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Abstract

The treatments \-ersus a control problem occurs in m:tny sciclltilk fields. with a

major portion in medical rest'i\rch. Its primary goal is to dNcrl1lin~ if the fL'Sp<lnse

(0 one or more treatments dil£cf fwOI the response to a cOlllrol or cxi,ring stilndanl

and if so. further to identify I\"hid, treatmentS are bcttl'!f th.m the control. In many

experimems, one often has a prior kno\\"iL'tlgc that the treatnu'nts are at least a,,;:

cffccth"c as the control. [t is well known that utilization of ordering information

increases the efficiency of statistical infcrcm:l! pl"occdurt.·s. TILt:! aim of this tlLl'si,; is

to de\'c!op some lIew sUHisril:l\\ inference prOl:edUfCS fllf the prohlem hy utilizing: thl~

prior information.

[II particular, simultaneous confidclIt:e lower bmmds fOf the diffcrellccs bctween

treatment means and the control mean are considered. Efficicnt computation algo

rithm;; are proposed to obtain the optimal lower bounds between the best treatment

mean ana the colltrol mean. ~(ultipte L-omr.lSt testS which take llccount of the priur

knowledge play an important rolt! ill this thesis.

Power studies ,·ia simulation compare the new proposed procedures with Dun·

nett's procedure and the likelihood ratio test. Th~ new proposed procedures are

also illustrated by some real data :sers.
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Chapter 1

Introduction

The problem of comparing' se\'eral treatment populmiulls with a cotLtrol pop1l1atiolL

l)l,;l;Ul'S frequently in medil'al trials ,\lid other exp':rillll..'ms, For exalllple. ill l;Olllpar-

ath"1! clinical trials. different therapies are often compare,1 with a staudard thcn\py

or placebo to dctcrmillll which therapy increases the sun"j,,;},l time of patients with

a ct!rtain disease. One of the main pharmaceutical ac:th"ities is the search for ne\\'

drugs that are more effective (-bctrer-) than a standard drug <)1' p!<u.:ebo: in this

case treatments can be different JQ:i;l! Icn,ols of a new drug: amI the (:ontrol can be a

standard drug or placebo.

Traditionally, 11 common tool in analyzing data from these studies is a te::;t of

homogeneity of the treatment means and the control mean as in the Analysis of

Variance. Howe\·er, such homogeneity tc:;ts ("·hether or not they yield statistically

significant results) usually do lIot supply the type of condusion that the experi.

menter truly desires. Furthermore. should a significullt result bc obtained. the

experimenter's problems have only just begun since the experimenter is seldom sat

isfied with terminating the analysis at this point: in particular, he or she may want to

detennine which treatment is better than the control or to see which treatment ean



h~ COllsitlcreJ bt.'51 in some wcll-dt'nllt.'t.l sense of the tcrlll hest. )'lort.'<)\'I'r, thefC Illay

be a qucslion as to whether tcstin:;; a null hypoth~is of homogencity illld estimating

a parameter are appropriate fonllulathlllS of the pmhlem, 111 many ntt'tlic:al (rials,

the Illost import,ult pr<Jblem is to correctly identify the best treatment or treat

mCllts, HCllce, a formulation sll..:h as it silLlllltaJle<Jlls SlatiSf,ical iflferNlcc~ probl~nl or

ranking and selection problclllllUl;ht to be more realistic ill these cases. Formulating"

the stati..'itical prublelll ill t~rlllS of Sf'k'Ctioll or multiple l'OUlIJilrisoll \\1)ul<l sl't.'m to

be pilrticlliarly pertin~llt if Ihe dloit."(' of it tI\I.'rallY for a group 'If patients is to hc

mude all the basis of th~ trial n..osults or if the treatmcnts to be sUldi~ in a later

trial dt!pend upon which treaunelll turns Ollt to be superior t.) the othetS ill tht!

initial trial. III this thesis. we will explore sollie new methods in silJlult,ulfflllS sta

tistical inferellce based on univariate response under the assumptions of Ilormillity

and homogeneous Huiances regarding ~treatmellts \·CrsllS a control'" problems. If

the homogeneous \'ariance assumption is questionable, one may lise nOllparamNric

methods as in the patrer of Chakraborti and Ik'Sll (19!H) \\'hitll includes methods

to handle censored data,

The field of multiple comparisons which form~ a part of a broadel subjt.'Ct I,)f

simultaneolls statistical inference has progresst.'C! trelll~lLdo\LSly in the last .10 yeatS.

..-\ large number of theoretical de\1~(opments have taken place including different

approaches to error rate control, step-wise testing procedures, modified Bonferroni

procedures, resampHng methods and so on. The research is motinued by problems

in many fields such as m~icine, education. quality control. biology. genctit..'s, and

the physical sciences. A number of statistical procedllres llil\'e been proposed to

test whether any of k treatments are different from a control and most of them



are multiple comp,uisons procedu\"l:!s Dunlwtt's pmcedlln' {l9.').)) is surdy r111~ hest

known and most widely used. \[any generalizations of Dunnctt·s procedure h,wc

heen made, For instance. in ,·ariolls lUe<.lic,tl ,lIld iudust!"i,l! fidds. it is l)f illt~'rest

to compare A', tCSt t!"eamcnt groups and h"~ control grollps to determine which

trealllcnt is better thall which Ct)lltrol. Sh,\f!,!!" (ln7,;") gel1t~ralizcd D\llIllt't~"S llwdlOd

to allow for more than cne coutrol and presemcd t\l'o-sided lOUt !-n)'7t sililultnnel>us

cOllfiduccc imen'als to compare A", to h"c (ontrol:>. HOt),"er (1991) (omputcd Shatfcr"s

(1977) two-sided critical \llllleS for !\c = 2 \\"ith t~q\lal smuplt! size. He also dt'\"l~lopp.d

a one-sided procedure fl)r comp"ring the m,~,uls of h-, treatments to /'"c comrols

and computed the corresponding nitical "<Ilues for !'"c = 2 with I'qual sumple sizll.

Solorzano and Spurrier (1999) d(~,·ell)ped silllultilneous one-sided confidnecc inten·a!s

cl)mparillg A-, treatments and A-c controls for unt:!qual sample sizes. Cht:!lmg and

Holland (1991. 1992} extended Duunett"s procedure (1955) to the case of more

than olle group of treatments. each group containing se\"eral treatments compured

with a specified treatment, with the error rate co\"ering all groups and trelltmem

comparisons simultaneously, LOsing the closure method or~larcus. Peritz and Gabriel

(1976)" Dunnett's method (19.5.')) has been de\-eloped into a sr.ep-dowlI and a step-up

procedure in Dunnett and Tamhane (1992) and Ull (1997a). Giani and StraBburger

(2000) proposed multiple compari:>on procec!llres to discriminate good" equl\llient

and bad treatments with respect to the control. Procedures of testing simultaneously

for superiority and equivalence of a new treatment compared with k ::: 1 standard

treatments in a clinical trial ha\"e heen recently de\·eloped by Dunnett and Tamhane

(HI97) and Kwong (2001)"

A multiple comparison procedure makes one or more assertions. Any incorrect



nssertioll gin~n by the multiple cllmparison procedure lIlay lo~ad 1,) .111 illcorn.'Ct ,11'

clsion. Various criteria exist by which one can assess the perforJnalll:c of a multiple!

L"OlIIparisons proe«!ure. Qlle can consult Hoc.:hhel); and Talilhilllc l19Sj). In this

thesis. error rate of a llluitiple l'l)llLparL'i01I prul'CLIurc is defiuL'l:lltllw the supremum

of the probability of making al I"ast OtiC incorrclCt itiSl·rtiuu. i.e..

error rate = s~p P,.{at least olle inCllrret:t a:.;..;crtion}.

Hochberg and Tamhnne (198';') calls it strong fumilywise enol' raw (F\\'[).

There al'l: several books 011 statistical sillLultuneom. il1fl~rel:c\~ anlilahle. The book

by ?I[iller (1981) is highly aCCl'Ssihlc but does n<Jt cover r<,cellt clcvdopmellts. The

book by Hochberg and Tamhalle (HIS,) is all cxcdlent rCS(Jurce for research st<nis

tidans but :;('ems formidable for typical practitioners. The book by Westfall and

Young (1993) capably shows how modern computers enable one to adjust the ~

\-a[lIes of tests of hypotheses for multiplicity; howc\'er. it is often desirable to go

beyond stating p--mlues and infer the direction and the magnitllde of the differences

among the treatments being compared. The latest book by Hsu (1996) empha

sizes proper application of the latest methods for confident directions inference and

confidence intenlll inference empowereJ by modern L'Omputers.

:\.lu!tiplc comparisons prOL'el:lure h;lS its roOts in nUlking and selection. but the

aim of ranking and selection is different from that of simultaneous confidence in

tervals. It is well-known that there are t\\'o principal formulations de\'eloped in the

statistical literature regarding ranking and selection. One approach, the indifftlrence

zone selection, was suggested by BcchllOfer (195-1.). The second approach, subset se

lection, has been presented by Gupta and Sobel (1955) and Gupta (1965). The



indifference lOne approach h<\>; as it" goal ttl :>cll"l.:t or iuuio.:ate the I><.-'St TrI";UIll~ilt

without a control. The prob.1.hility of scl~ting the hest treatment is at ICiLSt p.

wlu:'ne\l!r the best lrcatmellt i:; at lealit,j' (> 0) away frolll the Sl..'l:olld b....,.t Ireat

m~n{. This minimal probability p' cali only b<~ guanultCt..'C.i if the common salllpl.~

size n is large enough. SI) th~ indifferen...... zone approach i" useful at the ('xperilllcn.

tal design stage ill order to dctermine thi:; l"OlIIllIl)n sallq)le size II. \\11CII there is n

control. Dunnett (LnS-I) propoSt'd Ihe evrrcsp0l\{!ing ilillifferencc lOllt.~ approach tu

scl ...'Ct thc bcst treatme!lt \\'hkh is at the salllc tim.... bl:,[Icr thall the tomrol. The

subset selection has as its goul to select a non-empty SUh';l:'t. a.s smull as possihl!~.

frolll the k treatments without tI comrol in ord"f to illdudl' the best trcatlUellt 01' lhc

treiUments which are bettter than the control. \\'ith a certain confidence. The size of

the subset is random. The confidence requirement Ili.\s to be met for all parameter

configurations. for book.length discussions on ranking and selectiolt. see Gibbons.

Olkin and Sobel (1977) and Bechhofer, Santner and Goldsman (1995).

frequently there is a prior knowledge that the trcatments are at I~ast as elfecti\"e

as the control. This type or prior kno\\'ledge may come rrom past expl'rienccs or

it may arise in medical experiments where. ror exmnple. a higher dose lend of a

drug has a larger effect on palitlnts: ,;ollie treatments are kno\\-n to ha\"e sut\'h-al

times at least as long as that of the control. The prior knowledge can be expressed

as Po $. ~i, i = 1, ", k, where JIO denotes the mean \11lue from the conuol and

~li denotes the mean \-alue from treatment i (i = 1, ", k). This type of inCtluality

constraints is t~'pically called simple tree ord~r in order restriction inference.

Statistical inrercnce under order restrictions is an important field in statistics.

~o(any types or problems are concerned with identifying meaningful structure in real



world situations. Structur..: charact<,rizoo by onl~r n'STril:tions ariSl..'S in 1Il11lL~rOILi

settings and has many useful applications. for ~xample. the f;liltlfe rate of a ..:001-

ponent may increase as it ages; sun'i\-al dmes for lreatruellts are longer than that of

a control (see Singh alld "-right (1998); treiltmCnt responses may be stochastically

dominated by a control: or treatments prcscllt simp\" Irt":! uniform stochastil: or-

dering (sec Park (1992)). The books of Barlow. Bartholomew. Bremner and Brunk

(1972), and Robertson. Wright and Dykstra tI988) an! t\\"o dassiml monographs on

this field and contain many imponam problems.

L·tiJizing ordering information increuses the efficiency.)!" statistical inference pro-

cedures. The one-tailed. two-sample t-test provides a familiar example in I\"hil:h rhe

procedure wh.ich utilizes the prior knuwit-dgc dominates procedures \\"hich ignore

this knowledge. It is well known that th~ isotonic: regr~sion reduces total square

error and ma:-..:imum absolute error. Lee (1981) poincercd Ihe problem of pointwise

mean square error for the normal means with a simple order. He showed that in

this case mean square error is reduced for e\'f!ry indi\'idual mean by !Ising order

restricted ),[LE·s. Lee (l9SS) also obserwd that thest, pointwise properties do not

hold, in general. for partial order restriCTions such as simple tree ordering. Why

should meaD square error be reduced. by the isotouic regression at each paim for a

simple order and not for the simple trcc panial order? The possible explanation is

that the number of lower set!! is linear in the number of populations for the sim

pIt! order, while for the simple trcc partial order it is exponelltial in rhe mllllber of

populations.

The test of homogeneity against the simple tree order has been well developed.

The classica[ likelihood ratio tests !(~ or £1 for testing the homogeneity of partially



ordered means from se\"Cral normal popuhnions. linit propU5('(1 by [lanholOllltlW

(1959, 1961), is known to possess gcncr....Uy superior ollCrating charactcri:uics to

those orits competitors. see Rol)('nson. Wright and Dyk.."ra (1988). HO\\1..'n.'r. diffi

culties in computing the restricted lIIiL"i:imuOL likelihood cstilllaws and d<'tcrmining

the null distributions of the tcst statistics make LRTs ditficultlO implcmellt in many

instances, particularly whell the srlmple SiZl'S are unequal. Recently. :\Ihm. H;tyttlr

and Liu (2(00) den.'loped some progr;ulls ta lIIllIlerically OOlllplHl' the Icn.. l proha-

hilities far the simple order. Therdurc. it is of ct)nsidcmbl, .. illlerest to approximate

the null distributions of \~ or t·~. For example. \\'right and Tran (198.5) dbcLlssed

that the equal-weights distributions of thl'Se tl'St statistics prudde reasonahle ap

proximations for the case of unequal sample sizes if the sample sizes are not toO

different for the simple tree ordering. The amount of \llriation in the null .e and e~

distributions, as functions of the weight \"eCtor. can be determined b~' obtaining the

sharp upper and IO\\1!r bounds for the appropriate tail probabilities in terms of the

partial order under consideration such as considen.'Ci in Lee. RoberL;On and \\'right

(1993). The complexity of the null \~ and f:! distributions also motinltcs 0111.' to

seck other test procedures. A \<lriety of other p~llrcs ha\'e been proposed. most

of which are based on one or more rontrdStS among the sample means. These include

the multiple contrast testS of :\Iukerjee. Robertson, and Wright (1987) and ad hoc

tests proposed by Williams (1971. 197:!). Conaway, Pillers. Robertson. and Sconing

(l991) used a circular cone to approximate the LRT and they de\'eloped a tl!St which

has the advantages of being easier to compute and can be used with uneqlLal sample

sizes. Tang and lin (l997) used an orthant to approximate 501. ~IcDermott (1999)

proposed a class of tests based on an impro\w orthant approximation which can be



viewed as generaJi:ti\tiOlls of the Illultiple contra.it tl!StS of :'<lllkrjl~. RoberTson. allol

Wright (1987).

As far as making statistkal inference is l.."Onl~r1\l:d. a lVllfidenl~ inten,llllnwil!l-s

a \'Isulll perspecthl! unmatched by a poim eslimate or a [I:lit statistic. DUllnett's

prolmure (1955) prol>'1.bly is the nrst Olle for SiUlUllilllL'OIlS conlidcnce imenOlLi fur

simple tree restriction, but he did not realiu this, Bohrer (1967) ShOWl'f! hlll\' the

usual silllllltallL'llllS two-sidl'll Scheffi bounds uti nil liuear functions of certain pa

rameters can be sharpened if ilucntioll is restrictL't1 to only linear combinations of

normal means whose cot'fficiellls arc known to be nonllcgatiw, Bohrer and Frands

(197'2) further dC\'c!llpcd sill\ultam~o\ls oIH~-sided confidence b01lnds in this restricted

setting, :'<[arcllS and Peritz (976) also clen~lopl'(l a methodology for outilining si

multaneous confidence intervals for linear combinations of norma! means with cer-

tain restrictions on the coefficiellts. They obtained the Bohrer·Francis confidence

intervals as a s~ial case of Ihis procedure. :'<Iarcus «(978) dcwloped it SI't of si

multaneous confidence bounds (SeB) for simple order and simple tr~ order in the

CiW! of known variance. "orn (l98:!) studied confiuence bands for lIlonotone dose

response cun-e5 without a control. With the assumption that thc response means

are OIonotone nond~reasing tll :5: tlt :5: ••• :5: lIlt, the 100(1 - a)~ sinllllralLeous

confidencc intcn"3.ls for p.,(i = 1.'2 ... ,kJ were gi\-en as follows

where mt,,, is the upper Ql point of the studentized maxinmm modulus distribution

with parameters k and II (Sef.! :\liller (1981)). Under the same assumption as in

Korn (1982), Schoenfeld (1986) sought confidence intervals for each indi\'idual til



and also simultaneous confidelll-c intervaL... for aU dll' IIIt'aIlS, For a gin'lI mean II,.

his upper and lower bounds are rhe ma....imurn and minimum \-nlucs of I Sildl thar

the hypotheses .r < P. and ~I, < I \\1:!re aCL"(!ptl'l1 by their rcspl'l.:th·e likelihood ratiu

tests. Schoenfeld's method for findiog simliltaoL'Ous confidence inten-als \\"US based

on an idea by lee (195-1). lee (199G) propose<.l the gcltl.!mlizl,.'(! studcntized 1I1<l.... imum

modulus procedure and USl..'C1 it to St."ek a confidcw.:c b,wd fur each indiddual/l, by

incorporating the mOllotonicity of dle response means, lee's lllethod gains much

o\'er the metltods by Schoenfl'ld's {tDS61 ilnd [{o.>ru's (1982). ~[an:us allli TlIJpetz

(H)!)2) further proposed atl alt,'rnaril'e tCSt statistic and used it to construct a S,!t

of SCB, but their procedure is iufcrior to the Dunnett's prol;t;'dure io comparing

#1i to the control mean pt). :-.rarcus and Gellizi (199-1) deri\'ed the simultaneous

confidcnce illter\llls of normal means of the form I:~"I CiP, for umbrella contrasts

CI $ C-;l :5 , .. $; CIt 2: ... 2: Ct and L~"'L n,C, = 0, where 11 is called the peak of the

umhrella order. Berk alld :-'larclls (1~96) summarized the rcsu!rs of SCB for simple

order. simple tree order and umbrl!l1a order. Hayter and Lill (1999) also propo:oecl a

test statisric ro de\l:!lop simultaneous confidence intervals for all tue ordered paif\\ise

differences J!} - P, for 1 $; i < j ~ hand h $; j < i $; k. where rhe peak Ii is known.

Hayter and liu's (1999) method is a generalization of Hayter's (1990) procedure.

When the homogeneity hypoth.esis is rejecred in favour of the simple tree alter·

nati\l:!, it implies that there exists at least one treatmenr bl!tter than the control.

