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Abstract

In this thesis, a numerical program based on an improved smoothed particle hydro-

dynamics (SPH) method has been developed to solve the nonlinear fluid-structure

interaction problems. The program simulates breaking free-surface flows and evalu-

ates the global and local hydrodynamic loads on structures.

In the present SPH method, the fluid domain is discretized into fluid particles

which allows the Euler equation to be numerically solved. A kernel function is em-

ployed to interpolate the flow field and the approximate Euler equations explicitly.

The solid boundaries are modelled using a fixed ghost particle method. A diffusive

term was adopted to smooth the noise in the pressure field. A particle shift technique

was adopted and improved by introducing a layer of background particles along the

free surface to minimize the interpolation error caused by the anisotropic particle

distribution.

Validation studies were carried out in three two-dimensional cases including dam-

break flow impacting against a vertical wall, water entry of a free-fall wedge, and

sloshing flow in a rectangular container excited by roll motions. The numerical re-

sults were compared with the experimental results and other published numerical

solutions.
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Chapter 1

Introduction

1.1 Background and Motivation

Offshore structures under extreme sea conditions can experience several types of im-

pact flows such as slamming, sloshing, and green water on deck (Mei (1989)). The

evaluation of the global and local hydrodynamic loads caused by these violent fluid-

structure interactions is important for the design of offshore structures. Since these

non-linear problems are usually coupled with strong dynamics, largely deformed or

breaking free surface and fluid segments, their analysis can be very complex. Analyt-

ical methods are only applicable to simple cases, while experiments are expensive and

time-consuming. In this context, the computational fluid dynamics (CFD) methods

based on solving the Navier-Stokes equations become very popular and useful because

they can solve these complex fluid problems with relatively lower cost. Moreover, the

CFD methods can also provide valuable information that can reveal the physical

mechanism behind the flow phenomena.

1
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1.2 Literature Review

1.2.1 Smoothed particle hydrodynamics

In computational fluid dynamics, there are two main ways to solve governing equa-

tions. One is the Lagrangian approach in which the individual fluid particle is tracked,

and its physical quantities are recorded. The other is the Eulerian approach in which

the physical fields are investigated on fixed space.

Based on the Eulerian approach, the finite volume method (FVM) and the finite

difference method (FDM) have been widely applied to computational fluid dynamics

for decades (Chung (2010)). CFD methods can solve these complex fluid problems

with relatively lower cost compared with experiments. However, CFD simulations

can be faced with challenges when the flow is accompanied by moving boundaries or

complex interfaces. Surface tracking or capturing methods are employed to handle

these interfaces. Surface tracking methods have to keep updating the meshes as

the flow evolves. When the interface is largely deformed, the re-meshing procedure

can be too difficult to perform. The surface capturing methods are more flexible

because they do not require mesh updates, but they give less accurate presentation of

the interface (Tezduyar (2002)). As a fully Lagrangian CFD method, the smoothed

particle hydrodynamics (SPH) method can easily model interfaces. This method has

been successfully applied to various fluid flows.

It is an intuitive idea to employ particles to model the fluid flows, considering

the fact that the fluid flows are composed of molecules in nature. The SPH method

was first proposed independently by Gingold and Monaghan (1977) and Lucy (1977)

to solve astrophysical problems. Compared with the mesh-based methods, using ar-

bitrarily moving particles to interpolate the fluid flows is not easy. Gingold and

Monaghan (1977) proposed an integral interpolation over the neighbour particles to
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obtain the spatial derivatives of field functions. This interpolation method originating

from the statistical theories and the Monte Carlo integrations is the basis of the SPH

method (Marrone (2012)). In the following decade, this method was mainly applied

to astrophysical problems. After the first application to the free-surface flows by Mon-

aghan (1994), it was surprising to find that this method could be applied to various

fluid, solid elastic and solid fracture problems, benefiting from their Lagrangian char-

acter (Monaghan (2005)). The following literature review is mainly focused on the

development of the SPH method in free-surface flows.

1.2.2 SPH in the free-surface flows

The SPH method has been widely applied to free-surface flows. Monaghan (1994)

first developed the SPH method to simulate free-surface flows, with a repellent force

particle technique to model solid boundaries. In this paper, it was assumed that

the fluid was weakly compressible while a specialized equation of state was designed

to relate the density field and pressure field explicitly. Reasonable evolution of the

free-surface flows was obtained without special treatments to enforce the free-surface

conditions. This paper developed the basic framework of the SPH method, and it

is also the origin of the numerous applications in fluid flows. Following the work of

Monaghan (1994), various problems in free-surface flows were investigated using the

SPH method.

1.2.2.1 Slamming

A structure entering the water is a key problem in marine hydrodynamics, and it is

also an important application of the SPH method. Oger et al. (2004) first applied

the SPH method to simulate the water entry of a wedge. In this work, the SPH

results were compared with the numerical results of the FVM, proving the feasibility
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of the SPH method in slamming. Although reasonable slamming forces were obtained,

the water jet and splashing were not simulated properly because of the low particle

resolutions.

Oger et al. (2005) studied the air cushion effect in water entry problem using a

two-phase SPH model. In this article, both the air and water pressure were evaluated

and coupled with the falling wedge. It was found that the two-phase SPH model

could capture the air cushion effect, however, only gave less ideal results compared

with the experimental ones. Oger et al. (2006) further studied water entry problem

using a variable smoothing length technique to realize the spatially varying resolution

in the SPH method. Benefiting from this technique, an extremely high resolution

was realized in the zone near the wedge, and the pressure distributions on the wedge

surface were accurately evaluated.

Shao (2009) used an incompressible SPH method to simulate the free surface de-

formations and evaluate the global impact loads. This method used less particles than

the SPH method, but smoother numerical results were obtained. The aforementioned

works were limited within two-dimensional simulations.

Maruzewski et al. (2010) developed a three-dimensional parallelized SPH model

to study various rigid bodies impacting on the free surface. In this work, a maximum

of one hundred million particles were employed to model the water entry of a solid

ball. In another case of a full ship hull impacting on the free surface, only two million

particles were employed to evaluate the slamming force costing 24 hours on 16 cores.

Reasonable slamming force series were obtained comparing with the experimental

ones. This application proved that the SPH method could solve the engineering

problems with an affordable computational cost.

Veen and Gourlay (2011) used a two-dimensional SPH method to model water

entry of various sections, including wedge, flared hull section and catamaran hull
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section to evaluate the slamming loads and the falling velocities. Veen and Gourlay

(2012) further combined this two-dimensional SPH algorithm with the strip theory

to evaluate the slamming loads on a V-form ship hull. This work proved the ability

of the SPH method to calculate slamming pressures for various two-dimensional hull

section shapes. However, only poor agreement was obtained comparing the slamming

force and motions predicted by the combined method with the results of experiments.

1.2.2.2 Sloshing

Souto-Iglesias et al. (2003) first applied the orginal SPH model by Monaghan (1994)

to simulate sloshing flows in anti-roll tanks with obstacles. The largely deformed free

surface was properly simulated, and the moment phase lags were compared with the

test results. This work proved the SPH method was feasible in the sloshing flows.

Landrini et al. (2003) used a two-phase SPH model to simulate the sloshing waves.

