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Abstract 

Utilization of CO2 as a C1 feedstock for polycarbonate production has received 

considerable attention in the past decades. One of the promising methods is the catalytic 

copolymerization of CO2 and epoxides to afford polycarbonates. In this thesis, Cr(III) 

amino-bis(phenolate) complexes were synthesized and investigated as catalysts for the 

copolymerization of CO2 and cyclohexene oxide (CHO). These Cr(III) complexes were 

characterized by MALDI-TOF mass spectrometry, single crystal X-ray diffraction, 

UV-Vis spectroscopy and elemental analysis. In the presence of cocatalysts such as 

4-(dimethylamino)pyridine (DMAP), bis(triphenylphosphoranylidene) iminium chloride 

or azide (PPNCl or PPNN3), these Cr(III) complexes showed efficient activities to 

selectively produce polycarbonate from CO2 and CHO with moderate molecular weights 

and narrow dispersities. End-group analysis of the resulting polymers by MALDI-TOF 

mass spectrometry suggested both the nucleophiles from cocatalyst and the Cr(III) 

complex could initiate the reaction. However, DMAP was found to be a better initiator to 

ring-open the epoxide than the chloride from the Cr(III) complex. Monitoring the 

copolymerization reaction via in situ attenuated total reflectance infrared spectroscopy 

(ATR-IR), combined with the studies of binding of azide to Cr(III) complexes via mass 

spectrometry showed that the steric effect of the pendant donor group of 

amino-bis(phenolate) Cr(III) complex played an important role in increasing the 
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copolymerization rate. Furthermore, polycarbonate diol from CO2 and CHO was 

synthesized by a modified Cr(III) complex. The resulting polycarbonate diol was used to 

afford tri-block copolymers via its use as a macroinitiator in the subsequent 

base-catalysed ring-opening polymerization of rac-lactide. The resulting copolymers 

showed a decreased glass transition temperature and an increased decomposition 

temperature compared to the original polycarbonates. 
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Chapter 1. Introduction 

 

1.1 CO2 as a carbon feedstock 

CO2 is the most abundant renewable carbon resource and a well-known greenhouse 

gas. Since the industrial revolution, the level of CO2 in the atmosphere has significantly 

increased due to the extensive use of fossil fuels. There is an urgent need to reduce CO2 

emissions, which are associated with detrimental environmental effects such as global 

warming and ocean acidification. One efficient strategy to reduce CO2 emissions is carbon 

dioxide capture and storage (CCS).1-3 However, this technology has limitations including 

high energy requirements, high cost and uncertain permanence time of the stored CO2.
4 

Utilization of CO2 as a carbon feedstock is now receiving much attention as it is not only a 

form of CO2 storage but also provides access to high value products from an abundant, 

non-toxic, inexpensive and renewable resource.5-8  

There are only few examples of industrial applications of CO2 as a starting material 

for chemical production.5 This is because CO2 has a relatively high thermodynamic 

stability and therefore a large input of energy is required to convert CO2 into other 

chemicals. Most of the research on CO2 activation uses energy-rich substrates, thus 

providing a direct thermodynamic driving force. Impressive progress has been made on a 

range of reactions with industrial potential, such as coupling of CO2 with epoxides or 
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aziridines, formylation and methylation of amines, and reduction of CO2 in the presence of 

hydrogen.9 Currently, CO2 has been commercially converted to salicylic acid, urea, cyclic 

carbonates and used as an additive in the synthesis of methanol (Scheme 1-1).10 Although 

the amount of CO2 consumed in these processes (ca. 120 Mt) only makes up a very small 

fraction of the total CO2 generated from human activities (ca. 37 Gt), these processes 

provide more environmentally friendly routes to produce valuable chemicals otherwise 

made from reagents that may be detrimental to the environment.8  

 

 

Scheme 1-1. Utilization of CO2 as a carbon feedstock for industrial chemical production. 

 

1.2 Overview of polycarbonate 

Polycarbonates are a class of thermoplastic polymers containing carbonate groups. In 

particular, aromatic polycarbonates made from bisphenol A are the most commonly used 

and possess outstanding physical properties including lightness, strength, durability, high 

transparency, good electrical insulation and heat resistance.11 By virtue of these properties 
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they have been widely used in construction materials, data storage devices, optical media, 

office equipment, electronic components, packaging and automotive industry. 

Industrially, the conventional production of polycarbonate involves the reaction of 

bisphenol A with phosgene (Scheme 1-2, A), which generates a number of environmental 

and safety issues.12 First, phosgene is a highly toxic gas that can be used as a chemical 

weapon, thus its production and utilization have been severely controlled worldwide. 

Second, a great amount of dichloromethane (a suspected human carcinogen), typically 

more than ten times by weight of the produced polycarbonate, is used as a polymerization 

solvent. Due to the low boiling point of dichloromethane, it is very difficult to completely 

avoid the release of dichloromethane into the atmosphere. In addition, a large amount of 

waste water containing organic compounds and dichloromethane require treatment to meet 

environmentally acceptable levels before discharged. Although this conventional process 

has a lot of disadvantages, it is still used by industry to annually produce approximately 2.7 

Mt of polycarbonate globally.12  
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Scheme 1-2. Industrial routes to the synthesis of polycarbonate.12 

 

Another industrial route to polycarbonate involves the reaction of bisphenol A with 

diphenyl carbonate, avoiding the use of phosgene (Scheme 1-2, B).13 However, the 

equilibrium of this transesterification reaction favors the reactants. The phenol byproduct, 

therefore, must be efficiently removed from the produced polycarbonate to drive the 

reaction forward. To meet this requirement, high reaction temperature (to reduce the 

viscosity of the produced polycarbonate) and high vacuum are typically applied in this 

reaction, which result in a high energy consumption and more side reactions. In addition, 

the commercial diphenyl carbonate is typically produced from phenol and toxic phosgene. 

