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Abstract

Segmentation of Synthetic Aperture Radar (SAR) images is an important step for
further image analysis in many applications. However, the segmentation of this kind
of image is made difficult by the presence of speckle noise, which is multiplicative
rather than additive. Traditional segmentation methods originally designed for either
noise-free or White Gaussian noise corrupted images can fail when applied to SAR
images.

Different methods have been previously developed for segmenting SAR images
corrupted by speckle. One segmentation method was proposed by Lee and Jurkevich
which is quite efficient; it first smooths speckle noise to allow regions to be distin-
guished in the image histogram, then uses histogram thresholding to segment the
filtered image. However, some problems exist with their method: in the filtered im-
age, noise is preserved in edge areas and some fine regions are oversmoothed; while in
the segmented image, region boundaries are ragged and some fine features are lost.

Based on Lee and Jurkevich’s initial work, an edge-enhanced segmentation method

is proposed in this thesis. The edge-enhanced segmentation method is automated and

based on the iterative appli of an edge-enh

d speckle smoothing filter. The
edge-enhanced filters proposed in this thesis use edge information obtained by a ratio-
based edge detector to improve the performance of the filters in noise smoothing as
well as in edge and fine feature preservation. Due to the good performance of these
edge-enhanced filters, the resulting histogram-thresholded segmented images have
accurate and simple region boundaries and well separated regions of both large and
small sizes. The proposed method is compared with the previous method proposed by
Lee and Jurkevich, in both noise smoothing performance and in segmentation quality.

The results are tested on synthetic images as well as airborne SAR images. The tests



show that the proposed method produces better image segmentations. particularly

in image region boundaries. homogeneous regions and for images with fine features.

The d edge-enh d ion scheme may be suitable for many SAR

image analysis applications such as sea-ice i forest i ion. crop

identification. etc.
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Chapter 1

Introduction

1.1 General

Segmentation is one of the major tasks in digital image processing and analysis.
The purpose of segmentation is to divide an image into regions which are uniform
and homogeneous with respect to some characteristics such as gray level or texture.
Segmentation can be critical for subsequent analysis and scene description.

Synthetic Aperture Radar (SAR) utilizes a synthetic aperture to generate high
resolution images of terrain from a constant emission of microwave pulses. The syn-
thesized aperture is generated by the motion of the radar platform. which can be
either an aircraft or a satellite, and by signal processing of the returned pulses. SARs
have several features which make them valuable for remote sensing: they can col-
lect images by day and at night. and in all types of weather; and the microwave
region of the EM spectrum provides unique information about the terrain sensed.
Because of these features, SAR has become an i hnol for

h | A

many of SAR image processing include land



cover i soil moi forest type cl;

ment of liquid water content of ion, snow ing, sea ice type ification,

ice sheet dynamics, oceanography, and many others [47].

1.2 Motivation

The goal of segmenting SAR images is to produce image regions each representing
ground regions such as woods, fields, roads, etc. This is essential for applications such

as crop identification, terrain i target i etc. S ion of SAR

images is usually based on gray level or texture. Gray level based segmentation is
useful for the identification of features [48] and for detecting changes between different
images [9]. Texture measures are helpful, for example, in sea ice detection [46]. In
this research, we focus on segmentation based on similar gray level, as will be further
explained.

Segmenting a SAR image is made difficult by the presence of speckle noise which is
multiplicative in the sense that the noise level increases with the magnitude of radar

backscattering. There are several methods that have been developed to segment SAR

images. However, some probl still exist, including the v and simplici

of region boundaries, homogeneity of regions, ease of use and implementation of

hod: ional lexity of ion algorithms, etc.

The goal of this thesis is to provide ic, unsupervised i h
for SAR images which are efficient and accurate in dividing image regions, and to
compare these new schemes with the work of past researchers to demonstrate the

ad of the d sch




1.3 Problem complexity

Segmenting SAR images is generally a difficult task. The complexity involved in the
above mentioned problem arises from three major factors. First of all. the signals
to be processed are two dimensional signals which are random in nature. so their
statistical properties are not easy to estimate. Second. there is no general technique

and complete theory for ion. Image i iques are basically

ad hoc and differ precisely in the way they emphasize one or more desired properties
and in the way they balance and compromise one desired property against another.
Third, the presence of speckle noise makes the segmentation of SAR images more
difficult. This kind of noise is multiplicative and non-additive, unlike many optical
images which may have additive white Gaussian noise. Many traditional techniques

for ion which were originally designed for optical images rely on measures

based on di between pixel i ities; hence. such methods suffer from noise

artifacts when applied to SAR images [4]. For example. traditional clustering tech-
niques for image segmentation tend to form more clusters in bright areas than in faint

ones [44].

1.4 Research background

There is no general technique for segmentation. because of the differences in appli-
cations and image types. Many segmentation schemes have been developed. based

on different criteria and for use with different types of images. Image segmentation

techniques can be classified as: gray level ing, iterative pixel
methods based on fuzzy set theory, etc [40]. Some speckle-specific methods have been

developed for segmenting SAR images. These use various techniques such as simu-

3



lated annealing [25], wavelet transforms [3], hierarchical random field models [13],
neural networks [22], fuzzy c-means clustering [14], ete.

A method for segmenting SAR images was proposed by Lee and Jurkevich [31],
who found that the iterative application of a speckle reducing filter (based on the Lee

Itiplicative filter [32]) prod an image with a multimodal gray level histogram
suitable for thresholding. This method is efficient, relatively easy to use and unsuper-
vised after the setting of initial parameters. It produces good results and may offer

q T

over i based on region growing with its ability to seg-

ment classes separated by a gradual change in gray level intensity [47]. However, it

has several disad First of all, although the filtering scheme is unsupervised,

it requires the k ledge of the ratio of i to mean in h

image regions. In Lee and Jurkevich’s i this input remains

unchanged, though its actual value may change on each iteration. Second, the Lee
multiplicative filter tends to preserve speckle noise in edge areas. Third, their method
requires that users manually determine the valleys in the histogram of the smoothed
image for thresholding purposes. To overcome these disadvantages but still retain
the advantages of Lee and Jurkevich’s method, in this thesis we propose and test an
edge-enhanced segmentation method which is based on the initial work by Lee and
Jurkevich.

1.5 Approach of the thesis

The edge-ent d ion scheme proposed in this thesis is based on the re-

peated lication of an edge-enh d filter. My approach to the solution of the

stated segmentation problem involves the following steps:



» Using a ratio-based edge detector to generate an edge map of a SAR image:
e« Choosing a speckle reducing filter suitable for iterative application:

e Modifying the filter by using edge information in local statistical analysis (I call
this modified filter an edge-enhanced filter):

e Applying the edge-enhanced filter iteratively:
® Segmenting the filtered image based on histogram thresholding.

The of the edg ion method is tested on both

synthetic and real multi-look airborne SAR images using several edge-enhanced filters.
Comparisons of the proposed method with the previous method of Lee and Jurkevich
are also provided. The test results show that the edge-enhanced method can separate

the homogeneous regions very well and that the region boundaries are simple and

accurate. It provides an ic and efficient ion method for SAR images.

1.6 Organization of the thesis

This thesis has been organized as follows. Chapter Two provides background informa-
tion on the areas related to the stated problem. Chapter Three provides descriptions
of my proposed segmentation method. Test results and comparisons are presented in
Chapter Four and Five, on synthetic and real SAR data, respectively. Finally, con-
clusions based on the results obtained and suggestions for further work are provided

in Chapter Six.

o



Chapter 2

Literature review

2.1 Introduction

This chapter is grouped into five major sections. The second section provides a
brief introduction to Synthetic Aperture Radar (SAR) imaging systems, SAR speckle.
speckle noise modeling and SAR speckle reducing techniques. The third section is
an overview of different existing segmentation schemes. Special attention is paid to

Lee and Jurkevich's method [31] and Smith’s work [47]. The next section discusses

the problems related to SAR image ion, p: 1y noise ing. edge
detection and hi i Concluding remarks are provided in section
Five.

2.2 SAR speckle noise

This section will introduce SAR imaging systems, the source of speckle noise. Also.

it will provide a brief survey of previous work on SAR speckle modelling and speckle



reduction techniques.

2.2.1 SAR imaging systems

A SAR is a remote sensing system used to obtain high resolution. two dimensional.
microwave images of targeted terrain. Before the development of SARs. it was very
difficult to acquire this type of image from microwave systems due to the extremely
large antennas needed to obtain the high spatial resolution. SAR technology avoids
this problem by utilizing the motion of the radar platform to synthesize a larger
antenna. The platform for a SAR can be either spaceborne or airborne. As it moves
over an area of interest, it constantly sends microwave pulses towards the ground at
discrete intervals. These intervals are quite short, and each point on the ground is
mapped numerous times by different microwave pulses as the radar platform moves
past. This repeated exposure of a ground point to many different pulses gives the
impression to the imaging system that the length of the antenna is no longer just its
physical size, but rather, the flight length of the radar platform during which a given

point is within the radar's swath. After several stages of processing such as quadrature

demodulation. range ion, azimuth ion and focus i SAR
images can be obtained from collected. digitized SAR data [11. 53]. Figure 2.1 shows
an airborne SAR image of fields and trees.

2.2.2 Source of speckle noise
In SAR and other systems employing coherent illumination to form high resolution
images, the resulting image is generally corrupted by a form of multiplicative noise

known as coherent speckle. This severe form of noise, characterized by a low signal to



Figure 2.1: A typical multi-look airborne SAR image Fields

noise ratio, presents problems for image processing software of all kinds. In particular
many image analysis techniques originally designed for optical images suffer from noise
artifacts and perform poorly when applied to SAR images [4, 44, 49

Speckle is the primary source of radiometric distortion in SAR images and arises
from three primary sources: first, a resolution cell is many wavelengths long at the

SAR; second, the cell typically contains not one but many elementary

frequency of the
point scatterers at different orientations and having different areas and scattering co-
efficients; and third, the resolution cell is not viewed instantaneously but over a short
interval and consequently the viewing angle and scattering coefficients change during
imaging. To form an image pixel, the complex point spread functions contributed
by the set of scatterers in the resolution cell are summed coherently with the differ-

ent phases interfering constructively or destructively, yielding a speckle noise pattern




superimposed on the image of interest.

2.2.3 Speckle models

To design an optimum technique for SAR image analysis, it is necessary to have an
appropriate mathematical model of the speckle noise based on the method of image
formation and its statistical properties. Speckle properties are discussed in several
papers [1, 2, 23]. It is well established that speckle noise intensity is proportional to
the underlying image intensity, giving a Signal to Noise Ratio (SNR) in an observed
speckled image equal to one for fully developed speckle. This implies that a pointwise
multiplicative model would be able to describe speckle in SAR intensity images quite
well. A large amount of research is found which assumes a multiplicative model of
speckle [17, 30, 32]. The model can be represented in an (i, ;) spatial coordinate
system as,

2(i,5) = =(3,5) - v(i,j) (21)
where z is the original image, z is the recorded image and v is the random noise
process.

However, it has been pointed out by Tur et al. [52] that a multiplicative noise
model is not always complete. The main disadvantage of this model is that it does
not take into account the correlation of speckle which is an important consideration
in some cases. The correlation can be seen to arise mainly from the Point Spread
Function (PSF) of the imaging system. Thus a better model can be obtained by
taking the PSF of the imaging system into account. Thus, the model of Equation 2.1

can be re-written as:

2(i,3) = (2(3,3) - v(i,j)) * h(i, ) (2:2)



where * indicates spatial convolution and h is the SAR impulse response. The model
described by Equation 2.2 is used by Frost et al. with the assumption that the PSF
for SAR systems is an impulse. In addition, more complex models of SAR image can
be formulated, to account for point scatterers, line features, etc [38].

