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ABSTRACT 

 

This thesis investigates possible geological preferences of cold-water coral species over 

varying spatial scales. Cold-water species and surficial geology were identified from geo-

referenced video imagery covering 15.09 km of seabed, at four sites on the flanks of the 

Flemish Cap in the Northwestern Atlantic. Species distribution and abundance were 

compared to the surficial geology and lithology described at five spatial scales. A total of 

30,310 individual corals were enumerated comprising 27 species on 8 different geological 

facies. Hard substrate inhabiting species did not show a preference for attachment substrate 

grain size or lithology type. The most abundant species Anthomastus spp. (soft coral) was 

the only species found on all grain sizes and both lithology types.  Surficial geological 

facies were statistically distinct when described at finer spatial scales (10 m, 50 m, 100 m) 

but, not at broader scales (500 m and 1000 m). Species distributions were primarily driven 

by depth and secondarily by substrate type. While other environmental variables described 

at coarse spatial scales (thousands of km) are suitable for predicting cold-water coral 

distributions; surficial geology is a more suitable surrogate at finer spatial scales. These 

observations highlight the importance of describing substrate and surficial geology at 

spatial scales less than 100 m.  
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1 Introduction to cold-water corals in Eastern Canada, Northwest 

Atlantic 

1.1 Introduction 

 

Cold-water corals (CWC, Phylum: Cnidaria), also known as deep-water or deep-sea 

corals, are sessile, long-lived invertebrates found globally in the world’s oceans. It is 

estimated that over 50% of known coral species are found in cold waters occurring below 

50 m depth (Cairns, 2007; Roberts et al., 2009). CWC provide important habitat for other 

benthic species (Milligan et al., 2016), and areas where CWC occur are typically 

associated with greater species richness than surrounding areas (Henry & Roberts, 2007; 

Ross & Quattrini, 2007; Mortensen, et al., 2008; Bongiorni et al., 2010). Corals are long 

lived (10s to 100s of years) and have slow growth rates which, makes recovery from 

direct and indirect anthropogenic damage slow (Risk et al., 2002; Mortensen & Buhl-

Mortensen, 2005; Sherwood & Edinger, 2009).  Due to their ecological importance and 

vulnerability, there is increasing interest in protecting CWC and their habitats (Fossa et 

al., 2002; Davies et al., 2007). However, their habitats tend to be in remote locations over 

large areas, thus much is still unknown about potential CWC locations, environmental 

preferences, and life histories (Ambroso et al., 2017). A key factor in CWC life histories 

is attachment substrate with each coral species generally adapted to only colonize either a 

soft or hard substrate. Soft substrates are ubiquitous on the seafloor and are composed of 

varying amounts of sand and mud. While hard substrates are less abundant, there are 

several different types found on the seafloor, each exhibiting differing physical 

characteristics (e.g. hardness and surface texture).  
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Coral species could prefer or have adapted to any one substrate characteristic, for instance 

hard substrate characteristics include resistance to erosion, irregular surfaces, or grain 

size. Additionally, hard substrates undergo erosion (e.g. physically and chemically) at 

different rates depending on their location which may influence the ability of coral 

species to colonize a substrate. However, attachment substrate is rarely described in 

studies (e.g. geological origin or lithology), and it is unknown if different coral species 

have substrate preferences.  

CWC have been documented along the continental margin of Eastern Canada, which has 

several areas of exposed hard substrates of several different origins and lithologies (Piper, 

1990; Edinger et al., 2011). This diverse assemblage is due to the unique geological 

history of seafloor spreading and repeated glaciations in the region. The Flemish Cap 

offers a unique opportunity to study corals on different substrate types. Located on the 

eastern most edge of the Canadian continental shelf, it is an isolated piece of continental 

crust that throughout its history has encountered different oceanic regimes as the North 

Atlantic Ocean formed (e.g. shallow warm seas and deep polar conditions). Bedrock 

outcrops of various ages and lithologies are found at all depths of the Flemish Cap. Fine 

grained sediments (e.g. muds and biogenic detritus), as well as ice-rafted debris (IRD) are 

deposited onto the continental shelf and slope by passing currents. Thus, this area has a 

unique assemblage of different types of substrate of different physical characteristics at a 

range of depths available for coral colonization. 

The purpose of this thesis is to investigate the relationship between CWC and substrate 

preferences by fulfilling 4 primary goals: 
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i. To describe and map the surficial geology observed from ROV video imagery; 

ii. To identify cold-water coral species and map their distribution at four 

locations on the Flemish Cap from ROV video imagery; 

iii. To describe the surficial geology at different spatial scales; and  

iv. To determine if there is a relationship between cold-water coral distribution 

and surficial geology using video imagery. 

Chapter 1 introduces the thesis and includes background on CWC biology, factors that 

control their distribution, equipment used in this study, and threats to CWC.  

Chapter 2 describes the geological history of the Flemish Cap and presents new in situ 

observations of the surficial geology by:  

i. For a general understanding, review the geological history of the Flemish Cap; 

and 

ii. To describe and map the surficial geology from HD ROV video and grab samples 

collected at four sites on the Flemish Cap. 

Chapter 3 addresses the importance of attachment substrate and surficial geology in coral 

habitat descriptions by: 

i. Mapping coral distribution at four sites on the Flemish Cap; and 

ii. Analyzing the coral distributions in relation to depth and surficial geology at five 

spatial scales.  

In Chapter 4, I conclude my dissertation with a summary of the findings of this research 

described above and identify applications for species distribution modeling and progress 

in coral conservation off Newfoundland and Labrador. 
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1.1.1 What are Cold-water Corals? 

 

Cold-water corals (CWC) have a broad distribution, found globally from the Arctic to the 

Antarctic (Cairns, 2007; Watling et al., 2011; Yesson et al., 2012). CWC are found in 

cold (>0-12ºC) and deep (10 to 1000s of m) waters on continental shelves, seamounts, 

and ridges (Freiwald et al., 2004; Bryan & Metaxas, 2006). While warm-water corals get 

nutrients from photosynthetic symbionts; CWC are azooxanthellate (lacking symbiotic 

dinoflagellates), living below the photic zone, and rely on surface derived particulate 

matter carried on currents (Roberts et al., 2009; Watling et al., 2011).  

Depending on the species, polyps either develop into solitary corals that form cup like 

structures or colonial organisms that can form large arboreal like fans. Corals have a slow 

growth rate, and colonies that are several meters tall can take hundreds to thousands of 

years to form (Sherwood & Edinger, 2009; Roberts et al., 2009).   

CWC are described into several groups: octocorals, scleractinians, antipatharians, 

stylasteridae, and zoanthidae. In this thesis only octocorals, scleractinians, and 

antipatharians were observed. Octocorals (Class Anthozoa: Subclass Octocorallia) have 

polyps comprised of eight tentacles surrounding a mouth, and each coral colony is made 

of hundreds of genetically identical polyps.  Within octocorals is the order Alcyonacea 

which includes both soft corals (no hard skeleton) and branching corals (sea-fans). For 

this thesis, the branching corals (also known as gorgonians) were classified into two 

different functional groups based on their maximum growth (height). Gorgonians have a 

rigid, semi-flexible internal skeleton which, in many species, forms a multi-branching 
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fan. The skeleton is comprised of calcium carbonate (calcite or aragonite), proteinaceous 

gorgonin or both (Bayer, 1973). Large gorgonians differ from small gorgonians in that 

they can grow to greater than 1 m in height, while small gorgonians grow to less than 1 m 

(Edinger et al., 2007a). Soft corals are supported by microscopic calcite sclerites within 

their tissue and  hydrostatic pressure, and can fully retract  their polyps into their 

hydroskeletons (Fabricius & Alderslade, 2001). Sea pens (Pennatulacea) are colonial 

corals that have a single stalked skeleton with polyps growing along the axis or from 

branches which, gives the coral colony a feather like appearance (Williams, 2011). These 

corals range in height from a few centimeters to several meters.  

Scleractinians (Class Anthozoa: Subclass Hexacorallia), also known as stony corals, form 

rigid aragonite (calcium carbonate) skeletons. This group comprises species bearing 

solitary polyps (cup corals) and colonial corals that form large reefs or bio herms. In this 

study, only solitary cup corals were observed. The identifying characteristics of solitary 

cup corals are their short stature and rigid skeletal frame that forms a cup shape. This 

group includes species that recline on the seafloor in soft sediments and those that attach 

to hard substrates.  Desmophyllum dianthus is larger than most reclining or free-living 

cold-water cup corals (growing to 10 cm in width), and often found on vertical rock walls 

or underneath ledges (Risk et al., 2002; Forsterra et al., 2005).  

Antipatharians (Class Anthozoa: Subclass Ceriantipatharia), also known as black-wire 

corals, are identified by their rough, black proteinaceous spiny skeletons. They have 

numerous orange and red polyps surrounding the skeleton. This group of corals has 
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several different morphologies; from long whips to large fans that appear very flat. Unlike 

octocorals, the polyps of these corals have only six tentacles and lack sclerites. 

Each coral group contains species that have adapted to colonize either soft (e.g. mud or 

sandy sediments) or hard (e.g. gravel or bedrock) substrates. To securely anchor into soft 

sediments, corals have developed different structures. Some small gorgonians (e. g. 

Acanella arbuscula) have root like structures which anchor the colony securely into fine 

grained sediments. Sea pens (e. g. Anthoptilum sp.) have a muscular foot known as a 

peduncle, which digs into the loose grains but also allows for limited mobility to travel 

short distances (Williams, 1999). Hard substrate colonizing corals (e.g. large gorgonians) 

form broad encrusting hold-fasts that cement them to the substrate surface (Mortensen & 

Buhl-Mortensen, 2005). Functional groups can be comprised of species that colonize hard 

substrates and others that colonize soft substrates (Edinger et al., 2007a). Solitary 

scleractinians (cup corals) can colonize either hard (Desmophyllum dianthus) or soft 

(Flabellum spp.) substrates.  

Whether inhabiting hard or soft substrates, it can be detrimental for corals to be removed 

from their attachment substrate or to become so large that the substrate is unable to 

support the colony. The grain size and sturdiness of the attachment substrate can be a 

contributing factor to how large a coral can grow. A lack of suitable substrate may limit 

the distribution of corals (Watanabe et al., 2009; Edinger et al., 2011; Baker et al., 2012). 

 

 



1-7 

 

1.1.2 Where do corals live? 

 

CWC are found in all the world’s oceans from the Arctic to the Southern Ocean (Freiwald 

et al., 2017). Many of these observations are from the continental shelf edges (Fossa et 

al., 2002; Yesson et al., 2012), seamounts (Davies & Guinotte, 2011), in submarine 

canyons (Brooke et al., 2016), and mid-ocean ridges (Mortensen et al., 2008). Continental 

shelf edges and seamounts are topographic highs in an otherwise flat abyssal plain and 

have been found to be biological hotspots for many marine species (Koslow et al., 2001). 

The large gorgonians species Primnoa resedaeformis and Paragorgia arborea have a 

global distribution and are concentrated on topographic highs such as continental margins 

and seamounts (Tendal, 1992; Bryan & Metaxas, 2006; Buhl-Mortensen et al., 2014).  

Beyond the continental shelf edge is the continental slope, which on average is a gently 

inclined seabed from 200 m to 2,000 m, sometimes with a mud veneer. Submarine 

canyons are often areas of high diversity that cross the shelf and act as conduits for 

sediment and organic particulates (Mortensen et al., 2006; Fernandez et al., 2017). 

Canyons and shelf-crossing troughs have favorable current regimes of hydrographically 

stable and nutrient-rich shelf water, with suitable substrate (Mortensen et al., 2006; Baker 

et al., 2012). Slopes with a recent glacial history have heterogeneous bottoms of several 

different substrate types such as hard substrates in the form of ice-rafted debris (IRD). 

Additionally, seafloor that has experienced glaciation provides fine scale topographic 

highs and suitable attachment substrate in the form of moraines, drumlins, eskers, and 

glacial till (Mortensen & Buhl-Mortensen, 2004; Edinger et al., 2011). These topographic 
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highs and gentle slopes provide corals other environmental factors important for a 

suitable habitat. 

1.2 Factors that influence cold-water coral distributions 

 

Several factors influence CWC distribution including: biotic, oceanographic (e.g. 

temperature, and salinity), and geological (e.g. geomorphology and surficial geology) 

(Leverette & Metaxas, 2005; Bryan & Metaxas, 2007; Dolan et al., 2008). Currents, 

temperature, calcite/aragonite saturation, and substrate are all essential environmental 

factors that comprise suitable CWC habitat (Bryan & Metaxas, 2007; Davies et al., 2008).  

For example, currents play a vital role in several aspects of coral life histories (i.e. food 

transportation, larval transportation/dispersal, oxygenation,). Marine snow sinks from the 

surface and move along the currents at depth where CWC use tentacles to grab the 

particles (Legendre & Michaud, 1999; Gardner et al., 2006). Several coral species 

colonize topographic highs to maximize the surface area in contact with these currents. In 

addition to transporting nutrients, currents play an important role in the coral reproduction 

cycle. CWC reproduce either by broadcast spawning (fertilization and development in the 

water column) or by brooding (egg fertilization within the parent colony). The larvae are 

carried in the water column by currents until they encounter a suitable substrate and 

attach.  For corals that attach to hard substrates, these currents must be strong enough to 

prevent sediment build up but not so strong as to dislodge the corals (Bryan & Metaxas, 

2006).  
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Temperature tolerance, in some locations can be a controlling factor for upper and lower 

vertical distributions (i.e. depth ranges). Most CWC species have a temperature tolerance 

range of 3 to 12 ºC, although the temperature ranges of individual species can vary 

widely. Temperature is correlated with depth, and the flow of warm waters can constrain 

the upper limits of some species, whereas food availability decreases with depth and can 

influence the lower limit (Mortensen et al., 2006).  

Depth ranges can also be limited by water mass chemistry. Corals need water masses 

saturated in dissolved calcium carbonate (calcite or aragonite). Aragonite is more soluble 

than calcite and is used by several coral species to build their skeletons. However, 

aragonite saturated waters limit where CWC can colonize (Chung et al., 2003). The 

aragonite saturation horizon (ASH) is the depth at which the supply rate of aragonite 

equals the rate of dissolution. The ASH is currently relatively stable in the North Atlantic 

Ocean at > 2000 m. Studies predict that the ASH will shoal as water masses become 

undersaturated which will limit the depth corals can inhabit (Orr et al., 2005). Aragonite 

skeletons could be vulnerable to dissolution. CWC are sensitive to changes in currents, 

water chemistry, and at surface productivity. 

While each coral species has a specific depth and temperature range tolerance (Roberts et 

al., 2006), most are limited in the types of substrate they can colonize. Coral larva 

demonstrate a settlement preference for certain hard substrates (Sun et al., 2010).  

Substrate availability is a variable that directly limits cold-water coral distribution 

(Watanabe et al., 2009). In the eastern and western North Atlantic region, the prevalence 

of glacial features such as shelf-crossing troughs, iceberg scours and drop stones provide 
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hard substrate in otherwise muddy bottom-types (Piper, 1991; Freiwald, 1998; Fossa et 

al., 2002; Edinger et al., 2011). These features are hotspots or CWC settlement and harbor 

an abundance of other organisms. Despite the importance of substrate to the distribution 

of CWC, most predictive habitat models do not include surficial geology. Available 

datasets are sparse with the surficial geology is described at coarse scales (tens of kms).   

CWC distribution is determined by the extent of suitable habitat, which is characterized 

by a combination of certain environmental factors present in each area. Areas of suitable 

habitat can be predicted in unexplored, remote locations by using models that include 

these environmental factors. The combination of factors can vary for each species: broad-

scale bathymetry, temperatures and currents are known to be important explainers of 

broad scale distribution patterns of Paragorgia arborea and Primnoa resedaeformis 

(Buhl-Mortensen et al., 2014). However, other factors, (e.g. substrate and fine scale 

bathymetry) are more effective for habitat characterization and prediction at fine scales 

(Bryan & Metaxas, 2006; 2007; Bennecke & Metaxas, 2017). 

1.3 Distributions of corals in Atlantic Canada 

 

CWC are observed all along the eastern Canadian continental margin, from the Scotian 

Shelf in the south to the Arctic Ocean in the north (Breeze et al., 1997; Mortensen et al., 

2006; Wareham et al., 2007; Edinger et al., 2007a, b; Wareham, 2009), and outside of the 

Canadian EEZ on the Flemish Cap (Murillo et al., 2010). To date, 60 species have been 

identified in Atlantic Canada. Many of these coral species co-occur tend to be highly 

clustered and are found below 200 m along the continental shelf edge (Wareham et al., 
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2007). However, along the continental margin some species are more likely to be found in 

different regions. For example, fisheries and scientific trawls (from Baffin Bay to Grand 

Banks) found Nephtheids soft corals were the only species found on the continental shelf 

at depths of < 174 m (Wareham et al., 2007). Other soft corals (Anthomastus spp.) were 

found at depths > 800 m on the continental slope (Wareham et al., 2007). Gorgonians 

have a similarly large spatial range and are found at similar depths (> 50 m) on the 

continental slope (Wareham et al., 2007). 

Several species observed elsewhere in the North Atlantic Ocean are rare on the eastern 

Canadian continental margin (e.g. Antipatharians and reef forming scleractinians). The 

reef building coral Lophelia pertusa is considered an important deep-water biogenic 

habitat-builder and is widely distributed in the North Atlantic (Davies & Guinotte, 2011). 

Although habitat suitability models for Lophelia pertusa (based primarily on depth and 

temperature) categorize most of the Atlantic Canadian continental shelf waters as suitable 

habitat, there are only a few confirmed observations of the species in Nova Scotia waters, 

including the Stone Fence (Mortensen et al., 2006; Buhl-Mortensen et al., 2017), The 

Gully (Cogswell et al., 2009), and at Jordan Rocks in the Gulf of Maine (Gass & 

Willison, 2005).  

Many coral location records come from specimens recovered in nets and bottom trawls 

from fisheries by-catch and scientific trawls (Breeze et al., 1997; Wareham, 2009). 

However, advancements in underwater technologies have allowed researchers to 

investigate areas that have either not undergone fishing activities or are not suitable for 

nets. By using advanced underwater technologies, researchers were able to make in situ 
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observations of a Keratoisis sp. forest, which was not previously possible through 

traditional methods (Neves et al., 2014). 

