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Abstract 

Punching shear capacity of reinforced concrete slabs is influenced by the following 

material properties: concrete compressive strength, flexural reinforcement ratio, inclusion of 

steel fibers in the concrete mix, and the reinforcing steel yield strength. A review of current finite 

element analysis models reveals that a unified approach to include all of these variables into one 

coherent model does not exist.  

This thesis presents a finite element model capable of making accurate predictions on the 

ultimate punching shear load and load – deflection response of a reinforced concrete slab. The 

model simulates the nonlinear constitutive properties of reinforced concrete by proposing a 

robust model to represent the behavior through the Concrete Damaged Plasticity (CDP) 

constitutive model. The thesis defines the parameters for the CDP model in a finite element 

analysis and develops an expression to mitigate mesh size dependency. A tension – stiffening 

model is proposed using an exponential decay expression with variables to account for varying 

concrete compressive strength, flexural reinforcement ratio, inclusion of steel fibers in the 

concrete mix, and the reinforcing steel yield strength. The model is calibrated using a series of 

experimental data from the literature and validated by successfully replicating the punching shear 

behavior of experimental specimens data from the literature. 
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Chapter 1 

1 Introduction 

1.1 General 

Reinforced concrete slabs are important structural elements that have widespread use in 

building construction throughout the world. The efficiency of a reinforced concrete two-way slab 

is rarely ever realized through the flexure of the slab. Rather, the required design thickness is 

usually governed by the shear demands at the slab – column connection. In order to minimize the 

overall slab thickness, the designer must work to either reduce the shear stress concentration at 

the slab column interface or increase the slab shear resistance to prevent the column from the 

catastrophic failure of “punching” through the slab. This type of failure is brittle, providing very 

little warning to building occupants and can lead to a progressive collapse of the structure. Due 

to this danger, understanding and improving the shear capacity of reinforced concrete flat slabs is 

an area of considerable interest in the field of reinforced concrete research. To gain a better 

understanding of the behavior it is necessary to be able to accurately predict the overall elastic 

and inelastic deformation response of the slab as well as the punching shear strength. 

Current design provisions for punching shear resistance of reinforced concrete slabs have 

been developed by empirical and statistical formulations derived through many years of 

experimental research. Despite the extensive amount of research on punching shear, there is still 

not a full understanding of this phenomenon. The development of reliable analytical techniques, 

such as finite element analysis (FEA), can reduce the time and cost of otherwise expensive 

experimental tests. An extensive amount of testing is required to cover the wide range of 

parameters that influence punching shear and gain an understanding of the behavior. Moreover, 
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physical modeling of punching shear slabs is time consuming and requires financial resources. 

As an alternative, finite element modeling can be used to supplement experimental studies. Finite 

element models are useful in being able to examine many parameters in a reasonable amount of 

time and can be based on realistic slab geometry that avoids the size effect encountered in small-

scale physical models. Finite element models can also better simulate the loading and support 

conditions of an actual structure that could be limited by the constraints of a laboratory. 

The challenge in using nonlinear finite element analysis is the proper selection of the 

material model that can represent the complex behavior of concrete. This complexity is due to 

the nonlinear behavior of concrete in compression and tension, tensile softening/stiffening, 

cracking and stiffness reduction, bond between concrete and reinforcing steel, aggregate 

interlock, and dowel action. The development of such a FEA model must first be calibrated with 

experimental results in order to establish the reliability of making predictions on the material’s 

behavior.  

1.2 Scope & Objectives 

The current thesis presents a finite element model that can predict the punching shear 

behavior of reinforced concrete slabs. The purposed model will predict, with reasonable 

accuracy, the ultimate load and load – deflection response of reinforced concrete slabs with 

varying the parameters that influence punching shear such as: concrete strengths, reinforcement 

ratios, steel fiber volume, and high strength steel reinforcement. A unified approach to include 

all of these variables into one general punching shear FEA model does not exist. This thesis will 

contribute to the research of FEA modelling of reinforced concrete by providing a punching 

shear model to fill this gap. 
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1.3 Thesis Outline 

Chapter 2 contains the literature review. It begins with a discussion on the failure 

mechanism of punching shear and then precedes with a description of the variables that influence 

punching shear resistance and a description on the compressive and tensile behavior of concrete. 

Next, the literature review examines the use of finite element analysis to simulate the punching 

shear behavior of reinforced concrete flat slabs.  

Chapter 3 describes the physical experiments and the test set-ups that are being modelled 

using finite element analysis and used to calibrate the material model that is proposed in the 

thesis.  

Chapter 4 outlines the theoretical background and the parametric definitions for the 

constitutive FEA model used in this thesis. A parametric study is conducted to examine the 

effects that the constitutive parameters of dilation angle and the viscosity have on the load – 

deflection response of a concrete slab. The chapter then describes the implementation of the 

concrete compressive and tensile behavior into the model. This is preceded with a discussion on 

FEA modeling of the flexural reinforcement, the type of finite elements, boundary conditions, 

and load application. The chapter concludes with an investigation on convergence issues 

encountered in a FEA model with the discretization of the concrete slab into a finite element 

mesh and develops a methodology for achieving mesh size independency. 

 Chapter 5 discusses the development of the FEA model through calibration of the 

experimental results of previous researchers. The focus of this chapter to develop an expression 

for the tension stiffening parameters that accounts for varying the concrete compression strength, 
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varying the flexural reinforcement ratios, the inclusion of hooked steel fibers, and the yield 

strength of steel reinforcement. 

The proposed FEA model is validated in Chapter 6. The model is used to simulate the 

punching shear behavior of nine slab specimens from the literature and compared with their 

experimental results.  

Chapter 7 summarizes the findings of this thesis and presents recommendations for future 

research on this subject.  

 



 

5 

 

Chapter 2 

2 Literature Review 
 

2.1 Punching Shear Failure Mechanism 

Punching shear failure occurs around a support where high shear stresses can develop. A 

punching failure is characterized by a wedge of concrete that punctures the slab above a column. 

The mechanism for punching shear failure initiates with a circumferential tensile crack on the top 

surface of the slab around the column perimeter. The crack develops first in regions of high shear 

stress adjacent to the corners of a column [1]. As the shear stress increases, more tensile cracks 

form around the column and propagate, under increasing load, to the line of contra-flexure in the 

slab. Recently, Muttoni [2] developed the Critical Shear Crack theory to describe how the 

opening of the shear cracks around a column increases with slab rotation as shown in Figure 2-1. 

He explains that as the cracks widen the concrete loses the ability to transfer shear across the 

crack interface by aggregate interlock. Flexural reinforcement in the slab begins to yield in the 

immediate vicinity of the column thus permitting larger rotations to occur about the slab-column 

interface. The shear cracks propagate through the slab and into the inclined concrete compressive 

strut, which is carrying the shear into the column. The loss of the compression strut from the 

intrusion of the shear crack eventually leads to the punching shear failure of the slab.  
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Figure 2-1: Critical shear crack [2]. 

2.2 Variables that Influence Punching Shear Resistance 

Punching shear failure can be influenced through a number of variables in a concrete slab 

such as: concrete strength, flexural reinforcement ratio, column size, and the thickness of the 

slab. The state of the art reports by Regan [3] and CEB-FIB Model Code 2010 [4] provide a 

thorough analysis on the effect that each of these variables have on punching shear strength. A 

synopsis of the research into these variables will be discussed in this section.  In addition, the 

effect of the yield strength of the flexural reinforcing steel will be discussed as another variable 

that effects the punching shear strength of reinforced concrete slabs. Finally, the review will 

examine how punching shear strength is enhanced through the use of steel fibers in the concrete 

mixture.  

2.2.1 Concrete Strength 

Early research by Moe [5] showed that the shear resistance of concrete is highly 

dependent on its tensile strength. The shear cracks that initiate punching shear failure develop 

when the tensile strength of the concrete is exceeded. The shear strength of concrete is generally 
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expressed as a function of its compressive strength 𝑓𝑐
′. Since concrete compressive strength is 

proportional to its tensile strength, researchers typically express the shear strength as a function 

of compressive strength because it is more common to refer to concrete by its compressive 

strength. Graf [6] was one of the first to study the influence of the compressive strength on shear 

strength. From his research he determined that the relationship was not linear. Moe [5] followed 

up and proposed that the relationship could be approximated by the square root of 𝑓𝑐
′. Marzouk 

& Hussein [7] showed that this relationship overestimated the effect of 𝑓𝑐
′ for high strength 

concrete which was later confirmed by Hallgren [8]. They found that the punching shear 

resistance correlated closer to the cubic root of 𝑓𝑐
′. The North American codes ACI-318-14 [9] 

and CSA-A23.3-14 [10] use a square root expression and limit 𝑓𝑐
′ to 70 MPa. Some European 

design codes such as Eurocode2 (EC2) [11], CEB-FIP model code [4], and the British Standard 

(BS8110) [12] relate the shear strength to the cubic root of the concrete compressive strength. 

2.2.2 Flexural Reinforcement Ratio 

The flexural reinforcement ratio, ρ, is the ratio of the cross-sectional area of the flexural 

reinforcement in the slab to the cross-sectional area of the concrete. Early investigations by Moe 

[5] and Elsnter & Hognestad [13] showed no increase in punching shear strength with higher 

flexural reinforcement ratios. Alexander & Simmonds [14] refuted this claim and asserted that 

the flexural reinforcement in Moe’s [5] experiments did not contribute to the shear strength 

because it had experienced bond failure due to the closely spaced bars. Subsequent researchers 

have advocated that higher flexural reinforcement ratios do increase the slab shear strength [3] 

[7] [15]. Regan [3] showed that slab flexural reinforcement within a distance of three times the 

effective depth of the slab reinforcement, d, from the face of the column was effective in 
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increasing the shear strength. He concluded that slab reinforcement reduced the flexural cracking 

in the slab which increased the shear transfer due to aggregate interlock and also enhanced the 

shear transfer mechanism of dowel action. Marzouk & Hussein [7] also showed a significant 

increase of 63% when they increased ρ from 0.5% to 2.33%. Regan & Braestrup [16] and Sherif 

& Dilger [17] quantified the influence of the flexural reinforcement and suggested that the 

increase is proportional to the cubic root of ρ.   

European codes, such as EC2 [11] and BS8110 [12], include the influence of the flexural 

reinforcement ratio on the shear strength of the slab. Both use a cube root expression for ρ. 

EC2: 

𝑉𝑐 = 0.18 [ 1 +  √
200

𝑑
] (100 𝜌 𝑓𝑐𝑘)1/3 𝑏𝑜 𝑑 

(2-1) 

BS 8110: 

𝑉𝑐 = 0.79 √
400

𝑑

4

 [100𝜌
𝑓𝑐𝑢

25
]

1/3

𝑏𝑜 𝑑 

(2-2) 

The North American codes differ significantly from the European standards on the use of 

flexural reinforcement on punching shear. The punching shear formulation in the American 

standard ACI 318-14 [9] does not account for the influence of the flexural reinforcement. 

Although the punching shear expression in the Canadian standard, CSA A23.3-14 [10], does not 

account directly for flexural reinforcement, it does require that a minimum amount of flexural 

reinforcement be concentrated in the immediate column region bounded by distance of 1.5 times 

the height of the slab from the column face. Tests by Yang et al [18], McHarg et al [19], and Lee 

et al [20] studied the effect of concentrating reinforcing bars over the column zone. They all 
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concluded that the use of the banded flexural reinforcement resulted in higher punching shear 

resistances than a uniform flexural reinforcing mat.  

2.2.3 Column Size & Shape 

The size and shape of a column has an influence on the shear stress distribution in the 

slab. Shear stress is inversely proportional to the critical shear perimeter and hence, the greater 

the column perimeter the lower the shear stress. ACI 318-14 [9] and CSA A23.3-14 [10] both 

use a distance of d/2 to locate the critical shear periphery whereas BS8110 [12] use 1.5d and EC2 

[11] use 2d. The shape of the column can induce shear stress concentrations at the corners. This 

effect is more pronounced in rectangular columns. Research by Hawkins & Criswell [1] showed 

that for ratios of long side to short side greater than two, the nominal shear strength decreases 

with increasing rectangularity.    

2.2.4 Size Effect 

The thickness of a slab has a pronounced effect on its punching shear strength. Similar to 

the critical shear perimeter, the thicker slab, reduces the shear stress throughout the section. 

Researchers such as Bazant & Cao [21] have shown that this reduction in shear stress is not 

linearly proportional to the thickness and, in fact, thicker slabs have smaller shear stresses at 

failure than shallower slabs. This phenomenon is known as the size effect. CSA A23.3-14 [10] 

and EC2 [11] recognize this effect and recommend a shear reduction factor for slabs thicker than 

300 mm as: 

CSA A23.3-14: 
𝑅𝐹 =

1300

1000 + 𝑑
 

(2-3) 
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EC2 2004: 

𝑅𝐹 = 1 + (
200

𝑑
)

1
2
 

(2-4) 

The size effect is difficult to study experimentally because laboratories are usually 

limited to the size of the specimens that they can test and the loads that they can apply. 

Therefore, it is difficult and expensive to test full scale models. Many tests are performed on 

scaled models with reduced dimensions. However, care must be taken when using scaled test 

because the shear strength varies in a non-proportional manner. Finite element analysis can be 

used to eliminate this limitation when studying the capacity of thick slabs. 

2.2.5 Flexural Reinforcement Yield Strength 

In addition to the flexural reinforcement ratio, the strength of the steel reinforcement also 

has an influence on punching shear behavior. Yang et al [18] found a 27% increase in punching 

shear strength when using reinforcement with a yield strength of approximately 800 MPa 

compared to conventional steel reinforcing with a yield strength of approximately 455 MPa 

when testing specimens of similar concrete strength and flexural reinforcement ratio. The 

increase was attributed to the fact that the higher strength bars did not yield prior to punching 

failure. As a result, the slab rotation is reduced which reduces the flexural cracks and increases 

the amount of aggregate interlocking.   

2.2.6 Steel Fibers 

The tensile properties of concrete are greatly enhanced when small discrete steel fibers 

are added to the concrete mix. These steel fibers are randomly dispersed during the concrete 

mixing process and work to hold together the tensile cracks that initiate punching shear failure 
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until either the fiber yields or pulls-out of the concrete. The use of a steel fiber matrix in the 

concrete mix has the benefit of improving the post-cracking tensile characteristics, providing 

ductile compressive behavior, and enhancing the shear strength. Alexander and Simmonds [14] 

tested six slab specimens and demonstrated that adding steel fibers with a density of 30 kg/m3 to 

the mix increased the ultimate shear strength by 20% and improved the ductility of the 

connection. Harajli et al [22] also reported a significant increase in punching shear capacity; as 

high as 36% with steel fibers up to 2% by volume. Nguyen-Minh et al [23] found that the 

addition of steel fibers reduced the average crack width between 34 – 40% at the serviceability 

limit state. Their specimens experienced a 16% shear increase for a dosage rate of 30kg/m3 up to 

39% for a dosage rate of 60 kg/m3. 

The inclusion of the steel fibers does not have to be spread throughout the whole slab. 

Researchers have found improvements in punching shear with concentrating SFRC locally in 

areas of high shear stress [19] [20]. McHarg et al [19] showed significant improvements of 25% 

in punching shear strength with steel fibers concentrated around the column and an increase of 

7% with the addition of fibers in the top concrete cover portion of the slab. 

2.3 Concrete in Compression   

2.3.1 Behavior of Normal Concrete in Compression 

According to CSA A23.3-14 [10], the stress-strain curve exhibits an assumed linear 

behavior up to a stress level of around 0.4 𝑓𝑐
′. Beyond a stress level of 0.4 𝑓𝑐

′, micro cracks 

develop in the concrete and the behavior becomes highly non-linear. The curve ascends to an 

apex equal to the maximum compressive stress of the concrete and then descends until the strain 
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reaches the ultimate strain level assumed as 0.0035 as an average value. The stress – strain curve 

for concrete in compression is shown in Figure 2-2. 

 

Figure 2-2: Stress – strain curve for concrete in compression. 

Many analytical models have been developed to represent the stress-strain curve of 

concrete in compression. Table 2.1 presents two of the more widely used expressions to 

represent the compressive behavior of concrete. 