Therefore, the use of diphenyl carbonate monomer for the polycarbonate production does 

not completely solve the issue of using toxic phosgene. 

Another important consideration of traditional polycarbonate synthesis is that 



5 
 

bisphenol A is now recognized as an endocrine disruptor.14 The extensive use of bisphenol 

A based polycarbonate in food and beverage containers has raised health concerns since 

traces of bisphenol A were found to leach out of the product and into the food.15 Therefore, 

there is a great interest to develop new technologies to substitute these current industrial 

routes for polycarbonate production. 

 

1.3 Copolymerization of CO2 and epoxide 

1.3.1 Background 

Copolymerization of CO2 and epoxide to produce polycarbonate was first identified 

by Inoue over 40 years ago.16 This process not only uses CO2 as a carbon feedstock but also 

provides a potentially sustainable route to produce valuable cyclic and polycarbonates. It 

was not until 2000 that the number of publications in this research field started to increase 

significantly (Figure 1-1). A discussion of the evolution of this discovery will be given in 

the next section.  
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Figure 1-1. The number of publications concerning CO2/epoxide copolymerization per 

year from 1969 to 2016 (Note: the search was conducted by SciFinder using key words of 

CO2, epoxide and copolymerization). 

 

In general, this reaction is accompanied by the formation of cyclic carbonate 

byproduct and varying quantities of ether linkages (Scheme 1-3). Two general observations 

are also found for this catalytic reaction regardless of the catalyst.8 First, aliphatic epoxides 

more easily form cyclic carbonates than alicyclic epoxides. Second, an increase in 

temperature leads to an increase in the formation of cyclic carbonate. Among the 

investigated epoxides, propylene oxide (PO) and cyclohexene oxide (CHO) are the most 

commonly used epoxides, of which PO and CO2 provide the corresponding polycarbonate 

that has been industrially most developed; CHO, on the other hand, affords a 

polycarbonate that exhibits poor mechanical properties for current industrial needs.17 
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However, CHO exhibits low propensity to form cyclic carbonate byproduct in the 

copolymerization process making it useful for academic studies.  

 

 

Scheme 1-3. Typical copolymerization of epoxide and CO2 to produce polycarbonate (and 

ether linkages) and cyclic carbonate byproduct (PO = propylene oxide, CHO = 

cyclohexene oxide). 

 

A general catalytic cycle of CO2/epoxide copolymerization is shown in Scheme 1-4.18 

The reaction begins with a ring-opening of the metal-activated epoxide by the initiator X 

(halide) to generate an alkoxide. The metal alkoxide species subsequently undergoes CO2 

insertion to afford the metal carbonate. The resulting carbonate serves as an initiator to 

ring-open another coordinated epoxide, followed by CO2 insertion to generate carbonate 

which continues the polymerization process (Scheme 1-4, A). During this process, the 

metal bound polymer chain may backbite to afford cyclic carbonate byproduct (Scheme 

1-4, B). For some catalysts, the resulting metal alkoxide can also ring-open epoxide, 

leading to ether linkages in the copolymer backbone (Scheme 1-4, C).  
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Scheme 1-4. A general catalytic cycle for the catalytic copolymerization of CO2 and 

epoxide (P = polymer chain, X = halide). 

 

1.3.2 Early catalyst developments 

The first metal-catalyzed CO2/epoxide copolymerization reaction can be traced back 

to 1969 when Inoue and co-workers discovered the heterogeneous catalyst system 

containing a 1:1 mixture of diethyl zinc and water could catalyze PO/CO2 

copolymerization to afford poly(propylene carbonate) (PPC) with a turnover frequency 

(TOF) of 0.12 h-1.16 Subsequently, various heterogeneous catalyst systems such as 

diethylzinc/dihydric phenols19 and dialkylzinc/carboxylic acid20 were developed for this 

copolymerization process. However, these heterogeneous catalysts were generally 

plagued by low turnover frequencies, low reproducibility and broad molecular weight 
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distributions due to lack of the controlled active species.  

Inoue and co-workers reported the aluminum porphyrin complex (Figure 1-2, 1.1a) as 

the first homogeneous catalyst for the copolymerization of CO2 and epoxide.
21 In the 

presence of quaternary organic salts or triphenylphosphine in dichloromethane at ambient 

temperature and 49 bar CO2, this catalyst produced polycarbonates with a narrow 

dispersity below 1.10 and a molecular weight ranging between 3500 g mol-1 and 6200     

g mol-1. However, this reaction took over 12 days to reach completion (TOF < 1 h-1). A 

significant increase in activity of porphyrin catalysts was achieved by Holmes, who 

developed a fluorinated Cr(III) porphyrin complex (Figure 1-2, 1.1b), which was soluble in 

supercritical CO2.
22 In supercritical CO2, this catalyst combined with 

4-(dimethylamino)pyridine (DMAP) could produce polycarbonate from CO2 and CHO 

with a TOF of ca. 170 h-1. The resulting polycarbonate showed a dispersity of less than 1.4 

and high carbonate content ranging from 90 to 97%; however, it exhibited a low molecular 

weight of ca. 3000 g mol-1. 