 

1.4 Benefits of using Remotely Operated Vehicles 

 

Previous studies have used specimens collected in dredges or caught in nets as fishing by-

catch (Freiwald et al., 2004; Wareham et al., 2007). This creates a bias in the data as 

samples are only collected in fishable areas. These methods cannot sample hard bottom-

types easily (e.g. bedrock, boulders), and a heterogeneity of bottom-types is not included 

in many of these studies. In addition, bottom contact sampling methods can cause 

significant damage to the habitat and remove whole colonies. Any remaining corals are 

damaged, and reefs can be significantly reduced. This damage can affect other local 

organisms that utilize corals as habitat. Coral data collected with nets over a broad spatial 

scale lacks the specificity needed.  

Nets and dredges are very coarse sampling methods that limit our understanding of the 

habitat and faunal distributions. Survey trawls can cover several kilometers, and corals 

found in the survey may represent a localized area instead of homogenous coverage over 

the whole track. Additionally, environmental factors important for CWC habitats are not 

sampled through nets and can change over a short distance. Surficial geology maps are 

traditionally created from grab sample, boxcore, and rock dredge samples, collected over 

several kilometers. These coarse sampling methods do not allow for the detailed 

description of CWC habitats needed for addressing growing conservation needs. 
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Advances in underwater technologies, including underwater positioning for 

georeferencing, have made it possible to study CWC habitats in finer detail and in less 

destructive ways.  

Cameras that collect high definition video or still imagery can now be suspended below a 

vessel or on remotely operated vehicles (ROV). Cameras enable researchers to collect 

imagery data without contacting the seafloor. Video and still imagery are advantageous as 

they allow the whole habitat to be sampled (e.g. surficial geology, fauna) and left intact. 

This less destructive method allows for long-term, in situ studies with the same corals, 

and makes it possible for a wide array of research and conservation questions to be 

answered.  

ROVs can operate in areas not suitable for net or boxcore and can sample a variety of 

different bottom-types. In addition to collecting biological and geological data, ROVs can 

be equipped with instruments (CTDs, water samplers, push cores) that collect other 

environmental data crucial for habitat characterization.  

For this study, the ROV Remotely-Operated Platform for Ocean Science (ROPOS) was 

used to collect video and still imagery. This imagery allowed for the attachment substrate 

to be visually observed intact which is not always recovered with traditional sampling 

methods. The surficial geology is also described at fine scale along the ROV track, 

allowing for detailed description of the heterogeneous seafloor. 
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1.5 Ecological importance of cold-water corals 

 

Though the existence of CWCs has been known for centuries, scientific and conservation 

interests have only recently increased. International organizations have issued directives 

to encourage member states to protect cold-water corals and their habitats (UNGA, 2007; 

FAO, 2009). Protection is a challenge for many nations as scientific knowledge is 

lacking, and questions remain concerning their distribution, habitats, and ecological role 

as habitat-structuring organisms (Roberts et al., 2006). 

CWC can provide important ecosystem services, such as shelter and sustenance, to a wide 

variety of organisms including: fish (Baillon et al., 2012), crustaceans (Buhl-Mortensen & 

Mortensen, 2004) and other invertebrates (Buhl-Mortensen & Mortensen, 2005). Several 

studies have shown CWC reefs are areas with higher biodiversity than the surrounding 

seafloor (Henry & Roberts, 2007; Bongiorni et al., 2010). In addition to providing shelter, 

CWC are also preyed upon by other benthic fauna. Urchins use CWC for both shelter and 

sustenance, feeding on the polyps and skeletons of CWC, and retreating into the complex 

framework when benthic predators (e.g. fish and decapods) are present (Stevenson et al., 

2014). CWC are also closely associated with highly valued commercial species such as 

the long-lived, deep-sea orange roughy (Hoplostethus atlanticus) (Doonan et al., 2015). 

In Eastern Canadian waters, there is evidence that some coral species (sea pens) may act 

as nurseries for some commercially important fish species (Redfish, Sebastes spp.) 

(Baillon et al., 2012). The removal or decline of CWC could have a detrimental effect on 

many benthic communities and species. 
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1.6 Threats to corals 

 

Corals are susceptible to damage from a wide range of physical and chemical impacts. 

Physical impacts can come from anthropogenic activities in the ocean, such as fishing, 

and offshore resource exploration (Roberts et al., 2006). Fishing gear that contact the 

seafloor or drift freely in the water column can cause damage to corals (Roberts et al., 

2000; Buhl-Mortensen, 2017). Lophelia pertusa is an important species for researchers 

and has been the focus of numerous studies due to its wide distribution, potential as a 

habitat builder, and its sensitivity to ocean acidification (Fossa et al., 2002; Davies et al., 

2008; Lunden et al., 2013). L. pertusa is rare in Atlantic Canada (only two known sites) 

and vulnerable to fishing activities. The coral colonies at Stone Fence were reduced to 

rubble, most likely by bottom-trawl fishing gear, before they could be protected and 

studied (Friewald & Roberts, 2005; Cogswell et al., 2009; Buhl-Mortensen et al., 2017). 

These important habitat-forming organisms are particularly vulnerable and slow to 

recover from physical damage (Koslow et al., 2001; Risk et al., 2002; Hovland & Risk, 

2003; Roberts et al., 2006; Sherwood & Edinger, 2009). In the early 19th century, fishing 

trawls would frequently recover giant gorgonians that were several meters in height and 

(probably) thousands of years old. Recent recoveries in the same locations only found 

small gorgonians (< 1 m) only a few hundred years old (Risk et al, 1998). Offshore oil 

exploration and operations can also impact coral communities in several ways, such as 

increasing the likelihood of oil spills in coral habitat (Fisher et al., 2014) and drilling 

sludge covering coral colonies (Purser, 2015). For resource managers to properly protect 

these unique species and habitats, accurate maps of their distributions are needed. 
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The oceans are changing due to warming temperatures and ocean acidification due to 

increased CO2 concentration in the atmosphere and these changes can have a negative 

impact on CWC, even in the deep-sea. Atmospheric carbon dioxide concentrations have 

been increasing, causing more carbon dioxide to be absorbed by the oceans. This in turn 

has decreased the pH of the ocean, causing more hydrogen ions to be available to react 

with carbonate ions, thus decreasing carbonate concentrations in the water column from 

the surface to the deep sea (Orr et al., 2005). As global ocean chemistry continues to 

change and become more acidic. Ocean acidification makes it increasingly energetically 

expensive for species (including plankton and corals) to form and maintain calcium 

carbonate skeletons. Some coral mounds in the Gulf of Mexico are already living in 

environmental conditions at the edge of their alkalinity and temperature tolerances 

(Georgian et al., 2015). With changing oceanographic conditions, coral communities and 

their food sources are under direct threat. 

1.7 Summary 

 

Cold-water corals are important biogenic habitats that provide food and shelter for other 

deep-sea organisms, but they are increasingly under threat from changing ocean 

conditions and increased anthropogenic activities. Efforts to protect them have increased 

over the decades but, available data are sparse and biased towards disturbed areas (e.g. 

fishing areas). There is a growing need to predict where suitable habitat will be in remote 

locations but, to make better models more information is needed on their life histories. 
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While it is known that attachment substrate is biologically important for CWC, studies 

have suggested that current spatial scales are insufficient for predictive modeling (Bryan 

& Metaxas, 2006). Traditional methods for describing surficial geology are coarse 

encompassing broad areas. ROVs allow for the collection of fine-scale, geo-referenced in 

situ geological data. The surficial geology observations will be described at increasingly 

greater spatial scales to determine the threshold at which a statistical significance is 

detected. The fine-scale, geo-referenced geological data will be combined with coral 

abundance to investigate CWC geological preferences on the Flemish Cap. 
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2 Observations of the surifical geology on the flanks of the Flemish 

Cap, Northwest Atlanitc from ROV video imagery 

 

2.1 Abstract 

 

The Flemish Cap has unique surficial geological composition compared to other areas of 

the eastern Canadian continental shelf. The surficial geology was described at four 

locations on the flanks of the Flemish Cap using video imagery obtained by ROV. A total 

of 52 hours of video imagery over 15 km of seafloor were analyzed and geo-referenced to 

describe the surficial geology. The southern and eastern flanks are steep, with exposed 

granitic core and Quaternary sediments. The northern flank has a somewhat gentler slope 

with exposed sedimentary bedrock forming ledges. Abrupt outcrop changes from pink 

limestone to granite on the eastern tip could be evidence of previous faulting. A 

prominent 100-m high sedimentary wall extending for several meters was observed at 

1300 m depth on the eastern tip. Igneous outcrops on the most southern site could be 

exposed Neoproterozoic core. These results offer some of the first in situ visual 

observations of the surficial geology of the southern, eastern and northern flanks of the 

Flemish Cap. 

 

 

 



2-2 

 

2.2 Introduction 

 

The continental margin of eastern Canada has a unique geological history. The margin 

formed in the Mesozoic as the North Atlantic Ocean opened northeastwardly and 

completed with the widening of the Labrador/Greenland spreading edge in the Paleogene. 

Since formation, the margin has been shaped by several ice sheets and bears the 

morphological characteristics of repeat periods of glaciation (Piper, 1991). The Flemish 

Cap is a geologically distinct section of the eastern Canadian continental shelf. 

The Flemish Cap is the western half of the Newfoundland and Iberia-Ireland conjugate 

margin. This conjugate margin is of great scientific interest as it is an excellent example 

of a magma-poor continental margin with hyperextension and upper mantle 

serpentinization (Sibuet et al., 2007). Recent video imagery surveys of the flanks have 

allowed for new geological descriptions and the collection of in situ samples.  

Unlike traditional methods used to generate marine surficial geology maps, such as sub-

bottom acoustic surveys and sediment coring, this study utilized high definition video 

imagery collected by a remotely operated vehicle (ROV). This imagery offers a unique 

opportunity to see features that are challenging to sample, and can ground truth previous 

interpretations of the geology of the Flemish Cap. This study offers fine-scale 

descriptions of the surficial geology observed at depth. 
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2.3 Geological Setting 

 

The Flemish Cap is an isolated piece of continental crust located 600 km east of 

Newfoundland in the Northwestern Atlantic Ocean (Figure 2-1). To the west, it is 

separated from the Grand Banks of Newfoundland by the 1000 m deep Flemish Pass and 

the Orphan Basin to the north. The Cap is relatively shallow at 126 m below sea level, 

and is 75 km in diameter at the top, widening to approximately 200 km in diameter at the 

base (King et al., 1985). The central part of the Cap consists of a shallow basement 

Neoproterozoic granodiorite that is part of the Avalon Zone of the Appalachian Orogen 

(King et al., 1985; Funck et al., 2003; Gerlings et al., 2011). A thin veneer of outward 

dipping sedimentary strata of Cretaceous and Cenozoic sediments overlies the 

granodiorite core (King et al., 1985; Grant & McAlpine, 1990; Weitzman et al., 2014). 

The southern margin has steep slopes with numerous faults and tilted blocks (Welford, et 

al. 2010a, and b). Due to the complex history of the Flemish Cap, there is significant 

variability along its margin (Grant & McAlpine, 1990; Welford et al., 2010a, b). 
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Figure 2-1 Location map of the Flemish Cap with respect to Newfoundland Grand Banks of Newfoundland Flemish Pass, Orphan Knoll, and the 

Orphan Basin. 
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The Flemish Cap margin formed as the North Atlantic Ocean opened northward during 

the Mesozoic (Srivastava & Tapscott, 1986). During the Aptian-Albian (~118 Ma), the 

southern Flemish Cap margin separated from the Galicia Bank located off the Iberian 

Peninsula, and the northern margin separated from the Goban Spur, part of the continental 

margin of Ireland (Srivastava & Verhoef, 1993). The margins rifted relatively quickly 

(10-20 My), forming a narrow transition between un-stretched continental crust and 

oceanic crust (Bassi et al., 1993). The average continental crust thickness on the Cap is 

30-31 km to 6 km thickness over 45 km distance on the northeastern slope (Funck et al., 

2003; Welford et al., 2010b). Hyperextension of the margins has resulted in numerous 

sections of faulted and rotated blocks (Welford et al., 2010a, b).  

 

2.3.1 Conjugate Margins 

 

The Flemish Cap forms conjugate margins with the Galicia Bank (Iberia) and the 

southern Flemish Cap flank, and the Goban Spur (Ireland) with the northern flank. While 

the Galicia Bank margin has been heavily studied, the Flemish Cap margin is only 

recently beginning to receive similar attention. Rifting between the Flemish Cap and the 

Galicia Bank began in the late Jurassic and continued into the Cretaceous (Grant & 

McAlpine, 1990; Hopper et al., 2006).  

The rifting of the margins resulted in three crustal thinning zones: stretched continental 

crust, transition crust and oceanic crust. There is markedly less stretched continental crust 

on the southern Flemish Cap margin (~170 km; Welford et al., 2010a) than on the Galicia 
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Bank margin (300 km; Whitmarsh et al., 1996). Multiple rotated fault blocks are present 

on the continental slope (Welford et al., 2010a). The margin of thinned continental crust 

narrows from south to the northeast on the southern edge of the Cap.  

Differing crustal thinning is likely due to asymmetrical separation between the Flemish 

Cap and Galicia Bank (Sibuet et al., 2007; Welford et al., 2010a). The asymmetrical 

rifting could be due to the Flemish Cap and Galicia Bank acting as micro-plates during 

the North American and Iberian plates separation (Sibuet et al., 2007).  

As the North Atlantic Ocean continued to open northward, a second rifting phase 

occurred in the late Cretaceous, with a NE-SW extension separating the northern flank of 

the Flemish Cap and the Goban Spur (Tucholke et al., 1989; Hopper et al., 2006; 

Tucholke & Sibuet, 2007). It is proposed that rotation of the Flemish Cap occurred during 

rifting (Sibuet et al., 2007). This conjugate margin is largely extensional and defined into 

three crustal thinning zones (Welford et al., 2012). 

In this asymmetrical conjugate margin, the thinning of the outboard margin is more 

abrupt on the Flemish Cap margin than on the Goban Spur margin (Welford et al., 2012). 

The Flemish Cap margin crust thins over a short distance of only 40 km from 32 km to 6 

km (Gerlings et al., 2011). Additionally, within the transition zone, thin continental crust 

is observed throughout the Flemish Cap but not the Goban Spur (Gerlings et al., 2012). 

The asymmetrical separation was present at all stages of rifting (Gerlings et al., 2012). 

Deep multichannel seismic collected on the northern Flemish Cap margin, clearly shows 
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a wide region of highly thinned back-tilted (synrift) sediment packages above tilted 

faulted blocks (Gerlings et al., 2012).  

The flanks of the Flemish Cap are extremely faulted, likely as a result from the opening 

of the North Atlantic. A strike-slip shearing zone follows the northeastern edge of the 

Flemish Cap along the -2000m contour (Welford et al., 2010b). It is hypothesized that the 

Flemish Cap rotated clockwise away from the region that is now the Orphan Basin, 

moving southeastward 200-300 km (Sibuet et al., 2007; Welford et al., 2010b).  

 

2.3.2 Surficial Geology 

 

Previous studies have described the Flemish Cap surficial geology above 500m as 

dominated by sand, boulders, and gravel (Weitzman et al., 2014) with the slopes covered 

mostly by mud (Grant & McAlpine, 1990). Sediments and ice-rafted detritus (IRD) are 

transported to the area by the Labrador Current and these sediments are similar to those 

found in the Orphan Basin and Labrador Slope.  

There are regional variations of surficial sediments on the Flemish Cap. The northeastern 

flanks and a wide area on the southeastern and southern flanks are predominately covered 

in sand (Weitzman et al., 2014). In contrast, Holocene silts are most abundant on the 

northwestern flanks (Weitzman et al., 2014). The eastern and southern flanks exhibit 

winnowed sediments (Weitzman et al., 2014). Melt-out IRD are found in great number 

throughout the top of the Flemish Cap (Sen Gupta & Gupta, 1971; Weitzman et al., 

2014). 
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The geomorphology of the eastern Canadian margin has been influenced by repeated 

glaciations (Piper, 1991). Ice sheets have extended out onto the continental margin, 

including the Grand Banks, and lower sea levels on to the Flemish Cap. During the last 

glacial maximum, the Flemish Cap was almost certainly submerged and had no glacial ice 

cover (Shaw et al., 2006). At the end of MIS 6, ice may have calved off the Flemish Cap, 

and melt water may be partially responsible for the canyons present on the southeastern 

flank (Stacey, 2011).  

Seismic surveys have identified glacial tills on the inner Grand Banks (King & 

Sonnichsen, 1999) however, the Flemish Cap was likely ice-free during the last glacial 

maxima but, is supplied with ice reworked substrate from passing ice bergs in the form of 

drop stones (Shaw et al., 2006). Icebergs move south and west on the Labrador Current 

(Piper & Skene, 1998). Iceberg pits and scours have been found above 600 m on the shelf 

and upper slope (King et al., 1985; Parrot et al., 1990; Piper & Pereira, 1992).   Icebergs 

reach the Flemish Cap in spring and early summer when temperatures at the top of the 

Cap are still dominated by cold polar currents (Stein, 1996).  

 

2.3.3 Currents on the Flemish Cap 

 

The Labrador Current (LC) is the main source of sediment and IRD transport to the 

Flemish Cap. From the north, the cold arctic waters of the Labrador Current (LC) and the 

Deep Western Boundary Current (DWBC) flow south along the continental margin. From 

the south the Gulf Stream and North Atlantic Current (NAC) bring warmer waters along 
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the southeastern margin of the Cap. As the LC flows south, it divides into the inshore and 

offshore branches that follow different pathways (Stein et al., 1995). The inshore branch 

hugs the coastlines of Labrador and Newfoundland before joining the Cape Breton and 

Nova Scotia currents. The offshore branch splits directly north of 47ºN, with one branch 

flowing through the Flemish Pass, and the other flowing clockwise around the Flemish 

Cap (Stein, 2007; Mertens et al., 2014). The anti-cyclical current interacts with the NAC, 

causing eddies to form on the top and upwelling on the slopes of the Cap (Colbourne & 

Foote, 2000; Stein, 2007). A 200 km wide clockwise gyre forms seasonally at the top of 

the Cap with an average speed of 10 cm/s, and periodically the positions of the main 

currents shift bringing different water mass regimes to the area (Hill et al., 1973; 

Colbourne, 1993). The currents around the Cap change seasonally and there is an increase 

in meandering flows in the winter months when the average wind speed is higher (Kuldo 

et al., 1984). 

2.4 Methods 

 

In the summer of 2010, benthic surveys were conducted on the Flemish Cap (Figure 2-2) 

with the CCGS Hudson and the remotely operated vehicle (ROV), ROPOS (Remotely 

Operated Platform for Ocean Science) (CSSF, 2010). High-definition video of the 

seafloor was collected and analyzed to describe the surficial geology along the track. 

