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Abstract

In some observational studies, the covariates of interest might be expensive to mea-

sure although the outcome variable could easily be obtained. In this situation, a cost-

efficient two-phase outcome-dependent sampling design could be employed to measure

the expensive covariate for more informative subjects. In phase one, all members of a

random sample from a population or a cohort are measured for the outcome variable

and inexpensive covariates. In phase two, a subset of the cohort is selected based on

the outcome variable, and the expensive covariate is measured only for the selected

individuals. Case-cohort design is a commonly used outcome-dependent sampling de-

sign in time-to-event analyses. In generalized case-cohort design, in which the selection

probability depends only on the event indicator, a random subsample of individuals

who experienced the event are selected, along with a random subsample of those with

censored event times. It was previously shown that when the selection probability

at phase two depends on observed event time and censoring time in addition to the

event indicator, the efficiency of the design might increase. Efficient design has a

lower variance of the coefficient estimate of the expensive covariate in the regression

model. In this study, we consider bivariate sequential time-to-event data, which con-

sists of gap times between two events observed in sequence, as the outcome variables.

The objective of this study is to investigate efficient two-phase sampling designs for

a predetermined phase two sample size. We consider sampling designs depending on

the event indicators and gap times. A likelihood-based method is used to estimate

the associations between the expensive covariate and the two gap times. We show

that when the selection probability at phase two depends on the two observed gap

times and censoring times in addition to their event indicators, the efficiency of the

design might improve.
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Lay summary

In some observational studies, the explanatory variable might be expensive to measure

although the outcome variable could easily be obtained. It is prohibitive to assess the

explanatory variable on all the subjects of a large study and cost-efficient study designs

are desirable in this situation. One solution is two-phase outcome-dependent sampling

design. In phase one, we measure the outcome variable for all the subjects. In phase

two, we select a subset of the subjects based on the outcome variable and measure

the expensive explanatory variable only for the selected subjects.

Case-cohort design is a commonly used outcome-dependent sampling design in

survival analysis. Survival data usually consists of the time until an event of interest

occurs and the censoring information for each subject. Generalized case-cohort design

select a random subsample of the subjects who experienced the event along with a

random subsample of those with censored event times. Its selection probability at

phase two depends only on the event indicator. It was previously shown that when the

selection probability at phase two depends on observed event time and censoring time

in addition to the event indicator, the efficiency of the design might increase. Efficient

design has a lower variance of the coefficient estimate of the expensive explanatory

variable in the regression model.

In this study, we consider bivariate sequential time-to-event data as the outcome

variables. It consists of gap times between two events observed in sequence. The

objective of this study is to investigate efficient two-phase sampling designs for a

predetermined phase two sample size. We consider sampling designs depending on

the event indicators and gap times. A likelihood-based method is used to estimate the

associations between the expensive explanatory variable and the two gap times. We

show that when the selection probability at phase two depends on the two observed

gap times and censoring times in addition to their event indicators, the efficiency of

the design might improve.
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Chapter 1

Introduction

In some observational studies, the covariates of interest might be expensive to measure

although the outcome variable could easily be obtained. To reduce the cost and to

achieve a pre-specified power of the test for association of the expensive covariate with

the outcome variable, cost-efficient designs and procedures are desirable for studies

with a limited budget. An outcome-dependent sampling scheme is a cost-efficient de-

sign in which a subset of the cohort is selected based on the outcome variable, which

has been collected for the entire cohort. In a two-phase outcome-dependent sampling

design, all members of the cohort are measured for the outcome variable and inex-

pensive covariates at phase one. Then at phase two, a subset of the cohort is selected

based on the outcome variable (and inexpensive covariates) obtained at phase one and

the expensive covariate is measured for the selected individuals (Neyman, 1938; Zhao

and Lipsitz, 1992). The key advantage of outcome-dependent sampling designs is

that it allows researchers to concentrate budgetary resources on observations with the

greatest amount of information. In comparison to using the entire cohort, outcome-

dependent sampling incurs some loss of efficiency to detect association between the

outcome variable and the expensive covariate. However, by selecting an informative
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subset of individuals from an existing cohort, it is generally more efficient than simple

random sampling (SRS) of the same number of individuals (Yilmaz and Bull, 2011;

Zhou et al., 2002, 2007).

The outcome variable which is of interest in this study is a continuous time-to-

event (i.e. survival time or failure time) subject to censoring. Consider a cohort of

individuals followed up for an outcome of interest. The cases are those individuals

who experienced the event of interest during the follow-up period. The non-cases are

those individuals who did not experience the event of interest in the follow-up period

and have a right censored time. Two commonly used outcome-dependent sampling

designs for time-to-event data are nested case-control design (Thomas, 1977) and case-

cohort design (Prentice, 1986). Case-cohort designs typically select all cases for phase

two, along with a random subsample of non-cases. Thus, the case-cohort designs are

useful for large-scale cohort studies with low event rate. When the event rate is not

low, to reduce the cost, generalized case-cohort designs could be used where only a

subsample of cases are selected for phase two, along with a random subsample of

non-cases. Another design approach is outcome-dependent basic stratified sampling

(BSS) for cases where all cases are partitioned into strata based on survival times (e.g.

stratum of low, middle or high survival time) and a random sample of specified size

is selected from each stratum (Ding et al., 2014). Related designs include outcome-

dependent BSS for non-cases where all non-cases are partitioned into strata based on

censoring times (e.g. stratum of low, middle or high censoring time) and a random

sample of specified size is selected from each stratum (Lawless, 2018).

Sequential time-to-event data consists of a sequence of survival times T1, T2, ... that

represent the times between a specified series of events with T1 being the time to the

first event and Tj (j = 2,3, ..) being the time between the (j − 1)-th and j-th events.

For a repairable system where maintenance actions can be taken to restore system
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components when they fail, for example, Tj (j = 2,3, ..) could be the time between the

(j − 1)-th and j-th failures. In these circumstances the survival time Tj (j = 2,3, ..)
can be observed only if T1,...,Tj−1 have already been observed. Bivariate sequential

time-to-event data consists of two gap times T1 and T2 observed in sequence, and a

right censoring time (i.e. total followup time) C. For a cancer patient, for example,

T1 could be the time from cancer diagnosis to cancer recurrence, and T2 be the time

from cancer recurrence to death.

The objective of this study is to investigate efficient two-phase outcome-dependent

sampling designs with bivariate sequential time-to-event data for a predetermined

phase two sample size. We consider sampling designs depending on the event indica-

tors and gap times. A likelihood-based method is used to estimate the associations

between the expensive covariate and the two gap times. We show that when the se-

lection probability at phase two depends on the two observed gap times and censoring

times in addition to their event indicators, the efficiency of the design might improve

compared to a generalized case-cohort design.

The layout of Chapter 1 is as follows. In Section 1.1, we first present some survival

data notation. Some common parametric models, regression models and estimation

methods for analysis of survival data are introduced. In Section 1.2, we set up the

notation for bivariate sequential survival data. After giving the likelihood function

of observed bivariate sequential data, we then introduce copula models for bivariate

sequential survival data. In Section 1.3, we define what the two-phase outcome-

dependent sampling is and introduce estimation methods for two-phase outcome-

dependent sampling. We also define nested case-control design and case-cohort design,

which are two examples of outcome-dependent sampling with the time to event of

interest as the outcome variable. In Section 1.4, we set up the objectives of the study.

Section 1.5 is the outline of the thesis.
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1.1 Survival data analysis

Survival analysis considers methods for analyzing data where the outcome variable is

a time-to-event. Examples of time-to-event are time from birth to cancer diagnosis,

time from cancer diagnosis to cancer recurrence, time from cancer recurrence to death,

time from disease onset to death, and time from entry to a study to relapse (Cox and

Oakes, 1984; Fleming and Harrington, 1991; Kalbfleisch and Prentice, 2002; Lawless,

2003).

1.1.1 Basic concepts

Survival time

Survival time is the length of time that is measured from time origin to the time

the event of interest occurred. It is important to precisely define the time origin and

what the event is. Also, the scale for measuring the passage of time must be agreed.

Survival time is also called failure time, or time-to-event.

Distribution functions of survival time

Let T be a continuous time-to-event. More precisely, T is a continuous nonnegative

random variable from a homogeneous population. Let f(t) denote the probability

density function (p.d.f.) of T and let the cumulative distribution function be

F (t) = P (T ≤ t) = ∫ t

0
f(u)du.

The probability of an individual experiencing the event after time t is given by the

survival function

S(t) = P (T > t) = ∫ ∞

t
f(u)du. (1.1)



5

Note that S(t) is a monotone non-increasing continuous function with S(0) = 1 and

limt→∞ S(t) = 0.
A very important concept with time-to-event distributions is the hazard function

h(t), also known as the hazard rate,

h(t) = lim
∆t→0

P [t ≤ T < t +∆t∣T ≥ t]
∆t

. (1.2)

The hazard function specifies the instantaneous rate of an individual experiencing the

event at time t, given that the individual does not experience the event up to time t.

It is also useful to define the cumulative hazard function

H(t) = ∫ t

0
h(u)du, (1.3)

which is the accumulated hazard up until time t.

The functions f(t), F (t), S(t), h(t), and H(t) uniquely specify the distribution

of T . The hazard function h(t) in (1.2) could be written as

h(t) = f(t)
S(t) .

Then, the survival function could be written in terms of the hazard function as

S(t) = exp[−∫ t

0
h(u)du] = exp[−H(t)]. (1.4)

The above arguments also lead to the following expression of the p.d.f. f(t) in terms

of the hazard function h(t) and the cumulative hazard function H(t) as

f(t) = h(t) exp[−H(t)]. (1.5)
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Right censoring

One important concept in survival analysis is censoring. There are various types of

censoring, such as right censoring where the individual’s time-to-event is known only

to exceed a certain value, left censoring where all that is known is that the individual

has experienced the event of interest prior to a certain value, and interval censoring

where the only information is that the event occurs within some interval. Right

censoring is the most common type of censoring. It can occur for various reasons.

In life sciences, this might happen when the follow-up of individuals ends before the

events of all individuals are observed, or due to a random process, for example, a

person might drop out of a study, or for long-term studies, the patient might be lost

to follow up.

Suppose that N individuals have survival times represented by random variables

T1, ..., TN . The type I censoring mechanism is said to apply when each individual has

a fixed potential censoring time Ci > 0, i = 1, ...,N , such that Ti is observed if Ti ≤ Ci;

otherwise, we know only that Ti > Ci. Type I censoring often arises when a study is

conducted over a specified time period.

In medical datasets, in addition to type I censoring, random censoring is also com-

monly observed. Random censoring arises when other competing events not related

with the event of interest cause subjects to be removed from the study. For example,

patient withdrawal from a clinical trial, death due to some cause other than the one

of interest, or migration. A random censoring mechanism is said to apply when each

individual has a survival time T and a censoring time C, with T and C indepen-

dent continuous random variables. All survival times T1, ..., TN and censoring times

C1, ..., CN are assumed mutually independent. As in the case of type I censoring, for

i = 1, ...,N , Ti is observed if Ti ≤ Ci; otherwise, we know only that Ti > Ci.
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Survival data

Survival data usually consists of the time until an event of interest occurs and the

censoring information for each individual.

For a specific individual i, i = 1, ...,N , under study, we assume that there is a

survival time Ti and a right censoring time Ci. The survival times T1, ..., TN are

assumed to be independent and identically distributed. The survival time Ti of an

individual i, i = 1, ...,N , will be known if and only if the event is observed before the

censoring time Ci (i.e., Ti is less than or equal to Ci). If Ti is greater than Ci, then

the individual’s survival time is censored at Ci.

The data from this experiment can be conveniently represented by pair of random

variables (ti, δi), i = 1, ...,N , where ti = min(Ti, Ci) and δi = I(Ti ≤ Ci). The event

indicator δi indicates whether the observed survival time ti corresponds to an event

(δi = 1) or a censoring time (δi = 0). If the time-to-event is observed, then ti is equal

to Ti and if it is censored, then ti is equal to Ci. Survival data might also include

explanatory variables.

Likelihood function

Consider survival times Ti and right censoring times Ci for independent individuals

i = 1, ...,N . Let ti = min(Ti, Ci) and δi = I(Ti ≤ Ci) be the observed survival times

and their event indicators, respectively. Suppose the p.d.f. and survivor function of

survival time T are f(t) and S(t), respectively, for t ≥ 0. Assume that the censoring

mechanism is non-informative. Then, the likelihood function of the data could be

written as

L = N∏
i=1

f(ti)δiS(ti)1−δi . (1.6)

When there is a vector Z ′ = (Z1, ..., Zp) of explanatory variables present, we denote
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the conditional survival time distributions given Z = z as f(t∣z), S(t∣z), and so on.

The likelihood function L in (1.6) still apply with f(t) and S(t) replaced by f(t∣z)
and S(t∣z), respectively.

1.1.2 Common Parametric Models for Survival Data

Various parametric families of models are available for the analysis of survival data.

Among univariate models, a few distributions occupy a central position because of

their demonstrated usefulness in a wide range of situations. Foremost in this category

are the exponential, Weibull, log-normal, log-logistic, and gamma distributions. The

Weibull distribution is the only continuous distribution that could be written in the

form of an accelerated failure time model and a proportional hazards regression model.

Weibull distribution

If time-to-event variable T has a Weibull distribution, its hazard function is

h(t) = λγt(γ−1), t > 0,

where λ > 0 is a scale parameter, and γ > 0 is a shape parameter. Its survival function

is

S(t) = exp[−λtγ], t > 0,
and its p.d.f. is

f(t) = λγt(γ−1) exp[−λtγ], t > 0.
The exponential distribution is a special case of the Weibull distribution when γ = 1.

It is sometimes useful to work with the logarithm of the survival times. If we take



9

Y = log(T ), where T follows a Weibull distribution, then Y can be written as

Y = µ + σW,

where σ = γ−1, µ = −(logλ)/γ and W has the standard extreme value distribution.

1.1.3 Regression Models for Survival Data

Consider a survival time T > 0 and a vector Z ′ = (Z1, ..., Zp) of explanatory variables

associated with the survival time T . It is important to ascertain the relationship

between the survival time T and the explanatory variables. Two modelling approaches

to represent this relationship are commonly used: accelerated failure time model and

proportional hazards regression model.

Accelerated failure time model

The first approach is analogous to the classical linear regression approach. In this

approach, the natural logarithm of the survival time, Y = log(T ), is modelled. This

is the natural transformation made in linear models to convert positive variables to

observations on the entire real line. A linear model is assumed for Y = log(T ),

Y = µ + α′Z + σW,

where µ is the intercept term, α′ = (α1, ..., αp) is a vector of regression coefficients, σ > 0
is a scale parameter, and W is the error term. Common choices for the error term W

include the standard normal distribution which yields a log-normal regression model,

the extreme value distribution which yields a Weibull regression model, or a logistic

distribution which yields a log-logistic regression model for the random variable T .
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This model is called the accelerated failure time model. To see why this is so, let us

define a baseline survival function S0(t) as the survival function of exp(µ+σW ). That
is, the survival function of T = exp(Y ) when Z is a zero vector. Then, the survival

function of T given Z becomes

S(t∣Z) = P [T > t∣Z]
= P [Y > log(t)∣Z]
= P [µ + σW > log(t) − α′Z ∣Z]
= P [exp(µ + σW ) > t exp(−α′Z)∣Z]
= S0(t exp(−α′Z)).

The effect of the explanatory variables in the original time scale is to change the

time scale by a factor exp(−α′Z). Depending on the sign of α′Z, the time is either

accelerated by a constant factor or degraded by a constant factor.

Note that the hazard function of an individual with covariate vector Z for this

class of models is related to a baseline hazard function h0, that is the hazard function

of T = exp(Y ) when Z is a zero vector, by

h(t∣Z) = h0[t exp(−α′Z)] exp(−α′Z). (1.7)

Proportional hazards regression model

Another approach to modelling the effects of covariates on survival time is to model the

conditional hazard function of time-to-event given the covariate vector Z as a product

of a baseline hazard function h0(t) and a non-negative function of the covariates,

φ(β′Z). That is,
h(t∣Z) = h0(t)φ(β′Z), (1.8)
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where β′ = (β1, ..., βp) is a vector of regression coefficients. This model is called the

multiplicative hazard function model. In applications of the model, h0(t) may have

a specified parametric form or it may be left as an arbitrary nonnegative function.

Any nonnegative function can be used for the link function φ(⋅). Most applications

use the proportional hazards regression model with φ(β′Z) = exp(β′Z) which is cho-

sen for its simplicity and for the fact that it is positive for any value of β′Z. The

name proportional hazards comes from the fact that any two individuals have hazard

functions that are constant multiples of one another over time.

Note that the conditional survival function of time-to-event given the covariate

vector Z can be expressed in terms of a baseline survival function S0(t) as

S(t∣Z) = S0(t)φ(β′Z).

Weibull regression model

Consider an accelerated failure time model

Y = µ + α′Z + σW,

where µ is the intercept term, α′ = (α1, ..., αp) is a vector of regression coefficients,

σ > 0 is a scale parameter, and W has the extreme value distribution. When Z is

zero, we obtain Y = µ+σW and T = exp(Y ) = exp(µ+σW ) has a Weibull distribution

with the hazard function

h0(t) = λγt(γ−1), t > 0,
where λ = exp(−µγ) > 0 is a scale parameter, and γ = σ−1 > 0 is a shape parameter.

From the equation (1.7), the hazard function of an individual with covariate vector Z
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for this class of models is related to a baseline hazard function h0 by

h(t∣Z) = h0[t exp(−α′Z)] exp(−α′Z)
= λγ[t exp(−α′Z)](γ−1) exp(−α′Z)
= λγt(γ−1)[exp(−α′Z)]γ
= h0(t) exp(−γα′Z)

which is the proportional hazards regression model given in (1.8) with φ(β′Z) =
exp(β′Z) = exp(−γα′Z), where β′ = −γα′, and the baseline hazard function h0(t) =
λγt(γ−1) is the hazard function of the Weibull distribution. The Weibull distribution is

the only continuous distribution which has the property of being both an accelerated

failure time model and a proportional hazards regression model.

1.1.4 Estimation Methods for Survival Data

It is important to ascertain the relationship between the survival time T and ex-

planatory variables Z ′ = (Z1, ..., Zp). This can be achieved through modelling how

Z ′ = (Z1, ..., Zp) is associated with T through for example, the hazard function h(t∣Z).
However, an initial analysis would typically employ nonparametric methods to esti-

mate the survival function and summary statistics, and a comparison across several

groups based on some explanatory variables.

Nonparametric Methods

When there is no covariate, survival data are conveniently summarized through the

Kaplan-Meier estimate of the survival function S(t) and the Nelson-Aalen estimate

of the cumulative hazard function H(t) (e.g. Lawless, 2003, Section 3.2). These

methods are said to be nonparametric since they require no assumptions about the
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distribution of survival time.

Let (ti, δi), i = 1, ..., n, be a sequence of survival data. Suppose that there are

k (k ≤ n) distinct times t(1) < t(2) < ... < t(k) at which events of interest occur.

For j = 1, ..., k, let dj = ∑n
i=1 I(ti = t(j), δi = 1) be the number of events at t(j) and

rj = ∑n
i=1 I(ti ≥ t(j)) be the number of individuals at risk at t(j). That is, rj is the

number of individuals who have not experienced the event and uncensored just prior

to t(j).

The Kaplan-Meier estimate (Kaplan and Meier, 1958) of S(t) is defined as

Ŝ(t) = ∏
j∶t(j)<t

rj − dj
rj

which can be derived as a nonparametric maximum likelihood estimate of the survival

function S(t). An estimate of its variance is given by

V̂ar[Ŝ(t)] = Ŝ(t)2 ∑
j∶t(j)<t

dj

rj(rj − dj)
which is called the Greenwood’s formula.

The Nelson-Aalen estimate of H(t) is defined as

H̃(t) = ∑
j∶t(j)<t

dj

rj

with an estimated variance

V̂ar[H̃(t)] = ∑
j∶t(j)<t

dj

r2j
.

An alternative variance estimate is given by

V̂ar[H̃(t)] = ∑
j∶t(j)<t

dj(rj − dj)
r3j

.
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Parametric Methods

In the analysis of survival data, some modelling approaches such as accelerated fail-

ure time model and proportional hazards regression model are commonly used, and

some specific time-to-event distributions such as exponential distribution, Weibull

distribution, log-normal distribution, log-logistic, gamma distribution are frequently

used. Statistical inference for parametric models are based on maximum likelihood

methodology (e.g. Lawless, 2003).

Consider a parametric model for survival time T given Z = z with a p×1 parameter

vector θ = (θ1, ..., θp)′. The likelihood function L(θ) of the observed data {(ti, δi,zi) ∶
i = 1, ...,N} could be written as in equation (1.6) with f(t) and S(t) replaced by

f(t∣z; θ) and S(t∣z; θ), respectively. The maximum likelihood estimates θ̂ = (θ̂1, ..., θ̂p)′
of the unknown parameters θ = (θ1, ..., θp)′ are obtained simultaneously by maximizing

the likelihood function L(θ). If l(θ) denotes the natural logarithm of L(θ), the score

equations

Uθj(θ) = ∂l(θ)∂θj
= 0, j = 1, ..., p

are solved simultaneously to get the maximum likelihood estimates θ̂ = (θ̂1, ..., θ̂p)′ of
θ = (θ1, ..., θp)′. Under regularity conditions and assuming that the model is correct,

θ̂ = (θ̂1, ..., θ̂p)′ are consistent estimators of the true values θ = (θ1, ..., θp)′ and √N(θ̂−
θ) is asymptotically distributed as Np[0, J−1(θ)] where

J(θ) = E[−∂2l(θ)
∂θ∂θ′

]

is the Fisher information matrix.
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Semiparametric Methods

The most frequently used semiparametric regression model for the analysis of survival

data with covariates is the Cox proportional hazards regression model which takes

the hazard function for survival time T given p × 1 vector of fixed covariates z to be

of the form

h(t∣z) = h0(t) exp(β′z),
where h0(t) is an arbitrary baseline hazard function and β is a p × 1 vector of regres-

sion coefficients. Note that the conditional survival function of time-to-event given

covariate vector z can be expressed in terms of a baseline survival function S0(t) as

S(t∣z) = S0(t)exp(β′z).

Given the observed data {(ti, δi,zi) ∶ i = 1, ...,N}, we want to estimate β and S0(t)
(e.g. Lawless, 2003, Section 7.1).

Suppose there are k (k ≤ N) distinct observed times t(1) < t(2) < ... < t(k). For

j = 1, ..., k, let Rj = R(t(j)) denote the risk set at t(j) which is the set of individuals who

are at risk and uncensored just prior to time t(j). For i = 1, ...,N , let Yi(t) = I(ti ≥ t)
be the risk indicator function which indicates whether individual i is at risk and

uncensored just prior to time t. Notice that Yi(t(j)) = 1 if and only if i ∈ Rj.

Cox (1972) suggested the following partial likelihood function for estimating β:

L(β) = N∏
i=1

( exp(β′zi)
∑N

l=1 Yl(ti) exp(β′zl)
)δi .

Although the likelihood function L(β) is not a full likelihood in the usual sense,

maximization of L(β) yields an estimate β̂ which is consistent and asymptotically

normally distributed under suitable conditions, and score, information, and likelihood
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ratio statistics based on L(β) behave as though it is an ordinary likelihood.

The Breslow estimate of baseline cumulative hazard function H0(t) is defined as

Ĥ0(t) = ∑
i∶ti≤t

{ δi

∑N
l=1 Yl(ti) exp(β̂′zl)}

which becomes the Nelson-Aalen estimator H̃0(t) when β̂ = 0.
A simple way to estimate S0(t) is to exploit the relationship S0(t) = exp[−H0(t)]

and define the Fleming-Harrington estimator of baseline survival function S0(t) as

Ŝ0(t) = exp[−Ĥ0(t−)]

where Ĥ0(t−) = lim∆t→0+ Ĥ0(t −∆t) is the left limit of Ĥ0(t).

1.2 Sequential survival data analysis

Multivariate survival data arise commonly in biomedical research, clinical trials and

epidemiological studies. Different from univariate survival data analysis, multivari-

ate survival data analysis typically deals with various dependence structures among

survival times within same subjects or clusters.

Multivariate survival data includes parallel clustered data in which each subject

has more than one survival time which are observed in parallel or simultaneously

and do not satisfy any order restrictions; for example, times to occurrence of a dis-

ease in paired organs within individual or times to disease onset or death in related

individuals.

Multivariate survival data also arises when there is a sequence of survival times

T1, T2, ... that represent the times between a specified series of events with T1 being

the time to the first event and Tj (j = 2,3, ..) being the time between the (j−1)-th and
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j-th events. For example, times between repeat admissions to a psychiatric facility or

time to cancer recurrence from cancer diagnosis and time from cancer recurrence to

death for cancer patients.

1.2.1 Bivariate survival time model

We focus for now on the case of bivariate survival times (e.g., Lawless, 2003; Yilmaz

and Lawless, 2011). Suppose T1 and T2 are two survival times of an individual which

may not be independent. The bivariate distribution function and survivor function

for T1 ≥ 0 and T2 ≥ 0 are defined as

F (t1, t2) = P (T1 ≤ t1, T2 ≤ t2) (1.9)

and

S(t1, t2) = P (T1 > t1, T2 > t2), (1.10)

respectively.

For continuous survival times T1 and T2, the bivariate survivor function can be

expressed in terms of the distribution function as follow:

S(t1, t2) = 1 − F1(t1) − F2(t2) + F (t1, t2) (1.11)

where F1(t1) = F (t1,∞) and F2(t2) = F (∞, t2) are the marginal distribution functions

of T1 and T2, respectively. The marginal survivor functions of T1 and T2 are S1(t1) =
S(t1,0) and S2(t2) = S(0, t2), respectively.
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1.2.2 Likelihood function

Likelihood function for parallel clustered data

In the case of parallel clustered data, for a specific individual or cluster under study,

we assume that there are bivariate survival times (T1, T2) and potential right censoring

times (C1, C2). There are four different types of observations:

1. neither T1 nor T2 is observed, i.e. t1 = C1 and t2 = C2;

2. t1 = T1 is observed but T2 is not observed, i.e. t2 = C2;

3. t2 = T2 is observed but T1 is not observed, i.e. t1 = C1;

4. both t1 = T1 and t2 = T2 are observed.

The data from this study can be conveniently represented by (t1, t2) = (min(T1, C1),
min(T2, C2)) and (δ1, δ2) = (I[T1 = t1], I[T2 = t2]) which are the observed survival

times and their event indicators for a cluster, respectively.

Suppose the sequence of bivariate survival times (T1i, T2i) of a random sample

of independent clusters i = 1, ...,N have common continuous joint survivor function

S(t1, t2) = P (T1 > t1, T2 > t2). Let (C1i, C2i) denote the potential right censoring

times for cluster i, i = 1, ...,N . Assume that (C1i, C2i) is independent of the survival

times (T1i, T2i), i = 1, ...,N . Let (t1i, t2i) = (min(T1i, C1i),min(T2i, C2i)) and (δ1i, δ2i) =
(I[T1i = t1i], I[T2i = t2i]) be the observed survival times and their event indicators,

respectively. Then the likelihood function is (Lawless, 2003)

L = N∏
i=1

[∂2S(t1i, t2i)
∂t1i∂t2i

]
δ1iδ2i

[−∂S(t1i, t2i)
∂t1i

]
δ1i(1−δ2i)

× [−∂S(t1i, t2i)
∂t2i

]
(1−δ1i)δ2i

[S(t1i, t2i)](1−δ1i)(1−δ2i). (1.12)
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Likelihood function for sequential survival data

In the case of sequential survival data, for a specific individual under study, we assume

that there are two survival times T1 and T2 observed in sequence, and a right censoring

time (total followup time) C. There are three different types of observations:

1. T1 is not observed, i.e. t1 = C;
2. t1 = T1 is observed but T2 is not observed, i.e. t2 = C − t1;
3. both t1 = T1 and t2 = T2 are observed.

The observed sequential survival times and their event indicators for a subject are

(t1, t2) = (min(T1, C),min(T2, C − t1)) and (δ1, δ2) = (I[T1 = t1], I[T2 = t2]), respec-
tively.

Suppose the sequence of survival times (T1i, T2i), observed in order, of a random

sample of independent individuals i = 1, ...,N have common continuous joint distribu-

tion function F (t1, t2) = P (T1 ≤ t1, T2 ≤ t2). Let Ci denote the potential right censoring

time (total followup time) for individual i, i = 1, ...,N . Assume that Ci is independent

of the survival time T1i+T2i, i = 1, ...,N . Let (t1i, t2i) = (min(T1i, Ci),min(T2i, Ci−t1i))
and (δ1i, δ2i) = (I[T1i = t1i], I[T2i = t2i]) be the observed survival times and their event

indicators, respectively. Then, the likelihood function (Lawless, 2003) is

L = N∏
i=1

[∂2F (t1i, t2i)
∂t1i∂t2i

]
δ1iδ2i

[∂F1(t1i)
∂t1i

− ∂F (t1i, t2i)
∂t1i

]
δ1i(1−δ2i)

[1 − F1(t1i)]1−δ1i (1.13)

where F1(t1) = F (t1,∞) is the marginal distribution function of T1.

When there is a vector Z ′ = (Z1, ..., Zp) of explanatory variables present we de-

note the conditional survival time distributions given Z = z as F (t1, t2∣z), S(t1, t2∣z),
Fj(tj ∣z), and so on. The likelihood functions (1.12) and (1.13) still apply when there
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are explanatory variables, with F1(t1i), S(t1i, t2i), and F (t1i, t2i) replaced by F1(t1i∣z),
S(t1i, t2i∣z), and F (t1i, t2i∣z), respectively.

1.2.3 Copula models for sequential survival times

Copulas are functions used to construct a joint distribution function or survival func-

tion by combining the marginal distributions. Copula theory and different copula

models are given in Joe (1997) and Nelsen (2006). A bivariate copula C ∶ [0,1]2 →
[0,1] is a function C(u1, u2) with the following properties. The margins of C are uni-

form: C(u1,1) = u1, C(1, u2) = u2; C is a grounded function: C(u1,0) = C(0, u2) = 0
and C is 2-increasing: C(v1, v2)−C(v1, u2)−C(u1, v2)+C(u1, u2) ≥ 0 for all (u1, u2) ∈
[0,1]2, (v1, v2) ∈ [0,1]2 such that 0 ≤ u1 ≤ v1 ≤ 1 and 0 ≤ u2 ≤ v2 ≤ 1.

Sklar’s theorem (Sklar, 1959) provides the theoretical foundation for the appli-

cation of copulas. Let H be a two-dimensional distribution function with marginal

distribution functions F and G. Then there exists a copula C such that

H(x, y) = C(F (x),G(y)). (1.14)

Conversely, for any univariate distribution functions F and G and any copula C, the

function H in (1.14) is a two-dimensional distribution function with marginals F and

G. Furthermore, if F and G are continuous, then C is unique.

Copula models have some attractive properties such as the marginal distributions

can come from any and different families, the dependence structure can be investi-

gated separately from the marginal distributions since the measures of dependence

do not appear in the marginal distributions, and copulas are invariant under strictly

increasing transformations of the margins.

Archimedean copulas are commonly used. Copulas are called Archimedean when
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they are of the form

C(u1, u2) = ψ−1[ψ(u1) +ψ(u2)]
where ψ is a decreasing convex function on [0,1] satisfying ψ(1) = 0. The most

important characteristic of bivariate Archimedean copulas is that all the information

about the 2-dimensional dependence structure is contained in a univariate generator,

ψ. Some fundamental properties of Archimedean copulas are given in Joe (1997,

Section 4.2) and Nelson (2006, Section 4.3).

One frequently used one-parameter Archimedean copula is the Clayton copula

which has the form

Cφ(u1, u2) = (u−φ1 + u−φ2 − 1)−1/φ, φ > 0, (1.15)

where φ is the dependence parameter. Its generator function is

ψφ(t) = t−φ − 1.

We focus for now on the analysis of sequential survival data. For each individual

under study, we assume that there are two survival times T1 and T2 observed in

sequence. Then, by Sklar’s theorem (Sklar, 1959), there exists a unique copula C

such that for all t1, t2 ≥ 0, the bivariate distribution function (1.9) becomes

F (t1, t2) = C(F1(t1), F2(t2)), (1.16)

where F1(t1) = F (t1,∞) and F2(t2) = F (∞, t2) are the marginal distribution functions

of T1 and T2, respectively. The likelihood function (1.13) is then written in terms of
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C(F1(t1), F2(t2)) as

L = N∏
i=1

[∂2C(F1(t1i), F2(t2i))
∂t1i∂t2i

]δ1iδ2i

× [∂F1(t1i)
∂t1i

− ∂C(F1(t1i), F2(t2i))
∂t1i

]δ1i(1−δ2i) [1 − F1(t1i)]1−δ1i . (1.17)

When there is a vector Z ′ = (Z1, ..., Zp) of explanatory variables present we denote

the marginal distribution functions of T1 and T2 given Z = z as F1(t1∣z) and F2(t2∣z),
respectively. The likelihood function in (1.17) still apply with F1(t1) and F2(t2)
replaced by F1(t1∣z) and F2(t2∣z), respectively.

Parametric Estimation

Suppose the marginal distribution functions of T1 and T2 given Z = z are F1(t1∣z;β1)
and F2(t2∣z;β2), respectively, and the bivariate distribution function of (T1, T2) given
Z = z is F (t1, t2∣z) = Cα(F1(t1∣z;β1), F2(t2∣z;β2)), where β1, β2 and α are vectors of

parameters. Let θ = (β′1, β′2, α′)′. Then, the likelihood function L(θ) of the observed

data {(t1i, t2i, δ1i, δ2i,z) ∶ i = 1, ...,N} is written as in (1.17) with F1(t1), F2(t2) and
C(F1(t1), F2(t2)) replaced by F1(t1∣z;β1), F2(t2∣z;β2) and Cα(F1(t1∣z;β1), F2(t2∣z;β2)),
respectively.

When analyzing the given observed data {(t1i, t2i, δ1i, δ2i,z) ∶ i = 1, ...,N}, the max-

imum likelihood estimate θ̂ = (β̂1′, β̂2′, α̂′)′ of the unknown parameters θ = (θ1, ..., θp)′ =
(β′1, β′2, α′)′ are obtained simultaneously by maximizing the likelihood function L(θ).
Suppose l(θ) denotes the natural logarithm of L(θ), then the score equations

Uθj(θ) = ∂l(θ)∂θj
= 0, j = 1, ..., p

are solved simultaneously to get the maximum likelihood estimates θ̂ = (θ̂1, ..., θ̂p)′ of
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θ = (θ1, ..., θp)′. Under regularity conditions and assuming that the model is correct,

θ̂ = (θ̂1, ..., θ̂p)′ are consistent estimators of the true values θ = (θ1, ..., θp)′ and √N(θ̂−
θ) is asymptotically distributed as Np[0, J−1(θ)] where

J(θ) = E[−∂2l(θ)
∂θ∂θ′

]

is the Fisher information matrix.

