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Abstract 

 

The broad-scale effects of climate change on the distribution of species around the planet 

are relatively well understood, however our predictive powers of how species ranges will 

shift and re-organise are hampered by species’ interactions with one another and their 

environments. An investigation into seedling emergence constraints of four northern 

temperate tree species beyond their realised geographical niche was conducted using the 

available literature and experimental manipulation of natural systems. Two iterations of 

the field experiment (2015/16 & 2016/17) allowed for development and evaluation of 

experimental design, particularly vertebrate herbivore exclosure design. Climatic 

variables were largely unimportant drivers of model species’ ability to successfully 

emerge at experimental sites across Newfoundland, whereas biotic interactions impacted 

species-specific emergence, depending on reproductive strategies. Seed predation and 

canopy composition were among the most important biotic drivers of model species’ 

emergence success.  

Keywords: boreal forest, tree, ecotone, temperate forest, seed predation, seedling, Acer 

saccharum, Betula alleghaniensis, Fraxinus nigra, Thuja occidentalis, range expansion 
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Chapter 1: Introduction 

1.1 Research Context 

The implications that climate change holds for species’ distributions and ranges 

have become an increasingly important topic of research and discussion spanning 

multiple disciplines. Many have forecasted a geographic re-distribution of species from 

scales ranging from global (Parmesan and Yohe 2003), to sub-continental (Iverson and 

Prasad 2002), to regional and local (Koca et al. 2006) perspectives. Others have focussed 

on other types of climate change induced shifts, such as changes in phenology (Walther et 

al. 2002) and evolutionary adaptive capacity (Davis and Shaw 2001). Exploring modern 

plant species’ range dynamics is an optimal starting-point for trying to understand how 

global climate change will affect natural terrestrial systems. Trees, in particular, are 

important habitat-forming organisms (Thomsen et al. 2010), and their presence, absence, 

and abundance, coupled with the variety and type of plant species present at a biome 

spatial scale is both reflective of the current climatic regime and to some extent dictates 

the faunal assemblage within that biome. 

Tree species range shifts have been occurring throughout the Quaternary Period as 

a result of changing climatic conditions. Such shifts have been recorded in the fossil 

pollen record, studies of which have revealed repeated southward and northward range 

shifts in concert with dramatic, large scale climatic swings during glacial events (Comes 

and Kadereit 1998), and shorter, more localised climate events such as the little ice age 

(Hupy and Yansa 2009). These shifts have been recorded around the world (Davis and 
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Shaw 2001), but it is a modern shift within the eastern North American portion of the 

boreal forest-temperate forest ecotone (BTE) that is of interest here. 

The BTE is the transition zone wherein the northern extent of the temperate forest 

overlaps with the southern extent of the boreal forest; it occurs in eastern North America, 

northeastern Europe and eastern Asia (Goldblum and Rigg 2010). This transition occurs, 

generally, along a north-south gradient where both tree species diversity and average 

annual temperature decrease with increasing latitudes, with thermal conditions often 

considered as the primary factor determining the BTE location (Arris and Eagleson 

1989). The eastern Asian portion takes some exception to this, and is rather more of an 

altitudinal gradient – and is therefore compressed – than a gradual latitudinal gradient 

(Ohsawa 1984, 1990). In North America the BTE is at its widest, and occupies a zonal 

band from southeastern Manitoba to the Gaspé Peninsula, Quebec and from western 

Minnesota to Cape Breton Island, Nova Scotia (Olson et al. 2001; Goldblum and Rigg 

2010). Despite portions of the island of Newfoundland (herein Newfoundland) falling 

within the latitudinal zone inhabited by the BTE, expected species assemblages (Table 

2.1) are not found here, due to the fragmented eastern coastline. 

The dispersal barrier posed by the Gulf of St. Lawrence and the Cabot Strait may 

represent future distribution spatial losses for several northeastern species. McKenney et 

al.'s (2007) tree species redistribution model forecasted a generally northwestern shift in 

appropriate climate envelopes and a decrease in size of the same for the majority of the 

130 tree species in their study. This extends the work by Iverson et al. (2008), which is 

limited in its predictive power for northern species’ ranges due to truncation of study area 
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at the US-Canada border, but which nevertheless also forecasts an overall north-eastward 

shift in future potential habitat for the majority of the 134 species in their study. As is 

covered to a greater extent in Chapter 2, there appears to be good agreement between 

forest distribution models that a northward shift of many North American tree species 

will occur, and that this will occur in a piecemeal fashion. Shifting species ranges will 

also move the BTE to a more northerly zonal band, and continued climate change is likely 

to produce climatically suitable niche space in Newfoundland for an increasing number of 

northern temperate species. Beyond the major dispersal barrier, this project investigates 

what other constraints will act upon tree species no longer limited by climate at their 

earliest life stages in Newfoundland. 

1.2 Constraints on Species Range Shift  

The Theory of Island Biogeography introduced the concept that an island 

geographically closer to a mainland source or species pool will, in general, possess 

greater species richness than if it were far from a mainland (MacArthur and Wilson 

1967), which can alternatively be thought of as distance and history-dependent 

connectivity between communities (Barber et al. 2000). Wallace’s Line, which separates 

the Malay Archipelago in two distinct ecozones, is a well-known example of this and 

shares similarities with the less dramatic and far less researched ecological boundary 

between the island of Newfoundland and Nova Scotia in eastern Canada (Olson et al. 

2001). The Gulf of St. Lawrence-Cabot Strait seaway currently draws the far eastern 

dividing line between the boreal forest biome and the northeastern extent of the BTE in 

North America (Olson et al. 2001; Goldblum and Rigg 2010). 
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Deep water channels that persisted through repeated drops in sea-level now draw 

the dividing lines that make up Wallace’s Line (Mayr 1944), and a loose parallel can be 

seen here between Newfoundland and mainland Canada. The modern Cabot Strait 

separates the island from Nova Scotia to the southwest at a minimum distance of 110 km 

and it, as well as the narrower Strait of Belle Isle to the north, are likely to have remained 

submerged during the last glaciation (Shaw et al. 2002). The most recent bridging 

between Newfoundland and mainland Canada that is thought to have occurred was by ice, 

until approximately 14 ka and 12 ka, to the south and north respectively (Shaw et al. 

2006). A post-glacial land-bridge seems unlikely given the island’s depauperate faunal 

assemblage (Strong and Leroux 2014), which is void of indigenous reptile or freshwater 

fish species (Dodds 1983). Examination of the island’s faunal species assemblage also 

indicates both the primary direction of terrestrial species influx (i.e., from the north) as 

well as the suspected methods of over-ice, or aquatic (i.e., swimming) dispersal. Similar 

assumptions cannot necessarily be made regarding Newfoundland’s predominantly boreal 

plant species assemblage.  

The post-glacial floral recolonization of Newfoundland has not been extensively 

studied, but MacPherson's (1995) re-construction of tree species colonisation and range 

expansion on the island using the lake sediment pollen record provides an excellent 

overview. The primary direction of tree species expansion into post-glacial 

Newfoundland was from the southwest, beginning with the introduction of shrub birch 

(Betula spp.) followed closely by spruce (Picea spp.) and fir (Abies balsamea [L.] Mill.) 

before 10 ka and approximately around 10 ka, respectively (Anderson and Lewis 1992; 
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MacPherson 1995). Most of the remaining species that compose Newfoundland’s forest 

canopy followed along the same route: arriving in southwestern Newfoundland and 

radiating from there. MacPherson’s (1995) chronology extends from approximately 10.2 

ka to the present and documents the arrival times of pine (Pinus spp.) at ~8.5 ka and ash 

(Fraxinus nigra Marsh.) at ~7 ka. Interestingly this chronology does not mention either of 

the maple species present on the island (Acer rubrum L, & A. spicatum Lam.), both of 

which are now common throughout large portions of the island (Farrar 1995). I have 

similarly been unable to find evidence of the mechanisms for tree species’ dispersal to 

Newfoundland, however Macpherson (1995) does give mention to wind dispersal of 

pollen grains and for small-seeded boreal species, wind is the most likely candidate. 

Beyond the initial long distance dispersal hurdle potentially barring temperate tree 

species’ natural colonisation of Newfoundland under a warming climate regime, there is a 

complex suite of filters that also act to block successful colonisation. These filters can be 

individually difficult to overcome, or may combine through interactions to overwhelm 

species’ adaptive abilities, and a more fulsome description and discussion on this topic 

takes place in Chapter 2 (Evans and Brown 2017). Newfoundland’s boreal forest has been 

recognised as being in a transitionary state driven by climate change, pressures from 

anthropogenic activity and various introduced species, most notably moose (Alces alces 

L.; ESTR Secretariat 2014), which signals both opportunity and challenges for the 

establishment or expansion of temperate tree species range on the island. This project, 

however, investigates the role of seed predators (see Chapters 3 & 4) that have been 

found to impose significant herbivory filters on red maple (Acer rubrum L.) at early life 
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history stages in Newfoundland (Kasimos 2007). Seed predation pressures are also 

exerted within the BTE when temperate species have attempted to colonise boreal 

coniferous stands (Brown and Vellend 2014). 

Inappropriate soil conditions within future or fundamental climatic niche space 

represents another potentially challenging barrier to the successful colonisation of new, 

northern habitat for temperate tree species (McKenney et al. 2007; Lafleur et al. 2010). 

“Soil conditions” encompasses a wide range of characteristics and a comprehensive 

understanding of how soil conditions filter temperate tree species establishment upon 

emergence, including the interplay between the substrate, organic layer and mineral sub-

soil and their constituent components is the scope of a separate project. Here, I am 

interested in how substrate properties, such as radicle/root penetrability (Wheeler et al. 

2011), moisture retention (Cornett et al. 2000), temperature regimes (Burton and Bazzaz 

1991), and the interplay with canopy composition act to filter northern temperate tree 

species emergence beyond their distributional ranges. 

A further and more encompassing constraint may lie within the concept of 

ecological inertia, which has been defined by Orians (1975) as the capacity of an 

ecosystem to resist change, and by Westman (1978) as a community-level resistance to 

degradation due to some calamity, such as the introduction of a toxin. The change, in this 

case, could be due to the introduction of new species that may act as ecosystem engineers 

to change environmental variables in favour of their own perpetuation, rather than that of 

the native individuals (Jones et al. 1997; Crooks 2002). Ecological inertia could therefore 

be applied to a community’s ability to self-perpetuate in the face of changing conditions, 
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and the boreal forest has been found to excel at resisting invasion of non-native species in 

a variety of ways (Loehle 2000; Collin et al. 2016). This in turn could be causing an 

immigration lag of temperate species into boreal forest stands, as discussed by Svenning 

and Sandel (2013), who refer to patches of suitable habitat for newly arriving species that 

become slowly expanding nodes that eventually connect to the originally occupied range. 

While biome-level resistance to invasion by exotic species is outside the scope of this 

work, I do aim to draw a link between forest canopy composition and substrate type as a 

means of qualifying biotic interactions that could serve as a proxy for ecological inertia at 

the micro-scale. This will allow me to investigate the subtle differences in a/biotic 

conditions in two common forest types in Newfoundland that lead to their respective 

assemblage and which may create the opportunity for the expansion of suitable temperate 

tree species habitat as the climate continues to change. 

The goal of this work is to build on the current understanding of how abiotic and 

biotic factors constrain the range shifts of northern temperate tree species under changing 

climate regimes. Using a manipulative seed addition experiment in open-air field sites, I 

tested the emergence ability and capacity of four northern temperate tree species within 

and beyond their range against the following factors: (1) moss and leaf litter substrates 

under their corresponding conifer-dominated and mixed deciduous-coniferous canopies 

and the reciprocal, (2) alleviation of terrestrial vertebrate herbivory pressure, (3) forest 

canopy composition, and (4) climatic factors relevant to each model species. This work 

aims to address the earliest and most vulnerable life stages of the model species, and 
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therefore will begin to reveal how these particular factors combine and interact to impact 

shifting species ranges. 

1.3 Model Species 

Four northern temperate tree species are being used in the present study – two of 

which are native to Newfoundland, and two of which have been introduced. Yellow birch 

(Betula alleghaniensis Britt.) and black ash (Fraxinus nigra Marsh.), reach their northern 

distributional limit in Newfoundland (Erdmann 1990; Wright and Rauscher 1990), 

whereas northern white cedar (Thuja occidentalis L.) and sugar maple (Acer saccharum 

Marsh.), are present in central and eastern Canada, but have not colonised the island 

(Godman et al. 1990; Johnston 1990). 

Yellow birch has limited distribution on the island (Farrar 1995), and has long 

been noted as having poor reproductive success, even in ideal sites (Robertson 1945). 

Little work has been published on how this species’ range is controlled on the island, but 

herbivory pressure by non-native moose has been described as a general limiting factor 

(McLaren et al. 2006). In mainland Canada, yellow birch is a well-studied commercially 

important species (Wood and Bormann 1974, Houle 1994, 1998). Emergence and early 

survival has been shown to be particularly sensitive to changes in substrate type and soil 

moisture (Linteau 1948, George and Bazzaz 1999) and seedling growth occurs best in 

mixed mineral/hummus soil over duff and exposed mineral soil (Wang 1965). More 

recent studies have confirmed that mineral soil is more likely to promote yellow birch 

emergence and survival (Caspersen and Saprunoff 2005), and that moss substrate is much 
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less favourable (Lambert et al. 2015). However the permeability of a mossy substrate 

could promote yellow birch emergence over the barrier posed by leaf litter (Burton et al. 

1969). For moss or leaf-litter substrate, the implications of canopy composition may 

become a dominant factor, where deciduous canopies pose the risk of smothering 

emergent birch seedlings (Burton et al. 1969). These limitations likely hold true in 

Newfoundland, but no publications make direct associations between specific substrate 

conditions or canopy compositions that exist on the island and the emergence success and 

seedling survival of this species. Similarly, it does not appear that publications exist 

focussing on seedling herbivory and seed predation pressures on yellow birch in 

Newfoundland’s forests.  

The other native species in this study, black ash, is of particular conservation 

concern in Canada (COSEWIC 2016) and across its range in North America due to the 

ongoing spread of the emerald ash borer (Agrilus planipennis Fairmaire). There is no 

evidence of this pest having reached Newfoundland yet and there is limited expectation 

that Newfoundland will become climatically well suited to this invasive pest in the next 

30 years (Liang and Fei 2014). This can be viewed as a potential conservation 

opportunity, wherein understanding why the resident population of black ash is so 

geographically constrained to several small patches of habitat on the island’s west coast 

(Farrar 1995) could allow for the assisted establishment of a refuge population of this 

threatened ash species. This species is poorly represented in the literature on germination 

and seedling survival limitations in the field, especially when literature concerning the 

emerald ash borer is omitted. From experimental germination studies carried out in the 
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lab, Steinbauer (1937) and Vanstone (1974) clearly showed the importance of the warm 

followed by cold stratification requirements of this species, however it was difficult to 

find any publications experimentally testing the effects of limiting factors on emergence 

outside of a lab or tree nursery setting (but see Wright and Rauscher 1990). This is likely 

explained by the difficulty overcoming seed dormancy in this species (Bonner and 

Karrfalt 2008), a process that can take two years, making it a difficult species for 

typically time-constrained field studies. Ehrenfeld (2012) describes black ash as a species 

that is sensitive to drought, tolerant of a range of soil conditions and is seldom a dominant 

stand species, but also recognises the gaping lack of data on this species.  

Sugar maple is well represented in the literature on a range of topics, and is a 

common model species in the ongoing discussion of a BTE shift in North America (Evans 

and Brown 2017). It is a characteristic species of this ecotone, and the factors limiting its 

passage from one life stage to the next are well studied. Sugar maple is known to 

preferentially germinate under cold temperature (≤5°C) conditions, often with measurable 

intra-specific variations in optimal germination temperature (McCarragher et al. 2011; 

Solarik et al. 2016). Caspersen and Saprunoff (2005) found that sugar maple was well 

adapted to emerging on a leaf litter substrate, which presents a nearly insurmountable 

barrier to smaller-seeded yellow birch. Maple seeds have been found to be highly 

vulnerable to predation beyond their distributional range (Kasimos 2007; Brown and 

Vellend 2014). Some experimental planting of sugar maple beyond its range has been 

done (e.g., Kellman 2004; Brown and Vellend 2014), however no such work has been 

published on experimental studies involving field emergence of this species in 
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Newfoundland. Despite this, sugar maple may be well suited to parts of Newfoundland, 

as the climate of the island is appropriate and it already inhabits areas that are 

geographically close (Farrar 1995), have similar soil types (Agriculture and Agri-Food 

Canada 2015) and are climatically similar (i.e., the Gaspé Peninsula and Cape Breton 

Island; Environment and Climate Change Canada 2017).  

White cedar appears well-suited to make the leap to Newfoundland, for similar 

reasons as those given for sugar maple. Paul et al. (2014) hypothesised that white cedar’s 

northern range boundary in Quebec (Farrar 1995) may be determined by late spring frost 

events or low annual growing degree days (GDD) that reduce seedling emergence and 

survival. Paul et al. (2014) did, however, reveal lingering climatological impediments to 

this species’ success on the island, much of which has lower annual GDD and a shorter 

growing season than the marginal sites described (Agriculture and Agri-Food Canada 

2013a, b). Yet the species’ native range also includes areas with growing season traits 

similar to those on the island (Agriculture and Agri-Food Canada 2013c, d). White cedar 

emergence and seedling survival also appears to be impacted by substrate qualities 

(Cornett et al. 2000) and canopy type (Buda et al. 2011), although these factors have not 

been tested under open-air conditions in Newfoundland. It is unclear how white cedar is 

impacted by seed predation; Bartlett et al. (1991) found that predation did not seem to be 

a factor for this species’ early life survival in Ontario, likely because its seeds are not 

differentiated from those of typical boreal species. However, at the sapling stage 

herbivory does become a limiting factor (Rooney et al. 2002). 
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According to models released by Natural Resources Canada (NRCan 2017), all 

four of these model species have suitable, yet unoccupied habitat across much of 

Newfoundland. The maximum entropy models used by NRCan employ only climatic 

variables in their calculations of probability of occurrence, which reinforces the assertions 

of Evans and Brown (2017) that non-climatic limiting factors are of increasing 

importance when climatic limitations are alleviated or absent. 

1.4 Chapter Overviews 

Chapter 2 

This chapter serves as my literature review on the subject of the changes that have 

been studied and observed at the global boreal BTE due to changing climate regimes, in 

the academic literature. The goal of this review and synthesis was to unify research 

performed at locations within the BTE around the world into a meta-analysis, similar to 

that which Harsch et al. (2009) performed for the global Arctic and alpine treeline. We 

quickly realised, however, that changes occurring within the BTE have not been nearly so 

extensively studied as those occurring at treelines, and so one of the primary findings was 

the need for more research on several facets of this subject: (i) the need for research on a 

greater diversity of species, (ii) the need for more studies performed outside of North 

America, with particular focus on eastern Asia and European Russia, and (iii) the need for 

additional research performed in eastern North America, particularly in eastern Canada 

(Evans and Brown 2017). In the process of building a conceptual framework from the 

relevant literature, we were also able to identify potential drivers filtering out colonising 

tree species either at specific life history stages, or global filters that act on individuals 
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across life stages. Of these, we were able to identify those that are not well understood 

and that require evidence to support their position in the framework. 

Chapter 3 

During the two years’ worth of data collection for the research presented in this 

thesis, I came across several challenges in the design, construction and logistics of 

building herbivore exclosures. One problem in particular that caught my attention, and the 

attention of University of Guelph PhD student Emma Davis, was the possibility that small 

herbivore exclosure cages deployed in an environment that experiences a snowy winter 

may alter the microclimate within the cage confines. We installed temperature sensors 

within three cage designs at one site, and one cage design at three sites, to collect data 

between September 2016 and June 2017. From this data we explored whether cage 

design, size and/or material were impacting temperature or snow accumulation and 

duration. Our findings indicated that cages with lids, regardless of the size tested, 

shortened the period of snow-cover when compared to the controls, whereas finer mesh 

size and larger cage size were more often associated with microclimatic differences 

compared to the control setting. We concluded that while it may be difficult to design 

away the possibility of altering within-exclosure microclimate, installing temperature 

sensors as we did is a relatively cheap and simple way to accounting for a difference in 

microclimate caused by herbivore exclosures. 

Chapter 4 

The two-year experimental field-based manipulative seed addition experimental 

results are presented in the manuscript in Chapter 4. The experiment represents, to my 
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knowledge, the first time anyone has experimentally tested the effects of multiple biotic 

and abiotic drivers on seedling emergence of multiple temperate tree species across the 

southern portion of Newfoundland. This project had two iterations, and was first 

implemented at five sites in 2015 and again at eight sites in 2016 for data collection in the 

2016 and 2017 emergence years. Manipulative treatments were enforced both 

implementation years on pots sown with the seeds of the four model species used: sugar 

maple, yellow birch, black ash, and eastern white cedar. Treatments included protecting 

seeded pots from terrestrial vertebrate herbivory, filling pots with either leaf litter or 

mossy substrate, and placing pots under varying degrees of “boreal” (conifer dominated) 

or “mixed” (increasingly deciduous dominated) canopy types. All sites were within 

mature forest stands and treatments were carried out in full-factorial block design within 

sites, where each block contained all combinations of the herbivory and substrate 

treatment for each species. Climate sensor arrays were installed within each forest type at 

each site in 2016 to provide hourly air and soil temperature and soil moisture readings to 

determine whether microclimate variation might play some role in promoting or 

hindering seedling emergence. Emergence data for 2016 and 2017 were treated as a 

binary response (was there a seedling observed in a pot or not) and binomial response 

(how many seedlings emerged, given the number of seeds sown per pot), and each 

species’ data were analysed using two predictor variable categories: treatment and climate 

variables. Models created for each species x response x predictor variable for each 

emergence year were ranked using AICc table analysis. 
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The results reveal a mixture of seedling emergence patterns that match the results 

of those who have carried out similar experiments elsewhere, as well as some surprises. 

There appear to be distinct combinations of drivers acting on species according to life 

history strategies – here namely the size of each species’ seed. The results from both 

years of this experiment support findings of experimental research within the home 

ranges of sugar maple and black ash that these species (or close analogues) suffer more 

due to seed predation than other species due to the size of their seed (De Steven 1991), 

whereas the smaller seeded birch and cedar emergence was reduced in the presence of 

smothering deciduous canopy cover, but responded unexpectedly well to a leaf litter 

substrate, contrary to others’ findings (Caspersen and Saprunoff 2005). Graphical 

interpretation of emergence data correlation with climate variables revealed that only 

black ash emergence was well correlated with climatic variables, whereas climatic 

variables were unimportant for all other species. 

Chapter 5 

The final chapter frames the findings of Chapters 3 & 4 within the context 

outlined in the Introduction and Chapter 2. Focus is given to synergise the findings in 

Chapter 4 with the work done in Chapter 3 to explore how potential methodological 

issues regarding the use of small herbivore exclosures can be addressed. The overall 

objectives of the project are addressed and I summarise the relevance of this work to 

future studies of this kind both within Newfoundland and in other northern temperate 

forested settings. 
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Chapter 2: The Boreal-Temperate Forest Ecotone Response to Climate Change  

Evans P and Brown CD. 2017. The Boreal-Temperate Forest Ecotone Response to 

Climate Change. Environ Rev, 25(4): 423-431. DOI: 10.1139/er-2017-0009. 

Abstract:  

A warming global climate will elicit changes in the distribution of plant species around 

the planet, and this will become most apparent where biomes converge. Climate exerts 

the strongest control over the geographic location of ecotones at the continental scale and 

many, including the boreal forest – temperate forest ecotone (BTE), are expected to shift 

to higher latitudes under climate change. Fine-scale drivers that define biome boundaries 

at the sub-continental scale are less well understood for many ecotones. We assembled 

studies addressing whether a modern distributional shift is occurring at the BTE and what 

biotic and abiotic factors are driving such a shift. Current research suggests a northward 

shift is occurring; yet, scant data are available to identify the processes involved. Abiotic 

and biotic factors are repeatedly identified as key drivers of change, though not all claims 

are evidence-supported and the interacting effects of these non-climatic factors are poorly 

understood. 

Key words: ecotone, boreal forest, temperate forest, climate change, range shift. 
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2.1 Introduction 

The global climate is warming at a faster rate at high latitudes than it is farther 

south (Stocker et al. 2013) and the effects of this change on forests are expected to be 

complex and varied. The implications of climate warming on plant distribution patterns 

seem, on the surface, to be obvious: as the climate at higher latitudes and elevations 

changes, plant distributions should shift in concert. Strong correlations between recent 

climate warming trends and latitudinal and elevational shifts in species’ distributions have 

been found in many systems (Walther et al. 2005, Chen et al. 2011, Boisvert-Marsh et al. 

2014), yet the complexity of species’ responses are becoming increasingly apparent 

(Lafleur et al. 2010, HilleRisLambers et al. 2013) and the simplified view of a directional 

shift fails to appreciate the unevenness with which changes in regional climate are 

occurring (Walther et al. 2002). A commonality across biomes is the occurrence of time 

lags in climate-induced range shifts; these time lags appear to vary by species and 

geographic and topographic situation (Parmesan and Yohe 2003, Bertrand et al. 2011, 

Savage and Vellend 2014). Global-scale predictions of plant distribution patterns are 

therefore spatially general at best, and even regionalized inferences of future plant 

distributions based on climate predictions should be considered with caution (Walther et 

al. 2002).  

The boreal forest biome has one of the largest geographic footprints of any 

terrestrial biome on the planet, encircling the globe in the northern latitudes (Olson et al. 

2001). To date, range shift research in this biome has predominately focussed on the 

advance of boreal tree species into tundra or alpine habitats (i.e., treeline advance; see 
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Harsch et al. 2009), or the species-specific responses of temperate tree species (e.g., Zhu 

et al. 2012). An ecotone that has received less attention, yet which is a critical transition 

between two economically, culturally, and ecologically important biomes, is the southern 

boreal forest-northern temperate forest ecotone (herein referred to as BTE; Goldblum and 

Rigg 2010). The temperate forest biome is not nearly as expansive as the boreal forest, 

and so the BTE exists only in eastern North America, northern Europe and European 

Russia and eastern Asia (Pastor and Mladenoff 1992). The BTE is still largely intact in 

North America, contrary to Europe and eastern Asia where human activities such as 

agricultural expansion and logging have eliminated or modified large tracts of ecotone 

forest (Pastor and Mladenoff 1992, Goldblum and Rigg 2010), creating substantial 

hurdles to our understanding of this ecotone. 

