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Abstract

Ocean wind and wave parameters are important for the study of oceanography, on- and

off-shore activities, and the safety of ship navigation. Conventionally, such parameters

have been measured by in-situ sensors such as anemometers and buoys. During the

last three decades, sea surface observation using X-band marine radar has drawn wide

attention since marine radars can image both temporal and spatial variations of the sea

surface. In this thesis, novel algorithms for wind and wave parameter retrieval from

X-band marine radar data are developed and tested using radar, anemometer, and buoy

data collected in a sea trial off the east coast of Canada in the North Atlantic Ocean.

Rain affects radar backscatter and leads to less reliable wind parameters measure-

ments. In this thesis, algorithms are developed to enable reliable wind parameters

measurements under rain conditions. Firstly, wind directions are extracted from rain-

contaminated radar data using either a 1D or 2D ensemble empirical mode decomposition

(EEMD) technique and are seen to compare favourably with an anemometer reference.

Secondly, an algorithm based on EEMD and amplitude modulation (AM) analysis to

retrieve wind direction and speed from both rain-free and rain-contaminated X-band

marine radar images is developed and is shown to be an improvement over an earlier 1D

spectral analysis-based method.

For wave parameter measurements, an empirical modulation transfer function (MTF)

is required for traditional spectral analysis-based techniques. Moreover, the widely used

signal-to-noise ratio (SNR)-based method for significant wave height (HS) estimation

may not always work well for a ship-borne X-band radar, and it requires external sensors

for calibration. In this thesis, two methods are first presented for HS estimation from

X-band marine radar data. One is an EEMD-based method, which enables satisfactory

HS measurements obtained from a ship-borne radar. The other is a modified shadowing-

based method, which enables HS measurements without the inclusion of external sensors.

Furthermore, neither method requires the MTF. Finally, an algorithm based on the Radon
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transform is proposed to estimate wave direction and periods from X-band marine radar

images with satisfactory results.
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Chapter 1

Introduction

1.1 Background

Ocean wind and wave parameters are important for the study of oceanography, on- and

off-shore activities, and the safety of ship navigation. Conventionally, anemometers have

been widely used for wind measurements, and wave information has been derived from

the time series of buoy-recorded sea surface elevation. However, wind measurements

from anemometers may be affected by the structure and motion of the platform [1], and

the deployment of buoys may be limited, for example, by the availability of mooring

facilities and by meteorological conditions [2]. Also, of course, anemometers and buoys

deliver only point measurements and cannot provide information on the spatial variability

of the sea state. During the last several decades, ocean wind and wave measurements

using remote-sensing instruments such as synthetic aperture radar (SAR) [3–5] and high

frequency (HF) radar [6–8] have been rapidly developed. However, while SAR images

contain spatial information, they do not provide the temporal evolution of the sea surface.

Also, HF radar installations may require significant tracts of coastline, and the cost of

deployment and maintenance can be high. Recently, due to the capability of scanning the

sea surface with high temporal and spatial resolution, land-based or ship-borne X-band

nautical radar has also drawn wide attention in wind and wave measurements. Since

1



Fig. 1.1 Shadowing and tilt modulation.

X-band nautical radar is commonly installed on ships for navigation purposes, sea surface

observation using such radars has become promising.

The radar signature of the sea surface, also known as sea clutter, is undesirable and

generally suppressed for navigation purposes, but it is useful in monitoring sea state. At

grazing incidence, X-band radar backscatter is mainly caused by Bragg resonance as a

result of interactions between microwaves and the sea surface high frequency gravity-

capillary waves induced by local winds and influenced by gravitational and surface

tension restoring forces [9]. Longer waves become visible in radar images due to their

modulations of the short waves in a non-linear process mainly affected by hydrodynamic

modulation, tilt modulation, and shadowing [10]. Thus, the estimation of directional

wave spectra and integrated sea state parameters is viable from an analysis of the time

series of X-band nautical radar sea surface images [11]. Shadowing and tilt modulations

are depicted in Fig.1.1. Wind information can be retrieved from radar images due to the

dependence of the radar cross section (RCS) on wind speed [12] and the angle between

radar look direction and wind direction [13]. Although X-band radar technology for

measuring wind parameters [14–19], sea surface currents [20–23] and waves [24–28]

is relatively mature, and corresponding products are commercially available, robust

algorithms for wind and wave sensing using X-band radar are still evolving.
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1.2 Motivation and Objectives

X-band marine radar can provide good wind measurements in the absence of rain.

However, in the presence of rain, sea surface roughness changes due to the raindrops

impinging the ocean [29, 30], and volume scattering and attenuation due to the raindrops

in the atmosphere [31] will also affect the radar backscatter. These effects lead to less

reliable wind measurements. Generally, radar images which are contaminated by rain

are identified and removed from the data before the application of algorithms designed

to extract wind information [15, 17]. Since rainfall is a common event on the ocean, it is

necessary to develop techniques for wind parameter extraction from rain-contaminated

radar images. A technique called ensemble empirical mode decomposition (EEMD) was

mainly developed for time-frequency analysis of non-linear and non-stationary data [32–

35], which is the case for X-band marine radar data. By using EEMD, such data can be

adaptively decomposed into a finite number of disparate narrow-banded intrinsic mode

functions (IMFs), which can be further separated into amplitude modulation (AM) and

frequency modulation (FM) portions by a normalization scheme [36]. In this thesis, the

first objective is to develop EEMD-based algorithms for the extraction of wind direction

and speed from both rain-free and rain-contaminated X-band marine radar data.

Analysis of X-band marine radar image sequences based on the three-dimensional

(3D) discrete Fourier transform (DFT) was first proposed in [9]. Since then, X-band

marine radar has been widely used for the estimation of ocean wave parameters [37, 38].

A commercial wave monitoring system called WaMoS II has also been developed [2, 39].

Since wave parameters are retrieved based on radar-derived wave spectra, an empirical

modulation transfer function (MTF) needs to be applied. However, since the MTF varies

for different radar systems and different environments, a method independent of the

MTF for wave parameter measurements is needed. The Radon transform (RT) can be

used to detect linear features in a noisy digital image [40], and this makes it especially

suitable for the detection of wave signatures in X-band marine radar images. The RT
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has been used in SAR applications for detecting ship wakes [41] and geographical

structures [42]. It has also been applied to X-band marine radar images to analyze

internal wave signatures [43, 44]. In [45], surface wave parameters were extracted from

X-band marine radar images using the RT, but only a single result was given and no

complete algorithm was provided. The second objective of this thesis is to develop a

RT-based algorithm for retrieving wave parameters, including wave direction, peak wave

period, and mean wave period, directly from radar images, without the derivation of

wave spectra or the application of a MTF.

Among ocean wave parameters, significant wave height (HS) is an important one

since it provides an indication of the severity of the sea state. Because the wave spectra

are estimated from grey-level values of sea clutter signals rather than from sea surface

elevations, directly estimating calibrated wave height values remains challenging. A

widely accepted method for HS estimation is based on a theory developed for SAR

applications [46], in which the HS is assumed to be linearly proportional to the square

root of the signal-to-noise ratio (SNR) derived from the radar image sequence [24].

Application of this method has yielded satisfactory results from stationary radar systems.

However, the SNR-based method does not always produce robust results for radars

operated on a moving platform since the determination of the SNR is very sensitive to

the local environment [49, 50]. Also, the SNR-based method requires calibration by an

external reference sensor, such as a wave buoy. Therefore, it is necessary to develop

techniques independent of the movement of the platform for HS estimation, and a method

independent of external sensors is also needed. These initiatives constitute the third

objective of this thesis.

1.3 Scope of the Thesis

In this thesis, novel algorithms are developed for ocean wind and wave parameter

extraction from ship-borne X-band marine radar data. The thesis is outlined as follows:
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In Chapter 2, a literature review of the research on ocean wind and wave parameter

extraction from X-band marine radar data is presented. For wind direction and speed

extraction, several techniques are described, and corresponding pros and cons are sum-

marized. For wave parameters determination, existing algorithms for wave spectra and

related parameters are first reviewed. Then, a variety of methods for SWH estimation are

specifically discussed.

In Chapter 3, two ensemble empirical mode decomposition (EEMD)-based methods

for retrieving wind direction from rain-contaminated X-band marine radar images are

presented. Each radar image is first decomposed into disparate intrinsic mode func-

tion (IMF) components using one-dimensional EEMD (1D-EEMD) or two-dimensional

EEMD (2D-EEMD). Then, the standard deviation of one IMF component, or the combi-

nation of several IMF components, as a function of azimuth is least-squares fitted to a

harmonic function to determine the wind direction.

In Chapter 4, an algorithm to retrieve wind direction and speed from both rain-free

and rain-contaminated X-band marine radar images is developed. A data control strategy

is proposed for distinguishing rain-free and rain-contaminated radar data. The radar data

is decomposed by the EEMD into several IMFs and a residual. A normalization scheme

is applied to the first IMF to obtain the amplitude modulation (AM) component. Based

on curve-fitting a harmonic function, wind direction is determined from the residual for

the rain-free and high-wind-speed rain-contaminated data, and from the AM portion

of the first IMF for the low-wind-speed rain-contaminated data. Using a logarithmic

relationship, wind speed is determined from a combination of the residual and the AM

part of the first IMF for both rain-free and rain-contaminated data.

In Chapter 5, two methods are presented for HS estimation from X-band marine radar

data. One is an EEMD-based method, in which the data sequence in each radial direction

of a radar sub-image is decomposed by the EEMD into several IMFs. The normalization

scheme is then applied to the IMFs to obtain their AM components. By adopting a

linear model, the HS is estimated from the sum of the amplitudes of the second to the

5



fifth modes. The other is a modified shadowing-based method, in which modifications,

including selecting a subarea along the upwind direction and smoothing the edge pixel

intensity histogram, are made to the original shadowing-based algorithm to achieve

more accurate wave height measurements. Both methods are applicable to ship-borne

radar data, but the modified shadowing-based method does not require external reference

sensors.

In Chapter 6, an algorithm based on the Radon transform (RT) is proposed for

estimating wave parameters from X-band marine radar images. First, an initial guess

of wave direction is determined from the first image of an image sequence. Then, sub-

images located in the initial guess wave direction from an image sequence are used to

determine wave parameters, including wave direction, peak wave period, and mean wave

period.

In Chapter 7, conclusions for this research are summarized, and suggestions for

future work are provided.

The achievements of this research have been published in the following journal

papers:

1. W. Huang, X. Liu, and E. W. Gill, “Ocean wind and wave measurements using X-band

marine radar: A comprehensive review," Remote Sens., vol. 9, no. 12, pp. 1261, Dec.

2017.

This paper provides a comprehensive review of the state of the art algorithms for

ocean wind and wave information extraction from X-band marine radar data (Chapter

2).

2. X. Liu, W. Huang, and E. W. Gill, “Wind direction estimation from rain-contaminated

marine radar data using the ensemble empirical mode decomposition method," IEEE

Trans. Geosci. Remote Sens., vol. 55, no. 3, pp. 1833-1841, Mar. 2017.

This paper presents the 1D- and 2D-EEMD-based methods for wind direction extrac-

tion from rain-contaminated X-band marine radar data (Chapter 3).
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3. W. Huang, X. Liu, and E. W. Gill, “An empirical mode decomposition method for sea

surface wind measurements from X-band nautical radar data," IEEE Trans. Geosci.

Remote Sens., vol. 55, no. 11, pp. 6218-6227, Nov. 2017.

This paper presents the EEMD-based method for wind direction and speed extraction

from both rain-free and rain-contaminated X-band marine radar data (Chapter 4).

4. X. Liu, W. Huang, and E. W. Gill, “Wave height estimation from ship-borne X-band

nautical radar images," J. Sensors, vol. 2016, Article ID 1078053, 7 pages, 2016.

doi:10.1155/2016/1078053.

This paper introduces modifications to the shadowing-based algorithm for more robust

HS estimation (Chapter 5).

5. X. Liu, W. Huang, and E. W. Gill, “Comparison of wave height measurement algo-

rithms for ship-borne X-band nautical radar," Can. J. Remote Sens., vol. 42, no. 4, pp.

343-353, Apr. 2016.

This paper provides the comparison of HS estimation between the SNR- and modified

shadowing-based algorithms (Chapter 5).

6. X. Liu, W. Huang, and E. W. Gill, “Estimation of significant wave height from X-

band marine radar images based on ensemble empirical mode decomposition," IEEE

Geosci. Remote Sens. Lett., vol. 14, no. 10, pp. 1740-1744, Oct. 2017.

This paper presents the EEMD-based method for HS extraction from X-band marine

radar data (Chapter 5).
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Chapter 2

Literature Review

This chapter contains a review of previous work related to sea surface wind and wave

parameter measurements using X-band marine radar. The purpose of the review is

to comprehensively summarize the techniques developed for such measurements and

to explore remaining challenges. The chapter is divided into two sections: (1) wind

measurements and (2) wave measurements.

2.1 Wind Measurements

Wind is a natural movement of air due to differences in the atmospheric pressure. Wind

information can be extracted from X-band radar images since the radar backscatter is

caused by sea surface roughness which is mainly induced by local winds. Due to the

dependence of the radar cross section (RCS) on wind speed [12] and the angle between the

radar look direction and the wind direction [13], X-band marine radar has been exploited

to retrieve wind parameters [51]. Wind direction has generally been determined based

on the fact that the backscatter of an HH-polarized X-band radar operating at grazing

incidence presents only one peak in the upwind direction [52]. Wind speed has generally

been determined by establishing a model relating wind speed to other parameters derived
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from radar images. The wind estimation methods can be classified as wind-streaks-based,

image-intensity-variation-over-azimuth-based, and spectral-analysis-based.

2.1.1 Wind-Streaks Based Techniques

Wind streaks are linear features first observed in synthetic aperture radar (SAR) images

for ocean surface wind direction estimation [53]. They are mainly caused by local

turbulence, foam, and surfactants on the ocean surface. Such wind streaks are also visible

in the temporally-integrated X-band marine radar images and aligned with the mean

wind direction. Thus, they can also be used for wind measurements using X-band marine

radar.

2.1.1.1 Local Gradients Method and Neural Network

The local gradients method (LGM) was originally proposed for extracting wind-induced

streaks from SAR images [54]. Dankert et al. [14, 55, 56] used LGM to determine

wind direction as the orientation of wind-induced streaks from X-band marine radar

images. Wind speed was estimated using a neural network (NN) that used the mean

normalized RCS (NRCS), radar-derived wind direction, and radar look direction as the

input parameters, and wind speed as the output.

For wind direction estimation, the first step is to integrate a radar image sequence over

time. Ocean surface wave signatures that show high variability in the time domain can

then be removed. As a result, only static and quasi-static signatures of low frequencies,

such as wind-induced streaks, remain visible in the integrated image. In the next step,

the integrated image is subjected to repeated smoothing and sub-sampling, in which the

image resolution is thrice decreased by a factor of 2, resulting in a so-called Gaussian

image pyramid. Subsequently, local gradients are obtained from all the sub-sampled

images with three different resolutions using optimized Sobel operators [54], and the

orientations of local wind streaks are determined to be those that are orthogonal to
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Fig. 2.1 LGM scheme for wind direction estimation.

the local gradients. Then, wind direction is derived as the mean or the mode of all

the determined local wind streak orientations. While a 180◦ ambiguity exists in the

derived wind direction, it can be removed using the following techniques. The first

technique is based on the cross-correlation function (CCF) of two temporally-integrated

radar image sub-sequences. The moving distance and direction of image patterns can be

indicated by the location of the CCF peak, thus removing the 180◦ ambiguity. The second

technique is based on the cross-spectrum (CS) of the CCF. The movements of image

harmonic features can be derived from the phases of the CS values for the corresponding

wavenumbers of the harmonic components. Since the resulting motion directions of the

image harmonic features are always within ±90◦ of the downwind direction, the 180◦

ambiguity can be removed. Another technique, based on the extraction of wind gusts

visible in the image sequence [57], is discussed in Section 2.1.1.2. The LGM scheme for

wind direction estimation is shown in Fig.2.1.

For wind speed determination, each temporally-integrated radar image over the range

of 600 m or 900 m to 2100 m is divided into range-azimuth bins of 300 m in range

and 5◦ in azimuth. The least inputs required for the NN involve the mean NRCS of the

bins within ±15◦ in both cross-wind directions, the radar-retrieved wind direction and

the radar look direction. The mean NRCS in the cross-wind directions is used for two

reasons. Firstly, the NRCS is more sensitive to wind speeds in the cross-wind directions.

Secondly, the NRCS in the upwind and downwind directions may be affected by blockage

and wind shadowing due to neighbouring platforms, respectively. Improvements can be

achieved if other parameters related to the sea state and atmospheric conditions are also

included as the inputs of the NN. The sea state parameters include the signal-to-noise

ratio (SNR), which is proportional to the square of the significant wave height, and
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the peak wave phase speed, which can be calculated from peak wave frequency. The

atmospheric conditions measured by external sensors include the air-sea temperature

difference and the relative humidity.

In [14, 55, 56], two sets of data were used to test the techniques. The first dataset with

3271 data samples was collected from February to June 2001 on the platform Ekofisk

2/4k located in the North Sea around 200 km off the west coast of Norway with wind

speed up to 18 m/s. The comparison between in-situ and radar-derived wind directions

showed a correlation coefficient of 0.99 and a standard deviation of 14.2◦. For wind

speed retrieval, input parameters involving only the mean NRCS, wind direction, and

radar look direction resulted in a correlation coefficient of 0.96 and a standard deviation

of 0.97 m/s. Including the air-sea temperature difference as an additional input improved

the result, giving a correlation coefficient of 0.97 and a standard deviation of 0.85 m/s.

The second dataset of 4786 data samples was collected from August 2003 to November

2004, on the research platform FINO-I in the German Bight of the southern North Sea

with wind speed up to 16 m/s. The correlation coefficient and standard deviation are

0.99 and 12.8◦, respectively. For wind speed estimation, if only the parameters derived

from radar data (mean NRCS, wind direction, radar look direction, SNR, and peak wave

phase speed) were used as the inputs for the NN, a result with a correlation coefficient of

0.97 and a standard deviation of 0.66 m/s was obtained. By including the atmospheric

conditions (air-sea temperature difference and relative air humidity) as additional inputs,

the correlation coefficient improved to 0.99 and the standard deviation became 0.42 m/s.

Good results for wind measurements have been obtained using this method. However,

it may be difficult to apply the LGM to ship-borne radar data because ship motion may

lead to less reliable estimation of the streak orientations from the temporally-integrated

radar images. A preprocessing technique, such as georeferencing, may be required for

its application to ship-borne radar data. For the NN technique, various input parameters

are needed and a training process must be conducted.
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2.1.1.2 Optical Flow Motion Estimation

Dankert et al. [57] proposed an optical flow motion estimation-based technique (OFM)

for retrieving wind fields from X-band marine radar images. This technique is based on

the extraction of the movement of wind gusts that are visible in filtered and integrated

images. Wind speed can be directly derived from the wind gusts without calibration.

Firstly, to filter out the ocean surface wave signatures, the linear dispersion relation-

ship for surface gravity waves is applied to the 3D wavenumber-frequency spectrum

of an image sequence. Next, a temporal moving average over 27 images is applied

to a sequence of 32 images to remove high variability in the time domain, resulting

in 5 averaged images G(⃗γ, t), with γ⃗ = (x,y) and t being space and time coordinates,

respectively. For each averaged image, the same smoothing and sub-sampling process as

described in Section 2.1.1.1 is implemented to obtained the so-called Gaussian image

pyramid. Then, wind gusts become visible in the resulting images. Based on a common

assumption on optical flow, the intensity change in the averaged image is caused only

by the motion of wind patterns. Thus, the total time derivative associated with G(⃗γ, t)

equals zero, and this results in [58]

(∇G)T fo +Gt = 0, (2.1)

where ∇G and Gt are the spatial gradient and partial time derivative of the image intensity,

respectively, T denotes the transpose of a matrix, and fo = [ fx, fy]
T is the optical flow,

with fx and fy being the components in the x and y directions, respectively. fo denotes

the local wind velocity vector in this case. Under the assumption that the optical flow is

constant within a local area and by using a local weighted least-squares technique, (2.1)
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can be solved as [58]
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, (2.2)

where Gx and Gy are the first-order derivative of the image intensity in the x and y

directions, respectively. Here, Gx, Gy, and Gt are calculated using optimized 3D Sobel

operators [58]. In (2.2), ⟨aw⟩ stands for a smoothing operation of an arbitrary image aw,

and is expressed as

⟨aw⟩=
∞∫

−∞

we(⃗γ − γ⃗ ′)awdγ⃗ ′, (2.3)

where γ⃗ ′ = (x′,y′) is the space vector used in the integral, and we is the weighting function

for the local weighted least-squares technique, which determines the size of the local

area and is generally realized by a Gaussian smoothing kernel. Then, the optical flow,

i.e., the local wind velocity vector, may be determined as [58]

fo = A−1
G bG. (2.4)

Note that the local wind velocity vector cannot be determined if AG is not invertible.

Moreover, due to the application of 3D convolution (optimized 3D Sobel operators), the

local wind velocity vector cannot be determined from the first and last images of the

image sequence and the borders of images. Finally, all available estimated local wind

velocity vectors are smoothed, and the mean wind velocity vector is determined as the

mode of the smoothed local wind velocity vectors.

