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Abstract

The treatments versus a control problem occurs in many scienti

fields. with a
major portion in medical research. Its primary goal is to determine if the response

to one or more treatments differ from the response to a control or existing standard

and if so. further to identify which treatments are better than the control. In many
experiments, one often has a prior knowledge that the treatments are at least as
effective as the control. It is well known that utilization of ordering information

increases the efficiency of statistical inference procedures. The aim of this thesis is

to develop some new statistical inference procedures for the problem by utilizing the
prior information.

In particular, simultaneous confidence lower bounds for the differences between
treatment means and the control mean are considered. Efficient computation algo-
rithms are proposed to obtain the optimal lower bounds between the best treatment
mean and the control mean. Multiple contrast tests which take account of the prior
knowledge play an important role in this thesis.

Power studies via simulation compare the new proposed procedures with Dun-
nett's procedure and the likelihood ratio test. The new proposed procedures are

also illustrated by some real data sets.
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Chapter 1

Introduction

The problem of comparing several treatment populations with a control population

oceurs frequently in medical trials and other experiments. For

xample. in compar-

ative clinical trials, different therapies are often compared with a standard theray

or placebo to determine which therapy increases the survival time of patients with
a certain disease. One of the main pharmaceutical activities is the search for new
drugs that are more effective (“better”) than a standard drug or placebo: in this
case treatments can be different dose levels of a new drug and the control can be a
standard drug or placebo.

Traditionally, a common tool in analyzing data from these studies is a test of
homogeneity of the treatment means and the control mean as in the Analysis of
Variance. However, such homogeneity tests (whether or not they yield statistically
significant results) usually do not supply the type of conclusion that the experi-
menter truly desires. Furthermore. should a significant result be obtained . the
experimenter’s problems have only just begun since the experimenter is seldom sat-
isfied with terminating the analysis at this point: in particular, he or she may want to

determine which treatment is better than the control or to see which treatment can



be considered best in some well-defined sense of the term best. Moreover. there may

be a question as to whether testing a null hypothesis of homogeneity and estimating

a are formul.

ions of the problem. In many medical trials,
the most important problem is to correctly identify the best treatment or treat-
ments. Hence, a formulation such as a simultancous statistical inference problem or
ranking and selection problem ought to be more realistic in these cases. Formulating
the statistical problem in terms of selection or multiple comparison would scem to
be particularly pertinent if the choice of a therapy for a group of patients is to be
made on the basis of the trial results or if the treatments to be studied in a later
wrial depend upon which treatment turns out to be superior to the others in the
initial trial. In this thesis. we will explore some new methods in simultaneous sta-

tistical inference based on univariate response under the assumptions of normality

and b variances s versus a control” problems. [f

the variance s one may use ric

methods as in the paper of Chakraborti and Desu (1991) which includes methods
to handle censored data.

The field of multiple comparisons which forms a part of a broade: subject of
simultaneous statistical inference has progressed tremendously in the last 40 vears.
A large number of theoretical developments have taken place including different

approaches to error rate control, step-wise testing d modified i

procedures, resampling methods and so on. The research is motivated by problems
in many fields such as medicine, education, quality control. biology. genetics. and
the physical sciences. A number of statistical procedures have heen proposed to

test whether any of & treatments are different from a control and most of them



are multiple comparisons procedures. Dunnett’s procedure (1953) is surely the best

known and most widely used. Many generalizations of Dunnett’s procedure have
been made. For instance, in various medical and industrial fields. it is of interest
to compare A, test treament groups and A control groups to determine which

treament is better than which control. Shaffer (1977) generalized Dunnett’s method

to allow for more than cne control and presented two-sided 100(1 —a)% simultaneous
confiduece intervals to compare K, to K controls. Hoover (1991) computed Shaffer’s

(1977) two-sided critical values for K. = 2 with equal sample size. He also developed

sided i for ing the means of A, treatments to AL controls

and computed the corresponding critical values for A\ = 2 with equal sample si:

Solorzano and Spurrier (1999) developed simultaneous one-sided idnece intervals

comparing K, treatments and A controls for unequal sample size:

Cheung and

Holland (1991, 1992) extended Dunnett’s procedure (1953) to the case of more
than one group of treatments. each group containing several treatments compared
with a specified treatment. with the error rate covering all groups and treatment
comparisons simultaneously. Using the closure method of Marcus. Peritz and Gabriel
(1976). Dunnett’s method (1955) has been developed into a step-down and a step-up
procedure in Dunnett and Tamhane (1992) and Liu (1997a). Giani and StraBburger
(2000) proposed multiple comparison procedures to discriminate good. equivalent
and bad treatments with respect to the control. Procedures of testing simultaneously

for superiority and equivall of a new t with & > 1 standard

treatments in a clinical trial have been recently developed by Dunnett and Tamhane

(1997) and Kwong (2001).

A multiple comparison procedure makes one or more assertions. Any incorrect



assertion given by the multiple comparison procedure may lead to an incorrect de-
cision. Various criteria exist by which one can assess the performance of a multiple
comparisons procedure. One can consult Hochberg and Tamhane (1987). In this
thesis. error rate of a multiple comparison procedure is defined to be the supremum

of the probability of making at least one incorrect assertion. i.c..
error rate = sup P, {at least one incorrect assertion}.
"

Hochberg and Tamhane (1987) calls it strong familywise error rate (FWE).

There are several books on statistical simultancous inference available. The book
by Miller (1981) is highly accessible but does not cover recent developments. The
book by Hochberg and Tamhane (1987) is an excellent resource for research statis-
ticians but seems formidable for typical practitioners. The book by Westfall and
Young (1993) capably shows how modern computers enable one to adjust the p-
values of tests of hypotheses for multiplicity: however. it is often desirable to go
beyond stating p-values and infer the direction and the magnitude of the differences
among the treatments being compared. The latest book by Hsu (1996) empha-
sizes proper application of the latest methods for confident directions inference and
confidence interval inference empowered by modern computers.

Multiple comparisons procedure has its roots in ranking and selection. but the
aim of ranking and selection is different from that of simultaneous confidence in-
tervals. It is well-known that there are two principal formulations developed in the
statistical literature regarding ranking and selection. One approach, the indifference
zone selection, was suggested by Bechhofer (1954). The second approach, subset se-

lection, has been presented by Gupta and Sobel (1958) and Gupta (1965). The



o

indifference zone approach las as its goal to select or indicate the best rreatment
without a control. The probability of selecting the best treatment is at least P*
whenever the best treatment is at least 4 (> 0) away from the second best treat-

ment. This minimal probability P* can only be

1 if the common sample
size n is large enough. So the indifference zone approach is useful at the experimen-
tal design stage in order to determine this common sample size n. When there is a

control, Dunnett (1984) proposed the cor ling indi zone it

to
select the best treatment which is at the same time better than the control. The
subset selection has as its goal to select a non-emipty subset. as small as possible.
from the & treatments without a control in order to include the best treatment or the
treatments which are bettter than the control. with a certain confidence. The size of
the subset is random. The confidence requirement has to be met for all parameter
configurations. For book-length discussions on ranking and selection. see Gibbons.
Olkin and Sobel (1977) and Bechhofer. Santner and Goldsman (1995).

Frequently there is a prior knowledge that the treatments are at least as effective
as the control. This type of prior knowledge may come from past experiences or
it may arise in medical experiments where. for example. a higher dose level of a
drug has a larger effect on patients: some treatments are known to have survival
times at least as long as that of the control. The prior knowledge can be expressed

as po < pii =

vk, where o denotes the mean value from the control and
; denotes the mean value from treatment i (i = L,---, k). This type of inequality
constraints is typically called simple tree order in order restriction inference.

Statistical inference under order ictions is an i field in statistic:

Many types of problems are concerned with identifying meaningful structure in real



world situations. Structure characterized by order restrictions arises in numerous
settings and has many useful applications. For example. the failure rate of a com-
ponent may increase as it ages: survival times for treatments are longer than that of
a control (see Singh and Wright (1998)): treatment responses may be stochastically
dominated by a control: or treatments present simple tree uniform stochastic or-
dering (see Park (1992)). The books of Barlow. Bartholomew, Bremmner and Brunk
(1972), and Robertson, Wright and D;

stra (1988) are two classical monographs on
this field and contain many important problems. )

Ctilizing ordering information increases the efficiency of statistical inference pro-
cedures. The one-tailed. two-sample t-test provides a familiar example in which the
procedure which utilizes the prior knowledge dominates procedures which ignore
this knowledge. It is well known that the isotonic regression reduces total square
error and maximum absolute error. Lee (1981) poineered the problem of pointwise
mean square error for the normal means with a simple order. He showed that in
this case mean square error is reduced for every individual mean by using order
restricted MLE’s. Lee (1988) also observed that these pointwise properties do not
hold, in general, for partial order restrictions such as simple tree ordering. Why
should mean square error be reduced by the isotonic regression at each point for a
simple order and not for the simple tree partial order? The possible explanation is
that the number of lower sets is linear in the number of populations for the sim-
ple order. while for the simple tree partial order it is exponential in the number of
populations.

The test of homogeneity against the simple tree order has been well developed.

The classical likelihood ratio tests §* or E? for testing the homogeneity of partially



ordered means from several normal populations. first propused by Bartholomew
(1959, 1961). is known to possess generally superior operating characteristics to
those of its competitors. sce Robertson. Wright and Dykstra (1988). However. diffi-

culties in ing the restricted il likelil i s and determining

the null distributions of the test statistics make LRTs difficult to implement in many

instances, particularly when the sample sizes are unequal. Recently. Miwa. Hayter

and Liu (2000) developed some to erically compute the level proba-

bilities for the simple order. Therefore. it is of iderable interest to ximate

the null distributions of {* or £*. For example. Wright and Tran (1985) discussed
that the equal-weights distributions of these test statistics provide reasonable ap-
proximations for the case of unequal sample sizes if the sample sizes are not too
different for the simple tree ordering. The amount of variation in the null §* and £*
distributions, as functions of the weight vector. can be determined by obtaining the
sharp upper and lower bounds for the appropriate tail probabilities in terms of the

partial order under i ion such as idered in Lee. Robertson and Wright

(1993). The complexity of the null {* and E? distributions also motivates one to
seek other test procedures. A variety of other procedures have been proposed. most
of which are based on one or more contrasts among the sample means. These include
the multiple contrast tests of Mukerjee. Robertson, and \Wright (1987) and ad hoc
tests proposed by Williams (1971. 1972). Conaway, Pillers, Robertson. and Sconing
(1991) used a circular cone to approximate the LRT and they developed a test which
has the advantages of being easier to compute and can be used with unequal sample
sizes. Tang and Lin (1997) used an orthant to approximate Sp;. McDermott (1999)

proposed a class of tests based on an improved orthant approximation which can be



viewed as generalizations of the multiple contrast tests of Mukerjee. Roberrson. and

Wright (1987).

As far as making inference is concerned. a incerval provides

a visual perspective unmatched by a point estimate or a test statistic. Dunnett’s
procedure (1933) probably is the first one for simultaneous confidence intervals for
simple tree restriction, but he did not realize this. Bohrer (1967) showed how the
usual simultancous two-sided Scheffé bounds on all linear functions of certain pa-
rameters can be sharpened if attention is restricted to only linear combinations of

normal means whose coefficients are known to be nonnegative. Bohrer and Francis

(1972) further developed simultaneous one-sided ! bounds in this restricted

setting. Marcus and Peritz (1976) also devels ia hodology for obtaining si-

multaneous confidence intervals for linear combinations of normal means with cer-
tain restrictions on the coefficients. They obtained the Bohrer-Francis confidence
intervals as a special case of this procedure. Marcus (1978) developed a set of si-
multaneous confidence bounds (SCB) for simple order and simple tree order in the
case of known variance. Korn (1982) studied confidence bands for monotone dose-
response curves without a control. With the assumption that the response means

are monotone nondecreasing g, < < ... £ px. the 100(1 — a)% simuitaneous

confidence intervals for p;(i = 1.2..... k) were given as follows

max{¥i = me, S/ Vit < p < min{¥] + me S/}

where my, is the upper a point of the studentized maximum modulus distribution
with parameters k and v (see Miller (1981)). Under the same assumption as in

Korn (1982), Schoenfeld (1986) sought confidence intervals for each individual



and also simultaneous confidence intervals for all the means. For a given mean .
his upper and lower bounds are the maximum and minimum values of r such that
the hypotheses z < y; and y, < r were accepted by their respective likelihood ratio
tests. Schoenfeld’s method for finding simultaneous confidence intervals was based
on an idea by Lee (1984). Lee (1996) proposed the generalized studentized maximum
modulus procedure and used it to seek a confidence band for each individual y, by
incorporating the monotonicity of the response means. Lee’s method gains much
over the methods by Schoenfeld’s (1986) and Korn's (1982). Marcus and Talperz
(1992) further proposed an alternative test statistic and used it to construct a set
of SCB. but their procedure is inferior to the Dunnett’s procedure in comparing
Wi to the control mean po. Marcus and Genizi (1994) derived the simultaneous
confidence intervals of normal means of the form TX_, ciu; for umbrella contrasts
a<e<...<cn ... 2 cand T5 nic; = 0, where / is called the peak of the
umbrella order. Berk and Marcus (1996) summarized the results of SCB for simple
order. simple tree order and umbrella order. Hayter and Liu (1999) also proposed a
test statistic to develop simultaneous confidence intervals for all the ordered pairwise
differences y; —p; for 1 < i < j < hand h < j <i <k, where the peak h is known.
Hayter and Liu’s (1999) method is a generalization of Hayter’s (1990) procedure.
When the homogeneity hypothesis is rejected in favour of the simple tree alter-
native, it implies that there exists at least one treatment better than the control.
Let s = maxXicick i be the mean of the best treatment. Since ey — o is the
largest difference between any treatment mean and the control mean, the confidence

lower bound for fpes — po is bounded below by that for any pu; —po. (i = 1,...,k) or

their gative linear inati If this imized lower bound
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fOr fyest — po is positive. then piy... is signifi

antly larger than g, The sharpest
simultaneous confidence lower bound for ply.q — pto can provide useful information

regarding treatments and a control. The construction of the si; fil

lower bound of fgese — 0 is 2 particularly useful inference method that has not been
considered before and is the main topic of this thesis.
In Chapter 2, we will introduce some basic results on least squares regression

and particularly. the isotonic regression. We will present two algorithms that hay

been used extensively in studying and computing the

isotonic regression. namely.

the pool-adj violators algorithm and the mini i St 5 The

likelihood ratio tests for testing rhe simple tree restriction will be given. Some

in

ence intervals under the simple tree order in the
literature will also be included. The Kuhn-Tucker Equivalence Theorem. which will
be used in Chapter 4 and Chapter 7. will also be presented.

In Chapter 3. we will propose a new test statistic to compare factor means and
the control mean in two-factor experiments. The new test statistic can be inverted to
vield sharp simultaneous confidence lower bounds for the differences of such means.

The new test is unbiased. and consis Its power favorably

with Dunnett’s test and the LRT.

In Chapter 4. we will study simultaneous confidence lower bounds for two cases.
One, the difference between the best treatment and the control for treatments which
are at least as good as the control and two, where no restriction is placed on the
treatment means and the control mean. The evaluation of the simultaneous con-
fidence lower bound for the difference between the best treatment mean and the

control mean is a concave programming problem subject to homogeneous linear



inequality constraints. Two efficient compuration algorithms will be derived.

In Chapter 3, we will address the cone order monotonici

v problem. The Likeli-
hood ratio test S, for testing homogeneity of treatient means and the control mean
Hp : pg = pry = ... = p with the alternative restricted by the simple tree orderi

Q={peR ' p<p(i=1

K)} is not cone order monotone (COM[Q)).

In this chapter, we will propo:

a likelihood ratio test statistic S§, for testing ho-

mogeneity with the al

native restricted by Q7

{pm S i

where i = S nu /S5 n,. LRT Sg and its modification are COM[Q]. We will

also offer an alternative test procedure which is COM[Q2] and COM[Q”] and has

competitive power performance.
In Chapter 6, a test statistic based on Dunnett’s procedure will be proposed for

testing an interval hypothesis H{ : d(u) < 6 vs H : d{u) > & under p; > po (i =

. where the standardized difference of the means between the best treatment
and the control is measured by d(u) = (isese — p10) /. The quantity d(p) can be used
to measure the dispersion among treatment means and the control mean and is
useful for assessing the equivalence of the treatinent means and the control mean.
Numerical quadrature will be employed to obtain the tabulated percentage points
of the test statistic for testing H{ versus HJ. We will also show how to construct a
confidence lower bound for d(z).

In Chapter 7, we will consider the problem of identifying the minimum effective

dose in dos P studies. A i 1 lationship is

resp

frequently encountered in practice in the context of actively proving a significant

monotonous dependence of the reponse on increasing doses or treatments. But

the d D ion is not always satisfied. In some situations
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there may be a negative response at low doses. then it is appropriate to make a

partial d ponse ass ion such as p, < gy < ... < pye. here g
is prespecified through an experimenter’s prior knowledge. The popular Williams®
trend test is not applicable in this case. We will propose a multiple contrast test and
use it to develop a stepwise method which is more powerful than Hsu and Berger’s

DR method under the partial 1

ST
Finally. Chapter 8 will provide a discussion of the results of this thesis and further

areas of research relating to the problem.



Chapter 2

Statistical Inference Under Order
Restrictions

2.1 Introduction

Isotonic regression problem arises from the maximum likelihood estimation of nor-

mal means under an order restriction and it plays a very important role in the order

inference. Its is greatly by the fact that it solves a

wide variety of icted estimation probl in which the objective function may
take many different forms other than the sum of squares. [ts application includes
maximum likelihood estimation of ordered normal variances. ordered binomial pa-
rameters (bioassay). ordered Poisson means. ordered multinomial parameters as well
as a variety of problems from other areas, such as reliability theory and density esti-
mation. It is also well known that test procedures such as the likelihood ratio tests
which utilize the prior ordering information dominate procedures which ignore this
information. Moreover, simultaneous confidence intervals for restricted setting can

be much shorter than that of Scheffé’s procedure. In additios

. solutions to many

other optimizati can be in terms of isotonic regression, see



Dykstra and Lee (1991).

The problem of developing algorithms for isotonic ion has received a great

deal of attention. In fact. isotonic ion is a

problem
and there is an extensive literature on methods for computing solutions. The prob-
lem of computing the isotonic regression is a special case and a number of efficient

algorithms have been proposed.

The most widely “1sed algorithm for simple order is the pool-adjacent-violator

gorithm (PAVA) first published by Ayer. Brunk. Ewing, Reid and Silverman (1933).
PAVA can be used to develop algorithms for some other least squares problem as
we shall see in Chapter 7. PAVA is a very efficient algorithm but it does not apply
in general to partially ordered isotonic regression. For general partially ordered iso-

tonic regression the most well known il is the mini lowr lgorith

of Brunk (1955). Several other algorithms have been developed for partial orders to

increase the efficiency of the ion. such as the mini: violator algorit

due to Thompson (1962). the min-max algorithm due to Lee (1983). the minimum
lower sets algorithm of Qian (1992). among others.

Many of the methods of statistical inference are derived from the experimental
situation in which one wishes to compare several normal treatments with a normal
control or standard. In many cases it is believed that the treatments are at least
as effective as the control. Procedures have been developed to make use of this
prior information in statistical inference. For instance. if the control and treatment

)

one-sided procedures can be used to test homogeneity of the means versus a simple

populations are normal with a common unknown variance, then Dunnett’s (19:

tree alternative. Bartholomew’s (1959, 1961) X* or £? test is the likelihood ratio



test of homogeneity with a simple tree alternative. Raubertas. Lee. and Nordheim

(1986) generalized Bartholomew’s tests to allow hypotheses involving homogeneous

linear inequality restrictions. If the Y* and £? test rejects the homogeneity null

hypothesis then one may

wish to carry out a multiple comparison procedure to
determine which means are different or which simultancous confidence bounds may
be of interest.

In Section 2.2 we first review some concepts and preliminary results of projections
on closed convex cones. Concepts of partial order such as simple tree order and

isotonic regressions are given in Scction 2.

. We also present the above mentioned

two algorithms in Section 2.4. In Section we focus on the test of hypotheses
involving simple tree order with likelihood ratio tests or their modifications. In
Section 2.6, we give a brief review regarding simultaneous confidence intervals under

simple tree order. Since the evaluation of the simull d lower bounds

under simple tree order is a maximization problem subject to some constraints. in

Section 2.7 we present the Kuhn-Tucker Equivalence Theorem.

2.2 Projections on Closed Convex Cones
2.2.1 Convex Sets, Cones and Dual Cones

Let R* be a k-dimensional Euclidean space with the inner product defined by

&
< f.g>w=Y fgw. Yf.ge R (2.1)

=t
Li--. W) is @ vector of weights such that w; > 0, i = 1.2,.... k
and & w; = 1. If wy, = ... = wy = 1/k. we omit the subscription and use

< f.g >= Tk figi. A subset C of R* is said to be convez if (L—)\)f+A\g€C



16

whenever f.g € C and 0 £ A < L. It is well known that the intersection of an

arbitrary number of convex is still convex. A subset C of R is called a cone

if it is closed under nonnegative scalar multiplication, i.c.. Af € C when f € C and
A > 0. Note that a cone is not necessarily “pointed.” For example. subspaces of
R* are special cones. So are the open and closed half-spaces corresponding to a
hyperplane containing the origin.

For a convex cone C. the subset C* of R* defined by
k&
C={geR «<g.f>u=Y gfiw; 0. ¥feC} (2.2)
=

is called the Fenchel dual or polar of C. In particular. if ¢

S is a subspace of R,
then

S'=S*={geR':<g.f>.=0YfeScR} (2.3)

It can be shown that C* is also a convex cone and furthermore. it is closed.