Lee and Jurkevich [31) showed how the mean and variance of the noise process

varied for one-look and multi-look SAR image models. The variation due to intensity

and litude images is also add: d in their paper.

2.2.4 SAR speckle reduction

Some image i hods have been d which explicitly address the

multiplicative nature of the speckle noise. These methods include the use of speckle

reducing filters, the 1 ith and techni based on ratios of pixel in-

tensities.

Several speckle smoothing filters have been proposed based on a statistical model
of speckle noise. These are the Lee multiplicative filter [32] and its variations, e.g.
[36], the Sigma filter [33, 34, the Weighted filter [39], Li’s method [37], the Maximum
A Posterior (MAP) filter [38], etc.

One way to deal with the scaling of the variance with image intensity is to work
in the logarithmic domain. Under the logarithmic transformation, the noise variance

becomes independent of the image intensity [4], although the logarithm changes the

1 and fre listributions of the noise process.
Another way to work with the multiplicative aspect of the speckle noise is using
similarity measures based on the ratio of average pixel intensities [18, 49]. It has been

shown that the ratio of average pixel i ities within a h area follows

the F distribution and is independent of the image intensity [4].

10



2.3 Segmentation methods

One of the most widely used steps in the process of reducing images to information is
segmentation: that is, dividing the image into regions that correspond to structured
units in the scene or which distinguish objects of interest. An image can be segmented
into homogeneous regions based on some features such as gray level or texture. This
is important for subsequent analysis and scene description [43. 45]. There are many

types of images. such as optical images, magnetic resonance images (MRI). range

images, infrared images, SAR images. etc. of hni are
presented in the literature, but there is no single method which can be considered
good for all images, nor are all methods equally good for a particular type of image
[40]. Moreover, algorithms developed for one class of image may not perform well
when applied to other classes of images. This is particularly true when the algorithm

is based on a specific image formation model.

2.3.1 General

A good image segmentation requires that regions of an image segmentation be uniform
and homogeneous, region interiors be simple and without many small holes. adjacent
regions of a segmentation have significantly different values, and that boundaries of
each segment be simple, not ragged. and spatially accurate [24].

Achieving all these desired properties is difficult because strictly uniform and
homogeneous regions are typically full of small holes and have ragged boundaries.
Insisting that adjacent regions have large differences in values can cause regions to
merge and boundaries to be lost.

Image segmentation techniques are basically ad hoc and differ precisely in the

11



way they emphasize one or more desired properties and in the way they balance and
compromise one desired property against another.
Image segmentation techniques can be classified as gray level thresholding. itera-
tive pixel classification, methods based on fuzzy set theory. etc. [40].
Thresholding is one of the oldest, simple and most popular techniques for image
T ing can be based on global information (e.g. gray

level histogram of the entire image) or using local information (e.g. co-occurence
matrix) of the image. If only one threshold is used for the entire image. then it
is called global thresholding. On the other hand. when the image is partitioned
into several ions and a is di ined for each of the subregions. it

Typically, ing methods work well in

is referred to as local
situations where there are a few distinct objects having widely differing gray tone
intensities and these objects appear on a near uniform background [24].

Iterative pixel classification methods include region growing, relaxation. Markov
Random Field (MRF) based approaches and neural network based approaches. Re-
gion growing schemes regard some of the pixels in the image as nodes and grow regions
based on some similarity critera. Relaxation is an iterative approach to segmentation
in which the classification decisions about each pixel can be taken in parallel [43].
There are many image segmentation methods which use spatial interaction models
such as Markov Random Fields (MRF) or Gibbs Random Fields (GRF) to model
digital images [12, 20]. Several authors have attempted to segment an image using
neural networks (7, 21].

Fuzzy set theory is used in fuzzy thresholding, fuzzy clustering, etc. Different

which minimize the gray level ambiguity and geo-
metrical ambiguity of an image are described in [41, 42]. The fuzzy c-mean (FCM)

12



clustering algorithm [6] has been used in image segmentation (51].

2.3.2 S ion of SAR i

With SAR images of mixed terrain, the goal of segmentation might be to produce

image regions each representing ground objects such as woods. fields. vegetation type.

roads, urban areas. etc. This is essential for ications such as crop i

terrain mapping and target detection. etc. Producing the segmentation of a SAR
image is made difficult by the presence of speckle noise. Several segmentation methods
specifically designed for SAR images have been proposed based on either gray level
or texture.

Hegarat-Mascle et al. [25] proposed an algorithm for segmenting SAR images

which applies sit i in the i ion process. Benie et al.
[5] developed a classification method which i two i a hi
imagy ion by step-wi: imization to take into account the spatial context.

and an iterative conditional mode (ICM) algorithm to classify the segmented image.
Barbarossa et al. (3] proposed a method for classifying SAR images based on a
multiresolution representation of the images obtained by a wavelet transform. Derin
et al. [13] described some algorithms based on a hierarchical random field model

proposed for speckle images and a2 Maximum A Posterior (MAP) segmentation using

simulated annealing. Fosgate et al. [15] an efficient
to the segmentation of natural clusters. Grossber et al. [22] developed a neural

network model of boundary ion and surface ion to process images

containing range data which is gathered by a SAR sensor. Du et al. [14] used a fuzzy

c-means ing method for pervi of multi-look

SAR images. Texture also is i in ch izing the infc ion in SAR

ic

13



images. Some texture based i h are proposed in the li

Ceccarelli et al. [10] use texture information and neural networks for SAR image
segmentation. Sephton et al. [48] proposed a segmentation algorithm for SAR images
of sea-ice based on various attibutes such as texture, shape, position, etc.

One segmentation method for SAR images was proposed by Lee and Jurkevich
[31], which is simple and efficient. It is unsupervised and produces very good results.
It may offer significant advantages over techniques based on region growing with
its ability to segment classes separated by a gradual change in gray level intensity
[47]. Smith [47] extended this method and p d a fully

scheme for segmenting SAR images. Based on this previous work, I propose the edge-
enhanced segmentation method in this thesis. Thus, it is important to have a more

detailed look at the work of Lee and Jurkevich as well as Smith’s work.

Lee and Jurkevich’s method

Image segmentation is often based on edge detection and region growing [9, 48]. This
approach is difficult to apply to images corrupted by speckle because gaps in edges,
caused by speckle, must be repaired with a bonding routine [48]. Another problem is
that ill-defined edges, formed by a gradual change in intensity between two classes,
will not be detected. Lowering the edge detection threshold in order to detect fewer
sharp edges often results in the detection of false edges, leading to over-segmentation
of the image [9].

A natural approach to unsupervised segmentation based on gray levels is to select
thresholds at the valleys of a gray level histogram, if such valleys exists. For SAR
images, however, the speckle appearing in them complicates the characteristics of the
SAR image histogram and makes i ion of such images difficult.

14




Figure 2.2: Histogram of the SAR image Fields of Figure 2.1.

The histogram in a SAR image is typically unimodal [31] and difficult for histogram
thresholding. Furthermore, since no use is made of spatial information in simple
histogram thresholding, there is no guarantee that pixels of one gray scale class will
be contiguous. Figure 2.2 shows the histogram of the typical SAR image Fields
which is shown in Figure 2.1; although this image is a relatively simple SAR image,
its histogram does not reveal distinct image regions.

A method for segmenting SAR images corrupted by speckle was proposed by Lee
and Jurkevich [31], who found that the repeated application of an edge-preserving

speckle smoothing filter produces an image with a multimodal gray level hi
suitable for thresholding, even if the hi of the original image is unimodal.
The rationale behind this approach is that the ing process will reduce the noise

standard deviation, thus tending to produce sharp peaks in the histogram, while the
edge preserving effect of the filter produces deeper valleys.
Of crucial importance to this technique is the ability of the speckle filter to smooth

out the noise without destroying edges and fine features. Lee and Jurkevich iteratively
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used the well-known Lee multiplicative filter [32] (reviewed below in Section 2.4) in
their segmentation process. This filter is quite effective in removing speckle especially
in homogeneous or low variance areas. In high variance areas, however, the filter’s
parameters are adjusted to preserve edges; this has the effect of also preserving speckle
noise near and on edges.

Overall, Lee and Jurkevich’s method is quite simple and efficient. This unsuper-
vised algorithm will segment the image into several classes without a priori knowledge
of the number of classes and their mean values. However, there are some disadvan-
tages to this method. The input parameter (the ratio of the standard deviation to
mean) to the filtering algorithm should be calculated manually and in their implemen-
tation this parameter remains unchanged, though the physical quantity it describes
(i.e. the speckle noise) may change on each iteration. In thresholding, the histogram
valleys are user-determined. Moreover, due to the poor performance of the filtering
algorithm in edge areas, the segmented image regions have ragged and inaccurate

region boundaries.

Smith’s work

Smith improved Lee and Jurkevich’s method and proposed a fully automatic, unsu-
pervised segmentation algorithm, based on the iterative application of the modified
sigma filter [47] (also reviewed below in Section 2.4).

One contribution of Smith’s work is that he proposed a method to automatially
estimate the input parameter, the ratio of the standard deviation to mean, in the
filtering algorithm. For estimation of this parameter, the entire image is partitioned
into equal sized windows (e.g. 3 x 3) and the ratio of standard deviation to mean

calculated in each window. Then, the histogram of these local estimates is obtained,

16



and the histogram mode is taken as an overall estimate.
Also in Smith’s work, a modified sigma filter has been proposed which is shown
to be an improvement over the basic sigma filter in preserving edges while smoothing

the speckle noise. M , the hi thresholdi dure is fully ic

However, Smith’s method is not able to detect small classes whose gray level falls

within the two-sigma range of larger classes.

2.4 Related problems

My research is based on the segmentation method proposed by Lee and Jurkevich. As
stated above, the most important component in Lee’s method is the speckle reducing
filter. So it is desirable to have a review of SAR noise smoothing techniques and filters
suitable for iterative application. Because I also use an edge detector in my proposed
segmentation scheme to improve the boundary accuracy, SAR edge detection methods

will also be reviewed. In addition, the hi hresholding method that is used in

my research will be described in this section.

2.4.1 Noise smoothing

Noise can be reduced by filtering, in which a moving window is passed over each pixel
in the image, and the pixel value is replaced by a value derived from the pixels within
the window. Numerous speckle reducing filters have been proposed and discussed
(see, for example 35, 54]). Here, we describe some spatial filtering methods that use

local statistics and which may be suitable for iterative application.
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Mean and median filter

Two simple filters are the mean and median filters, in which the central pixel is
replaced by the mean or median, respectively, of all the pixels in the window. The
main problem with the mean filter is that the edges in the image are smoothed
together with the speckle noise, and may be lost completely after a few successive
applications of the filter. The median filter will preserve step edges in noise-free
images, however, in speckle corrupted images, it does not remove the noise very well,

since speckle noise is not impulsive.

Lee multiplicative filter

The Lee multiplicative filter [32] is based on a multiplicative noise image model:
2(i,j) = z(i,4) - v(i,j) (2.3)

where z, z and v denote the observed image, underlying image and noise processes,
respectively. Based on an assumption that the noise is white with unity mean and
is uncorrelated with the image z, the Lee multiplicative filter seeks the best mean-

squared estimate & of z. At each pixel (3, j),
#(1,5) = 2(i,5) + k(3,3) (2(i, 5) - 2(3, 7)) (2.4)
where the gain factor k(i, j) can be obtained as

Var,(i, 5)

k(i,j) = —— 50— :
(1) = 55,7707 + Vars(,3) (28
where o, is the ratio of dard d. to mean in h regions. The local

adaptation of the filter is based on the calculation of the local statistics, # and Var,,
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from the data sample esti Z and Var. d d over a local hbourh
window:
(2.6)
Var.(i,j) = (2.9)
By adapting its to both I i areas and high-vari, areas.

the filter both smooths noise and preserves edges. In order to preserve edges. the
filter essentially shuts itself off in high variance areas (i.e. k(i,j) = 1) so that the
estimate Z(i, j) is approximately equal to the observed pixel value z(z. j). This means
the speckle noise is preserved in high contrast regions.

