1983. NAFOSCR Doc. 84151.

Lilly, G.R., Almeida,M.A. andLear, W.H. 1984. Food of Atlantic cod (Gadus

morhuo) from southern Labrador andeastern Newfoundland (Div. 21, 3K, and

3L) in winter. NAFOSCRDoc. 84188.



168

Lloyd. M. 1967. Mean crowding. J. Anim. EcoL 36: 1-30.

Longhurst, A.R. t Reith. A.D. , Bower, R.E. and Seibert, D.L.R . 1966. A new system

for the collection of multiple serial plankton samples. Deep-SeaRes. 13: 213-222.

Lorenzen,c.r. 1966. A methodfor the continuous measurement of in vivochlorophyll

concentration. Deep-SeaRes. 13: 223-227.

Mackas, D.L. 1977. Ho rizontal spatial variability and covariabitity of marine

phytoplankton and zooplankton. Ph.D. thesis. Dalhousie University, Halifax.

Mackas, D.L. 19&4. Spatial autocorrelationof plankton community composition in a

continental shc1fecosystcm . Limnol. Oceanogr. 29: 451-471.

Mackaa,D.L. and Boyd, C.M. 1979. Spectralanalysisof zooplankton spatial

heterogeneity. Science204: 62-64.

Mackas, D.L., Denman, K.L. and Abbott, M.R. 1985. Plankton patchiness: Biologyin

the physical vernacular. Bull. Mar. Sci. 37: 652-674.

Magnuson, 1.1. , Kratz, T.K., Frost, T.M. , Bowser, C.J., Benson, BJ . and Nero, R.

1991. Expanding the temporal and spatial scales of ecological researchand

comparison of divergent ecosystems:Rolesfor LTERin the United States,pp.

45-70. In Risser, P.G. (ed.) Long-termEcologicalResearch. John Wiley and

Sons, New York.

Mandelbrot, B.B. 1982. TheFractal Geometry of Nature. W.H. Freeman, San

Francisco,

Mangel, M. 1987. Simulation of southernoceankrill fisheries. Report for Commission

for the Conservation of Antarctic MarineLiving Resources, 13 OCtober.

SC-CAMLR-VIIIBG/22.



169

Marquet , P.A. , Fortin, F-J., Pineda, t ., Wallin, D.O ., Clark, L , WUt Y., Bollens, S.,

Jacobi, C. M. and Holt, R.D . 1993. Ecological and evolutionary consequences of

patchiness: A marine-terres trial perspective, pp - 277·304 . In Levin, S.A . , Powell,

T .M. and Steele,1.H. (eds.) Patch Dynmnics. Springer-Verlag, Berlin.

May, R.M. 1976. Simple mathematical models with very complicateddynamics.

Nature 261: 459-467.

McCullagh, P. and Nelder, J.A . 1983. Generalizedlinear models. Chapman and Hall,

London.

McGuire, S.U•• Brindley, T.A. and Bancroft , T .A. 1957 . The distrib ution of European

comborer larvae PyraUS1Qnubilalus (Hbo.) in field com. Biometrics13; 65-78.

Menge,B.A. andOlson, A.M. 1990. Roleof scaleandenvironmentalfactors in

regulation of communit y structure. Trends Bcol. Evo!. 5: 52-57 .

Mercer, W.B. andHall, A.D. 1911.The experimental error offield trials. I . Agric.

Sci. 4: 107·132.

Methven,D.A. and Piatt, J.F. 1989. Seasonaland annualvariation in the diet of

Atlanticcod (Gadus morhua) in relation to the abundance of capelin (MallotllS

villosus)off easternNewfoundland, Canac.d. J. Cons. int. Explor. Mer 45:

223-225.

Methven,D.A. and Piatt, J.F. 1991. Seasonal abundanceandverticaldistribution of

capelin (Mallo/usvillosus) in relation to water temperatureat a coastalsite off

easternNewfoundland. ICESJ. mar. SeL, 48: 187-193.

Miller. D.O.M. and Monteiro, P.M.S. 1988. Variabilityin the physicaland biotic

environment of the Antarctic krill (Ellphausia superboDana), southof Africa:



170

Some resultsand a concepIual appraisal of important interactions, pp. 245-157. In

Sahrhage, D. (cd .) All/arctic Octan andRtso/lrc~s Varlabmry. Springer-Verlag,

New York.

Minet, J.P. and Perodou, J.8 . 1978. Predation of cod(Gadus morhuQ) on capelin

(Ma/lOlus villo sus) off eastern Newfoundland and in theGulf of St. Lawrence.

ICNAF Res. Bull. 13: 11·20.

Misund, a.A. J093. Dynamics of moving masses: variability in packing density, shape,

and size among herring, sprat, and saithe schools. ICES J. mar. Sci. SO,145-160.

