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Abstract

Benthic habitat maps, including maps of seabed sediments, have become critical spatial-

decision support tools for marine ecological management and conservation. Despite the

increasing recognition that environmental variables should be considered at multiple spatial

scales, variables used in habitat mapping are often implemented at a single scale. The

objective of this study was to evaluate the potential for using environmental variables at mul-

tiple scales for modelling and mapping seabed sediments. Sixteen environmental variables

were derived from multibeam echosounder data collected near Qikiqtarjuaq, Nunavut, Can-

ada at eight spatial scales ranging from 5 to 275 m, and were tested as predictor variables

for modelling seabed sediment distributions. Using grain size data obtained from grab sam-

ples, we tested which scales of each predictor variable contributed most to sediment mod-

els. Results showed that the default scale was often not the best. Out of 129 potential scale-

dependent variables, 11 were selected to model the additive log-ratio of mud and sand at

five different scales, and 15 were selected to model the additive log-ratio of gravel and sand,

also at five different scales. Boosted Regression Tree models that explained between 46.4

and 56.3% of statistical deviance produced multiscale predictions of mud, sand, and gravel

that were correlated with cross-validated test data (Spearman’s ρmud = 0.77, ρsand = 0.71,

ρgravel = 0.58). Predictions of individual size fractions were classified to produce a map of

seabed sediments that is useful for marine spatial planning. Based on the scale-depen-

dence of variables in this study, we concluded that spatial scale consideration is at least as

important as variable selection in seabed mapping.

Introduction

Marine ecosystems provide a broad range of services to humans, including food, extractive

resources, and cultural identity [1,2]. These systems are now being threatened and profoundly

impacted on local and global scales by a suite of anthropogenic stressors such as climate

change, overfishing, and pollution [3,4]. As pressures on marine systems intensify, there is an

urgent need to monitor and mitigate impacts to ensure ecosystem viability and sustainable

ecosystem services. Despite the importance of marine ecosystems to human well-being, and
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the immediate threats they face, we often lack the necessary information to make informed

management decisions.

Seabed maps provide necessary information for a number of conservation and manage-

ment applications. Habitat maps in particular are used to monitor anthropogenic impacts, to

support government marine spatial planning, for marine protected area design, to generate

knowledge about ecosystems and geology, and to assess seabed resources for economic and

management purposes [5,6]. Benthic habitat mapping is defined broadly as “the use of spatially

continuous data sets to represent and predict biological patterns on the seafloor” [7]. Habitat

mapping can be applied to species, communities, or physical features of interest, but a funda-

mental requirement for generating useful maps in all cases is the availability of the appropriate

high quality environmental spatial data.

Though benthic habitats are determined by a range of environmental variables, McArthur

et al. [8] identified seabed substrate characteristics as the strongest independent predictors of

benthic habitats. Sediment grain size is a particularly important substrate characteristic that

can constrain the distribution of benthic habitats [9,10]. Along with other habitat-defining

parameters, distribution maps of sediment grain size can thus serve as management tools for

predicting the distribution of individual species and assemblages [11,12]. The increasing avail-

ability of accurate marine spatial data has improved our ability to map the distribution of sea-

bed sediments. For instance, primary data collected from multibeam echosounders (MBES)–

bathymetry (i.e. water depth) and backscatter (i.e. acoustic reflectivity)–and their derivatives

can be used to delineate and model sediment grain size over large areas (thousands of km) at a

high spatial resolution (metres) when coupled with ground-truth substrate samples (e.g. [12–

14]). Quantitative predictions of sediment grain size can be used on their own as continuous

explanatory variables in further analyses or can be classified for interpretation or use as cate-

gorical variables [15]. This quantitative predictive approach represents a departure from sub-

jective expert-based interpretation towards more objective, repeatable methods [15,16].

Recent biological and geological modeling approaches have relied heavily on bathymetry-

derived terrain variables (e.g. slope and rugosity) and backscatter-derived variables (e.g. hard-

ness and heterogeneity) to predict the response of organisms (e.g. [17,18]), habitats (e.g. [19–

21]), or sediment properties such as grain size or the presence of rock (e.g. [13,22]). Terrain

variables can act as surrogates for patterns and processes on the seabed (e.g. seabed morphol-

ogy, current dynamics, relative position) that may influence the distribution of sediments or

biota [23]. While these processes are scale dependent (e.g. [24]), terrain variables are most

often derived at the resolution of the primary data layers (bathymetry and backscatter) by

default. The resolution of the primary data is selected by the data analyst, who must consider

the specifications of the MBES system, the specific survey, and the quality of the data. Terrain

variables are usually raster data products that are calculated using “focal” or “neighborhood”

cell analyses on the primary layers. Deriving terrain variables at the resolution of the primary

data imposes a spatial scale on them that may not be appropriate for representing the processes

of interest [25–27]. To avoid the arbitrary selection of data scale it may be desirable to test at

which scales explanatory variables have the greatest influence on the response variable. A solu-

tion that has been proposed in recent years is to move towards multiple scale or multiscale

analyses [28]. Multiple scale analyses are those that consider data at multiple successive scales,

and multiscale analyses are those that integrate information from multiple scales simulta-

neously [26]. Several terrestrial (e.g. [29–31]) and marine (e.g. [32–34]) studies have demon-

strated that the use of data at different scales can affect results and interpretations. Since

different environmental processes operate at different spatial scales [35], the adoption of a

multiscale approach ensures that the relevant scale-dependent patterns and processes are cap-

tured [28].