For any two subsets A. B of R*. denote A + B the direct sum of sets 4. B. i.e..

A+B={f+glf € A g€ B}. Let C. C; and C» be convex cones. We have the

following results,

(a) €C(C*)".and C = (C*)" ifC is closed: (24)
(b) (-€)"=-C": (2.3)
() Gee 1G5 (26)
(d) (€ +C) =CinGs: @7
(&) (CiNCa)" =C; +C; if the latter is closed. (28)

see Rockafellar (1970, page 146).



2.2.2 Properties of Projections on Closed Convex Cones
For any closed convex cone C C R* and a given vector g € R. the solution to the
problem
Minimize {3 (g, — fi)?u:} (2.9)
=

subject to f € C uniquely exists. This unique solution. denoted by Py (g{C). is called
the least squares projection of g onto C with weight w.

Ctilizing Theorem 8.2.7 of Robertson. Wright and Dykstra (1988). we now srate

as the following theorem.

Theorem 2.2.1 Let C be a closed conver cone in R*. and let g.g" € R*. Then

= P.(g|C) if and only if g* € C and

<g—9.9">w=0, (2.10)

<g-g.f>=<0. YfeC. (2.11)
2.2.3 Polyhedral Cones

Let K be a cone in R*. K is a polyhedral cone if K ={x € R*: <bi.x>>0.i=

1 m} = {x € R* : Bx > 0}. Here B is the m x k matrix whose ith row is

by, while —b; is called the generator of its Fenchel dual K*. We will tacitly assume
that the set of generators {bj.i = 1.2,.... m} are non-redundant. i.c.. no proper
subset of the set of b; determines K*. For the simple tree cone K = {x:z¢ < 2,,i =
1,2,....k}, by = (b, bir, ..., ) = (-1,0,...,0,1,0,
bii=

w0)ad = k. where
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2.3 Partial Order of Finite Sets and Isotonic Re-
gressions

2.3.1 Partial Order and Simple Tree Order

Let X be a finite st {z),22,....ex}. A binary relation < on X is a partial order

on X if

L. it is reflezive: < rforx &
2. itis transitive: r.y.2€ N.r Xyand y < :imply r < =

3. itis antisymmetric: x.y € X. £ <y and y < r iniply r = y.

A binary relation X on X is called a simple order if it is reflexive. transitive. anti-

symmetric and
4. it is comparable: z,y € X implies that either z < y or y < z.

Let X = {&o.21,....2:} and define the pactial order < on X by x < x; (i =
1,2....,k) with no relationship between r; and z; for i.j > 1. This partial order
restriction is called the simple tree order.

Note that there may be noncomparable elements for a partial order. A partial
order usually arises when vector comparisons are involved. Simple order and simple
tree order zp < z; (i = 1.2....,k) are partial orders that are frequently encoun-
tered in applications. As an important partial order. the simple tree order arises in
sampling situations where one wishes to compare several treatments with a control
or a standard making use of prior information that all of the treatment means are

at least as large as the control mean. (The case in which all of the treatment means
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are no larger than the control mean is included by changing the signs of all the
means.) For example. survival times of different therapics are at least as large as
that of a standard therapy or placebo: increasing dose levels are frequently expected

to produce stronger than or at least equal effects as a zero-dose coutrol.
2.3.2 Isotonic Regression

A real-valued function f on a finire ser )

said to be isotonic

ith respect to the
partial ordering < on X if z.y € X and r < y imply f(z) £ f(y).

Let g be a given function on X and w a given positive weight function ou .

An isotonic function g* on X is called an isotonic regression of g with weight w if it
minimizes

3 lotz) = f2)Fu(x)
ZEN

for all functions f on .\' which are isotonic.

A real-valued function on a finite set X' can be considered as a point of a Eu-

clidean space which has as its dimension the number of points in X. [n this

setting,
the collection. Z. of all isotonic functions on X' with respect to a given partial order
is a closed convex cone and the isotonic regression g* is the closest point of I to g

with distance induced by the inner product
&
< f.9>w=Y fuwi.
=

in other words, g* = Pw(g|Z). The existence and uniqueness then follow from the

general theory of projection on closed convex cones described earlier in this chapter.



2.3.3 Properties of Isotonic Regression

The isotonic regression has a number of important properties. Some of thew are

given below.

Theorem 2.3.1 Suppose g, and gy are isotonic functions on X' such that g,(x) <
9(¥) < g(z) for all x € X. and if g* is an isotonic regression of g, then also
0(2) € 9°(2) < g2l for all & & X. In particulur. if a and b are constants such
that a < () < b for all z € X. then ulso a < g*(¢) < b forr &€ X. (Th. 1.3.4.

Robertson. Wright. and Dykstra (1983))

Suppose g and w are functions on X. the weighted average of g over the nonempry

subset A of X is defined as follows

While Av() depends on g. this is not explicit in the notation. Let [g* = ¢] denote

{reX g =ch

Theorem 2.3.2 If ¢ is any real number and if the set [g° = c| is nonempty, then

c=Aug* = cl). (Th 1.8.5. Robertson. Wright, and Dykstra. R. L. (1985))

Theorem 2.3.3 For an arbitrary real-valued function, ‘U, defined on the reals.
<g-g. %) >=0.

(Th 1.3.6, Robertson, Wright, and Dykstra (1988))

Theorem 2.3.2 reduces the problem of computing g° to finding the sets on which

g" is constant (i.e. its level sets). There are a number of algorithms in computing
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isotonic regressions and we will introduce two of them in the next section that
have been extensively used. namely the pool-adjacent-violators algorithm (PAVA)
for simple order and the minimum-lower-sets alyorithm for any partial order such

as the simple tree order.

2.4 Algorithms for Isotonic Regression
2.4.1 Pool-Adjacent-Violators Algorithm
Let .\ be a finite set {y..r;

} with a simple order # % &y X ... <X i, Then

<% fle)

Let g be a given function on .\ and w a given positive weight function on X'. The

a real valued function f on X is isotonic if and only if f(ry) < f(

PAVA starts with g. If g is isotonic, then g* = g. Otherwise. there must exist
an index i such that g(x-1) > g(£.). These two values are then replaced by their
weighted average, namely Av({i — L.i}) and the two weights w(z,;) and w(z,)
are replaced by w(z;_i) + w(r;). If this new set of k — 1 values is isotonic. then
g7 (zim1) = g°(z.) = Av({i = L.i}) and g°(z,) = g(z;) otherwise. If this new set is
not isotonic then this process is repeated using the new values and weights until an

isotonic set of values is obtained.
2.4.2 Minimum Lower Sets Algorithm

A subset L of X is called a lower set with respect to the partial order X if y € L
and z X y imply z € L. A subset [" of X is called a upper set with respect to the
partial order < if r € U and z < y imply y € U'. We denote the class of all lower
sets by £ and the class of all upper sets by L. A subset B of X is a level set if and

only if there exists a lower set L and an upper set U such that B = LN L. The



9
M

minimum lower sets algorithm for isotonic regression is described next.

Select a lower set L, such that Ae(L;) < Ae(L) for all lower sets L. Suppose
LY is another lower set having this property. Using the property of Av which is a
strict Cauchy mean value function. L, UL} is another lower set of minimum average.
Therefore, the union of all lower sets of minimum average is the largest lower set of
minimum average. Let L. and also B;. denote this lower set. This level set is the

set on which y* assumes its smallest value:
g°(z) = Ae(By) = min{Ae(L): L € £}

for r € By. Now consider the averages of level sets of the form LN LS. level sets

consi

ing of lower sets with L, subtracted. Select again the largest of these level

sets of minimum average, s:

Ly L. The level set By is the set on which g*

assumes its next smallest value:

g'(x) = Ac(By): £ € B

This process is continued until .\ is exhausted.

In order to illustrate the above algorithm. let us consider the simple tree defined

on . 1.

= {Z0:Z1, ...z} with < by 20 < 7,

. The nonempty lower

sets consist of {Zo} and {zo} U A with A any nonempty subset of {z.za..... e}
Thus there are 2% nonempty lower sets. On the other hand. if an upper set con-

tains zo, it must contain {ry,2a,....zx} as a subset. Thus, there are 2% nonempty

upper sets consisting of .X' and all of the nonempty subsets of {ry,rs..... zi}. The
minimum lower sets algorithm applied to the simple tree order yields the following

algorithm for computing the isotonic regresion g* of a given function with weights
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w(w > 0). If g(xy) < g(z).i = L2%....k. then g* = g. Otherwise. arrange the val-
ues g(z1). g(a). ... g(xx) in ascending order (g(xy) is not included). Denote these

values by g(z) € g(z@) < -..g(rw) and lec w(rg) denote the weight corre-

sponding to g(x) for i = 1. . find the smallest positive integer j for

which

20)g(r0) + Ther w(xw)g(210)
w(re) + Ty wl)

Such an integer will exist unless Axy > gluye) and in this case set j = k. Now

< glryen)

9"(%0) = 4; and the value of g*(z,) is cither A, or g(x,) depending upon which one

is larger.

2.5 Testing the Simple Tree Order

In this section, the likelihood ratio tests (LRTs) for homogeneity of normal means

with the simple tree alternative are introduced. If the simple tree order imposed on

the alternative is in question. one may wish to test this order restriction as the null

hypothesis with an unrestricted alternative.

Let X' = {0,1,2,....k} and assume that the simple tree order < is defined on

X. Let g be the mean of the ith normal population with variance ¢} for i =
[ 15, (. k. We are interested in the following hypotheses
Hoy: mo=m=...=mum,

Hi: po<pforalli=

H.

no restrictions on the means.

Suppose that Yj; is a normally distributed random variable with unknown mean

i and variance of the form a; known and ¢® unkown for
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0. also ass

Jhand j=1, ume that the Y, are independent. For

the case of equal but unknown variances. one would set ay = @y = 4 = L. Here

fndex 0 refers to a control and index i(i = L. k) refers to treatment i. Suppose

also that S? is an estimator for 0% which is independent of ¥ = (. N )

with %5 ~ 2 and v = T n, — (k+1) > 0 (\3 denotes a chi-squared variable with

v degrees of freedom). With w, = n,/a, for i € X'. the maximum likelihood estimate

i of p; under Hy is 5y w83/ T8 w,. The restricted maximum likelihood estimate

of p subject to Hy is denoted by p* (4t pt3- -+ - ). [t is the isotonie regression
of ¥ = (¥5.....¥k) under H, with weight w = (wq.wy..... ux). The unrestricted

maximum likelihood estimate of p is Y.
In many experiments. one often has a priori knowledge that the treatments are

at least as effective as the control. that is. one can assume that the treatments

may be beneficial, but they are certainly not detrimental. Then tle objective of the
experiment is to determine if at least one of the treatments is more effective than the
control, and the one-sided test of Hy against Hy. but not Ho, is more appropriate.
The likelihood ratio test (LRT) rejects Ho in favour of Hy — Hy for large values of

T, i — A)?

E — =
Tiowlli - ) +vs?

and if o2 is known. the LRT of Hy versus Hy — Hy rejects Hy in favour of Hy — Hy
for large values of

.
=3 wilu; — /e (213)

=0

For testing H, versus H», the LRT rejects H, for large values of

__ Thew(fi-m)?
) +vST

(2.14)
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and if 0 is known, the LRT of H, versus H> rejects H, for large values of

x
=Y wd¥i - p))/o*. (2.13)

=0

Using the properties of projection. it can be shown that

Lt o 2, 2 2 2

3 wil¥i = @)*o* = Gy + X

=
Accordingly. with Q(v) = vS*/0* ~ \3. B} = /(X8 + U + Q). Therefore.
rejecting for large values of £3 is equivalent to rejecting for large values of

o v
o T+ Q)

A more straightforward approach to testing Hy versus Hy — Hy is to replace o® by

(2.16)

S? in (2.16). which is proposed by Wright (1988). Wright called it the modified
likelihood ratio test (MLRT). The MLRT rejects H, for large values of

& wilpg — i)’ -
Ta=) ——5— 2.1
o g s (2.17)

Dividing the numerator and the denominator of (2.16) by v. noting that for cach -
in the underlying probability space {3,/v — 0 as v — . and using Q(v)/v — 1
in probability as v — oc. we see that Sp; — 3, in probability as » — . Again
applying the consistency of S? for o2. it follows that Ty, — Y2, in probability as
v — oc. Hence. the LRT and MLRT are asymptotically (v — o) equivalent. The
LRT of H, versus H, — H, rejects H, for large values of

iy
+Q(v)’

(218)
ot equivalently for large values of

Xy

sk = oI (2.19)



26

as v — x. It is more convenient to

Note that S% converges in distribution to

table the critical values for Sy; and S, The null distributions of {3,

and Ty, are given by the following rheorem.
Theorem 2.5.1 For € Hy and v a positive integer.

k=1
Pl 2c=Y Plk+Lw)P[i 2.
=

1=l 2

tM-

P

Pk + Lw)P[\;

ok e
P(Sp > ¢ = E Pk + 1:w)P[Fioiya 2 ﬁ]

M=

PSu2d =Y P(lk+1:w)P[Fiw 2 %]

“k

i=t

PlTn2 e =3 PULk+1Lw)P[Fii, 2
=

for any ¢ >0, where v = Xy n, = (k +1).

The mixture coefficient P(l.k — 1:w) in the above theorem is called the level
probability. It is defined as the probability that there are exactly ! distinct values

for the MLE p* satisfying the simple tree order when Hj is true. The values of

P(l,k +1;w) depend on the sample sizes n, and the population variances through
the weight w. There is a recursive formula for computing P(l. k +1: w) in Theorem
2.4.1 of Robertson, Wright and Dykstra (1988). If the weights are equal. the level

probabilities for the simple tree ordering are less complex. For the equal-weight case.



suppress the w, denote the level probabilties by P{l.k + 1). Using rthat recursive

formula, one can show that

P(l.A:+1)=(lfl>Pu.A- 9P(LL(k=1+2).1....1). (2.20)

The last factor in the above expression has been tabulated by Ruben (1954) for !
and k with 0 S k <49 and k ~9 < [ < k + 1. Numerical values of P(L k + 1) with
k < 19 are given in Table A.11 of Robertson. Wright and Dykstra (1988). Wrighe
and Tran (1985) discussed approximate procedures for P(l. & + 1: w) with unequal

weights.

2.6 Simultaneous Interval Estimations for Treat-
ments Versus a Control

Simultaneous interval estimations for treatments versus a control. particularly simul-
taneous one-sided confidence bounds (SCB) for various classes of contrast between
normal means S5 mic, with T ne, = 0, have been inverted from test pro-

cedures used for testing Hy versus Hy — Hg. Assume that ¥;.i = 0.1....,k. are

normal variates with mean y; and variance o®/n;. Dunnett (1955

obtained SCB

for all many-one contrasts with ¢, > 0 (i=1.2..... k) and T&, nie; = 1. which is

(2.21)

where df, is the critical value of Dunnett’s test statistic. Marcus (1978) employed
X3 to provide SCB for all simple tree contrasts with coefficients satisfying ¢, <

T R P SR k) which is

& 3 k 2
S nican 2 3 mieFi - ota (3 nic?) @22)
i=0 i=0 i=0
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where £, is the positive square roor of the critical value for {3, under the simple troe
order. Marcus (1978) also used {3, to build SCB for all contrasts with coefficients

satisfying ¢; > 0 (i = 1.2.....k) which is

k k k "
S mew 2 Y medi - ofa( )" (2:23)

where £, is the positive square root of the critical value for

2, under the simple

tree order. Marcus and Talpaz (1992) proposed the test statistic

Vo = Yl = 1)

s

to test Hy versus H, — Hy and used it ro form the following simultaneons one-sided

confidence bounds

k. k &
Y e 2 Y nai¥i - gewaSn (X lel) (224
i=0 =0 =0
wheregg < (i=1..... k). and gi..q is the upper ath percentile of the test statistic

M.
With the prior knowledge of the simple tree order. the lower bound of =g n,c; 4,
can be improved to
max { S wistis ota( i ne) '} (2:25)
= =

subject to Tigmicim < Thogmicip. Thigmici =0, Tgnie; =0. and pg S gy, (i =
1,

...k), here ¢ is a given vector. One can also similarly get the improved lower
bound from (2.23). When T{_g niciii = Hest = po, here oo = maXigig i, the
improved lower bound is of particular interest and has not been studied in the

literature. This thesis will explore it in Chapter 4.



2.7 Kuhn-Tucker Equivalence Theorem

The evaluation of the simultancous confidence lower bounds such as (2.23) is a

maximization problem subject to a mixture of equality and inequality constraiuts.

To be specific. let x be an nx 1 vector and H(x) be an mx 1 vector whose components

hy(x),

.. h(x) are differentiable concave functions for x > 0. Let g(x) be another
differentiable concave function. The Kuhn-Tucker Equivalence Theorem cnables us
to find an x° that maximizes g(x) constrained by H(x) > 0 and x > 0. A vector X is
said to be feasible if x satisfies all the contraints. The optimal value of the problem
is the maximum of g(x) over the sets of feasible points. Those feasible points which
actain the optimal value are called optimal solutions. Let #2 and 22 denote the

artial derivative evaluated at a specific point X and u’. respectively.
P P! P ¥

Theorem 2.7.1 (Theorem 3 in Kuhn and Tucker (1951)) Let hy(x). . . .. hum(X). g(x)
be concave and differentiable for x > 0. Let o(x.u) = g(x) +u'H(x). Then x° maz-
imizes g(x) constrained by H(x) > 0 and x > 0 if and only if X" and u® satisfy the
Jfollowing conditions:
(1) £<0 [£]x=0x2>0:
(2) 20, [Elv=0u2>0
When the constraints H(x) > 0.x > 0 are changed to the following three cases.
some modifications are needed:
Case 1: H(x) > 0.
In this case , letting ¢(x,u) = g(x) + u'H(x) defined for all x and constrained
only by u > 0, condition (1) should be replaced by (1*) 22 =0.
Case2: H(x) =0,x>0.



30

In this case , lecting o(x. u) = g(uw' H(x) defined for all u and constrained only

by x > 0, condition (2) should be replaced by (2°) 0.

.
Case 3: H(x) =0.
In this case , letting o(x. u) = g(x) + u'H(x) defined for all u and x without any
constraints, conditions (1) and (2) should be replaced by (1*) and (2°). This case

corresponds to the usual method of Lagrange multipliers.



Chapter 3

A Multiple Comparisons
Procedure for Detecting
Differences Between Treatments
and a Control in Two-factor
Experiments

3.1 Introduction

Many situations in pharmaceutical research and other fields require comparing sev-
eral treatment means with a control mean. or a standard. A number of statistical
procedures have been proposed for applications involving treatments versus a con-
trol, of which the best known is Dunnett’s (1955) multiple comparisons procedure.

Many of Dunnett’s

have been made. Shaffer (1977) ex-

tended Dunnett’s

to yield si intervals for all linear
contrasts among the & treatment means and the control mean which are shorter
than the intervals obtained by using the Tukey and Scheffé methods. Dunnett and

Tamhane (1991) generalized it to unbalanced one-way layout in step-down fashion.
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Liu (1996) agroup s ial dure for ing several t

with a control. The aforementioned results only involve one-way layouts. Cheung

and Holland (1991 and 1992) generalized Dunnett’s procedure to make compar-

isons si ty in each of r ind dent groups with each group consisting of
some treatments and a control. Usually in multi-factor experiments it is of interest
to make inference for factor means such as Bechhofer and Dunnett (1987). Hence.
comparison of combined treatment means with the control mean is of interesr. Miller
(1981) suggested using weighted average of pairwise comparisons. Cochran and Cox
(1957) compared the average effect of sulphur with the control in a scab index data.

In that experi h would be interested in the effectiveness of the spring

application or the fall application. Notice that Cheung and Holland’s procedures
(1991 and 1992) do not apply to this case.

We consider two-way no presence of interation models with / levels of Factor
A and J levels of Factor B. and a control or a standard. labeled 0. The scab in-

dex data in Cochran and Cox (1957) and the i of antis i ss

for the sown species in Bofinger and Mengersen (1988) are typical applications.
We make the usual assumptions for the analysis of variance. that independent ob-
servations No;....,.) Xon, from the control group and observations Xjji. ..., Nijn-i =
1,....1,j=1....,J from the treatment groups are normally distributed with means
4o and py; respectively, and a common unknown variance o2, The treatment means
can be expressed as py; = p +a; + 3; with T/ 0 = 0 and T7_; 3, = 0, here
4 is the grand mean of the treatment groups, « (3,) is the effect of the ith (jth)
level of Factor A (B). Let Xo. = Zﬁi-uﬂ be the sample mean of the control group

with sample size ng, and let X;;. be the sample mean of the treatment group at
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the ith level of Factor A and the jch level of Factor B with sample size n, that
is. Xy = Diu¥ur [y chese experiments we are interested in comparing ju with
Ho and in comparing factor means p,. s, and the grand mean p with pg. where
e =T mgld py = Tlaymg/ 1 p = T Sicymg /1.

Let ¥

ng+nlJ be the total sample size. and let v

N — I —.J be the degrees

of freedom for the usual pooled estimator S* of the common variance o*.

S Y
=1

g .

ol o DTt ¢ i
where X, = ZemLie o ol PRSETLEE
statistic S? is independent of the mean vector X = (Xg. Xyp.- -+, Xps). and v52/5?

has a chi-squared distribution with v degrees of freedom.