The wave elevations evaluated in the simulations had a good agreement with the ex-

perimental results, while the sloshing forces and moments only reached an unsatisfying

agreement. It was proved that this model had advantages to simulate the overturning

of the free surface and the following fluid-fluid impact compared with the traditional

methods.

Souto-Iglesias et al. (2006) accurately evaluated the sloshing moment amplitude

using an improved repellent force solid boundary condition and a leap frog predic-

tor–corrector time scheme.

Delorme et al. (2009) investigated the impact pressure in shallow water sloshing

flows with both the experiments and SPH simulations. A density re-initialization

procedure was adopted to smooth the pressure field, and reasonable pressure results

were obtained. In order to accurately evaluate the impact pressure, some alternative

approaches were applied to the sloshing problems.
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Rafiee et al. (2012) adopted a Godunov-type SPH method, which was based on the

solution of the local Riemann problem. This method gave an accurate and smooth pre-

diction of the impact pressure, although it took a higher computational cost. Khayyer

and Gotoh (2009) employed the incompressible SPH method to evaluate the sloshing

impact loads. A high-order source term was used in the Poisson equation, and an

improved detection method was employed to spot the fluid particles on the free sur-

face. This work presented the advantages of the incompressible SPH method in the

evaluation of the impact pressure in sloshing problems.

Gotoh et al. (2014) further enhanced the incompressible SPH method with a

higher order Laplacian model and an error-compensating source. The time predic-

tions of the impact pressures were compared with the experimental ones, and good

agreement was reached. Although the incompressible SPH methods are more accu-

rate in sloshing problems, the weakly compressible SPH method, which is more robust

and time-saving, has been combined with the finite element method to deal with the

coupled seakeeping-sloshing problems in Servan-Camas et al. (2016).

1.2.2.3 Water waves

In the early stage of its application, the SPH method was mainly applied to study

near-shore water waves. Monaghan and Kos (1999) simulated solitary waves and their

interactions with various dry beaches. Monaghan and Kos (2000) studied Scott Rus-

sell’s wave generator with both experiments and SPH simulations, in which a falling

box was used to generate a solitary wave in a rectangular tank. The experimental

and numerical results presented a similar wave formation process. Dalrymple et al.

(2002) studied the over-topping flow on deck, using a moving solid boundary to model

a flap wave generator. The separated flow after wave impact on a platform deck was

simulated, but the velocity profile did not match well with the experimental results,
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due to the low particle resolution.

Gomez-Gesteira et al. (2005) further studied the green water over-topping un-

der extreme waves. The wave profiles and flow separation after over-topping were

modelled properly and similar to the experimental results.

Landrini et al. (2007) conducted the simulation of the propagation of near-shore

bores generated by a piston wave-maker. The evolution of the breaking bores running

onto a beach was investigated in detail. The flow patterns after the breaking flows

were also presented and discussed.

Antuono et al. (2011) studied the generation and propagation of the regular and

transient gravity waves in a basin. The tank walls and the wave maker were mod-

elled with the fixed ghost particles technique. The wave profiles were compared with

the solutions of the Mixed-Eulerian–Lagrangian method and a ideal agreement was

achieved. The maximum particle space used to accurately reproduce gravity waves

was analyzed and discussed in detail.

1.2.2.4 Wave-body interactions

Following the applications of the SPH method in water waves, a lot of work has been

conducted to study wave-body interactions. Naito and Sueyoshi (2002) first applied

the particle method to wave-body interaction problems. In this work, the Moving Par-

ticle Semi-implicit (MPS) method was adopted to simulate two-dimensional motions

of a ship section with opening in waves, and flooding problems were also involved.

This work proved the feasibility of the SPH method in ship-wave interactions. Since

the wave-body interactions required a high resolution, Omidvar et al. (2012) used a

SPH model with variable particle mass distributions. To improve the accuracy of the

simulations, smaller particles were distributed near the floating body. The case stud-

ied was waves generated by the heave motion of a semi-immersed cylinder interacting
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with a fixed cylinder. The calculated wave profiles showed good agreement with the

experimental data, while the hydrodynamic forces on the fixed cylinder showed a

noticeable difference.

This algorithm was further developed to solve three-dimensional wave-body inter-

action problems in Omidvar et al. (2013). In this paper, a heaving energy converter

in waves was employed to validate this numerical tool. The waves were generated by

a piston wave-maker. The float had six degrees of freedom in waves. The motions of

the float evaluated were similar to test results in low frequency waves and less similar

in high frequency waves.

Bouscasse et al. (2013) developed a two-dimensional solver employing the fixed

ghost particle method to model the solid conditions. The momentum exchange

method was employed to evaluate the global loads on the floating bodies. A rigid

dolphin model with arbitrary solid boundary shapes was used to validate this solver.

The interaction of a floating box with a group of waves was also investigated. The

numerical and experimental results properly matched.

Various engineering problems were also investigated with the SPHmethod. Le Touze

et al. (2010) conducted the three-dimensional SPH simulations to study two types of

ship flooding problems. One was the deck flooding while the ship interacted with

surface waves, and the other was the ship flooding after a collision happened. The

water height on deck, the water height in the ship and the motions of the ship were

compared with the experimental results, and good agreements were reached.

Rafiee et al. (2013) simulated the wave interactions with a wave energy converter

using the Godunov SPH method with a RANS k-ε model. The time history of the

pressure measured on the bottom of the tank and the wave-excited moment on the

energy converter matched well with the experimental results.

Ulrich and Rung (2012) developed a multi-physics SPH model to study the water-
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soil-body interactions. Three engineering examples included the installation of a grav-

ity foundation, jacket launching from a floating platform and the propeller interac-

tions with the hull and soil. These works proved the feasibility of the SPH method in

complex multi-phase problems.

Shibata et al. (2012) used a three-dimensional Moving Particle Semi-implicit

(MPS) solver to model a numerical wave tank and study the ship motions under

rough seas. The non-linear phenomena in rough seas such as shipping water phenom-

ena were captured in the simulations, although the ship motions were less similar to

the experimental data.

1.2.3 Major drawbacks and improvements in the SPHmethod

1.2.3.1 Boundary conditions

In the SPH method, the integral interpolation is based on the neighbour fluid particles

within the kernel support, which is a zone bounded by a circle in 2-D or a sphere in

3-D. When the kernel support is truncated by the boundary surfaces, enforcing the

boundary conditions and numerical stability of the simulations can be difficult.

Free-surface boundary conditions have to be enforced in the simulations of free-

surface flows. In the early stage, the free-surface conditions were considered as self-

satisfied (Monaghan (1994)). However, the incomplete kernel domain truncated by

free-surfaces has always been an unclear point in the SPH method. Bonet and Lok

(1999) proposed two discretized formulations of the continuity equation and the mo-

mentum equations, which conserve the linear and angular momentums and stabilize

the simulations of the free-surface flows. Colagrossi et al. (2009) proved these formu-

lations can enforce the free-surface conditions in a weak way.

Solid boundary conditions play a significant role in the simulation of wall-bounded



10

flows. When the SPH method was first applied to the free-surface flows, a repellent

force technique was proposed by Monaghan (1994). In this method, when fluid par-

ticles are close to the solid boundary, a repellent force will act on the fluid particles.

Monaghan and Kajtar (2009) improved this method to effectively model the bound-

aries with arbitrary shapes. Although this method can easily model the fixed or

moving solid boundaries, the oscillations of the particles near solid boundaries can

introduce high-frequency noise into the pressure field.