To test the technique, only 1332 data samples from the same dataset collected on the

platform Ekofisk 2/4 k in the North Sea were used [57]. The correlation coefficient and

standard deviation for wind direction measurements were 0.96 and 32.1◦, respectively,

as compared to reference data from in-situ sensors. For wind speed measurements, the
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correlation coefficient and standard deviation were 0.64 and 2.68 m/s, respectively. It

was observed that increasing the number of images involved in the moving average may

improve the results. Although the technique does not require a calibration process, the

accuracy of the results is relatively low compared to other methods. Also, as for the

LGM, a preprocessing step, such as georeferencing, is required for ship-borne radar

applications.

2.1.2 Intensity-Variation-Over-Azimuth Based Techniques

As mentioned earlier, the variation of radar backscatter intensity over azimuth can also be

exploited to retrieve wind direction. Other than the NN, wind speed can also be retrieved

using an explicit model.

2.1.2.1 Curve Fitting (CF)-Based Methods

A. Single-CF

In [15], Lund et al. proposed a single-CF-based method for retrieving both wind direction

and speed. Wind directions are extracted using a harmonic function that is least-squares

fitted to the radar backscatter intensity as a function of azimuth. Wind speeds are

determined from the average radar backscatter intensity using an empirical third-order

polynomial obtained through training.

For HH-polarized X-band radar images collected at grazing incidence, only one

backscatter intensity peak exists in the upwind direction [52]. This is the key for

wind direction estimation. First, radar backscatter intensities are averaged along each

unobstructed azimuthal direction. Then, the average radar backscatter intensity σwDirθ
as

a function of the azimuthal direction θ is least-squares fitted by a cosine square function

σwDirθ
= p0 + p1 · cos2(0.5(θ − p2)), (2.5)
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Fig. 2.2 Basic steps of the single-CF method for wind direction and speed retrieval.

where p0, p1, and p2 are parameters determined through least-squares fitting. Wind

direction is determined as the azimuthal direction corresponding to the peak of the fitted

function. With least-squares fitting, wind directions can be retrieved even if the upwind

direction appears in the obstructed portions of the image.

Wind speeds are retrieved by exploiting the dependence of radar backscatter intensity

on wind speed. The overall average radar backscatter intensity σwSpd of one radar image

is calculated as the integration of the fitted function in (2.5) over the full azimuth. This is

expressed as

σwSpd =
1

2π

2π∫
0

(p0 + p1cos2(0.5(θ − p2)))dθ . (2.6)

The fitted function in (2.5) is used for calculating σwSpd because it automatically fills the

gaps in obstructed image portions. Then, a third-order polynomial relationship between

σwSpd and wind speed is assumed and trained using the wind speed data that are collected

by external sensors such as anemometers. Based on the obtained third order polynomial,

wind speed can be retrieved from σwSpd for each individual radar image. The basic steps

of the single-CF method for wind direction and speed retrieval are illustrated in Fig.2.2.

The datasets used to test the method were collected from the R/V Roger Revelle

travelling in the Philippine Sea near Taiwan island during two storms from August 6
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to August 9 and from September 12 to September 17, 2010, respectively [15]. For

wind speed retrieval, the empirical model function was trained using the data associated

with the first storm and validated with those collected during the second storm. For

the 6282 measurements obtained from the first storm with the reference wind speed

varying from 2 to 17 m/s, the correlation coefficients and root-mean-square (RMS)

differences between the anemometer-measured and radar-derived wind direction were

0.97 and 14.2◦, respectively, and 0.90 and 0.88 m/s, respectively, for wind speed. For

the 11321 measurements from the second storm with the reference wind speed up to 15

m/s, a correlation coefficient of 0.95 and a RMS difference of 17.4◦ for wind direction

were obtained, and those for wind speed retrieval were 0.91 and 0.79 m/s, respectively.

The results show that the CF-based method works well for ship-borne X-band marine

radar data, even if some portions of the radar image are obstructed by ship structures.

Furthermore, only one parameter derived from the radar data is needed to train the model

function, significantly simplifying the wind speed estimation compared to the NN-based

technique.

B. Dual-CF

Under low sea states, the overall image intensities are low, and this may lead to inaccurate

wind estimation when using the CF-based method. Therefore, Liu et al. [17] modified

the original CF-based method [15] with a dual-CF technique to improve wind direction

and speed results under low sea state conditions.

In the dual-CF technique, an initial estimation of wind direction is first obtained by

using the single-CF method. Then, to update the wind direction value, the radar data

within ±60◦ of this estimated wind direction are employed for a second CF process. The

range of ±60◦ is used because it is wide enough to include the actual wind direction and

it is narrow enough to exclude low image intensities due to low sea states. For wind speed

retrieval, negative values of the fitted function derived from the dual-CF technique are
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discarded from the integration in (2.6) for the calculation of the average radar backscatter

intensity σwSpd .

To test the technique, two sets of data [17] were collected by the Canadian Navy

research ship CFAV Quest during a sea trial in the North Atlantic Ocean off the east coast

of Canada while wind speed varied from 2 m/s to 16 m/s. Both the original CF-based

method and the dual CF technique were applied to the two datasets. The first dataset of

49182 radar images was collected from a Decca radar from November 26 to November 29,

2008. After excluding 9924 rain-contaminated images and 1832 low-backscatter images

from the dataset, the standard deviation of wind direction results derived by applying

the dual-CF technique was 14.9◦, which was 0.4◦ less than that of the single-CF method.

The standard deviation of wind speed results derived from the dual-CF technique was 1.4

m/s, which was the same as the single-CF method. The second dataset containing 69088

radar images was collected from a Furuno radar from December 1 to December 4, 2008.

992 rain-contaminated images and 8337 low-backscatter images were excluded from this

dataset. The standard deviations of the wind direction and speed results derived by the

dual-CF technique were 16.6◦ and 1.9 m/s, respectively, with respect to the anemometer

reference, showing an improvement of 0.4◦ and 0.1 m/s, respectively, compared to the

single-CF method.

C. Two-model-CF

In both the single-CF method and dual-CF technique, radar data collected in the presence

of rain were excluded from wind estimation. This is because rain affects the radar

backscatter and leads to less reliable wind estimation. Huang and Gill [59] proposed an

algorithm to improve wind speed extraction from rain-contaminated radar images. Radar

data contaminated by rain are first identified and extracted based on a parameter called

zero-pixel percentage (ZPP). Then, the same third-order polynomial used for rain-free

data in [15] are trained separately for the rain-contaminated data.
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The algorithm was tested using the Decca radar data as described in Section 2.1.2.1-

B [59]. The comparison between in-situ and radar-derived wind speeds using the two-

model algorithm showed a standard deviation of 1.7 m/s, which represents an improve-

ment of 1.2 m/s compared to the results derived by using only one model for both

rain-free and rain-contaminated radar data. However, in spite of the improvement of the

wind speed estimation accuracy under rain conditions, the implementation cost of the

algorithm is compromised by an additional procedure for distinguishing rain-free and

rain-contaminated data and an extra training model.

2.1.2.2 Intensity Level Selection (ILS)-Based Methods

A. Original ILS

Vicen-Bueno et al. [16] proposed an ILS-based method for retrieving wind parameters

from temporally-integrated and spatially-smoothed radar images. Wind direction is

determined by searching for the maximum range for a selected intensity level along the

azimuth, while wind speed is derived from the selected intensity level and its correspond-

ing maximum range by training an empirical third-order polynomial geophysical model

function.

In the first step, radar images are temporally integrated and spatially smoothed to

remove high variabilities in the time and space domains, respectively. Then, a sequence

of intensity levels is defined based on the image intensity range. For every azimuthal

direction of each integrated and smoothed image, the maximum range with an intensity

level equal to or greater than each defined intensity level is identified. Next, for each

defined intensity level, the identified maximum ranges from all azimuthal directions are

smoothed by a moving average over 5◦, and the lowest defined intensity level with all

its associated smoothed maximum ranges being greater than an inner distance boundary

is designated as the selected intensity level. Finally, the wind direction is determined

as the azimuthal direction corresponding to the peak of the smoothed maximum ranges
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associated with the selected intensity level. After applying the above procedures to the

first several integrated and smoothed images, rather than all the defined intensity levels,

only the selected intensity level from the previous image and its upper and lower defined

intensity levels are used for wind retrieval. This makes the algorithm more efficient.

Wind speed wSpd , which is estimated from the selected intensity level and the peak of

smoothed maximum ranges associated with the selected intensity level, can be expressed

as [16]

wSpd = αr × rpmax , (2.7)

with

αr = p3LS
3 + p2LS

2 + p1LS + p0, (2.8)

where rpmax is the peak of smoothed maximum ranges associated with the selected

intensity level LS, αr is the conversion rate between rpmax and wSpd , and p0, p1, p2,

and p3 are the parameters determined by least-squares fitting. For the training process,

wind speed is measured by external sensors such as anemometers. After the training is

completed, wind speed can be estimated from LS and rpmax for each individual integrated

and smoothed radar image.

Datasets used to test this method were collected from the research platform FLIP at

approximately 30 km northwest of Bodega Bay, California, USA, during four periods in

June June 2010 while wind speed varied from 4 m/s to 22 m/s [16]. Data collected in

the first period were used for training and those collected in the other three periods were

used for testing. As compared to reference values from anemometer data, the standard

deviations of wind direction and speed results were 11◦ and 0.6 m/s, respectively, for the

training data, and 14.3◦ and 0.8 m/s, respectively, for the test data.

B. Modified ILS

In the original ILS method, the obstruction of the radar field of view (FOV) and the

appearance of islands may lead to less accurate results. Thus, Liu et al. [17] modified the
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original ILS method in [16] with blockage and island recognitions and an additional CF

process, resulting in more robust wind direction and speed results when blockages or

islands exist in the radar field of view.

First of all, blockages in the radar FOV due to obstruction by ship structures or

other unknown factors are recognized. Blocked azimuthal directions are identified as

those with ZPPs greater than 20%, and data in those directions are excluded from the

ILS. Then, islands in the radar FOV are recognized as intensity bumps in the radar

images. The intensity bump in each azimuthal direction is identified by applying the

MATLAB built-in function, findpeaks. Data in the azimuthal directions in which islands

are identified are also excluded from the ILS. Furthermore, an outer distance boundary is

set for the ILS due to possible noise in the very far range. All smoothed maximum ranges

associated with the selected intensity level should be smaller than the outer distance

boundary. Finally, the harmonic function (2.5) is used to least-squares fit the smoothed

maximum ranges to fill the gaps due to the exclusion of data. The azimuthal direction

corresponding to the peak of the fitted function is determined as the wind direction

and is further utilized for the wind speed determination which follows the original ILS

procedure.

The same datasets as described in Section 2.1.2.1-B were used to test the method [17].

Both the original and modified ILS methods were applied. For the Decca radar data, the

modified ILS method produced wind direction and speed measurements with standard

deviations of 15.9◦ and 1.4 m/s, respectively, which were reduced by 4.9◦ and 0.1 m/s,

respectively, compared to the original ILS method. The standard deviations of wind

direction and speed results derived from the Furuno radar data by the modified ILS

method were 16.3◦ and 1.3 m/s, respectively, with improvements of 4.9◦ and 0.2 m/s,

respectively, over the original ILS method. Moreover, another dataset of 992 radar

images, containing island interference, collected by the Furuno radar on October 29,

2008 were used. No rain-contaminated or low-backscatter images were found in this

dataset. It was observed that the modified ILS method, producing standard deviations of
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11.8◦ and 1.0 m/s for wind direction and speed estimation, respectively, outperformed

the original ILS method by 7◦ and 0.3 m/s, respectively.

C. Texture-analysis

Huang et al. [60] proposed a texture-analysis incorporated (TAI) algorithm for extracting

wind parameters from rain-contaminated radar images. The TAI method first requires the

identification of the rain-contaminated pixels in each azimuthal direction of radar images

based on texture analysis. Then, only the data from the azimuthal directions in which

the rain contamination is negligible are used to extract wind parameters by applying the

modified ILS method.

The texture of a radar image, Tm,n, is generated based on the calculation of intensity

RMS difference as

Tm,n =

√1
9

i=1

∑
i=−1

j=1

∑
j=−1

(Im,n − Im+i,n+ j)
2, (2.9)

where Im,n is the image intensity at range index m and azimuth index n. With the

obtained Tm,n, nθ is defined as the number of pixels with intensities larger than 40 in each

azimuthal direction, which is then moving averaged over 32 points along the azimuthal

direction. After that, a parameter ITex can be determined as

ITex =

⎧⎪⎨⎪⎩ nθ min +5,nθ max −nθ min ≤ 35

nθ min +0.25(nθ max −nθ min),else
, (2.10)

where nθ min and nθ max are the minimum and maximum of the averaged nθ , respectively.

Then, if the number of pixels with intensities larger than ITex is higher than or equal to 20

in one azimuthal direction in the image texture Tm,n, that direction is considered as the

one with negligible rain contamination and is retained. By this means, wave signatures

can be retained in the image texture while rain clutter can be removed.

The Decca radar data as described in Section 2.1.2.1-B were used for the validation of

this method [60]. For rain-contaminated data, the standard deviations of wind direction
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and speed results are 19.9◦ and 2.0 m/s, respectively, by using the TAI method, and 34.4◦

and 3.3 m/s, respectively, without incorporating TAI. For all data, the standard deviations

for wind direction extraction with and without TAI are 16.8◦ and 21.2◦, respectively, and

for wind speed are 1.5 m/s and 1.9 m/s, respectively.

2.1.2.3 Probability Distribution Function

Chen et al. [61] proposed a probability distribution function (PDF)-based method to

retrieve nearshore sea surface wind vectors. With an adjustment for the influence of

land, wind direction is also retrieved based on the azimuthal dependence of radar image

intensity levels. Wind speed is determined from a model based on the PDF of image

intensity levels and significant wave height, HS.

For wind direction retrieval, the average image intensity level σwDirθ
for each az-

imuthal direction θ is first calculated. Then, a sine function is used to least-squares fit the

average image intensity level as a function of azimuthal direction. The result is expressed

as

σwDirθ
= p0 + p1 · sin(θ + p2), (2.11)

where p0, p1, and p2 are parameters determined by the least-squares fitting process.

Then, the azimuthal direction corresponding to the peak of the fitted function, θpeak, is

obtained. However, since the wind direction was affected by two hills in the vicinity of

the experimental site [61], θpeak may not be the wind direction. Thus, an adjustment, ∆θ ,

obtained using the anemometer reference, to determine the wind direction wDir, as given

by

wDir = θpeak +∆θ , (2.12)

is required.

For wind speed retrieval, the expectation σexp of the radar image intensity levels is

calculated from the PDF of those levels. Then, a relationship between wind speed wSpd
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and σexp as well as HS is sought through fitting

wSpd = (p2σexp + p1)[1+ e(−
p0
HS

)
],(p0 > 0), (2.13)

where p0, p1, and p2 are parameters determined by the least-squares fitting process. In

this model, the wind speed changes approximately linearly with σexp under low sea state

conditions, while HS mainly takes into account swell effects under high sea states. After

the model is obtained, wind speed can be retrieved from σexp and HS.

Datasets used to test the method were collected on Haitan Island, China, from

October to December 2010 [61]. The data consisted of 535 radar image sequences and

simultaneous anemometer and buoy measurements, and were divided into 10 groups

based on corresponding wind speed values which ranged from 0 m/s to 20 m/s in

increments of 2 m/s. One third of the data randomly selected from each interval were

used for training the wind speed model, and the remainder were used for validating

the model. An acceptable RMS difference of 26.2◦ for wind direction estimation was

obtained while wind speeds ranged from 5 m/s to 20 m/s. For the data with wind speed

varying from 0 m/s to 20 m/s, the RMS difference of wind speed retrieval results was

1.37 m/s. It was also found from the result that HS should be included in (2.13) under

moderate to high wind conditions.

2.1.3 Spectral-Analysis Based Techniques

2.1.3.1 Background Noise

Izquierdo and Soares [62] presented a method for retrieving wind speed from the back-

ground noise (BGN) of radar image sequences.

An image frequency-wavenumber spectrum is first obtained by applying the 3D

discrete Fourier transform (DFT) to the radar image sequence. Then, spectral compo-

nents corresponding to ocean waves and BGN are separated using the linear dispersion
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relationship for gravity waves. The total spectral energy, FBGNT , of the BGN is used to

estimate wind speed based on the trained linear model

FBGNT = p0 + p1wSpd, (2.14)

where p0 and p1 are parameters determined by a regression fitting.

Datasets used to test the method were collected close to the Port of Sines in Portugal,

from September 2000 to December 2001 with 925 simultaneous records of radar image

sequences and wind speed and direction from the meteorological station [62]. A radar

image was divided into 36 equiangular directional sectors, covering 360◦. The calibration

was implemented for each directional sector. The results showed that wind speeds derived

from the sector along the upwind direction agreed best with the wind speed references,

resulting in a correlation coefficient of 0.89 and a RMS difference of 2.86 m/s with the

reference wind speed ranging from 1 to 10 m/s.

2.1.3.2 1D Spectral Analysis

Most of the aforementioned methods can provide reliable wind measurements only in the

absence of rain. Recently, Wang and Huang [18] found that when the wind speed is high

(over about 8 m/s), obtaining wind direction using the CF-based method in [15] is not

significantly affected by rain. However, the accuracy may substantially decrease if the

radar images are acquired during rain events under low wind speed. Thus, a method to

estimate wind direction based on the 1D spectral analysis (SA) of radar backscatter in the

wavenumber domain is proposed in [18]. Later, Huang and Wang [19] extended the 1D

SA-based method for wind speed estimation from both rain-free and rain-contaminated

radar data.
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In the 1D SA algorithm, a DFT is first applied to the backscatter intensity sequence

in each column of the polar radar image to obtain its wavenumber spectrum as

En(k) = En(
2πk′

M∆r
) =

M

∑
m=1

In(m)e− j 2π

M k′m, (2.15)

where M is the number of image pixels in each column, In(m) is the mth pixel intensity

in the nth column (azimuthal direction of 2π(n−1)
N , N being the number of columns in a

polar radar image), |En(k)| is the spectral value of wavenumber k in the nth column, k′ is

the wavenumber bin and ranges from 0 to M/2, and ∆r is the image range resolution.

For rain-free and high-wind-speed rain-contaminated cases, the spectral value at zero

wavenumber as a function of column n, |En(0)|, is least-squares fitted to a harmonic

function as

|En(0)|= p0 + p1cos2(0.5(
2π(n−1)

N
− p2)). (2.16)

Here, p0, p1, and p2 are parameters determined by the least-squares fitting. Wind

direction is determined as the azimuth corresponding to the peak of the fitted function.

In low-wind-speed, rain-contaminated cases, an integral of spectral values over the

wavenumber range [0.01, 0.2] is calculated for each column as

Sn =

0.2∫
0.01

|En(k)|dk. (2.17)

Then, Sn is least-squares fitted to the harmonic function in (2.16) as

Sn = p0 + p1cos2(0.5(
2π(n−1)

N
− p2)). (2.18)

Wind direction is determined as the azimuth corresponding to the peak of the fitted

function.
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In wind speed retrieval, for both rain-free and rain-contaminated radar images, the

spectral integration is calculated for each image as

ST =
1

MN

N

∑
n=1

M/2

∑
k′=0

|En(
2πk′

M∆r
)|. (2.19)

Then, a logarithmic relationship between ST and wind speed wSpd is sought through

curve-fitting

ST = p0 + p1 · ln(wSpd + p2), (2.20)

where p0, p1 and p2 are parameters determined from the curve-fitting process. After the

parameters are determined based on (2.20), wind speed can be estimated from ST for any

radar data.

The Decca radar data as described in Section 2.1.2.1-B were used to test the method [18,

19]. Both the original CF and 1D SA methods were applied. The low-backscatter images

were excluded for the wind direction retrieval but retained for the wind speed retrieval.

For wind direction estimation, the standard deviations between radar and anemometer

measurements for the original CF and 1D SA methods are 46.7◦ and 21.6◦, respectively,

under rain conditions, and 20.3◦ and 15.8◦, respectively, for all data. For wind speed

estimation, the RMS differences for the original CF and 1D SA methods are 7.5 m/s and

1.6 m/s, respectively, for rain cases, and 1.5 m/s and 1.6 m/s, respectively, for rain-free

data. For all data, the correlation coefficients are 0.79 and 0.89, respectively, for the

original CF and 1D SA methods. The results indicate that the 1D SA wind algorithm

is applicable to both rain-free and rain-contaminated radar data. Moreover, the method

significantly improves wind measurements under rain conditions. However, the wind

direction result may not be accurate if the upwind direction is contaminated by rain, and

the wind speed result is not always robust when the wind speed is high.
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2.1.4 Summary

The inter-comparison of the reviewed techniques for wind measurements is listed in

Table2.1with the applicability, or otherwise, of a particular method being indicated

by
√

or ×, respectively. It can be observed from the table that ship motion has a

significant effect on the LGM and OFM; the original ILS and BGN methods may not

be applicable if portions of the radar images are blocked; the two-model-CF, texture-

analysis-incorporated, and 1D spectral analysis algorithms work well under rain effects;

and the OFM is calibration-free for wind speed retrieval.

2.2 Wave Measurements

Wave information can be extracted from X-band marine radar sea surface images due to

the visibility of ocean waves in the radar images. Algorithms for such wave measurements

are usually based on a wavenumber-frequency spectral analysis of the radar image time

series using a 3D discrete Fourier transform (DFT) [9]. Recently, a variety of algorithms

for wave measurements using X-band marine radar have appeared. These algorithms can

be categorized as spectral-analysis-based and texture-analysis-based.