Let the null hypothesis be Hy: s = py = = pyys and let the alternative
hypothesis be Hy: po < pyj (i = 1o.... I.j = 1,....J) with at least one strict
inequality. The hypothesis H; is known in the literature as a simple tree ordering.

Dunnett (1953) proposed the test that rejects Hy for a large value of

D s X

= max - 3.1)
1GSIISST §

and gave its critical values for equal sample size. where k = [.J. The likelihood ratio
test of Hp under the assumed simple tree order has been considered by Robertson
and Wright (1985) and Conaway. Pillars, Robertson and Sconing (1991). Tang and
Lin (1997) proposed an approximate likelihood ratio test for the problem. The
power of LRT is generally good, but its computation is a challenging task. Partly
because of the difficulties involved in applying LRTs for ordered hypotheses, some

researchers such as Abelson and Tukey (1963) considered testing homogeneity versus



34

the simple tree alternative using tests based on si

gle contrasts. One advantage
of contrast test is that contrast test statistic is normally distributed with casily
computed mean and variance under both the null and alternative hypotheses. While
the contrast tests are very simple to use. their power characteristics are such that

they cannot be

d in general as il to the LRT. Certain multiple
contrast tests have excellent power properties. Mukerjee, Robertson and Wright
(1987) studied a class of multiple contrast tests and compared their powers to those

of Dunnett’s test and Abelson and Tukey’s single-contrast test. Marceus and Talpetz

(1992) developed a set of si ided 1 bounds (SCB) for all
simple tree contrasts. However. the above multiple contrast tests except Dunnett’s
procedure are not suitable for comparing individual treatment mean g,; with y, and
in comparing factor means u;., p; with go simultaneously.

Dunnett’s procedure can be used to construct confidence lower bounds for the
differences of treatment means and a control mean. The aim of this chapter is to
propose a new test which is powerful and it can be used to construct simultaneous
confidence lower bounds for the differences of factor means and a control mean in

two-factor experiments. The new multiple contrast test statisti

is given in Section
3.2, the power comparison is conducted in Section 3.3, simultaneous confidence lower
bounds inverted from the proposed multiple contrast test statistic are presented in

Section 3.4. in Section 3.5 a numerical example is employed to illustrate the gains

of the new the ion of the lure applied to many other designs

is given in Section 3.6, and finally a conclusion is presented in Section 3.7.



3.2 A Multiple Contrast Test

For an experiment with two factors and a control. we are interested in comparing
fijs e. py and powith pe. The proposed test statistic rejected Hy in favor of

Hy — H, if the test statistic

is large. where X¢ denotes the combined treatment mean with cells in C. n¢ is the
combined sample size in C and k = [.J. When / > 2 and J > 2. the collection C
consists of (I + 1)(J + 1) subsets which include all singletons {(i. j)}. all ith row
(1) (i.2),..... (. )}, all jeh column {(L.j).(2.)).....(I./)} and the set of all

treatments {(i,j):i=

2 ...J}. When I =1 or J = 1. the collection
C consists of ] x J + 1 subsets.

Let the 1 — « percentile of the distribution of Gi¢ be denoted by cf¢, when
Hy is true. One may evaluate these percentiles by a numerical integration of &k + 1

dimensions such as Genz (1992). Due to the complesity of our acceptance region

{Gre < 2.}, these iles were cal by simulation. The simulated

percentiles are provided in Table 3.1 for @ = .10. .05 and 01. k =

4.6.8.9.
10, and the degrees of freedom v=3. 7. 10. 15. 20. 25. 30. 40. 60. 100. and o for
the equal sample size case. While one run of 1,000,000 iterations is sufficient for the
levels & = .10. and a = .03, and also for the level a = .01 with df = >, up to seven
runs were used for the level a = .01 with df = 5. The accuracy employed here is
that the simulated tail probabilities at cf ¢, +0.01 and cf¢, — 0.01 lay below and
above a respectively by more than three standard deviations.

It is frequently encountered that the sample size for the control is larger than
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the sample sizes for the treatments. particularly in medical and biological research.

It is not uncommon to have twice the sample size for the control group and Table

3.2is for the case ny = -+- = ng = n and ng =

It is straight forward from (3.1) and (3.2) that Gy > Di. The 1 — a percentile
2 ¢, is larger than its counterpart df, of the Dunnett’s procedure. But the differ-
ences are relatively small. For example. for a = .03. the differences lie between .02
and .06 for equal sample size case.

Let =(u) be the power of the new test Gie at g = (pg. fyr. .- .. #1s)- The new
test possesses the following characteristics for equal sample size cases as well as

unequal sample size cases.

Theorem 3.2.1 If ptuj = pio < pay — pao. i

o

#(u2). Furthermore, Gic is unbiased and consistent.

<. then =(m) <

Proof. Let ¥; and Yy, i

e ]

..J be independent normal variates

with mean 0 and variance 0°/ng and ¢*/n. respectively. Let {5 = ¥j + .

+ iy X8 = Yo+ 0. and X2 = Y5+ payy, where prug — prio < prayy — tao-

N Yo ) (55— BN J. We may rewrite the statistic Gic as

Gic= max{mnx g % . max — max '\"" - Yo
Y o S A Vet

Consider the first case, we have that

Since puii; — po < pay =




Similarly, we may obtain

T

“ -

and

Hence

Therefore, 7(u) =
for any collection C.

If = (po, purs -« oo prs) is such that g > po, i =

isp—a=(p-apr—a.... i1y ~ a) for any constant vector a = (a
the monotonicity of the new test. (u) = P(Gfe > ¢ ,) > =(a) = a. Hence. Gie
is unbiased.

Since

max KU _Ho

e

< max—S_0
c g /Tr L
ne T nc

for any given e we can find a positive a such that

(Yo

Yo)



For a positive constant b, if

> (a+b).

then

26} >1-e

Therefore. the power () of G ¢ converges uniformly to one as max,

if p € Hy — Ho.

3.3 Power Comparisons

The powers of the new test. Dunnett’s test and the LRT are investigated in this
section. The Monte Carlo method is used with 10.000 iterations. The standard
errors are at most 0.005. For simplicity. we consider the equal sample size case
with ¢/n = 1. n is the common sample size. Three configurations are considered:

the center direction (—k.1.....1). the edge direction (~1.k.

.—1). and the
direction of pairwise comparison (—1.1.0.....0) which lies in the middle of the
center direction and the edge direction. The center direction and the edge direction

tend to attain the i and the mini power ively for all the tests.

The simulated powers of the new test. Dunnett’s test and LRT are provided in Table

3.3, where A? = (o~

2+ T/ o (1~ )%/ is the noncentrality parameter

and i = (o +5 e, £foy )/ (I7+1). The new test is shown to be the most powerful

one-sided test along the center direction when means are

equal and are larger than the control mean. At k =6, the percentages of the power
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of the new test are 7.71. 17.84. and 15.09 higher than those of the LRT. for A = 1.2,

and 3. ively. Here experimenters are often i d in ing p with

#o. The scab index data in Section 3.5 indicates such a tendency. It is also the most
powerful one along the pairwise directions (—1,1,0.....0)..... or (-1.0.....0,1)
when treatment means are larger than the control mean and one treatment mean is
larger than the remaining treatment means. At k = 6. the percentages of the power
of the new test are 2.93. 8.23. and 10.26 higher than those of the LRT, for A = 1.2.
and 3. respectively. However. LRT is the clear choice along the edge direction when
one treatment is effective while the remainings are not.

Consider the configuration when treatment means are larger than the control
mean and all treatment means of the ith level of Factor A are larger than the
remaining treatment means, the direction is an average of J pairwise directions. For
example, the average of (-1; 1.0.0:0.0,0). (-1:0.1.0:0.0.0), and (-1:0.0.1:0.0.0) is (-1:
1/3.1/3.1/3:0,0.0). Table 3.3 indicates that the new test is more powerful than the
LRT and Dunnett’s procedure along the center direction and pairwise directions.
Therefore, the new test is the most powerful one in comparing p;. with go. The
scab index data in Table 3.6 exihibits that the mean of the three fall applications.
1., is significantly below the control mean . Consequently. the new test will be

the most powerful one to detect such a difference, as shown in the following section.

3.4 Simultaneous Confidence Lower Bounds

It is usual to say that a treatment is better than the control when that treatment
mean is larger than the control mean. Dunnett's one-sided simultaneous confidence

lower bounds for the difference between each treatment mean y;; and the control
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mean pg is

oy = po 2 Ny —

33)

The weighted averages of (3.3) may be used as in Miller (1981) and the corresponding

—a43,5 /% +%. 34

Similarly for the cases of ., — i and g — po. Our new test statistic Gec in (3.2)

simultaneous confidence lower bounds are

=0 2 Ni —

has the following 100(1 - @)% simultaneous confidence lower bounds

. T 1
Hig = po 2 Ny = No. = e, S\ e+ 2

T 1
,—n;+ﬁ' (36)

and similarly for the cases of p, — po and p — po. The one-sided simultaneous

(3.3)

o = pg 2

lower bounds (3.3), (3.4). (3.3). and (3.6) are used without assuming that s, > po.
In the numerical example in Section 3.5. combinations of treatments include a fall
(or spring) application of 300. 600, or 1200lb of sulphur per acre py. (u2): a fall
or a spring application of 300lb (600Ib or 1200lb) per acre of sulphur g (112 or
#3); among others. Comparing (3.6) with (3.4), we observe that cf¢ /% + 7% is
generally smaller than df,,\/Z+ I when the number of combined treatments J is
at least 2. Our new test statistic can provide sharper simultaneous confidence lower

bounds of binations of certain means and the control mean than

those of Dunnett’s method.
The scab index experiment in Cochran and Cox (1957) (see Section 3.5) is such an

example where a treatment is said to be better than the control when that treatment
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mean is smaller than the control mean. The cors di sided

confidence lower bounds to (3.3). (3.4). (3.3). and (3.6) arc

[ -
— =, 3.7
e n

o — iy 2 No. —

(3.8)
(3.9
and
to =t 2 Ly =3 (3.10)
respectively.
3.4.1 Efficiency of Confid Lower B d

The efficiency of the new procedure is compared to Dunnett’s procedure in terms
of mean heights of confidence lower bounds. The mean heights of confidence lower
bounds in (3.5) and (3.6) are cf ¢,/ + 2= £(S), and the mean heights of confidence
lower bounds in (3.3) and (3.4) are d2,,,/Z + LE(S). The ratio of the mean height

of Dunnett’s confidence lower bounds to that of the new procedure is
Ry, = f*“ i : : @3.11)

tcong tie

The values of Rg, are provided in Table 3.4 for a = 0.05. v = x. ng = n; =
...=mngand k=2 4,6,8,9. 10 and for the number of combinations in C from
1, the singleton, to 10. In the case of a single treatment versus a control, the mean

heights of Dunnett’s confidence lower bounds are shorter than those of the new
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procedure. But the ratios are very close to 1 and the losses in efficiency are no more
than 2.3%.

The mean heights of the new procedure are shorter than those of Dunnett’s

for bi of two or more s. The ratios of the latter to

the former are larger than 1 and the gains in efficiency are at least 12.9%. Further
comparisons can be found in the numerical example in Section 3. When the variance
o* is known, the ratio of the mean height of Marcus and Talpaz's (1992) simultaneous
confidence lower bound to that of the new procedure lies between 1.022 and 1.180

when k =

between 1.041 and 1.317 when k = 4: between 1.064 and 1.393 when
k = 6. There is no advantage in using Marcus and Talpaz’s procedure to compare

ijs P i 5. OF p to the control mean pg.

3.4.2 Probabilities of Nonnegative Confidence Lower Bounds

In this subsection, we compare the ilities of i di lower

bounds by Dunnett’s procedure with the corresponding ones by the new procedure.
The experiment is a 2x3 layout with a control. The row effects are denoted by a;. a2
and the column effects are denoted by 3;.3,.3; excluding a control. The control
mean is assumed to be zero. i.e.. g = 0. and ng = 2n. Six cases are considered and
they are

Case 1: ay = a J=3h=8=2

Case2: a; =0, 2 =1.0: 31 =3 =3=20;
Case3: a1 =0,0:=20; =5 =08=20
Case d: ay = =0; B, =100

Case 5: a; =0,y =1.0; 3, =10, 8, =20, 83 =3.0;
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Case 6: ay =0,0: =20: 3, =10. 3, =20. 33 =3.0.

For each case, the ilities of i id lower bounds for Dunnett’s

and the new lure are calculated. For simplicity, we assume o%/n =
1. The results are provided in Table 3.5.

These ilities are the of d ing the diffe between the

row mean y; and the control mean . between the column mean y ; and the control
mean g, and between the grand mean x and the control mean yo. The probabilities
of nonnegative confidence lower bounds by the new procedure are always higher than
those by Dunnett’s. The differences are substantial and they could be as large as

0.416.

3.5 A Numerical Example

The results of an experiment on the effects of applications of sulphur in reducing
scab disease of potatoes can be found in Cochran and Cox (1957). The objective
of applying sulphur is to increase the acidity of the soil. In addition to untreated
plots which serve as a control, 3 amounts of dressing were compared at 300. 600. and
12001b. per acre. Both a fall and a spring application of each amount were tested. so
that there were six distinct treatment groups excluding the control. There were four
observations for each treatment group and eight observations for the control group.
The thirty-two observations are provided in Table 3.6, where the six treatment

groups are labelled as F3, S3, F6. S6, F12 and S12 respectively. The pooled variance

estimate is S* = 41.93 with 27 degrees of freedom. The interaction between the time
of application and the amount of dressing were not significant, the corresponding

p-value was 0.670, and a two-way additive model is used.
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The overall F-statistic for testing Ho : go = iy = ftrz = iy = fiag = s = piag
against all alternatives has a value of 3.83 and its p-value is 0.007.

The likelihood ratio statistic £3, for testing Hy against the alternative hypothesis
Hy:po 2 pyy (i = 1.2, = 1.2.3) with at least one inequality has a value of 0.461

and its p-value is 0.00303. Here the degrees of frecdom for the LRT £3, is

In this application. low treatment response is preferred. The statistics (3.1) and

(3.2) are given respectively by

Lo — Xy
Do=, mus  TEe=E.
.-J‘Snn-rn

and

(3.12)

By using the interpolation method in Hochberg and Tamhane (1987). the critical
value for Dunnett’s one-sided test for ng =8 and nj; = npx = nz =ny =nn =
ny =4 is d2% = 2.48. The Dunnett's statistic is equal to 4.24 and its exact p-value
is 0.000657. The new statistic Gi¢ of (3.12) is used to test Hj against H,. Its critical
value 2% depends on the number of comparisons used in (3.12). That number
is normally (I + 1)(J + 1). However. for this particular application we are also
interested in comparing the mean response of dressing 600lb. or more per acre with

the control mean. Therefore, there are thirteen comparisons in this application and

the new statistic has the value of 4.24. The critical value is 32,5 =

2.54 through

simulation and its exact p-value is 0.000935.

For these thirteen i their si d lower bounds by

Dunnett’s procedure and the new procedure are provided in Table 3.7. In these
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interval estimations, we do not assume that the application of sulphur is effective
in reducing scab indices. The notations used here are: F stands for Factor A at
level one which includes F3. F6. and F12; S stands for Factor A at level two which
includes S3, S6, S12: 3 stands for Factor B at level one which includes F3 and S3:
6 stands for Factor B at level two which includes F6 and S6; 12 stands for Factor
B at level three which includes F12 and S12: “> 6" stands for Factor B at level
two and level three which includes F6. S6. F12 and S12; and “> 3" stands for the
combination of all six treatments. Table 3.7 is divided into two cases. The first
case is for the confidence lower bounds of a single treatment against the control
#ij — po. Both Dunnett’s procedure and the new procedure detect the difference
between F3 and the control. as well as the difference between F12 and the control.
Dunnett’s confidence lower bounds are larger than our confidence lower bounds with
differences of 0.236 and 0.237. The second case is for the confidence lower bounds
of combined treatment against the control pc — po. Both Dunnett’s procedure and
the new procedure detect the difference between 12 (F12 and S12) and the control
as well as the difference between F(F3. F6 and F12) and the control. However. the
new procedure also detects the difference between 3 (F3 and S3) and the control,
and the difference between “> 6" (F6, S6, F12, S12) and the control. It is also found
that the application of sulphur (“> 37) resulted in a significant reduction in scab
index. Dunnett’s procedure fails to detect these three differences. Our confidence
lower bounds are larger than Dunnett’s confidence lower bounds with differences
ranging from 1.61 to 3.12.

The ratio of the mean height of Dunnett’s confidence lower bound to that of the

new method is R3S, = 1.196 for combined treatments 3, 6, or 12; RI%, = 1.310
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for combined treatments F or S; R¢%:

= 1.381 for treatment combinations (> 67).
and R2% ; = 1.465 for all treatment combinations (“> 3"). The results demonstrate
that the new procedure is more efficient than Dunnett’s for comparing combined
treatment means with the control mean. The larger the number in the combined

treatment group, the higher the relative efficiency.

3.6 Extensions

The use of the statistic Gic in (3.2) and its ding simul !

lower bounds can be applied to many different designs involving a control. One
extension is to a two-way design. Factor A is a time factor and Factor B has J
levels and a control of no treatment such as the above example. Each ith level of
Factor A at the control level of Factor B represents an independent and identical

ofa

| trial. The data gathered represents an /[ x J

with n i in each group and a control with nl

observations. For 2x 2, 2x3, 2x4and 2 x 5 experiments with a control of 2n
observations, one may use the critical values provided in Table 3.2.

Another extension is also to a two-way design. Factor A has [ levels and a control

and Factor B has J levels and a control. There are (/ + 1)(J + 1) — 1 treatments.

E: i are i in ing p;; with the control mean o0 and they
may also be interested in comparing pi. = oo 15, Ho. = Tiey 45, py = Tlg 25,
Ho =Lk 48, or p. = (Llg Tjeo —#oo)/(IJ + I + J) with the control mean jqo.

A third extension is made for the design of k treatments and a control. Two
or more treatment groups may have the same characteristic. They may be the

same treatment with different dosage levels or different times of application. Ex-
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may be i in ing a set of groups to the con-
trol. The critical values ¢f, of an all-purpose test statistic Gi corresponding to
(3.2) involving all 2* — 1 possible comparisons can be found in Peng, Lee, and Liu
(1999). This approach is somewhat conservative if one is interested in 13 compar-
isons instead of 63 comparisons when & = 6. The former requires a critical value of
Qe

andn =na=n3=n,=ng=ng=4.

2.56 while the latter requires a critical value of 335 = 2.66 when ng = 8
.23

3.7 Conclusion

The new procedure is appealing in that its mean height of simultaneous confidence
lower bounds is only slightly larger than that of Dunnett’s for the difference of a
single treatment mean and the control mean, but it is substantially smaller than

that of Dunnett’s for the difference of a treatment factor mean p; (or ;) and the

control mean. As a the new is signi v more powerful
than Dunnett’s in detecting the difference between factor means p; or u; and the
control mean yo. When those comparisons are of interest, the new procedure is
recommended. On the other hand, our new procedure as a test statistic is more
powerful than the LRT and Dunnett’s test along the center direction and pairwise

directions.
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Table 3.1: Upper Percentage Points for I x J Experiment With Equal Sample Size.

40

100

k=treatment groups

2x2

2x3 2x4 3x3

2.59

2x3
248 267 272
312 333 3.
507 3.16
249 2535
3.03 3.8
434 440
237 242
2.83 288
3.87




Table 3.2: Upper Percentage Points for I x J Experiment With ng = 2n,;
2n;.

k=treatment groups

df a 2x1 2x2 2x3 2x4
3 10 3 263 279
03 329 346
01 3.02 524
7 10 246  2.60
05 299 313
01 427 445
10 .10 247
05 2.92
01 3.96
15 .10 2.37
03 27T
01 3.62
20 .10 2.33
05 2.70
01
2 .10
.05
01
30 .10
05
01
40 .10
05
01
60 .10
05
01
100 .10
05
01
oo .10
05
01

49



Table 3.3: Power Comparisons.

Test
Direction k A ~Gye  Dunnett’s LRT
Center
21 2444
2 60.07
3 83.86
41 2441
2 5938
3 8825
6 1 2334
2 57.63
3 86.97
Pairwise
2 1
2
3
4 1
2
3
6 1
2
3
Edge
2 1
2
3
4 1
2
3
6 1
2
3




Table 3.4: Ratio of the Mean Height of Dunnett’s Confidence Lower Bound to That

of the New Procedure. a = 0.05. ny =n; =... =ngand v = x.
Combination

1 990

2 L1143 1129
3 1.197
4 1.236
3

6

T

8

9

=3
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Table 3.5: P ilities of Ni gative C Lower Bounds for Dunnett’s
Procedure and the New Procedure. ng =2n, = ... = 2m.
Case  Method py. —po pta —po fta—jo  pa—jo s =y pf—Ho
Case I D 0170 0.7t 0193 0.193  0.0193 0.1
N 0413 0413 0341 0341
Case2 D 0.171 0.538 0.357
N 0.413 0.810 0.536
Case3 D 0.171 0.893 0.533
N 0.413 0.976 0.722
Case+ D 0.171 0.171 0.031
N 0.413 0.413 0.079
Case3 D 0.171 0.338 0.086
N 0.413 0.810 0.181
Case6 D 0.171 0.893 0.193 0.872 .565
5 0.413 0.976 0.341 0.944 0.897

* D for Dunnett’s procedure and N for the new procedure



Table 3.6: The Scab Index Data.

0 F3 S3 FG_S6 Fl2 Si3

1230 9 30 16 18 10 17

1018 9 7 10 24 4 7

243 16 21 18 12 4 16

202 4 9 18 19 5 1F

Towls 181 38 6@ 62 3 23 37
Means 226 9.5 168 155 182 58 142

Notation: F=fall. S=spring, 0=control.