Let #11>.", =: ma.xL9Sk Pi be the mean of the best treatment. Since P"".I - /IU is the

largest difference between any treatment mean and the control mean, the confidl!nce

lower bound for J!1"m - Po is bounded below by that for any Pi -Po, (i = 1, '" k) or

their non-negative linear combinations. If this maximized confidence lower bound
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ror 11...1 - Jig is positiw. th~'11 1'..., is signifio.:alltly largcr than jllJ' The Shatill'St

simultaneous confidcncl! lower htlLlIId for /'""., -,I,.I cnn prodclc \lsdnl infurmation

regarding trcatO\l!nrs and a control. The construction of tilt' sil1LuIL'llll~)tlSCOIl!i,\t.'IK'l'

lower bound of /'0.:.< -"0 is a p;lniclIlarly llsdul illfl~rcllcl! lIlct]uld that has not Ul'ClI

considered before and is the main r,)pic of this lllL'sis.

[II Chapter 2, we will intrutlun~ some hasil.; results on Il!ast squares regrc:;sJ,ll\

and particularly. the isotonic n~;;n'S>ii<Jll. \\-" will pr•.,;cllL t\\"o algorithms thaI ha\'\.'

tx.-ell tlSl..'<i cxtensi\-ely in stlluying illld computing tlte isotollit.: rcgr($.~h)n. namely.

the pool.adjacent.violiHors algorithm anel till! minimum-lower-sets algorithm. Tht'

likelihood ratio tests for tL'Sting rhc simple Ir~ Rostril::tion will be gi\'cn. Some

ad\1tnces in simultaneous confidl~lIce intervals under the simpl.. tree ordcr in the

literature will also be included. Til'" Kuhn-Tucker Equi\1I.lence Theorem. which will

be used ill Chapter 4 and Chapter ;. will also be presented.

lu Chapter 3. we will propose nne\\" tc:;t litatilitic to compare factor means and

the CQntrolmean iu two-factor experllllents. ThlllLCW tcst statistic can be inverted to

yield sharp simultaneous confidence lower bounds for the Jilferl'lIces of such means.

The new tcst is unbiased. monotone ami consistent. Its power compares fa\"()rably

with Dunnett's test and the LRT.

[n Chapter -I, we will study simultaneous confidenL'e lower bounds for two Ca5CS.

One, the difference between the best treatment and the control for treatments which

are at least as good as the contrOl and tl\"O. where no restriction is placed on the

treatment means and the control mean. The e\"nluation of the simultaneous con

fidence lower bound for the difference between the best treatmem mean and the

control mean is a concave programming problem subject to homogencous linear
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inP.quality constraints. Two cffil"icllt complltation 'll;;urilhllLS willl}l~ dcnn....I.

(II Chapter 5, wt! will address the COliC order mOIIl)[I.)l1icity problelll. TIlt' Likcli-

hood ratio lest SOl for tc:>tiug homogeneity of trcalloClllllU';\lLli and tht! l.:o11trolllW;\U

Ho : 1-10 = Itl = ... = /l-" with the altcrnati\~ rCStriCIl'f! by the simple trce ordering

P. = V.I E R!'-r! ; Po :5 /1, (i = 1 .... k)} is not conc order lILont)tOI\(! (CO~llnll.

In this chapter, we \\"ill propOSl! a likelihood mtio l~t statistic 501 for [CStillg: 110-

lIIogclLt'ity with the altcrnati\'c n.>:;tri<:IL'([ hy 0" ={I, ; Ilu :5 Ii :5 /1,. j = 1. ., .k}.

where Ii = L::'",u 11,II,jL~..o n,. UlT 501 and its lllodilkllf,i'1n arc CO~[[fl"l. \\"c will

also offer an altemati\"c lCSt procedure which is cO?lqfll and CO:\I[O") and has

competitin! power performance.

(n Chapter 6. a test statistic hi.\.<;c<1 on DUllllt~tfs procL'<.iure will be proposL'<.i for

testing an int,m'al nypotlu':iis HJ : d(p) ~ J \1; H[ : dtp) :> Ii under p, 2: 110 (i =
1, .. ,k), where the standardized differenCE' of the means between the best treatment

and the control is measured by fi(p) = (1l4.~1-IJo)/a, The quantity d(JI) call be used

to measure the dispersion among treatment means and the L'Ontrol llIean and is

useful for assessing the equh1l1ence of the treatment lllt!Un.s and the control mean,

Xumerical quadrature will be elllplo~-ed to obtain the tabul:Hcd percentage points

of the test statistic for testing HJ \'ersus H[, We will also show how to L'OnStruct a

confidence lower bound for d(p).

In Chapter i, we will consider the problem of identifying the minimum eff~ti\'e

dose in dose-response studies. Assessing monotone dose.~esponse relationship is

freql1entl~' encountered in practice in the context of n-:ti\'ely pro\'ing a significant

monotonous dependence of the reponse on increasing doses or treatments. But

the monotone dose-response assumption is not always satisfied. In some situations
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there may l>l' a negatin: reSpt)lIS1' at low d~" t1WII it is appropriate [0 fllilkt: il

partial monotone dose-rt."Sponsc assumption such as It., ~ 11._1 ~ """ :S II/r" here '1

is prespeeified through all e:qwrilllelltt'r"s prior kllowlt.'f.1gl'" The popular Williams·

trend te:it is not applicable ill this l"as('. \\'e will propose a multiple contrast tL',H and

use it to de\·c\op a step\\·isc method which is more powerful than HSII and Bt'rgt'r·.i

DR method under the partial nWl\otone dtlSC-rcspollSt' ilSSUlilptioll.

Finally" Chapter Swill proddl' 1\ discussion of the rl'SlIh" of this thesis alld r!lnher

arellS ofrescarch relating ttl the problem.



Chapter 2

Statistical Inference Under Order
Restrictions

2.1 Introduction

Isotonic regrl$sion problem arises from the ma.ximum likelihood estimation of nor

mal means under an order restril;tion and it plays n ,-ery important role in the order

restricted inference. its usefulness is greatly enhanced by the fact that it solves a

wide mriety of restricu.'tl estimation problems in which the obje<:th'l! function may

take many different forms other than the sum of squares. Its application indudes

ma.'l:imum likelihood estimation of ordered normal \"'Uri.mccs. ordered binomial pa

rameters (bioassay), ordered Poisson means. urrlcre<! multinomial parameter-.; as well

as a variety of problems from other area:>. sHch as reliahility theory and densitr e;;ti·

mation. It is also well known that test procl>dur<!S such. as the likelihood ratio lCSt:;;

which utilize the prior ordcring information dominatc pro..:edures which ignore this

information. "-(oreovcr, simultancous confidcnce intcn'als for restricted setting can

be much shorter than that of Scheffei's procl'durc. In adQition, solutions to many

other optimization problems can. be expressed in terml! of isotonic regression, see

[3



Dykstra and lee (L99L).

The problem of dC\1~lopillgalgorithms for isotonic rt.'l:.'1'(,'SSion hM recein~1 a gre;lt

deal of attention. III fnct. isofonit: regression is a quadr.ltic programming; probl<'lll

and there is an e.uensh-c literature on llwthorls for cOnl!)lIting so[lItions. The prall-

leUl of computing the isotlJnic regrl'SSiulI is a s!)l'Cia[ ca.-;C and a number of dficienr

algorithms ha\'e been propost.,<l.

The most widely 'Lsl'il algurithm for simple on!<'r is the pool.adjm:ent-dolat'Jrs al·

gorithm (P:\YAj first published by .1,yer. Brunk. Ewing:. Reid nlld Sih'crman (l9.').')}.

PAVA can be used to den!lop al~orlthms ror some Other least sqllan.'s problem as

we shall see in Chapter ;. P..\YA is it \"~Q' efficient algorithm but it dolc'S not apply

in general to partially ordered isotonic regression. ror general pmtially ordered iso-

tonic regression the most well known algorithm is the minimum-lower-sets algorithm

of Brunk (1955), Several other algorithms have been de\'e!opcd for partial orders to

increase the efficienc)' of the computation. such as the minimum \'iolator algorithm

due to Thompson (1962). the min-max algorithm due to Lee (19&3). the minimum

lower sets algorithm of Qian (1992), among others.

:\(any of the methods of statistical inference are deri\'Cd from the experimental

situation in which one wishes to compare sc\'"Cral norlilal treatments with a normal

control or standard. In many cases it is belie\'ed that the treatments are at least

as effective as the control. Procedures ha\'C been de\'eloped to make usc of this

prior information in statistical inf~l'ellce, Fol' instance, if the colltroL and treatment

populations are normal with a common unknown \'ariancc, then Dunnett's (t955)

one-sided procedures can be used to test homogeneity of the means \'"CtSUS a simple

tree aiternati\'e. Bartholomew's (1959, 1961) X~ or F/ test is the likelihood ratio
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tcsr of homo~encity witb a simpl,> Ul't' OIltcrltilti\'P.. nuUbcrl'lS. l.'\.,. ami \o[lllll'im

(1986) generalized Bartholomew's tests ro allow hypothesi-OS imu!t-ing homogeneous

linear inequality restrictions. If the \~ and t:! loSt rcjo..'C[s the hOlllogClI'lity null

hypothl$is then aile may \\'ish to carry out a multiple comparison procl'tlure to

determine which means arc ditferent Of which ,;imultanL'Ous confidl'lK"C hounds lllay

be of interCSt.

In S~ctiOIl 2.2 we first \'C\'[cw SOlllC t:Olll.:CptS .Illli pro-liminary fl'lmlts of projL'l.:ti..:lllS

OIL closed com"ex coneS. Concepts of partial order such as simple tr~ order and

isotonic regressions afC gi\"cn in Scction :2.3. We also preSCllt the abo\"e Illt'ntiOlll'd

t\\"o algorithms in Section 2.4.. [n St!Ction 2.5. we foclls 011 the tCSt of hypothl'SCS

iu\'Ol\-ilig simple tree order with likelihood ratio tests or their llIodific<\tions. [n

St.oction :2.6, \\'e gin! a brit!r review regarding :iimultnneous confidence inten-als under

simple tree order. Since the e\nluation of the simultaneous confidence lower bounds

under simple tree order is a maximization problem subject to some constraints. in

Section :2.• \\'e present the Kuhn·Tucker Equi\11lcncc Tlll'Orem.

2.2 Projections on Closed Convex Cones

2.2.1 Convex Sets, Cones and Dual Cones

Let R" be a k-dimensiona! Euc:lidean space widl the inner product defined by.
<f.9>w=~j'9iICj, Vj,gER". (2.1)

where w = (u,.[, . . ,wd is a vector of weights such that Wj > 0, i = 1.2. ... k

and LtL Uli = 1. (f WI = ... = WI: = l/k. we omit the subscription and use

< j,g >= L~_I jigj . .-\. subset C of R" is said to be convez if (1 - >"ll + '\9 E C
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whenC\"l'f f.y E C and 0 $: .\ $. 1. [t is wdl known that the ilU~·(S(~titlll of lUI

arbitrary number of I.:olln.'x SN,,; i:; still ('OIl\"!.'X. A slll)St:t c: of ~ is ....all<xl a ClJn~

if it is dosed under nonnegati\1! scalar multiplication. i.e...\/ e C when fEe and

,\ ~ O. :\ote that a COllI.' is lIot IIL'CeSSarily -poilltoo.- For example. subspaccs of

nt are special COIlCi. So arc the open and c10S1..'t1 half-spaces corrt'Spondillg to a

hyperplane cOlltaining th~ origin.

For.\ COll\"CX CIlIIC C. the sllllSt.'1 C' of R~' ddillL>U hy

,
C' = {.q E Rl::< y.! >w= ~!J,f;K' $. O. "tf E C}. (:2.:2)

is called the Fe.fIt:hel dUlIl ur polaruf C. tn particnlar. it' C = 5 is a subspace of Ri:,

then

S· = S:. :=:: {a E R!' :< 9. f >_:=: 0, 'Itf ESc It}. (2.3)

It can be shown that C' is also a COll\'ex conI.' and furthermore. it is dosed.

For any two subsets .-t. B of Rt
. denote .-l + B the direct Sllnt of::iets .-t. B. I.e..

.-t + B = {f + !I'll e .-t. 9 E B}. let C. C, and CJ be con\'l!X cones. We ha\"l! tlte

follo~\'ing results.

(a) C c (CT. and C = (CT if C is closed: (2..1)

(b) (-C)" =-C', (2.5)

(e) C; C c.; if Cl ::;l ~ (2.6)

(d) (C l +C2 )" =CinC;: (2.,)

(e) (C l n Cl f = Ct + C; if the hater is closed. (2.8)

see Rockafellar (1970, page 146).



2.2.2 Properties of Projections on Closed Convex Cones

For any closed COIl\-e.." cone C C R" and a gin~1I \'CClOr!J e R!'. the solufioll to fill'

prohlem .
~Iillilllizc {~(y, - J,)"L',} (2.9)

subject to fEe uniquely exists. This unique solution. denoted b~' ['w(aIC). is ealloffi

the least squares projec:lioll of g onto C with weight w.

l"tilizing Theorem 3.2.; of Robertson. Wright ilnd Dykstra (lOSS). \\"~ now sriltl'

as the following theorem.

y' =Pw(gIC) if and only if y' E C awl

<!J - g'.y' >w= O.

and

<g-g·.f>w$O. V/eC.

2.2.3 Polyhedral Cones

(2.10)

(2.11)

Let IC be a cone in R". IC is a pnlyhalraJ cone if IC ={x E R!': < bi,x >~ O.i =

1,2, ... m} = {x E R!': Bx ~ OJ. Here B is the m x k matrix whose ilh row is

b;, while -bl is called the generator of its Fenchd dual};;'. We will tacitly assume

that the set of generators {bioi = 1.2 .... m} are non-redundant. Le., 110 proper

subset of Ihe set of hi determines K:. For the simple tree cone IC = {x : IO $ x" i =

1,2, ... k}, b i = (bio,bil , .. ,bik ) = (-1,0, .. ,0,1,0 .... O),i = 1.2 .... k, where

bi ,i=1.
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2.3 Partial Order of Finite Sets and Isotonic Re
gressions

2.3.1 Partial Order and Simple Tree Order

let X he n finite set {Xl,IJ... . .1'k}. A hi nary rclation :::: on X is" /I/ll'tilll ollieI'

on X jf

1. it is reflmue: .x ~.r for.z ~.\:

.) it is tran.riti~ .E.!}.:' E.Y. .r ~ y and!J::5:' imply.£:::.::

3. it is anli$yrnmetric: :r.y E X . .r::5 y aml!J ~ Limply.r = y.

A binary relation ::5 on X is called a simplr! orrler if it is reflexin!. trallsiti,,~. anti

symmetric and

-I. it is comparable: I, y €.\ implies that either J: :::!J or II ::.1'.

let .\ = {..ro, Il, .. . Ld and define the partinl Ordl!f :: on .\ by .1'0 :: L; (i =

1,2 ... ,k) with no reLationship between Ii and I J for i.j ~ I. This partial order

restriction is called the simple /ret! order.

Xore that there may be noncomparable elements for a partial order. A partial

order usually arises when \-ector comparisons are in\"oh-ed. Simple order and simple

tree order %0 ~ Xi (i = 1.2 .... k) are partial orders that are frequently encoun

tered in applications. As an important partial order. the simple tree order arises in

sampling situations where olle wishes to compare several treatments with a control

or a standard making use of prior information that all of the treatment means are

at least as large as tbe control mean. (The case in which all of the treatment means



are no larger than the control lIWalL is iucludL'd. hy rhall;;ill<; thL' signs of ;dl [b~

means.) For example. sur.... i\,\l timl'S of ditferent thcrl\pil-s ure at least M Imge a.~

that of a standard. therapy or plan'bo: increasillg dose le\"l~ls nrL' fnxllll:ntly expcctl>o:1

to produce stronger thall or at lelliit equal effects as a zero-dt>SC COntrol.

2.3.2 Isotonic Regression

..\ real-valued fUliction J on a fillite sN .\ is said to lx' i.<oll/lIi.: willi resp'!I:t to dlL'

partial ordering:::; on .\ if .r. y E .\ and .r ~ y imply J(,r) :S f(y)·

let [J be a gil'en function all X and /L' a given p,)sitiw: weight function on X.

An isotonic function rJ" on X is call..J an i$ot'JIIir; re!JI'p..~.'ijo(J of!l with \\'(~ight jt. if it

minimizes

L iYl<1 - !«II',d<1
ro:X

for all functions f on X which arc isotonic.

.-\ reaJ-\'alued function on a finite set X can be considered as a point of a Ell-

didcan space which has as its dimensiolt the number of poilUS ill X. [n this St:ttillg.

the collection, Z. of all isotonic functions all .\ with respect to a gi\1.'o partial order

is a dosed con\-ex cone and the isotonic rcgn'SSioll 9· is the closest point of I to 9

with distance induced by the inlier product

,
< f.g >w= ~ f,!I,U:/·

in other words, g. = Pw{glI). The existence and. uniqueness then follow from the

generaL theory of projection on closed con\'Cx cones described earLier in this chapter.
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2.3.3 Properties of Isotonic Regression

The isotonic regression 1I.\s a Hllmbel' of important properlies. Some of th'~ll\ arc

gi\'en bela\\'.

Theorem 2.3.1 Suppose Yt Ilwl !h 'II'!:' isolollic flme/iol(.,- ,1/1 X :judi th,,1 .'1d.r} :S

.'1(x) :S: Y2(.r) for al/ ..I" E S. rllld if 9" i::s (lI1 isotonir; reyressiOIl of .'1, tlum <lIsa

that a :S: g(~') :S b for al/~' E S. then !lIsa a :S: !I'(x) :S!' fOl" J.' E S. (Th. 1.J.4.

RobertSOIl. (j..'-rigltt. <lud Dy/.:.stra (/9S8))

Suppose y and wan' fuuctiol\::! Oil .\". th(~ weight,'d a\"erag'~ of Y on~1" tlw 1\'\Jt,~mpfy

Sllb:;et A of..\" is defined as follows

...\s(.-1.) = L.<E.4 U:{X)9(.r).
L.<':AU:(X)

\\"hile ...\,v(A} depends all g. this is not explicit in the notation. Let [9' = c] denote

{J.' E..\": y'{.r) = e}.

Theorem 2.3.2 If e is aTlY real number and if the set (y' = cj i.s nonempty. then

c = .4u([g· = c\). (TIt 1..'1.5. Robert.;on. II'riyht, and Dyk.;tm. R. L. (1988))

Theorem 2.3.3 For (111 arbjtrU/7J retd.. uuluerl fUTldioll, IV. defined all the reals.

< .'1 - g'. w(gO):>= a.

(Th 1.3.6, Robertson, Wri9ht, uniI Dykst'ru (l9SS))

Theorem 2.3.2 reduces the problem of computing yO to finding the Sets on which

gO is constant (i.e. its level sets). There are a number of algorithms in computing



isotonic regressions ami we will illTroohll"e two of tlll'llI ill t1w lleXI St,.'nioll thai

han~ been exte!lSively used. namely die potJl-tIl1j{l(;etlt·l!lnlll!l)r.~a1yrJrithm (PA\'A)

for simple ordcr and the mi'llfTlli/n-loIL'er-set.'J rllyoritlim folr any partial order such

as the simple tree order.

2.4 Algorithms for Isotonic Regression

2.4.1 Pool·Adjacent-Violators Algorithm

Let S be a finite set {Ll . .L1 ... . L~} with a simple onkr I\ ~.l:1 ~ ... ~ Lk. Tlll:n

a real valued function f on.\ is is,)(onk if ilnd only if f(.rl) S f(..':~l S ... S f(.L'd.

let g be a gi\'cn function on.\ and u: a gi\'en [lositil'e wl·i!!:hl fuuction Oil S. The

PA\·.-\ starts with g. If!J is isotonic. then y' = g. OthendS(!. there mu.st exist

an index i such. that g(L'_I) > !J(.e,). These two 'l11I1CS ,lfe then replaCl..-d by their

weighted average. namely "h'({t - I,l}) and the tWO \\'cighrs u:{r,_d and u:(..r,l

are replaced by U:{Zi_l) + !L·(r,). If this new set of k - I \l1lm.'S is isotonic. then

g'(Xi_l) = !J'(..r,} = .-h({i -l.i}) and g'(zJ) = g(..rJl otherwise. If this new set is

not isotonic then this process is repeated using the new '-aluc:> and weights until an

isotonic set of 'l1lues is obtained.