The ghost particles method is another popular way to build the solid boundary

conditions. The ghost particle method was first proposed by Colagrossi and Landrini

(2003) for free-slip boundary conditions in the simulation of interfacial flows using

the SPH method. Based on this work, Marrone et al. (2011) proposed a fixed ghost

particle method, which is stable, time-saving, and can model the complex geometries.

1.2.3.2 High frequency noise in pressure field

Although a wide range of the applications to free-surface flows have been conducted,

the SPH method has always suffered from high frequency noise in the predicted pres-

sure. Several techniques have been proposed to overcome this problem.

Since the pressure field is directly determined by the density field, a lot of work

has been conducted to smooth the density field. Colagrossi and Landrini (2003)

introduced a density reinitialization procedure based on the moving least square in-

terpolation. Molteni and Colagrossi (2009) added a diffusive term into the continuity

equation, as the artificial viscosity to the continuity equation. Antuono et al. (2010)

proposed a system of equations with diffusive terms in continuity and energy equa-

tions. These methods reduce the high frequency noises in the pressure field.

Since the pressure noise can be easily excited in the weakly compressible SPH

method, another approach, assuming the fluid is incompressible, has been adopted to
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address the pressure problem. Cummins and Rudman (1999) proposed a projection

method to enforce the incompressibility of the fluid. Shao and Lo-Edmond (2003) pre-

sented an incompressible method using prediction-correction fractional steps without

enforcing the incompressibility in the prediction step. Instead of solving a pressure

Poisson equation for a divergence-free velocity field, Ellero et al. (2007) used La-

grangian multipliers to enforce the incompressibility. The incompressible SPH scheme

has to detect the particles on the free surface to enforce the dynamic boundary con-

ditions on the free surface. The procedure of detection can be extremely complex

and time-consuming in three dimensional simulations. Different free surface detection

techniques have been proposed. Haque and Dilts (2007) created a three dimensional

boundary detection method using a set of overlapping spheres to present the bound-

aries in particle systems. Marrone et al. (2010) proposed a fast detection method for

both two-dimensional and three-dimensional simulations using a level-set function.

Anisotropic spatial distributions of the fluid particles also contribute the pres-

sure noise and numerical instability. Since the fluid isotropic transport follows the

trajectory of the fluid flow, it is difficult to guarantee that the fluid particles are al-

ways in an isotropic distribution. The particle shift technique was first proposed by

Xu et al. (2009) to address the numerical instability caused by the anisotropic dis-

tribution in the incompressible SPH method with the projection-based pressure and

velocity coupling. In their method, particles are slightly shifted across streamlines to

avoid spacing distortion and clustering of particles. Lind et al. (2012) generalized the

particle shifting method of Xu et al. (2009) to prevent highly anisotropic distributions

and the onset of numerical instability. Sun et al. (2017) introduced the particle shift

technique in the weakly compressible SPH method. A correction to the particle shift-

ing technique was made to accurately detect the free surface particles and to evaluate

the normal to the free surface for particles inside the free surface regions.
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In the SPH method, it is unclear how to perform the particle shift procedure to

rearrange the fluid particles near the free surface since this technique relies on the

neighbour particles in a complete kernel support. In this thesis, a treatment for the

particles near the free surface was proposed and adopted. A layer of background

particles was placed along the free surface to improve the particle shift technique.

The details of this algorithm will be explained in the next chapter.

1.2.3.3 Viscosity and numerical instability

In the SPH method, the viscous term is usually replaced by an artificial viscous term

to simplify the SPH algorithm and also to stabilize the simulations. The artificial

viscous term was first proposed by Gingold and Monaghan (1982) to decrease the

oscillations in shock problems. This term was further improved by Monaghan and

Gingold (1983). Monaghan (1994) used this viscous term to evaluate both shear and

bulk viscosity stabilizing the simulations. In the SPH method, the second derivatives

could not be evaluated correctly even in a lightly anisotropic distribution of particles,

which is the main reason why the real viscous term can not be employed. Takeda

et al. (1994) used an anti-symmetrized viscous term to avoid the influence of particle

distribution on the approximation of the second derivatives, and accurate results of

the viscous flows with low Reynold number were obtained.

Tensile instability is typically troublesome in the particle technique, especially

when it is applied to solid mechanics. It is an unphysical phenomena that particles

cluster together when negative pressure appears. Morris (1996) conducted a stability

analysis of the SPH method and proved that the Gaussian kernel can guarantee better

stability. Monaghan (2000) proved that instability could be removed by an artificial

pressure term, which was a repulsive force used to prevent clustering and guaranteed

the tensile stability.
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1.3 Overview

The objectives of this thesis are to simulate the interactions between breaking free-

surface flows and solid structures and to improve the evaluation of hydrodynamic

loads using SPH. A numerical program has been developed based on the weakly

compressible SPH method involving an artificial viscous term and a diffusive term.

To avoid a highly anisotropic particle distribution and its influence on the pressure

predictions, a particle shift technique was adopted. As an improvement, a layer of

background points along the free surface was introduced to address the challenge in

applying the particle shifting technique to particles close to the free surface. The

improved method was validated for a dam-break flow, the water entry of a wedge

and a sloshing flow. Sensitivity studies were performed to examine the effects of

the particle spacing and the time step on the solutions. The predicted free surfaces

and the impact loads were compared with published experimental data and other

numerical results.

Chapter 1 reviews the development of the SPH method and its application in the

problems of free surface flows and fluid-structure interactions. The major drawbacks

and related improvements in the SPH method are also discussed in detail.

Chapter 2 derives the SPH equations from the Euler equation with a weakly

compressible assumption and a specialized equation of state. The boundary condi-

tions and several numerical implementations are explained. A improved particle shift

technique with a layer of background points along the free surface is introduced and

presented in detail.

Chapter 3 presents several cases to validate the present SPH method with the

improved particle shift technique. These cases include a dam-break flow, the water

entry of a wedge and a sloshing flow.

Chapter 4 concludes the present work and discusses possible future work.



Chapter 2

Mathematical Formulation

2.1 Governing Equations

In this thesis, it is assumed that the fluid is inviscid, weakly-compressible and isotropic.

The flow evolution is governed by conservation laws of mass and momentum. All the

formulations are presented in the Lagrangian framework.

2.1.1 Equations of Momentum

The equations of momentum establish the relationship between the forces acting on

a fluid particle and its acceleration. The equations of momentum of inviscid fluid,

which are also called Euler equations, in the Lagrangian framework state:

Du

Dt
= g − 1

ρ
∇p (2.1)

14
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where g denotes the gravitational acceleration, p and ρ is the pressure and the density

of the fluid particle, respectively. u is the fluid velocity defined as:

Dr

Dt
= u (2.2)

r denotes the position of a fluid particle. The time history of r is the trajectory of

each fluid particle.

In the fluid flows governed by the Euler equations, the evolution of fluid particles

is dominated by the pressure gradient and the external forces. Although it is assumed

that the fluid is inviscid, an artificial viscous term will be used in the equations

of momentum. This term affects the for numerical stability of the solution and is

described in the following section.

2.1.2 Continuity Equation and Equation of State

The continuity equation, which represents the conservation of mass, can be expressed

as follows:
Dρ

Dt
= −ρ∇ · (u) (2.3)

where ρ is the density of the fluid particle, and u is the velocity of the fluid particle.