Table 3.7: The 95% Simultaneous Confidence Lower Bounds for the Scab Index

Data.

Treatment Confidence Lower Bound
Dunnett’s Method  New Method
Single
Treatment F3 27
S3
F6
S6
F12
S12
Combined
Treatment

wounmiiocw

1V IV




Chapter 4

Statistical Inference for Best
Treatment versus a Control

4.1 Introduction

[n many experiments, the primary goal is to compare several treatment means with a
control mean. or a standard. This is often the case in pharmaceutical studies. where
the superiority of any proposed new treatment over a standard treatment must
be demonstrated before it is accepted. Alternatively. there may be no standard
treatment and the main problem may be to establish whether the new treatment
has any beneficial effect. in which case a placebo control treatment may be included
in the trial as a standard for comparison.

A number of statistical procedures have been proposed to test whether any of

k treatments are different from a control. most of which are multiple comparisons

procedures. The most important work is by Dunnett (19:

). Many generalizations
of Dunnett’s procedure have been made. For instance, Hoover (1991) extended
it to the case where there are several treatments with two or more controls and
joint confidence intervals are required between each treatment and each control

35
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simmltancously. Chenng and Holland (1991. 1992) extended it to the case of more

than one group of trea s. each group

several tre: s compared
with a specified treatment. with the error rate covering all groups and treatment
comparisons simultaneously. Peng. Lee. and Liu (2000) generalized it to compare
treatment means with a control mean in two-factor experiments. On the other
hand. Steel (1959), Fligner and Wolfe (1982). Spurrier (1988). among others. studied
distribution-free analogues of Dunnett’s procedure. The reader is referred to the

book by

iller (1981) and the more recent hooks by Hochberg and Tamhane (1987).
and Hsu (1996) for detailed accounts of some of these developments and extensive
references.

The experiment considered in this chapter is a one-way analysis with k+1 levels.

Let Yy;,i=0.1,...,k j=

. be independent normal variates with unknown
means p; (i =0.1..... k) and a common but unknown variance g2, where z denotes

the control mean and g;.....p denote the treatment means. The statistic $* =

(¥;; — Y)*/v is used as an estimator for ¢*. and it is independent of

Fi), where v5%/0? ~ x2 and v = T gn, —k — 1> 0.

The first problem we study is to make interval inference with the prior knowledge
that treatments are at least as effective as the control. This type of prior knowledge
may come from past experiences. The parameter space is @ = { p € R¥™! : g <

#i, i = 1,...,k}. The null hypothesis is Ho : o = p = --- = p and the

alternative hypothesis is H, = Q — Hp. The test of H, against H, has been well
developed. The likelihood ratio test statistic Sy, for testing Hy against H, is known

to possess generally superior i istics to those of its

see Robertson, Wright and Dykstra (1988). A variety of other procedures have
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also been proposed. most of which are based on one or more contrasts among the
sample means. These include the multiple contrast tests of Mukerjee. Robertson.
and Wright (1987) which includes Dunnett’s procedure and the single-contrast test

as special cases, and ad hoc tests proposed by Williams (1971. 1972,

. Conaway.
Pillers, Robertson. and Sconing (1991) used a circular cone to approximate Sy; and
they developed a test which has the advantages of being casier to compute and can be
used with unequal sample sizes. Tang and Lin (1997) used an orthant to approximate
Soi. McDermott (1999) proposed a class of tests based on an improved orthant
approximation which can be viewed as generaliztions of the multiple contrast tests

of Mukerjee. Robertson, and Wright (1987). In a quite different way. Chakraborti

and Hettmansperger (1996) used suitably defined one-sample confidence intervals to
test Hy versus H, by utilizing the priori of H,.

The second problem we study is making inference with no prior knowledge: in
other words, some treatments may be inferior to the control. This situation occurs

quite often in real life data. The test of the null hypothesis of homogeneity of

the k treatments and the control versus the ity has been ively
studied: Dunnett’s (1953) procedure is the best known one. The null hypothesis
in this chapter is Hy : po > i (i = 1...., k) and the alternative hypothesis is
H : at least one g < p;. This type of hypothesis is different from the classical null
hypothesis of homogeneity.

Interval estimation provides a visual perspective unmatched by a point estimate
or a test statistic. The problem of confidence intervals under ordered restrictions has
not received much attention in the literature. This is primarily due to the general

intractablity of these types of problems (page 405 in Robertson, Wright and Dykstra



(1988)). Only few of the aforementioned test lures can provide simul

confidence bounds (SCB). Marcus (1978) ped a set of si ided
confidence bounds in th case of known variance. Marcus and Talpetz (1992) further

proposed an alternative test stat

ic and used it to construct a set of SCB, but their
procedure is inferior to the Dunuett’s procedure in comparing ¢, to the control mean
Ho. Berk and Marcus (1996) summarized the results of SCB for simple order. simple
tree order and umbrella order.

When the null hypothesis is rejected in favour of the alternative hypothesis for
the above two cases, there exists at least one treatment better than the control. Let
Moest = MaXigice pr. Which is the mean of the best treatment. Since phes — po is the
largest difference between any treatment mean and the control mean. the confidence

lower bound for fiye, = pto is bounded below by that for any u; —pg. (i =

k) or

their gative linear binati If this imi; lower bound

fOF {pest — o is positive, then pg.y, is significantly larger than . The key is to choose

a suitable test statistic such that the positi of the imi fid lower

bound for pses: — po is equivalent to the rejection of the null hypothesis by the test
statistic. This heuristic forms the basis of our method. However. the likelihood
ratio test cannot be used to provide confidence intervals. In this chapter. we pro-
pose some test procedures and use them to search for the sharpest simultaneous
confidence lower bound for g — pto through efficient algorithms. The construction
of the simultaneous confidence lower bound of 4., — pto. as discussed in this chap-
ter, is a particularly useful inference method that has not been considered before.
Our method is different from multiple comparison with the best (MCB) proposed

by Edwards and Hsu (1983). MCB is the procedure in which the mean for each
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treatment is compared to the best of the other treatment means without using any
prior information. MCB can be used to provide a simultaneous confidence lower
bound for freese — pto. but it is not as efficient as ours. as illustrated in Section 4.4.
The layout of this chapter is as follows. A test procedure and an iterative al-
gorithm to obtain simultancous coufidence lower bounds for ph.,. — jto are given in
Section 4.2 for the first problem under the parameter space Q@ = { p € R*' : g

pi=

&} and in Section 4.3 for the second problem under the null hypothesis
Hy i > pi (i = L...,k) respectively. In Section 4.4 a numerical example is
presented to illustrate the methods. In Section 4.5 a power comparison is conducted
to investigate the behaviors of test procedures T in (4.2) and T* in (4.12) to that of
Dunnett’s procedure and Sy;. In Section 4.6 a brief discussion is given. All proofs

can be found in Section 4.7.

4.2 Treatments at Least as Good as a Control

In this section we assume that treatments are at least as good as the control. The

parameter space in this case is @ = { p € R*' : yg < p,.i ...k}. where
the null hypothesis is Ho: po = pt1 = --- = i and the alternative hypothesis is
B8

4.2.1 Likelihood Ratio Test

The estimator of the common value of y; under Hy is 1 =

. where ¥ = E-Efwi

The i il likelihood esti of p subject to Q is denoted by p*

= (. 15,--.,p¢)- It is called the isotonic regression of ¥ =
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Q and it can be computed as follows. If ¥y < Y..i =

weock. then g = To.

Otherwise, arrange ¥; <

< ... £ Yi in ascending order (Yj excluded). Denote

these values by Tiy <

and let ny denote the corresponding sample

size for ¢ =Yg and ny = ny. Let [ be the smallest non-

negative integer such that A = Yo ng¥ig/ Tiognyg <

1. then g5 = A and
up = max(A. ¥).

The LRT rejects Hy in favor of H, for large values of

The null distribution of So; under Hj is given by

k=l 5|
PlSy>s]=3 P(j.k+1L:w)P[Fix; >
Jj=2

(1)

for any s > 0, where N = £ n;, w = (no,....nx), P(j.k + L;w) is the level
probability under Hy, that p® takes j distinct values. Through transformation
U=, - Y

1,....k, we have that
P(k+ L.k +1:w) = P(U;, >0,....Ux >0).

The above probability is the orthant probability in which U =

Ui Lo, ..., L) has
a multivariate normal distribution with zero mean and correlation matrix p of the

form (pi = 1)

Y frl<igick

wo + wi) (wo + w,-)]
For the equal weights case, P(l. k + 1;w) and the critical values sy.q for So can be

found in Robertson, Wright and Dykstra (1988).



61

4.2.2 Multiple Contrast Test Statistic T

When Sy > Sk.u.a. one rejects Hy and concludes that there is at least one treatment
mean g, significantly larger than yy. However, there is no corresponding simultane-

ous confidence lower bound for j1, — py when & > 1. We introduce the following test

k o
medi/S( 3 med) . (4.2)
2 =0

where

&
Cc= {c=(c.,.c‘,....r:k):Zn,t, =0.cy<e. i
=

Let t,q be the critical value of T. then

. N . ,
P e 2 3 meli — tewaS(X nc?) . forallce © (43)
= = =

The left-hand side of (4.3) can be rewritten as
& K -
Pa{ mas 3 ne(¥ - w)/S(X n.ﬂ}")l/' < tova i € R
€ =0 =0

& K 5
= P{maxY nafi/S(Eaed)” < tuna}
= =

1

.
B 3 nilu; - /S < .0}
=]

and the last identity follows a similar argument as in Hogg (1963). It follows that
&

T* =Y nlu] - @)/S% (44)

=0

The right hand side of (4.4) is given by Wright (1988) but it was derived for a
different purpose. The statistic T* is asymptotically equivalent to Sp;. The null

distribution of T under Hj is given by

k|
PT >t = Zl PGk +1w)P[Fy, 2 (4.3)




62
for any ¢ > 0. The critical value #;, is the value ¢ when one equates (4.3) o a.

4.2.3 Confidence Lower Bound for p., — iy

According to (4.3), the 1 — a simultaneous confidence bound for any contrast

Ty mep, with ¢ 2 e i = L. k. is given by

13 mei) = 3 mefi = tnuaS( S )™ (46)
= =

=0

lly. the 1—a simul d lower bound for the difference between

the ith treatment mean g, and the control mean py is given by

= Yo = tiuaS(n]t +ngh) 2 %]

Let K = {c:c€C. Shomcu < toese — po. forall p € Q}. The confidence

lower bound for pyes — o is given by
i
L(Hpene = o) = max( ; ne)- (48)
The following lemma gives another description of the set KC and its proof is trivial.

Lemma 4.2.1 For p € Q. TEgnicity < oese — po if and only if T 50mc: <
1, forallce C.

The following theorem blishes an equivalence relati ip between the pos-

itiveness of the above optimal lower bound and rejection of Hy by statistic T its

proof can be found in Section 4.7.

Theorem 4.2.1 When y € Q. we have that T > ti,q if and only if L(tpest — o) >
0.
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When the lower bound (4.8) is positive. it indicates that the best treatment
mean is significantly larger than the control mean and it also provides the size of
the difference. One may use T to test Hj : po < p(i = L..... k). st — o S 0

versus HY : ptpese — pto > 0 if L{toese — o) > 6. The latter indicates at least one

is a “good” here ~good” implies that its mean is

greater than the mean of the control by a size of 4. One can use the method in Tong
(1969) to classify the treatments as “good” relative to the control. In the remainder
of this section. we shall restrict our attention to the case T > tx,., and we shall
relabel the treatments so that ¥ < ¥3 < ... < Ti. The following lemma relates the

optimal solution ¢° to (4.8) and the MLE x°. [ts proof is trivial.

Lemma 4.2.2 Suppose ¥} < T3 < ... < Ti. Let [ be the nonnegative integer such

that ¥; < pg < Yiur. If ¢ is the optimal solution to (4.8), then § =f = ---=¢f <

¢,y < --- < &. Furthermore, if ¥; = ¥i-,. then ¢ = ¢2,

-t

When T; = ¥isi, we may group them together with a combined sample size

E to the il of ing the MLE p® and Lemma 4.2.2. it can

be easily shown that the maximum problem in (4.8) is equivalent to the following
problem:
3 i £
max { 3 naci; — !kA,mS( > n,c;) } (4.9)
=0 =0
subject toc € C and ¥ yonic <1
The following theorem establishes a necessary and sufficient condition for an

optimal solution and its proof is in Section 4.7.
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Theorem 4.2.2 Suppose that T > ti,... The vector ¢® € K is an optimal solution
to (4.9) if and only if there exist non-negative integers p and q. [ < p < q < k. such

that g3 < 2 < py, S3,+ Sh < 8,50 = =N+ 07w = Top), i =0....p

Q== =0, =Nz +b7' (5 — V), i=g,....k and

max{ Nop(py=Yop). No(Foe=re)} < b < min{ Nogpeny (151 = Yorpen))s Ng=ie Yig-rie—sigoy) }-
(4.10)
where

B = (6,05 = S = Sl (Ngg' + ;

(4.11)

Nov = m, Yoo =3 narl/Nos. Siy= 3 nulu] - Ys)?

When g = p+ 1, the upper bound for b in (4.10) is replaced by (Yo — ¥o,)/ (V' +
Nab).

4.2.4 Iterative Algorithm I

There are (*7*') possible choices of pand ¢, { < p < q < k. From Theorem 42.2

the choice of p < g provides the optimal solution if and only if (4.10) holds. For

given < ... < Yi and S2. we shall show that there are k — [ possible choices

of (p.q) for the optimal solution c°, depending upon the confidence level 1 — a.
The following algorithm selects the optimal solution (py.qo). (p1-q1)--- -+ (pr-ar)

from confidence level 1 — p to the desired level 1 — . where p is the p-value of the

statistic 7'

(0) Set i =0, pg = max{0 < j < k:pj < i} and go = min{l < j < k:pj > i}



(i) Let 3,0y = max{No,, (115, = Vo). Nl V=113 ) - biwen, -, = {S3, + S5+

N3}/, I tesa, ., < tesa. the optimai solution is ¢® with p = p, and
q = q.. Otherwise. go to (ii).
(i) If Nop, (115, = Yop,) > Ny Tok — 413,). then set pioy = max{j 10 € j < pp} <
(145, = Yo, anly, 9 5
#;.} and giey = q,. Otherwise. set p—y = p; and ¢y = min{j : q, < j <
kopg > g} Set i =i+ 1. go to step (i).

The justification of the above algorithm can be found in Section 4.7.

4.3 No Prior Ordering on Treatments And a Con-
trol

In this section, we consider the case when the experimenters have no prior knowledge
of treatment means and the control mean. Experimenters wish to know whether
there are any treatments superior to the control and if so. how much is the difference

between the best treatment and the control?

4.3.1 Union-intersection Method

In this case, the null hypothesis is Hg : g > p; (i = ..k) and the alternative
hypothesis is H] : at least one g < p;. The null hypothesis Hj can be expressed as

infinite intersections Hj = Ncece Hy.. here Hj. : T4 nicys, < 0, with ¢ € C° and
X
c={c=(c i) i X mci =0, ¢20i=1..., 3%
=

The alternative hypothesis H} can be expressed as infinite unions Hj = Uceco Hi..

where Hi. : ¥f nic;; > 0. The rationale behind this union-intersection method is
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simple. If any one of Hj. is rejected. then Hj. which is true only if Hp, is true for
every ¢ € C°, must also be rejected. Only if each of the hypotheses Hg, is accepted
as true will the intersection of £ be accepred as true. For each Hy, versus Hj. the

test statistic used is T? = T, meYi/{S(ZL,

ne)'2}, where ¢ € C°. Suppose

the corresponding rejection region for T¢ has the form {y : T? > a}, where a is
a constant which does not depend on index c¢. Then the rejection region for the

union-intersection test is

Vesoo{y: T2 >ab={y: sup T2 >a}.

Accordingly, the test statistic for testing Hy is sup.cc. 72 which will be denoted
by T as in (4.12) below. By the union-intersection method, T is used to test Hy

versus H|

Note that T% is the LRT of Hj versus H|.
The null hypothesis H{ can also be expressed as the finite intersections Hj =
NK Hy,. where H); @ p1g > u;. then the alternative hypothesis can be expressed

correspondingly as the finite unions Hy = Uf_ H{,, with H{, : jio < p. For each

Hj, versus Hy, the test statistic is D, = (¥; — ¥5)/{S(n]* + nz*)"/?}. Suppose the

corresponding rejection region has the form {y : D; > d}. where d is a constant which
does not depend on index i. Hence the rejection region for the union-intersection
test is
Ui{y : D; > d} = {y : max D, > d}
¢
Then the test statistic for testing Hy is max; D;, which is Dunnett’s test statistic D =

maxicick(¥i — ¥o)/{S(n" +ngt)~2

Notice that T° > D. The latter is a special

case of the former. When ¢i = —1/ng.cii = 1/nyc5 =0, =1,..., i=1,i+l,....k

then Hj; is in the form of Hy.. Both 7° and D can be used to test Hj versus Hj and
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each has its own advantages. As we shall see in Section 4.5. when there is only one
treatment better than the control. Dunnett’s test statistic D is the right choice. but
T is the one to use when there is more than one treatment better than the control.
4.3.2 Multiple Contrast Test Statistic 7°

A ling to the above union-intersection method, we introduce

“new” test statis-

tic to test Hj against H{:

k k e
S nedi/s( ) . (4.12)
= =

It is easy to see that T° > 0.

Denote the critical value of T° by ¢ then

kwar

k k k
P,,{ 3 e 2 Y nefi- l‘,’,‘mS(Z n.cf) 2 forall c € C‘} —a. (413)
= = =
Let r be the largest integer for which ¥;_; < Yiiey. where ¥rxoy = (no¥y +
Noa¥or)/(no +

i=0,rr+1.

k). Let p? = ppfori=1,.... r=1 ¢ =¥ — Toxey + i for

k. IETg> Tiothen p? =jifori =0.1.....k and T° =0.

The left-hand side of (4.13) can be rewritten as

Pu{;ggi nieSi = i)/ S med) " < 0, m € B)
=0 =0

P.,{ ggi nieifi/S( Zk: nic?) o ‘Z.m}
= =

A5 (s - )5 < 2.}

=0

and the last identity follows a similar argument as in Hogg (1965). Thus, we have

T2

«
2 nulpg - 2)*/S* (4.14)
=
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The null hypothesis distribution of T* under the least favorable configuration Hy of
Hy is given by

& 12
°2tj=) PU.k+LwW)P|Fi_0 2 T .13
::}%P[T_l Z‘ ok + 1) P[Fictogo 2 o] (4.13)

for any ¢ > 0. The statistic T° has the same distribution as statistic Sy in Robert-
son, Wright and Dykstra (1988). The critical value £2,,, of T is the square root of
the corresponding one of Sya. The latter can be found in Table A.9 of Robertson.
Wright and Dykstra (1988). Note that £, > diu.a. where dy, o is the critical value

of Dunnett’s procedure D.

4.3.3 Confidence Lower Bound for j., — uo

The 1 - a one-sided simultaneous confidence bound for the contrast  $%q nicys;

with ¢ € C° is given by

. : . .
P(E mews) = 3 miefi ~ 2,,5( 3 ne?) 2. (4.16)

=0 =0 =0
v, the 1 — a ided sil eou: fid bound between the ith

treatment mean ; and the control mean g is given by
P = po) = i = Yo — £2,,S(n]" +n5")' /2 (4.17)

Let K° = {c 1c€C° TEoncis < taen —ua}, The simultaneous confidence lower

bound for fpese — po is given by

k
L2(stsese = pro) = mas (°( Y- micups)- (4.18)
o= i=0
The following theorem establishes an equival lationship between the positive-

ness of the above optimal lower bound and rejection of Hj by statistic 7°. Its proof

is similar to Theorem 4.2.1, hence is omitted.



Theorem 4.3.1 T° > t2,,,, il and only i L%(th — ta) > 0.

One may use T° to test Hy' < jug+6 > (i =

L. k) versus H @ jig+6 < picac
if L°(fthest — o) > d. The positive maximized lower bound indicates the significant
difference between the best treatment mean and the control mean as well as the size

of this difference. It also suggests that at least one treatment is a "good” treatment.

The following theorem establishes a necessary and sufficient lition for an optimal

solution to (4.18) and its proof. similar to that of Theorem 4.2.2. is omitted.

Theorem 4.3.2 Suppose T° > 12, and ¥; S Y2 < ... < Ti. Thenc® € K® isan

optimal solution to (4.18) if and ouly if there exists a positive q. r < ¢ < & such

that c§ = Ngt 0 e = V) i =q.... k. and
Nk (Tor = 1) < b < Ngoie(Vigmue — #5-1) (4.19)
where
b= (2,057 = Sp)/(no™ + NG
and

k k
Voo =3 npd/Noe. S5 =3 nilp? = T)?
T 0
\When g = r. the upper bound for & in (4.19) is replaced by [f‘,k - Yo)/(ng' + ,\';k‘).

4.3.4 Iterative Algorithm II

There are k possible choices of ¢, 1 < g < k. Suppose that T° > ¢, . from Theorem
4.3.2, for given ¥p, ¥ < ... < Yi and S2. there are k — r + 1 possible choices of ¢
for the optimal solution ¢°, depending upon the confidence level 1 — . The optimal

solution g can be obtained iteratively in a few steps by the following algorithm.



(0)Seti=0and gy =r.