Pastor (2016) warns of the disassembly of the BTE, as plant species’ shifts with 

climate will be asynchronous both spatially and phenologically with dependent fauna, 

causing the dismantling of ecological communities. In order to accurately predict the shift 

of the boundary between temperate and boreal forests, which has considerable 

implications for ecosystem function and processes, a continental and global 

understanding of the actual response of the BTE to recent warming is needed. To that 

end, we see three critical questions for which a synthesis is needed: 1) What determines 

the current position of the BTE? 2) How has this ecotone changed in the past? 3) How 

will the BTE change in the future? We approached these questions by synthesizing 

current knowledge on temperate tree species response to climate change at the boreal-

temperate ecotone using a standardized, focussed literature search. Specifically, we 
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investigated whether a modern distributional shift has occurred in the BTE across the 

globe, identified the most common biotic and abiotic factors involved in limiting or 

facilitating this shift, and assessed whether knowledge gaps exist for specific regions, 

species, and processes.  

We had a number of expectations prior to our literature synthesis. Loehle (2000) 

showed that ecotone response to climate warming along a latitudinal transect would be 

slow, exhibiting a lag effect due to resistance of the retreating forest biome. At the BTE, 

we anticipated that lag would be due to a combination of abiotic and biotic factors: i) the 

porous structure of moss- and lichen-dominated boreal substrates would limit the 

germination and establishment of temperate tree species; and ii) the palatability of large-

seeded temperate tree species (e.g., Acer species) would result in their preferential 

predation by small mammals in boreal forest sites. We also expected that range expansion 

of species with distributions that predominately occur in the BTE (rather than centred in 

the temperate forest biome; see Table 2.1) could be an early indicator of temperate forest 

shifts into historically boreal forest stands, as they are already established in marginal 

environments for temperate species. To our knowledge, this is the first global synthesis to 

date of the response of the boreal-temperate ecotone to recent climate change (but see 

Goldblum and Rigg 2010 for an excellent review on the North American portion of this 

ecotone). Such a synthesis is critical, given recent rapid climate change and subsequent 

ecosystem shifts and community re-organization occurring globally (Beckage et al. 2008, 

Hobbs et al. 2009, Jump et al. 2012, Trant and Hermanutz 2014).  
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Table 2.1: Typical tree species occurring in the BTE mixed-wood forest in North America and Eurasia 

(modified from Pastor and Mladenoff 1992). Since we are attempting to make global observations about 

this particular ecotone, a broad range of species belonging to each biome must be considered; however, 

even at the global scale, many of the genera are common among geographically disparate instances of the 

BTE. 

North America Europe Asia 

Boreal species 

 

  

Abies balsamea Betula pubescens Abies nephrolepis 

Betula papyrifera Picea abies Betula ermanii 

Picea glauca Pinus sylvestris Betula platyphylla 

Picea mariana Populus tremula Picea jezoensis 

Pinus banksiana Sorbus aucuparia Populus davidiana 

Populus tremuloides 

 

  

Northern temperate deciduous species 

Acer saccharum Carpinus betulus Acer mono 

Betula alleghaniensis Fagus sylvatica Fraxinus mandshurica 

Fagus grandifolia Quercus robur Pinus koraiensis 

Pinus strobus Tilia cordata Quercus mongolica 

Tilia americana 

 

Tilia amurensis 

Tsuga canadensis   Ulmus propinqua 

2.2 The BTE 

Before we begin dissecting how this ecotone is changing, a clear picture of the 

general principles governing its location and spatial extent are needed. An over-arching 

theme of all ecotones is the inter-specific competition that takes place under considerable 

environmental stress, as these areas are typically where distributional range edges 

converge (see Table 2.1 for species list; Burns and Honkala 1990 and references therein). 

The North American BTE (Fig. 2.1a) offers some exception to this, as the BTE is wide 

enough here to host the majority of some tree species’ distributional range (Pastor and 

Mladenoff 1992). The European BTE (Fig. 2.1b) is comparatively narrower, and much 

more fragmented due to anthropogenic activities. The latter can also be said about the 

Asian BTE, which compounds the difficult definition of the ecotone with its predominant 
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occurrence along spatially distributed elevational gradients rather than a continuous 

latitudinal gradient (Fig. 2.1c; BTE not defined; Ohsawa 1990). 

The BTE is located in the mid to high latitudes, which means it will be exposed to 

large increases in both mean annual temperature and annual precipitation over the next 

century (Stocker et al. 2013). These are important factors affecting the location of the 

BTE, although the exact combination of agents that act to define its location (e.g., 

climatic, topographical, edaphic, or otherwise) are not yet wholly understood (Goldblum 

and Rigg 2010, Graignic et al. 2014). Arris and Eagleson (1989) found a strong 

association between the mean annual -40˚C minimum isotherm and the BTE in North 

America, yet the same relationship was not as strong in Europe or Asia. Even so, there is 

ample evidence that at the continent scale, climate is the most significant factor 

determining the location of the BTE (Woodward and Williams 1987). To date, work on 

the current and future impact of the most recent warming on the BTE has been primarily 

regionally focused. 

2.3 Contemporary BTE change 

We reviewed the literature pertaining to the response of the boreal-temperate 

forest ecotone (methods summarized below), and revealed three key findings: 1) 

approximately one-third of the studied BTE species and communities had evidence of a 

distributional shift in the direction predicted by climate change (Supplementary Table 

2.1); 2) while climate is a dominant driver of species’ distributions in the BTE, non-

climatic factors play a critical role in determining a species’ ability to respond to 
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changing climatic conditions; and 3) scant data are available on the response of the BTE 

to climate change or the mechanisms driving that response. Here, we discuss those 

findings further. 

2.3.1 Literature synthesis of BTE response to recent climate change 

We used the Scopus online database to search the literature published prior to 

February, 2015 using the search terms focussed on “temperate”, “boreal”, measures of 

range expansion, migration, or shifts (see Appendix 2.1 for full literature search methods 

and parameters). This search produced 1,095 titles, which were then scanned to identify 

articles relevant to the subject of this study, producing a list of 123 candidate papers. To 

ensure that as many relevant articles were included as possible, subsequent searches were 

performed on the Scopus database using search terms that included resurvey and 

elevational gradient studies, which we found were not captured by our initial search. We 

also searched specifically for climate-response studies on species whose ranges centre in 

the BTE, rather than belonging to one biome or another, identified by Pastor and 

Mladenoff (1992; see Table 2.1 for species list). These secondary searches produced a 

further 18 relevant publications. Finally, we scanned the reference lists of relevant 

publications for titles that the primary or secondary searches may have missed. This 

produced an additional 56 articles, raising the total of relevant articles in our study to 178.  

Papers were individually evaluated to determine suitability for the current study. 

The response variable of interest was the detection, or lack thereof, of temperate tree 

establishment in boreal forest stands using experimental or observational methods. 

Studies needed to experimentally test or observe whether a range shift of ecotone-forming 
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species was possible at or beyond the current BTE. We did not require the confirmation 

of range shift at the ecotone, as this would effectively omit many experimental studies 

that tested the possibility of range shift (e.g., Kellman 2004, Brown and Vellend 2014). 

Additionally, information was collected for each study on: (1) study design, (2) 

geographic location(s) of study site(s), (3) habitat type(s), (4) tree species studied, (5) life 

stage studied, (6) a/biotic variables studied, (7) measurement method(s), (8) important 

(a/biotic) drivers, (9) temporal duration of study, and (10) qualitative tree responses to 

climate (Supplementary Table 2.1). Elimination of studies from our database were 

designated as being due to subject, exposure, or response (see Koricheva et al. 2013). 

After the article scan, 62 candidate papers remained from the initial search. After a final 

reading of individual papers and the inclusion of the latest relevant publications as of 

December 2016, the final list of titles was cut to 27 papers (Fig. 2.1; Supplementary Table 

2.1). 

2.3.2 Have temperate tree species’ ranges shifted northward? 

Our synthesis indicated that nine of the 27 published studies detected through our 

methods provided evidence of a distributional shift of the BTE in the direction predicted 

by climate change (~33%). That ratio is lower than that found by Harsch et al. (2009) for 

the forest-tundra ecotone, where ~52% of treelines had shifted upward or northward with 

warming. When we compare our results to Harsch et al. (2009), some interesting 

contradictions are revealed between species at the southern and northern end of the boreal 

forest. Black and white spruce (Picea mariana and Picea glauca, respectively) are two 

common species in North American northern treeline research, both of which have been 
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found to be shifting northwards with climate change (Lescop-Sinclair and Payette 1995, 

Payette 2007). This northward shift is often associated with a southern range contraction 

to form an overall distributional shift (Davis and Shaw 2001); however, Boisvert-Marsh 

et al. (2014) found that while many southern species had expanded beyond their northern 

ranges, neither black nor white spruce had experienced southern range contraction. They 

note that climate change and human-altered disturbance regimes in the BTE may be 

opening up niche space for boreal and temperate species alike.  

At both the northern and southern edge of the boreal forest, it is interesting to look 

at the examples of ecotones that did not respond as predicted. The number of examples of 

a BTE shift in the opposite direction than expected in our search results was limited to 

one (Foster and D’Amato 2015), whereas the remaining studies reported that no shift had 

occurred as species’ distributions were simply static, or only shifts in abundance or 

species dominance were observed (Supplementary Table 2.1). In the boreal-tundra 

ecotone (treeline), the remaining 48% of treelines were predominantly static, showing no 

discernible response, and the authors hypothesized a combination of complex climatic 

constraints on treeline advance (e.g., ice damage, winter desiccation; Harsch et al. 2009) 

in combination with ecological time lags. We propose that the lack of BTE response to 

climate warming at the southern margin of the boreal forest is the outcome of ecological 

time lags driven by complex biotic and abiotic interactions.   
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2.4 Biotic and abiotic determinants of the current BTE location 

While we stress that we are simply identifying observable trends in the limited 

research available on this topic, there are undeniably common themes that have emerged 

in our results – the strongest of which appears to be how changing climate regimes are 

affecting the BTE. The effect of climatic factors, particularly changes in temperature and 

precipitation regimes, on other biomes and ecotones around the world are better studied 

(Parmesan and Yohe 2003, Olivares et al. 2015). From these changes, some species stand 

to benefit from climate change in the form of expanding fundamental niches (Williams et 

al. 2014), while others are expected to have increasingly reduced available niche space 

(e.g., alpine meadows; Brandt et al. 2013). Sixteen of the 27 studies in our database 

demonstrated (11/27) or suggested (5/27) temperature as a factor in determining the 

position of the BTE (Supplementary Table 2.1 for this and all following enumerations). 

Half the studies (14/27) also suggested some other form of climatic control over the 

position of the BTE, which can be broken down into three groups: (i) precipitation or 

moisture availability, (ii) storm severity or wind throw events, and (iii) growing season 

length or timing of frost events.  

Climate change could provide a common thread throughout the majority of the 

research our study uncovered; however, changes occurring in the global BTE are by no 

means solely climate-dependent, and the degree to which non-climatic a/biotic factors 

contribute to the observed changes is still poorly understood. Many studies tested, 

hypothesised, or made inferences to biotic interactions that could act as a negative 

feedback to northward shifts in the BTE (e.g., temperate sapling herbivory: Fisichelli et 
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al. 2012, seed predation, soil biota: Brown and Vellend 2014). In some cases these 

interactions were quantified and were found to have the effect of slowing the northward 

advancement of southern temperate tree species. When the biotic interaction was 

herbivory, that slowing was often due to the higher nutritional value and better 

palatability of the seeds or foliage of deciduous tree species compared to predominantly 

coniferous boreal species (Kellman 2004, Fisichelli et al. 2012, Frelich et al. 2012). In 

contrast, biotic interactions can also result in a net positive feedback with regards to 

temperate tree species’ northward advancement. Pest infestations in southern boreal 

stands have been found to increase the likelihood of a northward shift in the BTE at the 

regional scale by creating gaps that facilitate the establishment and often lead to 

dominance of southern species at the local scale (Grundmann et al. 2011, Boisvert-Marsh 

et al. 2014).  

While biotic interactions can be difficult to monitor and measure, proving 

problematic to separate from climatic drivers (see Brown and Vellend 2014), abiotic non-

climatic factors such as edaphic qualities and disturbance regimes are better understood. 

Lafleur et al. (2010) argues that while climate change will likely lead to northward shifts 

in tree species ranges of boreal and temperate species alike, this progression will be 

piecemeal and uneven due to species-specific edaphic constraints. Empirical evidence 

supporting Lafluer et al.’s (2010) argument is emerging. Edaphic factors are well 

represented in the research found in the present study; there are a wide range of soil 

characteristics cited as contributing factors in determining the location of the BTE 

including moisture and temperature (Goldblum and Rigg 2005), the interplay between 
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moisture and nitrogen content (Pastor and Post 1988), nutrient content (Bai et al. 2011), 

pH (Fisichelli et al. 2013), and texture and depth to parent material (Lee et al. 2005). 

Researchers suggest that temperate species’ ability to track a warming climate will be 

constrained by shallow, coarse, poorly drained, and acidic soils. 

A critical point that has emerged from our synthesis is that no single variable has 

stand-alone effects on tree species distributions; instead, the response of BTE tree species 

to climate change is the result of the interacting effects of multiple drivers. To further 

complicate the story, those drivers cannot always be categorized as abiotic or biotic, 

climatic or non-climatic. Soil is an excellent example; a combination of biotic (e.g., soil 

biota) and abiotic (e.g., moisture capacity) drivers, soil characteristics can have 

immensely complex influences on tree species’ abilities to track changing climate (Brown 

and Vellend 2014, Lankau et al. 2015, Katz and Ibáñez 2016) with feedbacks between 

newly arriving tree species and the soils they encounter (e.g., increasing soil fertility 

through increased nitrogen input; Pastor and Post 1988). Disturbance regimes are also the 

result of complex interactions between climatic and non-climatic factors (e.g., 

temperature and fuel load) or biotic and abiotic variables (e.g., climate-induced range 

expansion of herbivores). The disruption of these regimes can have far-reaching 

consequences on species composition that must be considered when contemplating the 

modern composition of the BTE, and its future (Nowacki and Abrams 2015). The 

message, then, is that any study of a species distributional response to climate change 

must not only incorporate climatic and non-climatic factors, but also the interactions 

between them. 
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2.4.1 Constraints on life history stages 

Many factors that act to constrain the northward expansion of temperate tree 

species into boreal stands reoccur frequently in the literature, and act as filters that weed 

out potential colonising tree species at different life stages. In organising them into a 

conceptual framework (Fig. 2.2), one can view the normal life-cycle of a given tree 

species that has the chance to establish a population in an area it previously did not 

inhabit. This population will, under normal conditions, begin with the arrival of seeds in a 

new location which must then germinate, survive, and propagate. At each life stage, 

filters can have different levels of impact on or relevance to a new colonising population 

given its genetics, demographics, physical setting, and proximity to disturbance and 

vectors of dispersal. Global filters act on a given tree species at all life stages. It is 

important to note that many of the filters in our conceptual framework are hypothesised in 

the literature, not directly supported by evidence. The inclusion of unsupported filters is 

meant to draw focus to areas that we have found to be under-represented in the literature 

to date, and serve as a roadmap for future work to address knowledge gaps in our 

understanding of which and how drivers interact with species occurring in the BTE. 

Additionally, more work is needed in order to solidify the relationships between known 

drivers and those yet to be revealed, as well as to quantify their influence on the location 

of the BTE under the influence of global warming. 

A general constraint that was not captured by our literature review, but is an 

increasingly important consideration when researching species range shifts, is the 

potential for phenological mismatch between plant species and their pollinators  
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Figure 2.1: The spatial extent of the BTE and distribution of studies in (a) North America, (b) Europe, and 

(c) Asia. The North American BTE was assembled here using Nearctic mixed forest terrestrial ecoregions 

from Olson et al. (2001) and closely resembles the outline of Goldblum & Rigg’s (2010) boreal-deciduous 

ecotone (BDE). The European BTE is represented here using the Sarmatic Mixed Forest Ecoregion from 

Olson et al. (2001), which matches earlier descriptions of the Hemiboreal zone outlined by Ahti et al. 

(1968). Studies show small and large-scale observational and experimental studies, with linked study sites 

indicated. 

(Memmott et al. 2007), dispersers (Tylianakis et al. 2008), and pests (Schweiger et al. 

2008). This is a complex issue that could affect how the BTE shifts with climate change. 

Asynchrony between the phenology of specialist insect herbivores and their host tree 

could lead to some alleviation of herbivory stress (Asch and Visser 2007), whereas 

asynchrony between insect herbivores and the migration timing of their avian predators 

could result in un-checked insect outbreaks (Venier and Holmes 2010). These and other 

examples of how phenological mismatch could simultaneously maintain and disrupt 

current species range status-quo offer a glimpse of the intricate, multi-trophic interactions 

that can confound climate change-induced range shifts. 

2.5 Historical context of range shift in the BTE 

The prevailing notion that climate-related factors, primarily temperature, 

precipitation and seasonality (Woodward and Williams 1987), are the most important 

controls on the distribution of vegetation is not new, and can certainly be applied to the 

modern and historical location of the BTE (Mather and Yoshioka 1968, Allen and 

Hoekstra 1990, Pastor and Mladenoff 1992). Historical ecotone shifts have been recreated 

using palynological and macrofossil evidence across North America (Jackson et al. 1997, 

Hupy and Yansa 2009) and Europe (Amon et al. 2012, Douda et al. 2014) during the 

warming period since the last ice age. Evidence that as recently as 126 ka the North  
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Figure 2.2: (a) Conceptual framework showing filters acting on potential colonising tree species at the BTE, 

each of which reduces the number of individuals available for the next demographic stage. Filters were 

assembled from the 27 most relevant papers pulled from the literature in the present study, with an adjacent 

asterisk (*) representing filters that were inferred, hypothesised, or were otherwise not supported with 

evidence in studies encountered and therefore in particular need of research. Specific filters (or their 

removal) are depicted to show: (b) preferential seed predation of temperate species by boreal vertebrates 

(Brown and Vellend 2014), (c) the impact of fire suppression on forest successional pathways and 

subsequent canopy composition (e.g., Drever et al. 2006), (d) the escape from pathogens with increased 
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distance from conspecific individuals (Katz and Ibáñez 2016), and (e) increased browse pressure on more 

palatable temperate species in boreal stands (Fisichelli et al. 2012). 

American temperate biome was located at least 500 km further north than it is today in 

response to 6-7˚C higher average temperatures (Fréchette and de Vernal 2013) could 

serve as a regional maxima for the potential of future warming to be reflected by a drastic 

northward shift of the BTE. The rate of tree species range shift and recolonization after 

the last glacial maximum is widely contested with some authors suggesting a maximum 

rate of 2,000 m yr
-1

 (Giesecke et al. 2011) and others a maximum of less than 250 m yr
-1

 

(Cheddadi et al. 2013), reflecting the general agreement that the rate of movement varied 

among species. The disassembly of this ecotone is therefore expected to mirror the 

process of its assembly as it occurred on a species-by-species basis, due to the species-

specific responses to climate change (Pastor 2016). 

2.5.1 Projected changes in the BTE 

During our literature review, we opportunistically identified forest modelling or 

simulation studies dealing specifically with forest dynamics at the BTE. The majority of 

studies predicted northward shifts of southern temperate species at the expense of boreal 

species, with a minority of temperate species projected to retain their current range or 

suffer range contractions (Chen 2002, Koca et al. 2006, Iverson et al. 2008, Hickler et al. 

2012). Most of the modelling studies we found dealt with the North American and 

European BTE, with fewer studies dealing with the eastern Asian portion of the BTE. 

Because we found little data on field studies of the Russian BTE, we specifically searched 

for modelling papers addressing the Russian BTE (or hemiboreal/boreo-nemoral zone 

sensu Ahti et al. 1968), which revealed predictions of northward shifting species ranges, 
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aligning with projections of other regions of the BTE globally (Sykes 2001, Zhang et al. 

2009). Additional Russian studies modelled future states of the Russian boreal forest 

(e.g., Nadezda et al. 2006, Brazhnik and Shugart 2015), or focussed on the future of 

Russian forests as a whole (e.g., Tchebakova et al. 2009, Kicklighter et al. 2014, Shuman 

et al. 2014, Schaphoff et al. 2016). 

Many regional, community-scale studies have revealed evidence suggesting that 

recent climate change has affected the BTE location by influencing growth patterns 

(Goldblum and Rigg 2005), shifting tree species distribution (Weng and Zhou 2005, 

Beckage et al. 2008, Tang and Beckage 2010), re-positioning temperate species' 

competitive standing (Bolte et al. 2010), and increased northern recruitment success of 

temperate species (Leithead et al. 2010). However, these studies often focus on a narrow 

subset of species out of necessity, due to the often monumental task of collecting 

adequate data upon which to base firm conclusions for large groups of species (see 

Iverson and Prasad 2002). Likewise, many regional-scale models have been designed to 

test the implications of future climate change scenarios on the BTE, with northward and 

upward shifts being common predictions (Weng and Zhou 2005, Koca et al. 2006, Tang 

and Beckage 2010, Shuman et al. 2014). When combined, regional projections do 

encompass the global BTE in a piecemeal fashion; however, we are aware of no study 

that deals directly with the question of how current climate change will affect the BTEs 

globally. 

Currently, to specifically deal with how the BTE may respond to climate change 

at the global scale one must refer to studies using global scale models to investigate how 
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climate change will affect vegetation distribution (e.g., Haxeltine and Prentice 1996, Alo 

and Wang 2008, Warszawski et al. 2013), as inclusion of the BTE is implicit. Predictions 

can also be informed by historical BTE responses to periods of climate flux, which 

provide useful insight into how even relatively small changes in a climatic regime have 

produced ecotonal shifts (Hupy and Yansa 2009) and can serve as a recent historical 

analogue to modern change at the regional scale. Beyond predicting forest distributional 

response to climate change, modelling studies in the literature appear to have the purpose 

of informing policy (Hickler et al. 2012, Steenberg et al. 2013, Bright et al. 2014), 

combinations of changing climate and non-anthropogenic disturbance regimes (Scheller 

and Mladenoff 2008, Vanderwel and Purves 2013), or multiple climate scenarios (Iverson 

and Prasad 2002, Iverson et al. 2008), while others have narrowed in on BTE dynamics at 

the regional scale (Koca et al. 2006, Anyomi et al. 2012). 

2.6 Research needs  

We identified significant geographic gaps in BTE research globally. Studies in the 

highly human-influenced portions of the BTE that exist in Europe and eastern Asia may 

be lacking due to the difficulty in locating the natural BTE. Bolte et al. (2010) conducted 

research in a reserve in southern Sweden, and took great care in researching the historical 

land-use patterns that could have left an imprint on their study area. In north-eastern 

China, where the east Asian portion of the BTE exists, land-use change has occurred 

more recently and much more rapidly than in Europe. Rapid population growth over the 

past half century has produced expanding demand for cleared agricultural land and 

building supplies and has left a characteristic mark on the forested landscape (Yu et al. 
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2014). Research on BTE response to climate change is growing fastest in North America; 

yet, knowledge gaps remain. Data on the North American portion of the BTE has the best 

geographical coverage, yet eastern Canada remains under-researched. There, a 

fragmentary coastline creates geographic barriers between sites with amenable climatic 

conditions for southern temperate tree species expansion into typically boreal-forested 

regions, and creates logistical challenges for field research.  

A holistic understanding of the processes controlling the location and 

configuration of the BTE is needed. Our review of the literature has identified numerous 

factors that may facilitate or constrain a shift in the BTE. We anticipate these factors will 

produce a piecemeal ecotone shift, controlled by local and regional non-climatic factors. 

While we are moving towards gaining a big-picture understanding of the North American 

BTE, which has relatively abundant empirical data compared to the other regions, we 

cannot directly apply predictions informed by North American data to other regions with 

unique combinations of confounding factors and traits. The three broad regions where the 

BTE exists – North America, Europe and eastern Asia – also have significant ecological 

differences; historical colonisation patterns and geography account for much of the tree 

species richness gradient from high diversity in east Asian forests to lower diversity in 

Europe (Latham and Ricklefs 1993). At the surface this gradient may seem like yet 

another complicating factor; however, it also presents a unique opportunity for a direct 

comparison between how shifts of species-rich ecotones compare with those that are 

relatively species-poor between the same two biomes. 



47 

Moving forward, expanding the focus of research on this topic to include more 

work in eastern Canada and within the European and Asian ecotones will not only i) 

allow for a better grasp of spatial differences in rates and morphology of change at the 

global scale, but ii) through the role of ecotones as bellwethers for climate change 

(Wasson et al. 2013), the BTE may also offer a glimpse of how biomes around the world 

may respond to a changing climate. However, the interaction between ecological features 

and climatic and other (a/biotic) factors is still not clearly understood and clouds our 

ability to make accurate predictions of future ecological states due to the multitude of 

global and local conditions that must be taken into consideration and the temporal 

longevity of the systems under study (Woods 2014). It is our opinion that such ecological 

complexity can only be disentangled through field experimentation (e.g., Kellman 2004, 

Brown and Vellend 2014) and future research efforts in the BTE should focus on 

quantifying a/biotic effects on species distributions at their range limits. Scale factors 

become important considerations here as well, as field experiments are often only able to 

identify local drivers due to the inherent limitations of time and resources. Therefore, 

questions surrounding how local drivers can be scaled to explain regional or continental 

changes must also be addressed. Despite these challenges, our findings do suggest that the 

quantity and scope of research on this topic is growing at an accelerating pace and will 

likely continue to do so in the coming years. 