Mcntevecchi, W.A. and Piatt, J.P. 1984. Composition and energy contentsar mature

inshore spawning capelin (MallotUJvi/losus): implications (or seabird predators.

Comp. Bicchem. Physio!. 78A: 15·20.

Morisita. M. 1954. Estimation of populationdensity by spacing method. Mem. Fae.

Sci. Kyushu Univ, Set E BioI. I: 187·191.

Morisita, M. 1959a. Measuring of the dispersion of individuals and analysisof the

distributional patterns. Mem. Fac. Sci. Kyushu Univ. Ser E Bioi. 2: 215-235.

Morisila, M. 1959b. Measuring of interspecific association and similarity between

communities. Mem. Fac. Sci. Kyushu Univ. se- E BioI. 3: 65-80.

Morrison, G. and Strong Jr. , D.R. 1980. Spatial variations in host density and the

intensity of parasitism: some empirical examples. Environ. Ent. 9: 149-152.

Morrison, G., and Strong Jr., n.R. 1981. Spatial variations in egg denshy and (he

intensity of parasitism in a .eot rcpicaj chrysomelid (CephaloleJa con.wl1gll inea).

Ecol. En!. 6: 55-61.



171

Murdoch,W.W. and Oaten, A. 1975. Predation and population stability. Adv. Ecol.

Res.9: 1-125.

Murphy, OJ. 1966. Population biology of the Pacific sardine (Sardirwps caerulea).

Proc. Cal. Acad. Sci. 34: 1-84.

Nero, R.W. and Magnuson,1.1. 1992.Effectsof changingspatial scaleon acoustic

observations of patchiness in the Gulf Stream. Lands. Ecol. 6, 279-292 .

Neyman, J. 1939. On a new classof "contagious" distributions, applicable in

entomology and bacteriology. Ann. Math. Slat. 10: 35-57

Numata,M. and Suzuki, K. 1953.Experimental studies on early stagesof secondary

succession III. (in Japanese) l ap. Jour. Ecol. 8: 68-75.

O'Brien. 1.J. and Wroblewski, 1.5. 1973a. A simulation of the mesoscaledistribution

of the lower marine trophic levels off West Florida. Inv , Pesq. 37 : 193-244.

O'Brien, J.J . and Wroblewski,J.S. 1973b. On advection in phytoplankton models. J.

uieor. BioI. 38: 1 97~202 .

O'Neill, R.V., DeAngelis, D.L., Waide,J.B. and Allen, T.P.H. 1986.It Hierarchical

concept of ecosystems.Princeton University Press, Princeton.

O'Neill, R.V., Tumer, S.J., Cullinan, V.I., Coffin, D.P., Cook, T., Conley, W.,

Brunt, J., Thomas, J.M. , Conley, M.R . and Gosz, J. 1991. Multiple landscape

scales:An intersitecomparison. Lands. Eeol. S: 137-144.

Okubo, A. 1978. Horizontal dispersion and criticalscales for phytoplankton patches,

pp. 21-42. In Steele, J.H. (ed.) Spatial Pat/emin Plankton Communities. Plenum

Press,New York.



172

Okubo, A, 1980. Diffusionandecological problems: malhellltlfical models.

Springer-verlag, NewYork.

Okubo, A. 1986. Dynamical aspectsof animal groupings: swarms, schools, flocks, and

herds. Adv. Biopbys. 22, 1-94.

Okubo, A. 1987. Lecture nntes in biomathematics. Number 71.Springer-Verlag, New

York.

Olson, D.B.and Backus, R.n. 1985. Theconcentratingof organismsat fronts: a

cold-water fish anda warm-coreGulf Stream ring.1. Mar.Res., 43: 113·137,

Ord,J.K. 1972. Families o!!requency disfributions. Griffin, London.

Pacala, S.W., Hassel, M,P. andMay, R.M. 1990. Host-parasitcid associations in

patchy environments.Nalure344: 150-153.

Parr, A.E. 1927.Acontribution to thetheorectlcal analysis of the schoolingbehavior

of fishes. Occas. Pap. BinghamOceanog. ColI. 1: \·32.

Partridge, B.L. 1980. The effectofschool sizeon thestructureanddynamics of

minnowschools. Anim. Behav. 28, 68-77.

Patil, G.P. and Stiteler, W.M. 1974. Concepts of aggregationandtheir quantification:

a criticalreview withsomenewresultsand applications. Res. Popul. Ecol.IS:

238-254.

Perry,I N. andWoiwod,J.P. 1992. FittingTaylor'spower law. Oikos65:538·542,

Petrie,B. and Anderson, C, 1983. Circulationon the Newfoundland continentalshelf.