Eq. 2.3 illustrates that the density change rate of fluid particle depends on the

divergence of the velocity field.

Assuming the fluid is weakly-compressible, Monaghan (1994) proposed an equa-

tion of state, which states that the pressure on a fluid particle is a single-value function

of the density:

p = c2(ρ− ρ0) (2.4)

where ρ0 is the initial density of the fluid particle, and c is the speed of sound, which
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should be lower than the real speed of sound in order to avoid extremely small time

steps in simulations. Entropy has a large influence on the pressure field of gas, but it

is generally negligible for liquid.

The continuity equation can evaluate the rate of change of density of a fluid

particle, which determines the density field of the fluid using the following equation:

ρ = ρ∗ + Dρ

Dt
δt (2.5)

where δt is the time step, and ρ∗ denote the density of the particle at last time step.

The pressure field of the fluid is directly determined by the density field through

Eq. 2.4. The equations of momentum evaluate the acceleration of the fluid parti-

cles based on the pressure field, and then the velocity and displacement of the fluid

particles can be derived as follows:

u = u∗ + Du

Dt
δt (2.6)

and

r = r∗ + uδt (2.7)

where u∗ and r∗ denote the velocity and position of the particle at last time step.

2.2 SPH Method

2.2.1 Integral Interpolation

In the SPH method, the principal basis is using a convolution integral over the fluid

domain to interpolate the spatial function. The value of a generic function, f(r) can
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be interpolated as follows:

〈f〉(r) =
∫

Ω
f(r′)W (r − r′, h)dV ′ (2.8)

where dV ′ is the volume of a differential element, r′ denotes the position of the

differential element, W is a weight function called smoothing function or kernel, and

h is the characteristic length, which determines the shape of the smoothing function.

h is set between 1.01 to 1.34 times the particle spacing in this work. The smoothing

function is a bell-shaped function and its value tends to zero in the region far away

from the reference particle as shown in Figure 2.1. In other words, the smoothing

function only has non-zero value within the kernel support, and only the particles

within the kernel support are considered as neighbour particles. The radius of kernel

support is called the smoothing length, R, which is 3 times h in practice.

Figure 2.1: Smoothing kernel

Eq. 2.8 can exactly reproduce f(r) if the smoothing function is a delta function.

For example, the Gaussian function with different characteristic lengths h is plotted
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in Figure 2.2, the shapes of the smoothing function become sharper when h decreases

from 1.5 to 0.2. If the h tends to zero, smoothing functions will approach the delta

function.
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Figure 2.2: Gaussian kernel function

Substituting f(r′) with ∇f(r′) in Eq. 2.8, the gradient of a generic function can

be approximated in a similar way:

〈∇f〉(r) =
∫

Ω
∇f(r′)W (r − r′, h)dV ′ (2.9)

where ∇f(r′) denotes the gradient of f at r′. Integrating by parts, Eq. 2.9 becomes:

〈∇f〉(r) =
∫

Ω
f(r′)∇W (r − r′, h)dV ′ +

∫
∂Ω
f(r′)W (r − r′, h)n′dS ′ (2.10)

where ∂Ω denotes the boundary of kernel support Ω, and n′ is its unit normal vector.

For ∇W (r−r′) andW (r−r′), the origin of the local coordinate system of the kernel

is placed on r′.

Because W is a bell-shape function equal to zero on the boundary of a complete
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kernel support Ω, the surface integral in Eq. 2.10 is equal to zero when Ω is immersed

in fluid. Consequently, Eq. 2.10 becomes:

〈∇f〉(r) =
∫

Ω
f(r′)∇W (r − r′, h)dV ′ (2.11)

When Ω is truncated by the boundary surfaces as shown in Figure 2.3, the surface

integral term cannot be ignored. The surface integral needs the explicit information

of the boundary surfaces, including the free surface, which can make the simulation

complex and unstable. In order to force the surface integral to equal zero, a ghost

particle technique is used to build the solid boundaries, which can supplements the

incomplete kernel support truncated by the boundary surface. This technique will be

addressed in the section 2.3.2. If the kernel support is truncated by the free surface,

it is difficult to supplement the incomplete support with particles. This problem has

been one of the most well-known challenges in the SPH method. A detailed discussion

about the influence of the free surface on the differential operators, ∇p and ∇·v, will

be presented in the section 2.2.2 and section 2.3.1.

2.2.2 Integral Interpolation of Differential Operators

In the governing equations, ∇p and ∇ · v are the differential operators to be approxi-

mated in each time step. With the presence of the free surface, the corrected integral

interpolation formulations of the differential operators were proposed by Bonet and

Lok (1999) to improve the simulation results by neglecting the surface integral. These

forms are the most popular formulations used in the SPH algorithm. In this thesis,

they are employed as follows:

〈∇ · u〉(r) =
∫

Ω
[u(r′)− u(r)]∇W (r − r′, h)dV ′ (2.12)
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Figure 2.3: Incomplete kernels truncated by boundary surfaces

〈∇p〉(r) =
∫

Ω
[p(r′) + p(r)]∇W (r − r′, h)dV ′ (2.13)

where v is the velocity of the particle and p is the pressure of the particle. These for-

mulations allow the surface integral to be neglected and also maintain the conservation

of momentum in the SPH formulations (Colagrossi et al. (2009)).
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2.2.3 Standard SPH Equations

Introducing smoothed differential operators into Eq. 2.1 and Eq. 2.3, the smoothed

forms of the SPH equations are given below:

Dρ

Dt
= −ρ

∫
Ω

[u(r′)− u(r)]∇W (r − r′, h)dV ′

p = c2(ρ− ρ0)
Du

Dt
= g − 1

ρ

∫
Ω

[p(r′) + p(r)]∇W (r − r′, h)dV ′

Dr

Dt
= u

(2.14)

Substituting the convolution integral with summation to Eq. 2.14,

∫
Ω
∇W (r − r′, h)dV ′ =

∑
i

∇WijVj (2.15)

leads to the discretized SPH equations:

Dρi

Dt
= −ρi

∑
j

(uj − ui)∇iWijVj

pi = c2(ρi − ρ0)
Dui

Dt
= g − 1

ρi

∑
j

(pj + pi)∇iWijVj

Dri

Dt
= ui

(2.16)

where the subscript j denotes the particles within the kernel support of particle i,

∇iWij denotes the gradient at particle i of the smoothing kernel at particle j, Vi is

defined as the volume of particle i, and the mass of particle i is mi = ρiVi. In practice,

it is assumed that the mass of the fluid particle is constant in the simulation, and the

density of the fluid particle changes in the rate defined in Eq. 2.3. Consequently, the

volume of the fluid particle changes with its density as Vi = mi/ρi.
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For those new to the SPH method, it is sometimes hard to understand what the

fluid particle really is. A fluid particle is not a dot, but its position is represented

by its initial volume center. Although the volume of each fluid particle is known and

changes with relative motions of the neighbour particles, the shape of the fluid particle

is arbitrary and not of interest.