2.4.2 ?\'Iinimum Lower Sets Algorithm

A subset L of S is called a lower set with respect to the partial order ::s if y E L

and Z ~ Y imply Z e L. .-\ subset c: of.\" is called a upper set with respect to the

partial order ~ if..r € U and.L ~ y imply !J e U. We denote the class of alilOll"cr

sets by C and the class of all upper sets by U . .-\ subset B of.\" is a LeveL set if and

only if there exists a lower set L and an upper set U such that B = L n f/. The
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minirTUUll lower <leu algorithm for isotOnic regn~ioll is (h.'SCribeo-l next_

Select a lower set L I sllch that .-\l"(Ld $; :ho(L) for nil lower sets L. Suppt>s(!

L~ is another lower set having this property. Csing the proPf'rty of .-\,. whidl is a

strict Cauchy mean mine function. L I UL'I i::i another lower set of minimum a\-crage,

Therefore. the union of all lower !il.'(.S of minimum iI\"Crage is the IiUglSt lower SCt of

minimum average, Let Ll. OIl1d also Bl , denote this lower ::iCt. This 1..,\-c1 sct is the

::iCt on which y. aSSUIllL'li its sfllnll..."t value;

y'(.r) s:: .-k(Bd = min{.4r(L) : L E C}

for J: E B t . ;\ow consider the i\vcmges of levd sets of the forlll L n LI , level sms

consisting of lower sets with Ll Sllbtracted. Sdect again the largcst of these levlll

sets of minimum awrage. say Bz =L"!:'":L'l. The Ic\·cl set Bz is the set all which y'

assumes its next smallest \-alue;

This process is continued until S is exhausted.

In order to illustrate the abo\·c illgoriduu. let us consider the silllple tree defined

on S = {XO,XIl .,.Zt} with ~ by Xo ~ x,.i = 1.2. ... k. The nonempty lower

setS consist of {xo} and {xo} U.-\ with _-I. any lIonempty subset of {XI. X:.!. • •.• x.. }.

Thus there are 'It nonempty lower sets. On the other hand. if an upper set con-

tains Xo, it must contain {Xl. XZ, • .• Ik} as a subset. Thus, there arc 2 k Ilonempty

upper sets consisting or X and all of the nonempty subsets of {Xl, J.'"! •••• Xk}. The

minimum {ower sets algorithm applied to the simple tree order yields the following

algorithm for computing the isotonic regresion g' of a given function with weights
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Il'(W> 0). (f 9(.x1l) :::; g(X,). i = 1.::! .... k, thell y' = '1. Orll<~r\\'b;e. urnUIg:e the I"<d~

ucs g(.r:tl,g(X2) .. .. g(xd in ascending order (y(xo) is tlut included). Dcnote these

\'altles by y(.r(1I1 :s: y(xPl) :s: .,.y{.l"(l:)) and let u:(.I:(,)) dCllote the weight l'one·

sponding to g(:r.(i)} for i = 1.2.. . k. \ext, lind the smallest posith'c integer j for

which

.-l.} = 11'(.xO)y(.1:II) -i- L;_I w(.xr,dy(xl,Jl < y(.I"(J"'ltl
l~·(.ro) -;- L;:I IL'(X(,j}

Sm:h all integer \\'ill exist mll.'ss Al:_1 ::: Y(.1'(l:)} awl ill this cas,' set j = 1.:. \,)\\'

'1"(.1:0) = .-t} and the \'alilc of '1'(.1',) is either .-l.} or fJlJ:,) de!lCndillg Upul[ which one

is lurger.

2.5 Testing the Simple Tree Order

In this scetion, the likelihood ratio tests (LRTs) for homogeneity of normal means

with the simple tree a!ternath'e are intl'oduced, If the simple tree order imposed on

the altemati\'e is in question. onc may wish to test this order restriction a.~ the nllll

hypothesis with an ulll'cstricted alternath'c,

Let X = {0,1,2, ."k} and assume that the simple tree order:::: is defined on

X, Let P, be the mean of the ith normal population with \'ariance u; for i =
0,1,2 ... , k. We are illterested in the following hypotheses

Ho : Po = PI = ... = JLl:,

HI: Po:S: II, for all i = 1,2, ".k.

and

H1 : no restrictions on the liIC'WS.

Suppose that Yij is a normally distributed random \'ariable with unknown mean

Pi and \'ariance of the form Uf = GiU1 with Go, al ... , al: known and (12 unkown for
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i = O. 1. 2, ... k all,l j = 1,2 .... ",. abo as.~llme that tlll~ \;j art:' illde[lellll~'lll. ror

the ca~e of equal but Unklll..ll\"l1 \·arialLce~. ulle 1\"01lLd Sl't I/u = '1\ = ... = fl~ = L. Hen'

index a ref~rs to a control awl ill,kx i(i = 1 .... k) rders to tn'atllll.'l\[ i. Suppose

abo that S! is all estimator fur a~ whidl is indcp'lndl'l\t of Y = (fu.f'l. f:~.... fi,,)

I\"ith *"-.\; .md /I = :L~=u 11, - (./.:+ 1) > U C\; den,)u,>; a chi.squared \<lriable \\'ith

/.I dcgrees of freedom). \\'i[h lC, = l1,ja, for i E S. the tlI.l,'(inllllnlikdillOOd estim.uc

{J. of II, under H o is L~",o u:J;; I:~",o 11:,. The restril;ted maximulli Iikelihoud estimate

of Ii. subject to HI is delloted by~· = (/10' II; . .. . )Ik). It is the isotonl<: rl'grl'ssioll

of Y = (fa.... fi"l under H\ with \wight w = (/L'U.Il'1 .... w.,). The unrl'Strit:t~'t!

maximum likelihood estimate of ~ is Y.

III many experimcnts. one often hus .\ priori knowledge that thc ll"cauncms <Irc

ut least as cffecti\"ll a.s the controL that is. one can as:mmc that the trcatmcllts

may be beneficial. but they are certainly not detrimental. Then the objecti\'e of the

experiment is to determine if at least one of the trcatments is !!lorc effecth'e than the

controL and the one-sided test of Ho against Hr, but not Ho, is more appropriate.

The likelihood ratio test (LRT) rejects Ho in fm'our of HI - flo for large values of

(2.12)

and if /72 is known, the LRT of Ho \-efSUS HI - Ho rejects Ho in favour of Hi - Ho

for large values of .
\~l =~ U:,(IJ.; - li)2/a~.

ror testing HI versus H2 , tne LRT rejects H t for large \-alues of

(2.t3)

(2.14)
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and if a~ is known. th~ tnT of HI \~rsILS H~ rejccts HI for bU<;:I! nllu~ of

(1.1.i)

Csing the properties of projection. it can he shown that.
~ lL',lf; -,il~/(f2 = \~, + .\i,.

Accordingly, with Q(Lt) = LtS:/a~"" .\;. .tJI:= '\~I/(\~I + \I2 +Q(Lt)). Therefore.

rejecting for large values of tJI is L'qlll\1llent to rcjet:tlllg ror large \'alues of

SUI = 11l_E~JI = \i~Lt:~(Lt)' (1.16)

A more straightforward approach to testing flu \'crSIlS fit - flo is to nlpillce (12 by

51 in (2,16), which is proposed by \\'right (198S). Wright caHt.->d it the llllxiitietl

likelihood ratio test (:\ILRT). The :\ILRT rejects Ho for large values of

T
01

=tu;,(J.I:-Jil'
,;II S!

{2.17}

Dh'iding the numerator and tile denominator of p.16) by Lt. noting that for each_'

in the underlying probability space .\11/Lt ....;. 0 as Lt -+ x. and using Q(Lt}/Lt ...,. I

in prob..1.bility a;; Lt -+ 00. we sec that 501 -;. \i, in pro~,bility as Lt -;. x. Ag-din

applying the consistency of S' for a1
. it follows that TOI -;. .\iil in probabilitr as

Lt --+ ce. Hence. the tRT and ~[tRT are asymptotically (Lt ....;. x) equi\1\lent. The

tRT of HI versus fl, - HI rejects H t ror large \<tlues of

(1.18)

or equivalently for large values or

(2.19)



;';O[C [hilt S~~ convcl"gl.'S in di,;rrlbutioll to 'i.L <I.>; 1/ --;. x It, is IlllHt.' Llllln~l1il'llI ttl

and TOI art.' givcn hy the following lht.'of(~1l1

Theorem 2.5.1 For I' E Hu (/1111 v /I pnolitiue illky!!r.

k_l

P[\~I ~cj = EP(l.k+ 1:w)p[\f_l 2: c].

,
P(\'L 2: c] =~ P(i.k + l:w}P[\i-t_1 2: cJ.

,
P[Su 2: c] =~ P(l. k + 1: w)p[Fk .,.I_l.v ~ k + ~ _J

P[TOI 2: c] = ~ P(l.k + l:wlP[Fi_I.V 2: I ~ 1]

for any c > 0, where 1/ = L:f=u III - (k + 1).

The mixture coefficient pu. k - 1: w) in the abO\"e theorem is caUed the lewl

probability. It is defined as the probability that there arc exactly l distinct values

fOI" the \[LE IJ." satisfying the simple tree order wher'. Hu is true. The \lllues of

P(l, k + 1; w) depend on the sample sizes It; and the population \",)fiances through

the weight w. There is a recur:;;l"c formula for computing P(l, k + 1:w) in Theorem

2.4.1 of Robertson, Wright and Dykstra {1988}. If the weights are equal, the le\·el

probabilities for the simple tree ordering are less complex. For the equal-weight case.
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SIlJlPl"L'~S the w, dellote the le\'e! pr<>habiltil~s by P{I.k ~ L). L'sing that recursive

formula. one can show that

P(U:+I)=C~1)P[U'-l+2lP(I.l;(k-l~2l.I.... l). (2.20)

The last factor ill the ahon! ('xprcssion hm. becn tabHlatl~d by Ruben (19.5-t) fur I

and k with 0 ::; k::; -t9 and k - 9::; l ::; k + 1. ::-;umerical \'alucs of P(I. k + L) with

k::; 19 arc gh'cn in Table A.ll of R'lhensoll, \\·right and Dykstra (19SS). \\·righr

and Tran (I9S5) disctlssed approxillwte procedures for P(l.k + 1; w) with unequal

weights.

2.6 Simultaneous Interval Estimations for Treat
ments Versus a Control

Simultaneous inten'al estimations for treatments versus a cOntrol. particularlysimul

taneous one-sided confidence bounds (SCB) for \·ariotls dasses of contrast betw~n

normal means l:f",o nic,p, with l:~=o n,C, = o. have been in\"l:'rtcd from test pro

cedures used for testing Ho \'ersus HI - Ho. Assume that f;.i = D.! .... k. arc

normal \'ariates with mean Pi and \'ariance qZjll" Dunnett (19.').')) obtained sca
for all many-one contrasts with c, ?: 0 (i = 1. 2 .... k) and L~.II!,C, "" t. which is

, '-. {f11
2:niciP;?: 2:n,C'}i -d'k."S -+-.
;=0 ,=0 no II;

(:2.21)

where dZ." is the critical \'alue of Dunnett's test statistic ~Iarcus (I9,S) employed

X51 to provide SeB for all simple tree contrasts with coefficients satisfying ell ::;

Ci (i = 1,2, ... k) which is

(2.22)



where t .. is the positi\1~ ~uare NOr of the critical mille fur \~I under thl' simpl\.' 1Il~

order. ~larclLS (19i8) also 11Sl..'ti tL to build sea for all col1trast.'i with o.:u,.ffici.:nts

So.1.tisfying Ci?: 0 (i = 1.2. ... k) which is

(2_2J)

where i.. is the posith'e ~uare root of the criticill n\luc for '\i"! uuder the simple

tree order. ~Iarcus and Talpaz (1992) proposed the t.~t statistil'

to test Ho \"(lrSllS HI - H~ and uscd it to form the foll,)willg: si1lLultall~lIls olle-si,!l'd

confidence bounds

where CO :5 G (i = 1 .... k). and 9/,:.".<> is the upper nth percentile of the test statistic

With the prior knowledge oCthe simple tree order. the lo\\"t!r bound of L~~ n,C;p.

can be impro\-ed to

(2.25)

1, . _. k), here c· is a given \-e<:tor. One can al:;o similarly get the impro\-ed lower

bound from (2.23). When L:~",o n,c; P. = P""-d - Po, here P~'l = ma.'i:l~i~k Pi, the

impro\-ed lower bound is of particular interest and has not been studied in the

literature. This thesis will explore it in Chapter 01.



2.7 Kuhn-Tucker Equivalence Theorem

The e\":aluation of the simultaneous confidl'll<.'C lower houlIlb such as (:~.2.'j1 is 1I

maximization problem subject to a mixture of '~Illality and inequality co.)llStrdims.

To be specific. let x be an nx 1 \"t.'Ctllf and H(x) be an niX I "cctor whose I,;Olllponcnts

Ildx) ... , h... (x) are ditferemiablc conca,'c functions for x ~ O. let g{x) be another

differentiable COllca,"e fUllction. The Kuhn-Tucker Equi\'alence Theorem enable:> us

to find all XO that ma.... imizL'S y(x) constrainc<! by H(x) ~ 0 and x ::: o. :\ vector x is

said to he feasible if x satislics all the contraims. The optimal vullle of the problcm

is the ma;"imum of 9(:<) 01'1..'1' the sets of feasible poinu. Those ft!asiblc poims whidL

attain the optimal value arc ca\l,~ optimal solutions. Let ~ ilfld Jff: dl:'lwtc rhl;'

partial deri\<1ti\'e emluated at a specific point x" anti uo, n'SpC(:ti\'ely.

Theorem 2.7.1 (Theorem 3 in. Kuhn and TlIcker(1951)) Ll!thl(x) .... h,,,(x).g(x}

be concuut! and differen.tiable/or x 2: o. Let o{x. u) =9(X) + u' H(xl. Then Xo max-

imi::es y(x) constrained by H(xl 2: 0 cmd x 2: 0 i/ and anly i/ x" and UO .$atis/y the

/ollowin9 condition.s:

(I) ffi;:s o. [I!-I'~ = O,x· 2: 0:

(2) ~ 2: 0, Iif;:l'u· =o. u" 2: 0,

When the constraints H(x) 2: o. x 2: 0 are changed to the following three cases.

some modifications are needed:

Case 1 : H(x) 2: o.
In this case , letting 6(x, u) = g(x) + u' H(x) definetl for all x anti constrained

only by u 2: 0, condition (1) should be replaced by (to) ~ = O.

Case 2; H(xl = O,x 2: o.



30

In this case, [etting o(x. u) = 9(U' H(x) delillCd for illI u and consn"incd only

by x;?: 0, condition (2) should be replaced by (2") fl&; = o.

Cu.se 3 : H(x) = O.

In this case, letting: o(x. u) = !lex) + u'H(x) defined for aUli and x without any

COJlstraiuts. conditions (1) and (:1) should be rcplal,;cd hy 0") and (:1"). This C,ISC

corresponds to the usual method of lagrange llluitipliers.



Chapter 3

A Multiple Comparisons
Procedure for Detecting
Differences Between Treatments
and a Control in Two-factor
Experiments

3.1 Introduction

),(any situations in pharmaceutical research and other fields require comparing se,-·

eral treatment means with a control mean. Of a standard. .\ number of statistical

procedures ha\'e been proposed for applications in\"Oldng treatments \-ersus a con-

trol, of which. the best known is Dunnett's (1955) multiple comparisons procedure.

:\[any generalizations of Dunnett"s procedure h,n"c been made. Shaffer (l9'7) ex·

tended Dunnett's procedure to yield simultaneous confidence intervals for all linear

contrasts among the k treatment means and the control mean wllich are shorter

than th.e intervals obtained by using the Tukey and Scheffe methods. Dunnett and

Tamhane (1991) generalized it to unbalanced one-way la~'out ir. step-down fashion.

3l
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Uu (1996) de"eloped it group sequential procedure for comparing 5e\1!ral treatnwms

with a control. The aforementioned rcsults only in\1,)h-e onL"\\<lY layouts. Cheung

and Holland (l991 and 199:?) genemliZl-d Dunnet(s pn>cL>dure to make COlllpar·

isons simultaneolLSly in each of r indcplmdent groups with cach group consisting of

some treatments and a control. L·sually in Illlllti·factor experimcnts it is of intcR'St

to make inference for factor means such as Bechhofcr aud Dunnett (19S'). Hence.

comparison of combined trcallllctU 1ll.!anS with the! cOlllrollllCltll is lIf imerest. ~Iilh'r

(1981) snggcste!d \Ising weightcJ a\·crage! of pairwise compllrisons. C0chran ,mel C0X

(195.) compared the average etfect of sulphur with the control in a scab index <lma.

[n thnt experiment. rt..'Seilrcber!i would be int':rest...cl in the dfCt:tin.'ness of the spring

appJicatiOll or the fall application. \"otice that Cheung and Holland's procedures

(l9!H and 1992) do not apply tv thi:; cast'.

\\·c consider two-way no presence of interation models with I le\1:ls of Factor

A and J le\-els of Factor B. and a control or a standard. labeled O. The scab in-

dex data in Cochran and Cox 09!).) and the experimeltt of antidotes effecti\""t~n~

for the sown species in Bofinger and \ltmgersen (1958) are typical applications.

\\·e make the usual assumptions for the analysis of \-nriance. that indepcndent o~

ser\'ations SOl , Xo.... from the control group and obser\-atiolls X'JI' .. , X'J". i =

... l,j = 1 ,J from the treatment groups are normally distributed \dth means

JJ.o and ~ij respectively, and a common unknown \-ariance q2. The treatment means

can be expressC!d as jJ,j = JJ + Oi + !3j with 2:~.1 OJ = a atld 2:;=l ..JJ == 0, here

I-' is the grand mean of the treatment groups, 0, C8J ) is the effect of the ith (ith)

level of Factor A (B). let .to. =~ be the sample mean of the control group

with sample size no, and let .\:'j. be the sample mean of the treatment group at
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the ith [c\-el of factor A anu till' jIh Ic\"c\ of ractor B \\"ith sample size n. rhat

is. '\"'J' = b~ ;, S,,_. [II thest! t!xpc.'rimcllfs we :\TC illtCro~tL't1 ill L>(jllLpariug II,} widl

JIf) and in comparing factor means P,._ I' J and the grand mcan po with llij. \\"111'0'

11•. = 'L.;;l J.l'J!J, IJ., :IE r.~_L1t'J/l. p = L~'21 '£.;..1#1,,1 fJ,

Let .v = no +n[J be tile totnl sample size. and let /I = S - I - J he the dcg;l'lX'S

of freedom for the usual poolt."C.I L'Stimator S! of the ~OlJlmon variance a~.

where .\"j.. = r.~.t ~;" s",. 5."oJ" = >: .~i ,s,,_ . .\,,,. = '):., )~:~f:'" s"'. TIll'

statistic g! is indcpendem Ortlte me,ill ,'ector 5: =(.\·O \"ll (/J.}. and vS!/f11

has a chi-squared distribl.tion with v degrees of freedom.