Multiscale mapping seabed sediments

PLOS ONE | https://doi.org/10.1371/journal.pone.0193647 February 28, 2018 2 / 24

funding and ship time from ArcticNet (http://www.

arcticnet.ulaval.ca/; grant no. 268150-2011). The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0193647
http://www.arcticnet.ulaval.ca/
http://www.arcticnet.ulaval.ca/


The overall objective of this study was to evaluate the potential of multiscale approaches for

predicting the distribution of sediment grain size for use in habitat mapping and marine spa-

tial planning. Using a case study approach, we first examined whether using the default data

resolution of terrain variables was optimal for predicting the distribution of sediment grain

size. We then determined which terrain variables at which spatial scales most strongly influ-

enced the distribution of sediment grain size. Finally, we applied this knowledge to predict dis-

tributions of mud, sand, and gravel fractions at optimal spatial scales in the study area.

Data and methods

Setting

This study was conducted in the coastal zone near the hamlet of Qikiqtarjuaq on the east-cen-

tral coast of Baffin Island, Nunavut, Canada (Fig 1A). The surrounding terrain is mountain-

ous, hosting upland ice caps and alpine glaciers, shaped by repeated glacial cycles during the

Quaternary [36]. For example, deep valleys and fjords (> 300 m deep, such as the one south of

Qikiqtarjuaq; Fig 1B) channeled glacial ice flowing from inland source areas onto the conti-

nental shelf. Coarse-grained glacial deposits mantle the coastal terrain and extend offshore.

The north-south channel is relatively shallow (60–70 m deep), and is shallowest opposite

Qikiqtarjuaq (16 m deep), where a tombolo may have joined the two islands during the post-

glacial sea-level lowstand [37]. Surface currents of 0.5–0.8 m/s in the channel winnow the local

seabed [38].

Fig 1. Study site. (A) Location of study site on east Baffin Island, NU, Canada. (B) Bathymetry data collected via MBES, with grab sample sites in red. (C) Backscatter

data collected via MBES, with grab sample sites in red. (A) was modified from the USGS National Map, available under the public domain; basemap in (B) and (C) was

obtained from the Canadian Land Cover GeoBase Series, containing information licensed under the Open Government Licence–Canada.

https://doi.org/10.1371/journal.pone.0193647.g001
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Primary data

Bathymetry and backscatter data were collected using a MBES over the course of five years in

the coastal zone near Qikiqtarjuaq (Fig 1). The surveyed region can be morphologically sepa-

rated into two broad areas: 1) the relatively shallow channel, oriented north-south, separating

Qikiqtarjuaq from Baffin Island; and 2) a deeper fjord basin oriented east-west located south

of Qikiqtarjuaq (Fig 1B). The CCGS Amundsen collected data in the deepest area (> 600 m)

using a Kongsberg EM300 30 kHz (variable beam width) echosounder in 2007 [39]. The Gov-

ernment of Nunavut scientific research vessel RV Nuliajuk collected MBES data using a

Kongsberg EM3002 300 kHz (1.5˚ x 1.5˚ beam width) echosounder in 2012–2013 and a

Kongsberg EM2040C 200–400 kHz (1˚ x 1˚ beam width) echosounder in 2014–2015 [40,41].

Datasets from the different survey years were harmonized and used as single, continuous lay-

ers for analyses. Details of how datasets from multiple MBES systems were harmonized are

provided in supporting information (S2 File). Depths mapped by the RV Nuliajuk were

between 5 and 350 m, and up to 522 m by the Amundsen. The mapped area was approximately

135 km2. Because the acoustic response of the seabed is dependent on MBES operating fre-

quency, the 30 kHz Amundsen backscatter dataset, which differed substantially from the 300

and 200–400 kHz, was omitted, yielding an area of 112 km2 analyzed.

In addition to MBES data, 109 sediment grab samples were collected between 2014 and

2015 to measure the grain size of sediment (Fig 1B and 1C). Seabed sampling that impacted

benthic fauna was permitted by Fisheries and Oceans Canada in 2014 and 2015 (license no. S-

14/15-1041-NU and S-15/16-1010-NU-A1). Work in this region was conducted in collabora-

tion with the Government of Nunavut, Department of Environment, Fisheries and Sealing

Division in 2014, and was further permitted in 2015 by the Nunavut Research Institute (license

no. 01 025 15N-M). Sample sites in 2014 were targeted to cover a previously completed shallow

underwater image survey conducted between 0 and 40 m water depth. Data from this study

were also appropriate for use in the current study. Sample sites in 2015 were selected randomly

in the area of the MBES survey, stratified by bathymetry (up to 200 m depth), bathymetry-

derived seabed slope, and backscatter, in order to obtain sediment samples at a range of these

values. All sediment samples were collected using an 8.2 L Wildco1 Ponar Grab.