Table 2.1: Models for the compressive behavior of concrete 

Researcher Compression Model 

Hognestad [24] 
                                        𝑓𝑐 = 𝑓𝑐 𝑚𝑎𝑥  [ (2

𝜀

𝜀𝑜
) − (

𝜀

𝜀𝑜
)

2

]  

Collins & Mitchell 

[25] 𝑓𝑐

𝑓𝑐
′

=
𝑛 (

𝜀𝑐

𝜀𝑜
)

𝑛 − 1 + (
𝜀𝑐

𝜀𝑜
)

𝑛𝑘 
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2.3.2 Behavior of SFRC in Compression 

Experimental studies have been conducted to study the effect of fibers on all aspects of 

the compressive stress-strain curve: the linear-elastic branch, the point of cracking, the peak 

compressive load, the peak compressive strain, and the shape of the post-peak stress-strain curve. 

The literature on the effect of fiber volume on the peak compressive strength is inconclusive. 

Some studies show a slight increase in compressive strength with increasing fiber volume 

fraction [26] but others show a slight decrease in compressive strength with increasing fiber 

volume fraction [27]. A study published by Rizzuti & Bencardino [28] showed a slight increase 

in compressive strength (+2.25% to +4.35%) with low volume fiber fractions (1% to 1.6%) and a 

decrease (-1.35% to -7.5%) in higher volume fiber fractions (3% to 5%). Lee et al [29] showed 

that it was not necessarily the fiber volume fraction that affected the compressive strength but 

that the fiber aspect ratio had an influence too. They showed a correlation between the slump of 

SFRC and the compressive strength. For low slump SFRC concrete (caused by lower aspect 

ratios), the compressive strength was lower than those of high slump SFRC with higher aspect 

ratios.   

Concrete in compression exhibits a volumetric expansion and ultimately fails due to 

tensile cracks in the unstressed direction. Ezeldin & Balaguru [26] postulated that the inclusion 

of steel fibers increase the compressive strength due to the transverse confinement of the steel 

fibers and this appears to be consistent with the work of Rizzuti & Bencardino [28] and Lee et al 

[29] for low fiber volume fractions. However, Hsu & Hsu [27] reported that SFRC do not 

contribute to concrete strength since more voids could be produced in the concrete matrix during 

mixing. 
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Although its effect on the peak compressive strength may be negligible, steel fibers have 

an influence on the post-peak response. It is a consensus from the literature that the maximum 

compressive strain of SFRC is higher than that of normal concrete and the post-peak softening 

branch of the compressive stress-strain curve is flatter. The addition of fibers enhances the 

descending branch of the compressive stress-strain curve. Due to the brittle nature of concrete, 

the descending (or softening) branch of the stress-strain curve ends shortly after the peak 

compressive stress. But for SFRC, the softening branch extends further and maintains a much 

smaller slope as the steel fibers enhance the deformability of the concrete in compression. This 

behavior provides a more ductile response and a higher ultimate strain [28]. The peak 

compressive strength is not significantly different as fiber volume is increased than that of the 

control specimen but the descending branch becomes noticeably flatter. Rizzuti & Bencardino 

[28] reported an increase of almost five-times in the ultimate strain of SFRC compared to that of 

normal concrete. Wang [30] found that the compression deformability did not improve for SFRC 

having volumetric fiber contents less than 0.5% and these specimens failed soon after reaching 

the peak compressive stress. Table 4.2 provides a summary of the models proposed for the 

stress-strain behavior of SFRC in compression.  

Table 2.2: Models for the compressive behavior of SFRC 

Researcher SFRC Compression Model 

Ezeldin & Balaguru 

[26] 𝑓𝑐 = 𝑓𝑐
′

𝛽 (
𝜀
𝜀𝑜

)

𝛽 − 1 + (
𝜀
𝜀𝑜

)
𝛽

 

Where; 𝑓𝑐
′ = 𝑓𝑐𝑝

′ + 11.232𝑅𝐼;  𝛽 = 1.093 + 0.2429𝑅𝐼−0.926;  

𝜀𝑜 = 𝜀𝑜𝑝
+ 1427𝑥10−6𝑅𝐼; 𝐸𝑐 = 𝐸𝑐𝑝 + 9936𝑅𝐼 
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Hsu & Hsu [27] 
𝑓𝑐 = 𝑓𝑐

′
𝑛𝛽(

𝜀

𝜀𝑜
)

𝛽−1+(
𝜀

𝜀𝑜
)

𝑛𝛽    for 0 ≤  𝜀/𝜀𝑜 ≤ 𝜀𝑑/𝜀𝑜   

𝑓𝑐 = 0.6𝑓𝑐
′ exp [−0.7 (

𝜀

𝜀𝑜
−

𝜀𝑑

𝜀𝑜
)

0.8

] for 𝜀𝑑/𝜀𝑜 ≤ 𝜀/𝜀𝑜 

Where; εd is the strain at 0.6𝑓𝑐
′ in the descending branch 

𝛽 = (
𝑓𝑐

′

11.838(100𝑉𝑓)
3

+ 58.612
)

3

− 26𝑉𝑓 + 2.742 

𝐸 = 𝑎2𝑓𝑐
′ + 𝐶2 ; 𝜀𝑜 = 𝑎1𝑓𝑐

′ + 𝐶1; where a1, a2, C1 & C2 are constants 

Lee, Cho, & Oh [20] 

𝑓𝑐 = 𝑓𝑐
′  [

𝐴 (
𝜀𝑐

𝜀𝑜
)

𝐴 − 1 + (
𝜀𝑐

𝜀𝑜
)

𝐵] 

Where;  For pre-peak:  𝐴 = 𝐵 =
1

1−(
𝑓𝑐

′

𝜀𝑜𝐸𝑐
)

  𝑓𝑜𝑟 𝜀𝑐/𝜀𝑜  ≤ 1.0 

For post-peak:  𝐵 = (
𝑓𝑐

′

50
)

0.064

[1 + 0.882 (𝑉𝑓
𝑙𝑓

𝑑𝑓
)

−0.882

] ≥ 𝐴 

   𝐴 = 1 + 0.723 (𝑉𝑓
𝑙𝑓

𝑑𝑓
)

−0.957

 𝑓𝑜𝑟
𝜀𝑐

𝜀𝑜
 > 1.0 

Where;    𝜀𝑜 = (0.0003𝑉𝑓
𝑙𝑓

𝑑𝑓
+ 0.0018) 𝑓𝑐

0.12 

 

The expressions presented above have been developed for certain mixtures of SFRC that 

contain properties unique to that mix. Therefore, each expression presented in Table 2.2 has 

limitations and may not be applicable for all mix designs. For example, the expression by 

Ezeldin & Balaguru [26] was based on experiments with crimped steel fibers and may not be 

applicable for straight fibers or hooked-end fiber specimens and the Hsu & Hsu [27] model is 

only specific to fiber volume ratios up to 1%. The expression by Lee et al [29], was created for 

hooked-end fibers.  
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The elastic modulus of concrete is also influenced by SFRC. During the pre-peak 

response, Lee et al [29] found that the addition of steel fibers has little influence on the 

maximum compressive strength but did have an influence on the slope of the ascent of the stress-

strain curve. The slope of the curve from initial stress to a limit of 0.4 𝑓𝑐
′ is assumed linear and is 

known as the Young’s modulus of concrete. They presented the following equation for the 

elastic modulus of SFRC [29]: 

𝐸𝑐 = (−367𝑉𝑓
𝑙𝑓

𝑑𝑓
+ 5520) 𝑓𝑐

0.41   [MPa] 
(2-5) 

2.4 Concrete in Tension   

2.4.1 Tension Softening of Normal Concrete 

The uni-axial stress – strain behavior of concrete in tension initiates with a linear-elastic 

branch which ascends up to a point where cracking first starts to develop. Once cracking 

develops, a nonlinearity forms due to a reduction in stiffness. The concrete at a crack cannot 

transmit tensile stresses but the concrete between cracks is still capable of sustaining tensile 

forces due to the bond of the concrete matrix and aggregate friction interlock. As the tensile 

force increases, more cracks develop and less concrete is available to sustain tension. Under 

increasing tensile load, the concrete will continue to increase in stress up to its peak tensile 

stress, 𝑓𝑡
′. The value of 𝑓𝑡

′ is generally accepted as 0.33√𝑓𝑐
′ [31]. Tensile stress above 𝑓𝑡

′ causes 

the cracking damage to become so high that any increase in deformation leads to a decreasing 

ability of the concrete to transfer stress [32]. This decline in tensile capacity is referred to as 

tension softening. During this softening process, the stress – strain curve in the post-peak 
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response descends until it reaches the ultimate tensile strain, ԑu, where zero residual tensile 

strength exists.  

Tension softening can be assessed experimentally, through direct tensile tests and 

modelled analytically based on the principles of fracture mechanics. The fracture mechanics 

approach can define concrete damage by evaluating the dissipated fracture energy required to 

generate micro cracks. The stress-deformation response of a concrete specimen subjected to 

tension cannot be expressed by an average stress-strain curve because the descending branch of a 

stress – strain curve does not represent the true behavior of the cracked portion. Rather, it is an 

idealization of the average material response. The first phase (i.e. ascending branch) of a 

specimen in tension can be described by a stress-strain diagram where the stress increases with 

deformation because the elongation during this un-cracked phase is the same along the whole 

specimen. As the specimen deforms into the post-peak stage, the stress starts to decrease with 

increased deformation. This occurs in areas where micro-cracks develop, known as fracture 

zones, where any increase in deformation leads to a decreasing ability to transfer stress. Once 

cracking is initiated, the un-cracked portion will experience elastic unloading and the cracked 

portion will exhibit strain softening. A generalized stress – strain curve for the full specimen 

cannot properly define the strain across the crack because the values vary depending on the 

location being measured. A stress – crack opening displacement curve is a more appropriate 

model than the stress – strain curve to characterize the crack behavior. Once the concrete is 

cracked, the definition of strain is not valid anymore. 

The true stress – deformation response which represents the full elastic and inelastic 

range of a concrete specimen in tension can be achieved by the combination of two curves: 
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stress-strain curve (σ – ԑ) and stress versus crack opening displacement curve (σ – w). The σ – ԑ 

curve can be used to illustrate the stress relationship for strains at less than the peak point and the 

σ – w curve can be used to account for the localization of the induced cracks in the fracture zone 

[33].  

The fracture mechanics approach to concrete was first introduced by Hillerborg [32] 

known as the Fictitious Crack Model. In this model, the fracture zone is represented by a 

simplified single crack with the hypothetical ability to transfer stress according to the σ – w 

curve (Figure 2-3). 

An essential property of the σ-w curve is the area below the curve which is the measure 

of the energy per unit area required to generate a crack and is commonly known as the fracture 

energy, 𝐺𝑓. The fracture energy is thus a material property that can be obtained from 

experimentation. The accuracy of the simulation of the nonlinear behavior of concrete depends 

significantly on 𝐺𝑓. 
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Figure 2-3: Hillerborg’s Fictitious Crack Model [33]. 

The relationship between the stress-strain and the stress-displacement curve is defined by 

the characteristic length, ℓc. From the stress-strain curve the characteristic length is equal to the 

ratio of the uniaxial tensile strength, 𝑓𝑡 and modulus of elasticity. From the stress-displacement 

curve the characteristic length is equal to the ratio of the fracture energy 𝐺𝑓 and 𝑓𝑡. Combining 

both expressions as a function of ℓc yields the following expression: 

ℓ𝐶 = 𝐸 
𝐺𝑓

𝑓𝑡
2  (2-6) 

Bazant & Oh used fracture mechanics to develop their “Crack Band Model” to describe 

tension softening of concrete [34]. In their model, instead of considering the fracture zone as a 

single crack, they distributed the zone over a certain length equal to three times the aggregate 

size. The model was calibrated with available experimental data and yielded an empirical 

expression for fracture energy:  

𝐺𝑓 = 0.0214 (𝑓𝑡
′ + 127)𝑓𝑡

′2
 𝑑𝑎 /𝐸𝑐 (2-7) 

 The CEB-FIB Model 1990 presented Equation (2-20) for calculating fracture energy. The 

2010 version of CEB-FIB Model Code simplified this fracture energy equation to:   

𝐺𝑓 = 73𝑓𝑐𝑚
0.18 (2-8) 

Whitman et al. [35] used the concept of fracture energy to create a bilinear strain 

softening diagram that can be easily implemented into a finite element analysis model. The 

diagram was defined by four parameters: ft, st, w1, and w2 as shown in Figure 2-4. These 

parameters were determined from experimentally obtained load-displacement diagrams by 
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means of a best fit where; 𝑤1 = 0.75𝐺𝑓 /𝑓𝑡
′, 𝑤2 = 5𝐺𝑓 /𝑓𝑡

′, and 𝑠1 = 𝑓𝑡
′/3. They also concluded 

that the fracture energy, 𝐺𝑓, of concrete is dependent on the un-cracked length of the specimen 

(i.e. ligament length), rate of loading, maximum aggregate size, and water-cement ratio. 

 

Figure 2-4: Bilinear stress – COD relation [35]. 

2.4.2 Tension Softening of SFRC 

The tensile properties of concrete are greatly enhanced when small discrete steel fibers 

are added to the concrete mix. These steel fibers are randomly dispersed during the concrete 

mixing process and work to hold the tensile cracks together until either the fiber yields or pulls-

out of the concrete. The shapes of the stress – strain and stress – crack opening displacement 

curves for SFRC will differ from those for non-fibrous concrete due to the enhancement in post-

cracking behavior. In SFRC, the bridging effect of the fibers provides an additional mechanism 

that significantly influences the transmission of tensile stresses across the cracks. This increase in 

tensile behavior significantly enhances the energy absorption and post cracking response of the 

concrete. As a result, the area under the σ – w curve will be much greater for SFRC than for 

plain concrete. 
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Barros & Cruz [36] evaluated the fracture energy of SFRC with three-point bending tests 

using displacement control. They tested a series of notched beams reinforced with 30, 60, and 90 

kg/m3 of hooked-end steel fibers. They found that the energy absorption capacity and fracture 

energy increased almost linearly with the fiber content. From their results they were able to 

assign fracture energy quantities to their SFRC specimens. 

Teixeira et al [37] presented a numerical model for predicting the punching shear 

behavior of self-consolidating fiber reinforced concrete flat slabs. A part of their research 

included a parametric study on the influence of fracture energy on the deformational response of 

the slab. Their work yielded the following expression for the fracture energy of SFRC:  

𝐺𝑓
𝐼 = 𝐺𝑓(1.0 + 13.159𝑊𝑓

1.827) (2-9) 

This equation was developed based on hook-ended steel fibers with an aspect ratio of 75 and 

with three distinct fiber ratios of 60, 75, and 90 kg/m3. 

2.4.3 Tension Stiffening of Normal Reinforced Concrete 

Tension softening is a phenomenon unique to plain concrete. When reinforcement is 

present, the reinforcing bars intercept the tensile cracks and dominate the axial/flexural stiffness 

response of the member. The tensile stress is transmitted by the reinforcement and by a small 

portion of the un-cracked concrete between the cracks. This un-cracked concrete portion thus 

helps stiffen the element in what is known as tension – stiffening. Figure 2-5 shows a typical 

axial force versus average strain response of a reinforced concrete specimen superimposed on a 

plot with a bare steel bar. The ‘bare bar response’ is a plot of the behavior if tensile forces were 

only resisted by the steel bar and the contribution of the surrounding concrete was ignored. When 
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the concrete cracks at an axial tension just below N2 in the figure, the tension in the concrete is 

reduced and the load deformation response quickly approaches that of the bare bar. The 

maximum load is limited by the yield strength of the bar [38].  

 

Figure 2-5: Tension stiffening curve for reinforced concrete [25]. 

The tension-stiffening stress-strain curve exhibits a much higher energy absorption 

response than the tension-softening curve due to the added rigidity of the steel bars. Figure 2-6 

illustrates a typical comparison between the tension-stiffening and tension-softening diagrams 

highlighting the much more gradual decay of the tension-stiffening curve and the higher ultimate 

strains. 

Numerous models have been proposed to describe the descending portion of the average 

stress-strain relationship (Figure 2-7). Scanlon & Murray [39] were the first to model tension 

stiffening in terms of a degraded concrete modulus. They proposed a model showing a linear 

behavior up to the tensile strength, followed by a series of discrete steps, each with a decreasing 
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modulus of elasticity. Lin & Scordelis [40] followed and fitted a polynomial expression to the 

falling branch of the stress-strain curve. 

 

Figure 2-6: Tension softening and tension stiffening response [41]. 

 

Figure 2-7: Tension stiffening models: a) Scanlon & Murray [39] b) Lin & Scordelis [40]. 