2.7 Conclusions 

We set out with a number of expectations for our review of current research 

addressing the response of the BTE to climate change.  Those expectations were met in 
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that we uncovered a complex story involving disturbance, biotic interactions, and abiotic 

characteristics. We did not anticipate that we would only gain an understanding of small 

pieces of the full story of the historic, current, and future BTE, and only in geographically 

discrete regions. We lack a holistic understanding of the ecotone globally, which is 

critical for predictions of species’ distributions. What we do know is that, under various 

circumstances and conditions, the components required for temperate tree expansion into 

boreal forest stands include: a favourable disturbance regime, suitable substrate, predator 

satiation or absence, presence of symbiotic organisms, and release from pathogens, in 

addition to the suitable environment created via climate change. The absence of one or 

more of these conditions will likely result in a time lag between the creation of favourable 

environmental conditions beyond temperate tree species’ current distributions and their 

response to that warming via population advance.  
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Highlights 

 Small herbivore exclosures of varying size and design can create microclimates 

 Temperature and snow accumulation differed between exclosures and controls 

 Small exclosures with large gauge material had the least impact on microclimate 

 Monitoring temperature within exclosures can reduce chances of Type I & II 

errors 

Abstract 

Small herbivore exclosures are a popular means of experimentally assessing the impacts 

of herbivory on the germination, growth, and survival of various plant species. The 

degree to which small exclosures modify microclimatic conditions relative to control 

plots has, however, received relatively little attention and is rarely quantified. Inadvertent 

microclimatic effects have the potential to either confound or enhance the detection of 

significant experimental results that may be due to herbivory or to a combination of 

herbivory and microclimate modification. We anticipate that areas experiencing seasonal 

snow accumulation may be particularly prone to microclimate modification by small 

exclosures and that the selection of exclosure material and design influences the 

magnitude of the effect.  
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Mean, minimum, and maximum temperatures during the period of initial snow 

accumulation and melt, as well as the number of snow covered days, were measured in 

three geographically distinct environments to test for the effects of exclosure application 

and design. Measurements recorded under three exclosure designs of various sizes and 

materials were evaluated relative to control plots.  

All three of the cage designs caused some degree of microclimate modification, the extent 

of which was dependent on cage design, material selection, and study site location. 

Overall, we found that small cages made of large gauge material had the least effect on 

microclimatic conditions. Significant variability in the magnitude of the effects between 

study sites with different climates and degrees of tree canopy cover suggests that the 

effects of exclosure application cannot easily be generalized to different locations.  

The detection of microclimate modification in all exclosure designs and experimental 

settings highlights the value of temperature monitoring in herbivore exclosure studies, 

and stresses the importance of selecting cage designs and materials with care. Differences 

in soil-level air temperatures, such as those found in our study, have the potential to affect 

the performance of sensitive and/or juvenile plants growing within the small exclosure 

environment. The relative ease and low cost of temperature monitoring should make 

separating the effects of microclimate modification from herbivory a feasible option in 

future exclosure studies.   
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3.1 Introduction 

Climate and edaphic characteristics are the dominant drivers of species 

distributions, yet it is becoming increasingly apparent that plant and animal distributions 

are also shaped by local intra- and inter-specific biotic interactions (HilleRisLambers et 

al., 2013) such as competition (Tingstad et al., 2015), predation (Brown and Vellend, 

2014; Johnson and Fryer, 1996), facilitation (Bruno et al., 2003), and mutualisms (Nuñez 

et al., 2009). Sessile terrestrial plants are unable to effectively evade herbivores, and are 

therefore vulnerable to herbivory and seed predation by vertebrates and invertebrates. 

Predicting the magnitude of the effects of biotic interactions on a species’ ability to 

respond to climate change is challenging given that biotic interactions are inherently tied 

to local abiotic environmental gradients. Experimental field studies are necessary to tease 

apart biotic and abiotic (i.e., climatic, edaphic) processes controlling the distributions of 

species (HilleRisLambers et al., 2013). The methodologies employed in this ongoing 

investigation have, however, received little scrutiny thus far. 

The use of herbivore exclosure devices in field experiments has become a popular 

means of assessing the effects of herbivory, by both post-dispersal seed predators and 

plant herbivores, on recruitment and plant community dynamics. Such effects are of 

strong interest in conservation biology, where plant-herbivore interactions between native 

and introduced species are often important (Boyd et al., 2017; Forsyth et al., 2015; Hager 

and Stewart, 2013; Thompson et al., 1992), and for forestry and horticultural applications, 

where herbivory and seed predation can constrain productivity (Leadem et al., 1997; 

Marsh et al., 1990). The benefits of using exclosures in field-based herbivore-plant 
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interaction research are obvious: exerting control over a natural system by experimentally 

manipulating conditions in the field can isolate the impacts of a group of herbivores on a 

selected area and/or plant species, whereas observational studies must rely more heavily 

on inference. However, exclosure studies have been criticised for not addressing 

fundamental interactions between herbivore groups and the species they consume, and 

instead apply a binary filter on a complex relationship (Hester et al., 2000). Nevertheless, 

exclosure studies produce consistent responses among prey species the vast majority of 

the time (Sih et al., 1985). The prevalence of significant effect size, as well as the 

immutable importance of herbivore-plant interactions research (Humphrey, 1998), 

explains the continued popularity of herbivore exclosure studies, despite often being 

logistically challenging. 

Alternatives to using herbivore exclosures in experimental herbivore-plant 

interaction studies are uncommon in the literature. Lab-based research focussed on 

herbivore-plant interactions can be practical when looking at herbivore-induced reactions 

in plants (e.g., Roslin et al. 2008; Hartley and DeGabriel 2016), or when a plant and its 

respective herbivore specialist can be tested in a lab (e.g., Bates et al. 2000); however, 

these options are not always feasible and such research often requires field-based 

experimental data collection. Camera traps, a method borrowed from wildlife studies 

(Kucera and Barrett, 2011; Trolliet et al., 2014), have been effectively used in herbivore-

plant interaction studies to identify herbivores (Nuñez et al., 2008) and observe their 

behaviour (Jansen et al., 2012). Their use in plant-focussed research remains limited 

(Burton et al., 2015), however, due to their inability to quantify aspects of herbivore-plant 
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interactions such as the extent of damage caused by browse pressure (Brodie et al., 2012; 

Kuijper et al., 2009). 

The design of herbivore exclosures must be scaled to the consumers of interest in 

a given study, such that a wide range of sizes, designs, and materials are commonly 

employed (Table 3.1). Though there exists an extensive body of literature regarding the 

effects of large herbivores on various plant species (e.g., McLaren et al. 2009; Kain et al. 

2011; Ellis and Leroux 2017), our focus in this study is on herbivore exclosure cages 

intended to exclude small vertebrate animals (e.g., Mittelbach and Gross 1984; Côté et al. 

2005; Brown and Vellend 2014). The majority of literature describing the use of 

exclosures (Bowers, 1993; Fraser and Madson, 2008; Olofsson et al., 2004; Young et al., 

1997) provides adequate information for the replication of their designs and deployment 

techniques and this is supplemented by forestry (Leadem et al., 1997) and field operations 

manuals (O’Keefe and Alard, 2002). Yet, the body of literature evaluating design 

considerations of herbivore exclosures appears sparse.  

Although the materials used in vertebrate exclosure cages appear largely 

consistent (Table 3.1), the impact of material and design selection on the conditions 

within and in immediate proximity to the exclosure has, to our knowledge, not been 

investigated under snowy winter conditions. Tree guard effects on microclimate 

conditions have been investigated during the growing season (e.g., Prunus plantation, 

south of France, Bergez and Dupraz, 2000; Eucalyptus-Banksia-Allocasuarina woodland, 

southwestern Australia, Close et al., 2009; experimental Quercus plantation, southwestern 

Washington, Devine and Harrington, 2008), however the influence of this type of 
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Table 3.1: A sample of the variety of designs and range of sizes of herbivore exclosures used in herbivory studies. “Open or closed” refers to the 

exclosure’s top; Ø refers to a diameter measurement. 

Type  
Target 

species group 

Dimensions 

of exclosure 

Open or 

closed  
Materials used Habitat; location Duration   

Cage Small rodents 20 x 20 x 5 cm 
Assumed 

closed 
6 mm wire mesh 

Old-field habitat; 

Southwestern Michigan, 

USA 

July 1983 (1) 

Cage Small rodents 
20 x 20 x 20 

cm 
Closed 

1 cm hardware cloth, 

stainless steel nails 

Mixedwood Appalachian 

forest; Southern Quebec, 

Canada 

Oct 2012 – April 

2013 
(2) 

Cage Small rodents 
25 cm x 36 cm 

Ø 
Closed 

1.25 cm
2
 hardware cloth, 

PVC pipe, metal flashing 

Scientific reserve within 

mixedwood plains ecozone; 

South-central Ontario, 

Canada 

August-October 

2013 
(3) 

Cage 
Small 

vertebrates 

90 x 90 x 60 

cm 
Closed 

6.4 mm galvanised wire 

mesh 

Boreal forest; South-central 

Quebec, Canada 
June-August 2001 (4) 

Cage 

Aquatic 

reptiles and 

fish 

90 cm Ø x 122 

cm 
Closed 

5 x 10 cm welded wire 

fencing, rebar, wire ties 

Lake and shoreline habitat; 

Southern Texas, USA 
June-Sept 1996 (5) 

Net Avi-fauna Varied Closed 
20 mm black nylon 

netting, bamboo stakes 

Tropical rainforest; Southern 

Yunnan Province, China 
April-May 2004 (6) 

Cage 

Rodents and 

large 

mammals 

4 m Ø x 1.5 m Closed 
Wire fencing 

(dimensions unspecified) 

Tropical wet forest; Costa 

Rica 

Feb 2001 – July 

2002 
(7) 

Fence Deer 12 x 12 x 2 m Open 
2 m posts and10 x 10 cm 

Mixed conifer-angiosperm 

forest; Southern South 
July 2004 – July 

(8) 
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Citations: (1) Mittelbach and Gross (1984), (2) Brown and Vellend (2014), (3) Cassin and Kotanen (2016), (4) Côté et al. (2005), (5) Smart et al. (1998), 

(6) Meng et al. (2012), (7) DeMattia et al. (2004), (8) Forsyth et al. (2015), (9) Pastor et al. (1993), and (10) Thompson et al. (1992). 

mesh Island, New Zealand  2006 

Fence Moose 15 x 15 x 3 m Open 

Wire fencing 

(dimensions 

unspecified), cedar posts 

Boreal forest; Isle Royale, 

Michigan, USA 

Approx. 1950 – 

1988 
(9) 

Fence Moose 15 x 15 m Open 
Materials and 

dimensions unspecified 

Boreal forest; East-central 

Newfoundland, Canada 
1976 – 1987 (10) 
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exclosure on snow and over-winter conditions appears yet to be studied. Researchers who 

manipulate highly localised temperature regimes to observe plant responses (e.g., 

International Tundra Experiment) have developed methods to maximise control over 

temperature ranges within an enclosure (Chapin and Shaver, 1985; Henry and Molau, 

1997; Marion, 1996). However, we assert that in small herbivore exclosure experiments, 

the alteration of microclimate conditions is an inadvertent outcome of the 

methodologically standard practise of placing a barrier between small herbivores and 

their potential prey. This is problematic because differences in plant performance between 

control and exclosure plots are typically attributed solely to the effects of herbivory, when 

unanticipated and unaccounted for differences in microclimate may confound these 

results. 

Microclimate modification within small herbivore exclosure cages (hereafter, 

‘cages’) could occur in various settings, however we posit that unintended effects are 

likely most pronounced when cages are deployed in areas that experience seasonal snow 

accumulation. Slight temperature differences within exclosures could affect initial snow 

accumulation and the later release from snow cover, with consequences for the 

performance of vegetation. For example, small changes in the duration of snow cover can 

significantly affect the germination, growth, and survival of juvenile plants, which can 

benefit from the protection provided by snow cover (Renard et al., 2016). Alternatively, 

exclosure walls may reduce surface wind speeds, or act as snow fences, leading to 

increased snow accumulation in their immediate vicinity (Wipf and Rixen, 2010). In an 

effort to quantify the effects of cages on microclimate conditions, we deployed field 

experiments in three geographically distinct environments to test whether (1) the onset of 
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winter, marked by the first accumulation of snow lasting 24 hours, occurred later and was 

marked by colder temperatures within cages than without, (2) spring thaw, marked by the 

last period of snow cover on the ground lasting 24 hours, occurred earlier and was marked 

by colder temperatures within cages than without, and (3) the number of snow-covered 

days during the winter was fewer within cages than surrounding areas. Further, we 

investigated how construction material and design influenced the degree of microclimate 

modification. Alteration of microclimate conditions within cages has important 

implications for the temperature regimes facing seeds and seedlings, particularly 

regarding the timing and duration of freeze-thaw cycles. Our goal is to offer the first, to 

our knowledge, direct evidence of small herbivore exclosure cage effects on 

microclimates to serve as an example for researchers employing these cages in similar 

climatic settings.

3.2 Materials and Methods 

3.2.1 Study areas 

Our experimental study was conducted in three locations (“Eastern”, “Central”, 

and “Western” sites) across Canada under three distinct canopy types (Fig. 3.1). We 

chose a broad range of geographic and ecological settings to assess whether cage design 

would emerge as a well-defined predictor of temperature variation and microclimate 

creation despite the anticipated strong site effect in the three study ecosystems. 
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Figure 3.1: The three study sites; (A) Western, within an alpine treeline in Kananaskis Country, Alberta; 

(B) Central, in a meadow University of Guelph Arboretum, Guelph, Ontario; and (C) Eastern, in a mixed 

broadleaf-coniferous forest near Clarenville, Newfoundland and Labrador. The number and type of 

exclosures tested are noted for each study site (D). 

3.2.1.1 Eastern Site 

The “Eastern” field site (Fig. 3.1; 48°11’47.07” N, 54° 1’31.81” W; 55 m a.s.l.) is 

located in the northeastern portion of the island of Newfoundland, Canada. The site lies at 

the bottom of a shallow northwest-southeast valley approximately 2 km northwest of 

Clarenville, NL, and has an overall shallow gradient (< 2%) of northward aspect. The 

dense canopy cover (mean 92%) is composed of black spruce (Picea mariana), paper 

birch (Betula papyrifera), tamarack (Larix laricina), red maple (Acer rubrum), and 

balsam fir (Abies balsamea), in order of decreasing abundance. The average annual 

temperature at the nearest weather station (Lethbridge, NL; 48°21’00” N, 53°54’06” W; 

15.2 m a.s.l.; 19.5 km from site) is 4.7°C, with an average annual snowfall of 223.5 cm 
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(Environment Canada, 2011). This area records an average snow depth by the end of 

April of 2 cm, and has an average daily minimum temperature above 0°C from May until 

October. 

3.2.1.2 Central Site 

The “Central” field site is located in a grassy meadow at The Arboretum, 

University of Guelph, in southwestern Ontario (Fig. 3.1; 43°32’32.92” N, 80°13’10.43” 

W; 328 m a.s.l.). The exclosures were situated in a flat area with no tree canopy cover, 

although nearby buildings and trees created a windbreak within the study area. Historical 

climate normals for the area (1981-2010; available from the Waterloo, ON, weather 

station; 43°27’00” N, 80°23’00” W, 317 m a.s.l.; approximately 25 km from field site) 

indicate mean annual temperatures of 7°C and a mean annual snowfall of 159.7 cm 

(Environment and Climate Change Canada, 2011). Winter snow accumulation typically 

begins in November or December (mean December snow depth of 5 cm) and the spring 

melt is typically complete by the end of March (average month-end snow depth of 1 cm).  

3.2.1.3 Western Site 

The “Western” field site is near Highwood Pass in Peter Lougheed Provincial 

Park, southwestern Alberta, Canada (Fig. 3.1; 50°34’11.53” N, 114°56’54.88” W; 2215 

m a.s.l.). The area is a treeline ecotone environment with Engelmann spruce (Picea 

engelmannii) and subalpine fir (Abies lasiocarpa) as the dominant tree species. The site 

has a south-southwest aspect and a steep slope (27%). The nearest long-term weather 

station (Kananaskis Pocaterra; 50°42’45.02” N, 115°07’12.06” W; 1610 m a.s.l.; 20 km 

from the study area) indicates that the mean annual temperature is 1.1°C and mean annual 
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snowfall is 255 cm. Snow accumulation can occur year-round but is heaviest from 

September to May. Mean September snowfall is 8.7 cm, and month-end snow depth is 3 

cm in April (Environment and Climate Change Canada, 2013).  

3.2.2 Data collection & analysis 

At the Eastern site, temperature data were collected at two hour intervals using 

Onset® HOBO® dataloggers (Onset Computer Corporation, Cape Cod, MA, USA): 8k 

Pendant® Temp/Light Loggers and 8k Pendant® Temp Loggers were attached to wooden 

stakes inserted into the ground such that the sensor was no more than 10 cm above the 

ground surface. At the Central and Western sites, U-12 temperature loggers with 

temperature sensors attached were used to collect temperature data at two hour intervals. 

The loggers were encased in waterproof containers, the sensor cables were buried, and the 

temperature sensors were placed on the exposed soil surface. Within-cage temperature 

loggers were placed in the centre of the cage in all cases. The duration of temperature 

recordings varied between the sites (see Table 3.2) but captured the onset and release 

from snow cover in all cases. 

Three cage designs were tested at the Eastern site, with 10 replicates of each; one 

of these designs was common to all three sites, with two replicates at both the Central and 

Western sites. The small box cage (SBC) design (Fig. 3.2a), tested at all sites, was 

derived from the Global Treeline Expansion Experiment (GTREE; Brown et al. 2013) 

and was a closed-top design measuring 18 cm (h) x 56 cm (l) x 33 cm (w) with 1.27 cm 

(½”) hardware cloth. At the Central and Western sites, sensors were placed in two 

replicates of the SBC type, paired with two control sensors. The effects of cage material 
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and design on microclimate modification were also tested in 10 replicates of the SBC 

design at the Eastern site (Fig. 3.2a). In addition, the Eastern site included two “large” 

designs, the closed-top large box cages (LBCs; Fig. 3.2b), which measured 50 cm (h) x 

122 cm (l) x 81 cm (w) and were encased in 6.35 mm (¼”) hardware cloth, and the large 

round cages (LRCs; Fig. 3.2c), which had open tops and measured 92 cm (h) x 56 cm 

diameter (Ø) and were constructed from 2.54 cm (1”) gauge chicken wire. Both of the 

larger cage designs were adapted from Leadem et al. (1997) to suit local conditions in 

Newfoundland – specifically the predominance of shallow, rocky soils. Ten replicates of 

each cage type were tested at the Eastern site, but sensor battery failure in two LRCs 

meant that cage type had data for only eight replicates (Table 3.2).  

Cages at the Eastern site were a minimum of 2 m from the nearest neighbouring 

cage, or control sensor, with cage types randomly distributed. Cages were intentionally 

placed on level ground so that all cage edges were flush with the forest floor. Canopy 

cover and composition above control sensors was consistent with their nearest neighbour 

cage sensors, and control sensors were placed on similarly even terrain to the cages. At 

the Central site, replicates were 1 m apart in open canopy, and the control sensor was 

placed adjacent to the cage (within 50 cm). At the Western site, cage and control sensors 

were similarly placed, with one pair of cage and control located under closed canopy and 

one in open canopy.  

We defined the onset of winter as the first accumulation of snow lasting at least 24 

hours, and the release from winter as the last day with an accumulation of snow lasting at 

least 24 hours, a slight modification of the snow-season described by Danby and Hik 
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(2007). Snow covered days were defined as 24 hour periods in which the temperature 

variance of a control sensor was ≤ 1°C (Danby and Hik, 2007). Total snow-covered days 

for the duration of each of the data collection periods was summed for individual cage 

and control sensors, and these values were used to perform our analysis. To account for 

differences in the timing of onset and release from winter conditions between locations, 

we analysed temperature data from control and caged sensors for the 30 days following 

the onset of winter and for 15 days before and after the spring thaw for all cage types 

(Table 3.2). We based these periods on the first and last control sensor reading showing 

snow-cover, respectively.  

All statistical analyses and data visualizations were conducted in R (R Core Team, 

2016). We tested to see whether dependent variables i) mean temperature values, and ii) 

summed snow-covered days (Table 3.2), were significantly influenced by the categorical 

caged/control variable for SBCs using mixed-effects models (lme4 package; Bates et al. 

2015). Using a mixed-effects model allowed us to account for inter-site variation, which 

was not our variable of interest, through the inclusion of “site” as a random effect. The 

same tests were performed for the LBCs and LRCs using general linear models, as no 

random variable was required. The significance of cage effect on any of the temperature 

variables or snow cover duration was determined by comparing the associated p-value 

from a t-distribution to α = 0.05. Coefficients of determination (R
2
; Johnson, 2014; 

Nakagawa and Schielzeth, 2013) were also determined for each model (MuMin package; 

Barton 2016) as a measure of how much variance the presence or lack of a cage explained 

and to determine the magnitude of the site-effect in the SBC models. Both marginal and 
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Figure 3.2: (A) Small, closed-top box cage design deployed in all sites, constructed of 1.3 cm (½”) mesh hardware cloth with dimensions of 18 cm (h) x 56 

cm (l) x 33 cm (w). Open-top cage also pictured, but not included in analysis. (B) Closed-top, LBC design with dimensions of 50 cm (h) x 122 cm (l) x 81 

cm (w)  and (C) open-top, LRC design constructed with 2.54 cm (1”) chicken wire with dimensions of 92 cm (h) x 56 cm Ø, both deployed only in the 

Eastern site. 
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Table 3.2: Date ranges of the onset and spring thaw conditions by study site and cage type (N = number of replicates) for the September 2016 – May 2017 

study duration.  Mean temperatures and number of snow-covered days with standard deviations are provided for each cage treatment, location and period. 

 

 

 

Site 
Cage 

Type 
N 

Data collection 

period 

Onset of winter period 

Spring thaw period 

Mean daily 

temperature (°C); 

standard deviation 

Mean daily 

maximum 

temperature (°C); 

standard deviation 

Mean daily minimum 

temperature (°C); 

standard deviation 

Mean number of 

snow-covered days; 

standard deviation 

Eastern Control 10 
Oct 29, 2016 – 

May 24, 2017 

Dec 3 – Jan 2 

April 24 – May 23 

-1.45; 0.296 

3.06; 0.206 

-0.53; 0.330 

6.94; 1.83 

-2.01; 0.893 

0.98; 0.301 
140.6; 10.3 

Eastern 
Small 

box 
10 

Oct 29, 2016 – 

May 24, 2017 

Dec 3 – Jan 2 

April 24 – May 23 

-2.28; 0.911 

3.48; 0.434 

-0.76; 0.315 

7.75; 1.73 

-4.04; 1.71 

0.92; 0.285 
120.1; 22.4 

Eastern 
Large 

box 
10 

Oct 29, 2016 – 

May 24, 2017 

Dec 3 – Jan 2 

April 24 – May 23 

-3.68; 0.144 

3.48; 0.638 

-0.91; 0.121 

7.41; 1.63 

-6.71; 0.203 

0.66; 0.634 
62.0; 34.3 

Eastern 
Large 

round 
8 

Oct 29, 2016 – 

May 24, 2017 

Dec 3 – Jan 2 

April 24 – May 23 

-0.81; 0.410 

3.31; 0.278 

-0.29; 0.212 

7.26; 1.40 

-1.38; 0.624 

1.03; 0.418 
140.5; 9.3 

Central Control 2 
Dec 11, 2016 – 

Feb 27, 2017 

Dec 12 – Jan 11 

Jan 28 – Feb 27 

0.27; 0.658 

0.75; 0.305 

0.42; 0.542 

2.79; 0.726 

0.10; 0.776 

-0.48; 1.01 
51.5; 17.7 

Central 
Small 

box 
2 

Dec 11, 2016 – 

Feb 27, 2017 

Dec 12 – Jan 11 

Jan 28 – Feb 27 

0.29; 0.156 

0.84; 0.160 

0.58; 0.074 

3.77; 0.545 

0.04; 0.284 

-0.59; 0.563 
40.0; 11.3 

Western Control 4 
July 1, 2016 – 

9 Aug, 2017 

Sept 21 – Oct 20 

17 May – 15 June 

2.27; 1.200 

3.54; 0.482 

10.58; 4.778 

10.19; 1.744 

-0.58; 2.046 

0.89; 0.648 
224.3; 25.8 

Western 
Small 

box 
2 

July 1, 2016 – 

9 Aug, 2017 

Sept 21 – Oct 20 

17 May – 15 June 

2.84; 3.466 

3.85; 4.085 

10.65; 11.926 

10.99; 11.457 

0.29; 1.541 

0.77; 1.467 
222.5; 14.8 
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conditional R
2
 values were calculated for SBC models, to determine variance explained 

by the cage effect alone (marginal), and with both cage and site effects accounted for 

(conditional). 

3.3 Results 

3.3.1 Small box cage 

The mixed-effects model indicated that mean daily minimum temperatures 

recorded during the winter onset period (p = 0.031), and mean daily temperatures 

recorded during the spring thaw period (p = 0.003), were significantly colder and warmer, 

respectively, within cages compared to control sensors (Table 3.3). Neither model 

explained a great deal of the variation in the data, however, as the marginal R
2
 values for 

all SBC models were < 0.08. Differences in microclimate conditions between SBC and 

control sensors were small, compared to the dramatic differences in local climate found at 

the three sites from which temperature data was collected. Inclusion of the site variable as 

a random effect substantially increased the explained variance of the models as indicated 

by the much higher conditional R
2
 values in Tables 3.3 & 3.4 relative to marginal R

2
. 

This negative variation in minimum temperature from minimum temperatures recorded 

by control sensors may be primarily due to the data recorded at the Eastern site. There, 

SBC sensors were consistently colder than their controls (Fig. 3.3; mean minimum 

temperatures 2.03°C colder) and took up to 14 days longer than controls to become snow-

covered (Fig. 3.4). By contrast, there were brief, but consistently positive differences in 

temperatures recorded by caged sensors across sites compared to the respective control 
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means during the spring thaw period (Fig. 3.3; see Supplementary Figure 3.4 for greater 

detail). 

Sensors within the SBCs recorded significantly fewer snow-covered days than 

their respective control settings (p = 0.028; Table 3.3). We consistently found fewer 

snow-covered days within cages across sites, with the largest difference in mean number 

of snow-covered days occurring at the Eastern site (20 days) and the smallest at the 

western site (2 days; Table 3.2). The timing of cage sensor exposure compared to control 

sensor exposure varied by site, with Western and Central cage sensors becoming exposed 

within 1-2 days of their respective controls, and Eastern SBC sensors becoming exposed 

up to 5 days earlier than their controls (Fig. 3.4). 

3.3.2 Large box cage 

Large box cages, constructed with the smallest gauge hardware cloth of the three 

cage types, posed the greatest barrier to snow accumulation within their confines (Fig. 