Secondary data

While many terrain attributes can be derived from bathymetric data to describe seabed mor-

phology, Lecours et al. [42] recommended using a specific combination of six attributes that

together capture most of the topographic structure of a surface. The Qikiqtarjuaq bathymetric

data were used with the Terrain Attribute Selection for Spatial Ecology (TASSE) toolbox [43]

in ESRI ArcGIS v10.3.1 to compute values for those six terrain attributes using a default 3 x 3

window of analysis. The six terrain attributes include eastness and northness (unitless sin- and

cosine-transformed measures of orientation or aspect), relative difference to the mean value

(RDMV; a unitless measure of topographic position), standard deviation (a measure of terrain

variability; metres), slope angle (degrees), and local mean (metres water depth). Local mean

was strongly correlated with the input bathymetry layer and thus was not included in further

analyses.

In addition to the attributes identified by Lecours et al. [42], we derived a set of variables

that may apply specifically to the distribution of sediment grain size. Seabed curvature (degrees

per metre) influences current regimes and can be used to identify landform boundaries [44],

while measures of relative seabed position such as benthic position index (BPI; metres) identify

topographic highs and lows that can affect bottom currents and sediment transport [45,46].

Rugosity (the ratio of surface area to planar area) and the vector ruggedness index (the
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variability in surface orientation) are both unitless measures of terrain variability, which can

describe seabed topography and substrate at appropriate scales (e.g. rough/rocky, flat/soft;

[44]). Curvature measures were generated using the “Curvature” tool in ESRI ArcGIS v.10.3.1;

BPI at broad and fine scales (scale factors of 100 and 250 metres, respectively; [47]), rugosity,

and ruggedness were derived using the Benthic Terrain Modeler (BTM) toolbox [48]. Back-

scatter heterogeneity (hereafter Δbackscatter; dB), which is useful for differentiating coarse

and fine substrates [49], was derived from the primary backscatter layer using the same func-

tion applied to calculate surface roughness (i.e., obtaining “minimum” and “maximum” 3 x 3

pixel neighborhood layers, then subtracting “maximum”—“minimum”; cf. “backscatter rough-

ness”; [49]). ΔBackscatter was calculated using the “Focal Statistics” and “Raster Calculator”

tools in ESRI ArcGIS v10.3.1. Last, distance from the coast (metres), a potential driver of grain

size distribution [15], was calculated from a coastal polygon layer generated by Cowan [37]

using Euclidean distance.

Data artefacts that were not visible in the bathymetry layer became apparent in some terrain

attributes. These occurred most commonly at the interface between MBES datasets collected

from different years, or near the depth limits of the MBES systems. Because terrain variable

artefacts can affect habitat mapping results [50] we decided to exclude these areas from the

analysis, resulting in several narrow data gaps (see supporting information; Fig D in S2 File).

All variables, except for distance from the coast (calculated independent of MBES data),

were calculated at multiple scales by first deriving them from the original bathymetric and

backscatter data at 5-m resolution then averaging them over increasing windows of analysis

[26]. Variables were averaged over 3 x 3-, 5 x 5-, 9 x 9-, 13 x 13-, 21 x 21-, 35 x 35-, and 55 x

55-pixel neighborhoods using the “Focal Statistics” tool in ESRI ArcGIS v10.3.1. These neigh-

borhoods followed the Fibonacci sequence (rounded up when even)—a convenient number

series of increasing interval size [44,51]. This resulted in 129 potential variables for predicting

the response of sediment grain size, at eight different spatial scales (Table 1).

Sediment grain size distribution modelling

Response variables. Ninety-eight grab samples were from locations within the MBES sur-

vey, and were used to model the distribution of sediment grain size. Following recommenda-

tions by Aitchison [52] and Stephens and Diesing [12], mud, sand, and gravel fractions were

treated as compositional data that sum to 1 for each sample, allowing grain size classes to be

considered concurrently. These data were transformed to an additive log-ratio (ALR) scale for

use in modeling, resulting in values that are a ratio of two of the grain size classes, which can

be back-transformed to yield predictions of mud, sand, and gravel after modeling [12]:

ALRms ¼ logð
mud
sand
Þ

ALRgs ¼ logð
gravel
sand

Þ

Some sediment samples had mud or gravel fractions equal to zero, which may be due to

one of the following: a) sample sites lacking sediment of a given size class; b) recovering

amounts of a class that were too small to measure; or c) not retaining all size classes when sub-

sampling sediment grabs (occurred occasionally in low-gravel areas). Since samples with zero

values still provide valuable information on grain size composition, including those data points

in the analysis was important. Since the log of zero is undefined, a replacement method was

necessary for zero values to facilitate the grain size data transformation. The “simple

Multiscale mapping seabed sediments
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replacement” method (reviewed in [53]), which replaces zero values with measurements less

than the minimum recorded for a given size class, was used in this study. Following Lark et al.

[54] and Diesing et al. [13], we replaced the observed zero values with values below the level of

precision of our scientific equipment (1 x 10−4), maintaining the possibility that the size class

did occur in trace amounts.

Statistical modeling. Boosted Regression Trees (BRT; [55,56]), a popular tree-based

machine learning (ML) technique for ecological modeling [57], was applied to model the

responses of ALRms and ALRgs to the different explanatory variables at different scales (see

Table 1). This non-parametric technique can accommodate large numbers of non-linear cate-

gorical and numerical explanatory variables simultaneously, while automatically modeling

interaction between predictors [57,58]. BRTs were chosen because they commonly outperform

other quantitative modeling methods [10,59–61], ignore unimportant variables, are insensitive

to outliers, and tend to avoid over-fitting [55–57,59]. BRTs can provide plots of partial

response, variable interaction, and measures of variable contribution, which allow the user to

explore mechanistic relationships between explanatory and response variables [15,62]. Details

on how BRTs work have been detailed by Friedman et al. [55], and with ecological examples

by Elith et al. [62].