Several researchers used a bilinear model to predict the concrete stress-strain relation in 

tension (Figure 2-8). The parameters Rt, Pt, St, and Ft were inversely estimated from a 

combination of nonlinear analysis and experimental results on uni-axial specimens. Vebo & 

Ghali [42] reported a parameter set based on studies of reinforced concrete slabs. They proposed 

Rt = 0.45, Pt = 0.9, St = 2.2, and Ft = 12.2. Gilbert & Warner [43] presented a similar bi-linear 

model based on the difference of post-cracking response throughout the thickness of the 

reinforced concrete member. They presented a parameter set of Rt = 0.4, Pt = 0.8, St = 4, and Ft = 
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10 for concrete adjacent to steel reinforcement and gave two other set of parameters for tensile 

“layers” located away from the steel reinforcing. This layered approach created a discontinuity in 

the global response because adjacent tension layers had the same strain but different tensile 

stresses. Nayal & Rasheed [41] refined the Gilbert & Warner [43] model to eliminate this 

discontinuity by replacing the layered stiffening parameters with a single set of stiffening 

parameters applicable to the entire tensile zone by calibrating their model to tests results. The 

best set of parameters that matched the experimental load-deflection curve was: Rt = 0.45, Pt = 

0.8, St = 4, and Ft = 10 (Figure 2-9). 

 

Figure 2-8: Tension stiffening model template [41]. 

Hsu & Mo [44] presented an exponential relationship to describe the descending branch 

of the tension stiffening curve.  

𝜎𝑡 = 𝐸𝑐 𝜀𝑡    𝑖𝑓 𝜀𝑡 ≤ 𝜀𝑐𝑟 (2-10) 

𝜎𝑡 = 𝑓𝑐𝑚  (
𝜀𝑐𝑟

𝜀𝑡
)

𝑛

  𝑖𝑓 𝜀𝑡  >  𝜀𝑐𝑟 
(2-11) 
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The rate of weakening, n, was given as 0.4 by Hsu & Mo [44]. Figure 2-10 shows the effect of 

varying the weakening function on the descending branch. As illustrated, increasing the 

weakening function decreases the descending branch of the curve. The ultimate tensile strain is 

defined by Hsu & Mo [44] as ten times the cracking strain. 

 

Figure 2-9: Nayal & Rasheed model calibration [41]. 
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Figure 2-10: Hsu & Mo weakening function for tension stiffening [44]. 

2.4.4 Tension Stiffening of Reinforced SFRC 

The combination of tension stiffening and the post cracking residual tensile strength of 

steel fibers significantly affects the stress – strain tensile response of concrete (Figure 2-11). 

Steel fibers aid the bare steel bar and contribute to the axial stiffness of the specimen at the crack 

locations. Therefore, it is necessary to properly model the post-cracking resistance of SFRC for 

accurate predictions of the material’s performance.  
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Figure 2-11: Distribution of stresses between cracks [31]. 

Abrishami & Mitchell [45] were among of the first to study the effect of steel fibers on 

tension stiffening through a series of uni-axial tensile tests. They concluded that the presence of 

steel fibers led to a significant increase in the tension stiffening of the reinforced concrete 

member. Figure 2-12 shows a sample test response from their experimental study. This figure 

illustrates that the SFRC specimen exhibited a greater tensile cracking load and greater tension 

stiffening after cracking than the reinforced concrete specimen without fibers. The authors 

concluded that SFRC displayed better tension stiffening due to the ability of the steel fibers to 

bridge across cracks and reduce the amount of tensile force transmitted directly into the steel bar. 

Hence, the tension stiffening effect of SFRC leads to a smaller decay in the stress carried by the 

concrete (Figure 2-13). 

From their results, the authors derived an expression to predict the force at the crack in 

SFRC:  
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𝑁𝑓 =
1

6
 𝑉𝑓𝐸𝑓𝐴𝑐(𝜀 −  𝜀𝑦)  ≥

1

6
𝑉𝑓𝐴𝑐𝑓𝑦𝑓 

(2-12) 

The authors acknowledge that this expression overestimated the point of first cracking 

(i.e. first point on the load – deflection curve of deviation from linearity) but correlated well with 

the concrete tensile stress-strain response of their experimental results. 

 

Figure 2-12: Abrishami & Mitchell tension stiffening results [45]. 
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Figure 2-13: Tension stiffening of SFRC [31]. 

Tiberti et al [38] carried out a set of tension stiffening tests by varying the concrete 

strength, reinforcement ratio, fiber volume fraction, and fiber geometry. Their program consisted 

of fifty – nine uni-axial tensile tests on high strength concrete specimens (60 MPa to 95 MPa) 

and one hundred and nine normal strength concrete specimens. The authors generated a fairly 

comprehensive database of uni-axial tension tests of SFRC rectangular specimens reinforced 

with a central steel bar. The post cracking response of their SFRC specimens showed a 

noticeable enhancement in the post peak response. From their research they concluded that 

SFRC stiffens the post-cracking response of reinforced concrete members.  

 Lee et al [31] piloted a parametric study using a crack analysis procedure to derive a 

tension-stiffening model to reflect the effect of steel fibers on the tensile behavior that could be 

easily implemented into a finite element model. Their study considered the tensile behavior of 

steel fibers and the bond stress-slip relationship between the reinforcing bar and the concrete 

matrix to develop the following expression for tensile stress:  
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𝑓𝑐,𝑇𝑆 =
𝑓𝑐𝑟

1 + √3.6𝑐𝑓𝑀 𝜀𝑡,𝑎𝑣𝑔

 
(2-13) 

where;   M = bond parameter =  
𝐴𝑐

∑𝑑𝑏𝜋
 

  cf = coefficient to consider steel fibers 

      = for hooked fibers: 𝑐𝑓 = 0.6 +
1

0.034
(

𝑙𝑓

𝑑𝑓
)

(100𝑉𝑓)
1.5

𝑀0.8
   

      = for straight fibers: 𝑐𝑓 = 0.6 +
1

0.058
(

𝑙𝑓

𝑑𝑓
)

0.9
(100𝑉𝑓)

𝑀0.8    

Naaman & Reinhart [46] plotted Figure 2-14 to illustrate the difference between the 

tension stiffening curves of SFRC and reinforced concrete without steel fibers. 

 

Figure 2-14: Tension stiffening model SFRC vs RC [46]. 

2.4.5 Peak Tensile Strength 

The value of the peak tensile strength varies in the literature. The following are some 

typical expressions used for peak tensile strength:  
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1) Rankin [47] and MacGregor & Bartlett [48] recommended the value as the 

splitting tensile strength obtained from the equation: 𝑓𝑠𝑝 = 0.53√𝑓𝑐
′ ; 

2) Collins & Mitchell [25] recommend the value to be the uniaxial cracking strength: 

𝑓𝑐𝑟
′ = 0.33√𝑓𝑐

′. This is the value used to calibrate the tension stiffening curve by 

Hsu & Mo [44] as discussed earlier and the value used by Lee et al [31] for peak 

tensile strength; 

3) EC2 [11] use the expression: 𝑓𝑐𝑡𝑚 = 0.3 𝑓𝑐𝑘
0.67   

From a parametric study on the finite element analysis of flat slabs, Lim [49] concluded 

that the effect of peak tensile strength of concrete was insignificant on the ultimate punching 

shear load. He showed that by increasing ft by 20% the ultimate load only increased by a 

corresponding 3% and by reducing ft by 40% only reduced the ultimate load by 5%.  He found 

that the tensile strength had more effect on the convergence of his finite element model. Too low 

of a tensile strength caused his model to diverge away from a solution. A closer examination of 

Lim’s [49] results show that while the ultimate punching shear loads may be similar there is an 

obvious difference in the load deflection and ductility of the slab. Hence, the selection of the 

peak tensile strength can influence the punching shear behavior.   

Naaman & Reinhart [46] showed, through a probabilistic analysis based on experimental 

results that the uniaxial tensile strength of SFRC is significantly affected by fiber volume ratio, 

Vf, and aspect ratio L/D. The parameters for their expression were developed for straight steel 

fibers. They defined the tensile strength of SFRC to be:  
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𝑓𝑐𝑡 = 𝑓𝑡(1 − 𝑉𝑓) +  𝛼1𝛼2𝜏 𝑉𝑓(ℓ𝑓 /𝑑𝑓)  (2-14) 

Where; 𝑓𝑡 = 0.292√𝑓𝑐
′ (MPa);   

In contrast to the work by Naaman & Reinhart [46], Bischoff [50] found that the use of 

steel fibers in the concrete mix does not appear to affect the response up to and including first 

cracking. Bischoff [50] concluded that the most influential contribution of steel fibers are in the 

enhancement of the ductility and post-cracking resistance of the slab. On the other hand, 

Abrishami & Mitchell [45] reported slight increases in cracking stress but only at fiber volume 

contents above 1%. 

2.5 Literature Review of Punching Shear FEA 

Digital computing has revolutionized engineering research by enabling numerical 

calculations based on FEA to become a standard tool for the analysis of structures. FEA consists 

of a vast system of simultaneous algebraic equations that describe the behavior of a structure 

through a stiffness matrix. It works by subdividing the geometry of a continuum structure into 

simple components or “elements” that are interconnected at nodes and uses energy principles, 

such as the theorem of virtual work and the principle of minimum potential energy, to determine 

nodal displacements and nodal reactions. The resulting large amount of algebraic equations 

associated with FEA structural analysis made the method extremely cumbersome and impractical 

to use if it was not for the advent of digital computing.  

In 1967, Ngo and Scordelis [51] were one of the first researchers to apply the technique 

of finite element analysis to study the behavior of reinforced concrete beams. Since that time 

finite element analysis has become a valuable tool for researchers to advance the understanding 
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of reinforced concrete crack formation and failure mechanisms. Due to computational 

limitations, early forms of FEA were performed with two-dimensional (2D) systems. The 2D 

structures can be simulated with a small number of degrees of freedom and thus require minimal 

computational effort. However, 2D elements are not sufficient to fully express the complex tri-

axial stress state within the punching area. With advancements in digital computing it became 

possible to create more complex models using three-dimensional (3D) solid elements. Such 

elements offer high flexibility and accuracy in the discretization of reinforced concrete structures 

and generally lead to the most realistic analysis of punching shear [52].  

The literature review in this section focuses on published research that involved the use of 

3D solid elements to study the effect of punching shear on reinforced concrete slabs. The review 

concentrated on Abaqus computer software using the concrete damaged plasticity constitutive 

model. During the review particular attention is paid to the approach each author used for 

representing the tension stiffening behavior and for defining the CDP parameters used to solve 

plastic flow and yield functions. A thorough explanation the CDP model is provide in Chapter 4. 

A research paper using an alternate FEA program, Ansys, is provided at the end to show the 

differences, similarities, and capability of that program on modelling the punching shear 

behavior of reinforced concrete slabs. 

2.5.1 Winkler & Stangenberg [53] 

Winkler and Stangenberg [53] demonstrated the effectiveness of the ‘concrete damaged 

plasticity’ model available in the finite element program Abaqus for modelling the punching 

shear failure of reinforced concrete slabs. They modelled a slab with an effective depth of 200 
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mm and a square plan dimension of 1450 mm concentrically loaded by a column stub. They used 

a stress-strain relation for uniaxial compression as: 

Ascending branch (where; 𝜎𝑐 ≤ 𝑓𝑐𝑚): 

𝜎𝑐 = (
𝐸𝑐𝑖 (

𝜀𝑐

𝑓𝑐𝑚
) − (

𝜀𝑐

𝜀𝑐1
)

2

1 + (𝐸𝑐𝑖  (
𝜀𝑐

𝑓𝑐𝑚
) − 2) (

𝜀𝑐

𝜀𝑐1
)

) 𝑓𝑐𝑚 

(2-15) 

 

Descending branch (𝑤ℎ𝑒𝑟𝑒;  𝜎𝑐 > 𝑓𝑐𝑚): 

𝜎𝑐 = (
2+ϒ𝑐𝑓𝑐𝑚𝜀𝑐1

2 𝑓𝑐𝑚
−  ϒ𝑐𝜀𝑐 +

ϒ𝑐𝜀𝑐
2

2 𝜀𝑐1
)

−1

  
 (2-16) 

 

The stress-strain relation used for uniaxial tension was derived from the following stress-

crack opening relation: 

 
𝜎𝑡(𝑤)

𝑓𝑐𝑡
= (1 + (𝑐1 (

𝑤

𝑤𝑐
))

3

) 𝑒
−𝑐2(

𝑤

𝑤𝑐
)

−
𝑤

𝑤𝑐
 (1 + 𝑐1

3)𝑒−𝑐2 
 (2-17) 

The slab was modeled using 8-node solid continuum elements and the reinforcement was 

modelled as 2D truss elements. A perfect bond was assumed between the reinforcement and slab 

elements. The statics Riks method was used to solve the set of nonlinear equations and to address 

the issue of snap back. Parameters used to define the concrete damaged plasticity model 

included; dilation angle of 30o, shape factor of 0.667 and a stress ratio of 1.16. The results of the 

FEA analysis was compared with the experimental results. The FEA model showed a stiffer 

response in the elastic range and much more ductility in reaching the peak punching shear stress. 

It is noteworthy that the experimental deflection values were small and would have been very 

difficult to measure accurately during an experiment. The tension properties used for this slab are 
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only based on the uniaxial properties of plain concrete. The purpose of this model is to show that 

FEA is capable of replicating punching shear behavior. No attempt has been made to test how 

this model will perform by altering the material variables and as such this model does not 

provide the generality required to simulate a wide range of slabs with varying properties.  

2.5.2 Youm et al [54] 

Youm et al [54] created a nonlinear finite element model in conjunction with testing of 

five full scale slabs to analyze the failure mechanism of light weight aggregate concrete in 

punching shear. The concrete damaged plasticity model in Abaqus was used in the finite element 

simulation. The slabs were modeled as eight node solid elements and the reinforcement was 

modeled as 2D truss elements. The uniaxial tensile stress-strain behavior was assumed linear up 

to the point of cracking stress. The descending branch was modeled using the tension-stiffening 

exponential decaying expression by Hsu & Mo [44]: 

𝑓𝑐 = 𝑓𝑐𝑟 (
𝜀𝑐𝑟

𝜀𝑐
)

0.4

 𝑤ℎ𝑒𝑛 𝜀𝑐 ≤  𝜀𝑐𝑟  
 (2-18) 

The exponential variable, given as 0.4 above, is known as the weakening function, n. 

The cracking stress was given as: 

𝑓𝑐𝑟 = 1.23 (
𝑈𝑛𝑖𝑡 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝐿𝑊𝐴𝐶 (

𝑘𝑔
𝑚3)

2200
)

0.4

𝑓𝑐
0.2 

 (2-19) 

 A main parameter for defining the concrete damaged plasticity model is the dilation 

angle. The authors compared the load-deflection results using dilation angles of 20o, 31o, and 45o 

(Figure 2-15). The dilation angle of 31o showed a near perfect correlation with the load 
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deflection response from the experimental observation. In general, all five slab specimens that 

were modeled showed a very strong correlation between the finite element model and the 

experimental results (Figure 2-16). The ascending branch followed a very similar line as the 

experimental data and then, at the point of punching shear, the FEA curve experienced a very 

sharp downward trend. The two experiments (N-GR-C slab and L-SH-C slab) shown in Figure 

2-16 have concrete compressive strengths that varies from 34 MPa to 47 MPa and a flexural 

reinforcement ratio, ρ, which varies from 0.24% to 0.15%. In developing the tension-stiffening 

curve the author only describes selecting 0.4 for the weakening function (see Equation (2-18)), 

but neglected to disclose what effect of varying the weakening function would have on the load-

deflection results. Even though the concrete strength and flexural reinforcement varied in the 

specimens, the weakening function remained constant. The constant value of the weakening 

function appears to suggest that it is independent of the value of 𝑓𝑐
′ and ρ. This assertion would 

be in contrast to the literature data which showed tension-stiffening increases with increases in 

𝑓𝑐
′ and ρ. 

 

Figure 2-15: Parametric study of dilation angle [54]. 
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Figure 2-16: Youm load – displacement results [54]. 

2.5.3 Wosatko et al [55] 

Wosatko et al [55] developed a numerical simulation for punching shear using the 

ABAQUS ‘concrete damaged plasticity’ model. The slab specimen that was simulated, denoted 

as SB1, was experimentally tested at the University of Waterloo (Figure 2-17). The overall 

dimensions were 1800 mm × 1800 mm × 120 mm and the slab was simply supported along a 

1500 mm × 1500 mm square perimeter. The slab was loaded through a 150 mm × 150 mm 

centrally located column stub. The slab contained flexural and compressive reinforcement and 

had a concrete compressive strength of 44 MPa. The authors adopted a strain softening approach 

to model the tensile properties of the slab and assigned a fracture energy, Gf, of 106.5 N/m and a 

dilation angle, ψ, of 5o.  
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Figure 2-17: Wosatko finite element model [55]. 