Atmos.-Ocean, 21: 201-226.

Piatt, J.F. 1990,The aggregativeresponseof Common Murresand Atlantic Puffins to

schools of capelin. Stud. Avian BioI.14: 36-51.



173

Pielou, E.C. 1957. The effect of quadrat size on the estimation of the para meters of

Neyman' s and Thomas' s di stributions. 1. Ecol. 45 : 31-47 .

Pielou, B.C. 1969. Antmroaucaon tomashemaical ecology. John Wiley and Sons,

NewYork.

Pinel-Alloul, B. andPont, D. 1991. Spatialdistribution patterns in freshwater

macrozooplankton: variation withscale. Can. J. Zool. 69: 1557·1570.

Pitcher, TJ . 1986. Functio ns of shoaling behaviour in teteosts, pp. 294-337. In

Pitcher, T.J. (00.) TheBehaviourofteleostfisnes. CroomHelm Ltd, London.

Pitcher, TJ . and Partridge, B.L. 1979.Fish schooldensityand volume. Mar. BioI. 54,

383-394,

Pitcher, T,], and1.K. Parrish. 1993. Functionsof shoalingbehaviour in teleosts, pp.

363-439 . In Pitcher , T .J. (00.) Behaviour ofteleostfishes. Second edition.

Chapman and Hall. London

Plait, T. 1972. Localphytoplanktonabundance and turbulence. Deep-SeaRes. 19:

183-187,

Platt, T. and Denman, K.L. 1975. Spectral analysisin ecology.Ann. Rev. Ecol. Syst.

6: 189-210,

Platt, T. and Harrison, W.O. 1985. Biogenic fluxes of carbon and oxygen in the ocean.

Nature318: 55-58.

Platt, T. and snve-, W. 1981.Ecology, physiology, allometryand dimensionality. J.

theor. BioI. 93: 855-860.

Plait. T., Dickie, L.M. andTrites. R.W. 1970. Spatialheterogeneityof phytoplankton

in a near-shore environment. J. Fish. Res, Bel.Can. 17: 1453-1473.



114

P6lya, G. 1931.Sur quelques points de la thc!orie des probabilities. Ann. Inst. Poi~

1: 117·162.

Popova, a .A. 1962. Some data on the feeding of cod in [he Newfoundlandarea of the

Northwest Atlantic, pp. 228-248. In Marti . y .Y. (ed.) Soviet Fisheries

Investigtll iom in 'he Nonhwal AtIQlIlic. Translated (rom Russian(or US Dep. Int.

Nat. Sci. Found., Washington, DC, by Israel Prog. Sci. Trans!. 1963.

Pcssingham, H.P. 1989. The distribution andabundance of resources encounteredby a

forager. Am. Nat. 133: 42·70.

Powell, T.M., Richerson, P.J., Dillon, T.M., Agee, B.A., Dozier, B.J., Godden,

D.A. and Myrup, L.O. 1915. Spatialscalesof current speedand phytoplankton

biomass fluctuations in Lake Tahoe. Science 189: 1088·1090.

Reeve, J .D. 1990. Subllity, variab ility, and persistence in hc n -parasn cid systems.

Ecology 71: 422-426.

Richardson, W.J. 1978. Timingandamountof bird migrationin relationto the

weather:A review. Oikos 30, 224-m.

Richerson, P.I. , Powell,T.M., Leigh-Abbott, M.R. and Coil, J.A. 1978. Spatial

heterogeneity in closed basins, pp. 239-276. In Steele, J.H. (ed.) Spolial pauem

in plankron communities. Plenum Press, New York.

Ricker, W.E. 1954. Stockand recruitment.J. Fish. Res. Bd. Can. 11: 559-623.

Riley, G.A. 1942. The relationship of vertical turbulenceand spring diatomIlowerings.

1. Mar. Res. 5: 67-87.

Riley, G.A. and Bumpus, D.F. 1946. Phytoptenktcn-zoolankton relationships on

Georges Bank. 1. Mar. Res. 6: 67-87.



175

Ripley, B.D. 1981. Spatialstatistics. John Wiley, New York.

Rogers. A. 1974. Slotistical AfUllysfsofSparial Dispersion. TheQuadratMe/hod. Pion,

London.

Rose, G.A. 1992. A reviewof problemsand newdirectionsin the applicationof

fisheriesacousticson the CanadianEast Coast. Fish. Res. 14: 105-128.

Rose, G.A. 1993. Cod spawningon a migrationhighway in the north-west Atlantic.

Nature366: 458-461 .

Rose, G.A. and Leggett,w.e. 1988a. Hydrcaccusucsignal classification of fish

schools by species. Can. 1. Fish. Aquat. Sci. 45: 597-604.