Lee and Jurkevich [31] found several iterations of the Lee multiplicative filter can
greatly reduce speckle noise. However, small details may be lost due to the repetitive
smoothing operation; and. as with the one-pass Lee multiplicative filter. speckle noise
is preserved in edge areas.

Refined Lee multiplicative filter

To improve the performance in edge areas. Lee proposed a refinement to the original
Lee multiplicative filter [36], in which the neighbourhood used in high variance areas
for the calculation of the local statistics takes into account the orientation of a possible
edge. For each pixel with local variance Var. exceeding a set threshold. oriented
gradients are computed and used to select a subset of the neighbourhood pixels on
one side of the edge and most like the central pixel. Var; estimated over this subset will
in general be lower than the sample variance over the whole neighbourhood. allowing
more accurate filtering of noise. However, the edge detection is not optimized for
speckle corrupted images in which local variance is related not only to edges but also

to the underlying mean intensity level.



Sigma filter

Lee [33] proposed a much simpler alternative to the Lee multiplicative filter, based
on the same multiplicative speckle noise model. It is well know that 95.5 percent of
normally distributed random samples fall within two standard deviations on either
side of the mean value. Values outside of the two-sigma range are therefore likely to
be from a different distribution. The sigma filter averages only those pixels in the
filter window which lie within the two-sigma range of the central pixel value. Edges
are thus preserved because pixels not belonging to the same distribution as the central
pixel are excluded from the averaging process. Since the speckle is multiplicative, the
two-sigma range, assuming the central pixel z(7, j) to be the mean of its distribution,

is bounded below and above by
Zmin = (1 = 204)2(i, j) (2.8)

Zmaz = (1+ 20)2(3,5) (2.9)
Thus only pixels z(k,!) whose value lies between zp, and zme- are included in the
calcu}azing the estimate of z(1, j).

A problem arises if there are no other window pixels within the two-sigma range.
Such sharp spot noise is dealt with by introducing a threshold k, such that, if the
total number of pixels within the two-sigma range is smaller than or equal to k,, then
the central pixel is replaced by the average of its four nearest neighbours.

This filter is based on the assumption that speckle noise has a Gaussian distribu-
tion; therefore, it can be applied to the data processed in a large number of looks.
When this condition is not satisfied, the filtered image has an asymmetric distribution

[39]. Furthermore, this filter degrades point targets because it replaces the central



pixel value with the mean of its four nearest neighbours whenever the central pixel

has an extreme value.

Weighted filter

The sigma filter as described above is based on the assumption that the central pixel
is in fact the mean of its Gaussian distribution. A more general perspective. proposed
by Martin and Turner [39], is that potentially the central pixel belongs to a range of

Gaussian distri For i speckle reduction it is desirable to include in

the averaging process all pixels which could possibly belong to the same distribution
as the central pixel, while excluding those pixels clearly from different distributions.
Furthermore. it is crucial for the preservation of fine features. which by definition
contain few pixels within the filter window, that pixels possibly belonging to the
same distribution as the central pixel are not excluded from the averaging process.
For each window pixel z(k,!) it must therefore be determined whether =(k.l) and
(i, j) are both within the two-sigma range of the same Gaussian distribution. If so.
then z(k,!) should be included in the average.

Martin and Turner [39] proposed a new sigma filter. which they called the weighted
filter, such that a window pixel z(k. /) is included in the averaging process if a Gaussian
distribution centred on z(k,!) with standard deviation o, - (k. () has the central pixel
value z(z,j) within its two-sigma range. The weighted filter therefore averages all
window pixels lying between Zp., and zme: given by

(2.10)

(2-11)




The weighted filter assigns weights to each pixel based on the Gaussian probability

density function centred on the pixel value. This is a computationally expensive

the ion of an ial function for each window pixel

included in the average. Because the upper limit. zpq.. is larger for the weighted filter
than for the sigma filter. more of the higher value pixels are included in the averaging
process. thereby removing the low bias inherent in the sigma filter and reducing noise
more effectively. The lower limit Zm. on the other hand. is higher for the weighted
filter than for the sigma filter. This is an undesirable feature of the weighted filter
because some low value pixels which are within the two-sigma range of the central
pixel value will be excluded by the weighted filter. Some fine features which would
have been preserved by the sigma filter will, therefore, be annihilated by the weighted
filter.

The weighted filter, which is considered to be an advanced version of the Sigma
filter. takes the probability of the central pixel value into account to determine the
range for which the mean value can be extracted over a filtering window. It replaces
the central pixel value with the weighted mean in the filtering window. in which the

ighti ficients are ined based on the probability of the pixel value. The

filtered image has a larger variance in homogeneous areas compared with the other

filters.

Modified sigma filter

Two simple modifications to the sigma filter has been proposed by Smith [47] in
order to improve both its computational efficiency and its ability to preserve fine
features. The first modification assumes the mean of a possible Gaussian distribution

containing the central and a given window pixel to be a linear combination of the
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two. rather than equal to the central pixel z(i.j) as in the standard sigma filter. or
equal to the window pixel z(k.[) as in the weighted filter of Martin and Turner. The
two-sigma range of values to be included in the averaging process is thereby increased.
enabling the speckle noise to be reduced more effectively. and ensuring that more fine
feature pixels are detected so that fewer fine features are annihilated.

The second modification attempts to preserve fine features in cases in which the
number of pixels within the two-sigma range is less than or equal to the sharp spot
noise threshold. This is achieved by searching for the Gaussian distribution containing
three or more connected pixels from which the central pixel is most likely to have been

displaced.

2.4.2 Edge detection

One of the major tasks in image analysis is edge ion. Edges are ly
important primitive features of an image because they often provide an indication of
the physical extent of objects within the image. An edge is defined as a variation or
discontinuity in image intensity resulting from changes in some physical properties
of the surface. namely, its reflectance, geometry and/or incident illumination. Edges
can also be defined based on changes in other image features (e.g. texture).

In this subsection, we will first briefly review edge detectors for SAR images. Then
we will focus on the Maximum Strength Edge Pruned Ratio of Averages (MSP-RoA)
method (18, 19], which will be used in my proposed segmentation method.

SAR edge detectors

Many common edge detectors are of the gradient type i.e. the detectors are based

on the difference between pixel values. This type of edge detector when applied
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to speckled images can yvield very poor results because speckle is multiplicative in
nature. Moreover. the problem involved with speckle is even more difficult because
speckle is not only multiplicative. but can also have an inter-pixel spatial correlation
to some extent. An efficient edge detector should be based on the speckle model.
Hence. it is very difficult to detect edges in speckled images and almost impossible
using simple gradient edge detectors. Since it is obvious that speckle depends on
the signal, speckle is more prominent in higher intensity homogeneous areas than in
darker areas. Thus a ratio between pixel values should be a better edge indicator
than their difference. When dealing with noisy images, it is better to take the ratio
of the average pixel values in two adjacent neighborhoods opposite to the pixel of
interest. A ratio magnitude image is thus formed and thresholding finally provides
the edge map. This is the basic idea behind the simple Ratio of Average (ROA) edge
detector [8] which is particularly useful for detecting edges of images corrupted with
a speckle noise.

Relatively few methods have been reported so far in this area, despite the impor-
tance of the problem of edge detection on speckle imagery. A simple method named
the Coefficient of Variance (CoV) was proposed (49] based on the Constant False

Alarm Rate (CFAR) concept which uses a coefficient of variation which can provide

an edge strength measure. Frost et al [16] d an edge i i for
SAR images, in which the maximum likelihood ratio (LR) is the measure of edge

strength. The il ikeli ratio is based on a SAR image model.
Bovik’s Ratio of Average (RoA) [8] is another approach which attempts to solve this
problem. He suggested a combination of the RoA and the Gaussian Smoothed Lapla-
cian (GSL) methods. According to Bovik, the RoA edge detector is quite efficient on
speckle-degraded images but has a drawback of generating very thick edges. On the
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other hand, a general edge detector such as GSL gives fine edges but also gives rise
to many false edges which is not at all desirable. A combination of these two gives a
much better result than either of the individual edge detectors. However. it is worth
mentioning that the RoA edge detector is optimal if a pointwise multiplicative model
having either negative exponential or Gaussian first order statistics. is considered.
More work which is simply an extension of the RoA detector is proposed by Touzi

etc. [49], using the Constant False Alarm Rate (CFAR) concept.

MSP-RoA edge detector

Ratio-based edge detectors estimate edge strength at any pixel of interest in an image
by calculating the ratio between neighbouring pixel values. The Maximum Strength
Edge Pruned Ratio of Averages (MSP-RoA) method developed in [18. 19]. is one such
method which has been shown to provide accurate localized edge maps from speckled
SAR images. At each pixel in the image, the method calculates the four ratio edge
strengths
R, =min(P,/Q;,Qi/R). i=1,2.3.4 (2.12)
corresponding to the four usual orientations. as illustrated in Figure 2.3. where P, and
Q, are the averages calculated over the sub-windows denoted P and Q. respectively.
The MSP-RoA then calculates a vector (R.O) characterizing a possible edge at that
pixel, where the component R = min(R;. R, R3, Ry) is the edge strength and O is the
orientation which yields the minimum R; value. A candidate edge pixel is classified
as an edge pixel if the magnitude R < T;, for a preset threshold 7 € (0.1), and if R
is the minimum magnitude of all the pixels in a sub-window of (2D + 1) x 1 pixels
perpendicular to the orientation O.
Testing of the MSP-RoA edge detector on airborne SAR images [19, 18] has
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Figure 2.3: MSP-RoA scheme

demonstrated it to be an efficient ratio-based edge detector which can produce thin

and accurate edge maps in the presence of speckle noise.

2.4.3 Histogram thresholding

After iterative application of a speckle reducing filter. a filtered image can be ex-
pected to have a multimodal gray level histogram suitable for thresholding. Tsai
proposed a fast histogram based algorithm for multi-level thresholding [50]. and it
was demonstrated to be more powerful than the widely used thresholding methods
based on between-class variance or entropy. Tsai's method assumes that each desired
class in the image can be represented by an approximately hill-shaped distribution
in the gray level histogram. The fluctuations of an original histogram are smoothed
by recursively convolving the histogram with a Gaussian kernel so that the desired
peaks and valleys at varving levels of detail can be obtained. The detected valleys in

the smoothed histogram indicate the location of the thresholds.
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The proposed algorithm assumes that a peak shown in the gray level histogram
corresponds to a homogeneous region of the image and that a valley exists between
two neighboring peaks. The challenge is to locate the bottoms of the valleys that
best separate the classes. Let ho(i) represent the number of pixels in the original
image with gray level i for i = 0,1..... L, where L is the maximum gray level. In a
histogram., if

ho(i) > ho(i — 1) and ho(i) > ho(i +1), i=12.---.L—1 (2.13)
then a peak at gray level i is detected. Similarly. if
ho(j) < ho(G — 1) and ho(j) <ho(G+1), j=1.2.--~L-1 (2.14)

or

ho(j) < ho(j —1)and ho(j) =0,  j=1.2.---L (2.15)
and there exist two peaks at gray levels p, and p, such that p, < j and p, > j. then
a valley at gray level j is selected. The definition of peaks and valleys above assumes
that the peaks and valleys will not be present at gray level 0 and L.

