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ABSTRACT

Across North America, there are numerous sites where industrial, commercial or waste
management activities have resulted in the release of a wide variety of contaminants into the
ground. Many technologies used for in situ remediation of contaminants in soil and
promote the of fluids through the subsurface to either treat the
oonmnmmmplmwtoﬁuhmemmvﬂof!hewmmumformrﬁuuuﬂnem The
insitu of i located inlow ility soil is a
problem. Existing in sif i ing
soils and seldom used. The objective of this research has been to investi imple and low
cost fluid injection technique that relies on a soil shearing mechanism to create an enhanced
flow regime within the soil. An enhanced flow regime allows greater accessibility to
and enables i in situ ies to be used more
effectively over a broader range of soil conditions.

The research included an experimental program consisting of fluid injection tests carried out
from vertical and hori; and ical si ions of injection test results.
Reduced scale injection tests ied out i i i d d
experiments were carried out at the former U.S. Naval Facility in Argentia, NF. The
numerical modelling work also included the analysis of data from an injection test program
carried out by others in a large calibration chamber.

The injection d in thy i fhigh ility di inuities within the soil
surrounding the wellbore. Yieldmgdum;hwwnfoundmdonmeund«mn

however, other l: without yielding,
cavity expansion, and yielding in tension. The role that each of these mechanisms plays, is
inl by a complex i ionship between physical and geotechnical parameters
including pore and injection fluid properties, injection zone details, the soil stress state,
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LIST OF ABBREVIATIONS AND SYMBOLS

A change in, or incremental c, undrained shear strength
' buoyant unit weight C. coefficient of uniformity
Y bulk unit weight c, coeflicient of consolidation
¢’ effective friction angle D diameter
¢,  peak effective friction angle e void ratio
¢, constant volume eff. friction angle e principal strains (also e, and e,)
x elastic slope in V-p’ space e elastic component of principal
Py plastic slope in V-p’ space strains
I viscosity ef plastic component of principal
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CHAPTER 1 - INTRODUCTION

L1 Background

Across North America, there are numerous sites where industrial, commercial or waste
management activities have resulted in the release of a wide variety of contaminants into the
ground. These contaminants may exist in many phases, some of which may be immiscible
fluids that are denser than water (DNAPLs), immiscible fluids that are lighter than water
(LNAPLSs), vapour phase contaminants in the soil above the water table, and contaminants

dissolved in the groundwater.

The presence of contaminants in soil or groundwater can pose a serious health hazard, and

in recent years, there has been a concerted effort to develop processes and technologies that

can be used in sifu to treat i in soil and Th

of many existing in situ treatment technologies is closely linked to the ease in which fluid
movement can be promoted through the zone of soil in which the contaminant is located.
Fluid movement may include vapour and/or liquid phase flow which is usually encouraged by
the i ion of ination of ion and/or injection wells placed either above

or below the groundwater table.

The effectiveness of methods which rely on subsurface fluid flow to access the contaminated

soil are largely influenced by the permeability of the soil. In pervious soils where fluids may
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flow through the subsurface relatively quickly, ional in sifu

are often successful in removing contaminants from the sub-surface or treating contaminants

in place. For i within low ity soils, the ability of fluids to gh

. i i A

limited in their effectiveness and seldom used.

1.2  Statement of the Problem

The in situ treatment of contaminants located in dense low permeability soil is a particularly
challenging problem. Existing techniques for the in sifu treatment of contaminants are
generally ineffective in these soils. For these techniques to be successful, some process must
be first carried out on the soil which will increase the porosity and connectivity between pores
in the soil, and thus, enhance the ability of fluids to move through the pore space. This thesis
describes research carried out to i i an i ive means of i ing the porosity

of soil using a fluid injection technique called soil shearing.

In the soil shearing process, fluid is injected into a wellbore to cause stress changes in the soil
surrounding the well. The stress changes can cause the soil to yield, which can result in an
increase in the soil porosity and the generation of shear bands within the soil. These zones of
increased porosity and shear banding will help to increase the connectivity of naturally
occurring fractures and may increase the bulk permeability of the soil. The physical changes
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made to the soil structure may allow greater accessibility to contaminants located within the

soil and enable conventional in sifu treatment ies to be used ively over

abroader range of soil conditions.

There has been very little work carried out to date to investigate the

that may influence the i situ shearing process in low stress environmental applications. A
number of processes may occur during fluid injection including shearing, cavity expansion,
tensile parting (hydraulic fracturing) and flow through the pore space. The role that each of
these mechanisms may have during the fluid injection process is influenced by a complex
interrelationship between physical and geotechnical parameters including pore fluid and

injection fluid properties, injection zone details, the state of stress in the soil, absolute

of the soil, soil ituti' iour, and macro structure (see Figure 1.1). In
order to evaluate the suitability of shearing for enhanced in sifu treatment of contaminated
soil and groundwater, it is desirable to first gain a better understanding of how the physical

and geotechnical parameters shown in Figure 1.1 may influence the shearing process.

1.3 Objectives of Research Program

The overall objective of this research program was to develop a fundamental understanding

of the mechanism of yield zone development due to fluid injection in overconsolidated low

permeability soil. Specific objectives of the research were:



. to investigate how injection parameters will influence the injection process (i.e. well

geometry and orientation, rate of injection, fluid viscosity and density, etc.);

. o i i how i will influence the injection process (i.e.

in situ stress, friction angle, cohesion, dilation, permeability, etc.)

. to investigate the effect of shear induced permeability enhancement on the

development of yield zones due to fluid injection; and

. to i f the signif and relative ibutions of shear and tensile yield

mechanisms during the injection process.

These objectives were realized through a comprehensive research program that included

and ical work The i work included large scale

field tests and reduced scale physical model tests ina

1.4  Scope of Research

The primary emphasis of the work carrie