While BRTs can accommodate large numbers of explanatory variables and tend to ignore

those that are not important, it is still desirable to limit the number of variables in a model to

facilitate understanding of the scale-dependent mechanisms that control grain size distribution

[15,63]. BRTs can also be used as an exploratory tool to perform this function, as they return

information on the importance of explanatory variables in predicting the response [62,64].

Thus, we first fitted models of both ALRms and ALRgs iteratively for each individual variable,

Table 1. Multiple scale explanatory variables selected for modeling sediment grain size.

Variable Scales (m) Calculation Method Method Source

Primary Secondary

Bathymetry 5,15,25,45,65,105,175,275 - -

Eastness 5,15,25,45,65,105,175,275 TASSE [43]

Northness 5,15,25,45,65,105,175,275 TASSE [43]

RDMV 5,15,25,45,65,105,175,275 TASSE [43]

Standard Deviation 5,15,25,45,65,105,175,275 TASSE [43]

Slope 5,15,25,45,65,105,175,275 TASSE [43]

Fine BPI� 5,15,25,45,65,105,175,275 BTM [48]

Broad BPI� 5,15,25,45,65,105,175,275 BTM [48]

Curvature 5,15,25,45,65,105,175,275 Curvature Tool -

Profile Curvature 5,15,25,45,65,105,175,275 Curvature Tool -

Plan Curvature 5,15,25,45,65,105,175,275 Curvature Tool -

Area 5,15,25,45,65,105,175,275 BTM [48]

Rugosity 5,15,25,45,65,105,175,275 BTM [48]

Ruggedness 5,15,25,45,65,105,175,275 BTM [48]

Backscatter 5,15,25,45,65,105,175,275 - -

ΔBackscatter 5,15,25,45,65,105,175,275 Focal Statistics [49]

Distance from Coast - Euclidean Distance -

See text for explanation and discussion of individual variables and calculation methods.

�Fine scale BPI calculated with inner radius of 1 and outer radius of 20; broad scale BPI calculated with inner radius of 15 and outer radius of 50. Scale factors of 100 m

(fine BPI) and 250 m (broad BPI) averaged over the increasing window sizes result in scales of 100, 300, 500, 900, 1300, 2100, 3500, and 5500 m for fine; 250, 750, 1250,

2250, 3250, 5250, 8750, and 13750 m for broad.

https://doi.org/10.1371/journal.pone.0193647.t001
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but at all scales (Fig 2, Step 4). These preliminary models provided two useful pieces of infor-

mation: 1) a measure of which scales best explain the distribution of grain size for each vari-

able, and 2) a ranked order of how well each variable, considered at multiple scales, explains

the distribution of grain size. Percent relative importance was used to determine at which

scales each variable performed best. Decision trees that comprised the BRT models were

grown based on reducing the maximum amount of deviance in each model, thus models with

the least residual deviance after fitting were considered best and were ranked as such. This

methodology was applied separately for ALRms and ALRgs, resulting in two sets of both ranked

variables and information on the best-performing scales for each variable. All modeling was

conducted in R v3.2.3, with code modified from that provided by Elith and Leathwick [65] and

Ridgeway [66].

Fitting individual models of ALRms and ALRgs for all scales of a given variable provided

information on the relative contribution of each scale, and only scales that contributed� 10%

to a given model were subsequently considered. Correlation between scales of a given variable

was measured using Spearman’s rank correlation coefficient (Fig 2, Step 5). Correlated scales

of a given variable were removed if ρ� 0.7, giving preference to those that contributed more

to a given model [22,67]. Once correlated scales of each variable were removed, correlation

was assessed at all scales between different variables. Variables with correlation ρ� 0.7 were

removed, giving preference to variables that had the least residual deviance after model fitting

(Fig 2, Step 6). This methodology allowed for the selection of the most important, non-corre-

lated scales of each variable for inclusion in modeling ALRms and ALRgs. Models were then fit-

ted for both ALRms and ALRgs using the remaining non-correlated variables (Fig 2, Step 7).

ALRms and ALRgs were back-transformed to produce predictions of mud, sand, and gravel

fractions, individually (Fig 2, Step 8). Back-transformation was performed using the following

functions in the “Raster Calculator” tool in ESRI ArcGIS v.10.3.1 [15]:

mud ¼
Exp10ðALRmsÞ

Exp10ðALRmsÞ þ Exp10ðALRgsÞ þ 1

gravel ¼
Exp10ðALRgsÞ

Exp10ðALRmsÞ þ Exp10ðALRgsÞ þ 1

sand ¼ 1 � ðmud þ gravelÞ

These functions resulted in continuous predictions of mud, sand, and gravel fractions sum-

ming to 1 for all locations with MBES data. Following Stephens and Diesing [12], mud, sand,

and gravel fractions were classified according to Long [68] to produce a single map of sedi-

ment distribution (Fig 2, Step 9). Long’s scheme combines these fractions into the classes

“mud and sandy mud”, “sand and muddy sand”, “mixed sediment” and “coarse sediment”,

allowing them to be represented simultaneously in a single map.