3.4). Sensors in LBCs recorded significantly colder mean, maximum, and minimum 

temperatures than control sensors during the 30-days following winter onset (p < 0.001, p 

= 0.003 & p < 0.001, respectively), indicating greater exposure (i.e., less snow cover; 

Table 3.3). The average daily temperature at ground level within LBCs was 2.23°C colder 

than the control temperature, with average daily temperature ranges 4.32°C greater than 

the immediate surroundings (Table 3.2), which tended to have warmer maximum and 

much warmer minimum temperatures (+0.38 & +4.70°C, respectively). 
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Table 3.3: Number of temperature sensors (N), parameter estimates (PE) with standard errors (SE), and goodness-of-fit (R
2
; explained over total variance 

for LBC & LRC models, marginal & conditional for SBC mixed-effects models) showing the difference in mean temperature variable values each cage 

type had with respect to the control value in each seasonal period. Standard error of random effect variance is given for models containing random effects. 

Significant parameter estimates (α = 0.05) are shown in bolded text. 

 

Dependent 

Variable 

Fixed Variable 

N 

Winter onset Spring thaw 

PE SE R
2
 

Conditional 

R
2
 

Random 

effect SE 
PE SE R

2
 

Conditional 

R
2
 

Random 

effect SE 

Mean temperature            

Small box 14 -0.461 0.297 0.011 0.875 ± 0.508 0.433 0.132 0.018 0.952 ± 0.505 

Large box 10 -2.222 0.104 0.960 - - 0.433 0.212 0.180 - - 

Large round 8 0.644 0.166 0.470 - - 0.259 0.114 0.233 - - 

Maximum 

temperature 
           

Small box 14 -0.136 0.688 0.000 0.916 ± 0.507 0.997 0.608 0.016 0.830 ± 0.524 

Large box 10 -0.534 0.079 0.374 - - 0.467 0.776 0.019 - - 

Large round 8 0.243 0.135 0.160 - - 0.319 0.786 0.010 - - 

Minimum 

temperature 
           

Small box 14 -1.249 0.548 0.078 0.573 ± 0.549 -0.066 0.154 0.001 0.791 ± 0.526 

Large box 10 -2.010 0.205 0.933 - - -0.321 0.222 0.099 - - 

Large round 8 0.632 0.373 0.144 - - 0.051 0.169 0.005 - - 
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Figure 3.3: Averaged caged sensor temperature variation from the mean control sensor temperature for the 

winter onset and spring thaw periods at each site. Blue and red line segments indicate mean daily within-

cage temperatures colder and warmer, respectively, than mean daily control temperatures. Cage designs at 

the Eastern site possessing tops had similar negative temperature variations during the winter onset period 

(A & I) with a warm temperature variation ‘bump’ almost mid-way through the spring thaw period (B & J); 

the latter also appearing in the Western data (F). Central SBC and Eastern LRC types show very little 

variation during either period (C, D, G & H), and Western cages were consistently warmer than controls 

during winter onset (E). Detailed temperature variation plots for individual cages can be found in 

Supplementary Figures 3.1-3.4. Plots created using ggplot2 (Wickham, 2009). 
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Figure 3.4: Smoothed plots showing the number of sensors under each cage type treatment compared to their controls that were snow-covered throughout 

the maximum duration of our data collection. Solid lines represent sensors within cages, dashed lines represent control sensors. The number of snow-

covered days recorded by Eastern control sensors was far greater than those recorded by LBC sensors (A; average 141 & 62 snow-covered days, sd = 10.3  
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& 34.3, respectively). LRC sensors were much more closely aligned with control sensors, (average 141 

days, sd = 9.3 & 10.3, respectively). The range of snow-covered days recorded by Eastern control and large 

round sensors (B) was also similar (Mid-Range = 138 ±18 & 140 ±12, respectively); LBC sensors (A) 

recorded a much larger range of snow-cover duration (MR = 70 ±48). The range of snow-covered days 

recorded in Eastern SBCs (C) mostly overlapped with Eastern controls (MR = 119 ±31 & 138 ±18), but 

recorded a lower mean number of snow-covered days (120, sd = 22.4 vs 141, sd = 10.3). The overall winter 

season was much shorter at the Central site (D); control sensors there recorded an average 52 snow-covered 

days (sd = 17.7, MR = 52 ±13). The Western site (E) experienced a much longer winter season, where 

control sensors recorded an average 224 snow-covered days (sd = 25.8, MR = 215 ±28). SBCs at the 

Central (D) and Western (E) sites had snow-cover conditions closer to their controls than their Eastern 

counterparts; sensors in those cages recorded a mean 40 and 223 snow-covered days (MR = 40 ±8 and 223 

±11, & sd = 11.3 and 14.8, respectively). Two sensors within LRCs failed during the data collection period, 

leaving only 8 LRC sensors to the 10 control sensors (B); at the Western site, four control sensors were 

placed compared to the 2 SBC sensors (E). Plots created using ggplot2 (Wickham, 2009). 

The delayed onset of snow cover by up to 64 days was apparent within most 

LBCs and was followed by a relatively brief period of nearly uniform snow-cover (Fig. 

3.4). A similarly brief period of consistent low temperature variability between caged 

sensors and the mean control sensor temperature occurred during approximately the first 

half of April 2017 (Fig. 3.3; see Supplementary Figure 3.1 for individual cage data). An 

average of 62 (sd = 34.3) snow-covered days were recorded by sensors within LBCs 

throughout the data collection period (November 2016 – May 2017), far fewer than the 

mean number of snow-covered days that control sensors experienced (141 days, p < 

0.001, sd = 10.3; Table 3.4). During the subsequent spring thaw period, the presence of 

LBCs did not significantly impact any of the temperature variables we investigated (Table 

3.3), with mean daily, and mean daily maximum temperatures in LBCs 0.42°C and 

0.47°C warmer, respectively, and mean daily minimum temperatures 0.32°C colder than 

their immediate surroundings (Table 3.2). The lack of statistical difference between LBCs 

and ambient temperatures during the spring thaw is interesting considering that the 

sensors within the LBCs became snow-free much earlier than the control sensors (Fig. 

3.4). Possible explanations for the difference in R
2
 values between the three cage-type 
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models include the difference in canopy type under which cages were placed 

(Supplementary Figure 3.5), or that snow cover within the LBCs had at that point reached 

a similar depth to the control setting by the spring thaw period (Fig. 3.4). 

3.3.3 Large round cage 

The open-top design of the LRC was meant to facilitate the passage of snow to the 

ground and allow for natural accumulation rates that would be as similar as possible to 

the control setting. This is apparent in Figure 3.4, which shows the similar timing of 

winter onset between these cages and their immediate surroundings; winter onset within 

cages was delayed by 1 day in most cases and 10 days in one outlier case. Sensors within 

LRCs also recorded an identical mean of 141 (sd = 9.3) snow-covered days to control 

sensors and had a more confined range of 128-152 days compared to control sensors’ 

120-156 days. LRCs were the only cage type to have a non-significant difference in the 

mean number of snow-covered days recorded by caged sensors compared to the control 

setting (Table 3.4). Nevertheless, these cages enabled microclimatic warming such that 

mean daily temperatures over the 30 days following winter onset were significantly 

warmer than control sensors (p = 0.001; Table 3.3). The difference in mean daily 

temperatures within the cages against control sensors was +0.64°C (p = 0.001; Table 3.3), 

and the mean daily maximum and minimum differences were +0.24 and +0.63°C (p > 

0.05 for both; Table 3.3), respectively. Figure 3.3 shows the relatively small temperature 

variance between LRCs and their surroundings during both the winter onset and spring 

thaw periods (see Supplementary Figure 3.2 for individual cage temperature variance). 
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The mild warming effect that LRCs provided was also observed during the spring 

thaw period across all temperature variables, though again only mean daily temperature 

was significantly warmer (p = 0.037; Table 3.3). In all cases during this time, the mean 

daily temperature within all LRCs was less than 0.5°C warmer than ground-level 

temperatures in the immediate surroundings. These mildly warmer temperatures, 

including the mean daily temperature variable (p = 0.037), are well reflected in Figure 

3.4, which shows near-identical timing of snow-melt between the LRC and control 

sensors. 

Table 3.4: Number of temperature sensors (N), parameter estimates (PE) with standard errors (SE), 

goodness-of-fit (R
2
; explained over total variance for LBC & LRC models, marginal & conditional for SBC 

mixed-effects models) showing the difference in mean snow-cover duration experienced within each cage 

type compared to the control setting. Standard error of random effect variance is given for SBC model. 

Significant parameter estimates (α = 0.05) are shown in bolded text. 

 

3.4 Discussion 

Our findings indicate that cage design and material selection influence the 

microclimatic conditions created by small herbivore exclosure cages (Table 3.5). Testing 

the effects of three cage types on ground-level air temperatures revealed that mesh gauge 

and overall cage size affect snow accumulation and melt processes. Additionally, 

deploying the same cage type (SBCs) in three geographically distinct locations 

demonstrated that the substantial inter-site variability was far greater than the variation 

Cage type N 

Snow-covered days 

PE SE R
2
 

Conditional 

R
2
 

Random 

effect SE 

Small box 14 -14.706 6.328 0.007 0.961 ± 0.504 

Large box 10 -73.850 11.708 0.701 - - 

Large round 8 -22.600 15.570 0.110 - - 
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attributable to our primary variable of interest: the effect of the exclosure itself on 

temperature and snow cover. Despite this and acknowledging that the low number of 

replicates at the Western and Central sites limits the strength of our evidence, we did see 

lower minimum and warmer mean temperatures during winter onset and spring thaw, 

respectively, which should at the very least be cause for concern that this methodological 

tool may unintentionally alter microclimate conditions. 

Table 3.5: Results summary addressing three primary hypotheses addressed in manuscript (significant 

results shaded). 

 

3.4.1 Cage design  

Differences between control and exclosure temperature readings were largest in 

the LBC design. The smaller mesh gauge (¼”) and large overall size of the LBC likely 

caused it to act as a snow fence, slowing the accumulation of snow within the exclosure 

and exposing the cage interior to the temperature extremes occurring above the snow 

pack. Temperature readings in the LRCs, which had a larger mesh (1” chicken wire) and 

open tops, were more comparable to control temperatures but caused a slight warming 

Outcome Large box Large round Small box 

Ha 1. The onset period of snow cover will begin later and be colder in cages than controls 

Later Yes No No 

Colder Yes No Yes 

Ha 2. The spring thaw period will occur earlier and be colder in cages than controls 

Earlier Yes No No 

Colder Yes No No 

Ha 3. There will be fewer snow covered days in cages than controls 

Fewer Yes No Yes 
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effect. The warming effects of the LRCs may have been caused either by the greater heat-

conducting properties of the cage material or the higher snow accumulation within the 

cage that further insulated the soil surface (Wipf and Rixen, 2010). Finally, the SBC 

appeared to allow snow to accumulate relatively unimpeded, but differences were noted 

in the overall duration of snow cover between sites. The SBCs were lidded like the large 

box design but had a larger mesh size (½”) and were smaller in size. While it is possible 

that the near-natural rate of snow accumulation in the SBCs was due to their design 

and/or material type, it is also possible that other unmeasured factors, such as early vs. 

late season snow type (Jiusto and Weickmann, 1973), played an important role. Marsh et 

al. (1990) noted that snow fencing is a common problem for small mammal exclosures 

made of 0.85 cm (⅓”) mesh hardware cloth.   

Based on the differences between the microclimatic effects of the various cage 

types, it is clear that cage design is an important consideration for herbivore exclosure 

experiments. Choosing a design that is as small as possible with the largest suitable mesh 

size appears to provide the least influence on microclimate conditions. The latter 

condition corroborates the findings of Bergez and Dupraz (2000) who found increased 

ventilation holes in tree guards limited their effect on air temperature. Such design 

choices will have to be made in accordance with the aims of the research study (weighing 

potential microclimatic effects against increased efficiency in predator and herbivore 

exclusion) and logistical and financial constraints.  
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3.4.2 Inter-site variability 

In addition to differences between cage types, notable differences were found in 

the microclimate effects of cages between study sites. The results of the mixed-effects 

model for the SBCs demonstrated that most of the difference in the temperature 

variabilitywas in fact related to inter-site variability, as shown in the large conditional R
2
 

values, and by Figure 3.3. Given the distinct climates of the study sites, it is unsurprising 

that they also experienced different temperature regimes throughout the winter. Across 

sites, the mean temperature difference between exclosures and controls ranged from -

0.83-0.57°C during winter onset and from 0.09-0.42°C during spring thaw, highlighting 

the spatial variability in the effect of cages on ground-level temperatures. It is also 

possible that some of the variability between study sites was due to differences in canopy 

cover, which varied between locations.  

Canopy cover provided by mature trees in forested areas moderates temperature 

extremes that occur in more exposed environments (Chen et al., 1999). The Central site, a 

grassy meadow with no canopy cover, showed the smallest differences between cage and 

control plots. In contrast, the SBCs at the Eastern site were located under dense canopy 

cover and showed the greatest variation between SBCs and controls of the three sites 

(Supplementary Figures 3.3 & 3.4), and the number of snow-covered SBCs dropped 

considerably mid-winter under coniferous canopy whereas the controls did not 

(Supplementary Figure 3.5). These data suggests a possible interaction between cages and 

canopy cover and composition, and that the cage effects are stronger in more sheltered 

areas where the microclimate is also modified by the forest canopy. This variability in 
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cage-effect between canopy types (Supplementary Figure 3.5) mirrors the variability in 

snow accumulation and ablation rates between open and closed canopies (Varhola et al., 

2010) and within forest stands of varying density (Davis et al., 1997; Veatch et al., 2009), 

and may be attributable to unmeasured factors such as wind exposure, latitude, elevation, 

or inter-annual snowfall variability. The combination of several factors could produce 

differences in the number of snow-covered days. For instance, wind-driven snow would 

much more readily accumulate to cover a cage, regardless of material type or snow 

crystal size, in an open field rather than in a closed-canopy forest, and may remain longer 

due to the compacting force of the wind (Knuth et al., 2010). This is possible to infer 

from the Western site open canopy sensor data (Fig. 3.4; Supplementary Figure 3.5), 

which were collected at a wind-exposed, high-elevation area, and where we saw earlier, 

later and more consistent snow cover than control sensors. This was likely not observed at 

the Central site due to the location being relatively low elevation and well-sheltered from 

the wind by nearby trees and buildings. 

3.4.3 Implications 

Exclosure experiments are used to assess the effects of animal activity on factors 

such as seed germination and seedling survival. Evidence suggests that exclusion of small 

herbivores and granivores often leads to greater seed (Brown and Vellend, 2014) and 

plant (Bowers, 1993) survival.  However, our findings indicate that depending on the cage 

design and setting, the perceived effects of herbivory and seed predation could be 

entangled with differences in microclimate within the exclosure compared to reference 

plots. Unlike studies employing enclosures specifically designed to create microclimatic 
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conditions, such as those using open-top chambers (OTCs; Leadley and Drake 1993; 

Hollister and Webber 2000; Bokhorst et al. 2013), studies employing small herbivore 

exclosure cages do so to measure biotic interactions between predator (e.g., small 

mammalian granivores) and prey (e.g., seeds). Our findings are not without precedent; 

Lawson et al. (1994) measured environmental and biological metrics in an insect 

herbivore exclosure experiment during the 1991 and 1992 growing seasons and found that 

exclosures (mesh sizes ranging from 1.0 x 0.13 mm to 3.0 x 3.0 mm) had warmer air 

temperatures than their surroundings. Interestingly, Lawson et al. (1994) also found that 

exclosures inhibited rainfall from reaching their test plant, similar to our finding that 

regardless of cage size or material, the presence of a lidded exclosure appears to inhibit 

snow accumulation. Contrary findings have also been reported; Nelson and Rieske (2014) 

measured the effect of insect sleeve exclosures on microclimate and on new growth and 

found that while there was variation in within-exclosure temperature between different 

cage sizes, no difference occurred between exclosures and controls. 

Our study is unique in that our primary focus is on the effect of small herbivore 

exclosure cages on microclimate during the winter period. This is of particular relevance 

for studies occurring in areas with snow accumulation and those involving the 

germination and success of juvenile plants. The spring thaw period can provide important 

germination cues (e.g., Acer saccharum; Godman et al. 1990), and a cage-induced early 

thaw could interfere with germination phenology. Snow also provides an important layer 

of insulation for juvenile plants, protecting them from otherwise harmful temperature 

extremes. Plants commonly found in areas with harsh winter climates are hardened to 

survive extended periods of freezing temperatures and freeze-thaw cycles; however, 
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increasing the frequency of these cycles can have a weakening effect on plant hardiness 

(Sanders-DeMott et al., 2017). Exposure to increased freeze-thaw cycles has been found 

to negatively impact seedling emergence and survival (Connolly and Orrock, 2015), and 

the loss of buffering capacity against freezing temperatures offered by the snowpack can 

enable damage to small or shallow root systems (Schaberg et al., 2008). Our findings 

show that the application of lidded cages had the effect of reducing the number of snow-

covered days, increasing the risks associated with exposure to extreme cold temperatures 

and increased freeze-thaw cycles to the plants within. 

3.4.4 Recommendations 

Each of the tested cage designs showed some degree of microclimate 

modification, and the degree and intensity of modification varied between cage types and 

study locations. We recommend, therefore, that experiments employing small herbivore 

exclosure cages assess microclimate effects over the course of the study, or that control 

treatments are designed such that they produce similar microclimate changes without 

preventing access by the herbivores of interest. 

Exclosure experiments are labour and time intensive, and the relatively low cost 

and ease of installing temperature sensors makes microclimate monitoring worthwhile. 

Monitoring can reveal potential unintended effects of the experimental treatment (e.g., 

Lamb et al. 2005), thereby confirming whether the significant effects of excluding small 

herbivores and seed predators are indeed related to the exclusion of consumers, or 

perhaps more importantly, highlighting instances where methodological techniques must 

be refined to disentangle microclimate effects from herbivore exclusion. Routine 
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microclimate monitoring will also make it possible to synthesize the effects of geographic 

setting, climatic regime, and cage design using meta-analysis at a later time (Gerstner et 

al., 2017). 

3.5 Conclusion 

Field-based experimental ecology research is inherently made difficult by the 

requirement to balance logistical and cost constraints with the need to control factors of 

scientific interest to the best of our abilities. Where our abilities have the potential to fall 

short, however, efforts should be made to account for potential sources of error. Here, we 

have presented evidence indicating that small herbivore exclosure cages can have a direct 

influence on ground-level air temperatures, and could thereby indirectly influence the 

health and/or survival of plant species within their confines. The unintended effects that 

cages can have on air temperature and snow-cover timing and duration are important for 

plants at early life stages, which may be of particular relevance to horticulturalists and 

foresters, for whom herbivory protection is a common concern (Cadenasso and Pickett, 

2000; Marsh et al., 1990). We suggest taking the simple and cost-effective step of 

monitoring this environmental variable in order to reduce the potential for type I or type 

II errors in herbivore exclosure research. 
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Chapter 4: Biotic factors act as seedling emergence filters for northern temperate 

tree species in a beyond-range field experiment  

Evans P, Crofts A and Brown CD. Biotic factors act as seedling emergence filters for 

northern temperate tree species in a beyond-range field experiment (in preparation 

for submission to Ecological Monographs). 

 

Abstract:  

Changing climatic regimes are causing increasing temperatures, changing precipitation 

patterns and are subsequently expected to impact the spatial distribution of plants. The 

distribution of plants at the scale of continents broadly conforms to the climatological 

regimes at play, however in scaling down to the regional and landscape context, the 

influence of climate becomes confounded by complex and interacting biotic and abiotic 

factors. These factors have often been cited as important variables in determining the 

locations of biome overlap, such as the boreal forest-temperate forest ecotone (BTE). This 

ecotone exists as a broad latitudinal swath between the boreal and temperate forest 

biomes in the eastern half of North America. While the impact of non-climatic factors on 

the location of the BTE have been investigated within the ecotone, few studies focus on 

how these same factors are shaping the colonisation of the southern boreal forest by 

northern temperate tree species forest as part of a potential northward shift of the BTE.  

The effects of seed and seedling herbivory, substrate composition and canopy 

composition on seedling emergence of four northern temperate tree species were 

investigated in a beyond-range seeding experiment spanning across the southern portion 
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of the island of Newfoundland, Canada. Two small-seeded tree species, Betula 

alleghaniensis and Thuja occidentalis, and two tree species with large seeds relative to 

typical boreal forest species, Acer saccharum and Fraxinus nigra, were chosen to 

represent a range of reproductive strategies. The potential impact of microclimate on 

seedling emergence, based on the natural climatic variation across experimental sites was 

also evaluated. 

The results of this experiment show a reproductive strategy-dependent emergence 

response; large seeds and seedlings appear more vulnerable to predation, while small 

seeds are more vulnerable to smothering. Canopies with greater representation of 

deciduous species posed a significant barrier to small seeds that produce small seedlings, 

while the food-rich reward of the larger seeds made for attractive targets to granivorous 

vertebrates. This work represents a first glimpse at the challenges northern temperate tree 

species will face if they are to colonise the southern boreal forest and track changing 

climates as is broadly expected. 

 

Keywords: emergence, seed herbivory, range expansion 
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4.1 Introduction 

Species range shifts are expected to result from a changing climate regime, 

however only insofar as their inherent biotic and abiotic limitations will allow (Lafleur et 

al. 2010, Parmesan and Hanley 2015). The implications of climate change will, for many 

species, mean areas at their current range edges may become environmentally suitable, or 

unsuitable (Iverson and Prasad 2002, McKenney et al. 2007). Yet, in many cases a 

climatological approach alone is not enough to understand how range expansion will 

proceed, and does not elucidate the complexities with which species range shifts are, and 

will be, occurring (HilleRisLambers et al. 2013, Evans and Brown 2017). Biotic 

interactions are important modifiers of climate-induced distributional shifts (Brooker et 

al. 2007, Zarnetske et al. 2012, Urban et al. 2013), however disentangling climate and 

non-climatic effects along the gradients that range edges typically occur along is difficult. 

Competing abiotic factors of soil and climate for example, each a multi-faceted driver of 

species ranges on their own, must also be understood with the third dimension of soil 

microbiota and soil-climate-biotic feedback interactions (Lafleur et al. 2010). Soil is just 

one example of many complex interactions; the list includes interacting climate-pest 

species (Logan et al. 2003), climate-disturbance regimes (Rocca et al. 2014), and plant-

pollinator phenological mismatching (Hegland et al. 2009), to name a few. The goal of 

this work is to build an understanding of how northern temperate tree species’ 

establishment in boreal forest stands is affected by constraining abiotic and biotic factors. 

This work is unique in that it takes place in a relatively isolated island boreal system that 

will share increasingly similar climatic conditions to their historic distributions.   



110 

Species life history strategies are selected for and adapted to the pressures exerted 

upon them by the system in which they persist. As species, such as trees, attempt to 

colonise new systems in response to climate change, the strategies that succeeded in their 

historic distribution may not be well suited to the new conditions. For example, producing 

large seed in a boreal forest community in which small seeds are the norm may be 

detrimental to seed survival due to predation selection (Zhang et al. 2005). Trees are 

important habitat-forming organisms (Thomsen et al. 2010) and their presence, absence, 

and abundance, coupled with their associated herbaceous plant communities, is reflective 

of the current climatic regime and, to some extent, dictates the faunal assemblage within 

that biome.  

 Tree species range shifts have occurred throughout their evolutionary history, 

evidenced in the fossil pollen record, and more recently in the lake sediment record. 

Repeated southward and northward range shifts have been documented in concert with 

dramatic, large scale climatic swings during glacial events (Comes and Kadereit 1998), 

and shorter, more localised climate events such as the little ice age (Hupy and Yansa 

2009). Such range shifts have been recorded globally (Davis and Shaw 2001), including a 

modern shift currently occurring at the biome-level, causing the boreal forest to shift 

northward as temperate tree species invade the boreal forest trailing edge at the boreal-

temperate forest ecotone of North America (reviewed in Chapter 2) and northern edge 

boreal forest trees invade the tundra and alpine regions at the forest – tundra ecotone 

(Harsch et al. 2009). 
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The boreal-temperate ecotone (BTE) is the transition zone wherein the northern 

extent of the temperate forest overlaps with the southern extent of the boreal forest; it 

occurs in eastern North America, north-eastern Europe and eastern Asia (Goldblum and 

Rigg 2010, Evans and Brown 2017). This transition generally occurs along a north-south 

gradient where both tree species diversity and average annual temperature decrease with 

increasing latitudes, with thermal conditions often considered the primary factor 

determining the ecotone’s location (Arris and Eagleson 1989). In North America, the 

BTE is at its widest, and occupies a zonal band from southeastern Manitoba to the Gaspé 

Peninsula, Quebec and from western Minnesota to Cape Breton Island, Nova Scotia 

(Olson et al. 2001, Goldblum and Rigg 2010). Despite portions of the island of 

Newfoundland (herein, Newfoundland) falling within the BTE latitudinal zone and 

possessing similar climatic characteristics to mainland areas of the BTE, expected species 

assemblages are not found there. The most parsimonious explanation for this pattern is 

the approximately 110 km of ocean that isolates southwestern Newfoundland from Cape 

Breton Island, the eastern-most distributional range of many temperate tree species 

(Farrar 1995). However, as this dispersal barrier becomes functionally smaller due to 

anthropogenic transport of propagules, an increase is expected in the potential for 

successful species colonisation events. 

 Colonising tree species face a variety of barriers that act to filter out individuals 

from an establishing population, but few studies have tied together biotic and abiotic 

variables within the same study to test these filters in novel habitats (Rustad 2008). To 

this end, the following hypothesis has guided this study: tree seedling emergence success 

at or beyond the range edge will be driven by biotic and abiotic drivers, the combination 
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of which will depend on species’ traits. A description and investigation of known 

germination constraints of the species used in this study can be found in Chapter 1. We 

tested explicit, species-specific predictions of the controls on early life stage processes 

using manipulative seeding field experiments within and beyond four model temperate 

tree species population distributions, (see Table 4.1): (1) F. nigra seeds must avoid 

desiccation and predation long enough to mature and break dormancy, with final 

germination ability depending heavily on over-winter temperatures, and pre-emergence 

temperature and moisture availability (Vanstone 1974). (2) A. saccharum germination is 

sensitive to seed predation (Brown and Vellend 2014), temperature (Solarik et al. 2016), 

available moisture, and can be achieved under complete canopy cover and on various 

substrate types (Godman et al. 1990). (3) B. alleghaniensis germination benefits from 

exposure to light, warm temperatures (Karrfalt 2008), adequate moisture (Erdmann 1990) 

and permeable germination surfaces (Burton et al. 1969). (4) T. occidentalis germination 

requires near constant moisture and high temperatures (Curtis 1959, Johnston 1990) along 

with an appropriate, moisture-bearing seedbed (Bartlett et al. 1991, Cornett et al. 2000). 