1.3 Two-phase outcome-dependent sampling

1.3.1 Two-phase sampling

Two-phase sampling is a sampling technique that aims to reduce the cost of the study.

It was originally introduced in survey sampling by Neyman (1938) for estimation of

the finite population mean of a variable.

At phase one, a large sample is drawn from a population, and information on

variables that are easier to measure is collected. These phase one variables may be

important variables such as exposure in a regression model, or simply may be auxiliary

variables that are correlated with unavailable variables at phase one. At phase two,

a subsample is selected based on the values of the collected variables to obtain phase

two variables that are costly or difficult to measure.

For example, the phase one sample can be stratified based on the values of the col-

lected variables. At phase two, a subsample is drawn without replacement from each

stratum to obtain phase two variables that are costly or difficult to measure. Strata

formation seeks either to oversample subjects with important phase one variables, or

to effectively sample subjects with targeted phase two variables, or both. This way,

two-phase sampling achieves effective access to important variables with less cost.
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1.3.2 Outcome-dependent sampling

An outcome-dependent sampling scheme is a retrospective sampling scheme where

the expensive covariates are observed with a probability depending on the outcome

variable. The principal idea of an outcome-dependent sampling design is to concen-

trate resources where there is the greatest amount of information. By allowing the

selection probability of each individual in the outcome-dependent sample to depend

on the outcome, the investigators attempt to enhance the efficiency and reduce the

cost of the study (Zhou et al., 2002).

Nested case-control design and case-cohort design are two examples of outcome-

dependent sampling designs which could be applied to survival data where the out-

come variable is a time-to-event.

1.3.3 Estimation methods

Consider a two-phase outcome-dependent design to collect an expensive covariate

data. Suppose that a finite population of N individuals has outcome values yi, i =
1, ...,N generated as independent realizations from a model f(y∣x; θ)g(x). Here, Y is

the outcome variable, X is the expensive covariate, f(y∣x; θ) is the conditional p.d.f.

of Y given X = x and g(x) is the marginal distribution of X. Let G(x) denote the

distribution function corresponding to g(x). Since the covariate X is expensive to

measure, two-phase sampling technique is used to reduce the cost. The observed data

at phase one is {yi ∶ i = 1, ...,N}. At phase two, a subsample of size n is selected

based on the values of the collected variables to obtain phase two variable that are

costly or difficult to measure. An outcome-dependent sampling scheme is used at

phase two to allow the selection probability of each individual in the finite population

of N individuals to depend on the outcome variable. The estimation of θ is based on
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the fully observed data (yi, xi) of n individuals selected at phase two and might also

be based on the not fully observed data yi of N −n individuals not selected for phase

two. For a fixed given phase two sample size n, the goal is to enhance the efficiency

by concentrating resources where there is the greatest amount of information.

Let Ri = I(individual i is selected) be the indicator function for individual i being

selected at phase two and let πi denote the conditional inclusion probability P (Ri =
1∣xi, yi). We assume that the probability that individual i is selected at phase two

does not depend on the expensive covariate. Therefore, πi = P (Ri = 1∣xi, yi) = P (Ri =
1∣yi) and the expensive covariate X is missing at random for individuals that are

not selected for phase two (Rubin, 1976). Suppose V = {i ∶ Ri = 1, i = 1, ...,N}
denotes the set of individuals selected at phase two, where the size of V is n. Then

V̄ = {i ∶ Ri = 0, i = 1, ...,N} is the set of individuals who are not selected, where the

size of V̄ is N − n.
Various estimating procedures have been proposed for data collected through a

case-cohort study design. These have proceeded mainly along two lines, likelihood-

based approaches and pseudolikelihood-based approaches (Lawless et al., 1999).

Likelihood-based approaches can handle certain sampling schemes that other ap-

proaches may not, for example, schemes where some individuals have zero probability

of selection for the phase two sample.

Full likelihood

The full likelihood function of the observed data {(yi, xi) ∶ i ∈ V } ∪ {yi ∶ i ∈ V̄ } for the
unknown parameters θ and G is proportional to

LF (θ,G) = (∏
i∈V

f(yi∣xi; θ)dG(xi))(∏
i∈V̄
∫
x
f(yi∣x; θ)dG(x)) . (1.18)
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Semiparametric maximum likelihood estimation based on (1.18) has been discussed

by many authors (Lawless et al., 1999; Lawless, 2018; Zeng and Lin, 2014; Zhang

and Rockette, 2005; Zhao et al., 2009). One approach is to maximize the likelihood

function in (1.18) jointly with respect to θ and G. The estimation method becomes

parametric when X is categorical (Wild 1991, Scott and Wild 1997) or when G is

discrete with relatively few points of support (Hsieh et al., 1985). In these cases,

maximum likelihood estimates of θ from the full likelihood LF are regular maximum

likelihood estimates and the usual large sample theory for maximum likelihood esti-

mates applies subject to some regularity conditions (Lawless et al., 1999).

Conditional likelihood

Conditional likelihood is an alternative to the full likelihood. It is based on the

conditional p.d.f. f(yi∣xi,Ri = 1; θ) of Y given X = xi and being selected at phase

two. Thus, the conditional likelihood is

LC(θ) =∏
i∈V

f(yi∣xi,Ri = 1; θ). (1.19)

Weighted pseudolikelihood

Weighted pseudolikelihood is a pseudolikelihood-based method. It employs the Horvitz-

Thompson approach in which we use the completely observed individuals only and

weight their contributions inversely according to their probability of selection to give

the log-pseudolikelihood function

lW (θ) = ∑
i∈V

wi log f(yi∣xi; θ), (1.20)
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where wi = π−1i is the weight of individual i being selected at phase two. This ap-

proach should not be used under a sampling design where a selection probability is

zero or close to zero for individual i. The Horvitz-Thompson approach is known to be

inefficient (Robins et al., 1994). One reason is that it often ignores much of the infor-

mation available for the cohort. One option is to modify the weights wi = π−1i using

the double weighting method of Kulish and Lin (2004) or the calibration technique of

Breslow et al. (2009) so that they better reflect the full cohort information.

1.3.4 Estimation methods for outcome-dependent BSS

Outcome-dependent BSS was considered by Imbens and Lancastes (1996) and Lawless

et al. (1999). In a two-phase outcome-dependent sampling scheme, suppose that

the phase one data yi, i = 1, ...,N is partitioned into K strata S1, ..., SK based on

continuous outcome variable Y using (K − 1) cut-off values c1 < c2 < ... < cK−1 as

shown in the following:

y(1) < ... < y(N1)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
S1

< c1 < y(N1+1) < ... < y(N1+N2)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
S2

< c2 < ... < cK−1 < y(N1+...+NK−1+1) < ... < y(N)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
SK

, (1.21)

where Nj is the size of stratum Sj obtained under the defined cut-off values, j =
1, ...,K, and ∑K

j=1Nj = N .

At phase two, a subsample is drawn without replacement from each stratum to

obtain phase two variables that are costly or difficult to measure. BSS is a sampling

scheme where a simple random sample of specified size nj is selected from stratum
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Sj, j = 1, ...,K as shown in the following:

y(1) < ... < y(N1)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n1

< c1 < y(N1+1) < ... < y(N1+N2)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n2

< c2 < ... < cK−1 < y(N1+...+NK−1+1) < ... < y(N)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
nK

, (1.22)

where ∑K
j=1 nj = n. The probability that individual i is sampled (selected) and fully

observed is pj = nj/Nj, j = 1, ...,K.

Suppose Dj = {i ∶ Ri = 1, i ∈ Sj} denotes the set of individuals selected from

stratum Sj, where the size of Dj is nj. Then D̄j = {i ∶ Ri = 0, i ∈ Sj} is the set of

individuals who are not selected from stratum Sj.

Under the outcome-dependent BSS, the full likelihood (1.18) becomes

LF (θ,G) = K∏
j=1

⎡⎢⎢⎢⎢⎣
⎛
⎝∏i∈Dj

f(yi∣xi; θ)dG(xi)⎞⎠
⎛
⎝∏i∈D̄j

∫
x
f(yi∣x; θ)dG(x)⎞⎠

⎤⎥⎥⎥⎥⎦
. (1.23)

The weighted pseudolikelihood (1.20) becomes

lW (θ) = K∑
j=1

p−1j ∑
i∈Dj

log(f(yi∣xi; θ)). (1.24)

The use of pj = nj/Nj provides an unbiased estimating equation for θ.

The conditional likelihood (1.19) becomes

LC(θ) = K∏
j=1

∏
i∈Dj

[ pjf(yi∣xi; θ)
∑K

l=1 plQ
∗
l (xi; θ)] , (1.25)

where

Q∗l (x, θ) = P (Y ∈ Sl∣x; θ).
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The log-pseudolikelihood function arising from equation (1.25) is

lC(θ) = K∑
j=1

∑
i∈Dj

[log{f(yi∣xi; θ)} − log{ K∑
l=1

plQ
∗
l (xi; θ)}] . (1.26)

The use of pj = nj/Nj provides an unbiased estimating equation for θ. In other words,

under BSS with the stratum-specific sampling probabilities pj = nj/Nj pre-specified,

it can be shown that the score function corresponding to equation (1.26),

SC(θ) = ∂lC
∂θ

,

provides an unbiased estimating equation for θ.

1.3.5 Nested case-control design

The nested case-control design was originally suggested by Thomas (1977). See also

Prentice and Breslow (1978). The nested case-control design is an extension of a

case-control study to a survival analysis setting in which the outcome of interest is a

time-to-event, and in general, the focus is on making inference on whether the time-

to-event is associated with exposures of interest (e.g. Keogh and Cox, 2014, Chapter

7).

Consider a cohort of individuals followed up for an outcome of interest. The

cases are those individuals who experienced the event of interest during the follow-up

period. Individuals who did not experience the event of interest have a right censored

time. The main steps for selecting a nested case-control sample are as follows:

1. Cases are identified within the cohort at the time at which they are observed

to experience the event of interest. Often all cases observed during a particular

period of follow-up are selected.
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2. At a given event time, the risk set is the set of individuals who were eligible to

experience the event at that time, that is, who will remain in the cohort, have

not yet experienced the event just prior to the observed event time and have

not been censored.

3. We identify the risk set at each case’s event time and take a sample of one or

more individuals from the corresponding risk set. We refer to these individuals

the control set for that case. Under the standard nested case-control design, at

each event time the controls are selected randomly from the risk set, excluding

the case itself.

1.3.6 Case-cohort design

The case-cohort design was originally suggested by Prentice (1986). The case-cohort

design is an alternative to the nested case-control design.

Consider a cohort of individuals followed up for an event of interest. The cases are

those individuals who experienced the event of interest during the follow-up period.

The main steps for selecting a case-cohort sample are as follows:

1. A set S of individuals called the subcohort is sampled at random and without

replacement from the cohort at the start of the follow-up period.

2. Because the subcohort S is a random sample from the cohort, it will typically

contain some cases of the event of interest.

3. A case-cohort sample thus consists of the subcohort S plus all additional cases

observed in the cohort.

The key idea of this study design is to obtain the measurements of primary expo-

sure variables only on a subset of the entire cohort (subcohort) and all the individuals
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who experienced the event of interest (cases) in the cohort. Thus, the case-cohort

study design is particularly useful for large-scale cohort studies with a low event (e.g.

disease) rate if a limited number of individuals is needed to be selected.

The requirement of sampling all the cases in the original case-cohort design will

limit the application of case-cohort study designs if the event rate is not rare. To

reduce the cost, a generalized case-cohort design is used where only a random sample

from cases and a random sample from non-cases are selected.

1.4 Objectives of the study

P. Judd (2016) explored extensions of case-cohort sampling designs that result in

more efficient sampling designs for univariate survival analysis. She found that bal-

ancing the number of cases and non-cases given a phase two sample size produce more

efficient estimates under a generalized case-cohort design which is based on event indi-

cator. When comparing sampling designs dependent on both survival time and event

indicator, sample design efficiency improves if the cases with short survival times are

assigned a higher selection probability. Similarly, sample design efficiency improves

if the non-cases with long censoring times are assigned a higher selection probability

(Judd, 2016).

Compared to other designs, efficient design has a lower variance of the coefficient

estimate of the expensive covariate in the regression model. The objective of this study

is to investigate efficient two-phase sampling designs with bivariate sequential survival

data for a predetermined phase two sample size under the likelihood-based approach.

Suppose we observed a cohort of bivariate sequential survival data of size N at phase

one. A subsample of fixed size (n) will be drawn at phase two in order to obtain

measurement of covariate X which is costly or difficult to measure. In Chapter 2, we
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will describe how to explore generalized case-cohort design and outcome-dependent

BSS design that result in more efficient sampling designs using bivariate sequential

survival data. In this study, we assume that the assumed model is correct and there

is only one expensive covariate and no other covariates.

1.5 Outline of the thesis

The thesis is organized as follows.

In Chapter 2, we describe generalized case-cohort design and outcome-dependent

BSS design for bivariate sequential survival data. A generalized case-cohort design

can either based on first event indicator only or based on both first and second event

indicators. An outcome-dependent BSS design can either based on time-to-first event

and its event indicator only or based on both time-to-events and their event indicators.

We will describe stratifications considered under outcome-dependent BSS designs.

In Chapter 3, we investigate the efficiency of the sampling designs described in

Chapter 2 when there is a moderate dependence between the two gap times.

In Chapter 4, we investigate the efficiency of the sampling designs described in

Chapter 2 when there is a high dependence between the two gap times.

Chapter 5 summarizes the study and give a brief discussion.



Chapter 2

Two-phase outcome-dependent

sampling designs for bivariate

sequential time-to-event data

Bivariate sequential time-to-event data consists of two gap times T1 and T2 observed

in sequence, and a right censoring time (total followup time) C. In a cancer study,

for example, T1 could be the time from cancer diagnosis to cancer recurrence and T2

be the time from cancer recurrence to death.

In some observational studies, the covariates of interest might be expensive to

measure although the outcome variable could easily be obtained. Two-phase sampling

is a sampling technique that aims to reduce the cost of the study. At phase one, a large

sample is drawn from a population, and information on variables that are easier to

measure is collected. At phase two, a subsample is selected based on the values of the

collected variables to obtain phase two variables that are costly or difficult to measure.

An outcome-dependent sampling scheme is a retrospective sampling scheme where the

expensive exposure variables/covariates are observed with a probability depending on
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the outcome variable. The principal idea of an outcome-dependent sampling design

is to concentrate resources where there is the greatest amount of information in order

to enhance the efficiency of the design.

In this chapter, we will describe some two-phase outcome-dependent sampling

designs for bivariate sequential survival data with a covariate which is costly or difficult

to measure. Phase one data consists of bivariate sequential time-to-event data for a

random sample or cohort of N individuals from a population. This phase one data

can be stratified based on the event indicators and the survival times. A phase two

sample of fixed size (n) is drawn based on the strata of phase one in order to obtain

a covariate which is costly or difficult to measure. We will adopt the full likelihood-

based approach to analyze the survival data which includes observations with complete

and incomplete covariate data. The objective of this study is to investigate efficient

two-phase sampling designs with bivariate sequential survival data for a predetermined

phase two sample size. Compared to other designs, efficient design has a lower variance

of the coefficient estimate of the expensive covariate in the regression model.

The layout of Chapter 2 is as follows. In Section 2.1, we describe four phase

two sampling designs: (1) design based on first event indicator; (2) design based

on time-to-first event and its event indicator; (3) design based on first and second

event indicators; and (4) design based on first and second gap times and their event

indicators. In Section 2.2, we first describe how to generate the phase one data. Using

the generated data, we then describe the stratification based on time-to-event T1 and

its event indicator. Finally we describe the stratification based on first and second

gap times and their event indicators.
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2.1 Outcome-dependent sampling design

Suppose the gap times (T1i, T2i), observed in order for a random sample of independent

individuals, i = 1, ...,N , have common joint continuous distribution function F (t1, t2)
and joint survivor function S(t1, t2). Let Ci denote the potential right censoring

time for individual i, i = 1, ...,N . Let Xi be a covariate for individual i. Assume

that Ci is conditionally independent of the survival time T1i + T2i given Xi. Let

(t1i, t2i) = (min(T1i, Ci),min(T2i, Ci − t1i)) and (δ1i, δ2i) = (I[T1i = t1i], I[T2i = t2i]) be
the observed gap times and their event indicators, respectively.

When the covariate Xi is collected for each individual i, the observed data is

{(t1i, δ1i, t2i, δ2i, xi) ∶ i = 1, ...,N}, and the likelihood function is given in (1.13) with

F1(t1i) and F (t1i, t2i) replaced by F1(t1i∣xi) and F (t1i, t2i∣xi), respectively.
When the covariate Xi is expensive to measure, two-phase sampling technique

could be used to reduce the cost. Then, the observed data at phase one is {(t1i, δ1i, t2i, δ2i) ∶
i = 1, ...,N}. At phase two, in the outcome-dependent sampling, the phase one sample

is then stratified based on these phase one variables. A generalized case-cohort design

would be either based on the first event indicator only or the second event indicator

only depending on the event of interest. In this study, we consider sampling design

depending on both event indicators. An outcome-dependent BSS design can either be

based only on time-to-first event and its event indicator or based on first and second

gap times and their event indicators.

We will adopt the full likelihood-based approach to estimate the regression coeffi-

cient of the expensive covariate. For i = 1, ...,N , let us denote Li(x) as the contribution
of the ith individual data (t1i, δ1i, t2i, δ2i, x) in the likelihood function L in (1.13):

Li(x) = [∂2F (t1i, t2i∣x)
∂t1i∂t2i

]
δ1iδ2i

[∂F1(t1i∣x)
∂t1i

− ∂F (t1i, t2i∣x)
∂t1i

]
δ1i(1−δ2i)

[1 − F1(t1i∣x)]1−δ1i .
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Let g(x) be the marginal distribution of X, and G(x) denote the distribution function

corresponding to g(x). Then the full likelihood function is defined by (1.18) with

f(yi∣xi; θ) and f(yi∣x; θ) replaced by Li(xi) and Li(x), respectively. In particular,

if the covariate X is binary following the Bernoulli distribution with probability of

success p, then (1.18) becomes

LF = (∏
i∈V

Li(xi)g(xi))(∏
i∈V̄

1∑
x=0

Li(x)g(x)) , (2.1)

where g(1) = p and g(0) = 1 − p.

2.1.1 Generalized case-cohort design based on the event in-

dicator of the first gap time

Suppose the phase one cohort is stratified based on the event indicators δ1i, i = 1, ...,N ,

of the first gap time T1. The resulting strata are Scases = {i ∶ δ1i = 1,1 ≤ i ≤ N}
and Snoncases = {i ∶ δ1i = 0,1 ≤ i ≤ N} with size Ncases and Nnoncases, respectively,

where Ncases + Nnoncases = N . A subsample of fixed size n is drawn at phase two

in order to obtain the covariate X which is costly or difficult to measure. Suppose

the size of the subsample from the case stratum Scases is denoted by ncases and the

size of the subsample from the non-case stratum Snoncases is denoted by nnoncases,

where ncases + nnoncases = n. Given the fixed size n of subsample, different allocations

(ncases, nnoncases) define different generalized case-cohort designs based on T1 event

indicator. The aim is to identify the allocation (ncases, nnoncases) which is the most

efficient sampling design under the likelihood-based method. Efficient sampling design

minimizes the variance of the coefficient estimate of the expensive covariate for the

survival time T1.

Let Ri = I(individual i is selected) be the indicator function for individual i being
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selected at phase two. Suppose Dcases = {i ∶ Ri = 1, i ∈ Scases} denotes the set of

individuals selected from stratum Scases, where the size of Dcases is ncases. Similarly,

suppose Dnoncases = {i ∶ Ri = 1, i ∈ Snoncases} denotes the set of individuals selected from

stratum Snoncases, where the size of Dnoncases is nnoncases. Then D̄cases = {i ∶ Ri = 0, i ∈
Scases} is the set of individuals who are not selected from stratum Scases and D̄noncases =
{i ∶ Ri = 0, i ∈ Snoncases} is the set of individuals who are not selected from stratum

Snoncases. Therefore, the full likelihood function is (2.1) with V = Dcases ∪ Dnoncases

which is the set of individuals who are selected at phase two and V̄ = D̄cases∪ D̄noncases

which is the set of individuals who are not selected at phase two.

After obtaining the most efficient sampling design which is based on T1 event

indicator, we will next stratify the case stratum Scases based on time-to-event T1 and

stratify the non-case stratum Snoncases based on censoring time C.

2.1.2 Outcome-dependent BSS design based on the first gap

time and its event indicator

Recall that the phase one cohort can be stratified into the strata (Scases, Snoncases)
based on the event indicator of the first gap time T1. For a fixed phase two sample

size n, we can obtain the most efficient sampling design (ncases, nnoncases) for the strata
(Scases, Snoncases) under the full likelihood-based approach for a given phase two sample

size n = ncases+nnoncases. A more efficient design could be achieved by selecting a more

informative sample. In genetic association studies, budgetary constraints prevent

genotyping all individuals in a cohort (Huang and Lin, 2007; Lin et al., 2013) and

extreme sampling designs are being used since it is more efficient than simple random

sampling of the same number of individuals (Yilmaz and Bull, 2011). For example, in

Lin et al. (2013) in the National Heart, Lung, and Blood Institute (NHLBI) Exome

Sequencing Project, subjects with the highest or lowest values of body mass index,
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LDL, or blood pressure were selected for whole exome sequencing, and the Cohorts

for Heart and Aging Research in Genomic Epidemiology (CHARGE) resequencing

project adopted a one-tailed sampling design by selecting subjects with the highest

values of a quantitative trait, along with a random sample. Also, Lawless (2018)

compared extreme strata sampling designs with some others. Based on such studies,

in this thesis we assessed the efficiency of different designs and tried to understand

the efficiency gain under extreme strata sampling.

We can stratify all T1 cases in Scases into strata (Scases,1, Scases,2, Scases,3) based on

time-to-event T1 using two cut-off values cL1 < cU2 which are defined in Section 2.2.2:

T1(1) < ... < T1(Ncases,1)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Scases,1

< cL1 < T1(Ncases,1+1) < ... < T1(Ncases,1+Ncases,2)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Scases,2

< cU1 < T1(Ncases,1+Ncases,2+1) < ... < T1(Ncases,1+Ncases,2+Ncases,3)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Scases,3

, (2.2)

where Ncases,j is the size of stratum Scases,j, j = 1,2,3, and ∑3
j=1Ncases,j = Ncases.

Similarly, we can stratify all T1 non-cases in Snoncases into strata (Snoncases,1, Snoncases,2,

Snoncases,3) based on their censoring times Ci using two cut-off values c∗L1 < c∗U1 which

are defined in Section 2.2.2:

C(1) < ... < C(Nnoncases,1)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Snoncases,1

< c∗L1 < C(Nnoncases,1+1) < ... < C(Nnoncases,1+Nnoncases,2)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Snoncases,2

< c∗U1 < C(Nnoncases,1+Nnoncases,2+1) < ... < C(Nnoncases,1+Nnoncases,2+Nnoncases,3)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Snoncases,3

,

(2.3)

where Nnoncases,j is the size of stratum Snoncases,j, j = 1,2,3, and ∑3
j=1Nnoncases,j =

Nnoncases.
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Section 2.2.2 gives more details on finding two cut-off values cL1 < cU1 for T1 cases

Scases and c∗L1 < c∗U1 for T1 non-cases Snoncases. We consider a small cL1 and c∗L1 values

and a high cU1 and c∗U1 values so that there are less number of individuals in the

extreme strata since the data in the extreme strata might be more informative, and

our aim is to understand the importance of sampling from extreme strata.

After obtaining the most efficient sampling design (ncases, nnoncases) for the strata

(Scases, Snoncases), we do outcome-dependent BSS on the strata (Scases,1, Scases,2, Scases,3)

and (Snoncases,1, Snoncases,2, Snoncases,3). A sample of fixed size ncases is drawn from Scases

at phase two in order to obtain the covariate X which is costly or difficult to measure.

From the stratum Scases,j, ncases,j is selected (j = 1,2,3) as shown below:

T1(1) < ... < T1(Ncases,1)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ncases,1

< cL1 < T1(Ncases,1+1) < ... < T1(Ncases,1+Ncases,2)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ncases,2

< cU1 < T1(Ncases,1+Ncases,2+1) < ... < T1(Ncases,1+Ncases,2+Ncases,3)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ncases,3

,

and ∑3
j=1 ncases,j = ncases. Similarly, a sample of fixed size nnoncases is drawn from

Snoncases and nnoncases,j is selected from the stratum Snoncases,j as shown below:

C(1) < ... < C(Nnoncases,1)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
nnoncases,1

< c∗L1 < C(Nnoncases,1+1) < ... < C(Nnoncases,1+Nnoncases,2)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
nnoncases,2

< c∗U1 < C(Nnoncases,1+Nnoncases,2+1) < ... < C(Nnoncases,1+Nnoncases,2+Nnoncases,3)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
nnoncases,3

,

and ∑3
j=1 nnoncases,j = nnoncases. Given the fixed sizes (ncases, nnoncases) of cases and non-

cases to be selected, one may choose how to allocate it among the strata ((Scases,j ∶ j =
1,2,3), (Snoncases,j ∶ j = 1,2,3)). Different allocations ((ncases,j ∶ j = 1,2,3), (nnoncases,j ∶
j = 1,2,3)) define different outcome-dependent BSS designs based on the first gap
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time T1 and its event indicator.

Given the fixed sizes (ncases, nnoncases) of cases and non-cases to be selected, there is

an allocation ((ncases,j ∶ j = 1,2,3), (nnoncases,j ∶ j = 1,2,3)) among the strata ((Scases,j ∶
j = 1,2,3), (Snoncases,j ∶ j = 1,2,3)) satisfying

ncases,1

Ncases,1

= ncases,2

Ncases,2

= ncases,3

Ncases,3

(2.4)

and

nnoncases,1

Nnoncases,1

= nnoncases,2

Nnoncases,2

= nnoncases,3

Nnoncases,3

. (2.5)

Thus, (2.4) implies that the sampling probability is the same for all T1 cases in Scases

and (2.5) implies that the sampling probability is the same for all T1 non-cases in

Snoncases. Therefore, the outcome-dependent BSS design defined by the allocation

(ncases,j, nnoncases,j) satisfying (2.4) and (2.5) is a SRS in Scases and Snoncases, respec-

tively. It is actually a generalized case-cohort design defined by the allocation (ncases,

nnoncases) among the strata (Scases, Snoncases).
We will adopt the full likelihood-based approach to estimate the regression co-

efficient of the expensive covariate and to obtain the most efficient sampling design

((ncases,j ∶ j = 1,2,3), (nnoncases,j ∶ j = 1,2,3)) for the strata ((Scases,j ∶ j = 1,2,3),
(Snoncases,j ∶ j = 1,2,3)) which is based on time-to-event T1 and its event indicator.

Efficient sampling design minimizes the variance of the coefficient estimate of the

expensive covariate for the survival time T1.

Let Ri = I(individual i is selected) be the indicator function for individual i being

selected at phase two. Suppose Dcases,j = {i ∶ Ri = 1, i ∈ Scases,j} denotes the set of

individuals selected from stratum Scases,j, where the size of Dcases,j is ncases,j. Similarly,

suppose Dnoncases,j = {i ∶ Ri = 1, i ∈ Snoncases,j} denotes the set of individuals selected

from stratum Snoncases,j, where the size of Dnoncases,j is nnoncases,j. Then D̄cases,j =
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{i ∶ Ri = 0, i ∈ Scases,j} is the set of individuals who are not selected from stratum

Scases,j and D̄noncases,j = {i ∶ Ri = 0, i ∈ Snoncases,j} is the set of individuals who are

not selected from stratum Snoncases,j. Therefore, the full likelihood function is (2.1)

with V = Dcases ∪Dnoncases, where Dcases = Dcases,1 ∪Dcases,2 ∪Dcases,3 and Dnoncases =
Dnoncases,1 ∪Dnoncases,2 ∪Dnoncases,3, is the set of individuals who are selected at phase

two and V̄ = D̄cases ∪ D̄noncases, where D̄cases = D̄cases,1 ∪ D̄cases,2 ∪ D̄cases,3 and D̄noncases =
D̄noncases,1 ∪ D̄noncases,2 ∪ D̄noncases,3, is the set of individuals who are not selected at

phase two.

After obtaining the most efficient sampling design (ncases, nnoncases) for the strata

(Scases, Snoncases) which is based on T1 event indicator, we will next stratify the T1

case stratum Scases based on T2 event indicator.

2.1.3 Outcome-dependent sampling design based on the event

indicators of the two sequential gap times

In the previous two subsections, we were interested in identifying the efficient sampling

design minimizing the variance of the coefficient estimate of the expensive covariate

for the first gap time T1. We may also be interested in exploring the efficient sam-

pling design which minimizes the variance of the coefficient estimate of the expensive

covariate for the second gap time T2.

Assume that we obtained the most efficient sampling design (ncases, nnoncases)
for the strata (Scases, Snoncases) which is based on T1 event indicator, where ncases +
nnoncases = n. In this subsection, a subsample of fixed size (n) will be drawn in order to

obtain a covariate which is expensive to measure based on both T1 event indicator and

T2 event indicator. First, a subsample of size nnoncases is drawn from the T1 non-case

stratum Snoncases. Note that for the individuals in Snoncases, the second event cannot be

observed since their first event was censored. Then, a subsample of size ncases is drawn
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from the T1 case stratum Scases based on T2 event indicator. Note that under bivariate

sequential survival data, a T1 case could be either a T2 case or a T2 non-case. Let us

denote Scases,cases as the subset of Scases which are T2 cases and Scases,noncases as the sub-

set of Scases which are T2 non-cases. In other words, Scases,cases = {i ∶ δ1i = 1, δ2i = 1,1 ≤
i ≤ N} and Scases,noncases = {i ∶ δ1i = 1, δ2i = 0,1 ≤ i ≤ N}. Suppose the size of Scases,cases

is Mcases and the size of Scases,noncases is Mnoncases, then Mcases+Mnoncases = Ncases. Then

a subsample of size ncases can be drawn from the T1 case stratum Scases based on T2

event indicator by selecting a subsample from the case-case stratum Scases,cases and

a subsample from the case-noncase stratum Scases,noncases. The size of the subsam-

ple from the case-case stratum Scases,cases is denoted by mcases and the size of the

subsample from the case-noncase stratum Scases,noncases is denoted by mnoncases, where

ncases = mcases +mnoncases. Given the fixed size ncases of subsample, one may choose

how to allocate it among the strata (Scases,cases, Scases,noncases) which is based on T2

event indicator. Different allocations (mcases, mnoncases) together with nnoncases define

different outcome-dependent sampling designs based on T1 and T2 event indicators.

We adopt the full likelihood estimation method to estimate the regression coef-

ficient of the expensive covariate and to obtain the most efficient sampling design

(mcases, mnoncases) for the strata (Scases,cases, Scases,noncases) which is based on T2 event

indicator. Efficient sampling design minimizes the variance of the coefficient estimate

of the expensive covariate for the second gap time T2.

Let Ri = I(individual i is selected) be the indicator function for individual i being

selected at phase two. Suppose Ecases = {i ∶ Ri = 1, i ∈ Scases, δ2i = 1} denotes the set of

individuals selected from stratum Scases,cases, where the size of Ecases ismcases. Similarly,

suppose Enoncases = {i ∶ Ri = 1, i ∈ Scases, δ2i = 0} denotes the set of individuals selected

from stratum Scases,noncases, where the size of Enoncases is mnoncases. Then Ēcases = {i ∶
Ri = 0, i ∈ Scases, δ2i = 1} is the set of individuals who are not selected from stratum



43

Scases,cases and Ēnoncases = {i ∶ Ri = 0, i ∈ Scases, δ2i = 0} is the set of individuals who

are not selected from stratum Scases,noncases. Therefore, the full likelihood function is

defined by (2.1) with V = Ecases ∪ Enoncases ∪Dnoncases which is the set of individuals

selected at phase two and V̄ = Ēcases∪Ēnoncases∪D̄noncases which is the set of individuals

not selected at phase two. Both Dnoncases and D̄noncases were defined in Section 2.1.1.

After obtaining the most efficient sampling design which is based on T1 and T2

event indicators, we will next stratify the case-case stratum Scases,cases based on the

second gap time T2 and stratify the case-noncase stratum Scases,noncases based on cen-

soring time C − T1.

2.1.4 Outcome-dependent BSS design based on the two se-

quential gap times and their event indicators

Recall that the phase one cohort can be stratified into the strata (Scases, Snoncases)
based on the event indicator of the first gap time T1. For a fixed phase two sample

size n, we can obtain the most efficient sampling design (ncases, nnoncases) for the strata
(Scases, Snoncases) based on the full likelihood-based approach, where ncases +nnoncases =
n. Here, efficient sampling design minimizes the variance of the coefficient estimate of

the expensive covariate for the first gap time T1. Note that under bivariate sequential

survival data, a first event case could be either a second event case or a second event

non-case. Therefore, Scases = Scases,cases ∪ Scases,noncases and we can obtain the most

efficient sampling design (mcases, mnoncases) for the strata (Scases,cases, Scases,noncases)
based on the full likelihood-based approach, where mcases +mnoncases = ncases. Here,

efficient sampling design minimizes the variance of the coefficient estimate of the

expensive covariate for the second gap time T2. Greater efficiency may be achieved

for outcome-dependent sampling design by selecting the more informative subjects for

purposes of detailed covariate measurement.
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We can stratify all T2 cases Scases,cases into strata (Scases,cases,1, Scases,cases,2, Scases,cases,3)

based on time-to-event T2 using two cut-off values cL2 < cU2 which are defined in Sec-

tion 2.2.3:

T2(1) < ... < T2(Mcases,1)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Scases,cases,1

< cL2 < T2(Mcases,1+1) < ... < T2(Mcases,1+Mcases,2)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Scases,cases,2

< cU2 < T2(Mcases,1+Mcases,2+1) < ... < T2(Mcases,1+Mcases,2+Mcases,3)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Scases,cases,3

,

(2.6)

where Mcases,j is the size of stratum Scases,cases,j, j = 1,2,3, and ∑3
j=1Mcases,j =Mcases.