The development of well characterized Zn-phenoxide complexes (Figure 1-2, 1.2a-e) 

was a breakthrough for the exploration of homogeneous Zn catalysts. The first zinc 

bisphenoxide catalyst (Figure 1-2, 1.2a) showed a low TOF of 2.6 h-1 for polycarbonate 

formation from CHO and CO2 at 80 ÁC and 55 bar CO2.
23 The produced polymer exhibited 

a high molecular weight of 38000 g mol-1 and a broad dispersity of 4.5. Subsequent 
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investigations of zinc bisphenoxide complexes found that their activities toward CO2/CHO 

copolymerization were affected by the steric hindrance of ortho substituents on the 

phenolate ligand. Their catalytic activities increased in the order of isopropyl (1.2b) < 

phenyl (1.2a) < t-butyl (1.2c) < methyl substituents (1.2d).24 Introducing more 

electron-withdrawing and less sterically demanding fluorine substituents in the ortho 

positions of the phenolate ring provided a dimeric zinc bisphenoxide complex (Figure 1-2. 

1.2e).25 This complex showed improved catalytic activity with a TOF of 16 h-1. However, 

these zinc-phenoxide catalysts generally produced polycarbonates exhibiting broad 

dispersities varying from 2.5 to 4.5, most likely due to catalyst aggregation phenomena. 

A breakthrough in the catalyst system design was the development of zinc ɓïdiiminate 

(BDI) complexes (Figure 1-2, 1.3a-e, 1.4a-d) by Coates and co-workers in 1998.26 These 

zinc ɓ-diiminate derivatives were observed to be more efficient for CO2/epoxide 

copolymerization compared to previously developed catalysts.27 Copolymerization of CO2 

with CHO catalyzed by 1.3a gave a high TOF of 135 h-1 even at 20 ÁC and 7 bar CO2. The 

resultant polycarbonates exhibited high molecular weight with a narrow dispersity of 1.07 

and over 95% carbonate content.26 1.3a and 1.4a showed nearly identical TOFs of 247 h-1 

and 224 h-1 at 50 ÁC and 7 bar CO2, which supported the formation of metal carbonate and 

alkoxide intermediates in CO2/epoxide copolymerization. One of the most active catalysts 

reported to date for CO2/CHO copolymerization is a zinc ɓïdiiminate complex containing 



11 
 

the electron-withdrawing cyano substituent (1.4d).28 At 50 ÁC and 7 bar CO2, 1.4c and 1.4d 

were found to exhibit extremely high activity with TOFs of 2170 and 2290 h-1, respectively. 

However, sterically unencumbered methyl substituents on the N-aryl ortho positions gave 

no copolymerization activity, which was attributed to the tightly bound dimeric state of the 

resulting complex. On the other hand, these zinc ɓ-diiminate complexes were found to be 

less active for PO and led to the formation of cyclic carbonate byproduct.29 For instance, 

the copolymerization of PO and CO2 by the unsymmetrical 1.3e produced PPC and PC 

(85:15) with a TOF of 47 h-1 at 25 ÁC and 20 bar CO2.  

 

 

Figure 1-2. Representative homogeneous catalyst systems for the copolymerization of CO2 

and epoxide. 
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1.3.3 Binary chromium salen catalyst system 

The development of a salen chromium catalyst (Figure 1-3, 1.5a) by Darensbourg and 

co-workers was a landmark for CO2/epoxide copolymerization.
30 Their work was inspired 

by Jacobsen and co-workers who found salen Cr(III) complexes (Figure 1-3, 1.5a-b) 

showed high activity towards the asymmetric ring-opening of epoxides.31 Salen ligands are 

easily synthesized by the condensation between aldehydes and amines; additionally, the 

steric and electronic properties around the metal center can be readily modified by 

introducing different substituents.32 Therefore, in the literature salen complexes are one of 

the most studied catalysts for CO2/epoxide copolymerization. Many researchers including 

Darensbourg,33-36 Lu,37-39 Coates,40,41 Nozaki,42 Rieger43,44 and others have contributed to 

the development of highly active salen metal complexes, particularly with Cr or Co. They 

found nucleophilic cocatalysts are typically required for these salen complexes to obtain 

efficient activities. The most commonly used cocatalysts including N-methylimidazole, 

4-(dimethylamino)pyridine (DMAP) and bis(triphenylphosphine)iminium chloride or 

azide (PPNCl or PPNN3) are shown in Figure 1-3.  
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Figure 1-3. Salen Cr(III) complexes and commonly used cocatalysts. 

 

Darensbourg and co-workers conducted detailed investigations into a variety of ligand 

substitutions on salen Cr(III) complexes (Figure 1-4), leading to increased catalytic activity 

for CO2/CHO copolymerization.
45,46 The steric effect on the diimine backbone was found 

to have a dramatic impact on catalyst activity, likely due to the hindered approach of the 

epoxide to the metal center. For example, when R1 and R2 were sterically bulky t-butyl 

groups, this complex (R3 = R4 = t-butyl) at 55 bar CO2 and 80 ÁC could produce 

polycarbonate with a TOF of 0.8 h-1 compared to 36 h-1 for the analogue with R1 = R2 = H.
45 

The decreased activity was believed to be caused by the bulky substituents, which sterically 

hinder the approach of the epoxide to the metal center. In addition, stronger electron 

donating substituents on the phenolate rings were found to enhance the catalytic activity. 
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For instance, in the presence of N-methylimidazole the salen Cr(III) complex with R3 = 

OMe and R4 = t-butyl was more active than the R3 = R4 = t-butyl analogue, with a TOF of 

57 h-1 and 36 h-1, respectively. Furthermore, changing the ancillary ligand (X) of the 

salenCr(III)X (R1 = R2 = H, R3 = OMe, R4 = t-butyl) from chloride to azide increased TOF 

from 36 to 47 h-1.  

 

 

Figure 1-4. General structure of salen Cr(III) catalysts used in CO2/epoxide 

copolymerization. 