The focus of their study was on the relationship between the finite element mesh size and 

the viscosity parameter, μ. For a mesh size of 20 mm x 20 mm x 20 mm (mesh 1) the best 

predicted load-carrying capacity was obtained for using μ equal to 0.01. However, for a finer 

mesh size of 12 mm x 12 mm x 12 mm (mesh 3) the results for μ as 0.01 underestimated the 

load-deflection response. They concluded, from the strain contour diagram of the equivalent 

tensile plastic strain that mesh 3, with μ as 0.002, seemed to represent the most realistic fracture 

mode. However, their load-deflection curve was still below the experimental result curve which 

suggests that these parameters still under-estimate the load-deflection response. The authors also 

found that when μ equaled 1 the slab became too stiff and when μ equaled 0 the solution resulted 

in localized deformation and premature failure. They concluded that the punching shear capacity 

grows with an increase in μ thereby demonstrating that viscous regularization is a very important 

parameter when creating a finite element model. The authors did not offer a relationship 

correlating mesh size and viscosity with the load – displacement behavior. 
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2.5.4 Genikomsou & Polak [56] [57] [58] [59] 

  In a series of published papers, Genikomsou and Polak expanded on the work by 

Wosatko et al [55] and modelled the same slab specimen (SB1) using the concrete damaged 

plasticity model in Abaqus but with different parameters. This literature review will focus on the 

evolution of their SB1 model in their four published papers [56] [57] [58] [59]. 

Genikomsou and Polak [56] presented a finite element model for the slab specimen SB1 

with the damaged plasticity model parameters of: dilation angle of 38o, shape factor of 0.67, 

stress ratio of 1.16, and eccentricity of 0.1. A stress vs crack opening displacement approach was 

used to simulate the tensile response of the concrete. The fracture energy was calculated as 0.9 

N/mm according to the CEB-FIB Model Code 1990 [60]. This model only specified tensile 

damage parameters. A static analysis approach was used in ABAQUS/Standard with a viscosity, 

μ taken as 0.000085 and then compared to a quasi-static analysis with the dynamic procedure of 

ABAQUS/Explicit at a very slow rate of velocity. As shown in Figure 2-18, both analysis 

procedures compare well with the experimental results. The quasi-static analysis shows a 

noticeable downward trend which was interpreted by the authors as the point of punching shear 

failure. The static analysis does not show this same downward trend and thus it is not clear how 

the authors determined that punching shear had occurred and why the curve was cut-off at a 

deflection of 15 mm. The authors conducted a parametric study on the sensitivity of the viscosity 

parameter. Figure 2-19 shows the influence of the viscosity parameter on the load-deflection 

response. The graph shows that the higher the viscosity parameter the stiffer the load-deflection 

response. The authors also used the FEA model to show the influence that the flexural 

reinforcement ratio, ρ, had on the punching shear resistance (Figure 2-20). They successfully 
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showed that the higher the flexural reinforcement ratio the higher the punching shear resistance. 

However, they did not offer an analytical expression to quantify this relationship or how ρ will 

affect the tensile stiffening properties of their concrete tensile stress-strain model. Their approach 

for calculating the tensile stress strain values does not provide the capability to account for 

enhanced tension stiffening effect of increasing ρ. In their model, the authors ignored the 

tension-stiffening effect and just added more reinforcing bars to the model. 

 

Figure 2-18: Load – deflection comparison of static vs quasi static [56]. 
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Figure 2-19: Influence of viscosity on load – deflection [56]. 

 

Figure 2-20: Influence of flexural reinforcement ratio [56]. 

Genikomsou & Polak [57] again modelled slab SB1 and included a model for an edge 

slab specimen and for an interior slab specimen with axial and horizontal loads. The damaged 

plasticity model parameters used the same values as their previous paper with the only exception 

that the dilation angle was increased from 38o to 40o with justification provided for the change. 
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The authors used the Hognestad parabola to define the uni-axial compression stress-strain 

relationship and represented the uni-axial tensile stress-strain relationship by a tensile stress vs 

crack opening displacement (COD) bilinear diagram (Figure 2-21). The peak tensile stress was 

taken as the uni-axial tensile stress: ft = 0.33√fc
′ . The fracture energy was obtained using the 

empirical formula in CEB-FIB Model Code 1990 as:  

Gf = Gfo (fcm/fcmo)
0.7 (2-20) 

Where fcmo = 10 MPa, Gfo = 0.026 N/mm, and fcm = fck + 8 MPa.  

 

Figure 2-21: Stress vs crack opening displacement [57]. 

The authors converted the stress-COD curve into a stress-strain curve to minimize the 

localization of the fracture zone. The relationship between COD and strain is presented in Figure 

2-22. The formula uses the characteristic length, lc, which for 3D elements, can be defined as the 

cubic root of the elements volume. 
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Figure 2-22: Bilinear strain softening diagram [57]. 

This paper provided several parametric studies. The following is a summary of their 

findings: 

1. Dilation angle, ψ – an increase in dilation angle increased the punching shear resistance. 

2. Shape factor, Kc – increasing Kc led to a very small but negligible decrease in load-

deflection response at failure load.  

3. Effect of Damage – if only tensile damage is considered, the results overestimate the 

failure load; when damage was applied to both tension and compression the model 

underestimated the failure load; it was noted that damage in compression, had a 

significant effect on the results but this was not included in their study. The authors 

concluded that for the described problem of punching shear, the definition of the damage 

parameters should not be taken into consideration even if the numerical results 
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underestimate the loading capacity. They stated that damage parameters are only 

important for cyclic and dynamic loading. 

4. Mesh size – The authors show that the model is mesh size dependent. For mesh sizes 

greater than 20 mm, the solution cannot converge but instead gives a ductile and 

unrealistic behavior. Finer mesh sizes (less than 20 mm) and the solution converges 

prematurely giving a more brittle response.  

5.  Fracture Energy – an increase in fracture energy leads to stiffer load-displacement 

response. The authors calculated the fracture energy as 0.082 N/mm according to CEB-

FIB 1990 which was slightly higher than the 0.1 N/mm value presented in their previous 

paper [56].  

Genikomsou and Polak [58] used the same slab specimen SB1 to model a slab with shear 

bolts. The presentation of slab SB1 has some notable modifications from their previous papers. 

The concrete tensile relationship was again calculated using a fracture energy approach but this 

time they used an exponential softening curve: 

𝜎

𝑓𝑡
′ = 𝑓(𝑤) − (

𝑤

𝑤𝑐
)  𝑓(𝑤𝑐) 

 (2-21) 

𝑓(𝑤) = (1 + (
𝑐1𝑤

𝑤𝑐
)

3

) exp (− (
𝑐2𝑤

𝑤𝑐
)) 

 (2-22) 

The new softening curve is shown in Figure 2-23 superimposed with the bilinear strain 

softening diagram presented in their previous paper. 
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Figure 2-23: Strain-softening curves [58]. 

In the determination of the fracture energy, the authors found that the newer CEB-FIB 

Model code 2010 [4], increased the fracture energy from 0.082 N/mm (given in CEB-FIB 1990) 

to 0.148 N/mm. This increase in fracture energy led to a stiffer load–displacement response. 

Contrary to their recommendation in [57] regarding ignoring the damage parameters, the authors 

focus on the effect of the compressive damage on the load response. They conclude that the best 

results occur when the plastic strains equal 0.7 times the inelastic strains. The final load – 

displacement curve is presented in Figure 2-24. 
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Figure 2-24: Genikomsou & Polak load – displacement curve [58]. 

Genikomsou and Polak [59] built upon their work in [58] and modeled three slabs with 

different shear bolt patterns. In this analysis, they used ABAQUS/Explicit and all the same 

parameters from [57] to model SB1. The model effectively showed the increase in punching 

shear capacity with the addition of the shear bolts.    

The model development, findings, and conclusions presented in the four papers by 

Genikomsou & Polak were calibrated to one set of experimental data, slab specimen SB1. All of 

their analysis revolved around a specimen with constant parameters (i.e. concrete strength, 

tension stiffening, reinforcement ratio, etc.). No attempt was made to determine the applicability 

of the approach they used in modeling specimen SB1 would have on simulating other slab 

specimens with different parameters. Therefore, the generality of their model was not established 

since it was limited to only one experiment. It is not known how the punching shear model that 

they developed would behave when the factors that influence punching shear behavior are 

varied. Although the authors did perform numerous parametric studies, they did not establish any 
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expressions to aide a user in trying to model a slab with different properties (such as concrete 

strength, flexural reinforcement ratio, and reinforcement strength) than that of specimen SB1.  

2.5.5 Nana et al [61] 

Nana et al [61] presented a numerical investigation using the concrete damaged plasticity 

model in Abaqus to model their experimental results on punching shear of concrete slabs. Their 

experimental program studied the influence of concrete strength and loading area on the 

punching behavior of slabs. They tested a series of nine slabs with varying geometries. Their 

FEA model was calibrated based on the experimental results of their specimens. The FEA model 

that they developed was used to further study the effects of slab depth, concrete aggregate size, 

flexural reinforcement, and the size of the loaded area. The tensile behavior of the slab was 

modeled using a fracture energy approach. Like Genikomsou & Polak, Nana et al [61] used the 

CEB-FIB Model code 1990 [60] & 2010 [4]. The only calibration that they performed was on the 

FEA numerical parameter of the dilation angle used in the constitutive model. The authors 

recommended to use a dilation angle of 37o to model concrete with a compressive strength of 

less than 25 MPa and found that the dilation angle would increase with an increase in concrete 

strength. 

 A comparison of the load-deflection response of the FEA model and experimental results 

showed good agreement with each other. A sample of their results is shown in Figure 2-25. 

The author’s represented the tensile behavior of the slab with a tensile-softening approach 

through the use of fracture energy even though the slab was reinforced. The fracture energy 

approach that they used to model the tensile behavior of the slab was effective for the slab 
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specimens that they tested with varying concrete strength and aggregate size. This is because the 

fracture energy approach is dependent on these two properties and they are direct variables in the 

fracture energy expression in the CEB-FIB Model Code [4] [60]. However, the fracture energy 

approach is not suitable to represent changes in the flexural reinforcement ratio. The fracture 

energy expression that the authors used does not contain an expression to alter the tension-

stiffening properties of a slab with any changes in the flexural reinforcing ratio.   

 

Figure 2-25: Nana FEA vs experimental results [61]. 

The authors did not achieve satisfactory results from their experimental tests on the 

influence of increasing ρ. Instead of seeing an increase in punching shear with an increase in ρ, 

the authors experienced a slight decrease. They acknowledged this discrepancy and attempted to 

use their FEA model to predict the ‘actual’ results. The authors did not have any reliable 

experimental results to calibrate their model to, so therefore they based their prediction solely on 

the output of a model calibrated for just compressive strength. The FEA model did show an 

increase with increasing ρ, however their FEA model is not capable of accounting for increased 

tension-stiffening due the higher concentration of reinforcing because there is no variable in the 

CEB approach that they used to represent concrete in tension to adjust for tension-stiffening. The 
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CEB approach only accounts for tension-softening which is a phenomenon unique to plain 

concrete.  The slight increase in punching shear that they did experience in their model is 

contributed to the independent tensile strength of the 2D rebar elements and does not reflect any 

benefit to the shear resistance caused by tension-stiffening. It is anticipated, with the inclusion of 

tension-stiffening, that the authors should have experienced a much larger punching shear 

resistance with their increase in ρ.  

The inability of the fracture energy method to adjust for flexural reinforcing is a major 

drawback to this approach when developing a robust model capable of representing all aspects of 

punching shear. The model developed in this thesis will be based on a stress-strain relationship 

similar to the approach used by Youm et al [54] which is more adaptable to account for more 

variables from the influencing parameters of punching shear.  

2.5.6 Hawileh et al [62] 

Hawileh at al [62] developed a FEA model using the program ANSYS to study punching 

shear behavior. The authors compared their model with the high strength steel reinforcing test 

specimen data by Yang et al [18] which also included a specimen with SFRC.  Their model used 

3D solid elements to represent the concrete and steel reinforcement and implemented the tri-axial 

plastic concrete model available in ANSYS. The tension stiffening curve followed a bilinear 

trend. The ascending branch was assumed linear up to the point of the modulus of rupture. Then 

it dropped instantly by 60% of the tensile concrete strength and proceeded to decrease linearly to 

an ultimate tensile strain of six times the strain at the tensile rupture strength. The element used 

to model the reinforcing included a factor to simulate the bond-slip behavior between the 

reinforcing and the concrete. The authors used the CEB-FIP model [60] to calculate the bond 
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stress-slip. This expression could be adjusted for varying reinforcement ratios. They also 

accounted for the inclusion of steel fibers by introducing a tensile relaxation coefficient inherit in 

the ANSYS constitute mode. For SFRC they set this value to 0.85. Punching shear failure was 

assumed to take place at the onset of yielding of the steel reinforcement followed by concrete 

crushing (taken at a strain of 0.003).     

The results from Hawileh et al showed a very good agreement for the ultimate punching 

shear loads and the mid-span deflection between the FEA model and the experimental results. A 

sample of their results is presented in Figure 2-26. A main criticism of their research is in their 

results for slab specimen MB2. There was a premature failure of slab specimen MB2 in the lab 

caused by bond failure of the reinforcing and not caused from punching shear.  The Hawileh et al 

model was used to simulate the punching shear behavior and would not have captured this bond 

failure. It would have been expected that their FEA model would have produced a much different 

load-deflection curve; one with a higher peak punching shear and displacement. However, their 

load-deflection results from their FEA model matched the experimental results for MB2 very 

closely.  No mention of this discrepancy was made in their paper. 

The authors’ FEA model was too specific to the set of slabs included in their study. Their 

approach did show some generality that could lend itself to modelling other slabs, however, no 

other slab specimens were tested to analysis the robust of their model.  The purpose of this thesis 

is to develop a finite element model that will predict, with reasonable accuracy, the ultimate load 

and load-deflection curve for a wide range of concrete slabs with a number of varying 

parameters that influence punching shear strength.  
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Figure 2-26: Hawileh FEA vs experimental results [62]. 

2.5.7 Summary 

A commonality of the available research presented above is that no model presented a 

unified approach to modelling punching shear with varying material properties. Each model was 

created specific to the experimental slab specimen that it was simulating. The creation of the 

models did not provide the generality required to simulate a wide range of slabs with varying 

properties. None of the authors established any expressions to model variations in the variables 

that influence punching shear such as: concrete strength, flexural reinforcement ratio, and 

reinforcement strength. 
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Chapter 3 

3 Data Used in the Current Study 

Reinforced concrete is a complicated material to model due to its nonlinearity in both 

compression and tension stress-strain behavior. In order to represent the behavior accurately, 

finite element models must be calibrated based on the observations of physical models available 

from experiments. Finite element simulations require that the punching shear failure mechanism 

be reproduced properly and include accurate predictions of tension softening and tension 

stiffening behavior. To create models, the stress-strain relationship of the concrete material 

model must be calibrated with experimental data. The models should predict the actual behavior, 

such as the load-deflection output of the experimental results.  

The phenomenon of punching shear has received a lot of attention from researchers from 

the early decades of the twentieth century and still on-going today. Consequently, the 

experimental database is vast but it does not always provide a consistency of results across a 

range of researchers. Therefore, to develop a robust FEA model capable of predicting punching 

shear, this thesis will focus on test data from a research program from McGill University that 

features slab specimens that were physically modeled to include all of the punching shear 

parameters under consideration in this thesis. The experimental results from this research 

program forms the basis of the model developed in this thesis. The research program consisted of 

three published papers that built upon each other. The test set-up and slab specimens were 

similar in the three papers but each paper investigated the influence of different parameters on 

punching shear strength. McHarg et al [19] studied the effect of flexural reinforcement ratio in 

the column vicinity as well as the concentration of SFRC around the column and a layer of 
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SFRC in the top slab cover. Lee et al [20] overlapped McHarg et al [19] by also studying the 

influence of the flexural reinforcement ratio but they included testing the effect of varying the 

concrete strength as well as using high strength SFRC within a distance of 2d from the column 

face. Yang et al [18] focused their punching shear study on the effect of high strength flexural 

reinforcing in combination with SFRC and a varying flexural reinforcing ratio.  