The fluctuation of the original gray level histogram may generate many false
peaks and valleys. In order to find the proper peaks and valleys at varying levels
of thresholding, we use a Gaussian kernel to smooth the histogram. The degree of
smoothing is manipulated by the width of the Gaussian kernel and the number of
convolutions. Function hg(t), the number of pixels with gray-level ¢, is convolved

with a one dimensional Gaussian kernel g(t,o) of width o:
) 3
t,0) = —— - .
g(to) =~ ‘/z_;erp( 2/20%) (2.16)
H(t,0), the convolution of ho(t) and the Gaussian kernel. is defined as
o
H(t,0) = ho(t) » g(t.0) = /_,, ho(u)g(t — u.o)du (217)

27



For digital implementation, the digital Gaussian kernel with a window size of
W = 3 is used to generate smoothing functions at various values of o, and it is given
by g(—1) = 0.2261, g(0) = 0.5478, g(1) = 0.2261.

The discrete convolution of hg(i) and the digital Gaussian kernel g(u) is defined

w/2
H(t,W)= Y ho(t+u)g(u) (2.18)

u=—[W/2]
where [W/2] is the largest integer not greater than W/2.
After iterative filtering with the Gaussian kernel, the valleys in the histogram are
then detected. Pixels whose gray levels lie between two adjacent valleys are assigned
to the same region. Therefore, we have divided the filtered image into homogenous

regions and finished the segmentation stage.

2.5 Concluding remarks

This chapter attempts to provide an overall picture of the previous work most closely
related to the problem of interest. It focuses on the segmentation methods on which
my research is based. Because my proposed method will be involve filtering, edge

d and hi hresholding, these related problems are also reviewed. The

next chapter will provide my p

posed edge-enh | ion method for SAR

images in detail.
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Chapter 3

The proposed edge-enhanced

segmentation method

3.1 Introduction

My proposed edge-enhanced segmentation method is based on the idea of Lee and
Jurkevich [31] that repeated application of an edge-preserving speckle reducing filter
will provide an image with a multimodal histogram suitable for thresholding even if
the original image has a unimodal histogram. The problems of Lee and Jurkevich’s
method have been discussed in the previous chapter. First of all, due to the poor
performance of the filtering algorithm in edge areas, the segmented image regions
have ragged and inaccurate regions boundaries. Second, the input parameter (the
ratio of the standard deviation to mean) to the filtering algorithm should be calculated
manually and in their implementation this parameter remains unchanged, though the
physical quantity it describes (i.e. the speckle noise) may change on each iteration.

Moreover, in thresholding, the histogram valleys are user-determined. My approach
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has several advantages over Lee and Jurkevich’s method. First of all, edge information
is used with the filtering algorithms, which leads to a better performance of the
filters in edge areas. Second, the iterative application of the filters is fully automatic.

which means that no statistical parameters are required as input parameters. as all

d from the image. Third. the histogram

these are

valleys are not ined in the th lding algorithm. Finally. due to the

improvement in the filtering scheme, the segmented image has simple and accurate
region boundaries and there are no small holes in homogeneous regions. The following

are the main components of my approach:
o Using MSP-RoA edge detector to estimate edges

» Modifying a speckle reducing filter by using edge information to improve the
filtering performance in edge areas;
e Iteratively applying the modified filter (I call this filter an edge-enhanced filter)

to smooth the speckle noise:

* Segmenting the filtered image based on histogram thresholding to get image

regions with accurate region boundaries.

3.2 Main components

The main components of my segmentation method include edge-enhanced filters, pa-

and

rameter estimation, edge ion. iterative

These will be discussed in turn in this section.



3.2.1 Edge-enhanced filters

Of crucial importance in my segmentation method is the ability of speckle reduc-
ing filters to smooth noise while preserving the sharpness of edges. Several speckle
smoothing filters have been developed by previous researchers as stated in the litera-
ture review. However. these filters usually do not use edge information and sometimes
do not perform well in edge areas. In this research, I propose an edge-enhanced filter-
ing method which utilizes edge information obtained by the MSP-RoA edge detector
in local statistical analysis in the filtering window. This kind of filter smooths speckle
in low variance areas as well as in high variance areas while preserving the sharpness
of edges. The starting point of my research was to modify the simplest mean and
median filter, with fairly good results, some of which were presented in [28]. Then the
Lee multiplicative filter was modified and iteratively applied to smooth SAR images.
with some results presented in [29]. These results are even better and have a signif-
icant improvement over the original iterative Lee multiplicative fiiter. especially in
edge areas. The segmentation results based on the edge-enhanced Lee multiplicative
filter. in particular, are very good when tested on synthetic images as well as real
SAR images. Detailed results of all methods are presented and compared in Chapter
4 and 3 of this thesis.

Edge-enhanced mean and median filters

The main problem with the mean filter is that the edges in the image are smoothed
together with the speckle noise. and may be lost completely after a few successive
applications of the filter. The median filter will preserve step edges in noise-free
images, however, in speckle corrupted images, it does not remove this non-impulsive

noise very well.
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In this research, edge-enhanced mean and median filters are presented which use
the edge map generated by the MSP-RoA edge detector to determine which of the
neighbouring pixels are to be included in the calculations of the mean or median.
This method tends to remove the speckle noise while retaining the edges even after
several iterations. The following is the full description of the modified local mean and
median filters.

First, the MSP-RoA edge detector is applied to estimate the edge points. Then. for
each pixel z(i, j), a 3 x 3 window centered on the pixel is used for analysis. According
to the estimated edge map, the pixels inside the window can be divided into two
classes: those which are edge pixels and those which are non-edge pixels. The edge
pixels are excluded in the local mean or median calculation. The next step is to decide
if 2(i, j) is a edge point based on the edge map. If z(, j) is not a edge point, then it is
replaced by the mean of the non-edge pixels. Otherwise, it is replaced by the median
of the non-edge pixels. After all the pixels in an image have been examined. then
one iteration of the filter is finished. The process can be repeated with subsequent
iterations.

I chose small window sizes in the edge-enhanced filters because a large window
size may oversmooth some regions near or on edges. The edge-enhanced mean and
median filters are simple and efficient for segmentation purpose. As will be shown in
Chapter 4, even after several iterations, most edges in the image are preserved while
the noise is significantly reduced [28]. However. in some test images, there are still
some areas that are merged. If there is a gap in the edge map, the edge tends to blur
when the edge-enhanced mean filter is applied.



Figure 3.1: Using edge information to define the valid region in the filtering window

Edge-ent d Lee multiplicative filter

Although the original Lee multiplicative filter performs very well at noise smoothing
in low variance areas, it tends to preserve speckle noise near edges. Since ratio-based
edge detectors are able to ignore speckle in detecting edges in SAR images, I use the
edge map produced by the MSP-RoA edge detector to improve the performance of
the Lee multiplicative filter.

By using the edge information obtained from the MSP-RoA edge detector, it is
possible to refine the definition of the local neighbourhood over which local statistics

hhoch

are calculated, thus improving the h ity of the nei, hood and the quality

of the esti The imp in the perf of the Lee multiplicative filter

is most notable in high variance areas near edges. Figure 3.1 shows how knowledge of

an edge contour is used in delimiting the neighbourhood for local statistical analysis.
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In a filtering window of a given size, all the pixels are classified as belonging to
one of two classes, thus allowing the definition of two regions within the window,
the valid and non-valid regions. The valid region starts with the central pixel in
the filtering window, and is grown in eight directions, along the arrows indicated in
Figure 3.1 within a line of width one pixel. When the valid region reaches an edge
point as determined from the MSP-RoA edge map, or when it reaches the window
boundary, the region stops growing in that direction. In this way the filtering window
is separated into two regions and only the pixels in the valid region and along the
eight directions are included in statistical estimation.

In the edge-enhanced Lee multiplicative filter, edge information is thus utilized
in defining the filtering window size and shape. Since Z and Var, are calculated as
the mean and variance only of those pixels in the valid region they will yield more
accurate estimates near an edge, so that the modified filter can smooth the speckle
in edge areas while preserving the sharpness of edges.

The iterative application of the edge-enhanced Lee filter was tested on synthetic
speckled images and the results compared with similar iterations of the original Lee
mutiplicative filter. Detailed results are presented in Chapter 4 and 5. Some of
the results have been presented at a workshop [29]. The edge-enhanced Lee filter
performs better than Lee filter, especially in high variance regions, because it uses

edge information to refine the filter’s local statistics estimation.

3.2.2 Estimation of parameter o,

The Lee multiplicative filter and the edge-enhanced Lee multiplicative filter require
the knowledge of the ratio of the standard deviation to mean in homogeneous areas.

This parameter is seen to be o, for unity mean noise, and is sometimes called the
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Coefficient of Variation (CoV). This value can be estimated by calculating sample
values of Var,/Z over several homogeneous or structure free areas of the observed
image z. Alternatively, the value of the parameter o, can be determined from the
known speckle characteristics of the number of looks and type of SAR image to be
filtered (e.g. see [31, 32]).

ofa

However, the filter can ly alter the noise

characteristics, and it can be difficult to analytically update the parameter o, in an

iterative filtering scheme. In my impl 1 d from

ation, o, is

the image data by Smith’s method, described in Section 2.3.2, thus better controlling
the filtering process for each pass of the filter. For moderately busy images, the use of

this estimation method tends to highlight the local esti of o, in the h

regions, and to exclude those erroneous estimates of o, in areas of high variance such
as edge regions.

The automatic estimate of o, is quite close to its theoretical value. For example,
the theoretical value for 4-look airborne SAR images is around 0.25 [56]. and the
estimated values for the testing images are quite close to this value (refer to Chapter
4 and 5). The window sizes in estimating o, have an effect on the final estimation.
In experiments, it is found that for the test images presented in this thesis, a 7 x 7
window size can produce a good estimate of o,. Although estimation errors exist, the

Lee multiplicative filter and the proposed edge-ent d Lee multiplicative filter are

not extremely sensitive to the value of o, which means that small estimation errors

are tolerable.
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3.2.3 [Edge detection

As noted above, the edge map obtained by the MSP-RoA edge detector is used in
the edge-enhanced filters. The ability of the edge detector to find true and accurate

edges while excluding false edges is very important to the performance of the filters.

The MSP-RoA method makes effective use of the infc i ilable in ratio-based
hods in achieving localized edge maps without additional edge thinning
operations.

As with many other edge ds, the basic of the MSP-

RoA method must be determined by reference to a given image and defined carefully
in order to exploit the advantages of the method. The MSP-RoA performance tends
to improve if the mask size is increased, provided the resulting P and @ sub-areas

are homogeneous. Therefore, the mask size should be selected as large as possible, by

fe to the di b edges and the size of image objects in the image.
The value T; can be adjusted to detect as many significant edges as possible without
detecting spurious or noise edges. The parameter D can be selected by considering
the likely size of objects in the image. Since the MSP-RoA method prunes candidate
edge pixels within the subwindow pependicular to the edge orientation, the value of
D should be small for images having fine image structure. In this research, D is set
to 1 for all the test images.

Test results from some SAR images [18, 19] indicate that the MSP-RoA method
has difficulty in detecting all edges such as some edges in busy image regions. Since a
large window size tends to blur small regions, the MSP-RoA method has difficulty in
detecting fine features when a big window size is chosen. Choosing a small window
will produce more false edges due to the noise artifacts. In this research, two methods
to improve the performance of the basic MSP-RoA method have been used. First,
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the MSP-RoA edge detector is used to generate a new edge map before each iterative
application of the edge-enhanced filters. After each iteration. the MSP-RoA window

size is d and the T i as the noise level decreases. so that

it can detect more significant and fine edges. Second and alternatively. another way
to improve the performance of the basic MSP-RoA method is to modify the basic
MSP-RoA method by assigning weights to pixels in the averaging process producing
P, and Q, in each orientation. The pixels nearest the central pixel are assigned
more weight than those further from the central pixel. in order not to degrade edge
strength for very fine edges when a large window size is used. Suppose a window size

-1 from the

of (2n+1) x (2n + 1) is used, the weights are assigned as n.n —1.n—2
nearest pixel to the furthest from the central pixel.