2.2.4 SPH Equations with numerical diffusive and viscous

terms

Two main drawbacks of the SPH algorithm are numerical instability and high fre-

quency noise in pressure due to the discontinuity in the density field. In this work,

an artificial viscous term proposed by Monaghan (1994) was used in the equations of

momentum to improve the numerical stability. A numerical diffusive term proposed

by Antuono et al. (2010) was also added into the continuity equation to allow a small

exchange of mass between neighbour particles. The SPH equations with the artificial

viscous term and the numerical diffusive term are expressed by:

Dρi

Dt
= −ρi

∑
j

(uj − ui)∇iWijVj + δhc
∑

j

ψij · ∇iWijVj

pi = c2(ρi − ρ0)
Dui

Dt
= g − 1

ρi

∑
j

(pj + pi)∇iWijVj + αhc
∑

j

πij∇iWijVj

Dri

Dt
= ui

(2.17)

where α is the artificial viscous coefficient, δ is the diffusive coefficient. In practice,

α is set between 0.05 and 0.2, and δ is set to 0.3. πij = (uj − ui)
rji

|rji|2
, ψij =

2(ρj − ρi)
rji

|rji|2
− [〈∇ρ〉Li + 〈∇ρ〉Lj ], rji is the displacement from particle i to j, and
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the normalized density gradient 〈∇ρ〉L is defined as follows:

〈∇ρa〉L =
∑

b

(ρb − ρa)La∇aWabdVb,

La = [
∑

b

(rb − ra)⊗∇aWabdVb]−1
(2.18)

where a denotes the particle of interest, b denotes its neighbour particles, and ⊗

denotes tensor product.

2.3 Boundary Conditions

2.3.1 Free-surface Boundary Condition

On the free surface, the kinematic condition and the dynamic condition must be

satisfied. The kinematic condition means that the particles initially located on the

free surface will remain on the surface, i.e.,

u · nF = V ∂ΩF
· nF ∀x ∈ ΩF (2.19)

where nF is the normal vector of the free surface, u is the velocity of the fluid particle,

and V ∂ΩF
is the velocity of this moving boundary. This condition can be implicitly

satisfied due to the Lagrangian characteristic of the SPH method (Colagrossi et al.

(2009)).

The dynamic free-surface boundary condition means that the pressure along the

free surface would be equal to the external pressure pe if surface tension was ignored,

i.e.,

p(x) = pe ∀x ∈ ΩF (2.20)

Practically, the external pressure is usually set to zero. Colagrossi et al. (2009)
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proved that the dynamic free-surface boundary condition is satisfied in a weak way

when using the specified smoothed differential operators defined in Eq. 2.12 and Eq.

2.13.

2.3.2 Solid Boundary Condition

In this thesis, a fixed ghost particle method proposed by Marrone et al. (2011) was

adopted to satisfy the solid boundary condition. In this method, a layer of ghost

particles, which were used to supplement the truncation of the incomplete kernel

support, were placed along the solid boundaries. The ghost particles were fixed to

the solid boundary, and their quantities of physical properties were mirrored from the

interpolation points in fluid domain.

According to Marrone et al. (2011), the algorithm for the generation of the ghost

particles is performed with the following steps: At first, the solid boundary profile

is approximately represented with surface nodes with a distance equal to the fluid

particle spacing. Secondly, the normal vector n and the tangent vector t are defined

for each node, where the normal vectors point outwards from the fluid domain and the

tangent vectors are defined through the right-hand law: the cross product of n and

t is positive. Then, the ghost particles are generated by reproducing the boundary

nodes in the normal direction with a distance equal to the fluid particle spacing.

Figure 2.4 presents the finished distribution of the ghost particles. Figure 2.5 shows

the arrangement of the interpolation points, which are generated with a procedure

similar to the ghost particles.

As shown in Figure 2.6, physical quantities of the interpolation points are accu-

rately interpolated from the neighbour fluid particles with the Moving Least-Squares

(MLS) method (Fries and Matthies (2003)). For example, the pressure of a ghost
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Figure 2.4: Sketch of an incomplete kernel supplemented by fixed ghost particles

Figure 2.5: Interpolation points of fixed ghost particles
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particle is evaluated as follows:

pg =
∑

j

pjW
MLS(rj)dVj + 2dρg · n (2.21)

where g is gravitational acceleration, n is the normal vector of the surface node, and

d is the distance between the ghost particle and its interpolation point. The Moving

Least-Squares kernel WMLS is defined as:

WMLS(rj) = M−1
i e1 · bijW (rj)

bT
ij = [1, (xj − xi), (yj − yi), (zj − zi)]; eT

1 = [1, 0, 0, 0]

M i =
∑

j

bij ⊗ bijW (rj)dVj

(2.22)

where ⊗ denotes the tensor product, and (xi, yi, zi) and (xj, yj, zj) is the coordinate

of particle i and particle j, respectively.

Figure 2.6: Sketch of the interpolation of the fixed ghost particle

When moving solid boundaries are involved in the simulations, the evaluation

of the velocity of the ghost particles, ug, needs special attention. As presented in

Figure 2.7, ug depends on the velocity of the solid surface nodes, ub, and the velocity
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evaluated on the interpolation point, ui. According to Colagrossi and Landrini (2003),

the no-slip boundary conditions can be described as follows:

ug · n = 2ub · n− ui · n

ug · t = ui · t
(2.23)

Figure 2.7: Sketch of the velocity of the fixed ghost particle

2.4 Particle shift technique

2.4.1 Disordered particles distribution problem

The spatial distribution of fluid particles is a key element in SPH simulations. Since

the fluid particles move following the evolution of the fluid flow, it is difficult to

guarantee a isotropic distribution of the fluid particles at any time step, especially in

fluid zones with high velocity gradients. Figure 2.8 presents an anisotropic distribution

of the fluid particles in the wall corner for a dam breaking flow case.

In order to investigate the influence of anisotropic particle distribution on the

interpolation procedure in the SPH method, Colagrossi et al. (2009) proposed an
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(a) A snapshot of the simulation of the dam-break flow

(b) Enlarged snapshot of the corner area under violent impact

Figure 2.8: Anisotropic particle distribution in dam-break flow



29

identity ∇Γ to evaluate the level of the approximation error of the differential opera-

tors defined in Eq. 2.12 and Eq. 2.13. ∇Γ can be interpreted as the approximation

of the gradient of a constant field and derived as follows:

∫
Ω
f0∇W (r − r′, h)dV ′ = f0Σj∇Wij

mj

ρj

= f0∇Γ (2.24)

where f0 is a constant spatial function. According to Eq. 2.24, ∇Γ becomes:

Σj(∇Wij
mj

ρj

) = ∇Γ (2.25)

In theory, the gradient of the constant field should be equal to zero. However, the

anisotropic distribution of the fluid particles leads to a non-zero value of ∇Γ, which

stands for the level of approximation error of Eq. 2.12 and Eq. 2.13. In practice, the

particle shift technique is employed to reduce this type of error.

2.4.2 Particle shift formulations

The particle shift technique was first proposed by Xu et al. (2009) to rearrange the

distribution of the fluid particles in the incompressible SPH method. In the SPH

algorithm, the error described in Eq. 2.25 automatically turns into a nonphysical

force in Eq. 2.17 enforcing the distribution of particles to be more isotropic (Antuono

et al. (2014)). Although this approach tends to decrease the level of anisotropic

distribution, the particle distribution problem is still significant in the high velocity

gradient zone as shown in Figure 2.8. According to the work of Sun et al. (2017), the

particle shift technique was enhanced by slightly modifying the positions of particles
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using the following equations:

δri = −CFL ·Ma · (2h)2 ·
∑

j

∇iWij
2mj

ρj + ρi

(2.26)

r∗i = ri + δri (2.27)

where r∗i is the new position of the particle, δri is the shift distance, CFL is the

Courant number, h is the character length of smoothing function, and Ma is the

Mach number. Ma is set to 0.1 in this work.