Not all of the experimental data available in these three papers will be used to create the 

FEA model. The slab specimens that are not used in the development will be used in the 

verification process.  Once the model is established it will used to simulate the load – deflection 

results of the other available slab test data.  This verification process is necessary to establish that 

the model can represent punching shear behavior on slab specimens outside of the ones used for 

calibration. To further validate the effectiveness of the model, it will also be used to simulate the 

experimental punching shear behavior of two other researcher programs in the literature 

conducted by Genikmosou & Polak  [56] and Pourezza [63]. The work by Genikomsou & Polak 

[56] was reviewed extensively in Chapter 2 and will not be reiterated here. A summary of 

Pourezza’s [63] research on the punching shear strength of SFRC slabs will be provided in this 

section.  

The preceding sections will describe the test data from the research that will be used in 

this thesis to calibrate and validate the FEA punching shear model.  

3.1 McHarg et al [19]  

McHarg et al. [19] conducted an experimental program to investigate the strategic use of 

SFRC on punching shear capacity by concentrating SFRC just around the slab-column joint and 
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only in the top slab cover. They tested six slab-column specimens of 2300 mm square, 150 mm 

thick, with a 225 mm square column stub. The first slab series (N-series) was normal 30 MPa 

concrete, the second slab series (FS-series) was 30 MPa SFRC (0.5% steel fibers) placed at 500 

mm around the column, and the third slab series (FC-series) was 30 MPa SFRC (0.5% steel 

fibers) used at the top slab cover (40 mm). The slab specimens are illustrated in Figure 3-1. Each 

series consisted of two slab specimens; one with uniformly distributed top reinforcement and the 

other with banded top reinforcement. The concentrated SFRC showed significant improvement 

in punching shear strength (25% increase), enhanced ductility, and reduced crack widths. The 

addition of fibers to the concrete cover slightly increased the load-carrying capacity up to 7%. 

The test also studied the effect of concentrating reinforcing bars over the column zone to which 

they concluded that the use of the banded top reinforcement resulted in higher punching shear 

resistances. The authors concluded that the ultimate strength of the slab was influenced more by 

the addition of the fibers than by the distribution of the reinforcing steel. Figure 3-2 shows the 

load-deflection results of the slab specimens.  
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Figure 3-1: McHarg slab specimens [19]. 
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Figure 3-2: McHarg load deflection results [19]. 
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3.2 Lee et al [20] 

Lee et al [20] followed up on the work of McHarg et al [19] by also testing the influence of 

concentrated SFRC around the column with banded and uniform reinforcing. They tested eleven 

slab-column specimens of similar geometry to McHarg et al (Figure 3-3). In contrast to McHarg 

et al, who used the same concrete strength throughout their experiment, Lee et al tested eight 

specimens with varying concrete strength to study the effect of banded reinforcement versus 

uniform reinforcement. They cast two specimens with concentrated 40 MPa concrete mixed with 

0.5% steel fibers 500 mm around the column with a uniform and banded top reinforcing layout. 

They also cast two specimens with 90 MPa SFRC at a distance of 2d from the column face. Like 

the work by McHarg et al [19], they found that concentrating the SFRC around the column for a 

distance of 500 mm lead to an increase in punching shear strength and lower crack widths. The 

failure mode behaved much more ductile than the sudden punching experienced with non-fiber 

reinforced slabs. The authors found that the addition of fibers increased the shear failure 

perimeter to a region just outside the concentrated fiber zone. When using puddled high strength 

SFRC at a distance of 180 mm (2d), the authors reported that there was a significant 

improvement in the punching shear performance although the specimen did not appear to exhibit 

the same amount of ductility as that with the wider puddled SFRC (Figure 3-4).    
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Figure 3-3: Lee slab specimens [20]. 
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Figure 3-4: Lee load – deflection results [20]. 

3.3 Yang et al [18] 

  Yang et al [18] used the same experimental set-up as Lee et al [20] and McHarg et al 

[19]. The focus of their study was on the punching shear behavior of slabs reinforced with high-

strength flexural reinforcement. They also studied the effect of concentrating the flexural 

reinforcement in the column vicinity and using SFRC on punching shear. Yang et al [18] used 

the same control slab specimens as McHarg et al [19] (NU & NB) as a reference for punching 

shear behavior with uniformly distributed conventional steel bars (NU denoted S1-U in their 

report) and with banded conventional steel bars (NB denoted S1-B in their report). They then 

introduced specimen MU1 and MB1 which had the same reinforcement layout as S1-U and S1-
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B, respectively, but used high strength bars (ASTM A1035). Specimen MU2 was reinforced with 

high strength bars with an amount of flexural reinforcement such that the slab had the same 

flexural strength as specimen S1-U.  To test the combined effect of high strength steel and 

SFRC, Yang et al [18] tested MBF2 which was similar in reinforcement to MB2 but featured 

SFRC in the slab within the immediate column region. The slab specimens are summarized in 

Figure 3-5. From their test results (Figure 3-6), Yang et al [18] concluded that the direct 

replacement of conventional steel bars with high strength bars, having the same area, resulted in 

a 27% increase in punching shear strength. The use of high strength bars and close reinforcement 

spacing did cause the test for specimen MB2 to fail prematurely due to bond distress. The 

addition of steel fibers into specimen MBF2 eliminated this bond failure and achieved a 51% 

punching shear increase from specimen MB2.  

 

Figure 3-5: Yang slab specimens [18]. 
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Figure 3-6: Yang load – deflection response [18]. 
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3.4 Pourezza [63] 

Pourreza [63] conducted an experimental investigation to examine the structural behavior of 

hybrid-fiber-reinforced concrete (HFRC) of two way slabs at Memorial University. He tested 

eight full scale interior slab-column connections with thicknesses 200 mm and 250 mm. The 

slabs measured 1900 mm × 1900 mm with a 250 mm × 250 mm column stub and were simply 

supported around the edges. Four slabs were tested with steel fiber volume fractions of: 0%, 

0.68%, 0.8%, and 0.96%. Each SFRC slab also contained 0.2% macro-synthetic fibers. The 

compressive strength varied between 60-70 MPa and each slab contained a flexural 

reinforcement ratio of 1.3%. Pourreza’s results showed an increase in punching shear capacity 

with an increase in steel volume fiber content (Figure 3-7). This increase was more noticeable in 

the 200 mm thick slabs than the 250 mm thick slabs. The slabs with higher steel volume content 

showed enhanced stiffness, ductility and energy absorption capacity. 

 

Figure 3-7: Pourezza load vs deflection curves [63]. 
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3.5 Summary of Experimental Data 

A summary of the slab specimens and properties is presented in Table 3.1. 

Table 3.1: Summary of slab specimen properties 

Researcher Specimen 
Pmax 

[kN] 

𝑓𝑐
′ [MPa] fy 

[MPa] 
ρ 

Slab SFRC 

McHarg [19] NU 306 30 - 434 0.0111 

NB 349 30 - 434 0.0215 

FSU 422 39 41.5 434 0.0111 

FSB 438 39 41.5 434 0.0215 

FCU 329 37.5 33.4 434 0.0111 

FCB 361 37.5 33.4 434 0.0215 

Lee [29] 35U 301 37.2 - 445 0.0118 

35B 317 37.2 - 445 0.0215 

55U 363 57.1 - 445 0.0118 

55B 447 57.1 - 445 0.0215 

65U 443 67.1 - 445 0.0118 

65B 485 67.1 - 445 0.0215 

90BF 386 46.9 92.1 449 0.0263 

Yang [18] MU1 382 35.3 - 800 0.0118 

MU2 296 35.3 - 800 0.0118 

MB2 282 35.3 - 800 0.0136 

MBF2 426 35.3 30.8 800 0.0136 

Pourezza [63] R200 848 70 - 400 0.0130 

Genikomsou [56] SB1 253 44 - 400 0.0110 
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Chapter 4 

4 FEA Modelling of Reinforced Concrete 

The two principle structural actions of reinforced concrete is compression and tension. 

Therefore, in order for an FEA model to simulate the behavior of a reinforced concrete structure, 

the model must accurately describe how it behaves in compression and tension. The 

characteristics of this behavior is combined into a constitutive model. The concrete and 

reinforcement is represented with the proper type and size of finite elements. The boundary 

conditions and load application have to be accurately represented and the failure criteria must be 

defined. The following sections will describe the constitutive model used in this current thesis 

and its parametric definitions along with the other modelling techniques required to create a FEA 

model. 

4.1 Concrete Constitutive Model 

A constitutive model is a series of equations and idealizations that are used to 

numerically approximate the behavior and response of a material. Numerous concrete 

constitutive models exist in the literature.  Each finite element computer program adopts a 

specific constitutive model. The commercial FEA program ANSYS implements the Darwin and 

Pecknold [64] inelastic concrete model whereas the FEA program ABAQUS offers three 

different concrete models: brittle cracking model, smeared crack model, and the concrete 

damaged plasticity model. Each constitutive model offers advantages depending on the analysis 

being conducted. For example, the brittle cracking model is intended for applications in which 

concrete behavior is dominated by tensile cracking and compressive failure is not important and 
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is treated as linear elastic. The concrete damaged plasticity (CDP) model is intended for the 

analysis of concrete under monotonic, cyclic, and/or dynamic loading. It features tension 

cracking and compression failure modes and represents the complete inelastic behavior of 

concrete in tension and compression. The unique feature of CDP model is that it takes into 

account the degradation of the elastic stiffness induced by plastic straining in both tension and 

compression. Punching shear failure is most accurately modeled using the elasto-plastic damage 

model [53] due to the non-associated potential flow model that is aimed at providing a more 

realistic simulation of the concrete material under punching shear [52]. A summary of the CDP 

model and the definition of its numerical and material parameters to be used in the FEA model of 

this current study are described in the following sections. 

The CDP model is a modification of the Drucker-Prager yield criterion which is one of 

the strength hypothesis most often applied to concrete. The CDP model was developed by 

Lubliner et al [65] and latter refined by Lee & Fenves [66]. It is a pressure dependent model for 

determining whether a material has failed or undergone plastic yielding. Details of the 

mathematical formulation of the CDP model are provided in [65] and [66].  

The CDP model requires defining five parameters to solve the Drucker-Prager plastic 

flow function and the yield function proposed by Lubliner [65]. These parameters include: shape 

factor, eccentricity, bi-axial compressive stress ratio, dilation angle, and viscosity. The shape of 

the state of stress utilized in the CDP model is represented as a three dimensional cone. The 

states of stress corresponding to material failure are located on the surface of the cone and the 

states of stress corresponding to safe material behavior are located inside the cone. The Drucker-

Prager strength hypothesis assumed that the cross section of the failure cone is a circle (Figure 
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4-1). However, to fully describe the actual behavior of concrete, Lubliner et al [65] found that 

the cross-section of the cone was not an actual circle but rather defined by a shape factor, KC 

(Figure 4-2). The KC factor is the ratio of the distances between the hydrostatic axis and the 

compression meridian and the tension meridian. This factor expresses the shape of the yield 

surface in the deviatory plane. Lubliner et al [65] recommends to assume the value of KC as 2/3. 

The shape of the compression and tension meridians is not constant but rather assumes the form 

of a hyperbola. The rate of change of these meridians to its asymptote is known as the 

eccentricity. Lubliner et al [65] defines the value of eccentricity as 0.1 which is also an 

approximation of the ratio of the uniaxial concrete compressive strength to its tensile strength. 

To fully define the Drucker-Prager yield function the ratio of biaxial compressive stress to 

uniaxial compressive stress needs to be expressed. For normal strength reinforced concrete this 

ratio is defined by Kupfer’s [67] biaxial concrete stress-strain curve as 1.16 (Figure 4-3).  

 

Figure 4-1: Drucker-Prager boundary surface [68]. 
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Figure 4-2: Deviatoric cross-section of failure surface in CDP model [69]. 

 

 

Figure 4-3: Concrete biaxial stress-strain curve [69]. 

Another parameter of the CDP model is the definition of the angle of inclination of the 

failure surface towards the hydrostatic axis measured in the meridional plane (Figure 4-4). This 
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angle is referred to as the dilation angle, ψ. It is interpreted physically as the ratio of volume 

change to shear strain caused by the large inelastic strains that occur when nonlinear materials 

like concrete are deformed due to stress. The dilation angle can be considered as a concrete 

internal friction angle and is usually between 36o – 40o [68].  

 

Figure 4-4: Dilation angle in meridian plane  

A sensitivity analysis was conducted to define the value for this parameter and to analyze 

the effect this parameter has on the punching shear behavior. Slab specimen NU [19], which was 

described in Chapter 2, was modeled and examined for dilation angles ranging from 20o to 50o 

while all other parameters remained constant. Figure 4-5 illustrates the change in load-deflection 

response due to the changes in the dilation angle. It is observed that the punching shear response 

increases with an increase in dilation angle. At high dilation angle values, as shown when ψ 

equaled 50o, the slab response becomes very ductile and does not converge to a failure load. At 

low dilation angle values, as shown when ψ equaled 20o, the slab response becomes very brittle 

and the slab fails prematurely compared to the experimental punching shear load. The dilation 

angle of 40o provides a good agreement with the test results of the load-deflection diagram. A 

second sensitivity analysis on the dilation angle was conducted using slab specimen SB1 from 
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Genikomsou & Polak [56]. The results again show that a dilation angle of 40o best fit the 

experimental value (Figure 4-6). Nana et al. [61] used the same dilation angle value in their FEA 

modelling research. 

 

Figure 4-5: Parametric study – dilation angle specimen NU. 
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Figure 4-6: Parametric Study – dilation angle specimen SB1. 

The viscosity parameter, μ is introduced into the CDP model to avoid convergence 

problems when running a static analysis. Viscosity is required to prevent a convergence problem 

in the model which occurs in FEA when modelling non-linear brittle materials like concrete. The 

viscosity allows the plastic potential surface area to be exceeded in certain sufficiently small 

steps. Lee & Fenves [66] recommend setting μ to 15% of the time increment step. Due to the 

high non-linearity of a punching shear finite element simulation, the time increment step could 

not be fixed. The time increment step was set to ‘automatic’ with an initial step size of 0.0003. 

This was done so the program could increase or reduce the time increment to find a stable 

solution in the Newton-Raphson solver. 

The value of μ to be used in the model of this current study was determined from a FEA 

parametric study using slab specimen NU [19]. Values of μ tested ranged from 0.00001 to 0.01. 
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The results in Figure 4-7 show that when the viscosity parameter approaches zero, the slab 

behaves very brittle and fractures prematurely. As viscosity is increased, the material becomes 

increasingly stiffer and the load-deflection curves approaches the response observed in the 

experiment. For large viscosity values, the material behaves too stiff and does not represent the 

true load-deflection curve. The viscosity value of 0.0001 appears to be the best fit with the 

experimental data. Genikomsou & Polak [56] used a very similar value for μ of 0.000085 when 

they modeled their slab specimen in a static analysis.  

 

Figure 4-7: Viscosity parametric study using slab 

 

The CDP model features tensile cracking and compressive failure modes. To describe 

these failure modes the CDP model requires the definition of the compressive and tensile stress-

strain behavior. The following sections describe how these two material parameters are defined 
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in the CDP model. The equation for describing the full range of the concrete compressive stress-

strain behavior is adopted from the literature. The equation for the tensile stress-strain behavior 

is also adopted from the literature. However, the literature review did not reveal a model that 

accounted for all the parameters that affect tension-stiffening. Hence, an equation will be 

adapted, modified, and calibrated in the next chapter to produce an expression that includes 

variables for that account for concrete strength, flexural reinforcement ratio, steel fibers and the 

strength of the reinforcement. 