Green lasers set 10 cm apart were used for scale. On board, observations were recorded 

using the DFO proprietary software ClassAct Mapper (CAM; Benjamin, 2007). After the 

expeditions, videos were re-analyzed, and observations were geo-referenced with ROV 
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positioning data. In addition to video imagery, geological samples were collected 

opportunistically.  

2.4.1 Study Area 

 

Four sites were surveyed on the southern, eastern, and northern slopes of the Flemish Cap 

(mission designation HUD2010029, Figure 2-3). Sites were selected based on reports of 

high sponge and coral occurrence, and interesting geological features (Table 2-1). 

However, these data were not specifically collected to address the goals of this study. 

Two dives were carried out on the southern flank to investigate two submarine canyons. 

The second canyon was chosen for the presence of a possible slump features (R1336) 

identified in multibeam bathymetry.  Site R1337 traversed a fault scarp on the nose of the 

Flemish Cap, and site R1339 followed an up-slope track on the northern flank. A fifth 

survey was conducted to look for trawl marks and was excluded from this study. 

Table 2-1 Hudson 2010 ROV sites with corresponding depth ranges, distance covered, total time on 

bottom, and site description. 

Site Date
Depth 

Range (m)

Length 

(km)

Bottom 

Time (hr)
Site Description Region

R1335 12-Jul 875-1840 3.46 13.78 Canyon talweg S

R1336 13-Jul 2224-2900 2.68 11.1
Canyon with possible 

slump
S

R1337 14-Jul 1020-2195 4.11 16.68
Faulted bedrock 

exposures
E

R1339 17-18 July 1363-2463 4.84 10.05
high sponge and 

coral by-catch area
N
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Figure 2-2 Location map of the Flemish Cap with respect to Newfoundland (A) and the five study sites (B). Lines represent ROV tracks: R1335 

(green), R1336 (yellow), R1337 (red), R1339 (orange). Grey boundaries represent 2017 NAFO sponge and coral closures. 
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Figure 2-3 ROPOS ROV tracks for the four sites analyzed. Stars indicate the starting points for each track. 
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2.4.2 Video Analysis 

 

The video imagery was analyzed to describe the surficial geology. The forward-looking 

camera on the ROPOS was used to determine grain size coverage, lithology, and sample 

selection. Grain size coverage was estimated visually and recorded in Class-Act Mapper 

at 1-second intervals for the duration of the video. These observations were referenced 

with location, and depth. Scaling lasers (set 10 cm apart) situated on the front of the ROV 

were used to determine grain size according to the Wentworth-Udden scale. It was not 

possible to distinguish sand from mud, which were combined as “fine grained”. The 

scaling lasers were not always sufficient to distinguish between cobble, and pebble which 

were combined as “gravel”. In addition to grain size, bedrock lithology was also 

identified, and verified from samples where possible. The 1-second interval grain size 

observations were mapped in ArcGIS (v. 10.5) and 100-m sections were described for 

surficial geology.  The 100-m spatial scale was chosen to produce a geological 

description that was finer than traditional surficial geology descriptions. 

2.4.3 Facies Description 

 

Primary (most abundant) and secondary (second most abundant) grain sizes were 

determined at 1-second intervals recorded in CAM.  Facies (surficial geology) were 

described from the primary and secondary grain sizes at 100-m spatial scales. For 

example, gravelly fine-grained facies consist of a primary substrate of gravel and a 

secondary substrate of fine grained for at a minimum of 75% of 1-second interval records. 

Notable features were recorded, such as bedrock walls or possible basalt dykes. 
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2.5 Results 

 

2.5.1 Surficial Geology 

 

Nine facies were described from 52 hours of video imagery based on grain size percent 

coverage and 18 grab samples (Table 2-2). The southern and eastern flanks of the Flemish 

Cap only have four different lithologies of exposed bedrock outcrops. The ROV ROPOS 

allowed for the characterization of facies not easily sampled by other methods (e.g. 

boxcores or van Veen grabs) used to describe surficial geology. Physical samples were 

collected opportunistically at various depths from each site (Figure 2-4). It also allowed 

for a nuanced surficial geological description at different spatial scales. For this study, 

facies are described at 100-m spatial scale. Block diagrams of each site and descriptions 

of the temporal distribution of facies from established regional stratigraphy are also 

presented. 

Large sections of fine grained sediments and exposed bedrock outcrops of different 

lithologies were observed from ROPOS video imagery. Sedimentary outcrops were 

observed on three dives above 2450 m. Igneous outcrops were observed on two dives 

below 2050 m. Bedrock samples were taken from weakened sections of the outcrop 

where possible. Cobbles were sampled above 1050 m on the southern and eastern flanks. 

These consisted of various lithologies with striated surfaces clearly visible (Figure 2-5). 

Samples collected at deeper depths are described as possibly IRD, with no obvious 

indications of origin or not in proximity to an outcrop (Figure 2-5, Figure 2-6).   
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Table 2-2 Geology samples per site with source identified from the video and geology described from hand samples. 
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Figure 2-4 Locations of geological samples collected along each ROV track: R1335 (B), R1336 (C), R1337 (D), R1339 (E). Dots indicate location of 

sample collection with corresponding figure number and panel letter. 
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Figure 2-5 Recovered rock samples of 1335 both in lab and in situ images at the time of collection. Green scaling lasers are 10 cm apart. A) 

2010029_1335_11, B) 2010029_1335_11 in situ, C) 2010029_1335_25, D) 2010029_1335_25 in situ, E)2010029_1335_26, F) 2010029_1335_26 in 

situ, G) 2010029_1335_27, H) 2010029_1335_27 in situ, I) 2010029_1335_28, J) 2010029_1335_28 in situ, K) 2010029_1336_03, L) 

2010029_1336_03 in situ. 
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Figure 2-6 Recovered rock samples of R1336-R1337 of both in lab and in situ images at the time of collection. Green lasers are 10 cm apart. A) 

2010029_1336_08, B) 2010029_1336_08 in situ, C) 2010029_1336_09, D) 2010029_1336_09 in situ, E) 2010029_1336_21, F) 2010029_1336_21 in 

situ, G) 2010029_1336_29, H) 2010029_1336_29 in situ, I) 2010029_1337_03, J) 2010029_1337_03 in situ, K) 2010029_1337_04, L) 

2010029_1337_04 in situ. 
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Figure 2-7  Recovered rock samples of R1337-R1339 of both in lab and in situ images at the time of collection. Green lasers are 10 cm apart. A) 

2010029_1337_06, B) 2010029_1337_06 in situ, C) 2010029_1337_08, D) 2010029_1337_08 in situ, E) 2010029_1337_09, F) 2010029_1337_09 in 

situ, G) 2010029_1337_15, H) 2010029_1337_15 in situ, I) 2010029_1337_17, J) 2010029_1337_17 in situ, K) 2010029_1339_02, L) 

2010029_1339_02 in situ. 
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2.5.1.1 Southern Flank 

 

During mission planning, the southern flank was identified as an area of interest and 

further investigation. Site R1335 traversed the talweg of a small submarine canyon 

between 875 and 1840 m depth on the southern flank of the FC (Figure 2-3). 

Discontinuous sedimentary bedrock outcrops were interspersed between fine-grained 

facies (Figure 2-9). Sedimentary bedrock outcrops were relatively small and eroded into 

spires (Figure 2-8, A), except for one outcrop wall at 1400 m. Lithology was likely 

mudstone or sand stone. No bedrock samples were collected at this site. A total of four 

samples of igneous and sedimentary lithologies were collected above 900 m within a 5-

meter area, which exhibited striations on their surfaces and classified as likely IRD 

(Figure 2-4; Table 2-2). These samples were collected to have a record of IRD in the area. 

Several different lithologies were represented including granite/granodiorite, and three 

different sedimentary lithologies: greywacke, silty sandstone, limestone (Figure 2-5). The 

fifth sample was granite/granodiorite and collected earlier in the transect at 1625 m.   

To the east of R1335 at deeper depths, site R1336 was believed to be a canyon formed 

largely by slumping (Figure 2-3). This deeper site consisted of exposed granite bedrock 

and gravelly fine-grained facies (Figure 2-11). An exfoliated granitic outcrop was found 

at 2740 m, and a possible basalt dyke was present at 2745 m (Figure 2-8 B, C, D). A total 

of five rock samples were collected at four points along the transect (Figure 2-5, Figure 2-

6, Table 2-2). Two angular igneous rocks were collected adjacent to a bedrock outcrop at 

2885 m (Figure 2-6).  As these were located adjacent to the outcrop and angular shape, 
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the samples are likely locally-derived, rather than transported IRD. In contrast, the 

rounded coarse-grained granite cobble collected at 2218 m is likely IRD in origin. 
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Figure 2-8 Surficial geology observed on two sites of the southern flank. A) R1335: Sedimentary outcrop (1690 m), B) R1336: Igneous outcrop 

(2893 m), C) R1336: Igneous outcrop (2740 m), D) R1336 Igneous outcrop (2745 m). 
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Figure 2-9 R1335 surficial geology facies described at 100 m sections. 
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Figure 2-10 Site R1335 block diagram of the surficial geological facies described in 100 m sections by 

depth (m). Diagram terrain is based off publicly available bathymetric maps of the ROV track. 
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Figure 2-11 Site R1336 surficial geological facies described at 100 m sections. 
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Figure 2-12 Site R1336 block diagram of the surficial geological facies described in 100 m sections by depth (m). Diagram terrain is based off 

publicly available bathymetric maps of the ROV track. 
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2.5.1.2 Eastern Flank 

 

Site R1337, on the eastern flank, traversed a stepped bedrock slope (Figure 2-3). The 

transect starts at 2195 m depth, revealing discontinuously sedimentary bedrock outcrops, 

likely limestone. The bedrock lithology changes abruptly from limestone to granitic 

between 1800 m and 2200 m (Figure 2-14). Samples were collected at each of the three 

outcrops (Table 2-2). The first sample in the sequence is pink limestone collected at 2057 

m (Figure 2-6). At 2050 m the lithology changes to a granodiorite (Figure 2-6, Figure 2-

13). This is the only instance of igneous outcrop at this site. The last sample in this 

sequence at 1735 m was pink limestone (Figure 2-7). The rest of the ROV track consists 

of sedimentary bedrock outcrops interspersed with gravelly fine-grained sediments. At 

1300 m depth, there is a prominent 100-m high sedimentary bedrock wall (Figure 2-13, 

B). Samples collected in the vicinity were white, chalky limestone (Figure 2-7). Granitic 

and gneiss cobbles, covered by a few centimeters of sediment, were collected at the end 

of this transect (Figure 2-7). These cobbles were sampled for the cold-water corals 

(Nephtheidae) attached to them. Several of these corals were present at the end of the 

transect indicating the presence of more sediment covered IRD. 
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Figure 2-13 Surficial geology observed on Flemish Cap: A) R1337: Granitic outcrop (2032 m), B) R1337: Limestone wall (1239 m), C) R1337: 

Sedimentary outcrop (m), D) R1339: sedimentary outcrop ledges (2381 m). 
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Figure 2-14 R1337 surficial geological facies described at 100 m sections. 
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Figure 2-15 Site R1337 block diagram of the surficial geological facies described in 100 m sections by depth (m). Diagram terrain is based off 

publicly available bathymetric maps of the ROV track. 
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2.5.1.3 Northeastern Flank 

 

The most northerly site (R1339) traversed the northern flank starting below 2400 m and 

ending above 1400 m (Figure 2-3). Only three facies were described on this site: 

sedimentary outcrop, fine grained sediments, and discontinuous sedimentary bedrock 

(Figure 2-16). Sedimentary outcrops were eroded into ledges and were exposed between 

1800 m and 2400 m (Figure 2-13). The only rock sample was collected at 2346 m, 

consisted of foliated granite with quartz and plagioclase which is likely IRD in origin 

(Figure 2-7). Strong currents encountered at this site made maneuvering the ROV 

difficult. 
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Figure 2-16 R1339 surficial geological facies described at 100 m sections. 
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Figure 2-17 Site R1339 block diagram of the surficial geological facies described in 100 m sections by depth (m). Diagram terrain is based off 

publicly available bathymetric maps of the ROV track. 
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2.6 Discussion 

 

2.6.1 Facies Interpretation 

 

There were numerous areas of exposed bedrock comprising both igneous and sedimentary 

outcrops interspersed between finer grained surficial sediment facies. Sections of fine-

grained unconsolidated sediment facies were observed on all dives and are interpreted as 

hemipelagic Holocene (MIS-1) and older glacial sediments with ice-rafted detritus, 

transported south by the Labrador Current. Sediments collected from industrial 

geophysical surveys and drilling for petroleum in the area from the northern flank area 

have been dated to the Neogene (Grant & McAlpine, 1990).  

The origins of gravelly fine-grained facies could not be distinguished among eroded 

bedrock, winnowed sediments or melt-out from icebergs, and thus was broadly described 

as areas with ≥ 25% coverage of gravel, pebbles or cobbles. Large sections of fine-

grained or gravelly fine-grained facies were present at all sites, and particularly R1335 of 

which fine grained sediments accounted for 94% of the survey track at 10 m intervals. 

The granite IRD found at sites R1335, R1336 and R1337 probably originated in either 

Greenland or Baffin Island (Piper & DeWolfe, 2003). IRD in the deep-water parts of the 

surveys could be from passing ice bergs or could have transported down slope from 

shallower depths. A maximum depth for possible IRD could not be determined from the 

available data.  
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Sedimentary outcrop facies were present between 1000-2400 m depth on three of the 

sites. Determining lithology from visual data based on erosion patterns and without 

adequate samples was difficult. Outcrops that could not be distinguished between: 

sandstone, mudstone or siltstone was grouped into sedimentary bedrock. No samples 

were collected from the sedimentary outcrops observed at R1335 but, from the 

weathering patterns observed are likely comprised of grain sizes smaller than sand 

(Figure 2-8).  

Igneous outcrops were similarly difficult to visually identify to that of sedimentary 

outcrops. The successful collection of a sample of granite outcrop on R1337 may be 

representative of outcrops seen on R1336 at deeper depths but this is unconfirmed. The 

distribution of igneous outcrop facies differed from that of sedimentary outcrops in that 

they were only present on two sites and at deeper depths. 

2.6.2 Geological Summary 

 

The distribution of facies observed on the flanks of the Flemish Cap span the breadth of 

its geological history. The four video surveys were conducted in areas that have 

previously been described as stretched continental shelf between 875 m and 2900 m depth 

(Welford et al., 2010a, b). However, this study did not use any sub-bottom to correlate 

our findings with this. This includes areas of rotated blocks and faulting. Of the bedrock 

lithologies observed, igneous was observed deeper (2050-2900 m) and only on two sites 

while, sedimentary was observed on three sites at mid-slope to shallow depths (1075-

2465 m). 
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Figure 2-18 Geological summary of the lithology and possible ages of facies per site. 
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2.6.2.1 Southern Flank 

 

The observations on the southern flank consisted of two dives covering different depths 

and surficial geological facies (Figure 2-18). The shallower of the two sites (R1335) 

consisted of unconsolidated Quaternary sediments and eroded sedimentary bedrock 

outcrops. The sedimentary spire outcrops were unique and only observed at this site. 

These erosional patterns could be due to the lithology or current regime changes on this 

section of the FC. At site R1336 (in deeper depths), igneous outcrops were interspersed 

between unconsolidated sediments. The igneous outcrops differed from the outcrops on 

R1337 in terms of outcrop extent, coloration and mineral size. The amount of bedrock 

outcrops in the area could be due to the slow depositional rates in the area. 

 

2.6.2.2 Eastern Flank 

 

Site R1337 was the most heterogeneous bottom type of any of the sites surveyed and had 

a step-like geomorphology. A sharp contact is observed between 1700 and 2000 m depths 

as the bedrock outcrops transition from possibly Aptian-Albian, pink limestone, to 

massive-jointed granodiorite, and back to pink limestone outcrops (Sen Gupta & Gupta, 

1971; Figure 2-6, Figure 2-7, Figure 2-18). Similarly, discontinuous sedimentary bedrock 

outcrops were revealed during the traverse, including a 100-m limestone wall between 

1300-1400 m depth. The shallowest part of the video survey revealed gravelly fine-

grained sediments with likely IRD. 
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2.6.2.3 Northeastern Flank 

 

The northern flank has a more gradual slope than the eastern or southern flanks. 

Discontinuous sedimentary bedrock outcrops that formed ledges were observed along the 

length of the video survey. These ledges were small, being less than two meters in length 

and less than half a meter in width. This site is exposed to the Deep Western Boundary 

Current (DWBC) as it splits just above the FC and travels south along the continental 

edge (Mertens et al., 2014). No bedrock samples were collected at this site thus, outcrops 

were broadly classified as sedimentary. As with other surveys, Quaternary gravelly fine-

grained facies were found at the shallowest depths at the end of the survey transect 

(Figure 2-18). 

 

2.6.3 Identification of igneous facies 

 

During the opening of the North Atlantic Ocean, there was less stretching and continental 

thinning on the Flemish Cap margin than the Goban Spur/Galicia Bank margins, probably 

due to its strong granitic core (Welford et al., 2010a, b). Granitic outcrops exposed at the 

surface were observed at depths below 1600 m on the southern and eastern flanks of the 

FC (Figure 2-8, Figure 2-13). However, similar massive and jointed bedrock outcrops 

have been observed in 143 m of water on the top of the Cap near the continental shelf 

edge (Pelletier, 1971). Sample Hud2010029_R1336_29 was collected at 2218 m and is 

similar to fine to medium-grained pink granodiorite drilled core samples (King et al., 
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1985). This sample was not taken directly from the outcrop, and its origin could not be 

confirmed visually. Other granitic core samples drilled on the FC at a depth of 146 m 

were light gray, and coarse grained (Pelletier, 1971).  

At 2885 m depth, two different igneous samples were collected and are interpreted as 

possibly bedrock (Table 2-2). Both samples were sampled from the base of the adjacent 

outcrops but not sampled directly from them. Due to their angularity and proximity to the 

outcrops we have classified them as likely bedrock. These samples were not available for 

examination. Descriptions presented here are from available in situ imagery and 

descriptions made at the time of collection. HUD201009_1336_08 is a fine-grained 

biotite granite, HUD201009_R1336_09 consisted of a fine grained, porphyritic, non-

glassy basalt. Further analysis will be needed of these igneous samples to confirm their 

origin. 