 

Despite the benefits of the modifiable electronic and steric properties around the 

chromium center, the most important aspect affecting the copolymerization rate is the 

cocatalyst.36,47 A TOF of 608 h-1 for CO2/CHO copolymerization at 80 ÁC and 55 bar CO2 

can be achieved using the salenCr(III)X with R1 = R2 = H, R3 = R4 = t-butyl and X = N3 in 

combination with PPNN3.
47 The salen Cr(III) complex (Figure 1-3, 1.5b) in combination 

with PPNN3 at 80 ÁC and 35 bar CO2 further increased the catalytic activity, giving a TOF 

of 1153 h-1.48 The produced polycarbonate showed a negligible amount of ether linkages 

with a high molecular weight of 50 000 g mol-1 and a narrow dispersity of 1.13. These 
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complexes also showed activities for CO2/PO copolymerization, but various amounts of 

cyclic carbonate byproduct were produced. The most active variant towards the PO 

copolymerization contained a phenylene group on the diimine backbone (Figure 1-3, 1.6a) 

and in the presence of PPNCl at 60 ÁC and 34 bar CO2 selectively generated PPC with 93% 

copolymer selectivity and 99% carbonate linkages (TOF of 192 h-1).49 Further 

investigations of salen ligands coupled with cobalt increased both the copolymerization 

rate and selectivity for polycarbonate, particularly for CO2/PO copolymerization.
40,50  

 

1.3.4 Mechanistic studies of binary chromium salen catalyts 

Despite the intense studies of catalyst systems consisting of salen complexes and 

cocatalysts in CO2/epoxide copolymerization, the precise mechanisms are complex and not 

unequivocally defined. Initiation mechanism including bimetallic and monometallic 

pathways have been proposed, with the latter following either an intermolecular or 

intramolecular pathway (Scheme 1-5).51  
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Scheme 1-5. Initiation mechanism for the catalyst system of the planar salen based metal 

complex containing X initiator (typically chloride or azide) and added nucleophile (Nu). 

 

The Darensbourg group proposed an intramolecular (monometallic) ring-opening of 

epoxide when an ionic cocatalyst was used (Scheme 1-6).47 The ionic cocatalyst (Nu) binds 

to the chromium center, weakening the Cr-X bond and allowing the incoming epoxide to 

coordinate to the chromium center. As the epoxide coordinates, the adjacent metal ion bond 

becomes weaker while the other chromium ion bond is strengthened, which improves the 

concerted epoxide ring-opening. After the ring is opened, a dianion species is regenerated, 

weakening the chromium ion bonds again and allowing CO2 insertion to generate the active 

metal carbonate. The produced carbonate can ring-open another coordinated epoxide and 

continues the polymerization process. Formation of the active species of the six-coordinate 

anion was proposed to be fast, which rationalizes the observation that ionic cocatalyst 

systems such as these typically show no induction period. Relevant to this proposed 

mechanism, the anionic six-coordinate complexes composed of trans-salenCr(III)X2 

species (X = Cl, N3, CN) have been isolated and characterized by X-ray crystallography.52 
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However, since both initiators X and nucleophile derived from cocatalyst were observed as 

polymer end-groups by MALDI-TOF MS, it is still unclear which initiator favors epoxide 

ring-opening. Moreover, the presence of excess ionic cocatalyst was found to lead to a 

rapid displacement of growing polymer chain and resulted in increased amounts of cyclic 

carbonate forming.49 

 

 

Scheme 1-6. Monometallic intramolecular ring-opening of epoxide by salen chromium 

complex and anionic cocatalyst. 

 

The commonly used neutral cocatalyst DMAP was studied in detail for CO2/epoxide 

copolymerization by salen chromium complex in Darensbourgôs group.47 They proposed a 

catalytic cycle for activating DMAP, in which DMAP binds to the metal center of a salen 

chromium complex and interacts with CO2 to generate a carbamate zwitterion, followed by 
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a reaction with epoxide to form another zwitterion, which dissociates to regenerate the 

salen chromium complex (Scheme 1-7). The six-coordinate [salenCr(III)N3]ÅDMAP 

complex was characterized by X-ray diffraction and the carbamate zwitterion was 

identified by n(CO2) bands at 2097 and 2017 cm-1. This carbamate zwitterion is proposed 

to serve as an analogue to the anion derived from ionic cocatalyst and it was demonstrated 

that the initiation period for polycarbonate formation ended with the disappearance of 

ñfreeò DMAP IR band. 

 

 

Scheme 1-7. Catalytic cycle for the activation of DMAP. 

 

Lu and co-workers also investigated the role of DMAP in CO2/PO copolymerization 
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by salen and salan chromium complexes (Figure 1-5, 1.7c and 1.8c).53 The reaction 

mixtures examined by ESI-MS (Figure 1-6) showed a peak at m/z 181 corresponding to   

[ïOCH(CH3)CH2-DMAP + H
+], indicating that DMAP ring-opened PO. Moreover, peaks 

were observed to shift to higher molecular weight regions over time corresponding to 

addition of [PO + CO2] units to [ïOCH(CH3)CH2-DMAP + H
+] (Figure 1-6), providing 

evidence that the formation of a carbamate zwitterion is not required for initiation.  

 

 

Figure 1-5. Structures of salen and salan chromium complexes used in Luôs ESI-MS 

study.53 
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Figure 1-6. ESI mass spectra of the reaction mixtures resulting from the catalyst system 

1.7c/DMAP (1:1, molar ratio) during CO2/PO copolymerization at 25 ÁC and 6 bar CO2 

pressure. Time: (A) 2 h, (B) 4 h, (C) 6 h, (D) 8 h. Reprinted with permission from Rao, 

D.-Y.; Li, B.; Zhang, R.; Wang, H.; Lu, X.-B. Inorg. Chem. 2009, 48, 2830. Copyright 

(2009) American Chemical Society. 