Model evaluation. Elith and Leathwick’s [65] extension to the Generalized Boosted

Regression Models (gbm) package in R [66] implements an n-fold cross-validation (CV) pro-

cedure for BRT model building. CV partitions the response data into n folds, n-1 of which are

used to train a model that is evaluated using the excluded partition. This is repeated n times,

and the results are averaged to produce the final model and evaluation statistics. CV within

Elith and Leathwick’s [65] code calculates average percent deviance explained over 10 model

folds by default, which is useful for evaluating model fit [62,67]. An additional manual 10-fold

CV was conducted to measure the average Spearman’s rank correlation between back-trans-

formed predictions (i.e., mud, sand, and gravel fractions) and observed values of the withheld

Multiscale mapping seabed sediments
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Fig 2. Sediment grain size modeling workflow. Procedure for selecting explanatory variables at multiple scales to model the response of ALRms and ALRgs and predict

the distribution of grain size classes.

https://doi.org/10.1371/journal.pone.0193647.g002
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data partition. Spearman’s correlation coefficient provides a non-parametric ranked measure

of monotone relationship between predictions and observed values, providing an indication of

the model’s ability to predict grain size at new locations [69,70].

Results

Variable and scale selection

ALRms and ALRgs responses to the explanatory variables tested demonstrated that the default

5-m scale of analysis was not necessarily the most appropriate scale for all variables. Out of 51

scale-specific variables considered for modeling ALRms (i.e. those that contributed� 10% to

their respective single-variable model during testing) only 10 were at the default 5-m scale (Fig

3). Similarly, out of 55 scale-specific variables considered for modeling ALRgs, 11 were at the

default 5-m scale. All scales tested were selected for modeling at least once, yet 5, 175, and 275

m were most common for both ALRms and ALRgs (Fig 3).

Eleven variables were ultimately selected to model the response of ALRms (mud and sand)

at five different scales (Fig 4): broad BPI (175 m), eastness (5 m), backscatter (45 m), plan cur-

vature (5 m), rugosity (275 m), northness (275 m), Δbackscatter (5 m), Δbackscatter (105 m),

distance from the coast, plan curvature (105 m), and plan curvature (275 m). ALRms was most

strongly influenced by broad BPI at 175-m scale, the eastness component of aspect at 5-m

scale, and backscatter at 45-m scale, together which contributed over 73% to model building.

Partial dependence plots showed a strong negative trend between broad BPI and ALRms. The

ratio of mud to sand was generally higher on west-facing slopes and in areas of low backscatter

response.

Fig 3. Scales selected for modeling. Number of times each scale contributed� 10% to test models, and was selected for modeling.

https://doi.org/10.1371/journal.pone.0193647.g003
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Fifteen variables were selected to model ALRgs (gravel and sand) at five different scales (Fig

5): backscatter (175 m), bathymetry (5 m), eastness (45 m), Δbackscatter (275 m), plan curva-

ture (65 m), surface area (275 m), northness (275 m), plan curvature (175 m), curvature (5 m),

profile curvature (105 m), curvature (65 m), plan curvature (275 m), Δbackscatter (5 m), dis-

tance from the coast, and plan curvature (105 m). ALRgs was most strongly influenced by back-

scatter at 175-m scale, bathymetry at 5-m scale, and eastness at 45-m scale, together which

contributed over 68% to model building. Partial dependence plots suggested a positive trend

between backscatter response and ALRgs, a decrease of ALRgs shallower than ~60 m depth,

and a lower ALRgs on east-facing slopes (Fig 5).

Prediction

Back-transformed additive log-ratios produced continuous predictions of mud, sand, and

gravel fractions over the area of environmental data coverage (Fig 6). Sand was the dominant

size fraction, comprising between 50.9 and 98.8% of sediment composition, with a mean of

82.3%. Sand was most abundant in the north-south oriented channel, and less so in the deeper

fjord basin to the south (Fig 6B). Gravel comprised between 0 and 45.1% of sediment composi-

tion with a mean of 10.8% and was most abundant in the deepest waters to the south, where

the east-west oriented fjord empties into Baffin Bay (Fig 6C). Mud was the least abundant size

Fig 4. Variables selected to model ALRms. Partial dependence plots for multiple scale variables selected to model ALRms with percent contribution to the model

and data deciles on the upper x-axis.

https://doi.org/10.1371/journal.pone.0193647.g004
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fraction, comprising between 0.8 and 21.6% of sediment composition with a mean of 6.9%.

Mud was generally more abundant farther from shore, and was most common in patches

north of the community of Qikiqtarjuaq (Fig 6A).

Model evaluation

On average over 10 folds, 56.3 and 46.4% of the statistical deviance was explained by the

ALRms and ALRgs models, respectively. Mud predictions had the highest average Spearman’s

rank correlation (ρmud = 0.772), followed by sand (ρsand = 0.712) and gravel (ρgravel = 0.578).