2.2.1 Spectral-Analysis Based Techniques

For wave algorithms based on spectral analysis, wave spectra are first obtained from

series of radar images. Then, wave parameters are derived from the obtained wave

spectra.

2.2.1.1 3D-DFT-Based Algorithms

A. Traditional algorithm

The traditional 3D-DFT-based algorithm is a relatively mature technique, which has also

been implemented in the commercial wave monitoring system WaMoS II [2,39].
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In this technique, rectangular sub-image sequences are first extracted from the time

series of consecutive radar images. Then, in order to eliminate the static patterns due to

the range dependence of the radar backscatter, image normalization is implemented on

the sub-image sequence by subtracting the mean intensity of each pixel in the time series

from its actual intensity. After that, the so-called image spectrum F(3)
I (⃗k,ω), where k⃗

is the wavenumber vector and ω is the angular frequency, is obtained by applying a 3D

DFT to the normalized sub-image time sequence. To remove the non-stationary and

non-homogeneous trends in the sub-image time series, the image spectrum is high-pass

filtered with an empirical angular frequency threshold of ωth = 0.03 · 2π rad/s. The

velocity of encounter current, which is the combined velocity of the ship and surface

current, is determined from the high-pass filtered image spectrum using appropriate

methods (see, e.g., [20–23]). The wave-related image spectrum F(3)
F (⃗k,ω) is separated

from noise using a band-pass filter defined by the dispersion relationship, including the

current-induced Doppler shift [11]. Due to the non-linearity caused by the radar imaging

mechanisms, a further correction for converting the wave-related image spectrum to the

actual wave spectrum F(3)
W (⃗k,ω) is performed by a modulation transfer function (MTF)

TM (⃗k) as [10]

F(3)
W (⃗k,ω) = F(3)

F (⃗k,ω) ·TM (⃗k). (2.21)

With the obtained 3D wave spectrum F(3)
W (⃗k,ω), the 2D wavenumber wave spectrum

F(2)
W (⃗k), 2D frequency-directional wave spectrum E(2)(ω,φ), and 1D frequency wave

spectrum S(ω) can be derived as [11,39]

F(2)
W (⃗k) = 2

∫
ω>0

F(3)
W (⃗k,ω)dω, (2.22)

E(2)(ω,φ) = F(2)
W (⃗k(ω,φ))

⏐⏐⏐⃗k⏐⏐⏐ d
⏐⏐⏐⃗k⏐⏐⏐

dω
, (2.23)
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Fig. 2.3 Basic steps of the traditional 3D-DFT based algorithm.

S(ω) =

π∫
−π

E(2)(ω,φ)dθ . (2.24)

Then, wave parameters such as wave direction and periods can be deduced from the wave

spectra [37, 38]. The basic steps of the traditional 3D-DFT-based algorithm are shown in

Fig.2.3.

However, since the radar image intensities are not related to sea surface elevations,

but to the strength of radar backscatter signals, the wave spectra obtained as above

represent relative values which are not properly scaled. Therefore, wave height cannot

be directly determined from the radar-derived wave spectra. For estimating wave height,

a widely accepted approach is based on a technique originally developed for synthetic

aperture radars (SAR) applications [46], in which HS is assumed to be proportional to

the square root of the signal-to-noise ratio (SNR) [24]. The signal is assumed as the total

energy of the estimated wave spectrum and the noise is computed as the energy due to

the speckle caused by the sea surface roughness.
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Assuming that the background noise (BGN) is a stochastic process and uncorrelated

with wave field components in the image spectrum, the 3D BGN spectrum F(3)
BGN (⃗k,ω)

can be obtained as

F(3)
BGN (⃗k,ω)≃ F(3)

I (⃗k,ω)−F(3)
F (⃗k,ω)−F(3)

H (⃗k,ω), (2.25)

where F(3)
H (⃗k,ω) is the high harmonic spectrum, which is induced by non-linear radar

imaging mechanisms such as shadowing and is extracted in a similar way to the wave-

related spectrum but using the high harmonic dispersion relation. Having obtained the

wave and BGN spectra, the SNR used in the linear model for the wave height estimation

can be calculated as

SNR =

∫
Ωα

k⃗
F(2)

W (⃗k)d2k∫
ΩBGN

F(3)
BGN (⃗k,ω)d2kdω

. (2.26)

The integration domains ΩBGN and Ωα

k⃗
in (2.26) are respectively given by

ΩBGN ≡ [−kxc ,kxc)× [−kyc ,kyc)× [ωth,ωc) (2.27)

Ω
α

k⃗
≡ {⃗k ∈ Ω⃗k|F

(2)
W (⃗k)≥ α ·max[F(2)

W (⃗k)];0 ≤ α ≤ 1}, (2.28)

where kxc , kyc , and ωc are the Nyquist wavenumber and frequency limits, respectively,

within which the image spectrum is defined. The threshold α is used to eliminate the

BGN contribution within the pass band in the wave component extraction. Finally, HS

can be derived using the linear model,

HS = p0 + p1
√

SNR, (2.29)

where p0 and p1 are the calibration parameters which are determined by fitting the square

root of the SNR and buoy-measured wave heights. These parameters may differ for
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different systems. After the linear model is obtained, HS can be derived from the SNR

for each radar image sequence.

The SNR-based method has been tested with various datasets by many researchers [2,

24, 37–39, 47, 48]. The datasets collected from the Floating Production and Storage

Offshore (FPSO) platform, Norne, in the northern North Sea from November 1997 to

January 1998 [24, 39, 48] showed that the correlation coefficient between HS measured

by buoy and radar was 0.89, and the root-mean-square (RMS) difference was 0.38 m

with the buoy-measured HS ranging from 0.5 to 5.5 m. The correlation coefficient for

the datasets collected from the FPSO Curlew in the central North Sea from May to

June 1998 and from the Gulf of Biscay from February to April 1998 were 0.85 and

0.71, respectively [48]. The difference of buoy and radar positions mainly accounted for

the low correlation of 0.71 due to a significant change of bathymetry. For the datasets

acquired from the northern coast of Spain from 28 February to 23 April 2000 [37], the

correlation coefficient between the 312 pairs of the square root of SNR derived from

radar images and HS measured by buoy was 0.83. Another two datasets were used to test

the method using HH- and VV-polarized radars in [38]. The first dataset collected from

Zhangzi Island, China, from February to April 2009 was used for calibration, and the

second dataset used for validation was collected from Zhangzi Island during January,

2009 and from the South China Sea on 26 June 2009. The correlation coefficients for the

calibration dataset were 0.74 and 0.86 for the HH- and VV-polarized radars, respectively,

and the corresponding values for the validation dataset were 0.71 and 0.85, respectively.

This indicated that the VV-polarized radar was more suitable for the HS estimation.

Although this SNR-based method for HS estimation has been successfully applied to

such stationary radar systems, it was found in [49, 50] that it may be challenging to

achieve a comprehensive calibration for radar operations on moving vessels on the open

sea.

Later, in [63], the dependency of wave parameter retrieval on range and azimuth

was analyzed and removed. This enabled robust wave parameter measurements in the
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case where the radar field of view (FOV) is partially obstructed. By retrieving the SNR,

peak wave period, and peak wave direction from sub-image time series azimuthal-evenly

distributed in the radar FOV, it was found that the SNR shows a higher peak in the

upwave direction and a lower peak in the downwave direction, and both the peak wave

periods and directions derived from different azimuths display a period of 180◦. Thus, for

the HS estimation, the SNRs derived from the azimuthal-evenly distributed sub-images in

the unobstructed radar FOV are least-squares fitted to a Fourier series. Then, the higher

peak (upwave direction) or the lower peak (downwave direction) of the fitted curve is

used to estimate HS. The peak wave period and direction are estimated as the average

of those derived from the azimuthal-evenly-distributed sub-images covering 180◦ in the

unobstructed radar FOV.

B. Multilayer perceptrons

A limitation of the standard SNR-based method for HS estimation is that local wind

speed should be higher than a threshold to produce sufficient sea surface roughness and

radar backscatter. Under low wind speeds or swell-dominated sea state conditions, the

BGN energy may be low, leading to large SNR and, therefore, overestimated HS. To

mitigate this, Vicen-Bueno et al. [64] proposed a non-linear model using artificial neural

networks (ANN) with multilayer perceptrons (MLP). In addition to the square root of

the SNR, peak wavelength and mean wave period are also used as input parameters. One

hidden layer with 15 hidden neurons is selected for the MLP.

The technique was tested using two datasets [64]. One dataset with 49096 measure-

ments and manifesting bimodal sea states (wind sea and swell) was collected at Ekofisk

in the Norwegian sector of the North Sea from October 2008 to May 2009. Another

dataset containing 67684 measurements, with a swell-dominated sea state, was collected

at FINO 1 in the German basin of the North Sea from April 2005 to August 2008. Both

the standard SNR- and MPL-based methods were applied to the two datasets. For the

testing data of 19096 measurements at Ekofisk, as compared to the reference HS of 0.5
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to 8 m measured by buoy, the correlation coefficient and the standard deviation of HS

derived by the MLP-based method were 0.97 and 0.22 m, respectively, which were 0.02

and 0.05 m, respectively, higher than those of the standard SNR-based method. For

the testing data involving 20144 measurements at FINO 1 with the buoy-measured HS

up to 10 m, the MLP-based method produced a correlation coefficient of 0.96 and a

RMS difference of 0.27 m, with improvements of 0.07 and 0.17 m, respectively, over

the MLP-based method. A more significant improvement was observed for the dataset

collected at FINO 1 since this location was dominated by swell.

C. Iterative least-squares

Huang et al. [65] presented an iterative least-squares (LS)-based method for wave

measurements, which is based on the iterative LS methods for ocean surface current

determination from X-band marine radar images [20, 66]. This method, which does not

require a band-pass filter as in the traditional 3D-DFT-based algorithm, simplifies the

wave measurement.

After applying the 3D DFT to the radar image series and high-pass filtering the

image spectrum, the ocean surface current has to be determined. An initial guess of the

surface current is first derived using a basic LS method as in [9]. Then, a lower threshold

than that in [9] is used to obtain spectral points that may correspond to the fundamental

and harmonic modes of the linear wave dispersion relationship. The current-induced

Doppler-shifted dispersion relationship at the pth harmonic mode is expressed as

ωp(⃗k) = (p+1)

√ g
⏐⏐⏐⃗k⏐⏐⏐

p+1
+ k⃗ ·U⃗ , (2.30)

where g is the acceleration due to gravity, and U⃗ is the surface current vector. In each

iteration, ωp(⃗k) is calculated using the surface current vector derived from the previous

iteration or the initial guess. Due to the aliasing effect, ωp(⃗k) located in the qth frequency
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interval is folded to ωp,q(⃗k) through mapping according to the properties of periodicity

and point symmetry about the origin. The obtained spectral points that satisfy

min
p,q

(
⏐⏐⏐ωi −ωp,q(⃗k)

⏐⏐⏐)< ∆ω, (2.31)

where ωi is the angular frequency in the ith angular frequency panel of the 3D image

spectrum and ∆ω is the angular frequency resolution, are used to estimate a new surface

current vector by the LS fitting as in [20]. The iteration is repeated until the termination

criterion defined in [66] is met. When the final surface current is determined, since the

spectral points used in the iterations have been automatically classified as the fundamental

and different harmonic modes of the dispersion relationship, the band-pass filter in the

traditional 3D-DFT-based algorithm is not required. Here, the spectral points associated

with the fundamental mode (p=0) and the first harmonic mode (p=1) are extracted for

the wave measurement. Then, after applying an MTF, wave spectra and related wave

parameters can be derived.

The iterative LS-based wave measurement method was tested using both vertically-

and horizontally-polarized X-band radar data [65]. Both the traditional 3D-DFT-based

algorithm and the iterative LS-based method were applied to the data. The vertically-

polarized land-based radar data were acquired at Skerries Bight near St. John’s Harbour

on the east coast of Canada on December 15 and 20, 2010. The results showed that

compared to the buoy reference, the RMS differences of the peak wave periods and peak

wave directions derived using both techniques were less than 1 s and 10◦, respectively.

The horizontally-polarized ship-borne radar data were acquired about 220 km Southeast

of Halifax from 14:16 on November 28 to 12:06 on November 29, 2008, with peak

wave period ranging from 10 s to 12 s and peak wave direction being around 110◦.

The RMS differences for the peak wave periods derived from the traditional algorithm

and the iterative LS-based method were 0.87 s and 0.98 s, respectively. For the peak

wave directions, the corresponding values were 6.4◦ and 7.3◦, respectively. The results
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derived from the iterative LS-based method were similar to those from the traditional

3D-DFT-based algorithm, again indicating the capability of the method.

D. New MTFs

In the traditional 3D-DFT-based algorithm, due to radar imaging mechanisms such as tilt

modulation and shadowing, a linear MTF with a constant exponent is usually required for

wave spectrum correction [10]. Such an MTF is developed using an HH-polarized radar

under deep water conditions, where the wave field can be safely assumed as stationary

and homogeneous without severe interactions of wind sea and swell, and the variation of

the exponent β0 in

TM(
⏐⏐⏐⃗k⏐⏐⏐) = ⏐⏐⏐⃗k⏐⏐⏐β0

(2.32)

due to range and azimuth can be neglected. However, under shallow water conditions

such as may occur in near-shore regions, the linear MTF with a constant exponent may

not work well due to the heterogeneity of the wave field. Therefore, Chen et al. [67]

proposed a new quadratic polynomial MTF for near-shore regions using a VV-polarized

radar. The MTF is fitted by a quadratic polynomial as

log(
⏐⏐⏐TM(

⏐⏐⏐⃗k⏐⏐⏐)⏐⏐⏐) = p2log2(
⏐⏐⏐⃗k⏐⏐⏐)+ p1 log(

⏐⏐⏐⃗k⏐⏐⏐)+ p0, (2.33)

where p0, p1, and p2 are coefficients determined by least-squares fitting. Later, Qiu et

al. [68] proposed another MTF with the same linear model as in [10], but considering the

dependence of the exponent on range and azimuth. The range-and-azimuth-dependent

variable exponent of the MTF, βv, is given by

βv = p2ra
p1 sinθv + p0, (2.34)

where ra is the range, and θv the angle between the radar look direction and peak wave

direction.
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The methods incorporating the new MTFs were tested using datasets collected on

Haitan Island, China, from December 22, 2012 to January 6, 2013 and from January

12 to 18, 2013. Peak and mean wave periods were derived using both of the new

MTFs and the traditional constant-exponent linear MTF. The comparison between the

quadratic polynomial MTF and the linear MTF with an exponent of -0.55 involved 520

measurements [67]. Compared to the buoy measurements, the RMS difference of peak

wave periods derived using the quadratic polynomial MTF was 0.88 s, which was similar

to that of 0.74 s derived with a constant-exponent linear MTF. The RMS difference

of mean wave periods derived using the quadratic polynomial MTF was 0.53 s, which

was 0.50 s better than that using the constant-exponent linear MTF. For the comparison

between the variable-exponent linear MTF and the linear MTF with an exponent of -1.2,

only the data with HS higher than 2 m were used [68]. During the test, the buoy-measured

peak and mean wave periods varied from 7 s to 11 s and from 6.5 s to 9 s, respectively.

The RMS differences of the peak and mean wave periods for the variable-exponent linear

MTF were 0.95 s and 0.48 s, respectively, which were improved by 2.24 s and 2.21

s, respectively, over the constant-exponent linear MTF. The results indicated that the

new MTFs may be more suitable for near-shore regions where the ocean wave field is

heterogeneous.

E. Adaptive recursive positioning

In the traditional 3D-DFT-based algorithm for wave measurements, since radar backscat-

ter is dependent on the azimuthal direction, sub-image sequences located in different

azimuthal directions may lead to different wave measurement results. This problem has

been mitigated by averaging wave spectra derived from several sub-image time series

evenly distributed in azimuth in the radar FOV [69]. Recently, Al-Habashneh et al. [70]

proposed an adaptive recursive positioning method (ARPM) to further improve wave

measurements, especially under bimodal sea states (wind wave and swell).
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In the first step, an initial directional wave spectrum is derived using three sub-image

time series evenly distributed in azimuth in the radar FOV as in the traditional algorithm.

Then, azimuthal directions of spectral peaks can be determined from the directional

wave spectrum. In the next iteration, sub-image time series located in those azimuthal

directions determined from the previous iteration are used to derive a new directional

wave spectrum. Final wave spectra and related wave parameters are determined after

three iterations.

The ARPM in [70]was tested using datasets collected from ship-borne Decca and

Furuno X-band marine radars near Halifax, Nova Scotia, off East Coast of Canada,

on November 27, November 29, December 1, and December 3, 2008. The perfor-

mance was validated by calculating correlation coefficients between radar-derived and

buoy-measured wave spectra on a discrete frequency grid. Compared to the traditional

3D-DFT-based algorithm, the ARPM produced an improvement of 9.8% in the averaged

correlation coefficient. The accuracies for wave period and peak wave direction esti-

mations were also enhanced by 15% to 30% and 6◦, respectively. Although, due to the

iterations, additional computational time is needed for the ARPM, real-time applications

can still be realized. A limitation of the ARPM is that its best performance requires a

full radar FOV. If the radar FOV is partially obstructed, it may not improve the wave

measurement over the traditional 3D-DFT-based algorithm.

F. Geometrics-based SNR estimation

The standard SNR-based HS estimation requires the surface current velocity to be de-

termined in order to separate the wave components from the noise in the image spec-

trum [24]. However, possible inaccuracies in the determination of surface current may

lead to erroneous SNR, thus affecting the HS estimation. Wang et al. [71] proposed

an algorithm to derive the SNR based on the geometrics of the linear wave dispersion

relationship, which does not require the surface current determination.
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A 3D image spectrum is first obtained by the application of a 3D DFT to a sub-

image time series. With the assumption of deep water condition, two arbitrary points

located on the linear dispersion curve in an ω − k plane, (k⃗1,ω1) = (k1x,k1y,ω1) and

(k⃗2,ω2) = (k2x,k2y,ω2), satisfy

⎧⎪⎪⎨⎪⎪⎩
ω1 =

√
g
⏐⏐⏐k⃗1

⏐⏐⏐+ k1xux + k1yuy

ω2 =

√
g
⏐⏐⏐k⃗2

⏐⏐⏐+ k2xux + k2yuy

, (2.35)

where U⃗ = (ux,uy) is the surface current vector. Based on the geometric relationship, a

parameter αk can be defined as

αk =
k1x

k2x
=

k1y

k2y
=

⏐⏐⏐k⃗1

⏐⏐⏐⏐⏐⏐k⃗2

⏐⏐⏐ , (2.36)

and (2.35) and (2.36) lead to

ω2 =
1

αk
(ω1 − (1−

√
αk)

√
g
⏐⏐⏐k⃗1

⏐⏐⏐). (2.37)

Then, for any given point (k⃗1,ω1), a set of curves can be obtained as

ω =

⏐⏐⏐⃗k⏐⏐⏐⏐⏐⏐k⃗1

⏐⏐⏐(ω1 − (1−

√
⏐⏐⏐k⃗1

⏐⏐⏐⏐⏐⏐⃗k⏐⏐⏐ )
√

g
⏐⏐⏐k⃗1

⏐⏐⏐). (2.38)

An example of these curves can be found in [72]. Of all the curves in each ω − k plane,

those satisfying

Mc

∑
i=1

Gc(mci,nc j)≥ 0.5max{
Mc

∑
i=1

Gc(mci,nc( j−1)),
Mc

∑
i=1

Gc(mci,nc( j+1))} (2.39)
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are first extracted. Gc(mc,nc) is the mcth spectral value on the ncth curve, which is

obtained using the nearest-neighbour interpolation. Then, the extracted curves satisfying

nc j ≤

⏐⏐⏐⏐⏐ 1
Nc

Nc

∑
i=1

nci −4

⏐⏐⏐⏐⏐ , (2.40)

where Nc is the total number of the curves extracted using (2.39), are determined to

be associated with the dispersion relationship. Other curves are associated with noise.

Therefore, the signal and noise can be separated for each ω − k plane, and the SNR can

be derived for the HS estimation.

The geometrics-based SNR estimation algorithm was tested with datasets collected at

Zhoushan City, Zhejiang Province, China, from January 6 to 12, 2014, with HS varying

from 0.5 m to 2 m [71]. Both the geometrics-based algorithm and standard SNR-based

method were applied to the datasets. As compared to the buoy reference, the correlation

coefficient and the RMS difference of the retrieved HS using the geometrics-based

algorithm were 0.89 and 0.19 m, respectively, which were improved by 0.06 and 0.03 m,

respectively, over the standard SNR-based method.