Our work aims to address the earliest and most vulnerable life stages of tree species, and 

therefore will begin to reveal how these particular factors impact shifting species ranges. 
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Table 4.1: Outline of predicted species emergence responses to treatment variables for each emergence 

year. 

Species 
Emergence 

year 

Driver variables 

XHerb SubM %DecC Smoist Stemp Atemp WSmoist WStemp 

A. saccharum 2016 ↑ X X NA NA NA NA NA 

B. 

alleghaniensis 
2016 X ↓ ↓ NA NA NA NA NA 

T. occidentalis 2016 X ↓ ↓ NA NA NA NA NA 

A. saccharum 2017 ↑ X X ↑ ↓ ↓ X X 

B. 

alleghaniensis 
2017 X ↓ ↓ ↑ ↑ ↑ X X 

F. nigra 2017 ↑ X X ↑ ↑ ↑ ↑ ↑ 
T. occidentalis 2017 X ↓ ↓ ↑ ↑ ↑ X X 

Notes: XHerb: exclusion of vertebrate herbivores; SubM: leaf litter substrate; %DecC: percent deciduous 

canopy cover; Smoist: soil moisture; Stemp: soil temperature; Atemp: Air temperature; Wsmoist: over-

winter soil moisture; WStemp: over-winter soil temperature. Arrows indicate direction of response with 

bold arrows suggesting magnitude of response; X represents no predicted response. NA’s are given when 

the predictor variable was not used, or data were not available for that variable for that year, respectively. 

4.2 Methods 

4.2.1 Study Area 

Newfoundland is projected to see widespread increases in mean temperature and 

annual precipitation by mid-late century (Finnis 2013, Natural Resources Canada 2015). 

Mean annual precipitation and temperature are expected to rise across Atlantic Canada, 

with Newfoundland tracking or exceeding the Maritime provinces’ rate of precipitation 

and temperature increases, respectively (Natural Resources Canada 2015). Southern 

Newfoundland could see a mean annual temperature increase of 1.5-3.1˚C, a rise in 

annual growing degree days (GDD) of 108-211 (Tbase=10°C) and an annual frost-free 

period increase of 27-35 days by 2070 (Finnis 2013). Newfoundland’s geographic 

position combined with its climate change projections make it an ideal location for 

studying potential forest composition change as a result of climate change, especially 

given the already abundant diversity of tree species introduced to the island through 
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anthropogenic means, particularly in the island’s urban centres (Environmental Design 

and Management Ltd. 2006). Modern tree species range shifts have not been studied in 

Newfoundland in the context of a changing climate (Evans and Brown 2017), and the 

island’s physical separation from mainland North America creates a confluence of 

confounding variables affecting possible species range shifts. 

The field experiment took place across Newfoundland (47˚10ʹN - 49˚21ʹN and 

53˚23ʹW - 58˚15ʹW; Fig. 4.1; Supplementary Table 4.1). Seasonal average temperatures 

and annual precipitation amounts vary across the island, with a smaller summer 

temperature range than winter temperature range across study sites (Supplementary 4.2). 

The strong maritime influence on the island’s climate maintains an even distribution of 

precipitation throughout the year, with infrequent droughts that are generally not severe 

(Atlantic Climate Centre and Environment Canada 2006). Newfoundland has distinct 

regional climates due to the island’s geographic position, shape, area (approximately 

106,000km
2
), and topography (Damman 1983). These climatic variations are captured by 

the range of plant hardiness zones found on the island, between 3a-6a (Agriculture and 

Agri-Food Canada and Government of Canada 2000). Its forests are typically described 

as boreal, and have been given their own designation as the Newfoundland Boreal 

Ecozone (ESTR Secretariat 2014).  

Five sites were established across Newfoundland during an initial implementation 

of this experiment in 2015 (Fig. 4.1). These and a further three sites (N = 8) were 

established across Newfoundland in 2016 (Fig. 4.1) using data collected from the 2015 

implementation to inform and update experimental design. Methods and results from the 
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initial experiment were analysed and appear alongside those for the 2016 implementation 

to show the progression of the experiment. Sites were selected based on a range of criteria 

(site characteristics described in Supplementary Table 4.1): (1) on public (Crown) land 

that would not be logged for a minimum of three years, or on Provincial (i.e., Provincial 

Parks), or private lands with permission from the land owner, (2) were within 1 km of a 

publically accessible road, and (3) contained stands of mature boreal coniferous forest 

(“boreal” forest type; forest type selection described below) and mixed coniferous-

deciduous forest (“mixed” forest type) with no evidence of recent harvesting in close 

proximity. Sites with non-native tree species present were avoided. 

4.2.2 Experimental Design 

The experimental design allowed for the manipulation of i) herbivore access to 

tree seed and seedlings and ii) substrate, or seedbed composition under iii) boreal or 

mixed canopy composition forest type (see Supplementary Table 4.1 for stand 

composition data). Forest type was distinguished after extensive searching and 

assessment of field sites based on canopy composition and substrate characteristics. 

Substrate refers to the top of the organic layer (i.e., the seedbed) and soil represents the 

organic and mineral components below that. Boreal forest stand canopies had a minimum 

⅔ (~66%) proportion of coniferous species of the total and mixed stand canopy 

composition was at least ½ deciduous species. Mixed stands also often contained canopy 

species more commonly associated with forests within the BTE, such as white pine 

(Pinus strobus L.), yellow birch (Betula alleghaniensis Britt.), black ash (Fraxinus nigra 

Marsh.) and red maple (Acer rubrum L.), all of which are native to Newfoundland (Farrar 
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1995, Forestry and Agrifoods Agency 2015). Mixed stands were further required to have 

predominantly broadleaf-litter dominated substrate (rather than needle leaf litter) and less 

than 30% moss substrate cover, whereas boreal forest stands were selected with greater 

than 60% moss cover substrates.  

Ten planting blocks were established at each study site, split evenly between 

boreal and mixed forest stands (Fig. 4.2). We employed a full factorial experimental 

design each year of the two-year experiment by reciprocally transplanting soil between 

boreal and mixed forest blocks, such that each block had pots of each treatment for each 

species under each canopy type (Fig. 4.2). Five replicate blocks containing this 

combination of treatments were established under each canopy type. Seedling surveys 

generally took 1-2 days per site and were conducted over the 2016 and 2017 growing 

seasons. Surveys were conducted in May and late August/early September in 2016 and in 

May, June, July, August and September in 2017. Each pot was inspected closely for the 

presence of seedlings, seedling and seed (if found) health and general pot condition. 

4.2.2.1 Substrate composition & stand characteristics: 

 Forest floor substrate was reciprocally swapped between forest types within each 

site. Using a soil knife, the first 10-15 cm of soil was removed from the forest floor and 

inserted into peat pots (14.5 x 12.5 cm), making efforts to maintain the soil structure 

during removal and transport. Pots of soil were then either re-inserted into the ground in 

place, or transported to and planted in the other stand type; this way the local and foreign 

substrate type were tested under either canopy type. A control treatment with no pot was 
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also initiated to test for any effect of the pot itself on seedling emergence; pot rims (top ⅓ 

of peat pot) were inserted into the soil to contain the planted seeds but the forest substrate 

was otherwise left undisturbed. 

Canopy cover and canopy composition to the species level was recorded during 

site establishment in 2015 and 2016 by averaging readings taken in each cardinal 

direction at each block using a spherical densiometer (Forest Densiometers, Rapid City, 

SD, USA) to allow canopy cover and composition to be treated as a continuous variable 

in the analyses (Supplementary Table 4.2).  

4.2.2.2 Herbivory exclusion:  

Half of pots deployed in both 2015 and 2016 were placed within cages meant to 

limit seeds’ exposure to small terrestrial vertebrate herbivores. Of the 36 pots in each 

2015 experimental block, half were placed within exclosures measuring 50 (h) x 122 (l) x 

81 cm (w) and encased in 6.4 x 6.4 mm hardware cloth (Fig. 4.3a). In 2016 the design of 

the cages changed to an open-top design, which is different from other exclosure cage 

designs that have been used (Coté et al. 2003, Munier et al. 2010), but similar to designs 

where the differential impact of rodent versus bird granivores was being evaluated (Howe 

et al. 2002). This new design was adopted after issues surrounding snow- and leaf-litter 

accumulation were identified with the 2015 cage design. The issues encountered in using 

the closed-top cage design specifically revolved around the blockage of leaf-litter and 

snow entering the cage (described in detail in Chapter 3), requiring the two years’ data to 

be analysed separately. Half of the 24 pots at each 2016 experimental block were placed 
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within exclosures that were 92 (h) x 56 cm diameter (Ø) cylinders of 2.5 cm galvanized 

chicken wire with a 31 (h) x 56 cm Ø cylinder of 6.4 x 6.4 mm hardware cloth wrapped 

around the bottom third of the chicken wire in order to deter small vertebrates (Fig. 4.3b). 

A strip of flexible plastic was attached to the top portion of the cage in an effort to keep 

out climbing vertebrates. Neither cage type was designed to withstand interactions with 

large herbivores, such as moose, or to prevent access to invertebrates. 

 

Figure 4.1: Study site locations across the island of Newfoundland. Sal, Clar, Raft, Sir, and Bara were 

established in 2015 and Doz, GL and Wild, in addition to the original five sites established during the 2015 

field season. The 2016 sites were concentrated in the island’s southwest, which has the highest tree canopy 

species diversity of any region in the province (Farrar 1995). 
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Figure 4.2: Experimental design diagram showing (a) conceptualised difference in canopy composition 

between boreal and ecotone forest-types (left and right, respectively) and (b) planting block layout shown 

within one of the two forest types within each site. Blocks are approximately 2 x 2 m in dimension, spaced 

at least 1 m apart (c). The blocks in (c) show the round open-top cages deployed in 2016 and contain 24 

pots per block, rather than the closed-top box cages deployed at each block in 2015, which had 36 pots. 

Each species was planted in a caged or control pot containing boreal or ecotone soil, or in a control pot, 

which were the top ⅓ of a pot seated into the local soil (d). F = F. nigra, B = B. alleghaniensis, A = A. 

saccharum, and T = T. occidentalis. 

 

Figure 4.3: Pictures showing (A) 2015 cage type and block layout, with 36 pots, half of which are within 

the cage, and (B) 2016 cage type and block layout with 24 pots, half of which are within the three cages 

(four pots per cage). Both blocks depicted in photos are in boreal forest stands. 
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4.2.2.3 Seeding:  

Pots were seeded between September 12
th

-19
th

, 2015 and October 15
th

-22
nd

, 2016, 

within the natural seed-fall period of all model species (Burns and Honkala 1990). In 

2015, each block contained two pots each sown with 5 A. saccharum and 10 T. 

occidentalis seeds and one pot each sown with 5 F. nigra and 10 B. alleghaniensis seeds 

per treatment combination for a total of 36 seeded pots per block. These numbers were 

standardised for the 2016 seed sowing; 10 seeds of each species was sown into one pot 

per treatment combination, reducing the number of pots to 24 per block. Seed was 

obtained from the National Tree Seed Centre (NTSC; Fredericton, NB, Canada) from 

seed sources in New Brunswick and Nova Scotia. Attempts were made to use highly 

viable seed stock from regions with climates as similar to Newfoundland as possible to 

maximise local adaptation to the potentially difficult climatic conditions model species 

would encounter in Newfoundland (Supplementary Table 4.3). 

Initially, our experimental design included provenance treatments for A. 

saccharum and T. occidentalis to investigate whether seed source would imbue additional 

climatic adaptations for the climate beyond those species’ natural distribution. Seeds for 

these model species were sourced from areas in either ‘warm’ plant hardiness zones (>4) 

or ‘cold’ hardiness zones (<4; Agriculture and Agri-Food Canada 2000) in order to see 

whether variations in adaptation in the parent individuals would be beneficial for seed 

germination under a more challenging climate, as others have investigated (e.g., 

McCarragher et al. 2011, Solarik et al. 2016). It quickly became apparent that the design 
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of the overall project was becoming unwieldy, so this treatment was not ultimately used 

and all A. saccharum and T. occidentalis seeds were treated the same.  

4.2.2.4 Climate:  

Two climate sensor arrays were installed at each site under both canopy types to 

provide continuous environmental monitoring in October, 2016 using Onset® HOBO® 

Data Loggers Micro Station Logger with Smart Temperature Sensor, Soil Moisture Smart 

Sensor and Temperature & RH (relative humidity) Sensor (Onset Computer Corporation, 

Cape Cod, MA, USA). These arrays were assembled onto masts approximately 1 m tall 

and sampled air and soil temperature, relative humidity and soil moisture at 1 hour 

intervals from the time of seeding (October, 2016) through the end of the 2017 growing 

season (final data collection was in September, 2017). 

4.2.3 Model species 

To address the suitability of potential range-expanding tree species to novel 

habitats, we focus here on four tree species whose early life history strategies vary 

drastically: i) two species that produce large seeds relative to boreal species, one native to 

Newfoundland, F. nigra, and one native to mainland Canada, but only found in 

Newfoundland as an ornamental, sugar maple (Acer saccharum Marsh.); and ii) two small 

seeded species, again a native species, B. alleghaniensis, and another common 

ornamental, eastern white cedar (Thuja occidentalis L.). The model species used in this 

experiment are representative species of the BTE, each having significant portions of 
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their native distributions falling within the geographic area of this ecotone (Evans and 

Brown 2017). 

A. saccharum produce large seed relative to typical boreal species (0.050-0.142 

g/seed; Olson and Gabriel 1974), which allows for vigorous germination (Yawney and 

Clayton 1968), but also makes the seeds highly vulnerable to predation in a boreal setting 

(Brown and Vellend 2014). F. nigra produces seed possessing a large samara, but 

immature embryo that requires specific climatic conditions over periods sometimes 

spanning two years under natural conditions in order to mature and break dormancy 

(Vanstone 1974), which allows abundant time for dispersal, predation and/or seed 

desiccation. B. alleghaniensis and T. occidentalis share several early life history traits; 

they are both small-seeded species (0.501-1.63 mg/seed, and approximately 1.31 

mg/seed, respectively; Johnston 1990, Karrfalt 2008). The potential dispersal-related 

benefits of this reproductive strategy are partially offset by the lack of resources and 

resultant fragility of their respective seedlings, both of which have been found to require 

specific substrates to promote successful germination (Cornett et al. 2000, Caspersen and 

Saprunoff 2005) and are known to be limited due to smothering under leaf litter (Burton 

et al. 1969, Buda et al. 2011). The combination of reproductive strategies offered by these 

species will allow me to experimentally test the germination capacity of this 

representative suite of species to combinations of known relevant drivers that exist across 

Newfoundland (see Chapter 1 for further discussion on species traits). They are also well 

suited to the climatic conditions found on much of the southern portion of Newfoundland, 

having already colonised areas with similar climates in mainland Canada. 
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4.2.4 Statistical analyses 

We performed the data analyses to test the species-specific effects of 

combinations of experimentally imposed and naturally occurring environmental 

conditions on the presence and abundance of emergent seedlings. Seedling emergence 

count data were collected in May and September, 2016, and monthly from mid-May to 

mid-September, 2017. Seedlings were counted as having emerged if the radicle had 

breached the seed coat. Seedling emergence was recorded as both: (1) a Bernoulli 

presence/absence response (“presence” data), and (2) a binomial proportion response, 

which was the number of seedlings that emerged in a pot out of the total number of seeds 

that could have germinated (“abundance” data). Partitioning the response variable into 

pass/fail and x passes/y potential passes (similar to Tsuyuzaki et al. 2014), allowed for 

the identification of variables (see Table 4.1 & Supplementary Table 4.2 for predicted 

responses and explanatory variable details, respectively), or combinations thereof, driving 

whether the seedlings emerged at all, and conditions that promoted the greatest number of 

emergent seedlings in a given pot, respectively (Zuur et al. 2009). Evidence of seed and 

seedling herbivory, were recorded qualitatively.  

During seedling emergence surveys in 2017, we observed and counted naturally 

occurring first-year Betula sp. (B. alleghaniensis & papyrifera) seedlings in pots not 

seeded with B. alleghaniensis (n = 1,440). The total number of naturally occurring birch 

seedlings counted over the course of the 2017 growing season at each block was divided 

by the total number of  pots not sown with B. alleghaniensis seeds within each block (n = 

18), to give the background rate of naturally occurring Betula sp. contamination. The 
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resultant background rate was rounded up to the nearest integer and subtracted from each 

pot seeded with B. alleghaniensis to correct for background contamination within the 

corresponding block (Elderd 2003, Donohue et al. 2005). This correction was only 

applied to the 2017 emergence data due to the infrequency of site visits in 2016, which 

did not allow for accurate tracking of naturally occurring Betula sp. emergence. 

All statistical analyses were performed using model selection based on corrected 

Akaike Information Criterion (AICc; Hurvich and Tsai 1989, Akaike 1998, Burnham and 

Anderson 2004) for small sample sizes. Following Burnham and Anderson (2003, 2004), 

we considered models with ΔAICc ≤ 2 have essentially as much explanatory power as the 

top ranked model (i.e., ΔAICc = 0), models with a ΔAICc between 4 & 7 are 

considerably weaker, and models with ΔAICc > 7 have very little support. We erred on 

the side of caution by employing the small-sample AICc method of model selection, as 

many of the global models fitted to our species-specific datasets were at or near the n/K > 

40 approximate threshold, at which AICc begins to converge to AIC (Burnham and 

Anderson 2004). 

We analysed presence and abundance data  for the 2016 and 2017 emergence 

years separately, fitting generalised linear mixed-effects models with a binomial error 

structure and logit link for the presence, and zero-inflated binomial (ZIB) models for 

abundance response variables with treatment explanatory variables (herein: treatment 

analysis). Full species 2016 and 2017 emergence year datasets were used for response 

variable x treatment analysis, for each species that emerged in each year. 
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All possible combinations of our treatment variables were fitted to data for each 

species for each emergence year to test our predictions that biotic and abiotic drivers that 

are important for these model species’ emergence within their respective distributional 

ranges would be important in the novel system under study (Table 4.2; Supplementary 

Table 4.2; Murtaugh 2007, Symonds and Moussalli 2011). The models created for all 

hypothesis testing included the block within site random nested term to account for the 

hierarchical structure of our experimental design, and each model set included a model 

with only this random nested term (i.e., hereafter the Null model; Table 4.2; Bolker et al. 

2009). This made for a total of eight candidate models including the Null model. For 

models in which substrate type was included as an explanatory variable, an additional 

random variable designating each pot as either “treatment” or “control” was also included 

to account for possible variability introduced by the substrate treatment itself. 

Data for the canopy composition explanatory variable was scaled by subtracting 

the variable mean from each value and dividing that result by its standard deviation using 

the base package in R (R Core Team 2016) in order to account for the difference in scales 

between categorical and continuous variables (Supplementary Table 4.2). There is the 

risk here of finding importance in variables with little support due to small datasets, as 

outlined in Freedman’s Paradox (Freedman 1983), however the variables used in the 

model set reflect important ecological relationships for these species elsewhere, thus 

allowing us the assumption that they should still be important in the novel environments 

represented in this study at this early life stage. All analyses were carried out using The R 

Project statistical software (version 3.3.2; R Core Team 2016) packages nlme (Pinheiro et 
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al. 2017), mctest (Ullah and Aslam 2017), glmmTMB (Magnusson et al. 2017, Brooks et 

al. 2017), and bbmle (Bolker and R Core Team 2016). Pseudo-R
2
 values for binomial 

models were calculated after McFadden (1973). 

A confidence set of best-supported models was created for each combination of 

species x response variable for each emergence year, and was populated by fitted models 

with a ΔAICc < 2. We removed models containing pretending variables (sensu Anderson 

2007), or uninformative parameters (sensu Arnold 2010) from our confidence sets 

(Supplementary Tables 4.4 & 4.5). Models that contained variables with parameter 

estimates that reached zero within the range of their standard errors were omitted from the 

confidence set, as these variables were considered unimportant and uninformative. This 

process of confidence set creation is a somewhat similar analytical methodology to those 

employing AIC weights to perform model averaging (Burnham and Anderson 2003, 

Richards 2005, Burnham et al. 2011, Symonds and Moussalli 2011), however the 

weaknesses of this approach are well outlined by Galipaud et al. (2014) and Cade (2015), 

and our primary objectives from this study are to provide evidence-based descriptive 

analyses to serve as a baseline for future hypothesis generation in this subject and 

geographic area. 

Using full 2017 emergence datasets for each model species, climate variables of 

known importance, as outlined in our predictions, were analysed graphically. Conditional 

density plots were generated from the raw presence and abundance data using the 

graphics package in R (version 3.3.2; R Core Team 2016) in order to identify whether 

important relationships between climate variables and seedling emergence for these 
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model species elsewhere were also important in this novel system. This procedure was 

chosen over attempting to model the data, as our climate data sampling design was too 

coarse to differentiate specific climate drivers from possible site effects. 

Table 4.2: Full candidate model set applied to presence and abundance data for each model species’ 

germination data for each year in which germination occurred. Predictor variables refer to the percent 

deciduous canopy cover (%DecC), protection from or exposure to vertebrate herbivory (XHerb), and 

whether the seeds were sown onto mixed or boreal forest substrate (SubM). All models were given the 

nested random terms grouping Blocks within their respective Sites, to account for correlations due to 

geographic proximity. 

Model 

No. 
Predictor variables 

1 1 + (1 | Site/Block) 

2 %DecC + (1 | Site/Block) 

3 XHerb + (1 | Site/Block) 

4 SubM + (1 | Site/Block) 

5 XHerb + %DecC + (1 | Site/Block) 

6 XHerb + SubM + (1 | Site/Block) 

7 SubM + %DecC + (1 | Site/Block) 

8 %DecC + SubM + XHerb + (1 | Site/Block) 

 

4.3 Results 

4.3.1 Within-year and inter-annual effects:  

Seedlings emerged consistently across the two annual iterations of the experiment 

(Table 4.3), but with considerable variation in the success species experienced across sites 

(Table 4.4). Three of the four model species experienced greatest success at the Sir site in 

2016 (excluding F. nigra, which did not germinate that year). In 2017, emergence was 

greatest at the Clar site for the same three species, while F. nigra was most successful at 

the Bara site. This inter-site variation in emergence success meant that the 2017 

emergence data for these three model species (minus F. nigra) were subsetted for 
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treatment analysis. The overall rate of seedling emergence for any species did not exceed 

14% either year and was as low as 0.7% for T. occidentalis in 2016 (Table 4.3).  

Several notable changes in overall abundance of seedlings took place from year to 

year for A. saccharum and B. alleghaniensis, which rose by 4.1% and fell by 2.4%, 

respectively. For A. saccharum, this apparent rise in overall abundance of emergent 

seedlings took place at just two sites (Doz & Clar; Table 4.4), while the proportion of 

seedlings at all other sites did not reach above 4% of sown seeds. Further, though we 

recorded 39% of the seeds sown at the Doz site having germinated, none survived to the 

end of the 2017 growing season, whereas of the 63.5% of seeds that were recorded to 

have germinated at the Clar site, 17.4% survived to September, 2017. A possible 

explanation for the decline in overall emergence success of B. alleghaniensis is the fact 

that emergence data for 2017 were corrected for background contamination, which was 

not done for 2016 data. F. nigra had surprisingly strong emergence results in both 

response categories. Emergence abundance results were highest in areas of natural 

regeneration success for F. nigra on the island (Farrar 1995), with greatest abundance of 

seedlings at western sites (Bara = 123) and lowest at the eastern-most site (Sal = 24). T. 

occidentalis emergence, while still the lowest of any model species, jumped from a total 

of 32 in 2016 to 98 in 2017, despite a reduction in the number of seeds sown in 2016 by 

1,200. Increases in the abundance of T. occidentalis seedlings were observed at every site 

common to both study years except the Sir site, at which declines in abundance of 

emergent seedlings were observed for all species with 2 years of emergence data. 
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Table 4.3: Showing proportion of total (%) and total number (N) of pots in which seedlings were found (Presence) and emergent seedlings observed 

(Abundance) in both emergence years for each species. Numbers shown for B. alleghaniensis are corrected for background contamination from naturally 

occurring birch seed in 2017 only. 

Species 

2016 2017 

Presence Abundance Presence Abundance 

% N  % N  % N % N 

A. saccharum 29.0 600 8.8 3,000 25.0 480 13.9 4,800 

B. alleghaniensis 28.0 300 5.4 3,000 10.4 480 2.0 4,800 

F. nigra - - - - 61.0 300 26.3 1,500 

T. occidentalis 15.0 600 0.7 6,000 15.8 480 2.0 4,800 

 

Table 4.4: Proportion (%) of seeds of each model species that emerged at each site in each germination year. The number of seeds sown at each site per 

species varied in 2015 (600 each for A. saccharum & B. alleghaniensis, 300 for F. nigra, and 1,200 for T. occidentalis), but remained constant at 600 

seeds/species/site in 2016. Seeds sown in the 2015 year are represented in the 2016 emergence year with the exception of F. nigra, which emerged in 2017 

due to the lengthy seed maturation process. Proportions given for B. alleghaniensis are corrected for background contamination from naturally occurring 

birch seed. 

Species 
2016 2017 

Bara Sir Raft Clar Sal Bara GL Doz Wild Sir Raft Clar Sal 

A. saccharum 7.5 12.3 11.3 11.8 1.0 1.8 2.0 39.0 3.2 0.5 0.2 63.5 0.8 

B. alleghaniensis 5.3 8.6 1.2 4.8 4.7 0.1 2.8 3.3 0.1 2.5 2.5 11.3 7.6 

F. nigra - - - - - 41.0 - - - 34.0 23.0 25.7 8.0 

T. occidentalis 0.8 1.1 0.3 0.8 0.8 2.8 3.2 1.2 0.7 1.8 1.5 3.8 1.3 
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Evidence of an effect attributable to our substrate treatment was generally weak, 

with the exception of the models fit to the 2016 B. alleghaniensis presence and abundance 

datasets. The standard deviations of the random pot treatment/control term in the top 

models fit to B. alleghaniensis’ presence and abundance datasets (sd = 0.7074 & 0.4000, 

respectively) were greater than and nearly equal to the parameter estimates for the 

substrate treatment, respectively (Supplementary Tables 4.4 & 4.5), in 2016.  