 

Lu and co-workers also observed the salanCr(III)X complexes, containing two sp3 

hybridized amino donors (Figure 1-5, 1.8a-d), combined with DMAP showed no or short 

(ca. 10 min) induction periods and significantly higher copolymerization rates than the 

salen counterparts (Figure 1-5, 1.7a-d). Additionally, salenCr(III)X complexes also 

showed a long induction period up to 2 h. They proposed that salenCr(III)X complexes in 
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the presence of DMAP predominantly produce bis-DMAP adduct.53 The bis-DMAP adduct 

does not easily dissociate one DMAP to generate the true active species, the mono-DMAP 

adduct, which leads to the observed long induction period (Scheme 1-8). This proposal was 

supported by the investigation of binding of DMAP to salenCr(III)X and salanCr(III)X 

complexes by ESI-MS, where [salenCr(III)(DMAP)2]
+ was predominantly observed upon 

combination of salenCr(III)X complexes with DMAP.53 On the other hand, salanCr(III)X 

complexes predominantly showed [salanCr(III)(DMAP)]+ cations even in the presence of 

10 equivalents of DMAP. This suggests that quite subtle changes in the salen vs. salan 

ligand structure can lead to different reactivities in these reactions. However, whether the 

major initiator is DMAP or the axial anion (X) is still debatable.  

 

 

Scheme 1-8. Proposed mechanism of initiation with salenCr(III)X and DMAP (X = Cl or 

NO3) 

 

Relevant to Luôs proposal where formation of a bis-DMAP adduct is detrimental to the 
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copolymerization rate, Rieger and co-workers found that in the presence of two equivalents 

of DMAP the salen chromium complex (Figure 1-3, 1.6a) showed no PPC formation from 

CO2 and PO, but produced cyclic carbonate with a TOF of 602 h-1.44 However, 0.5 

equivalents of DMAP gave a TOF of 154 h-1 for PPC formation versus cyclic carbonate 

formation with a TOF of 34 h-1. They proposed DMAP can compete with the growing 

polymer chain on the chromium center to form a bis-DMAP adduct and the dissociated 

polymer chain then readily forms cyclic carbonate through backbiting.  

For the chain propagation process, a generally agreed mechanism involves the 

nucleophilic attack of the carbonate ion on the metal-activated epoxide to generate an 

alkoxide ion, followed by CO2 insertion to produce the active carbonate anion again. 

However, whether the carbonate ion ring-opening of the activated epoxide always follows 

a monometallic or bimetallic pathway with a specific catalyst is still not known. The 

Darensbourg group conducted detailed kinetic studies on CO2/epoxide copolymerization 

by salen chromium complexes in the presence of amine or phosphine cocatalysts and 

concluded a bimetallic initiation pathway was occurring followed by monometallic 

propagation for this system.30,35,49,54 On the other hand, DFT studies on salen complexes 

(containing Cr, Al, Ti, Fe or Al) and cocatalysts by Rieger support a bimetallic propagation 

process in which a metal-bound carbonate nucleophile attacks a second metal-bound 

epoxide.55 Recent kinetic studies on salenCo(III)Cl/PPNCl and salenCo(III)X/Bu4NX (X = 
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2, 4-dinitrophenoxide) catalyst systems showed the reaction order dependence on catalyst 

concentration is 1.57 and 1.61, respectively.42,56 These fractional orders indicate the 

carbonate chain growth pathway involves two metal complexes working cooperatively. 

Coates and co-workers have proposed that the highly active zinc ɓ-diiminate complexes 

that catalyze CO2/CHO copolymerization follow a bimetallic pathway in which the 

growing polymer chain on one zinc center ring-opens the epoxide coordinated to a second 

zinc center (i.e. the other half of the dimeric complex) (Scheme 1-9).57 Within the Kozak 

group, it was recently discovered that a single component catalyst, where DMAP is 

coordinated to the amino-bis(phenolate) Cr(III) chloride complex to provide a stable 

octahedral Cr(III) complex, did not appear to follow this same sort of bimetallic 

mechanism.58 The kinetic studies on this single component catalyst support a first-order 

dependence of the polymerization rate on the catalyst concentration,59 hence the need for 

further mechanistic studies as described in part of this thesis. 

 

 

Scheme 1-9. Proposed bimetallic pathway followed by zinc ɓ-diiminate complex (P = 

polymer). 
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1.3.5 Recent catalyst developments 

Recent improvements in catalyst design for CO2/epoxide copolymerizations are the 

development of bifunctional and bimetallic catalysts. In the bifunctional catalysts, the 

cocatalyst is incorporated into the ligand, thus removing the need for an external cocatalyst. 

Nozaki and co-workers first reported a bifunctional Co(III) salen complex containing 

piperidinyl arms in the 3-position of the phenyl rings (Figure 1-7, 1.9).60 This new catalyst 

system showed 90% selectivity towards polycarbonate production using CO2 and PO at 

60 ÁC and 14 bar CO2, whereas this reaction condition typically provides only cyclic 

propylene carbonate using traditional binary catalyst systems. The high selectivity of 

polymer formation at high temperature was attributed to a proton shuffling between the 

amine and free polymer chain, preventing the dissociated polymer chain from backbiting to 

form cyclic carbonate. Lee and co-workers subsequently reported various Co(III) 

bifunctional salen catalysts where the quaternary ammonium cations in the phenyl rings are 

balanced by cocatalytic anions (Figure 1-7, 1.10).61,62 An important feature of this type of 

bifunctional catalyst is that the dissociated chain-growing carbonate unit can always 

remain close to the metal center by the electrostatic attraction of quaternary ammonium 

cations, which allows for a very low catalyst loading and reduces backbiting at high 

reaction temperatures. As a result, this new generation of Co(III) salen complexes showed 

one of the highest activities for PO/CO2 copolymerization reported to date, with a TOF of 
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26000 h-1 at 80 ÁC and 20 bar CO2.
62 Similarly, Lu and co-workers also developed the 

asymmetric Co(III) bifunctional salen catalyst (Figure 1-7, 1.11), which showed a high 