2.6.4 Identification of sedimentary facies 

 

Two limestone samples collected from outcrops at 1571 m and 2057 m depth on site 

R1337 represent different depositional environments that occurred at different times 

during the opening of the North Atlantic Ocean. The pink limestone found below and 

above the core granitic outcrop at 2000 m depth is probably shallow-water type limestone 

due to its coloration. It is similar to Aptian-Albian aged samples recovered on ODP Leg 

210 or the fossiliferous limestone samples dredged from shallower depths on the southern 

flank (Sen Gupta & Gupta, 1971). The limestone sampled at 2057 m, is a chalky 
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limestone that probably formed later in the ocean spreading, in a deep-water environment, 

possibly during the late Cretaceous (Figure 2-7).  

The sedimentary bedrock observed on site R1335 is likely a mix of different sedimentary 

rock types including mudstone, limestone and sandstone, likely deposited during the 

Cretaceous (Figure 2-18). Dredge surveys in the area have returned fossiliferous 

limestone from 1480 m depth dated to the early to mid-Cretaceous (Sen Gupta & Grant, 

1971). The sedimentary outcrops found below 2000 m on R1339 are probably Cretaceous 

and Palaeogene east coast sediments (King et al., 1985).  

2.7 Conclusion 

 

The complex geological history of the Flemish Cap is evident in the surficial geology 

seen in the video imagery surveys conducted at four sites on the southern, eastern and 

northern flanks. The video imagery shows there are large outcrops of basement core, as 

well as, sedimentary bedrock of Cretaceous age. ROV video imagery provides unique 

insight into the surficial geology of the Flemish Cap not previously captured from 

traditional survey methods (e.g. boxcores and VanVeens). Using ROV imagery could be 

a good source of geological information from other difficult to sample areas where other 

transects have been conducted. 
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3 Distributional patterns of cold-water corals in relation to surficial 

geology on the Flemish Cap: Northwest Atlantic 

 

3.1 Abstract 

 

This study uses video imagery from ROV collected in 2010 to determine attachment 

substrate preference for CWC species and relate coral abundance to surficial geology at 

five spatial scales (10 m, 50 m, 100 m, 500 m, 1000 m). Attachment substrates were 

described by lithology and grain size. In total 30,310 coral colonies were observed 

throughout the entire depth range (875-2900 m); comprising 27 species. CWC species 

that colonize hard substrates did not have a grain size or lithology preference. 

Anthomastus spp. was the only species found on all grain sizes and both lithology types, 

across all depths. Two- way ANOSIM comparison of the five spatial scales across all 

depths showed significant results (p<5%) for facies described at fine scales (10-100 m) 

but were not significant for broad scales (500-1000m). These observations highlight the 

importance of substrate and surficial geology in describing habitat at spatial scales less 

than 100 m. 
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3.2 Introduction 

 

Cold-water corals (CWC) are long-lived, slow growing, sessile animals, which are 

particularly vulnerable to changes to their environments. They are vulnerable to 

environmental changes such as ocean acidification (Guinotte et al., 2006), and 

anthropogenic pressures (e.g. fishing, and oil and gas production) (Mortensen et al., 2005; 

Roberts et al., 2006; Edinger et al., 2007). Their long life-span and complex structures 

provide stable shelter, feeding sites, and habitat for deep sea fauna (Buhl-Mortensen et 

al., 2010), and are associated with higher species diversity than in surrounding areas 

(Ross & Quattrini, 2007). CWC are considered important habitats in need of protection 

and are classified by the United Nations General Assembly (UNGA) as Vulnerable 

Marine Ecosystems (VME) (UNGA Resolution 61/105). However, knowledge of CWC 

distributions is limited and often biased by research effort (Roberts et al., 2006). It is 

important to understand which factors most strongly influence CWC distribution to 

inform conservation measures. This study compares the relative importance of geological 

and oceanographic factors on distributions of cold-water corals on the Flemish Cap, NW 

Atlantic. 

Cold-water coral research has focused on specific regions, particularly in the Northeastern 

Atlantic (Roberts et al., 2005). In the Northwest Atlantic, off eastern Canada, 36 coral 

species have been identified on the continental shelf and edge from Nunavut to Nova 

Scotia (Breeze et al., 1997; Mortensen et al., 2006; Wareham & Edinger, 2007; Edinger et 
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al., 2007; Gilkinson & Edinger Eds., 2009). This includes several species of gorgonians 

(sea fans), antipatharians (black-wire corals), pennatulaceans (sea pens), scleractinians 

(stony corals) and alcyonaceans (soft corals). Exploration into the Canadian Arctic has 

extended our knowledge of the geographic range of some species, including that of the 

gorgonian Keratoisis sp. (Neves et al., 2014). CWC distribution data has come from 

fishing by-catch records, fishery observers, and scientific surveys, resulting in a 

distribution biased towards fishing effort (Gass & Willison, 2005; Wareham & Edinger, 

2007; Edinger et al., 2007). Consequently, areas of the seafloor with relatively low 

fishing pressure have limited information on coral abundance and diversity. To predict 

where CWC might be in these under sampled areas, factors that describe CWC habitat are 

used. Environmental factors that are essential to CWC are more easily described over a 

larger region, which is useful for locating potential habitats in these non-fishing regions.  

CWC species colonize habitats with specific environmental (Roberts et al., 2009). 

Environmental variables are used as surrogates in models to predict CWC habitat 

distributions in areas where presence data is lacking (Bryan & Metaxas, 2007; Yesson, 

2012).  However, these models are only as good as the environmental surrogates used to 

create them, and often can produce maps that overestimate the availability of suitable 

habitat, which is not as useful for conservation planning. Often, a key component of 

CWC life histories that is not included in these models is attachment substrate, with hard 

substrates being particularly important to many species of interest (Bryan & Metaxas, 

2007). At most depths worldwide, the seafloor comprises mostly of soft sediments (e.g. 

mud and sand) with hard substrates being rarer and usually found in shallow to mid-range 
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water depths. Without the inclusion of attachment substrate preferences, predictive habitat 

maps tend to encompass large regions that do not necessarily accurately depict CWC 

ranges (Davies et al., 2008; Yesson, 2012). However, knowledge of local topography can 

pinpoint potential habitat more precisely (Brooke et al., 2014). Determining where hard 

substrate is in a given area, and in what form, could produce more accurate models. 

However, currently it is unclear what characteristics of hard substrates are preferred by 

each species.  

Many CWC species need to colonize a form of hard surface, and the lack of a suitable 

substrate can limit their distribution or development. The bathymetric range and fine-

scale spatial distribution of the large octocoral species Paragorgia spp.  is limited by the 

availability of hard attachment substrate (Mortensen & Buhl-Mortensen, 2005; Watanabe 

et al., 2009).  While there is a degree of variety in soft substrates (i.e. the percent of sand 

or silt), hard substrates are more easily identified, and offer greater variability in type, 

shape and size. While some experimental studies have suggested a substrate type 

preference at the larval stage (Sun et al., 2009), it is unknown if CWC have a hard 

substrate type preference in-situ (e.g. sedimentary vs. igneous bedrock or boulders vs. 

bedrock).  

The continental shelf of Atlantic Canada has an unique geological history and has 

numerous types of hard substrates beneficial for CWC recruitment. Corals have been 

found on the continental shelf, shelf edge, and slope from the Arctic to Nova Scotia 

(Wareham & Edinger, 2007).  Less than 20% of the southern Atlantic Canada continental 

shelf is more than 200 m deep (Piper, 1991). The surficial geology mainly consists of 
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gravel in the form of ice-rafted debris, glacial tills (Piper, 1991). In addition to 

glaciomarine depositional features such as moraines, CWC inhabit current swept cobbles 

and boulders, exposed bedrock outcrops, and semi-consolidated sediments (Edinger et al., 

2011; Baker et al., 2012). The Flemish Cap (FC) is the eastern most point of the 

continental shelf. It is an area of known high CWC abundance and has designated NAFO 

closures (Murillo et al., 2011; Wareham & Edinger, 2007). This study used a remotely 

operate vehicle (ROV) to capture in-situ video of cold-water coral habitats on the flanks 

of the FC. Here we describe the distribution and abundance of CWC species, their 

attachment substrates, and the surficial geology at different scales.  

3.3 Methods 

 

3.3.1 Study Area 

 

The FC is an isolated piece of continental margin located outside of Canada’s economic 

exclusion zone (EEZ), east of the Grand Banks. The top of the cap is relatively shallow, 

125 m depth, with has a 200-km radius, and steep eastern and southern flanks (Stein, 

2007; Welford et al., 2010a, b). The cold, oxygenated polar waters, of the Labrador 

Current (LC) and Deep Western Boundary Current (DWBC) influence the study area 

(Stein, 2007; Mertens, et al., 2014).  The FC has a unique and complex geological history 

compared to the rest of the Canadian continental shelf. It has a granodiorite core with 

Mesozoic and Cenozoic sediments overlaid (King et al., 1985). Faulting along the steeply 

sloping margins has resulted in the exposure of several different types of bedrock 
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(Welford et al., 2010a, b). Sites were selected based on interesting geological features, as 

well as, reports of high sponge and coral occurrence. 

3.3.2 Video Surveys 

 

Four dives were conducted on the FC aboard the CCGS Hudson from July 12-18th, 2010, 

using the remotely operated vehicle (ROV), ROPOS (Remotely Operated Platform for 

Ocean Science) (Table 3-1). Two were conducted on the southern margin, one on the 

eastern tip, and one on the northern margin (Figure 3-1). The two southern sites were 

selected based on geological features of interest, while the eastern and northern sites were 

chosen biased on high sponge and coral occurrence. These dives also occurred in NAFO 

coral and sponge closure. In total, 52 hours of ROPOS video were recorded covering 15 

km over a depth range of 875 to 2900 m (Table 3-1). These surveys were not conducted 

for the purpose of this study. The remotely operated vehicle, ROPOS (Remotely Operated 

Platform for Ocean Science) was used to collect high-definition video with forward and 

downward looking cameras. Visibility at all sites extended for several meters in front of 

ROPOS. The ROPOS transects included survey sections and exploratory sections, 

beginning at the deepest depth moving upslope. Both transect types were analyzed for this 

survey, and there is variation in transect distances covered.  Substrate, coral and other 

faunal observations were logged on board using ClassAct Mapper (CAM, Benjamin, 

2007), and then reanalyzed after the cruise. Geological and biological samples were taken 

opportunistically. 
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Table 3-1 Hudson 2010 ROV sites with their corresponding depth range, distance covered, total time 

on bottom, and site description. 

Site Date
Depth 

Range (m)

Length 

(km)

Bottom 

Time (hr)
Site Description Region

R1335 12-Jul 875-1840 3.46 13.78 Canyon talweg S

R1336 13-Jul 2224-2900 2.68 11.1
Canyon with possible 

slump
S

R1337 14-Jul 1020-2195 4.11 16.68
Faulted bedrock 

exposures
E

R1339 17-18 July 1363-2463 4.84 10.05
high sponge and 

coral by-catch area
N
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Figure 3-1 Locations of the four sites and the 2017 NAFO designated coral and sponge closures (grey polygons). Black boxes indicate sites in 

inserts. Stars indicate starting locations for each dive. C) Site R1335 on the southern flank (green), D) Site R1336 on the southern flank (yellow), 

E) Site R1337 on the eastern tip (red), F) Site R1339 on the northern flank (orange). 
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3.3.3 Video Analysis 

 

Biological and geological observations from video imagery were geo-referenced with 

audio encoded data (e.g. coordinates, time, and depth). Grain size class (sand, gravel, 

boulder, and bedrock) percent coverage were recorded in time with the video in CAM. 

Front mounted scaling and referencing lasers, set 10 cm apart, were used to determine 

grain size according to the Wentworth-Udden scale (1952). Bedrock lithology was 

identified visually where possible and grouped into two categories, either sedimentary or 

igneous. Geological samples taken from the source bedrock were used to further describe 

the lithology, but these classifications were not used in the analysis. Corals were 

identified to the lowest possible taxonomic level and organized morphologically into one 

of seven functional groups (Edinger et al., 2007; Cogswell et al., 2009; Baker et al., 

2012). Attachment substrate grain size and lithology (in the case of bedrock) were 

recorded for each coral when visible. Gravel, cobble, and pebbles were combined into 

gravel. Attachment substrate consisted of five grain sizes: fine grained (fg), gravel (g), 

boulder (bl), hard substrate (HS) and bedrock (Br, split into two lithologies). Grain sizes 

that could not be distinguished between classes (i.e. cobble vs. boulder) were classified as 

HS. Biogenic hard substrate (e.g. sponges) were not included in this analysis but observed 

at site R1339.  Unknown attachment substrates were excluded from the analysis. 
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3.3.4 Surficial geology description 

 

To describe the surficial geology observed on the FC, primary and secondary grain size 

percent coverage was determined from the video. These observations were recorded and 

geo-referenced at1 s intervals in CAM. Primary substrates were any grain size with ≥ 

75% presence at the 1 s interval observation. Primary and secondary grain sizes were then 

classified into substrate classes for each 1s intervals.  These 1 s interval substrate classes 

were then used to describe the surficial geological facies at increasing spatial scale (10 m, 

50 m, 100 m, 500 m, 1000 m) along the ROV transects. These intervals were chosen to 

test the effect of increasingly coarser geological descriptions starting with fine scale (10 

m) and increasing to broad scale (1000 m). 

3.3.5 Statistical Analysis 

 

Coral abundance at both the functional group and species level were analyzed to 

determine if there was statistical significance to attachment substrate type, depth, and 

facies at five spatial scales. To reduce the influence of abundant species, both the 

functional group and species abundance data underwent two transformations (fourth-root 

and presence/absence). Depths were binned into 200 m intervals for all analyses. 

Relationships between the coral abundance and environmental variables selected were 

visualized first with non-metric multi-dimensional scaling (nMDS) to look for any 

obvious trends. To test the difference in coral assemblages between attachment substrate 

and facies across depth classes, a Bray-Curtis similarity matrix of each transformation 
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was used to conduct a two-way analysis of similarity (ANOSIM). Similarity (and 

dissimilarity) between species within depth classes and facies was conducted using 

similarity of percentages (SIMPER) at all spatial scales. All statistical analysis was 

conducted in the statistical program Primer 6.0 (Clarke & Warwick, 2001).  

3.4 Results 

 

Each site had a unique assemblage of coral species (Table 3-2) and surficial geological 

facies (Table 3-8). The soft corals Anthomastus spp. were the most abundant coral 

observed overall (14,053), specifically at two sites (R1337, R1339). Site R1335 had the 

highest species richness for pennatulacean (5) and, R1339 had the highest number of 

large gorgonian species observed (9). Sedimentary bedrock outcrops were the most 

common bedrock type overall. Gravelly fine grains were the most abundant substrate 

within the 1275-1875 m depth range. Site R1337 had the most heterogeneous surficial 

geologies (Table 3-8) and the highest species richness (Table 3-2). 

3.4.1 Coral occurrence and depth distribution 

 

A total of 30,310 individual corals were recorded, comprising 27 species (Table 3-2). The 

most abundant corals were Anthomastus spp., Nephtheidae, Primnoa sp., and Isididae. 

One of most diverse functional groups was small gorgonian (8) (Table 3-2).   There are 

several similar looking species of Anthomastus spp. and were all classified to the genus 

level. The family Nephtheidae are similarly difficult to differentiate from video imagery 

alone and were classified to the family level.  
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Anthomastus spp. was the most abundant CWC species observed, found on all dives and 

over a wide depth range (Figure 3-3). Rare corals observed included: Swiftia sp., Narella 

sp., pennatulaceans, and antipatharians. Corals were not uniformly distributed along the 

ROV tracks. Clustering occurred on specific geological features such as bedrock walls or 

erosional features such as sedimentary ledges. Key observations included a high 

abundance of Primnoa sp. (635) on a 100-m vertical sedimentary bedrock wall on site 

R1337 (Figure 3-8, C), as well as numerous Isididae fields on eroded sedimentary ledges 

on site R1339.   

The westernmost transect (R1335) was 3.5 km long and traversed mainly soft sediments 

with sedimentary bedrock outcrops spread over approximately 1000 m depth range 

(Figure 3-1). This site had the most observations of pennatulaceans and the small 

gorgonian species Acanella sp., both of which colonize soft sediments (Figure 3-5). These 

species were observed at the shallower depths of the site, which also coincides with many 

of the fine-grained substrates (Figure 3-12). The deepest site (R1336) was also located on 

the southern flank but had a different coral assemblage and substrate types present with 

igneous bedrock outcrops and soft sediments present. Site R1337 was the eastern most 

site and crossed exposed igneous (igneous) and sedimentary (limestone) bedrock. This 

was the only instance of the two lithology types found at the same depth (and in direct 

contact), although no corals were observed on these outcrops. There were other several 

large sedimentary bedrock outcrops with coral colonies present at various depths along 

the survey transect. This site had the highest occurrence of soft corals, particularly 

Anthomastus spp. and Nephtheidae (Table 3-2, Figure 3-9).  Isididae (probably Keratoisis 
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sp.) were the most abundant CWC species observed on the northern most site R1339 

(Table 3-2, Figure 3-11). These corals appeared to be inhabiting sedimentary ledges and 

weathered rocks. This site also had a high abundance of sponges, which co-occurred with 

the Isididae.   