The edge-enhanced filters in this thesis are used typically with the MSP-RoA
edge detector generating a new edge map on each iteration. However. since the MSP-
RoA edge detector can produce very good estimations of edge maps for SAR images.
even with significant speckle noise. we have also simply applied the MSP-RoA edge
detector once only prior to filtering and then re-used the result on each iteration. thus

saving computational time.

3.2.4 Number of iterations

The number of applications of the speckle smoothing filters has an effect on the noise
smoothing performance as well as the final segmentation resuits. In general. the noise
smoothing performance will be best at a certain iteration. Too many iterations may
oversmooth the tested image. However, for segmentation purposes, more iterative

applications of the filters seem to produce an image the histogram of which has

More

deeper valleys and higher peaks, as is for
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detailed tests and discussion are provided in the next two chapters.

3.2.5 Histogram thresholding

After an iterative application of the edge-enhanced filters, the histogram of a filtered
image typically has a mutimodal shape suitable for thresholding. Although there are
many thresholding schemes that have been proposed, the Gaussian smoothing and
valley seeking algorithm proposed by Tsai is a good choice, as it is faster and more
accurate than other widely used between-class variance and entropy methods [50].
A detailed description of Tsai’s work has been provided in the literature review in
Section 2.4.3. It is worth mentioning that in Tsai’s work, the number of classes in
the image should be provided as an input parameter to control the convolution of the
Gaussian kernel. In my research, I use the number of repeated convolutions as an
input parameter for the Gaussian smoothing algorithm. The number of convolution
is very important for the final segmentation stage. A large number of convolutions
will produce fewer image regions in the result. More detailed results and discussion

will be provided in the next two chapters.

3.3 Overall approach

Figure 3.2 shows the flow diagram of my overall approach for segmenting SAR images.
The iterative application of the MSP-RoA edge detector and the modified filter is
called the edge-enhanced filter. The MSP-RoA is applied on each iteration. The
threshold 7, is set to a value between 0.4—0.8 in the first iteration (detailed discussion
on the setting of the threshold value can be found in [18, 19]). After each application,

this value increases by 0.025 (this was obtained by testing numerous images) and
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Figure 3.2: Flow diagram of overall aproach
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the window size of the edge detector decreases by 2 (until window size equals 3, the
smallest size) as the noise level decreases, so that the edge detector can detect more
true and fine edges. These parameters are chosen by experiments. Results will be
shown in the next two chapters. For computational savings, we could alternatively
simply apply the MSP-RoA method once prior to filtering and re-use the result on
each iteration. Also, the modified MSP-RoA edge detector can be used to produce
an edge map instead of original method.

In this research, the edge-enhanced mean and median filters were initially tested.

d Lee

However, the edg filter shows the more significant im-

provement in filtering as well as in segmentation performance. So, more tests have

been performed based on the edge-enh d Lee multiplicative filter.
Because the edge information is used in the statistical calculation of the edge-
enhanced Lee multiplicative filter, the shape and window size are redefined in the

actual calculation of statistical esti Therefore, even if a large filtering window is

1 offici M.

, Oy

chosen, it still preserves fine features and keeps
is calculated automatically and used to control the filtering process on each iteration.
The thresholding stage includes G i hing and valley seeking algorithms,

and produces the final segmented image. The number of convolutions in Gaussian
smoothing algorithm determines the number of classes that will be detected in the
segmented image. By experiments, I found that 5 or 6 times of convolutions can

produce a good result in the implementation.

40



3.4 Concluding remarks

In this chapter, I described my proposed segmentation method based on histogram
thresholding and a ratio-based edge detectior used in conjunction with an iterative
application of a modified speckle-reducing filter. Test results of this edge-enhanced
segmentation method on synthetic and real SAR images as well as their comparision

with those from Lee and Jurkevich’s method will be provided in the next two chapters.
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Chapter 4

Test results on synthetic images

4.1 Introduction

The previous chapters of this thesis have discussed the development of various seg-
mentation methods, and, to some extent, filtering and edge detection methods for
speckle corrupted images. This chapter focuses on the performance of my proposed
segmentation method and its comparison with Lee and Jurkevich’s method for seg-
menting SAR images.

It is worth noting that in this chapter as well as in the next chapter. the au-

tomatic estimation of o, and ic hi hresholding are used in Lee and

Jurkevich’s method. making our implementation an improvement over the orignal Lee
and Jurkevich's segmentation scheme. So, in fact, references to Lee and Jurkevich's
method in these two chapters denote the improved Lee and Jurkevich’'s method. Im-
age processing results of segmentation. filtering and edge detection are presented as

well as measures and

The test images used in this thesis include both synthetic and real SAR images.
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In this chapter, only synthetic image results are discussed. The results for real SAR
images will be presented in the next chapter. The difference between real SAR images
and synthetic SAR images is that there are no very high contrast regions in real SAR
images as in some synthetic images. The synthetic image used in this chapter is a
combination of 3 different images with different regions of contrast. so it may be more

difficult for segmentation than the real SAR images.

4.2 Methodology

In this section, we will have a brief introduction to the synthetic images used for
testing and the speckle simulation method used for generating these images. Methods
of measuring performance will also be addressed.

All images are stored in files with pixel value ranging from [0-255]. Although
the values are stored in “byte” (“char” in “C++") format to minimize space. all
processing was done with double precision. All algorithms are written in the “C++"
programming language to run under the SunOS Release 4.1.3 operating system on a
Sun SPARC 10 workstation.

4.2.1 Test data

For testing with synthetic images, the algorithms are applied to three different images
named Bars, Annular and Balloon. The first two images are fairly simple, artificially
created with high contrast, containing two gray levels and chosen to demonstrate
the algorithms’ ability in edge preservation. The third image is a more complicated
photographic image with many shapes and edges of different contrast. These three

images are combined in a single image called Combine which is shown in Figure 4.1.
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Figure 4.1: Original image Combine

This particular image is the clean, original image for further study

Two different images CombineCORI and CombineCOR are shown in Figure 4.2
(a) and (b). These are generated using a speckle model and synthetic one-look and
four-look amplitude SAR speckle [55], respectively. It is not feasible to provide all
results for both one-look and four-look speckled images. However, since in most cases
SAR images are multi-look and since four-look is a very common choice, only the
results of processing the four-look speckle degraded image of Figure 4.2 (b) will be

presented.

4.2.2 Speckle simulation

The speckle in Figure 4.2 is simulated by a method proposed by Zaman and Moloney
[55]. A multiplicative convolution model (Equation 2.2) has been used for speckle

simulation. The first step is to generate a two dimensional noise field. Noise samples



(b)

Figure 4.2: Speckle corrupted images: (a) CombineCOR1, 1-look; (b) CombineCOR,
4-look




from an jal or x-squared distribution are used for generating one-look or
multi-look speckled images. respectively. The x-squared distribution has its number
of degrees of freedom twice that of the number of looks. The next step is to multiply
each ideal image pixel pointwise with samples drawn from the noise file of interest
depending on the desired number of looks. Thus the multiplicative part of the model
is generated. To take the correlation property of speckle into account. it is necessary
to know or assume the PSF or impulse response of an imaging system. Since the
present work involves SAR speckle simulation, a hypothetical but realistic impulse
response for a SAR system is chosen. The assumed impulse response has a circularly
symmetric Gaussian shape, the edge of which is taken to be 10 decibels below the
peak value. This response was initially used by Hudson and Jernigan [27]. The result-
ing multiplicative image is then convolved with the given SAR PSF and a synthetic
amplitude speckle SAR image is thus obtained which has the expected statistics of
such an image, as verified by our automated calculation of o, or by manual choice of
homogeneous regions (5, 6]. For the four-look speckled image. the standard deviation
to mean ratio calculated over homogeneous regions of differing average intensity is
approximately 0.218, close to the theoretical value of 0.25. The correlation coeffi-

cient between horizontal and vertical neighbouring pixels is i ly 0.49. and

between diagonal neighbours approximately 0.25.

4.2.3 Performance measures

A traditional measure of noise smoothing is the Mean Square Error (MSE). When
working with synthetic image data, the uncorrupted image is assumed to be known.
Hence, the global MSE for the noisy image and filtered images can be calculated when
we test the synthetic images. A ly used speckle ion measure for SAR
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images is 0, the ratio of the standard deviation to mean in homogeneous areas. In
this work. o, is automatically calculated from the image using the method described
in Section 2.3.2. The performance of filtering and segmentation are also evaluated by

visual inspection.

4.3 Results on synthetic image

In this section, one set of test results on the image of Figure 4.2 (b) will be pre-
sented. The images resulting from the proposed edge-enhanced segmentation method
as well as Lee and Jurkevich's method are compared. Fixed parameters are chosen

to ill the of the i More detailed discussions on various

of input will be in the next section.

4.3.1 Segmentation of clean image

The clean image Combine has a multimodal hi suitable for hi; thresh-

olding, shown in Figure 4.4 (a). Using Gaussian smoothing and the valley seeking
algorithm implemented in this research for histogram thresholding. this image can
be segmented as shown in Figure 4.3 into 16 regions. The parameters for Gaussian
smoothing are 5 convolutions with a Gaussian kernel of width 3. Discussions on

how to choose proper Gaussian hi will be in the next

section.

4.3.2 Histogram

The clean, original image Combine has a distinctive multimodal histogram and it is a

easy task to segment such an image. However, the histogram of the speckle corrupted
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Figure 4.3: Segmentation of clean image Combine

image CombineCOR is complicated by the presence of speckle noise, which makes
automatic segmentation of such an image difficult. Figure 4.4 (a) and (b) show the

histograms of Combine and combineCOR, respectively.

4.3.3 Filtering results

The proposed edge-enhanced filters include the edge-enhanced mean and median
filters and the edge-enhanced Lee multiplicative filter. The results of these edge-
enhanced filters as well as the result of the iterative Lee multiplicative filter will be
presented in this section. Discussions on the performances of these different filters will

also be addressed. As noted previously,

after speckle reducing filtering, the resulting

image should have a multimodal histogram suitable for thresholding.
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Figure 4.4: Histograms of (a) Combine; (b) CombineCOR



Iterative Lee multiplicative filter

The iterative application of Lee multiplicative filter is tested on CombineCOR. In the
original Lee and Jurkevich method [31], knowledge of the standard deviation of the
speckle, o, is required, and in an iterative implementation, o, is required as an input
parameter at each iteration. In the original Lee and Jurkevich implementation, this
parameter was unchanged from iteration to iteration although the actual value may
change. In our implementation, at each iteration o, is automatically estimated from
the image by a method described in Section 2.3.2 and used to control the filtering
of that iteration. Figure 4.5(a) shows the result of smoothing CombineCOR by the

iterative Lee multiplicative filter, using a window size of 11 x 11 on each of 3 iterations.

Edg h d Lee multiplicative filter

To compare the proposed edge-enhanced Lee multiplicative filter with the iterative
Lee multiplicative filter, we chose the same filtering parameters: window size 11 x
11, 3 iterations. The MSP-RoA edge detector’s input parameters are: window size
11 x 11, threshold 7, = 0.72. We chose these parameters because this combination
of parameters tends to produce good filtering result. More detailed discussions on
different combinations of parameters will be presented in the next section. Figure 4.5
(b), Figure 4.6 (a) and (b) show the edge-enhanced Lee multiplicative filtered result,
the MSP-RoA edge map before the first iteration and the final MSP-RoA edge map

before the third iteration, respectively.

Edge-enhanced mean and median filters

The edge-enhanced mean and median filters are the simplest edge-enhanced filters

and are the starting point of this research. Although the performance is not as good
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(b)

Figure 4.5: Filtering results for CombineCOR, mask 11 x 11, 3 iterations: (a) Using

iterative Lee multiplicative filter; (b) Using edge-enhanced Lee multiplicative filter.