TOF of 6105 h-1 and > 99% selectivity for polycarbonate formation from CO2 and CHO 

even at a high temperatures up to 120 ÁC. Notably, under even 1 bar CO2 and ambient 

temperature, this Co(III) bifunctional catalyst 1.11 still showed excellent activity (TOF = 

68 h-1) and selectivity (> 99%) for polymer formation.63 

 

 

Figure 1-7. The structures of salen-based bifunctional catalysts. 

 

The development of various bimetallic catalysts was inspired by the proposed 
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bimetallic pathway seen for Coatesô zinc ɓïdiiminate complexes.57 For example, Nozaki 

and co-workers investigated Co(III) salen complexes with two salen ligands linked by the 

various numbers of methylene units (Figure 1-8, 1.12).64 These bimetallic complexes (in 

the absence of cocatalyst) showed 2 to 9 fold higher activities than the monometallic 

counterparts. The four-methylene linker variant showed the highest activity for CO2/PO 

copolymerization with a TOF of 180 h-1 at ambient temperature and 53 bar CO2. Notably, 

this bimetallic catalyst maintained high activity even at very low catalyst loading (0.01%). 

This tendency is contrary to the monometallic counterpart that showed significantly 

reduced activity, which suggested a bimetallic mechanism in the copolymerization process. 

Rieger and co-workers also reported Cr(III) salen complexes with two salen ligands linked 

together (Figure 1-8, 1.13).65 These corresponding complexes also showed improved 

activity over the monometallic counterparts and maintained high activity under dilute 

conditions. In 2009, Williams and co-workers reported a novel di-Zn(II) acetate complex 

containing a macrocyclic ancillary ligand (Figure 1-8, 1.14), which showed excellent 

activity for CO2/CHO copolymerization at one atmosphere of CO2.
66 Based on this novel 

ligand system, di-Co(III)67, di-Mg(II)68 and di-Fe(III)69 catalysts were developed in the 

Williamsô group and all showed remarkable activities for CO2/CHO copolymerization. 

Kinetic studies on the di-Zn(II) acetate complex (Figure 1-8, 1.14) showed a first-order 

dependence on catalyst concentration, which supported the proposed bimetallic 
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mechanism, and a zero-order dependence on the CO2 pressure, which indicated that the 

ring-opening of epoxide was the rate determining step.70 

 

 

Figure 1-8. Structures of bimetallic catalysts. 

 

In the 2010s, researchers began to explore amino-phenolate ligands as scaffolds for 

preparing catalysts for these reactions. It is worth noting that in 2011 Nozaki and 

co-workers also introduced tetravalent metal complexes comprised of a trianionic ligand 

and an ancillary chloride ligand (Figure 1-9, 1.15), which exhibit a similar structure to 

metal salen complexes.71 These new tetravalent metal complexes showed lower catalytic 

activities for CO2/epoxide copolymerization compared to the previously reported 

metal-salen catalysts. However, these tetravalent metal complexes introduce less toxic 
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metals such as titanium and germanium, thus providing attractive alternatives to these 

most active metal-salen catalysts containing cobalt or chromium. Recently, the Kozak 

group developed amino-bis(phenolate) Cr(III) chloride complexes (Figure 1-9, 1.16, 1.17), 

which exhibit different electronic and geometric properties compared to the Cr(III) salen 

complexes.58,72 Specifically, the amino-bis(phenolate) ligands have stronger electron 

donating abilities and the potential vacant site is cis to the ancillary ligand while planar 

salen complexes show a trans oriented potential vacant site. Moreover, amino-bis(phenol) 

ligands are readily synthesized and their electronic and steric properties around the metal 

center can also be readily modified by changing the substituents on the phenol rings and the 

pendant donor group.73 Therefore, amino-bis(phenolate) Cr(III) chloride complexes 

provide a new avenue for developing active catalysts. 

 

 

Figure 1-9. Recent catalysts reported for CO2/epoxide copolymerization. 
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1.4 Strategies of modifying properties of CO2-based polycarbonate 

1.4.1 Motivation 

Excellent progress in CO2/epoxide copolymerization reactions has been achieved in 

terms of selectivity for polycarbonate products (in the case of CHO), molecular weight 

control, suppression of ether linkages, and mild reaction conditions. Industrial application 

of this method is limited to PO and ethylene oxide to produce poly(propylenecarbonate) 

(PPC) and poly(ethylene carbonate) (PEC), respectively, because of their superior 

polymer properties compared with PCHC.74 The low glass transition temperatures of PPC 

and PEC, typically less than 35 ÁC, limit their utilization as commercial thermoplastics. 

Although PCHC shows a high glass transition temperature, its tensile properties are 

inferior to bisphenol A-based polycarbonate. Further advances in the thermo-mechanical 

properties of these CO2-based polymers are required. This can potentially be achieved by 

controlling the regio- and stereochemistry of the resulting polymer, using new epoxides or 

introducing another monomer into the CO2-based copolymer. 