A

() Let Bt = Noae(Tyk = 15)- s, = {Sqa+ F2ng" = NJOY2/S 18

oy S

{2,,4- the optimal solution is ¢ with ¢ = g,. Otherwise. go to (ii).

(ii) Set i1 = min{j : q < j < k.pg > 2} and set i 1. Go to (i).

4.4 A Numerical Example

For the purpose of illustration. we consider the data in Table 4.1. (see Ruberg

(1995)). The six treatments means are 3 334 T4 T34 and T

respecs

tively, while the control mean is 23.3. The pooled mean square error is $* = 47.16

with the degrees of freedom v = 33. After relabelling, the sample means are

Y3 =33.4.Y; = 734.¥5 = 7335, and ¥; = T4.4.

4.4.1 Treatments at Least as Good as the Control

The statistic T for testing Hp : pto = p11 = ... = 5 against the alternative hypothesis

Hi:po<m(i=1.... 6) with at least one strict inequality has a value of 21.70

with p-value 0.000 and ;] = ¥; except that pg = pj = 24.7. Since t535.05 = 3.41. one
concludes that py., is significantly larger than yo. The (1 — a)100% simultaneous

confidence lower bound L(gese — #o) under H; can be computed as follows.
Step 0: pg =3, @ = 4. 31 = 138.6. 5350, = 6.80.

Step 1: p1 =2, i =4, 82 =36, ts350; = 1.97 < tg35.05, SLOP.
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For 95% confidence level. one has the simultancous confidence lower bound
L(ptsese — po) = 40.33. where the optimal coefficient is
¢® = (—0.0703. —0.0703. —0.0260. 0.0000. 0.0301. 0.0516. 0.0649).

Note that we do not use the information from the third treatment since ¢3 = 0.

Suppose our confidence level is 50% instead. Then the corresponding critical

value is tg.35 1.94. Since ty 3

.= LIT > ty4

5. one continues to the next step.
Step 2: py= 1. g2 =4. 3y = 6.6. ts35.0, = 048 < 104

The 30% simultaneous confidence lower bound L(gpeg — s10) = 44.18. where the

optimal coefficient is

¢® = (-0.0833, —0.0833. 0.0000. 0.0000. 0.0452, 0.0480. 0.0735).

4.4.2 No Prior Knowledge of Treatments and the Control

The test statistic T° for testing Hy : po 2> p; (i = -+.6) versus Hy : p; >

o for some i has a value of 14.91 with p-value 0.000 and
#° = (11.2.47.4,47.4,47.4,39.1. 50.2, 60.1). Since t2 35 o5 = 2

2. one concludes that
Mbest is significantly larger that yg. The (1 —a)100% simultaneous confidence lower
bound L°(usese — 1) under Hj can be computed as follows.

Step 0: qo =r =4, 8, =66. tg 5, =0.53 < 2.52.

For 95% confidence level, one has the simultaneous confidence lower bound

L(ptbese — po) = 40.13, where the optimal coefficient is

= (~0.1667,0.0000. 0.0000, 0.0000. 0.0453, 0.0482,0.0729).



Note that the optimal lower bound does not use the informarion from the first three
treatments.
To test Hg versus H, and Hj versus H{. one may use Dunnett’s procedure. Since
: [HES TP
= ma Bl — t
D = maxgics A 123 > d,
level. The I

05 = 2.39, one rejects Hy and Hjj at a = .05

e lower bound is 39.42.

Edwards and Hsu (1983) introduced mutliple comparisons with best to construct

confidence interval for i, —maxgg, <k p, (i = 0. 1..... k). According to their method.
the 95% simultaneous confidence lower bound for ptees — p19 is 38.20.

Hence. Dunnett’s procedure D and Edwards and Hsu (1983)s MCB are not
as good as statistics T and T° to detect the difference between the control and
treatments. The statistic T provides the sharpest simultaneous confidence lower

bound for pese — pg with T° a close second.

4.5 Power Comparisons

The behavior of the power functions of Sy, T. 7%, and Dunnett’s procedure D are
investigated. The Monte Carlo method is used with 10,000 iterations. For simplicity.
we consider equal sample size case with v = 20. The simulated powers are provided

in Table 4.2 and Table 4.3 for the two cases in Section 4.5.1 and Section 4.3

2
respectively, where A2 =n ¥, 5, (1 — /2)*/c? is the noncentrality parameter, here

B= Ty il (k+1).



4.5.1 Treatments at Least as Good as the Control

Three cases are considered in Table 4.2: Case 1. the center direction (—k.1..... B
which means that all treatments are effective and their effects are approximately
equal; Case 2, pairwise comparison (—1.1.0.....0), which means that all treatments

are effective but one treatment is more effective than the other treatments: and Case

3. the edge direction (—

=k/ k/2+1) which consists of one half
treatment means with values ~k/2 and the other half with value £/2 + 1: in other
words, one half of the treatments are effective while the remaining half treatments
are ineffective. When the prior information states that treatments are at least as
effective as the control. one may use the above four test statistics. The maximum
and minimum powers for Sp; are conjectured to occur, respectively, at the center of
the cone Q (i.e., Case 1) and at the edges (i.e., Case 3) (See Robertson, Wright and
Dykstra (1988)).

The test statistic T° is shown to be the most powerful one-sided test along
the center direction when all treatments are better than the control. For example.
at k = 6, the power of T° are 6.65%.17.59%. 19.68%. and 10.19% higher than
those of Sg;, for A = 1.2.3. and 4. respectively. T is also the most powerful one
along pairwise directions (—1.1.0,...,0). ..., or (=1.0.....0.1) when treatment
means are larger than the control mean and one treatment mean is larger than the
remaining treatment means. In this case. So; and T are not as powerful as T° and
D. The powers of T° and D are very close. Therefore, we recommend T° for Case
1 and Case 2.

However, So; has the highest power along the edge direction among these four



test statistics. The ditference in power for Sy over D can be as large as 17,

The power of T is the second highest and very close to that of Sy in this case.

Since statistic T has competitive power performance and it can provide confi-
dence lower bound. statistic T is for statistical inference under Case
3.

4.5.2 No Prior Ordering on Treatments and the Control

Cases 4. 3. 6 are considered in Table 4.3. which are (—=A+1, 1.

c=k).(=L1.0....,
0.-2), and (=(k = 1)/2....=(k = 1)/2. (k£ 1)/2. ... (k = 1)/2. =k). respectively.

They have one more extra fiectiv atment than the i

Cases 1.

2, 3 respectively. The last treatment is not effective in comparison to the control.
These three cases apply to test statistics 7% and D only. The statistic T° is more
powerful than the Dunnett procedure D in Case 4, but in Case 5. The Dunnett
procedure D has higher power than that of T°. In Case 6, when k = 3. Dunnett's
test statistic D has slightly higher power than that of T°; howerever. statistic T°
tends to have larger power than that of D as k and A increase.

Based on the results in Table 4.3. the following recommendations are made:
when there is more than one good treatment, T° is the optimum choice for testing
Hj versus Hj; when there is only one good treatment, D is the right choice for for

testing H} versus H}.
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4.6 Discussion

Two different sets of hypotheses are considered. For Hy versus H;. when every
treatment is effective, statistic T° is recommended. but when some treatments are
not effective, statistic T is recommended. For H versus HY, when there is more
than one good treatment, statistic 7° is recommended: when there is only one good
treatment. Dunnett’s test D is suggested. The major advantage of test statistics

T and T is that they have a it ion to si id

lower bounds for the difference between the best treatment mean and the control
mean. Once the optimal confidence lower bound is larger than a threshold (the

threshold ds ling on the experi 's eri ). the next step is to identify

the best treatment or select those “good™ treatments. There are several methods to
achieve this purpose, for example, Gupra’s subset selection (1956, 1963). Bechhofer's
indifference zone selection (1954). Lam’s procedure for selecting good populations
(1986), Hsu’s multiple comparisons with the best (1996). and among others.

Theorems 4.2.2 and 4.3.2 utilizing the Kuhn-Tucker equivalence theorem are

the keys to the optimization p: and the Igori This approach

can also be applied to other optimization problems such as umbrella restrictions.

4.7 Proofs

4.7.1 Proof of Theorem 4.2.1

IE T > tiya, then there exists a ¢; € C such that

k k k 9
(3 meums) = 3 nieuTi = tewaS(Enick) " > 0.
= = =
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Withour loss of generality, one may assume that ¥%_ g n,le,,| = 2. [t is trivial thac

Thgnicutts € foe — fto when g, > prg.i =
Y Ehomeum) > 0.

On the other hand. if L(gty.se — o) > 0. then there exists a ¢z € K such that

... k. Therefore. L(ptyse — pio) >

«
L(ptsese — p10) = l(z n.c:.u.) >0.
=

This leads to

k k ~ 3 k "
T=max 3 nefi/S(End) ™ 2 3 neadi/s(E ned) ™ > tva.
ecC =0 =0 =0 =0

4.7.2 Proof of Theorem +4.2.2

According to Lemma 4.2.1 and Lemma 4.2.2. when ¥; < ¥ < ... < Ti. the con-

straint in (4.8) can be replaced by Zfﬂ ne = 0. )::;, ne < 1,5

vk Iuis
trivial that T ¢ nicipt} — tiw.aS(Tig nic?)¥/? is a concave function of ¢, ¢y, . .. . Ci.
Let
k E oo X « 3
o(c,v.N) =Y micip] — tkvu.ns(z ne) "+ 3 (=Y ne) =AY nice
= = = = =

Let 22 denote the partial derivatives evaluated at the point ¢, v°. and X°. By
the Kuhn-Tucker equivalence theorem (Kuhn and Tucker (1951)). ¢ is the optimal

solution if and only if

(i) 2 = nye; = nicZb —n Thoy 08 = Mm; =0.(i =0, k).

where b = te,0S/(Skio nict?) V2,

(i) S5 n2 <1 (G =1,....k), (22)v°=0,v°>>0and 22 =0.



Suppose ¢ is the optimal solution. By Lemma 4.

creasing, and there exists [ < p < ¢ such that

G==..=q<d. <.

with

» .
S =-Land Y ne
=0

=

From (ii),

SR L sl k.

From (i).

‘

¢ o= b (- - ). (4.20)
=

Adding the first p + 1 equations in (4.20) and using ¥7_g n,c? = —1. we obtain

A =T + NG

Substituting A° into (i), then we have

@ ==Ng' +b7 (g = Tgp).i =0.1

Let V" =T, 02 using 5, nic? = L. then 1" = T — bN' — \°, and

&= NG b7 ()~ V)i = k

It follows that b = tx,,aS/(E50 nic)/? can be written as

o e = 5= 5%
Nop + NG

In order to prove that (4.10) is true, there are two cases that need to be con-

sidered, namely, ¢ > p+ 1 and ¢ = p+ 1. For the case ¢ > p + 1, from (4.20).



Gt = Moy = Yop = BN

£9 =Yy — py_, —bNgZ'. By (ii). ¢j_, > 0 and ¢ > 0, then
b < min{Nop(ky- — Top). Noe(Fpe = 13 1)}
= min{Nogp-1) (1t5-1 = Yorpen): V- (Fyowe = - 1)}-
For the case ¢ = p + 1. since

g = T —bNZ' = Yo —bNG!

= T =To —b0NG + N5 20

b S (Fum Ta/ (Vg +Nah
= (Yo = ¥op)/ (Ngggy + V&)
On the other hand, ¢j < 0 and ¢§ > 0, then
b > max{Nop(py — Yop). Vor (Yo — ) }-

Hence, (4.10) follows.

Next. we prove that g7 < ji < g is true. According to the algorithm of com-

2 < ... < Yi. we have

puting p* in section 4.2.1 and the assumption that ¥} <

that

w==g<pp=fia <. . Sy=Hhpy=5<...Su=T

SuTs e can easily derive
e

For the case g =p+ 1, using ¢; < 0. ¢ >0 and b <
o

Hy << pg.
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For the case ¢ > p + 1, we have proved that b < N, (Vg1 — #y-y). From
<0,
Noa(hty = Top < Ngmuu( Vi ~ 50
in other words,

mtetm < Nop¥op + N Tig-ue

=

Nopit

Notice that ;< ppy = Fpey < ... < p = Vi. from the above ineqality. we obtain

that s < f in the case of ¢ > p + 1: likewise for 4 < ;.

4.7.3  Justification of Iterative Algorithm I

At Step 0. let p = po.q = qo. Jo = (Y — Yop) /(NG

ag is the p-value. It is trivial that

) and let iy, = T. Then

g = (S5, + Sae + (V3! + NGOFY/S*
When tiy00 2 tiwva > tivay, One has that ag € @ < a;. and 3p > b(a) > 3; with
b(a) given by (4.11 ). It follows that (4.10) holds at Step 0.
Suppose that py = p— 1 and g =g. Then 3, = Ny,(i; — ¥op). It is trivial that

GuaS? = Sg+Sp+ (NG + NGNS

Sap-1 + Nop—1(Yop—1 = Top)* + s — ¥op)?

+Sg + (N +

* )N ;= Yoy

= Shi+ S+ (NGl + NZh
Therefore, tyya < tiya, impliesa > a; and 3; > b(a). Similarly for the case p, = p
and qi = q + 1. By induction, one obtains the desired p; and g¢; such that (4.10)
holds for the b(a) of a given level 1 —a.



Table 4.1: Dose Response Data.

Sample  Mean SD
Group size response response

P 6 5 26
A 6 4.0
B 6 3.3
C 6 2.3
D 6 14.6
B 6 7.6
E 6 4.3




Table 4.2: Simulated Powers for Four Test Statistics with a = 0.05.» = 20.

Test
Direction k A Sy T
Case 1
- | 19.23
2 49.96
3 80.07
4 96.35
41 15.00
2 39.57
3 68.60
4 90.36
g 1 13.08
2 31.70
3 39.54
4 83.69
Case 2
22
2
3
4
4 1
2
3
4
6 1
2
3
4
Case 3
21
2
3
4
4 1
2
3
4
6 1
2
3
4
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Table 4.3: Simulated Powers for Test Statisties 7 and D with a = 0.03.» = 20.

—_—
Test

17.96 17.89
40.12 48.48
80.26 78.94

o

1
2
3
4
1
2
3
4
1
2
3
4

Case 5

o

P TSI ORI O

Case 6

o

N R O SR S
'
o
.
5
-
5
=
=)



Chapter 5

Cone Order Monotonicity of Tests
for Treatments versus a Control

5.1 Introduction

A problem frequently encountered in the practice of statistics is comparing several

treatment means with a control mean. or a standard. This problem has been received

iderable attention in L

over the past fifty years. of which the

best known is Dunnett’s (1953) multiple comparison procedure.

Let }¥5;,i = 0. k,j = L.....n; be independent normal variates with un-
known means g, (i =0,1...., k) and a common but unknown variance ¢*, where s
denotes the control mean and . ... i denote the treatment means. The statistic

§? = Tk T (¥, — F)/v is used as an estimator for 02, and it is independent of

¥={¥a

%). where v§%/c* ~ x2and v = T¥ n,~k—1 > 0. When comparing
treatments versus a control, in many situations, experimenters may have the prior
knowledge that each treatment mean is at least as large as the control mean, or
each treatment mean is at least as large as the grand mean. These types of prior

knowledge may come from the past experiences. For example, the same treatments

83
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and the control may have been studied in previous experiments as part of an ongoing
investigation, and therefore the above prior information might be available on all of
them. If we assume that all of the treatments are at least as good as the control, then
the parameter space is @ = {u € R**': yg < gy (i = 1,...,k)} = {z: Ap > 0},
where A is a (k — 1) x k matrix whose rows are pairwise contrasts with
-1100...0
<1010 ... 0
1000 .1
Robertson, Wright and Dykstra (1988) refers to the binary relationship as the simple
tree order. Usually the null hypothesis is Hp : po = gy = - - - = pi and the alternative
hypothesis is Hy = Q — Hy. The likelihood ratio test statistic rejects Hy in favor of
H, for large values of
& I3
Sov =3 milus; = @/ (L nilFi — ) /v + S%),
=0 =
where & = T5n.¥i/ T, m and u* = (43, ..., ) is the MLE under ©, i.e., u*
minimizes =2
Zk: n(¥ — w)?
=
subject to the restriction g € Q. Lee (1988) recognized a shortcoming of the MLE
p* which has been introduced in Chapter 1. The LRT S, for testing Hy against H,
is known to possess generally superior operating characteristics to those of its com-
petitors, see Robertson, Wright and Dykstra (1988). A variety of other procedures
have also been proposed, most of which are based on one or more contrasts among

the sample means, for example, the multiple contrast test of Mukerjee, Robertson,
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and Wright (1987) which includes Dunnett’s procedure and the single-contrast test
as special cases. Tang and Lin (1997) used an orthant to approximate So,.

However, the LRT Sy, lacks some practical monotonicity property, as observed by
Cohen, Kemperman, and Sackrowitz (2000). Any closed convex cone C can induce
a quasiordering < as follows: x <¢ y if and only if y — x € C. where x.y € R**1.
If x and y are sample points such that y — x € C, then our intuition tell us that y
exhibits a greater level of agreement with cone C than does x. A test ¢ is said to be
cone order monotone with respect to the cone C (COMIC]) if whenever y — x € C.
o(x) < ¢(y). Tests which are not COM[C]| are said to be reverse. The cone order
monotone property has appeared in Robertson and Wegman (1978).

The parameter space € is a closed convex cone, see Rockafellar (1972). Cohen.
Kemperman, and Sackrowitz (2000) noted that the LRT Sp; is not COM{Q]. A
simple example of the reversal phenomenon can be seen in the following. Let k =2,
ng =ny = ny =1, and o® is known. In this case Sy, is %3, and we have that

Bt

4 at x = (0,0,6) and %3, = 18 at y = (0,3,6). Therefore, the LRT Sy, is not
COM([Q]. Our instincts tell us that the sample point y is making stronger statement
than x and should be reflected in the inference procedures. A lack of COM for a

test d may be ter-intuitive and undesirabl

The reason that Sp; is not COM([Q] is due to the fact that the angles between
the corners of the cone Q are obtuse. Since likelihood inference is the most common
approach for order restricted models, it is of interest to find a likelihood inference
which is cone order monotone for comparison of treatments with a control. In this
chapter, we consider a new parameter space 2°, which is of practical importance;

here Q° = {u: o < i < pii=1,...,k}, where & = $5  niu;/T  n; is the grand
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mean. When ng = ny = ... = ne. € can be rewritten as 0° = {u: Ap > 0}. where
1 &k =1 =1 o =1
-1 -1 -1 ... -1
4=|-1 -1 ko -1
-1 -1 -1 ... k

Obviously. each row of A has k + 1 nonzero elements and the result in Cohen.
Kemperman and Sackrowitz (1994) cannot be used here. \We develop a likelihood
ratio statistic S§, and its modified test statistic MLRT T to test Ho versus Hy ©
Q° — Hp.

In the parameter space 2 all treatment means are at least as large as the grand
mean. and Q° does not have any obtuse angles between the edges. We shall show
that the statistics S, and T, are COM[Q°].

Cohen and Sackrowitz (1998) offered a new test procedure which is COM

but as Cohen and Sackrowitz (2000) mentioned. the shortcoming of this new test
procedure is that its distribution is not clear and its critical values must be obtained
through simulation. In this chapter. we propose a multiple contrast test procedure
T° which is COM([Q] and COM(S]

moreover. its distribution and critical values

are available in the literature.

The outline of this chapter is as follows. In Section 5.2 we introduce the LRT S§,.
In Section 3.3 we give the MLRT T3, and the multiple contrast test procedure T°.
In Section 5.4 we discuss the behavior of the power functions of four test statistics

Sot.S8;-T° and Dunnett’s test statistic D.



5.2 Cone Order Monotonicity of LRT Sg,

Let u° = (4. ..., u3) be the MLE under 9°, ie.. u° minimizes
b e
3 (¥ - p)?
=
subject to the restriction g € 0. The solution p®° is a projection of ¥ onto Q7 with
weights w = (ng, ..., nx) and is denoted by u® = Po(¥|Q°). It can be computed
as follows. Without loss of generality. one may assume that ¥ < ¥2 < ... < T Let

r be the largest positive integer for which Yr_y < (5K, n, Y5+ no¥o)/(ZEL, ny +no).

Denote the right hand side of this inequality by Yixey. Then p? = j for i =

—Lpu=

—Yam+afori=0rr+ L.k IEY) > Vi then p¢ = ji
for i = 0.1,...,k. Let us use the scab index data on page 97 of Cochran and Cox
(1957) to illustrate how to use the algorithm. The sample means are labeled as

¥0=1226,11=1821;=168.; =155.F; = 142.F5 = 0.5,

=35.8. This is the
case where @° = {u: g > & 2 i = L....,k}. According to the algorithm. r = 3.
where ¥;_y > ¥.x.1 = 15.125. The expression for u° remains the same and it is u°
= (23.31.15.65,15.65, 15.63, 15.65. 11.91.10.21,6.51).

One rejects Hy in favor of HY for large values of

k k
S =3 nuluid — @/ (3 nul¥i = ) /v + $%) (5.1)
=

The null distribution of 5§, under Hy is given by

L] clv+l-1
PIST > o = 3 Pk + 1P [Frvtctnin > ST

for ¢ > 0, where w = (ng....,ng). P(l,k + 1;w) is the level probability that the

MLE p* under Q takes ! distinct values when Hj is true. The values of ¢ and
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P(L.k + 1: w) are available respectively in Table A.11 and Table A.13 of Robertson.
Wright and Dykstra (1988).

The dual K* of a closed convex cone K is defined as follows:
K ={f: Sy wifig <0, forall g € K}

where w = (ng,.... ng). Let Py(.|K) denote the projection onto K with weights w
and [||w be the usual weighted norm. The following two lemmas are used to prove

Theorem 5.2.1.