Ten-fold CV also produced a map of standard deviation for each grain size fraction, indicating

Fig 5. Variables selected to model ALRgs. Partial dependence plots for multiple scale variables selected to model ALRgs, with percent contribution to the model

and data deciles on the upper x-axis.

https://doi.org/10.1371/journal.pone.0193647.g005
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Fig 6. Potential grain size distribution of seabed substrate. Predicted proportions of A) mud, B) sand, and C) gravel fractions. Basemap from the Canadian Land

Cover GeoBase Series, containing information licensed under the Open Government Licence–Canada.

https://doi.org/10.1371/journal.pone.0193647.g006
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areas of high and low model consensus (Fig 7). Mud predictions had the lowest mean standard

deviation (σmud = 0.007), with the greatest model consensus in areas of low mud proportion,

near the coasts (Fig 7A). Sand and gravel had similar mean standard deviations (σsand = 0.021,

σgravel = 0.019) that were also distributed similarly in space (Fig 7B and 7C). Standard devia-

tions for sand and gravel were highest in areas of high predicted gravel proportion and lowest

in sandier areas.

Classification

Following Stephens and Diesing [12], predictive maps of mud, sand, and gravel distribution

were classified according to Long’s [68] modification of Folk’s [71] original scheme in order to

facilitate interpretation and application as a management tool (Fig 8). This system was devel-

oped for use in the European Nature Information System (EUNIS) habitat classification, but

we found it convenient for application to this study–it is simple and easy to interpret. A natural

neighbor interpolation was applied to the individual grain size predictions in ESRI ArcGIS

v.10.3.1 prior to classification to fill data gaps that were removed due to acoustic artefacts (see

supporting information; Fig D in S2 File). The resulting map shows that the north-south ori-

ented channel is composed primarily of “sand and muddy sand” except for the area proximal

to Qikiqtarjuaq, which is “coarse”. “Sand and muddy sand” were predicted north of Qikiqtar-

juaq with “coarse” patches at scales from 100s of metres to kilometres, with small patches of

“mixed” sediment at scales from 10s to 100s of metres. “Sand and muddy sand” were predicted

directly south of Qikiqtarjuaq, eventually coarsening farther south where the north-south ori-

ented channel meets the east-west oriented fjord. “Coarse” patches in this area were predicted

to occur over the scale of kilometres, with finer-scale patches of “mixed” sediment occurring

over 10s to 100s of metres. “Coarse” and “mixed” substrates were predicted in the deep, high-

relief, southernmost portion of the study area, with the exception of a ~3 x 1 km “sand and

muddy sand”-filled basin in the middle of the channel. “Mud and sandy mud” occurred in

such small quantities that the class was excluded from the map.

Discussion

Scale selection

The variable and scale selection process (Fig 2) demonstrated that the default scale of explana-

tory terrain variables was not necessarily the best option for modeling the distribution of sedi-

ment grain size, confirming previous observations that terrain variables are scale-dependent

(e.g. [26,32,35]). Our methodology sought to identify the optimal scales at which explanatory

variables influenced sediment grain size distributions. The default was sometimes identified as

the best scale for an explanatory variable, but this was not always the case, and found to be not

applicable for most variables. This has broader implications for management and habitat map-

ping efforts that use such modeling predictions. Since the use of the same environmental vari-

ables at different scales will ultimately produce different modeling results [44,45,64,72,73], the

effects of scale selection will be propagated throughout the modelling process, and will impact

the results of these efforts. For instance, ALRgs models indicated that variables representing

influences of bottom currents (e.g. aspect, curvature) were most appropriate at scales between

45 and 275 m (Fig 5). Variables were selected at these scales and used in the models to produce

maps of grain size distribution. Map products would differ had they included these variables at

the default resolution.

The broadest scales (175 and 275 m) were commonly selected for predictor variables, but

fine and intermediate scales also contributed to the final models of ALRms and ALRgs. During

step 6 of the modeling process (removing correlated variables; Fig 2) more than half of the
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Fig 7. Grain size predictive uncertainty. Ten-fold CV standard deviations (SD) for A) mud, B) sand, and C) gravel predictions. Basemap from the Canadian Land

Cover GeoBase Series, containing information licensed under the Open Government Licence–Canada.

https://doi.org/10.1371/journal.pone.0193647.g007

Multiscale mapping seabed sediments

PLOS ONE | https://doi.org/10.1371/journal.pone.0193647 February 28, 2018 14 / 24

https://doi.org/10.1371/journal.pone.0193647.g007
https://doi.org/10.1371/journal.pone.0193647


variables selected at the coarsest resolution (275 m) were correlated with other variables, and

were removed. Other authors (e.g. [45,74,75]) have noted the effect of “coarse-graining”, in

which coarsening data resolution reduces the range of values, causing them to converge upon

a mean. This effect may have caused increased correlation between broad scale variables in our

study. Consequently, final models included fewer broad scale variables than were originally

selected (Figs 4 and 5).

Fig 8. Grain size classification. Predictions of mud, sand, and gravel classified according to Long’s [68] modification of Folk’s [71] original classification scheme.