4.1.1 Numerical Model for Concrete Compressive Behavior 

The CDP model defines the compressive behavior of concrete through a yield stress 

versus inelastic strain relationship. The following discussion is illustrated in the stress-strain 

curve provided in Figure 4-8. The total strain, 𝜀𝑐
𝑇, is composed of an elastic portion, 𝜀𝑐

𝑒𝑙, and an 

inelastic one, 𝜀𝑐
𝑖𝑛 : 

 𝜀𝑐
𝑇 = 𝜀𝑐

𝑒𝑙 + 𝜀𝑐
𝑖𝑛 (4-1) 

Where;  𝜀𝑐
𝑒𝑙 =

𝑓𝑐

𝐸𝑜
 

The CDP model defines the degradation of concrete in compression through the use of 

the compressive damage vs inelastic strain curve. The expression for the damaged parameter, dc 

is given as [69]: 

𝑑𝑐 = 1 −
𝜎𝐸𝑐

−1

𝜀𝑐
𝑝𝑙 (

1
𝑏𝑐

− 1) + 𝜎𝑐𝐸𝑐
−1

 
(4-2) 
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As described by Birtel & Mark [70] and recommended by Genikomsou & Polak [59], the 

plastic strain, 𝜀𝑐
𝑝𝑙

, is proportional to the inelastic strain using the constant factor, bc,; 

𝜀𝑐
𝑝𝑙 = 𝑏𝑐 𝜀𝑐

𝑖𝑛 (4-3) 

Compressive damage occurs in the inelastic range of the stress-strain curve after the 

concrete has reached its ultimate stress and can no longer carry any more stress. The inelastic 

strains are not recoverable which cause permanent deformation and the concrete not to return to 

its original stress-strain state upon unloading.  In compression, concrete is assumed to be elastic 

until it deviates from linearity at a stress level of 0.4𝑓𝑐
′. Hence, concrete is defined to behave in 

the elastic region with an elastic modulus, Ec. For the proposed model Ec, was chosen for normal 

concrete based on CSA A23.3-14 [10] as expressed in Equation (4-4). For SFRC, Ec is assumed 

as proposed by Lee et al [29] in Equation (2-8):  

𝐸𝐶 = 3300√𝑓𝑐
′ + 6900 (4-4) 

The elastic modulus of the concrete, 𝐸𝑐
𝑖𝑛 , will be degraded when the specimen is re-

loaded and will not be as stiff as the initial elastic modulus, 𝐸𝑐. The relationship between the 

degraded modulus, 𝐸𝑐
𝑖𝑛, and the original modulus, 𝐸𝑐 , is provided by the following expression:  

𝐸𝑐
𝑖𝑛 = 𝐸𝑐(1 − 𝑑𝑐). (4-5) 

This effect is significant in cyclic loading where the load is removed and re-applied a 

number of times. However, in the current investigation, the load is applied monotonically and 

hence the effect of ‘damage’ can be ignored. 
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Figure 4-8: Compressive stress vs strain curve [69]. 

The model proposed in this thesis adopts the compressive stress-strain expression by 

Collins & Mitchell [25] for reinforced concrete without steel fibers and by Lee et al [29] for 

SFRC. The average ultimate compressive strain for normal concrete is assumed to be 0.0035 as 

defined in CSA A23.3 [10]. There is no generally accepted value for the ultimate compressive 

strain for SFRC. The proposed model for SFRC will reference the work by Wang [30] and set 

limits on ultimate compressive strain as:  𝜀𝑢 = 0.005 for 𝑉𝑓 ≤ 0.5% and 𝜀𝑢 = 0.02 for 𝑉𝑓 >

0.5%. 

4.1.2 Numerical Model for Concrete Tensile Behavior 

  Punching shear failure is highly dependent on the tensile response of concrete since 

punching shear failure is initiated by tensile cracking [2]. Therefore, the modelling of the tensile 

stress-strain behavior of a reinforced concrete slab will be a main focus of this study. From the 

literature review it was noted that the punching shear strength is influenced by the concrete 
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strength, flexural reinforcement ratio, strength of the reinforcing steel, and the presence of steel 

fibers. Numerous forms of the tension-stiffening model were presented in the literature review 

but none of the models had the versatility to account for changes in the values of all of the 

parameters that influence punching shear. The objective of this thesis is to create a robust model 

that can be employed across a wide range of specimens. Therefore, this tension stiffening curve 

will account for concrete strength, flexural reinforcement ratio, strength of reinforcing steel, and 

the presence of steel fibers. 

The CDP model enables the simulation of the degradation of tensile behavior by 

specifying the tensile damage versus average cracking strain (Figure 4-9). The expression for the 

damaged parameter, dt is given as [69]: 

𝑑𝑡 = 1 −
𝜎𝐸𝑐

−1

𝜀𝑡
𝑝𝑙

(
1
𝑏𝑡

− 1) + 𝜎𝑐𝐸𝑐
−1

 
(4-6) 

The plastic strain, Ԑt
pl , is proportional to the inelastic strain using the constant factor bt  = 

0.1 as recommended by [70] where; 

  𝜀𝑝𝑙 = 𝑏𝑡𝜀𝑐
𝑖𝑛                              (4-7) 

The first pair of data for the tensile damage/cracking strain curve must correspond with 

the onset of plasticity at point Ԑcr. The strain in the first pair is taken as zero (i.e. 𝜀1 = 𝜀𝑐𝑟 −

𝜀𝑐𝑟), the second pair as 𝜀2 = 𝜀1 − 𝜀𝑐𝑟, and the third pair as 𝜀3 = 𝜀𝑢 − 𝜀𝑐𝑟. 

As explained in the concrete compressive damage section, accounting for damage is only 

significant for cyclic loaded structures and may be ignored for this model. 
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Figure 4-9: Tension stiffening curve with tensile damage [69]. 

The exponential decay model developed by Hsu & Mo [44] is selected to represent the 

tensile behavior of concrete for the present study as it is easily adaptable to account for the 

tension stiffening parameters under consideration and is suitable for use with the CDP model. 

The expression was also used in the finite element simulation of punching shear by Youm et al 

[54] described in Chapter 2 and good results were obtained. The first stage of the tensile 

behavior is assumed linear up to the point of cracking.  

For SFRC, the use of steel fibers in the concrete mix does not appear to affect the 

response up to and including first cracking [50]. Even though Abrishami & Mitchell [45] 

reported an increase in cracking stress at fiber volume contents above 1%, an increase in 

cracking strength is not expected to be substantial for the range of fiber volumes encountered in 

the slab specimens in the present study and in those that would be practically used in 

construction. Hence, the same expression for the uniaxial tensile strength for non-fibrous 

concrete will also be used in this material model for SFRC.  
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  Hsu & Mo [44] provided a tension stress-strain equation which has been adapted for this 

proposed model. The model is expanded to define a weakening function, n, and ultimate strain 

factor, Ƴ, as functions of compressive strength, flexural reinforcement ratio, steel fiber content, 

and reinforcement yield strength. The expression will consider the tension stiffening and local 

bond effects to produce a homogenized stress-strain relationship capable of simulating the post-

cracking behavior. The ultimate tensile strain will be determined and calibrated using the 

experimental load – deflection curves and expressed as a function of the cracking strain. Tension 

stiffening for the concrete damaged plasticity model is specified by defining the tensile stress 

versus cracking strain curve for the post-failure stress/strain relation. The adopted tension 

stiffening stress-strain relation is: 

𝜎𝑡 = 𝐸𝑐 𝜀𝑡    𝑤ℎ𝑒𝑟𝑒  𝜀𝑡 ≤ 𝜀𝑐𝑟  (4-8) 

𝜎𝑡 = 𝑓𝑡  (
𝜀𝑐𝑟

𝜀𝑡
)

𝑛

  𝑤ℎ𝑒𝑟𝑒 𝜀𝑈  >  𝜀𝑡  >  𝜀𝑐𝑟 
 

Where;  𝑓𝑡 = 0.33√𝑓𝑐
′  

  Cracking strain, 𝜀𝑐𝑟 =
𝑓𝑡

𝐸𝑐
  

  Weakening function, 𝑛 = 𝑓(𝑓𝑐
′, 𝜌, 𝑉𝑓 , 𝑓𝑦) 

  Ultimate strain,  𝜀𝑈 = ϒ 𝜀𝑐𝑟 

  Ultimate strain factor, ϒ = 𝑓(𝑓𝑐
′, 𝜌, 𝑉𝑓 , 𝑓𝑦) 

4.2 Reinforcement Modelling 

Steel reinforcement can be modeled using either smeared reinforcement in the concrete, 

as discrete one-dimensional elements, or as solid 3D elements. The smeared reinforcement 

technique creates a composite layer of steel by spreading or smearing the reinforcement out over 
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the concrete surface. The use of smeared reinforcement is generally acceptable for simulating the 

global response of a structure but it is not capable of analyzing local response of the 

reinforcement. For this, it is more realistic to model reinforcement as discrete 2D truss or beam 

elements. Since the reinforcement acts in a uni-axial direction, it is reasonable to model it as two-

node linear truss elements (T3D2). The diameter and spacing of the bars are modeled to match 

the diameter and spacing of the physical model. The ‘embedded’ method was used to simulate 

the bond between the concrete and the reinforcement. The embedded technique allows the 

placement of reinforcement anywhere within the concrete specimen and is not restricted by the 

concrete mesh location. The embedded constraint ties the nodes of the reinforcement to the 

nodes of the concrete without having to share the same node as shown in Figure 4-10. Although 

this technique assumes a perfect bond interaction of the reinforcement with the concrete, the 

effects of bond slip is taken into account in the tension-stiffening model. The steel reinforcement 

was assigned as a linear elastic material with a Young’s modulus of 200,000 N/mm2 and Poisson 

ratio 0.3. The yield strength and plastic material properties were based on the information 

provided in the test data. 

 

Figure 4-10: Modelling of reinforcement and its interface with concrete [71]. 
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4.3 Finite Element Type 

Areas of the slab-column interface within the punching failure zone are under a complex 

tri-axial stress state. Complex stress states should be presented in a three-dimensional stress 

space in order to describe the tri-axial stress state [68]. Three-dimensional solid continuum 

elements are used for this purpose to discretize the concrete elements. The idealization of 

representing concrete with 3D solid first order elements can cause the numerical problem of 

shear locking where the element behaves too stiff in bending applications. This is caused from 

artificial shear stresses being introduced in the element as the element bends and cannot maintain 

a curved shape. Shear locking can result in incorrect displacements and stresses. To avoid this 

phenomenon, eight-noded hexahedral (brick) elements were used with reduced integration 

(C3D8R) to model the concrete.  

4.4 Finite Element Discretization 

Due to the cracking in reinforced concrete elements, the response of the member becomes 

dependent on the size of the mesh. Such behavior is known as mesh sensitivity whereby meshes 

of varying sizes do not exhibit the same load – deflection response [72].  In reinforced concrete, 

the properties of a discretized element may differ between element sizes and from element to 

element. Some elements may contain steel reinforcement while others do not and the cracking 

failure pattern in a slab is not evenly or symmetrically distributed throughout all elements. 

Coarse meshes tend to lead to an increase in the post crack energy absorption capacity and do not 

converge on a unique solution [72]. The mesh dependency is more affected by the inelastic 

tensile response rather than the compressive behavior [73].  
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Mesh sensitivity is usually overcome by using a stress – displacement approach instead 

of a post failure stress – strain relation [59]. It is customary for models that do not contain 

reinforcement in significant areas to use a stress – displacement curve because a stress – average 

strain relationship will introduce unreasonable mesh sensitivity [69]. The literature review 

presented several FEA models that were defined by a stress – displacement response and used 

the fracture energy of concrete as a material property. However, since fracture energy is a 

property of plain concrete, these models neglected to account for the interaction of the 

reinforcement and the concrete. Concrete slabs used in practice often have a concentration of 

flexural reinforcement over the columns due to the high concentration of tensile-stress and to 

safeguard against punching shear. A robust FEA material model should be able to account for the 

steel-concrete interaction for a range of reinforcing ratios. A post failure stress-average strain 

relation was used in this thesis because it is easily adapted to account for tension stiffening. 

Representing concrete with a tensile stress-strain relation introduces mesh sensitivity into the 

FEA model. 

A mesh sensitivity study was performed on slab specimen NU [19] using four different 

mesh sizes: 15 mm, 20 mm, 25 mm, and 30 mm to investigate the effect of varying the mesh size 

on the load-deflection response of the slab. The FEA model set-up with a mesh size of 20 mm is 

illustrated in Figure 4-11. The load – deflection response of the slabs with varying mesh size is 

shown in Figure 4-12. The intent is to establish a relationship between the mesh size and the 

tension stiffening curve. The mesh size of 15 mm is a fine mesh with 10 elements through the 

slab thickness. This mesh size required a considerable amount of computation effort and showed 

a higher punching shear load (326 kN). It also displayed a clearly defined descending branch of 

the load-deflection curve after the peak load. The coarse mesh sizes of 30 mm and 25 mm 
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underestimated the peak load and did not provide a clearly defined post peak descending branch 

of the load-deflection curve. The curves showed a slight depression after the peak load but the 

load-deflection response rapidly started to descend again. This is indicative of the high energy 

absorption capacity of coarse meshes discussed earlier. The mesh size of 20 mm provided a 

sufficient number of elements to accurately predict the punching shear behavior of the slab.  

Figure 4-11: Sample mesh size of 20 mm 
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Figure 4-12: Parametric Study – mesh size. 

The tension-stiffening response of the concrete will need to be adjusted in order to 

develop a relationship to correlate the mesh size with the load-deflection response of a concrete 

element. The Hsu & Mo [44] expression (Equation (4-8)) used an exponential function, n, to 

adjust the degree of tension stiffening in the slab. For fine mesh sizes, which over-estimate the 

capacity of the slab, n would have to be increased in order to increase the punching shear 

strength. Likewise, for coarse mesh sizes, which underestimate the capacity of the slab, n would 

have to be decreased. To achieve mesh size independence the weakening function, n, was 

calibrated with the experimental load-deflection response for mesh sizes 30 mm, 25 mm, and 15 

mm (see Figure 4-13 to 4.29). The ‘best-fit’ values of n for each mesh size, LC, is shown in 

Figure 4-16 and the relationship between both is given as; 
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𝑛 = 0.665 − 0.014𝐿𝐶  (4-9) 

 

 

Figure 4-13: Mesh size calibration for 15 mm mesh. 
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Figure 4-14: Mesh size calibration for 25 mm mesh. 

 

Figure 4-15: Mesh size calibration for 30 mm mesh. 
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Figure 4-16: Weakening function vs mesh size. 

 

4.5 Boundary Conditions and Load Application 

A schematic of the experimental set-up used in the experimental program for the slab 
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behaves symmetrically about its two planar axes. To mitigate computation time during the 
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was loaded using a displacement that was applied on the steel plates on the top surface of the 

slab to simulate the loading that was applied in the experiment.  

 

Figure 4-17: Test set-up [19]. 

 

Figure 4-18: Abaqus quarter slab model. 
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4.6 Failure Criteria 

The failure criteria used in the development of this model was defined by the shape of the 

load – deflection response of the slab. The load – deflection curve provides a good indication of 

the behavior of a reinforced concrete slab specimen because it shows the three stages of slab 

behavior: 

1. Un-cracked stage where the slab behaves in the linear elastic mode; 

2. Cracked stage where the behavior becomes increasingly nonlinear up to the point of 

peak load; 

3. Post – failure stage where the residual strength and ductility of the slab can be 

observed in the descending branch. 

The gradient of the load – deflection curve is indicative of the type of failure experienced 

in the slab. The gradient of the curve prior to failure is steep for slabs experiencing punching 

shear and more gradual for slabs failing in a flexural mode.  

A limitation of the CDP model is the inability to model the post peak response of the load 

– deflection curve. The load-deflection data yielded from a plasticity model using visco-plastic 

regularization does not terminate at the point of punching shear failure. It was observed during 

this study that the response does show a characteristic peak followed by a descending branch 

which levels off or gradually begins to incline again. This is characteristic of a plasticity-based 

model where the plastic potential surface is crossed and the material increases in strain with little 

to no change in stress, also known as ideal plasticity. Ideal plasticity is not a realistic physical 

state of the actual behavior of concrete. Hence, the termination of the load – deflection data was 
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taken at the end of the descending branch before the inflection point where the curve flattens out 

and the concrete behaves ‘plastic’. The ultimate punching shear load is defined as the peak of the 

load – deflection curve.  
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Chapter 5 

5 Proposed Finite Element Model 
 

The FEA model will be calibrated to the work by [18], [19], and [20]. The model will 

examine and develop a tension stiffening expression to account for the effect of the following 

parameters on the response of concrete slabs in punching shear: 

1. Concrete compressive strength 

2. Flexural reinforcement ratio 

3. Inclusion of steel fibers  

4. Flexural reinforcement yield strength  

5.1 Concrete Compressive Strength Parameter 

The literature review showed that an increase in shear resistance is proportional to an 

increase in concrete compressive strength. This section will focus on developing a tension stress 

– strain expression to be used in a FEA model to represent the influence of compressive strength 

on punching shear behavior. The model will be calibrated with the experimental study conducted 

by Lee et al [20]. The details of their test specimens is provided in Chapter 3 of this thesis.  

The relationship between punching shear capacity and concrete compressive strength 

from the experimental data in Lee et al [20] is illustrated in Figure 5-1. As expected, the graph 

trends upward showing that the punching load increases with increasing concrete strength. There 

appears to be an anomaly where the maximum load for the 35 MPa slab is less than that for the 



 

90 

 

30 MPa specimen. Nonetheless the discrepancy is not very large. The following procedure will 

detail the methodology used to calibrate the 30U slab specimen model and then used to calibrate 

model specimens 35U, 55U, and 65U.   

 

Figure 5-1: Experimental results for uniform slabs [20]. 