(b)

Figure 4.6: MSP-RoA edge map of CombineCOR (a) Before filtering; (b) Before the

third iteration of the edge-enhanced Lee multiplicative filter.
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Figure 4.7: Edge-enhanced mean and median filtering result for CombineCOR

as that of the edge-enhanced Lee multiplicative filter, these filters are still fairly good
in preserving edges and smoothing speckle noise. Figure 4.7 shows the result of
the edge-enhanced mean and median filters when applied to CombineCOR. All the
parameters are the same as the edge-enhanced Lee multiplicative filter except that a
smaller filtering window size 3 x 3 is chosen in order not to oversmooth regions near

fine features.

Discussion

The MSE between CombineCOR and Combine is 751, while o, for CombineCOR is
0.218. For the result of the iterative Lee multiplicative filter shown in Figure 4.5(a),
0, is reduced to 0.014 and MSE is reduced to 230, while for the result of the proposed
edge-enhanced Lee multiplicative filter shown in Figure 4.5(b), o, is reduced to 0.014
and MSE is reduced to 158. Although the o, for both results are the same indicating

similar noise smoothing in homogeneous regions, the MSE indicates that the edge-
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enhanced Lee multiplicative filter performs better than the iterative Lee multiplicative
filter in noise i ially near edges. M we can see that in Figure
4.5(a), the speckle noise is preserved in edge areas. while in Figure 4.5(b). the edges

are sharp and the noise is reduced in high variance areas as well as in low variance

areas. Overall, the edg Lee iplicative filter is an i over

iterative Lee multiplicative filter.

For the performance of the edge-enhanced mean and median filters shown in Figure
4.7, the MSE is 275 and o, is 0.06. From these performance measures. it seems
that this result is the worst one. However, from visual inspection. we can find that
in edge areas, the noise is smoothed while edge sharpness is retained. which in this
regard is better than the iterative Lee multiplicative filtering result. For segmentation
purposes, after several iterations of the edge-enhanced mean and median filtering
followed by histogram thresholding, the resulting segmented image will have simple
and accurate edges and homogeneous regions which may be better than the iterative
Lee iplicative filter based ion result. Some of the results can be found

in [28].

Because the edge-enhanced Lee multiplicative filter is the best of the edge-enhanced
filters developed in this research, we will focus on it in the further tests and discus-
sions.

For the MSP-RoA edge detector, we can see that the edge map is refined after
several applications because the noise is smoothed. Moreover by decreasing the win-
dow size and increasing the threshold, we tend to detect more significant edges in

small regions such as the narrow stripes in Balloon.



4.3.4 Histogram thresholding

The iterative application of a speckle reducing filter tends to produce an image with
a multimodal histogram suitable for thresholding. Figure 4.8 (a) and (b) show the
histograms of the iterative Lee multiplicative filtered image and edge-enhanced Lee
multiplicative filtered image, respectively. It is clearly shown that compared with the
iterative Lee multiplicative filter, the proposed method produces deeper valleys and
higher peaks in the histogram of the filtered image. This is desirable for histogram
thresholding.

Small fluctuations in the histograms of the filtered images may generate many
false peaks and valleys. In order to find the proper peaks and valleys at varying

1oldi

levels of thre we use a Gaussian kernel to smooth the histograms. Here, we

find that the use of a one-dimensional Gaussian kernel of width 3 applied 5 times
will produce good results for the test images. More discussions on this issue will be
presented in the next section. Figure 4.8 (c) and (d) show the smoothed histograms
of Figure 4.8 (a) and (b), respectively. It is worth noting that more small regions are
preserved in Figure 4.8(d) than in Figure 4.8(c). This may be due to the ability of

edge-enhanced filter to preserve fine features.

4.3.5 Segmented images

The histogram thresholding algorithm seeks valleys in the smoothed histogram of the
filtered image; pixels whose gray levels lie between two adjacent valleys are assigned
to the same region. Figure 4.9 (a) and (b) show the segmentation results of the
iterative Lee filtered image and the edge-enhanced Lee filtered image, respectively.

It can be seen in Figure 4.9 (a) that some of the stripes in Balloon are not very
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Figure 4.8: Histograms of filtered image of CombineCOR: (a) After iterative Lee
multiplicative filter; (b) After edge-enh d Lee multiplicative filter; (c) G
hing of (a); (d) Gaussi hing of (b).




clean and homogeneous. This is because of the poor performance of the iterative Lee
multiplicative filter in edge areas which did not produce deep valleys in these small
regions. Another problem is that there are many small dots on the edges and the
edges are not clean and sharp. This is because the Lee multiplicative filter preserves
speckle noise in high variance areas. Compared to Figure 4.9 (a). Figure 4.9 (b)
shows a better segmented image which separates the regions which have great gray
level differences as well as small gray level differences. The edges are very sharp
and clean, while most regions are homogeneous and clean. However, there are still
some black and white dots in the Bars and Annular. This is because the noise is
too strong in these particular areas and is not sufficiently smoothed in the filtering
stage. There are 11 regions in Figure 4.9 (a) and 12 regions in Figure 4.9 (b). More
false regions are produced in the edge areas in Figure 4.9 (a), while some fine regions
are lost or merged. In Figure 4.9 (b), the region locations and numbers are similar
to those of the segmentation of the clean image shown in Figure 4.3. Overall, the
edge-enh d ion method prod better result than does the Lee and

Jurkevich’s method.

4.4 More results

In the previous section, fixed parameters are chosen for illustrating the performance
of the different stages in the filtering and segmentation algorithms, with the resulting
images presented for comparison. In this section, different combinations of the input
parameters are chosen for more detailed exaimination of the performance of the al-
gorithms. Quantitative measures such as o, and MSE are presented as well as some

resulting images to show the visual qualities.
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(b)

Figure 4.9: Segmentation results on CombineCOR: (a) Based on iterative Lee multi-

plicative filter; (b) Based on edge-enhanced Lee multiplicative filter



4.4.1 Filtering results

Lee and Jurkevich’s segmentation method and the proposed edge-enhanced segmenta-
tion method are all based on the iterative application of a speckle reducing filter. The
Lee and Jurkevich’s method uses the iterative Lee multiplicative filter while the edge-
enhanced segmentation method uses the proposed edge-enhanced Lee multiplicative
filter. The quality of the segmented image is highly dependant on the filter’s ablity to
remove noise while preserving sharp edges. In this section, different combinations of
parameters of both filters are used for testing. Quantitative measures are presented
for comparison.

Table 4.1 shows itati of the of the iterative Lee

multiplicative filter when applied to CombineCOR. while Table 4.2 shows the same
results from the edge-enhanced Lee multiplicative filter on the same image. The MSP-
RoA parameters are fixed in the edge-enhanced filter, namely window size 11 x 11.
threshold T, = 0.72 and correlation parameter D = 1. The edge detector produces
a new edge estimation on each iteration. I choose these parameters for the MSP-
RoA method because they can produce a good edge map as shown in Figure 1.6.
Moreover. choosing these parameters tends to produce good filtering results. This

will be discussed in more detail later.

Discussion

For the synthetic image CombineCOR, Table 4.1 and 4.2 show that the iterative
applications of both filters tend to suppress the speckle, and o, tends to reach a
lowest value after several iterations. Sometimes o, may become a little bit higher
than on a previous iteration. This is likely caused by the estimation error of g, which
is automatically calculated from the image. However, the overall tendency is for o,
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oy, after iteration (Original: 0.218)

MSE (Original: 751)

Iteration 1 2 3 4 5 1 2 3 4 5
3 x 3 window 0.132 | 0.092 | 0.081 | 0.055 | 0.051 | 343 | 267 | 240 | 228 | 224
5 x 5 window 0.078 | 0.051 | 0.036 | 0.029 | 0.023 | 240 | 206 | 199 | 198 | 200
7 x 7 window 0.050 | 0.032 | 0.025 | 0.015 | 0.014 | 215 | 202 | 201 | 203 | 207
9 x 9 window 0.041 | 0.032 | 0.013 | 0.015 | 0.014 | 217 | 211 | 212 | 216 | 221
11 x 11 window | 0.030 | 0.028 | 0.014 | 0.014 | 0.014 | 228 | 227 | 229 | 233 | 239

Table 4.1: Quantitative measures of iterative Lee multiplicative filter

o, after iteration (Original: 0.218) MSE (Original: 751)
Iteration 1 2 3 4 5 il 2 3 4 5
3 x 3 window 0.132 | 0.083 | 0.070 | 0.059 | 0.050 | 342 | 264 | 234 | 219 | 211
5 x 5 window 0.079 | 0.057 | 0.044 | 0.033 | 0.030 | 249 | 204 | 188 | 181 | 179
7 x 7 window 0.068 | 0.035 | 0.036 | 0.027 | 0.023 | 211 | 178 | 172 | 169 | 169
9 x 9 window 0.053 | 0.031 | 0.029 | 0.025 | 0.013 | 192 | 169 | 165 | 165 | 166
11 x 11 window | 0.045 | 0.048 | 0.014 | 0.013 | 0.016 | 181 | 165 | 158 | 160 | 162

Table 4.2: Quantitative measures of edge-enh d Lee multiplicative filter
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to become smaller until it reaches a lowest value. The filtering window size has a
great effect on the performances of the filters. When a larger window size is chosen,
o, goes down faster. This is because the averaging process over a large window size
produces a more smoothed image more quickly.

For the iterative Lee multiplicative filter, when ining the MSE in Table 4.1,

we can find that the performance becomes better when we increase the window size
until it reaches a certain value, and after that, it will become worse. This is because
too large a window size tends to oversmooth some small regions and to keep more
noise in regions near edges. Also, the MSE has a lowest value after several iterations
and then it rises again. So, it is important to choose proper parameters to get the
best performance. The best performance for the iterative Lee multiplicative filter
when applied to CombineCOR is MSE = 198, o, = 0.029. The input parameters are
window size 5 x 5, 4 iterations.

For the MSE of the edge-enh d Lee multiplicative filter when applied

to CombineCOR, Table 4.2 shows that the change of input parameters has an influence
on the performance which is similar to the Lee filter. However, the best performance
is obtained when the window size is 11 x 11, much larger than the 5 x5 for the iterative
Lee multiplicative filter. This is because the edge map changes the shape and size

of thie neighbourhood fvalved in TR

So even large window sizes
will not destroy image detail.

The quantitative measures shows that for the iterative Lee multiplicative filter,

0, is reduced more quickly than with the edge-enh d Lee multiplicative filter.
This is because the edge-enhanced Lee filter only uses the samples along the eight
directions in the filtering window so that the number of samples in the local window

is less than that used in the iterative Lee filter. Thus, the edge-enhanced Lee filter
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does not smooth as quickly as the iterative Lee filter. However. when the iterations
increase and the filtering window is enlarged. o, will reach a lowest value for both
filters. Comparing Table 4.1 with 4.2, we can find that the edge-enhanced Lee filter
has better performance (best is MSE = 158, o, = 0.014) than that of the iterative
Lee filter (best is MSE = 198. o, = 0.029). Furthermore. visual examination of the
filtered images show that my proposed filter has a great improvement over the iterative
Lee filter in edge areas and in small regions. which leads to a better performance for
further i ication. This is d for example. in Figure 4.10.
which shows these two “best” results on CombineCOR.

4.4.2 Use of MSP-RoA method in filtering

The edge-enhanced filter can be used with the MSP-RoA edge detector generating
a new edge map in each iteration. However, since the MSP-RoA can produce very
good estimations of edge maps for SAR images. even with significant speckle noise.
we can choose to simply apply it once only prior to filtering and to re-use the edge
map result on each iteration, thus saving computational time. Table 4.3 shows the
filtering results when using the edge detector once or iteratively. The MSP-RoA
parameters are the same: window size 11 x 11, threshold T, = 0.72 and correlation
parameter D = 1. The filtering window size is 11 x 11. The overall best performance
for the Once set is o, = 0.014, MSE = 160, after 3 iterations, a result which is very

competitive with best result of the filter in the Iteratively set.