 

1.4.2 Synthesis of regio- and stereoregular polycarbonate 

Preparation of regio- and stereoregular copolymers is desirable as regio- and 

stereoregularity can increase crystallinity, thus having the potential to affect copolymer 

properties. Specifically, PO can be copolymerized with CO2 to provide different 
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regiochemical outcomes, including head to tail, head to head and tail to tail. The resulting 

copolymer can also be isotactic, syndiotactic or atactic (Figure 1-10). Significant effort has 

been made to prepare high regio- and stereoregular copolymers.75-77 Coates and co-workers 

first used chiral salen-based Co(III) complex (Figure 1-11, 1.18a) for CO2/PO 

copolymerization, affording PPC with 80% head to tail linkages with a TOF of 71 h-1 at 55 

bar CO2 and 25 ÁC.41 Moreover, the use of (S)-PO led to an isotactic polycarbonate with a 

head to tail content of 93%. Subsequently, Lu and co-workers found that in the presence of 

quaternary ammonium salts (e.g. nBu4NCl) the chiral Co(III) salen complexes (Figure 1-11, 

1.18a-c) showed more efficient activity for regioselective polymer formation, affording 

PPC with head-to-tail content of >95% at 2 bar CO2 and 25 ÁC.78 However, the physical 

properties of these PPCs with high regioselectivities are not reported. Recently, Lu and 

co-workers reported synthesis of highly isotactic PCHC from meso-CHO and CO2 using 

(S,S)-salenCo(III) complex (Figure 1-11, 1.19) with PPNCl as a cocatalyst.79 The presence 

of (S)-2-methyltetrahydrofuran further increased the enantioselectivity of the resultant 

PCHC up to 98:2 (RR:SS). It is worth noting that the previously reported 

non-enantioselective PCHC typically are amorphous and the reported decomposition 

temperatures of PCHC are between 253 ÁC and 275 ÁC. This new PCHC (RR:SS = 98:2) 

was found to possess a melting point of 216 ÁC and a high decomposition temperature of 

310 ÁC. 
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Figure 1-10. Regio- and stereochemical forms of PPC. 

 

 

Figure 1-11. Chiral Co(III) salen complexes. 

 

1.4.3 Copolymerization of CO2 with new epoxides 

Copolymerization of CO2 with other epoxides is another method to change the 

copolymer thermomechanical properties, especially epoxides with groups that allow for 

further functionalization. Some of representative epoxides, which have been tested for 

copolymerization with CO2 are shown in Figure 1-12. The general limitation of using other 

epoxides compared to the most commonly used CHO and PO is the lack of high catalytic 

activity for selective polycarbonate formation.80-85 For example, styrene oxide (Figure 1-12, 
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1.20) has an electron-withdrawing group and copolymerization with CO2 typically 

generates cyclic carbonate.85 Recently, Lu and Darensbourg reported the cobalt salen 

complex (Figure 1-11, 1.18b) in the presence of PPNX (X = 2,4-dinitrophenoxide) could 

copolymerize CO2 with styrene oxide, selectively affording polycarbonate with a TOF of 

75 h-1 at 20 bar CO2 and ambient temperature. The resulting polycarbonate exhibited 

excellent thermal stability with a relatively high glass transition temperature of 80 ÁC. 

Limonene oxide (Figure 1-12, 1.21), an attractive epoxide for copolymerization due to its 

bio-renewability, was copolymerized with CO2 using zinc ɓ-diiminate catalysts by Coates 

and co-workers.86 By optimizing the reaction conditions and electron density around the 

metal center, a maximum TOF of 37 h-1 for polycarbonate formation was achieved and the 

resulting polycarbonate exhibited a high glass transition temperature of 111 ÁC.  

 

 

Figure 1-12. Representative other epoxides used for CO2/epoxide copolymerization. 
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1.4.4 Terpolymerization and block copolymerization    

Incorporation of another monomer into the copolymerization of CO2 and epoxide is an 

important way to generate more diverse CO2-based polymers, thus potentially improving 

their material performances. The binary catalyst system of cobalt salen complex (Figure 

1-11, 1.18c) and PPNCl has shown efficient activity (TOF = 129 h-1) for the 

terpolymerization of CO2 with equimolar quantities of CHO and PO at ambient 

temperature and 15 bar CO2.
87 The resulting terpolymer exhibited a molecular weight of 

24400 g mol-1 with a narrow dispersity of 1.24 and more than 99% carbonate linkages. The 

Lu group proposed that an alternating nature of the two different carbonate units 

predominantly exists in the resulting terpolymer backbone (Scheme 1-10), which was 

supported by the observation of a single glass transition temperature of 69 ÁC and one 

thermolysis peak. In addition, the glass transition temperature of the resulting terpolymer 

could be readily adjusted between 50 and 100 ÁC by controlling the CHO/PO ratios. 

Subsequently, Lu and co-workers showed that the bifunctional cobalt salen complex 

(Figure 1-7, 1.11) was a highly efficient catalyst for the terpolymerization of CO2, CHO 

and PO and selectively afforded terpolymer with a TOF up to 3590 h-1 at 90 ÁC and 25 bar 

CO2.
63 Furthermore, direct terpolymerizations of CO2, CHO and a third monomer other 

than epoxide, such as cyclic acid anhydrides, has generated controlled 

polyester-b-polycarbonate polymers.88-90 This process is successful as the cyclic anhydride 
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monomer copolymerizes with CHO at a much faster rate than CHO does with CO2. On the 

other hand, direct terpolymerization of CO2, epoxide and other monomers such as 

lactone,91 lactide92 and maleic anhydride93 by various metal catalysts afforded polymers 

with random structures due to the difference in reactivity of the epoxide and the monomer. 

 

 

Scheme 1-10. Alternating structure of the PO/CHO/CO2 terpolymer. 