For functional group distributions, small gorgonians had the largest depth range and were 

found at the deepest depths (Figure 3-2). Large gorgonians and soft corals also exhibited 

a wide depth range. Antipatharians and pennatulaceans had more constrained depth 

ranges compared to other functional groups and over shallower depths (Figure 3-2). Each 

functional group was composed of species with differing depth preferences. Species depth 

distributions varied within functional groups, with several species found at only deeper 

depths (Figure 3-3). The deepest recorded species included Lepidisis sp., all the 

Chrysogorgia spp., and Narella cf laxa. Species also found mainly at deeper depths were 

Bathypathes sp., Halipteris finmarchica, Narella sp., and Lepidisis sp. Anthomastus spp. 

had the largest depth range of all the coral species identified (960 to 2930 m). 
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Table 3-2 Coral species observations by functional group per site with total distance (km) covered. 
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Figure 3-2 Boxplot of coral functional groups distribution by depth. 
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Figure 3-3 Boxplot of species distribution by depth and in order of functional group starting on the left: Antipatharians, Cup Corals, 

Desmophyllum dianthus, Large gorgonians Pennatulacean, Small Gorgonians, Soft Corals. 
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Figure 3-4 Corals observed at site R1335: A) Paramuricea spp., B) Desmophyllum dianthus under a piece of sedimentary bedrock, C) Acanella sp., 

D) Bathypathes sp. and cup corals, E) Anthomastus spp. Green lasers are 10 cm apart. 
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Figure 3-5 Site R1335 coral abundance per 100 m. Symbol color indicates abundance:  0 (grey X), 1-10 (red), 11-50 (yellow), 51-100 (orange), 101-

250 (green), >250 (blue). Symbol shape indicates functional group: A) Antipatharian (pentagon) and Pennatulacean (open diamond), B) Cup 

Corals (open square) and Desmophyllum dianthus (solid square), C) Large Gorgonian (circle), D) Small gorgonian (triangle), E) Soft Coral (closed 

diamond), F) Coral presence at 1-second intervals (black dot). 
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Figure 3-6 Corals observed at site R1336: A) Anthomastus spp., B) Chrysogorgia cf. agassizii, C) Halipteris finmarchica, D) Anthomastus spp., E) 

Chrysogorgia sp. 2. Green lasers are 10 cm apart. 
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Figure 3-7 Site R1336 coral abundance per 100 m. Symbol color indicates abundance:  0 (grey X), 1-10 (red), 11-50 (yellow), 51-100 (orange), 101-

250 (green), >250 (blue). Symbol shape indicates functional group: A) Antipatharian (pentagon) and Pennatulacean (open diamond), B) Cup 

Corals (open square) and Desmophyllum dianthus (solid square), C) Large Gorgonian (circle), D) Small gorgonian (triangle), E) Soft Coral (closed 

diamond), F) Coral presence at 1-second intervals (black dot). 
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Figure 3-8 Corals observed at site R1337: A) Nephtheidae, B) Paramuricea spp., C) Primnoa sp., D) Nephtheidae on a sedimentary bedrock 

outcrop. Green lasers are 10 cm apart. 
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Figure 3-9 Site R1337 coral abundance per 100 m. Symbol color indicates abundance:  0 (grey X), 1-10 (red), 11-50 (yellow), 51-100 (orange), 101-

250 (green), >250 (blue). Symbol shape indicates functional group: A) Antipatharian (pentagon) and Pennatulacean (open diamond), B) Cup 

Corals (open square) and Desmophyllum dianthus (solid square), C) Large Gorgonian (circle), D) Small gorgonian (triangle), E) Soft Coral (closed 

diamond), F) Coral presence at 1-second intervals (black dot). 
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Figure 3-10 Corals observed at site R1339: A) Paramuricea spp., B) Isididae, C) Isididae and Swiftia sp. Green lasers are 10 cm apart. 
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Figure 3-11 Site R1339 coral abundance per 100 m. Symbol color indicates abundance:  0 (grey X), 1-10 (red), 11-50 (yellow), 51-100 (orange), 

101-250 (green), >250 (blue). Symbol shape indicates functional group: A) Antipatharian (pentagon) and Pennatulacean (open diamond), B) Cup 

Corals (open square) and Desmophyllum dianthus (solid square), C) Large Gorgonian (circle), D) Small gorgonian (triangle), E) Soft Coral (closed 

diamond), F) Coral presence at 1-second intervals (black dot). 
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3.4.2 Attachment Substrate 

 

The functional groups soft coral, and small gorgonian are comprised of both hard and soft 

colonizing species (Figure 3-13, Figure 3-15). Pennatulacean, D. dianthus, and cup corals 

were limited to one type of attachment substrate. Large gorgonians, small gorgonians and 

soft corals were found on all five classes (bedrock being one class with two lithologies). 

Rare attachment substrates were biogenic in nature (other corals and sponges). Small 

gorgonians were found on either fine grained or larger grain size boulders or bedrock. 

Soft corals were the dominant coral group found on gravel. Many species were found on 

multiple grain-sizes but at different abundances. Anthomastus spp. was found on all grain 

sizes and lithologies at all depths (Figure 3-14) but was found in greater abundance on 

sedimentary bedrock outcrops and gravel (Figure 3-15). 

Non-metric multi-dimensional scaling (nMDS) plots of the Bray-Curtis similarity index 

did not show any groupings of functional groups or species by depth or attachment grain 

size at either transformation (4th root and presence/absence) (Figure 3-16, Figure 3-17). 

An ANOSIM 2-way comparison showed a significant difference between fine grained 

and hard substrate attachments for both functional groups and species at both 

transformations across all depth bins (Table 3-3, Table 3-4, Table 3-5, Table 3-6). There 

were also significant differences between sedimentary and igneous lithologies. Results 

from a 2-way SIMPER analysis accounting for 100% of the similarity for species (4th root 

transformed) across all depth bins showed the highest similarity of gravel size attachment 
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substrate at 83.38%, followed by fine grained (63%), igneous bedrock (60%) and 

sedimentary bedrock (49%) (Table 5-73). 

The fourth-root transformation for both functional groups and species had higher R-

statistical values than the presence/absence transformations for both ANOSIM and 

SIMPER analyses. 
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Figure 3-12 Grain size depth distribution for all sites. Each dot represents one observation. 
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Figure 3-13 Depth distribution of observed attachment substrate per functional group. Observations are by decreasing grain size starting on the 

left: Sedimentary bedrock (Br-SD), Igneous bedrock (Br-IG), boulder (Bl), gravel (G), hard substrate (HS), fine grained (Fg). 
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Figure 3-14 Depth distribution of observed attachment substrates per species grouped by Functional Group by decreasing grain size: 

Br-SD (blue), Br-IG (pink), Bl (dark green), G (red), HS (orange), Fg (light green). 
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Figure 3-15 Attachment substrate size percent occurrence by species (count). Attachment substrate 

by increasing grain size: Fg (yellow), G (green), HS (grey), Bl (dark grey), Br-IG (Blue), Br-SD 

(brown). 
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Table 3-3 Results from pairwise ANOSIM between attachment grain size across all depths for all 

functional group abundance (4rt transformed). The sample statistic (global R) was ρ=0.412 at a 

significance level of 0.1%. The R statistic for each pairwise test is shown to the left of the grey divide 

with corresponding significance levels (%) on the right. 

Attachment Fg G Bl HS BR-SD BR-IG

Fg - 0.1 0.1 0.1 0.1 0.1

G 0.695 - 0.1 0.1 0.1 0.1

Bl 0.555 0.128 - 0.1 0.1 0.1

HS 0.326 0.955 0.846 - 0.1 0.1

BR-SD 0.343 0.306 0.032 0.66 - 0.1

BR-IG 0.395 0.541 0.38 0.809 0.435 -  

Table 3-4 Results from pairwise ANOSIM between attachment grain size across all depths for all 

functional group abundance (P/A transformed). The sample statistic (global R) was ρ=0.363 at a 

significance level of 0.1%. The R statistic for each pairwise test is shown to the left of the grey divide 

with corresponding significance levels (%) on the right. 

Attachment Fg G Bl HS BR-SD BR-IG

Fg - 0.1 0.1 0.1 0.1 0.1

G 0.659 - 0.1 0.1 0.1 0.1

Bl 0.455 0.073 - 0.1 0.1 0.1

HS 0.292 0.934 0.75 - 0.1 0.1

BR-SD 0.245 0.296 0.039 0.552 - 0.1

BR-IG 0.363 0.438 0.301 0.702 0.354 -  

Table 3-5 Results from pairwise ANOSIM between attachment grain size across all depths for all 

species abundance (4rt transformed). The sample statistic (global R) was ρ=0.424 at a significance 

level of 0.1%. The R statistic for each pairwise test is shown to the left of the grey divide with 

corresponding significance levels (%) on the right. 

Attachment Fg G Bl HS BR-SD BR-IG

Fg - 0.1 0.1 0.1 0.1 0.1

G 0.723 - 0.1 0.1 0.1 0.1

Bl 0.642 0.109 - 0.1 0.1 0.1

HS 0.32 0.957 0.875 - 0.1 0.1

BR-SD 0.461 0.287 0.04 0.732 - 0.1

BR-IG 0.494 0.53 0.39 0.854 0.399 -  
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Table 3-6 Results from pairwise ANOSIM between attachment grain size across all depths for all 

species abundance (P/A transformed). The sample statistic (global R) was ρ=0.394 at a significance 

level of 0.1%. The R statistic for each pairwise test is shown to the left of the grey divide with 

corresponding significance levels (%) on the right. 

 

Attachment Fg G Bl HS BR-SD BR-IG

Fg - 0.1 0.1 0.1 0.1 0.1

G 0.713 - 0.1 0.1 0.1 0.1

Bl 0.617 0.059 - 0.1 0.5 0.1

HS 0.291 0.947 0.85 - 0.1 0.1

BR-SD 0.422 0.275 0.025 0.701 - 0.1

BR-IG 0.502 0.47 0.365 0.852 0.348 -  
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Figure 3-16 A non-metric multi-dimensional scaling (nMDS) plot of a Bray-Curtis similarity index 

between depth and attachment grain size for functional groups with a 4th root transformation. 



3-34 

 

Figure 3-17 A non-metric multi-dimensional scaling (nMDS) plot of a Bray-Curtis similarity index 

between depth and attachment grain size for functional groups with a presence/absence 

transformation. 
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Figure 3-18 A non-metric multi-dimensional scaling (nMDS) plot of a Bray-Curtis similarity index 

between depth and attachment grain size for species with a 4th root transformation. 
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Figure 3-19 A non-metric multi-dimensional scaling (nMDS) plot of a Bray-Curtis similarity 

index between depth and attachment grain size for species with a presence/absence 

transformation. 
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3.4.3 Surficial Geology 

 

Each site covered different depth ranges and surficial geologies. Additionally, the 

geomorphology differed between sites allowing for a diverse combination of facies to be 

present. R1335 is dominated by fine grained facies with sedimentary bedrock outcrops 

(Figure 3-24). Sedimentary outcrops were present at depths >1200 m, with isolated 

outcrops at 1500 m (Figure 3-20). As the spatial scale that the facies were described 

increased, adjacent sections described as gravelly fine grained or sedimentary bedrock at 

fine scales were classified as discontinuous sedimentary bedrock at broader scales (500 

and 1000 m). At 1000 m (the broadest scale examined) the surficial geology of R1335 is 

described as homogenous fine-grained facies, with all descriptions of hard substrate 

eliminated. Sedimentary outcrops probably consisted of consolidated mudstone. 

The southeastern canyon site (R1336) had five facies, including boulder which was only 

found at this site. Igneous outcrops are found throughout the transect but, most notably at 

depths greater than 2600 m (Figure 3-21). As facies were described at scales >100 m 

intervals, boulder, gravelly fine grained and fine-grained facies disappear (Figure 3-25). 

Igneous and discontinuous igneous bedrock facies were found at all scales, but their 

apparent extent increased with scale.  
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Figure 3-20 Examples of the surficial geology observed on site R1335: A) sedimentary bedrock outcrop, B) sedimentary bedrock slab, C) 

weathered sedimentary bedrock, D) eroded sedimentary bedrock wall. Green lasers are 10 cm apart. 
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Figure 3-21 Examples of the surficial geology observed on site R1336: A) igneous bedrock outcrop, B) gravelly fine-grained sediments, C) igneous 

bedrock outcrop with benthic species. Green lasers are 10 cm apart. 
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The easternmost site (R1337) had the most heterogeneous surficial geology and the most 

described facies at all spatial scales with six (10 m) to four (1000 m) (Figure 3-26). There 

was a greater variety of facies at depths > 1600 m, while facies < 1600 m consisted of 

primarily gravelly fine grained or sedimentary bedrock outcrops. Sedimentary outcrops 

were found throughout the transect likely mudstone and limestone (Figure 3-22). At 

1800-2000 m depth the ROV crossed an inferred fault line where igneous and 

sedimentary outcrops were found side-by-side. A 100-m sedimentary bedrock wall is a 

key feature of this site and is located at approximately 1300 m depth (Figure 3-8). 
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Figure 3-22 Examples of the surficial geology observed on site R1337: A) jointed igneous bedrock outcrop, B) sedimentary bedrock wall, C) 

sedimentary bedrock outcrop with benthic species. Green lasers are 10 cm apart. 
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R1339 was a 4.8 km long transect moving up slope that had distinctive ledges formed by 

sedimentary bedrock outcrops. Facies found shallower than 1900 m were the more 

diverse than those found at other depths with gravelly fine grained, sedimentary outcrops, 

and discontinuous sedimentary bedrock present (Figure 3-23). As spatial scale increased, 

sedimentary bedrock facies are replaced with discontinuous sedimentary bedrock facies 

(Figure 3-27). 
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Figure 3-23 Examples of the surficial geology observed on site R1339: A) sedimentary bedrock ledges, B) sedimentary bedrock outcrop. 
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Table 3-7 Facies observed with labels, descriptions, and possible lithologies. 

Facies Label Description Lithologies

Fine grained Fg sand and mud

Gravelly fine 

grained
Gfg

>25% gravel and cobble 

coverage in a sand or 

mud matrix

all

Boulder Bl 100% boulder coverage all

Discontinuous 

Sedimentary 

Bedrock

Dsb

small sedimentary 

bedrock outcrops in a 

sand or mud matrix

Limestone, mudstone

Discontinuous 

Igneous Bedrock
Dib

small igneous bedrock 

outcrops
Granodiorite, basalt

Igneous/Sedimentar

y bedrock interface
I/S

sedimentary and 

igneous bedrock 

outcrops

Limestone, granodiorite

Sedimentary 

bedrock
Sd

sedimentary bedrock 

outcrops
Limestone, mudstone

Igneous bedrock Id
igneous bedrock 

outcrops
Granodiorite, basalt
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3.4.4 Facies 

 

The surficial geology was described visually from the primary and secondary substrate at 

five spatial scales for each ROV transect. From video imagery, eight surficial geology 

facies were described: fine grained (Fg), gravelly fine grained (Gfg), boulder (Bl), 

discontinuous sedimentary bedrock (Dsb), discontinuous igneous bedrock (Dib), 

igneous/sedimentary bedrock (I/S), sedimentary bedrock (Sd) and igneous bedrock (Ig) 

(Table 3-7). Facies were evenly distributed between depths or sites (Table 3-8). Ig 

outcrops were generally deeper with Sd outcrops found mid-slope. Sedimentary bedrock 

was found at three of the dives in various forms such as bedrock outcrop, vertical walls, 

and terraces. Igneous bedrock outcrops were recorded at only two sites (Table 3-8). 

Geological samples collected opportunistically in-situ, were used to describe the 

lithology. Outcrops that did not have samples collected from them were classified as 

sedimentary or igneous from visual characteristics. 

Facies were more diverse at depths >1475 m with eight facies described. At depths <1475 

m, smaller grain sizes (Fg and Gfg) were more common. Gravelly fine grained was the 

most abundant facies at depths 1475-2075 m (Table 3-8). Geological grab samples 

collected at the end of R1337 (1029 m) were covered in striations, probably caused by ice 

induced transportation, and are likely ice-rafted detritus (IRD). Other grab samples that 

were not bedrock could not be identified as native or IRD, and thus origin was not 

included in the analysis. The most common facies described on the flanks were Gfg and 

Sd. 
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Table 3-8 Number of facies found per site at 10-m scale per 200 m depth bin with totals for each 

facies. 
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Figure 3-24 Site R1335 facies described at increasing spatial scale: A) 1 m, B) 10 m, C) 50 m, D) 100 m, E) 500 m, F) 1000 m. Colors indicate 

facies type: Fg (orange), Gfg (green), Dsb (purple), Sd (brown). Triangles represent morphological features of note. 
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Figure 3-25 Site R1336 facies described at increasing spatial scale: A) 1 m, B) 10 m, C) 50 m, D) 100 m, E) 500 m, F) 1000 m. Colors indicate facies 

type: Fg (orange), Gfg (green), Bl (grey), Dib (teal), Ig (blue). 
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Figure 3-26 Site R1337 facies described at increasing spatial scale: A) 1 m, B) 10 m, C) 50 m, D) 100 m, E) 500 m, F) 1000 m. Colors indicate facies 

type: Gfg (green), Dsb (purple), I/S (pink), Sd (brown), Ig (blue). 
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Figure 3-27 Site R1339 facies described at increasing spatial scale: A) 1 m, B) 10 m, C) 50 m, D) 100 m, E) 500 m, F) 1000 m. Colors indicate facies 

type: Gfg (green), Dsb (purple), Sd (brown). 
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3.4.5 Spatial Scale 

 

Surficial geology was described across the ROV transect at 10 m, 50 m, 100 m, 500 m, 

and 1000 m intervals, resulting in eight different facies types (Table 3-7). The only 

example of a boulder facies was observed at 10 m scale on R1336 (Table 3-8). Fine 

grained facies were the predominant facies at all scale levels at only one site (R1335). As 

spatial scale increases, hard substrates are no longer detected, and the site is coarsely 

described as fine-grained substrate. To test the difference between facies at each spatial 

scale across all depths, a pairwise 2-way ANOSIM analysis was conducted for both 

functional groups and species at two different transformations. Overall there was no 

statistical difference between facies at the coarser spatial scales 500 m and 1000 m 

(p>0.5) for functional groups (Table 3-9) or species (Table 3-10) for either 

transformation. While depth was also significant at finer spatial scales, there was more 

difference between facies at those same scales. 

At finer spatial scales (10 m, 50 m), Ig and Sd were statistically different for functional 

groups and species for both transformations. At 100 m spatial scale there is not a 

statistical difference for species data fourth-root transform. Gfg facies were statistically 

different from Fg facies for both taxonomic levels and both transformations. 
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Table 3-9 Two-way ANOSIM global R statistics and percent significance levels (%) for depth and 

facies across all spatial scales for functional groups. A) 4th root transformation and, B) 

presence/absence. 

A B

Gobal R Sig Lev % Gobal R Sig Lev % Gobal R Sig Lev % Gobal R Sig Lev %

Grain 0.332 0.1 0.412 0.1 Grain 0.17 0.1 0.363 0.1

10m 0.256 0.1 0.39 0.1 10m 0.136 0.1 0.326 0.1

50m 0.321 0.1 0.415 0.1 50m 0.171 0.1 0.343 0.1

100m 0.345 0.1 0.367 0.1 100m 0.22 0.1 0.312 0.1

500m -0.017 54.7 0.128 30.6 500m 0.012 46.1 0.039 39.5

1000m -0.6 91.7 0.125 53.6 1000m -0.6 91.7 -0.563 93.6

FG_4rt FG_PA

Scale
Depth Facies

Scale
Depth Facies

 

Table 3-10 Two-way ANOSIM global R statistics and percent significance levels (%) for depth and 

facies across all spatial scales for all species. A) 4th root transformation and, B) presence/absence. 