Similarly, we can stratify T2 non-cases Scases,noncases into strata (Scases,noncases,1,

Scases,noncases,2, Scases,noncases,3) based on censoring time C − T1 using two cut-off val-

ues c∗L2 < c∗U2 which are defined in Section 2.2.3:

C(1) − T1(1) < ... < C(Mnoncases,1) − T1(Mnoncases,1)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Scases,noncases,1

< c∗L2 < C(Mnoncases,1+1) − T1(Mnoncases,1+1) < ... < C(Mnoncases,1+Mnoncases,2) − T1(Mnoncases,1+Mnoncases,2)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Scases,noncases,2

< c∗U2 < C(Mnoncases,1+Mnoncases,2+1) − T1(Mnoncases,1+Mnoncases,2+1) < ... < C(Mnoncases) − T1(Mnoncases)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Scases,noncases,3

,

(2.7)

where Mnoncases,j is the size of stratum Scases,noncases,j, j = 1,2,3, and ∑3
j=1Mnoncases,j =

Mnoncases.

Section 2.2.3 gives details on finding two cut-off values cL2 < cU2 for T2 cases

Scases,cases and c∗L2 < c∗U2 for T2 non-cases Scases,noncases. We consider a small cL2 and c∗L2
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values and a high cU2 and c∗U2 values so that there are less number of individuals in

the extreme strata. The data in the extreme strata might be more informative, and

one of the main aims of this study is to investigate this as described in Section 2.1.2.

After obtaining the most efficient sampling design (mcases, mnoncases) for the strata
(Scases,cases, Scases,noncases), we do outcome-dependent BSS on the strata (Scases,cases,1,

Scases,cases,2, Scases,cases,3) and (Scases,noncases,1, Scases,noncases,2, Scases,noncases,3). A subsam-

ple of fixed size mcases is drawn from the case-case stratum Scases,cases at phase two

in order to obtain the covariate X which is costly or difficult to measure. From the

stratum Scases,cases,j, mcases,j (j = 1,2,3) individuals are selected as shown below:

T2(1) < ... < T2(Mcases,1)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
mcases,1

< cL2 < T2(Mcases,1+1) < ... < T2(Mcases,1+Mcases,2)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
mcases,2

< cU2 < T2(Mcases,1+Mcases,2+1) < ... < T2(Mcases,1+Mcases,2+Mcases,3)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
mcases,3

,

where ∑3
j=1mcases,j =mcases. Similarly, a subsample of fixed sizemnoncases is drawn from

the case-noncase stratum Scases,noncases. From the stratum Scases,noncases,j, mnoncases,j

(j = 1,2,3) individuals are selected as shown below:

C(1) − T1(1) < ... < C(Mnoncases,1) − T1(Mnoncases,1)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
mnoncases,1

< c∗L2 < C(Mnoncases,1+1) − T1(Mnoncases,1+1) < ... < C(Mnoncases,1+Mnoncases,2) − T1(Mnoncases,1+Mnoncases,2)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
mnoncases,2

< c∗U2 < C(Mnoncases,1+Mnoncases,2+1) − T1(Mnoncases,1+Mnoncases,2+1) < ... < C(Mnoncases) − T1(Mnoncases)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
mnoncases,3

,

where ∑3
j=1mnoncases,j = mnoncases. Given the fixed sizes (mcases,mnoncases) of subsam-

ples, one may choose how to allocate it among the strata ((Scases,cases,j ∶ j = 1,2,3),
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(Scases,noncases,j ∶ j = 1,2,3)). Different allocations ((mcases,j ∶ j = 1,2,3), (mnoncases,j ∶
j = 1,2,3)) define different outcome-dependent BSS designs based on the second gap

time T2 and its event indicator.

Given the fixed sizes (mcases, mnoncases) of cases and non-cases to be selected, there

is an allocation ((mcases,j ∶ j = 1,2,3), (mnoncases,j ∶ j = 1,2,3)) among the strata

((Scases,cases,j ∶ j = 1,2,3), (Scases,noncases,j ∶ j = 1,2,3)) satisfying
mcases,1

Mcases,1

= mcases,2

Mcases,2

= mcases,3

Mcases,3

(2.8)

and

mnoncases,1

Mnoncases,1

= mnoncases,2

Mnoncases,2

= mnoncases,3

Mnoncases,3

. (2.9)

Here, (2.8) implies that the sampling probability is the same for all T2 cases in

Scases,cases and (2.9) implies that the sampling probability is the same for all T2 non-

cases in Scases,noncases. Therefore, the outcome-dependent BSS design defined by the

allocation (mcases,j, mnoncases,j) satisfying (2.8) and (2.9) is a SRS in Scases,cases and

Scases,noncases, respectively. It is actually a generalized case-cohort design defined by

the allocation (mcases, mnoncases) among the strata (Scases,cases, Scases,noncases).
We use the full likelihood estimation method to estimate the regression coeffi-

cient of the expensive covariate and to obtain the most efficient sampling design

((mcases,j ∶ j = 1,2,3), (mnoncases,j ∶ j = 1,2,3)) for the strata ((Scases,cases,j ∶ j = 1,2,3),
(Scases,noncases,j ∶ j = 1,2,3)) which is based on the second gap time T2 and its event

indicator. Efficient sampling design minimizes the variance of the coefficient estimate

of the expensive covariate for the second gap time T2.

Let Ri = I(individual i is selected) be the indicator function for individual i being

selected at phase two. Suppose Ecases,j = {i ∶ Ri = 1, i ∈ Scases,cases,j} denotes the set of
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individuals selected from stratum Scases,cases,j, where the size of Ecases,j is mcases,j. Sim-

ilarly, suppose Enoncases,j = {i ∶ Ri = 1, i ∈ Scases,noncases,j} denotes the set of individuals

selected from stratum Scases,noncases,j, where the size of Enoncases,j is mnoncases,j. Then

Ēcases,j = {i ∶ Ri = 0, i ∈ Scases,cases,j} is the set of individuals not selected from stratum

Scases,cases,j and Ēnoncases,j = {i ∶ Ri = 0, i ∈ Scases,noncases,j} is the set of individuals not

selected from stratum Scases,noncases,j. Therefore, the full likelihood function is defined

by (2.1) with V = Ecases ∪Enoncases ∪Dnoncases, where Ecases = Ecases,1 ∪Ecases,2 ∪Ecases,3

and Enoncases = Enoncases,1 ∪Enoncases,2 ∪Enoncases,3, is the set of individuals selected at

phase two and V̄ = Ēcases ∪ Ēnoncases ∪ D̄noncases, where Ēcases = Ēcases,1 ∪ Ēcases,2 ∪ Ēcases,3

and Ēnoncases = Ēnoncases,1 ∪ Ēnoncases,2 ∪ Ēnoncases,3, is the set of individuals not selected

at phase two. Both Dnoncases = Dnoncases,1 ∪ Dnoncases,2 ∪ Dnoncases,3 and D̄noncases =
D̄noncases,1 ∪ D̄noncases,2 ∪ D̄noncases,3 were defined in Section 2.1.2.

2.2 Simulation study

2.2.1 Data generation

We generate a large random bivariate survival time sample with size N = 50,000 from

the joint conditional distribution of T1 and T2 given X = x,

F (t1, t2∣x) = Cφ(F1(t1∣x), F2(t2∣x)) = (F1(t1∣x)−φ + F2(t2∣x)−φ − 1)−1/φ, φ > 0, (2.10)

with the Clayton copula in (1.15). Moderate and high dependence levels were con-

sidered for T1 and T2. The copula parameter values φ = 4
3
and φ = 8 were considered

corresponding to the Kendall’s tau value of τ = 0.4 or τ = 0.8, respectively. Note that

the Kendall’s tau value is a one-to-one function of φ, namely τ = φ/(φ+2). The covari-
ate X follows a Bernoulli distribution with probability of success p = P (X = 1) = 0.25.
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The marginal distribution of T1 is assumed to be the Weibull distribution with survival

function

S1(t1∣x) = exp[−eα10+α11xt
γ1
1 ] (2.11)

where α10 = 0.6, α11 = 0.0 or 1.0, and γ1 = 0.5, 1.0 or 1.5. The marginal distribution

of T2 is assumed to be the Weibull distribution with survival function

S2(t2∣x) = exp[−eα20+α21xt
γ2
2 ] (2.12)

where α20 = 0.4, α21 = 0.0 or 1.0, and γ2 = 0.5. Each set of three parameters

(α11, α21, γ1) specifies one scenario.

By virtue of Sklar’s theorem, we need to generate a pair (u1, u2) of observations
of Uniform(0,1) random variables (U1, U2) whose joint distribution function is Cφ,

the Clayton copula of U1 and U2, and then transform those uniform variates via the

inverse distribution function method.

One procedure for generating such a pair (u1, u2) of Uniform(0,1) random variates

is the conditional distribution method. For this method, we need the conditional

distribution function for U2 given U1 = u1, which we denote cu1(u2) and is given by

cu1(u2) = P [U2 ≤ u2∣U1 = u1]
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which can be written in terms of a copula function Cφ as

cu1(u2) = lim
∆u1→0

P [U2 ≤ u2, u1 ≤ U1 ≤ u1 +∆u1]
P [u1 ≤ U1 ≤ u1 +∆u1]

= lim
∆u1→0

P [U2 ≤ u2, U1 ≤ u1 +∆u1] − P [U2 ≤ u2, U1 ≤ u1]
P [U2 ≤ 1, U1 ≤ u1 +∆u1] − P [U2 ≤ 1, U1 ≤ u1]

= lim
∆u1→0

Cφ(u1 +∆u1, u2) −Cφ(u1, u2)
Cφ(u1 +∆u1,1) −Cφ(u1,1)

= lim
∆u1→0

Cφ(u1 +∆u1, u2) −Cφ(u1, u2)
(u1 +∆u1) − u1

= lim
∆u1→0

Cφ(u1 +∆u1, u2) −Cφ(u1, u2)
∆u1

= ∂Cφ(u1, u2)
∂u1

.

The conditional distribution method to generate (u1, u2) from Cφ(u1, u2) is as

follows:

1. Generate a pair (u1, v2) of values of two independent Uniform(0,1) random

variables U1 and V2.

2. Set u2 = c(−1)u1 (v2), where c(−1)u1 denotes a quasi-inverse of cu1 (Nelson, 2006).

3. The desired pair is (u1, u2).

We then transform such a pair (u1, u2) of Uniform(0,1) random variates via the

inverse distribution function method to obtain a pair (T1, T2) of observations. The

pair (T1, T2) of observations is obtained by T1 = F (−1)1 (u1) and T2 = F (−1)2 (u2), where
F
(−1)
1 is any quasi-inverse of F1(⋅∣x) and F (−1)2 is any quasi-inverse of F2(⋅∣x).
The censoring time C is generated from Uniform(0, b) such that about 40% of T1

survival times are censored. When T1 is censored, T2 is unobserved. Notice that the

upper bound b in the domain (0, b) of Uniform(0, b) is uniquely determined by the

model parameters of T1 and the T1 censoring rate. For a given model, the censoring
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rate is a monotone decreasing function of the upper bound b. As an iterative root-

finding procedure, bisection method can be used to find the upper bound b to obtain

40% T1 censoring rate for each given model. Table 2.1 shows values of upper bound b

and T2 censoring rate with 40% T1 censoring for different scenarios of data generation.

Table 2.1: Percentages of censored second gap time with censoring time generated from
Uniform(0, b) to make 40% censored first gap time

Upper bound b Percentage of censored T2 Percentage of censored T2

(α11, α21, γ1) of Uniform(0, b) (Kendall’s τ = 0.4) (Kendall’s τ = 0.8)

(0,0,0.5) 0.654834 62.43% 56.17%
(0,1,0.5) 0.654834 58.86% 52.09%
(1,0,0.5) 0.419287 66.58% 61.20%
(1,1,0.5) 0.419287 60.44% 55.23%

(0,0,1.0) 1.235522 59.68% 54.96%
(0,1,1.0) 1.235522 56.53% 52.37%
(1,0,1.0) 0.994482 61.45% 56.92%
(1,1,1.0) 0.994482 56.29% 52.32%

(0,0,1.5) 1.489063 60.01% 56.36%
(0,1,1.5) 1.489063 56.74% 53.74%
(1,0,1.5) 1.300244 60.93% 57.47%
(1,1,1.5) 1.300244 56.22% 53.22%

We assume that the observed data at phase one is {(t1i, δ1i, t2i, δ2i) ∶ i = 1, ...,N}
where (t1i, t2i) = (min(T1i, Ci),min(T2i, Ci − t1i)) and (δ1i, δ2i) = (I[T1i = t1i], I[T2i =
t2i]), i = 1, ...,N , are the observed gap times and their event indicators, respectively.

2.2.2 Stratification based on the first gap time and its event

indicator

Recall that the phase one cohort can be stratified into the strata (Scases, Snoncases)
based on the event indicator of the first gap time T1. We can stratify all T1 cases

Scases into strata (Scases,1, Scases,2, Scases,3) based on the first gap time T1 using two

cut-off values cL1 < cU1 as in (2.2). Similarly, we can stratify all T1 non-cases Snoncases
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Table 2.2: Stratification based on the first gap time and its event indicator

Stratum T1 cases (δ1 = 1)
Scases,1(t1 ≤ cL1) Ncases,1 = 5,000
Scases,2(cL1 < t1 ≤ cU1) Ncases,2 = 20,000
Scases,3(cU1 < t1) Ncases,3 = 5,000
All T1 cases Ncases = 30,000

T1 non-cases (δ1 = 0)
Snoncases,1(t1 ≤ c∗L1) Nnoncases,1 = 5,000
Snoncases,2(c∗L1 < t1 ≤ c∗U1) Nnoncases,2 = 10,000
Snoncases,3(c∗U1 < t1) Nnoncases,3 = 5,000
All T1 non-cases Nnoncases = 20,000

into strata (Snoncases,1, Snoncases,2, Snoncases,3) based on censoring time C using two cut-

off values c∗L1 < c∗U1 as in (2.3).

We generated a large sample of size N = 50,000 in order to show the asymptotic

results. With 40% T1 censoring, there are about Ncases = 30,000 individuals in the

case stratum Scases and about Nnoncases = 20,000 individuals in the non-case stratum

Snoncases. We set the two cut-off values cL1 < cU1 and c∗L1 < c∗U1 in (2.2) and (2.3) as in

Table 2.2.

We consider a small cL1 and c∗L1 value and a high cU1 and c∗U1 value so that there

are less number of individuals in the extreme strata since the data in the extreme

strata might be more informative, and our aim is to understand the importance of

sampling from the extreme strata.

By ordering the t1i values of Ncases = 30,000 first event cases, the two cut-off

values cL1 < cU1 are set to satisfy the conditions in Table 2.2. Using these two case

cut-off values cL1 < cU1, all T1 cases Scases can be stratified into three groups Scases,j,

j = 1,2,3, based on survival time T1. The first stratum Scases,1 consists of T1 cases

with short time-to-first event. The second stratum Scases,2 consists of T1 cases with

midrange time-to-first event. The third stratum Scases,3 consists of T1 cases with long
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time-to-first event.

Similarly, by ordering the t1i values of Nnoncases = 20,000 first event non-cases,

the two cut-off values c∗L1 < c∗U1 are set to satisfy the conditions in Table 2.2. Using

these two non-case cut-off values c∗L1 < c∗U1, all T1 non-cases Snoncases can be stratified

into three groups Snoncases,j, j = 1,2,3, based on censoring time C. The first stratum

Snoncases,1 consists of T1 non-cases with short censoring time. The second stratum

Snoncases,2 consists of T1 non-cases with midrange censoring time. The third stratum

Snoncases,3 consists of T1 non-cases with long censoring time.

The case cut-off values cL1 < cU1 and non-cases cut-off values c∗L1 < c∗U1 for each

model scenario are listed in Table 2.3.

Table 2.3: Cut-off values for stratification based on the first gap time and its event indicator

(α11, α21, γ1) cL1 cU1 c∗L1 c∗U1

(0,0,0.5) 0.003434457 0.1857223 0.09220276 0.4108654

(0,1,0.5) 0.003434457 0.1857223 0.09220276 0.4108654

(1,0,0.5) 0.001742273 0.1098055 0.06043769 0.2671622

(1,1,0.5) 0.001742273 0.1098055 0.06043769 0.2671622

(0,0,1.0) 0.06021523 0.5208437 0.1332584 0.6105464

(0,1,1.0) 0.06021523 0.5208437 0.1332584 0.6105464

(1,0,1.0) 0.04264397 0.4011779 0.1097162 0.5131692

(1,1,1.0) 0.04264397 0.4011779 0.1097162 0.5131692

(0,0,1.5) 0.1576681 0.7135059 0.1498029 0.6125531

(0,1,1.5) 0.1576681 0.7135059 0.1498029 0.6125531

(1,0,1.5) 0.1255860 0.6043437 0.1315327 0.5544567

(1,1,1.5) 0.1255860 0.6043437 0.1315327 0.5544567
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2.2.3 Stratification based on the second gap time and its

event indicator

Recall that the phase one cohort can be stratified into the strata (Scases, Snoncases)
based on the event indicator of the first gap time T1. Note that under bivariate se-

quential survival data, a first event case could be either a second event case or a

second event non-case. Therefore, Scases = Scases,cases ∪ Scases,noncases where Scases,cases

is the subset of Scases which are T2 cases and Scases,noncases is the subset of Scases

which are T2 non-cases. We can stratify all T2 cases Scases,cases into strata (Scases,cases,1,

Scases,cases,2, Scases,cases,3) based on time-to-event T2 using two cut-off values cL2 < cU2 as

in (2.6). Similarly, we can stratify T2 non-cases Scases,noncases into strata (Scases,noncases,1,

Scases,noncases,2, Scases,noncases,3) based on censoring time C − T1 using two cut-off values

c∗L2 < c∗U2 as in (2.7).

With 40% censoring rate for the first event, there are about Ncases = 30,000 in-

dividuals in the case stratum Scases and about Nnoncases = 20,000 individuals in the

non-case stratum Snoncases based on being T1 case or T1 non-case. If we denote Mcases

as the number of T2 cases and Mnoncases as the number of T2 non-cases, then the total

number of T1 cases is Mcases +Mnoncases = Ncases = 30,000. The number Mcases of T2

cases and the number Mnoncases of T2 non-cases for each model scenario are listed in

Table 2.5 and Table 2.6. We set the two cut-off values cL2 < cU2 and c∗L2 < c∗U2 in (2.6)

and (2.7) as in Table 2.4.

We consider small cL2 and c∗L2 values and high cU2 and c∗U2 values so that there

are less number of individuals in the extreme strata.

By ordering the t2i values of Mcases second event cases, the two cut-off values

cL2 < cU2 are set to satisfy the conditions in Table 2.4. Using these two case cut-off

values cL2 < cU2, all T2 cases Scases,cases can be stratified into three groups Scases,cases,j,
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Table 2.4: Stratification based on the second gap time and its event indicator

Stratum T2 cases (δ2 = 1)
Scases,cases,1(t2 ≤ cL2) Mcases,1 = 2,500
Scases,cases,2(cL2 < t2 ≤ cU2) Mcases,2 =Mcases − 5,000
Scases,cases,3(cU2 < t2) Mcases,3 = 2,500
All T2 cases Mcases

T2 non-cases (δ2 = 0)
Scases,noncases,1(t2 ≤ c∗L2) Mnoncases,1 = 2,500
Scases,noncases,2(c∗L2 < t2 ≤ c∗U2) Mnoncases,2 =Mnoncases − 5,000
Scases,noncases,3(c∗U2 < t2) Mnoncases,3 = 2,500
All T2 non-cases Mnoncases

j = 1,2,3, based on survival time T2. The first stratum Scases,cases,1 consists of T2 cases

with short second gap time. The second stratum Scases,cases,2 consists of T2 cases with

midrange second gap time. The third stratum Scases,cases,3 consists of T2 cases with

long second gap time.

Similarly, by ordering the t2i values of Mnoncases second event non-cases, the two

cut-off values c∗L2 < c∗U2 are set to satisfy the conditions in Table 2.4. Using these

two non-case cut-off values c∗L2 < c∗U2, all T2 non-cases Scases,noncases can be stratified

into three groups Scases,noncases,j, j = 1,2,3, based on censoring time C − t1. The first

stratum Scases,noncases,1 consists of T2 non-cases with short censoring time. The second

stratum Scases,noncases,2 consists of T2 non-cases with midrange censoring time. The

third stratum Scases,noncases,3 consists of T2 non-cases with long censoring time.

The case cut-off values cL2 < cU2 and the non-case cut-off values c∗L2 < c∗U2 for each

model scenario when the dependence between time-to-events is moderate are listed in

Table 2.5.

Table 2.5: Cut-off values for stratification based on the second gap time and its event
indicator when the dependence between gap times is moderate

(α11,α21, γ1) Mcases Mnoncases cL2 cU2 c∗
L2

c∗
U2

(0,0,0.5) 18783 11217 0.0011820310 0.15419920 0.05822070 0.3242031

Continued on next page
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Table 2.5 – Continued from previous page

(α11,α21, γ1) Mcases Mnoncases cL2 cU2 c∗
L2

c∗
U2

(0,1,0.5) 20570 9430 0.0006062500 0.13750000 0.06527344 0.2815625

(1,0,0.5) 16709 13291 0.0011911620 0.10099220 0.03581250 0.2423750

(1,1,0.5) 19779 10221 0.0005953125 0.09371094 0.04018066 0.1915039

(0,0,1.0) 20160 9840 0.0012597660 0.2379687 0.09917188 0.4472500

(0,1,1.0) 21773 8227 0.0006671875 0.2075977 0.11285160 0.3800000

(1,0,1.0) 19227 10723 0.0012548830 0.2029175 0.07809375 0.4068457

(1,1,1.0) 21855 8145 0.0006235413 0.1715625 0.08852539 0.2960156

(0,0,1.5) 19995 10005 0.0013428500 0.2614375 0.10552050 0.4935000

(0,1,1.5) 21628 8372 0.0007262207 0.2267969 0.12097660 0.4173438

(1,0,1.5) 19537 10463 0.0013417970 0.2407812 0.09414062 0.4689062

(1,1,1.5) 21889 8111 0.0006890625 0.2012695 0.10739380 0.3466406

The case cut-off values cL2 < cU2 and the non-case cut-off values c∗L2 < c∗U2 for
each model scenario when the dependence between time-to-events is high are listed in
Table 2.6.

Table 2.6: Cut-off values for stratification based on the second gap time and its event
indicator when the dependence between gap times is high

(α11,α21, γ1) Mcases Mnoncases cL2 cU2 c∗
L2

c∗
U2

(0,0,0.5) 21916 8084 0.0011421870 0.1585742 0.05941016 0.1752930

(0,1,0.5) 23957 6043 0.0005804687 0.1353021 0.06809570 0.1416992

(1,0,0.5) 19401 10599 0.0011425780 0.1093750 0.03591406 0.242375

(1,1,0.5) 22387 7613 0.0005800781 0.0956012 0.04093750 0.1092773

(0,0,1.0) 22519 7481 0.0011796870 0.2175781 0.10122070 0.2582031

(0,1,1.0) 23816 6184 0.0006031250 0.1865082 0.11630650 0.2056885

(1,0,1.0) 21538 8462 0.0011679080 0.1957275 0.07787500 0.2601563

(1,1,1.0) 23842 6158 0.0005914062 0.1559570 0.08837891 0.1513281

(0,0,1.5) 21819 8181 0.001238770 0.2415039 0.10761720 0.3224609

(0,1,1.5) 23128 6872 0.000643750 0.2068954 0.12207030 0.2696289

(1,0,1.5) 21264 8736 0.001238281 0.2230957 0.09255859 0.3207031

(1,1,1.5) 23386 6614 0.000628125 0.1827148 0.10664060 0.2116211



Chapter 3

Efficiency of two-phase

outcome-dependent sampling

designs when the dependence

between time-to-events is moderate

The objective of this study is to investigate efficient two-phase outcome-dependent

sampling designs for bivariate sequential survival data under a predetermined phase

two sample size. Four phase two sampling designs were introduced in Chapter 2: (1)

generalized case-cohort design based on the event indicator of the first gap time; (2)

outcome-dependent BSS design based on the first gap time and its event indicator;

(3) generalized case-cohort design based on the event indicators of the two sequential

gap times; and (4) outcome-dependent BSS design based on the two sequential gap

times and their event indicators.

A simulation study was conducted to study the efficiency of these phase two sam-

pling designs. We generated a large random bivariate survival time sample with size
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N = 50,000 from the joint conditional distribution of T1 and T2 given X = x in (2.10)

with the Clayton copula parameter value φ = 4
3
, and the covariate X follows the

Bernoulli distribution with probability of success p = P (X = 1) = 0.25. The corre-

sponding Kendall’s tau value was τ = φ/(φ + 2) = 0.4, and therefore, there was a

moderate dependence between the two sequential gap times T1 and T2 given X = x.
The marginal distributions of T1 and T2 given X = x were modelled by Weibull re-

gression with survival functions (2.11) and (2.12), respectively. The censoring time

C is generated from Uniform(0, b) such that about 40% of T1 survival times are cen-

sored. The upper bound b of Uniform(0, b) and T2 censoring rate are given in Table

2.1. At phase one, suppose the observed data is {(t1, δ1, t2, δ2) ∶ i = 1, ...,N} where

(t1, t2) = (min(T1, C),min(T2, C − t1)) and (δ1, δ2) = (I[T1 = t1], I[T2 = t2]) are the

observed survival times and their event indicators, respectively.

A subsample of fixed size n is drawn at phase two in order to obtain a measurement

of covariate X which is costly or difficult to measure. We want to investigate gener-

alized case-cohort and outcome-dependent BSS designs that result in more efficient

sampling designs with bivariate sequential survival data.

The phase one cohort can be stratified into the strata (Scases, Snoncases) based on

the event indicator δ1 of the first gap time T1. Suppose the size of the subsample

from the case stratum Scases is denoted by ncases and the size of the subsample from

the non-case stratum Snoncases is denoted by nnoncases, where ncases + nnoncases = n. The
aim of Section 3.1 is to determine the number of first event cases (ncases) versus the

number of first event non-cases (nnoncases) that should be selected at phase two where

ncases + nnoncases = n. Here, the sampling is only based on the event indicator of the

first event.

By selecting the more informative subjects for purposes of detailed covariate mea-

surement, a more efficient generalized case-cohort design could be achieved. We can
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stratify all first event cases Scases into strata (Scases,1, Scases,2, Scases,3) based on the

observed time-to-event T1 values using two cut-off values cL1 < cU1 as in (2.2). Simi-

larly, we can stratify all first event non-cases Snoncases into strata (Snoncases,1, Snoncases,2,

Snoncases,3) based on the observed censoring time C values using two cut-off values

c∗L1 < c∗U1 as in (2.3). The aim of Section 3.2 is to determine sampling probability of

each defined stratum leading to a more efficient design while using the most efficient

design (ncases, nnoncases) obtained in Section 3.1. Here, the sampling is based on both

the event indicator of the first event and the time-to-first event.

Under bivariate sequential survival data, a first event case could be either a second

event case or a second event non-case. Let us denote Scases,cases as the subset of

Scases which are second event cases and Scases,noncases as the subset of Scases which are

second event non-cases. Using the most efficient design (ncases, nnoncases) obtained

in Section 3.1, the aim of Section 3.3 is to determine the number of second event

cases (mcases) versus the number of second event non-cases (mnoncases) that should

be selected under the generalized case-cohort design during the sampling procedure

where mcases +mnoncases = ncases. Here, the sampling is based on the event indicators

of the two sequential events.

Greater efficiency may be achieved for generalized case-cohort design by select-

ing the more informative subjects for purposes of detailed covariate measurement.

We can stratify all second event cases Scases,cases into strata (Scases,cases,1, Scases,cases,2,

Scases,cases,3) based on the observed time-to-event T2 values using two cut-off values

cL2 < cU2 as in (2.6). Similarly, we can stratify second event non-cases Scases,noncases

into strata (Scases,noncases,1, Scases,noncases,2, Scases,noncases,3) based on the observed cen-

soring time C − T1 values using two cut-off values c∗L2 < c∗U2 as in (2.7). The aim of

Section 3.4 is to determine sampling probability of each defined stratum leading to a

more efficient design using the most efficient design obtained in Section 3.2 and the
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most efficient design (mcases, mnoncases) obtained in Section 3.3. Here, the sampling is

based on both the two event indicators and the two sequential gap times.

Finally, the lowest standard errors of the coefficient estimate of the expensive co-

variate X obtained under the four different phase two sampling designs are compared

in Section 3.5.

3.1 Efficiency of generalized case-cohort designs based

on the first event indicator

Suppose we observed a large cohort of sequential survival data {(t1i, δ1i, t2i, δ2i) ∶ i =
1, ...,N}, where N = 50,000 at phase one. This phase one sample is stratified based on

the first event indicators of the survival data. We assume that 40% of the first event

is censored. Thus, there are about Ncases = 30,000 individuals in the case stratum for

the first event Scases and about Nnoncases = 20,000 individuals in the non-case stratum

for the first event Snoncases.

A subsample of fixed size n = 10,000 is drawn at phase two in order to obtain the

covariate which is costly or difficult to measure. The size of the subsample from the

case stratum Scases is denoted by ncases and the size of the subsample from the non-case

stratum Snoncases is denoted by nnoncases. Each allocation (ncases, nnoncases) defines a

generalized case-cohort design based on the first event indicator. Given the fixed size

n = 10,000 of subsample, one may choose how to allocate it among the strata of phase

one. The aim is to gain the efficiency when estimating the regression coefficient of the

expensive covariate. Hence, we will determine ncases (and therefore nnoncases) which

leads to an efficient design where ncases+nnoncases = n. For example, Table 3.1 shows the

results of estimates and standard errors for model scenario (α11 = 1, α21 = 1, γ1 = 0.5),
a model defined by (2.11) where α10 = 0.6, α11 = 1.0, γ1 = 0.5 and by (2.12) where
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Table 3.1: Coefficient estimates and their estimated standard errors under generalized case-
cohort designs based on the first event indicator

(α11, α21, γ1) Sampling scenario (ncases, nnoncases) α̂11 ŜE(α̂11) α̂21 ŜE(α̂21)

(1,1,0.5) 1 (1000,9000) 1.013 0.0292 1.042 0.0596
2 (2000,8000) 0.987 0.0261 1.045 0.0464
3 (3000,7000) 0.994 0.0251 0.954 0.0408
4 (4000,6000) 1.010 0.0243 1.019 0.0354
5 (5000,5000) 0.974 0.0246 0.986 0.0333
6 (6000,4000) 0.990 0.0250 0.993 0.0311
7 (7000,3000) 0.964 0.0257 1.028 0.0298
8 (8000,2000) 0.979 0.0268 0.964 0.0289
9 (9000,1000) 1.029 0.0280 1.027 0.0277
10 (10000,0) 0.960 0.0317 0.980 0.0288

α20 = 0.4, α21 = 1.0 and γ2 = 0.5 as described in Section 2.2.1. Among the ten

sampling scenarios, scenario 4 with (ncases = 4000, nnoncases = 6000) and scenario 5

with (ncases = nnoncases = 5000) give the minimum standard error estimates of the

coefficient estimate of the expensive covariate for time to first event thus are the most

efficient sampling designs. They will be used in both outcome-dependent BSS design

based on time to first event and its event indicator and generalized case-cohort design

based on first and second event indicators. Notice that these two sampling scenarios

do not yield the most efficient designs for the coefficient estimate of the expensive

covariate for time to second event. But we will address this when the sampling also

depends on the second event outcome data.

Table 3.2: The most efficient sampling scenario under generalized case-cohort designs based
on the first event indicator

(α11, α21, γ1) Sampling scenario (ncases, nnoncases)
(0,0,0.5) 5 (5000,5000)

(0,1,0.5) 5 (5000,5000)

(1,0,0.5) 4 (4000,6000)

Continued on next page
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Table 3.2 – Continued from previous page

(α11, α21, γ1) Sampling scenario (ncases, nnoncases)
(1,1,0.5) 4 (4000,6000)

(0,0,1.0) 4 (4000,6000)

(0,1,1.0) 4 (4000,6000)

(1,0,1.0) 5 (5000,5000)

(1,1,1.0) 5 (5000,5000)

(0,0,1.5) 4 (4000,6000)

(0,1,1.5) 4 (4000,6000)

(1,0,1.5) 9 (9000,1000)

(1,1,1.5) 8 (8000,2000)

The simulation results for other model scenarios are listed in Table A.1 of Appendix

A. Table 3.2 summarizes the sampling scenario (ncases, nnoncases) which minimizes the

standard error estimate thus is the most efficient sampling scenario for the stratifica-

tion based on the first event indicator under different model scenarios. It shows that

the most efficient generalized case-cohort design (ncases, nnoncases) based on the first

event indicator is when ncases ≈ nnoncases. This is true for all model scenarios except

two scenarios: (α11 = 1, α21 = 0, γ1 = 1.5) and (α11 = 1, α21 = 1, γ1 = 1.5). For these

two model scenarios, when we increase sampling from the case stratum Scases, the

efficiency of the coefficient estimate of the expensive covariate for time to first event

improves. The same conclusion can also be obtained from Figure 3.1 which provides

the trend of the efficiency for both α̂11 and α̂21 at various sampling scenarios under

different model scenarios.

Figure 3.1 shows that the most efficient sampling design for α̂11 does not yield
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the most efficient designs for α̂21. This is true for all model scenarios except two

scenarios: (α11 = 1, α21 = 0, γ1 = 1.5) and (α11 = 1, α21 = 1, γ1 = 1.5). For these

two model scenarios, when we increase sampling from the case stratum Scases, the

estimated standard errors of both α̂11 and α̂21 decrease.
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3.2 Efficiency of outcome-dependent BSS designs

based on the first gap time and its event indi-

cator

In order to achieve the possible efficiency gain of generalized case-cohort design, the

sampling of subjects could be done such that the sample is enriched with subjects

who are especially informative. We can stratify all first event cases Scases into strata

(Scases,1, Scases,2, Scases,3) based on the observed time-to-event T1 values using two cut-

off values cL1 < cU1 as in (2.2). Similarly, we can stratify all first event non-cases

Snoncases into strata (Snoncases,1, Snoncases,2, Snoncases,3) based on the observed censoring

time C values using two cut-off values c∗L1 < c∗U1 as in (2.3).

After obtaining the most efficient sampling design (ncases, nnoncases) for the strata

(Scases, Snoncases) in Section 3.1, we do outcome-dependent BSS on the strata (Scases,1,

Scases,2, Scases,3) and (Snoncases,1, Snoncases,2, Snoncases,3). Suppose the size of the subsam-

ple from the stratum Scases,j is denoted by ncases,j, j = 1,2,3, where ∑3
j=1 ncases,j = ncases.

Similarly, suppose the size of the subsample from the stratum Snoncases,j is denoted

by nnoncases,j, j = 1,2,3, where ∑3
j=1 nnoncases,j = nnoncases. Given the fixed sizes (ncases,

nnoncases) of samples, one may choose how to allocate it among the strata ((Scases,j ∶
j = 1,2,3), (Snoncases,j ∶ j = 1,2,3)). Different allocations ((ncases,j ∶ j = 1,2,3),
(nnoncases,j ∶ j = 1,2,3)) define different outcome-dependent BSS designs based on

the first gap time T1 and its event indicator δ1.