2.4.3 Background particles along the free surface

For a particle near the free surface, its kernel support is incomplete. In this case, the

particle shift technique, which is based on the distribution of the neighbour particles

in a full kernel support, becomes ineffective and even can lead to numerical instability.

Several solutions have been proposed to address this difficulty near the free sur-

face. According to Sun et al. (2017) and Khayyer et al. (2017), in the area near the

free surface, the shifting distance of the fluid particles was forced to be equal to zero

in the normal direction of the free surface in different ways.

In this thesis, a new treatment was applied to address this problem. The in-

complete kernel support is compensated by a layer of background or virtual particles

along the boundary surface. This treatment follows the idea of using the fixed ghost

particles to compensate the kernel truncation near solid boundaries. Note that the

virtual particles do not interact with the fluid particles or affect the evolution of the

fluid flows.

In the algorithm, two main steps are required to distribute virtual particles along

the boundary surfaces. In the first step, the initial background particles are uniformly

distributed in the computational domain at the beginning of the simulation by using
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the same particle spacing as that for the fluid particles as shown Figure 2.9. In the

second step, some background particles along the boundary surfaces are chosen and

set as active background particles to compensate the kernel support near boundary

surfaces as shown in Figure 2.10. Because the free surface keeps moving, this process

is carried out at each time step. The criterion for choosing the active particles is

based on a summation defined in Eq. 2.28, representing the filling level of the kernel

support of initial background particles.

Γ = Σj(WijVj) (2.28)

where i denotes the initial background particle, j denotes the neighbour fluid particles

of the initial background particle, Wij is the weight function and Vj is the volume of

the fluid particle j. As shown in Figure 2.11, the fluid particle within the kernel

support of the initial background particle are used to calculate Γ.

Γ > Γfs inactive

Γ = 0.0 inactive

0.0 < Γ < Γfs active

(2.29)

The criteria in Eq. 2.29 determines the status of the initial background particles. For

0.0 < Γ < Γfs, the initial background particle is considered as an active background

particle. When Γ > Γfs, it means that an initial background particle is immersed in

fluid. When Γ = 0.0, it implies that the initial background particles are not within

the kernel support of any fluid particle. In the current practice, Γfs is set to 0.40. A

snapshot of the active background particles in the simulation of dam break is presented

in Figure 2.12. These particles compensate the missing part of the kernel support to

improve the particle shift technique near a boundary.
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Figure 2.9: Distribution of initial background particles

Figure 2.10: Active background particles
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Figure 2.11: Neighbour particles of background particles

Figure 2.12: Background particles and fluid particles
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2.5 Numerical Implementations

2.5.1 Gaussian Kernel

To approximate the governing equations in the simulations, a kernel function is nec-

essary. The kernel adopted in this thesis is a renormalized Gaussian kernel proposed

by Marrone (2012).

W (r) =


e−(r/h)2 − C0

2πC1
r ≤ R

0 otherwise

C0 = e−(R/h)2 ;C1 =
∫ R

0
r[e−(r/h)2 − e−(R/h)2 ]

(2.30)

where r is the distance between two particles, R is the radius of kernel support, and

h is the character length, which determines the shape of kernel function. In this

thesis, the character length remains constant and equals 1.33 times particle spacing.

The kernel radius equals 3h, which means the number of particles within the kernel

support is about 50.

2.5.2 Choice of time schemes

In the SPH method, the time step is mainly limited by the particle spacing, the relative

speed of particles and the speed of sound used in the equation of state. Marrone (2012)

proposed a formulation to evaluate the time step in each loop as follows:

∆t = CFL mini(
h

ci + |ui|+ hmaxj|πij|
) (2.31)

where mini denotes the minimum value over all the fluid particles, maxj indicates the

maximum value over the neighbour particles of the particle i, and CFL is the Courant
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number determined by the time scheme adopted. πij is defined in Eq. 2.17, which

represents the relative motion among the neighbour particles.

In this thesis, the Euler scheme proposed by Marrone (2012) was adopted, which

include a predictor step and a corrector step depicted in Eq. 2.32 and Eq. 2.33,

respectively.

ρi
n+ 1

2 = ρi
n + ∆tEi

n

ui
n+ 1

2 = ui
n + ∆tGi

n

ri
n+ 1

2 = ri
n + ∆tui

n + ∆t2

2 Gi
n

(2.32)

where n + 1
2 indicates the predictor step, G denotes acceleration, and E is density

change rate.

ρi
n+1 = ρi

n + ∆tEi
n + Ei

n+ 1
2

2

ui
n+1 = ui

n + ∆tGi
n +Gi

n+ 1
2

2
ri

n+1 = ri
n+ 1

2

(2.33)

where n+ 1 indicates the corrector step. When the Euler scheme is adopted, CFL is

usually set between 0.2 and 0.9, which can lead to a stable simulation in practice.

2.5.3 Global Forces on Floating Bodies

The evaluation of the global hydrodynamic force is key in the fluid-structure inter-

action problems. Generally, there are two methods to evaluate the global loads on

floating bodies: the surface integral method and the momentum exchange method.

The former uses a smoothing procedure to evaluate the pressure on body surface, and

integrates the pressure along the surface to obtain the global forces and moments. In
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contrast, the latter can be performed through a summation of the quantities already

evaluated in the equations of momentum. The interactions between the solid particles

and the fluid particles can be considered an exchange of momentum. Every portion

of the fluid-solid interactions is summed up to evaluate the global loads.

In this thesis, the global forces, F S, were evaluated with the momentum exchange

method by Bouscasse et al. (2013) as follows:

F S =
∫

ΩF

dV
∫

ΩS

−(p′ + p) · ∇W (r′ − r)dV ′ (2.34)

where ΩF is the fluid domain, ΩS is the solid domain, p′ is the pressure of the solid

particles, and p is the pressure of the fluid particles. The discretized form is given by:

F S =
∑

j

∑
i

−(pj + pi) · ∇iWijViVj (2.35)

Introducing the artificial viscous term defined in Eq. 2.17, Eq. 2.35 becomes:

F S =
∑

j

∑
i

(−(pi + pj) + αhcρ0πij) · ∇iWijViVj (2.36)

where i denotes the fluid particles, the j means the solid particles, αhcρ0πij is the

viscous term. Similarly, the moment on the floating body can be presented as follows:

MS =
∑

j

∑
i

{(rj − rc)× (−pi + αhcρ0πij/2)∇iWij

+ (ri − rc)× (−pj + αhcρ0πij/2)∇iWij}ViVj

(2.37)

where i denotes the fluid particles, the j means the solid particles, rc is the center of

gravity of the body.
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2.5.4 Equations of motion for a floating body

The motions of rigid body are governed by Newton’s law of motion. The 2-D linear

and angular equations of motion are given as follows:

M
dV

dt
= Mg + F s

I
Ω
dt

= M s

(2.38)

where V and Ω are the linear velocity at the center of gravity and angular velocity of

the body, respectively, M is the mass, I is the moment of inertia of the rigid body, g

is the gravitational acceleration, F s andM s are the hydrodynamic force and moment

acting on the rigid body, respectively.