Let the null hypothesis be HI): III) = Pll = ... = J.lfJ and let the ahernati\'e

hypothesis be HI: JJo ~ P.j (i = 1. ... I.j = I, ... J) with at [cast one strict

inequality. The h~-pothcsi.s HI is kno\'-u in the literature as a simple tree oruerillg.

Dunnett (1955) proposc.od the tCSt that rejects Ho for a large '"dlue of

D,,= max _\"~
l~'9·lSl95 .t; -t- ~

(3.1)

and ga....e its critical \71lues for equal sample size_ where k = 1J_ The likelihood ratio

tCSt of Ho under the assumed simple tree order has been considered by Robertson

and Wright (1985) and Conaway. Pillars, Robertson and Sconing (1mB). Tang and

Lin (1997) proposed an approximate likelihood ratio tcst for the problem. The

power of LRT is generally good, but its complltation is a challenging task. Partly

because of the difficulties in....ol ....ed in applying LRTs for ordered hypotheses. some

researchers such as Abelson and Tuker (1963) considered testing homogeneity '-cr$U$



the simple tree alternatin~ using tests b..~ Uti sing:I,~ l"Ontmstl'. Oue arl\1\lltugc

or contrast test is that contra,,;t tl'St statistic is normally distrihlltoo with eU.'iily

l"Omputed mean and \l'Iriance IIlldl~r both the lIull and altcrnatin' hypotheso...'S. \\"lIile

the contrast tests arc \-ery simple to lise. their power chnmcteristics are sudl that

they cannot be recommended ill general its c'Hnpctitors to the LR:r. Certain lIIultiple

contrast tCSts have excellent power properties. ~llIkerjl"tl. RobertsOll and \'·right

(1987) studied a class of llIultiple l"Olltrast tCSts and l"Olllpareti thdr powers to thoSl'

of Dunnett's tcst and Abelson aud Tukl'y·s single-contrMt test. ~[i\rclis and Talpctz

(L99:2) de\·cloped a SN of simultaneous one-sided confidence bounds (SeB) for all

simple trce contmsts. However. tl\(~ al,ll\"C Illultiple contra..'lt tl'StS I'XCtlpt Dunnett's

[lrocedure arc not suitable for comparing: indiddual treatment lllean 11,) with IJ~ and

ill comparing factor means 11•• , PO.) with /-l<l simultaneously.

Dunnett's procedure can be used to construct confidence lower bounds for thc

differences of treatment means and a control mean. The aim of this chapter is to

propose a new tCSt which is powerful and it 1:1\11 be used to construct simultaneous

confidence lower bounds for thc differem:es of factor means and a control mean in

two-factor experiments. The nc\\' muhiple contrast test statiSlic is gh-en in S«tioll

3.2, the po\\-er comparison is conducted in Section 3.3. simult.meolls confidence lower

bounds im-erted from the proposed multiple COntrast test statistic are presented in

Section 3...l. in Section 3.5 a numerical example is employed to illustrate the gains

of the new procedure, the extension of the procedure applied to many other dcsigns

is gi\·cn in Section 3.6, and finally a conclusion is presented in Section 3.7.



3.2 A Multiple Contrast Test

For an experiment with tWO fanofS and a contro!. we arc imcrcstcU in comparing

IJ'J> Ili._ /I.J and II with I/l). The propuscd tcst statistic [C'jcetc<.! H~ in [,wor of

HI - No if the test statistic

Gk ..:::: tg~ll- ;Jt.-~\'; (3.~)

is large. where .\·c dl'notes th~ combined treatment mean with l,."t'lls in C. nc ~ the

combinoo sample size in C nnd k = {J. When I ~ :2 and J ~ 2. the col!ectiolL C

consists of (I + {)(J + 1) 5Ubst.lls which include all singlNons {(i.jl). all itll row

{(i. 1). (i, 2), ... (i. l)}. all jlh 0011111I0 {( l.j). (2.j) .... {I.jll and the set of all

treatments ({i,i): i = L .. ,I.j "" L ... J}. When 1= 1 or J = 1. the collection

C consists of I x J + 1 subsets.

Let the 1 - u percentile of the distriblltion of Gk.l,: be denoted by cZ.c.u \\'hen

Ho is true!. One may e\"l\luatc these percentiles by a numerical integration of k ..;- 1

dimensions such as Genz (1992). Due to the clJlllp(exity of our acceptance region

{Gt.c ~ ct.c... }, these percentiles were calculatro by simulation. The simulated

percentiles are pro\·ided. in Table 3.1 for Q = .10. .05 J.nd .01. k = 2. 4. 6. 8. 9.

10, and the degrees of freedom 11=5.•. 10. 15. 20. 25. 30, -10. 60. 100. and ~ for

the equal sample size case. \\'hile one run of 1,000,000 iterations is sufficient for the

levels Q =.10, and a = .05, and also for the le\l~1 Q =.01 with df = x. up to se\~n

runs were used for the level a = .01 with df = 5. The accuracy employed here is

that the simulated tail probabilities at c~.c,,, + 0.01 and ~.c," - 0.01 lay below and

above Q respectively b)' more than three standard dc\·iations.

It is frequently encountered that the sample size for the control is larger than



the sample sizes for the treatlne!lts. p."\nicularly ill lIIt... lical and biolo:;ical research.

It is not um:ommlln to ha\'fl lwice the :>;.uuple size for tI\I' c... lIIrrol grllup :lnd Table

J.~ is for the case ilL = .. = II" = II and flO = ~Il.

It is straight forward from (3.1) aILd (3.2) that e t ..: :2: D". Thc 1-0. ~n:entilc

c,;.c ... is larger than its COUntl'rpiln ,~... of tne Dunlletl's procedure. GUI the differ

ences arc relath'ely small. For example. for a = .05. the differences lie bt!t\\"ft'll .02

and .06 for equal samplt~ siz<, nL....'.

let ;;-(Jl) be the power of the new tCSt et.c at I' = (1/1l.I~LL .. .. J/IJ)' The new

te:>t posses:>cs the following characteristics fvr equal sallLph! si;w cases as well as

unequal sample si~e cases.

Theorem 3.2,1 If ~'I'J - lilt) ~ J'~'J - jl'1O. i = 1. .. . I.j =: 1 ... . J. ilu./1 :;-(I'd ~

;;(Jl~). Furthermore, e".c i.1 UlibitUed and con4i..dent,

Proof. Let }'a and }'jj, i = 1, .,.I.j =: 1 , .. ,J be independent normal mriates

with mean 0 and variance q~/tlo and tilln. respectively. Let S&,' = 1a+ litO.

i = 1 ... , I.j = 1, J. We mny rewrite the statistic elc.t: as

e".t: = rna.... {rna. t}. - .to.. rna." S._ - So. . rna." S.}. - So.. ,\'.- - So. }.
i,j SIf"+f . SJt.+-!i } svt+-!J SJt+;!u

Consider tne first case, we ha\"C that

ma.....X"~ = max (li, -1a)+ (1l1'1 - IlLO).

i,j 5 ;;1;+*',) Sj"f":*
Since IlLi' -IlIO:5 fJ2i' -Jl'1O. i =1. ... 1,) = 1, .. ,J.

s;'I" \'1" X'I" \"I'~

ma....~<ma-"~.
i,j SVt.+~ - '.} Sv;;l;+~



Similarly, II'C may obtain

Hence

Therefore, ;;-(J.Ltl = P(Ck.~ 2: c'(,: .... l :S p(Cr:.: 2: t1.':.,,) = ;;-(Jl~). The result h,)lds

ror any collection C.

If J.L = (PO,IiII' .. ,/l/J) is such tllat Pij 2: Po,i = 1. ... f,j = 1 ... , J. th('n so

is P- a = (IiO - a, Pll - a. .. ,PlJ - 0) for any CGflStunt \'ector a = (a .. .. a). By

the monotonicity of the nell' test. ;;(J.l) = p(Cr., 2: c:k.c ....l 2: ;;-(a) = Ct. Hence. Ct.':

is unbiased.

Since
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For a positi\~ constant b. if

then
\"" - (""

p{ n~~x ;Jt ~; ~ b} ~ 1-'.

Therefore. the power :r(I-I) of C 4•..: ,:onn.'rgcs uniformly to our. as f1\:t., •.j~ -;. x

ifJtE HI -Ho. .:J

3.3 Power Comparisons

The powers of the new tL'St. Dunnett's tL'St aud the LRT arc im'cstigated in this

section. The ~(onte Carlo method is used with 10.000 iterations. The standard

errors arc at mOSt 0.005. For simplicity. we consider the equal sample size case

with a'/n. = 1. It is the common sample size. Three configurations are considered:

the center direction (-1.:,1, ... 1). tlte edge direction (-1. k. -1. ... -I). and the

direction of pairwise comparison (-1.1.0 .... 0) which lies in the middle of the

center direction and the edge direction. The center direction and the edge dira::tion

tend to attain the ma:'l:imum and the minimum power respccti\"Cly for all the tests,

The simulated powers of the new test. Dunnett's test and LRT are provided in Table

3.3, where ~:! = n[(po -p.)~ + i:~_l '£.;=dlt'J - p.)"ll/q:! is the noncentrality parameter

and jl = (Po+'[.!'",t 'Lf_l Pij)/(fJ+l). The new test issiiown to be the most po\\"Crful

one-sided test along the center direction when treatment means are approximately

equal and are larger than th.e control mean, At k =6, the percelltages of the power
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of tile II~W test arc '.il. t;.S~. and 15.D!) higher than t11t)SC of the lRT. fur ~ =: L2.

and J. respectively. Here experimenters are often imcrcstoo in comparing II with

Po- The scab inde.x clata ill St.'Ctioll 3.5 indicates sllch a tendency. It is also the most

powerful aile along the p<"\in\'i.;c directions (-l, 1.0 .... 0) .... or (-1.0 ... ,0,1)

when treatment means arc larger thau the L-ontrollllean and one treatment mean is

larger than the relllaining tf"alllltmt means. At k =6. the percentages of thl! power

of the new tcst afC 2.93. 8.23. alld 10.26 higher than those of the lRT. for ~ = 1.2.

and 3. respectively. However. LRT is the dear (hoke along the edge direction when

one treatment is effective while the remainings are not.

Consider the configuration when treatment means art' larger than the cOlUro]

mean and all treatment meaus of the ith le\"el of factor A are larger than the

remaining treatment means, tht:! direction is aIL a\"l~rage "f J pairwise directions. for

example, the average of (·1; 1.0.0:0.0,0). (-1:0.1.0,0.0.0), and {-l:O.O.l:O.O.O} is (.1:

1/3,1/3,1/3:0,0.0). Table 3.3 indicates that tht:! new test is more powerful thall the

tRT and Dunnett"s procedure along the l'ellter direction and pairwise directions.

Therefore, the new test is the IlIOSt powerful one in comparing ~L. ...·ith J.4J. The

scab index data in Table 3.6 exihibits that the mean of the three faU i\pplications.

~I., is significantly below the control mean 1-41. Consequently, the new tCSt will be

the most powerful one to detect such a difference, as shown in the following section.

3.4 Simultaneous Confidence Lower Bounds

It is usual to say that 11 treatment is better than the control when that treatment

mean is larger than the control mean. Dunnett's one-sided simultaneous confidence

lower bounds for the difference between each treatment mean IJ..) and the control



'0

mean Po is

---- 8'11'1 -Ilo ~ .\V-- '\0- -cr:...S - +-.
no /1

13.31

The weighted a\1:~rages of (3.3) may ~ used as in :\Iiller (1981) and the corrcsponding

simultaneous confidence lower bounds arc

-.-- 8'11,. -110 2: .\,.. - '\0' - dk...S - + -.
,~ n

(3.<1

Similarly for the Cillil,'S of /1'1 - 110 .md JJ - JIIJ. Our llt!\\" [,~t ~tatistk Gk.L ill (J.2)

has the following 100(t - a)7c simultaneous confidence lower bounds

,-. ,-. 058.'/1;)-/102:. ,).-. Q,-Ck':u -"'- •
.. 110 II

- -- /T":l
/1,. -/.IIJ?: .\,.. - '\0' - ci..c."sv~ + ni'

(3 ..'5)

(3.61

and similarly for the cases of P.) - 1Jo and p - Po- The one-sided simultaneous

lower bounds (3.3), (3..1). (3.5). and (3.6) are used without assuming that P'} 2: 110'

In the numerical example in Section 3.5. combinations of treatments include a fall

(or spring) application of 300. 600, or l:?OOlb of sulphur per acre Ill. (11::-); a fall

or a spring application or 3001b (600lb or 1200lb) per acre or sulphur P.I (p.~ or

p.]); among others. Comparing (3.6) with (3A.). we obsen-e th.lt 4..c..,J;!; + 1; is

generally smaller than cr;...~ when the number or combined treatments J is

at least :2. Our new test statistic can pro\'ide sharper simultaneous confidence lo\\-er

bounds or combinations or certain treatments means nnd thl! control mean than

those or OUlmett's method.

The scab index experiment in Cochran and Cox (1957) (see Section 3.5) is such an

example where a treatment is said to be better tnan the control when that treatment



mean is smaller than the control mean. The corresponding one-sidr.cl simult;H1t.'Ou.:;

confidence lower bounds to (3.3). (3..1). (3 ..j). and (3.61 an'

(3.8)

and

l3.IOI

respccti\·ely.

3.4.1 Efficiency or Confidence Lower Bounds

The efficiency of the new procedure is compared to Dunnett's procedure in terms

of mean heights of confidence lower bounds. The IIlCUll heights of confidence lower

bounds in (3.5) and (3.6) are ct.c:...J;!; + r!c£(S), and the mean heights of confidence

tower bounds in (3.3) and (3.-1) are cr:... .f!i:+1£(S). The ratio of the mean height

of Dunnett's confidence lower bounds to that of the new procedure is

(3.11)

The values of R't... are pro\'ided in Table 3.-1 for cr = 0.0·). /I = x. no = nl =
... = nl;:, and k = 2, 4, 6, 8, 9, 10 and for the number of combinations in C from

1, tbe Singleton, to 10. In the case of a single treatment \'ersllS a control, the mean

heights of Dunnett's confidence lower bounds are shorter than those of the new



procedure. But the ratios arc \'ery dose to 1 and the losses in efficiency are no more

dIa1l2.3~.

The mean heights of the new prol-edure are shorter than those of Dunllet(S

for treatment combinations of twO or more treatll1ellts. The ratios of the latter to

the former are larger than 1 illId the gains ill efficiency arc at least l2.9%, further

comparisons can be found ill the numerical examp!\.! in Section 5. Willm the \'ariallce

(f~ is known, the ratio of the !lIeiln height of~larcus and T,tlpaz's (1992) silllultam.'OllS

confidence lower bound to that of the lIew procedllrl~ lil'S between 1.012 and 1.1S0

when k == 2; between L.O-ll alld 1.317 when k = -I: between 1.06-1 and 1.393 when

k = 6. There is no ud\'amage ill using :\!.lrclls and Talpaz·s pn>cedure to compare

Ii'J' Ii,., JIJ' or ~l to the eontro! mean Jlo,

3.4.2 Probabilities of Nonnegative Confidence Lower Bounds

In this subsection, we compare the probabilities of nonnegati\l~ confidence lower

bounds by Dunnett's procedure with the corrp.sponding ones by the new procedure,

The experiment is a:2 x3 layout with a control. The ro\\" effects are denoted by QI. Q1

and the column effects are denoted by .3 1 '~' 8:J excluding a controL The control

mean is assumed to be zero. i.e,. I-4J =O. and no = 2n. Six cases are considered and

they are

Case 1: crl =02 =0; .ill = J.: =fh ::::2.0;

Case 2: a\ = 0, a2 = 1.0: 31 = 3:J = .33 = 2.0;

Case 3: 0'1 =0, 02 '"" :1.0: ;31 = .3:J. = /33 = 2.0:

Case -I: 0':1 = 02 = 0; {31 = 1.0, fh. = 2.0, {33 = 3.0i

Case 5: crt = 0, 02 = 1.0; ,jl =1.0, f32 =2.0, /33 = 3.0;



Case 6: 01 = 0, 01 = 2.0: ::II = 1.0. .h = 2.0. ,h = ;J.O.

for each case. the probabilities of nonnegati\'C confidence lower bounds for Dunnet(s

procedure and the new proo.>Uurc are cakuliltcd. for simplicity, we assume /11/ n =
1. The results are pro\'ided in Table 3.5.

These probabilities arc the percemagcs of detecting the differences between till'

row mean 1-/ •. and the comrol mean p.o. berwecn the column mClIn IJ.j and the comrol

mean I.ll), and bet\\"(.<en the grand mean J.I. and the control mean 1/1). Th... probalJilitil'S

of nonnegati\"(! confidence lower hounds by the nell' pro,:cdure arc always higher than

those by Dunnett's. The differences are sllbstantial and they could be as large as

0.-116.

3.5 A Numerical Example

The results of an experiment on the effects of applications of sulphur in reducing

scab disease of potatoes can be found in Cochran and Co." (l9.iT)_ The objt!cth'C

of applying sulphur is to increase the acidity of the soil. In addition to untreated

plots "'hich serve as a control, 3 amounts of dressing were compared at 300. 600. and

1200lb. per acre. &th a fall and a spring application of each amount were tested. SO

that there were six distinct treatment groups excluding the control. There were four

obse[,,\"3.tions for each treatment group and eight obse[,,\lltions for the control gToup.

The thirty-two observations are pro\-ided in Table 3.6, where the sL..-: treatment

groups are labelled as f3, 53, F6. 56, F12 and 512 respecti\-ely. The pooled \"3.riance

estimate is 51 = -11.93 with 2, degret!s of freedom. The interaction between the time

of application and the amount of dressing were not significant, the corresponding

p-value was 0.670, and a two-way additive model is used.



The o\~rall F-statistic for tcsting Ho ; 1-10 = I-Iu = I-II~ =1l1:l "" Ij~l "" II?! = Il2J

against all ahernath-cs has a \"alue of 3.83 and its 1)-\.tll1c is 0.007.

The likelihood ratio statistic l"JI for testing Ho against the altcmati\-c hypothesis

HI ; 1'0 ~ II'l (i = I, :?,j = 1.2,31 with at least 01\C illequalit~.. has a \Tllue of O.~61

and its p-nllue is 0,00303, Herr. the degree:; of fret.'C.1om for the lRT EJI is 25.