A B

Gobal R Sig Lev % Gobal R Sig Lev % Gobal R Sig Lev % Gobal R Sig Lev %

Grain 0.377 0.1 0.424 0.1 Grain 0.322 0.1 0.394 0.1

10m 0.312 0.1 0.434 0.1 10m 0.264 0.1 0.4 0.1

50m 0.344 0.1 0.491 0.1 50m 0.279 0.1 0.48 0.1

100m 0.362 0.1 0.442 0.1 100m 0.303 0.1 0.399 0.1

500m 0.077 36.8 0.249 16.5 500m 0.188 21.8 0.066 35.2

1000m -0.2 72.2 0.5 20 1000m -0.3 75 -0.125 66.7

SP_4rt SP_PA

Scale
Depth Facies

Scale
Depth Facies

 

Table 3-11 Results from pairwise ANOSIM between facies described at 10 m spatial scale across all 

depths for all functional group abundance (4rt transformed). The sample statistic (global R) was 

ρ=0.39 at a significance level of 0.1%. The R statistic for each pairwise test is shown to the left of the 

grey divide with corresponding significance levels reported as percent on the right. 

Facies 10m Fg Gfg Bl Dsb Dib Sd Id

Fg - 0.1 33.3 3.8 70.9 0.1 25.9

Gfg 0.669 - NA 0.3 8.6 0.1 5.2

Bl 1 NA - NA 83.3 NA 100

Dsb 0.307 0.307 NA - 35.1 0.1 1.1

Dib -0.07 0.184 -0.36 0.044 - 0.1 20.9

Sd 0.875 0.225 NA 0.326 0.823 - 0.1

Id 0.065 0.077 -0.333 0.257 0.057 0.501 -  
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Table 3-12 Results from pairwise ANOSIM between facies described at 50 m spatial scale across all 

depths for all functional group abundance (4rt transformed). The sample statistic (global R) was 

ρ=0.415 at a significance level of 0.1%. The R statistic for each pairwise test is shown to the left of the 

grey divide with corresponding significance levels reported as percent on the right. 

Facies 50m Fg Gfg Bl Dsb Dib Sd Ig

Fg - 0.1 2.4 20.3 NA 0.1 44.8

Gfg 0.632 - 1.4 27.3 NA 1.1 17.8

Bl 0.72 0.532 - 13.3 60 21 0.2

Dsb 0.187 0.079 0.429 - NA 0.8 29.3

Dib NA NA -0.125 NA - 16.7 33.3

Sd 0.878 0.208 0.109 0.675 1 - 0.1

Ig 0.012 0.086 0.459 0.042 0.1 0.614 -  

Table 3-13 Results from pairwise ANOSIM between facies described at 100 m spatial scale across all 

depths for all functional group abundance (4rt transformed). The sample statistic (global R) was 

ρ=0.367 at a significance level of 0.1%. The R statistic for each pairwise test is shown to the left of the 

grey divide with corresponding significance levels reported as percent on the right. 

Facies 100m Fg Gfg Bl Dsb Dib Sd Ig

Fg - 0.3 76.7 25 NA 0.1 52.5

Gfg 0.577 - 31.6 27 NA 7.9 34.6

Bl -0.248 0.061 - NA 33.3 54.8 76

Dsb 0.358 0.237 NA - NA 13.3 5.2

Dib NA NA 1 NA - 33.3 100

Sd 0.844 0.194 -0.023 0.554 1 - 1.1

Ig -0.062 0.023 -0.146 0.373 -0.556 0.599 -  

Table 3-14 Results from pairwise ANOSIM between facies described at 500 m spatial scale across all 

depths for all functional group abundance (4rt transformed). The sample statistic (global R) was 

ρ=0.128 and a significance level of 30.6%. The R statistic for each pairwise test is shown to the left of 

the grey divide with corresponding significance levels reported as percent on the right. 

Facies 500m Fg Gfg Bl Dsb Dib Sd Ig

Fg - 11.1 37 NA NA 11.1 NA

Gfg 0.837 - 55.6 NA NA 88.9 NA

Bl 0.137 0 - NA NA 88.9 NA

Dsb NA NA NA - NA NA NA

Dib NA NA NA NA - NA NA

Sd 1 -0.5 -0.5 NA NA - NA

Ig NA NA NA NA NA NA -  
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Table 3-15 Results from pairwise ANOSIM between facies described at 1000 m spatial scale across all 

depths for all functional group abundance (4rt transformed). The sample statistic (global R) was 

ρ=0.125 and a significance level of 53.6%. The R statistic for each pairwise test is shown to the left of 

the grey divide with corresponding significance levels reported as percent on the right. 

Facies 1000m Fg Gfg Bl Dsb Dib Sd Ig

Fg - NA 66.7 NA 100 NA NA

Gfg NA - NA NA NA NA NA

Bl 0.5 NA - NA 66.7 NA NA

Dsb NA NA NA - NA NA NA

Dib -1 NA 0 NA - NA NA

Sd NA NA NA NA NA - NA

Ig NA NA NA NA NA NA -  

Table 3-16 Results from pairwise ANOSIM between facies described at 10 m spatial scale across all 

depths for all functional group abundance (P/A transformed). The sample statistic (global R) was 

ρ=0.326 at a significance level of 0.1%. The R statistic for each pairwise test is shown to the left of the 

grey divide with corresponding significance levels reported as percent on the right. 

Facies 10m Fg Gfg Bl Dsb Dib Sd Ig

Fg - 0.1 50 6.3 60.9 0.1 32.2

Gfg 0.653 - NA 0.4 4.4 0.1 77.7

Bl -0.111 NA - NA 100 NA 100

Dsb 0.178 0.27 NA - 0.1 1 0.6

Dib -0.038 0.217 -0.3 0.112 - 0.1 26.8

Sd 0.861 0.13 NA 0.207 0.778 - 0.1

Ig 0.041 -0.033 -0.333 0.273 0.047 0.421 -  

Table 3-17 Results from pairwise ANOSIM between facies described at 50 m spatial scale across all 

depths for all functional group abundance (P/A transformed). The sample statistic (global R) was 

ρ=0.343 at a significance level of 0.1%. The R statistic for each pairwise test is shown to the left of the 

grey divide with corresponding significance levels reported as percent on the right. 

Facies 50m Fg Gfg Bl Dsb Dib Sd Ig

Fg - 0.1 4.8 17.5 NA 0.1 30.4

Gfg 0.541 - 4 8.1 NA 11.1 51.1

Bl 0.685 0.481 - 20 100 29.7 1.2

Dsb 0.2 0.188 0.25 - NA 0.8 20.4

Dib NA NA -0.25 NA - 16.7 50

Sd 0.827 0.095 0.055 0.663 1 - 0.1

Ig 0.083 -0.028 0.35 0.072 0.12 0.532 -  
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Table 3-18 Results from pairwise ANOSIM between facies described at 100 m spatial scale across all 

depths for all functional group abundance (P/At transformed). The sample statistic (global R) was 

ρ=0.312 at a significance level of 0.1%. The R statistic for each pairwise test is shown to the left of the 

grey divide with corresponding significance levels reported as percent on the right. 

Facies 100m Fg Gfg Bl Dsb Dib Sd Ig

Fg - 0.2 86.7 25 NA 0.1 74

Gfg 0.526 - 21.7 33.3 NA 36.7 32.9

Bl -0.312 0.161 - NA 66.7 45.2 92

Dsb 0.358 0.202 NA - NA 13.3 4

Dib NA NA 0 NA - 33.3 100

Sd 0.804 0.027 -0.025 0.643 1 - 1.8

Ig -0.194 0.041 -0.25 0.38 -0.556 0.521 -  

Table 3-19 Results from pairwise ANOSIM between facies described at 500 m spatial scale across all 

depths for all functional group abundance (P/A transformed). The sample statistic (global R) was 

ρ=0.0.039 and a significance level of 39.5%. The R statistic for each pairwise test is shown to the left 

of the grey divide with corresponding significance levels reported as percent on the right. 

Facies 500m Fg Gfg Bl Dsb Dib Sd Ig

Fg - 66.7 63 NA NA 66.7 NA

Gfg 0.174 - 33.3 NA NA 77.8 NA

Bl -0.113 0.313 - NA NA 88.9 NA

Dsb NA NA NA - NA NA NA

Dib NA NA NA NA - NA NA

Sd 0 -0.25 -0.5 NA NA - NA

Ig NA NA NA NA NA NA -  

Table 3-20 Results from pairwise ANOSIM between facies described at 1000 m spatial scale across all 

depths for all functional group abundance (P/A transformed). The sample statistic (global R) was 

ρ=0.563 and a significance level of 93.6%. The R statistic for each pairwise test is shown to the left of 

the grey divide with corresponding significance levels reported as percent on the right. 

Facies 1000m Fg Gfg Bl Dsb Dib Sd Ig

Fg - NA 100 NA 100 NA NA

Gfg NA - NA NA NA NA NA

Bl -0.5 NA - NA NA NA NA

Dsb NA NA NA - NA 100 NA

Dib -1 NA NA NA - NA NA

Sd NA NA NA NA -0.5 - NA

Ig NA NA NA NA NA NA -  
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Table 3-21 Results from pairwise ANOSIM between facies described at 10 m spatial scale across all 

depths for all species abundance (4rt transformed). The sample statistic (global R) was ρ=0.434 at a 

significance level of 0.1%. The R statistic for each pairwise test is shown to the left of the grey divide 

with corresponding significance levels reported as percent on the right. 

Facies 10m Fg Gfg Bl Dsb Dib Sd Ig

Fg - 0.1 33.3 3.8 72.1 0.1 23.4

Gfg 0.608 - NA 0.2 25.8 0.1 4

Bl 1 NA - NA 50 NA 100

Dsb 0.308 0.457 NA - 42.9 0.1 0.2

Dib -0.073 0.12 -0.16 -0.019 - 0.1 22.9

Sd 0.836 0.349 NA 0.298 0.594 - 0.1

Ig 0.072 0.104 -0.417 0.35 0.06 0.444 -  

Table 3-22 Results from pairwise ANOSIM between facies described at 50 m spatial scale across all 

depths for all species abundance (4rt transformed). The sample statistic (global R) was ρ=0.491 at a 

significance level of 0.1%. The R statistic for each pairwise test is shown to the left of the grey divide 

with corresponding significance levels reported as percent on the right. 

Facies 50m Fg Gfg Bl Dsb Dib Sd Ig

Fg - 0.1 9.5 31.1 NA 0.1 15.5

Gfg 0.669 - 0.6 NA NA 0.1 10.8

Bl 0.531 0.518 - 26.7 20 22.5 0.7

Dsb 0.081 0.05 0.214 - 33.4 1.6 48.6

Dib NA NA 1 NA - 16.7 16.7

Sd 0.823 0.412 0.077 0.456 1 - 0.1

Ig 0.156 0.135 0.436 -0.002 0.9 0.662 -  

Table 3-23 Results from pairwise ANOSIM between facies described at 100 m spatial scale across all 

depths for all species abundance (4rt transformed). The sample statistic (global R) was ρ=0.442 at a 

significance level of 0.1%. The R statistic for each pairwise test is shown to the left of the grey divide 

with corresponding significance levels reported as percent on the right. 

Facies 100m Fg Gfg Bl Dsb Dib Sd Ig

Fg - 0.2 96.7 66.7 NA 0.1 34.7

Gfg 0.604 - 8.8 33.3 NA 0.1 19.3

Bl -0.563 0.189 - NA 33.3 47.6 49

Dsb 0.013 0.055 NA - NA 20 32.5

Dib NA NA 1 NA - 33.3 100

Sd 0.846 0.406 0.003 0.286 1 - NA

Ig 0.182 0.111 -0.021 0.14 -0.556 NA -  
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Table 3-24 Results from pairwise ANOSIM between facies described at 500 m spatial scale across all 

depths for all species abundance (4rt transformed). The sample statistic (global R) was ρ=0.249 and a 

significance level of 16.5%. The R statistic for each pairwise test is shown to the left of the grey divide 

with corresponding significance levels reported as percent on the right. 

Facies 500m Fg Gfg Bl Dsb Dib Sd Ig

Fg - 11.1 33.3 NA NA 11.1 NA

Gfg 0.837 - 22.2 NA NA 88.9 NA

Bl 0.258 0.25 - NA NA 66.7 NA

Dsb NA NA NA - NA NA NA

Dib NA NA NA NA - NA NA

Sd 1 -0.5 0 NA NA - NA

Ig NA NA NA NA NA NA -  

Table 3-25 Results from pairwise ANOSIM between facies described at 1000 m spatial scale across all 

depths for all species abundance (4rt transformed). The sample statistic (global R) was ρ=0.5 and a 

significance level of 20%. The R statistic for each pairwise test is shown to the left of the grey divide 

with corresponding significance levels reported as percent on the right. 

Facies 1000m Fg Gfg Bl Dsb Dib Sd Ig

Fg - NA 33.3 NA 33.3 NA NA

Gfg NA - NA NA NA NA NA

Bl 0.75 NA - NA 66.7 NA NA

Dsb NA NA NA - NA NA NA

Dib 1 NA 0 NA - NA NA

Sd NA NA NA NA NA - NA

Ig NA NA NA NA NA NA -  

Table 3-26 Results from pairwise ANOSIM between facies described at 10 m spatial scale across all 

depths for all species abundance (P/A transformed). The sample statistic (global R) was ρ=0.394 at a 

significance level of 0.1%. The R statistic for each pairwise test is shown to the left of the grey divide 

with corresponding significance levels reported as percent on the right. 

Facies 10m Fg Gfg Bl Dsb Dib Sd Ig

Fg - 0.1 33.3 11.9 76.3 0.1 23.6

Gfg 0.6 - NA 0.1 25 0.1 40.2

Bl 1 NA - NA 66.7 NA 100

Dsb 0.199 0.465 NA - 32.5 0.7 0.1

Dib -0.086 0.116 -0.06 0.067 - 0.1 NA

Sd 0.804 0.324 NA 0.196 0.567 - 0.1

Ig 0.076 0.007 -0.5 0.359 NA 0.39 -  
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Table 3-27 Results from pairwise ANOSIM between facies described at 50 m spatial scale across all 

depths for all species abundance (P/A transformed). The sample statistic (global R) was ρ=0.4 at a 

significance level of 0.1%. The R statistic for each pairwise test is shown to the left of the grey divide 

with corresponding significance levels reported as percent on the right. 

Facies 50m Fg Gfg Bl Dsb Dib Sd Ig

Fg - 0.1 9.5 29.2 NA 0.1 14.8

Gfg 0.662 - 3.7 15.3 NA 0.1 32.7

Bl 0.474 0.458 - 46.7 20 32 2.7

Dsb 0.105 0.154 0.107 - NA 1.6 35.5

Dib NA NA 1 NA - 16.7 16.7

Sd 0.816 0.432 0.042 0.481 1 - 0.1

Ig 0.172 0.055 0.318 0.02 0.9 0.644 -  

Table 3-28 Results from pairwise ANOSIM between facies described at 100 m spatial scale across all 

depths for all species abundance (P/A transformed). The sample statistic (global R) was ρ=0.399 at a 

significance level of 0.1%. The R statistic for each pairwise test is shown to the left of the grey divide 

with corresponding significance levels reported as percent on the right. 

Facies 100m Fg Gfg Bl Dsb Dib Sd Ig

Fg - 0.3 96.7 58.3 NA 0.1 35

Gfg 0.519 - 5.1 28.6 NA 1.5 24.2

Bl -0.563 0.324 - NA 66.7 42.9 90

Dsb 0.011 0.109 NA - NA 13.3 34.1

Dib NA NA 0 NA - 33.3 100

Sd 0.89 0.276 0.007 0.339 1 - 0.3

Ig 0.12 0.132 -0.208 0.09 -0.667 0.573 -  

Table 3-29 Results from pairwise ANOSIM between facies described at 500 m spatial scale across all 

depths for all species abundance (P/A transformed). The sample statistic (global R) was ρ=0.066 and 

a significance level of 35.2%. The R statistic for each pairwise test is shown to the left of the grey 

divide with corresponding significance levels reported as percent on the right. 

Facies 500m Fg Gfg Bl Dsb Dib Sd Ig

Fg - 33.3 70.4 NA NA 33.3 NA

Gfg 0.348 - 11.1 NA NA 100 NA

Bl -0.077 0.5 - NA NA 66.7 NA

Dsb NA NA NA - NA NA NA

Dib NA NA NA NA - NA NA

Sd 0.5 -1 0 NA NA - NA

Ig NA NA NA NA NA NA -  
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Table 3-30 Results from pairwise ANOSIM between facies described at 1000 m spatial scale across all 

depths for all species abundance (P/A transformed). The sample statistic (global R) was ρ=0.125 and 

a significance level of 66.7%. The R statistic for each pairwise test is shown to the left of the grey 

divide with corresponding significance levels reported as percent on the right. 

Facies 1000m Fg Gfg Bl Dsb Dib Sd Ig

Fg - NA 66.7 66.7 NA NA NA

Gfg NA - NA NA NA NA NA

Bl NA NA - NA NA NA NA

Dsb 0 NA NA - NA NA NA

Dib NA NA -1 NA - NA 100

Sd NA NA NA NA NA - NA

Ig 0 NA NA NA NA NA -  

3.5 Discussion 

 

The flanks of the Flemish Cap support a diverse assemblage of CWC and habitats. No 

two regions were the same in terms of surficial geology or CWC composition. Hard 

substrates that can be a limited resource on the seafloor were present in various grain 

sizes and lithologies. Hard bottom in the form of gravel to bedrock outcrops is essential 

for several species of CWC and, their absence can limit coral distribution. 

3.5.1 Coral occurrence and depth distributions 

 

In all 27 species were observed from ROV video imagery at four sites on the Flemish 

Cap. This is comparable to the number of taxa found by other studies in the area that used 

mainly trawl data (Wareham & Edinger, 2007; Murillo et al., 2011). CWC were mainly 

found mid-slope at 1075-1875 m depth due to the abundance of soft corals, primarily 

Anthomastus spp. 
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Anthomastus spp. was the most abundant species and found on all attachment types and 

facies across all depth bins. Murillo et al. (2011) found soft corals to be the most common 

CWC due to the presence of nephtheid species and to a lesser extent Anthomastus spp. 

These corals were found mainly on the shelf break and slope between 600-900 m, 

Nephtheid species were found <2000 m and >1000 m. Anthomastus spp. were one of the 

main contributors to depth bin similarity at depths between 1000 m and 2400 m. 

Anthomastus spp. and Nephtheidae have been previously reported on the top of the FC 

(Wareham & Edinger, 2007, Murillo et al., 2011). This study shows that they have a large 

depth range over several different bottom-types. Acanella sp. was the dominant species at 

875-1075 m depth which was only found on fine grained and gravelly fine-grained facies 

(Figure 3-15).  

Anticline currents present on the FC allow for equal access for coral polyps to available 

suitable substrate. However instead of a homogenous distribution of corals there were 

distinct areas of coral assemblages. This could be the result of the proximity of source 

populations, substrate preference, competition, and local current regimes/upwelling, as 

well as, depth. Acanella arbuscular is a broadcast spawner and not transported widely in 

upper water column which could account for the distribution observed during this study 

(Beazley et al., 2011). Species that have been known to occur at deeper depths such as 

Chrysogorgia cf. agassizii were found only in the deeper areas (Figure 3-3).  