Lemma 5.2.1 Let £ be a linear space. and £ C K. here K is a closed convex cone.

Then Pu(y + ¢|K)= Pu(y|K) + cif c € £ and for any y € R**,

Lemma 5.2.2 Let K* be the dual of K. If§ € K. then for any y € R¥*!. || Py (y+
8 1K) llw < [IPulyIK)liw-

The proofs for these two lemmas are trivial.

Theorem 5.2.1 The LRT Sg, is COM[Q7].

Proof. Let F; ~ N(0.2). " = F; + p. Y72 = ¥

pae 1Y = Pu(FR[00),
B3 = Pu(F2(Q°). where A = pz — g € 0°. Then F#2 = §1 + \. Denote

2(m) = T n(F7* — p3,)?/v + S* and similarly for 6°%(u2). Since Q° is a closed
convex cone, A+ Pu(F#|Q°) € 2°, then
¥4 = Po(F21Q°)|lw = [IF* + A = Pu((F* + 2)[Q)]|w
< I 4+ A = [P (F#]00) + Alllw

= [IF* = Pu(¥*Q°)]|w-



The above inequality comes from the definition of projection and it implies that
5%(u) 2 67 (pe2).
From Lemma 5.2.1,

Py(¥# = Py(T#Hy) + NV[Q%) = Po(F™ + N = Py(T™ + A Hy)|Q°)
= Pu(F™ +NQ°) = Py (T™ + \Hy)
= Pu(¥"20%) = Pu(¥%| Hy)

where A = \ — Py(A\Hy). Applying Lemma 5.2.2 with § = —\(!). then
[1Pu(¥*21Q°) = Pu(¥*™{Ho)llw = [[Pu(T™ = Pu(Y*!|Hy) = 3121w
> [P = P (1 Hg)|2)]|w
= [Pu(F2°) = Pu(¥™ | Ho)llw-

Hence, we have that

"
Lo~ ) = ||Pu(¥H0°) = Py (Y Ho)lf3,

=0

In

[1Pu(§4210°) = Py (T2 Ho)llwe
«

= Y nu - )

Therefore,

R L ()

This completes the proof.
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5.3 Cone Order Monotonicity of Test Statistic 7°

From the LRT S3,, a more straightforward approach to testing Hy versus HY is to
replace the denominator of 5§, by S%. One rejects Hy for large values of
N
T =Y nug - /5% (5.3)
=
We call T3, the modified likelihood ratio test (MLRT). The null distribution of T3,

is as follows:

.
PTG 2] =Y Pk + 1:w)P[Feoiiyoemt 2
=

for any ¢ > 0. The LRT S§, and the MLRT T are asymptotically equivalent. The
staristic Tg| has the same distribution as statistic Sy2 in Robertson. Wright and
Dykstra (1988). The critical values of Tg are the same as the corresponding ones
of Si2. The latter can be found in their Table A.9.

Next we consider a multiple contrast test statistic 7 as follows:
£ - L a2 - =
T =maxy meli/S(E nc) . (5.3)
=T = =0
where the contrast cone C° which corresponds to Q° is defined as follows.

sk}

&
C“={c=(cq.c... ..q):gn,:,:ﬂ_ 6>0.i=

It is easy to see that 7° > 0.

Following the argument in Hogg (1963), one can show that
&

T = 3 nu - 0)Y/S* = T3, (6:6)
i=0

The critical values of 7 is the square root of the corresponding ones of Sj2. More-

over, T° is cone order monotone for 2 and Q° and can be used to make interval

inference.
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Theorem 5.3.1 The statistic T is COM[Q] and COM[Q*].

Proof. Let ¥; ~ N(0.2). T/ =T, + .. 1}
Then.

o+ gt and pa — g1y € Q (or Q°).

S =2
T*(na) = may =

> §(Thane)”

Since p2 — py € Q (or Q°). then  po; — pryy 2 pran — fyo. § =

Thome I + Ty nenlien — i)

S(Thand

... k. Norice that
cec®, Thymclus - ) 2 0. Thus. T°(ua) > T%(u). Hence. T° is COMIQ)
(or COM[Q?]).

5.4 Power Comparisons

A simulation study is conducted to compare the behavior of the power functions of
Sot. 5§;- T°, and Dunnett’s test statistic D. For simplicity. we consider equal sample
size case with v = 60. Three cases are considered. They are the center direction

(=k.1L.....1). the edge direction (~1.k

...—1). and the direction of pairwise
comparison (—1,1.0,....0) which lies in the middle of the center direction and the

edge direction. Let A? = n T (i, — &)°

be the noncentrality parameter. here
B =%, p:i/(k+1). Within each direction we consider k =2.4.6and A =1.2,3. 4.

For each configuration. 10,000 multivariate normal random vector with the identity

vari i matrix are Table 5.1 gives the powers for the above
four test statistics for these cases. These three cases satisfy the hypothesis that
treatment means are at least as large as the control mean. Case 1 and Case 2 also

satisfy the hypothesis that treatment means are at least as large as the grand mean.
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The LRT Sj, is shown to be the most powerful along the center direction when
all treatments are better than the control. i.e.. every treatment is effective. and
along the pairwise directions (=1. L.0..... 0).....0r(=1.0.....0.1) when treatment

means are larger than the control mean and one treatment mean is larger than the

remaining treatment means. The test statistic 72 also has la

gor powers than that of

the LRT S, in these two cas

. And statistic T outperforms Dunnett’s procedu

2

D in Case 1 and in Case 2 when A =

. The power of statistic 77 is very close
to LRT Sg,. However, along the edge direction. Sy, outperforms the other three
statistics.

Based on the power results in Table 5.1, we

an make the following recommen-
dation. when treatment means are at least as good as the grand mean, one may
use LRT S3; or T°. Although LRT Sg; is not cone order monotone. when some

treatments are not effective, one should use LRT Sj,;.



Table 5.1: Simulated Powers with a = 0.05.» = 60.

Test
Direction k A~ Sy oL 5l
Case 1
2 i |
2
3
4
41
2
3
4
(D
)
3
4
Case 2
i
2
3
4
4 1
2
3
4
6 1
2
3
4
Case 3
2 T
2
3
4
4 1
2
3
4
6 1
2
3
4
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Chapter 6

On the Test for Equivalence of
Treatments with respect to a
Control

6.1 Introduction

A problem v d in ph ical and other fields is the com-

parison of k + 1 populations [Ty, IT. [Mi. where Ip is a standard or control

P ion to be with the ining k trea lations. This

problem has received considerable attention in statistics over the past fifty vears
and the best known method is Dunnett’s multiple comparison procedure (1953).
Specifically, assume that we have independent observations };; from & + 1 normal

populations with unknown means y; (i =0,1..... k.j

....n,) and a common
but unknown variance o2, where y denotes the control mean and p;..... e de-

note the treatment means. \We may assume a larger treatment effect y; implies a

better Let fipese = max i St the mean of the best treat-

ment. We shall consider the case of equal sample size n for each treatment but
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allowing for a different number of observations ng under the control in this chap-

ter. Let §2 = T4, T0, (¥ - T)%/v. It is independent of ¥ = (To.....¥i) and

v§*[o* ~ \Zand v = T yn,—(k+1) = ng+kn—(k+1) > 0. where sample means

i, Yiy/ne. It is well known that. for large enough sample size. the null hy-
pothesis of the equality of treatment means and the control mean pg = py = ... = e
will almost always be rejected as has been pointed out by many researchers (sce
Berger (1983)) if the underlying distribution is continuous. since irrational values
cannot be recorded with perfect precision. The point null hypothesis is unrealistic
in applications. Bofinger and Bofinger (1993) studied the test of a null hypothesis
that p, — g exceeds a preassigned constant for some treatment with the alternative
of all the differences y; — o being no more than the constant. Bofinger and Bofinger
(1995) developed stepwise tests for this type of hypotheses. Giani and StraBburger
(1994) also considered the problem using the two-sided Dunnett’s procedure.

In many situations there is a prior knowledge that the treatments are at least
as effective as the control. This type of prior knowledge may come from past expe-
riences or it may arise in the experiments where, for example. a higher dose level
of a drug has larger effect on the patients. The prior knowledge can be expressed
as pg < pi, i = l.---,k, which is typically called the simple tree order in order
restricted inference. Robertson and Wegman (1978) proposed a likelihood ratio test

to test the null hypothesis as pg < p; (i =

-, k), which is not a point null hy-
pothesis but a restricted hypothesis such as H, versus H, in Chapter 2. However,
in some applications, although we have the prior knowledge that the treatments are

at least as effective as the control, all the may not be signi v bet-

ter than the control; in other words, the best treatment mean, psese = MaXigick i
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may not be substantially better than the control mean. pq. for practical purposes.
Thus. it is of interest to establish a practical equivalence of all the treatments with
respect to the control yo under the prior knowledge py < j.. Establishing this equiv-

alence is the purpose of this chapter. As an example. among the drugs available

for HIV. some may be too expensive ro be to people in underdeveloped
nations whose funds for medical programs are limited and where treatment costs
are prohibitive. Because to date no drug has been very effective in fighting HIV.
it is of interest to choose cheaper drugs with comparable treatment effect. This
idea leads to the consideration of interval hypothesis H{ : (ttseqe — o)/ < d versus
H{ : (ftoese — p10)/0 > 4. where 4 > 0 is a prespecified critical threshold value. pos-
sibly given by drug evaluation guidelines. The constant 4 can be interpreted as the
amount of variability about which we do not care. and the null hypothesis can be
explained as saying that there is little difference or there is practical equality among
treatments and the control. For each treatment the threshold value § specifies the
largest effect difference from the control that is not worth detecting for practical
purposes. For the interval hypothesis in & populations without a control, one can
refer to Bau, Chen. and Xiong (1993) and Chen and Lam (1991).

In Section 6.2, a test statistic is proposed and its critical value computation is
discussed. The distribution of the test statistic depends on all mean differences be-

tween treatments and the control. The least favourable configuration (LFC) of these

which imizes the signil level occurs at (o, o +09. ... Ho+0d)

under p; > p, (i =1,

;). Since the distribution under LFC in H{ involves double
integrals, the double integrals is evaluated by a 64-point Gaussian-Legendre quadra-

ture over 4 by 4 grids. For the special case of § = 0, the percentage points agree
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with existing tables (e.g. Bechhofer and Dunnert (1988)) to three decimal places.
We also construct lower confidence bounds for d(y) in Section 6.3. Such confi-
dence bounds can be used to assist the experimenter to choose d when it is difficult

to specify 4 in advance.

6.2 Testing Equivalence of Treatment Means and
the Control Mean under yu; > o
The null hypothesis and the alternative hypothesis are respectively
HY < (ihese = o)/ < 5 and HY : (phese = po) /o > 0.

where ¢ > 0 is a preassigned constant. Based on Dunuett’s (1955) multiple compar-

ison procedure, the test statistic considered is:

The null hypothesis is rejected if D > c. where the critical value ¢ > 0 is chosen such

that the nominal level a € (0.1) will be kept. To evaluate the critical value ¢ for

which the maximum Type I error probability just atrains the level a. it is necessary

to determine the supremum of the power P,.)(c) over H. ie. supy; Pus)(c) =
a€(0,1), where

Puor(@) = P{mas i = 3 > e5)[ = + 1),

<i< ng n

The supremum of the probability of rejecting H{ is calculated as follows:

. A1
Pug(@) = p{&.ﬁx’mfﬂns n_.,*'i}
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(6.1)

= 1-P{Z+Vs, <2

}

. /x[ \/:_ 5 h + o 78,) 0( =) (u)d=du.

where & = (= po)/0.i = L.....k. The {Z, = ym(¥i = p)/a} (i =0.1.....k)
are independent standard normal random variables with p.d.f o(-) and c.d.f ®(-).
the random variable L' = S/o is distributed as \,/y/% with the probability density
function g, (-) and degrees of freedom v = np + kn — (k + 1) > 0. Under additional

conditions on the means, the follwoing result can be stated.

Theorem 6.2.1 When p, > o (i =

.. k). the least favorable configuration for

maximum Type [ error occurs at u* = (po. pg + 4. ... Mo + G9).

Proof: From H{ and the prior knowledge o < pi.i = 1..... k. 0 < 4; < 4. Notice
that &(-) is increasing. On the condition that S = s. the minimum of [T, Q(:E+
ucm - \/7:6,) is attained at §; = 4: in other words, the maximum Type I error
probability occurs at u* = (o, tto +09, . .., g +d). Since u* is independent of the
value u assumed by the random variable U, p* is the least favorable configuration
for Py..)(c) over (1,0) € H{. This completes the proof.

Let Ps(c) = SUP( e Plu.q)(c), then we have

Pie) =t /ﬂ“ j_: 0*(:‘/,‘1“4- uey[1+ nlo - VAS)s()a(udsdu.  (6.2)



Note that in the special case where d = 0. (6.2) reduces to

1_/ /.,c (= \/_""CW"'~ ofz)qu(u)dzdu (6.3)
.= l-tL

P{D>L1Hu Mo ==

Pue)

1

where ¢ is the corresponding critical value of Dunnett’s procedure in the classical
null hypothesis of homogeneity of the k treatment means and the coutrol mean .

We now want to obtain the critical value ¢. where ¢ is the solution to the equation
Pilc) =a. (6.4)

Since the distribution of the test statistic D at the LFC involves double inte-
grals. Gaussian quadrature and Newton-Raphson’s iteration method are employed
to obtain the percentage point ¢ of the test statistic D in (6.2). Moreover, since
the double integrals involves infinite integral limits, it is necessary to truncate the
infinite limits to a finite one for case of caleulation and avoiding underflow and/or
overflow. In this chapter. we truncate the normal variable z at —7 and 7 with tru-
cation error < 2 x 10~? (because ®(7) > 1 — 10~%) and the y,//7 variable u at a
point b such that [ q,(u)du < 1072 so that the total truncation error is less than
2(k+1) x 10~ + (k + 1) x 10~°. In the numerical integration we use a 64-point
Gaussian-Legendre quadrature over each of 4 by 4 subintegrals to evaluate the dou-
ble integrals. At special case with § = 0. these percentage points agree with existing
tables to at least three decimal places. (see Bechhofer and Dunnett (1988)).

The Newton-Raphson iteration is used to solve Equation (6.4) for ¢, for the nth

iteration
Bi(ent) —a

o (o I



where Pj(c) is the partial derivative of Pj(c) with respect to ¢ and is given by

B = ke 2 [T [T 0o [E e i+ 2 - i)
.¢(:\/E +uey[1+ 2 — VA8)o(2)ug. (u)dzdu (63)

which is negative since u, ®(-). 6(-) and g,(-) are nonnegative. The solution is unique
since Pj(c) is monotonically decreasing in c.

In (6.2), the double integral is partitioned over 4 by 4 subrectangles where the
= variable is partitioned into (—7.—0.6745,0,0.6745,7) and the U variable into
(@1, @a,a3,04.05), where a; is the 10~%th percentile, a, is the 25th percentile, a3
is the median, ay is the 73th percentile, and a5 is the 1. — 10~%th percentile of L.
A 64-point Gaussian-Legendre quadrature is used to evaluate over each of 16 subin-
tegrals and then the results are summed to obtain the overall probability integral
in (6.2). The same process is used to obatin the value of the probability integral in
(6.3).

Table 6.1 gives the percentage points with equal sample size case, i.e., ng = n,
for k = 2(1)10, n = 2(2)10, 15,20, 30(10)80, « = .05, and ¢ = .10 and 1/3 (§ = .10
and 1/3 are presented here. Fortran 77 source code is available which can be used
to make more tables). Table 6.2 is similar to Table 6.1 except that the allocation
2 = Vk is considered, this type of allocation is called square root allocation rule
which was shown to be nearly optimal in Dunnett (1955) and other papers.

When the common variance is known or when the degrees of freedom v are very

large, S converges to 0. Thus, H,,’ is rejected if D > ¢, where c is the solution to

1 -a=f_:¢#(z‘/§+c,h+%—m)¢(z)dz, (66)
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The percentage points are given in Table 6.3 and Table 6.4 for a = .05, VAd =
1(1)11, and k = 2(1)10 for equal sample size case ng = n and no/n = V&, respec-
tively.

Example 1. Let us assume that a psychologist wishes to test differences in [.Q.
scores between a control group and 4 treatment groups with equal sample size n =
15. According to her previous research, she believes that the mean 1.Q. scores for
each treatment group is at least as high as that of the control group. Because of
lack of precision of . she regards di of 1/3 standard unit to be

irrelevant. Assume that D = 222 Bi-h — 983, The critical value at @ = 005

for the point null hypothesis pg = gy = pa = p3 = py is 2.20 from Table E.2 in
Hsu (1996). If she uses the point null hypothesis, she has to reject the point null
hypothesis. From Table 6.1, the critical value for the interval null hypothesis is 3.053,

she does not reject the interval null hypothesis and ludes that the diffe

bewteen the control and treatments are no more than 1/3 standard unit.

6.3 Confidence Lower Bound

An experimenter may not be able to specify the size of § in the null hypothesis. In
such situations, the tables can be used to construct a confidence lower bound for the
standardized range d(u) = (Usest — po)/o instead. The confidence lower bound is

obtained as follows. For simplicity. we assume that ¢ is known and ng = n. Denote

L(c,6;kyn) = (“_m%/mp“{o <c}=1- (Ms_%/ﬂip,{n >c},
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which increases from 0 to 1 as c increases from 0 to oc. Given a > 0, we can find

¢ = cxn(d) such that L(c,&;k.n) =

—a. It follows that
P{D e} 2 1-a.

Using (6.2) and the monotonicity of ®(-), one can easily show that ¢, .(d) in-
creases strictly from cx2(0) to oc as d increases from 0 to oo for a given a, n and
k,

PfiD) <6} 21-a
for all p with (ptpest — po)/o = 6. Where r:;:l(y) is the inverse function of ¢k, and
is defined to be zero when y < ¢ and ¢ is the (1 — a) percentage point of the

test statistic D of k + 1 ind dently and identically distrik random variables

N(u,0%) when & = 0. The (1 —a) percentage point lower confidence bound for d(u)
is given by c;1(D).

As an illustration of the use of Table 6.3, suppose we want to compute a 95%
confidence lower bound for d. Let k= 5 and assume that D = m‘,‘ﬁg"—“’ =8.244.
From Table 6.3, a = .05, k=3, d() = 8.0/\/a for ¢ = 7.891 and 9.0/\/A for
c=28398. Bya ical algorithm, the 95% confid lower bound for & would

be 8.5/\/n. When o is unknown and ng/n = V%, the confidence lower bound for
d(u) can be similarly obtained from Table 6.1, Table 6.2 and Table 6.4.

6.4 Discussion

As a preliminary step in the problem of comparing k treatments with a control, it

is often desirable to test the null hypothesis Hy : gg = gy = ... = i versus the
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alternative hypothesis H) : po < p; (i =1,..., k) with at least one strict inequality.
Testing Ho versus A, can be done by the Dunnett's procedure or the likelihood ratio
test statistic ° or £3, which has been introduced in Section 2.5 of Chapter 2. Once
Hy is rejected, one may then consider to test H{ versus H{ to measure the dispersion
among treatment means and the control mean. There is a large body of work on
statistical methods for assessing equivalence of several treatments with a control.
When the treatments are too expensive for most of the population. which is often

the case in many i ies, the i e under the simple tree prior

knowledge is advisable to study. When k = 2, the critical regions of the likelihood
ratio test and Dunnett’s test for Hy versus A, and the new test proposed in Section

6.2 for H{ versus H{ are presented in Figure 6.1.
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Table 6.2: Percentage Points with ng/n = V&, = .03.

O 310
2 2.869 2.843 2.856 2.961

4 2337 2460 2.348 2.795

6 2,513 2.787

8 2,513 2.799

10 2817 2.854
15 .| 2.864 2.902
20 2.598 2.908 2.947
30 2.669 2.983 3.028
40 2.733 3.058 3.099
30 2.791 3.121 3.162
60 2.844 3.178 3.219
70 2.893 3.231 3.272
80 2.939 3.280 3.322
2 3.329 3.256 3.247 3.318 3334
4 3.236 3.268
6 3.310 3.346
8 3.395 3.433
10 3477 3.317
15 3.664 3.706
20 3.827 3.871
30 4108 4.134
40 4.348 4.396
30 4.560 4.610
60 4.753 4.804
70 4.931 4.983
80 5.096 5.149
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Table 6.3: Percentage Points for ng = n with Variance Known.

Vné
2 3 9 10

1.0 3265 3.392 3.709

20 3972 4.09 4.416

30 4679 4.806 5.123

40 5.38 3.513 5.831

50 6.093 6.220 6.538

6.0 6.928 7.245

7.0 7.635 7.952

8.0 8.342 8.659

9.0 9.049 9.366 .395
100 9. 9.756 10.073 10.102
11.0 10.336 10.463 10.780 10.809
10 2623 2.769 3.124

20 3331 3476 3.831

30 4038 4183 4.338

40 4745 4.891 5.245

5.0 5 5.598 5.953

6.0 6.305 6.660 .

7.0 7.012 7.367 7.398
8.0 7.719 8.074 8.105
9.0 8.426 8.781 8.812
100 9.133 9.488 9519
11.0 9.840 10.195 10.227
10 2284 2441 2816 2849
20 2991 3148 3.523  3.536
30 3.698 3.835 4.231 4263
4.0 4405 4.562 4.938 4971
50 5113 5.269 5.645 6.566
60 5.820 5976 6.352  6.385
70 6.527 6.683 7.059  7.092
80 7.234 7.390 7.766  7.799
90 7941 8.097 8.473 8.506
100 8648 8.805 9.180 9213
110 9355 9.512 9.887 9.920
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Table 6.4: Percentage Points for no/n = /K with Variance Known.