The aim is to determine ncases,j and nnoncases,j, j = 1,2,3, which lead to an efficient

design where ∑3
j=1 ncases,j = ncases and ∑3

j=1 nnoncases,j = nnoncases. Table 3.3 shows the

results of estimates and their standard errors under different allocations ((ncases,1,

ncases,2, ncases,3), (nnoncases,1, nnoncases,2, nnoncases,3)) for model scenario (α11 = 1, α21 =
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1, γ1 = 0.5), a model defined by (2.11) where α10 = 0.6, α11 = 1.0, γ1 = 0.5 and by

(2.12) where α20 = 0.4, α21 = 1.0 and γ2 = 0.5 as described in Section 2.2.1. We

see that sampling scenario 3 with ((ncases,j ∶ j = 1,2,3), (nnoncases,j ∶ j = 1,2,3)) =
((4000,0,0), (0,1000,5000)) minimizes the standard error (ŜE(α̂11)) thus is the most

efficient sampling scenario. In scenario 3, there is an increased sampling from the first

case stratum Scases,1. Selecting individuals with shorter time to first event yields more

efficient coefficient estimate. We can see this by looking at sampling scenarios 5, 6,

8, and 9 as well. In addition, in scenario 3, there is an increased sampling from the

third non-case stratum Snoncases,3. When we increase sampling from the stratum with

long censoring time, the efficiency improves. We can see this by looking at sampling

scenarios 5, 6, 8, and 9 as well. Notice that sampling scenarios 1, 4, and 7 yield

larger standard error compared to SRS in Scases and Snoncases. These three sampling

scenarios with increased sampling from the stratum with short censoring time lead to

inefficient designs. Sampling scenario 7 led to largest standard error with increased

sampling from both the stratum with large T1 and the stratum with short censoring

time.

The most efficient scenario 3 is used in outcome-dependent BSS design based on

the first and second gap times and their event indicators in Section 3.4.

Table 3.3: Coefficient estimates and their estimated standard errors under outcome-
dependent BSS designs based on the first gap time and its event indicator

(α11,α21, γ1) Sampling scenario (ncases,j ∶ j = 1,2,3), (nnoncases,j ∶ j = 1,2,3) α̂11 ŜE(α̂11) α̂21 ŜE(α̂21)

(1,1,0.5) SRS in Scases and

Snoncases

(666,2668,666),(1500,3000,1500) 1.019 0.0242 1.021 0.0355

1 (4000,0,0),(5000,1000,0) 0.979 0.0258 0.969 0.0399

2 (4000,0,0),(0,6000,0) 1.015 0.0205 1.002 0.0373

3 (4000,0,0),(0,1000,5000) 1.002 0.0189 0.971 0.0369

4 (0,4000,0),(5000,1000,0) 0.988 0.0321 1.012 0.0367

5 (3000,1000,0),(0,1000,5000) 1.010 0.0194 0.992 0.0358

6 (2000,1000,1000),(0,1000,5000) 1.0238 0.0201 0.988 0.0363

7 (0,0,4000),(5000,1000,0) 0.968 0.0490 0.960 0.0436

8 (4000,0,0),(1000,1000,4000) 1.009 0.0198 0.976 0.0372

9 (4000,0,0),(1000,2000,3000) 1.007 0.0201 0.990 0.0372
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The simulation results for other model scenarios are listed in Table A.2 of Appendix

A. Notice that the first allocation in each model scenario in Table A.2 is a SRS in Scases

and Snoncases which is defined by (2.4) and (2.5). Thus, it is a generalized case-cohort

design.

Table 3.4: The most efficient sampling scenario under outcome-dependent BSS designs based
on the first gap time and its event indicator

(α11, α21, γ1) Sampling scenario (ncases,j ∶ j = 1,2,3), (nnoncases,j ∶ j = 1,2,3)

(0,0,0.5) 3 (5000,0,0),(0,0,5000)

(0,1,0.5) 3 (5000,0,0),(0,0,5000)

(1,0,0.5) 3 (4000,0,0),(0,1000,5000)

(1,1,0.5) 3 (4000,0,0),(0,1000,5000)

(0,0,1.0) 3 (4000,0,0),(0,1000,5000)

(0,1,1.0) 3 (4000,0,0),(0,1000,5000)

(1,0,1.0) 3 (5000,0,0),(0,0,5000)

(1,1,1.0) 3 (5000,0,0),(0,0,5000)

(0,0,1.5) 3 (4000,0,0),(0,1000,5000)

(0,1,1.5) 3 (4000,0,0),(0,1000,5000)

(1,0,1.5) 2 (1000,4000,4000),(0,0,1000)

(1,1,1.5) 2 (1000,3000,4000),(0,0,2000)

Table 3.4 summarizes the sampling scenario ((ncases,j ∶ j = 1,2,3), (nnoncases,j ∶
j = 1,2,3)) which minimizes the standard error thus is the most efficient sampling

scenario for stratification based on the first event time and its event indicator under

different model scenarios. It shows that the most efficient outcome-dependent BSS
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design ((ncases,j ∶ j = 1,2,3), (nnoncases,j ∶ j = 1,2,3)) based on the first event time

and its event indicator is the sampling scenario 3 where we increase sampling from

the stratum with short first event time (i.e., the first case stratum Scases,1) and also

increase sampling from the stratum with long censoring time (i.e., the third non-case

stratum Snoncases,3). This is true for all model scenarios except two model scenarios:

(α11 = 1, α21 = 0, γ1 = 1.5) and (α11 = 1, α21 = 1, γ1 = 1.5). For these two model

scenarios, when we increase sampling from the midrange and long first event time

strata (i.e., the second and third case strata Scases,2, Scases,3) and also increase sampling

from the long censoring time stratum (i.e., the third non-case stratum Snoncases,3), the

efficiency of the coefficient estimate of the expensive covariate for time to first event

improves. The same conclusion can also be obtained from Figure 3.2 which provides

the trend of the efficiency for both α̂11 and α̂21 at various sampling scenarios under

different model scenarios.
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3.3 Efficiency of generalized case-cohort designs based

on the event indicators of the two sequential

gap times

In Section 3.1, a subsample of fixed size (n = 10,000) was drawn in order to obtain

a covariate which is expensive to measure based on the first event indicator. Table

3.2 provides us the most efficient sampling scenario for stratification based on the

first event indicator under different model scenarios. For example, sampling scenario

(ncases = 4000, nnoncases = 6000) minimizes the standard error thus is the most efficient

sampling scenario for model scenario (α11 = 1, α21 = 1, γ1 = 0.5). The above efficient

sampling design minimizes the variance of the coefficient estimate of the expensive

covariate for the first gap time. We are also interested in looking for efficient sam-

pling designs which minimize the variance of the coefficient estimate of the expensive

covariate for the second gap time.

In this section, a subsample of fixed size (n = 10,000) is drawn in order to obtain

a covariate which is expensive to measure based on the event indicators of the two

sequential gap times. Suppose (ncases, nnoncases) is the most efficient sampling scenario

for stratification based on the first event indicator. First a subsample of size nnoncases

is drawn from the first event non-case stratum Snoncases. Then a subsample of size

ncases can be drawn from the first event case stratum Scases based on the second event

indicator. Note that under bivariate sequential survival data, a T1 case could be either

a T2 case or a T2 non-case. Let us denote Scases,cases as the subset of Scases which includes

T2 cases and Scases,noncases as the subset of Scases which includes T2 non-cases. The size

of the subsample from the first and second event case stratum Scases,cases is denoted

by mcases and the size of the subsample from the first event case and second event
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non-case stratum Scases,noncases is denoted by mnoncases, where ncases =mcases +mnoncases.

Given the fixed size ncases of subsample, we investigate how to allocate it among

the strata (Scases,cases, Scases,noncases) which is based on T2 event indicator. Different

allocations (mcases, mnoncases) in addition to selecting nnoncases individuals from Snoncases

define different generalized case-cohort designs based on the event indicators of the

two sequential gap times.

We need to determine mcases and mnoncases which lead to an efficient design where

mcases + mnoncases = ncases. Efficient sampling design minimizes the variance of the

coefficient estimate of the expensive covariate for the second gap time. Table 3.5

shows the results of estimates and standard errors for model scenario (α11 = 1, α21 =
1, γ1 = 0.5), a model defined by (2.11) where α10 = 0.6, α11 = 1.0, γ1 = 0.5 and by

(2.12) where α20 = 0.4, α21 = 1.0 and γ2 = 0.5 as described in Section 2.2.1. We

see that sampling scenario 5 with (mcases = 2500, mnoncases = 1500) minimizes the

standard error estimate of α̂21, thus is the most efficient sampling scenario based on

ŜE(α̂21). It will be used in outcome-dependent BSS design based on the two sequential

gap times and their event indicators. On the other hand, sampling scenario 8 with

(mcases = 4000, mnoncases = 0) minimizes the standard error estimate of α̂11 thus is the

most efficient sampling scenario based on ŜE(α̂11).

Table 3.5: Coefficient estimates and their estimated standard errors under generalized case-
cohort designs based on the event indicators of the two sequential gap times

(α11, α21, γ1) Sampling scenario (mcases, mnoncases) α̂11 ŜE(α̂11) α̂21 ŜE(α̂21)

(1,1,0.5) 1 (500,3500) 1.006 0.0288 1.063 0.0473

2 (1000,3000) 1.000 0.0269 1.008 0.0423

3 (1500,2500) 0.983 0.0262 0.983 0.0390

4 (2000,2000) 0.998 0.0252 0.995 0.0371

Continued on next page
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Table 3.5 – Continued from previous page

(α11, α21, γ1) Sampling scenario (mcases, mnoncases) α̂11 ŜE(α̂11) α̂21 ŜE(α̂21)

5 (2500,1500) 1.009 0.0244 1.028 0.0360

6 (3000,1000) 1.011 0.0241 0.976 0.0361

7 (3500,500) 0.993 0.0238 0.959 0.0362

8 (4000,0) 1.001 0.0233 1.026 0.0370

Table 3.6: The most efficient sampling scenario under generalized case-cohort designs based
on the event indicators of the two sequential gap times

(α11, α21, γ1) Sampling scenario (mcases, mnoncases)

(0,0,0.5) 10 (5000,0)

(0,1,0.5) 10 (5000,0)

(1,0,0.5) 8 (4000,0)

(1,1,0.5) 5 (2500,1500)

(0,0,1.0) 6 (3000,1000)

(0,1,1.0) 6 (3000,1000)

(1,0,1.0) 7 (3500,1500)

(1,1,1.0) 5 (2500,2500)

(0,0,1.5) 7 (3500,500)

(0,1,1.5) 7 (3500,500)

(1,0,1.5) 10 (5000,4000)

(1,1,1.5) 10 (5000,3000)

The simulation results for other model scenarios are listed in Table A.3 of Appendix

A. Table 3.6 summarizes the sampling scenario (mcases, mnoncases) which minimizes
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the standard error estimate of α̂21 thus is the most efficient sampling scenario based

on ŜE(α̂21) for stratification based on the event indicators of the two sequential gap

times under different model scenarios. It shows that, when we increase sampling

from the stratum Scases,cases, the efficiency of the coefficient estimate of the expensive

covariate for time to second event improves. This is true for all model scenarios

except the two scenarios (α11 = 1, α21 = 1, γ1 = 1.0) and (α11 = 1, α21 = 0, γ1 = 1.5).
For these two model scenarios, the estimated standard errors of α̂21 minimizes when

mcases ≈mnoncases.

3.4 Efficiency of outcome-dependent BSS designs

based on the two sequential gap times and their

event indicators

As indicated in Section 3.1, the most efficient sampling design for α̂11 based on the first

event indicator does not necessarily yield the most efficient sampling design for α̂21. To

address this, in addition to sampling based on the event indicators, now we consider

sampling based on the two sequential gap times. We stratify all T2 cases Scases,cases

into strata (Scases,cases,1, Scases,cases,2, Scases,cases,3) based on the observed time-to-second

event using two cut-off values cL2 < cU2 as in (2.6). Similarly, we can stratify T2

non-cases Scases,noncases into strata (Scases,noncases,1, Scases,noncases,2, Scases,noncases,3) based

on observed censoring time C −T1 values using two cut-off values c∗L2 < c∗U2 as in (2.7).

In Section 3.1, a subsample of fixed size (n = 10,000) is drawn from a large cohort of

sequential survival data of sizeN = 50,000 under generalized case-cohort designs based

on the first event indicator. Table 3.2 provides us the most efficient sampling scenarios

(ncases, nnoncases) for α̂11 under different model scenarios, where ncases + nnoncases = n.
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After obtaining the most efficient sampling design (ncases, nnoncases) in Section 3.1,

we considered outcome-dependent BSS based on the first gap time and its event in-

dicator in Section 3.2. Table 3.4 summarizes the most efficient sampling scenarios

((ncases,j ∶ j = 1,2,3), (nnoncases,j ∶ j = 1,2,3)) for α̂11 under different model scenar-

ios, where ∑3
j=1 ncases,j = ncases and ∑3

j=1 nnoncases,j = nnoncases. These efficient sampling

designs minimize the variance of α̂11. We are also interested in looking for efficient

sampling designs which minimize the variance of α̂21. After obtaining the most effi-

cient sampling design (ncases, nnoncases) in Section 3.1, a subsample of size ncases was

drawn from the first event case stratum Scases under generalized case-cohort designs

based on the second event indicator in Section 3.3. Table 3.6 summarizes the most

efficient sampling scenarios (mcases, mnoncases) for α̂21 under different model scenarios,

where ncases =mcases +mnoncases.

After obtaining the most efficient sampling design (mcases, mnoncases) for the strata
(Scases,cases, Scases,noncases), we do outcome-dependent BSS on the strata (Scases,cases,1,

Scases,cases,2, Scases,cases,3) and (Scases,noncases,1, Scases,noncases,2, Scases,noncases,3). Suppose the

size of the subsample from the stratum Scases,cases,j is denoted by mcases,j, j = 1,2,3,
where ∑3

j=1mcases,j = mcases. Similarly, suppose the size of the subsample from the

stratum Scases,noncases,j is denoted by mnoncases,j, j = 1,2,3, where ∑3
j=1mnoncases,j =

mnoncases. Given the fixed sizes (mcases, mnoncases) of subsamples, one may choose

how to allocate it among the strata ((Scases,cases,j ∶ j = 1,2,3), (Scases,noncases,j ∶ j =
1,2,3)). Different allocations ((mcases,j ∶ j = 1,2,3), (mnoncases,j ∶ j = 1,2,3)) define

different outcome-dependent BSS designs based on the second gap time T2 and its

event indicator.

We need to determine mcases,j and mnoncases,j, j = 1,2,3, which lead to an efficient

design where ∑3
j=1mcases,j = mcases and ∑3

j=1mnoncases,j = mnoncases. Efficient sampling

design minimizes the variance of the coefficient estimate of the expensive covariate for
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time-to-event T2. Table 3.7 shows the results of estimates and standard errors for dif-

ferent allocations ((mcases,1, mcases,2, mcases,3), (mnoncases,1, mnoncases,2, mnoncases,3)) for
model scenario (α11 = 1, α21 = 1, γ1 = 0.5), a model defined by (2.11) where α10 = 0.6,
α11 = 1.0, γ1 = 0.5 and by (2.12) where α20 = 0.4, α21 = 1.0 and γ2 = 0.5 as de-

scribed in Section 2.2.1. We see that sampling scenario 3 with ((mcases,j ∶ j = 1,2,3),
(mnoncases,j ∶ j = 1,2,3)) = ((2500,0,0), (0,0,1500)) minimizes the standard error es-

timate of α̂21 thus is the most efficient sampling scenario based on ŜE(α̂21). In the

most efficient scenario 3, there is an increased sampling from the first T2 case stratum

Scases,cases,1. When we increase sampling from the stratum with short time-to-second

event, the efficiency improves. On the other hand, in the most efficient scenario

3, there is an increased sampling from the third T2 non-case stratum Scases,noncases,3.

When we increase sampling from the stratum with long censoring times, the efficiency

improves. Notice that sampling scenarios 4, 7 and 8 have larger standard error esti-

mates compared to other sampling scenarios. These three sampling scenarios increase

sampling from the stratum with long time-to-second event and/or the short censoring

time which yield inefficient designs.

In sampling scenario 3 with ((mcases,j ∶ j = 1,2,3), (mnoncases,j ∶ j = 1,2,3)) =
((2500,0,0), (0,0,1500)), we allocate mcases,1 = 2500 to the intersection of the first

(short) T2 case stratum Scases,cases,1 and the first (short) T1 case stratum Scases,1. When

mcases,1 is larger than the number of individuals in the intersection Scases,cases,1∩Scases,1,

the remaining could be allocated to either Scases,cases,1 ∩Scases,2 or Scases,cases,2 ∩Scases,1.

The first approach ensures gain in efficiency for the estimation of the regression coef-

ficient of the expensive covariate for the second event time as shown in Table 3.7 with

ŜE(α̂11) = 0.0221 and ŜE(α̂21) = 0.0253. On the other hand, the second approach will

gain efficiency when estimating the regression coefficient of the expensive covariate

for the first event time with ŜE(α̂11) = 0.0209 and ŜE(α̂21) = 0.0288.
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Table 3.7: Coefficient estimates and their estimated standard errors under outcome-
dependent BSS designs based on the two sequential gap times and their event indicators

(α11,α21, γ1) Sampling scenario (mcases,j ∶ j = 1,2,3), (mnoncases,j ∶ j = 1,2,3) α̂11 ŜE(α̂11) α̂21 ŜE(α̂21)

(1,1,0.5) SRS in Scases,cases

and Scases,noncases

(316,1868,316),(367,766,367) 1.003 0.0204 1.021 0.0441

1 (2500,0,0),(1500,0,0) 1.006 0.0211 1.000 0.0310

2 (2500,0,0),(0,1500,0) 1.004 0.0215 0.993 0.0277

3 (2500,0,0),(0,0,1500) 0.993 0.0221 1.021 0.0253

4 (0,2500,0),(1500,0,0) 1.011 0.0206 1.021 0.0618

5 (0,2500,0),(0,1500,0) 1.003 0.0205 1.003 0.0518

6 (0,2500,0),(0,0,1500) 1.010 0.0200 1.043 0.0420

7 (0,0,2500),(1500,0,0) 1.025 0.0260 1.046 0.0757

8 (0,0,2500),(0,1500,0) 1.030 0.0269 1.032 0.0670

9 (0,0,2500),(0,0,1500) 1.034 0.0255 1.068 0.0522

The simulation results for other model scenarios are listed in Table A.4 of Appendix

A. Notice that the first allocation in each model scenario in Table A.4 is a SRS in

Scases,cases and Scases,noncases which is defined by (2.8) and (2.9). Thus, it is a generalized

case-cohort design.

Table 3.8: The most efficient sampling scenario under outcome-dependent BSS designs based
on the two sequential gap times and their event indicators

(α11, α21, γ1) Sampling scenario (mcases,j ∶ j = 1,2,3), (mnoncases,j ∶ j = 1,2,3)

(0,0,0.5) 3 (2500,2500,0),(0,0,0)

(0,1,0.5) 3 (2500,2500,0),(0,0,0)

(1,0,0.5) 3 (2500,1500,0),(0,0,0)

(1,1,0.5) 3 (2500,0,0),(0,0,1500)

(0,0,1.0) 3 (2500,500,0),(0,0,1000)

(0,1,1.0) 3 (2500,500,0),(0,0,1000)

(1,0,1.0) 3 (2500,1000,0),(0,0,1500)

(1,1,1.0) 3 (2500,0,0),(0,0,2500)

(0,0,1.5) 3 (2500,100,0),(0,0,500)

Continued on next page
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Table 3.8 – Continued from previous page

(α11, α21, γ1) Sampling scenario (mcases,j ∶ j = 1,2,3), (mnoncases,j ∶ j = 1,2,3)

(0,1,1.5) 3 (2500,1000,0),(0,0,500)

(1,0,1.5) 3 (2500,2500,0),(0,1500,2500)

(1,1,1.5) 3 (2500,2500,0),(0,500,2500)

Table 3.8 summarizes the sampling scenario ((mcases,j ∶ j = 1,2,3), (mnoncases,j ∶
j = 1,2,3)) which minimizes the standard error estimate of α̂21 thus is the most

efficient sampling scenario based on ŜE(α̂21) for stratification based on the two se-

quential gap times and their event indicators under different model scenarios. It

shows that the most efficient outcome-dependent BSS design ((mcases,j ∶ j = 1,2,3),
(mnoncases,j ∶ j = 1,2,3)) based on the two sequential gap times and their event indi-

cators is the sampling scenario 3 where we increase sampling from the stratum with

short second event times (i.e., the first T2 case stratum Scases,cases,1) and also increase

sampling from the stratum with long censoring times (i.e., the third T2 non-case stra-

tum Scases,noncases,3). This is true for all model scenarios. The same conclusion can

also be obtained from Figure 3.3 which provides the trend of the efficiency for both

α̂11 and α̂21 at various sampling scenarios under different model scenarios.

Notice that in Table 3.8, the sum of mcases,j, j = 1,2,3, is mcases and the sum of

mnoncases,j, j = 1,2,3, is mnoncases, where (mcases, mnoncases) is selected based on the

most efficient design identified in Table 3.6.
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3.5 Summary

Table 3.9 and Figure 3.4 summarize standard errors of α̂11 and α̂21 for the most

efficient sampling scenarios under two-phase outcome-dependent sampling designs for

different model scenarios when the dependence between the two sequential gap times

is moderate. Design 1 represents a generalized case-cohort design based on the first

event indicator. Design 2 represents an outcome-dependent BSS design based on

the first gap time and its event indicator. Design 3 represents a generalized case-

cohort design based on the event indicators of the two sequential gap times. Design 4

represents an outcome-dependent BSS design based on the two sequential gap times

and their event indicators. Recall that the most efficient sampling scenarios for design

1 and design 2 are based on ŜE(α̂11). On the other hand, the most efficient sampling

scenarios for design 3 and design 4 are based on ŜE(α̂21).
Under design 2, there is a gain on efficiency when estimating the regression coeffi-

cient of the expensive covariate for time to first event compared with design 1. Also,

under design 4, there is a gain on efficiency when estimating the regression coefficient

of the expensive covariate for time to second event compared with design 2. Moreover,

under design 4, the difference between standard errors of α̂11 and α̂21 for the most

efficient sampling scenario is reduced. Therefore, design 4 (i.e., outcome-dependent

BSS design based on the two sequential gap times and their event indicators) is rec-

ommended.
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Table 3.9: Lowest standard errors of the coefficient estimates under two-phase outcome-
dependent sampling designs

(α11, α21, γ1) standard errors design 1 design 2 design 3 design 4

(0,0,0.5) ŜE(α̂11) 0.0293 0.0205 0.0239 0.0209

ŜE(α̂21) 0.0419 0.0408 0.0396 0.0352

(0,1,0.5) ŜE(α̂11) 0.0278 0.0199 0.0262 0.0200

ŜE(α̂21) 0.0347 0.0339 0.0349 0.0296

(1,0,0.5) ŜE(α̂11) 0.0241 0.0187 0.0232 0.0193

ŜE(α̂21) 0.0364 0.0330 0.0335 0.0310

(1,1,0.5) ŜE(α̂11) 0.0243 0.0189 0.0244 0.0221

ŜE(α̂21) 0.0354 0.0369 0.0360 0.0253

(0,0,1.0) ŜE(α̂11) 0.0289 0.0192 0.0285 0.0211

ŜE(α̂21) 0.0444 0.0441 0.0426 0.0311

(0,1,1.0) ŜE(α̂11) 0.0270 0.0183 0.0273 0.0204

ŜE(α̂21) 0.0350 0.0341 0.0355 0.0265

(1,0,1.0) ŜE(α̂11) 0.0243 0.0191 0.0244 0.0198

ŜE(α̂21) 0.0316 0.0301 0.0313 0.0253

(1,1,1.0) ŜE(α̂11) 0.0241 0.0189 0.0246 0.0215

ŜE(α̂21) 0.0301 0.0324 0.0305 0.0217

(0,0,1.5) ŜE(α̂11) 0.0291 0.0184 0.0275 0.0222

ŜE(α̂21) 0.0445 0.0437 0.0418 0.0334

(0,1,1.5) ŜE(α̂11) 0.0270 0.0175 0.0260 0.0185

ŜE(α̂21) 0.0350 0.0336 0.0341 0.0274

(1,0,1.5) ŜE(α̂11) 0.0245 0.0205 0.0236 0.0220

ŜE(α̂21) 0.0265 0.0263 0.0259 0.0219

(1,1,1.5) ŜE(α̂11) 0.0239 0.0201 0.0238 0.0218

ŜE(α̂21) 0.0255 0.0261 0.0245 0.0204





Chapter 4

Efficiency of two-phase

outcome-dependent sampling

designs when the dependence

between time-to-events is high

The objective of this study is to investigate efficient two-phase outcome-dependent

sampling designs for bivariate sequential survival data under a predetermined phase

two sample size. Four phase two sampling designs were introduced in Chapter 2: (1)

generalized case-cohort design based on the event indicator of the first gap time; (2)

outcome-dependent BSS design based on the first gap time and its event indicator;

(3) generalized case-cohort design based on the event indicators of the two sequential

gap times; and (4) outcome-dependent BSS design based on the two sequential gap

times and their event indicators.

In Chapter 3, efficiency of outcome-dependent sampling designs were investigated

when the dependence between sequential gap times is moderate. In this chapter, a
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simulation study was conducted to study the efficiency of the phase two sampling

designs under strong dependence between sequential gap times. We generated a large

random bivariate survival time sample with size N = 50,000 from the joint conditional

distribution of T1 and T2 given X = x in (2.10) with the Clayton copula parameter

value φ = 8, and the covariate X follows the Bernoulli distribution with probability of

success p = P (X = 1) = 0.25. The corresponding Kendall’s tau value is τ = φ/(φ+ 2) =
0.8, and therefore, there is a high dependence between the two sequential gap times

T1 and T2 given X = x. The marginal distributions of T1 and T2 given X = x are

modelled by Weibull regression with survival functions (2.11) and (2.12), respectively.

The censoring time C is generated from Uniform(0, b) such that about 40% of T1

survival times are censored. The upper bound b of Uniform(0, b) and T2 censoring rate
are given in Table 2.1. At phase one, suppose the observed data is {(t1, δ1, t2, δ2) ∶ i =
1, ...,N} where (t1, t2) = (min(T1, C),min(T2, C − t1)) and (δ1, δ2) = (I[T1 = t1], I[T2 =
t2]) are the observed survival times and their event indicators, respectively.

A subsample of fixed size n is drawn at phase two in order to obtain a measurement

of covariate X which is costly or difficult to measure. We want to investigate gener-

alized case-cohort and outcome-dependent BSS designs that result in more efficient

sampling designs with bivariate sequential survival data.

The phase one cohort can be stratified into the strata (Scases, Snoncases) based on

the event indicator δ1 of the first gap time T1. Suppose the size of the subsample

from the case stratum Scases is denoted by ncases and the size of the subsample from

the non-case stratum Snoncases is denoted by nnoncases, where ncases + nnoncases = n. The
aim of Section 4.1 is to determine the number of first event cases (ncases) versus the

number of first event non-cases (nnoncases) that should be selected at phase two where

ncases + nnoncases = n. Here, the sampling is only based on the event indicator of the

first event.



83

A more efficient generalized case-cohort design could be achieved by selecting a

more informative sample. We can stratify all first event cases Scases into strata (Scases,1,

Scases,2, Scases,3) based on the observed time-to-event T1 values using two cut-off values

cL1 < cU1 as in (2.2). Similarly, we can stratify all first event non-cases Snoncases into

strata (Snoncases,1, Snoncases,2, Snoncases,3) based on the observed censoring time C values

using two cut-off values c∗L1 < c∗U1 as in (2.3). The aim of Section 4.2 is to determine

sampling probability of each defined stratum leading to a more efficient design while

using the most efficient design (ncases, nnoncases) obtained in Section 4.1. Here, the

sampling is based on both the event indicator of the first event and the time-to-first

event.

Under bivariate sequential survival data, a first event case could be either a second

event case or a second event non-case. Let us denote Scases,cases as the subset of

Scases which are second event cases and Scases,noncases as the subset of Scases which are

second event non-cases. Using the most efficient design (ncases, nnoncases) obtained

in Section 4.1, the aim of Section 4.3 is to determine the number of second event

cases (mcases) versus the number of second event non-cases (mnoncases) that should

be selected under the generalized case-cohort design during the sampling procedure

where mcases +mnoncases = ncases. Here, the sampling is based on the event indicators

of the two sequential events.

By selecting the more informative subjects for purposes of detailed covariate mea-

surement, a more efficient generalized case-cohort design could be achieved. We can

stratify all second event cases Scases,cases into strata (Scases,cases,1, Scases,cases,2, Scases,cases,3)

based on the observed time-to-event T2 values using two cut-off values cL2 < cU2 as

in (2.6). Similarly, we can stratify second event non-cases Scases,noncases into strata

(Scases,noncases,1, Scases,noncases,2, Scases,noncases,3) based on the observed censoring time

C − T1 values using two cut-off values c∗L2 < c∗U2 as in (2.7). The aim of Section 4.4 is
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to determine sampling probability of each defined stratum leading to a more efficient

design using the most efficient design obtained in Section 4.2 and the most efficient

design (mcases, mnoncases) obtained in Section 4.3. Here, the sampling is based on both

the two event indicators and the two sequential gap times.

Finally, the lowest standard errors of the coefficient estimate of the expensive co-

variate X obtained under the four different phase two sampling designs are compared

in Section 4.5.

4.1 Efficiency of generalized case-cohort designs based

on the first event indicator

Suppose we observed a large cohort of sequential survival data {(t1i, δ1i, t2i, δ2i) ∶ i =
1, ...,N}, where N = 50,000 at phase one. This phase one sample is stratified based on

the first event indicators of the survival data. We assume that 40% of the first event

is censored. Thus, there are about Ncases = 30,000 individuals in the case stratum

Scases and about Nnoncases = 20,000 individuals in the non-case stratum Snoncases.

A subsample of fixed size n = 10,000 is drawn at phase two in order to obtain the

covariate which is costly or difficult to measure. The size of the subsample from the

case stratum Scases is denoted by ncases and the size of the subsample from the non-case

stratum Snoncases is denoted by nnoncases. Each allocation (ncases, nnoncases) defines a

generalized case-cohort design based on the first event indicator. Given the fixed size

n = 10,000 of subsample, one may choose how to allocate it among the strata of phase

one. The aim is to gain the efficiency when estimating the regression coefficient of the

expensive covariate. Hence, we will determine ncases (and therefore nnoncases) which

leads to an efficient design where ncases+nnoncases = n. For example, Table 4.1 shows the

results of estimates and standard errors for model scenario (α11 = 1, α21 = 1, γ1 = 0.5),
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Table 4.1: Coefficient estimates and their estimated standard errors under generalized case-
cohort designs based on the first event indicator

(α11, α21, γ1) Sampling scenario (ncases, nnoncases) α̂11 ŜE(α̂11) α̂21 ŜE(α̂21)

(1,1,0.5) 1 (1000,9000) 0.999 0.0282 1.013 0.0310
2 (2000,8000) 0.982 0.0253 0.997 0.0271
3 (3000,7000) 0.979 0.0244 0.969 0.0261
4 (4000,6000) 1.005 0.0235 1.012 0.0247
5 (5000,5000) 0.972 0.0238 0.979 0.0248
6 (6000,4000) 0.982 0.0242 0.985 0.0249
7 (7000,3000) 0.937 0.0250 0.950 0.0256
8 (8000,2000) 0.982 0.0258 0.976 0.0263
9 (9000,1000) 0.994 0.0269 0.995 0.0271
10 (10000,0) 0.976 0.0294 0.981 0.0294

a model defined by (2.11) where α10 = 0.6, α11 = 1.0, γ1 = 0.5 and by (2.12) where

α20 = 0.4, α21 = 1.0 and γ2 = 0.5 as described in Section 2.2.1. Among the ten

sampling scenarios, scenario 4 with (ncases = 4000, nnoncases = 6000) and scenario 5 with

(ncases = nnoncases = 5000) give the minimum standard error estimates of the coefficient

estimate of the expensive covariate for time to first event thus are the most efficient

sampling designs. They will be used in both outcome-dependent BSS design based

on time to first event and its event indicator and generalized case-cohort design based

on first and second event indicators. Notice that these two sampling scenarios also

yield the most efficient designs for the coefficient estimate of the expensive covariate

for time to second event.

Table 4.2: The most efficient sampling scenario under generalized case-cohort designs based
on the first event indicator

(α11, α21, γ1) Sampling scenario (ncases, nnoncases)

(0,0,0.5) 5 (5000,5000)

(0,1,0.5) 1 (1000,9000)

(1,0,0.5) 1 (1000,9000)

Continued on next page
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(α11, α21, γ1) Sampling scenario (ncases, nnoncases)

(1,1,0.5) 4 (4000,6000)

(0,0,1.0) 4 (4000,6000)

(0,1,1.0) 1 (1000,9000)

(1,0,1.0) 1 (1000,9000)

(1,1,1.0) 5 (5000,5000)

(0,0,1.5) 4 (4000,6000)

(0,1,1.5) 1 (1000,9000)

(1,0,1.5) 1 (1000,9000)

(1,1,1.5) 10 (10000,0)

The simulation results for other model scenarios are listed in Table B.1 of Ap-

pendix B. Table 4.2 summarizes the sampling scenario (ncases, nnoncases) which min-

imizes the standard error estimate thus is the most efficient sampling scenario for

the stratification based on the first event indicator under different model scenarios.

It shows that, for the following five model scenarios: (α11 = 0, α21 = 0, γ1 = 0.5),
(α11 = 1, α21 = 1, γ1 = 0.5), (α11 = 0, α21 = 0, γ1 = 1.0), (α11 = 1, α21 = 1, γ1 = 1.0),
and (α11 = 0, α21 = 0, γ1 = 1.5), the most efficient generalized case-cohort design

(ncases, nnoncases) based on the first event indicator is when ncases ≈ nnoncases. For the

following six model scenarios: (α11 = 0, α21 = 1, γ1 = 0.5), (α11 = 1, α21 = 0, γ1 = 0.5),
(α11 = 0, α21 = 1, γ1 = 1.0), (α11 = 1, α21 = 0, γ1 = 1.0), (α11 = 0, α21 = 1, γ1 = 1.5),
and (α11 = 1, α21 = 0, γ1 = 1.5), when we increase sampling from the non-case stratum

Snoncases for the first event, the efficiency of the coefficient estimate of the expensive

covariate for time to first event improves. It requires further study to understand why
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this design is more efficient for these model scenarios when the dependence between

sequential gap times is high.