Rose, G.A. and Leggett, w.e. 1988b. Atmosphere-oceancoupling and Atlanticcod

migrat.ions: effectsof wind-forced variations in sea temperatures and currentson

nearshore distributions and catch rates of Gadusmorhua. Can. J. Fish. Aquat.

Sci. 45: 1234·1243.

Rose, G.A. and Leggett,w .e . 1989. Interactiveeffectsof geophysically-forced sea

temperatures and prey abundanceon mesoscalecoastaldistributions of a marine

predator, Atlanticcod (Gadusmorhua). Can. J. Fish. Aquat. Sci. 46: 1904·1913.

Rose, G.A. and Leggett, W.C. 1990. The importance of scale to predator-prey spatial

correlations: Anexample of Atlanticfishes. Ecology 71: 33-43.

Rossi, R.E., Mulla, OJ ., Joumel, A.G. and Franz, E.H. 1992. Geostatisticaltools for

modeling and interpreting ecologicalspatialdependence. Ecol. Monogr. 62:

277-314.

Routledge, R.D. and Swartz, T.B. 1991. Taylor's Power Law re-examined. Dikos 60:

107-112.



176

Safina, C. and Burger, I . 1985. CommonTern foraging: seasonal trends in prey fish

densitiesand competition with Bluefish. Ecology66:441·461.

Safina, C. and Burger, I . 1988, Ecologicaldynamics amongprey fish, Bluefish, and

foragingCommonTernsin an Atlanticcoastalsystem,pp. 95-173. In Burger,J.

(ed.) Seabirdsand other Marine veneorates. Columbia University Press, New

York.

Salt, G.W. 1974. Predator and prey densities as controls of rate of capture by the

predator Didimum nasUlum. Ecology 55: 434-439.

Satoh, K. 1989. Computerexperimenton thecomplexbehavior of a two-dimensional

cellularautomation as a phenomenological modelfor anecosystem. J. Phys. Soc.

Jpn, 58, 3842-3856.

Satoh, K. 1990. Single and multiarmed spiral patterns in a cellular automaton model for

an ecosystem. J. Phys.Soc. Ipn. 59, 4204-4207.

Saunders,P.M. 1972. Spaceand timevariability of temperature in the upperocean.

Deep-SeaRes. 19: 467-480.

Setre, R. and Gjosreter, J. 1975. Ecological investigations on the spawninggroundsof

the BarrentsSea capelin. Fiskeri-Direktoratets SkrifterSene Havundersakelscr 16,

203-227.

Schmitt,R.J. 1982. Consequences of dissimilardefensesagainstpredationin a subtidal

marinecommunity. Ecology63: 1588-1601.

SChmitt, R.J. 1985. Competitive interactions of two mobileprey speciesin a patchy

environment. Ecology66: 950-958.



177

Schneider , D.C. 1989. Identifying the spatial scale of density-dependent interaction of

predators with schooling fish. in the southern Labrador Current. I . Fish BioI. 35

(Supplement A); 109-115.

Schneider, D.C . 1991. The role of fluid dynamics in the ecology of marine birds.

Oceanogr . Mar . BioI. Annu. Rev. 29: 487-52 1.

SChneider, D.C . 1992. Thinning and clearing of prey by predators. Am. Nat. 139:

148·160.

Schneider, D.C. 1994a. Scale-dependent patterns and species interactions in marine

nekton, pp. 441-467. In Giller, P.S., Hildrew, A.G. and Rafaelli, D. (eds.)

Aquaic Ecology: Scale. Patternand Process. Blackwell, Oxfo rd .

Schneider, D.C. 1994b.Qua1ll1tative Ecology. Academic Press,San Diego.

Schneider, D.C. 1994c.Distribution of cepelin(Mallo/usvillosus)in relation to coastal

upwellingin the AvalonChannel.1. Northw. AU.Fish. Sci. 17, in press.

SChneider, D.C. and Duffy, D.C. 1985. Scale-<lependent variability in seabird

abundance. Mar. Ecol. Prog. Ser. 25: 211-218.

Schneider, D.C. and Piatt, J.F. 1986.Scale-dependent correlationof seabirdswith

schoolingfish in a coastal ecosystem.Mar. Ecol. Prog. Ser. 32: 237-246.

Schneider, D.C. and Methven,D.A. 1988. Responseof capelin to wind-induced

thermalevents in the southernlabrador Current. J. Mar. Res. 46: 105-118.

Schneider, D.C. and Bajdik,C.D. 1992. Decayof zooplanktonpatchinessgeneratedat

the sea surface. J. PlanktonRes. 14: 531-543.



178

Schneider, D.C . , Gagnon, J.~M. and Gilldnson. K.D . 1987. Patchiness of cpibenlhic

megafauna on the outer Grand Banks of Newfoundland. Mar. Ecol. Prog. Ser . 39,

1-13.