5.1.1 Modeling Concrete Behavior in Compression 

As mentioned earlier, the concrete compressive strain relationship is adopted from 

Collins and Mitchell [25]. The compressive stress – strain curve for slab specimen 30U is 

illustrated in Figure 5-2. 
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Figure 5-2: Specimen 30U FEA model compressive stress-strain diagram. 

5.1.2 Modeling Concrete Behavior in Tension 

The tension stiffening stress-strain relation is adopted and modified from Hsu and Mo 

[44] and given in Equation (2-10). The weakening function, n, given in the expression and the 

magnitude of the ultimate strain, εu, are major contributing factors in the load-deflection 

response.  As a starting point for both variables, Hsu & Mo [44] recommended to set n as 0.4 and 

Genikomsou & Polak [56] used a value for the ultimate strain to be approximately one-hundred 

times that of the cracking strain. The relationship between the ultimate strain and cracking strain 

will be represented in this thesis by an ultimate strain factor, ϒ. The corresponding tension 

stiffening curve is illustrated in Figure 5-3.   
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Figure 5-3: Reference slab 30U tension stress-strain diagram. 

5.1.3 Results and Calibration 
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5-6 shows that the curve with n equal to 0.4 and ϒ equal to 100 agree best with the experimental 
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point of cracking, which is represented by the first inflection point on the descending portion of 

the curve, is slightly stiffer in the FEA model. This causes a slight uniform offset in the 

ascending branch which is typical of FEA simulation results.  A plot of the stress contours of the 

slab specimen 30U FEA model show a distinct punching shear cone at the column support as 

would be expected (Figure 5-7). 

 

  

Figure 5-4: Load vs displacement for 30U – varying n. 
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Figure 5-5: Load vs displacement for 30U – varying ϒ. 

  

Figure 5-6: Calibrated load vs displacement for 30U. 
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Figure 5-7: FEA stress contours for 30U. 

Slab specimens 35U, 55U, and 65U were modeled using the same methodology as 30U 

described above. The weakening function and ultimate strain factor were varied until a matching 

pair converged to an acceptable solution. The load-displacement curves in Figure 5-8 to 5.10 

correlate reasonably well with the experimental data. The slope of the ascending branches is 

similar to the experimental load-deflection curves and the peak loads are similar. A discrepancy 

is noted with specimen 35U where it was mentioned earlier that there could be an inconsistency 

in the experimental data.  The comparison of the maximum load versus concrete strength from 

the FEA analysis and the experimental values are shown in Figure 5-11. The curve from the FEA 

results for 35U is more in line with the convention that punching shear increases as concrete 

strength increases.  
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Figure 5-8: Load vs displacement for 35U. 

  

Figure 5-9: Load vs displacement for 55U. 
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Figure 5-10: Load vs displacement for 65U. 

 

Figure 5-11: Comparison of FEA models vs experimental data for U-series slabs. 
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compressive strength. The decrease in n as a function of 𝑓𝑐
′ can be approximated by a linear 

regression line (Figure 5-12).  

The ultimate strain factor, ϒ, remains constant up to a concrete strength of approximately 

40 MPa. After that point, ϒ increases rapidly with respect to 𝑓𝑐
′. This relationship is better 

approximated by a polynomial expression after 40 MPa to reflect the steeper increase in strain 

with higher strength concrete (Figure 5-13). The following functions can be used to define a 

tension stiffening curve to be used in a finite element analysis for punching shear when only 

considering variations in concrete compressive strength. 

Weakening function, n:  

𝑛 = 𝐴𝑛 (5-1) 

Where;    

𝐴𝑛 = 0.48 − 0.0023𝑓𝑐′  (5-2) 

Ultimate Strain Factor, ϒ: 

Ƴ = 𝐴ϒ (5-3) 

Where;    

𝐴ϒ = 100   if 𝑓𝑐
′ ≤ 40 MPa 

𝐴ϒ = (0.24𝑓𝑐
′2

− 20.8𝑓𝑐
′ + 548)     if 𝑓𝑐

′ > 40 MPa 

(5-4) 
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Figure 5-12: Weakening function, n vs concrete strength, 𝒇𝒄
′ . 

  

Figure 5-13: Ultimate strain factor vs concrete strength. 
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5.2 Flexural Reinforcement Ratio Parameter 

The expressions for n and ϒ describing the tension-stiffening curve has so far been 

calibrated to only one value of flexural reinforcement ratio of 1.2% that was used in specimens 

30U, 35U, 55U and 65U. The expressions in Equations (5-1) and (5-3) have to be expanded to 

account for the enhanced tension stiffening generated from the concentration of flexural 

reinforcement around the column zone. McHarg et al [19] and Lee et al [20] had demonstrated 

that doubling the flexural reinforcing ratio by concentrating the top mat of steel over the column 

zone resulted in a higher punching shear resistance and a higher post-cracking stiffness. It will be 

demonstrated that in an FEA model it is not sufficient to just increase the number of 2D steel 

reinforcing bars, but rather, it is also very important that the interaction of the steel and concrete 

be modeled as well. This interaction is simulated by adjusting the tensile stress-strain values to 

account for the tension-stiffening effect. To reinforce this point, Figure 5-14 shows the effect of 

applying the same tension stiffening properties used to model specimen 30U, in the previous 

section, to model slab specimen 30B [20] which has double the flexural reinforcing ratio. The 

resulting load-deflection curve, using n = 0.4 and ϒ= 100, did not add enough tension stiffening 

to the slab and as a result the load-deflection response was well below the targeted curve from 

the experimental data of 30B. This shows that the Equations (5-1) and (5-3) must be re-calibrated 

for n and ϒ to reflect the change in the flexural reinforcement ratio parameter.  

A range of values for n and ϒ were examined for slab specimen 30B and are displayed in 

Figure 5-15 and Figure 5-16. The calibration process yielded that in order for the FEA model to 

match the experimental results, n had to decrease to 0.3 and ϒ had to increase to 200. A similar 

process was conducted for slab specimens 35B, 55B, and 65B. The load-deflection curves for 
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these slabs, based on the calibrated values for n and ϒ, are given in Figure 5-17 to Figure 5-20.  

A comparision between the FEA and experimental punching shear loads are given in Figure 

5-21. Similar to the uniform slab specimen 30U, there is an anomaly in the experimental results 

of specimen 35B. The punching shear loads for 55B and 65B are very similar to the experimental 

results. Again, as experinced in the U-series slabs, the initial ascending portion of the load-

deflection curve performed stiffer in the FEA model than in the experimental results.  This effect 

is typical for FEA analysis and experienced by other FEA researchers as well [56]. 

The relationship for the weakening function, n, between the banded reinforced slabs (B-

series) and the uniform reinforced slabs (U-series) are related as a function of the reinforcement 

ratio as shown in Figure 5-22. The variable Bn, is chosen to represent the change in n with 

respect to a change in 𝜌.   
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Figure 5-14: Load vs displacement for 30B using 30U parameters. 

 

Figure 5-15: Load vs displacement for 30B – varying n. 
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Figure 5-16: Load vs displacement for 30B – varying ϒ. 

  

Figure 5-17: Load vs displacement for 30B. 
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Figure 5-18: load vs displacement for 35B. 

  

Figure 5-19: Load vs displacement for 55B. 
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Figure 5-20: Load vs displacement for 65B. 
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Figure 5-21: Comparison of FEA model vs experimental data for B-series slabs. 

 

Figure 5-22: Relationship for ‘n’. 
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Figure 5-23: Relationship for ‘ϒ’. 

The contribution of the reinforcement ratio to the ultimate strain factor is given as: 
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SFRC concentrated around the slab-column interface is proposed and calibrated using the work 

published by McHarg et al [19] for slab specimen FSU. A summary of the experimental program 

was presented in Chapter 3 of this thesis. The following sections will detail the procedure used to 

develop the tension-stiffening parameter for SFRC.   

5.3.1 Modeling SFRC Behavior in Compression 

For the normal reinforced concrete outside of the 500mm column zone, the concrete 

compressive strain relationship provided by Collins & Mitchell [25] was used. For SFRC, the 

compressive stress-strain curve as defined by Lee, Oh, & Cho [29] was adopted. The 

compressive stress-strain curves for both materials is presented in Figure 5-24. 

 

Figure 5-24: FEA slab FSU compressive stress-strain diagram. 
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5.3.2 Modeling SFRC Behavior in Tension 

Equations (5-6) and (5-8) were used to determine the values for n and ϒ to be used in the 

tension stiffening expression. For the normal concrete portion of the slab n was calculated as 0.4 

and ϒ was calculated as 100. The values of n and ϒ for the SFRC portion were determined 

through calibration with the experimental data of specimen FSU. The tensile stress-strain curve 

is given in Figure 5-25. 

 

Figure 5-25: FEA slab FSU tension stress-strain diagram. 
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Figure 5-26 and Figure 5-27. The combination values of n = 0.35 and ϒ = 175 correlated the best 

with the experimental results (Figure 5-26).  The ultimate punching shear load from the 
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of cracking was a bit stiffer in the FEA model causing a slight uniform offset in the ascending 

branch. The load – deflection curve shows that the FEA model does not exhibit as much ductility 

as the experimental response. The deflection at the peak load in the FEA model was only 27 mm 

as compared to 38 mm in the experiment. The iterations of n less than 0.35 and ϒ greater than 

175, as displayed in the curves of Figure 5-27 and Figure 5-28, show that the FEA model could 

still not achieve the same ductility as the experiment while maintaing a similiar ultimate 

punching shear resistance. The stress contours from the FEA model shown in Figure 5-29 clearly 

show the punching shear radiating from the column face and fanning out toward the tensile 

surface of the slab. 

  

Figure 5-26: FSU Slab load vs displacement calibration for varying n. 
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Figure 5-27: FSU load vs displacement calibration for varying ϒ. 

 

Figure 5-28: FSU load vs displacement. 
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Figure 5-29: FEA stress contours for FSU. 

The results from FSU show the enhanced tension stiffening provided by the addition of 

steel fibers to the concrete matrix. To determine the effect that the steel fibers had on the tension 

stiffening parameters, the results from FSU will be related to those from the expression 

developed from the U-series slab.  

Using Equation (5-6), n for normal reinforced concrete with 𝑓𝑐
′ = 41.5 MPa would be 

0.384. The calibration process determined n for SFRC to be 0.35 which is 90% of the value 

calculated if n had been calculated for normal concrete. A new mutliplier, Cn can be added to 

Equation (5-6) to account for SFRC. This new mutliplier will recognize that for a fiber content of 

0.5%, n decreased by a factor of 0.9. The new weakening function expression including the 

variable for SFRC will be: 
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𝑛 = (𝐴𝑛 − 𝐵𝑛)𝐶𝑛  (5-9) 

Where;  

𝐶𝑛 = 1 −
𝑉𝑓

5
 

(5-10) 

 

Where; Vf = fiber volume content (%) 

Using Equation (5-8) ϒ for plain reinforced concrete with 𝑓𝑐
′= 41.5 MPa would be 100. 

The calibration process determined ϒ for SFRC to be 175 which is 1.75 times the value 

calculated if ϒ had been calculated for normal concrete. A new mutliplier, Cϒ can be added to 

Equation (5-8) to account for SFRC. This new mutliplier will recognize that for a fiber content of 

0.5% ϒ increased by a factor of 1.75. The new ultimate tensile strain factor expression including 

the variable for SFRC will be: 

ϒ = (𝐴ϒ + 𝐵ϒ)𝐶ϒ (5-11) 

where;  

𝐶ϒ = 1 + 1.5𝑉𝑓 (5-12) 

where; Vf = fiber volume content (%) 

5.4 Flexural Reinforcement Yield Strength Parameter 

Next, the tension stiffening parameters will be modified to include a factor to account for 

the flexural reinforcement yield strength. The model created so far was developed from slab 

specimens that all use the same conventional reinforcing steel that had a tested yield strength of 

approximately 455 MPa. The functions for n and ϒ expressing the tension stiffening behavior do 
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not have any provisions to account for the effect of punching shear resulting from a change in the 

strength of the steel bars. To incorporate this variable, a model for the punching shear behavior 

of slabs reinforced with high strength steel was calibrated to the work of Yang et al [18]. The test 

set-up was the same as all the previously analyzed slabs but the reinforcing used had a yield 

stress of approximately 800 MPa. The slab geometry, reinforcement, and load – deflection 

curves for [18] were presented in Chapter 3. The calibration of slab specimen MU1 will be used 

to modify the expressions previously derived for n and ϒ to account for the yield strength of 

reinforcing.  

Slab MU1 had the same geometry, concrete material properties, and reinforcing layout as 

the previously tested slab 35U [29]. The only exception was that high strength reinforcing bars 

were used in lieu of conventional reinforcement. Testing of this slab revealed an ultimate 

punching shear load of 382 kN which was 18% greater than that for slab 35U demonstrating the 

increase in punching shear due to high strength bars. The reinforcement was modeled with the 

increased yield stress and the tension stiffening was adjusted through the weakening function and 

ultimate strain factor that were determined through calibration until the load – deflection curves 

correlated with the experimental data.  

The previously developed expressions (5-9) and (5-11) for n and ϒ for the properties of 

specimen 35U [29] were used as a first trial to model specimen MU1 without including a term 

for the yield strength, fy. The only difference in this run of the FEA model from that of specimen 

35U was that the reinforcing was modeled with a higher yield strength (800 MPa). It is important 

to note that for this first trial the input for the concrete tensile properties did not acknowledge 

any effect of fy. The purpose of this exercise is to study the effect on just modifying the rebar 
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elements in the model. The tension stiffening curve still maintained a value of n = 0.4 and ϒ = 

100 as used previously for 35U. The resulting FEA load-deflection curve for this trial of MU1 

was well below the experimental data curve or MU1. As noted by Yang et al [18], the higher 

strength steel used in the experiment had produced a much higher punching shear response than 

35U. However, since this first trial neglected any direct increase to the tension stiffening in the 

model the FEA response for MU1 was only consistent with that of 35U (Figure 5-30) and never 

displayed the increase in capacity as Yang et al [18] had experienced. Therefore in order model 

MU1 accurately, it is not sufficient to just increase the yield strength of the reinforcement in the 

model without increasing the amount of tensile stiffening. To realize the influence that higher 

strength steel has on punching shear, the tension stiffening model should be adjusted 

accordingly. To study this effect a little more in depth, the model was run using a low reinforcing 

steel yield strength of 200 MPa. At this yield strength, the load – deflection behavior was 

markedly different from that used for 35U which was 455 MPa and from that used in MU1 

which was 800 MPa (Figure 5-31).  

The amount of tension stiffening present in a concrete member affects the amount of 

stress resisted by the reinforcing steel because, as explained in the literature review, a part of the 

concrete assists in resisting tensile stress. When the specified tension stiffening is low, the stress 

transferred to the reinforcing also remains low and may not cause the steel reinforcing to yield. 

From Figure 5-31, the flexural reinforcing in the specimen with the yield strength of 200 MPa 

yielded and lowered its punching shear capacity.  
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Figure 5-30: MU1 load vs displacement for n=0.4, ϒ=100. 

 

Figure 5-31: Influence on varying fy. 
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To ensure that the yield strength was incorporated into the tension stiffening equation, the 

parameters, n and ϒ were adjusted until they converged on an acceptable fit with the test data. 

From (Figure 5-32) the values that met this criterion were n = 0.3 and ϒ = 300. Using these 

parameters caused the load-deflection behavior for MU1 to be much greater than that for 35U. 

 

Figure 5-32: FEA MU1 load – deflection calibration. 
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𝐷𝑛 = 𝜑
𝑓𝑦

400
 

(5-13) 

where; 𝜑 is a multiplier to account for the increase in tension stiffening with an increase in yield 

strength. For a reinforcement yield strength value of 455MPa, Dn would have to equal unity, for 

n to equal 0.4 and would for a reinforcement yield strength value of 800MPa, Dn would have to 

equal 0.75 for n to equal 0.3. From Equation (5-13) φ would equal 0.9 for 455 MPa and φ would 

equal 0.34 for 800 MPa. The following linear relationship is derived for φ as shown in Figure 

5-33: 

𝜑 = 1.64 − 0.0016𝑓𝑦 (5-14) 

 

Figure 5-33: fy calibration curve for n. 

The calibration process for specimen MU1 saw ϒ increase by a magnitude of three, going 

from 100 to 300, when fy changed from 455 MPa to 800 MPa. The expression for ϒ as a function 
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y = -0.0016x + 1.6386
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𝐷ϒ = 𝜁
𝑓𝑦

400
 

(5-15) 

Solving φ at for yeild stresses 455 MPa and 800 MPa and gives values of 0.9 and 1.67 

respectively. A plot of 𝜁 versus fy in Figure 5-34 gives the following linear relationship: 

𝜁 = 0.0022𝑓𝑦 − 0.12 (5-16) 

 

Figure 5-34: fy variable calibration curve for ϒ. 