In this application. low treatment response is preferrtx!. The statistks (3.1) and

(3.2) arc gi\'en respet.:tt\'cly hy

and

(:1.12)

By using the interpolation method in Hochberg and Tamhane (1987). tILl' critical

\-alue for Dunnett's one-sided lest for 110 := Sand 1111 = tllZ = tll:I = n,~1 = n,1:! =
tin = 4. is ~~ == 2.-18. The Dunnett's statistic is equal to -I.2~ and its exact p-\-alue

is 0.000657. The new statistic GtJ:. of(3.12) is used to test Ho again5t HI' Its critical

nuue 4~.2' depends on the number of comparison5 used in (3.12). That n'lmber

is normally (l T I)(J T 1). Howc\"er. for this particular application we are also

interested in comparing the mean response of drMSing 600Ib. or more per acre with

the control mean. Therefore, there are thirteeu comparisons in this application and

the new statistic has the \-alue of ~.2-l. The critical value is ~:~'~2.5 == 2,5~ through

simulation and its exact J)o-\'aluc is 0.000933,

For these thirteen comparisous, their simultanC!Ous confidence lower bounds by

Dunnett's procWure and the new procedure are provided in Table 3.7. In these
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interval estimations, we do not itiSume that the application of sulphur is etfl,,'t;tive

in reducing $Cab indices, The notations used here are: F stands for Factor A at

le\-el one which includes FJ. F6, and fI'2; 5 stands for Factor.-\ at level two which

inc:ludes 53, 56, 51:!; 3 stands for Factor B at level one which inc:ludcs F3 aud 53:

6 stands for factor B at h~\'el twO which includes F6 and 56; 1'2 stands for Factor

B at level three which includes Fl'2 and 511: ~~ 6~ stands for Factor B at le\'cl

two and le\·et three which inclmk-,; F6, $6. FI1 and 512: and "~ :r stauds for the

combination of all six treatmcnts. Tahle 3.7 is di\'ided into two cases. The first

case is for the confidence lower bounds of a single treatmcnt against the control

J!ij - Ji(). Both Dunnett's procedure and the new procedure detect the difference

bet\\"t~en F3 and the COntrol. as well as the difference between Fl'2 and thl! control.

Dunnett's confidence lower bounds are larger than our confidence lower bounds with

differences of 0.236 and 0,237. The second Cl\Se is for the confidence lower bounds

of combined treatment against the control1J.c - 1Lo, Both Dunnett's procedure and

the new procedure detect the difference between 12 (Fl2 and 512) and the control

as well as the difference between F(F3, F6 and Fl2) and the COntrol. However, the

ne\\' procedure also detects the difference between 3 (f3 and 53) and the l,,'OO[rol.

and the difference between -~ 6- (F6, 56, F12, 512) and the controL It is also found

that the application of sulphur ('-~ 3~) resulted ill a significant reduction in scab

index. Dunnett's procedure fails to detect these three differences, Our confidence

lower bounds are larger than Dunnett's confid~nce lower bounds with differences

ranging from 1.61 to 3.12,

The ratio of the mean height of Dunnett's confidenCe lower bound to that of the

new method is ~;~,2 = 1.196 for combined treatments 3, 6, or 12; ~;g~,J = 1.310



for combined treatments For S: ~~.~ = 1.381 for treatment combinations ( ...~ 6"').

and Rll~,& = 1.465 for aU treatment combinations ("~ 3"). The results demonstrate

that the new procedure is more efti..:ient than Dunnett"s for comparing combined

treatment means with the colltrol mean. The larger the number in the combined

tr~atmellt group. the higher the relative efficiency.

3.6 Extensions

The use of the statistic Gk.c in (3.2) and its corresponding simultaneous confidence

lower bounds Ciln be applied to many different designs involving a control. Ont!

extension is to il two-way design. Factor A is a time factor and Factor B has J

lel1~ls and a control of no treatment such as the abo\l~ example. Each ith le\'el of

Factor A at the control level of Factor B represents an independent and identical

repetition of a controlled experimental trial. The data gathered represents an I x J

experiment \\'ith n obsen-ations in each treatment group and a control with nl

obsen-ations. For 2 x 2, 2: x 3, 2 x :t and 2: x 5 experiments \\"ith a control of 20

observations, one may use the critical \-alues provided in Table 3.2.

Another e..-:tension is also to a two-way design. Factor A has [Ie\"els and a control

and Factor B has J le\"els and a control. There are (l + 1)(J + I) - 1 treatments.

Experimenters are interested in comparing IJij with the control mean /-l«I and they

may also be interested in comparing JJi. ='£1-0 m' J.lo. =,£1=1 T' IJ·j = ~[-o M,
IJ.(J = L[.. I l!f, or IJ·· = (~[.o '£1-0 -lJool!UJ + I + J) with the control mean POoo·

.'\. third extension is made for the design of k treatments and a control. Two

or more treatment groups may ha\"e the same characteristic. They may be the

same treatment with different dosage le\"els or different times of application. Ex-



perirnenters rna)' be interested in comparing a set of treatment groups to the con

troL The critical \lllues ct.. of an all.purpose test statistic GIr: corresponding to

(3.2) in\'Olving aU 'l!' - 1 possible comparisons can be found in Peng, Lee, and Liu

(1999). This approach is somewhat c:onsen1lth'e if one is interested in 13 compar

isons instead of 63 comparisons when k = 6. The former requires a critical \lllue of

cUte = 2.56 while the latter requires a critical \lllue of c:g:~ = 2.66 when no = 8

and n\ = n2 = nJ = '4 =ns = 1'16 =-1..

3.7 Conclusion

The new procedure is appealing in that its mean height of sin\ultaneous confidence

lower bounds is only slightly larger than that of Dunnett's for the difference of a

single treatment mean and the control mean, but it is substantially smaller than

that of Dunnett's for the difference of a treatment factor mean Il•. (or ~.j) and the

control mean. As a consequence, the new procedure is significantly more powerful

than Dunnett:s in detecting the difference bet....-een factor means Ili. or ~'J and the

control mean Po. Wben those comparisons are of interest, the new procedure is

recommended. On the other hand, our new procedure as a test statistic is more

powerful than the LRT and Dunnett's test along the center direction and pairwise

directions.
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Table 3.1: lipper Percentage Points for I x J Experiment With Equal Sample Size.

k-treatment groups
df " :2 xl '2)( :2 '2)(3 '2 x.j, 3x3 2x5

.10 1.90 2.29 2.48 2.62 2.67 2.72

.00 2.48 2.91 3.12 3.28 3.33 3.39

.01 3.96 -1.53 -1.80 5.00 5.07 5.16

.10 1.80 2.16 2.33 2.45 2.49 2.55

.05 2.29 2.6. 2.86 2.98 3.03 3.08

.01 3.47 3.92 4.13 -1.28 U-l -1..'10
10 .10 1.,-1 2.07 2.23 2.3-1 2.37 2.-12

.05 :2.18 2.52 2.68 2.80 2.83 2.88

.01 3.16 3.5-1. 3.71 3.83 3.87 3.92
15 .10 1.69 2.00 2.15 2.25 2.29 2.33

.05 2.10 2..u 2.56 2.66 2.70 2.73

.01 2.96 3.27 3.-11 3.52 3.56 3.61
20 .10 1.67 1.97 2.11 2.22 2.24 2.29

.05 2.06 2.35 2.50 2.60 2.63 2.67

.01 2.86 3.16 3.29 3.39 3.42 3.46
25 .10 1.65 l.95 2.09 2.19 2.22 2.26

.05 2.03 2.33 2.46 2.55 2.59 2.63

.01 2.80 3.09 3.22 3.31 3.34 3.33
30 .10 1.6-l 1.9-l 2.08 2.1. 2.20 2.25

.05 2.02 2.31 2.4-1 2.53 2.56 2.60

.01 2.76 3.0-1 3.1i' 3.26 3.28 3.32

'0 .10 1.63 1.92 2.06 2.15 2.19 2.23
.05 2.00 2.28 2.-11 2.50 2.54 2.5.
.01 2.72 2.99 3.11 3.19 3.23 3.26

60 .10 1.62 1.91 2.04 2.14 2.17 2.20
.05 1.98 2.26 2.39 2.47 2.50 2.54
.01 2.68 2.94 3.05 3.13 3.17 3.19

100 .10 1.61 1.90 2.03 2.12 2.15 2.19
.05 1.97 2.2-1 2.36 2.45 2.48 2.52
.01 2.65 2.90 3.01 3.08 3.11 3.15
.10 1.60 1.88 2.01 2.10 2.13 2.16
.05 1.94 2.21 2.33 2.42 2.44 2.48
.01 2.59 2.84 2.95 3.02 3.04 3.08
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Table 3.2: Upper Percentage Points for I x J Experiment With no = 2nl =
'2n".

k treatment groups
dr Q '2 xl 2x2 2x3 '2 x ~ JxJ '2)(5

.10 1.95 2.-11 2.63 2.79 2.85 2.91

.05 2.53 3.05 3.29 3,46 3.52 3.59

.01 4.02 ·LiD 5.02 5.24- 5.31 5,42

.10 1.85 2.27 2,46 2.60 2.64 2.70

.05 2.35 2.•9 2.99 3.13 3.18 3.25

.01 3.53 ·to-l -1.27 4.45 4.51 4.58
10 .10 1.78 2.17 2.35 2.47 2.51 :2.56

.05 2.23 2.62 2.80 2.92 2.96 3.02

.01 3.21 3.63 3.83 3.96 -1.00 4.06
15 .10 1.73 2.09 2.26 2.3, 2..11 2.46

.05 2.1-1 2.-19 2.66 2", 2.81 2.85

.01 3.00 3.35 3.51 3.62 3.66 3.71
20 .10 1.71 2.06 2.22 2.33 2.36 2.41

.05 2.09 2.4-1 2.59 2.70 2.73 2.78

.01 2.89 3.23 3.38 3.48 3.51 3.56
25 .10 1.69 2.03 2.19 2.30 2.33 2.38

.05 2.07 2.40 2.55 2.65 2.69 2.7-1

.01 2.83 3.16 3.30 3.39 3.42 3.-17
JO .10 1.68 2.02 2.18 2.28 2.31 2.36

.05 2.05 2.38 2.53 2.63 2.66 2.70

.01 2.79 3.11 3.201 3.34 J.36 3.41
40 .10 1.67 2.01 2.16 2.26 2.29 2.3-1

.05 2.03 2.36 2.50 '.60 2.63 2.6i

.01 2.i5 3.05 3.18 3.2i J.JO 3.34
60 .10 1.66 1.99 2.14 2.24 2.2i 2.31

.05 2.01 2.33 2.<17 2.56 2.59 2.63

.01 2.70 3.00 3.12 3.20 3.23 3.26
100 .10 1.65 1.98 2.12 2.22 2.25 2.29

.05 2.00 2.31 2.H 2.5"\ 2.57 2.60

.01 2.67 2.96 3.0i 3.15 3.18 3.21

.10 1.63 1.96 2.10 2.20 2.23 2.2i

.05 1.98 2.28 2.41 2.50 2.52 2.5i

.01 2.62 2.89 3.01 3.08 3.10 3.14
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Table 3.3; Power Comparisons.

Test
Direction k -" Ct.'; D\uII\ctt's CRT

Center
1 2-1.-1-1 23.60 20.57

60.07 58..t6 ·53.68
'l 88.86 87.76 8.').29

• 1 2-1.-It 22,87 17.t.1
59.38 56.-18 -1.').;-5

3 88.25 86.59 77.93
G 1 23.3-1 :n58 1·').63

.,)i.63 55.92 ]9.i9

'J 86.97 85,38 ;-1.88
Pairwisl!

1 22.2t 21.78 20.19
56.92 56.t2 ·53,5-1

3 87.22 86.7-1 85.32

• 1 20.33 19.20 16.21
.52.29 .'50.9] -I-I..to

3 8-1.t7 83.89 77.65
6 1 li.07 18.95 1-1.1-1

46.91 48.30 3S6S
3 80,9·) 80.11 70.67

Edge
" 1 15.99 15.87 1;-.37

42.33 42.81 -i9,23
3 74.39 74.93 83.10

• 1 10.82 10.62 12.26
" 28.36 29.16 36.50
3 57.75 ·')9.30 71.76

G 1 9.0-1 9.12 9.88
12.82 23..t6 30,10

3 -18.82 50.27 62.69
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Table 3.4.: Ratio of the ~Iean Height of Dllnllctt'~ Confidence lower Bound [0 That
of the :\"c\\" Procedure. 0. ::: 0.0.), 110 ::: III ::: ••• = Ilk and v ::: X.

Combination k_:! k_~ k_G k-S k_!) k_lO

1 0.990 0.977 0.983 0.988 0.99::! O.9SS
1.t ..l3 1.129 1.1·35 1.1-10 1.1-1.5 1.1·U

1.197 1.20-1. l.209 1.215 L210
1.236 1.2-1.3 1.2.1.9 1.2,3.) 1.250

1.269 1.275 1.280 1.27.)
1.287 1.293 1.299 1.293

1.306 1.312 DOT
S 1.317 1.322 1.317
9 1..131 1.325
10 1.332



Tabl~ 3.5: Probabilities of :\mlllr.gati\"l~ Confidence Lower B,)unds for DllllllCl(S
Procedure and the :\cw ProcCthln~. 110 == :1/l1 = ... == :1l1k.

Cnl:ic ~[cthod ,-, p, II~ ",' JI.I jlo /1 ..1 Ill) ,- "0
Cm,Q 1 D' 0.171 lU,l 0.193 0.1!):l O.L!J:3 0.1-1-1

" 0.-113 O.-lL1 0.3-11 0.3-11 O..J-IL 0.5iG
Ca.se2 D 0.171 0.558 0.357 0.3·)7 0.3;:;7 0.127

:-: 0.-113 O.SlO 0.536 0.536 0.536 0.7-&3
Case 3 D 0.i71 0.893 0.553 0.553 0.553 0.565

" 0..113 0.976 0.722 D.722 0.722 0.897
C~, D 0.1'{ 0.171 0.031 0.193 0.553 0.1-1-1

" 0.-113 0.-113 0.079 0.3-&1 0.i":?2 0.516
Case 5 0 O.lil 0.5-58 0.086 0.357 0.•3. 0.327

" 0.-113 0.810 O.lSl 0.536 0.862 0.7-13
Case 6 0 0.171 0.S93 0.193 D.~3 0.872 0.56-5

" 0.-113 0.9.6 0.341 0.722 0.9-1.-1 0.897

• 0 for Dunnett's procedure and ~ for the ne\\' procedure



Table 3.6: The Scab Index Data.

0 F3 5.' CO 56 Fl:! Sl:!

" 30 9 30 16 IS \0 "10 18 9 10 24 •
2. 32 16 21 18 t:! • 16
29 26 • • 18 I' ,

"Totals 181 38 " 61 73 23 57
~Ieans 22.6 9.5 16.8 1·').5 18.2 .j.8 14.2

~otation: F=fall. S=spring, O=control.

53



Table 3.•: The 95% Simultalll'Ous Confidence lower BOllm!:; for the Sc.\b Indcx
D'Ha.

Treatmem Cunfidcul"e lower Bound
Dunnelt's SlethOti :'\cw ~Iethod

Single
Treatment F3 3.2. 3.0J

5' ··t03 ·-l.2'
F6 ·2.73 -2.9.
56 ··j.-l.3 -·j.6'

Fl2 6.97 6.•3
512 -1..13 -1.67

Combined
Treatment 3 -0.38 1.23

6 --l.08 -2.-l'
12 2.77 -l.38
F 2.50 -l.83
5 -3.63 -1.31

~6 -0.66 :to.')
>3 -0.57 2.55



Chapter 4

Statistical Inference for Best
Treatment versus a Control

4.1 Introduction

En many experiments, the primary goal is to compare sc\'eral treatment means with a

control mean. or a standard. This is often the case in pharmaceutical studies. where

the superiority of any proposed new treatment over a standard treatment must

be demonstrated befofe it is accepted. Altermuin>ly. there may be no standard

treatment and the main problem may be to establish whether the new treatment

ha:; any beneficial effect, in which case a placeho comrol treatment may be included

in the trial as a standard for comparison.

.-\. number of statistical procedures ha\'c been proposed to test wh.ether any of

k treatments afC difl'2rent from a control. mOSt of which are multiple comparisons

procedures. The most important work is by Dunnett (1955). :\Iany generalizations

of Dunnett's procedure have been made. For instancc, HOQ,"er (1991) cxtcnded

it to the case where there are sc,ocral treatments \\;th twO or more comrols and

joint confidence inten-als are required between each treatment and each control
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silUllltalWOllsly. Cheung an,1 Holland (1091. 19'J:!) cxtl'ndL't1 it t.} the C".-;4' of Jlllll't'

than one group of treatments. Ci\dl group containing SI~n'ml treatments l:ompared

with a specified treatmcnt. ""illl the error raw 1."O\·cring: all groups and treaWlI'nr

comparisons simultancously. P...ng. lL'E". and liu (:?OOO) generalized it to compilre

treatment means with a control mean in two-ractl'lr c:q}f'rimcnts. On the other

hand. Steel (1959), F'ligncr and '\'olfe (19S:1). Spurrier (198S). among others. s[udiL'tj

distriblllion-frCtl analogue:! of Dunnett's proce<[llrc. Th... r1!adcr is referred to the

book by :\Iiller (1981) and the more recent books by HOl;hherg and Tamhanc (198T).

and HSII (1!l96) for dctailL'l.l ill;l;oums of some uf these Ih~\"l~loplllcnts and c:-.:t,~nsi\·e

references.

The experiment considered in this l.:hapter is a onc-way analysis with k+ llevels.

Let 1;j. i = O. 1, .. , k.j :I< I.... n,. be independent normal \<lriates \\'ith unknown

means Pi (i =O. 1 .... k) and a common but unknown \<lriance O'~. where Po denotes

the control mean and Ill ... ,lilt denote the treatment means. The statiseic 51 =

L~d1L;:'l(l~J - f~)1/u is used as an estimator for 0'1. and it is independent of

Y = (fo.... f t ), where US!/0'1 .....\; and u = L~ao n; - k - 1 > O.

The first problem we study is to make inte[\'al inference with the prior knowledge

that treatments are at least as effecti\'e as the control. This type of prior kno\\'looge

may come from past experiences. The parameter spnce is n = { P E R!'TI : Po S

Ill, i = 1, .. ,k}. The null hypothesis is Ho : J1.Il = PI = ... = Illt and the

alternative hypothesis is Ht = f!: - flo. The test of HI} agaillst HI has been well

developed. The likeLihood ratio tese statistic SUI for testing Ho against HI is known

to possess generall~' superior operating characteristics to those of ies competitors.

see Robertson, Wright and Dykstra (1988). A variety of other procedures ha\'C
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al-.o lwell prof>OSC'l. nU:l:'t uf Id.ich art' IlOl'il.'f'\ ,m Olle ur IIlllro' t:ontraSL<; among th...

s"lmpll;' means_ These include the multiple COntril'it tests of ~Iukcrjee_ RobcrLiOn,

and Wright (198,) which includes DUllllNt"S pnx:edllrc and the sin(;lc-comnLSt 1t.'St

as special cases, and ad hoc [t.>SIS propOSCt"I by \\'illiams 09,1. 19,:!), Conilw;IY,

Pillcrs, Robertsoll, and St."Oniu(; (199t) USL'(! a circular t."Our. to approximate SuI and

they developed a lest which has dUl ad'~\ll[i1g\~ ofbcillg easier to compute and can Uc

used with unequal sample sizes. Tal1(; alld Lin (199,) used all orthant to approximate

Sill' ~kDenuott (1999) proposed a el.,ss of tCStS bmied Oil all impro\-\!{! orthant

approximation which can be vie\\"ed as (;~'nel"i.\liztions uf thp. multiple comrasr. tl'stS

of ~tukerjee. Robertson, .Ind \\'right (195,)_ tn a quite different way. Chakraborti

and Hetcrnansperger (1900) used suitably defined Olll;'.sulIlple confidellce intervals to

test Ho versus H. by utilizing the priori of HI'

The second problem we study is making inference with no prior knowledge: in

other words, some treatments may be inferior to the control. This situation occurs

quite often in real life data, The test of the null hypothesis of homogeneity of

the k treatments and the control \-ersus the non-homogeneity has been exumsit-ely

studied: Dunnett:s (19.)5) procedure is the best known one_ The null hypothesis

in this chapter is Ho : lJo ~ lJi (i = t ... , k) and the alternative hypothesis is

H; :at least one JJo < JJ,- This type of hypothl.'Sis is different from the classical null

hypothesis of homogeneity.