4.3.2 Herbivore exclusion: 

Emergence was positively associated with the absence of terrestrial vertebrate 

herbivores for most combinations of species x response variable in either emergence year 

(Tables 4.5 & 4.6). Models containing this variable also tended to have the largest 

pseudo-R
2
 values, particularly for A. saccharum (up to 0.15; Fig. 4.4a,d). Support for the 

importance of herbivory for F. nigra was less clear (Fig. 4.4g), particularly for its 

presence response variable (pseudo-R
2
 = 0.01-.03), for which no model in the treatment 

analysis confidence set was greater than 4 AICc units away from the Null model (ER0 = 

6.2-14.3). There was limited evidence of a herbivore effect on B. alleghaniensis, and T. 

occidentalis emergence. Herbivory emerged as the most important explanatory variable 

for B. alleghaniensis and T. occidentalis in 2016 (Fig. 4.4b,c) in explaining the presence 

of seedlings (pseudo-R
2
 = 0.05 for both), and for explaining the abundance of seedlings 

when paired with substrate effects for B. alleghaniensis (pseudo-R
2
 = 0.07), or on its own 

for T. occidentalis (pseudo-R
2
 = 0.04). Exclusion of small terrestrial vertebrate herbivores 

became less important for both small seeded species’ emergence in 2017, being more 

often negatively correlated with emergence (T. occidentalis; Fig. 4.4f), or of questionable 
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importance given the parameter estimate’s standard error (B. alleghaniensis; Fig. 4.4e; 

Supplementary Table 4.5). 

The qualitative observations made at each site visit support the importance of the 

herbivory treatment that emerged in the models, presented above. In 2016, observations 

of missing seeds were made for 80% of uncaged pots containing A. saccharum during the 

May visit. Uncaged A. saccharum pots fared slightly better in May 2017, when 55% of 

uncaged A. saccharum pots were observed with missing seeds, indicating better over-

winter survival of seeds on the forest floor. During the June 2017 site visit, only 3% of 

uncaged F. nigra pots seeded in 2015 were observed having missing seeds. The true 

number is likely far greater, as some pots were lost due to moose trampling or were 

obliterated by snow crushing, which disproportionately affected uncaged pots (n = 38) 

over caged pots (n = 15). Pots seeded with F. nigra in 2016 suffered far greater seed 

loses, 53% of uncaged F. nigra pots were observed to have been missing seeds. Several 

pots seeded in 2015 were also missing for A. saccharum and T. occidentalis (n = 12), and 

B. alleghaniensis (n = 7). All pots for species that emerged in 2017 were accounted for (N 

= 480 each). Due to time constraints, we did not make observations for whether seeds 

were missing for B. alleghaniensis or T. occidentalis, as their seeds were too small to 

easily relocate. 

Damage observed to seeds and seedlings that was considered to have been 

performed by invertebrates was also recorded, and was particularly evident for A. 

saccharum. Invertebrate damage was recorded if only part of the seedling was damaged 

(e.g., hypocotyl bitten in half, part or whole cotyledons or leaves eaten; e.g., Meiners and  
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Figure 4.4: Mean number of seedlings per pot with jittered points showing data spread for (A) A. saccharum 2016, (B) B. alleghaniensis 2016, (C) T. 

occidentalis 2016, (D) A. saccharum 2017, (E) B. alleghaniensis 2017, (F) T. occidentalis 2017, and (G) F. nigra 2017 emergence data. 2016 and 2017 

emergence data are for pots under closed- and open-top cages, respectively, and their controls. Total numbers of seedlings observed for each species in 

each emergence year are listed below each panel. Although these seedlings emerged in different years, panels A-C & G represent seeds that experienced 

the same herbivore exclusion treatments, whereas seeds represented in panels D-F were enclosed within the re-designed herbivore exclosures. 
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Handel 2000), or if only part of the seed was damaged (e.g., holes in seed coat, cracked 

seed coat with all or part of the radicle or cotyledons eaten; e.g., Nystrand and Granström 

2000). While invertebrate herbivory was not specifically a driver of interest to our study, 

suspected invertebrate damage was observed in up to 41% of caged and 32% of uncaged 

A. saccharum pots in 2017, which appeared to be the primary targets of invertebrate 

herbivores. 

4.3.3 Substrate composition:  

Top models contained substrate effects for B. alleghaniensis abundance data 

(Table 4.6) for 2016 emergence year data and 2017 T. occidentalis presence and 

abundance data (Table 4.5 & 4.6, respectively). T. occidentalis emergence data from 2016 

would not converge when fit with the substrate treatment variable and random pot 

treatment/control variable, thereby cutting the number of treatment analysis models to 

four. Model convergence issues were due to the low overall emergence success of T. 

occidentalis in 2016 (N = 43; Table 4.3), over half of which occurred in mixed forest 

substrate treatment pots (n = 26; Fig. 4.5). 

Substrate type was also important in determining whether F. nigra seedlings 

would be present and in what abundance in 2017 (Table 4.5 & 4.6). Contrary to B. 

alleghaniensis and T. occidentalis, which were positively correlated with mixed forest 

substrate in the 2016 and 2017 emergence years, respectively, F. nigra was negatively 

correlated with mixed forest substrate in 2017 (Tables 4.5 & 4.6; Supplementary Tables 

4.4 & 4.5). The actual difference was small for all three species. When comparing the 

mean number of seedlings per seedling-containing pot (i.e., non-zero data) for the 2016 B. 
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alleghaniensis and 2017 F. nigra and T. occidentalis emergence data, the difference in 

mean number of seedlings in a mixed forest vs. boreal forest pot was 0.6 (mixed = 2.22, 

boreal = 1.65), 0.1 (mixed = 1.34, boreal = 1.23), and -0.5 (mixed = 1.90, boreal = 2.39) 

seedlings, respectively. Looking at the raw 2016 emergence data for T. occidentalis, 

seedlings occurred in 7% of pots containing mixed forest substrate, compared to 4% of 

pots containing boreal forest substrate (Fig. 4.5); the odds were equally even in 2017 

(odds ratio = 1.3). The odds of finding a B. alleghaniensis seedling on either substrate 

type was essentially even in 2016 (OR = 1.0), however in 2017 there was a greater chance 

of finding B. alleghaniensis seedlings in boreal over mixed substrate pots (OR = 0.75). A 

similar correlation existed in 2017 for F. nigra seedlings, which were just over half as 

likely to occur on mixed forest substrate over boreal substrate (OR = 0.58). Confidence 

sets for A. saccharum did not include substrate effects for either emergence year. 

 

Figure 4.5: 2016 T. occidentalis seedling abundance (left) and presence (right) by substrate type. In mixed 

substrate control (1) and treatment (20) pots, 1 and 26 seedlings occurred, respectively; in boreal substrate 

control (6) and treatment (6) pots, 9 and 7 seedlings occurred, respectively. 
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4.3.4 Stand characteristics:  

The presence and abundance of small-seeded B. alleghaniensis and T. occidentalis 

were both negatively correlated with increasingly deciduous canopy composition in 2017 

(Fig. 4.6c,d). There was not enough evidence to support a correlation in our models 

between either of the small-seeded species’ emergence response variables and canopy 

composition in 2016, despite B. alleghaniensis and T. occidentalis seedlings emerging in 

greater numbers in boreal forest stands (n = 106 & 35, respectively) than mixed forest 

stands (n = 42 & 8, respectively). The evidence of a negative correlation between both B. 

alleghaniensis response variables and canopy composition was relatively strong (ER0 = 

258.8-647.6), but much weaker for T. occidentalis response variables (ER0 = 1.4-9.6) in 

2017, however in neither case was there enough evidence to greatly improve the log 

likelihood of the explanatory models over Null models (pseudo-R
2
 < 0.04;  Tables 4.5 & 

4.6). The total number of A. saccharum seedlings was nearly even under mixed canopy (n 

= 142) and boreal canopy (n = 122) in 2016, however emergence was better under boreal 

(n = 376) than mixed (n = 290) canopy in 2017. The presence of the canopy cover 

variable in the confidence set models for F. nigra is not well borne out when that species’ 

abundance data are displayed graphically (Fig. 4.6a). There appeared to be little evidence 

of canopy composition influencing either F. nigra seedling presence or abundance, as the 

numbers were essentially even between boreal (85 pots containing 204 seedlings) and 

mixed (98 pots containing 191 seedlings) stands. 
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Figure 4.6: Conditional density plots using 2017 emergence data to show the probability of finding (A) 0-5 

F. nigra, (B) 0-10 A. saccharum, (C) 0-6 B. alleghaniensis, and (D) 0-3 T. occidentalis seedlings per pot 

under increasing deciduous canopy cover. Emergence data for B. alleghaniensis is adjusted for background 

contamination. Also shown are the mean percent deciduous canopy composition of for blocks established in 

2015 (A) and 2016 (B-D). The negative association between deciduous canopy cover and B. alleghaniensis 

and T. occidentalis emergence is evident in panels C & D, whereas no clear relationship appears for F. 

nigra. The majority of A. saccharum emergence took place at only two sites (Clar & Doz), which had mean 

deciduous canopy compositions of 14 & 8% (boreal forest), and 74 & 72% (mixed forest), respectively. 

4.3.5 Climate:  

The inherent limitations of cost and time did not permit more than two replicate 

climate sensor arrays per site. Yet, even with this limitation, we were able to make 

observations about the microclimatic variations across the province during 2017, which 

revealed surprising differences in the timing of the transition spring to summer air 

temperature. The Bara site warmed up much more quickly than its nearest neighbours 

(see Fig. 4.1), with mean air temperatures 2.4-3.1°C and 1.3-1.4°C warmer than Doz and 

GL in May and June, respectively. Differences in microclimate within sites was generally 
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small; in both May and June, boreal and mixed forest stands differed in mean air 

temperature by 0.1°C. Soils in mixed forest stands did tend to warm up faster than in 

boreal stands, going from a mean 0.02°C warmer in May to 0.4°C warmer in June, which 

is not easily explained by a difference in air temperature or soil moisture – which 

remained virtually unchanged between the forest types. 

The a priori list of climate variables graphically explored using the 2017 

emergence data for each species revealed few obvious relationships that could be easily 

differentiated from possible site effects. Only the data for F. nigra emergence revealed 

clear relationships between the abundance of seedlings and climate variables relevant to 

F. nigra emergence success (Fig. 4.7). F. nigra emergence success appears well 

correlated with conditions seeming to improve along an east to west gradient (see Fig. 

4.1). This gradient is reinforced by the emergence success of this species at the Sir site (n 

= 102), at which both HOBO® sensor masts failed in February, 2017. Emergence data for 

A. saccharum, B. alleghaniensis, and T. occidentalis did not appear well correlated with 

any of the three climate variables investigated (Fig. 4.8). Emergence of A. saccharum 

seedlings at Clar and Raft varied dramatically, despite similar climatic conditions leading 

up to the initial pulse of newly emerged seedlings in late May, 2017 (Fig. 4.8a,d,g). B. 

alleghaniensis emergence was similarly poorly correlated with climate variables, and 

showed an opposite trend to what was expected, where sites that experienced lower mean 

temperatures leading up to the initial pulse of new seedlings were locations of greater 

emergence success than those with higher temperatures (Fig. 4.8h). Similar to data for F. 

nigra, the lack of climate data from the Sir site, at which a total of 11 B. alleghaniensis 
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seedlings were observed further reinforces this trend, as the nearest weather station to the 

Sir site (Cormack, NL; 16 km away) reported a mean temperature of 7.7°C for the 19
th

 

May – 17
th

 June, 2017 period (Environment and Climate Change Canada 2017a). By the 

11
th

 June – 10
th

 July, 2017 period preceding the initial pulse of new T. occidentalis 

seedlings, mean values for the climate variables investigated were evenly spread across 

variable ranges (Fig. 4.8c,f,i) with no discernable east-west or north-south gradient. It is 

unlikely that inclusion of climate and emergence data from the Sir site, at which a total of 

11 T. occidentalis seedlings were observed, would have changed this. 
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Figure 4.7: Conditional density plots showing probability of 1-5 F. nigra seedlings occurring per pot in 2017 by (A) mean winter soil moisture, (B) mean 

winter soil temperature, and mean soil moisture (C), soil temperature (D), and air temperature (E) for the period of 19
th

 May – 17
th

 June, 2017. Winter 

climate variables were averaged between first and last weeks with an average air temperature below 0°C (starts 28
th

 of November, 2016 for all sites, ends 

2
nd

 of April, 2017 for Bara & Sal, 23
rd

 of April, 2017 for all other sites). Mean values for climate variables at each site are indicated by the position of the 

sites above each panel. Total number of seedlings observed at each site is also given below site names. 
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Figure 4.8: Conditional density plots showing probability of 0-10 A. saccharum (A, D, G), 0-6 B. alleghaniensis (B, E, H), and 0-3 T. occidentalis (C, F, I) 

seedlings occurring per pot in 2017 by mean soil moisture (A, B, C), soil temperature (D, E, F), and air temperature (G, H, I). Periods from which means 

were taken are 24
th

 April – 23
rd

 May, 2017 for A. saccharum, 19
th

 May – 17
th

 June, 2017 for B. alleghaniensis, and 11
th

 June – 10
th

 July, 2017 for T. 

occidentalis. Mean values for climate variables at each site are indicated by the position of the sites above each panel. Total number of seedlings observed 

at each site is also given below site names. 
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Table 4.5: Results shown for treatment variable analysis of presence data for all model species for each germination year for models with ΔAICc ≤ 10 that 

did not contain pretending variables. Direction of treatment effects and the number of observations in model sets (N) are shown; the left-most column 

refers to the models shown in Table 4.2. Data structure for all species was a Bernoulli response and models were binomial with a logit link function. 

Predictor variable treatments are labelled as follows: XHerb = small terrestrial herbivore exclusion, SubM = mixed canopy forest substrate, and %DecC = 

percent deciduous canopy cover. ΔAICc & AICc weights (AICcw) are given, evidence ratios (ER) calculated for top model over second ranked model and 

each model over the Null model (ER0), and pseudo-R
2
 (McFadden 1973) is calculated for each model. 

 Species Year 
Model 

structure 
N 

Predictor 
k 

Log 

Likelihood 
ΔAICc AICcw ER ER0 R

2
 

XHerb SubM %DecC 

3 A. saccharum 2016 Binomial 588 ↑   4 -270.0 0 0.45 1.1 4.8 x 10
19 

0.15 

5    ↑  ↑ 5 -269.1 0.2 0.39  4.3 x 10
19 

0.15 

6    ↑ ↑  6 -269.6 3.2 0.09    

8    ↑ ↑ ↑ 7 -268.8 3.7 0.07    

              

1   Null    3 -316.4 90.7 <0.001    

              

3 A. saccharum 2017 Binomial 480 ↑   4 -140.2 0 0.41 1.7 2.9
 

0.01 

            
 

 

1   Null    3 -142.2 2.1 0.15    

              

3 B. alleghaniensis 2016 Binomial 293 ↑   4 -152.8 6.3 0.031 2.7 731.4 0.05 

              

1   Null    3 -160.5 19.5 <0.001    

               

2 B. alleghaniensis 2017 Binomial 480   ↓ 4 -222.9 0 0.46 1.1 280.5
 

0.03 

5    ↑  ↓ 5 -221.9 0.2 0.42  258.8 0.03 

              

1   Null    3 -229.6 11.3 0.002    

               

3 T. occidentalis 2016 Binomial 588 ↑   4 -111.9 0 0.71 2.6 89.6
 

0.05 

            
 

 

1   Null    3 -117.4 9.0   
 

 

               

2 T. occidentalis 2017 Binomial 480   ↓ 4 -202.9 0 0.31 1.3 3.6 0.01 

5    ↓  ↓ 5 -202.2 0.6 0.23  2.7 0.01 

7     ↑ ↓ 6 -201.5 1.3 0.16  1.9 0.02 
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8    ↓ ↑ ↓ 7 -200.8 1.8 0.12  1.4 0.02 

              

1   Null    3 -205.3 2.6 0.08    

               

8 F. nigra 2017 Binomial 300 ↑ ↓ ↑ 7 -176.0 0 0.27 1.3 5.0 0.03 

5    ↑  ↑ 5 -178.4 0.5 0.21  3.9 0.02 

3    ↑   4 -179.7 1.2 0.15  2.8 0.01 

6    ↑ ↓  6 -177.9 1.7 0.12  2.2 0.02 

7     ↓ ↑ 6 -178.2 2.2 0.09    

2      ↑ 4 -180.5 2.6 0.07    

              

1   Null    3 -181.8 3.3 0.05    
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Table 4.6: Results shown for treatment variable analysis of abundance data for all model species for each test year for models with ΔAICc ≤ 10 that did not 

contain pretending variables. Direction of treatment effects and the number of observations in model sets (N) are shown; the left-most column refers to the 

models shown in Table 4.2. Data structure for all species was a proportional binomial response, weighted with the number of seeds sown per pot. With the 

exception of the F. nigra data, when full datasets were used, inclusion of a zero-inflation factor greatly improved model fit (denoted by ZIB). Predictor 

variable treatments are labelled as follows: XHerb = small terrestrial herbivore exclusion, SubM = mixed canopy forest substrate, and %DecC = percent 

deciduous canopy cover. ΔAICc & AICc weights (AICcw) are given, evidence ratios (ER) calculated for top model over second ranked model and each 

model over the Null model (ER0), and pseudo-R
2
 (McFadden 1973) calculated for each model. 

 Species Year 
Model 

structure 

Model 

weight 
N 

Predictor 
k 

Log 

Likelihood 
ΔAICc AICcw ER ER0 R

2
 

XHerb SubM %DecC 

3 A. saccharum 2016 ZIB 5 
588 

↑   5 -452.8 0 0.42 1.2 
9.4 x 

10
19 0.06 

5     ↑  ↑ 6 -452.0 0.4 0.34  
7.7 x 

10
19

 
0.10 

6     ↑ ↑  7 -451.8 2.1 0.14  
 

 

8     ↑ ↑ ↑ 8 -451.2 2.9 0.10  
 

 

             
 

 

1   Null     4 -499.8 92.1 <0.001  
 

 

                

5 A. saccharum 2017 ZIB 10 
480 

↑  ↓ 6 -417.5 0 0.64 3.0 
1.1 x 

10
4 0.02 

2       ↓ 5 -419.7 2.2 0.21    

               

1   Null     4 -426.6 14.0 <0.001    

                

6 B. alleghaniensis 2016 ZIB 10 
293 

↑ ↑  7 -240.6 0 0.71 2.5 
2.4 x 

10
6 0.07 

              
 

 

1   Null      4 -258.5 29.5 <0.001  
 

 

                

5 B. alleghaniensis 2017 ZIB 10 480 ↑  ↓ 6 -353.6 0 0.49 1.7 647.6 0.02 

2       ↓ 5 -355.2 1.1 0.29  377.7 
 

0.02 

               

1   Null     4 -362.2 13.0 <0.001    

                

3 T. occidentalis 2016 ZIB 10 588 ↑   5 -135.9 0 0.70 2.5 54.6 0.04 
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1   Null     4 -141.0 8.1 0.01    

                

8 T. occidentalis 2017 ZIB 10 480 ↓ ↑ ↓ 8 -251.6 0 0.29 1.3 9.6 0.02 

5     ↓  ↓ 6 -254.0 0.5 0.23  7.3 0.02 

7      ↑ ↓ 7 -253.0 0.6 0.22  7.2 0.02 

2       ↓ 5 -255.4 1.4 0.15  4.7 0.01 

3     ↓   5 -256.5 3.6 0.05    

               

1   Null     4 -258.0 4.6 0.03    

                

8 F. nigra 2017 Binomial 5 
300 

↑ ↓ ↑ 7 -445.7 0 0.55 2.2 
6.6 x 

10
3
 

0.03 

6     ↑ ↓  6 -447.5 1.6 0.25  
3.0 x 

10
3
 

0.02 

7      ↓ ↑ 6 -448.2 2.9 0.13    

4      ↓  5 -450.0 4.5 0.06    

               

1   Null     3 -458.7 17.7 <0.001    
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4.4 Discussion 

Our spatially-extensive field experiment suggests that the four model temperate 

tree species’ distributions are not limited by their incapability to germinate in mature 

boreal or mixed canopy forest stands, evidenced by successful seedling emergence across 

all experimental sites in insular Newfoundland. Such evidence supports the over-arching 

goal of this research, to identify probable drivers beyond climatic variables influencing 

future distributions of our model species in a range-edge and beyond-range setting, and 

compare those to known drivers within species’ ranges. That each species was able to 

successfully germinate beyond their current distributional range also provides indirect 

evidence that these species’ climatic niche extends well beyond their respective realised 

niche space, at least for the demographic stages studied here. We have provided empirical 

evidence for each of our model species’ abilities to overcome early life stage a/biotic 

hurdles in environments beyond their current distribution. The seedling emergence 

patterns resulting from the two iterations of this experiment presented, in many cases, 

evidence that supported our a priori hypotheses; large-seeded tree species were more 

vulnerable to seed predation, while small-seeded species were sensitive to canopy 

composition. Other findings, however, were unexpected, given what is known about these 

species’ germination requirements under natural conditions elsewhere. Here, we will 

explore these species-specific drivers and constraints on temperate tree range expansion 

in boreal forest stands   
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4.4.1 Boreal-temperate ecotone and unfilled niche space 

A striking finding was the apparent lack of correlation between model species’ 

emergence patterns and climatic variables. F. nigra emergence was correlated, weakly, 

with climatic variables, and many of these match well with known germination 

requirements for this species. The site at which F. nigra emergence was poorest (Sal) had 

the lowest mean air temperature and mean soil moisture for the 30 day period leading up 

to the initial pulse of newly emerged seedlings in mid-June, 2017, as well as the lowest 

mean over-winter soil moisture. These associations fit well with typically boggy, water-

saturated site characteristics where F. nigra is commonly found within its mainland range 

(Gates 1942, Wright and Rauscher 1990). One surprising correlation seemed to occur 

between greater B. alleghaniensis emergence and lower mean air temperatures for the 19
th

 

May – 17
th

 June, 2017 period. Overall, 93% of the total number of seedlings observed in 

2017 occurred at sites with mean temperatures of 7.7-8.6°C for the 19
th

 May – 17
th

 June, 

2017 period, indicating other factors were dominant in driving emergence in this species, 

as typically B. alleghaniensis germination is optimal under temperatures of 20-23°C 

(Perala and Alm 1990). 

Though this is based on only a single year of data, three of the model species were 

also able to germinate in 2016, in similar numbers to 2017 (Table 4.3). The graphical 

comparison of 2017 emergence data with climate variables (Fig. 4.7 & 4.8), paired with 

the overall emergence results appears to confirm that portions of Newfoundland are 

within the climatic envelope of these BTE species, however their widespread 

establishment has not occurred here (Pastor and Mladenoff 1992). Despite the stage 
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apparently being set for colonisation of the island by a larger suite of temperate tree 

species than naturally dispersed here (MacPherson 1995), either the monumental 

challenge of crossing the Cabot Strait has proven insurmountable without human 

intervention, or else other competing factors have barred the establishment of viable 

populations of most temperate species on the island. 

4.4.2 Vertebrate predation constrains large-seeded tree establishment 

A. saccharum emergence was well explained by protection from terrestrial 

vertebrate herbivory in both study years. This followed our expectations that A. 

saccharum would be targeted by terrestrial vertebrate granivores looking for the larger, 

more food-rich seeds, which has been observed within (Hsia & Francl, 2009) and at the 

edge (Brown & Vellend, 2014) of its native distribution in mainland Canada. The large 

size of A. saccharum seeds and seedlings also made it easy to observe damage, which was 

often consistent with invertebrate herbivory patterns (Nystrand and Granström 2000, 

Meiners and Handel 2000). This was also the case with F. nigra seeds and seedlings, 

although overall observations of seed and seedling herbivory were lower for that species. 

Our initial assumptions were that F. nigra would be vulnerable to seed predation 

given its large seed size relative to most of the species present at our sites and their 

duration on the forest floor before germinating. This assumption was based on work done 

with other species with similar seed sizes (De Steven 1991, Hulme and Hunt 1999), as it 

appears no research has been done to directly study the effects of post-dispersal seed 

predation on this species’ reproductive success within its range, or at the range edge. This 

assumption was borne out, insofar as our analysis pointed to our herbivory treatment as 



149 

being among the most important of the treatment variables, however Figure 4.4g shows 

that the effect size overall was limited. Unlike A. saccharum’s 2017 emergence data, F. 

nigra was more consistent across sites (Table 4.4), however while both species 

experienced greater emergence success within exclosures at most sites (in either year for 

A. saccharum), both species did experience greater success outside of exclosures at 

several sites. 

The herbivory treatment effect was evident in 2016 and 2017 emergence year 

models for the small-seeded model species, despite that these species’ seeds are not 

readily differentiable in size from those of typical boreal tree species (Bartlett et al. 1991, 

Bonner and Karrfalt 2008). This is certainly not unprecedented, B. alleghaniensis and T. 

occidentalis have been observed suffering from post-dispersal seed predation in their 

home ranges (Kelly et al. 2001, Larouche et al. 2011). The variability in the importance 

of the herbivory treatment between the 2016 and 2017 seedling emergence years (Fig. 

4.4) might reflect inter-annual variation in naturally occurring seed production, changes 

in the efficacy of our herbivory treatment with the altered exclosure design, inter-annual 

variation in the invertebrate seed predator population, or some other unmeasured variable. 

Regardless of the specific cause, our initial assumptions that these species would not 

suffer from vertebrate seed herbivory were not well supported by our data. Further 

investigation into whether these small-seeded species with limited distributions on the 

island are suffering from seed predation disproportionately to locally more abundant tree 

species with similar sized seeds is warranted. 
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4.4.3 Canopy-seedbed interactions  

The delay in spring canopy closure may have benefitted B. alleghaniensis seeds 

under increasingly deciduous canopies due to the integral role light exposure plays in 

breaking seed dormancy (Yelenosky 1961). The differences observed in spring soil 

temperatures between boreal and mixed forest stands is likely evidence that greater solar 

radiation was reaching the forest floor in mixed forest stands due to increased canopy 

openness before spring leaf flush of deciduous trees (Lieffers et al. 1999). Pots were 

seeded both years in the middle of leaf-fall (September, 2015 and October, 2016), and 

while we can hypothesise that the competing smothering effect of leaf litter likely 

cancelled out any beneficial spring light transmission for the 2017 germination year, it is 

curious that this effect was absent in 2016. This smothering effect also showed up in the 

models fit to the 2017 emergence data of T. occidentalis, despite that in 2016, the only 

pots containing 4 seedlings (the greatest number of seedlings found in any pot that year) 

were found in areas with less than 50% deciduous canopy cover and few seedlings were 

found in areas with greater than 50% deciduous canopy cover. Seedling abundance for 

both species was highest in 2016 under 60-80% total canopy cover, and 85-95% in 2017. 