2.2.1.2 2D Continuous Wavelet Transform-Based Algorithms

A. Original algorithm

For wave extraction using the 3D-DFT-based algorithms mentioned above, the homo-

geneity within the observed area is assumed. Such an assumption is safe under deep

water conditions without severe interactions of wind sea and swell. However, in coastal

areas with shallow water, heterogeneities may exist because of the varying topogra-

phy. Therefore, Chuang et al. [73] and Wu et al. [74] applied a 2D continuous wavelet

transform (CWT) to X-band marine radar images to obtain ocean wave spectra.
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The 2D CWT of an image s(⃗γ), where γ⃗ = (x,y) represents the coordinates in the

image, may be expressed as [75]

W (⃗b,ϕ,a) =C−1/2
Ψ

a−1
∫
R2

Ψ
∗(a−1r−ϕ (⃗γ − b⃗))s(⃗γ)d2⃗

γ, (2.41)

where CΨ is a constant denoting that the mother wavelet function Ψ satisfies the admissi-

bility condition, b⃗ = (bx,by) the translation parameter, a the dilation parameter, and r−ϕ

the rotation matrix, which is defined as

r−ϕ =

⎛⎜⎝ cosϕ sinϕ

−sinϕ cosϕ

⎞⎟⎠ . (2.42)

In [74], the Morlet wavelet is selected as the mother wavelet function because of its

directionality. By simplifying the Morlet wavelet with the peak wavenumber in the

non-dimensional Fourier space at k⃗0 = (k0x ,k0y) = (6,0) and the anisotropy matrix of

diag[1,1], its Fourier transform is given by

Ψ̂(⃗knon) = e−0.5|⃗knon−k⃗0|2 , (2.43)

where k⃗non is the wavenumber in the non-dimensional Fourier space. For the application

to the digital X-band marine radar image, the 2D CWT in (2.41) may be expressed in

discrete form as

W (bxu ,byv ,ϕm,an) =C−0.5
Ψ

a−1
n

Nx

∑
p=1

Ny

∑
q=1

Ψ
∗[a−1

n r−ϕm(xp −bxu ,yq −byv)] · s(xp,yq)∆x∆y,

(2.44)

where bxu , byv , ϕm, and an are the discrete forms of bx, by, ϕ , and a, respectively, Nx and

Ny are the total pixel numbers in x and y directions, respectively, and ∆x and ∆y are the

image resolutions in x and y directions, respectively. To reduce the computation time, the
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CWT can be calculated in the Fourier space, resulting in

W (bxu ,byv ,ϕm,an) =

C−0.5
Ψ

an
Nx
∑

p=1

Ny

∑
q=1

ei(bxu k′xp+byvk′yq) · Ψ̂∗[anr−ϕm(k
′
xp ,k

′
yq)]ŝ(k

′
xp ,k

′
yq) ·∆k′x∆k′y,

(2.45)

where ŝ is the Fourier transform of s, k⃗′ = (k′x,k′y) is the wavenumber in the dimensional

Fourier space, and ∆k′x and ∆k′y are the wavenumber resolutions in the dimensional

Fourier domain. If the sampling resolution is ∆x and the total sampling number is

NS in the space domain, and the total length of the Morlet wavelet function in the

non-dimensional space is 2DM, after dilation with an and rotation with r−ϕm , the peak

wavenumber in the dimensional Fourier space can be calculated as

k⃗′ =
−→
k0

(anr−ϕm)
· 2DM

NS∆x
. (2.46)

With (2.46), W (bxu ,byv ,ϕm,an) can be transformed to W (bxu ,byv , k⃗′). Therefore, the

local wavenumber spectrum at position (bxu ,byv) is W (⃗k′).

X-band radar images used to verify the 2D-CWT based algorithm were collected

in the southern part of Taiwan [74]. The directional wave spectra derived by the 2D-

CWT based algorithm showed local ocean wave features at different locations of radar

images. Furthermore, compared to the Fourier transform, the normalized 1D wavenumber

spectrum derived using the 2D-CWT based algorithm agreed better with that measured

by an in-situ buoy.

B. Self-adaptive 2D-CWT

In the original 2D-CWT based algorithm, the effect of ocean wave conditions on the

selection of wavelet parameters is not considered. It is shown in [76] that the dilation

parameter may affect wave extraction, and a look-up table is constructed for selecting

the dilation parameter values according to different wave conditions. However, the wave
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data collected by external sensors are used to make such a table. Later, An et al. [27]

proposed a self-adaptive 2D-CWT-based algorithm for wave extraction by selecting the

dilation parameter adaptively.

In Section 2.2.1.2-A, since k⃗0 = (k0x ,k0y) = (6,0), with ϕm = 0◦, it can be obtained

from (2.46) that

k′x =
2DMk0x

anNS∆x
. (2.47)

Assuming that the minimum value of k′x is given by

k′xmin
= β∆k′x, (2.48)

the maximum value of an is regulated by a calibration parameter β through

amax =
2DMk0x

NS∆xβ∆k′x
. (2.49)

A look-up table for determining β with different mean wave periods T01 is provided

in [76]. The values of β in the table are based on an image resolution ∆x of 10.5 m

and a sub-image length Nx of 128. For a different image resolution ∆xn and a different

sub-image length Nxn , βn may be modified as

βn = β
Nxn∆xn

Nx∆x
. (2.50)

In the algorithm for selecting appropriate β , a sub-image is first selected and normalized.

Then, an image spectrum is obtained by applying the 2D CWT with an initial value of

β (e.g., 1.4 for ∆x = 10.5 and Nx = 128). Next, the 1D frequency wave spectrum E( f )

and the mean wave period T01 are derived. If any peak above a threshold exists at the left

side of the major peak of E( f ), it is regarded as a false peak. If a false peak exists, the

value of β is increased by ∆β and the 2D CWT is applied to the normalized sub-image

again. If no false peak exists, the calculated T01 is compared with that in the look-up
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table for the corresponding β . If the difference between the two periods is larger than

a threshold ξ (if T01 < 10 s, ξ = 0.5; otherwise, ξ = 1), the value of β is increased by

∆β and the 2D CWT is applied to the normalized sub-image again. If the difference is

not larger than ξ , β is selected as the appropriate value for the wave extraction using the

2D-CWT-based algorithm.

Both the traditional 3D-DFT-based and self-adaptive 2D-CWT-based algorithms were

applied to the datasets that are described in Section 2.2.1.1-C [27]. The results from

both the land-based and ship-borne radar data showed that the wave spectra and wave

parameters derived using both algorithms agreed well with buoy records. Furthermore,

for the ship-borne radar data, taking the buoy data as ground truth, the RMS differences

of HS, mean wave period, and wave direction derived from the traditional 3D-DFT-based

and self-adaptive 2D-CWT-based algorithms were 0.53 m and 0.61 m, 1.91 s and 1.51

s, and 22.96◦ and 24.18◦, respectively. During this experiment, the buoy-measured HS,

mean wave period, and wave direction were about 2 m to 3.5 m, 7 s to 10 s, and 100◦ to

120◦, respectively. Although the results indicated the applicability of the self-adaptive

2D-CWT-based algorithm, some limitations of the algorithm still exist. Firstly, the

computational cost of the algorithm is expensive. Secondly, the effect of surface current

is not considered. Thirdly, the directional ambiguity cannot be eliminated by the 2D

CWT analysis of a single radar image.

2.2.1.3 Array Beamforming Algorithm

Ma et al. [77] proposed an array beamforming algorithm to extract the directional wave

spectrum and related wave parameters from X-band radar image time series. Beamform-

ing is a technique that extracts the signal arriving from a desired direction through con-

structive interference and suppresses other signals through destructive interference [78].

In this algorithm, image pixels are considered as elements in an antenna array, and image

pixel intensities are considered as signals received by the elements. The advantages

44



of this algorithm are that no coordinate transformation and MTF are required, and the

effects of shadowing modulation and moving vessels in the image can be suppressed.

A signal received at the reference element of an antenna array and at time t with

angular frequency ω , arriving direction φ , and amplitude uω,φ can be expressed as

sω,φ (t) = uω,φ e jωt . (2.51)

For the ith antenna in the antenna array, the received signal may be

sω,φ (t − τω,φ ,i) = uω,φ e jω(t−τω,φ ,i) = sω,φ (t)e− jωτω,φ ,i , (2.52)

where τω,φ ,i is the time delay of the received signal between the ith antenna and the

reference antenna. Assuming that Xω(t) is an A×1 array, representing the signals with

different directions received by an antenna array of A antennas, the beamforming result

for direction φ may be expressed as

yω,φ (t) = aH
ω,φ Xω(t)≈ Asω,φ (t), (2.53)

where H is the conjugate transpose operator, and aω,φ is the steering vector, which is

given by

aω,φ =
[
e− jωτω,φ ,1 ,e− jωτω,φ ,2 , ...,e− jωτω,φ ,A

]T
, (2.54)

Then, the expectation of the signal power may be estimated as

Pω,φ = E
[⏐⏐yω,φ (t)

⏐⏐2]≈ A2u2
ω,φ . (2.55)

For X-band radar sea surface imaging, sω,φ (t) may represent the sea surface waves, and

Xω(t) may represent the complex image pixel intensities. A circular antenna array is

selected for this algorithm, and by considering the radar image pixel as the antenna, an
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approximate circular array is constructed by the pixels located within a circle. Xω(t) can

be obtained by applying an all-phase fast Fourier transform (ApFFT), which significantly

improves the phase spectrum accuracy [79] to image intensity time series at each pixel.

τω,φ ,i can be obtained by

τω,φ ,i =
k⃗(ω,φ) · d⃗i

ω
, (2.56)

where d⃗i is the space vector from the reference pixel Q0 to the ith pixel Qi with ⃗Q0Qi = d⃗i,

and k⃗(ω,φ) is the wavenumber vector derived using the dispersion relationship with

current effects. Current may be retrieved by seeking the maximum total power, which is

PT = ∑
ω

∑
φ

E(2)(ω,φ)∆ω∆φ , (2.57)

where E(2)(ω,φ) is the directional wave spectrum calculated as

E(2)(ω,φ) =
u2

ω,φ

2∆ω∆φ
, (2.58)

and ∆ω and ∆φ are the angular frequency and direction resolutions, respectively. It is

found that, as a function of current speed and direction, PT reaches a maximum on the

actual current speed and direction. Therefore, for the current estimation, the current

speed-direction grids are first divided into sub-blocks. PT on the center of each sub-

block is calculated, and the maximum PT is identified. Then, for the sub-block with

the maximum PT , the division and calculation are repeated until the final maximum

PT is obtained, and the current velocity associated with the final maximum PT is taken

to be the actual current velocity. Then, wave parameters such as wave directions and

periods can be derived from the wave spectrum. HS is estimated based on the SNR

using (2.29), where the signal energy can be calculated from E(2)(ω,φ), and the noise

energy is estimated as the subtraction of the signal energy from the total energy, which is

derived from the mean of the power spectrum at each pixel. Fig.2.4illustrates the basic

steps of the array beamforming algorithm.
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Fig. 2.4 Basic steps of the array beamforming algorithm.

An experiment was conducted in Zhoushan, China, on January 8, 9, 10, and 12,

2014 [77]. During the experiment, buoy-measured HS, mean wave period, and peak wave

direction ranged from 0.5 m to 2 m, 4 s to 7 s, and 50◦ to 250◦, respectively. For 45

buoy-radar comparison pairs, the correlation coefficient and RMS difference of the mean

wave period, peak wave direction, and HS are 0.95 and 0.28 s, 0.9 and 15.14◦, and 0.95

and 0.12 m, respectively. Moreover, the wave spectrum derived by the array beamforming

algorithm is similar to that derived by the traditional DFT-based method with an MTF.

The novel array beamforming algorithm utilizes the beamforming technique based on

individual image pixels, suppressing the effects of shadowing modulation and moving

vessels in the images. The coordinate transformation and MTF can also be avoided. In

the future, the validation of the algorithm for ship-borne radar applications with higher

encounter current speed and for heterogeneous wave fields may be required.
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2.2.2 Texture-Analysis Based Techniques

Another class of algorithms for wave measurements is based on the texture analysis of

radar sea surface images. Wave parameters, such as HS, are derived directly from the

image texture without the estimation of wave spectra.

2.2.2.1 Illumination Probability

A model that relates HS to the crest-to-trough length ratio extracted from the radar image

and a threshold probability of illumination (P0) was first proposed in [80] for estimating

HS. Crests and troughs in the radar image represent illuminated areas reflected from

visible wave portions and shadowed areas with no reflections, respectively. In [81],

Buckley and Aler validated this model by assuming a constant P0 based on the theory

of geometric optics [82]. The essence of the theory is that, for a constant P0, the crest-

to-trough ratio decreases as the wave height increases. Later, Buckley and Aler [83]

enhanced the HS determination utilizing a varying P0. Based on the assumption that

P0 decreases as wave height increases, a linear relationship between P0 and the mean

image intensity in the up-wave direction was found. Then, a P0 that varies with mean

image intensity values was used in the model for the HS estimation. According to the

test using datasets collected in the southern Labrador Sea from January 30 to March

17, 1997 [81, 83] and a varying P0, the correlation coefficient and the mean difference

between the radar-derived and wavemeter-measured HS were improved from 0.54 to

0.67, and from 28% to 20%, respectively, over that with a constant P0. In this method,

illuminated and shadowed areas in the radar image are exploited to estimate HS. However,

an external sensor is required for the calibration. Later, an algorithm, which does not

require calibration and is also based on shadowing analysis incorporating sea surface

slope and mean wave period, was proposed [27].
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2.2.2.2 Statistical Analysis

Gangeskar [84] estimated the wave height through analyzing the texture of radar images.

The connection between HS and various parameters derived from the statistical analysis

of images was investigated. Datasets used to test the algorithm were collected from the

Gullfaks C (GFC) oil production platform in the North Sea, with HS ranging from 0.5 m

to 9 m [84]. 17 statistical parameters were used to estimate HS. The average absolute

correlation coefficient between the radar-derived and reference HS were 0.65 and 0.67,

respectively, for the Cartesian start ranges (CSR) of 1500 m and 900 m. The best result

was obtained using the parameter of the number of extrema per area in the smoothed

image, with the standard deviations of 0.99 m for the CSR of 1500 m and 0.98 m for 900

m.

Later, Gangeskar [85] developed an adaptive method incorporating a scheme for

detecting problematic situations such as low wave height and precipitation. In this

adaptive method, different parameters were selected to estimate wave height according to

the data quality identification results. Under good conditions, the parameter of extrema

number is used, while under precipitation or low wave height, the parameter of gray level

co-occurrence matrix (GLCM) correlation [85] is used. The result provided by the same

datasets as in [84] showed that by using the adaptive method, the standard deviations

were reduced to 0.68 m and 0.77 m for the CSR of 1500 m and 900 m, respectively.

Although precipitation may affect radar images by inducing noise, the adaptive method

still permits HS estimation.

2.2.2.3 Tilt-Based Algorithm

In most of the aforementioned cases, the algorithmatic outputs require calibration by

additional reference sensors such as wave buoys. Dankert and Rosenthal [55, 86]

proposed an algorithm to determine ocean surface elevations based on tilt modulation
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without calibration. In their method, both hydrodynamic and shadowing modulations are

considered to be insignificant to the radar imaging mechanism.

First, each image in a radar image sequence is corrected with a 2D antenna pattern,

which is obtained from the temporal average of all the radar images. Next, a third-order

polynomial f (ra,θ), where ra is the range, is least-squares fitted to the mean RCS for

each azimuthal direction θ . With the given antenna height hant , the depression angle as a

function of range can be calculated as

ψ̃ (ra) = arctan(
hant

ra
). (2.59)

The local ocean surface tilt ϕ(ra,θ), which is assumed to be equal to the change of the

local depression angle, can be obtained as

ϕ(ra,θ) = ψ(ra,θ)− ψ̃(ra), (2.60)

where ψ(ra,θ) is the local depression angle, which can be determined as

ψ(ra,θ) = ψ̃( f−1(σra ,θ)), (2.61)

where σra is the local RCS at range ra, and f−1 is the inverse function of f . The local

tilt angles are derived for all the images of an image sequence, resulting in a tilt image

sequence. Finally, the ocean surface elevation is derived by convolving tilt images with a

2D integration filter kernel. Here, the convolution in the spatial domain is realized by

the multiplication of the 3D DFT of the tilt image sequence and the integration transfer

function in the Fourier domain. Then, the dispersion relationship with current effects and

a 3D Gabor filter are used to extract the 3D wave spectrum. The ocean surface elevation

is obtained by applying an inverse 3D DFT to the 3D wave spectrum.

The algorithm was tested using datasets collected in the central North Sea from

February to September 2001 [86, 55]. During the test, HS measured by in-situ sensors
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Fig. 2.5 Basic steps of the shadowing-based algorithm.

varied from 0.5 m to 6 m. For the 1535 comparison pairs of the radar-derived and in-situ

sensor-measured HS, a correlation coefficient of 0.94 and a standard deviation of 0.35 m

were obtained. However, since shadowing modulation cannot be neglected for X-band

radars operating at grazing incidence, the algorithm may not be suitable for the standard

X-band marine radar mounted closer to sea level.

2.2.2.4 Shadowing-Based Algorithms

A. Original algorithm

Gangeskar [25] proposed an algorithm for the HS estimation based on shadowing analysis.

This algorithm also does not require calibrations using external sensors. Furthermore, it

is suitable for X-band marine radars operating at grazing incidence. Basic steps of the

shadowing-based algorithm are shown in Fig.2.5

For each radar image, an edge detection technique is first used to identify the edges

that separate the shadowed areas and illuminated areas. Here, this is performed by
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convolving a raw polar radar image I(m,n) with a simple pixel difference operator

Hi(m,n) where Hi is the ith discrete directional first derivative operator, and i ranges

from 1 to 8. m and n are row and column, respectively. The edge image obtained by

convolving along the ith direction is IEi(m,n) and is given by [87]

IEi(m,n) = I(m,n)~Hi(m,n). (2.62)

Since the result of (2.62) represents the intensity level difference of a pixel from its

neighboring pixels, and the intensity level of an edge pixel that separates shadow and no

shadow usually differs from its adjacent pixels more than other pixels, the eight edge

images are thresholded using a threshold value equal to the upper B-percentile (B = 10

in [25]) of the pixel intensity levels in each image (i.e., IEi(m,n)). Pixels with intensity

levels higher and lower than (or equal to) the threshold are assigned the value of 1 and

0, respectively. This results in eight thresholded edge images ITi(m,n). An overall edge

image IF(m,n) is obtained next by summing the eight thresholded edge images ITi(m,n)

and then filtering as

IT (m,n) =
8

∑
i=1

ITi(m,n) (2.63)

IF(m,n) =

⎧⎪⎨⎪⎩ 1, IT (m,n) ∈ [1,τF ]

0, otherwise.
(2.64)

The purpose of the filtering is to remove the single pixel noise having edges in more than

τF directions. For example, if a pixel has edges in all directions, it will be considered as

noise rather than an edge, and will be set as 0 in the edge image. The raw radar image

pixels corresponding to the pixels of intensity value of 1 in IF(m,n) are used to create a

statistical distribution FH(η) of edge pixel gray level values η . From the distribution,

the shadow threshold τS can be determined as the intensity level corresponding to the
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highest occurrence in the pixels selected for statistical distribution analysis. That is,

τS = mode(FH(η)). (2.65)

It should be noted that FH(η) is created individually for each radar image, and τS is also

determined based on FH(η) for each radar image. Using the estimated shadow threshold

τS, the shadow image can be derived. Pixels with intensity levels lower than or higher

than or equal to τS are regarded as shadowed or illuminated, respectively. The shadow

image is then divided into segments along the range and the azimuth. Each segment

covers 30 m in range and 10◦ in azimuth. For each segment, the illumination ratio L(γ),

which is defined as the ratio of the number of pixels corresponding to the illuminated

areas to the total number of pixels, is calculated as a function of grazing angle γ . With

the obtained illumination ratios, the RMS surface slope σRMS of a random rough surface

described by a one-dimensional Gaussian surface height probability density function

(PDF) can be derived by curve fitting Smith’s function for each azimuth direction [88].

The Neilder-Mead simplex method in one dimension is implemented for the curve

fitting [89]. After σRMS are obtained for all azimuth directions, an average RMS surface

slope σA
RMS can be calculated. Finally, from the average RMS surface slope σA

RMS and

the average zero-crossing wave period Tm02, HS can be determined as

HS =
σA

RMSgT 2
m02√

2π
. (2.66)

Tm02 can be derived from the radar images themselves using existing wave algorithms [37,

38].

The algorithm was tested using datasets collected at Veslefrikk platform in the North

Sea in January 2008 [25]. The correlation coefficient between the radar-derived and

reference HS was 0.87. The shadowing-based algorithm is totally based on theory and

does not require calibration with additional sensors. However, in [25], the test was
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conducted using the average zero-crossing wave period Tm02 measured by a reference

sensor. Therefore, the algorithm needs to be further validated using the radar-derived

average zero-crossing wave period Tm02 in order to be fully independent of external

sensors. In addition, the height of the radar used in the test [25] was 43.2 m, which was

higher than the regular marine radar height of 20-30 m. Since the radar height affects the

grazing angles and shadowing, the algorithm also needs to be validated using a regular

marine radar.

B. Water-depth considerations

Since (2.66) is valid only under deep water conditions, Wei et al. [90] modified the

shadowing-based algorithm in [25] by considering water depth for its application to a

coastal area as

HS =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
σA

RMSgT 2
m02√

2π
, dw

λ
≥ x2

σA
RMSgT 2

m02√
2π

(
√

0.0437+1.2899 dw
T 2

m02
+0.2096),x1 ≤ dw

λ
≤ x2

√
2σA

RMS
√

gdw,
dw
λ
≤ x1

, (2.67)

where dw is the water depth, and λ is the wavelength of ocean waves. x1 = 0.098 and

x2 = 0.289 are determined by minimizing the RMS error between the function tanh(kd)

and the piecewise linear function approximated to it. The water-depth-incorporated

shadowing-based algorithm was tested using the datasets acquired at the coastal area of

Haitan Island in Fujian Province from October to November 2010 and from November

2014 to January 2015 [90], with HS ranging from 0.5 m to 5 m. The correlation coefficient

and the RMS difference between the HS measured by the water-depth-incorporated

algorithm and buoy are 0.68 and 0.51 m, respectively, while those for the original

algorithm are 0.53 and 0.58 m, respectively.
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2.2.2.5 Support Vector Regression Algorithm

Salcedo-Sanz et al. [91] estimated HS using a support vector regression (SVR) algorithm

and shadowing information from simulated and field X-band marine radar images. In

this algorithm, the SVR is trained from the simulated data and applied to field data.