19
|

1.0 3329 349
20 4095 4291
30 4860 5.087
40 5625 5.884
5.0 6391 6.680
6.0 7156 7476
70 7921 8272
8.0  8.687 9.069
9.0 9432 9865
10.0 10218 10.661
11.0 10.983 11.457

10 2693 2.884
20 3438 3.680
3.0 4223 4476
5.272
6.069
6.865
7.661
8.457
9.254
10.050
10.846

10 2357 2563
20 3122 3359
3.0 3.888 4.156
4.0 4653 4.952
5.0 5418 5.748
6.0 6.184 6.544
70 6949 7341
80 7714 8137
90 8480 8933
10.0 9245 9729
110 10011 10.526
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Figure 6.1: Critical Regions for k=2



Chapter 7
Identifying the Minimum Effective

Dose

7.1 Introduction

In toxicological and bioph ical studies to i i the effect of a com-

pound several increasing dose levels are usually compared with a control. The
control may be a neutral control (a placebo) or an active control (a standard drug

known to be effective). Therefore, a d

P i is often in
a one-way layout in which the doses of the compound under consideration are allo-
cated to seperate groups of subjects. There are different concerns in these studies.
In toxicological studies, the main concern is the safety of the toxin under considera-
tion and the goal is to estimate the highest dose that shows no significant difference
from the control. This highest dose is generally called the no statistical signifcance
for trend (NOSTASOT, see Tukey, Ciminera, and Heyse (1985)) or no observed
adverse event level dose (NOAEL, see Ryan (1992)). In biopharmaceutical studies,
however, the primary goal is to assess whether there is indeed a dose-response effect

which means that at least one treatment mean is greater than that of the control,

109
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posed by Tukey, Ciminera, and Heyse (1983) for monotone dose-response effect
and modified it for dose-response effect with a reversal at higher doses. Tamhane,
Hochberg, and Dunnett (1996) proposed a number of stepwise testing procedures for
identifving MED and studied familywise error rate (FWE), bias in identifying MED,

and power performance for step-up and step-down multiple i ds

using Monte Carlo simulation. They found that step-down procedures generally

d step-up

and some step-down procedures over
others. Dunnett and Tamhane (1998) used the step-down tests of Bartholomew and
Hayter’s procedures for dose finding. More recently, Hsu and Berger (1999) consid-
ered the stepwise confidnece sets method, called the DR method. which is based on

pairwise ¢ tests without d D ion. They itioned the

parameter space with the idea that exactly one member of the partition contains
the true parameter.

We describe the necessory notation first. A typical dose-response study has
a (placebo or active) control group indexed as 0 and k treatment groups indexed
as 1,....k with increasing dose levels of a compound, with n; subjects randomly
assigned to group i,i = 0,---.k. For patient j at dose level i, let ¥;; be the dose
response. We assume that all observations Y;; are mutually independent with ¥j; ~
N(p:,02),i=0,...,kand j = 1,2,...,n;. Thestatistic $? = Tk T3, (¥~ i) /v
is used as an estimator for ¢°, and it is independent of the sample means Y =
(Yo, ..., Yk), where v5?/0* ~ 32 and v = T n; — (k + 1) > 0. Usually the dose-
response curve is expected to be continuous. Accordingly, MED should be defined as

the minimum dose such that the mean response at that dose is clinically significantly



better than the mean response of the neutral controls; that is

MED =min{i : pi; > po + 8}, (7.1)

where § defines a clinically signil diff i by an

Suppose that the control group is an active control group receiving a drug which is
known to be effective, then the MED can be defined by (7.1) with § either positive
or 0.

In drug studies, increasing dose levels are frequently expected to produce stronger
or at least equal treatment effects. Sometimes the dose response increases mono-
tonically at high dose levels, but, at low levels there might be a negative response,
as evidenced in the example in Section 7.4. In that data, the dose response effect
at dose 1 dips compared with the effect at placebo. In general, it is possible that
Mo 2 i for some values of i, particularly in the active control setting. In drug
development, dose response studies generally are planned to have many active doses
and perhaps some potentially ineffective doses to help to characterize the MED.

Therefore we may assume that there exists a ¢ > 1 such that

He S Pt oo S iy (7.2

where the value of ¢ is i by an i based on past

Bauer (1997) pointed out that only the classical many-one pairwise comparison of
different doses of the drug with a control will in general guarantee strong family-
wise error control without the assumption of monotonicity among means. However,
pairwise contrasts do not utilize any prior knowledge about the shape of the dose

response function, and hence are not very efficient. The motivation for Williams'
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h (1971, 1972) is v to take ad of the power of isotonic re-

gression when dose responses are monotonically ordered. although the DR method
does not explicitly depend on this assumption. It does actually take advantage of
this assumption when it is true to much the same extent that Williams's test does
(see page 473 in Hsu and Berger (1999)).

Whereas dose response patterns subject to downturn at higher dose levels could
occur in practice, this chapter has no intention of discussing this case. One can
consult related references like Simpson and Margolin (1986) and Rom, Costello, and
Connell (1994) for this case.

The test for overall drug effect on mean response can be assessed with the null
hypothesis of Hy : px — g < J versus the alternative hypothesis of H, : pe — po > 4.
In this chapter, we propose a multiple contrast test which retains the power of the
likelihood ratio test. Then, we use it to derive a stepwise method to identify the

minimum effective dose under the partial dose-response ion in

(7.2). In Section 7.2, we introduce the multiple contrast test T,x. In Section 7.3,
we present the stepwise method. In Section 7.4, we illustrate the method on a dose-
response data. In Section 7.3. we conduct some power comparisons. Section 7.6

contains our final conclusions.
7.2 A Multiple Contrast Test Statistic 7, ; for Test-
ing Dose-response

The contrast test is very popular in dose response detection. As pointed out by

Tukey, Ciminera and Heyse (1983), it offers a semi-nonparametric procedure in
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which the treatment effects are left “fully saturated™: that is, they are not restricted
by any particular model, and at the same time one can model other design fac-
tors to increase the efficiency of the analysis. The contrast test will detect certain
expected dose response features without forcing those expected features into the

analysis model. Furthermore. analysts can eas

interpret contrasts and can clearly

present them to clients. Dunnett’s procedure (1953). Williams’ test (1971, 1972).
the regression tests of Tukey, Ciminera and Heyse (1985). Ruberg’s basin contrasts
(1989), stepwise testing procedures in Tamhane, Hochberg and Dunnett (1996) and
Hsu and Berger (1999) are all contrast procedures to study dose-response.

However, the aforementioned contrast procedures do not fully employ the knowl-
edge of the dose ordering and the expected dose shape, and the corresponding powers
may be quite low in some directions. Robertson. Wright and Dykstra (1988, page
189) pointed out that the likelihood ratio test statistic may be expressed as the
maximum of an infinite number of contrast statistics with the contrast coefficient
obtained from the data. Based on this idea, the generalized multiple contrast test
statistic T, considered in this section has an appealing power performance com-
pared to the LRT.

The layout of this section is as follows. In Section 7.2.1, we introduce the multiple

contrast test statistic Ty ; in Section 7.2.2, we present an algorithm to compute the

: in Section

. we show how to calculate

the mixing coefficients in the null distribution of the statistic T, x; in Section T.

4, we
derive the simultaneous confidence lower bound for p; — 1o when the dose-response
effectiveness is presented; in Section 7.2.5. we compute the exact power of T\, when

k=2and 3.
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7.2.1 A Multiple Contrast Test Statistic T,,.

The dose-response effectiveness can be tested through the null hypothesis Hp : j1e —
o < 4 versus the alternative hypothesis H, : jue —pto > d. where J defines a clinically
significant difference. By incorporating the assumption that s, < pyy < ... < plee.

one rejects Hy in favour of H, for large values of

(7.3)

where

k
1
Cox={e=(aer. o) Tma=le=..=qu=ta=-—08<... S
o

=

Without loss of generality we assume ¢ = 1 and & = 0. For simplicity we use Tk to

denote Ty and C to denote C, k. Let txq, be the critical value of Tk. then

k k k
P ncin 2 3 medi - teauS(E ne)' 2, forallce Cy=1-a.  (74)
= = =

Let L={p:pmo=m=--=mland Q={p eR' :pp<p<m<--<
.
e}, where fi = g’):"% Then @ = CS L. Let pu* be the MLE of gt under
e

Q which will be discussed in the next subsection. Using the definition of isotonic
regression, one may show that

k - & 3
im0 MiCiYe nicip
max S et _ o Tionic

o YTranc <€ [Thond
R
= (Xl -1,
\La
where ¥ = T%y n,¥i/ £ ni. From the above equation,

& "
Ti= Z‘, n(uf — ¥)2/8% (73)
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When o2 is known, T%n,(s; — ¥)?/0? is the likelihood ratio test statistic for
testing Hj : pto = pty = ... = ju versus HY : Q — Hj. When o° is unknown. we call
X o nu(u; — ¥)?/S? the modified likelihood ratio test statistic for testing H), versus
H).

By union-intersection principle. the null distribution of T under the least favor-

able configuration £ of Ho when ng = iy = -+ = ny is given by

> —] (7.6)

ket
sup P(Ti > ] = Y P(Lk+1)P[Fii, >
uHa = 1

for any ¢ > 0. where the mixing cosfficient P(L. k1) is called the level probability of
w* which will be discussed in Section 7.2.3. When A is large. the precision of numer-
ical computation for finding P(L. k + 1) is questionable, one may obtain the critical
values ti o, by simulation. The simulated critical values based on 1.000,000 itera-
tions are provided in Table 7.1 for a = .10, .05 and .01, k = 2.3.4,5.6,7.8.9.10.
and the degrees of freedom v = 3. 10. 15. 2!

25.30,40,30.60. and oc. Fork =

the simulated critical values t; ., match those obtained by solving (7.6).

7.2.2 MLE p*

For any x € R**! and y € R*~!, we define an inner product < x.y >= 53 iz,
Then Q is a closed, convex cone. So is Cq (i.e.. Cq is closed in the topology: x € C,
and y € Cq imply that rx+ (1 —r)y € Cqforall0 < r < l: x € Cgand A 20
imply that Ax € Cy).

The icted i likelihood esti p* of p subject to Q minimizes
¥ oni(¥i — 1) The solution p* is a projection of ¥ onto Q. According to

Theorem 8.2.7 of Robertson, Wright and Dykstra (1988), u* is the projection if



and only if p* €Q,

<x—p.u >=0 (7.7
and

<x—py><0 (78)

for any y € Q. The MLE p* can be computed as follows.

Vo). mi = Vi

For a given data ¥ = ( — 1. Without loss of

generality, one may assume that ¢ = 1 and "

Step 1 For (¥1,....Yi) (excluding the control). using the pool adjacent violation
algorithm (PAVA) (see Section 2.4.1) to obtain the isotonic regression with
respect 10 gy < pt2 < ... < . the result is denoted by (¥7,....¥J). If

2> F7, then y; = ¥,i =0, 1,---, k. Otherwise, go to the next step.

Step 2 For (Yo, ¥7..... ¥7) (including the control), ignoring those nonpositive treat-

ments, the new data is (¥o.¥}.---.¥;). here 0 < ¥}, < ... < ¥{. Com-

puting the average of the updated data. denoted by av = (T, n¥7 +

i=iy

no¥a)/(T;, n + no). If av = 0, stop and p* is

Otherwise, go to Step 3.

Step 3 b ing av from each then ignoring those nonpositive
treatment components, if there are any. The new data will have the following
form:

(Yo—av, ¥ —av,..., ¥ —av).
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go to Step 2.

In order to illustrate how to use the above algorithm, let us consider the following

3

example. Suppose ¥ = = 3=0.Y; =

and ¥ = 11.

then ¥ = 1, after subtracting | from Y. we consider ¥ = (=6.-2.1.—1.-3.1.10).

Step 1 Through PAVA. the isotonic regression of (-2, 1. —1.—3.1.10) subject to

S pa Sy € g € s < s is (-2 -1 —1.-1.1.10).

Step 2 Ignoring those nonpositive components in (=2, =1, =1. =1.1.10). then the

up-dated data is (—6. 1. 10) and its average av =35/3 > 0.

Step 3 Subtracting 5/3 from (—6. L. 10). then ignoring those nonpositive treatment
components, thus. the new data is (—8.8). Its average av = 0. Stop. There-

fore, we have that u* =1 +(-8.0.0.0.0.0.8) = (-7,1.1,1,1. 1,9).

One can use (7.7) and (7.8) to verify that (—7,1.1,1.1.1,9) is the solution.

7.2.3 The Level Probability P([,m +1)

When g > 1, we ignore the first ¢ — 1 treatments and consider the remaining m =
k—g+1 treatments. For simplicity, we only consider equal sizesng =n; =... =np

in this subsection. Let

<c,,.}.

C={e=(co.cL,---1m) : i =L = _ni.oscl <
i o
The cone C is generated by the following m generators g;, where

gi=(=1, 0,...0 I/ (m—i+1),...,1/(m=i+1).
i—1 terms m—i+1 terms
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For these m generators g;. there exist corresponding m constraints f; such that
<figi> = Tl fugi = 0. and < frgi> = % fugy < 0. where I < i #
j < m. Any point y € R™! with £y = 0 is the nonnegative combina-
tion of these generators and constraints. For instance. when m = 2. C is gen-

erated by g = (~1,1/2.1/2) and ga = (~1.0,1), the corresponding two con-

straints are f; = (1,—=2.1) and f2 = (0,1,—1). When m = 3, C is generated
by g1 = (-1,1/3,1/3,1/3). g2 = (-1.0.1/2.1/2) and g3 = (-1.0,0.1), while
the corresponding three constraints are fi = (1.=3.1.1). f2 = (0.1.-1.0) and
f3=(0.0,1,—1).

The level probability P(l.m -+ 1) of p* is the probability that p* can be
represented by the nonnegative combination of [ ~ 1 distinct generators g; and the
m + 1 — | constraints f, of cone C under Hj : o = py = -+~ = . The level

probability P(I,m + 1) satisfies the following two equations

-

met
S Pm+1)=1, 3 Plm+1)=Y PL.m+1)=
= teven lodd

When m =

 the space R**' N {y : T2,y = 0} can be decomposed into four

convex cones, one cone is € which involves two generators, two cones involve one

and one i the ining one does not involve any generator
but two constraints which is the dual of Q. Note That Y € Q if and only if

Yo-2Vi+¥2<0and ¥ -12 < 0. Let U, =

then (L7.0>) has a bivariate normal distribution of zero means and correlation

coefficient pia = —/3/2. Therefore. we have the level probability

P(3,3) = P{ly>0,Uy>0}

1 -t
1/4+ z—rsm P2
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= 1/12.
where the formulas for the orthant probabilities can be found on page 75 of Robert-
son, Wright and Dykstra (1988). Likewise for the other three cones. we can obtain
the level probabilities for m = 2 as follows. P(1.3) = 5/12, P(2,3) = 1/2. and P(3.3) =
1/12. When m = 3, the space R*~' N {y : Ty = 0} can be decomposed into
eight convex cones. Each cone is generated by three vectors consisting of gener-
ators g; and constraints f,. Cone Q is generated by ail three generators gy.ga.

and gy; three cones involve two generators and one constraint: three cones in-

volve one and two constraints: the ining one does not involve any
generators. For example. the event (I = 3) can be decomposed into three dis-
Jjoint events or three disjoint blocks which are denoted by By, Ba, and Bs. respec-
tively. Say B; is generated by gy = (—1.1/3.1/3.1/3), g2 = (—1.0.1/2.1/2), and
fs = (0,0,1, -1); B, is generated by g, = (~1,1/3.1/3,1/3). g3 = (~1.0.0.1). and
£ = (0.1.—1,0); Bj is generated by g2 = (—1,0,1/2,1/2), g3 = (~1.0.0.1).
and f; = (1.-3,1,1). B, can also be equivalently represented by the follow-
ing three inequalities: < ¥.g} ><0. < Y.g, ><0. and < Y.f; > < 0. where

g = (L-3.1.1), g = (0.2, —1.—1). and £ = (0,0. =1, 1). It follows that
P(B) = P{< L giszoc¥igsc0.<¥ s & 0}
3 {< Y.gi><0.<Y.gh>< 0}
= J(14+ g (=VE/)
= 0.027043.
Similarly, P(B,) = 0.048979, and P(B;) = 0.041667. Accordingly, it follows that

P(l = 3) = P(B,) + P(By) + P(Bs) = 0.11769. Other level probabilities can be
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computed similarly. The level probabilities are presented in Table 7.2 for m =

2.3.4.5. For m > 4 no closed-form is available, crical ion is used.

7.2.4 Confidence Lower Bound for p; — pg

In this section. without loss of generality. we assume g = 1 and § = 0. Once the dose-
response eflectiveness is shown by rejecting Hy. we are interested in the sharpest
confidence lower bound for p — po. The 1 — a one-sided simultancous confidence

bound for the contrast i, nicpt, with ¢ € C is given by

& . & a2
(X mew) = 3 niedi = teauS( Y ne) ™. (79)
= = =

Let K = {c:ceC,

net < pre — po. where gty < ... < g} The simul-

tanoues confidence lower bound for i — pg is given by
k&
Lps — tta) =T§E"(§n"‘”“")' (7.10)
The following lemma gives another description of the set K and its proof is trivial.

Lemma 7.2.1 Suppose that Hp is rejected. For py < ... < . TEgnicp, <

Hbest — po if and only if Tjynye; < Li=

...k forallceC.

The following theorem i an equival lati ip between the positive-

ness of the above optimal lower bound and rejection of Hy by statistic Tg.

Theorem 7.2.1 Assuming gy < ... < pe. Tyk > tregiraw if and only if L —

Ho) > 0.
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Proof. Without loss of generality assuming ¢ = L. [f Ty > t5.0,. then there exists a

¢, € C such that

& & ~ R i
(X mewm) =3 mewti — twaS(E ) > 0.
= = =
It is trivial that S5 ncup, < e — po under the assumption gy < ... < .
Therefore, L(p — o) 2 (Tfog micvp) > 0.
On the other hand. if L(p — 1z) > 0. then there exists a ¢a € K such that
k
Ll = po) = (3 meaps) > 0.
=

This leads to

k = kg & e S
To=max} nefi/S(ne)” 2L neafi/S(Encd) > teaw
=C iz = =0 =0
o
A ding to the i of ing MLE p* and through the contradiction

method, it is easy to prove the following lemma.

Lemma 7.2.2 Let p* be the MLE of p subject to Q. If p; = pit., for some i,0 <

i < k-1, thenc? = &%,,. Herec® is the optimal solution to the mazimization problem

& L3 n
max{zrl.c.u,' - tkn,S(Zn,cf)l"}. (7.11)
= =
subject toc € K.

In order to obtain the optimal solution to the maximization problem (7.10).
we will solve the maximization problem (7.11) first, then we shall prove that the
maximization problem (7.10) is equivalent to the maximization problem (7.11). A
necessary and sufficient condition for an optimal solution to (7.11) (or (7.10)) is

given below.
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Theorem 7.2.2 Suppose Ty > tin.. Then c® € K is an optimal solution to (7.11)

if and only if there exists a positive p. | < p < k such that ¢§ =

=0, ¢ = N3+ b7 — ). i =p.+o.k, where

Pl

B = (0,5 - S3)/(ne™ + N3).
and

k & 13
Now =Y mi it =D mipl [ Npeo Sy =3 mp) = 4i
= > =

" oy k o . V2, "
Proof. Tt is trivial that $¥. nicut] = tiawS(Thoonie?) s a concave function of

k k
ol u e d) = 3 new - teasS(X nict
= =

P
T+ Y wlami—a)
i=
k-1 & &
Fuge + Y ta(l= X mey) #A(1= X ncy).
m=a jEmet =t
Let % denote the partial derivatives evaluated at the point ¢®,u® = (ug,---. ug_).

= (v8,---,v¢-,), and A°. By the Kuhn-Tucker equivalence theorem (Kuhn and

Tucker (1951)). ¢ is the optimal solution if and only if

(i) % =nu; —nictb+u

teouS/ (i mic?) %

i
1 - — g n —

L

() 2 0, &y — e > 0,ul(chy ~ &) =

0.i ».k—1.u:c~=0.u¢go:
Thn<lj=1....ke(l- Tk nc) =0, v°>0and 2
Suppose ¢ is the optimal solution. For convenience. let ux = 0. Without loss of
generality, one may assume that there exists a p (1 < p < &) such that

g=...=cg,=0<f<...5¢,
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with X nef = L. Then from (if). j_, = 0. Let u = 0.1 = T2y (Ep= L.

V=1f).and 2 =0.j = p.....k From (i), for j = p.....k

& o= b -1 -

. °). (7.12)

Adding these k — p + 1 equations in (7.12) and using T¥_, n,¢% = 1. one has
NV =g+ b.\';k'.
Substituting A° + 1" back in (7.12) . then it follows that
= Nt b7 = i) d = ke
Accordingly, b = tia,S/(T¥ nic?)"2 can be written as
= a8 5

gt + Nogt

Therefore, the necessory part is shown. The sufficient part is trivial. a

Now we prove that the maximization problem (7.10) is equivalent to the maxi-

mization problem (7.11).

Theorem 7.2.3 The mazimum problem in (7.10) is equivalent to the mazimization

problem (7.11).

Proof. For convenience, let f(c) denote equation (7.10) and let g(c) denote equation

(7.11). Let c® be the optimal solution to (7.11), then, g(c) < g(c®) for any ¢ € K.