Discussion

From Table 4.3, it can be seen that there is not much significant difference in the
performance of the filter when using the MSP-RoA edge detector once or iteratively.
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(b)

Figure 4.10: Comparison of filters applied to CombineCOR: (a) Best smoothing by
iterative Lee filter, 5 x 5 window, 4 iterations ; (b) Best smoothing by edge-enhanced

Lee filter, 11 x 11 window, 3 iterations.
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o, after iteration (Original: 0.218) MSE (Original: 751)

Iteration 1 2 3 4 3 1 2 3 4 3
MSP-RoA once 0.045 | 0.048 | 0.014 | 0.014 | 0.014 | 181 | 166 | 160 | 163 | 166
MSP-RoA Iteratively | 0.045 | 0.048 | 0.014 | 0.013 | 0.016 | 181 | 165 | 158 | 160 | 162

Table 4.3: Edge-enh fltering when using MSP-RoA once or using

it iteratively in each application of the filter

However. to obtain more accurate edge locations and better smoothed result in edge
areas, the iterative application of MSP-RoA detector tends to provide better filtering
results. This is because after each iteration, the noise will be smoothed and the re-
estimation of edges will be less affected by the noise artifacts, which tends to allow

more accurate edge maps to be produced.

4.4.3 MSP-RoA parameters

For the edge-enhanced Lee filter, the selection of MSP-RoA parameters is very impor-
tant for the filtering results. The better the edge map is. the better is the performance
of the filter. Table 4.4 shows the results of using different combinations of MSP-RoA
parameters (D = 1 in all cases) with a filtering window size of 11 x 11 and 1 iteration

at edge-enhanced Lee filter.

Discussion

Table 4.4 shows that the choice of MSP-RoA is crucial to the

of the proposed filter, particularly in terms of MSE. The best parameters seem to be
window size 9 x 9 or 11 x 11, with a threshold 7, around 0.7. These produced the
best results with the test image CombineCOR. Different images may have different
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| 0, (Originat: 0.218) MSE (Original: 751)
[ T. 05 |06 |07 |08 05 |06 |07 | 08

MSP-RoA window 9 x9 | 0.046 | 0.045 | 0.045 | 0.049 | 204 | 185 | 181 | 199
MSP-RoA window 11 x 11 | 0.060 | 0.045 | 0.045 | 0.043 | 206 | 186 | 181 | 189

Table 4.4: Performance of the edge-enhanced Lee filter when choosing different pa-
rameters for MSP-RoA edge detector

characteristics and the best MSP-RoA may vary di

4.4.4 Modified MSP-RoA method

The of the edge-enh d Lee iplicative filter depends on the per-
formance of the ratio based edge detector. As described in Section 3.2.3. we have
slightly modified the original MSP-RoA method by assigning weights to the pixels in

the averaging process in order not to degrade edge strength for very fine edges when

a large window size is used (refer to Section 3.2.3. Table 4.5 shows a comparison
of the performance of filter using the original MSP-RoA method and the modified
method. The edge detector parameters are the same: window size 11 x 11. threshold
T, = 0.72, D = 1. The edge detectors are used only once and the edge maps re-used
in each iteration of the filtering process. The filter window size is 11 x 11. Figure
4.11 shows the edge map generated by modified MSP-RoA method on CombineCOR
and the filtered results based on this edge map after 3 iterations.

Discussion

Table 4.5 illustrates that the modified MSP-RoA method improves the filtering perfor-

mance compared to the original MSP-RoA method in MSE measure. This is because
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(b)

Figure 4.11: Demonstration of using the modified MSP-RoA: (a) Edge map before

filtering; (b) Edge-enhanced filtered result, window size 11 x 11, 3 iterations.
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0y (Original: 0.218) after iteration MSE (Original: 751)

Iteration |1 2 3 4 5 i 2 3 4 5
MSP-RoA | 0.045 | 0.048 | 0.014 | 0.014 | 0.014 | 181 | 166 | 160 | 163 | 166
Modified | 0.044 | 0.048 | 0.014 | 0.013 | 0.015 | 178 | 161 | 154 | 156 | 158

Table 4.5: Performance of filter with original and modified MSP-RoA edge detector

the weights assigned to each pixel tend to preserve fine edges. However, some false
edges are also preserved in this process as shown in Figure 4.11 (a), which leads to
a more spotty filtering result, as shown in Figure 4.11 (b). From visual inspection,
Figure 4.11 (b) shows more small dots in apparently homogeneous image regions than
are seen in Figure 4.5 (b) - an undesirable result for smoothing purposes. More work
is needed in modifying the MSP-RoA method in order to improve both edge detection

and the use of its edge maps in filtering application.

4.4.5 Number of iterations

For segmentation purposes, the iterative application of the edge-enhanced filter tends
to produce deep valleys and high peaks in the image histogram. Too many iterations
of the filter may oversmooth the regions, which is not desirable for filtering pur-
poses. However, for segmentation purposes, more iterations tend to produce better
segmented images because the valleys are deeper and peaks are higher in the his-
togram. Figure 4.12 show both a filtering result and the corresponding segmentation
result on CombineCOR, using the edge-enhanced segmentation method. The filter-
ing parameters are the same as those used in Figure 4.5 (b), except that the number
of iterations is 10 (as opposed to 3 iterations for Figure 4.5 (b)). The histogram

thresholding parameters are the same as was used in obtaining Figure 4.9 (b).
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(a)

(b)

Figure 4.12: More iterations: (a) Filtered image; (b) Segmented image
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Figure 4.13: Histogram of Figure 4.12 (a).

Discussion

In terms of noise smoothing measure, the MSE for Figure 4.12 (a) is 187 which is
greater than the MSE of 158 for Figure 4.5 (b). This shows that more iterations
oversmooth the image which is not desirable for noise smoothing. However. the
segmentation result shown in Figure 4.12 (b) is better than the segmentation result
on Figure 4.5 (b), as shown in Figure 4.9 (b). For example, there are fewer black dots
in Bars and Annular and the stripes in Balloon are more homogenous. The number of
regions in Figure 4.12 (b) is 12, the same as in Figure 4.9 (b). But overall. in Figure
4.12 (b), the segmented image regions are more homogenous, have fewer holes. and
with regions that are more clearly separated. These results are due to the increased
filtering which resulted in much deeper valleys and higher peaks in image histogram.
Figure 4.13 shows the histogram of Figure 4.12 (a), before Gaussian smoothing, which
may be compared with the histogram of Figure 4.8 (b).



4.4.6 Gaussian smoothing

The number of convolutions used in the Gaussian smoothing of an image histogram
has an effect on the number of regions detected. The more the histogram is smoothed.
the fewer regions will be produced. For a SAR image, it can be difficult to tell how
many regions are expected to be detected because we may not know the exact number
of classes in the image. By experiments, we found that 3 or 6 passes of the convolution
kernel may be suitable for Gaussian smoothing for the CombineCOR. because too

many i may h the hi: which leads to the loss of some

regions.

4.5 Conclusion

Overall, the test results on the synthetic image CombineCOR show that the pro-
posed edge-enhanced segmentation method performs better than Lee and Jurkevich’'s
method in both filtering and segmentation. The performance of the proposed method
depends on the edge detector, the number of iterations, Gaussian histogram smooth-
ing, etc. For filtering purposes. the ‘best’ parameter setting may be filtering window
size 11 x 11, 3 iterations, MSP-RoA window size 11 x 11, T, = 0.72. D = 1. For
segmentation purposes, all the parameters are the same except that the number of
filtering processes increases to around 10. Further research is recommended on the

improvement of edge detector, i ion of other istical filters and

with other segmentation methods.
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Chapter 5

Test results on SAR images

5.1 Introduction

The previous chapter provided test results on synthetic images together with some

of i settings for various algorithms. This chapter will

focus on the per of the d ion method, and a comparison

with Lee and Jurkevich's method when tested on real SAR images. The test images
are four-look airborne SAR images prepared by Ward [53], with the original data as
provided by the Canada Center for Remote Sensing (CCRS). Because we cannot know

the noise-free images, as required for MSE calculation, only o, and visual inspection

are used in ing noise ing and

5.2 SAR images

Two SAR images, called Fields and Industry are chosen for testing. These images

represent typical SAR images which contain large sperated regions and/or some small
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busy areas. The image Fields is a simple image which contains only a few regions such
as woods and fields. The image Industry is a more difficult image for segmentation
because it contains many classes and some image areas are very busy. Figure 3.1(a)

and (b) show the image Fields and Industry, respectively.

5.3 Results on SAR images

In this section, one set of test results on the images of Figure 5.1 will be presented.
The images resulting from the edge-enhanced segmentation method as well as from
Lee and Jurkevich’s method are compared. More detailed discussions on various

of input will be add; d in the next section.

5.3.1 Histogram

Figure 5.2 shows the histograms of Fields and Industry. These plots demonstrate that
these SAR images have unimodal histograms. due largely to the presence of speckle
noise. Thus it would be difficult to segment these image directly using histogram
thresholding.

5.3.2 Filtering results

The filtering resuits of the iterative Lee filter and edge-enhanced Lee filter are com-
pared. Tests on both images show that the edge-enhanced scheme performs better in

noise smoothing and edge preserving.



(a)

(b)

Figure 5.1: Multi-look airborne SAR image: (a) Fields; (b) Industry
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Figure 5.2: Histograms: (a) Fields; (b) Industry.
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Iterative Lee multiplicative filter

The results obtained by the i i lication of the Lee multiplicative filter to

Fields and Industry are shown in Figure 5.3. The same parameters are used in both
tests, namely window size of 11 x 11 and 10 iterations. The choice of these parameters
are based on the experiments with SAR test images. These images are not too busy,
so the window sizes from 7 X 7 to 11 x 11 should be fine. More iterations will
produce deeper valleys and higher peaks in the image histograms which is desirable

for segmentation purposes. So we choose 10 for the number of iterations.

Edg H d Loe Jiviicative fiter

The edge-enhanced Lee filter results are presented with filtering window size of 11 x
11, 10 iterations, MSP-RoA window size of 3 x 3, MSP-RoA threshold 7, = 0.5,
correlation parameter D = 1. The MSP-RoA method estimates the edge map before
each iteration. Figure 5.4 (a) and (b) and show the MSP-RoA edge map before the
first iteration and the MSP-RoA edge map before the final iteration, respectively,
when tested on Fields, while Figure 5.5 (a) and (b) show the same edge maps when
tested on Industry. Figure 5.6 (a) and (b) show the filtered results of the two tested

images, respectively.

Discussion

Figure 5.3 shows that the i ive Lee multiplicative filter hs the h

regions. For image Fields, o, is reduced from 0.278 to 0.021, while for image Industry,
it is reduced from 0.253 to 0.016. However, in the results of both test images, noise
is preserved in edge areas and some fine features are blurred.

By contrast, Figure 5.6 shows that the edge-enhanced filtered images have noise
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(b)

Figure 5.3: Iterative Lee multiplicative filtered result of (a) Fields; (b) Industry.
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(b)

Figure 5.4: MSP-RoA edge maps of Fields: (a) Before filtering; (b) Before the final
iteration of edge-enhanced Lee multiplicative filter.

7



(b)

Figure 5.5: MSP-RoA edge maps of Industry: (a) Before filtering; (b) Before the final

iteration of edge-enhanced Lee mulitiplicative filter.
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(a)

(b)

Figure 5.6: Edge-enhanced Lee filtered result of (a) Fields; (b) Industry



removed in both low and high variance regions, fine features preserved, and sharp

edges retained even after several i i This yields imp over the itera.
tive Lee filtered results shown in Figure 5.3. In the edge-enhanced Lee filtered images,
0, is reduced from 0.278 to 0.021 for Fields and from 0.253 to 0.010 for Industry,
Overall, though there is no significant difference in the reduction of o, by both
filters. Visual inspection shows that the proposed edge-enhanced Lee filter performg

better than i ive Lee filter, ially in noise

in edge areas and iy
retaining fine features.