Calibrations using external sensors can thus be avoided. A classical model, ε-SVR [92],

is considered in this algorithm. Shadow probability and the tangent of the local incident

angle are included in the SVR training scheme using the simulated data. Shadowing

probability is obtained as the ratio of the number of shadowed pixels to the number of

total pixels. The tangent of the local incident angle is determined from the radar range,

wave elevation, and antenna height above the sea surface.

After the training phase using the simulated data, the SVR is applied to field data

collected at the German research platform of FINO 1 in the German basin of the North

Sea in 2006 and 2013 [91]. As compared to the ground truth, the mean absolute error

(MAE) and mean square error (MSE) of HS obtained with the SVR algorithm were 0.66

m and 0.82 m, respectively, for data acquired in 2006 with HS varying from 2 m to 9 m.

For data acquired in 2013 with HS varying from 2 m to 6 m, the MAE and MSE were

0.50 m and 0.38 m, respectively.

2.2.2.6 Empirical Orthogonal Function-Based Algorithms

A. Principal component

Chen et al. [26] proposed an empirical orthogonal function (EOF)-based algorithm

for wave measurements using X-band marine radar. Wave parameters, including HS,

peak wave period, wavelength, and wave direction were determined from the principal

components (PCs) of the radar image sequence derived from the EOF.
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First, a 2D time-space image sequence can be represented by

IT S =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

i11 i12 · · · i1D

i21 i22 · · · i2D

...
... . . . ...

iC1 iC2 · · · iCD

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (2.68)

where C is the sample number in space, and D the sample number in time. After the

application of EOF [93,94], IT S can be decomposed as

IT S =V Z. (2.69)

Each column of V is one eigenvector of the matrix IT SIT
T S. The jth eigenvector can be

expressed as

v j = (v1 j,v2 j, · · · ,vC j)
T . (2.70)

Each row of Z is one PC of the 2D time-space image sequence IT S, representing the

variation of waves in the time domain. The kth PC can be expressed as

zk = (zk1,zk2, · · · ,zkD). (2.71)

For HS estimation, a linear relationship between HS and the standard deviation of one

PC, std(zk), is established as

HS = p0 + p1 · std(zk), (2.72)

where p0 and p1 are parameters which can be determined from the least-squares fitting.

With the obtained linear relationship, HS can be estimated from the standard deviation

of one PC for any radar image sequence. Then, the first PC is used for the estimation

of peak wave period. The maximum entropy method (MEM) [95] is used to derive the
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power spectral density (PSD) of the first PC. The peak wave frequency fp is determined

as the frequency corresponding to the maximum PSD, and the peak wave period Tp is

trivially determined as

Tp =
1
fp
. (2.73)

The process of estimating the peak wavelength is similar to that of estimating the peak

wave period. The difference is that the 2D time-space image sequence to be decomposed

by the EOF consists of C samples in time and D samples in space, as opposed to (2.68).

After the decomposition, PCs can be obtained in the space domain, representing the

spatial variation of waves. Then, the peak wavelength can be obtained from the PSD of

the first PC derived by the MEM [95]. In the 2D space domain, two peak wavelengths

along two orthogonal directions need to be derived, and the peak wavelength and wave

direction can be obtained based on the geometric relationship. The ambiguity of 180◦ of

the wave direction is removed by applying the 3D DFT to the image sequence. The wave

direction is selected as the one close to the peak of the image spectrum.

The EOF-PC-based algorithm was tested using the same datasets collected from

two experiments as described in Section 2.2.1.1-D [26]. During the experiments, buoy-

measured HS and peak wave period ranged from 0.5 m to 3.5 m and from 5 s to 11 s,

respectively. The first experiment contained 364 measurements, and the second one

contained 156 measurements. For the HS estimation, the second experiment was used for

training, and the first one was used for validation. For the validation data, the comparison

of the radar-derived and buoy-measured HS resulted in a correlation coefficient of 0.93

and a RMS difference of 0.21 m. For all data, the comparison of the radar-derived

and buoy-measured peak wave period resulted in a correlation coefficient of 0.69 and a

RMS difference of 0.84 s. By applying the EOF, the algorithm enables wave parameter

estimation from heterogeneous ocean wave fields such as occur in near-shore regions.

Also, the linear wave dispersion relationship and MTF are not required. However, a

calibration process with an external sensor is still necessary for wave height estimation.
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B. Rotated EOF

Since the first few PCs derived by the EOF may not represent the main modes of the

wave field and wave parameters estimated from EOF analysis may be affected by the

observed area and selected pixel positions, Yu et al. [96] and Zhang et al. [97] utilized a

rotated EOF (REOF) to estimate HS.

Assume that λ j is the jth eigenvalue of the matrix IT SIT
T S after the EOF, a diagonal

matrix Λ is composed as

Λ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

λ1

λ2

. . .

λP

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,P <C. (2.74)

The sum of the fractional variances of the first P EOF modes is calculated as

GP =
P

∑
p=1

λp
C
∑
j=1

λ j

. (2.75)

With P being selected as the lowest value that makes GP greater than 85%, an initial

factor loading matrix is obtained as

V ′
ini =

[
v1 v2 · · · vP

]
Λ. (2.76)

The initial factor loading matrix is then normalized by dividing each element at the c row

by h2
c , which is calculated as

h2
c =

P

∑
p=1

(vcpλp)
2. (2.77)
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The factor loading matrix V ′ is obtained by multiplying the normalized initial factor

loading matrix with the orthogonal matrix

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

q11 q12 · · · q1P

q21 q22 · · · q2P

...
... . . . ...

qP1 qP2 · · · qPP

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (2.78)

If P is even, qpp is cosϕ , qP1, qP−1,2,...,qP/2,P/2+1 are sinϕ , q1P, q2,P−1,...,qP/2+1,P/2

are −sinϕ , and other elements are 0. If P is odd, qpp is cosϕ except q(P+1)/2,(P+1)/2 in

which case it is 1, qP1, qP−1,2,...,q(P−1)/2,(P−1)/2+1 are sinϕ , q1P, q2,P−1,...,q(P−1)/2+1,(P−1)/2

are −sinϕ , and other elements are 0. ϕ is selected as the value that maximizes

M =
P

∑
p=1

[
1
C

C

∑
c=1

(
(v′cp)

2

h2
c

)2

−

(
1
C

C

∑
c=1

(v′cp)
2

h2
c

)2

], (2.79)

where v′cp is the element of V ′ at the cth row and the pth column. Then, the common

factor matrix Z′ is obtained from

IT S =V ′Z′. (2.80)

Each row of Z′ is one rotated PC of the 2D time-space image sequence IT S. The qth

rotated PC can be expressed as

z′q = (z′q1,z
′
q2, · · · ,z′qD). (2.81)

Finally, HS can be estimated from the standard deviation of one rotated PC, std(z′q), by

training a linear model

HS = p0 + p1 · std(z′q), (2.82)
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or a polynomial model

HS = p0 + p1 · (std(z′q))1/2 + p2 · std(z′q)+ p3 · (std(z′q))3/2, (2.83)

where p0, p1, p2, and p3 are parameters determined through regression fitting.

The REOF-based algorithm was validated using the datasets collected in Bohai Bay,

China from July 25 to 26, 2014, with HS ranging from 0.5 m to 1.8 m [96, 97]. The

correlation coefficient and RMS difference between the buoy-measured and radar-derived

HS from the REOF-based algorithm are 0.88 and 0.17 m, respectively, for the linear

model, and 0.92 and 0.14 m, respectively, for the polynomial model. The EOF-PC-

based algorithm was also applied to the same datasets. The corresponding correlation

coefficient and RMS difference are 0.86 and 0.19 m, respectively. The results from the

employed datasets indicated that the REOF-based algorithm improved the HS estimation

over the EOF-PC-based algorithm. However, a calibration process using an external

sensor is still required.

C. Joint PDF

Later, by extending the EOF-PC-based algorithm, Chen et al. [98] developed an algorithm

to retrieve wave heights from X-band marine radar image sequences based on the joint

PDF of dimensionless wave periods and wave heights, without using external sensors for

calibrations.

Based on (2.68) - (2.71), a dominant wave field may be reconstructed as

I1 = v1z1. (2.84)
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I1 can be expressed in polar coordinates as I1(m,n). Since HS is proportional to the

standard deviation of PCs, I1(m,n) is rescaled as

I′1(m,n) =
I1(m,n)

max[I1(m,n)]
· std(z1). (2.85)

Then, with the peak wave direction φp determined by using the traditional 3D-DFT-based

method, the radial profile I1(m,φp) is used to derive dimensionless wave periods and

wave heights. Zero-crossing wavelengths are obtained by detecting crests and troughs

from I1(m,φp) as

l0i = rai − rai+1 , (2.86)

where rai and rai+1 are ranges corresponding to two neighbouring crests or troughs.

Similarly, zero-crossing wave heights can be obtained as

h0 j = ac[I′1(ra j ,φp)− I′1(ra j+1 ,φp)], (2.87)

where ra j and ra j+1 are ranges corresponding to two neighbouring crests and troughs,

and ac is the coefficient to be determined in the following procedures. Zero-crossing

wave periods t0i can be derived from l0i using the dispersion relationship. Subsequently,

dimensionless wave periods are obtained as

τ0i =
t0i

t0
, (2.88)

where t0 is the average zero-crossing wave period. Dimensionless wave heights are

obtained as

α0 j =
h0 j

h0
, (2.89)

where h0 is the average zero-crossing wave height. The joint PDF of dimensionless wave

periods and wave heights for random ocean waves, f (αh,τt |υ0), is defined in [99, 100].

The spectral width parameter υ0 is determined by fitting the histogram of dimensionless
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wave periods in (2.88) to the theoretical PDF of dimensionless wave periods which

is derived by integrating f (αh,τt |υ0) over αh from 0 to 5 with a step of 0.001. With

the derived υ0, the theoretical PDF of dimensionless wave heights can be obtained by

integrating f (αh,τt |υ0) over τt from 0 to 3 with a step of 0.001. Then, a parameter ps is

defined to quantify the shape of the PDF of a variable v as

ps =
E(v−µv)

6

σ5
v

, (2.90)

where µv is the mean of v, σv the standard deviation of v, and E(·) the expectation operator.

The parameter ps is calculated for the histogram of relative wave heights in (2.87) and

the theoretical PDF of dimensionless wave heights as psr and pst , respectively. Finally,

the coefficient ac can be calculated as

ac =
pst

psr

. (2.91)

Accordingly, HS can be determined as

HS = ac ·h0m, (2.92)

where h0m is the wave height having the maximum probability. The basic overall steps

of the joint-PDF-based algorithm are shown in Fig.2.6.

The joint PDF-based algorithm was tested using datasets collected on Haitan Island,

China from October 2014 to January 2015, with HS varying from 0.2 m to 3.5 m [98].

The datasets contained 671 measurements for HH-polarized radar and 548 measurements

for VV-polarized radar. The correlation coefficient and the RMS difference for HS

derived from the HH-polarized radar and the buoy are 0.78 and 0.51 m, respectively, and

those for the VV-polarized radar are 0.77 and 0.51 m, respectively. Wave height can

be retrieved from the algorithm directly without using external sensors for calibration.
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Fig. 2.6 Basic steps of the joint-PDF-based algorithm.

However, compared to the SNR- and shadowing-based algorithms, the accuracy of the

joint PDF-based algorithm needs to be improved.

2.2.3 Summary

The inter-comparison of the reviewed techniques for wave measurements is listed in

Table2.2. It may be observed from the table that wave height measurement is available

for almost all the algorithms. However, most of them need calibrations using external

sensors.

2.3 Chapter Summary

In this chapter, algorithms for ocean surface wind and wave measurements using X-band

marine radar were reviewed.

For wind measurements, wind direction is generally determined from the upwind peak

in images collected from HH-polarized X-band radars operating at grazing incidence;

wind speed is generally determined from parameters related to the NRCS derived from the

radar image. Recently, much effort has been focused on techniques for wind parameter
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extraction from rain-contaminated radar data, and this may still be one of the future

trends for wind measurements. Another remaining challenge for wind measurements

is that a calibration phase using external sensors is generally required for wind speed

estimation. In the future, calibration-free algorithms for wind speed estimation need to

be developed. This may be realized by exploiting both the spatial and temporal variations

of image patterns. Techniques such as the optical flow-based motion estimation in [57]

may be further developed to measure the movements of wind gusts visible in images.

For wave measurements, various algorithms based on the spectral or texture anal-

ysis of radar images have been used. Traditionally, wave height estimation requires

calibrations using external sensors. Recently, techniques have been rapidly evolving

for calibration-free wave height estimation. These include tilt- [86] and shadowing-

based algorithms [25], and an algorithm exploiting the joint PDF of dimensionless wave

periods and wave heights [98]. Calibration-free wave height estimation is likely to

be one of the continuing trends for wave measurements. Coherent X-band radar may

be considered for such purposes since it provides the radial velocity of ocean surface

waves that can be used to derive HS [101]. In addition, a simple model for marine radar

backscatter signals from the ocean surface has been developed [102], which may be

further investigated for calibration-free wave height estimation. One of the remaining

issues for wave measurement is that no effective algorithms have been developed for

mitigating rain effects. With regard to this, S-band radar is a promising tool since, due

to its longer wavelength, it can yield wave measurements under rain conditions [103].

Recently, models for SAR backscatter from the ocean surface under rainfall have been

developed [104, 105]. X-band marine radar sea surface imaging mechanisms in rain

events are also worth exploring.
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Chapter 3

Wind Direction Estimation From

Low-Wind-Speed Rain-Contaminated

Data

In 1998, Huang et al. [32, 33] proposed an empirical mode decomposition (EMD)

method for adaptive time-frequency analysis of non-linear and non-stationary data. In

that method, data could be decomposed into a finite number of narrow-banded intrinsic

mode function (IMF) components. Since its appearance, the method has been widely used

in various applications. In 2009, Wu et al. [34] proposed an ensemble EMD (EEMD),

resolving the mode mixing problem of the original EMD, and resulting in a more practical

method. In the same year, Wu et al. [35] proposed a multi-dimensional EEMD allowing

the algorithm to be applicable in higher dimensions. In 2014, Wang et al. [106] analyzed

the computational complexity of the EMD/EEMD and substantially reduced its execution

time, leading to a computationally efficient method. In this chapter, two algorithms based

on the EEMD technique are proposed to determine wind direction from low-wind-speed,

rain-contaminated X-band marine radar data. The EEMD technique is introduced in

Section 3.1. The 1D-EEMD-based and 2D-EEMD-based algorithms are described in

Section 3.2 and Section 3.3, respectively. Experimental results obtained from ship-borne
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radar and anemometer data are illustrated in Section 3.4. A summary for this chapter

appears in Section 3.5.

3.1 EEMD

The EMD is the fundamental part of the Hilbert-Huang transform (HHT) for non-

stationary and non-linear data analysis [32, 33]. It aims to adaptively decompose com-

plicated data into a finite number of separate narrow-banded intrinsic mode function

(IMF) components that admit well-behaved Hilbert transforms. An IMF is defined by

two criteria: the numbers of zero crossings and extrema are equal or differ by one; the

mean of the envelopes defined by local maxima and local minima is zero at any point.

EMD is implemented by a sifting process [32,33] as described below.

For an arbitrary data set X(t), the local extrema are first identified. Next, the local

maxima and local minima are connected by cubic spline lines as the upper and lower

envelopes, respectively. Then, the mean, m11, of the upper and lower envelopes is

subtracted from the original data, X(t), to yield

h11 = X(t)−m11, (3.1)

such that if h11 meets the aforementioned criteria for an IMF, it is designated as the first

IMF. Otherwise, h11 is regarded as new data, and the procedure is repeated until the

result is an IMF. This process is described as

h12 = h11 −m12

...

h1i = h1(i−1)−m1i

, (3.2)

where h1i is the sifting result after i repetitions, and m1i is the mean of the upper and lower

envelopes of h1(i−1). When h1i meets the criteria for an IMF, the procedure terminates,
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and h1i is designated as the first IMF, c1, i.e.,

c1 = h1i. (3.3)

Overall, c1 consists of the highest-frequency components of the signal. After decompos-

ing it from the original data X(t), the first residual r1 which can be expressed as

r1 = X(t)− c1 (3.4)

is obtained. Generally, r1 contains other components of the signal. Therefore, it is treated

as new data, and the same sifting process as above is employed again to obtain the next

IMF. The process, as indicated by

r2 = r1 − c2

...

rp = rp−1 − cp,

(3.5)

where cp is the pth IMF, and rp is the pth residual, is repeated until no IMF can be

extracted.

The original data can be reconstructed based on the IMFs and the pth residual as

X(t) =
p

∑
q=1

cq + rp. (3.6)

However, in some cases, intermittent oscillation of the signal may cause the problem

of mode mixing, defined as various scales existing in a single IMF or a similar scale

existing in different IMFs. In order to solve the mode mixing problem of EMD, EEMD

was developed [34]. The basic steps, as found in [34], may be outlined as follows:

i) add a finite-amplitude white noise signal to the original data; ii) apply EMD to the

noise-added data; iii) repeat the previous two steps with different noise signals a sufficient
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number of times (e.g., 100); iv) the set of the ensemble means of the corresponding IMF

components of the decompositions is achieved as the final result. Here, both 1D-EEMD

and 2D-EEMD are applied to marine radar images for wind direction determination.

3.2 1D-EEMD Based Algorithm

Suppose that one polar radar image with M rows and N columns is expressed as

I =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

i1,1 i1,2 ... i1,N

i2,1 i2,2 ... i2,N

... ... ... ...

iM,1 iM,2 ... iM,N

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (3.7)

where im,n is the image intensity at the mth row and the nth column. For the 1D-EEMD-

based algorithm, EEMD [34] is applied only to each column of I as indicated by

I(∼,n) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

i1,n

i2,n

...

iM,n

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (3.8)

This results in

I(∼,n) =
J

∑
j=1

G j(∼,n) =
J

∑
j=1

⎛⎜⎜⎜⎜⎜⎜⎜⎝

g1,n, j

g2,n, j

...

gM,n, j

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (3.9)

where gm,n, j is the element of G j(∼,n), G j(∼,n) is the jth output IMF, with j ranging

from 1 to J-1, J-1 being the number of IMFs, and GJ(∼,n) is the output residual. After

all the columns are decomposed, the results can be rearranged into J matrices, in which
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the jth matrix is

G j =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

g1,1, j g1,2, j ... g1,N, j

g2,1, j g2,2, j ... g2,N, j

... ... ...

gM,1, j gM,2, j ... gM,N, j

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (3.10)

The resultant J matrices consist of J-1 IMF components and one residual component of

the 1D-EEMD of the radar image.

After the implementation of 1D-EEMD, the standard deviation σθ of one IMF

component, or the combination of several IMF components, as a function of azimuth is

least-squares curve fitted to a harmonic function as

σθ = p0 + p1cos2(0.5(θ − p2)). (3.11)

Here, θ is the azimuth direction, and p0, p1, and p2 are parameters determined by the

curve fitting. Wind direction is determined as the azimuth direction corresponding to the

peak of the fitted function.

3.3 2D-EEMD Based Algorithm

2D-EEMD [35] is an extension of the 1D-EEMD discussed above. After obtaining (3.10),

EEMD [34] is again applied to each row of each matrix G j as symbolized by

G j(m,∼) =

(
gm,1, j gm,2, j ... gm,N, j

)
. (3.12)

Its decomposition is

G j(m,∼) =
K
∑

k=1
H j,k(m,∼)

=
K
∑

k=1

(
hm,1, j,k hm,2, j,k ... hm,N, j,k

) , (3.13)
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where hm,n, j,k is an element of H j,k(m,∼), H j,k(m,∼) is the kth output IMF, with k

ranging from 1 to K-1, K-1 being the number of IMFs, and H j,K(m,∼) is the output

residual. After all the rows in all matrices are decomposed, the results are rearranged as

H j,k =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

h1,1, j,k h1,2, j,k ... h1,N, j,k

h2,1, j,k h2,2, j,k ... h2,N, j,k

... ... ... ...

hM,1, j,k hM,2, j,k ... hM,N, j,k

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (3.14)

Finally, the radar image can be decomposed as

I =
J

∑
j=1

K

∑
k=1

H j,k. (3.15)

Then, IMF components are obtained based on a comparable minimal scale combination

principle [35], in which the components with comparable minimal scales are combined

to give a single IMF component. This is expressed as

Cl =
J

∑
j=l

H j,l +
K

∑
k=l+1

Hl,k, (3.16)

where Cl is the lth IMF component of the 2D-EEMD of the radar image, with l ranging

from 1 to the minimum of J-1 and K-1, and Cmin(J,K) is the residual component of the

2D-EEMD of the radar image. This combination principle can result in IMFs revealing

meaningful 2D features. Its visual schematic is illustrated in Table3.1, in which the

subcomponents (H j,k) in the neighboring cells with same shade are combined to obtain a

single IMF.

Table 3.1 Visual Schematic of the Combination Principle.

H1,l H1,2 ... ... H1,K
H2,l H2,2 ... ... H2,K
... ... ... ... ...