2.6 Summary of the computation

A program based on the present SPH model was developed in FORTRAN. This

program can deal with breaking free-surface flows and its interactions with fixed or

moving rigid structures. Moreover, it can solve the problems with violent impact

phenomena and evaluate the local and global impact loads. Figure 2.13 presents the

detailed steps of the numerical computation.

The fluid and rigid structures are modelled with the fluid particles and the ghost

solid boundary particles. The initial velocity, density, pressure of the fluid particles

are set according to the initial conditions. When the simulation starts, the list of

neighbour particles is created for each fluid particle. The computational domain is

divided into square cells. For a particle in a cell, the surrounding particles in the

neighbour cells are its potential neighbour particles. The distance between the po-

tential neighbour particle and the particle of interest is calculated. If the distance is

less than the kernel support radius, the particle would be considered as a neighbour
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particle. This selecting procedure is performed in every time step. The neighbour

particles of the interpolation points of the solid boundary particles are also marked

in the same way. The physical quantities of every solid boundary particle are inter-

polated through the neighbour particles of its counterpart interpolation point. Then,

the physical quantity change rates of each fluid particle are evaluated based on the

neighbour particles following the SPH equations. According to the change rates of

the physical field, the density, pressure, velocity and position of the fluid particles

are updated. The momentum of the rigid body is evaluated through the momen-

tum exchange between the fluid particles and the solid boundary particles. The solid

boundary particles advance according to the motions of the solid boundaries. After

the motions of fluid and solid particles are obtained, a loop of the simulation for

one time step is finished, and a new loop will continue until the time is equal to the

maximum time.
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Figure 2.13: Flowchart of the numerical algorithm



Chapter 3

Numerical Results

In this chapter, several two-dimensional cases were conducted to validate the accuracy,

feasibility and robustness of the present SPH algorithm with a particle shift technique

in the free surface flows interacting with fixed or moving solid structures. These three

cases include: (1) dam-break flow impacts on a vertical wall; (2) water entry of a

wedge; (3) and sloshing flow excited by the roll motions.

3.1 Dam-break flow

3.1.1 Case description

The dam-break flow is the standard test case. This case involves several complex

physical phenomena including violent fluid-solid and fluid-fluid impacts, free surface

breaking and fluid segments.

The simulations were according to the conditions of the experimental tests con-

ducted by Lobovsky et al. (2014) in which a large number of test repetitions were

performed to address the repeatability of the experiments. The setup of this test is

illustrated in Figure 3.1. The length of the tank was 1.6m. The water cube had a

40
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height of 0.3m and a length of 0.6m. The points P1 and P2 represented the pressure

sensors, which recorded the local pressures during the test. The vertical positions of

the sensors placed on the vertical wall were 0.003m and 0.015m, respectively mea-

sured from the tank bottom. In the section of H1, the time history of water height

was also recorded.

Figure 3.1: Sketch of the setup of the dam-break test

3.1.2 Convergence study

The convergence of the numerical solution, in terms of the impact pressure at P1, to the

particle spacing and the time step size was investigated. Three computational cases

were first conducted with different particle spacing: 0.003m, 0.002m and 0.0015m,

corresponding to 11, 250, 20, 000 and 45, 000 fluid particles, respectively. The CFL

number is set to 0.6. Figure 3.2 shows that the predicted pressure converges when

more particles are employed. Another three cases were then carried out with constant

particle spacing, 0.002m, and different CFL numbers: 0.60, 0.75 and 0.90. As shown

in Figure 3.3, the numerical results are not sensitive to the time step size.
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3.1.3 Simulation results

In the simulation, the particle spacing is set to 0.0015m. 45, 000 fluid particles and

7, 252 fixed ghost particles were employed to model the fluid flow and the solid walls

of the tank. The CFL number is set to 0.6. The front of the dam-break flow and

the water height measured at H1 were compared with the experimental results by

Lobovsky et al. (2014) in Figures 3.4 and 3.5, respectively. Both time series agree

well with the experimental results.

The time series of the pressures on P1 and P2 are illustrated in Figures 3.6

and 3.7. The numerical results with and without the particle shift technique are

compared with the experimental results by Lobovsky et al. (2014). The predicted

pressures generally agree with the experimental results. The present method with the

shift technique led to smoother pressures than the original SPH model. It proves that

the particle shift technique decreases the oscillations in the impact pressures. Figure

3.8 compares the particle distribution at the corner and indicates the present model

gives a more uniform particle distribution than the original model. The snapshots of

the flow evolution at different time instances are presented in Figures 3.9 to 3.11 and

compared with the experimental photos. The predicted free surface is very similar to

the experimental one.
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Figure 3.8: Particle distribution near pressure sensor P1 in dam-break flow by the
original SPH method (top) and the present SPH method (below)
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Figure 3.9: Snapshots of the evolution of the dam-break flow at t(g/H)1/2 = 1.58
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Figure 3.10: Snapshots of the evolution of the dam-break flow at t(g/H)1/2 = 3.27
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Figure 3.11: Snapshots of the evolution of the dam-break flow at t(g/H)1/2 = 5.85
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3.2 Water entry

The water entry of a free-fall body is another complex hydrodynamic problem with

strong fluid-solid impact and breaking free surface. The local and global slamming

loads were investigated in detail to validate the capability of the present SPH solver.

3.2.1 Case description

The water entry of a symmetric wedge was simulated and the results were compared

with the experimental data by Zhao et al. (1996). The computational domain is

illustrated in Figure 3.12. The deadrise angle of the wedge was 30◦; its width, B, was

0.5m; its drop height, H, was 2.0m. The tank had a depth of 1.0m and a width of

3.0m. To reduce the computational cost, the simulations started at the moment when

the wedge touched the water surface with an initial velocity of 2.9m/s. The wedge

had only one degree of freedom. As an example, Figure 3.13 shows the distribution

of fluid particles and the solid ghost particles.

H

W

D

Water

Air

30

B

Figure 3.12: Sketch of the water entry of a wedge
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Figure 3.13: Distribution of the fluid particles and solid ghost particles
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3.2.2 Convergence study

To investigate the convergence of the numerical solution to the particle spacing and

the time step size, the hydrodynamic force on the wedge was computed using various

time step sizes and particle spacings. Three cases were first conducted with a constant

CFL number, 0.4, and particles spacing: B/100, B/200 and B/300, which are cor-

responding to 120, 000, 480, 000 and 1, 080, 000 fluid particles, respectively. Another

three cases were then conducted with constant particle spacing, B/300, and different

CFL numbers: 0.4, 0.6 and 0.8. As shown in Figure 3.14, the numerical solutions

become smoother and converge as the particle spacing decreases. As indicated in

Figure 3.15, the solutions are insensitive to the time step size.
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Figure 3.14: Sensitivity of the slamming force to particle spacing
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3.2.3 Simulation results

In the following simulations, the particle spacing and the CFL number were set as

B/300 and 0.4, respectively. In total, 1,080,000 fluid particles, 10,818 fixed ghost

particles and 1,192 fixed ghost particles were employed to model the fluid, the tank

walls and the wedge, respectively.