Schneider, D.C ., Duffy, D.C. and Hunt, G .L 1988. Cross-shelf gradients in the

abundanceof pelagic birds, pp. 916-981. In Ouellet, H (ed .) Proceediflgs XIX

tmemanonal OrnithologicalCongress. Ona wa University Press. Ottawa.

Schneid er , D.C. , Duffy , D.C . , MaccaJI , A.D . and Anderson, D .W. 1993.

Seabird-fisheries interactions: evaluation with dimensionless ratios, pp. 602-615.

In McCullough, D.R. and Barrett, R.H. (eds.) Wildlife2()(X). Elsevier, London.

Schroeder, M. 1991. Fractals, Chaos, PowerLAws: Minutes/rom an InfiniteParadise.

\V.H. Freeman, New York.

Scott, W .B. and SCott, M.G. 1988. Atlantic Fishes of Canada. Can. Bull. Fish. Aquat.

Sci. 219.

Sheldon, R.W. and Parsons, T ,W. 1967. A continuous sizespectrumfor particulate

matter in the sea. J. Fish. Res. BeL Can. 24: 909-915.

Shelton, P.A., Fahrig, L and Millar, R.B . 1991. Uncertainly assoc iated with

cod-capelin interactions: how much is too much? NAFO Sci . Coun. Studi~ 16:

13-19_

Sheperd, J.G., Pope, J.O. and Cousens, R.D. 1984. Variations in fish stocks and

hypotheses concerning their links with climate. Rapp. Pi-v. Rtun. Cons. Int.

Explor. Mer. 185: 255-267.

Shigesada, N. and Okubo, A. 1981. Analysis of the self-shading effect on algal vertical

distribution in natural waters. J. Math. BioI. 12: 311·326.



180

Star, J.L. and Mullin, M.M. 1981. ZOoplanktonicassemblagesin threeareas of the

North Pacific as revealedby continuous horizontal transects. Deep-SeaRes. 28A:

1303-1322.

Star, I .L. and Cullen, I .I. 1981, Spectral analysis: a caveat. Deep-SeaRes. 28: 93-97.

Steele, J.H. 1974. The Structureof MarineEcosystems.Harvard UniversityPress.

Harvard.

Steele, I .H. 1976. Patchiness, pp. 98-115. In Cushing, D,H. and Walsh, J.J. (cds.)

Ecology a/the sea. Blackwell, London.

Steele, I.H. (ed.) 1978a.Spatial Patternin Plankton communmes. Plenum Press, New

York.

Steele, I.H. 1978b.Some commentson planktonpatches. pp. 1-20. In Steele, I .H.

(ed.) SpatialPanem in Plankton Communities, Plenum Press,NewYork.

Steele, I .H. 1989. The ocean 'landscape' . Lands. Ecol. 3: 185-192.

Stephen, A.C. 1929. Noteson the rateof growthof 1dlfna temas da Costa in the Firth

oiClyde. J. Mar. BioI. Assoc. U.K. 16: 111-129.

Stommel, H. 1963. Varietiesof oceanographic experience. Science 139: ~12·~76 .

Story, G.M., Kirwin, W.J. and Widdowson, r.D .A. (eds.) 1990. Dictionuryof

Newfoundland English. Secondedition. Breakwater,St. John's.

Student, S. 1907. On the error of counting with a haemacytometer. Biometrika 5:

351-364.

Sugihara, G. and May, R.M. 1990. Applicationsof fractals in ecology.Trends Ecol.

Evo!. 5: 79·86.



179

Shugart . H.H. (ed .) 1978. 1i~ & rin andEt:ofogicaJProcesses. Society for Industrial

and Applied Mathematics, Philadelphia.

Simon, H.A. 1962. The architecture of compJclity . Proc, Amer . Phil. Soc. 106 :

467-482.

Simpson, E.H. 1949. Measurementof diversity. Nature 163: 688.

Sissenwine, M.P. 1984. Why do fish populations vary? pp. 59-94. In May, R.N. (ed.)

Exploitation of Marine Communities. Springer-Verlag. Berlin.

Skellam, J.G. 1951. Random dispersal in theoretical populations. Biometrika78:

196-218.

Skellam, J.G. 1952. Studies in statistical ecology. I. Spatialpattern. Biometrika 79:

346-362.

Smith, P.E. 1978. Biological effects of oceanvariability: time and space scalesof

biological response. Rapp. P.-v, Reun , Cons. Int. Bxptor . Mer 173 : 117-127.

Sokal, R.R. and Rohlf, F.J . 1981. Biometry. secondedition . Freeman and Company ,

New York.