[men-al estimation pro\'ides a dsual pcrspecti\'e unmatched b~- a point estimate

or a test statistic. The problem of confidence inten-nls under ordered restrictions has

nOt ret:eived much attention in the literature_ This is primarily due to the general

intractablity of these types of problems (page 405 in Robert:ron, \'hight and Dykstra



(1988)). Only f~w of th.e l\fl,)n'mt~lllioned tcst prOt.'t.'flurl's call pro\'ide simultanl..'OlLs

confidence bounds (SeB). :\Ian::us (l97Sj dcvdo(X.>d a set of ilimultaneolls one-sid...'!:1

confidence bounds in th~ case llfk~o\\'n \<lriancc. :\(arCllS and TalJw.tz (I!)OJ'l) fllrther

proposed an alternati\'e test s·tadsti..: and used it to CllllStruCt a ~t ofSCB. but their

procedure is inferior to the DlIllIlCU'" proo..~llIrc in compming IJ, [0 the COmrOlllLl'llll

110. Berk and :\Iarcus (1996) sUlllmarized the results of sea for simple ortler. simple

tree order and umbrella llrder.

When the null hypothesis is rejel.:ted ill f.wour of th~ alternative hypothesis for

the <lbo\'(! two cascs. then) exists at least one trcatlllt,'llt l>etter than the control. Let

~11>..1 = maxl:!:;:!:/< jJ,. which is the lUcan of the best tt"e.\tlllCllt. Since ~1""'1 - ~IO is the

largest differencc between any treatment mean and the control mean. the confidence

lowcr bound for J.lI",fl -Il<l is bounded bdll\\" by that for any ~l, - IJo. (i = 1. ... kj or

their non-negati"e linear combinations. If this ma:umized confidence lower bound

for jJl>t•• -IJ(J is posith'C. then /4.,.. is significantly larger thanlJ(J. The key is to choose

a suitable test statistic such that the positi\'eness of the ma:'l:imized confidence 10\\'Cr

bound for 14u! -IJ(J i! equi\-a.lent to the rejection of the null hypothesis by the test

statistic. This heuristic forms the basis of our method. HO\\'C\'er. the likelihood

ratio test cannot be used to pro\'ide confidence inter\1\ls. In this chapter. \\'e pro

pose some test procedures and use them to search for the sharpest simultaneous

confidence 10\\'Cr bound for J.I.k.1 - Po through efficient algorithms. The construction

of the simultaneous confidence lower bound of PI>ul - ~IO' as discussed in this chap

ter, is a particularly useful inference method that has lIot been considered before.

Our method is different from multiple comparison Witll the best (:\[CB) proposed

by Edwards and Hsu (1983). :\ICB is the procedure in which the mean for each
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[rearml'U[ is comp'lfcd to the hest of tI\l' other trc<\t!Il.'nt means Idt!Lout ILiine; allY

prior infonnution. :\ICB call I,.· 11Sl.'(1 to proddc a simu!t:lllrolts confidclIl.."'C lower

bound for Jlk.c - liG, but it is not :l:; efficient a.'i ours. ll:i illustrated ill 5...'<:lioll -1.-1.

The layout of this chapter is a,; follows. A tL'lit prOt..-.xlure and an iteratiw al

gorithm to obtain simultaneous cOllfidcm:e lower bounds for II,...., - Ito arc given ill

Section -1.2 for the first IJfoblL'llL uudcr the pilrilmcter space n = { ~ E nk
.\ : JlO s:

JI" i = 1. ... k} and ill Section -1.3 for the second pl'Ohlcllllllldt~I' the null hypothL'Sis

H:" ; IUJ 2: Pi (i :: L. .. , k) rcspectiH~ly. (n SL'Ction -1.-1 a 1lI1111crieal example is

presented to illustrate the method,;. !ll SI:i:tioTl -1..5 a power comparison is \:l)1ldlll:t"d

to investigate the behal'iors of lest procedures Tin (.L2) aud T" in (-1.1:2) to that of

Dunnett's procedure and 501' In Seetioll -1.6 a brief discussion is gi\·en. All proal's

can be found in Section -I.i.

4.2 Treatments at Least as Good as a Control

In this section we assume that treatments are at lea:>t as good as the COntrol. The

parameter space in this case is f! = { p e R!<""' : Po :5 IJ,.i = 1 .... k}. "'here

the null hypothesis is H o: ~ = II, :: ... = It I< and tlte alternati\oc hypothesis is

HI =O-Ho·

4.2.1 Likelihood Ratio Test

Tile estimator of the common mllie of Ilj under Ho is il = r. where }". = 1;::o"~:"':'

The restricted ma:dmum likelihood estimator of ~ subject to f.! is denoted by p.

= (Jla,Jli, '.,Jlj,). It is called the isotonic regression of Y = (fo, ... ,fil under



n nnd it cnn be computL'<! n." f"lIows. If fu :s: f;., =- 1 .... /..:. then JI; =- f;.

Olhen\'ise, arrange f'l $. fi :s: ... :$ fi" ill iL~"t!lIdillg ordL'r (fit excludcd). DcllOU!

these \"alues by fill :s: f;~: :s: ... :$ f:,l,l and let II!'I denot(~ die corrl'Spondillg SiUlIplc

size for i = 1 .... /..:. where f;QI "'" fa and II[lll "'" Illl' Let 1 he the snmlll':'it non·

ncgati\'c integer such that Al =- :£::=0 Illi]fi,]/ [:..0 1I['i < f;I ... lj. then /I,j =- .-11, and

II; = max{.-I/. f;).

Thll lRT rejet:ts Ho in (,wllr .l( H l for !urge \ll1UL'S of

The null distribution of SOL under Ho is gh-en by

P{50l > $1 = ~ PU,/..:+ l:w)P[FJ _ Ls _J :> ~I'~'~,j»] (-1.1)
J.~ J

for any II:> 0, where S = L~_Oni' W = (110, ... Tlk), PU,k + ljw) is the !e\'el

probability under Ho that IJ" takes j distinct \·a!ucs. Through transformation

Uj = f; - fa, j =1, ... k. we ha\'e that

P{k + 1. k + 1: w) = P(UI > 0 ... . l.J'.. :> 0).

The abo\"e probability is the orthant probability in which U = WI' C~ . ... F,l,) has

a multi\<lriate normal distribution with zero mean and correlation matri.x p of the

fonn (pii = 1)

For the equal weights case, P(l. k + 1; w) and the critical \'allles SI<•.,.o for 501 can be

found in Robertson, \Vright and Dykstra (1988).
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4.2.2 l\1lultiple Contrast Test Statistic T

\\"hen 501 > $1:",,0, one reject... Hu and concludl:!S that there is at lea.it one treatment

mean JI, significantly larger than Jill. H,)\\,c\"Cr. there is no corresponding sillluitanc-

OilS confidence lower bouud fOf 1', - tIll when k > I. \,"c introduce the following WSI

statistk.

(..&.:2)

where .
C:::: {c =:; (cl).e, . ... c.,l: {; n,t, = O. 1:1)::; c,. i == 1 .... k}.

let tt ..."" be the critical \-alu~ of T. then

P,,{tn,c,p, ~ t",c,f~ -tk.....,S(t",Cn1..:.t. rorall c E C} = 1-0. (-J..3)

The left-hand side of (..1..3) call be rewritten as

PI'{ m~axt Il,c,(f~ - JtdlS(t TliCi) If:! ::; 11:.".0_ Jt e Rk
-

l
}

co::C i.O ':sa

II _. k ~ In

pU{~~1:,,~n,c,l./S(~n.r.:) :5lk....... }

Poi ~n,(Jt: - ~11/S:!:5 tL....}

and the last identity follows a similar argument a:; in Hogg (1965). It follows that

The right hand side of (-1.-1) is gi\~n by Wfight (1988) but it was derived fOf a

different purpose. The statistic T~ is asymptotically equintlent to SOL' The null

distribution of T under Ho is gh'en by

(-1.5)



for any t > O. The criticnl L'3hll~ t~.JI"" is the \~lllle t whcn oue 1~1j;\teS (4.5) to o.

4.2.3 Confidence Lower Bound fOl' Jlbul - Po

According to (4.3). thc 1 - 0 silllllltallL'Olls cOllfidclWC bOlilld fur allY ClJlltrast

L~"QII,C,/I, with C. 2: co.i = 1.. .. k. is giL'cn by

SpecificaHy. tnc t-o simultan~usconfidenl~ IOWl..!r b<lIlud for flu~ diffcrClll'e bet\\-eo>n

the ith treatment mean II, and (hi' COlllro[ mean Jl,J is given hy

«.71

Let K, = {c: c E C, ~~_onic.lI, $ Ilk.' -~. for all 11 En}. The confidence

lowcr bound for JIbe.. - Jlo is gi\'en by

,
[(II""., - Jlo) = ~o::'i'I(?; n,C,JI,). H.S)

The following lemma giL-es another description of the set K, and its proof is trjL-iaJ.

Lemma 4.2.1 For /.I e O. :t~.o n,C./.I, $ /4u. - 1-4) if and only if :t~.>o n,C, $

1. for aile e C.

The following theorem establishes an equiL-alcnce relationship between tne pas

ith-eness of the above optimal lower bound and rejection of Ho I,y statistic T; its

proof cnn be found in Section .LT.

Theorem ,.2.1 When IJ E n. we ha\-e that -r > tk ....o if and onLy if L(IJH<l-JlO) >

o.
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\\"11l~n the lower bound (.LS) is [lOSi(i\"(~_ it indicates thilt the h.,'SI In,'aW\l'm

mean is significandy larger than tbe L"Omrol mean <llld il also pro\"id<'S the size llf

the difference. Gne may usc T to [CSt H~ : ~ $. 1J.(i = I. ... k}.J.lW... - ~lu $. ,i

\"CrsIlS Ht : 1l6c~, - Pu > J if Lip",., - llu) > J. The latter indicates at h"'LSI 0111.'

treatmcllt is a -good"' treatment; here -good- treatlllll!lt impli<'S that its mean is

greater than the mean of the control by a size of 6. One can IISC th~ method ill TOllJ;

(1060) to classify the treatments as "good" relati\"(~ to the control. [II dll.' remainder

of this section. we shall restrict our nucntiou to the cnse T > I"...." and we shall

relabel the trcatlllctlts so that f"t :5 f~ :5 ... $. fi". Till! following !l'lllllla relutes t1w

optimal solution CO to (~.8) and the :\[LE p', Its proof is trivial.

Lemma 4.2.2 Suppose f'l :S: f; :S: ... $ fi.. let I b~ th~ nonnegati\'e integer such

that fi:51tQ < fi ... I' If CO is the optimal solution to (-l.8). then ~ = ~ ='" = c'j:5

cf...1:5 ... :5 <t. Furthermore, if fi "'" f~..,.I' then c<: = <"_I'

When fi = f; ... l. we may group them together with a combined sample size

n,+n..: ... I·

According to the algorithnl of computing the ~iLE Ii' and lemma -1..2.2. it can

be easily shown that the ma.\":imum problem in (-1..8) is cquimlent to the following

problem:

(4.9)

subject to c E C and Lc;>c nie, :5 l.

The following theorem establishes a necessary and sufficient condition for an

optimal solution and its proof is in Section -I..i.



Theorem 4.2.2 SUPf>OS'! that T > lb",' TIll' \-ector CO E K. is an optiULal sohnion

to (-.1.9) if and only if there exist non-negati\'C integers p alld q, I :5 I' < '1 :5 k. sudt

that /I~ < ji < Ii;, SJ~ + 5;" < 1~ ...... S~. e: = -Xu-,.l + b-I(/I: - fo~), i = 0 .... p.

~.,.l =.. =C:-l = 0, c:' = i\''kl + b-I(jt; - f~d· i = 1/., .k. and

(HO)

where

(-.I.Ill

and .. .
A.... =I: II" f~ = L fl.Ii:/X,.},. 5;' =L 1I,1.1i; - f;")::!

When q =p + 1, the upper bound for b in (-1.10) is replaced by (l~" - fo,)/(.VO~l +

Nqi})·

4.2.4 Iterative Algorithm I

There are e-~+l) possible choices of p and fI, 1 :5 P < '1 :5 k. From Theorem -1.2.2

the choice of p < q pro\'ides the optimal solution if and only if (-1.10) holds. For

gi\-en fo,f"t :5 .. :5 fi: and $1, we shall show that there are k -1 possible choices

of (p.q) for the optimal solution co, depending upon the confidence le\-el 1 - Q.

The following algorithm selL"Cts ttlc optimal solution (p<!. flO). (PI.'lI) .... (Pc.'l,l

from confidence level 1 - P to the desired le\-el 1 - a, wtlere p is the p-I-J,lue of rhe

statistic T.

(0) Set i =0, Po = ma.x{O $. j < k; pj < M and '1fl = min{l ::5 j :5 k; lij > it}·
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(i) let 3....1 =mn.x{So,.(/I;. -fO,.). S~.~(f~.t-/j~,)}.lb...,_, = {S"J." +S';.k+('\O~~+

.v.~~)3?_1 }InIS. (f It ....~.,., < tt....... dill optim;l1 soilltion is CO with I' = II, and

q = q,_ Otherwise. go fO Iii).

JI;.~ and 1/._1 = q,_ Otherwise. set P._l = /'. and '/.-1 = miu{j : q, < j :$

1..·./1; > Il~.l. Set i = i.;. 1. SO t<l step {il.

The justification of the obo\"(' algorithm Cilli be fOllnd in Section 4.7.

4.3 No Prior Ordering on Treatments And a Con
trol

In this section, we consider the case when the experimemers ha\"e no prior knowledge

of treatment means and the control mean. Experimelltcrs wish to know whether

there are any treatments superior to th.e control and if so. how much is the difference

betv,'e("n the best treatment and the contror~

4.3.1 Union-intersection Method

In this case, the null hypothesis i;; H~ : lin ~ II, (i = t .... k) and the altcrnath-e

hypothesis is H[ ; at least one ~ < Iii' The null hypothesis Hocan be expressed as

infinite intersections Ho =nce:c- Hoc· here H;'" : I:~ n,C,Ii, :s 0, with CE CO and

,
co = {c=(CO,CL .... C.d:~niCi=O, c,~O.i=t, ... k}.

The alternative hypothesis H; can be expressed as infinite unions H; = Ucee-H;c'

where H;c. : I:~ TliC1!Ji > O. The rationale behind this union-intersection method is
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silllple. If anyone of Hrx is fl.'jected. then H~. which i." trllC only if H~ is trill: for

ewry c E CO. must also be rcjt'Ctl'(L Only if cal'll of the hypoth<'SCS HOe is accepted

as tfUl! will the intersection of f1~ be acceptl~d a.s tr1lt~. for each HOe WrsllS Hi", the

tCSt statistic used is r; = L~..oll,C,f;/{S(L:~_onlc:)l/Z}. wllt~n: c E Co. Suppose

the corresponding rejection region £01' T~' has the form {y : r; > nl, where a is

i\ constant which does not dep,md on index c. Theil thl.' rejection f"gian Cor the

union·illtcrsection test is

u,,;;~{IJ: 1'; > a} = {!J: SliP r: > a}.
""co

Accordingly, the test statistic for testing H~ is sUPc-:C'" T; which wi\l Iw. denoted

by P as in (~.12) belo\\', By the uniOIl-illtcrsection method, T" is used to tCSt H~

\'ersus Hi. 1\ote that Tdl is the LRT of H~ versus H;.

The null hypothesis H~ can also be expressed as the finite intersections H~ =
n~""l H~i' where H~i : Po ~ Jl" then the alternati\'c hypothesis can be exprcssed

correspolldingly as the finite unions H: = Lf,'.IH;" with H;, : 110 < P" For each

H~i vcrsus H;;, the test statistic is D, = (f; - fo)/{S(Il;1 + TlOI)I/:!}. Suppose the

corresponding rejection region has the form {y : D, > d}, I\'here d is a conslalll I\'hich

does not depend on index i. Hence the rejection region for tile union·inte~tion

testis

u;{y: D, > d} = {y : m~x D i > d}

Then tIle lest statistic for testing H~ is max, D i , which is Dunnett's tcst statistic D =

ma.xI9~k(fi - fo)/{S(ni l + n(jl)-t/:l}. N'oticc that ro ~ D. The latter is a special

case ofthe former·. When C;o = -l/no'C;i = l/ni,cij = O,j = 1, ... i-l,i+l, .. . k.

then Hen is in the form of H~. Both To and D can be used to test H~ \-ersus H; and
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each has iLS own a,h'antages..-\s we shall S('C ill Scctiun ·Vi. whcn there is only nlll'

treatment better than the COfitrul. Dunneu's tCSt stati:>tic D is the right dllJiC1.'. but

T~ is the one [0 use when thefe is more thalL olle lrC,HllIen! hett~r th;lIl the COlilrol.

4.3.2 Multiple Contrast Test Statistic ru

According to the above union-intersection method. \\~ imroJun! a ~ncw~ h."St stallS-

tic to t~t H~ against H;:

k k I"
TO = ~~:-:~fl,c,f;IS(~II!,t·n /-

It is easy [0 see that yo ~ O.

Denote the critical \1\lue of To by tt...Q' then

(·LL:!)

... t _ ... In
p,.{ t;nlci~i ~ ~n,c,)i - t:......s(~It,~) .for all c E CO} "" 1- Q. (-1.13)

Let r be the targest integer for which f~_1 < f~.Jr_l' whl're f~.k_! = (noro+

!\"rkf;... )/(no + Nrt). let J.I: = II for i = 1. ... r - 1. IE: = f; - f~.J:_l + P. for

i = 0, r, r + 1. ..• k. If fa 2: fi:. then J.I~ = iJ. for i = 0, I .... k and T" = O.

The left-hand side of (-&.13) can be re\Hiucn as

P,.{ ma."t,nic,<fi -IJ.il/S(t,n;df)'/'1 $. t .......,lJ E fl!<-I}
"EO" taO ,.-11

Po{ maxtnic.fi/S(t,niC,)lfl s t: ...... }
ceO" iaO i=O

pol to n,{": - ;,)'/5' $ t;:'.}

and the last identity follows a similar argument as in Hogg (1965). Thus. we have

(<.14)
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The null hypothesis distribution of T" under tlUl least ranmlbl,~ collfi~"nuion Hu or

H~ is gh-en by

sup PIT"' 2: tl =t P(j.J.:+ l:wjP[F,,_I_J'" 2: -'-'-.J (~.15)
~~ J-I k+l-)

for any t > O. The statistic p2 ha.~ the same distribution as S[,ui..<;tic 51:: in Ro~rt·

SOli. Wright llnd Dykstn\ (1988). The critical value It...... of T'" is the SC],llarc root of

the Loorn.'sponding one of 5 12 , TIll' larter can be found in Tahle A.9 of ROl).:rtSOll.

\\'right and Dykstra (1938). \"0( ... that t~."." > d".,,~•. where d".".,. is the critical \'aille

of Dunnett's procedure D.