The time series of the slamming force and the falling velocity of the wedge were

compared with experimental results by Zhao et al. (1996). As shown in Figure 3.16,

the predicted falling velocity agree well with the experimental one. The time history

of the slamming force is also in a good agreement with the experimental one as

shown in Figure 3.17. It is found that the particle shift technique slightly improves

the prediction of the global slamming loads. In fact, the particle shift technique is

aimed to improve the distribution of fluid particles and decrease the oscillations in
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the pressure field. Because of the statistical features of the integral interpolation, the

global loads are not sensitive to the pressure noises in the SPH simulations.

Two snapshots of the particle distribution near the free surface and the solid

wedge predicted by the SPH method with and without the technique are given in

Figure 3.18. A nonphysical cavity occurs at the water jet region with high velocity

gradients in the snapshot by the original SPH model. The nonphysical cavity however

does not appear in the snapshot predicted by the present method with the particle

shift technique.

The pressure distributions on the wedge surface at different time instances, pre-

dicted by the present method, are compared with the experimental results and the

fully non-linear solution based on the boundary element method by Zhao et al. (1996)

in Figures 3.19 to 3.21. In these figures, the non-dimensional vertical coordinate is

represented with Z/S, where S is the instantaneous draft of the wedge, and Z is the

vertical coordinate on the wedge surface relative to the calm free surface. It is shown

that the present method with the particle shift technique gives more stable pressure

results than the original SPH model. The snapshots of the flow field are also presented

in Figures 3.19 to 3.21.

A uniform distribution of particles is the basis of the prediction of the impact

pressure. The particle shift technique rearranged the fluid particles to a more uniform

distribution, especially near the free surface as shown in Figure 3.18, and improved

the impact pressure distribution on the solid boundary.
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Figure 3.18: Particle distribution profiles predicted by the original SPH method (top)
and the present SPH method (below)
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3.3 Sloshing flow

In this section, sloshing flow excited by roll motions was simulated to validate the

present SPH algorithm. In the simulations, the tank was modelled with the moving

solid boundary, and the impact loads were evaluated and compared with the experi-

mental data.

3.3.1 Case description

The experimental tests were carried out by Delorme et al. (2009). The experimental

setup is illustrated in Figure 3.22. The rectangular tank had a length of 0.900m, a

height of 0.508m and a width of 0.310m. The filling level of this tank was 0.093m. The

pressure sensor was placed on the left wall of the tank (0.093m above the bottom).

The rotation axis was at the center line of the bottom of the tank. At the initial time,

the tank was in the horizontal position. The time series of angle and velocity in the

experiments are given in Figure 3.23 and Figure 3.24.

Figure 3.22: Sketch of the setup of the sloshing tank
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Figure 3.23: Time history of the angular velocity of the tank by Delorme et al. (2009)

Figure 3.24: Time history of the angle of the tank by Delorme et al. (2009)



62

3.3.2 Convergence study

Convergence studies were carried out for the impact pressure at P1 using various

particle spacing and CFL numbers. The four particle spacings included L/250, L/360,

L/450 and L/500, where L is the length of the tank, corresponding to 6, 800, 13, 400,

21, 150 and 25, 900 fluid particles, respectively. In these three cases, a constant CFL

number, 0.2, was used. Another three cases were conducted with different CFL

numbers: 0.20, 0.30, 0.40 and 0.50 with the constant particle spacing of L/450. As

shown in Figure 3.25, the oscillations in the pressure get smaller as the particle spacing

decreases. As shown in Figure 3.26, the numerical solutions are not sensitive to the

CFL number.
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3.3.3 Numerical results

In the following simulations, particle spacing is set to L/450. 21, 150 fluid particles and

4, 476 fixed ghost particles were employed to model the water flow and the tank walls,

respectively. The CFL number is set to 0.2. The motions of the tank recorded in the

experiments were also used in the simulations. The moving solid boundary conditions

were satisfied by using fixed ghost particles, which moved with the tank. The time

series of the impact pressure at P1 are compared with the experimental results in

Figure 3.27. The predicted pressure time history is in a reasonable agreement with

the experimental one. The maximum pressure is similar to the experimental value.

It is also shown that the present method with the particle shift technique gives a

closer pressure prediction than the original one. Snapshots of the sloshing flow are

also compared with the experimental photo in in Figures 3.28 and 3.29.
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Figure 3.28: Snapshots of the evolution of the sloshing flow at t=2.40s
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Figure 3.29: Snapshots of the evolution of the sloshing flow at t=3.40s



Chapter 4

Conclusions and Future Work

In this thesis, a numerical program based on an improved SPH method was devel-

oped to simulate two-dimensional breaking free-surface flow interactions with fixed or

moving solid structures by solving the Euler equations. A specified equation of state

was employed to link the density field and the pressure field explicitly. An integral

interpolation method was used to approximate the physical quantity of the fluid field

and its spacial derivatives.

To decrease high-frequency noise in pressure, a numerical viscous term and a

diffusive term were added into the equations of momentum and continuity equation,

respectively. The solid boundary conditions were modelled with a fixed ghost particle

method, which was stable and flexible for various solid boundaries. In this thesis, a

particle shift technique was further improved by using background particles, which

leads to smoother pressure predictions.

Validation studies were conducted for dam breaking flow against a vertical wall,

water entry of a free-fall wedge and sloshing flow in a rectangular tank excited by roll

motions. The impact pressure, hydrodynamics forces, and largely deformed free sur-

face were compared with experimental data and good agreement has been achieved.
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In conclusion, the present model is robust and accurate in the two-dimensional simu-

lation of the fluid-solid interactions with breaking free surfaces and strong impact in

these three cases.

There are still plenty of problems waiting to be addressed. First of all, the

present work should be extended to three dimensions for a wider range of appli-

cations. When the three-dimensional work is conducted, the computational cost will

increase sharply. To make the cost affordable, parallel computation becomes neces-

sary. Another promising approach reducing computational cost is the multi-resolution

technique which decreases the number of particles by setting the particles far from

the region of interest to larger sizes. When particles with various sizes mix together,

problems will appear in the interpolation process. The methods for dealing with

neighbour particles of different sizes is still unclear and needs further research.

Another problem is that the present SPH model can only simulate single-phase

problems. Air effects such as air entrapment cannot be modelled properly. A reliable

two-phase model is necessary to get more accurate solutions for breaking free-surface

flows. In the two-phase model, the discontinuity of density near the interfaces makes

the interpolation process difficult. New techniques addressing this difficulty are desir-

able. Considering the numerical instability among air particles can be easily excited,

using a meshed-based method to model the air phase is a potential choice. In such

case, new interface techniques coupling different CFD methods are necessary. For

more extreme breaking free-surface flow, air entrapment plays an important role and

has to be considered. Violent flow interaction with structures can cause particle pen-

etration near solid boundary. Appropriate solid boundary method avoiding particle

penetration is necessary.

In three-dimensional simulations, enforcing solid boundary conditions becomes

complex. The fixed ghost particle method used in the present work faces challenges
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handling sharp curvatures. The repellent force method is a straightforward and fast

technique to build arbitrary solid boundaries but contribute pressure noise. To ap-

ply the SPH method to engineering problems, a robust and accurate solid boundary

technique modelling three-dimensional solid boundaries with arbitrary shapes will be

advantageous.
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