HJ,l HJ,2 ... ... HJ,K
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Fig. 3.1 Diagram for the proposed EEMD-based methods.

Next, in order to determine the wind direction, (3.11) is also used to least-squares

fit the standard deviation σθ of one IMF component, or the combination of several IMF

components, as a function of azimuth. An overall diagram for the proposed EEMD-based

methods is shown in Fig.3.1.

3.4 Experimental Results

3.4.1 Data Overview

Data provided by Defence Research and Development Canada (DRDC) is employed

to test the proposed methods. The radar and anemometer data were collected in a sea

trial in late November of 2008, approximately 300 km south-southeast of Halifax, Nova

Scotia, Canada. A standard Decca nautical radar operated at 9.41 GHz with horizontal

polarization. The radar coverage was 360◦ in azimuth and from 240 m to 2160 m in

range. The beam width of the radar was 2◦ and the range resolution was 7.5 m. The

antenna was installed at a height of 21.9 m above sea level and rotated at a speed of

about 28 rpm. The radar backscatter intensity was scaled to a level from 0 to 255, with 0

corresponding to the minimum backscatter and 255 to the maximum. Anemometers were

mounted on the port and starboard sides of the ship. The average of the two anemometer
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Fig. 3.2 Comparison of the measurements from two anemometers installed on the port
and starboard sides of the ship.

measurements was used as the reference. It is reported in [1] that errors in anemometer

measurements may be up to 10%. The reliability of the anemometer measurements

in the work presented here can be evaluated by comparing the measurements from the

two anemometers. These are shown in Fig.3.2. It is readily observed that the two

anemometers produce similar wind direction measurements and the average may be

legitimately used as the ground truth. Additionally, for the sake of completeness, the

ship’s path is shown in Fig.3.3.

3.4.2 Data Preprocessing

3.4.2.1 Noise Line Removal

One example of a rain-contaminated polar radar image collected at 01:48 on Nov. 27

(2008) is shown in Fig.3.4(a). It may be observed from the raw radar image in Fig.3.4(a)

that radial noise lines due to interference of other marine radars are present as high-level

intensity pixels aligned in the range direction. Some of these lines are highlighted by red

circles. Since the noise lines may negatively affect wind direction retrieval, a method
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Fig. 3.3 Ship’s path.

similar to that in [44] is used to remove them. First, a 3 × 3 kernel, in which the first

and third columns are set as -1 and the second column is set as 2, is convolved with

the raw polar radar image. Then, the noise lines are identified as the sets of at least 5

continuous pixels in the range direction with intensity levels greater than 255. Finally,

each such pixel is replaced by the mean of its azimuthal-adjacent pixels. The result after

this process, found in Fig.3.4(b), indicates that the noise lines have been successfully

removed.

3.4.2.2 Image Classification

Only the data acquired in rain events under low wind speed is employed for the test.

The image classification method described in [13] is used here for distinguishing the

low-wind-speed, rain-contaminated data from the other data. The method is based on

the statistical distribution of pixel intensities in each radar image. The parameters of

zero-pixel percentage (ZPP) and high-pixel percentage (HPP) are used. ZPP is defined

as the ratio of the number of pixels with intensity levels lower than 5 to the total number
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Fig. 3.4 (a) Low-wind speed, rain-contaminated raw polar radar image; (b) radar image
in Fig.3.4(a) after noise line removal; (c) the third IMF component of the 1D-EEMD of
the radar image in Fig.3.4(b); (d) the first IMF component of the 2D-EEMD of the radar
image in Fig.3.4(b). The color scale represents gray level.
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of pixels. HPP is defined as the ratio of the number of pixels with intensity levels higher

than 100 to the total number of pixels. Low-wind-speed, rain-contaminated images are

identified as those with ZPP lower than 10% and HPP lower than 15%.

3.4.3 Wind Direction Retrieval Results

The third IMF component ( j=3) of the 1D-EEMD of the radar image in Fig.3.4(b) is

depicted in Fig.3.4(c). The subcomponents of the 2D-EEMD of the radar image in

Fig.3.4(b) appear in Fig.3.5. It may be observed from Fig.3.5that the subcomponents

in the same row have similar spatial scales in the vertical direction and that the subcom-

ponents in the same column have similar spatial scales in the horizontal direction. The

first IMF component (l=1) of the 2D-EEMD of the radar image in Fig.3.4(b) is shown in

Fig.3.4(d).

It may be discerned that the backscatter intensity in the radar image in Fig.3.4(b) is

enhanced by rain and that the wave signature is partially obscured. Since rain affects the

wave signature appearing in the radar images, the rain effect may be considered as a kind

of modulation transfer function (MTF). On the contrary, it may be noted from both the

IMF components in Fig.3.4(c) and Fig.3.4(d) that the image intensity enhancement due

to rain is significantly removed and that the wind-induced, small-scale wave signature

is well-preserved. Since the average of the intensity value of any IMF component is

almost zero, which is one attribute of an IMF, the standard deviation, instead of the

average of the intensity value for each azimuth, is used in the curve fitting process. The

results for the 1D-EEMD-based method along with the third IMF component and the

2D-EEMD-based method using the first IMF component are depicted in Fig.3.6(a) and

Fig.3.6(b), respectively, and the wind directions are determined as 75.5 ◦ and 78.6◦,

respectively, which are very close to the anemometer measurement of 76.5◦. As an

inter-comparison, the curve fitting result obtained using the 1D-SA-based method in [18]

is shown in Fig.3.6(c), and the wind direction is retrieved as 69.1 ◦. The 1D-SA-based
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Fig. 3.6 Curve fitting results for (a) the 1D-EEMD based method by using the third IMF
component; (b) the 2D-EEMD based method by using the first IMF component; (c) the
1D-SA based method.
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Table 3.2 Overall Wind Direction Retrieval Results

Algorithm
IMF

Components r RMSD

1D-SA
based method - 0.952 20.1◦

1D-EEMD
based method

1 0.986 13.7◦

2 0.980 16.8◦

3 0.984 12.7◦

1+2 0.982 15.7◦

1+2+3 0.986 14.1◦

1+2+3+4+5+6 0.982 14.9◦

2D-EEMD
based method

1 0.984 11.4◦

2 0.981 16.2◦

3 0.983 15.6◦

1+2 0.983 14.0◦

1+2+3 0.983 14.5◦

1+2+3+4+5+6 0.983 15.1◦

method is used for the comparison because it was particularly proposed for wind direction

extraction from rain-contaminated X-band radar images.

It should be noted that each radar image is decomposed into 6 IMF components and

a residual for both 1D- and 2D-EEMD. Technically, the radar image can be decomposed

into more than 6 IMF components, but it is not necessary because the magnitudes of

additional IMF components are negligible compared to the first 6. Since the residual

represents the overall trend of the radar image, it contains considerable rain contamina-

tion. Thus, excluding the residual can significantly mitigate the rain effects. Since the

wind-induced, small-scale wave signature is preserved in IMF components with high

oscillations (the first three IMF components), at least one of them should be included

for the wind direction determination. The overall wind direction results derived from

the EEMD-based algorithms by using different (combinations of) IMF components, as

well as from the 1D-SA-based algorithm [18], are listed in Table3.2. It can be seen

from Table3.2that while the EEMD-based algorithms generally deliver satisfactory

wind direction retrieval results, the third IMF component generates the best result for the

1D-EEMD-based algorithm, and the first IMF component produces the best result for
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the 2D-EEMD-based algorithm. Note that the combinations shown in Table3.2are only

examples. Other combinations can also give good results if at least one of the first three

IMF components is included and the residual is excluded.

The limitation of the EEMD-based methods is that they have high computational cost.

As reported in [106], the EEMD of a data sequence has a computational complexity of

O(PQ), where P is the number of data points in the sequence and Q is the number of

IMFs. In this work, EEMD should be implemented N times for the 1D-EEMD-based

method since there are N columns in one radar image. Thus, the 1D-EEMD-based

method has a computational complexity of O(NMJ), where M is the number of pixels

in each column and J is the number of IMFs after the application of EEMD to each

column. For the 2D-EEMD-based method, an additional EEMD is applied to each row

of each component (matrix G j) resulting from 1D-EEMD. Thus, the 2D-EEMD-based

method has a computational complexity of O(NMJK), where K is the number of IMFs

after the application of EEMD to each row. For the experimental platform used here,

the computation time to produce one wind direction result from one image is around 10

s for 1D-EEMD and 100 s for 2D-EEMD. In this work, the antenna rotation period is

2.14 s (i.e. a speed of 28 rpm) and each radar image sequence of 32 images is collected

approximately every two minutes. Within such a period, only one wind direction result

can be obtained using the 2D-EEMD-based method. Thus, only one image from each

image sequence is analyzed to estimate wind direction, i.e., one wind direction result

will be obtained approximately every 2 minutes and 5 consecutive such results provide a

single 10-minute average. A 10-minute moving window with an 80% overlap is used to

determine the next average, and so on (that is, each 10-minute interval consists of the last

8 minutes from the previous window along with 2 minutes of new data, again providing

a single new average of 5 results). Thus, after the first average is provided in the initial

10 minutes, average wind directions are updated every 2 minutes (i.e., near real-time

in terms of practical ocean sensing). In order to compare the performance of three

methods based on the same data, this process is maintained for the 1D-EEMD-based
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Fig. 3.7 Trend of wind direction retrieval results during each 10-minute interval used for
the moving average for (a) 1D-EEMD based method; (b) 2D-EEMD based method; (c)
1D-SA based method.
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Fig. 3.8 (a) Comparison of time sequences of wind direction retrieval without a 10-minute
moving average; (b) comparison of time sequences of wind direction retrieval with a
10-minute moving average; (c) wind speeds and HPPs; (d) significant wave heights; (e)
ship speeds. The sampling rate is approximately 2 min.
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and 1D-SA-based methods. The trend of wind direction retrieval results during each

10-minute interval used for the moving average is shown in Fig.3.7. Fig.3.8(a) shows

the wind directions retrieved using the 1D-EEMD-based method with the third IMF

component, the 2D-EEMD-based method with the first IMF component, and the 1D-SA-

based method, with all being compared to the anemometer reference. Fig.3.8(b) displays

the corresponding wind directions obtained by applying a 10-minute moving average to

both anemometer and radar results. It can be seen from Fig.3.8(b) that the results derived

from all three methods agree generally well with the reference. However, for some

periods, the wind directions derived from the 1D-SA-based method show large deviations

from the reference. These deviations are due to the fact that the image portion in the

upwind direction is also contaminated by rain. In this case, however, the EEMD-based

methods can still provide satisfactory results. Fig.3.8(c) depicts the wind speed and HPP

values during the data acquisition period. It may be observed from that figure that the

HPP threshold of 15% used for separating low-wind-speed and high-wind-speed cases

corresponds to a wind speed of around 10 m/s. In addition, the significant wave heights

and ship speeds during this period are shown in Fig.3.8(d) and Fig.3.8(e), respectively.

The significant wave heights were measured by buoys approximately 10 km from the

ship. The corresponding scatter plots of the retrieved wind directions using the three

methods with the reference data in Fig.3.8(a) and Fig.3.8(b) are shown in Fig.3.9and

Fig.3.10, respectively. From Fig.3.10, it can also be seen that while all three methods

produce satisfactory results, the 1D-EEMD-based method and 2D-EEMD-based method

outperform the 1D-SA-based method for rain-contaminated radar data collected under

low wind speeds, with improvements of about 0.032 in the correlation coefficient, and

about 7.4◦ and 8.7◦, respectively, in the root-mean-square (RMS) difference.
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Fig. 3.9 Scatter plots of Fig.3.8(a): (a) the 1D-EEMD based method with the third
IMF component; (b) the 2D-EEMD based method with the first IMF component; (c) the
1D-SA based method.
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Fig. 3.10 Scatter plots of Fig.3.8(b): (a) the 1D-EEMD-based method with the third
IMF component; (b) the 2D-EEMD-based method with the first IMF component; (c) the
1D-SA-based method.
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3.5 Chapter Summary

In this chapter, two new schemes based on EEMD were proposed to retrieve wind direc-

tion from X-band nautical radar sea surface images contaminated by rain during periods

of low wind speed. The standard deviation of an IMF component or the combination of

several IMF components derived from 1D-EEMD or 2D-EEMD was used in the curve

fitting process to determine wind direction. The basic criterion is that the combination

should include at least one of the first three IMF components and exclude the residual. It

was found that compared to the 1D spectral-analysis (SA) based method in [18], wind

direction retrieval in rain events under low wind speed was significantly improved by

the proposed EEMD-based methods. Based on the data used in this work, the third IMF

component generates the best result for the 1D-EEMD based algorithm, but the first IMF

component produces the best result for the 2D-EEMD based algorithm. While these

wind direction results are encouraging, the computational costs for the EEMD-based

algorithms are expensive. The experiments were conducted in Matlab R2013a installed

on a personal computer (PC) running Windows 7 with a 3.0 GHz Intel Core i5-2320

central processing unit (CPU), an 8 GB memory, and a 64-bit operating system (OS).

For the experimental platform in this work, the time consumed for the implementation

of the traditional curve fitting method or 1D-SA based method is less than 1 s for one

radar image. However, the execution times of the 1D-EEMD based and 2D-EEMD based

algorithms are around 10 s and 100 s, respectively, for one radar image.
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Chapter 4

Wind Direction and Speed Estimation

From Rain-Free and

Rain-Contaminated Data

The difference between this chapter and Chapter 3 is that only the wind direction is

retrieved from low-wind-speed, rain-contaminated radar data using 1D-EEMD and 2D-

EEMD techniques in the latter, while the EEMD, a normalization scheme, and a data

control strategy are exploited in this chapter to estimate both wind direction and speed

from both rain-free and rain-contaminated radar data. The EEMD and the normalization

scheme are introduced in Section 4.1. The proposed algorithms for wind direction and

speed estimation are described in Section 4.2 and Section 4.3, respectively. Section 4.4

illustrates the experimental results obtained from ship-borne radar and anemometer data.

A summary for this chapter appears in Section 4.5.
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4.1 EEMD and Normalization

According to the results in Section 3.2, the application of EEMD to the nth column of

one polar radar image results in

I(∼,n) =
J

∑
j=1

G j(∼,n) =
J

∑
j=1

⎛⎜⎜⎜⎜⎜⎜⎜⎝

g1,n, j

g2,n, j

...

gR,n, j

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (4.1)

where G j(∼,n) is the jth output IMF, with j ranging from 1 to J-1, J-1 being the number

of IMFs, and GJ(∼,n) the output residual. The EEMD result for I(∼,1) in one radar

image is shown in Fig.4.1. It can be seen from Fig.4.1that, due to the nature of the

EEMD, the intrinsic oscillatory scale increases from the first to the last IMF and the

residual shows the overall trend of the original data. In terms of the radar image, the first

IMF represents the wind-induced small-scale wave signature and the residual is related to

the overall image intensities that depend on the wind strength. Moreover, in the presence

of rain, the overall image intensities are enhanced whereas the wind-induced small-scale

wave signature is weakened. Therefore, in order to apply the technique in both rain and

rain-free cases, only the first IMF and the residual are used for wind measurements.

Implicitly, the mean of an IMF is almost zero, and therefore both positive and negative

values exist in such functions. Thus, a normalization scheme [36] should be applied

to the first IMF, G1(∼,n), to obtain its amplitude modulation (AM) part. First, all the

local maxima of the absolute values of G1(∼,n) (i.e., |G1(∼,n)|) are identified. Then,

all these maxima are connected with a cubic spline curve, resulting in the envelope of

G1(∼,n) and designated as e1(∼,n). The first normalization result f1(∼,n) is given as

f1 =
G1(∼,n)
e1(∼,n)

. (4.2)
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If all the absolute values of f1(∼,n) are equal to or less than 1, e1(∼,n) is the AM part

and f1(∼,n) is the frequency modulation (FM) part of G1(∼,n), and the normalization

process ends. Otherwise, this normalization process is repeated as

f2(∼,n) = f1(∼,n)
e2(∼,n)

...

fi(∼,n) = fi−1(∼,n)
ei(∼,n) ,

(4.3)

where ei(∼,n) is the envelope of fi−1(∼,n). The process stops when all the absolute

values of fi(∼,n) are equal to or less than 1. Then, fi(∼,n) is the FM part of G1(∼,n),

and the AM part of G1(∼,n) is calculated as

a1(∼,n) =
G1(∼,n)
fi(∼,n)

= e1(∼,n)e2(∼,n) · · · ei(∼,n). (4.4)

G1(∼,1) of Fig.4.1and its AM part a1(∼,1) are shown in Fig.4.2.

4.2 Wind Direction Retrieval

In the absence of rain, the normalized RCS (NRCS) of an HH-polarized X-band radar

operating at grazing incidence exhibits a peak in the upwind direction [15]. If the radar

backscatter is contaminated by rain, the NRCS will be affected. However, it is found

in [18] that when the wind speed is high, the dependence of the NRCS on wind direction

is not significantly affected by rain because the wind effect dominates. Therefore, in

rain-free and high-wind-speed rain cases, the residual, which is related to the overall

image intensities that depend on the NRCS, may be used to estimate wind direction. The

average of the residual, Rn, in each azimuth direction is calculated as

Rn =
1
M

M

∑
m=1

GJ(m,n), (4.5)
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where M is the total number of image pixels in each azimuth direction. Then, Rn,

rather than the average radar backscatter intensity [15], is least-squares curve fitted to a

harmonic function as

Rn = p0 + p1cos2
(

0.5
(

2π(n−1)
N

− p2

))
, (4.6)

where N is the total number of azimuth directions in one radar image, and p0, p1, and

p2 are parameters determined by the curve fitting. Wind direction is determined as the

azimuth direction corresponding to the peak of the fitted function.

In low-wind-speed rain cases, the first IMF is used to estimate wind direction since it

preserves the wind-induced small-scale wave signature that shows an immediate reaction

to wind effects. The average, A1,n, of the AM part of the first IMF in each azimuth

direction is calculated as

A1,n =
1
M

M

∑
m=1

a1(m,n). (4.7)

Then, similar as in (4.6), A1,n is least-squares curve fitted to the harmonic function as

A1,n = p0 + p1cos2
(

0.5
(

2π(n−1)
N

− p2

))
, (4.8)

from which the wind direction can be determined.

4.3 Wind Speed Retrieval

The AM part of the first IMF and the residual are both involved in the training model for

both rain and rain-free cases. To compare these two quantities, the average, ma, of the

AM part of the first IMF in one radar image is calculated as

ma =
1
N

N

∑
n=1

A1,n. (4.9)
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Fig. 4.3 Relationship between ma and mr for both rain-free and rain-contaminated data.
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Similarly, the average, mr, of the residual in one radar image is calculated as

mr =
1
N

N

∑
n=1

Rn. (4.10)

The relationship between ma and mr for both rain and rain-free cases is shown in Fig.4.3.

It can be seen that the relationship is almost linear for rain-free cases. However, in rain

cases, mr increases whereas ma decreases. Since the slope of the fitted curve for the

relationship in rain-free cases is close to 6, the weight for ma is set as 6 in the combination

Mcom, which is expressed as

Mcom = 6ma +mr. (4.11)

Adding a weight to ma in the combination is due to the fact that the increases of mr are

generally larger than the decreases of ma in rain cases. The weight of 6 results in almost

equivalent effects of these two quantities on the combination, in which the increase of mr

can almost be compensated for by the decrease of ma after being scaled by the weight.

Then, a logarithmic relationship between Mcom and wind speed w is sought through
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Fig. 4.4 Basic steps of the EEMD-normalization-based algorithm.

curve-fitting. The relationship using anemometer wind speed data is written as

Mcom = p0 + p1 · ln(wSpd + p2), (4.12)

where p0, p1 and p2 are parameters determined from the curve-fitting process. After the

parameters are determined, based on (4.12), wind speed can be estimated from Mcom

for any radar data. Fig.4.4illustrates the basic steps of the EEMD-normalization-based

algorithm for wind parameter estimation.

4.4 Experimental Results

4.4.1 Data Overview

The proposed method is tested using radar and anemometer data described in Section

3.4.1. The data were collected approximately 300 km south-southeast of Halifax, Nova

Scotia, Canada during a sea trial from Nov. 26 to Dec. 4 of 2008. During the sea trial,

the wind speed ranged from 2 m/s to 16 m/s, and the significant wave height varied

94



Table 4.1 Radar Information

Decca Furuno
Polarization Horizontal Horizontal

Operating frequency 9.41 GHz 9.41 GHz
Range resolution 7.5 m 7.5 m
Range coverage 240 m - 2160 m 240 m - 2160 m

Beam width 2◦ 1.9◦

Azimuth coverage 360◦ Around 300◦

Antenna rotation speed 28 rpm 40 rpm
Antenna height 21.9 m 16.5 m

Backscatter intensity level 0 - 255 0 - 255

correspondingly between 1.5 m and 5 m. This permitted the methods to be evaluated

under typical wind conditions. The parameters for the two radars (Decca and Furuno)

utilized in the experiment are listed in Table4.1. As in Section 3.4.1, the two anemometer

measurements that were collected on the port and starboard sides, respectively, were

averaged as the reference.

4.4.2 Data Control Strategy

A strategy is proposed to distinguish rain-free and rain-contaminated data. For one radar

image, if all the pixel intensities in one azimuth direction are higher than 1, the direction

is defined as a high-clutter direction (HCD). Then, if the high-clutter direction percentage

(HCDP, defined as the number of HCDs divided by the total number of directions in

one image) is higher than 5%, the image is recognized as a rain-contaminated image.