In Section 3.1, when the dependence between gap times is moderate, it is found

that the most efficient design is obtained when ncases ≈ nnoncases. Figure C.1 and Table

C.1 of Appendix C describe the estimated standard errors of the coefficient estimates

of the expensive covariate under generalized case-cohort designs based on the first

event indicator for model scenario (α11 = 0, α21 = 1, γ1 = 0.5) when the dependence

between time-to-events is changed from moderate to high. Similarly, Figure C.2 and

Table C.2 of Appendix C describe the estimated standard errors of the coefficient

estimates of the expensive covariate under generalized case-cohort designs based on

the first event indicator for model scenario (α11 = 1, α21 = 0, γ1 = 1.5) when the

dependence between time-to-events is changed from moderate to high.

For the model scenario (α11 = 1, α21 = 1, γ1 = 1.5), when we increase sampling

from the case stratum Scases, the efficiency of the coefficient estimate of the expensive

covariate for time to first event improves. The same conclusion can also be obtained

from Figure 4.1 which provides the trend of the efficiency for both α̂11 and α̂21 at

various sampling scenarios under different model scenarios.

Figure 4.1 shows that the most efficient sampling design for α̂11 yields the most

efficient designs for α̂21. This is true for all model scenarios.
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4.2 Efficiency of outcome-dependent BSS designs

based on the first gap time and its event indi-

cator

Greater efficiency may be achieved for generalized case-cohort design by selecting the

more informative subjects for purposes of detailed covariate measurement. We can

stratify all first event cases Scases into strata (Scases,1, Scases,2, Scases,3) based on the ob-

served time-to-event T1 values using two cut-off values cL1 < cU1 as in (2.2). Similarly,

we can stratify all first event non-cases Snoncases into strata (Snoncases,1, Snoncases,2,

Snoncases,3) based on the observed censoring time C values using two cut-off values

c∗L1 < c∗U1 as in (2.3).

After obtaining the most efficient sampling design (ncases, nnoncases) for the strata

(Scases, Snoncases) in Section 4.1, we do outcome-dependent BSS on the strata (Scases,1,

Scases,2, Scases,3) and (Snoncases,1, Snoncases,2, Snoncases,3). Suppose the size of the subsam-

ple from the stratum Scases,j is denoted by ncases,j, j = 1,2,3, where ∑3
j=1 ncases,j = ncases.

Similarly, suppose the size of the subsample from the stratum Snoncases,j is denoted

by nnoncases,j, j = 1,2,3, where ∑3
j=1 nnoncases,j = nnoncases. Given the fixed sizes (ncases,

nnoncases) of samples, one may choose how to allocate it among the strata ((Scases,j ∶
j = 1,2,3), (Snoncases,j ∶ j = 1,2,3)). Different allocations ((ncases,j ∶ j = 1,2,3),
(nnoncases,j ∶ j = 1,2,3)) define different outcome-dependent BSS designs based on

the first gap time T1 and its event indicator δ1.

The aim is to determine ncases,j and nnoncases,j, j = 1,2,3, which lead to an efficient

design where ∑3
j=1 ncases,j = ncases and ∑3

j=1 nnoncases,j = nnoncases. Table 4.3 shows the

results of estimates and their standard errors under different allocations ((ncases,1,

ncases,2, ncases,3), (nnoncases,1, nnoncases,2, nnoncases,3)) for model scenario (α11 = 1, α21 =
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1, γ1 = 0.5), a model defined by (2.11) where α10 = 0.6, α11 = 1.0, γ1 = 0.5 and by

(2.12) where α20 = 0.4, α21 = 1.0 and γ2 = 0.5 as described in Section 2.2.1. We

see that sampling scenario 3 with ((ncases,j ∶ j = 1,2,3), (nnoncases,j ∶ j = 1,2,3)) =
((4000,0,0), (0,1000,5000)) minimizes the standard error (ŜE(α̂11)) thus is the most

efficient sampling scenario. In scenario 3, there is an increased sampling from the first

case stratum Scases,1. Selecting individuals with shorter time to first event yields more

efficient coefficient estimate. In addition, in scenario 3, there is an increased sampling

from the third non-case stratum Snoncases,3. When we increase sampling from the

stratum with long censoring time, the efficiency improves. Notice that in this chapter,

there are six sampling scenarios 1, 4, 5, 7, 8, and 9 which yield larger standard error

compare to SRS in Scases and Snoncases while only three sampling scenarios 1, 4, and

7 yield larger standard error compare to SRS in Scases and Snoncases in Section 3.2.

Sampling scenarios 1, 4, and 7 with increased sampling from the stratum with short

censoring time yield inefficient designs. Sampling scenarios 8 and 9 with increased

sampling from the stratum with long time to first event yield inefficient designs.

Sampling scenario 5 also yields a larger standard error with increased sampling from

both the stratum with midrange time to first event and the stratum with midrange

censoring time.

The most efficient scenario 3 is used in outcome-dependent BSS design based on

the first and second gap times and their event indicators in Section 4.4.

Table 4.3: Coefficient estimates and their estimated standard errors under outcome-
dependent BSS designs based on the first gap time and its event indicator

(α11,α21, γ1) Sampling scenario (ncases,j ∶ j = 1,2,3), (nnoncases,j ∶ j = 1,2,3) α̂11 ŜE(α̂11) α̂21 ŜE(α̂21)

(1,1,0.5) SRS in Scases and

Snoncases

(666,2668,666),(1500,3000,1500) 1.011 0.0234 1.017 0.0246

1 (4000,0,0),(5000,1000,0) 0.976 0.0252 0.975 0.0261

2 (4000,0,0),(0,6000,0) 0.990 0.0204 0.986 0.0215

3 (4000,0,0),(0,1000,5000) 1.003 0.0187 1.001 0.0198

4 (0,4000,0),(5000,1000,0) 0.956 0.0305 0.963 0.0315

5 (0,4000,0),(0,6000,0) 0.961 0.0245 0.962 0.0259

Continued on next page
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(α11,α21, γ1) Sampling scenario (ncases,j ∶ j = 1,2,3), (nnoncases,j ∶ j = 1,2,3) α̂11 ŜE(α̂11) α̂21 ŜE(α̂21)

6 (0,4000,0),(0,1000,5000) 0.976 0.0217 0.984 0.0232

7 (0,0,4000),(5000,1000,0) 0.970 0.0406 0.979 0.0399

8 (0,0,4000),(0,6000,0) 0.953 0.0370 0.961 0.0368

9 (0,0,4000),(0,1000,5000) 0.976 0.0311 0.986 0.0322

The simulation results for other model scenarios are listed in Table B.2 of Appendix

B. Notice that the first allocation in each model scenario in Table B.2 is a SRS in Scases

and Snoncases which is defined by (2.4) and (2.5). Thus, it is a generalized case-cohort

design.

Table 4.4: The most efficient sampling scenario under outcome-dependent BSS designs based
on the first gap time and its event indicator

(α11, α21, γ1) Sampling scenario (ncases,j ∶ j = 1,2,3), (nnoncases,j ∶ j = 1,2,3)

(0,0,0.5) 3 (5000,0,0),(0,0,5000)

(0,1,0.5) 3 (1000,0,0),(0,4000,5000)

(1,0,0.5) 9 (0,0,1000),(0,4000,5000)

(1,1,0.5) 3 (4000,0,0),(0,1000,5000)

(0,0,1.0) 3 (4000,0,0),(0,1000,5000)

(0,1,1.0) 9 (0,0,1000),(0,4000,5000)

(1,0,1.0) 9 (0,0,1000),(0,4000,5000)

(1,1,1.0) 3 (5000,0,0),(0,0,5000)

(0,0,1.5) 3 (4000,0,0),(0,1000,5000)

(0,1,1.5) 9 (0,0,1000),(0,4000,5000)

(1,0,1.5) 9 (0,0,1000),(0,4000,5000)

(1,1,1.5) 8 (1000,5000,4000),(0,0,0)
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Table 4.4 summarizes the sampling scenario ((ncases,j ∶ j = 1,2,3), (nnoncases,j ∶ j =
1,2,3)) which minimizes the standard error thus is the most efficient sampling scenario

for stratification based on the first event time and its event indicator under different

model scenarios. It shows that, for the following six model scenarios: (α11 = 0, α21 =
0, γ1 = 0.5), (α11 = 0, α21 = 1, γ1 = 0.5), (α11 = 1, α21 = 1, γ1 = 0.5), (α11 = 0, α21 =
0, γ1 = 1.0), (α11 = 1, α21 = 1, γ1 = 1.0), and (α11 = 0, α21 = 0, γ1 = 1.5), the most

efficient outcome-dependent BSS design ((ncases,j ∶ j = 1,2,3), (nnoncases,j ∶ j = 1,2,3))
based on the first event time and its event indicator is the sampling scenario 3 where

we increase sampling from the stratum with short first event time (i.e., the first case

stratum Scases,1) and also increase sampling from the stratum with long censoring time

(i.e., the third non-case stratum Snoncases,3). For the following five model scenarios:

(α11 = 1, α21 = 0, γ1 = 0.5), (α11 = 0, α21 = 1, γ1 = 1.0), (α11 = 1, α21 = 0, γ1 = 1.0),
(α11 = 0, α21 = 1, γ1 = 1.5), and (α11 = 1, α21 = 0, γ1 = 1.5), the most efficient design is

the sampling scenario 9 where we increase sampling from the stratum with long first

event time (i.e., the third case stratum Scases,3) and also increase sampling from the

stratum with long censoring time (i.e., the third non-case stratum Snoncases,3). Among

these five model scenarios with sampling scenario 9 as the most efficient design, four of

them with (α11 = 1, α21 = 0, γ1 = 0.5), (α11 = 0, α21 = 1, γ1 = 1.0), (α11 = 1, α21 = 0, γ1 =
1.0), and (α11 = 0, α21 = 1, γ1 = 1.5) yield the sampling scenario 3 as the next efficient

design with the standard error (ŜE(α̂11)) very close to that of the sampling scenario

9 and can be thought as another most efficient design. Hence, as in Section 3.2,

the most efficient outcome-dependent BSS design ((ncases,j ∶ j = 1,2,3), (nnoncases,j ∶
j = 1,2,3)) based on the first event time and its event indicator is considered as the

sampling scenario 3. This is true for all model scenarios except two model scenarios:

(α11 = 1, α21 = 0, γ1 = 1.5) and (α11 = 1, α21 = 1, γ1 = 1.5). Due to the high dependence

between the two sequential gap times, the most efficient sampling design for α̂11 yields
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the most efficient designs for α̂21. This is true for all model scenarios as seen in Table

B.2 of Appendix B. The same conclusion can also be obtained from Figure 4.2 which

provides the trend of the efficiency for both α̂11 and α̂21 at various sampling scenarios

under different model scenarios.
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4.3 Efficiency of generalized case-cohort designs based

on the event indicators of the two sequential

gap times

In Section 4.1, a subsample of fixed size (n = 10,000) was drawn in order to obtain

a covariate which is expensive to measure based on the first event indicator. Table

4.2 provides us the most efficient sampling scenario for stratification based on the

first event indicator under different model scenarios. For example, sampling scenario

(ncases = 4000, nnoncases = 6000) minimizes the standard error thus is the most efficient

sampling scenario for model scenario (α11 = 1, α21 = 1, γ1 = 0.5). It minimizes the

variance of the coefficient estimate of the expensive covariate for the first gap time.

In addition, due to the high dependence between the two sequential gap times, it also

minimizes the variance of the coefficient estimate of the expensive covariate for the

second gap time. We are interested in exploring efficient sampling designs considering

stratification based on the event indicators of the two sequential gap times so that

the efficiency can be improved further.

In this section, a subsample of fixed size (n = 10,000) is drawn in order to obtain

a covariate which is expensive to measure based on the event indicators of the two

sequential gap times. Suppose (ncases, nnoncases) is the most efficient sampling scenario

for stratification based on the first event indicator. First, a subsample of size nnoncases is

drawn from the first event non-case stratum Snoncases. Then, a subsample of size ncases

is drawn from the first event case stratum Scases based on the second event indicator.

Note that under bivariate sequential survival data, a T1 case could be either a T2 case

or a T2 non-case. Let us denote Scases,cases as the subset of Scases which includes T2

cases and Scases,noncases as the subset of Scases which includes T2 non-cases. The size
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of the subsample from the first and second event case stratum Scases,cases is denoted

by mcases and the size of the subsample from the first event case and second event

non-case stratum Scases,noncases is denoted by mnoncases, where ncases =mcases +mnoncases.

Given the fixed size ncases of subsample, we investigate how to allocate it among

the strata (Scases,cases, Scases,noncases) which is based on T2 event indicator. Different

allocations (mcases, mnoncases) in addition to selecting nnoncases individuals from Snoncases

define different generalized case-cohort designs based on the event indicators of the

two sequential gap times.

We need to determine mcases and mnoncases which lead to an efficient design where

mcases + mnoncases = ncases. Efficient sampling design minimizes the variance of the

coefficient estimate of the expensive covariate for the second gap time. Table 4.5

shows the results of estimates and standard errors for model scenario (α11 = 1, α21 =
1, γ1 = 0.5), a model defined by (2.11) where α10 = 0.6, α11 = 1.0, γ1 = 0.5 and by

(2.12) where α20 = 0.4, α21 = 1.0 and γ2 = 0.5 as described in Section 2.2.1. We see

that sampling scenario 8 with (mcases = 4000, mnoncases = 0) minimizes the standard

error estimate of α̂21, thus is the most efficient sampling scenario based on ŜE(α̂21).
Notice that sampling scenario 8 with (mcases = 4000, mnoncases = 0) also minimizes

the standard error estimate of α̂11, thus is the most efficient sampling scenario based

on ŜE(α̂11). Moreover, both ŜE(α̂11) and ŜE(α̂21) are smaller compared to sampling

scenario 4 of Table 4.1. Thus, the efficiency of generalized case-cohort designs based

on the first event indicator can be improved by generalized case-cohort designs based

on the event indicators of the two sequential gap times. When we increase sampling

from the first and second event case stratum Scases,cases, the efficiency of the coefficient

estimate of the expensive covariate for times to first and second event improves. It

will be used in outcome-dependent BSS design based on the two sequential gap times

and their event indicators.
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Table 4.5: Coefficient estimates and their estimated standard errors under generalized case-
cohort designs based on the event indicators of the two sequential gap times

(α11, α21, γ1) Sampling scenario (mcases, mnoncases) α̂11 ŜE(α̂11) α̂21 ŜE(α̂21)

(1,1,0.5) 1 (500,3500) 1.010 0.0276 1.024 0.0323

2 (1000,3000) 1.014 0.0260 1.028 0.0290

3 (1500,2500) 0.969 0.0257 0.981 0.0280

4 (2000,2000) 0.992 0.0247 0.987 0.0266

5 (2500,1500) 0.953 0.0246 0.949 0.0262

6 (3000,1000) 0.971 0.0238 0.969 0.0250

7 (3500,500) 0.966 0.0235 0.963 0.0246

8 (4000,0) 0.996 0.0229 1.000 0.0238

Table 4.6: The most efficient sampling scenario under generalized case-cohort designs based
on the event indicators of the two sequential gap times

(α11, α21, γ1) Sampling scenario (mcases, mnoncases)

(0,0,0.5) 10 (5000,0)

(0,1,0.5) 2 (1000,0)

(1,0,0.5) 1 (500,500)

(1,1,0.5) 8 (4000,0)

(0,0,1.0) 8 (4000,0)

(0,1,1.0) 1 (500,500)

(1,0,1.0) 1 (500,500)

(1,1,1.0) 7 (3500,1500)

(0,0,1.5) 8 (4000,0)

(0,1,1.5) 1 (500,500)

Continued on next page
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(α11, α21, γ1) Sampling scenario (mcases, mnoncases)

(1,0,1.5) 1 (500,500)

(1,1,1.5) 7 (3500,6500)

The simulation results for other model scenarios are listed in Table B.3 of Appendix

B. Table 4.6 summarizes the sampling scenario (mcases, mnoncases) which minimizes

the standard error estimate of α̂21 thus is the most efficient sampling scenario based

on ŜE(α̂21) for stratification based on the event indicators of the two sequential gap

times under different model scenarios. As in Section 3.3, when we increase sampling

from the stratum Scases,cases, the efficiency of the coefficient estimate of the expensive

covariate for time to second event improves. This is true for all model scenarios

except the six scenarios (α11 = 1, α21 = 0, γ1 = 0.5), (α11 = 0, α21 = 1, γ1 = 1.0),
(α11 = 1, α21 = 0, γ1 = 1.0), (α11 = 0, α21 = 1, γ1 = 1.5), (α11 = 1, α21 = 0, γ1 = 1.5),
and (α11 = 1, α21 = 1, γ1 = 1.5). For these six model scenarios, the estimated standard

error of α̂21 minimizes when mcases ≈mnoncases or when we increase sampling from the

stratum Scases,noncases.

Due to the high dependence between the two sequential gap times, the sampling

scenario (mcases, mnoncases) which minimizes the standard error estimate of α̂21 also

minimizes the standard error estimate of α̂11. Thus, the most efficient sampling sce-

nario based on ŜE(α̂21) is also the most efficient sampling scenario based on ŜE(α̂11)
for stratification based on the event indicators of the two sequential gap times. This

is true for all model scenarios as seen in Table B.3 of Appendix B.
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4.4 Efficiency of outcome-dependent BSS designs

based on the two sequential gap times and their

event indicators

In Section 4.3, a subsample of fixed size (n = 10,000) was drawn in order to obtain

a covariate which is expensive to measure based on the event indicators of the two

sequential gap times. In order to achieve the possible efficiency gain of generalized

case-cohort design, the sampling of subjects could be done such that the sample is en-

riched with subjects who are especially informative. In addition to sampling based on

the event indicators, now we consider sampling based on the two sequential gap times.

We stratify all T2 cases Scases,cases into strata (Scases,cases,1, Scases,cases,2, Scases,cases,3)

based on the observed time-to-second event using two cut-off values cL2 < cU2 as in

(2.6). Similarly, we can stratify T2 non-cases Scases,noncases into strata (Scases,noncases,1,

Scases,noncases,2, Scases,noncases,3) based on observed censoring time C − T1 values using

two cut-off values c∗L2 < c∗U2 as in (2.7).

In Section 4.1, a subsample of fixed size (n = 10,000) is drawn from a large co-

hort of sequential survival data of size N = 50,000 under generalized case-cohort

designs based on the first event indicator. Table 4.2 provides us the most efficient

sampling scenarios (ncases, nnoncases) for α̂11 under different model scenarios, where

ncases+nnoncases = n. After obtaining the most efficient sampling design (ncases, nnoncases)
in Section 4.1, we do outcome-dependent BSS based on the first gap time and its event

indicator in Section 4.2. Table 4.4 summarizes the most efficient sampling scenarios

((ncases,j ∶ j = 1,2,3), (nnoncases,j ∶ j = 1,2,3)) for α̂11 under different model scenarios,

where ∑3
j=1 ncases,j = ncases and ∑3

j=1 nnoncases,j = nnoncases. The above efficient sampling

designs minimize the variance of α̂11. We are also interested in looking for efficient
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sampling designs which minimize the variance of α̂21. After obtaining the most effi-

cient sampling design (ncases, nnoncases) in Section 4.1, a subsample of size ncases was

drawn from the first event case stratum Scases under generalized case-cohort designs

based on the second event indicator in Section 4.3. Table 4.6 summarizes the most

efficient sampling scenarios (mcases, mnoncases) for α̂21 under different model scenarios,

where ncases =mcases +mnoncases.

After obtaining the most efficient sampling design (mcases, mnoncases) for the strata
(Scases,cases, Scases,noncases), we do outcome-dependent BSS on the strata (Scases,cases,1,

Scases,cases,2, Scases,cases,3) and (Scases,noncases,1, Scases,noncases,2, Scases,noncases,3). Suppose the

size of the subsample from the stratum Scases,cases,j is denoted by mcases,j, j = 1,2,3,
where ∑3

j=1mcases,j = mcases. Similarly, suppose the size of the subsample from the

stratum Scases,cases,j is denoted by mcases,j, j = 1,2,3, where ∑3
j=1mnoncases,j =mnoncases.

Given the fixed sizes (mcases, mnoncases) of subsamples, one may choose how to allocate

it among the strata ((Scases,cases,j ∶ j = 1,2,3), (Scases,noncases,j ∶ j = 1,2,3)). Different

allocations ((mcases,j ∶ j = 1,2,3), (mnoncases,j ∶ j = 1,2,3)) define different outcome-

dependent BSS designs based on the second gap time T2 and its event indicator.

Our objective is to determine mcases,j and mnoncases,j, j = 1,2,3, which lead to an

efficient design where ∑3
j=1mcases,j = mcases and ∑3

j=1mnoncases,j = mnoncases. Efficient

sampling design minimizes the variance of the coefficient estimate of the expensive

covariate for time-to-event T2. Table 4.7 shows the results of estimates and stan-

dard errors for different allocations (mcases,1, mcases,2, mcases,3), (mnoncases,1, mnoncases,2,

mnoncases,3) for model scenario (α11 = 1, α21 = 1, γ1 = 0.5), a model defined by (2.11)

where α10 = 0.6, α11 = 1.0, γ1 = 0.5 and by (2.12) where α20 = 0.4, α21 = 1.0

and γ2 = 0.5 as described in Section 2.2.1. We see that sampling scenario 3 with

((mcases,j ∶ j = 1,2,3), (mnoncases,j ∶ j = 1,2,3)) = ((2500,1500,0), (0,0,0)) minimizes

the standard error estimate of α̂21 thus are the most efficient sampling scenarios based
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on ŜE(α̂21). In scenario 3, there is an increased sampling from the first T2 case stratum

Scases,cases,1. When we increase sampling from the stratum with short time-to-second

event, the efficiency improves. Notice that sampling scenarios 7, 8 and 9 have larger

standard error estimates compared to other sampling scenarios. These three sampling

scenarios increase sampling from the stratum with long time-to-second event which

yield inefficient designs.

Table 4.7: Coefficient estimates and their estimated standard errors under outcome-
dependent BSS designs based on the two sequential gap times and their event indicators

(α11,α21, γ1) Sampling scenario (mcases,j ∶ j = 1,2,3), (mnoncases,j ∶ j = 1,2,3) α̂11 ŜE(α̂11) α̂21 ŜE(α̂21)

(1,1,0.5) SRS in Scases,cases

and Scases,noncases

(447,3106,447),(0,0,0) 1.001 0.0194 1.002 0.0213

1 (1500,1500,1000),(0,0,0) 0.994 0.0194 0.990 0.0208

2 (2000,1500,500),(0,0,0) 1.005 0.0190 1.001 0.0202

3 (2500,1500,0),(0,0,0) 1.004 0.0187 0.999 0.0196

4 (500,3000,500),(0,0,0) 0.987 0.0195 0.990 0.0214

5 (250,3500,250),(0,0,0) 1.005 0.0195 1.010 0.0212

6 (0,4000,0),(0,0,0) 0.988 0.0196 0.990 0.0213

7 (1000,1500,1500),(0,0,0) 1.009 0.0198 1.017 0.0217

8 (500,1500,2000),(0,0,0) 0.997 0.0207 0.993 0.0236

9 (0,1500,2500),(0,0,0) 1.008 0.0217 1.012 0.0252

The simulation results for other model scenarios are listed in Table B.4 of Appendix

B. Notice that the first allocation in each model scenario in Table B.4 is a SRS in

Scases,cases and Scases,noncases which is defined by (2.8) and (2.9). Thus, it is a generalized

case-cohort design.

Table 4.8: The most efficient sampling scenario under outcome-dependent BSS designs based
on the two sequential gap times and their event indicators

(α11, α21, γ1) Sampling scenario (mcases,j ∶ j = 1,2,3), (mnoncases,j ∶ j = 1,2,3)

(0,0,0.5) 3 (2500,2500,0),(0,0,0)

(0,1,0.5) 3 (1000,0,0),(0,0,0)

Continued on next page
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Table 4.8 – Continued from previous page

(α11, α21, γ1) Sampling scenario (mcases,j ∶ j = 1,2,3), (mnoncases,j ∶ j = 1,2,3)

(1,0,0.5) 3 (500,0,0),(0,0,500)

(1,1,0.5) 3 (2500,1500,0),(0,0,0)

(0,0,1.0) 3 (2500,1500,0),(0,0,0)

(0,1,1.0) 3 (500,0,0),(0,0,500)

(1,0,1.0) 3 (500,0,0),(0,0,500)

(1,1,1.0) 3 (2500,1000,0),(0,0,1500)

(0,0,1.5) 3 (2500,1500,0),(0,0,0)

(0,1,1.5) 3 (500,0,0),(0,0,500)

(1,0,1.5) 3 (500,0,0),(0,0,500)

(1,1,1.5) 3 (2500,1000,0),(2386,1614,2500)

Table 4.8 summarizes the sampling scenario ((mcases,j ∶ j = 1,2,3), (mnoncases,j ∶
j = 1,2,3)) which minimizes the standard error estimate of α̂21 thus is the most

efficient sampling scenario based on ŜE(α̂21) for stratification based on the two se-

quential gap times and their event indicators under different model scenarios. It

shows that the most efficient outcome-dependent BSS design ((mcases,j ∶ j = 1,2,3),
(mnoncases,j ∶ j = 1,2,3)) based on the two sequential gap times and their event indi-

cators is the sampling scenario 3 where we increase sampling from the stratum with

short second event times (i.e., the first T2 case stratum Scases,cases,1) and also increase

sampling from the stratum with long censoring times (i.e., the third T2 non-case stra-

tum Scases,noncases,3). This is true for all model scenarios. The same conclusion can

also be obtained from Figure 4.3 which provides the trend of the efficiency for both

α̂11 and α̂21 at various sampling scenarios under different model scenarios.

Notice that in Table 4.8, the sum of mcases,j, j = 1,2,3, is mcases and the sum of
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mnoncases,j, j = 1,2,3, is mnoncases, where (mcases, mnoncases) is selected based on the

most efficient design identified in Table 4.6.

Due to the high dependence between the two sequential gap times in this chapter,

the sampling scenario (mcases, mnoncases) which minimizes the standard error estimate

of α̂21 also minimizes the standard error estimate of α̂11. Thus, the most efficient

sampling scenario based on ŜE(α̂21) is also the most efficient sampling scenario based

on ŜE(α̂11) for stratification based on the event indicators of the two sequential gap

times. This is true for all model scenarios as seen in Table B.4 of Appendix B.
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4.5 Summary

Table 4.9 and Figure 4.4 summarize standard errors of α̂11 and α̂21 for the most

efficient sampling scenarios under two-phase outcome-dependent sampling designs for

different model scenarios when the dependence between the two sequential gap times

is high. Design 1 represents a generalized case-cohort design based on the first event

indicator. Design 2 represents an outcome-dependent BSS design based on the first

gap time and its event indicator. Design 3 represents a generalized case-cohort design

based on the event indicators of the two sequential gap times. Design 4 represents an

outcome-dependent BSS design based on the two sequential gap times and their event

indicators. Recall that the most efficient sampling scenarios for design 1 and design

2 are based on ŜE(α̂11). On the other hand, the most efficient sampling scenarios for

design 3 and design 4 are based on ŜE(α̂21).
Under design 2, there is a gain on efficiency when estimating the regression coeffi-

cient of the expensive covariate for time to first event compared with design 1. Due to

the high dependence between the two sequential gap times, standard errors of α̂11 and

α̂21 for the most efficient sampling scenario are close to each other. Moreover, under

design 4, there is no gain or only gain a little on efficiency when estimating the re-

gression coefficient of the expensive covariate for time to second event compared with

design 2. Therefore, it is suffice to use design 2 (i.e., outcome-dependent BSS design

based on the first gap time and its event indicator) when there is high dependence

between the two sequential gap times.

Under design 3, there is a gain on efficiency when estimating the regression co-

efficient of the expensive covariate for time to first event compared with design 1.

This is true for all but one model scenario. Due to the high dependence between the

two sequential gap times, design 3 also has a gain on efficiency when estimating the
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regression coefficient of the expensive covariate for time to second event compared

with design 1. This is true for all but one model scenario. Therefore, design 3 (i.e.,

generalized case-cohort design based on the event indicators of the two sequential gap

times) is better than design 1 (i.e., generalized case-cohort design based on the first

event indicator).
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Table 4.9: Lowest standard errors of the coefficient estimates under two-phase outcome-
dependent sampling designs

(α11, α21, γ1) standard errors design 1 design 2 design 3 design 4

(0,0,0.5) ŜE(α̂11) 0.0289 0.0205 0.0280 0.0204

ŜE(α̂21) 0.0299 0.0216 0.0287 0.0216

(0,1,0.5) ŜE(α̂11) 0.0174 0.0155 0.0174 0.0155

ŜE(α̂21) 0.0181 0.0164 0.0181 0.0164

(1,0,0.5) ŜE(α̂11) 0.0165 0.0151 0.0165 0.0151

ŜE(α̂21) 0.0163 0.0153 0.0163 0.0154

(1,1,0.5) ŜE(α̂11) 0.0235 0.0187 0.0229 0.0187

ŜE(α̂21) 0.0247 0.0198 0.0238 0.0196

(0,0,1.0) ŜE(α̂11) 0.0287 0.0193 0.0277 0.0190

ŜE(α̂21) 0.0303 0.0208 0.0285 0.0202

(0,1,1.0) ŜE(α̂11) 0.0173 0.0136 0.0172 0.0133

ŜE(α̂21) 0.0180 0.0139 0.0179 0.0135

(1,0,1.0) ŜE(α̂11) 0.0169 0.0149 0.0167 0.0150

ŜE(α̂21) 0.0163 0.0149 0.0163 0.0149

(1,1,1.0) ŜE(α̂11) 0.0233 0.0188 0.0234 0.0180

ŜE(α̂21) 0.0240 0.0197 0.0243 0.0186

(0,0,1.5) ŜE(α̂11) 0.0289 0.0185 0.0277 0.0184

ŜE(α̂21) 0.0306 0.0201 0.0285 0.0197

(0,1,1.5) ŜE(α̂11) 0.0174 0.0143 0.0173 0.0143

ŜE(α̂21) 0.0180 0.0151 0.0179 0.0151

(1,0,1.5) ŜE(α̂11) 0.0178 0.0154 0.0176 0.0156

ŜE(α̂21) 0.0169 0.0150 0.0168 0.0152

(1,1,1.5) ŜE(α̂11) 0.0231 0.0200 0.0195 0.0183

ŜE(α̂21) 0.0233 0.0203 0.0202 0.0184





Chapter 5

Conclusion

In some observational studies, the covariates of interest might be expensive to measure

although the outcome variable could easily be obtained. In this situation, a cost-

efficient two-phase outcome-dependent sampling design could be employed to measure

the expensive covariate for more informative subjects. In phase one, all members of a

random sample from a population or a cohort are measured for the outcome variable

and inexpensive covariates. In phase two, a subset of the cohort is selected based on

the outcome variable, and the expensive covariate is measured only for the selected

individuals.

In this study, we investigated efficient two-phase outcome-dependent sampling

designs with bivariate sequential time-to-event data for a predetermined phase two

sample size under the likelihood-based approach. We considered sampling designs

depending on the event indicators and gap times. A likelihood-based method was

used to estimate the associations between the expensive covariate and the two gap

times. We showed that when the selection probability at phase two depends on the

two observed gap times and censoring times in addition to their event indicators, the

efficiency of the design might improve compared to a generalized case-cohort design.
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Bivariate sequential time-to-event data consists of two gap times T1 and T2 ob-

served in sequence, and a right censoring time (total followup time) C. Let X be

the expensive covariate. As the phase one data, in Section 2.2.1 we generated a

N = 50,000 random bivariate sequential time-to-event sample from the joint condi-

tional distribution of T1 and T2 given X = x in (2.10) modelled by the Clayton copula

(1.15). Moderate and high dependence levels were considered between the first and

second event times. The covariate X follows the Bernoulli distribution. The marginal

distributions of T1 and T2 given X = x are modelled with Weibull regression with

survival functions (2.11) and (2.12), respectively. The censoring time C is generated

from Uniform(0, b) such that about 40% of T1 survival times are censored. When T1

is censored, T2 is unobserved.

The generated phase one data can be stratified based on the event indicators

and the survival times. A phase two sample of fixed size (n = 10,000) was drawn

based on the strata of phase one in order to obtain the covariate which is costly or

difficult to measure. In Section 2.1, we described four phase two sampling designs: (1)

generalized case-cohort design based on the event indicator of the first gap time; (2)

outcome-dependent BSS design based on the first gap time and its event indicator;

(3) generalized case-cohort design based on the event indicators of the two sequential

gap times; and (4) outcome-dependent BSS design based on the two sequential gap

times and their event indicators.

We adopted the full likelihood-based approach to estimate the regression coeffi-

cients of the expensive covariate for the first and second gap times. A simulation

study was conducted to study the efficiency of these phase two sampling designs. The

simulation results in Chapter 3 and Chapter 4 showed that when the selection prob-

ability at phase two depends on the two observed gap times and censoring times in

addition to their event indicators, the efficiency of the design might improve compared
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to a generalized case-cohort design. When the dependence between time-to-events is

moderate, the outcome-dependent BSS design based on both of the two sequential

gap times and their event indicators is recommended. When the dependence between

time-to-events is high, the outcome-dependent BSS design based on the first gap time

and its event indicator is recommended.

Our results of phase two sampling designs for efficiency improvement are implicitly

conditional on knowing the true distributions of all random variables of interest. As

a further work, we would like to explore the efficiency of the sampling designs with

bivariate sequential time-to-event data when the underlying model is misspecified

before phase two sampling occurs. In this study, we also assume that there is only

one expensive covariate and no other covariates. As a further work, we would like

to investigate the efficiency of the sampling designs with bivariate sequential time-to-

event data when there are other inexpensive covariates.



Bibliography

[1] N. E. Breslow, T. Lumley, C. M. Ballantyne, L. E. Chambless, and M. Kulich. Im-
proved horvitz–thompson estimation of model parameters from two-phase strat-
ified samples: Applications in epidemiology. Stat Biosci, 1:32–49, 2009.

[2] D. R. Cox. Regression models and life tables (with discussion). J. Roy. Stat.

Soc. B, 34:187–220, 1972.

[3] D. R. Cox and D. Oakes. Analysis of Survival Data. Chapman and Hall, London,
1984.

[4] J. Ding, H. Zhou, L. Liu, K. Cai, and M. Longnecker. Estimating effect of
environmental contaminants on women’s subfecundity for the moba study data
with an outcome-dependent sampling scheme. Biostatistics, 15(4):636–650, 2014.

[5] T. R. Fleming and D. P. Harrington. Counting Processes and Survival Analysis.
Wiley, New York, 1991.

[6] D. A. Hsieh, C. F. Manski, and D. McFadden. Estimation of response prob-
abilities from augmented retrospective observations. J. Amer. Statist. Assoc.,
80:651–662, 1985.