Scofiani, N.M. and Hawkins, A.D. 1982. Energeticcosts at different levels of feeding

in juvenile cod, Godusmorhua L. J. Fish Bicl . 21: 5TI-592.

Soofiani, N.M. and Priede, I.G. 1985. Aerobic metabolic scope and swimming

performance injuvenile cod, GadusmorhuaL. J. Fish BioI. 26: 127-138.

Stanek, E. 1975. The percentageof capelin in the stomachcontents of cod in ICNAF

Subareas2 and 3. ICNAF Res. Doc. 75/5.

Slat , J.L. and Mullin, M.M. 1979. Horizontalundependability in the planktonic

environment. Mar. Sci. Commun. 5: 31.46.



181

Sverdrup, H.ll. 1953. On conditions for the vernal blooming of phytop lankton . J.

Cons . Perm . Jnt. Explor. Me r 18: 287-295 .

Taggart, C.T. and Leggeu , w.e. 1987. wind -forced hydrodynamics and their

interac tion with larval fish and plankton abundance : a time -series analysis of

physical-biological data. Can. J. Fish. Aquat . Sci. 44 : 438-451.

Taylor, A. 1988. Large-scalespatial structure and population dynamics in arthropod

predator-preysystems. Arm. ZOO\. Fenn. 25: 63·74.

Taylor, A. 1990. Metapopulations, dispersal, and predatory-prey dynamics: an

overview. Ecology 71: 429·436,

Taylor, C.C. 1953. Nature of variability in trawl catches. Fish. Bull. 54: 143-166.

Taylor, E.S. 1974. Dimensional analysis/ orengineers. ClarendonPress, England.

Taylor, L.R. 1961. Aggregation, varianceand the mean. Nature189: 732-735.

Taylor, L.R. 1984. Assessingand interpretingthe spatial distributionsof insect

populations. Ann. Rev. Entomol. 29: 321-357.

Taylor, L.R. and Taylor, R.A.J. 1977. Aggregation, migration and population

mechanics. Nature 265: 415-421.

Taylor, L.R. and Woiwod,I,P. 1982. Comparative synoptic dynamics. I. Relationships

betweeninter- and intra-specific spatial and temporalvariance/mean population

parameters. 1. Anim. Ecol. 51: 879-906.

Taylor, L.R" Woiwod, I,P, and Perry, J.N. 1978. The density-dependence of spatial

behaviourand the rarity of randomness. J, Anim . Ecol. 47: 383-406.

Templeman, W, 1948, The life historyof the capelin (Mallo/us vutosus MUlier) in

Newfoundland waters. Nfld. Gov. Lab. Bull. 17: 1-151.



182

Templeman, W. 1965. Someinstances of codand haddockbehaviour and

concentrations in the Newfoundlandand Labradorareas in relationto food.

ICNAF Spec . Pub!. 6: 449-461.

Templeman,W. 1979.Migrationandintermingling of stocks of Atlanticcod (Gadus

morhUll). of the Newfoundland and adjacentareasfrom tagging in 1962-66.

ICNAF Res. Bull. 14: 5~50.

Thomas, M. 1949. A generalization of Poisso n's binomial limit for use in ecology .

Biometrika 36: 18-25.

Thompson, H. 1943. A biologicalandeconomic study of cod (Gadus morhuaL.) in the

Newfoundland area includingLabrador. Nfld. Dcp. Nat. Resour. Res. Bull. 14.

Thompson, W. A., Vertinsky, I. and Krebs , ] ,R. 1974. The survival value of flocking

in b irds: a simulation model. 1. Anim. gccl. 43 ,785·820.

Tsuda, A" Sugisake , R . , Ishlmaru , T., Saino, T. and Saw, T. 1993 . White-noise-like

distribution of Ihe oceanic copepodNeocaianus cnstatusin the subarctic North

Pacific. Mar. Ecol. Prog.Ser. 91: 39-46.

Turner, S.J., O 'Neill, R.V., Conley, W., Conley,M.R. and Humphries, H.C. 1992.

Pattern and scale: statistics for landscape ecology, pp. 17-49. In Turner, M.G.,

and Gardner, R.H. (eds.) Quantitative Method s ill Landscape Ecology.

Springer-Verlag, New York.

Turuk, T.N. 1968. Seasonalchanges of cod feeding in the Labrador and Newfoundland

areas in 1964-66. TrudyPINRO23: 370-382. (Journal of Fisheries Research

Board of Canada Translation Series1937).



183

Tyler, A.V. 1970. Rates of gastric emptyingin young cod . J. Fish. Res. Bd. Can. 27:

1117-1189.

Tyler , A.V. 1973 Calori e vaJues of some North Atlantic invertebrates. Mar. Bioi. 19:

258-261.