Moreover, high-pixel percentage (HPP) [18] is used to distinguish low-wind-speed cases

and high-wind-speed cases. HPP is defined as the number of pixels with intensities

higher than 100 divided by the total number of pixels in one radar image. If the HPP of

one image is larger than 30%, it is recognized as a high-wind-speed image. Otherwise, it

is recognized as a low-wind-speed image.
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Fig. 4.5 Comparison of the sequences of wind direction results. The results from rain-
contaminated data are indicated by the gray shadow.

Fig. 4.6 Rain-contaminated radar image collected at 8:32, Nov. 29. Anemometer-
measured wind direction is 160.5◦.
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Fig. 4.7 Curve fitting results of Fig.4.6: (a) proposed method; (b) 1D-SA based method.
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4.4.3 Wind Direction Results

The wind direction results obtained using the 1D spectral-analysis (SA)-based method [18]

and the proposed method are compared with the anemometer measurements in Fig.4.5.

Both the anemometer and radar results are moving-averaged over 10 minutes. It can be

observed that both methods generally produce good results. However, the results derived

from the 1D-SA-based method show large deviations from the reference for some periods

with rain. These deviations are due to the fact that the image portion in the upwind direc-

tion is also contaminated by rain. In the 1D-SA-based method, the harmonic function is

curve fitted to the spectral integration over the wavenumber range of [0.01, 0.2] since

this yields satisfactory results [18]. However, the value of this integration is larger in the

directions where the radar backscatter is less contaminated by rain. Thus, if the upwind

direction is also contaminated by rain, the method will not produce accurate results.

However, in the proposed method, only the first IMF is used because it corresponds

to the short-scale waves that react to wind quickly and produces the best results. An

example is shown in Fig.4.6and Fig.4.7. It can be seen in Fig.4.6that rain contaminates

almost the whole image including the upwind direction, which is measured as 160.5◦ by

anemometer. It may be noted that the curve fitting result of the 1D-SA-based method in

Fig.4.7(b) shows peaks in directions where the radar backscatter is less contaminated by

rain, and the wind direction is estimated as 220.5◦. However, in the curve fitting result

of the proposed method in Fig.4.7(a), although the data is relatively scattered from the

fitted curve, the wind direction is estimated as 168.3◦, which is close to the anemometer

measurement. It should be noted that due to the high variance of the fitting in Fig.4.7(a),

the method needs to be further refined to better identify the wind-induced wave signature

from such heavily rain-contaminated data. The basic mechanism for wind direction

retrieval is similar to that in [15], which is based on the fact that only one backscatter

intensity peak exists in the upwind direction of an image collected with an HH-polarized

X-band radar operating at grazing incidence [13]. For synthetic aperture radar (SAR)
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or an altimeter operating at nearly-vertical incidence, ripples, whitecaps, and floating

foam induced by local winds decrease the local surface reflectivity [107, 108]. However,

X-band marine radar backscatter mainly results from the wind-induced ripples and foam.

The intensity increases with wind speed and shows one peak in the upwind direction.

The scatter plots of the radar results and anemometer measurements for the proposed

method and the 1D-SA-based method are shown in Fig.4.8. The root-mean-square

(RMS) differences with respect to the reference for the proposed method and the 1D-SA-

based method are 11.5◦ and 12.3◦, respectively, for all the data. Furthermore, for the

rain-free data, the RMS differences for both methods are 11.2◦. For the rain-contaminated

data, the RMS differences for the proposed method and the 1D-SA-based method are

12.9◦ and 17.8◦, respectively. It is found that while these two methods produce almost

the same wind direction results in rain-free cases, a significant improvement in rain cases

is obtained by the proposed method.

4.4.4 Wind Speed Results

The training data for the proposed method and the 1D-SA based method in [19] are

shown in Fig.4.9and Fig.4.10, respectively, for the Decca and Furuno radars. For

comparison purposes, the training data for the Decca radar are the same as those in [19],

i.e., they are taken from 12:00 to 23:00 on Nov. 27 and from 00:30 to 07:00 on Nov.

29. The training data for the Furuno radar are taken from 12:12, Nov. 29 to 12:04,

Nov. 30. The remaining data are used for validation. It can be seen that while fitting

results for the two methods are similar in Fig.4.10, the fitting result of the proposed

method is better than that of the 1D-SA-based method in Fig.4.9. In addition, for high

wind speeds (larger than around 10 m/s), Mcom in Fig.4.9(a) is stable, but the spectral

integrations in Fig.4.9(b) deviate from the fitted curve, leading to less reliable wind

speed results. This is because when the wind speed is high, the spectral integration is

not the same for rain-free and rain-contaminated data with similar wind speeds. An
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Fig. 4.8 Scatter plots of wind direction results: (a) proposed method; (b) 1D-SA based
method.
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Fig. 4.9 Training processes for the Decca data. (a) Proposed method; fitted curve for
training data: Mcom=5.84+53.43ln(w-0.5708). (b) 1D-SA based method; fitted curve for
training data: S=41.28+91.25ln(w-0.6839).
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Fig. 4.10 Training processes for the Furuno data. (a) Proposed method; fitted curve for
training data: Mcom=-41.1+31.87ln(w+3.219). (b) 1D-SA based method; fitted curve for
training data: S=-202.2+205.8ln(w+2.585).
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example is shown from Fig.4.11to Fig.4.13. Fig.4.11(a) and Fig.4.11(b) show rain-

contaminated and rain-free radar images, respectively, both of which are collected under

similar high wind speeds. Their wavenumber spectra averaged over azimuths derived

as in [19] are shown in Fig.4.12. It can be seen that since wind dominates in both

cases, the non-zero-wavenumber spectral integrations are similar for them. However,

the zero-wavenumber spectral strength for rain-contaminated data is higher than for

rain-free data. Thus, although the wind speeds are similar, their spectral integrations are

not the same, resulting in the scatter for high wind speeds seen in Fig.4.9(b). Fig.4.13

shows a1(∼,n) and GJ(∼,n) averaged over azimuths for the images in Fig.4.11. It

may be observed from the average a1(∼,n) and GJ(∼,n) in Fig.4.13that ma is larger

for rain-free data and mr is larger for rain-contaminated data. Moreover, after being

scaled by the weight of 6, the change of ma can be compensated for by the change of

mr, resulting in similar Mcom for rain-free and rain-contaminated data. It should be noted

that in Fig.4.9(b), some rain-contaminated data under high wind speed conditions have

lower spectral integrations. Different rain rates may lead to different spectral integrations

under high wind speeds. This observation may be addressed by considering rain rates

in future work. When the wind speed is low (lower than around 5 m/s), the result from

rain-contaminated data using the 1D-SA-based method in Fig.4.9(b) is more accurate

than the proposed method in Fig.4.9(a). This may be due to the overall underestimation

produced by the spectral integrations in the 1D-SA-based method when wind speeds are

lower than around 10 m/s. In addition, it may be observed that the rain-contaminated

data in Fig.4.9(b) deviates from the rain-free data, whereas the rain-contaminated data

in Fig.4.9(a) is consistent with the rain-free data.

The wind speed results obtained using the method outlined here along with that

in [19] are compared with the anemometer measurements in Fig.4.14. Again, the

1D-SA-based method in [19] is used for the comparison because it enables wind speed

estimation under both rain and rain-free conditions. Both the anemometer and radar

results are also moving-averaged over 10 minutes. It may be observed that the proposed
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Fig. 4.11 (a) Rain-contaminated radar image collected at 8:22, Nov. 27. Anemometer-
measured wind speed is 14.45 m/s. (b) Rain-free radar image collected at 11:01, Dec. 1.
Anemometer-measured wind speed is 14.94 m/s.
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Fig. 4.12 Average wavenumber spectrum over azimuths of: (a) Fig.4.11(a) (zero-
wavenumber strength is 11466 and non-zero-wavenumber integration is 49864); (b)
Fig.4.11(b) (zero-wavenumber strength is 7384 and non-zero-wavenumber integration is
48695).
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Fig. 4.13 Average a1(∼,n) and GJ(∼,n) over azimuths of: (a) Fig.4.11(a); (b)
Fig.4.11(b). The vertical axis represents gray level.
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Fig. 4.14 Comparison of the sequences of wind speed results. The results from rain-
contaminated data are indicated by the gray shadow.

method generally produces better results than the 1D-SA-based method, especially

during the period on Dec. 1 where the wind speed is high. It should be noted that

the radar results obtained using both methods deviate relatively significantly from the

anemometer measurements for late Nov 27 and early Nov 28. This deviation is because

swell-dominated seas existed during this period. The corresponding scatter plots of

the radar results and anemometer measurements for these two methods are shown in

Fig.4.15. The RMS differences with respect to the reference for the proposed method

and the 1D-SA-based method are 1.31 m/s and 1.48 m/s, respectively, for all the data.

Furthermore, for rain-free cases, the RMS differences for the proposed method and the

1D-SA-based method are 1.29 and 1.40 m/s, respectively. For rain-contaminated cases,

the RMS differences for the proposed method and the 1D-SA-based method are 1.41 and

1.92 m/s, respectively. Improvements are achieved in both cases by the proposed method.

The RMSDs displayed in Fig.4.15are only for the test data. It may also be seen from

Fig.4.15(a) that, in the low-wind-speed rain cases, the differences between the wind

speeds derived from the proposed method and the references are relatively large. This

is due to the overestimated Mcom in Fig.4.9(a) for rain-contaminated data. However, in
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Fig. 4.15 Scatter plots of wind speed results: (a) proposed method; (b) 1D-SA based
method. The RMSDs displayed are for test data only.
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Table 4.2 Error Statistic Results for Wind Direction Estimation

Bias
total
(◦)

RMSD
total
(◦)

Bias
rain
-free
(◦)

RMSD
rain
-free
(◦)

Bias
rain
(◦)

RMSD
rain
(◦)

SA
Decca -5.3 14.3 -4.5 13.1 -9.9 19.3

SA
Furuno -5.1 8.6 -4.8 8.1 -8.2 12.9

EEMD
Decca -5.0 13.2 -4.5 13.1 -7.4 13.5

EEMD
Furuno -4.8 8.4 -4.9 8.1 -3.5 11.3

Table 4.3 Error Statistic Results for Wind Speed Estimation

Bias
training
(m/s)

RMSD
training
(m/s)

Bias
testing
(m/s)

RMSD
testing
(m/s)

Bias
testing

rain
-free
(m/s)

RMSD
testing

rain
-free
(m/s)

Bias
testing

rain
(m/s)

RMSD
testing

rain
(m/s)

SA
Decca 0.10 1.05 -0.11 1.87 0.10 1.80 -0.87 2.11

SA
Furuno 0.12 1.16 0.10 1.03 0.06 1.00 0.31 1.19

EEMD
Decca 0.08 1.17 0.36 1.42 0.63 1.48 -0.18 1.54

EEMD
Furuno 0.13 1.25 -0.41 1.03 -0.41 1.05 -0.42 0.95

high wind speed cases, the wind speed results are significantly improved by the proposed

method. The biases and RMSDs of the wind speed and direction results for different

methods and radar datasets are shown in Table4.2and Table4.3.

It should be noted that the method proposed here produces a similar accuracy to

that of the improved intensity-level-selection (ILS) method in [17] for rain-free data.

However, rain-contaminated data was discarded in [17]. The method proposed here is

able to produce satisfactory results from rain-contaminated data by using the same model

as for the rain-free data. Thus, an important advantage of the proposed method is that

the rain-free and rain-contaminated data do not have to be trained separately. It is worth

109



mentioning that the accuracy of the proposed method differs from that in [56]. This

difference is mainly due to: 1) The datasets used are different. The radar in [56] was

deployed on a stationary platform, but the data analyzed here is from a shipborne system.

Undoubtedly, the ship motion will have some effect on radar imaging and, thus, on the

wind estimation. 2) The wind speeds determined from rain-contaminated data using the

proposed method were included in the error statistics.

4.5 Chapter Summary

In this chapter, a method for estimating wind direction and speed from X-band nautical

radar sea surface images based on EEMD and a normalization scheme is presented. The

method is feasible for both rain and rain-free conditions. A data control strategy is

proposed to separate rain-free and rain-contaminated data and to separate high-wind-

speed and low-wind-speed data. EEMD is used to decompose the radar data into several

IMFs and a residual. The normalization scheme is applied to the first IMF to obtain

its AM part. In wind direction estimation, the residual is used for the rain-free and

high-wind-speed rain-contaminated radar data, while the AM part of the first IMF is

used for low-wind-speed rain-contaminated radar data. For wind speed measurement,

both the residual and the AM part of the first IMF are used for both rain-free and

rain-contaminated radar data.

The method is validated using radar and anemometer data collected in a sea trial off

the east coast of Canada in late November and early December, 2008. The method is also

compared with an earlier 1D-SA-based method described in [18, 19]. For wind direction

estimation, it is found that for the proposed method as compared to the 1D-SA-based

method, the wind direction results are similar for rain-free data but significantly improved

for rain-contaminated data, with a reduction of about 4.9◦ in the RMS difference. For

the proposed wind speed estimation method, the results are improved for both rain-free

and rain-contaminated data with reductions of about 0.11 m/s and 0.51 m/s, respectively,
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in the RMS differences. Specifically, for the proposed EEMD-based method, the bias

and RMS difference of wind direction results are -4.9◦ and 11.5◦, respectively; the bias

and RMS difference of wind speed results are 0.14 m/s and 1.31 m/s, respectively.
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Chapter 5

Significant Wave Height Estimation

In this chapter, an ensemble empirical mode decomposition (EEMD)-based algorithm

and a modified shadowing-based method are proposed for significant wave height (HS)

estimation from X-band marine radar images. The results of both methods are compared

with those from the signal-to-noise ratio (SNR)-based method [24]. This chapter proceeds

as follows: Sections 5.1 and 5.2 contain the descriptions of the proposed EEMD-based

and modified shadowing-based methods, respectively. The experimental results obtained

from radar and buoy data are shown in Section 5.3. Section 5.4 contains a summary for

the chapter.

5.1 EEMD-Based Algorithm

Before processing, a subarea located in the near half-range (from 240 m to 1200 m in

this work) and ±30◦ around the upwind direction is extracted from the polar radar image.

The reason for doing so is that the sea clutter signals in that region are strong, and can

provide more distinct wave signatures. An example of a polar radar image is shown in

Fig.5.1, in which the subarea used is marked by a red rectangle.
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Fig. 5.1 An example of a polar radar image acquired at 0:36, Nov. 27, 2008. The subarea
is within the red rectangle.

Then, for the M′×N′ pixel intensities matrix, Isub, of a subarea as given by

Isub =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

i1,1 i1,2 ... i1,N′

i2,1 i2,2 ... i2,N′

... ... ... ...

iM′,1 iM′,2 ... iM′,N′

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (5.1)

where M′ is the number of range cells and N′ is the number of azimuth directions. EEMD

is applied to each column. Taking the n′th column to be

Isub(∼,n′) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

i1,n′

i2,n′

...

iM′,n′

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (5.2)
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for example, the corresponding EEMD result may be written as

Isub(∼,n′) =
5

∑
j=1

D j(∼,n′)+R(∼,n′), (5.3)

where D j(∼,n′) is the jth IMF of Isub(∼,n′) expressed as

D j(∼,n′) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

d1,n′, j

d2,n′, j

...

dM′,n′, j

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (5.4)

and R(∼,n′) is the residual of Isub(∼,n′) which may be written as

R(∼,n′) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

r1,n′

r2,n′

...

rM′,n′

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (5.5)

It should be noted that in this work, the radar data is decomposed into 5 IMFs (i.e., j

ranges from 1 to 5) and a residual by the EEMD. Technically, the data can be decomposed

into more than 5 IMFs, but it is not necessary because the magnitudes of additional IMFs

are negligible compared to the first 5. To establish whether this number may be used as a

rule of thumb will require further testing with data collected under a variety of conditions.

An example of resultant IMFs derived from Isub(∼,1) in Fig.5.1is shown in Fig.5.2.

In order to indicate the insignificance of higher-order IMFs, the sixth IMF is shown in

Fig.5.2as the red line.

Next, a normalization scheme [36] is applied to each IMF, D j(∼,n′), resulting in

D j(∼,n′) = A j(∼,n′)◦Fj(∼,n′), (5.6)
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Fig. 5.2 An example of resultant IMFs derived from Isub(∼,1) in Fig.5.1. The vertical
axis represents gray level.
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Fig. 5.3 An example of resultant AM portions derived from C j(∼,1) in Fig.5.2. The
vertical axis represents gray level.
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where ◦ denotes the element-by-element multiplication of two vectors, and A j(∼,n′),

expressed as

A j(∼,n′) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

a1,n′, j

a2,n′, j

...

aM′,n′, j

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (5.7)

and Fj(∼,n′), represented as

Fj(∼,n′) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

f1,n′, j

f2,n′, j

...

fM′,n′, j

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (5.8)

are the AM and FM portions, respectively, of D j(∼,n′). An example of the resultant AM

portions derived from D j(∼,1) in Fig.5.2is shown in Fig.5.3. From Fig.5.3, it is clear

that the AM portion of the sixth IMF is much lower than that of IMFs 2-5.

Finally, after the above procedure is conducted for each column of Isub, a parameter,

ASWH , is defined as

ASWH =
1
N′

1
M′

N′

∑
n′=1

M′

∑
m′=1

5

∑
j=2

am′,n′, j. (5.9)

Similarly as in [24], a linear relationship between HS and ASWH can be established

through a curve-fitting process as

HS = p0 + p1 ·ASWH , (5.10)

where p0 and p1 are coefficients determined by curve fitting ASWH with HS measured by

buoy. After the coefficients are determined, HS can be estimated from different ASWH

according to (5.10). It should be noted that only the AM portions from the second IMF

to the fifth IMF are used for the HS estimation. This choice was made purely on the
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Fig. 5.4 Basic steps of the EEMD-based algorithm.

basis of the fact that, for the dataset used here, inclusion of the first IMF caused marginal

reduction in the accuracy of the results. The underlying physical reason for this has

not yet been determined and will likely require further investigation using more data

collected under a greater variety of wave and wind conditions. The basic steps of the

EEMD-based algorithm are depicted in Fig.5.4.

5.2 Modified Shadowing-Based Algorithm

Modifications made to the original shadowing-based algorithm [25] in order to im-

prove the accuracy of the HS estimation result are described in this section. Moreover,

unlike [25], to make the algorithm fully independent of external sensors, the average

zero-crossing wave periods derived from radar rather than buoy data are used for HS

calculation in this modified shadowing-based algorithm.

5.2.1 Subarea Selection

The intensity level difference of an edge pixel from its adjacent pixels depends on range

and direction. This is because the backscatter signals are stronger and the intensity

117



level differences between shadow and no shadow are larger at near ranges and in the

upwind direction. As described in Section 2.2.2.4-A, the shadow threshold intensity

τS for the shadowing-based algorithm is selected based on the pixels with the highest

B-percentile of intensity level differences. Applying such a uniform τS to the whole

image may result in overestimation of shadowed areas for the portion in the far range

or directions other than upwind. However, it will not significantly affect the edge

detection for near ranges and upwind direction. Although the range dependency has

been considered in the original shadowing algorithm in which the data from far ranges

are not used for calculating illumination ratio, root-mean-square (RMS) surface slope

and significant wave height [25], the average RMS surface slope is derived from all the

azimuth directions in one shadow image. Because of the dependence of radar backscatter

on wind direction, the image portions in the azimuths far from the upwind direction will

have lower sea clutter intensities, and this may result in overestimation of shadowed

areas and the corresponding wave height. Here, a single subarea is selected from the

portion ±5◦ around the upwind direction in each shadow image for one RMS surface

slope estimation since the clutter signal is stronger in those directions and more robust

results may be obtained. The usual technique for determining the upwind direction is

found in [15]. After obtaining all the RMS surface slopes from all the images in one time

sequence, an average RMS surface slope is calculated.

5.2.2 Edge Pixel Intensity Histogram Smoothing

In [25], the shadow threshold is directly determined as the intensity value corresponding

to the highest occurrence of the intensity histogram of edge pixels. This is viable when

the distribution is smooth. However, in this work, the data has a small gray scale depth (8-

bit, i.e. 0-255) and a relatively small number of pixels. Thus, the shadow threshold may

not be correctly determined by seeking the highest occurrence of the histogram. In order

to improve the accuracy of this threshold, a smoothing process using a spline function is
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Fig. 5.5 Statistical distribution of the edge pixel gray level for the radar data collected at
0:01, Nov. 27, 2008.

first applied to the edge pixel intensity histogram, and the threshold is estimated from the

smoothed result. The statistical distribution of the edge pixel gray level for the radar data

used here is shown in Fig.5.5. The result from the figure was generated by one radar

image. It can be seen from the figure that the smoothing procedure proposed in this work

can achieve the accurate shadow threshold for the radar data, by excluding the outlier

edge pixels located within the intensity level of 50 to 100.

5.3 Experimental Results

5.3.1 Data Overview

The same datasets as used in previous chapters are employed to test the proposed methods.

During the data collection period, the sea was mainly dual-mode (wind and swell) sea.

The reference HS were measured by two free-floating Triaxys directional wave buoys

deployed approximately 10 km away from the radar. From Section 5.1 it is clear that

the proposed method is able to produce one HS estimate from a single frame of the radar
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images after the training procedure is completed. It should be noted that each radar

image sequence of 32 images was recorded approximately every two minutes, and that

only one image from each image sequence was used to estimate HS. Since the buoys

produced 30-minute-averaged HS measurements, the radar-derived HS were averaged

over 30-minute intervals for comparison with the buoy references. 168 records of HS

pairs were used for the radar-buoy comparisons in this study.