This is within the range of what others have found. Linteau (1948) observed greatest 

germination of B. alleghaniensis under partial and complete canopies over open canopies, 

and Cornett et al. (2001) found that while T. occidentalis germination was negatively 

impacted by leaf litter, they saw favourable germination under >70% total canopy cover.  

One of the most surprising results from our treatment variable analysis was the 

positive correlation between T. occidentalis emergence and mixed forest substrate in 
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2017, as well as the lack of evidence supporting any correlation between B. 

alleghaniensis emergence and a specific substrate type. The relative success of these 

species on a predominantly leaf litter seedbed, which has poor moisture-bearing capacity 

(Linteau 1948, Buda et al. 2011), may be partially explained by the generally low density 

of maples (Acer sp.) at any of the experimental sites, which shed leaves that tend to mat 

and therefore create a hard, dry barrier for the small seedlings (Burton et al. 1969). An 

alternative hypothesis would be that while the moisture retaining qualities of leaf-litter are 

poor, early summer in Newfoundland is characterised by an average 81-104 mm 

precipitation and relatively cool temperatures (Environment and Climate Change Canada 

2017b), perhaps reducing the risk of seedling desiccation. Regardless, the conditions 

under which T. occidentalis seedlings emerged most successfully in 2017 – on leaf litter 

substrate under predominantly boreal canopy – are rare under natural conditions, and this 

poses questions about whether range expansion throughout Newfoundland will be 

possible. 

A. saccharum emergence was notably more successful at the Doz and Clar sites 

than the others and had mean May air temperatures of 4.1 & 4.4°C, respectively, an ideal 

temperature for A. saccharum germination (Solarik et al. 2016). These temperatures were 

in line with the Raft and Wild sites, at 4.4 & 4.8°C respectively, yet only 1.5 & 0.7% of 

A. saccharum seeds managed to emerge there (Fig. 4.8g). A. saccharum emergence 

followed expectations as a species known for its shade tolerance (Godman et al. 1990), 

showing best emergence under 80-95% canopy cover in both 2016 and 2017. The effect 

of canopy composition featured in the confidence sets for the A. saccharum 2016 
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presence and 2016/17 abundance dataset treatment analyses, however the large relative 

standard error surrounding this variable’s 2016 parameter estimates (Supplementary 

Tables 4.4 & 4.5), and the change in effect direction between models fit to 2016 and 2017 

abundance datasets (Table 4.6) calls its actual importance into question. While there 

appears to be limited literature discussing the effects of canopy composition on A. 

saccharum seedling emergence, a study by Reinhart et al. (2012) suggested that seedling 

recruitment of A. saccharum was greater near heterospecific individuals than 

conspecifics.  

Predictably, A. saccharum emergence was unaffected by substrate in this 

experiment, which is in line with what others have found elsewhere (Barras and Kellman 

1998, Kellman 2004). Caspersen and Saprunoff (2005) found that A. saccharum 

recruitment was significantly limited on leaf litter substrate, however their study included 

a wider variety of comparison substrates of which moss was a negligible component. 

Tying together the dual effects of substrate type and canopy composition was similarly of 

little importance in the confidence sets for A. saccharum, offering little evidence of an 

interaction leading to a possible smothering effect. 

F. nigra appeared uninhibited by increasing canopy cover; the likelihood of 

finding five seedlings in a pot in 2017 was greatest in pots with 70-80% total canopy 

cover. While the treatment model analysis suggests that there was some positive 

association with increasingly deciduous canopy cover, this correlation is relatively weak 

when the models are displayed graphically (Fig 4.6a) and when the coefficients are 

inspected (Supplementary Tables 4.4 & 4.5), however not so weak as to declare it an 
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uninformative parameter (Arnold 2010). One possible explanation for this positive 

correlation comes back to the higher levels of solar radiation that would be reaching the 

ground in the spring due to delayed deciduous canopy closure, as light is often one of the 

necessary ingredients in breaking seed dormancy (Vanstone 1974, Bonner and Karrfalt 

2008). 

The importance of a deep organic layer is apparent in the literature regarding 

where F. nigra is found within its natural distribution (Gucker 2005). The moisture 

retention properties of soils with deep organic layers of partially decomposed moss 

(Turetsky et al. 2012) may explain F. nigra’s preferential emergence on mossy substrates 

over leaf litter substrates, characteristic of the boreal forest stands. The fact that this 

association did not extend to a correlation between F. nigra’s emergence patterns and 

canopy composition, where the average number of F. nigra seedlings per pot was 1.3 and 

1.4 in mixed and boreal stands, respectively, was likely due to the similarity in soil 

moisture conditions during the 2017 growing season and the 2016/17 winter, differing by 

at most 0.04 mean m
3

H2O/m
3

soil between boreal and mixed forest stands. 

4.4.4 Further research 

Some elements of this study limited our ability to offer predictions of how 

emergence of temperate tree species might be controlled by specific drivers across 

Newfoundland, such as the limited climate data, the change in our terrestrial vertebrate 

exclosure design between study years, the low number of data collection site visits in 

2016 that limited our ability to track emergence of seedlings, and purposely broad 

definitions used for the different substrate types tested in this experiment. Our two 
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emergence years’ datasets would have been more comparable, had the experimental 

design remained consistent, between the herbivore exclosure cage designs and number of 

data collection site visits, for instance; however the 2015 implementation was intended as 

a learning experience and it would have been irresponsible to not apply valuable 

methodological lessons gleaned from it. While the low emergence rates do represent 

challenges to the inferential power of any analysis we performed, this is not uncommon in 

field-based manipulative germination experiments (De Steven 1991, Ronnenberg et al. 

2008), especially when planting seed beyond their natural distribution range (Brown and 

Vellend 2014). 

 Since the primary focus of this research was to further generate research on the 

topic of temperate tree range expansion to and within Newfoundland, there are many 

questions that easily spring from our results. We would initially pose the question of 

whether terrestrial vertebrate predators are the only limiting herbivory-related factor, or 

whether invertebrate herbivores pose a greater barrier to successful germination for 

temperate tree species in Newfoundland as they do in other areas where they are exotics 

(Pigot and Leather 2008). This question could be addressed using carefully combined 

herbivore exclusion methods to differentiate the impacts of herbivory by invertebrates 

(e.g., Saska et al. 2014) and vertebrates (e.g., Brown and Vellend 2014), or herbivory 

impacts within functional groups (e.g., Moore and Swihart 2008, Lobo et al. 2009, Pufal 

and Klein 2013). Notable here as well were the prevalence of slugs observed within our 

test pots; Nystrand and Granström (2000) found that slugs were the most important 

herbivores in their boreal Swedish study area for emergent seedlings. Evidence that 
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damage and mortality of newly emerged seedlings were caused by slugs, such as the 

physical presence of slugs in test pots and slime trails near seedlings, was consistent with 

that described by Nystrand and Granström (1997) may pose a serious establishment 

barrier for introduced and native tree species alike (Moss and Hermanutz 2010). The 

prevalence of seed and seedling herbivory that was observed at all sites, across species 

and during both germination years made it abundantly clear that further experimentation 

with these species to differentiate the effect of different herbivore groups is necessary. 

Given that our second cage design (implemented in 2016) did not effectively omit 

avifauna from entering the exclosures and predating upon the enclosed seeds, the effects 

of this herbivore group on temperate tree species germination could also be studied 

further in Newfoundland. From our results, we would expect the herbivore group 

responsible for posing the greatest barrier to germination would change, depending on 

seed size and germination phenology.  

Our two large seeded model species, F. nigra and A. saccharum, suffered 

differently from both seed and seedling herbivory; the latter can likely be explained by 

the timing of their respective germination. Where A. saccharum emerged in May, before 

much of the forest floor herb layer had emerged (personal observation), the seedlings are 

the first new growth to attract the attention of herbivores, F. nigra seedlings emerged in 

June, after the forest floor herb layer had flushed out. This problematic “early-bird” 

phenology for A. saccharum may persist as rising spring temperatures across 

Newfoundland (Natural Resources Canada 2015) is likely to induce a phenological shift 

to earlier emergence for both forest herb layer species as well as for A. saccharum 
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(Walther et al. 2002). This phenological synchrony is also likely to persist between the 

herbivorous species feeding on A. saccharum seedlings and their emergence period, as 

has been shown in other tree species-insect herbivore systems (Schwartzberg et al. 2014). 

One of the ways that A. saccharum is known to deal with this dilemma within its home 

range is through well-synchronised masting years, which allow a pulse of seedlings to 

survive the early life-stage herbivory filter by satiating their herbivorous enemies 

(Schnurr et al. 2002). 

 The different cage designs may also have been responsible for the lack of any 

negative correlation between the small seeded model species and deciduous canopy 

composition in the 2016 emergence year. The initial cage designs, installed in 2015 had 

‘lids’ of hardware mesh that effectively omitted any leaf litter from reaching the ground 

within the cages. This unintended barrier eliminated any potentially smothering effect that 

could have occurred within cages, which likely washed out any potential effect deciduous 

canopy cover may have had in 2016. Therefore, the importance of the herbivore exclusion 

treatment effect observed in T. occidentalis and B. alleghaniensis’ 2016 emergence data 

may have indirectly been due to protection from smothering, rather than or in 

combination with protection from herbivory. 

4.5 Conclusions 

 We have shown that for all species, but particularly for species with large seeds 

relative to the native flora, seed predation poses an effective barrier to seedling 

emergence across Newfoundland. This cannot be as easily overcome as within-range 
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populations, where seed abundance during high production years can satiate predators, 

allowing some propagules to escape (Kellman 2004). It is apparent that there are 

sufficient substrate types for germination to occur in mature forested stands of varying 

compositional complexities in Newfoundland, but that further work needs to be done to 

investigate substrate and soil qualities in relation to canopy composition to identify 

linkages between the above and below ground nutrient flows (Wardle et al. 2004) and 

seedling emergence, survival, and growth. Finally, while climatic variables did not appear 

well correlated with emergence success of most of our model species, these may become 

more important at later life stages, such as promoting growth rates adequate to escape 

moose herbivory (McInnes et al. 1992), and adequate GDD for healthy seed production 

(Sykes et al. 1996). Further research investigating these and other temperate tree species’ 

survival, growth, and transition between crucial life stages is needed to understand how 

isolated boreal forest systems may become colonised by southern tree species with a 

changing climate. 
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Chapter 5: Conclusion 

 Evidence of the importance of non-climate biotic and abiotic interactions in 

species range shifts under anthropogenically driven climate change has been mounting for 

several decades (Walther et al. 2002; Parmesan and Hanley 2015). Apparent in the 

recognition of the importance of these interactions is a need for greater experimental and 

observational research in order to compliment the growing body of literature regarding 

future species distributions under various climate change projections (e.g., Iverson and 

Prasad 2002; Iverson et al. 2008; Lawler et al. 2009). As outlined in Chapter 2, ecotones 

represent ideal systems for this type of research given the inherent state of stress that 

members from each biome-specific community experience. When the alleviation of 

climate-driven limiting factors does not induce a consistent pattern of response, as we 

have seen in the boreal forest – temperate forest ecotone (BTE), the natural inclination is 

to ask why. 

 I identified several geographical areas for which data on possible tree species 

range shifts within the BTE are scarce, including Europe and European Russia, eastern 

Asia, and eastern Canada. The fragmentary coastline, glacial history and geographical 

isolation of Newfoundland means that likely habitable areas for BTE-dwelling tree 

species on the island have been effectively omitted from many species’ ranges due to the 

dispersal barrier imposed by the Cabot Strait and Gulf of St. Lawrence. The 

anthropogenic facilitation of propagule dispersal to an otherwise unreachable island with 

a climate capable of supporting a wider diversity of plant species than currently live there 

will not necessarily mean range expansion or establishment in Newfoundland (Qian and 
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Ricklefs 2006). Biotic and abiotic hurdles must be overcome in order to establish viable 

populations of incoming species and parsing the relative importance of these hurdles, 

which I have shown in Chapter 4 can vary widely among species from the same 

ecosystem, is important in expanding our understanding of tree species range shifts. 

The methods that are employed to model the effects of climatic drivers on plant 

species’ distributions are often put under scrutiny (e.g., Jaeschke et al. 2012; Morin and 

Thuiller 2009; Fischer et al. 2014), and comparisons are drawn between projected species 

distributions and long-term occurrence datasets (Araújo et al. 2005), or experimental data 

(Davis et al. 1998) in order to quantify the success rate of these projections. This 

methodological analysis has also been performed for field experimental methods that are 

used to make direct observations on species range shift in manipulated systems (Brown 

1992; Cleland et al. 2007). Chapter 3 was inspired by observations made over the course 

of my project and explores the possibility that small herbivore exclosure cages are 

capable of modifying microclimatic conditions by affecting temperature regimes and 

snow accumulation within their confines. The annual climatic cycle for which plant 

species in areas that experience snowy winters are adapted includes factors such as local 

snowfall amounts and duration, as well as plant species’ tolerance to early winter and 

early spring freeze-thaw cycles (Sakai and Larcher 2012; Connolly and Orrock 2015). 

The buffering capacity of snow against large temperature swings is well understood, but a 

lack of natural snow accumulation within herbivore exclosures before, during and 

following a snowy winter season can have consequences for plants within cages 

(Schaberg et al. 2008). My results indicated that the variance in temperature and snow-
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cover duration between within-cage and control plots was dependent on cage material, 

design, and size. Smaller cages made of large gauge material had the least impact on 

temperature variables, while cages without an open top had least impact on snow-cover 

duration. It may be difficult to overcome this experimental design challenge, but 

monitoring exclosure-induced microclimates using temperature sensors may prove to be 

an easy and effective way to account for this potential source of error. 

The results of the main experiment in this thesis are laid out in Chapter 4. I tested 

climatic, biotic, and abiotic factors that could potentially form a germination bottleneck 

for four model northern temperate tree species, effectively truncating the establishment of 

new populations in novel territory. The challenges in the passage of model species from 

seed to seedling represent the initial post-dispersal barriers to range expansion for 

northern temperate tree species into the boreal forest under conditions that exist in 

Newfoundland. The vulnerability of model species to dangers posed by seed predation, 

substrate type, and canopy composition reveal differences in the ease with which some 

species are able to germinate in boreal systems beyond their range over others according 

to reproductive strategies (i.e., seed size). The lack of climate variable importance in the 

results presented in Chapter 4 could be interpreted as indirect evidence that this work was 

conducted within unfulfilled climatic niche space of the model species for this life stage 

transition. Future research delving more deeply into one or more of these a/biotic drivers 

is called for, as is continuing study focussing on a/biotic drivers limiting northern 

temperate tree species’ transitions between later life stages beyond their modern 

distributional ranges. 
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Of particular interest is under what conditions these species might manage to 

overcome future, changing herbivory threats. All of the model species in the current study 

are highly palatable to herbivores that inhabit Newfoundland, such as moose (McLaren et 

al. 2006; Fisichelli et al. 2012), snowshoe hare (Lepus americanus, Erxleben; Davis et al. 

1998), and beavers (Castor canadensis, Kuhl; Johnston 2017), which tend to forage 

preferentially on trees that are sapling sized or larger. Relating climatic variables to 

growth and development, and carbon sequestration, of these and other temperate tree 

species and comparing these to native species would provide further insights into the 

appropriateness of Newfoundland’s climate for establishment of viable populations of 

non-native southern species. 

 Further work could also be done to differentiate the effects that soil and substrate 

have on my model species’ emergence ability, as has been done elsewhere by looking at a 

greater variety of seedbed types (Caspersen and Saprunoff 2005), relating species 

distributions to soil horizons and structure (Demers et al. 1998), and connecting canopy 

gaps to seedbed suitability (LePage et al. 2000). The presence of beneficial soil biota can 

allow established seedlings to thrive where otherwise they might languish (Stinson et al. 

2006; Leigh Jr 2010). While I did not investigate the soil biota present at the test sites in 

this study, it is possible that beneficial soil biota relevant to mainland temperate tree 

species in Newfoundland may not be present, which would have implications for growth 

and nutrient exchange (Van Der Heijden et al. 2008). 

 The context within which the majority of species distributional shift research takes 

place is shaped by the narrative of global climate change (Iverson and Prasad 2002; 



179 

Walther et al. 2002; Parmesan and Yohe 2003; Alo and Wang 2008; Lawler et al. 2009). 

The work presented in this thesis follows a now common understanding (Walther 2003; 

Brooker et al. 2007; Zarnetske et al. 2012; Urban et al. 2013) that, while tree species 

redistributions may be primarily driven by changing climate regimes, careful field-based 

experimental and observational work will help us discern other drivers that are arguably 

of equal importance in shaping distributional shifts. Geographic, demographic, and 

taxonomic gaps in research on this topic need to be explored and a/biotic drivers 

investigated to understand how viable populations of tree species may or may not 

establish beyond their current range edge.  

Others have shown that the climatic envelopes for the four model species used in 

Chapter 4 extend well beyond their realised distributional range, a discrepancy that is 

expected to become increasingly pronounced under climate change (McKenney et al. 

2007). I have shown that for four northern temperate tree species to germinate beyond 

their distributional range, seed size is a good predictor of the conditions under which 

species are successful. Despite the challenges model species faced in this experiment and 

the low number of seeds sown per site compared to average seed rain for these species 

within their native ranges (Burns and Honkala 1990), successful seedling emergence and 

survival did occur. Therefore, the combination of limiting factors preventing the 

establishment of a viable population beyond the distributional range of any of my model 

species on the island is not yet known. The work presented in this thesis represents the 

first attempt to understand what factors might prevent seedling emergence for these four 

northern temperate tree species on the island using the methodology explained in Chapter 
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4. I am hopeful this will lead to further investigation into these and other limiting factors’ 

effects on potential future range expansion of northern temperate tree species to and 

within Newfoundland. 
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Supplementary Materials 

Chapter 2 

Appendix 2.1: Literature search full methods 

Our primary search tool for this study was the Scopus online database, which was 

used to search the literature published prior to December, 2016 using the search term:  

( ALL ( temperate )  AND  ALL ( boreal )  AND  TITLE-ABS-

KEY ( tree )  AND  TITLE-ABS-KEY ( expansion  OR  migration  OR  shift* ) ) 

This search produced 1,095 titles, which were then scanned to identify articles 

relevant to the subject of this study, producing a list of 123 candidate papers. Subsequent 

searches were conducted to ensure all relevant papers were captured in our database. 

Subsequent searches were performed on the Scopus database in order to capture 

additional studies as outlined in the literature review methods using the following search 

terms:  

( TITLE-ABS-KEY ( plant*  OR  veg*  OR  tree )  AND  TITLE-ABS-KEY ( temperate  

OR  boreal )  AND  TITLE-ABS-KEY ( resurvey*  OR  resample*  OR  revisit*  OR  

"temporal change" ),  

( TITLE-ABS-KEY ( tree  OR  sapl*  OR  seedl*  OR  plant )  AND  TITLE-ABS-KEY ( 

forest )  AND  TITLE-ABS-KEY ( temperate )  AND  TITLE-ABS-KEY ( range  AND  

expansion )  OR  TITLE-ABS-KEY ( range  AND  shift ) ), and  
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( TITLE-ABS-KEY ( latitud*  OR  elevation*  OR  alpine )  AND  TITLE-ABS-KEY ( 

shift  OR  expan* )  AND  TITLE-ABS-KEY ( tree )  AND  TITLE-ABS-KEY ( 

temperate ) )  

 

The requirement for study locations to be within portions of the BTE in North 

America, Europe or eastern Asia was important to avoid dilution of our results by data 

from studies focussing on deciduous forest-conifer forest boundaries to the south of the 

spatial extent of the BTE. Alpine forest zones occurring close to the BTE, but not within 

its extent – as in the southern Appalachian Mountains – can resemble the BTE in terms of 

tree species composition; however, they were excluded as they were not located within 

our spatial definition of the BTE in North America or Europe (see Fig 3.1a & 3.1b). One 

area that presented somewhat of a challenge in this respect was the BTE in eastern Asia, 

which predominately occurs along spatially distributed elevational gradients rather than a 

continuous latitudinal gradient (Ohsawa 1990). Therefore, species composition (outlined 

in Table 2.1 by Pastor and Mladenoff 1992) was relied upon as a proxy for relevance to 

this study for this portion of the BTE, if authors did not explicitly identify the BTE as a 

focus of their work. 



187 

Supplementary Table 2.1: Studies extracted from the literature based on relevance to the subject of shifts occurring in the modern boreal-deciduous 

ecotone, and the qualitative findings contained therein. 

Authors Year Country 
Study 
design 

Study 
temporal 

range 
(years) 

Life 
stages 

studied 

Habitat-type(s) under 
study 

Northward/Upward 
temperate tree 

range expansion 

Observation 
of increasing 
temperate 

species 
dominance at 

range edge 

Important climate 
drivers 

Other drivers of range 
dynamics? 

Xiongwen 2001 China obs* 9 
Sapling – 

adult 

Temperate mixed 
evergreen coniferous 

and broadleaf 
deciduous forest 

 

Yes, infilling, 
change in 

abundance 

Decrease in annual 
precipitation, 

climate change 
(hypothesised) 

Forestry plantations, 
logging (hypothesised), 

land-use change 
(hypothesised), soil 
moisture content 

(inferred) 

Kellman 2004 Canada exp 11 
Seed – 
sapling 

Hardwood uplands, 
boreal lowlands 

transition zone, Great 
Lakes-St Lawrence 

hardwood forest and 
southern boreal forest 

Yes, when planted 
 

Climate warming 
(hypothesised) 

Light availability, seed 
predation (inferred), 

canopy 
disturbance/canopy gaps, 

available mycorrhizal 
fungus (inferred) 

Goldblum & 
Rigg 

2005 Canada obs 5 NA 

Northeastern 
deciduous on rocky till 

upland sites and 
spruce and fir on wet, 

cool lowland sites 

 
Yes, increased 

growth 

Temperature, 
precipitation 

(quantity & type), 
climate change 

Soil qualities (inferred) 

Friedman & 
Reich 

2005 USA obs 100-120 
Sapling – 

adult 

Productive and 
unproductive forest 
stands, uplands and 

forest reserves in 
Arrowhead Region, 

Minnesota 

Yes 
Yes, 

dominance 
shift 

NA 

Anthropogenic influence 
on disturbance regime 
(logging for fire), pest 

infestations 
(hypothesised), organic 

layer conditions 
(hypothesised) 

Drever et al. 2006 Canada obs 
Approx. 

90 
Adult 

Sugar maple-yellow 
birch bioclimatic 

region; Great Lakes-St. 
Lawrence forest, 

subpolar continental 
climate 

 
Yes, change in 

dominance 

Long-term natural 
climate cycles 
(Little Ice Age - 

present; 
hypothesised), 

drought 

Time-since-fire, fire 
suppression, pest 

infestations (inferred), 
wind-throw (inferred), soil 
texture, soil moisture and 

nutrient content 
(inferred), logging, 

topography 
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Authors Year Country 
Study 
design 

Study 
temporal 

range 
(years) 

Life 
stages 

studied 

Habitat-type(s) under 
study 

Northward/Upward 
temperate tree 

range expansion 

Observation 
of increasing 
temperate 

species 
dominance at 

range edge 

Important climate 
drivers 

Other drivers of range 
dynamics? 

Bouchard et 
al. 

2007 Canada obs 62 Adult 

Mixed woods forest 
zone (balsam fir / 
white birch and 

balsam fir / yellow 
birch bioclimatic 

domains) 

No, (decline at limit) Yes, infilling 
Temperature, 
humidity (both 
hypothesised) 

Spruce budworm 
outbreak severity & 

frequency, succession 

Beckage et 
al. 

2008 USA obs 43 
Sapling – 

adult 

Maple-beech-yellow 
birch transitioning to 
spruce-fir-paper birch 

with elevation 

Yes 
 

Temperature 
(particularly 

warmer winters), 
precipitation 

Elevation, canopy 
turnover 

Pinto et al. 2008 Canada obs 190 
Sapling – 

adult 

Great Lakes - St. 
Lawrence forest 

region, boreal forest 
region in central-
northern Ontario 

 
Yes, shift in 
dominance 

NA 

Logging, pest infestations, 
forest management 

practices, inadequate 
reproduction (all 

hypothesised), land 
clearing 

Duchesne & 
Ouimet 

2008 Canada obs 36 
Sapling – 

adult 

Deciduous, coniferous 
and mixed forest 
zones of southern 

Quebec 

No 
 

Climate warming 
(inferred) 

Logging, pest infestations, 
natural disturbance 
(windthrow, fire, ice 

storms), 

Woodall et 
al. 

2009 USA obs 6 
Seedling – 

adult 

Eastern continental 
US; temperate and 
mixed forest zones 

Yes 
 

Climate change 
(hypothesised) 

NA 

Leithead et 
al. 

2010 Canada obs 
Approx. 

40 
Sapling – 

adult 

Transitional Great 
Lakes - St. Lawrence 

forest 
Yes 

 

Temperature 
(hypothesized), 
climate change 
(hypothesised) 

Canopy gap size and age, 
light availability, 

disturbance regimes 

Bolte et al. 2010 Sweden 
obs 

 
4 

Sapling – 
adult 

Plateau crossed with 
small boulder ridges, 
nutrient poor, acidic 
soil; boreo-nemoral 

transition forest 

 

Yes, infilling, 
increasing 
abundance 

Temperature, 
drought, wind-
throw, climate 

change 
(hypothesised) 

Pest infestations, gap 
dynamics 
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Authors Year Country 
Study 
design 

Study 
temporal 

range 
(years) 

Life 
stages 

studied 

Habitat-type(s) under 
study 

Northward/Upward 
temperate tree 

range expansion 

Observation 
of increasing 
temperate 

species 
dominance at 

range edge 

Important climate 
drivers 

Other drivers of range 
dynamics? 

Amatangelo 
et al. 

2010 USA obs 
Approx. 

50 
Sapling – 

adult 

Mesic hemlock, mesic 
hardwood, hardwood 
‘dry-mesic’, and pine-
hardwood ‘dry’ forest 

types across Wisconsin 

 

Yes, 
dominance 

shift 

Decreasing 
temperature & 
precipitation, 
lengthened 

growing season, 
increasing and 

decreasing growing 
degree days, 

climate change 
(hypothesised) 

Fire suppression 
(inferred), deer browsing 

(inferred), logging 
(inferred), edaphic 

qualities (soil moisture 
important), understorey 
composition, succession 

Bai et al. 2011 China obs 44 
Sapling – 

adult 

Broad-leaved to 
tundra vertically 
zonated forest 
gradient under 

monsoonal influence 

No 
Yes, 

dominance 
shift 

Temperature, 
precipitation, 

climate change 
(hypothesised) 

Elevation, edaphic factors 
(hypothesized) 

Grundmann 
et al. 