See text for discussion. Basemap from the Canadian Land Cover GeoBase Series, containing information licensed under the Open Government Licence–Canada.

https://doi.org/10.1371/journal.pone.0193647.g008
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It is possible that importance of broad scale variables was not due entirely to their scale-

dependent relationship to the response. Data coarsening can reduce the effects of ground truth

locational inaccuracy, which was not quantified while grab sampling, but which could poten-

tially affect model performance [67]. Noise present in the primary bathymetry and backscatter

data layers can also be propagated, and even amplified in derivative layers [75], which can also

affect model performance [50]. A decrease in spatial resolution can reduce data noise in deriv-

ative layers [46,67]. By averaging derivative data layers over an increasing area, noise can be

smoothed out and made less distinct (see [32] for a comprehensive analysis of the effects of

data coarsening on bathymetric derivatives). We found that data noise was less distinct at

broader scales in this study. Though this may have produced a slight increase in the predictive

ability of coarser scale data layers, the effect was not overwhelming—indicated by the frequent

importance of fine scale variables identified during variable testing (Fig 3). A better under-

standing of the effects of error propagation in bathymetric data could clarify the impact of data

coarsening on scale selection and model performance.

Variable selection

Results from the variable selection process suggest that the morphology of the seabed strongly

influenced ALRms. The broad scale response of mud and sand to BPI (Fig 4) shows that the rel-

ative abundances of these size fractions were sensitive to topography over scales of 100s of

metres to kilometres, with finer grain sizes increasing at topographic lows. During the variable

and scale selection process, BPI was found to correlate with bathymetry (ρ = 0.79), yet the for-

mer was a stronger predictor of ALRms and was selected for the final model. This implies that

broad BPI may have acted as a surrogate for bathymetry in the model, especially close to shore

where BPI exhibited an edge effect caused by “no data” points outside the area of MBES cover-

age. This nearshore area of the BPI layer mimicked the shallowing of the bathymetry layer,

which elicited a strong response in mud and sand predictions (Fig 6). Thus, we consider

bathymetry to also be an important factor influencing the distribution of grain size, for which

BPI was a surrogate. ALRms increased with distance from the coast (Fig 4), describing the

increased transport of finer sediments.

Bottom currents transport sediments and control rates of erosion and deposition, making

them one of the strongest drivers of sediment distribution [32,46,76]. Morphology influences

the speed and orientation of currents, and also describes the exposure of seabed to them. Vari-

ables that describe seabed morphology, including bathymetry, eastness, northness, curvature,

and slope, together can serve as surrogates for bottom currents. The importance of eastness at

the 5-m scale in our study is potentially a result of its surrogacy for current information

[34,77]. The moderate response of ALRms to backscatter at an intermediate scale (45 m) sug-

gests that sand was slightly more acoustically reflective than mud (Fig 4). Backscatter informa-

tion was most useful for the ALRms model when averaged over 45 m. MBES data collection

was not optimized for backscatter data quality; averaging these data may have smoothed noise

that was present in the data, which was impacting model performance [67]. It is possible that

the selection of 45-m backscatter indicates a scale-dependence with ALRms, yet, assuming

backscatter is a proxy for substrate hardness, it is unclear why this relationship would be most

apparent at the 45-m scale. Though slightly weaker predictors, plan curve and Δbackscatter

variables had multiple non-correlated scales that contributed to the ALRms model. This sug-

gests that these variables did not capture the same terrain information at different scales, and

can be considered concurrently.

ALRgs responded most strongly to backscatter averaged over 175 m, confirming that gravel

was more acoustically reflective than sand (Fig 5). This corroborates findings by other authors
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(e.g. [78]) and highlights the usefulness of backscatter as a surrogate for bottom substrate prop-

erties (e.g. hardness, roughness)–it contributed over 55% of the information used to train the

ALRgs model. The broad scale relationship between backscatter and ALRgs suggests that back-

scatter was a useful predictor of grain size averaged over a large area–or potentially for larger

patches of sediment. This relationship also may have been affected by the noise reduction of

the backscatter layer after averaging. The heterogeneity of backscatter over a broad area, repre-

sented by the Δbackscatter variable at 275-m scale, was useful for predicting ALRgs. A positive

trend between these variables suggests that extensive gravelly areas caused increased variability

in backscatter return, compared to sandy areas. Bathymetry and eastness were important pre-

dictor variables at fine scales, reinforcing the importance of high-resolution data in habitat

mapping [7,34,45,79]. Measures of curvature (i.e., curvature, plan, profile) were weaker predic-

tors of ALRgs, but were non-correlated at multiple scales, allowing each to be included in the

model.

Model prediction and evaluation

Sand was predicted to be the most abundant grain size fraction in the area, and gravel was pre-

dicted to occur in higher proportions than mud, but was less widespread across the study area

(Fig 6). This is not surprising given the local igneous and metamorphic bedrock geology (gran-

ites and gneisses), which is scoured by glacial processes and overlain by sandy till veneer

[80,81]. Although field observations and underwater video also suggested that sand was the

dominant size fraction there is the possibility of sampling bias, which may have influenced

these results. Generally, grab sampling was most successful in sandy areas. Compact muddy

sediments and gravel both occasionally limited the penetration of the grab sampler, and high-

gravel proportions were typically not captured in the grab, or caused sample loss. For instance,

the field team noted some areas composed almost entirely of clasts ranging from pebbles to

cobbles, yet the lowest predicted proportion of sand was 0.51. Fewer successful grab samples in

gravelly areas may have contributed to its lower predicted abundance compared to sand.

Despite the potential for bias, these results seem to accurately represent most of the study site.

For instance, grab sampling, underwater video, and field observation all suggested that the

north-south oriented channel was primarily sand, with little mud or gravel, except near Qikiq-

tarjuaq (Fig 8).