 

Compared to direct terpolymerization, a better way of introducing another monomer 

into CO2-based polymer is the use of polycarbonate diol, which can act as a macroinitiator 

for the ring-opening polymerization of a third monomer such as lactide to afford block 

polymers.74,94,95 A further application of polycarbonate diols is in the production of 

polyurethane foams.96 Industrially, Bayer MaterialScience has developed polyurethanes 

that utilize polycarbonate polyols from PO and CO2.
97 Therefore, developing catalysts that 

permit the controlled and selective formation of polycarbonate diol from CO2 and epoxide 

is attractive. Williams and co-workers showed that the di-zinc catalyst bearing 

trifluoroacetate ancillary ligand (Figure 1-13, 1.27a) could catalyze CO2/CHO 

copolymerization under one atmosphere CO2 pressure and 80 ÁC to selectively afford 
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polycarbonate diol exhibiting a molecular weight of 9200 g mol-1 and dispersity of 1.38 

(TOF = 20 h-1).94 The polycarbonate diol formation was attributed to the hydrolysis of the 

initiating trifluoroacetate group by trace water during the copolymerization process or 

upon work-up. Subsequently, Williams and co-workers demonstrated the use of the 

di-magnesium bis(trifluoroacetate) catalyst (Figure 1-13, 1.27b) with water as a chain 

transfer reagent, which could efficiently produce polycarbonate diol from CO2 and CHO.
68 

Most recently, they reported that these di-Zn(II) and di-Mg(II) catalysts (Figure 1-13, 

1.27a-c), especially 1.27c, are highly tolerant to water and can produce PCHC diols with 

different molecular weights in the range of 600 to 9000 g mol-1 and narrow disperities (less 

than 1.10) by adding various amounts of water.98 Similarly, Darensbourg and co-workers 

demonstrated that the use of the binary chromium salen system bearing a trifluoroacetate 

ligand (Figure 1-13, 1.28) and PPNX (X = trifluoroacetate) cocatalyst, which 

copolymerized CO2 and PO in the presence of various amounts of water to selectively 

afford PPC diols with different molecular weights.74 These PPC diols were subsequently 

used for the ring-opening polymerization of lactide in the presence of 

1,8-diazabicyclo(5.4.0)undec-7-ene (DBU), an organic base, to yield tri-block copolymers. 
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Figure 1-13. Catalysts used for the synthesis of polycarbonate diols. 

 

More recently, Darensbourg and co-workers investigated the role of water in the 

copolymerization of CO2 and epoxide by the salenCo(III) trifluoroacetate/PPNX (X = 

trifluoroacetate) binary system using IR and NMR spectroscopies.99 They proposed that 

water is not the true chain-transfer reagent, but instead that it reacts initially with the 

epoxide to produce the corresponding diol that serves as the chain-transfer reagent. 

 

1.5 Objectives  

Previous research in the Kozak group developed Cr(III) amino-bis(phenolate) 

complexes which showed promising activities for CO2/epoxide copolymerization in the 

presence of cocatalysts. The goal of this thesis was to synthesize new Cr(III) 

amino-bis(phenolate) complexes that can serve as catalysts for CO2/CHO 

copolymerization. The interaction of the metal complex and cocatalyst was investigated 
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to elucidate the mechanism of the catalytic reaction. Another research goal was to modify 

the thermodynamic properties (i.e. decomposition and glass transition temperatures) of 

polycarbonate obtained from CO2 and CHO through end-group functionalization and the 

incorporation of polylactide. These objectives resulted in the following discoveries: (1) a 

new Cr(III) amino-bis(phenolate) complex was synthesized and characterized, and which 

showed excellent catalytic activity and selectivity for CO2/CHO copolymerization; (2) a 

mechanism was proposed for CO2/CHO copolymerization catalyzed by this Cr(III) 

amino-bis(phenolate) and related complexes with DMAP, PPNCl or PPNN3; (3) key 

factors for the design of highly active Cr(III) amino-bis(phenolate) catalysts were 

discovered; and (4) lactide ring-opening polymerization by PCHC polyol as a 

macroinitiator was performed, resulting in a tri-block copolymer, whose physical 

properties were characterized. As expected, the new copolymer possessed significantly 

different thermodynamic properties to the polycarbonate itself. 

In Chapter 2, the kinetic studies of copolymerization of CHO and CO2 by a new 

Cr(III) amino-bis(phenolate) complex were performed. In the presence of DMAP, PPNCl 

or PPNN3, this new catalyst showed higher catalytic activities than the previously 

reported Cr(III) amino-bis(phenolate) complexes. In order to understand the mechanism 

of CO2/epoxide copolymerization by this binary catalyst system, the study of the reaction 

of Cr(III) amino-bis(phenolate) complexes with cocatalyst was performed by 
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spectrophotometric titrations in Chapter 3. The equilibrium constants obtained explained 

why some catalyst derivatives were much more active than others in that strong 

metal-cocatalyst binding, as expected, hindered copolymerization. Chapter 4 presented 

mass spectrometric studies of PPNN3 binding with Cr(III) amino-bis(phenolate) 

complexes and provided further mechanistic understanding. In Chapter 5, the synthesis of 

a new Cr(III) complex and cocatalyst were attempted in an effort to produce well-defined 

polycarbobate diols without relying on a hydrolysable site on the polymer. The resulting 

polycarbonate diol was used as a macroinitiator to ring-open rac-lactide to produce 

tri-block copolymer. Lastly, Chapter 6 included additional experiments of synthesizing 

derivatives of Cr(III) amino-bis(phenolate) complex to explore more active Cr(III) 

complexes. Some suggestions for future work and overall conclusions of this thesis were 

presented in Chapter 7. 
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