[7] B. E. Huang and D. Y. Lin. Efficient association mapping of quantitative trait loci
with selective genotyping. The American Journal of Human Genetics, 80:567–
576, 2007.

[8] G. Imbens and T. Lancaster. Case-control studies with contaminated controls.
Journal of Econometrics, 71(1):145–160, 1996.

[9] H. Joe. Multivariate Models and Dependence Concepts. Chapman and Hall,
London, 1997.

[10] P. Judd. Two-phase response-dependent sampling designs for time-to-event anal-

ysis. M.Sc. thesis, Memorial University of Newfoundland, 2016.

[11] J. D. Kalbfleisch and R. L. Prentice. The Statistical Analysis of Failure Time

Data. John Wiley and Sons, New York, 2nd edition, 2002.



113

[12] E. L. Kaplan and P. Meier. Nonparametric estimation from incomplete observa-
tions. Journal of the American Statistical Association, 53:457–481, 1958.

[13] R. H. Keogh and D. R. Cox. Case-Control Studies. Cambridge University Press,
2014.

[14] M. Kulich and D. Y. Lin. Improving the efficiency of relative-risk estimation in
case-cohort studies. J Am Stat Assoc, 99:832–844, 2004.

[15] J. F. Lawless. Statistical Models and Methods for Lifetime Data. Wiley, Hoboken,
2nd edition, 2003.

[16] J. F. Lawless. Two-phase outcome-dependent studies for failure times and testing
for effects of expensive covariates. Lifetime Data Anal, 24:28–44, 2018.

[17] J. F. Lawless, C. J. Wild, and J. D. Kalbfleisch. Semiparametric methods for
response-selective and missing data problems in regression. Journal of the Royal

Statistical Society Series B, 61(413 - 438), 1999.

[18] F. D. K. Liddell, J. C. McDonald, D. C. Thomas, and S. V. Cuniffe. Methods
of cohort analysis: Appraisal by application to asbestos mining. Journal of the

Royal Statistical Society, Series A, 140:469–491, 1977.

[19] D. Y. Lin, D. Zeng, and Z. Z. Tang. Quantitative trait analysis in sequencing
studies under trait-dependent sampling. Proceedings of the National Academy of

Sciences, 110(30):12247–12252, 2013.

[20] R. Nelsen. An Introduction to Copulas. Springer Series in Statistics. Springer-
Verlag New York, Inc, Secaucus, NJ, USA, 2nd edition, 2006.

[21] J. Neyman. Contribution to the theory of sampling from human populations.
Journal of the American Statistical Association, 33:101–116, 1938.

[22] R. L. Prentice. A case-cohort design for epidemiologic cohort studies and disease
prevention trials. Biometrika, 73(1):1–11, 1986.

[23] R. L. Prentice and N. E. Breslow. Retrospective studies and failure time models.
Biometrika, 65:153–158, 1978.

[24] J. M. Robins, A. Rotnitzky, and L. P. Zhao. Estimation of regression coefficients
when some regressors are not always observed. J Am Stat Assoc, 89:846–866,
1994.

[25] D. B. Rubin. Inference and missing data. Biometrika, 63:581–592, 1976.

[26] A. J. Scott and C. J. Wild. Fitting regression models to case-control data by
maximum likelihood. Biometrika, 84:57–71, 1997.



114
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Appendix A

Tables for Chapter 3

A.1 Generalized case-cohort designs based on the

event indicator of the first gap time

Table A.1: Coefficient estimates and their estimated standard errors under generalized case-
cohort designs based on the first event indicator

(α11, α21, γ1) Sampling scenario (ncases, nnoncases) α̂11 ŜE(α̂11) α̂21 ŜE(α̂21)

(0,0,0.5) 1 (1000,9000) 0.023 0.0411 -0.029 0.0842

2 (2000,8000) 0.068 0.0334 0.137 0.0602

3 (3000,7000) -0.009 0.0313 -0.056 0.0526

4 (4000,6000) -0.052 0.0303 -0.025 0.0478

5 (5000,5000) -0.008 0.0293 -0.006 0.0419

6 (6000,4000) 0.021 0.0298 0.042 0.0394

7 (7000,3000) 0.013 0.0317 0.002 0.0390

8 (8000,2000) -0.039 0.0349 -0.042 0.0391

9 (9000,1000) -0.047 0.0421 -0.058 0.0421

Continued on next page
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Table A.1 – Continued from previous page

(α11, α21, γ1) Sampling scenario (ncases, nnoncases) α̂11 ŜE(α̂11) α̂21 ŜE(α̂21)

10 (10000,0) 0.044 0.0631 0.004 0.0544

(0,1,0.5) 1 (1000,9000) 0.015 0.0381 0.938 0.0567

2 (2000,8000) 0.044 0.0309 1.065 0.0430

3 (3000,7000) 0.003 0.0292 0.957 0.0414

4 (4000,6000) -0.028 0.0281 1.008 0.0371

5 (5000,5000) -0.023 0.0278 1.000 0.0347

6 (6000,4000) 0.016 0.0284 1.039 0.0332

7 (7000,3000) 0.010 0.0302 0.995 0.0336

8 (8000,2000) -0.041 0.0332 0.963 0.0341

9 (9000,1000) -0.048 0.0391 0.947 0.0366

10 (10000,0) 0.040 0.0541 0.988 0.0442

(1,0,0.5) 1 (1000,9000) 0.998 0.0291 0.087 0.0570

2 (2000,8000) 0.983 0.0256 0.055 0.0450

3 (3000,7000) 0.985 0.0247 -0.047 0.0388

4 (4000,6000) 1.006 0.0241 0.071 0.0364

5 (5000,5000) 0.966 0.0244 -0.011 0.0342

6 (6000,4000) 0.990 0.0249 0.008 0.0326

7 (7000,3000) 0.942 0.0261 0.007 0.0320

8 (8000,2000) 0.991 0.0271 -0.024 0.0309

9 (9000,1000) 0.979 0.0292 -0.001 0.0310

10 (10000,0) 0.947 0.0330 -0.027 0.0322

(1,1,0.5) 1 (1000,9000) 1.013 0.0292 1.042 0.0596

2 (2000,8000) 0.987 0.0261 1.045 0.0464

3 (3000,7000) 0.994 0.0251 0.954 0.0408

4 (4000,6000) 1.010 0.0243 1.019 0.0354

Continued on next page
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Table A.1 – Continued from previous page

(α11, α21, γ1) Sampling scenario (ncases, nnoncases) α̂11 ŜE(α̂11) α̂21 ŜE(α̂21)

5 (5000,5000) 0.974 0.0246 0.986 0.0333

6 (6000,4000) 0.990 0.0250 0.993 0.0311

7 (7000,3000) 0.964 0.0257 1.028 0.0298

8 (8000,2000) 0.979 0.0268 0.964 0.0289

9 (9000,1000) 1.029 0.0280 1.027 0.0277

10 (10000,0) 0.960 0.0317 0.980 0.0288

(0,0,1.0) 1 (1000,9000) 0.012 0.0343 0.084 0.0785

2 (2000,8000) 0.018 0.0312 -0.017 0.0594

3 (3000,7000) 0.020 0.0300 0.003 0.0492

4 (4000,6000) 0.027 0.0289 0.034 0.0444

5 (5000,5000) -0.008 0.0291 -0.007 0.0404

6 (6000,4000) -0.038 0.0297 -0.021 0.0383

7 (7000,3000) -0.049 0.0311 -0.037 0.0378

8 (8000,2000) 0.00479 0.0336 -0.00032 0.0367

9 (9000,1000) -0.020 0.0389 -0.061 0.0387

10 (10000,0) 0.075 0.0484 0.058 0.0424

(0,1,1.0) 1 (1000,9000) 0.013 0.0318 1.023 0.0478

2 (2000,8000) 0.019 0.0291 0.990 0.0431

3 (3000,7000) 0.018 0.0282 0.988 0.0386

4 (4000,6000) 0.031 0.0270 1.045 0.0350

5 (5000,5000) -0.011 0.0274 0.994 0.0333

6 (6000,4000) -0.021 0.0280 0.978 0.0323

7 (7000,3000) -0.018 0.0291 1.000 0.0318

8 (8000,2000) 0.038 0.0317 1.026 0.0316

9 (9000,1000) 0.000 0.0355 0.992 0.0332
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(α11, α21, γ1) Sampling scenario (ncases, nnoncases) α̂11 ŜE(α̂11) α̂21 ŜE(α̂21)

10 (10000,0) 0.051 0.0427 1.029 0.0357

(1,0,1.0) 1 (1000,9000) 0.998 0.0281 0.096 0.0513

2 (2000,8000) 0.986 0.0261 0.070 0.0427

3 (3000,7000) 0.999 0.0251 0.040 0.0369

4 (4000,6000) 0.994 0.0245 -0.004 0.0337

5 (5000,5000) 1.040 0.0243 0.081 0.0316

6 (6000,4000) 0.972 0.0246 0.020 0.0304

7 (7000,3000) 0.998 0.0247 0.035 0.0289

8 (8000,2000) 0.947 0.0255 -0.029 0.0283

9 (9000,1000) 0.994 0.0260 0.012 0.0277

10 (10000,0) 0.980 0.0273 0.014 0.0273

(1,1,1.0) 1 (1000,9000) 1.011 0.0276 1.060 0.0504

2 (2000,8000) 1.002 0.0257 1.041 0.0417

3 (3000,7000) 0.999 0.0250 1.012 0.0366

4 (4000,6000) 1.002 0.0244 0.997 0.0335

5 (5000,5000) 1.044 0.0241 1.079 0.0301

6 (6000,4000) 0.990 0.0243 1.036 0.0288

7 (7000,3000) 0.992 0.0245 1.013 0.0273

8 (8000,2000) 0.955 0.0249 0.990 0.0265

9 (9000,1000) 0.992 0.0255 0.999 0.0254

10 (10000,0) 0.977 0.0265 1.004 0.0248

(0,0,1.5) 1 (1000,9000) 0.082 0.0312 0.031 0.0768

2 (2000,8000) -0.064 0.0311 -0.078 0.0582

3 (3000,7000) 0.018 0.0294 0.040 0.0487

4 (4000,6000) -0.033 0.0291 -0.048 0.0445
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(α11, α21, γ1) Sampling scenario (ncases, nnoncases) α̂11 ŜE(α̂11) α̂21 ŜE(α̂21)

5 (5000,5000) -0.007 0.0293 -0.038 0.0405

6 (6000,4000) 0.043 0.0293 0.021 0.0375

7 (7000,3000) 0.011 0.0306 -0.021 0.0362

8 (8000,2000) 0.057 0.0317 0.051 0.0348

9 (9000,1000) -0.013 0.0352 -0.025 0.0357

10 (10000,0) -0.011 0.0393 -0.014 0.0365

(0,1,1.5) 1 (1000,9000) 0.069 0.0289 1.045 0.0466

2 (2000,8000) -0.064 0.0289 0.936 0.0420

3 (3000,7000) 0.014 0.0273 1.037 0.0369

4 (4000,6000) -0.019 0.0270 0.983 0.0350

5 (5000,5000) 0.009 0.0272 1.001 0.0329

6 (6000,4000) 0.046 0.0273 1.032 0.0310

7 (7000,3000) 0.024 0.0285 0.990 0.0308

8 (8000,2000) 0.027 0.0292 1.026 0.0299

9 (9000,1000) -0.041 0.0319 0.959 0.0304

10 (10000,0) -0.001 0.0344 1.004 0.0306

(1,0,1.5) 1 (1000,9000) 1.007 0.0290 0.044 0.0467

2 (2000,8000) 0.973 0.0272 -0.001 0.0404

3 (3000,7000) 0.993 0.0265 0.038 0.0367

4 (4000,6000) 1.029 0.0256 0.062 0.0334

5 (5000,5000) 0.983 0.0252 -0.012 0.0313

6 (6000,4000) 0.981 0.0249 0.002 0.0296

7 (7000,3000) 1.005 0.0245 0.028 0.0282

8 (8000,2000) 0.978 0.0245 -0.012 0.0273

9 (9000,1000) 1.003 0.0245 -0.003 0.0265
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(α11, α21, γ1) Sampling scenario (ncases, nnoncases) α̂11 ŜE(α̂11) α̂21 ŜE(α̂21)

10 (10000,0) 0.964 0.0251 -0.013 0.0261

(1,1,1.5) 1 (1000,9000) 1.018 0.0282 0.999 0.0490

2 (2000,8000) 0.971 0.0268 0.989 0.0408

3 (3000,7000) 1.003 0.0260 1.019 0.0358

4 (4000,6000) 1.029 0.0253 1.055 0.0323

5 (5000,5000) 0.980 0.0250 0.966 0.0304

6 (6000,4000) 0.981 0.0246 0.999 0.0282

7 (7000,3000) 0.992 0.0241 1.014 0.0264

8 (8000,2000) 0.985 0.0239 0.997 0.0255

9 (9000,1000) 1.005 0.0239 0.991 0.0245

10 (10000,0) 0.963 0.0243 1.005 0.0239

A.2 Outcome-dependent BSS designs based on the

first gap time and its event indicator

Table A.2: Coefficient estimates and their estimated standard errors under outcome-
dependent BSS designs based on the first gap time and its event indicator

(α11,α21, γ1) Sampling scenario (ncases,j ∶ j = 1,2,3), (nnoncases,j ∶ j = 1,2,3) α̂11 ŜE(α̂11) α̂21 ŜE(α̂21)

(0,0,0.5) SRS in Scases and

Snoncases

(833,3334,833),(1250,2500,1250) 0.012 0.0295 0.020 0.0419

1 (5000,0,0),(5000,0,0) -0.031 0.0354 -0.015 0.0494

2 (5000,0,0),(0,5000,0) -0.018 0.0254 -0.002 0.0433

3 (5000,0,0),(0,0,5000) 0.004 0.0205 0.019 0.0408

4 (0,5000,0),(5000,0,0) -0.061 0.0451 0.012 0.0489

5 (4000,1000,0),(0,0,5000) 0.009 0.0209 0.034 0.0403

6 (3000,1000,1000),(0,0,5000) -0.010 0.0223 0.029 0.0405

7 (0,0,5000),(5000,0,0) -0.092 0.0986 -0.066 0.0678

8 (5000,0,0),(1000,0,4000) 0.005 0.0216 0.020 0.0414
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(α11,α21, γ1) Sampling scenario (ncases,j ∶ j = 1,2,3), (nnoncases,j ∶ j = 1,2,3) α̂11 ŜE(α̂11) α̂21 ŜE(α̂21)

9 (5000,0,0),(1000,1000,3000) 0.005 0.0226 0.019 0.0418

(0,1,0.5) SRS in Scases and

Snoncases

(833,3334,833),(1250,2500,1250) 0.005 0.0281 0.998 0.0348

1 (5000,0,0),(5000,0,0) -0.047 0.0338 0.943 0.0419

2 (5000,0,0),(0,5000,0) -0.029 0.0245 0.960 0.0362

3 (5000,0,0),(0,0,5000) -0.006 0.0199 0.983 0.0339

4 (0,5000,0),(5000,0,0) -0.066 0.0420 0.988 0.0419

5 (4000,1000,0),(0,0,5000) -0.000 0.0203 0.997 0.0334

6 (3000,1000,1000),(0,0,5000) -0.015 0.0214 0.989 0.0329

7 (0,0,5000),(5000,0,0) -0.081 0.0724 0.971 0.0499

8 (5000,0,0),(1000,0,4000) -0.005 0.0210 0.983 0.0345

9 (5000,0,0),(1000,1000,3000) -0.006 0.0219 0.983 0.0349

(1,0,0.5) SRS in Scases and

Snoncases

(666,2668,666),(1500,3000,1500) 1.011 0.0240 0.029 0.0358

1 (4000,0,0),(5000,1000,0) 0.977 0.0254 -0.012 0.0359

2 (4000,0,0),(0,6000,0) 1.010 0.0204 0.023 0.0337

3 (4000,0,0),(0,1000,5000) 0.996 0.0187 -0.015 0.0330

4 (0,4000,0),(5000,1000,0) 0.963 0.0324 -0.011 0.0387

5 (3000,1000,0),(0,1000,5000) 1.007 0.0192 0.011 0.0331

6 (2000,1000,1000),(0,1000,5000) 1.013 0.0199 0.033 0.0349

7 (0,0,4000),(5000,1000,0) 0.921 0.0511 -0.028 0.0527

8 (4000,0,0),(1000,1000,4000) 1.002 0.0196 -0.009 0.0334

9 (4000,0,0),(1000,2000,3000) 1.003 0.0199 0.004 0.0334

(1,1,0.5) SRS in Scases and

Snoncases

(666,2668,666),(1500,3000,1500) 1.019 0.0242 1.021 0.0355

1 (4000,0,0),(5000,1000,0) 0.979 0.0258 0.969 0.0399

2 (4000,0,0),(0,6000,0) 1.015 0.0205 1.002 0.0373

3 (4000,0,0),(0,1000,5000) 1.002 0.0189 0.971 0.0369

4 (0,4000,0),(5000,1000,0) 0.988 0.0321 1.012 0.0367

5 (3000,1000,0),(0,1000,5000) 1.010 0.0194 0.992 0.0358

6 (2000,1000,1000),(0,1000,5000) 1.0238 0.0201 0.988 0.0363

7 (0,0,4000),(5000,1000,0) 0.968 0.0490 0.960 0.0436

8 (4000,0,0),(1000,1000,4000) 1.009 0.0198 0.976 0.0372

9 (4000,0,0),(1000,2000,3000) 1.007 0.0201 0.990 0.0372

(0,0,1.0) SRS in Scases and

Snoncases

(666,2668,666),(1500,3000,1500) 0.022 0.0292 -0.021 0.0449

1 (4000,0,0),(5000,1000,0) -0.017 0.0395 -0.024 0.0551

2 (4000,0,0),(0,6000,0) -0.017 0.0297 -0.028 0.0492

3 (4000,0,0),(0,1000,5000) -0.002 0.0192 0.024 0.0441

4 (0,4000,0),(5000,1000,0) -0.065 0.0531 -0.036 0.0549

5 (3000,1000,0),(0,1000,5000) 0.012 0.0196 0.003 0.0430

6 (2000,1000,1000),(0,1000,5000) -0.007 0.0215 0.031 0.0431

7 (0,0,4000),(5000,1000,0) -0.000 0.0963 0.032 0.0596

8 (4000,0,0),(1000,1000,4000) -0.014 0.0202 0.012 0.0445

9 (4000,0,0),(1000,2000,3000) -0.011 0.0217 -0.025 0.0454

(0,1,1.0) SRS in Scases and

Snoncases

(666,2668,666),(1500,3000,1500) 0.028 0.0273 1.016 0.0359

1 (4000,0,0),(5000,1000,0) -0.016 0.0362 0.960 0.0445

2 (4000,0,0),(0,6000,0) -0.016 0.0278 0.965 0.0394

3 (4000,0,0),(0,1000,5000) -0.007 0.0183 1.006 0.0341

4 (0,4000,0),(5000,1000,0) -0.029 0.0475 1.000 0.0456
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(α11,α21, γ1) Sampling scenario (ncases,j ∶ j = 1,2,3), (nnoncases,j ∶ j = 1,2,3) α̂11 ŜE(α̂11) α̂21 ŜE(α̂21)

5 (3000,1000,0),(0,1000,5000) 0.012 0.0187 1.002 0.0339

6 (2000,1000,1000),(0,1000,5000) 0.001 0.0201 1.017 0.0326

7 (0,0,4000),(5000,1000,0) -0.023 0.0701 1.013 0.0454

8 (4000,0,0),(1000,1000,4000) -0.019 0.0193 0.994 0.0345

9 (4000,0,0),(1000,2000,3000) -0.011 0.0207 0.973 0.0360

(1,0,1.0) SRS in Scases and

Snoncases

(833,3334,833),(1250,2500,1250) 1.002 0.0242 0.021 0.0313

1 (5000,0,0),(5000,0,0) 0.965 0.0330 -0.024 0.0373

2 (5000,0,0),(0,5000,0) 0.998 0.0226 0.003 0.0314

3 (5000,0,0),(0,0,5000) 1.000 0.0191 0.005 0.0301

4 (0,5000,0),(5000,0,0) 0.985 0.0408 0.016 0.0375

5 (4000,1000,0),(0,0,5000) 1.001 0.0192 -0.003 0.0296

6 (3000,1000,1000),(0,0,5000) 0.991 0.0187 -0.018 0.0302

7 (0,0,5000),(5000,0,0) 0.999 0.0343 0.033 0.0398

8 (5000,0,0),(1000,0,4000) 0.999 0.0204 0.004 0.0306

9 (5000,0,0),(1000,1000,3000) 0.971 0.0207 -0.020 0.0308

(1,1,1.0) SRS in Scases and

Snoncases

(833,3334,833),(1250,2500,1250) 1.010 0.0242 1.000 0.0305

1 (5000,0,0),(5000,0,0) 0.970 0.0326 0.963 0.0397

2 (5000,0,0),(0,5000,0) 0.999 0.0225 0.986 0.0340

3 (5000,0,0),(0,0,5000) 1.001 0.0189 0.988 0.0324

4 (0,5000,0),(5000,0,0) 1.012 0.0386 1.017 0.0329

5 (4000,1000,0),(0,0,5000) 1.003 0.0190 0.975 0.0312

6 (3000,1000,1000),(0,0,5000) 0.994 0.0187 0.954 0.0318

7 (0,0,5000),(5000,0,0) 1.014 0.0339 0.964 0.0357

8 (5000,0,0),(1000,0,4000) 1.000 0.0202 0.988 0.0329

9 (5000,0,0),(1000,1000,3000) 0.973 0.0206 0.965 0.0333

(0,0,1.5) SRS in Scases and

Snoncases

(666,2668,666),(1500,3000,1500) -0.008 0.0290 -0.021 0.0432

1 (4000,0,0),(5000,1000,0) 0.012 0.0440 0.005 0.0589

2 (4000,0,0),(0,6000,0) 0.007 0.0340 0.004 0.0515

3 (4000,0,0),(0,1000,5000) 0.004 0.0184 -0.012 0.0437

4 (0,4000,0),(5000,1000,0) 0.015 0.0612 0.002 0.0571

5 (3000,1000,0),(0,1000,5000) -0.010 0.0191 -0.029 0.0439

6 (2000,1000,1000),(0,1000,5000) 0.004 0.0204 0.001 0.0431

7 (0,0,4000),(5000,1000,0) 0.022 0.0591 0.018 0.0468

8 (4000,0,0),(1000,1000,4000) 0.007 0.0195 -0.009 0.0441

9 (4000,0,0),(1000,2000,3000) 0.006 0.0210 -0.022 0.0452

(0,1,1.5) SRS in Scases and

Snoncases

(666,2668,666),(1500,3000,1500) 0.002 0.0270 0.998 0.0345

1 (4000,0,0),(5000,1000,0) 0.017 0.0376 1.020 0.0449

2 (4000,0,0),(0,6000,0) 0.004 0.0306 0.997 0.0401

3 (4000,0,0),(0,1000,5000) 0.001 0.0175 0.988 0.0336

4 (0,4000,0),(5000,1000,0) 0.031 0.0493 1.027 0.0449

5 (3000,1000,0),(0,1000,5000) -0.003 0.0180 1.014 0.0332

6 (2000,1000,1000),(0,1000,5000) 0.008 0.0191 1.024 0.0321

7 (0,0,4000),(5000,1000,0) 0.013 0.0507 1.005 0.0363

8 (4000,0,0),(1000,1000,4000) 0.003 0.0185 0.989 0.0341

9 (4000,0,0),(1000,2000,3000) 0.007 0.0199 0.993 0.0351

(1,0,1.5) SRS in Scases and

Snoncases

(1500,6000,1500),(250,500,250) 1.004 0.0248 0.002 0.0265
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(α11,α21, γ1) Sampling scenario (ncases,j ∶ j = 1,2,3), (nnoncases,j ∶ j = 1,2,3) α̂11 ŜE(α̂11) α̂21 ŜE(α̂21)

1 (5000,4000,0),(1000,0,0) 0.976 0.0339 -0.027 0.0319

2 (1000,4000,4000),(0,0,1000) 1.010 0.0205 0.025 0.0263

3 (1000,5000,3000),(0,0,1000) 0.996 0.0213 -0.003 0.0259

4 (0,9000,0),(500,0,0) 1.014 0.0344 0.024 0.0292

5 (0,4000,5000),(0,0,500) 1.005 0.0221 0.017 0.0275

6 (0,4000,5000),(0,500,500) 1.020 0.0217 0.036 0.0274

7 (0,4000,5000),(1000,0,0) 0.991 0.0226 -0.013 0.0279

8 (0,4000,5000),(0,1000,0) 0.997 0.0225 -0.009 0.0275

9 (0,4000,5000),(0,0,1000) 1.015 0.0216 0.008 0.0273

(1,1,1.5) SRS in Scases and

Snoncases

(1333,5334,1333),(500,1000,500) 0.981 0.0239 1.005 0.0245

1 (5000,3000,0),(2000,0,0) 1.026 0.0311 1.009 0.0303

2 (1000,3000,4000),(0,0,2000) 1.012 0.0201 1.029 0.0261

3 (1000,4000,3000),(0,0,2000) 1.018 0.0205 0.985 0.0256

4 (0,8000,0),(2000,0,0) 1.012 0.0332 1.021 0.0262

5 (0,3000,5000),(1000,0,1000) 0.991 0.0228 0.993 0.0270

6 (0,3000,5000),(0,1000,1000) 1.011 0.0225 1.034 0.0271

7 (0,3000,5000),(2000,0,0) 0.994 0.0236 0.985 0.0274

8 (0,3000,5000),(0,2000,0) 0.996 0.0237 0.978 0.0271

9 (0,3000,5000),(0,0,2000) 1.021 0.0219 0.994 0.0269

A.3 Generalized case-cohort designs based on the

event indicators of the two sequential gap times

Table A.3: Coefficient estimates and their estimated standard errors under generalized case-
cohort designs based on the event indicators of the two sequential gap times

(α11, α21, γ1) Sampling scenario (mcases, mnoncases) α̂11 ŜE(α̂11) α̂21 ŜE(α̂21)

(0,0,0.5) 1 (500,4500) -0.042 0.0407 -0.145 0.0782

2 (1000,4000) 0.036 0.0345 0.051 0.0587

3 (1500,3500) -0.049 0.0333 -0.071 0.0542

4 (2000,3000) -0.056 0.0319 -0.075 0.0489

5 (2500,2500) -0.011 0.0302 -0.052 0.0453

6 (3000,2000) -0.042 0.0301 -0.095 0.0435
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(α11, α21, γ1) Sampling scenario (mcases, mnoncases) α̂11 ŜE(α̂11) α̂21 ŜE(α̂21)

7 (3500,1500) -0.011 0.0290 -0.024 0.0410

8 (4000,1000) 0.009 0.0286 -0.002 0.0399

9 (4500,500) 0.018 0.0281 -0.016 0.0392

10 (5000,0) 0.027 0.0279 -0.062 0.0389

(0,1,0.5) 1 (500,4500) -0.126 0.0413 0.935 0.0507

2 (1000,4000) 0.022 0.0339 1.050 0.0412

3 (1500,3500) -0.043 0.0327 0.981 0.0404

4 (2000,3000) -0.040 0.0312 0.997 0.0380

5 (2500,2500) -0.032 0.0299 0.979 0.0372

6 (3000,2000) 0.016 0.0284 0.985 0.0358

7 (3500,1500) 0.018 0.0276 1.016 0.0351

8 (4000,1000) -0.015 0.0272 0.981 0.0349

9 (4500,500) 0.005 0.0265 0.973 0.0350

10 (5000,0) -0.028 0.0262 0.98105 0.0349

(1,0,0.5) 1 (500,3500) 0.980 0.0275 -0.021 0.0510

2 (1000,3000) 1.000 0.0256 0.057 0.0435

3 (1500,2500) 0.984 0.0249 0.002 0.0395

4 (2000,2000) 1.012 0.0242 -0.026 0.0361

5 (2500,1500) 0.967 0.0242 0.006 0.0358

6 (3000,1000) 0.990 0.0238 -0.018 0.0342

7 (3500,500) 0.980 0.0236 -0.017 0.0336

8 (4000,0) 0.995 0.0232 -0.002 0.0335

(1,1,0.5) 1 (500,3500) 1.00623 0.0288 1.06334 0.0473

2 (1000,3000) 1.00021 0.0269 1.00849 0.0423

3 (1500,2500) 0.98290 0.0262 0.98336 0.0390
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(α11, α21, γ1) Sampling scenario (mcases, mnoncases) α̂11 ŜE(α̂11) α̂21 ŜE(α̂21)

4 (2000,2000) 0.99760 0.0252 0.99513 0.0371

5 (2500,1500) 1.00878 0.0244 1.02751 0.0360

6 (3000,1000) 1.01085 0.0241 0.97606 0.0361

7 (3500,500) 0.99341 0.0238 0.95936 0.0362

8 (4000,0) 1.00102 0.0233 1.02640 0.0370

(0,0,1.0) 1 (500,3500) -0.008 0.0359 0.073 0.0610

2 (1000,3000) 0.017 0.0327 0.036 0.0534

3 (1500,2500) -0.050 0.0320 -0.072 0.0511

4 (2000,2000) -0.023 0.0304 -0.011 0.0467

5 (2500,1500) -0.009 0.0292 -0.040 0.0448

6 (3000,1000) 0.018 0.0285 0.089 0.0426

7 (3500,500) -0.017 0.0282 -0.033 0.0429

8 (4000,0) -0.001 0.0278 -0.002 0.0432

(0,1,1.0) 1 (500,3500) 0.000 0.0348 1.042 0.0408

2 (1000,3000) 0.006 0.0319 1.028 0.0385

3 (1500,2500) -0.016 0.0306 0.99 0.0378

4 (2000,2000) -0.040 0.0298 0.933 0.0375

5 (2500,1500) 0.012 0.0278 1.022 0.0355

6 (3000,1000) 0.006 0.0273 0.983 0.0355

7 (3500,500) 0.011 0.0265 0.999 0.0357

8 (4000,0) 0.007 0.0260 0.974 0.0362

(1,0,1.0) 1 (500,4500) 0.952 0.0265 -0.003 0.0423

2 (1000,4000) 0.952 0.0260 -0.003 0.0389

3 (1500,3500) 0.954 0.0253 -0.012 0.0354

4 (2000,3000) 0.949 0.0248 -0.025 0.0339

Continued on next page
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(α11, α21, γ1) Sampling scenario (mcases, mnoncases) α̂11 ŜE(α̂11) α̂21 ŜE(α̂21)

5 (2500,2500) 0.978 0.0246 0.008 0.0328

6 (3000,2000) 0.964 0.0244 -0.014 0.0318

7 (3500,1500) 0.959 0.0244 -0.048 0.0313

8 (4000,1000) 0.956 0.0247 0.020 0.0324

9 (4500,500) 0.948 0.0249 -0.006 0.0330

10 (5000,0) 0.974 0.0246 -0.070 0.0323

(1,1,1.0) 1 (500,4500) 0.946 0.0278 1.017 0.0365

2 (1000,4000) 0.945 0.0266 0.995 0.0335

3 (1500,3500) 0.969 0.0256 0.984 0.0325

4 (2000,3000) 0.956 0.0253 0.970 0.0315

5 (2500,2500) 0.979 0.0246 1.023 0.0305

6 (3000,2000) 0.950 0.0248 0.931 0.0311

7 (3500,1500) 0.972 0.0243 0.962 0.0312

8 (4000,1000) 0.974 0.0243 0.951 0.0317

9 (4500,500) 0.975 0.0243 1.017 0.0319

10 (5000,0) 0.978 0.0244 0.940 0.0344

(0,0,1.5) 1 (500,3500) 0.027 0.0324 0.073 0.0545

2 (1000,3000) 0.001 0.0310 0.103 0.0493

3 (1500,2500) 0.023 0.0300 0.111 0.0472

4 (2000,2000) -0.010 0.0297 -0.020 0.0454

5 (2500,1500) -0.027 0.0295 -0.061 0.0450

6 (3000,1000) -0.008 0.0286 -0.029 0.0429

7 (3500,500) 0.078 0.0275 -0.003 0.0418

8 (4000,0) -0.002 0.0281 -0.044 0.0440

(0,1,1.5) 1 (500,3500) -0.019 0.0317 1.016 0.0376

Continued on next page
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(α11, α21, γ1) Sampling scenario (mcases, mnoncases) α̂11 ŜE(α̂11) α̂21 ŜE(α̂21)

2 (1000,3000) -0.005 0.0299 1.010 0.0356

3 (1500,2500) -0.023 0.0293 0.970 0.0360

4 (2000,2000) 0.013 0.0278 1.020 0.0344

5 (2500,1500) -0.021 0.0277 0.982 0.0352

6 (3000,1000) -0.003 0.0268 0.987 0.0347

7 (3500,500) 0.013 0.0260 1.038 0.0341

8 (4000,0) -0.002 0.0260 0.970 0.0357

(1,0,1.5) 1 (500,8500) 0.983 0.0233 -0.010 0.0374

2 (1000,8000) 0.986 0.0227 0.024 0.0334

3 (1500,7500) 0.979 0.0226 0.009 0.0312

4 (2000,7000) 0.983 0.0225 -0.020 0.0295

5 (2500,6500) 0.983 0.0225 -0.003 0.0281

6 (3000,6000) 0.959 0.0228 -0.016 0.0275

7 (3500,5500) 1.018 0.0226 0.013 0.0261

8 (4000,5000) 1.013 0.0228 0.017 0.0262

9 (4500,4500) 0.998 0.0234 -0.005 0.0260

10 (5000,4000) 1.015 0.0236 -0.005 0.0259

11 (5500,3500) 1.012 0.0243 0.012 0.0261

12 (6000,3000) 0.995 0.0247 0.015 0.0265

13 (6500,2500) 1.014 0.0254 0.002 0.0272

14 (7000,2000) 1.011 0.0264 0.010 0.0280

15 (7500,1500) 0.966 0.0277 -0.029 0.0295

16 (8000,1000) 0.997 0.0286 0.008 0.0307

17 (8500,500) 1.022 0.0313 0.017 0.0340

Continued on next page
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(α11, α21, γ1) Sampling scenario (mcases, mnoncases) α̂11 ŜE(α̂11) α̂21 ŜE(α̂21)