Tytler, P. 1969. Relationship between oxygen consumption and swimmingspeed in the

haddock, MetatWgrommus aeglejinus. Nature211: 274·275.

Urban, D.L. , O 'Neill , R.V. and Shugart Jr. , H.H . 1987. Landscape ecology.

BioScience]7: 119-127.

Usher, M.B. 1969. The relation between meansquare and block size in the analysis of

similarpatterns. J. Ecol. 57: 505-514.

Waage , J.K. 1979. Fo raging for patchily-dislributcd hosts by the parasnold, Ntmerlti s

canescens. J. Ani m. Ecol. 48: 353-37 1.

Waiwood, K.O., Smith , S.l . and Petersen, M. R. 1991. Feeding of Atlantic cod(Gadus

momua) at low temperatures. Can. J. Fish. Aquat. Sci. 48: 824-831.

Walsh, 1.1. 1981. Shelf·SeaEcosystems, pp. 159-196. In Longhurst, A.R. (ed.)

AtUJlysis of MariM Erosysums.Academic Press, London.

Waters. W.E. 1959. A quantitat ive measure of aggregationin insects. J . Econ. Ent. 51:

1180-1I84.

Watt, A.S. 1925. On the ecology of British beechwoods with special reference 10 their

regeneration. J. Eco!. 13: 27-73.

Walt, A.S. 1947. Pattern and process in the plant community. J. Bcol. 35: 1-22.

Webb, P.W. 1975. Hydrodynamics and energetics of fish propulsion. Bull. Fish. Res.

Roard Can. 190. Department of Fisheries andOceans, Ottawa.



184

Weber, L.H., EI-Sayed,S.Z . and Hampton, I. 1986. The variance spectraof

phytoplankton, krill and water temperature in the Antarctic Ocean south of Africa.

Deep-Sea Res. 33: 1327-1343.

Weihs, D. 1973. Hydromechanics of fi:;hschooling. Nature 241: 290-291.

Weihs, D. 1975. Some hydromechanicalaspectsof fish schooling, pp. 703-718. In Wu,

T.Y.-T. , Brokaw, C.l . and Brennen, C. (eds.) Swimming andjIying in nature

Vol. 2. Plenum, New York.

Weller, R.A. and Price, I.F . 1988. Langmuir circulation withinthe oceanic mixed

layer. Deep-SeaRes.35: 711-747.

Whitehead, H.P. 1981. The behaviourandecologyof the humpbackwhalein the

northwest Atlantic. Ph.D. thesis.Universityof Cambridge, Cambridge.

Wiebe, P.H. 1971. A computer model study of zooplankton patchinessand its effects

on sampling error. Limnol.Oceanog. 16, 29-38.

Wiebe, P.H. and Flierl, G.R. 1983.Euphausiid invasion/dispersalin Gulf StreamCold

core rings. Aust. J. Mal'. Freshw. Res. 34: 625·652.

Wiens, J.A. 1976. Population responsestopatehy environments. Ann. Rev. Bcol. Syst.

7: 81·120.

Wiens. J.A. 1989. Spatialscalingin ecology.Punc. Ecol. 3: 385-397.

Williams. C.B. 1964. Someexperiencesof a biologistwith R.A. Fisher and statistics.

Biometrics20: 301-306.



185

Winberg, G.G . 1956. Rate of metabolism and food requiremen ts of fishes. Nauk Tr,

Bellcru skcvc Gosudars tvenncvo Universiteta imcn i V.I . Lcnina , Minsk.

(Trans lated from Russian by Journal of theFishe ries Resean:h Board of Canada

Tran slation Seri es 194 ).

Winters, G.H. and Carscadden , J.E. 1978. Reviewof capelin ecologyand estimationof

surplus yield from predator dynamics. ICNAF Res . Bull . 13: 2 1·30.

Winter s, G.H . and Wheeler, J.P. 1985. Inte raction between stock area, stock

abund ance , and eatchability coefficient. Can. J . Fish . Aquat. Sci. 42: 989·998.

Woiwod, I.P. and Perry, J.N . 1989. Data reduction and analysis. Boletin de Sa nidad

Vegetal (Madrid) 17: 159·174 .

Wroblewski , 1.5 .• O'B rien , I.J. and Platt , T . 1975. On the phy sical and biological

scalesof phytoplanktonpatchiness in the ocean. M~m. Soc. R. Sci. U~gc 7:

43-S7.

Wunsch, C. 1972. Bermudasea level in relation to tides , weather, and baroctinlc

fluctuations. Rev. Geophys. SpacePhys. 10: 1....9.

Yao, T. 1986. The responseof currents in Trinity Bay, Newfoundland, to local wind

forcing. Atmos.-Ocean24: 235·252.