A small window size is chosen for the MSP-RoA edge detector in the edge-
enhanced Lee filter. This is because the real SAR images have many small and narroy
regions and choosing a small window tends to preserve these regions after iterative
filtering. Although due to the speckle noise, many false edges are included in the firs
iteration, as shown in Figure 5.4 (a) and Figure 5.5 (a), the final edge maps exclyde
false edges as the speckle is removed after several iterations. The refined edge maps
shown in Figure 5.4 (b) and Figure 5.5 (b) indicate that the iterative application of
the MSP-RoA method can provide good edge estimates.

5.3.3 Histogram thresholding

The iterative lication of a speckle reducing filter will tend to produce an image
with a multimodal histogram suitable for thresholding. Figure 5.7 (a) and (b) show
the histograms of the Lee filtered results of Fields and Industry, respectively, while
Figure 5.7 (c) and (d) show the hi of the edge-enh d Lee filtered regy]ts

of these two images, respectively.
It is clear that compared with the iterative Lee filter, my proposed method pro.
duces deeper valleys and higher peaks in the histogram of the filtered images, which
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i desirable for i e

The fluctuation in the histograms of the filtered images may generate many false
peaks and valleys. In order to find the proper peaks and valleys at varying levels

of thresholding, we use a Gaussian kernel as in the previous chapter, to smooth the

histograms. Figure 5.8 (a) and (b) show the Gaussian smoothed histograms of the
Lee filtered results of Fields and Industry, respectively, while Figure 5.8 (c) and (d)

show the G i hed hi of the edge-enh d Lee filtered results of

these two images, respectively. The Gaussian kernel used to smooth the histograms of
the filtered image of Fields is one dimensional with width 3 and is convolved with the

hing are width

histogram 5 times. For Industry, the for G

3, 6 iterations.

5.3.4 Segmented images

The histogram thresholding algorithm seeks valleys in the smoothed histogram of the
iteratively filtered image; pixels whose gray levels lie between two adjacent valleys
are assigned to the same region. Figure 5.9 (a) and (b) show the segmentation results
based on the Lee filtered and the edge-enhanced Lee filtered images of Fields while
Figure 5.10 (a) and (b) show the results of Industry. There are mainly two classes in
Fields, which are shown in both Figure 5.9 (a) and (b). However, in (a), the edges
between two adjacent regions are ragged and some small regions are lost. While in
(b), almost all the regions are very clearly separated, the edges are fine and even
some small regions are not merged. This is because the Lee filter tends to preserve

noise in edges and it oversmooth the regions after several iterations. By contrast, the

edge-enh d Lee filter hs noise near edges without destroying the edges and

it does not merge two adjacent regions if there is an edge boundary between them.
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Figure 5.7: Histograms of filtered images: (a)Fields after iterative Lee filtering;
(b)Industry after iterative Lee filtering; (c) Fields after edge-enhanced Lee filtering;
(d) Industry after edge-enhanced Lee filtering.
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Figure 5.8: Gaussian smoothed histograms of filtered images: (a)Fields after Lee
filtering; (b)/ndustry after Lee filtering; (c) Fields after edge-enhanced filtering;
(d) Industry after edge-enhanced filtering.



Our testing on Industry, which contains more than three regions indicates that some
regions are lost after Lee filtering, as seen in Figure 5.10 (a). This problem is more
serious in busy areas. Whereas in Figure 5.10 (b), six regions are found and these
regions are clearly separated even in busy areas. Also, the edges are more accurate
and simple in Figure 5.10(b) than in Figure 5.10(a). Overall. the edge-enhanced

segmentation method is a better solution than Lee and Jurkevich’s method.

5.4 Overall discussion

The test results show that my proposed method performs better than Lee and Ju-
rkevich’s method in segmentation as well as in filtering. The test results show that
when using the MSP-RoA., the choice of parameters window size 3 x 3. threshold
T, =0.5. D = 1 can provide good estimates of the edge maps for the tested four-look

airborne SAR images. So. for segmentation of this kind of real SAR images. choosing

the above is suitable for edg filtering and segmentation. Also
by our experiments, the filtering window size of 11 x 11 and 10 iterations are good

Gaussian ing 5 or 6 times can provide a

choices. For hi
good thresholding result for these test images.
Because there are no noise-free images for comparison. MSE can not be used to

bi of input for

measure the filtering Various
filtering are used for testing the performances of the iterative Lee multiplicative filter
and the edge-enhanced Lee multiplicative filter as shown in Table 5.1 and Table
5.2. These are no significant differences in the measure of o, for both filters. That
means that in homogeneous regions, the noise smoothing performance are similar

for these two filters. However, visual inspection can clearly show that the proposed
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(a)

(b)

E S . . ) Based
Figure 5.9: Segmentation results of Fields: (a) Based on iterative Lee filter; (P) B2

on edge-enhanced Lee filter



(a)

(b)

Figure 5.10: Segmentation results of Industry: (a) Based on iterative Lee filter; (b)

Based on edge-enhanced Lee filter
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o, after iteration (Original: 0.278), tested on Fields

Iteration | 1 2 3 4 5 6 T 8 9 10
3x3 0.168 | 0.114 | 0.122 | 0.079 | 0.062 | 0.057 | 0.056 | 0.045 | 0.054 | 0.047
53x3 0.111 | 0.099 | 0.048 | 0.031 | 0.027 | 0.023 | 0.023 | 0.023 | 0.021 | 0.026
%7 0.110 | 0.027 | 0.024 | 0.022 | 0.025 | 0.020 | 0.021 | 0.021 | 0.025 | 0.022
9x9 0.051 | 0.026 | 0.020 | 0.021 | 0.021 | 0.023 | 0.020 | 0.023 | 0.023 | 0.023
11 x 11 |0.062 | 0.030 | 0.023 | 0.022 | 0.019 | 0.022 | 0.021 | 0.022 | 0.021 | 0.021
o, after iteration (Original: 0.253), tested on Industry
Iteration | 1 2 3 4 5 6 g7 8 9 10
3x3 0.163 | 0.144 | 0.099 | 0.071 | 0.067 | 0.063 | 0.040 | 0.052 | 0.062 | 0.038
5x3 0.131 | 0.049 | 0.064 | 0.062 | 0.054 | 0.050 | 0.046 | 0.035 | 0.017 | 0.018
TxT 0.108 | 0.071 | 0.056 | 0.051 | 0.048 | 0.044 | 0.043 | 0.013 | 0.012 | 0.021
9x9 0.132 | 0.041 | 0.018 | 0.040 | 0.021 | 0.012 | 0.024 | 0.018 | 0.020 | 0.016
11 x 11 | 0.170 | 0.019 | 0.015 | 0.012 | 0.013 | 0.012 | 0.011 [ 0.016 | 0.015 | 0.016

Table 5.1: Quantitative measures of iterative Lee multiplicative filter applied on real

SAR images

87




o, after iteration (Original: 0.278), tested on Fields
Iteration | 1 2 3 4 5 6 (£ 8 9 10
3x3 0.166 | 0.142 | 0.100 | 0.086 | 0.062 | 0.060 | 0.060 | 0.058 | 0.054 | 0.053
5x5 0.082 | 0.066 | 0.104 | 0.043 | 0.050 | 0.043 | 0.025 | 0.025 | 0.024 | 0.023
Tx7 0.074 | 0.048 | 0.043 | 0.047 | 0.037 | 0.024 | 0.023 | 0.021 | 0.023 | 0.022
9x9 0.073 | 0.033 | 0.029 | 0.028 | 0.024 | 0.022 | 0.020 | 0.028 | 0.022 | 0.022
11 x 11 | 0.067 | 0.033 | 0.027 | 0.046 | 0.021 | 0.022 | 0.022 | 0.036 | 0.021 | 0.021
0, after iteration (Original: 0.253), tested on Industry
Iteration | 1 2 3 4 5 6 7 8 9 10
3x3 0.229 | 0.100 | 0.074 | 0.101 | 0.052 | 0.047 | 0.086 | 0.054 | 0.038 | 0.037
5x5 0.202 | 0.085 | 0.045 | 0.067 | 0.045 | 0.048 | 0.054 | 0.052 | 0.051 | 0.019
Tx7 0.123 | 0.060 | 0.026 | 0.022 | 0.019 | 0.042 | 0.042 | 0.041 | 0.037 | 0.038
9x9 0.253 | 0.078 | 0.059 | 0.058 | 0.014 | 0.014 | 0.013 | 0.012 | 0.012 | 0.041
11 x 11 | 0.100 | 0.047 | 0.015 | 0.014 | 0.013 | 0.012 | 0.046 | 0.011 | 0.036 | 0.010
Table 5.2: Q ve of edge-enh d Lee multipli filter applied

on real SAR images




edge-enhanced method has better results in filtering and segmentation. especially in
smoothing noise near edges, and in keeping sharp boundaries and preserving fine

features. as shown in Figure 5.6. Figure 5.9 and Figure 5.10.
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Chapter 6
Conclusions and recommendations

In this thesis, I have discussed the problem of segmenting SAR images. The presence
of speckle noise makes the processing of this kind of image difficult. such that the
techniques originally designed for either clean images or White Gaussian noise cor-
rupted images tend to fail when applied to SAR images. Several previous techniques
were developed for segmenting SAR images. One of these is Lee and Jurkevich’s
method [31] which is quite efficient in the segmentation of SAR images. However.
there are some disadvantages in this method which have been discussed in this thesis.

Based on Lee and ich’s idea I have d the edge-enh d

method in this thesis, in order to improve the segmentation accuracy and efficiency.
This method is tested and compared with Lee and Jurkevich’s method. The test
data include synthetic images and real multi-look airborne SAR images. The test

in edge areas), in

results show a great i in noise
edge and fine feature preservation, and in segmentation accuracy (especially along
region boundaries and for small regions). This is because the proposed method uses
edge information, obtained by a ratio-based edge detector, in its filtering algorithm in
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order to increase the accuracy in the estimation of local isti Com-

pared to Lee and Jurkevich’s method. the proposed method also is an improvement

in efficiency and automation. The filtering oy is
from the image on each iteration. Similarly, in hi: ing, the hi:
valleys are ically ined by the

Further research is recommended in order to improve the performance and effi-

ciency of the edgt d ion method. At present. the threshold

T, for the MSP-RoA edge detector is user determined. If we can develop some method
to automatically estimate the value of the threshold 7. it will no doubt improve the

of the whole algorithm and make it much easier to use. For the filtering

algorithm, the iteration number is also determined by the user experimentally. and
different images may have different optimal iteration numbers. So. it is desirable to
automatically control the filtering iterations. One method that may be suitable is to
calculate the Root Mean Square (RMS) change in pixel values between iterations. If
the RMS change is less than a certain value (e.g. less than 1 percent of the RMS
change of the first iteration). the filtering stage may stop. For histogram threshold-
ing. the number of convolutions with Gaussian kernel is also user determined. A fully

is expected to develop.

More work can be done to modify other statistical speckle reducing filters such
as the Sigma filter and the Weighted filter for their implementation in the proposed
edge-enhanced filtering method. More performance measures specifically designed
for SAR filtering and ion are also desirable. Ci i of the edge-

enhanced segmentation method with other segmentation methods. such as those based
on region growing, fuzzy set or neural networks, are recommended. Finally, the edge-

h filtering and ion method d in this thesis should be tested
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in real application requiring SAR image analysis. such as sea-ice segmentation. forest

classification. crop identification, etc.
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