5.3.2 Experimental Results

Radar and buoy data from 0:00, Nov. 27 to 2:50, Nov. 28 and from 12:30 to 19:30,

Dec. 4 are used to train the linear relationship between HS and ASWH , as depicted in

Fig.5.6(a). Note that the rain-affected data shown in Fig.5.6(a) are not included in

the training and the following statistical analysis. Based on this relationship, the HS

results obtained by the EEMD-based method are compared with the buoy-measured HS

by means of a scatter plot shown in Fig.5.6(b). It can be seen that the HS retrieved by the

EEMD-based method agree well with the buoy references. The correlation coefficient is

around 0.91 and the root-mean-square (RMS) difference is around 0.36 m. For the HS

results obtained using the modified shadowing-based method shown in Fig.5.6(c), the

correlation coefficient is around 0.84 and the RMS difference is around 0.48 m.

For comparison purposes, the scatter plots of the HS results determined using the

SNR-based method [24] based on same data are shown in Fig.5.6(d). The SNR-based

method is used in the comparison because it is the most widely accepted method for

HS estimation. It should be mentioned that the same set of training data is used for the

calibration required for the SNR-based method. It can be seen that the proposed EEMD-

based and modified shadowing-based methods outperform the SNR-based method in

the HS estimation, with improvements of about 0.30 and 0.23, respectively, in the

correlation coefficient, and reductions of about 0.42 m and 0.30 m, respectively, in the

RMS difference with respect to the buoy reference. Note that the training process and
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Fig. 5.6 (a) Linear relationship between HS and ASWH : HS = -5.241 + 0.1353ASWH ; (b)
scatter plot of the buoy-measured and radar-derived HS; (c) modified shadowing-based
method; (d) SNR-based method (calibration model: HS = -0.09246 + 3.685

√
SNR); (e)

Linear relationship between HS and ASWH : HS = -5.355 + 0.135ASWH (using IMF 2-6);
(f) scatter plot of the buoy-measured and radar-derived HS (using IMF 2-6).
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Fig. 5.7 (a) Time sequences of HS results derived by the proposed EEMD-based method,
the SNR-based method, and the modified shadowing-based method, comparing with
buoy references. (b) Anemometer-measured wind speed and direction as well as buoy-
measured wave direction.
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Table 5.1 Inter-Comparison of HS Estimation Methods

Methods SNR-based
Modified

shadowing-based
EEMD-based

Wave Spectrum
Estimation

√
× ×

Wave Height
Estimation

√ √ √

RMS Difference of
HS Estimation (m) 0.78 0.48 0.36

Calibration-Free ×
√

×

Images Required Multiple Single Single

estimation results using more IMFs (2-6) are shown in Fig.5.6(e) and (f), respectively. It

may be observed that they are similar to Fig.5.6(a) and (b) in which only IMFs 2-5 are

used. Moreover, the time sequences of the HS results derived using these three methods

and the buoy data are shown in Fig.5.7(a). The gaps in Fig.5.7(a) are due to the removal

of rain-contaminated data and the fact that no radar or buoy data were available. It

may also be observed that the HS results derived from shipborne radar data using the

proposed methods agree better with the buoy references than those from the SNR-based

method. Anemometer-measured wind speed and direction as well as buoy-measured

wave direction are shown in Fig.5.7(b). It may be seen from Fig.5.7(b) that swell

appeared for most of the experiment period, especially on Nov 27 when the wave heights

were large. The inter-comparison of methods for HS estimation is shown in Table5.1.

5.4 Chapter Summary

In this chapter, an EEMD-based method and a modified shadowing-based method to

estimate HS from X-band marine radar images are proposed. Satisfactory HS results are

obtained with a correlation coefficient of around 0.91 and a RMS difference of around

0.36 m for the EEMD-based method, and a correlation coefficient of around 0.84 and

a RMS difference of around 0.48 m for the modified shadowing-based method, with
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respect to the buoy reference. Moreover, an inter-comparison shows that the proposed

methods outperform the SNR-based method with improvements of about 0.42 m and 0.30

m, respectively, in the RMS difference with respect to the buoy reference. This appears

to indicate that the proposed methods are more robust than the SNR-based method for

ship-borne radar applications.
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Chapter 6

Wave Direction and Period Estimation

In this chapter, an algorithm based on the Radon transform (RT) is proposed to estimate

wave parameters, including wave direction, peak wave period, and mean wave period,

from X-band marine radar images. The chapter proceeds as follows: In Section 6.1, the

proposed algorithm is described. The experimental results obtained from radar and buoy

data are presented in Section 6.2. Section 6.3 contains a summary for the chapter.

6.1 RT-Based Algorithm

The RT is defined as [109]

fRT (ξ ,rd) =
∫∫

s(x,y)δ (rd − xcosξ − ysinξ )dxdy, (6.1)

where s(x,y) is the intensity level of an image at position (x,y) in the Euclidean domain,

rd is the normal distance from the center of the image to a straight line, ξ is the projection

direction of the straight line, which is the angle between the orthogonal of the straight line

and the x-axis, and δ is the Dirac delta function. The definition of the RT is illustrated in

Fig.6.1.
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Fig. 6.1 Diagram for the definition of the RT.

6.1.1 Data Preprocessing

Before applying the RT to the radar data, some preprocessing is required. First, since they

may obscure the wave signatures, noise lines due to interference from other marine radars

are removed from the radar images as in Section 3.4.2. Secondly, since homogeneous

radar images are required for the algorithm, radar backscatter heterogeneity observed

in radar images due to range and azimuth dependence is removed using the methods

presented in [44]. Thirdly, radar images are geo-referenced as in [110] since the radar in

this work was mounted on a moving ship, and incorrect positions of the centres of radar

images will negatively affect the estimation of wave parameters.

6.1.2 Initial Guess of Wave Direction

The first image of each radar image sequence is used to obtain an initial guess of the

wave direction. As shown in Fig.6.2, 8 slightly overlapping sub-images, covering all

mid-range azimuths, are extracted from the first image of an image sequence. Next,

the RT is applied to each sub-image. Examples of one sub-image and its RT result are

depicted in Figs.6.3(a) and6.3(b), respectively. Fig.6.3(c) is the standard deviation

of the RT result as a function of projection direction for Fig.6.3(b). Then, as in [ 44],

the standard deviations of the RT results as a function of projection direction for all
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Fig. 6.2 Radar image with 8 sub-images shown as red squares.

sub-images are averaged, and the projection direction corresponding to the peak averaged

standard deviation is considered as the initial guess for the wave direction. Note that an

ambiguity of 180◦ exists in the estimation since whether the wave is propagating from or

to that direction cannot be determined. This problem will be addressed in subsequent

steps.

6.1.3 Wave Direction Update

Having obtained an initial guess for the wave direction, two sets of sub-images, one

located in that direction and the other in the opposite direction, are extracted from

each image of the image sequence. Then, the RT is applied to all these new sub-

images, and the standard deviations of these transform results as a function of projection

direction are averaged for each projection direction. The wave direction is updated as the
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Fig. 6.3 (a) One sub-image from Fig.6.2. (b) RT result of the sub-image in Fig.6.3(a). (c)
Standard deviation of the RT result as a function of projection direction for Fig.6.3(b).
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Fig. 6.4 (a) Construction of intensity sequences extracted along the wave direction from
the RT results. (b) RT of the construction in Fig.6.4(a). (c) Standard deviation of the RT
result as a function of projection direction for Fig.6.4(b).

projection direction corresponding to the peak averaged standard deviation, but still with

an ambiguity of 180◦.

6.1.4 Wave Direction Ambiguity Removal

For each set of sub-images, intensity sequences along the updated wave direction in all

the RT results are extracted and arranged along the time axis as shown in Fig.6.4(a),

from which the propagation of wave crests and troughs with time can be observed. From

the intensity distribution over distance and time in Fig.6.4(a), it can be clearly seen that

each wave crest (or trough) propagates from right to left with time. Thus, the ambiguity

of 180◦ can be removed.
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6.1.5 Dominant Wave Speed and Peak Wave Period

Wave speed can be trivially calculated as the ratio of the distance a wave travels to the time

it takes the wave to travel that distance. Therefore, with the distance and time information,

dominant wave speed can be obtained from the dominant projection direction of the wave

signatures in Fig.6.4(a). In order to determine the dominant projection direction, the

RT is applied to Fig.6.4(a), the result of which is shown in Fig.6.4(b), and the standard

deviation of the RT result as a function of projection direction is shown in Fig.6.4(c).

Again, the standard deviations of the RT results of two time-distance images (one for

each set of sub-images) as a function of projection direction are averaged. Then, the

dominant projection direction ξD is the projection direction corresponding to the peak

averaged standard deviation, and the dominant wave speed vD can be calculated from the

dominant projection direction ξD as

vD = |tanξD| . (6.2)

Peak wave period Tp can then be calculated from the dominant wave speed vD based on

the wave dispersion relationship as

Tp =
2πvD

g
, (6.3)

where g is the gravitational acceleration.

6.1.6 Mean Wavelength and Mean Wave Period

Since each row of the time-distance image in Fig.6.4(a) represents a waveform at a

time index, mean wavelength λM can be estimated by detecting the average distance

between adjacent zero-crossings in each row of the time-distance images. Then, mean

wave period Tm02 can then be calculated from the mean wavelength λM based on the
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wave dispersion relationship as

Tm02 =

√
2πλM

g
. (6.4)

It should be noted that (6.3) and (6.4) can only be applied to deep ocean waves.

6.2 Experimental Results

6.2.1 Data Overview

The same datasets as used in previous chapters are employed to test the proposed

algorithm. Two free-floating Triaxys directional wave buoys, which were deployed

approximately 10 km away from the radar, were used to obtain reference wave parameters.

Since the buoys provided averaged measurements every 30 minutes, the wave parameters

derived from the radar data were also averaged every 30 minutes for comparison with

the buoy references.

6.2.2 Results

The estimation results for wave direction, peak wave period, and mean wave period are

shown in Figs.6.5,6.6, and6.7, respectively. The results derived from the traditional

Fourier-based algorithm are also shown for comparison purposes because it is the most

widely used approach for wave parameter estimation. The red rectangles in the time

sequences of the figures indicate that the buoys did not work properly during those

periods. Therefore, data in those periods are not included in the scatter plots and

statistical analyses. It can be seen from the statistics that, compared to the traditional

Fourier-based algorithm, the estimation results are improved by the RT-based algorithm

with an increase of 0.01, 0.03, and 0.05 in the correlation coefficient and decrease of 1.2◦,

0.15 s, and 0.40 s in the root-mean-square (RMS) difference for the wave direction, peak
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Fig. 6.5 (a) Comparison of time sequences of wave directions estimated from Fourier-
based algorithm and RT-based algorithm. (b) Scatter plot of wave direction estimates
from a Fourier-based algorithm. (c) Scatter plot of wave direction estimates from the
RT-based algorithm.
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Fig. 6.6 (a) Comparison of time sequences of peak wave periods estimated from Fourier-
based algorithm and RT-based algorithm. (b) Scatter plot of peak wave period estimates
from a Fourier-based algorithm. (c) Scatter plot of peak wave period estimates from the
RT-based algorithm.

136



Nov 27 Nov 28 Nov 29 Nov 30 Dec 1 Dec 2/Dec 4 Dec 5
0

5

10

15

20

25

30

Time
(a)

M
ea

n 
w

av
e 

pe
rio

d 
(s

)

 

 
Fourier−based algorithm
RT−based algorithm
Buoy

0 5 10 15
0

5

10

15

Buoy mean wave period (s)
(b)

R
ad

ar
 m

ea
n 

w
av

e 
pe

rio
d 

(s
)

r = 0.57
RMSD = 1.54 s
Bias = 1.24 s

137



0 5 10 15
0

5

10

15

R
ad

ar
 m

ea
n 

w
av

e 
pe

rio
d 

(s
)

Buoy mean wave period (s)
(c)

r = 0.62
RMSD = 1.14 s
Bias = 0.73 s

Fig. 6.7 (a) Comparison of time sequences of mean wave periods estimated from Fourier-
based algorithm and RT-based algorithm. (b) Scatter plot of mean wave period estimates
from a Fourier-based algorithm. (c) Scatter plot of mean wave period estimates from the
RT-based algorithm.

wave period, and mean wave period, respectively. The RT-based algorithm works well

mainly because it enables the detection of linear features in a noisy digital image. This is

especially suitable for the detection of wave signatures in X-band marine radar images.

6.3 Chapter Summary

In this chapter, a Radon transform based algorithm for estimating wave direction, peak

wave period, and mean wave period from X-band marine radar image sequences is

proposed. Compared to the traditional Fourier-based algorithm, the estimation results are

improved by the proposed algorithm with a reduction in the RMS difference with respect

to buoy references of 1.2◦, 0.15 s, and 0.40 s, respectively, for wave direction, peak wave

period, and mean wave period. These results show promise for the application of the RT

to X-band marine radar images for wave parameter retrieval.
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Chapter 7

Conclusion

7.1 Summary

In this thesis, new algorithms are presented for the extraction of ocean wind and wave

parameters from ship-borne X-band marine radar sea surface images. Wind parameter

measurements from rain-contaminated radar data are improved using the proposed ensem-

ble empirical mode decomposition (EEMD)-based algorithms. More robust significant

wave height estimates are achieved by the EEMD-based and modified shadowing-based

algorithms. Wave direction and periods are estimated by the Radon transform (RT)-based

algorithm. The proposed algorithms are validated using radar, anemometer, and buoy

data collected in a sea trial off the east coast of Canada in late November and early

December, 2008.

Two new schemes, i.e., 1D- and 2D-EEMD-based methods are first proposed to

retrieve wind direction from radar data contaminated by rain under low wind speeds. Each

rain-contaminated radar image is decomposed into separate intrinsic mode function (IMF)

components using 1D- or 2D-EEMD. The standard deviation of one IMF component, or

the combination of several IMF components, as a function of azimuth is least-squares

fitted to a harmonic function to determine the wind direction. Compared to the spectral-

analysis-based method, both the 1D- and 2D-EEMD-based algorithms improve the
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wind direction results in rain events under low wind speeds, showing a reduction of

7.4◦ and 8.7◦, respectively, in the root-mean-square (RMS) difference with respect to

the anemometer measurements. The reasons for the improvements lie in the adaptive

nature of the EEMD which makes it particularly applicable in the analysis of non-linear

and non-stationary data as is the case for the radar data used in this thesis. Instead of

using a fixed wavenumber range of [0.01, 0.2] as in the spectral-analysis-based method,

EEMD decomposes data adaptively into different IMF components and a residual. Rain

contamination is mostly retained in the residual, and the IMF components which contain

wind-induced wave signatures are used for wind direction estimation.

Next, wind direction and speed are retrieved from both rain-free and rain-contaminated

radar data using EEMD incorporating normalization. A data control strategy is proposed

to separate rain-free and rain-contaminated data and to separate high-wind-speed and

low-wind-speed data. EEMD is applied to each radar image to obtain several IMFs and

a residual. A normalization scheme is applied to the first IMF to obtain its amplitude

modulation (AM) part. Based on curve-fitting a harmonic function, for the rain-free and

high-wind-speed rain-contaminated data, wind direction is determined from the residual,

while for the low-wind-speed rain-contaminated data, wind direction is determined from

the AM part of the first IMF. Wind speed is determined from a combination of the

residual and the AM part of the first IMF for both rain-free and rain-contaminated data

using a logarithmic relationship. For wind direction estimation, it is found that compared

to the spectral-analysis-based method, the wind direction results are similar for rain-free

data but significantly improved for rain-contaminated data by the proposed method with

a reduction of about 4.9◦ in the RMS difference. For wind speed estimation, the results

are improved for both rain-free and rain-contaminated data using the proposed method

with reductions of about 0.11 m/s and 0.51 m/s, respectively, in the RMS differences.

Again, the superior results can be explained from the application of the EEMD. The

first IMF and residual that are adaptively decomposed from the EEMD, representing

the wind-induced small-scale wave signatures and overall image intensity, respectively,
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are employed instead of the fixed wavenumber range of [0.01, 0.2] and 0 as in the

spectral-analysis-based method.

Then, significant wave height, HS, is estimated using the novel EEMD-based and

the modified shadowing-based algorithms. In the EEMD-based algorithm, the data

sequence in each radial direction of a radar sub-image is decomposed by the EEMD

into several IMFs. The normalization scheme is then applied to the IMFs to obtain

their AM parts. The sum of the AM parts from the second to the fifth IMFs is used

to estimate the HS by curve-fitting a linear model. In the modified shadowing-based

algorithm, modifications including selecting a subarea along the upwind direction and

smoothing the edge pixel intensity histogram are made to the original shadowing-based

algorithm. An inter-comparison shows that the proposed EEMD-based and modified

shadowing-based algorithms outperform the SNR-based method with improvements

of about 0.42 m and 0.30 m, respectively, in the RMS difference with respect to the

buoy reference. The traditional SNR-based method requires an empirical modulation

transfer function (MTF), which is influenced by many factors including surrounding

environmental conditions and radar set-up. Such an MTF may introduce inaccuracy in

HS estimation, especially for a ship-borne radar. The proposed algorithms, however,

avoid the use of the MTF and produce robust results.

Finally, an algorithm based on Radon transform (RT) for estimating wave direction,

peak wave period, and mean wave period is proposed. An initial guess of wave direction

is first estimated from the first image of an image sequence by using the RT. Then, by

using the RT again, sub-images located in the initial guess of wave direction from each

image of an image sequence are used to determine wave parameters. Compared to the

traditional Fourier-based algorithm, the estimation results are improved by the proposed

RT-based algorithm with a reduction of 1.2◦, 0.15 s, and 0.40 s, respectively, for wave

direction, peak wave period, and mean wave period, in the RMS difference with respect

to buoy references. The results show the promise of the application of RT to X-band

marine radar images for wave parameters retrieval. This is due to the properties of the
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RT which make it useful in detecting linear features from noisy images such as are used

in this thesis.

7.2 Suggestions for Future Work

It should be noted that, during most of the data collection period, the area was dominated

by dual-mode (wind and swell) sea. The performance of the proposed algorithms should

be further investigated under more general wind and wave conditions. Furthermore, the

algorithms should be further tested using data collected from a coastal installation for

which the influence of platform motion on both radar and anemometer measurements

will not be an issue. In addition, the dependency of the proposed algorithms on radar

parameters such as range resolution and antenna beam width should be investigated. It

should also be noted that the radar data used in this work do not contain targets such as

islands or other ships. If such targets exist in the radar images, the proposed algorithms

need to be modified to detect the targets and eliminate their effects.

Based on the data used in this work, for the wind direction estimation from rain-

contaminated radar data under low wind speeds, the third IMF component generates the

best result for the 1D-EEMD-based algorithm, but the first IMF component produces

the best result for the 2D-EEMD-based algorithm. As with any experimentally deduced

results, it will be useful to further validate these observations with more extensive and

varied datasets. Since wind-induced wave signatures are mainly contained in the first

several IMF components, whether only one or a combination of such IMF components

should be used requires further investigation. While these wind direction results are

encouraging, the computational costs for the EEMD-based algorithms are expensive, and

their computational complexity requires further investigation. For the wind direction and

speed estimation from both rain-free and rain-contaminated radar data, wind direction

retrieval in the case of rain contamination existing in the whole radar image needs to be

further analyzed by seeking a method that can better identify the wind-induced wave
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signature from such data. The accuracy of wind speed estimation in low-wind-speed rain

cases needs to be further improved. In addition, the effect of rain rates on radar data is

worth investigating.

For wave parameter measurements, the proposed algorithms are applied to rain-

free radar data only. Future work should focus on extending these algorithms to rain-

contaminated radar data. For the shadowing-based algorithm, rain leads to wave height

underestimation, and low wind speed results in wave height overestimation. Thus,

further image processing efforts are required to address these concerns. Furthermore, the

theoretical limitations (minimum wind, minimum wave height, antenna height, etc.) of

the algorithms still need to be investigated. Shadowing modulation in the radar imaging

mechanism may be further investigated, and the information from sea surface slopes

that may be obtained from the radar backscattering model based on shadowing may be

involved in the wave height estimation.

To date, various remote sensing technologies other than marine radar have been used

for ocean wind and wave parameter estimation. These include synthetic aperture radar

(SAR), high frequency (HF) radar, and S-band radar. Compared to SAR images, X-band

marine radar images contain not only spatial information but also temporal evolution

of the sea surface, which enables unambiguous directional wave spectrum estimation.

Compared to HF radar, the cost of deployment and maintenance of X-band radar is low,

and the compactness of the radar allows it to be easily installed on off-shore (stationary

or moving) platforms. While, because its wavelength is longer than that of X-band radar,

S-band works well for sea surface observation under rain conditions, it provides a coarser

resolution and can underestimate high-frequency wave components. Moreover, its larger

size also makes it inconvenient for ship-borne applications. More recently, coherent radar

has become of interest in the ocean remote sensing community. This is because of its

potential to be used in the estimation of wave height without requiring calibration using

external sensors since it preserves the phase information of the returned signal. However,

the phase information provided by the coherent radar can also increase the cost. Thus,
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if robust techniques for rain contamination mitigation and calibration-free wave height

estimation are improved for X-band marine radar, the utility of such radars for ocean

observation will continue to be enhanced.
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