	0001_Cover
	0002_Inside Front Cover
	0003_Blank Page
	0004_Blank Page
	0005_Title Page
	0006_Dedication
	0007_Abstract
	0008_Abstract iv
	0009_Acknowledgements
	0010_Table of Contents
	0011_Table of Contents vii
	0012_List of Figures
	0013_List of Figures ix
	0014_List of Tables
	0015_Chapter 1 - Page 1
	0016_Page 2
	0017_Page 3
	0018_Page 4
	0019_Page 5
	0020_Page 6
	0021_Page 7
	0022_Page 8
	0023_Page 9
	0024_Page 10
	0025_Page 11
	0026_Page 12
	0027_Page 13
	0028_Page 14
	0029_Page 15
	0030_Chapter 2 - Page 16
	0031_Page 17
	0032_Page 18
	0033_Page 19
	0034_Page 20
	0035_Page 21
	0036_Page 22
	0037_Page 23
	0038_Page 24
	0039_Page 25
	0040_Page 26
	0041_Page 27
	0042_Page 28
	0043_Page 29
	0044_Page 30
	0045_Page 31
	0046_Page 32
	0047_Page 33
	0048_Page 34
	0049_Page 35
	0050_Page 36
	0051_Page 37
	0052_Page 38
	0053_Page 39
	0054_Page 40
	0055_Page 41
	0056_Chapter 3 - Page 42
	0057_Page 43
	0058_Page 44
	0059_Page 45
	0060_Page 46
	0061_Page 47
	0062_Page 48
	0063_Page 49
	0064_Page 50
	0065_Page 51
	0066_Page 52
	0067_Page 53
	0068_Page 54
	0069_Page 55
	0070_Page 56
	0071_Page 57
	0072_Page 58
	0073_Page 59
	0074_Page 60
	0075_Page 61
	0076_Page 62
	0077_Chapter 4 - Page 63
	0078_Page 64
	0079_Page 65
	0080_Page 66
	0081_Page 67
	0082_Page 68
	0083_Page 69
	0084_Page 70
	0085_Page 71
	0086_Page 72
	0087_Page 73
	0088_Page 74
	0089_Page 75
	0090_Page 76
	0091_Page 77
	0092_Page 78
	0093_Page 79
	0094_Page 80
	0095_Page 81
	0096_Page 82
	0097_Page 83
	0098_Page 84
	0099_Page 85
	0100_Chapter 5 - Page 86
	0101_Page 87
	0102_Page 88
	0103_Page 89
	0104_Page 90
	0105_Page 91
	0106_Page 92
	0107_Page 93
	0108_Page 94
	0109_Page 95
	0110_Page 96
	0111_Page 97
	0112_Page 98
	0113_Page 99
	0114_Page 100
	0115_Page 101
	0116_Page 102
	0117_Page 103
	0118_Page 104
	0119_Page 105
	0120_Chapter 6 - Page 106
	0121_Page 107
	0122_Page 108
	0123_Page 109
	0124_Page 110
	0125_Page 111
	0126_Page 112
	0127_Page 113
	0128_Page 114
	0129_Page 115
	0130_Page 116
	0131_Page 117
	0132_Page 118
	0133_Page 119
	0134_Page 120
	0135_Page 121
	0136_Page 122
	0137_Page 123
	0138_Page 124
	0139_Page 125
	0140_Page 126
	0141_Page 127
	0142_Page 128
	0143_Page 129
	0144_Page 130
	0145_Page 131
	0146_Page 132
	0147_Chapter 7 - Page 133
	0148_Page 134
	0149_Page 135
	0150_Page 136
	0151_Page 137
	0152_Page 138
	0153_Page 139
	0154_Page 140
	0155_Page 141
	0156_Page 142
	0157_Page 143
	0158_Page 144
	0159_Page 145
	0160_Page 146
	0161_Page 147
	0162_Chapter 8 - Page 148
	0163_Page 149
	0164_References
	0165_Page 151
	0166_Page 152
	0167_Page 153
	0168_Page 154
	0169_Page 155
	0170_Page 156
	0171_Page 157
	0172_Page 158
	0173_Page 159
	0174_Page 160
	0175_Page 161
	0176_Page 162
	0177_Page 163
	0178_Page 164
	0179_Page 165
	0180_Page 166
	0181_Page 167
	0182_Page 168
	0183_Page 169
	0184_Page 170
	0185_Page 171
	0186_Page 172
	0187_Page 173
	0188_Page 174
	0189_Page 175
	0190_Page 176
	0191_Page 177
	0192_Page 178
	0193_Page 179
	0194_Page 180
	0195_Page 181
	0196_Page 182
	0197_Page 183
	0198_Page 184
	0199_Page 185
	0201_Blank Page
	0202_Blank Page
	0203_Inside Back Cover
	0204_Back Cover