The tension stiffening model has now been defined to account for a variation in the yield 

stress of the flexural reinforcement.  

5.5 Tension-Stiffening Model Summary 

The derived tension stiffening stress-strain relation yielded from this study is summarized below: 

𝜎𝑡 = 𝐸𝑐  𝜀𝑡    𝑖𝑓 𝜀𝑡 ≤ 𝜀𝑐𝑟 

𝜎𝑡 = 𝑓𝑡  (
𝜀𝑐𝑟

𝜀𝑡
)

𝑛

  𝑖𝑓 𝜀𝑈 >  𝜀𝑡  >  𝜀𝑐𝑟 

(5-17) 

Where;  ft = uni-axial tensile strength = 0.33√𝑓𝑐
′   

y = 0.0022x - 0.1155
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𝜀𝑐𝑟 = 𝑐𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝑠𝑡𝑟𝑎𝑖𝑛 =  
𝑓𝑡

𝐸𝑐
  

 𝜀𝑡 = 𝑡𝑒𝑛𝑠𝑖𝑙𝑒 𝑠𝑡𝑟𝑎𝑖𝑛  

 𝜀𝑈 = 𝑢𝑙𝑡𝑖𝑚𝑎𝑡𝑒 𝑠𝑡𝑟𝑎𝑖𝑛 =  ϒ  𝜀𝑐𝑟  

𝑛 = 𝑤𝑒𝑎𝑘𝑒𝑛𝑖𝑛𝑔 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  [𝐴𝑛 − 𝐵𝑛] 𝐶𝑛 𝐷𝑛 𝐿𝑛 (5-18) 

Where;   𝐴𝑛 = 0.48 − 0.0023𝑓𝑐′  

𝐵𝑛 = [13.4 − 0.0834𝑓𝑐
′](𝜌 − 0.012) 

  𝐶𝑛 = 1 −
𝑉𝑓

5
 

𝐷𝑛 = (1.64 − 0.0016𝑓𝑦)
𝑓𝑦

400
 

𝐿𝑛 = 0.665 − 0.14𝐿𝐶 

ϒ = 𝑢𝑙𝑡𝑖𝑚𝑎𝑡𝑒 𝑠𝑡𝑟𝑎𝑖𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 = [𝐴ϒ + 𝐵ϒ] 𝐶ϒ 𝐷ϒ (5-19) 

 Where;   𝐴ϒ = (0.24𝑓𝑐
′2

− 20.8𝑓𝑐
′ + 548) ≥ 100 

𝐵ϒ = (68𝑓𝑐
′ + 8300)(𝜌 − 0.012) 

𝐶ϒ = 1 + 3𝑉𝑓 

𝐷ϒ = (0.0022𝑓𝑦 − 0.12)
𝑓𝑦

400
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Chapter 6 

6 Finite Element Model Verification 
 

The FEA model created in this thesis to describe the general punching shear behavior of 

flat slabs will be verified by a series of experimental data to confirm its robustness and 

applicability in modelling slabs with a range of values for the different punching shear 

parameters.  

6.1 Specimen FSB 

The tension stiffening parameters developed for SFRC will be examined and validated 

for the punching shear behavior for slab specimen FSB featured in [19]. Specimen FSB will test 

the model’s ability to incoporate the combination of SFRC and a high reinforcement ratio. Using 

Equation (5-18), n is calculated as 0.261 and using Equation (5-19), ϒ is calculated as 361. The 

load-displacement response of the FSB finite element model is shown in Figure 6-1. The 

ultimate punching load from the FEA, 440 kN, matching the experimental value of 438 kN. The 

slope of the ascending branches were in good agreement and in keeping with the stiffer 

behaviour as observed in all other FEA models. The maximum mid-span deflection of the model 

was similar to the experimental value. It can be concluded from these results that the material 

model was successful in demonstrating the load-deflection behaviour of slab specimen FSB.  

6.2 Specimen FCU 

Experimental data for specimen FCU is available in [19]. This slab features the 

placement of SFRC in the top 40 mm layer of the slab and uses a uniform reinforcing 
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configuration. The material model was used to calculate the tension stiffening properties for the 

normal concrete portion of the slab and the SFRC portion. Table 6.1 summarizes the tension- 

stiffening properties used in the FCU slab. The resulting load-deflection curve correlated well 

with the experimental curve (Figure 6-2). The ultimate punching shear load and mid span 

deflection were a close match. The punching shear load was less than 3% less and the peak load 

deflection was only 3 mm less.  

 

  

Figure 6-1: FSB load vs displacement validation. 

 

Table 6.1: Tension Stiffening Properties FCU 

Material n ϒ 

Concrete 0.4 100 

SFRC 0.36 175 
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Figure 6-2: FEA Slab FCU load vs displacement.  

6.3 Specimen FCB 

Specimen FCB [19] was similar to FCU but used a higher reinforcement ratio concentrated 

over the column stub. Equations (5-18) and (5-19) were used to define the tension-stiffening 

curve. Table 6.2 summarizes the tension-stiffening properties used in the FCB slab. The resulting 

load-deflection curve again correlated very well with the experimental curve (Figure 6-3). The 

punching shear loads only differed by 2.8%. 

Table 6.2: Tension Stiffening Properties FCB 

Material n ϒ 

Concrete 0.29 205 

SFRC 0.27 354 
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Figure 6-3: FEA Slab FCB load vs displacement. 

6.4 Specimen 90BF 

Experimental data for slab specimen 90BF was produced from the research by Lee et al 

[20]. Details of slab 90BF are provided in Chapter 3. This test will assess the model’s ability to 

accurately simulate high strength concrete (92.1 MPa) with the inclusion of steel fibers and a 

high flexural reinforcing ratio. Due to the greater concrete strength and reinforcement ratio, the 

tension stiffening parameters for the SFRC portion of the slab calculated from Equations (5-18) 

and (5-19) are: n = 0.167 and ϒ = 1536. 

The load-displacement response of the 90BF model for the above paramters is shown in 

Figure 6-4. The ultimate punching shear stress and shape of the curve for the FEA model match 

fairly well with the experimental results. The percentage differnece in the pucnhing shear loads 

0

50

100

150

200

250

300

350

400

0 10 20 30

Lo
ad

 [
kN

]

Displacement [mm]

n=0.27 Y=354

Experiment

P=361kN 
P=351kN 



 

125 

 

was only 0.3% and the 6% in the peak load deflection. It can be concluded that the material 

model was successful in predicting the punching shear behavior of this slab. 

 

 

Figure 6-4: FEA Slab 90BF load vs displacement validation. 
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(5-19) are: n = 0.33 and ϒ = 131. The load-deflection is plotted in Figure 6-5. The FEA model was 

slightly more ductile than the experimental curve but it did produce a similar ultimate punching 

shear load. In comparison to the FEA results of slab 35U, MU2 displays a smaller stiffness due to 

the smaller amount of flexural reinforcement. The authors reduced the bar size in MU2 to match 

the flexural strength of 35U since MU2 used higher strength steel. However, by doing that they 

greatly decreased the axial stiffness of the reinforcement. The difference in bar area would have 

reduced the reinforcing axial stiffness by approximately 45% which would cause the bars to stretch 

more, causing greater rotation of the slab and leading to lower punching shear values. That is why 

slab MU2 has less punching shear strength than its normal steel strength counterpart, specimen 

35U. 

 

Figure 6-5: FEA Slab MU2 load vs displacement. 
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6.6 Specimen MB2 

Specimen MB2 [18] was reinforced with No. 13 high strength bars like specimen MU2 

[18] except that the reinforcing bars were banded together near the column. The reinforcement 

ratio in the band was 1.36% which is similar to MU1 (ρ=1.18%). It had been shown previously 

that slabs with a banded distribution of reinforcement have a higher punching shear strength than 

companion slabs with uniform reinforcing. The experimental results though show the opposite; 

the capacity of MU2 was higher than MB2. The authors contributed this irregularity to bond 

failure of the bars whereby the combined effect of closely spaced bars and the high strength 

over-stressed the concrete surrounding the bars and the bars subsequently de-bonded from the 

concrete. The authors proposed that this failure could be remedied with longer development 

lengths of the bars. The steel bar to concrete bond interaction is beyond the scope of this FEA 

model. Rather, this model assumes that the bars are properly detailed for development and 

assigns a ‘perfect’ bond between the two elements. Therefore, the results of this model show the 

load-deflection results that Yang et al. would have experienced if their slab did not fail 

prematurely from bond distress.  

Using the tension stiffening parameter Equations (5-18) and (5-19), n = 0.28 and ϒ = 

384. The resulting load-deflection curve is shown in Figure 6-6. The FEA result was 

significantly higher than the experimental data as expected since the experiment failed 

prematurely due to bond distress. Also, as expected, the ultimate punching load for MB2 was 

higher than its uniform-reinforced counterpart MU2.  
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Figure 6-6 FEA Slab MB2 load vs displacement. 

6.7 Specimen MBF2 

Specimen MBF2 [18] was the same as MB2 but there was a concentration of 31 MPa 
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SFRC was successful in raising the punching shear load by 51% from slab MB2.  

Using the tension stiffening parameter expressions, the n and ϒ values for the normal 
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the column were calculated as n = 0.25 and ϒ = 672. The resulting load-deflection curve is 

shown in Figure 6-7. The ultimate punching shear load and maximum displacement were very 
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of this slab specimen which included steel fibers, high reinforcing ratio, and high strength steel 

reinforcement. 

  

Figure 6-7: FEA Slab MBF2 load vs displacement. 
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at concentrated points along the edge. Specimen SB1 is roller supported along the edges and 

loaded through the column stub. 

Specimen SB1 was modeled by Genikomsou & Polak [56]. The authors based their FEA 

model on a fracture energy approach and converted the crack opening displacements into a 

tensile strains.  The tensile stress versus strain curve developed in this thesis through Equations 

(5-18) and (5-19) is compared with the curve developed by Genikomsou & Polak [56] (Figure 

6-8). The area under the curves is a close match and hence the load-displacement cuve yielded 

from the FEA models are closely aligned. The FEA models produced in this thesis is a fairly 

close match to the experimental data for SB1. The difference in punching shear loads is less than 

10% and the peak load deflection is only 3 mm greater (Figure 6-9).  

 

Figure 6-8: Comparison of FEA tension stress-strain curves for SB1. 
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Figure 6-9: FEA SB1 Load vs Displacement verification. 

6.9 Specimen R200 

Data for specimen R200 was part of the experimental program by Pourreza [63] . The 

details for the slab and results are provide in Chapter 3 of this thesis. The significance of using 

this slab to verify the material model is that it is outside of the specimens in research papers used 

to calibrate the model, the experimental set-up is different, it uses high strength concrete, and the 

slab is thicker than any other slab used in calibration. The weakening function was calculated 

from Equation (5-18) as n = 0.31 and the ultimate strain factor was calculated from Equation 

(5-19) as, ϒ = 281. The resulting load-deflection curve is given in Figure 6-10. 
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Figure 6-10: FEA R200 load vs displacement verification. 

The ultimate punching load from the FEA model was 800 kN which was 6% less than the 

experimental value. The load-deflection curve from the FEA model was a more realistic 

representation of concrete up the ultimate punching shear load. It has been shown in previous 

models that concrete exhibits a high initial stiffness up to the point of cracking then a progressive 

flattening of the curve up to the point of shear failure. The experimental data for R200 does not 

capture the initial un-cracked concrete stiffness. Rather the deflection is linear up to the point of 

cracking. This inconsistency may have been a limitation with the displacement measuring 

instruments used in the experiment. Even though there are some discrepancies between the FEA 

and experiment, the FEA model was successful in replicating the punching shear behavior of 

slab specimen R200.  
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6.10 Summary of Model Verification 

A summary of the results obtained from the FEA models is compared to the 

corresponding experimental data in Table 6.3: 

Table 6.3: Summary of FEA vs Experimental Results 

Specimen 
Punching Shear Load [kN] Peak Load Deflection [mm] 

Exp FEA % Diff Exp FEA % Diff 

FSB 438 440 -0.5% 32.8 26.3 22.0% 

FCU 329 320 2.8% 18.2 15.2 18.0% 

FCB 361 351 2.8% 16.3 14.7 10.3% 

90BF 386 385 0.3% 33 35 -5.9% 

MU2 296 290 2.0% 22.6 30 -28.1% 

MB2* 282 360 -24.3% 15.1 20 -27.9% 

MBF2 426 430 -0.9% 28.3 34.7 -20.3% 

SB1 253 230 9.5% 12 15 -22.2% 

R200 848 800 5.8% 19.9 21.4 -7.3% 

 

* Experimental results failed in bond and not in punching shear 
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 Chapter 7 

7 Conclusions & Recommendations 
 

The literature review demonstrated that the punching shear capacity of reinforced 

concrete slabs is influenced by the following material properties: concrete compressive strength, 

flexural reinforcement ratio, inclusion of steel fibers in the concrete mix, and the reinforcing 

steel yield strength. A review of current finite element analysis (FEA) models revealed that a 

unified approach to include all of these variables into one coherent and robust model did not 

exist. The available models were specific to a limited set of criteria and limited verification. As a 

result, they did not establish a generality that could make them capable in simulating a wide 

range of concrete slabs.  

This thesis successfully developed a finite element model to reasonably predict the 

punching shear behavior of reinforced concrete slabs over a range of parameters. The model was 

developed by explicitly defining the two main components used to describe reinforced concrete 

behavior: the compressive and tensile stress-strain relationships. The compressive stress-strain 

values were developed from a well-established model by Collins & Mitchell [25] used to 

describe the full elastic and inelastic range of the compression stress-strain curve of concrete. A 

general purpose tensile stress-strain relationship is not available in the literature that is capable of 

representing the tension stiffening effects required to accurately simulate the punching shear 

behavior of reinforced concrete over a range of parameters. The tension stress-strain model built 

upon the work from Hus & Mo [44] where they used an exponential decaying function to 

describe the descending branch of the tensile behavior of reinforced concrete. They provided a 
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recommendation on the value of the exponential decaying function but never provided a clear 

analytical expression for quantifying it. The material model presented in this thesis derived an 

expression for this decaying function, called the ‘weakening function’, as a function of concrete 

strength, flexural reinforcing ratio, steel fiber volume, and reinforcing yield strength. The model 

then placed a limit on the horizontal extent of the descending curve by defining the ultimate 

strain as a factor of the cracking strain. This ‘ultimate strain factor’ was also expressed as a 

function of concrete strength, flexural reinforcing ratio, steel fiber volume, and reinforcing yield 

strength. 

The Concrete Damaged Plasticity (CDP) model was used to develop the constitutive 

three-dimensional FEA model. A parametric study was conducted to investigate the numerical 

parameters inherent in the CDP model and to establish the values to be used in the model 

development for the dilation angle, viscosity, and mesh size.  An expression for the tension 

stiffening function was developed with respect to the finite element mesh size to avoid any mesh 

size dependencies in the model. 

The model was calibrated from a selection of experimental data from the research of 

McHarg et al [19], Lee et al [20], and Yang et al [18] and then verified against seven of the 

remaining slab specimens from those papers and a slab specimen from each of Genikomsou & 

Polak [56] and Pourezza [63]. The model also predicted the load-deflection response for two 

slabs where there were possible errors during the physical experiments. The material model 

showed a strong correlation with all of the experimental data; providing an accurate portrayal of 

the load-deflection curve including the ultimate punching shear load and the peak deflection.  
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Recommendations for future work: 

1. The material model should be calibrated for a number of limitations that were outside 

of the range of test specimens used to calibrate and verify the model such as: 

a. Concrete compressive strengths greater than 90MPa; 

b. Flexural reinforcing ratios greater than 2.15% 

c. Steel fiber volumes greater than 0.5%; 

d. Varying steel fiber aspect ratios; 

e. Different steel fiber types (i.e. straight, crimped, double hooked, etc.); 

f. Varying aggregate size and strength. 

g. Cyclic loading 

h. FRP reinforcement 

2.  The material model can be used in conjunction with shear reinforcing to investigate 

punching shear behavior for shear reinforced slabs. 

3. Due to laboratory limitations and financial resources, punching shear tests are usually 

limited to isolated portions of a slab and a column stub as presented in this paper.  

The material model can be employed to model realistic building slabs with multiple 

columns to study the effects of adjacent geometry and membrane effects. 
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