When large gorgonians were observed attached to igneous bedrock outcrops they were 

commonly found on the exposed top of the outcrop. Sedimentary bedrock outcrops were 

found shallower and often as walls or ledges on slopes with a sediment veneer on top. 
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Corals found on sedimentary bedrock outcrops attached perpendicularly to the exposed 

wall face. Additionally, sections with greater erosion resistance had a higher density of 

coral colonization than the surrounding bedrock outcrop. Coral clustering was not 

observed on igneous bedrock outcrop. This difference could reflect the different current 

regimes found at those depths. Strong currents were encountered on the northern slope 

site (R1339) resulting in the ROV contacting the slope several times over the transect 

length. 

 

3.5.2 Attachment Substrate 

 

Attachment substrate is a key factor in CWC life history, and has been classified as either 

one of two types, hard or soft. While there is variation in the types of soft substrates (i.e. 

the percent of sand or silt), different hard substrate types are more easily identified and 

offer greater variability in lithology, shape and size. Taxa that do attach to hard substrates 

may exhibited preferences for grain size and orientation to better survive currents and 

sedimentation. 

Different types of both hard and soft substrates are present on the cap and were observed 

during this study. However, only hard substrate is examined in further detail.  Hard 

substrates were available throughout the depth range, of varying lithology. Igneous 

bedrock outcrops were found deeper than sedimentary bedrock outcrops, and at only two 

sites. Sedimentary bedrock displayed different geomorphology (walls, ledges, and 

pinnacles) owing to the different erosion and faulting patterns found on the FC. 
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Sedimentary bedrock that consisted of more erosion resistant strata (cemented 

conglomerate) had a higher abundance of coral than more eroded areas. Differing erosion 

patterns in lithologies allow for differing attachment anchors to exploit surface roughness. 

Sedimentary bedrock surfaces that are susceptible to erosion create a more abrasive and 

pitted surface for corals to attach. Very fine grained sedimentary bedrock lithologies (i.e. 

mudstone) were less suitable for colonization. Igneous outcrops such as granite and 

basalts are smoother and provide less surface roughness for a strong hold.  

It has been assumed that CWC will colonize the largest grain size available probably due 

to the amount of surface area exposed and ability to support large colonies (Baker et al., 

2008). Functional groups colonize all grain sizes throughout their depth ranges (Figure 3-

14). Most species are found attached to only one substrate type throughout the depth 

range, except for several large gorgonians (Acanthogorgia sp., Isididae sp., Paramuricea 

spp. and, Primnoa sp.) and soft coral species (Anthomastus spp. and, Nephtheidae) which 

attach to several grain sizes (Figure 3-14). Nephtheids were found on fine grained facies 

but attached to IRDs that had been covered with a sediment veneer (R1337). The 

attachment substrate was only determined when the corals were collected for further 

analysis. Nephtheid growth rate may have outpaced the sedimentation rate at the top of 

the FC which may not be possible for other CWC. Other studies have found Nephtheid 

growing atop granodiorite outcrops at 143 m water depth on top of the Cap (Pellitier, 

1971). 

When large gorgonians were observed attached to igneous bedrock outcrops, they were 

commonly found on the exposed top of the outcrop. Sedimentary bedrock outcrops were 
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found shallower and often as continuous walls on slopes with sediment veneer on top. 

Corals found on sedimentary bedrock outcrops attached parallel to the exposed wall face. 

Additionally, conglomerates with less erosion had a higher density of coral colonization 

than adjacent bedrock outcrop. Coral clustering was not observed on igneous bedrock 

outcrop. This could be due to substrate surface conditions or local current regimes.  

It is unclear if the Isididae taxa observed on the northern slope (R1339) were attached to 

the sedimentary bedrock ledges, sponges or the fine-grained substrate. Currents in the 

area made ROV navigation and operation difficult: when moving up slope the ROV was 

forcibly pushed into the slope. Other studies in Atlantic Canada have found Keratoisis sp. 

at shallow depths on boulders and cobbles (Baker et al., 2008), as well as in areas where 

the hard substrate now has a veneer of muddy sediments (Neves et al., 2014). 

Solitary cup coral species can colonize either hard or soft substrates, but only species that 

attach to hard substrate were observed (with one record of a solitary cup coral on soft 

sediment). Desmophyllum dianthus cup corals were found under bedrock outcrop 

overhangs (Figure 3-4) and ledges which have been observed in several other studies 

(Forsterra et al., 2005; Dolan et al., 2008).  Colonial scleractinians were not observed 

despite the availability of hard substrate and predicted suitable habitat (Davies et al., 

2008).  

3.5.3 Facies 

 

Facies were not uniformly distributed between dives or depths. Igneous bedrock facies 

were found mainly at deeper depths on two dives and boulder facies was found on only 
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one site (Table 3-8). Facies comprised of sedimentary bedrock outcrops had a higher 

abundance of coral due to presence of Anthomastus spp. (Figure 3-15). Anthomastus spp. 

was the most important contributing taxa to the average similarity for six of the eight 

facies. It was not abundant on facies with igneous bedrock, but these facies were found at 

deeper depths that could be outside of the taxa’s optimal depth range. However, 

Anthomastus spp. was the only CWC found in any great abundance at the 

igneous/sedimentary bedrock facies. Soft coral and small gorgonian functional groups 

contained species adapted to both hard and soft substrates, and thus the effect of facies on 

functional group distributions is not as significant as on species distribution. Also, while 

some facies could be described as “fine grained”, this does not exclude the presence of 

hard substrate. Areas described as bedrock outcrop do not exclude the presence of fine 

grained sediments. 

 

3.5.4 Spatial Scale 

 

Studies that derive environmental surrogates from coarse bathymetric data, did not find 

substrate to be significant (Davies & Guinotte, 2011). When substrate is described at finer 

scales or localized to a single feature (canyon, seamount), it is an important surrogate and 

a contributing factor to coral distribution (Brooke & Ross, 2014). Depth and hard 

substrate are two key factors driving CWC distribution on the Flemish Cap. Finding the 

scale that best preserves the relationship between coral and substrate is important for 

conservation efforts. 
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As the description interval increases from 10 m to 1000 m, the number of facies per site 

decreased. This made the surface more homogenous and less detailed. From ANOSIM 

analysis sedimentary bedrock facies were significantly different from fine grained facies 

at fine scales for both species and functional groups at both transformations (10 m, 50 m, 

and 100 m). At broad scales (500 m, 1000 m), no facies were significantly different from 

each other at the functional group level or species level for either transformation. Thus, 

when substrate is described at scales greater than 500 m, scale there is no relationship 

between cold-water coral species and substrate detected. Available substrate data sets are 

often described too coarsely for effective habitat mapping.   

Spatial scale is a key consideration when comparing environmental factors and CWC 

distribution, particularly concerning surficial geology. As surficial geology was described 

at greater spatial scales, the classification becomes more homogenous, and important 

substrate is no longer detected. Thus, corals that colonize hard substrates are present in 

areas described mainly as fine-grained sediments due to the lack of detailed description. 

While sedimentary bedrock outcrops were present on R1335, these outcrops are not 

sufficiently abundant to be described at 1000 m spatial scale (Figure 3-24). Habitat 

suitability models that use only environmental factors (no substrate) described at broad 

spatial scales over predicted the suitability of a region which many not reflect the actual 

locations of a species. Fine scale changes in topography (that could drive species 

distribution) can be lost as spatial scale is increased (Lecours et al., 2015). Davies & 

Guinotte (2011) predicted a mostly continuous habitat range on the eastern United States’ 

continental slope for the hard substrate colonizing reef-building coral Lophelia petrusa, 
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but most of the slope is fine grained sediments. Brooke and Ross (2014) used local 

geological knowledge to only target areas with suitable substrata, primarily in submarine 

canyons, and found the first record of L. petrusa off North Carolina. If surficial geology 

maps were produced at scales that account for more of the available hard substrate in a 

region, then predictive models would be more focused on regions of suitable substrata. 

 

3.6 Conclusion 

 

Coral species distributions on the flanks of the Flemish Cap were not solely driven by one 

specific environmental factor. Many species did not follow a specific depth pattern or 

adhere to only one attachment substrate type. When facies were described at increasingly 

coarser scales, the substrate appeared homogenous and there was no relationship with 

coral detected. When surficial geology is described at coarse scales, only the primary 

substrate is being described, which is not necessarily important descriptor for CWC 

habitat (Bennecke and Metaxas, 2017).  

Current geological maps are constructed at such a coarse scale that they are insufficient 

for use in species distribution models. Traditional survey methods such as trawls and 

geological coring do not provide enough information to capture the whole context of an 

area. ROV obtained data provides the fine scale needed to produce model quality 

substrate information.   

This study shows that attachment substrate is important for functional groups generally 

and species specifically and, that the surrounding surficial geology is important at fine 
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scales. Presence-only datasets for species and functional groups will show a relationship 

with substrate but only when described at fine spatial scales. Substrates should be 

described at scales finer than 100 m for species distribution models. 
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4 General Conclusions 

 

Pervious studies and fishing activities have offered insight into the distribution, biology, 

ecology and general habitat preferences of the deep-sea taxa off Newfoundland and 

Labrador. However, there is still much we do not know. Distributions of CWC beyond 

fishing capabilities are of interest to future research and protection as new technologies 

allow for further exploitation of the benthos. The data collected on the 2010 research 

cruise (used for the analysis of this thesis) confirmed many observations obtained from 

traditional trawl surveys and offered new insight into coral habitat preference and 

distributions previously unknown. 

The Flemish Cap provides diverse habitats for several CWC species. The 2010 research 

cruise allowed some of the first in situ surveys of the species and habitats found at depth 

on its flanks. Video imagery from four dives, spanning depths of 875 m to 2900 m offered 

rarely seen detail of the surficial geology of the flanks, and attachment substrate of CWC. 

From surveying 15 km of seafloor, I identified 30,310 coral colonies, comprising 27 

species, that spanned all observed depths and surficial geologies. This study continues 

previous work done in the area by increasing the depth investigated, and with minimally 

destructive technologies (i.e. ROV) so these corals can be re-visited for future studies.  

The original analysis did not include bathymetry. Bathymetry and bathymetrically 

derived variables have been used to describe and predict coral distribution. Inclusion of 

these variables described at appropriate scales will offer further insight into the 

relationship between corals and surficial geology across all other variables. 
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While not specifically examined in this thesis, the difference lithology properties could 

also be a significant factor in CWC colonization patterns. Sedimentary lithologies 

(particularly carbonates as this thesis has observed) modify and bio-erode more readily 

that igneous rocks, and thus have more complex, pitted surfaces which may offer better 

points of attachment. However, these surfaces should be sufficiently resistant to erosion 

to allow for corals to grow and not be removed easily. Igneous outcrops, such as granite 

and basalts, have a comparatively smoother surface, and potential offer less roughness to 

create a firm anchor.  

Additionally, the angle to which the surface is exposed may also influence coral 

habitation. Sedimentary bedrock outcrops were often found with a sediment veneer on the 

top leaving the sides exposed for corals to colonize. For example, Primnoa spp. were 

found in high abundance on the side of a 100-m vertical sedimentary wall. Other 

instances of coral colonization of sedimentary bedrock outcrops also saw corals attached 

at all angles and on all surfaces, but with fewer found on the top. In contrast, corals found 

on igneous bedrock outcrops, generally attached to the uppermost flat surface of the 

outcrop.  

Examining the relationship between CWC and surficial geology was more statistically 

significant at the species level. The functional group level has added complexity when 

looking at this relationship as several groups are not comprised of only hard substrate 

inhabitation species. For example, the functional group “cup corals” has hard substrate 

colonizing species such as Javania calleti. however, it also contains the sediment 

dwelling Flabellum alabastrum. Even functional groups that almost exclusively inhabit 
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sediments have exceptions. For instance, not all sea pens exclusively colonize soft 

sediments. Some species of Anthoptilum sp. use a sucker-like expansion of the peduncle 

to inhabit hard surfaces (Williams, 2011). Species specific distribution prediction studies 

should consider including surficial geology at fine scales into their models. 

 

4.1 Applications for species distribution modeling 

 

Insights from this research have applications in species distribution modeling (SDM), 

which can be informative tools for conservation management (Brown et al., 2012; Yesson 

et al., 2012, Guijarro et al., 2016; Gullage et al., 2016). SDM combine taxonomic data 

with the environmental conditions found at those locations and predict where else those 

species are most likely to occur by looking for similar conditions over a larger unexplored 

area. Environmental conditions, such as depth, slope, and temperature, that have been 

described over coarse spatial scales (> 1000 m) and used as surrogates to predict suitable 

coral habitat distributions (Bryan & Metaxas, 2006; Dolan et al., 2008; Davies & 

Guinotte, 2011). However, as seen in this research and other studies, surficial geology is 

not a suitable predictor at coarse scales, as some ecologically important geological 

features occur over 10s of meters (Brooke et al., 2016; Bennecke & Metaxas, 2017).  

The results from this thesis also highlight the need for more research in areas with 

complex geomorphology and at greater depths beyond “fishable areas” in Newfoundland 

and Labrador. I propose two main directions for future research:  
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-More fine scale (10s of meters) multibeam bathymetry surveys to be conducted in 

areas of interest. 

-Refine existing and future habitat suitability models and species distribution 

models with geological data described at finer scales. 

Hard substrate types (e.g. bedrock outcrops, boulders, etc.) do not often extend for several 

kilometers, and are more often only exposed at the surface for a few meters. Depending 

on the sedimentation rates and depth in an area of interest, suitable surficial geology may 

be ephemeral with exposure only lasting long enough for CWC to colonize them (as 

observed in Chapter 4 of soft corals colonizing IRDs). Thus, surficial geology maps have 

a short shelf life for SDM use in areas of high currents and over large spatial scales are 

not useful for detecting smaller bedrock outcrops or gravel patches.  

Accuracy of SDM can be improved upon further through the combined use of 

environmental variables described at various spatial scales. As environmental variables 

can affect species distribution at different spatial scales a combination of the most 

appropriate surrogates per species could be more effective in modeling. More accurate 

models are more effective as management aids in the formation of conservation. 

 

4.2 Progress in coral protection in Canada 

 

With the signing of the Oceans Act, Canada became one of the first countries in the world 

to adopt legislation for ocean management. The Act is focused on conserving, protecting 
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and developing the oceans sustainably through integrated ecosystem-based management. 

In 2010, Canada agreed to protect 10 percent of its marine environment by 2020 (CBD). 

To fulfill this international agreement, the development of a national system of marine 

protected areas (MPAs) that will protect unique habitats and areas of biodiversity is 

proceeding.  

Canada has jurisdiction of sedentary species on its continental shelf thus, areas beyond 

the Canadian EEZ but part of the continental shelf, such as the Flemish Cap, are also of 

interest for federal protection. To date, governmental agencies and NAFO have 

designated several closures to protect coral and sponges on the continental shelf including 

the Flemish Cap. Bottom contact fishing gear (e.g. trawls) is prohibited within these 

areas. The goal is to protect the high diversity and abundance of coral and sponge species 

within the closed area. This thesis shows the importance of looking at other areas on the 

Flemish Cap as potential closures. 

The Canadian Government has an invested interest in the conservation and protection of 

corals and sponges as both are unique habitats and areas of biodiversity. These sessile 

organisms act as nurseries, refugia and spawning and breeding grounds for many benthic 

species and are key to sustainable fisheries management (DFO, 2010b; Baillon et al., 

2012; Baker et al., 2012a; Baker et al., 2012b).  

At the end of 2016 only 0.96% (55000 km2) of Canada’s coastal and marine environment 

(within the EEZ) have some form of limited use regulations in place for conservation 

(ECCC, 2017), but by the end of October 2017, a total of 5% now has conservation 

designations (DFO, 2017). This goal was reached in part by the newly established St 
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Ann’s Bank MPA in eastern Canada (Gulf of St. Lawrence), the Tallurutiup 

Imanga/Lancaster Sound MPA in Nunavut (Arctic Ocean), and by long-term fishery 

closures for sea pens established in the Gulf of St. Lawrence and NAFO 3O closure. 

However, the protections afforded to the current conservation areas do not exclude all 

forms of use, and the level of protection are part of ongoing debate. To reach the 10 

percent protection goal by 2020, conservation and resource managers will need to depend 

on guidance from scientific research which will rely on advanced technologies and 

improved distribution predictions from SDM.   
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5 Appendix 

 

5.1 Non-metric multi-dimensional scaling plots (nMDS) 

 

This section includes the nMDS plots of a Bray-Curtis similarity index for depth and 

substrate at different spatial scales for functional groups and species with two 

transformations (4th root and presence/absence). 
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5.1.1 Functional Groups abundance data fourth root transformed 

 

 

Figure 5-1 A non-metric multi-dimensional scaling (nMDS) plot of a Bray-Curtis similarity index of 

depth (A) and facies at 10 m scale (B) for functional groups with a 4th root transformation. 

 

A 

B 
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Figure 5-2 A non-metric multi-dimensional scaling (nMDS) plot of a Bray-Curtis similarity index of 

depth (A) and facies at 50 m scale (B) for functional groups with a 4th root transformation. 
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Figure 5-3 A non-metric multi-dimensional scaling (nMDS) plot of a Bray-Curtis similarity index of 

depth (A) and facies at 100 m scale (B) for functional groups with a 4th root transformation. 
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Figure 5-4 A non-metric multi-dimensional scaling (nMDS) plot of a Bray-Curtis similarity index of 

depth (A) and facies at 500 m scale (B) for functional groups with a 4th root transformation. 
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Figure 5-5 A non-metric multi-dimensional scaling (nMDS) plot of a Bray-Curtis similarity index of 

depth (A) and facies at 1000 m scale (B) for functional groups with a 4th root transformation. 
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5.1.2 Functional Groups abundance data presence/absence transformed 

 

 

Figure 5-6 A non-metric multi-dimensional scaling (nMDS) plot of a Bray-Curtis similarity index of 

depth (A) and facies at 10 m scale (B) for functional groups with a presence/absence transformation. 
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Figure 5-7 A non-metric multi-dimensional scaling (nMDS) plot of a Bray-Curtis similarity index of 

depth (A) and facies at 50 m scale (B) for functional groups with a presence/absence transformation. 
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Figure 5-8 A non-metric multi-dimensional scaling (nMDS) plot of a Bray-Curtis similarity index of 

depth (A) and facies at 100 m scale (B) for functional groups with a presence/absence transformation. 
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Figure 5-9 A non-metric multi-dimensional scaling (nMDS) plot of a Bray-Curtis similarity index of 

depth (A) and facies at 500 m scale (B) for functional groups with a presence/absence transformation. 