Without loss of generality we assume ¥; < ... < Y¥i. According to the algorithm of

finding g in Section 7.2.2, p* = (Yo —a.¥,---,¥,¥i~a,---,Yi —a). herea is a
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3 k & &

3 nycou; = nockug + 3 iy = noch(Vo —a) + 3 myci(¥y —a) = 3 ¥
=0 =p =p =0

It follows that f(c®) = g(c®) > g(c). Since for any c€ C, ¢ € ©, by (7.8).
Thoones¥; € X gnedu;. It follows chat g(e) > f(c). This completes the proof.
a

The optimal solution c® can be obtained iteratively in a few steps by the following

algorithm.

(0) Set i = 0 and pp = minygig

w>Th

8 Wt g S

ti.au, the optimal solution is ¢® with p = p;. Otherwise. go to (ii).

0) Let Bint = Nl pic=13)- oo = [Shat 325"+ N70)]
(ii) Set pir1 = mingicr{i : 4 > 15, }. Go to (i).

7.2.5 The Power Function of T, When k=2 and k =3

For simplicity, we assume o®/n = 1. e consider k = 2 first. let ¥; ~ N(g.1)

for i = 0,1,2 with ¥5, ¥ independent. Since the event (! = 3) implies that

pi = ¥i ({ =0,1,2), then for any constant a > 0, by (7.3), P{Tz > a.l =3} can be

computed as follows. This probability is

P{Ty>a =3} = P{Zfﬂ—“g‘jjn‘-‘.zﬂ}

2
= P{B-Ti>02Mi-%-Hh>0) (F-FP2a)
=0



By making the orthogonal transformation 1} = n" - f /3 and 15
21;)/V/6. through simple computarion with £2_g
can be written as

Y Ve

P{11>0. 321 - 251 > 017+ 17 2 0}

Applying the polar transformation 1} = Rcusf, 13 = Rsinf, the conditions 17 >

0, and £

— 3217 > 0 are equivalent to cosf > 0. L sinf ~ 2 cosf > 0, that
is. 7/3 < 6 < =/2. Because 1} and 13 are independent normal variables with

means A, = 5 and ),

= == and unit variances, with A = Asin 3 and

=z

Aa = Acosd. where A? (i = i) with @ = (jug + gy + p2) /3. the above

probability is

exp =/2ed px .
[ s / rexp { ¢ rAsind}drdd
_ el A2/2) rzjpes
=AY }/ " e sing, a0 (13)

where v( z,a) = [z®(z—a)+0o(z—a)]/o(r) with ®(z) and o(r) being the cumulative

function and ility density function of a standard normal variable.

mspcc(inelv. Next, P{T; >al= .}
of (Y1 —

is considered. The event ({ = 2) is the union

>0.F; +¥; - 2¥5 > 0) and (¥ - 2¥; + ¥3 > 0.¥2 — ¥ > 0). For the

case (1'.—1:20.?14-)',— 265 > 0). p* =(To. (Fy + 12)/2. (i + 12)/2). With the

same transformation as above, 73 = 17,

n.

27,2 0.7, > a}
=P{1i 20,132 0.1F > ¢} = B(~Asin 3)®(Acos 3 —a). (7.14)
Similarly,

P{fa-T 205+ -2f >0,T, >a}
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=@ —a+ Acos(3 — /6))$(Asin( - 7/6)). (7.15)

For the event ({ = 1), T» = 0. In summary. when k = 2 and n/o* = L. the power

function of T> is

W) = “L{:_A/;’} [ casing,
e

+®(—Asin J)®(Acos 3 - a)
+®( - a+ Acos(3 ~ 7/6))®(sin(3 - 7/6)). 7.16)

Using the method in Lee (1987). one can show that the power function of Ty

is increasing on [~ £, Z] and decreasing on [, ¥7]. Furthermore. the minimum

power of T is located at the two boundary points 3 =0 and 3 = £,

Now we consider k = 3, let ; ~ N(u. 1) for i = 0.1.2.3 with Yg, ¥i. ¥2. 13 inde-
pendent. The determination of power when & = 3 presents a number of difficulties

which do not arise in an acute form when &

2

Since the event (! = 4) implies that u; = ¥; (i = 0.1,2.3), then for any constant

@ >0, P{Ts > a,1 = 4} can be computed as follows.

3
P(Ty>al=4) = P(X (g -F)P>al=4)
=

which is equivalent to

Let V3 = (Y3 — ¥a)/V2, Vi = (Fa + Y3 — 23)/V6, and 15 = (31, — ¥o — Yo —
¥3)/V/12. Then V4, Vi, and Vs are independent normal variates with unit variances

and means Ag = (a542), ), = (atisin) anq )\ = Qusioesio) Through simple
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compuration with ©_o(¥; - ¥)? = 12 . the probability for the event
(I = 4) can be written as

3., 1. . D
P{VJ>o.u>o.-_£x3+3u—\/§x3>o.x,~+|;+\:>n-}.

3 52

Changing to spherical coordinates. 13 = Rcosfsinn. 13 = Rsinfsing. and 15 =

Rcosn with 0 < 6 < 27,0 < 5 < 7. the conditions 15 > 0,15 > 0. and -22@‘} +

115 = V215 > 0 are equivalent to 3 < 6 < 3 and arctan (

S

Therefore, the probability for (I = 4) is

exp{ A:'/z}/:/.r:re/m.- (

rsin pexp(=r*/2 + \yr)drdddn

(7.17)
where Ay = Agcosfsinn + \;sin0sing + Ascosn. The determination of P{Ty >
al= 3} involves the evaluation of three probabilities. since the event (I = 3) is

the union of three cases. For example. in the case (Y2 — ¥3 > 0,12 = T3 = 21} >

Lgf 520, and then

-%)? AKB+Hh-T-F)?
- o ;

The probability corresponding to this case is
PH-f<0h+h-2Mi>03f-H-H-H>0T>ad}

Since the distribution of ¥3 — Y3 is independent of the di: of 13, 3% — ¥ —

¥ — V3, ¥a+ ¥3 — Yo — 11, and T2 + I3 — 2F7, and hence of T, the above probability

may be written as

P{¥s~ T, <0)P(¥y + T3~ 2F1 > 0,37 - Yy~ ¥ - 5 > 0.T3 > a}.
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The second term is now found by a straightforward extension of the method used

for P{Ty > a,0 = 3}. The resulting expression for P{Ty > u.l =3} thus becomes

o 2+ 2)/2) parean (42
P{Ti>al=3) = ¢(—,\.)M[ (®) e

exp{ - (G +20)/2) /"““( E(\g.a)df

exp{ = (

+ B(=\)

+ B(=As)

2} [“‘ (A3, a)dd

(7.18)

LAy = Beztami) \y = \jcost o+ Assin.

where s = ezl

s

Ascosf+A;sinf. \gy = Mjcosf+N\gsinf. The three contributions to P{L >

al= 2} are readily found by similar methods. Thus for the first term we have that
Pfi+H+H-3h>0h+5 i-f2<0.T>a},
where p* =(Tp, Bsliofi fisbacti fiofonfh) g 77 = QE=FoBoBP (e therefore

have that

o+ 15 - 3% > ViZa}

= P{-2Mi+hh+H<0.-Ti-T

+¥3 - 3% > VIZa}
= B\ 0. 1/2)®(—a + Ayy).

where Ay = :%35-:& A= a‘—-‘f.‘}:ﬁ- Au = u:hf.@:_’& and
o L = SRS S TP "
ey = (1-,,:)/: j:‘exp{ ST (W — 20wy + ) }dude.
The total probability for P{T; > a,l =2} is then found to be

P{Ty>al=2} = ®(No, o, 1/2)B(~a + Au) + B(=As)®(~As)B(=a + \)
+ ®(\r, A, VB/3)®(—a + Ae)- (7.19)
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The power function is now obtained by adding (7.17). (7.18). and (7.19).

If o* is unknown. one can obtain the power by conditioning on S* and applying
the results for o2 known.

When k > 3 the above method to obtain exact value of the powers becomes
very complex and no longer practical. One may simply use Monte-Carlo methods

to obtain sufficiently precise estimates of power.

7.3 The Proposed Method

We propose the following procedure to find the MED by making use of the prior
knowledge of (7.2). We denote to, as the upper 100(1 — a) percentile of the ¢

distribution with degrees of freedom v.

Step 1: Only the treatment means Tj..... ¥ and the control mean ¥ will be used
to compute Ti_gey. If Timyt > ti-y-t.a.- then claim pe > po + 4 and go to
Step 2: else claim that there is no non-zero dose level which is significantly

better than the control and

< o o o
pe— o > max { §n.c.u, — 5~ tegetanS| | 2ok )‘;mq}-

then stop.

Step 2: Treatment means Y. %-t and the control mean ¥ will be used to

compute Ti—q. If Timg > g then claim ey > po + 6 and go to Step 3:
else claim MED = k and
ke

=1 k=1
1
- o e ol by ot L 4}
Heey = o > s {X miews; = 13 — tecqouS | — + KE_ na ,}
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then stop.

Step k —q: Treatment meaus ¥; and ¥,.; and the control mean ¥j will be used
to compute To. [Ty > ta,4,. then claim p,. > po+4 and go to Step k—q+1:
else claim A/ED = q+2 and

4t

o1 —Ho > _max "
Ha=t = Ho =€C.....-|,{§ i = g

then stop.

Step k—q+1: If¥, = (Yo +0) = tauS\/1/n0 + 1/n, > 0. then claim g, > po + 6

and go to Step k — q + 2: else claim that MED = ¢+ 1 and
g — o > Yy = ¥o — ta,S\/1/no + 1/n,.

then stop.

Step k: If ¥y — (Yo +0) — tasSy/1/ng + 1/n; > 0. then claim gy > po + 4 and go

to Step k + 1; else claim that \/ED =2 and
w1~ o > ¥y — Yo = tauS\/1/ng + 1/ny.
then stop.

Step k+1: If ¥i—(Y5+0) —tayS\/1/ne + 1/ny > 0, then claim gy > pg +9 with

MED = | and mingigk g — Ho = Mifigigy i — Ho > Mitimi,..q {Ti = Fo -

tauS\/1/n0 + l/m}‘ then stop.
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Let step A/ (1 < A/ < k+1) be the step at which the stepwise method stops. If

A > 1, then the stepwise method declares doses & — M

.k to be efficacious.
If M < k+ 1, then the stepwise method fails to declare doses 1..... k=M+1to
be efficacios. If M = k + 1. then the stepwise method gives a lower bound on how
efficacious every dose is. This lower bound is greater than . The DR method is the
special case of our method when g = k.

Bauer (1997) showed that for balanced design contrasts like the Hermert contrast
(Ruberg (1989) ) or the reverse Hermert contrast do not control the probability that
a noneffective dose will be erroncously identified as the MED if nonmonotonicity at
lower doses occurs. In our stepwise method, just as in the DR method. no a-
adjustment is needed. but the familyvwise error rate is controlled due to the multiple

contrast statistic Ty.

7.4 A Numerical Example

In order to illustrate the proposed method in Section 7.3, let us consider the data in
Table 7.3, taken from Ruberg (1995). This is an experiment of dose response studies
done in laboratory animals. There are ten groups with six animals per group, group

1 with dosage level 0 is the control (placebo). the remaining 9 active groups are the

treatments. The mean responses are Y5 = 23.5,¥; =239, ¥, =27.7. 3 =334.V; =

40.5.Y; = 579,V = 744,¥: = T34.Yy = 735.¥; = 76.2. The pooled mean

square error is §* = 60.087 with the degrees of freedom v = 30. Table 7.4 shows
the different MEDs inferred by the three methods, where A/ PG is the stepdown

fashion of Dunnett’s method in Hsu & Berger (1999). Table 7.5 presents the 95%
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step-down confidence lower bounds on g; — jig (i =1..... 9) by the three methods.
These lower bounds can be used to specify the size of 6. From Table 7.4 and Table
7.5. when ¢ is very close to the true MED. our method tends to identify more doses
to be effective; even if ¢ is not close to the true MED. our method is still as good

as the DR method.

7.5 Power Comparison of Methods for Dose-response
Studies

In order to compare the behavior of the proposed method with the DR method
and Dunnett’'s method. a power study is conducted. Throughout this section for
simplicity we assume that ¢?/n = 1 and po = 0. We first consider the exact power
for A = 2 and k = 3 with the configuration 4 = p, and p; = uy = 3 respectively

in section 7.5.1. Then we conduct simulation studies in section

7.5.1 Exact Power for k=2and k=3

Many d

tend to be sigmoidal. They increase slowly over small doses.

Therefore, we consider the configuration of ; = 3 and gy = s = 3. respectively:.

As it will be seen in section 7.5.2. the powers for detecting the true MED by Dun-
nett’s method is inferior to our method and the DR method. we only consider our

method and the DR method in this case. According to (7.16) with 3 =0 for k&

the power for T} > is as follows,

exp {

i) eo{-a%2} /:;:lli‘(isinﬁ.t;,.m)dﬁ
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FB(A = t2n) 2+ B = trsa + —Q)‘w A/2).

.20)

33

The power of the DR method is (- =

). where 5, is the 100(1 —a) percentile

of standard normal distribution. For k& = 3. the power of the DR method is &(-z,

%‘%). One can obtain the power of Ty 3 by substituting g = 0.1, =

=m=

into those expressions in section T.

5. Figure 7.1 is the exact power for these two
methods when k = 2 and 3. The power difference between Ty and DR method has

the following analytical expression

exp{ - AF

i * A sin Bt )l + B[ = )2
i

\/’A
( =)

+0( = tapa + \/_A)<[>(A/'J) —d( -z 7). (7.21)

Figure 7.2 describes the power differences between T x and the DR method for k = 2
and 3. From Figure 7.1 and Figure 7.2. it is clear that Ty is superior to the DR
method for & = 2 and 3. Next we consider whether this superiority is maintained

for k > 3 in stepwise fashion.

7.5.2 A Simulation Power Comparison

In this section. we conduct a simulation study ing the of the

above three methods: the DR method (denoted by DR in Table 7.6). our method
(denoted by T,) and Dunnett’s method (denoted by D). Strong control of the
familywise error is guaranted by these three methods. The number of dose levels
(including a control) is 7 and the nominal error rate a is fixed at 0.05. A typical

sigmoidal dose response curve is formulated by equation f(z) = w + D, where
€
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 is the dose level and f(r) is the corresponding dose response. A is the dose
response of the control. D is the dose response at the kth dose level. C is equal to
the EDso. which is the dose producing a 50% responsc. and B is the slope at C

(see Ruberg (1995)). We consider six ations based on the fc

logistic dose response with 4 = 0.D = 1 and B = 4.5.6.C = 1.2.3.4. they are
at the bottom of Table 7.6. For each configuration. the value of ¢ is considered to
be the true MED minus 1 (¢’ in Table 7.6). or the true MED (q in Table 7.6). or
the true MED plus 1 (¢” in Table 7.6). The value of d is equal to 0.4. 0.5. 1.0 and
1.5. There is replicated 10000 times for each configuration. Table 7.6 reports the
simulation results.

The probability of detecting the dose response is the cumulative probabilities for
identifing effective dose levels from MED to dose level &, which is denoted by D in
Table 7.6. The probability of identifyving the true MED gives an estimate of the

power of the method, which is denoted by [ in Table T.

When g is very close to the true MED. Table 7.6 shows that the new method
has the highest probabilities (I or D) among these three methods for different values
of MED and 4. For the three different ¢ values. the new method has roughly the
same probability of detecting the dose response. When g equals the true MED. T,
always has larger probabilities (I and D) than that of DR method and Dunnett’s
method. In this case, The maximum gains of T, x over the DR method and Dunnett
method can reach 6.16% (for I) and and 11.67% (for D) and 14.59% (for I) and
and 7.8% (for D) respectively. When MED > 2, Dunnett method has the lowest
probability of identifing the true MED for all the cases. This is not surprising since

Dunnett method does not utilize the dose ordering and the dose response shape.
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The probability of identifving the rrue MED for ¢ = MED + 1 are lower than that
for g = MED as expected. but the probability of detecting the dose response for
¢" = MED + 1 is higher than that for g = MED. When ¢’ = MED — L. the Ty s
method still outperforms the other two methods for MED < k in detecting the dose
response, and the T x method is also better than Dunnett’s method in identifving
the true MED.

Based on the results in Table 7.6. when the dose-response curve is logistic and
the experimenter believes his or her ¢ value is around the true MED. the T, ; method

is recommended.

7.6  Conclusions

We have proposed a multiple contrast test and developed it into a stepwise method
for the analysis of dose response under the partially monotonically assumption. The

proposed method is more powerful than the DR method and Dunnett method.



Table 7.1: Upper Percentage Points for T;,.
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m=treatment groups

3 4 3

1.814 1.871 1908 1.936
2396 2434 2494 2534
3.878
1.670
2121
3114
1.622




Table 7.2: Level Probabilities for Equal Weights.

m=2 m=3

m=4

o o b e 10 ||

0.41667 0.38231
0.50000 0.49269
0.08333 0.11769

0.00731

0.36355
0.48683
0.13604
0.01315
0.00041




Table 7.3: Dose Respouse Data.

Dosage Sample  Mean SD
Group (mg/kg)  size  response response
0 6 25.5 2.6

© 01D O
"~
o
cooaaoooo




Table 7.4: MED Inferred by Three Methods.

Bl MPGN DR Ty»

L 23 456 7 89
[0.00,37.20 6 6 6 6 6 6 6 6 6 6 6
[38.50, 39.50] 9 6 6 6 6 6 6 6 6 66
(40.4040.46) NA 8 ¥ 7T 7 766 83838
(40.60,40.70)  NA 9 8887769939
(40.92,41.02) NA g 9999886999
(41.02.41.17) XA 9 99999699739
(41.17,41.95)  NA 9 999999999
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Table 7.5: Step-down 95% Confidence Lower Bounds for 1, - po.

41

43.20

42.28

T
-9.10
-3.30
0.40
7.30
24.90
40.40
40.40
40.74
42.26

-9.10
-5.30
0.40

7.50

24.90
40.40
40.40
40.50
42.14
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Figure 7.1: Exact Powers of Ti and DR Method for k =2 and 3.
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Figure 7.2: Power Differences between T and DR Method
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Table 7.6: Simulated Probabilitics of Identifving the True MED and Simulated
Probabilities of Detecting the Dose Responscs.

Case MED ¢ o N Method
Tyx Lok
1 1 L 05 I 3L11
D 94.02
2 2 2035 1
D
3 2 2041
D
4 3 3 10 I
D
3 3 303 I
D
6 4 415 1
D

Case 1:
Case 2: .518, 5.590)
Case 3: . 3.262. 3.494, 3.534, 3.543)
Case 4:

Case 3: (0. 0.007, 0.436. 2.
Case 6: (0. 0.006. 0.198. 1



Chapter 8

Summary and Further Research

Typically. the goal in comparative clinical trials is to select the treatments that are
“better” than the control. Then a one-sided procedure is preferred. On the other
hand, when the prior knowledge indicates that treatments are at least effective as
the control, sharper statistical procedures can be expected to enhance the infer-
ence. It is well known that hypothesis testing does not convey the magnitude of
the differences between treatments and the control. However, confidence intervals
is more informative than hypothesis testing. In this thesis. we have presented some
procedures to yield sharp simultaneous confidence lower bounds for the differences
of (combined) treatments and the control. A thorough study has been done on mul-
tiple contrast tests. These multiple contrast tests have closed-form null distribution
functions. Because all multiple test procedures proposed in this thesis control the
type [ FWE (see Chapter 1) at level a. only the powers of the procedures are given
in the tables.

‘When the treatments constitute a two-way no presence of interaction model, it

is of interest to comparing row (or column) factor means with the control mean.
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The one-sided multiple contrast test proposed in Chapter 3 is more efficient than
the one-sided Dunntett’s procedure.

Once there is a significant difference between the treatments and the control. the
magnitude of p..e — o is a useful quantity for evaluating the difference between the
treatments and the control. We focus on the duality of the maximized confidence
lower bound for jtpese — p9 and the multiple contrast test statistics T and T°.

The LRT So, for testing H, against H, has the strong advantage of good power
properties. However. the LRT Sy, is not cone order monotone. The test statistic T
for testing Hy against a more narrow alternative than A, in Chapter 5 is cone order

monotone. Of course, cone order monotonicity is not necessari

uniformly good.
but it is not uniformly bad.

Even if the prior knowledge of treatments are at least as good as the control is
available, it is still of interest to consider the equivalence of treatments with respect
to the control. The problem is to find the least favorable configuration since the

null hypothesis is not a classical homogenei

¢ hypothesis.

In dose-response studies, the typical assumption is monotone response means
which is not always the case in real situation. Under more realistic partially mono-
tone assumption, we propose a more efficient test by utilizing the partially mono-
tone assumption to identify the MED. The method in Chapter 7 can also be used
to determine the no observed adverse effect level (NOAEL) in safety assessment of
toxicological studies.

The constrained optimization problems in Chapter 4 and Chapter T are solved
through the Kuhn-Tucker equivalence theorem. It is a new insight in comparing

treatments with a control. The ideas and approaches presented herein provide a



H7

foundation, and they can be applied to other constrained optimization problems.

In future rescarch relating to this thesis. of particular interest is the situation
where the response variable is dichotomous, in which case we are looking at inde-

pendent binomial populations. This i

a very important problem from a practical

view, because often an i i is not st a it response to a drug

or medical procedure. but is concerned with the success or failure of the drug or
procedure. Future rescarch will also involve the inclusion of variance heterogeneity

and the area of nonparametric setting.
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