18 (9000,0) 1.007 0.0347 -0.016 0.0384

(1,1,1.5) 1 (500,7500) 0.999 0.0256 1.024 0.0305

2 (1000,7000) 0.968 0.0253 0.974 0.0290

3 (1500,6500) 0.958 0.0253 0.970 0.0275

4 (2000,6000) 0.974 0.0250 0.969 0.0263

5 (2500,5500) 0.987 0.0243 0.992 0.0257

6 (3000,5000) 0.986 0.0242 1.021 0.0249

7 (3500,4500) 1.021 0.0238 1.017 0.0245

8 (4000,4000) 1.003 0.0242 0.985 0.0246

9 (4500,3500) 1.004 0.0240 1.009 0.0246

10 (5000,3000) 1.004 0.0238 1.032 0.0245

11 (5500,2500) 0.988 0.0241 0.980 0.0252

12 (6000,2000) 1.037 0.0238 1.043 0.0255

13 (6500,1500) 0.991 0.0244 0.960 0.0265

14 (7000,1000) 1.005 0.0245 1.016 0.0270

15 (7500,500) 1.002 0.0251 1.010 0.0283

16 (8000,0) 1.024 0.0254 1.043 0.0291

A.4 Outcome-dependent BSS designs based on the

two sequential gap times and their event indi-

cators
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Table A.4: Coefficient estimates and their estimated standard errors under outcome-
dependent BSS designs based on the two sequential gap times and their event indicators

(α11,α21, γ1) Sampling scenario (mcases,j ∶ j = 1,2,3), (mnoncases,j ∶ j = 1,2,3) α̂11 ŜE(α̂11) α̂21 ŜE(α̂21)

(0,0,0.5) SRS in Scases,cases

and Scases,noncases

(666,3669,665),(0,0,0) 0.001 0.0210 -0.030 0.0467

1 (1500,2500,1000),(0,0,0) -0.004 0.0209 0.002 0.0462

2 (2000,2500,500),(0,0,0) 0.007 0.0206 0.029 0.0420

3 (2500,2500,0),(0,0,0) -0.001 0.0209 -0.005 0.0352

4 (500,4000,500),(0,0,0) -0.005 0.0210 -0.041 0.0462

5 (250,4500,250),(0,0,0) -0.005 0.0211 -0.044 0.0457

6 (0,5000,0),(0,0,0) -0.010 0.0212 -0.075 0.0454

7 (1000,2500,1500),(0,0,0) 0.002 0.0212 0.008 0.0517

8 (500,2500,2000),(0,0,0) 0.000 0.0222 0.0202 0.0605

9 (0,2500,2500),(0,0,0) 0.004 0.0236 -0.010 0.0738

(0,1,0.5) SRS in Scases,cases

and Scases,noncases

(608,3785,607),(0,0,0) -0.008 0.0207 0.992 0.0379

1 (1500,2500,1000),(0,0,0) -0.012 0.0206 0.980 0.0354

2 (2000,2500,500),(0,0,0) -0.006 0.0201 0.980 0.0330

3 (2500,2500,0),(0,0,0) -0.000 0.0200 0.973 0.0296

4 (500,4000,500),(0,0,0) -0.001 0.0206 1.003 0.0382

5 (250,4500,250),(0,0,0) -0.001 0.0205 0.979 0.0396

6 (0,5000,0),(0,0,0) -0.011 0.0206 0.964 0.0409

7 (1000,2500,1500),(0,0,0) -0.011 0.0213 0.976 0.0382

8 (500,2500,2000),(0,0,0) -0.022 0.0226 0.997 0.0429

9 (0,2500,2500),(0,0,0) -0.008 0.0259 0.972 0.0559

(1,0,0.5) SRS in Scases,cases

and Scases,noncases

(599,2803,598),(0,0,0) 1.006 0.0189 0.012 0.0366

1 (1500,1500,1000),(0,0,0) 1.009 0.0190 0.045 0.0348

2 (2000,1500,500),(0,0,0) 1.025 0.0189 0.018 0.0322

3 (2500,1500,0),(0,0,0) 0.996 0.0193 0.010 0.0310

4 (500,3000,500),(0,0,0) 0.999 0.0190 0.010 0.0365

5 (250,3500,250),(0,0,0) 0.998 0.0190 -0.030 0.0354

6 (0,4000,0),(0,0,0) 0.993 0.0191 -0.001 0.0359

7 (1000,1500,1500),(0,0,0) 1.011 0.0190 0.038 0.0371

8 (500,1500,2000),(0,0,0) 1.010 0.0194 0.034 0.0402

9 (0,1500,2500),(0,0,0) 1.007 0.0198 0.042 0.0447

(1,1,0.5) SRS in Scases,cases

and Scases,noncases

(316,1868,316),(367,766,367) 1.003 0.0204 1.021 0.0441

1 (2500,0,0),(1500,0,0) 1.006 0.0211 1.000 0.0310

2 (2500,0,0),(0,1500,0) 1.004 0.0215 0.993 0.0277

3 (2500,0,0),(0,0,1500) 0.993 0.0221 1.021 0.0253

4 (0,2500,0),(1500,0,0) 1.011 0.0206 1.021 0.0618

5 (0,2500,0),(0,1500,0) 1.003 0.0205 1.003 0.0518

6 (0,2500,0),(0,0,1500) 1.010 0.0200 1.043 0.0420

7 (0,0,2500),(1500,0,0) 1.025 0.0260 1.046 0.0757

8 (0,0,2500),(0,1500,0) 1.030 0.0269 1.032 0.0670

9 (0,0,2500),(0,0,1500) 1.034 0.0255 1.068 0.0522

(0,0,1.0) SRS in Scases,cases

and Scases,noncases

(372,2256,372),(254,492,254) 0.004 0.0216 -0.034 0.0577

1 (2500,500,0),(1000,0,0) -0.006 0.0214 0.009 0.0359

2 (2500,500,0),(0,1000,0) 0.012 0.0211 -0.015 0.0336

Continued on next page
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(α11,α21, γ1) Sampling scenario (mcases,j ∶ j = 1,2,3), (mnoncases,j ∶ j = 1,2,3) α̂11 ŜE(α̂11) α̂21 ŜE(α̂21)

3 (2500,500,0),(0,0,1000) 0.013 0.0211 -0.009 0.0311

4 (0,3000,0),(1000,0,0) -0.005 0.0218 -0.018 0.0730

5 (0,3000,0),(0,1000,0) -0.011 0.0221 -0.046 0.0646

6 (0,3000,0),(0,0,1000) -0.005 0.0220 -0.039 0.0548

7 (0,500,2500),(1000,0,0) 0.017 0.0268 0.072 0.0946

8 (0,500,2500),(0,1000,0) 0.016 0.0273 0.070 0.0825

9 (0,500,2500),(0,0,1000) 0.023 0.0261 0.058 0.0661

(0,1,1.0) SRS in Scases,cases

and Scases,noncases

(345,2311,344),(304,392,304) 0.016 0.0205 1.006 0.0402

1 (2500,500,0),(1000,0,0) 0.010 0.0197 0.979 0.0285

2 (2500,500,0),(0,1000,0) -0.002 0.0202 0.983 0.0273

3 (2500,500,0),(0,0,1000) 0.007 0.0204 0.972 0.0265

4 (0,3000,0),(1000,0,0) 0.008 0.0210 1.030 0.0484

5 (0,3000,0),(0,1000,0) 0.007 0.0210 0.984 0.0435

6 (0,3000,0),(0,0,1000) 0.001 0.0212 1.044 0.0429

7 (0,500,2500),(1000,0,0) 0.018 0.0278 1.041 0.0531

8 (0,500,2500),(0,1000,0) -0.006 0.0300 1.050 0.0534

9 (0,500,2500),(0,0,1000) -0.006 0.0292 1.052 0.0491

(1,0,1.0) SRS in Scases,cases

and Scases,noncases

(455,2590,455),(348,804,348) 0.995 0.0192 -0.003 0.0336

1 (2500,1000,0),(1500,0,0) 0.995 0.0197 0.009 0.0297

2 (2500,1000,0),(0,1500,0) 0.999 0.0196 -0.003 0.0273

3 (2500,1000,0),(0,0,1500) 0.995 0.0198 0.010 0.0253

4 (0,3500,0),(1500,0,0) 0.990 0.0196 -0.035 0.0364

5 (0,3500,0),(0,1500,0) 0.997 0.0195 -0.026 0.0337

6 (0,3500,0),(0,0,1500) 1.001 0.0193 -0.013 0.0302

7 (0,1000,2500),(1500,0,0) 1.016 0.0209 -0.017 0.0436

8 (0,1000,2500),(0,1500,0) 1.011 0.0208 -0.013 0.0402

9 (0,1000,2500),(0,0,1500) 0.999 0.0207 -0.026 0.0361

(1,1,1.0) SRS in Scases,cases

and Scases,noncases

(286,1928,286),(768,965,767) 1.015 0.0193 1.052 0.0340

1 (2500,0,0),(2500,0,0) 0.992 0.0204 1.009 0.0285

2 (2500,0,0),(0,2500,0) 0.993 0.0210 1.007 0.0245

3 (2500,0,0),(0,0,2500) 1.000 0.0215 0.999 0.0217

4 (0,2500,0),(2500,0,0) 0.998 0.0189 1.012 0.0516

5 (0,2500,0),(0,2500,0) 0.995 0.0187 1.015 0.0411

6 (0,2500,0),(0,0,2500) 0.996 0.0188 0.988 0.0327

7 (0,0,2500),(2500,0,0) 0.993 0.0246 1.013 0.0601

8 (0,0,2500),(0,2500,0) 0.989 0.0258 0.992 0.0573

9 (0,0,2500),(0,0,2500) 0.994 0.0247 0.987 0.0437

(0,0,1.5) SRS in Scases,cases

and Scases,noncases

(438,2625,437),(125,250,125) 0.004 0.0198 0.011 0.0566

1 (2500,1000,0),(500,0,0) 0.008 0.0196 -0.029 0.0357

2 (2500,1000,0),(0,500,0) 0.004 0.0197 -0.015 0.0345

3 (2500,100,0),(0,0,500) 0.007 0.0222 -0.027 0.0334

4 (0,3500,0),(500,0,0) -0.014 0.0195 -0.055 0.0604

5 (0,3500,0),(0,500,0) -0.011 0.0196 -0.071 0.0564

6 (0,3500,0),(0,0,500) -0.002 0.0196 -0.004 0.0516

7 (0,1000,2500),(500,0,0) 0.019 0.0234 0.060 0.0816

8 (0,1000,2500),(0,500,0) 0.040 0.0235 0.080 0.0769

Continued on next page
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(α11,α21, γ1) Sampling scenario (mcases,j ∶ j = 1,2,3), (mnoncases,j ∶ j = 1,2,3) α̂11 ŜE(α̂11) α̂21 ŜE(α̂21)

9 (0,1000,2500),(0,0,500) 0.031 0.0229 0.092 0.0649

(0,1,1.5) SRS in Scases,cases

and Scases,noncases

(405,2691,404),(150,201,149) -0.005 0.0191 1.006 0.0395

1 (2500,1000,0),(500,0,0) 0.004 0.0183 0.979 0.0284

2 (2500,1000,0),(0,500,0) -0.001 0.0185 0.983 0.0278

3 (2500,1000,0),(0,0,500) 0.004 0.0185 0.972 0.0274

4 (0,3500,0),(500,0,0) 0.006 0.0188 1.030 0.0421

5 (0,3500,0),(0,500,0) -0.008 0.0192 0.984 0.0426

6 (0,3500,0),(0,0,500) 0.008 0.0188 1.044 0.0392

7 (0,1000,2500),(500,0,0) 0.010 0.0236 1.041 0.0457

8 (0,1000,2500),(0,500,0) -0.001 0.0240 1.050 0.0441

9 (0,1000,2500),(0,0,500) 0.015 0.0238 1.052 0.0436

(1,0,1.5) SRS in Scases,cases

and Scases,noncases

(640,3720,640),(956,2089,955) 1.016 0.0218 0.016 0.0251

1 (2500,2500,0),(2500,1500,0) 0.995 0.0213 0.033 0.0266

2 (2500,2500,0),(0,4000,0) 0.989 0.0214 0.005 0.0239

3 (2500,2500,0),(0,1500,2500) 1.009 0.0220 0.020 0.0219

4 (0,5000,0),(2500,1500,0) 0.991 0.0223 0.036 0.0296

5 (0,5000,0),(0,4000,0) 0.988 0.0227 0.019 0.0264

6 (0,5000,0),(0,1500,2500) 0.996 0.0233 0.017 0.0239

7 (0,2500,2500),(2500,1500,0) 1.025 0.0218 0.009 0.0336

8 (0,2500,2500),(0,4000,0) 1.019 0.0220 -0.001 0.0309

9 (0,2500,2500),(0,1500,2500) 1.035 0.0226 0.034 0.0277

(1,1,1.5) SRS in Scases,cases

and Scases,noncases

(571,3858,571),(925,1151,924) 1.001 0.0219 1.007 0.0247

1 (2500,2500,0),(2500,500,0) 1.000 0.0207 0.999 0.0263

2 (2500,2500,0),(0,3000,0) 1.018 0.0211 1.024 0.0228

3 (2500,2500,0),(0,500,2500) 1.013 0.0218 0.997 0.0204

4 (0,5000,0),(2500,500,0) 1.022 0.0212 1.022 0.0305

5 (0,5000,0),(0,3000,0) 1.002 0.0218 1.007 0.0263

6 (0,5000,0),(0,500,2500) 1.014 0.0223 1.002 0.0227

7 (0,2500,2500),(2500,500,0) 0.959 0.0229 0.965 0.0326

8 (0,2500,2500),(0,3000,0) 0.975 0.0234 0.989 0.0298

9 (0,2500,2500),(0,500,2500) 0.976 0.0239 0.979 0.0261



Appendix B

Tables for Chapter 4

B.1 Generalized case-cohort design based on the

event indicator of the first gap time

Table B.1: Coefficient estimates and their estimated standard errors under generalized case-
cohort designs based on the first event indicator

(α11, α21, γ1) Sampling scenario (ncases, nnoncases) α̂11 ŜE(α̂11) α̂21 ŜE(α̂21)

(0,0,0.5) 1 (1000,9000) 0.019 0.0402 -0.007 0.0451

2 (2000,8000) 0.062 0.0329 0.080 0.0356

3 (3000,7000) -0.013 0.0309 -0.030 0.0333

4 (4000,6000) -0.058 0.0300 -0.057 0.0320

5 (5000,5000) -0.011 0.0289 -0.017 0.0299

6 (6000,4000) 0.014 0.0293 0.022 0.0302

7 (7000,3000) 0.006 0.0312 -0.000 0.0319

8 (8000,2000) -0.045 0.0341 -0.042 0.0346

9 (9000,1000) -0.018 0.0403 -0.012 0.0405

Continued on next page
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(α11, α21, γ1) Sampling scenario (ncases, nnoncases) α̂11 ŜE(α̂11) α̂21 ŜE(α̂21)

10 (10000,0) -0.002 0.0588 -0.009 0.0588

(0,1,0.5) 1 (1000,9000) -0.021 0.0174 0.973 0.0181

2 (2000,8000) -0.007 0.0180 0.987 0.0187

3 (3000,7000) -0.020 0.0186 0.974 0.0193

4 (4000,6000) -0.016 0.0194 0.978 0.0201

5 (5000,5000) -0.028 0.0205 0.967 0.0211

6 (6000,4000) -0.006 0.0218 0.988 0.0224

7 (7000,3000) -0.022 0.0235 0.973 0.0240

8 (8000,2000) -0.020 0.0257 0.974 0.0261

9 (9000,1000) -0.030 0.0292 0.965 0.0295

10 (10000,0) -0.024 0.0354 0.971 0.0355

(1,0,0.5) 1 (1000,9000) 0.979 0.0165 -0.021 0.0163

2 (2000,8000) 0.953 0.0170 -0.044 0.0167

3 (3000,7000) 0.980 0.0176 -0.021 0.0172

4 (4000,6000) 0.981 0.0182 -0.019 0.0177

5 (5000,5000) 0.970 0.0190 -0.028 0.0184

6 (6000,4000) 0.990 0.0198 -0.010 0.0190

7 (7000,3000) 0.944 0.0212 -0.052 0.0202

8 (8000,2000) 0.987 0.0222 -0.013 0.0210

9 (9000,1000) 0.962 0.0240 -0.036 0.0226

10 (10000,0) 0.959 0.0265 -0.037 0.0247

(1,1,0.5) 1 (1000,9000) 1.000 0.0282 1.013 0.0310

2 (2000,8000) 0.982 0.0253 0.997 0.0271

3 (3000,7000) 0.979 0.0244 0.969 0.0261

4 (4000,6000) 1.005 0.0235 1.012 0.0247

Continued on next page
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(α11, α21, γ1) Sampling scenario (ncases, nnoncases) α̂11 ŜE(α̂11) α̂21 ŜE(α̂21)

5 (5000,5000) 0.972 0.0238 0.979 0.0248

6 (6000,4000) 0.982 0.0242 0.985 0.0249

7 (7000,3000) 0.937 0.0250 0.950 0.0256

8 (8000,2000) 0.982 0.0258 0.976 0.0263

9 (9000,1000) 0.994 0.0269 0.995 0.0271

10 (10000,0) 0.976 0.0294 0.981 0.0294

(0,0,1.0) 1 (1000,9000) 0.038 0.0340 0.054 0.0396

2 (2000,8000) 0.003 0.0309 -0.045 0.0339

3 (3000,7000) 0.020 0.0297 0.012 0.0315

4 (4000,6000) 0.018 0.0287 0.046 0.0303

5 (5000,5000) -0.022 0.0287 0.025 0.0299

6 (6000,4000) -0.050 0.0292 -0.005 0.0301

7 (7000,3000) -0.058 0.0307 -0.007 0.0317

8 (8000,2000) 0.005 0.0328 -0.012 0.0334

9 (9000,1000) -0.031 0.0375 -0.009 0.0377

10 (10000,0) -0.041 0.0476 -0.010 0.0476

(0,1,1.0) 1 (1000,9000) -0.014 0.0173 0.978 0.0180

2 (2000,8000) -0.011 0.0178 0.982 0.0184

3 (3000,7000) -0.001 0.0184 0.992 0.0190

4 (4000,6000) 0.002 0.0190 0.995 0.0196

5 (5000,5000) -0.008 0.0199 0.984 0.0205

6 (6000,4000) -0.027 0.0209 0.967 0.0214

7 (7000,3000) -0.021 0.0221 0.973 0.0225

8 (8000,2000) -0.008 0.0239 0.985 0.0243

9 (9000,1000) -0.016 0.0261 0.979 0.0264

Continued on next page
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(α11, α21, γ1) Sampling scenario (ncases, nnoncases) α̂11 ŜE(α̂11) α̂21 ŜE(α̂21)

10 (10000,0) -0.009 0.0295 0.985 0.0298

(1,0,1.0) 1 (1000,9000) 0.995 0.0169 -0.005 0.0163

2 (2000,8000) 0.973 0.0172 -0.026 0.0166

3 (3000,7000) 0.980 0.0177 -0.019 0.0170

4 (4000,6000) 0.976 0.0180 -0.023 0.0173

5 (5000,5000) 1.004 0.0184 0.004 0.0175

6 (6000,4000) 0.961 0.0191 -0.036 0.0181

7 (7000,3000) 0.979 0.0194 -0.018 0.0184

8 (8000,2000) 0.945 0.0202 -0.049 0.0191

9 (9000,1000) 0.979 0.0208 -0.020 0.0195

10 (10000,0) 0.965 0.0217 -0.033 0.0203

(1,1,1.0) 1 (1000,9000) 1.002 0.0269 1.019 0.0294

2 (2000,8000) 0.995 0.0250 1.012 0.0269

3 (3000,7000) 0.991 0.0243 1.001 0.0256

4 (4000,6000) 0.988 0.0238 0.989 0.0250

5 (5000,5000) 1.029 0.0233 1.046 0.0240

6 (6000,4000) 0.971 0.0237 0.981 0.0244

7 (7000,3000) 0.991 0.0235 0.996 0.0239

8 (8000,2000) 0.955 0.0238 0.964 0.0243

9 (9000,1000) 0.979 0.0246 0.981 0.0248

10 (10000,0) 0.970 0.0252 0.970 0.0253

(0,0,1.5) 1 (1000,9000) 0.078 0.0309 0.059 0.0360

2 (2000,8000) -0.062 0.0307 -0.061 0.0334

3 (3000,7000) 0.006 0.0292 0.006 0.0311

4 (4000,6000) -0.045 0.0289 -0.059 0.0306
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(α11, α21, γ1) Sampling scenario (ncases, nnoncases) α̂11 ŜE(α̂11) α̂21 ŜE(α̂21)

5 (5000,5000) -0.015 0.0291 -0.026 0.0303

6 (6000,4000) 0.038 0.0289 0.032 0.0298

7 (7000,3000) -0.009 0.0299 -0.019 0.0306

8 (8000,2000) -0.002 0.0313 -0.005 0.0319

9 (9000,1000) -0.055 0.0341 -0.051 0.0344

10 (10000,0) -0.005 0.0380 -0.008 0.0382

(0,1,1.5) 1 (1000,9000) 0.008 0.0174 1.001 0.0180

2 (2000,8000) -0.030 0.0180 0.964 0.0185

3 (3000,7000) 0.001 0.0184 0.995 0.0190

4 (4000,6000) -0.018 0.0188 0.976 0.0194

5 (5000,5000) -0.001 0.0197 0.992 0.0203

6 (6000,4000) 0.008 0.0203 1.002 0.0209

7 (7000,3000) -0.000 0.0212 0.995 0.0217

8 (8000,2000) -0.002 0.0221 0.992 0.0225

9 (9000,1000) -0.029 0.0236 0.965 0.0239

10 (10000,0) -0.010 0.0253 0.983 0.0256

(1,0,1.5) 1 (1000,9000) 0.989 0.0178 -0.011 0.0169

2 (2000,8000) 0.972 0.0179 -0.026 0.0170

3 (3000,7000) 0.984 0.0182 -0.015 0.0173

4 (4000,6000) 1.006 0.0183 0.004 0.0173

5 (5000,5000) 0.977 0.0186 -0.022 0.0176

6 (6000,4000) 0.973 0.0189 -0.025 0.0178

7 (7000,3000) 0.983 0.0192 -0.017 0.0180

8 (8000,2000) 0.977 0.0194 -0.023 0.0182

9 (9000,1000) 0.967 0.0197 -0.030 0.0185
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(α11, α21, γ1) Sampling scenario (ncases, nnoncases) α̂11 ŜE(α̂11) α̂21 ŜE(α̂21)

10 (10000,0) 0.971 0.0201 -0.028 0.0188

(1,1,1.5) 1 (1000,9000) 1.010 0.0273 1.019 0.0298

2 (2000,8000) 0.966 0.0261 0.970 0.0279

3 (3000,7000) 0.982 0.0254 0.986 0.0266

4 (4000,6000) 1.024 0.0243 1.034 0.0252

5 (5000,5000) 0.988 0.0239 0.989 0.0246

6 (6000,4000) 0.985 0.0237 0.987 0.0243

7 (7000,3000) 0.992 0.0232 1.002 0.0236

8 (8000,2000) 0.982 0.0232 0.992 0.0235

9 (9000,1000) 0.971 0.0232 0.973 0.0234

10 (10000,0) 0.971 0.0231 0.973 0.0233

B.2 Outcome-dependent BSS designs based on the

first gap time and its event indicator

Table B.2: Coefficient estimates and their estimated standard errors under outcome-
dependent BSS designs based on the first gap time and its event indicator

(α11,α21, γ1) Sampling scenario (ncases,j ∶ j = 1,2,3), (nnoncases,j ∶ j = 1,2,3) α̂11 ŜE(α̂11) α̂21 ŜE(α̂21)

(0,0,0.5) SRS in Scases and

Snoncases

(833,3334,833),(1250,2500,1250) 0.009 0.0291 0.013 0.0301

1 (5000,0,0),(5000,0,0) -0.031 0.0351 -0.029 0.0358

2 (5000,0,0),(0,5000,0) -0.021 0.0253 -0.019 0.0262

3 (5000,0,0),(0,0,5000) 0.004 0.0205 0.005 0.0216

4 (0,5000,0),(5000,0,0) -0.058 0.0436 -0.071 0.0444

5 (0,5000,0),(0,5000,0) -0.032 0.0302 -0.034 0.0313

6 (0,5000,0),(0,0,5000) -0.021 0.0237 -0.030 0.0252

7 (0,0,5000),(5000,0,0) -0.100 0.0834 -0.109 0.0781

8 (0,0,5000),(0,5000,0) -0.023 0.0475 -0.039 0.0466
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(α11,α21, γ1) Sampling scenario (ncases,j ∶ j = 1,2,3), (nnoncases,j ∶ j = 1,2,3) α̂11 ŜE(α̂11) α̂21 ŜE(α̂21)

9 (0,0,5000),(0,0,5000) -0.013 0.0338 -0.029 0.0355

(0,1,0.5) SRS in Scases and

Snoncases

(166,668,166),(2250,4500,2250) -0.023 0.0174 0.971 0.0181

1 (1000,0,0),(5000,4000,0) -0.020 0.0205 0.974 0.0210

2 (1000,0,0),(0,9000,0) -0.017 0.0177 0.977 0.0184

3 (1000,0,0),(0,4000,5000) -0.005 0.0155 0.989 0.0164

4 (0,1000,0),(5000,4000,0) -0.033 0.0204 0.961 0.0209

5 (0,1000,0),(0,9000,0) -0.029 0.0177 0.965 0.0184

6 (0,1000,0),(0,4000,5000) -0.012 0.0155 0.982 0.0164

7 (0,0,1000),(5000,4000,0) -0.049 0.0205 0.946 0.0210

8 (0,0,1000),(0,9000,0) -0.030 0.0178 0.965 0.0185

9 (0,0,1000),(0,4000,5000) -0.011 0.0155 0.983 0.0164

(1,0,0.5) SRS in Scases and

Snoncases

(166,668,166),(2250,4500,2250) 0.978 0.0165 -0.023 0.0163

1 (1000,0,0),(5000,4000,0) 0.968 0.0184 -0.030 0.0178

2 (1000,0,0),(0,9000,0) 0.979 0.0162 -0.021 0.0160

3 (1000,0,0),(0,4000,5000) 0.988 0.0153 -0.013 0.0155

4 (0,1000,0),(5000,4000,0) 0.960 0.0184 -0.038 0.0178

5 (0,1000,0),(0,9000,0) 0.980 0.0162 -0.020 0.0160

6 (0,1000,0),(0,4000,5000) 0.978 0.0153 -0.022 0.0155

7 (0,0,1000),(5000,4000,0) 0.956 0.0180 -0.042 0.0175

8 (0,0,1000),(0,9000,0) 0.982 0.0159 -0.018 0.0158

9 (0,0,1000),(0,4000,5000) 0.989 0.0151 -0.013 0.0153

(1,1,0.5) SRS in Scases and

Snoncases

(666,2668,666),(1500,3000,1500) 1.011 0.0234 1.017 0.0246

1 (4000,0,0),(5000,1000,0) 0.976 0.0252 0.975 0.0261

2 (4000,0,0),(0,6000,0) 0.990 0.0204 0.986 0.0215

3 (4000,0,0),(0,1000,5000) 1.003 0.0187 1.001 0.0198

4 (0,4000,0),(5000,1000,0) 0.956 0.0305 0.963 0.0315

5 (0,4000,0),(0,6000,0) 0.961 0.0245 0.962 0.0259

6 (0,4000,0),(0,1000,5000) 0.976 0.0217 0.984 0.0232

7 (0,0,4000),(5000,1000,0) 0.970 0.0406 0.979 0.0399

8 (0,0,4000),(0,6000,0) 0.953 0.0370 0.961 0.0368

9 (0,0,4000),(0,1000,5000) 0.976 0.0311 0.986 0.0322

(0,0,1.0) SRS in Scases and

Snoncases

(666,2668,666),(1500,3000,1500) 0.006 0.0291 -0.009 0.0307

1 (4000,0,0),(5000,1000,0) -0.050 0.0394 -0.054 0.0403

2 (4000,0,0),(0,6000,0) -0.018 0.0295 -0.015 0.0305

3 (4000,0,0),(0,1000,5000) -0.008 0.0193 -0.012 0.0208

4 (0,4000,0),(5000,1000,0) -0.082 0.0495 -0.097 0.0504

5 (0,4000,0),(0,6000,0) -0.005 0.0363 -0.004 0.0376

6 (0,4000,0),(0,1000,5000) -0.000 0.0221 -0.013 0.0243

7 (0,0,4000),(5000,1000,0) 0.009 0.0764 0.023 0.0704

8 (0,0,4000),(0,6000,0) -0.048 0.0678 -0.012 0.0634

9 (0,0,4000),(0,1000,5000) 0.040 0.0324 0.043 0.0353

(0,1,1.0) SRS in Scases and

Snoncases

(166,668,166),(2250,4500,2250) -0.000 0.0175 0.992 0.0181

1 (1000,0,0),(5000,4000,0) -0.015 0.0236 0.977 0.0239

2 (1000,0,0),(0,9000,0) -0.013 0.0216 0.980 0.0219

3 (1000,0,0),(0,4000,5000) 0.005 0.0144 0.998 0.0152

4 (0,1000,0),(5000,4000,0) -0.020 0.0235 0.972 0.0238
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(α11,α21, γ1) Sampling scenario (ncases,j ∶ j = 1,2,3), (nnoncases,j ∶ j = 1,2,3) α̂11 ŜE(α̂11) α̂21 ŜE(α̂21)

5 (0,1000,0),(0,9000,0) -0.017 0.0216 0.976 0.0219

6 (0,1000,0),(0,4000,5000) -0.001 0.0144 0.991 0.0152

7 (0,0,1000),(5000,4000,0) -0.024 0.0229 0.969 0.0231

8 (0,0,1000),(0,9000,0) -0.013 0.0210 0.981 0.0213

9 (0,0,1000),(0,4000,5000) 0.001 0.0143 0.994 0.0151

(1,0,1.0) SRS in Scases and

Snoncases

(166,668,166),(2250,4500,2250) 0.973 0.0169 -0.025 0.0163

1 (1000,0,0),(5000,4000,0) 0.966 0.0197 -0.031 0.0186

2 (1000,0,0),(0,9000,0) 0.973 0.0171 -0.026 0.0164

3 (1000,0,0),(0,4000,5000) 0.996 0.0153 -0.005 0.0152

4 (0,1000,0),(5000,4000,0) 0.966 0.0197 -0.031 0.0186

5 (0,1000,0),(0,9000,0) 0.970 0.0171 -0.028 0.0164

6 (0,1000,0),(0,4000,5000) 0.976 0.0153 -0.023 0.0151

7 (0,0,1000),(5000,4000,0) 0.971 0.0188 -0.028 0.0179

8 (0,0,1000),(0,9000,0) 0.975 0.0165 -0.024 0.0160

9 (0,0,1000),(0,4000,5000) 0.987 0.0149 -0.013 0.0149

(1,1,1.0) SRS in Scases and

Snoncases

(833,3334,833),(1250,2500,1250) 1.000 0.0234 1.003 0.0242

1 (5000,0,0),(5000,0,0) 0.959 0.0324 0.957 0.0329

2 (5000,0,0),(0,5000,0) 0.983 0.0224 0.982 0.0232

3 (5000,0,0),(0,0,5000) 0.997 0.0188 0.995 0.0197

4 (0,5000,0),(5000,0,0) 0.958 0.0366 0.959 0.0369

5 (0,5000,0),(0,5000,0) 0.986 0.0259 1.001 0.0265

6 (0,5000,0),(0,0,5000) 0.991 0.0208 0.993 0.0218

7 (0,0,5000),(5000,0,0) 0.992 0.0296 0.995 0.0291

8 (0,0,5000),(0,5000,0) 0.961 0.0336 0.968 0.0321

9 (0,0,5000),(0,0,5000) 0.970 0.0284 0.975 0.0283

(0,0,1.5) SRS in Scases and

Snoncases

(666,2668,666),(1500,3000,1500) -0.025 0.0287 -0.033 0.0302

1 (4000,0,0),(5000,1000,0) -0.012 0.0436 -0.014 0.0442

2 (4000,0,0),(0,6000,0) -0.022 0.0341 -0.026 0.0349

3 (4000,0,0),(0,1000,5000) -0.002 0.0185 -0.009 0.0201

4 (0,4000,0),(5000,1000,0) -0.010 0.0563 -0.022 0.0570

5 (0,4000,0),(0,6000,0) -0.107 0.0435 -0.106 0.0444

6 (0,4000,0),(0,1000,5000) 0.005 0.0212 0.010 0.0234

7 (0,0,4000),(5000,1000,0) 0.029 0.0548 0.024 0.0503

8 (0,0,4000),(0,6000,0) 0.009 0.0625 -0.006 0.0561

9 (0,0,4000),(0,1000,5000) 0.012 0.0317 0.021 0.0352

(0,1,1.5) SRS in Scases and

Snoncases

(166,668,166),(2250,4500,2250) 0.006 0.0175 0.998 0.0181

1 (1000,0,0),(5000,4000,0) -0.011 0.0236 0.982 0.0239

2 (1000,0,0),(0,9000,0) -0.022 0.0216 0.971 0.0219

3 (1000,0,0),(0,4000,5000) -0.005 0.0144 0.988 0.0152

4 (0,1000,0),(5000,4000,0) -0.007 0.0235 0.986 0.0238

5 (0,1000,0),(0,9000,0) -0.030 0.0216 0.963 0.0219

6 (0,1000,0),(0,4000,5000) -0.006 0.0144 0.987 0.0152

7 (0,0,1000),(5000,4000,0) -0.036 0.0229 0.958 0.0231

8 (0,0,1000),(0,9000,0) -0.025 0.0210 0.968 0.0213

9 (0,0,1000),(0,4000,5000) 0.000 0.0143 0.993 0.0151

(1,0,1.5) SRS in Scases and

Snoncases

(166,668,166),(2250,4500,2250) 0.976 0.0177 -0.023 0.0169
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(α11,α21, γ1) Sampling scenario (ncases,j ∶ j = 1,2,3), (nnoncases,j ∶ j = 1,2,3) α̂11 ŜE(α̂11) α̂21 ŜE(α̂21)