  

A 

B 



5-11 

 

 

Figure 5-10 A non-metric multi-dimensional scaling (nMDS) plot of a Bray-Curtis similarity index of 

depth (A) and facies at 1000 m scale (B) for functional groups with a presence/absence 

transformation. 
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5.1.3 Species abundance data fourth root transformed 

 

 

Figure 5-11 A non-metric multi-dimensional scaling (nMDS) plot of a Bray-Curtis similarity index of 

depth (A) and facies at 10 m scale (B) for species abundance data with a 4th root transformation. 
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Figure 5-12 A non-metric multi-dimensional scaling (nMDS) plot of a Bray-Curtis similarity index of 

depth (A) and facies at 50 m scale (B) for species with a 4th root transformation. 
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Figure 5-13 A non-metric multi-dimensional scaling (nMDS) plot of a Bray-Curtis similarity index of 

depth (A) and facies at 100 m scale (B) for species with a 4th root transformation. 
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Figure 5-14 A non-metric multi-dimensional scaling (nMDS) plot of a Bray-Curtis similarity index of 

depth (A) and facies at 500 m scale (B) for species with a 4th root transformation. 
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Figure 5-15 A non-metric multi-dimensional scaling (nMDS) plot of a Bray-Curtis similarity index of 

depth (A) and facies at 1000 m scale (B) for species with a 4th root transformation. 
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5.1.4 Species abundance data presence/absence transformed 

 

 

Figure 5-16 A non-metric multi-dimensional scaling (nMDS) plot of a Bray-Curtis similarity index of 

depth (A) and facies at 10 m scale (B) for species with a presence/absence transformation. 
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Figure 5-17 A non-metric multi-dimensional scaling (nMDS) plot of a Bray-Curtis similarity index of 

depth (A) and facies at 50 m scale (B) for species with a presence/absence transformation. 
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Figure 5-18 A non-metric multi-dimensional scaling (nMDS) plot of a Bray-Curtis similarity index of 

depth (A) and facies at 100 m scale (B) for species with a presence/absence transformation. 
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Figure 5-19 A non-metric multi-dimensional scaling (nMDS) plot of a Bray-Curtis similarity index of 

depth (A) and facies at 500 m scale (B) for species with a presence/absence transformation. 
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Figure 5-20 A non-metric multi-dimensional scaling (nMDS) plot of a Bray-Curtis similarity index of 

depth (A) and facies at 1000 m scale (B) for species with a presence/absence transformation. 
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5.2 ANOSIM Results 

In this section are the ANOSIM analysis for depth and substrate at different spatial scales 

for functional groups and species with two transformations (4th root and 

presence/absence). 
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5.2.1 Functional Groups abundance data fourth root transformed 

 

Table 5-1 Results of pairwise tests from 2-way ANOSIM between depth groups across all grain sizes 

for functional groups with a 4th root transformation at attachment grain size. 
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Table 5-2 Results of pairwise tests from 2-way ANOSIM between facies groups across all depths for 

functional groups with a 4th root transformation at attachment grain size. 
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Table 5-3 Results of pairwise tests from 2-way ANOSIM between depth groups across all Facies for 

functional groups with a 4th root transformation at 10m scale. 

 



5-27 

 

 

Table 5-4 Results of pairwise tests from 2-way ANOSIM between facies at 10m scale groups across all 

depths for functional groups with a 4th root transformation. 
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Table 5-5 Results of pairwise tests from 2-way ANOSIM between depth groups across all facies at 

50m scale for functional groups with a 4th root transformation. 
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Table 5-6 Results of pairwise tests from 2-way ANOSIM between facies groups at 50m across all 

depths for functional groups with a 4th root transformation. 
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Table 5-7 Results of pairwise tests from 2-way ANOSIM between depth groups at 100m scale across 

all facies for functional groups with a 4th root transformation. 
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Table 5-8 Results of pairwise tests from 2-way ANOSIM between facies groups at 100m across all 

depths for functional groups with a 4th root transformation. 
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Table 5-9 Results of pairwise tests from 2-way ANOSIM between depth groups at 500m scale across 

all facies for functional groups with a 4th root transformation. 
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Table 5-10 Results of pairwise tests from 2-way ANOSIM between facies groups at 500m across all 

depths for functional groups with a 4th root transformation. 
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Table 5-11 Results of pairwise tests from 2-way ANOSIM between depth groups at 1000m scale 

across all facies for functional groups with a 4th root transformation. 
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Table 5-12 Results of pairwise tests from 2-way ANOSIM between facies groups at 1000m across all 

depths for functional groups with a 4th root transformation. 
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5.2.2 Functional Groups abundance data presence/absence transformed 

 

Table 5-13 Results of pairwise tests from 2-way ANOSIM between depth groups across all grain sizes 

for functional groups with a presence/absence transformation. 
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Table 5-14 Results of pairwise tests from 2-way ANOSIM between grain sizes groups across all 

depths for functional groups with a presence/absence transformation. 
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Table 5-15 Results of pairwise tests from 2-way ANOSIM between depth groups at 10m across all 

facies for functional groups with a presence/absence transformation. 
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Table 5-16 Results of pairwise tests from 2-way ANOSIM between facies groups at 10m across all 

depths for functional groups with a presence/absence transformation. 
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Table 5-17 Results of pairwise tests from 2-way ANOSIM between depth groups at 50m across all 

facies for functional groups with a presence/absence transformation. 
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Table 5-18 Results of pairwise tests from 2-way ANOSIM between facies groups at 50m across all 

depths for functional groups with a presence/absence transformation. 
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Table 5-19 Results of pairwise tests from 2-way ANOSIM between depth groups at 100m across all 

facies for functional groups with a presence/absence transformation. 
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Table 5-20 Results of pairwise tests from 2-way ANOSIM between facies groups at 100m across all 

depths for functional groups with a presence/absence transformation. 
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Table 5-21 Results of pairwise tests from 2-way ANOSIM between depth groups at 500m across all 

facies for functional groups with a presence/absence transformation. 
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Table 5-22 Results of pairwise tests from 2-way ANOSIM between facies groups at 500m across all 

depths for functional groups with a presence/absence transformation. 
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Table 5-23 Results of pairwise tests from 2-way ANOSIM between depth groups at 1000m across all 

facies for functional groups with a presence/absence transformation. 
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Table 5-24 Results of pairwise tests from 2-way ANOSIM between facies groups at 1000m across all 

depths for functional groups with a presence/absence transformation. 
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5.2.3 Species abundance data fourth root transformed 

 

Table 5-25 Results of pairwise tests from 2-way ANOSIM between depth groups across all 

attachment grain size for species with a 4th root transformation. 

 



5-50 

 

 



5-51 

 

Table 5-26 Results of pairwise tests from 2-way ANOSIM between attachment grain size groups 

across all depths for species with a 4th root transformation. 
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Table 5-27 Results of pairwise tests from 2-way ANOSIM between depth groups at 10m across all 

facies for species with a 4th root transformation. 

 



5-53 

 

 



5-54 

 

Table 5-28 Results of pairwise tests from 2-way ANOSIM between facies groups at 10m across all 

depths for species with a 4th root transformation. 
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Table 5-29 Results of pairwise tests from 2-way ANOSIM between depth groups at 50m across all 

facies for species with a 4th root transformation. 
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Table 5-30 Results of pairwise tests from 2-way ANOSIM between facies groups at 50m across all 

depths for species with a 4th root transformation. 
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Table 5-31 Results of pairwise tests from 2-way ANOSIM between depth groups at 100m across all 

facies for species with a 4th root transformation. 
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Table 5-32 Results of pairwise tests from 2-way ANOSIM between facies groups at 100m across all 

depths for species with a 4th root transformation. 
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Table 5-33 Results of pairwise tests from 2-way ANOSIM between depth groups at 500m across all 

facies for species with a 4th root transformation. 
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Table 5-34 Results of pairwise tests from 2-way ANOSIM between facies groups at 500m across all 

depths for species with a 4th root transformation. 
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Table 5-35 Results of pairwise tests from 2-way ANOSIM between depth groups at 1000m across all 

facies for species with a 4th root transformation. 
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Table 5-36 Results of pairwise tests from 2-way ANOSIM between facies groups at 1000m across all 

depths for species with a 4th root transformation. 
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5.2.4 Species abundance data presence/absence transformed 

 

Table 5-37 Results of pairwise tests from 2-way ANOSIM between depth groups across all 

attachment grain sizes for species with a presence/absence. 
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Table 5-38 Results of pairwise tests from 2-way ANOSIM between attachment grain size clasts across 

all depths for species with a presence/absence. 
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Table 5-39 Results of pairwise tests from 2-way ANOSIM between depth groups at 10m across all 

facies for species with a presence/absence. 
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Table 5-40 Results of pairwise tests from 2-way ANOSIM between facies groups at 10m across all 

depths for species with a presence/absence. 
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Table 5-41 Results of pairwise tests from 2-way ANOSIM between depth groups at 50m across all 

facies for species with a presence/absence. 
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Table 5-42 Results of pairwise tests from 2-way ANOSIM between facies groups at 50m across all 

depths for species with a presence/absence. 
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Table 5-43 Results of pairwise tests from 2-way ANOSIM between depth groups at 100m across all 

facies for species with a presence/absence. 
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Table 5-44 Results of pairwise tests from 2-way ANOSIM between facies groups at 100m across all 

depths for species with a presence/absence. 
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Table 5-45 Results of pairwise tests from 2-way ANOSIM between depth groups at 500m across all 

facies for species with a presence/absence. 
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Table 5-46 Results of pairwise tests from 2-way ANOSIM between facies groups at 500m across all 

depths for species with a presence/absence. 
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Table 5-47 Results of pairwise tests from 2-way ANOSIM between depth groups at 1000m across all 

facies for species with a presence/absence. 
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Table 5-48. Results of pairwise tests from 2-way ANOSIM between facies groups at 1000m across all 

depths for species with a presence/absence. 
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5.3 SIMPER Results 

In this section are the SIMPER analysis for depth and substrate at different spatial scales 

for functional groups and species with two transformations (4th root and 

presence/absence). 

5.3.1 Functional Groups abundance data fourth root transformed 
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Table 5-49 The average within group similarity from 2-way SIMPER analysis accounting for 100% 

of similarity for depth across all attachment grain sizes for functional groups with a 4th root 

transformation.  
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Table 5-50 The average within group similarity from 2-way SIMPER analysis accounting for 100% 

of similarity for attachment grain size across all depths for functional groups with a 4th root 

transformation. 
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Table 5-51 The average within group similarity from 2-way SIMPER analysis accounting for 100% 

of similarity for depth across all facies at 10 m for functional groups with a 4th root transformation. 
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Table 5-52 The average within group similarity from 2-way SIMPER analysis accounting for 100% 

of similarity for facies at 10 m across all depths for functional groups with a 4th root transformation. 
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Table 5-53 The average within group similarity from 2-way SIMPER analysis accounting for 100% 

of similarity for depth across all facies at 50 m for functional groups with a 4th root transformation. 
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Table 5-54 The average within group similarity from 2-way SIMPER analysis accounting for 100% 

of similarity for facies at 50 m across all depths for functional groups with a 4th root transformation. 

 



5-90 

 

 



5-91 

 

Table 5-55 The average within group similarity from 2-way SIMPER analysis accounting for 100% 

of similarity for depth across all facies at 100 m for functional groups with a 4th root transformation. 
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Table 5-56 The average within group similarity from 2-way SIMPER analysis accounting for 100% 

of similarity for facies at 100 m across all depths for functional groups with a 4th root transformation. 
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Table 5-57 The average within group similarity from 2-way SIMPER analysis accounting for 100% 

of similarity for depth across all facies at 500 m for functional groups with a 4th root transformation. 
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Table 5-58 The average within group similarity from 2-way SIMPER analysis accounting for 100% 

of similarity for facies at 500 m across all depths for functional groups with a 4th root transformation. 
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Table 5-59 The average within group similarity from 2-way SIMPER analysis accounting for 100% 

of similarity for depth across all facies at 1000 m for functional groups with a 4th root transformation. 
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Table 5-60 The average within group similarity from 2-way SIMPER analysis accounting for 100% 

of similarity for facies at 1000 m across all depths for functional groups with a 4th root 

transformation. 

 

  



5-98 

 

5.3.2 Functional Groups abundance data presence/absence transformed 

 

Table 5-61 The average within group similarity from 2-way SIMPER analysis accounting for 100% 

of similarity for depth across all for attachment grain size for functional groups with a 

presence/absence transformation. 
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Table 5-62 The average within group similarity from 2-way SIMPER analysis accounting for 100% 

of similarity results for attachment grain size across all depth for functional groups with a 

presence/absence transformation. 
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Table 5-63 The average within group similarity from 2-way SIMPER analysis accounting for 100% 

of similarity results for depth across all facies for 10m for functional groups with a presence/absence 

transformation. 
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Table 5-64 The average within group similarity from 2-way SIMPER analysis accounting for 100% 

of similarity results for facies for 10m across all depth for functional groups with a presence/absence 

transformation. 
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Table 5-65 The average within group similarity from 2-way SIMPER analysis accounting for 100% 

of similarity results for depth across all facies for 50m for functional groups with a presence/absence 

transformation. 
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Table 5-66 The average within group similarity from 2-way SIMPER analysis accounting for 100% 

of similarity results for facies at 50m across all depth for functional groups with a presence/absence 

transformation. 
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Table 5-67 The average within group similarity from 2-way SIMPER analysis accounting for 100% 

of similarity results for depth across all facies for 100m for functional groups with a presence/absence 

transformation. 
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Table 5-68 The average within group similarity from 2-way SIMPER analysis accounting for 100% 

of similarity results for facies for 100m across all depth for functional groups with a presence/absence 

transformation. 
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Table 5-69 The average within group similarity from 2-way SIMPER analysis accounting for 100% 

of similarity results for depth across all facies for 500m for functional groups with a presence/absence 

transformation. 
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Table 5-70 The average within group similarity from 2-way SIMPER analysis accounting for 100% 

of similarity for facies for 500m across all depth for functional groups with a presence/absence 

transformation. 
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Table 5-71 The average within group similarity from 2-way SIMPER analysis accounting for 100% 

of similarity for depth across all facies for 1000m for functional groups with a presence/absence 

transformation. 
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Table 5-72 The average within group similarity from 2-way SIMPER analysis accounting for 100% 

of similarity for facies for 1000m across all depth for functional groups with a presence/absence 

transformation. 
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5.3.3 Species abundance data fourth root transformed 

 

Table 5-73 The average within group similarity from 2-way SIMPER analysis accounting for 100% 

of similarity for depth across all for attachment grain size species with a 4th root transformation. 
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Table 5-74 The average within group similarity from 2-way SIMPER analysis accounting for 100% 

of similarity for attachment grain size across all depths for species with a 4th root transformation. 
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Table 5-75 The average within group similarity from 2-way SIMPER analysis accounting for 100% 

of similarity for depth across all facies for 10m for species with a 4th root transformation. 
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Table 5-76 The average within group similarity from 2-way SIMPER analysis accounting for 100% 

of similarity for facies at 10 m across all depths for species with a 4th root transformation. 
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Table 5-77 The average within group similarity from 2-way SIMPER analysis accounting for 100% 

of similarity for depth across all facies for 50m for species with a 4th root transformation. 
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Table 5-78 SIMPER results for facies transformation for 50m across all depth for species with a 4th 

root. 
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Table 5-79 The average within group similarity from 2-way SIMPER analysis accounting for 100% 

of similarity for depth across all facies for 100m for species with a 4th root transformation. 
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Table 5-80 The average within group similarity from 2-way SIMPER analysis accounting for 100% 

of similarity for facies for 100m across all depth for species with a 4th root transformation. 
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Table 5-81 The average within group similarity from 2-way SIMPER analysis accounting for 100% 

of similarity for depth across all facies for 500m for species with a 4th root transformation. 
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Table 5-82 The average within group similarity from 2-way SIMPER analysis accounting for 100% 

of similarity for facies for 500m across all depth for species with a 4th root transformation. 
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Table 5-83 The average within group similarity from 2-way SIMPER analysis accounting for 100% 

of similarity for depth across all facies for 1000m for species with a 4th root transformation. 
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Table 5-84 The average within group similarity from 2-way SIMPER analysis accounting for 100% 

of similarity for facies for 1000m across all depths for species with a 4th root transformation. 
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5.3.4 Species abundance data presence/absence transformed 

 

Table 5-85 The average within group similarity from 2-way SIMPER analysis accounting for 100% 

of similarity for depth across all attachment grain sizes for species with a presence/absence 

transformation. 
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Table 5-86 The average within group similarity from 2-way SIMPER analysis accounting for 100% 

of similarity for all attachment grain sizes across all depths for species with a presence/absence 

transformation. 
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Table 5-87 The average within group similarity from 2-way SIMPER analysis accounting for 100% 

of similarity for depth across all facies for 10 m for species with a presence/absence transformation. 
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Table 5-88 The average within group similarity from 2-way SIMPER analysis accounting for 100% 

of similarity for facies at 10 m across all depths for species with a presence/absence transformation. 
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Table 5-89 The average within group similarity from 2-way SIMPER analysis accounting for 100% 

of similarity for depth across all facies for 50 m for species with a presence/absence transformation. 

 



5-164 

 

 



5-165 

 

 



5-166 

 

 

  



5-167 

 

Table 5-90 The average within group similarity from 2-way SIMPER analysis accounting for 100% 

of similarity for facies for 50 m across all depth for species with a presence/absence transformation. 
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Table 5-91 The average within group similarity from 2-way SIMPER analysis accounting for 100% 

of similarity for depth across all facies for 100 m for species with a presence/absence transformation. 
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Table 5-92 The average within group similarity from 2-way SIMPER analysis accounting for 100% 

of similarity for facies for 100 m across all depth for species with a presence/absence transformation. 
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Table 5-93 The average within group similarity from 2-way SIMPER analysis accounting for 100% 

of similarity for depth across all facies for 500 m for species with a presence/absence transformation. 
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Table 5-94 The average within group similarity from 2-way SIMPER analysis accounting for 100% 

of similarity for facies for 500 m across all depth for species with a presence/absence transformation. 
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Table 5-95 The average within group similarity from 2-way SIMPER analysis accounting for 100% 

of similarity for depth across all facies for 1000 m for species with a presence/absence transformation. 
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Table 5-96 The average within group similarity from 2-way SIMPER analysis accounting for 100% 

of similarity for facies for 1000 m across all depth for species with a presence/absence transformation. 

 