4.3.3 Confidence Lower Bound ror J1k~1 - ILo

The 1 - 0: one-sided simultaneous confidence bound for the contrast E~..o n,e,}l,

with c E CO is gh-en by

I.(~ ) ~ 1-' • S(~ ')'":=0 niC,Il' =~ n,C, • - t"'...... :=0 n,e; 1'.16)

Specifically. the I - Q one-sided simultaneous confidence bound between the lth

treatment mean Iii and th~ control mean J4J is gi\"Cn by

Let K!' = {c c e CO, L~..on,CilJ, ::; ~I,..~, -J4J}. The simultaneous confidence lower

bound for 1J.1Jc>l - J4J is gi\"t~n by .
LD(P....1- pool = ~J~~IO(~ fl,C,IJ,). (..1.13)

The fotlowing theorem eStablishes an equimlence relationship between the positi\·e

ness oftne abm·e optimal lower bound and rejection of Hoby statistic TO. Its proof

is similar to Theorem 4.2.1, hence is omitted.
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Qne may usc T"tOlCSt~,f ;/4)+<5 2: p,(i = 1 .... k) \"crsus H;· :/10+,1 <Jl~,

if L"(/I.,.I - Ito) > ,5. The posith'c llHLximizc<! 10\\"('[ hound indicates tbe significallt

difference betwccn the best (realmI'll[ mean and the control Olean us lI'eli as the size

of (hb:; difference. [t abo Sllggi.'StS that at [mist one lreatll1l'llt is a "good" tn'M,ment.

The following theorem lStablislll's it lIL't:t'SSary aud sufficient conditiull for an optimal

soilltion to (~.18) and its proof. similar to that of TheorelU -4.2.2. i.. omiUl'(l.

Theorem 4.3.2 Suppose P > tZ ...... and f l ~ f~ '$ ... $. fir. Theil CO € J(." i... an

optimal solution to (.1.1S) if and only if therCl exists a positive 't. r $. ,/ $. k sud.

that CO:::: -;t;. ci = .. = c;-l :::: O. r:: = .\"k1+b-I(J.l~ - f~kl. i = '( .... k. and

where

aod . .
f~.\: =~ niP~/ .\""" S;" =~ n,(Il~ - f;,.\:)~

\nen q = r. tne upper bound for b in (-U9) is repl3Ced by (f~" - fo)/(tt;1 ~ S~tl).

4.3.4 Iterative Algorithm II

There are k possible choices of q, 1 $; q :::; k. Suppose that P > tZ...... , from Theorem

-1.3.2, for given fo,f"1 $; ... :s: fA: and $l, there are I.: - r ~ 1 possible choices of q

for the optimal solution c", depending upon the confidence level 1 - o. The optimal

solution q can be obtained iterath'eiy in a few steps by the foUowing algorithm.
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(0) Set i =0 allc1t/u =r.

(il lct IJ,-Oo\ = .V•..t(f~,k -'j~). t: ....o,_, = {S;,.t + J;{II;1 ..,.. S,:~)}lr:IS. If It......,., S

it...... , th~ aptimlll solution is CO wjlh q = f/,_ Otherwise. go to (ii).

(ii) Set q, ... l = min{j: q, < j S k.J'~ > I':, t ;'\ud set i = I + L. Co 10 (i).

4.4 A Numerical Example

for the purpose of illustratioll. 11"(' cousiJcr the data ill TallIe ..Lt. (scc Ruberg

(1905)). The six treutlL\.lllfS mealls are '!:}.O. 27.7. :}:3...\. T·to{. ;.1.-1. and 73.:;. ff'S[ll.'C

ti\'cly, while the controllllt)nn is 25.5. The pooled lIlean sqllllrC error is S~ = 47.LG

with the degrL'eS of freeuom 1/ = 35. After relabelling, dle sample means arc

fil = 25.5, f', = 23.9. f~ = 2j.'. f; =33.-1. f~ = 73.-1. f; = 73.5, and f~ = 7-1.-1.

4.4.1 Treatments at Least as Good as the Control

The statistic T for t!!Sting Ho : Po =PI = ... =~ against the alternati\"C hypothesis

HI: Po :S P. (i = 1 .... 6) with at least one stri\:t inequality has a \'alue Il[ 21.00

with p-nllueO.OOO and P; = f; except that JlG = JJi = 2-l.'. Since t6-u..o.. = 3.·U. one

concludes that #Jk.l is significantl~'larger than 11-0. The (l - o)lOOge simultaneous

confidence lower bound f.(lI-lJcd -11-0) under HI can he computed as follows.

Step 0: Po = 3, 10 =-l. al = 138.6. t6.3.';.o, = 6.80.

Step 1: PI = 2, ql = -l, fh = 36, t6.3~ ... , = 1.97 < tS.33..().'j, Stop.
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for 95% confidence Ic\"C1. Qlle has thr. sillluhaUI'OIIS t.:oufi,IO!Ill;C lower IXI1lIl,j

L(1l6...1 - ~l =: -1.0.53. where the optimal coefficient i,,;

c" = (-0.0.03. -0.0703. .OO.0.0501.0.0516.O.(}(H9)סס.0.0260.0-

:O:Ote th,\{ we do not IISC [htl information from the third treatment sim.:e 1:3 = O.

Suppose out confidence lewl i:> 509( instead. Theil Ilu: corresponding critical

Step 2: Ih = 1. 'h :::: -I.. J~ =: 6.6. t~.;l.~.<>., = DAS < 1.9·\

The .)0% simultancous confidcn<:e l,j\\"cr bound L(~IIl<t'1 - J1ul = -I.·US. when! tilt'

optimall:odficient is

CO = (-0.0833. -0.0833.0.0000.0.0000.0.0-1.52,0.0-1.80.0.0735).

4.4.2 No Prior Knowledge of Treatments and the Control

The test statistic T' for testing H~ : J.liJ ::: 11. (i := L ··.6) \<!rsus H; : III >

Jlo for some i has a \a.lue of 1-1..91 with p-\-alue 0.000 and

ISO =(11.2. -I'A, -17..1. -1i...l, 59.1. 59.2, 6O.l). Since t6.33..0.3 -= 2.5'2. one concludes that

PIw.>l is significantly larger that ~. The (l - a)lOOcn. simultaneous confidence lower

bound L"{Pk<! - Po) under Hi can be computed as follows.

Step 0: qo -= r -= -I. crl =6.6. t:.~.l" = 0..53 < 2.52.

ror 95% confidence level, one has the simultaneous confidence lower bound

L(Pk.. - po) = 40.13, where the optimal coefficient is

CO = (-0.1667,0.0000,0.0000,0.0000,0.0-155,0.0-182,0.0729).



:'\ote that the optimallo\\'l'r ht)lInti ,10<..-':> !lut IISC the iuforrllarioll fnlm til\' first thn'l.'

To lest Ho \"crsus HI and H~ \~rsus H;. olle may USI"! Dunuet(s PI'OC(~lllrc. Since

o = maxl~'5~~ = 1:1.3 > d'i.:I.;•.W, = 2.39, aile rejl~[S Ho <lnd H~ al a :=: J)ij

significance lel·c!. The eorrcspundiul1: :ill1lultallculis confidence lower b<llmd is :19.-1.2.

Edwards and HSII (1983) iUlrorll1cl"l:llilIltlipl,' cOnLparis<)ns wilh bl':St to construct

confidence inten...1for II, -milXu5J::;kP.J (i =0.1. ".k). AcctJroling to their method.

the 9·5% simultaneous confidenl"¥. II)I\'(-'r bound for JI...., - 11J3 is 38.20,

Helice. Dunnett's prcx'(.'{lure 0 and Edwards alld H:;u (19&1rs ~(CB are not

as good as stati.,tics T and T'" to det(~ct the ditfl-'reno.' betwccn rhe control alld

treatments, The statistic T pro>\·ides the sharpest simultaneous confidence lower

bound for p.".,., -1J.(j with T" a close second.

4.5 Power Comparisons

The bcha\'ior of the power functions of Slit. T, Ttl, and Dunnett's procedure 0 are

in\'eStigated. The Monte Carlo method is used with 10.000 iterations. For simplicity,

we consider equal sample size case \\-ith v :=: zo. The simulated powers are pro\'ided

in Table ~.2 alld Table ~.3 for the t\\'o cases in s...'Ction .,1..5.1 and S~tion ~.5.2

respectively, where.:l~ =- nL",~",,(PI - J1)1./a 1. is the noncentrality parameter, here

iJ. = L",~"" p.;/(k + I).



4.5.1 Treatments at Least as Good as the Control

Three cases are considered in Table ~:2; Case 1. the cellter direction (-k.1. ... 1).

which meilnS that all rrealmclIts ilre effecth-c and their etfects are approximatdy

equal; Case 2, pairwise comparisoll (-t.1.0 .... O), which Ill<l.u\S that al1lreatments

are etfective but Olle treatmem is !lIvrc effccth'e than the other trcntmcnts: and Case

3. the e..lge direction (-4:/"1 .... -J.:j"!.kj'!.+ L .. ,1.:/2+ I) which consists OrOIlC half

treatment means with \"alllcs -1.:/2 and the othcr half with \"ahle 1.:/2 + 1: ill ,uher

words, Olle half of the treatillellts are effl'\:tinl while the remaining half treatments

Me inef£ecti\-e. \\'-hen the prior inf0rtnHtioli StaUl;; that treatments are ,It least as

etfl'Cth-e as the control. 0111.' may lise the abO\-c fOllr test statistics. The maximllm

and minimum powers for SOt i1re conjecturro to occllr. respectively. at the center of

the cone n (Le., Case 1) and at the edges (i.e.. Case 3) (See Robcrtson, Wright and

Dykstra (1988)).

The test statistic To is shown to be the most powerful one-sided test along

the center direction when all treatments are better than the control. For example.

at k = 6, the power of P are 6.659(.17.59%. t9.68%. and ID.199t higher than

those of SOh for ~ = 1. 2, 3. and -l. respectin·ly. P is also tlte most powerful one

along pairwise directions (-1.1.0 ... _0) ..... or (-1.D ....D.l) when treatment

means are larger than the control mean and one treatment mean is larger than the

remaining treatment means. tn this case. 501 and T are not as powerful as P and

D. Tbe powers of P and D are very close. Therefore, we recommend TO for Case

t and Case 2.

However, SOl has the highest p0Wer along the edge direction among these four



tl'St statistks. The ditfl'rellce in power for SOl O\1:r 0 call be as \;lr3~ ;L-; l;' .!);j',iC

The power of T is the second highest and \"er~.. dose to that of SOL in this case.

Sincr' s[i\ristic T hilS colllpctiti\"e power performance and it cun pro\'idc collli·

dence lower bound. statistic T is ra:ollHlIellded for stluistical infercllct! under CoL...:

3.

4.5.2 No Prior Ordering on Treatments and the Control

Cases -I.. 5. 6 arc considcrcd in Table -1. ..1. which are (-I.:~1, t .... I. -I.:J, (-1. t. O...

O. -2), and (-(k - 1)/"2.... -{I.: - 1)/'2. (I.: .... 1}/2.... lk..,.. 1}/2. -.1.:). respccri\'l~ly.

They havc 0111) more extra non-effcctin! trl!<Itlllcllt thall tlie corr('sponding Cases 1.

2, 3 respectively. The last treatment is not effecth'e in comparison to the control.

These three cases apply to test statistics To and D only. The statistic To is more

powerful than the Dunnett procedure 0 in Case -I., but in Ca5e 5. The Dunnett

procedure 0 has higher power .han that of T". In Case 6, when k = 3, Dunnett's

test statistic 0 has slightly higher power than that of TO; hO\\"en!\·er. statistic r·
tends to ha\'l~ larger power than tilat of D a5 k and ~ increase.

Based on the results in Table -1..3. the following recommendations are made:

when there is more than one good treatment. T" is the optimum choice for testing

H~ versus H;i when there is only one good treatment. D is the right choice for for

testing H~ \'ersus H;.
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4.6 Discussion

Two different sets of hypotheses are consideretl. For Ho vcrsus HI' \\"h~n c\"{'ry

treatment is effecti\1~. stntistic T" is recommended. but when SOnle! treatmcnts arc

not effccti\1~. statistic T is re-commelll.!eti. For H~ \'CrsllS H;. when there is more

than one good treatment. statistic T" is ret'Ommcndlod: when then! is only aile good

treatment. Dunnett's tCSt D is Sllgg'-STL,<1. The runjor admntag"e of test statistics

T and T" is that they han~ a con\'enient conversion to simultaneous confidence

lower bounds for the difference bctween the best treatment mean und the control

mean, Ollce the optimal confidence lower bound is larg"cr thatl a threshold (the

threshold depending 011 the experimentcr's experience). the lleXt Step is to identiry

the best treatment or select those ~good" treatmeuts, There are several methods to

achieve this purpose, for example, Gupta's subset selection (1956. 1965), Bechhofer's

indifference zone selection (195-1), Lam's procedure for selecting good populations

(1986), Hsu's multiple comparisons with the best (1996), and among others.

Theorems -1.2.2 and -1.3.2 utilizing the Kuhn·Tucker equh-alence theorem are

the keys to the optimization problems and the proposed algorithms. This approach

can also be applied to other optimization problems such as umbrella restrictions.

4.7 Proofs

4.1.1 Proof of Theorem 4.2.1

If T > tk,,,,o, then there exists a CI E C such. that
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\\"itltollt luss of gClwrality, OIL" lliay iL'\Sllnu' tlull r:~=o 1I,1r.101 =-"1. It is tridal tlmt

r:~.o n,Clill. ~ 11""'1 - 110 when }I, ~ Jlo. i =- I. ... k. Thcrr,forc. L(/I/"o., - 1(0) ~

I(L~..o II,CI'11') > O.

On th.e othcr hand. if [(/11>.<11 - po) > O. then there exists a c~ E K sllch that.
L(}Jk.l - Jlo) =- f(~ fl,C!,JI,) > O.

This leads to

~ ., (~')':' ~ -, (:-, )'"T=~Jt\:;;U,t,f.:,l;fS :;o",e; :::~"'C2,}JS :Su'I,C~, >t~ ...",.

4.7.2 Proof of Theorem -l.2.2

:\o;ording to lemma ~.2.1 and Lemma 4.2.2. when r't :S f~ :S ... :s fi.:. the con

straint in (.1.8) can be replaced by L:~zQn,c, =- O.r:~"in,cl::; l.j =- 1.. .,k. It is

trivial that r:r..o n,c,lJ.i - tk."...Sn:~><o lIic;)I/' is a conc.."we function of C(J, ell ... C/c.

o(c, [', ,\) =- tn;cill: - llc ......SCtn,C;)l/2 + t l'J(t - t nrc,) - At lI,e,_
••0 ,-0 ;-1 '-J ,=11

let ~ denote the partial deri\llti\-es c\-aluated at the point c", V". and )'.. By

the Kubn·Tucker equh-alence theorem (I\:uhn and Tucker (1951», CO is the optimal

solution if and only if

(il ~ = TliJ.'; - TI;cfb- Tli~~.l t'J - ).·Tli =O.(i = 0 .... k).

where b = tk,~,o.SI(~~.o Tlicj'1) In,

(ii) ~~jTlrC::S: 1 0= 1, .. ,k), (~)'v" =0, yO ~O and If. =0.
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Suppose c" is the optiulill sohuion. By lellima -1.2.2. c~ is mOllOl,llll' nond\....

crcasing. and thcre exists I ~ II < 'I snch that

~ = ci =... = c'i < c'i... , ~ ... ~ c; < C;... , =... = C;_l =0 < <; ~ ... ~ cr·
with , .

?; fl,C,' = - L. anrl L 11,r'; = 1.

from (ii),

1:: =0.1': I. ... p,/{+ 1 ".,k.

from (i),

c: = b-'(p: - I>; - .'0).,., (-l.20)

Adding the first p + 1 equations in (-l.20) and using L~_o 1I,e:' = -1. wc obtain

Substituting ,\" into (i). thell wc ha\-e

Let F = r:~_,.,.l ut, using E~... tllc:' = 1. thcn t· = f~.I: - b.\"t' - .\0. and

It follows that b = tJ;..,... S/(r:~..o tlicf)ltl can be \\'ritten as

In order to prove that (-l.10) is trut!, there are tWO cases that need to be con·

sidered, namely, q > p + 1 and q = p + 1. for the case q > p + 1, from (4.20).



t·;_, = ~/;+l - fo" - b.\""i;'. ,~_~ = II;_~ -I'; ... , ~ o... ·";_1 = 11;_, - 1';_:: ~ o.

,-; = f~ - 11;_1 - b.V.,"" By (ii). ,.;_, ~ a and t·: ~ O. then

For th~ case q = p + 1. since

thus.

b S (f~" - fo,,)/(.Vo;' + .\,,')

(f~k - fop)/(No"(;... ,) + .V.,"k')

On the other hand, c: < D and c: > 0, th~n

Hence, (·UD) follows.

:-lext, we pro\1! tbat II; < iJ < p; is true. According to the algoritnm of com·

puting J,J.' in section 4.2.l and tne assumption that f', :5 f; s ... S fi,. we ba\-e

that

For the cuse q = p + 1, using c; < O. c:; > 0 and b S ,\~2t:~~" we can easily derive

II; <iJ.< II;.



for thc case,., > p + 1. we haw prO\'('(lthat IJ ~ -\.,-Ildfi,_l)~' - JI~_tl. fr<'lm

c; < O.

in other words,

:\otice that "'; S Jl;_1 = f~.l ~ ... S Iii = fir. from the abo\'e incqality. we ohmin

thtlt I'; < jJ ill the case of if > P+ 1: likcwise far II, < I-l~.

4.7.3 Justification of Iterative Algorithm I

At StcpO.letp= Po.q = Qo•..3u = (f~,,- fo,,)f(SO-;.l +S~l:ll OIl1d let t"......~ =T. Then

00 is the p-\-alue. It is tri\-ial that

b(a) gi\·en by (4.11). It follows that CUD) holds at Step O.

Suppose that PI = P - 1 and ql = q. Then 31= SO,,(JI~ - fo,,). It is aidal that

sg" + 5;" + ([\"o;l + S,"ktl.3r

S~,_l + _\O,._I(fo,,_l - fc.f + n,,(p; - fo"f

+5;" + (NO~l + N,-i,I).\"J,,(J.I; - fo,,)~

SJ,_l + 5;" + (.vO-;'~1 + .v'-;/)Jr.

Therefore, t,..".<>- :S. th.", implies 0: ~ 01 and ,31 ~ b(o). Similarly for the case PI =P

and ql = q + 1. B~· induction, one obtains the desired p, and qi such that (-l.lO)

holds for the b(o) of a gi\'en le\·el 1 - o.



Table ·U: Dose Response Data.

Sample ).!can SD
Group size response response

P 25.5 2.6
A 23.9 '.0
B 2;.; 3.3
C 33.-1 2.3
D 7..1.-1 1-I.G
E 73.-1 ;.G
F 73.5 -1 ..5

so
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TlIol{' -1.:1: Simulated PQ\\'l.'1'S fur Four Test Statistks willi (l = O.O.j.v = 20.