1 (1000,0,0),(5000,4000,0) 0.969 0.0210 -0.029 0.0196

2 (1000,0,0),(0,9000,0) 0.978 0.0188 -0.021 0.0176

3 (1000,0,0),(0,4000,5000) 1.005 0.0161 0.003 0.0155

4 (0,1000,0),(5000,4000,0) 0.964 0.0211 -0.033 0.0196

5 (0,1000,0),(0,9000,0) 0.972 0.0188 -0.026 0.0176

6 (0,1000,0),(0,4000,5000) 1.006 0.0160 0.002 0.0155

7 (0,0,1000),(5000,4000,0) 0.974 0.0194 -0.025 0.0183

8 (0,0,1000),(0,9000,0) 0.981 0.0176 -0.018 0.0167

9 (0,0,1000),(0,4000,5000) 1.008 0.0154 0.005 0.0150

(1,1,1.5) SRS in Scases and

Snoncases

(1666,6668,1666):(0,0,0) 0.977 0.0230 0.978 0.0232

1 (3000,5000,2000):(0,0,0) 0.975 0.0217 0.973 0.0220

2 (4000,5000,1000):(0,0,0) 0.981 0.0245 0.978 0.0247

3 (5000,5000,0):(0,0,0) 0.949 0.0315 0.949 0.0316

4 (2000,6000,2000):(0,0,0) 0.945 0.0223 0.951 0.0225

5 (1000,8000,1000):(0,0,0) 0.993 0.0247 0.996 0.0248

6 (0,10000,0):(0,0,0) 0.959 0.0303 0.963 0.0301

7 (2000,5000,3000):(0,0,0) 0.974 0.0205 0.980 0.0207

8 (1000,5000,4000):(0,0,0) 1.009 0.0198 0.999 0.0201

9 (0,5000,5000):(0,0,0) 0.987 0.0202 0.990 0.0204

B.3 Generalized case-cohort designs based on the

event indicators of the two sequential gap times

Table B.3: Coefficient estimates and their estimated standard errors under generalized case-
cohort designs based on the event indicators of the two sequential gap times

(α11, α21, γ1) Sampling scenario (mcases, mnoncases) α̂11 ŜE(α̂11) α̂21 ŜE(α̂21)

(0,0,0.5) 1 ( 500 , 4500 ) -0.081 0.0382 -0.097 0.0475

2 ( 1000 , 4000 ) -0.077 0.0351 -0.089 0.0413

3 ( 1500 , 3500 ) -0.031 0.0330 -0.048 0.0368

4 ( 2000 , 3000 ) -0.020 0.0319 -0.035 0.0351

5 ( 2500 , 2500 ) -0.026 0.0308 -0.039 0.0328

6 ( 3000 , 2000 ) 0.028 0.0294 0.009 0.0312
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(α11, α21, γ1) Sampling scenario (mcases, mnoncases) α̂11 ŜE(α̂11) α̂21 ŜE(α̂21)

7 ( 3500 , 1500 ) -0.008 0.0292 0.003 0.0305

8 ( 4000 , 1000 ) -0.011 0.0287 -0.007 0.0295

9 ( 4500 , 500 ) 0.001 0.0282 -0.003 0.0291

10 ( 5000 , 0 ) -0.024 0.0280 -0.019 0.0287

(0,1,0.5) 1 ( 500 , 500 ) -0.016 0.0174 0.978 0.0182

2 ( 1000 , 0 ) -0.017 0.0174 0.978 0.0181

(1,0,0.5) 1 ( 500 , 500 ) 0.974 0.0165 -0.026 0.0163

2 ( 1000 , 0 ) 0.973 0.0165 -0.027 0.0164

(1,1,0.5) 1 ( 500 , 3500 ) 1.010 0.0276 1.024 0.0323

2 ( 1000 , 3000 ) 1.014 0.0260 1.028 0.0290

3 ( 1500 , 2500 ) 0.969 0.0257 0.981 0.0280

4 ( 2000 , 2000 ) 0.992 0.0247 0.987 0.0266

5 ( 2500 , 1500 ) 0.953 0.0246 0.949 0.0262

6 ( 3000 , 1000 ) 0.971 0.0238 0.969 0.0250

7 ( 3500 , 500 ) 0.966 0.0235 0.963 0.0246

8 ( 4000 , 0 ) 0.996 0.0229 1.000 0.0238

(0,0,1.0) 1 ( 500 , 3500 ) -0.045 0.0360 -0.055 0.0453

2 ( 1000 , 3000 ) -0.019 0.0335 -0.040 0.0391

3 ( 1500 , 2500 ) -0.013 0.0318 0.004 0.0360

4 ( 2000 , 2000 ) 0.028 0.0300 0.010 0.0329

5 ( 2500 , 1500 ) -0.011 0.0295 -0.011 0.0317

6 ( 3000 , 1000 ) -0.025 0.0289 -0.026 0.0304

7 ( 3500 , 500 ) -0.005 0.0281 -0.016 0.0295

8 ( 4000 , 0 ) -0.016 0.0277 -0.031 0.0285

(0,1,1.0) 1 ( 500 , 500 ) 0.004 0.0172 0.996 0.0179
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(α11, α21, γ1) Sampling scenario (mcases, mnoncases) α̂11 ŜE(α̂11) α̂21 ŜE(α̂21)

2 ( 1000 , 0 ) 0.003 0.0172 0.995 0.0179

(1,0,1.0) 1 ( 500 , 500 ) 0.958 0.0167 -0.038 0.0163

2 ( 1000 , 0 ) 0.959 0.0169 -0.038 0.0164

(1,1,1.0) 1 ( 500 , 4500 ) 0.989 0.0256 0.998 0.0290

2 ( 1000 , 4000 ) 0.977 0.0249 0.978 0.0276

3 ( 1500 , 3500 ) 0.970 0.0243 0.965 0.0265

4 ( 2000 , 3000 ) 0.962 0.0241 0.960 0.0257

5 ( 2500 , 2500 ) 0.969 0.0236 0.970 0.0251

6 ( 3000 , 2000 ) 0.945 0.0236 0.941 0.0248

7 ( 3500 , 1500 ) 0.978 0.0234 0.987 0.0243

8 ( 4000 , 1000 ) 0.936 0.0234 0.944 0.0243

9 ( 4500 , 500 ) 0.945 0.0241 0.948 0.0247

10 ( 5000 , 0 ) 0.949 0.0243 0.940 0.0251

(0,0,1.5) 1 ( 500 , 3500 ) -0.017 0.0338 -0.028 0.0425

2 ( 1000 , 3000 ) -0.006 0.0319 0.002 0.0374

3 ( 1500 , 2500 ) -0.016 0.0304 -0.025 0.0342

4 ( 2000 , 2000 ) -0.016 0.0297 -0.024 0.0323

5 ( 2500 , 1500 ) -0.002 0.0290 -0.007 0.0308

6 ( 3000 , 1000 ) 0.001 0.0285 0.010 0.0298

7 ( 3500 , 500 ) 0.016 0.0279 0.013 0.0290

8 ( 4000 , 0 ) -0.013 0.0277 -0.020 0.0285

(0,1,1.5) 1 ( 500 , 500 ) -0.016 0.0173 0.977 0.0179

2 ( 1000 , 0 ) -0.012 0.0174 0.981 0.0180

(1,0,1.5) 1 ( 500 , 500 ) 0.979 0.0176 -0.020 0.0168
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(α11, α21, γ1) Sampling scenario (mcases, mnoncases) α̂11 ŜE(α̂11) α̂21 ŜE(α̂21)

2 ( 1000 , 0 ) 0.983 0.0179 -0.017 0.0170

(1,1,1.5) 7 ( 3500 , 6500 ) 1.006 0.0195 1.015 0.0202

8 ( 4000 , 6000 ) 1.002 0.0196 1.006 0.0202

9 ( 4500 , 5500 ) 0.990 0.0199 0.994 0.0204

10 ( 5000 , 5000 ) 0.980 0.0202 0.973 0.0207

11 ( 5500 , 4500 ) 0.974 0.0205 0.977 0.0208

12 ( 6000 , 4000 ) 0.994 0.0207 0.999 0.0210

13 ( 6500 , 3500 ) 0.997 0.0211 0.994 0.0213

14 ( 7000 , 3000 ) 1.007 0.0215 1.010 0.0217

15 ( 7500 , 2500 ) 0.993 0.0226 0.994 0.0227

16 ( 8000 , 2000 ) 0.972 0.0234 0.973 0.0236

17 ( 8500 , 1500 ) 0.992 0.0240 0.990 0.0243

18 ( 9000 , 1000 ) 0.965 0.0259 0.968 0.0260

19 ( 9500 , 500 ) 0.970 0.0279 0.965 0.0280

20 ( 10000 , 0 ) 0.990 0.0299 0.991 0.0301

B.4 Outcome-dependent BSS designs based on the

two sequential gap times and their event indi-

cators



144

Table B.4: Coefficient estimates and their estimated standard errors under outcome-
dependent BSS designs based on the two sequential gap times and their event indicators

(α11,α21, γ1) Sampling scenario (mcases,j ∶ j = 1,2,3), (mnoncases,j ∶ j = 1,2,3) α̂11 ŜE(α̂11) α̂21 ŜE(α̂21)

(0,0,0.5) SRS in Scases,cases

and Scases,noncases

(570,3860,570),(0,0,0) 0.003 0.0217 0.010 0.0236

1 (1500,2500,1000),(0,0,0) 0.014 0.0211 0.020 0.0230

2 (2000,2500,500),(0,0,0) -0.005 0.0209 -0.008 0.0224

3 (2500,2500,0),(0,0,0) 0.006 0.0204 0.006 0.0216

4 (500,4000,500),(0,0,0) -0.018 0.0219 -0.012 0.0236

5 (250,4500,250),(0,0,0) -0.003 0.0217 -0.009 0.0233

6 (0,5000,0),(0,0,0) -0.001 0.0217 0.001 0.0232

7 (1000,2500,1500),(0,0,0) 0.009 0.0219 0.016 0.0243

8 (500,2500,2000),(0,0,0) 0.004 0.0227 0.008 0.0258

9 (0,2500,2500),(0,0,0) -0.009 0.0238 -0.008 0.0273

(0,1,0.5) SRS in Scases,cases

and Scases,noncases

(104,792,104),(0,0,0) -0.012 0.0155 0.982 0.0164

1 (600,200,200),(0,0,0) -0.010 0.0155 0.985 0.0164

2 (800,100,100),(0,0,0) -0.008 0.0155 0.986 0.0164

3 (1000,0,0),(0,0,0) -0.004 0.0155 0.990 0.0164

4 (100,800,100),(0,0,0) -0.016 0.0155 0.978 0.0164

5 (50,900,50),(0,0,0) -0.012 0.0155 0.982 0.0164

6 (0,1000,0),(0,0,0) -0.010 0.0155 0.984 0.0164

7 (200,200,600),(0,0,0) -0.013 0.0155 0.981 0.0164

8 (100,100,800),(0,0,0) -0.005 0.0155 0.989 0.0164

9 (0,0,1000),(0,0,0) -0.012 0.0155 0.982 0.0164

(1,0,0.5) SRS in Scases,cases

and Scases,noncases

(64,372,64),(118,264,118) 0.986 0.0152 -0.015 0.0154

1 (500,0,0),(500,0,0) 0.991 0.0153 -0.010 0.0155

2 (500,0,0),(0,500,0) 0.986 0.0152 -0.015 0.0154

3 (500,0,0),(0,0,500) 0.992 0.0151 -0.010 0.0154

4 (0,500,0),(500,0,0) 0.982 0.0152 -0.019 0.0154

5 (0,500,0),(0,500,0) 0.982 0.0152 -0.019 0.0154

6 (0,500,0),(0,0,500) 0.972 0.0153 -0.028 0.0154

7 (0,0,500),(500,0,0) 0.977 0.0152 -0.023 0.0154

8 (0,0,500),(0,500,0) 0.999 0.0152 -0.004 0.0154

9 (0,0,500),(0,0,500) 0.987 0.0153 -0.015 0.0155

(1,1,0.5) SRS in Scases,cases

and Scases,noncases

(447,3106,447),(0,0,0) 1.001 0.0194 1.002 0.0213

1 (1500,1500,1000),(0,0,0) 0.994 0.0194 0.990 0.0208

2 (2000,1500,500),(0,0,0) 1.005 0.0190 1.001 0.0202

3 (2500,1500,0),(0,0,0) 1.004 0.0187 0.999 0.0196

4 (500,3000,500),(0,0,0) 0.987 0.0195 0.990 0.0214

5 (250,3500,250),(0,0,0) 1.005 0.0195 1.010 0.0212

6 (0,4000,0),(0,0,0) 0.988 0.0196 0.990 0.0213

7 (1000,1500,1500),(0,0,0) 1.009 0.0198 1.017 0.0217

8 (500,1500,2000),(0,0,0) 0.997 0.0207 0.993 0.0236

9 (0,1500,2500),(0,0,0) 1.008 0.0217 1.012 0.0252

(0,0,1.0) SRS in Scases,cases

and Scases,noncases

(444,3112,444),(0,0,0) -0.005 0.0203 -0.001 0.0228

1 (1500,1500,1000),(0,0,0) 0.006 0.0201 0.013 0.0225

2 (2000,1500,500),(0,0,0) 0.019 0.0194 0.012 0.0210

Continued on next page
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Table B.4 – Continued from previous page

(α11,α21, γ1) Sampling scenario (mcases,j ∶ j = 1,2,3), (mnoncases,j ∶ j = 1,2,3) α̂11 ŜE(α̂11) α̂21 ŜE(α̂21)

3 (2500,1500,0),(0,0,0) 0.009 0.0190 0.005 0.0202

4 (500,4000,500),(0,0,0) -0.002 0.0192 -0.003 0.0211

5 (250,4000,250),(0,0,0) -0.015 0.0197 -0.024 0.0218

6 (0,4000,0),(0,0,0) 0.014 0.0199 0.013 0.0222

7 (1000,1500,1500),(0,0,0) 0.006 0.0209 0.005 0.0240

8 (500,1500,2000),(0,0,0) -0.018 0.0223 -0.015 0.0265

9 (0,1500,2500),(0,0,0) 0.002 0.0234 0.013 0.0283

(0,1,1.0) SRS in Scases,cases

and Scases,noncases

(52,396,52),(202,96,202) 0.002 0.0144 0.996 0.0152

1 (500,0,0),(500,0,0) -0.006 0.0144 0.987 0.0152

2 (500,0,0),(0,500,0) -0.002 0.0143 0.991 0.0151

3 (500,0,0),(0,0,500) -0.006 0.0143 0.987 0.0151

4 (0,500,0),(500,0,0) -0.006 0.0143 0.987 0.0151

5 (0,500,0),(0,500,0) -0.003 0.0143 0.990 0.0151

6 (0,500,0),(0,0,500) -0.003 0.0144 0.990 0.0152

7 (0,0,500),(500,0,0) -0.005 0.0143 0.988 0.0151

8 (0,0,500),(0,500,0) -0.003 0.0143 0.990 0.0151

9 (0,0,500),(0,0,500) 0.000 0.0144 0.994 0.0152

(1,0,1.0) SRS in Scases,cases

and Scases,noncases

(58,384,58),(148,204,148) 0.981 0.0150 -0.018 0.0149

1 (500,0,0),(500,0,0) 0.990 0.0151 -0.010 0.0150

2 (500,0,0),(0,500,0) 0.979 0.0150 -0.020 0.0150

3 (500,0,0),(0,0,500) 0.986 0.0150 -0.014 0.0149

4 (0,500,0),(500,0,0) 0.982 0.0150 -0.018 0.0150

5 (0,500,0),(0,500,0) 0.991 0.0150 -0.009 0.0150

6 (0,500,0),(0,0,500) 0.995 0.0150 -0.006 0.0150

7 (0,0,500),(500,0,0) 0.983 0.0151 -0.017 0.0150

8 (0,0,500),(0,500,0) 0.982 0.0150 -0.018 0.0150

9 (0,0,500),(0,0,500) 0.980 0.0150 -0.020 0.0149

(1,1,1.0) SRS in Scases,cases

and Scases,noncases

(367,2766,367),(609,282,609) 0.995 0.0193 0.993 0.0212

1 (2500,1000,0),(1500,0,0) 0.998 0.0189 0.997 0.0198

2 (2500,1000,0),(0,1500,0) 1.001 0.0184 1.002 0.0193

3 (2500,1000,0),(0,0,1500) 1.006 0.0180 1.003 0.0186

4 (0,3500,0),(1500,0,0) 0.995 0.0195 1.001 0.0214

5 (0,3500,0),(0,1500,0) 0.996 0.0192 0.999 0.0212

6 (0,3500,0),(0,0,1500) 0.982 0.0186 0.979 0.0204

7 (0,1000,2500),(1500,0,0) 1.000 0.0215 1.007 0.0254

8 (0,1000,2500),(0,1500,0) 0.975 0.0220 0.977 0.0266

9 (0,1000,2500),(0,0,1500) 0.993 0.0212 0.996 0.0254

(0,0,1.5) SRS in Scases,cases

and Scases,noncases

(458,3084,458),(0,0,0) -0.001 0.0193 -0.009 0.0218

1 (1500,1500,1000),(0,0,0) 0.005 0.0193 0.001 0.0215

2 (2000,1500,500),(0,0,0) 0.010 0.0188 0.011 0.0204

3 (2500,1500,0),(0,0,0) 0.004 0.0184 -0.001 0.0197

4 (500,3000,500),(0,0,0) -0.013 0.0194 -0.012 0.0220

5 (250,3500,250),(0,0,0) -0.011 0.0194 -0.011 0.0218

6 (0,4000,0),(0,0,0) -0.007 0.0194 -0.007 0.0218

7 (1000,1500,1500),(0,0,0) 0.001 0.0201 0.014 0.0230

8 (500,1500,2000),(0,0,0) -0.009 0.0211 -0.008 0.0250

Continued on next page
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Table B.4 – Continued from previous page

(α11,α21, γ1) Sampling scenario (mcases,j ∶ j = 1,2,3), (mnoncases,j ∶ j = 1,2,3) α̂11 ŜE(α̂11) α̂21 ŜE(α̂21)

9 (0,1500,2500),(0,0,0) -0.002 0.0220 0.004 0.0265

(0,1,1.5) SRS in Scases,cases

and Scases,noncases

(54,392,54),(182,136,182) 0.002 0.0144 0.996 0.0152

1 (500,0,0),(500,0,0) -0.006 0.0144 0.987 0.0152

2 (500,0,0),(0,500,0) -0.002 0.0143 0.991 0.0151

3 (500,0,0),(0,0,500) -0.006 0.0143 0.987 0.0151

4 (0,500,0),(500,0,0) -0.006 0.0143 0.987 0.0151

5 (0,500,0),(0,500,0) -0.003 0.0143 0.990 0.0151

6 (0,500,0),(0,0,500) -0.003 0.0144 0.990 0.0152

7 (0,0,500),(500,0,0) -0.005 0.0143 0.988 0.0151

8 (0,0,500),(0,500,0) -0.003 0.0143 0.990 0.0151

9 (0,0,500),(0,0,500) 0.000 0.0144 0.994 0.0152

(1,0,1.5) SRS in Scases,cases

and Scases,noncases

(59,382,59),(143,214,143) 1.000 0.0156 -0.001 0.0152

1 (500,0,0),(500,0,0) 0.999 0.0157 -0.003 0.0153

2 (500,0,0),(0,500,0) 1.002 0.0157 -0.000 0.0153

3 (500,0,0),(0,0,500) 0.995 0.0156 -0.007 0.0152

4 (0,500,0),(500,0,0) 0.998 0.0156 -0.004 0.0152

5 (0,500,0),(0,500,0) 0.992 0.0156 -0.009 0.0152

6 (0,500,0),(0,0,500) 1.003 0.0156 0.001 0.0152

7 (0,0,500),(500,0,0) 1.001 0.0156 -0.001 0.0153

8 (0,0,500),(0,500,0) 1.004 0.0157 0.001 0.0153

9 (0,0,500),(0,0,500) 0.993 0.0156 -0.009 0.0152

(1,1,1.5) SRS in Scases,cases

and Scases,noncases

(374,2752,374),(2457,1586,2457) 0.974 0.0203 0.981 0.0207

1 (1500,1000,1000),(2500,1614,2386) 0.987 0.0193 0.990 0.0196

2 (2000,1000,500),(2433,1614,2443) 0.993 0.0187 0.997 0.0189

3 (2500,1000,0),(2386,1614,2500) 0.997 0.0183 0.993 0.0184

4 (500,2500,500),(2500,1614,2386) 0.985 0.0202 0.987 0.0205

5 (250,3000,250),(2433,1614,2443) 0.992 0.0202 1.001 0.0206

6 (0,3500,0),(2386,1614,2500) 0.974 0.0204 0.985 0.0208

7 (1000,1000,1500),(2500,1614,2386) 0.993 0.0198 0.991 0.0205

8 (500,1000,2000),(2433,1614,2443) 0.987 0.0208 0.989 0.0221

9 (0,1000,2500),(2386,1614,2500) 0.977 0.0221 0.976 0.0243



Appendix C

Tables and figures for Section 4.1

C.1 Table and figure for model scenario (α11 = 0, α21 =
1, γ1 = 0.5)

Table C.1: Coefficient estimates and their estimated standard errors under generalized case-
cohort designs based on the first event indicator for model scenario (α11 = 0, α21 = 1, γ1 = 0.5)
when the dependence between time-to-events is changed from moderate to high

Dependence Sampling scenario (ncases, nnoncases) α̂11 ŜE(α̂11) α̂21 ŜE(α̂21)

τ = 0.4 1 (1000,9000) 0.015 0.0381 0.939 0.0567

2 (2000,8000) 0.044 0.0309 1.065 0.0430

3 (3000,7000) 0.003 0.0292 0.957 0.0414

4 (4000,6000) -0.027 0.0281 1.008 0.0371

5 (5000,5000) -0.023 0.0278 1.000 0.0347

6 (6000,4000) 0.016 0.0284 1.039 0.0332

7 (7000,3000) 0.010 0.0302 0.995 0.0336

8 (8000,2000) -0.040 0.0332 0.963 0.0341

9 (9000,1000) -0.048 0.0391 0.947 0.0366

Continued on next page
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Table C.1 – Continued from previous page

Dependence Sampling scenario (ncases, nnoncases) α̂11 ŜE(α̂11) α̂21 ŜE(α̂21)

10 (10000,0) 0.040 0.0541 0.988 0.0442

τ = 0.45 1 (1000,9000) 0.034 0.0356 1.056 0.0431

2 (2000,8000) 0.024 0.0311 1.002 0.0407

3 (3000,7000) -0.022 0.0289 1.001 0.0363

4 (4000,6000) 0.005 0.0278 1.012 0.0339

5 (5000,5000) 0.002 0.0273 1.019 0.0322

6 (6000,4000) -0.021 0.0283 0.975 0.0327

7 (7000,3000) -0.001 0.0300 0.988 0.0326

8 (8000,2000) 0.005 0.0333 1.002 0.0340

9 (9000,1000) -0.009 0.0395 0.991 0.0377

10 (10000,0) 0.040 0.0542 1.033 0.0474

τ = 0.5 1 (1000,9000) 0.028 0.0373 1.030 0.0373

2 (2000,8000) 0.025 0.0353 1.001 0.0353

3 (3000,7000) -0.022 0.0325 0.988 0.0325

4 (4000,6000) 0.004 0.0310 1.002 0.0310

5 (5000,5000) -0.004 0.0301 1.000 0.0301

6 (6000,4000) -0.022 0.0311 0.970 0.0311

7 (7000,3000) -0.005 0.0316 0.984 0.0316

8 (8000,2000) -0.003 0.0338 0.991 0.0338

9 (9000,1000) -0.019 0.0385 0.978 0.0385

10 (10000,0) 0.031 0.0506 1.023 0.0506

τ = 0.55 1 (1000,9000) 0.017 0.0318 1.012 0.0320

2 (2000,8000) 0.023 0.0287 1.003 0.0305

3 (3000,7000) -0.021 0.0271 0.983 0.0289

4 (4000,6000) 0.002 0.0266 0.997 0.0284

Continued on next page
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Table C.1 – Continued from previous page

Dependence Sampling scenario (ncases, nnoncases) α̂11 ŜE(α̂11) α̂21 ŜE(α̂21)

5 (5000,5000) -0.009 0.0264 0.989 0.0281

6 (6000,4000) -0.021 0.0277 0.972 0.0293

7 (7000,3000) -0.006 0.0295 0.984 0.0305

8 (8000,2000) -0.009 0.0329 0.985 0.0332

9 (9000,1000) -0.022 0.0393 0.975 0.0387

10 (10000,0) 0.037 0.0550 1.030 0.0523

τ = 0.6 1 (1000,9000) 0.007 0.0280 0.995 0.0273

2 (2000,8000) 0.021 0.0262 1.004 0.0265

3 (3000,7000) -0.020 0.0254 0.976 0.0260

4 (4000,6000) 0.001 0.0253 0.992 0.0261

5 (5000,5000) -0.016 0.0255 0.977 0.0263

6 (6000,4000) -0.022 0.0268 0.970 0.0277

7 (7000,3000) -0.007 0.0288 0.983 0.0293

8 (8000,2000) -0.016 0.0321 0.977 0.0324

9 (9000,1000) -0.026 0.0385 0.969 0.0382

10 (10000,0) 0.019 0.0539 1.012 0.0525

τ = 0.65 1 (1000,9000) 0.000 0.0237 0.986 0.0234

2 (2000,8000) 0.016 0.0232 1.001 0.0233

3 (3000,7000) -0.018 0.0232 0.973 0.0235

4 (4000,6000) 0.000 0.0236 0.989 0.0241

5 (5000,5000) -0.020 0.0241 0.970 0.0246

6 (6000,4000) -0.023 0.0256 0.969 0.0261

7 (7000,3000) -0.006 0.0276 0.983 0.0280

8 (8000,2000) -0.024 0.0308 0.969 0.0310

9 (9000,1000) -0.038 0.0366 0.956 0.0366

Continued on next page
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Dependence Sampling scenario (ncases, nnoncases) α̂11 ŜE(α̂11) α̂21 ŜE(α̂21)

10 (10000,0) -0.007 0.0501 0.985 0.0495

τ = 0.7 1 (1000,9000) -0.003 0.0204 0.984 0.0206

2 (2000,8000) 0.011 0.0206 0.999 0.0210

3 (3000,7000) -0.017 0.0211 0.973 0.0215

4 (4000,6000) 0.001 0.0218 0.991 0.0223

5 (5000,5000) -0.019 0.0227 0.971 0.0231

6 (6000,4000) -0.023 0.0241 0.970 0.0246

7 (7000,3000) -0.001 0.0261 0.989 0.0265

8 (8000,2000) -0.027 0.0291 0.967 0.0294

9 (9000,1000) -0.045 0.0341 0.949 0.0342

10 (10000,0) -0.024 0.0445 0.968 0.0443

τ = 0.75 1 (1000,9000) -0.007 0.0185 0.983 0.0190

2 (2000,8000) 0.004 0.0190 0.995 0.0196

3 (3000,7000) -0.019 0.0196 0.973 0.0202

4 (4000,6000) 0.001 0.0204 0.993 0.0210

5 (5000,5000) -0.017 0.0213 0.975 0.0219

6 (6000,4000) -0.025 0.0227 0.969 0.0232

7 (7000,3000) 0.005 0.0245 0.996 0.0250

8 (8000,2000) -0.025 0.0273 0.968 0.0276

9 (9000,1000) -0.043 0.0314 0.951 0.0316

10 (10000,0) -0.031 0.0393 0.963 0.0393

τ = 0.8 1 (1000,9000) -0.021 0.0174 0.973 0.0181

2 (2000,8000) -0.007 0.0180 0.987 0.0187

3 (3000,7000) -0.020 0.0186 0.974 0.0193

4 (4000,6000) -0.016 0.0194 0.978 0.0201

Continued on next page
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Dependence Sampling scenario (ncases, nnoncases) α̂11 ŜE(α̂11) α̂21 ŜE(α̂21)

5 (5000,5000) -0.028 0.0205 0.967 0.0211

6 (6000,4000) -0.006 0.0218 0.988 0.0224

7 (7000,3000) -0.022 0.0235 0.973 0.0240

8 (8000,2000) -0.020 0.0257 0.974 0.0261

9 (9000,1000) -0.030 0.0292 0.965 0.0295

10 (10000,0) -0.024 0.0354 0.971 0.0355





153

C.2 Table and figure for model scenario (α11 = 1, α21 =
0, γ1 = 1.5)

Table C.2: Coefficient estimates and their estimated standard errors under generalized case-
cohort designs based on the first event indicator for model scenario (α11 = 1, α21 = 0, γ1 = 1.5)
when the dependence between time-to-events is changed from moderate to high

Dependence Sampling scenario (ncases, nnoncases) α̂11 ŜE(α̂11) α̂21 ŜE(α̂21)

τ = 0.4 1 (1000,9000) 1.007 0.0290 0.044 0.0467

2 (2000,8000) 0.97 0.0272 -0.001 0.0404

3 (3000,7000) 0.993 0.0265 0.038 0.0367

4 (4000,6000) 1.029 0.0256 0.062 0.0334

5 (5000,5000) 0.983 0.0252 -0.012 0.0313

6 (6000,4000) 0.981 0.0249 0.002 0.0296

7 (7000,3000) 1.005 0.0245 0.028 0.0282

8 (8000,2000) 0.978 0.0245 -0.012 0.0273

9 (9000,1000) 1.003 0.0245 -0.003 0.0265

10 (10000,0) 0.964 0.0251 -0.013 0.0261

τ = 0.45 1 (1000,9000) 1.005 0.0282 0.032 0.0426

2 (2000,8000) 0.985 0.0272 0.042 0.0384

3 (3000,7000) 0.997 0.0259 0.034 0.0344

4 (4000,6000) 0.983 0.0253 -0.019 0.0314

5 (5000,5000) 1.018 0.0245 0.038 0.0294

6 (6000,4000) 0.985 0.0243 -0.010 0.0283

7 (7000,3000) 0.978 0.0243 0.021 0.0276

8 (8000,2000) 0.984 0.0243 0.007 0.0266

9 (9000,1000) 0.973 0.0243 -0.007 0.0258

10 (10000,0) 0.990 0.0245 -0.016 0.0255

Continued on next page
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Dependence Sampling scenario (ncases, nnoncases) α̂11 ŜE(α̂11) α̂21 ŜE(α̂21)

τ = 0.5 1 (1000,9000) 1.003 0.0273 0.031 0.0378

2 (2000,8000) 0.985 0.0265 0.033 0.0349

3 (3000,7000) 0.998 0.0252 0.025 0.0316

4 (4000,6000) 0.982 0.0246 -0.019 0.0294

5 (5000,5000) 1.016 0.0240 0.035 0.0278

6 (6000,4000) 0.983 0.0238 -0.011 0.0270

7 (7000,3000) 0.979 0.0238 0.013 0.0265

8 (8000,2000) 0.984 0.0239 0.004 0.0258

9 (9000,1000) 0.972 0.0239 -0.011 0.0251

10 (10000,0) 0.986 0.0242 -0.021 0.0249

τ = 0.55 1 (1000,9000) 1.003 0.0260 0.017 0.0326

2 (2000,8000) 0.987 0.0253 0.013 0.0309

3 (3000,7000) 1.000 0.0243 0.017 0.0287

4 (4000,6000) 0.987 0.0238 -0.015 0.0271

5 (5000,5000) 1.018 0.0233 0.030 0.0260

6 (6000,4000) 0.982 0.0232 -0.019 0.0254

7 (7000,3000) 0.980 0.0233 -0.000 0.0252

8 (8000,2000) 0.985 0.0233 -0.002 0.0247

9 (9000,1000) 0.973 0.0234 -0.018 0.0242

10 (10000,0) 0.989 0.0236 -0.017 0.0241

τ = 0.6 1 (1000,9000) 0.995 0.0240 -0.004 0.0278

2 (2000,8000) 0.984 0.0237 -0.006 0.0270

3 (3000,7000) 0.997 0.0230 0.001 0.0257

4 (4000,6000) 0.980 0.0227 -0.028 0.0248

5 (5000,5000) 1.013 0.0224 0.017 0.0241
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Table C.2 – Continued from previous page

Dependence Sampling scenario (ncases, nnoncases) α̂11 ŜE(α̂11) α̂21 ŜE(α̂21)

6 (6000,4000) 0.977 0.0224 -0.029 0.0237

7 (7000,3000) 0.976 0.0225 -0.018 0.0236

8 (8000,2000) 0.981 0.0226 -0.013 0.0234

9 (9000,1000) 0.968 0.0228 -0.029 0.0232

10 (10000,0) 0.985 0.0230 -0.022 0.0231

τ = 0.65 1 (1000,9000) 0.990 0.0218 -0.014 0.0236

2 (2000,8000) 0.984 0.0219 -0.015 0.0235

3 (3000,7000) 0.994 0.0215 -0.009 0.0228

4 (4000,6000) 0.982 0.0215 -0.024 0.0224

5 (5000,5000) 1.008 0.0214 0.008 0.0221

6 (6000,4000) 0.976 0.0215 -0.029 0.0220

7 (7000,3000) 0.976 0.0217 -0.024 0.0221

8 (8000,2000) 0.979 0.0219 -0.019 0.0220

9 (9000,1000) 0.966 0.0221 -0.034 0.0220

10 (10000,0) 0.981 0.0223 -0.025 0.0221

τ = 0.7 1 (1000,9000) 0.987 0.0200 -0.018 0.0204

2 (2000,8000) 0.982 0.0202 -0.019 0.0205

3 (3000,7000) 0.992 0.0201 -0.011 0.0203

4 (4000,6000) 0.980 0.0203 -0.026 0.0203

5 (5000,5000) 1.001 0.0204 -0.002 0.0203

6 (6000,4000) 0.974 0.0206 -0.028 0.0204

7 (7000,3000) 0.976 0.0207 -0.025 0.0205

8 (8000,2000) 0.977 0.0210 -0.023 0.0206

9 (9000,1000) 0.959 0.0214 -0.041 0.0208
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Table C.2 – Continued from previous page

Dependence Sampling scenario (ncases, nnoncases) α̂11 ŜE(α̂11) α̂21 ŜE(α̂21)

10 (10000,0) 0.975 0.0216 -0.029 0.0209

τ = 0.75 1 (1000,9000) 0.983 0.0186 -0.020 0.0182

2 (2000,8000) 0.977 0.0189 -0.024 0.0184

3 (3000,7000) 0.990 0.0189 -0.013 0.0184

4 (4000,6000) 0.977 0.0192 -0.026 0.0186

5 (5000,5000) 0.994 0.0194 -0.009 0.0186

6 (6000,4000) 0.969 0.0197 -0.032 0.0189

7 (7000,3000) 0.973 0.0198 -0.028 0.0190

8 (8000,2000) 0.971 0.0202 -0.028 0.0193

9 (9000,1000) 0.953 0.0206 -0.047 0.0196

10 (10000,0) 0.971 0.0208 -0.030 0.0198

τ = 0.8 1 (1000,9000) 0.989 0.0178 -0.011 0.0169

2 (2000,8000) 0.972 0.0179 -0.026 0.0170

3 (3000,7000) 0.984 0.0182 -0.015 0.0173

4 (4000,6000) 1.006 0.0183 0.004 0.0173

5 (5000,5000) 0.977 0.0186 -0.022 0.0176

6 (6000,4000) 0.973 0.0189 -0.025 0.0178

7 (7000,3000) 0.983 0.0192 -0.017 0.0180

8 (8000,2000) 0.977 0.0194 -0.023 0.0182

9 (9000,1000) 0.967 0.0197 -0.030 0.0185

10 (10000,0) 0.971 0.0201 -0.028 0.0188
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