Percent deviance explained, calculated internally using withheld data over the 10 CV model

folds for ALRms and ALRgs, provided a measure of quality for model fit (i.e., calibration

[62,82,83]), and Spearman’s correlation coefficient calculated for predictions of mud, sand,

and gravel indicated the model’s ability to quantitatively predict grain size fractions in un-sam-

pled locations (i.e., discrimination [83]). Each modeling scenario is different, and there is no

objective threshold of percent deviance explained at which a model is considered “well-cali-

brated”. Regardless, the percent deviance explained in our models of ALRms and ALRgs on

withheld CV data (56.3% and 46.4%, respectively) compare favorably with the literature (e.g.

[67,83,84]). This metric was also useful in the variable and scale selection process because it

provided a relative indication of goodness-of-fit, allowing for comparison between prospective

models (i.e. Fig 2, step 4). Spearman’s correlation coefficient for 10-fold CV predictions of

mud (ρmud = 0.772), sand (ρsand = 0.712), and gravel (ρgravel = 0.578) indicated a strong positive

association between predicted and observed grain size fractions. Gravel had the lowest correla-

tion score, with high-gravel areas (Fig 6C) displaying the most variability between the 10

model folds, as measured by standard deviation (Fig 7). We suspect that the difficulty in pre-

dicting the gravel fraction was largely due to the bias in grab sampling.
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Maximum grain size retained was also a limiting factor to this study. The field team noted

difficulties in retaining sediment grains> 4000 μm, effectively limiting the ability to model

sediments larger than small pebbles. This means that large gravel was not predicted. Thus, the

map of the gravel fraction (Fig 6C) represents the distribution of gravel� 4000 μm, and the

“mixed” and “coarse” classes (Fig 8) only include substrates up to this size. For instance, the

presence of cobbles was obvious in the area near Qikiqtarjuaq from underwater video and

field observations, yet model outputs were simply classified as “coarse” (Fig 9), which repre-

sents the substrate component surrounding larger clasts. These predictions are valid and useful

from an ecological perspective, but it is important to understand their limitations. Future

work could investigate methods for integrating larger clasts observed in underwater video with

sediment grain size predictions (e.g. [85]).

Sampling was limited to 200 m depth by equipment performance, making validation of pre-

dictions in the deepest parts of the study area impossible. For example, high backscatter

response in the deep east-west oriented fjord (Fig 1C) suggests a coarser grain size, yet these

predictions could not be validated. Lack of sample sites in this area likely contributed to a

higher standard deviation between model predictions (Fig 7). Despite this limitation, manual

inspection suggests that predictions were largely based on high backscatter return (Fig 1C).

Backscatter was the single most important variable in predicting ALRgs, accounting for over

55% of explained deviance in the model (Fig 5), providing some confidence that these predic-

tions are well-founded.

Classification

Long’s [68] simplification of Folk’s [71] scheme was chosen to classify sediment grain size pre-

dictions because of its generality. The objective in classifying grain size predictions was to cre-

ate an accessible resource for scientists and managers, yet Folk’s classification, which places

grain size into one of 15 categories, is complex and less accessible to non-experts. Long’s modi-

fication places samples into one of only four groups, which uses simpler terminology (e.g.,

“gravelly muddy sand”, “muddy sandy gravel”, “muddy gravel”, and “gravelly mud” are

grouped into the class “mixed”). Each of the four classes occurred in this study area, but the

class “mud and sandy mud” was very rare, and was ultimately excluded because it did not add

meaningful information to the map (Fig 8). The quantitative predictions of mud, sand, and

gravel produced in this study can be readily classified into any other sediment grain size

scheme based on user need [15].

Conclusions

Results of this study demonstrate that the default data resolution of each terrain variable was

not necessarily at the appropriate scale for explaining the distribution of grain sizes for seabed

sediment. Terrain variables acting as surrogates for seabed morphology and hydrodynamics

(e.g. BPI, bathymetry, and aspect), implemented at broad and fine scales, were the most impor-

tant variables for differentiating the mud and sand fractions. Broad scale backscatter was the

most important variable for distinguishing gravel from sand; terrain variables were of second-

ary importance. Multiple scale models were used to predict the distribution of the different

sediment grain sizes, avoiding the arbitrary selection of spatial scale for explanatory variables.

The results of this analysis can be used quantitatively in subsequent habitat mapping studies,

or can easily be reclassified based on management need.

These findings highlight the importance of considering variables at multiple scales for sea-

bed mapping. By failing to test for scale-dependence of explanatory variables in predicting the

response we risk creating less realistic maps. Multiscale and multiple scale analyses should not
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be considered a specialized form of analysis. We recommend that scale be considered an inte-

gral part of any benthic habitat mapping procedure–at least as important as variable selection.

Future work on the difference between mapping products as a result of multiscale deriva-

tion method (see [26]) could elucidate the importance of choosing one derivation method

over another. Though there is strong evidence that different methods of deriving variables at

Fig 9. Large pebble and cobble observation. Clasts too large to sample in an area classified as “coarse”, with 5-cm scale lasers. Basemap from the Canadian Land Cover

GeoBase Series, containing information licensed under the Open Government Licence–Canada.

https://doi.org/10.1371/journal.pone.0193647.g009
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multiple scales produce different products, it is not clear how the end products of a study may

differ based on multiscale method.
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