2011 Sweden obs NA 
Adult 

(assumed) 

Near-natural mixed 
spruce-beech forest 

stand on moss, lichen 
and bouldery 

substrate 

 
Yes, increased 

growth 

Precipitation, 
temperature, wind-

throw, climate 
change 

(hypothesised) 

Pest infestations, 
competition 

McCarragher 
et al. 

2011 USA exp 2 
Seed – 

seedling 

Temperate to mixed 
BTE forest type, 

continental climate 
 

Yes, shown 
experimentally 

Temperature, 
climate change 
(hypothesised) 

Intra-specific genetic 
variation (inferred) 

Treyger & 
Nowak 

2011 USA obs 30 Sapling 

Northeast mixed 
forest, Adirondacks 

highland forest, 
eastern broadleaf 
forest, mid-west 
broadleaf forest 

 

Yes, increased 
infilling, 

recruitment of 
southern 
species 

Temperature, 
precipitation, 

growing season 
length, soil 
moisture 

(hypothesised), 
changing animal 

communities 
(hypothesised), 

phenological 
changes 

(hypothesised) 

Invasive species 
interactions 

(hypothesised), 
anthropogenic 
disturbances 
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Authors Year Country 
Study 
design 

Study 
temporal 

range 
(years) 

Life 
stages 

studied 

Habitat-type(s) under 
study 

Northward/Upward 
temperate tree 

range expansion 

Observation 
of increasing 
temperate 

species 
dominance at 

range edge 

Important climate 
drivers 

Other drivers of range 
dynamics? 

Fisichelli et 
al. 

2012 USA obs 6 Sapling 
Upland mesic stands 

with mixed forest, 
northern Minnesota 

No 
Yes, increased 
growth with 

warming 

Temperature, 
drought 

(hypothesized), 
climate change 
(hypothesised) 

Browse intensity, light 
availability 

Leithead et 
al. 

2012 Canada obs 22 
Sapling – 

adult 
Old-growth white pine 

transitional forest 
Yes 

 

Temperature 
(inferred), 

precipitation 
(hypothesised) 

Canopy gap size & age, 
light availability, soil 

temperature 
(hypothesised), fire 

suppression (inferred) 

Hanberry 2013 USA obs 45 
Sapling – 

adult 

Northern mixed forest, 
eastern broadleaf 

forest, southern mixed 
forest, 

prairie/savannah, 
prairie 

 

Yes, 
dominance 

shift 

Climate change 
(hypothesised) 

Anthropogenic influences 
on disturbance regimes 

(fire suppression & 
forestry practices; both 
inferred), deer browse 

(hypothesised) 

Brown & 
Vellend 

2014 Canada exp 3 
Seed – 

seedling 

East-facing elevational 
gradient from low-

elevation sugar maple 
dominant to high-

elevation spruce-fir 
forest 

No 
 

Temperature, 
growing season 

length (both 
hypothesised) 

Soil source, seed 
predation, elevation, 
fungal infection, soil-
nutrient availability 

(hypothesized), beneficial 
fungal interactions 

(hypothesized), intra-
specific genetic variation 

(hypothesized) 

Boisvert-
Marsh et al. 

2014 Canada obs 33 
Seedling – 

adult 

Province of Quebec, 
south of “commercial 

treeline” at 52°N, 
including boreal and 

mixed forest 

Yes 
 

Temperature, 
precipitation, 
winter storm 

severity, climate 
change (all 

hypothesised) 

Pest infestations, logging, 
powerline installation, gap 

dynamics (all 
hypothesized) 
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Authors Year Country 
Study 
design 

Study 
temporal 

range 
(years) 

Life 
stages 

studied 

Habitat-type(s) under 
study 

Northward/Upward 
temperate tree 

range expansion 

Observation 
of increasing 
temperate 

species 
dominance at 

range edge 

Important climate 
drivers 

Other drivers of range 
dynamics? 

Fisichelli et 
al. 

2014 USA obs 3 
Seedling – 

sapling 

Temperate to boreal 
transition forest south 
and southwest of Lake 

Superior 

Yes 
 

Temperature, 
frequency/timing 

of frost events 
(hypothesized), 

climate warming 
(hypothesised) 

Elevation, light availability, 
nutrient availability, 
canopy openness, 

understory competition 
(all hypothesised) 

Suzuki et al. 2015 Japan obs 8 
Sapling – 

adult 

Secondary and old-
growth forests across 

the Japanese 
archipelago 

Yes  

Temperature, 
precipitation 

(hypothesised), 
distribution and 
depth of snow 

cover 
(hypothesised), 

long-term climate 
cycles/climate 

change 
(hypothesised) 

Historic land-use & 
anthropogenic influences, 

succession, historical 
disturbance regime (all 

hypothesised) 

Foster & 
D'Amato 

2015 USA obs 27 Adult 

Low elevation 
northern temperate 

forest transitioning to 
high elevation boreal 
forest in the White 

Mountains and 
northern Green 

Mountains 

No  NA 

Latitude, slope aspect, 
recovery of red spruce 

(hypothesised), 
uncompetitive hardwood 
species (hypothesised), 

changing land-use 
patterns (hypothesised) 

Danneyrolles 
et al. 

2016 Canada obs 125-155 Adult 

Northern limit of the 
Great Lakes – St. 

Lawrence forest region 
in Quebec over 

undifferentiated or 
rocky till 

 Yes  
Topography, logging, 

spruce budworm 

Katz & 
Ibáñez 

2016 USA exp 4 Seedlings 

Temperate forest to 
temperate-boreal 

mixed forest in 
Michigan 

   
Disease, herbivory, inter-

specific mutualism 
(hypothesized) 
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*Acronyms used in the table are as follows: obs = observational and exp = experimental study; Abies balsamea = AB; Abies nephrolepis = AN; Acer 

mono = AM; Acer saccharum = AS; Acer rubrum = AR; Betula papyrifera = BP; Betula alleghaniensis = BA; Fagus sylvatica = FS; Fagus grandifolia = 

FG; Larix laricina = LL; Larix olgensis = LO; Picea abies = PA; Picea glauca = PG; Picea jezoensis = PJ; Picea mariana = PM; Pinus koraiensis = PK; 

Pinus resinosa = PR; Pinus strobus = PS; Populus balsamifera = PB; Populus tremuloides = PT; Tsuga canadensis = TC. 
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Chapter 3 

 

Supplementary Figure 3.1: Individual large box cage sensor temperature variation from the mean control sensor temperature throughout the data collection 

period. Blue and red line segments here indicate when mean daily temperatures recorded by caged sensors were colder and warmer than mean daily 

temperatures recorded by control sensors, respectively. All cage sensor data show similar negative temperature variation during the month of December 

during which time the sensors were left exposed to ambient air temperature – dipping as much as 9 degrees lower than the control mean temperature – 

while control sensors were insulated by snow cover (Fig 3.4). With two exceptions (cages 7 & 10) there is a similarly uniform positive temperature 
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variation around the start of May, when snow-melt had already occurred in many cages – before any control sensors had been uncovered (Fig 3.4). Plots 

were created using ggplot2 (Wickham 2009) in R (R Core Team 2016). 

 

Supplementary Figure 3.2: Individual large round cage sensor temperature variation from the mean control sensor temperature throughout the data 

collection period. Blue and red line segments here indicate when mean daily temperatures recorded by caged sensors were colder and warmer than mean 

daily temperatures recorded by control sensors, respectively. The reverse trend to what occurred in the large box cages is shown during the winter onset 

period for the large round cages where a consistent positive temperature anomaly was observed. With the exception of what we interpret to be several brief 

periods of sensor exposure, all cages of this type appear to be largely consistent with the control mean throughout the winter, mostly varying < ±1°C. The 

spring thaw period is characterised in all cages by a positive temperature anomaly, which is consistent with the significant finding of mildly warmer mean 

daily temperatures within the cages during this period. Plots were created using ggplot2 (Wickham 2009) in R (R Core Team 2016).
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Supplementary Figure 3.3: Individual small box cage sensor temperature variation from the mean control 

sensor temperature during the winter onset period at each site. Blue and red line segments indicate when 

mean daily temperatures recorded by caged sensors were colder and warmer than mean daily temperatures 
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recorded by control sensors, respectively. Plots were created using ggplot2 (Wickham 2009) in R (R Core 

Team 2016). 

 

Supplementary Figure 3.4: Individual small box cage sensor temperature variation from the mean control 

sensor temperature during the spring thaw period at each site. Blue and red line segments indicate when 

mean daily temperatures recorded by caged sensors were colder and warmer than mean daily temperatures 

recorded by control sensors, respectively. Plots were created using ggplot2 (Wickham 2009) in R (R Core 

Team 2016).
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Supplementary Figure 3.5: Smoothed plots showing the number of sensors under each cage type treatment and controls that were snow-covered throughout 

the maximum duration of our data collection. Solid lines represent sensors under open canopy, dashed lines under coniferous canopy and dotted lines 

under mixed deciduous-coniferous canopy. The number of snow-covered days between Eastern control sensors (A) and large round sensors (C) aligned 

closely, (average 141 snow-covered days, sd = 10.3 & 9.3, respectively). LBC sensors (B) recorded far fewer snow-covered days, (average 62 days, sd = 

34.3). The range of snow-covered days recorded by Eastern control (A) and large round sensors (C) was also similar (Mid-Range = 138 ±18 & 140 ±12, 

respectively); LBC sensors (B) recorded a much larger range of snow-cover duration (MR = 70 ±48). The range of snow-covered days recorded in Eastern 
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SBCs (D) mostly overlapped with Eastern controls (MR = 119 ±31), but recorded a lower mean number of snow-covered days (120, sd = 22.4). The 

overall winter season was much shorter at the Central site (E, F); control sensors there recorded an average 52 snow-covered days (sd = 17.7, MR = 52 

±13). The Western site (G, H) experienced a much longer winter season, where control sensors recorded an average 224 snow-covered days (sd = 25.8, 

MR = 215 ±28). SBCs at the Central (F) and Western (H) sites had snow-cover conditions closer to their controls (E & G, respectively) than their Eastern 

counterparts; sensors in those cages recorded a mean 40 and 223 snow-covered days (MR = 40 ±8 and 223 ±11, & sd = 11.3 and 14.8, respectively). Plots 

created using ggplot2 (Wickham, 2009). 
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Chapter 4 

Supplementary Table 4.1: Outline of the general site location, elevation, aspect, plant hardiness zone (Agriculture and Agri-Food Canada 2000), basic 

climate characteristics (Agriculture and Agri-Food Canada 2013a, b; Environment and Climate Change Canada 2017), and forest composition. 

Site Name: Bara Clar Raft Sal 

Forest type: Mixed Coniferous Mixed Coniferous Mixed Coniferous Mixed Coniferous 

Established: 2015 2015 2015 2015 

Approximate Location: Barachois Pond Provincial 

Park 

Clarenville Rafting Newfoundland Saint Catharine’s 

Nearest weather station  

(distance in km): 

Stephenville Airport (23) Port Blandford (20) Grand Falls (18) Holyrood (37) 

Average annual temp (˚C) 5.0 5.0 4.5 6.3 

Average summer high (˚C) 20.6 23.2 22.7 21.9 

Average winter low (˚C) -10.7 -12.1 -13.3 -7.8 

Average annual precipitation 

(mm) 

1340.4 988.3 1098.9 1015.0 

GDD (Tbase= 5˚C) 1387.5 1428.7 1408.6 1488.1 

Frost-free period (days) 157 N/A 134 130 

Aspect (%): -11 WSW -3 W -2 NNE 0 -24 WSW 1 NNE -31 N -13 NNE 

Mean Canopy Cover (%): 96 92 93 91 90 90 89 NA 

   Mean Deciduous CC (%)
ǂ
: 65 24 74 14 51 10 70 NA 

   Mean Boreal CC (%)
ǂ
: 33 69 20 79 42 81 20 NA 

Tree species present:  AB, BA, BP, 

Pinus strobus 

AB, AR, 

BA, BP, 

PG, PM,  

SD 

AB, AR, 

BP, LL, 

PG, PM, 

SD 

AR, BP, 

LL, PG, 

PM,  

AB, AR, 

AS, BP, 

PG, PM, 

AB, BP, PG, 

PM, Populus 

tremuloides, 

Prunus 

pensylvanica 

AB, BA, BP,  AB, PM, 

BP, BA 

Eco-region (Damman, 1983): Western Forest Central Forest Central Forest Avalon Forest 

Sub-region (Damman, 1983): St. George’s Bay Northcentral Northcentral NA 

Plant hardiness zone: 5a 5a 4b 5b 

AB = Abies balsamea, AR = Acer rubrum, AS = Acer spicatum, BA = Betula alleghaniensis, BP = Betula papyrifera, LL = Larix laricina, PG = Picea 

glauca, PM = Picea mariana. 

ǂ Due to overlapping layers of canopy, values may not sum to 100% or total mean canopy cover in all cases. 

  



206 

Site Name: Sir Doz GL Wild 

Forest-type: Mixed Coniferous Mixed Coniferous Mixed Coniferous Mixed Coniferous 

Established: 2015 2016 2016 2016 

Approximate Location: Sir Richard Squires 

Provincial Park 

Beaver Pond cottage 

development area 

Grand Lake access road Wild Cove Pond Road, north 

of Corner Brook 

Nearest weather station  

(distance in km): 

Cormack (16) Gallants (10) Gallants (7) Corner Brook (9) 

Average annual temp (˚C) 3.2 3.7 3.7 5.2 

Average summer high (˚C) 21.4 21.6 21.6 21.6 

Average winter low (˚C) -14.3 -13.7 -13.7 -10.6 

Average annual precipitation 

(mm) 

1263.5 1159.8 1159.8 884.5 

GDD (Tbase= 5˚C) 1155.2 1213.4 1213.4 1473.7 

Frost-free period (days) 82 79 79 146 

Aspect (%): -1 ENE -4 SW -13 SE 2 NWN -19 NNE -8 ENE -14 E -21 ENE 

Mean Canopy Cover (%): 92 91 96 88 98 95 92 90 

   Mean Deciduous CC (%)
ǂ
: 56 1 72 8 76 3 76 8 

   Mean Coniferous CC (%)
ǂ
: 36 91 25 81 23 91 19 83 

Tree species present:  AB, AR, 

AS, BP 

AB, BP, 

PM 

AB, BA, BP, 

PM, SD 

AB, AR, BP, 

PM, Prunus 

pensylvanica, 

SD 

AB, BA, 

BP, PM 

AB, BA, 

BP, PM 

AB, AR, BA, 

BP, Fraxinus 

nigra, PM, 

Prunus 

pensylvanica, 

SD 

AB, AR, BA, 

BP, PM, 

Pinus strobus  

Prunus 

pensylvanica, 

SD 

Eco-region (Damman, 1983): Central Forest Western Forest Western Forest Western Forest 

Sub-region (Damman, 1983): Northcentral Corner Brook St. George’s Bay Corner Brook 

Plant hardiness zone: 4a 4b 4b 5a 

AB = Abies balsamea, AR = Acer rubrum, AS = Acer spicatum, BA = Betula alleghaniensis, BP = Betula papyrifera, LL = Larix laricina, PG = Picea 

glauca, PM = Picea mariana, SD = Sorbus decora. 

ǂ Due to overlapping layers of canopy, values may not sum to 100% or total mean canopy cover in all cases. 
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Supplementary Table 4.2: Treatment variables used in mixed-effects models analysing 2016 and 2017 emergence data, with descriptions, category, units, 

level of measurement (see Fig. 4.2) and variable type. Climatic variables were not applied to 2016 emergence data, as sensors were only installed at test 

sites in the fall of 2016 and certain climatic variables were only applied to specific model species, reflecting their known relevance to those species (Table 

4.1). 

Variable 

Description 

Category Units Level Type Germination 

year 

Applicable 

species 

Herbivory treatment 

(caged or 

control/exposed) 

Treatment 

Levels Block Factor 2016, 2017 All 

Substrate type 

(ecotone or boreal 

substrate) 

Treatment 

Levels Block Factor 2016, 2017 All 

Deciduous canopy 

cover 

Treatment 
% Block Continuous 2016, 2017 All 

Mean soil 

temperature 

Climatic 
°C 

Canopy 

type 
Continuous 2017 All 

Mean soil moisture 
Climatic m

3
H2O/ 

m
3
Soil 

Canopy 

type 
Continuous 2017 All 

Mean air temperature  
Climatic 

°C 
Canopy 

type 
Continuous 2017 All 

Mean winter soil 

moisture 

Climatic m
3
H2O/ 

m
3
Soil 

Canopy 

type 
Continuous 2017 F. nigra 

Mean winter soil 

temperature 

Climatic 
°C 

Canopy 

type 
Continuous 2017 F. nigra 

Notes: (1) non-winter climate variables are for the 30 day period preceding the greatest number of newly emergent seedlings recorded: 24
th

 April – 23
rd

 

May, 2017 for A. saccharum, 19
th

 May – 17
th

 June, 2017 for F. nigra & B. alleghaniensis, and 11
th

 June – 10
th

 July, 2017 for T. occidentalis. (2) winter 

climate variables were averaged between first and last weeks with an average air temperature below 0°C (starts 28
th

 of November, 2016 for all sites, ends 

2
nd

 of April, 2017 for Bara & Sal, 23
rd

 of April, 2017 for all other sites). 
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Supplementary Table 4.3: Germination test data for each species ordered from the NTSC each year (Canada Forest Service - Atlantic Forestry Centre 

2016) with predicted approximate number of viable seeds sown as a proportion of the season total and pot total. In several cases seeds were assembled 

from multiple provenances due to the size of this project and in those cases the seeds were homogenised by hand mixing prior to being sown into pots. 

Species 
Year 

sown 

Year 

collected 

NTSC Germination 

rate (%) 

NTSC 

test year 

Average 

viability (%) 

N viable seed/ 

N seed sown 

N viable seed/ 

N seed per pot 

A saccharum 2015 

2002 

2006 

2006 

2006 

2008 

56.0 

51.0 

39.0 

54.0 

55.0 

2014 

2008 

2008 

2008 

2009 

51.0 1,530/3,000 2/5 

B. alleghaniensis 2015 
2000 

2006 

80.5 

76.5 

2010 

2007 
78.5 2,355/3,000 7/10 

F. nigra 2015 

2009 

2009 

2009 

2013 

2013 

2013 

2013 

67.0 

53.0 

56.0 

56.0 

65.0 

55.0 

69.0 

2010 

2010 

2010 

2014 

2014 

2014 

2014 

60.1 901/1,500 3/5 

T. occidentalis 2015 
2008 

2011 

88.0 

81.0 

2009 

2011 
84.5 5,070/6,000 8/10 

A. saccharum 2016 

1999 

2002 

2002 

2002 

84.0 

74.0 

83.0 

85.0 

2014 

2014 

2014 

2014 

81.5 3,912/4,800 8/10 

B. alleghaniensis 2016 2015 92.0 2016 92.0 4,416/4,800 9/10 

T. occidentalis 2016 2002 70.0 2013 70.0 3,360/4,800 7/10 
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Supplementary Table 4.4: Coefficients table for treatment variable analysis of presence datasets showing parameter estimates with standard errors (SE) for 

confidence set models. 

 Species Year 
Model 

structure 
N 

Variable parameter estimates (SE) Substrate 

Treatment 

variance 

Within-

Site 

variance 

Between-

Site 

variance 
Intercept XHerb SubM %DecC 

3 A. saccharum 2016 

Binomial 588 

-2.6415 

(0.6082) 

2.1901 

(0.2570) 
   0.8531 1.4668 

5   
-2.6493 

(0.6202) 

2.1889 

(0.2564) 
 

0.2553 

(0.1922) 
 0.8185 1.5425 

          

3 A. saccharum 2017 Binomial 

480 

-3.1210 

(1.2158) 

0.7656 

(0.3872) 
   4.959 8.912 

5    
-3.1413 

(1.2391) 

0.7622 

(0.3879) 
 

-0.3717 

(0.3922) 
 4.940 9.308 

           

6 B. alleghaniensis 2016 Binomial 293 
-2.3242 

(0.7142) 

1.2827 

(0.3350) 

0.0212 

(0.3224) 
 0.5005 1.2373 0.5074 

8     
-2.3288 

(0.7128) 

1.2835 

(0.3351) 

0.0264 

(0.3241) 

-0.0398 

(0.2457) 
0.4661 1.2472 0.4952 

3     
-1.9461 

(0.4076) 

1.1930 

(0.3191) 
   0.9920 0.3442 

            

2 B. alleghaniensis 2017 Binomial 480 
-1.6428 

(0.2917) 
  

-0.5326 

(0.1440) 
 0.2621 0.4700 

5     
-1.8240 

(0.3267) 

0.3409 

(0.2498) 
 

-0.5366 

(0.1460) 
 0.2905 0.4797 

            

3 T. occidentalis 2016 Binomial 588 
-4.8226 

(0.6848) 

1.3683 

(0.4434) 
   3.083 4.491x10

-9 

5     
-4.8452 

(0.6952) 

1.3698 

(0.4436) 
 

-0.1428 

(0.3632) 
 3.1500 2.61x10

-9
 

            

2 T. occidentalis 2017 Binomial 480 
-1.8571 

(0.2579) 
  

-0.3179 

(0.1471) 
 0.1967 0.2920 

5     -1.7120 -0.3181  -0.3190  0.1938 0.2975 



210 

(0.2820) (0.2631) (0.1471) 

7     
-2.1161 

(0.3114) 
 

0.4634 

(0.2786) 

-0.3965 

(0.1576) 
1.016x10

-9
 0.2322 0.3034 

8     
-1.9706 

(0.3312) 

-0.3224 

(0.2647) 

0.4661 

(0.2792) 

-0.3980 

(0.1577) 
1.467x10

-9
 0.2298 0.3091 

            

8 F. nigra 2017 Binomial 300 
0.5807 

(0.4712) 

0.5789 

(0.2820) 

-0.6308 

(0.2967) 

0.4164 

(0.2152) 
2.399 x10

-9
 0.8866 0.7121 

5     
0.2569 

(0.4374) 

0.5653 

(0.2784) 
 

0.3388 

(0.2054) 
 0.8047 0.6915 

3     
0.2687 

(0.4524) 

0.5657 

(0.2785) 
   0.8995 0.7480 

6     
0.5555 

(0.4883) 

0.5791 

(0.2820) 

-0.5537 

(0.2949) 
 1.465 x10

-9
 1.024 0.7791 
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Supplementary Table 4.5: Coefficients table for treatment variable analysis using abundance datasets. Zero-inflated binomial (ZIB) model intercept and 

standard error (SE) values given for confidence set models. 

 Species Year 
Model 

structure 

Model 

weight 
N 

ZIB 

Intercept 

(SE) 

Variable parameter estimates (SE) Substrate 

Treatment 

variance 

Within-

Site 

variance 

Between-

Site 

variance 
Intercept XHerb SubM %DecC 

3 A. saccharum 2016 
ZIB 5 588 -1.0095 

(0.2848) 

-3.6656 

(0.5366) 

1.9187 

(0.1921) 
   0.5137 1.1394 

5   
   -1.0092 

(0.2784) 

-3.6803 

(0.5463) 

1.9235 

(0.1927) 
 

0.1926 

(0.1530) 
 0.5152 1.1942 

              

5 A. saccharum 2017 
ZIB 10 480 -1.3647 

(0.2509) 

-4.4948 

(1.0630) 

0.3135 

(0.1507) 
 

-0.6403 

(0.2818) 
 3.193 7.570 

              

6 
B. 

alleghaniensis 
2016 

ZIB 10 293 -1.4872 

(0.6215) 

-4.5688 

(0.5348) 

1.1744 

(0.2296) 

0.5067 

(0.2080) 
 0.1600 1.5484 0.3557 

8   
   -1.4776 

(0.6031) 

-4.5759 

(0.5286) 

1.1752 

(0.2301) 

0.5156 

(0.2084) 

-0.1325 

(0.2357) 
0.1572 1.5720 0.3259 

              

5 
B. 

alleghaniensis 
2017 

ZIB 10 480 0.2308 

(0.2371) 

-3.0481 

(0.3955) 

0.3476 

(0.1966) 
 

-0.5377 

(0.1300) 
 0.2254 0.7396 

2   
   0.2440 

(0.2312) 

-2.8659 

(0.3779) 
  

-0.5233 

(0.1324) 
 0.2540 0.7372 

              

3 
T. 

occidentalis 
2016 

ZIB 10 588 -0.0355 

(0.5232) 

-6.4864 

(0.7857) 

1.4074 

(0.4346) 
   3.488 

4.572x10
-

9 

5   
   -0.0298 

(0.5258) 

-6.5114 

(0.7957) 

1.4023 

(0.4347) 
 

-0.1720 

(0.3788) 
 3.566 

3.772x10
-

9
 

              

8 
T. 

occidentalis 
2017 

ZIB 10 480 -0.3537 

(0.4884) 

-3.7534 

(0.3901) 

-0.3854 

(0.2391) 

0.5310 

(0.2463) 

-0.4182 

(0.1554) 

1.404 x10
-

9
 

0.4191 0.1677 

5   
   -0.2129 

(0.4604) 

-3.3676 

(0.3545) 

-0.4090 

(0.2416) 
 

-0.3320 

(0.1477) 
 0.3732 0.1610 

7   
   -0.3142 

(0.4970) 

-3.9055 

(0.3853) 
 

0.5465 

(0.2465) 

-0.4228 

(0.1543) 

8.530x10
-

10
 

0.3949 0.1626 

2   
   -0.1718 

(0.4783) 

-3.5130 

(0.3552) 
  

-0.3319 

(0.1452) 
 0.3354 0.1535 
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8 F. nigra 2017 
Binomial 5 300 

 
-1.1391 

(0.3572) 

0.2838 

(0.1277) 

-0.5797 

(0.1341) 

0.2644 

(0.1393) 

7.242x10
-

10
 

0.5629 0.5111 

6   
   

 
-1.1423 

(0.3668) 

0.2838 

(0.1277) 

-0.5536 

(0.1335) 
 

9.535x10
-

10
 

0.5904 0.5441 
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