Tl'St

Direction k .1 SOl T T" D
Case I , 19.:5 19.23 2'2.96 :?:!.2S

50.SJ -19.96 ·)6.62 55.1-1
3 80.,-1 80.07 g.j,71 83.90, 96.5.'] 96.35 98.03 97.31, 1 16.26 15.00 2l.58 2Ll-l

·U.j"·1 3a.5' .1,),58 5.1.0i

"
j"LL3 68.60 S3,5O SL.!)!), 91..j:j DO.36 %.80 9.i.6-1

G 1 1-1.09 1.1.08 21.3-1 19.96
35.1.\ 31.70 .j:!.73 -ID.79
63.28 59.501 82.% :9.2·5
86.29 83.60 00.-1$ %.01

C:lsc'2
1 18.7-1 18.28 20.51 20.0-1

50.25 -19...1.2 53...1.1 53.2-1
3 81.OS 80.52 83.58 83.-16, 96.29 96.15 97,11 9,,07, , 1-1.97 1-1.32 18.11 17,:6
2 -1.0.80 38.82 -i8.31 -1••62
3 70.86 68.&1 78.58 78.23, 91.38 90.37 9.5..i9 95...1.1

6 1 13.19 11.98 17.15 16.86
2 33.13 30.17 -1.3.76 ..tUg

62.27 58.64 ;·;.06 7-1..66
S5.S6 83.56 93.92 9-1.02

Case 3
2 I 16.39 16.23 IS.tO 15.33

-1-1.95 -1-1.96 3$.85 39.75
3 ,8...1.2 78.77 69.85 70.97, 95.73 9·).78 90.92 91..52, I 12.78 12.57 12.05 12.32
2 33.09 32.41 29.01 29.18
3 6"\.19 64.0"\ 52.61 52.59, 8SA9 8SA7 77.00 76.40

6 I 10.93 1O.i'1 11.23 10.92
26.24 25.91 22.10 22.Q.I
54.26 53.65 42.13 -11.05
82.28 81.93 66.26 6-1.33



8:?

Table -1.3: Simulated Powers for T,~t Stntisti,-s r" and 0 with 0 ::: 0.0.1. v ::: :W.

Test
Dirt.'t:tiull , ..I T" 0

em'e·1
3 1 l7.DG 17.SD

-ID.I~ -13.-18
80.26 78.9-1
%.-10 95.7-1
lD.:?D 18.-15
51.32 -ID.36
SO.56 7S.:?1
9HIt 9-1.58
19.58 18.89
50.22 -17.67
80.i!I 77.6:?
95.8--1 9-1.37

Case 5
3 1 15.93 16.23., -16.13 -16.93

78.26 79.02
95.78 D5.95
15.71 15.76
-1-1.-18 -I·U9
75.50 75.51
9-1.26 9-1.57
15.70 15.72
-10.88 -10.66
72.75 72.89
9:?88 93.27C=,

3 1 11.65 12.06., 32.09 3-l.28
62.69 65.13
87.31 88.30
10.31 10.63
25.60 26.2-1
48.47 49.10
73.66 73.57
10.25 to.17
20.35 20.5-1
39.50 39.04
63.52 62.36



Chapter 5

Cone Order Monotonicity of Tests
for Treatments versus a Control

5.1 Introduction

.-\ problem frequently encountered in the practice of statistiCli is comparing se\"eral

treatment means with a control mean. or a standard. This problem has been recei\-ed

considerable attention in statistical literature OH!f the past fifty years. of which the

best known is Dunnett's (1955) multiple comparison procedure.

let l;J,i = 0,1, ... k,j = 1, ... 11; be independent normal \'anates with un-

known means po, (i = 0, 1. ... k) and a common bUI unknown \<lrianc!! (J"!, where J4I

denotes the control mean and 1-'1_ ••• PI.; denote thll treaunent means. The statistic

52 = Lr..o r:;~I(l';j -liY/1l is used as an estimator for (12, and it is independent of

y = (fo... , fi.), where 1152/172 .... \~ and II = Lr..", n, - k -1 > O. \rhen C1Jmparing

treatments \'ersus a control, in many situations, experimenters may ha\1~ the prior

knowledge that each treatment mean is at least as lnrgtl as the control mean, or

each treatment mean is at least as large as the grand mean. These types of prior

knowledge may come from the past experiences. ror example, the same treatments

83
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and the control may ha\'e been studied in pre\'ious ex~riments as pan of an ongoing

investigation, and therefore the aOO\'e prior information might be nailable on all of

them. If we assume that all of the treatments are at least as good as the control, then

the parameter space is n = {p E R!'+I: ~ $1J.i (i =- I, .. ,k)} = {p.; Ap. ~ O},

where .-l is a (k - 1) x k matrix whose rows are pairwise contrasts with

(

-I 1 0 0
-1 0 1 0

.-I. =- :::;
-1 0 a 0

Robertson, \\i'right and Dykstra (1988) refers to the binary relationsh.ip as the simple

tree order. Usually the null hypothesis is Ho : J.lo = PI = ... =- IJk and the alternative

hypothesis is HI = n - Ho. The likelihood ratio test statistic rejects HQ in fa\'or of

HI for large '"alues of

where [l = L~dn;fi/I::_n.; and p,. = (slQ, ...,p.;) is the MlE under n, i.e., IJ..

minimizes

~n;(fj-p.i)2

subject to the restriction IJ EO. Lee (1988) recognized a shortcoming of the ~'ILE

J,J" which has been introduced in Chapter 1. The LRT SOL for testing Ho against HI

is known to possess generally superior operating characteristics to those of its com

petitors, see Robertson, Wright and D;...k.stra (1988). A variety of other procedures

have also been proposed, most of which are based on one or more contrasts among

the sample means, for example, the multiple contrast test of Mukerjee, Robertson,
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and Wright (198,) which includes Dunnett's pracedme and the single-contrast test

as special cases. Tang and Lin (1997) used an orthant to approximate SOl'

However, the lRT SOl lacks some practical monotonicity property, as observed by

Cohen, Kemperman, and Sackrowitz (:WOO). Any closed convex cone C call induce

a quasiorclerillg --< as follows: x..(,; Y if and only if y - x E C. where x,y E Rk+l.

If x and y arc sample points such that y - x E C, then OUf intuition tell us that y

exhibits a greater level of agreement with cone C than does x. :\ test 0 is said to be

cone order monotone with respect to the conc C (CO~-I[C]) if whenever y - x E C.

o(x) $ ¢(yl. Tests which are not CO?\.I[C) are said to be rc\'erse. The COliC order

monotone property has appeared in Robertson and Wegman (1978).

The parameter space D is a closed convex cone, see Rockafellar (1972). Cohen.

Kemperman, and Sackrowitz (2000) noted that the LRT Sal is not COM[Dj. A

simple example of the reversal phenomenon can be seen in the following. Let k = 2,

no = nl = n2 = 1, and ".2 is known. In this case Sal is X5\ and we ha\'e that

X5l = 24 at x = (0,0,6) and Xal = 18 at y = (0,3,6). Therefore, the LRT Sal is not

COM[D]. Our instincts tell us that the sample point y i~ making stronger statement

than x and should be reflected in the inference procedures. A lack of CO\! for a

test procedure may be counter-intuitive and undesirable.

The reason that 50 \ is not COi\l[D] is due to the fact that the angles between

the corners of the cone D are obtuse. Since likelihood inference is the most common

approach for order restricted models, it is of interest to find a likelihood inference

which is cone order monotone for comparison of treatments with a control. In this

chapter, we consider a new parameter space no, which is of practical importance;

nere Do = {~; ~0:5 jj:5 ~i,i =1, .. ,k}, where [J = L~=o ni~dL~:{)ni is tbegrand
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mean. \\"hen no = III = ... = "", n" c,w he rcwriurll <IS ft> = (IJ; .-\11 2:' O~. \\'herc

A ::: [=~ ~~ ~: ~~ =: )
-I -I -1 -1 k

Obviolislr. eal.:h row of A ha.s J... -;- 1 nonzero el~mcnts Hnd the result in Cohen.

Kernperman and Sackrowia (1994) call1lOt he used here. \\'e dew'lop a likelihood

ratio statistic SOl and itS lIlodifie<! test statistic ~llRT T::"l to t"st Ha \"cr.;us Hi :

O"-Ho'

In the parameter Spncc r2" all treatment means are at least as large as t1\1~ grand

mean. and !1" does not ha\"(' any obtuse angles betw~n the cdgl'S. \\'e shall show

tnat the statistics SOl and Tg1 are CO~[[O"I·

Cohen and Sackrowitz (1998) offered a new test procedure which is CO:\I[Oj.

but as Cohen and Sackrowitz (2000) mentioned. the shortcoming of this ncw test

procedure is that its distribution is not clear and itS critical \"3,lues must be obtain~

through simulation. In this chapter. we propose a multiple contrast test procedure

P which is cO~llnJ and cO~llnoj; moreo\-er. its distribution and critical \-alues

are A\"d.ilable in the literature.

The outline of this chapter is as follows. In Section 5.2 we introduce the LRT sgt.

In Section 5.3 we gh-e the ~ILRT Ttl and the multiple contrast test procedure P.

tn Section ·5...1 we discuss the behal'ior of the power functions of four test statistics

SOl. sgl' T" and Dunnett's test statistic D.



5.2 Cone Order Monotonicity of LRT 501

Let #JoG = (/-iO• ..,J.I:' be the ~[lE unoer fl", i.e.,,,..o minimizes

subject to the restriction IJ. E!1". The solution JJo is a projl'Ction ory onto Q" \\'itll

weights w = (no, ", nt) and is denoted hy jJ." = p.... (YlnO). It can be computed

as follows. Without loss of generality. olle lllay assllme that f"t ~ f~ :S ... :5 f~. Let

r be the largest positl\"c integer fur whidl f~_l < (L~", lI,f; + Ilolfo)/(:r:~=r II, + nul.

Denote the right hand side of this incqllalily hy L;:""l' TheIL 1J.7 = iJ for j =

1. ... r - 1. ~Ii. = f; - f~,k ... l +ti for i =O.r,r+ 1 .. ,,1.:. If}ij:? C... then tl~ = Ii

for i = 0.1, .. , k. Let us usc the scab index data all p..ge 9i of Cochran and Cox

(195i) to illustrate how to usc ene algorithm. The snmple means are labded as

fo= 22.6, f; = 18.2. f; = 16.8. fi = 15.5. f~ = 14.2. f3 = 9.5. iii = 5.S. This is the

case where f!" = {~ :~ ~ P. 2: ~,. i = 1 .... k}. According to the algorithm. r =5.

where f~_l > f~.h.t = 15.125. The expression for ~o remains the same and it is ~o

= (23.31,15.65,15.65,15.65,15.65.1 ..1,.91.10.21,6.51).

One rejects Ho in favor of Hr for large values of

The nun distribution of Sgl under Ho is given by

, [ «HI-I)]
P[So't > cj =~ P(l. k + 1: w)P F.I:+l_I......,_t > lI(k + 1 _ i) (5.2)

for c > 0, where w = (no... ,n.l:). P(I,k + 1;w) is the level probability that the

MLE~' under n takes I distinct values when Ho is true. The \<l.lues of c and



8S

pel. k + 1: w) are i\\"Uilablc n.-srx.'uin·!y in Table .-\.1 t and Tahl.: .\.1:] or RoI)('ftsOlI.

\\"right and Dykstra (1988).

The dual K." of a closed COll\"C'; COliC K. is defilll,'d as follows:

WhCfC W = (nl\.... n.d. Let Pw(.jK) dellote the prujcctioll onto K. with weights w

and 11.11... be the usual weightlorlnorm. The following two lemma.'i are 1lS4....1 to prove

Theorem 5.2.1.

wmma 5.2.1 Let f. be a linf'M space. and C C K.. here K. is a doscdt'OlIl"ex l"One.

Then Pw(y + clA:)= P.,.(ylK'l +- c: ife E C and rurallY y E n k
-

I
,

Lemma $.2.2 Let K." be the dual of /C. If d E K:, then for any y E R"~I. IIP...()'+

The proofs for these twO lemmas are trivial.

Theorem 5.2.1 The lRT 561 is CO:\I(Q"j.

Proof. Let fi - !V(O. f,l. f;'" :: fi + I'l,- f:~1 = f~ + P1.i· IAr = p.,(f"I"lno).

/Ai = P.. (}-""'IO"j, where >. = IJ'l - /At E no. Then f$<' = f-'" +-..\, Denote

fr"'l(JlI) = E~..oni{ft' - J..I'i,)2/U+ ~ and similarly for ~(J1.2)- Since no is a closed

con\-ex cone, A + Pw(fl"lno) E no_ then

11f"" - p.,(l""ln"lIl. IW" + A- P.(!"·' + A)ln")II.

$ IW" +,\-(p.!l""ln") +.\111.

IW" - p.W"Ifl")II.,



The abo\"c inequality COllLes from rlw detinitioli of projCUIOll and it implies thar

From Lemma 5.2.1.
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p.... (f·'" -;- ,\ - P.... (f"'" + ,\IHolln")

Pw(f'l" -;- ·\10°) - p,.,(f'" -;- ,\!Hol

pw(f"~ln") - Pw(f""'IH'I)

where All) =,\ - P",<-'IHI)). Applying Lemma 5.2.2 \\"itll S = _,\(ll. then

Hence, we have that

,
~ ni(/-I~, - jl.d~

Therefore.

IiP.... (f"I" - P",,\f"'jHo) - .iif!");I ....

~ IIP.lf'" - P.lf'"'!H,1I0"1I1.

11P.(f"'IO"1 - P.lf""!H.III.,

IIP.If""'IO"1 - P.(f"IH.III~

[lPwW"~Ir:n - P.... (f""'!Holll ...·,
~n,(/-I;i-il~)2

sgl (J.Ld == L~=o ~~~~l) iJ.lf :s Sgl (/12).

This completes the proof.
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5.3 Cone Order Monotonicity of Test Statistic TO

From the lRT 50\, a more straightforward appro.'\ch to testing Ho \~rsmi Hi is 10

reJ>lac~ the denominator of 58! by Y. One rejt'Ct.<i Hu for large \-aIUL'S of
,

T;L :~".(J.l;-iJ.)".lIS!. (:;.3)

We call TOl the modified Iikelil\l}od ratio lest (:\ILRT). The lIull rtistributioll of r:t

is as follows:

~ c
PlT:, ~ cl:= r; P(I.I.: -;. I: wlP[Fk "' l _I.S_k_1 ;?: k +- I -l] (5.-1)

for any c > O. The lRT SOL and the :-'ILRT TOl llrc asymptotically l~q\li\·i\ll?lIt. The

statistic TOt ha» the same distribution llS statistic Sl~ in Robertson, Wright and

Dykstra (1988). The critical \-ailles of T3t are the same as the corresponding Ollt.'S

of 511 . The latter can be found in their Table .-\.9.

1'\ext we consider a multiple conuast test statistic T· as follows:

T':= "!i~t niclf~/S(t.n,c;)I/2.
C"L .=G .-0

where the contrast cone Co which corresponds to no is defined as iollow-s.
,

CO = {c = (C(J,Cl!' .. Ck): ~ n,ei =0. c, ~ O.i = 1 .... k}.

It is easy to see that 1"" ~ O.

Follow-ing the argument in Hogg (1965), one can show that

T"~ =~ ni(/L~ - ilf/5'l =TOl'

(5.5)

(5.6)

The critical values of To is the square root of the correspol\ding ones of 511 • ~Iore·

over, To is cone order rnonotonr. for 0 and 0 0 and can be IISed to make interval

inference.
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Theorem 5.3.1 The :;tnti.stil- P is CO:\t(P-j ami CO:\I[D"].

Proof. Let f~ ..... X(O. ;7). r;'" "" f; ;- Jill' f;"~ = f; + JI~•. and PO: - III E Po (or 0").

Then.

~~~~ )~..o n,t:, f;'" + L~-o Il,C.(/I-!, - lilt)

s( L~_o n,t?,) l;~

Since p-! - JlI E f! (or O"l. thell JI~. - Pl. ::: 11~'U - J.!U1. i = 1 .... k. \"otke that

c E Co, a:r:Q n,c,(JJ~; - ~Ihl ::: O. Thus. P(f1Zl ::: T"(lld. Hcn<:e. P is co:\qn)

(0' co;qn"lI.

5.4 Power Comparisons

A simulation study is conducted to compare the behavior of the power functions of

Sal, 581_ P, and Dunnett's [est stati:nic D. for simplicit~·.we consider equal s3mple

size case with /I = 60. Three cases are considered. They are the center direction

(-1.:.1 .... 1). the edge direction (-1. k. -1 .... -I). and the direction of pairwise

comparison (-1.1.0 .... 0) whidl lies in the middle of the center direction and the

edge direction. let ~~ = n r:~:o!lI, - Ii):!/u:! be the noncentrality parameter. here

p = L:~=o Il-,/(k+ 1). Within each direction. we consid~r k = 1.~, 6 and ~ = 1.1.3.-1..

For each configuration. lO,OOO multivariate normal random ''ector with the identity

\'ariance-co\'ariance matrix 3re gen.erated. Table .').1 gh'cs the powers for the abo\1!

four test statistics for these cases, These three CilSes satisfy the hypothesis that

treatment means are at least as large as the control mean. Case 1 and Case 2 also

satisfy the hypothesis that treatment means are at least as large as tlle grand mean.
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The lRT SOL is shown 1Il he th~ mo~r 1)lJ\\"I~rr,,1 ilion;,;: th~ (:enter direction wh.:n

all treatments are bener th,U\ lil" comrol. i.t:.. cn:ry trcatmem is effcctin:. ami

along the pairwise dircc::tioIL'; (-1. 1.0.... II) .... or (-1.0 .... 0. 1) when treOUlllI'lit

means are larger than the cOlltrolllleall alld one treatlilcllt mean is larger than th...

remaining treatmelLt means. The test statistic To also 1m..; largrr po\\"Crs thnn th,u of

the lRT Sal in these tll"O cases. And statistie T" outperforms Dunnett's procl,.'l,lure

o in Case I and ill Case :? whcll ..J. = 1. :? 3. The powel' l)f slatistk To is \-eQ' dlise

to lRT 501' Howc\·er. alollg the edge din~c[i,m. Sql ul1tp~rfllrl1LS the other thrt>e

statistics.

Based on the power n~sulrs in Table .'i.!. we ,:an make th.: I'Jllu\\"iug rc,'l)llllllCll

dation. when treatment me~lIIs arc at least as good as the grand mean, one may

use LRT 50\ or P. Although lRT SOL is nut cone order monotone. when some

treatments arc not effec.:ti\'e, one should use lRT 50 \.
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Tabl!! 5.1: Simul;l[l-d POWf'r"S with (l ::= 0.05. u = Gil.

Test
Direction k -" S" SCiI T" 0
C.,. I

I ~1.I5 24.93 :1-1.70 :24.22
53.23 59.59 59.38 .)7.98

3 8-1.81 88.83 88.63 87.50, 9,.50 98.4-1 9$.3$ 98.0-1, I 17.li 2·U2 23.85 22.06
.,13046 5S.53 57.67 5-1.96

"
;·j.18 87.4:3 SG.':'? 8-1.27, 93.92 97.8-1 !:Ii.';'; 97.01

6 I I·LS2 :B.51 :2:1.$2 21.S-I
37.-15 .')7.30 .')6.-16 :j3.S-l
68.3-1 87.7-1 86.86 83."
90.57 98.01 97.87 97.11

Case:!
I 20.15 22.2-1 22.08 21.81

52.33 5·;.35 55.3t 55.:21
3 8..1.39 86.66 86.68 86.57, 9,.33 9.,99 97.97 98.00, I 16.07 19.45 19.3-1 18.66., -11.96 -19.81 -19.91 -18.80
3 75.1-l 81.87 81.91 81.57, 93.61 96.41 96.27 96..,19

6 1 13.·')8 18.30 IS.OS 1•. -16
36.41 -16.91 -16.57 -15.72
67.09 79.-18 79.21 is.il
91.U 95.88 95.83 95.9-1

Case 3 , I 16.75 15.5-1 I·;.sS 1·).85
47.40 39.7-1 -10.52 .11."

3 81.63 i1.61 73.12 7-1...13, 96.;·j 91.39 9204-1 !l3.tO
4 I 12.11 10.37 10.6-1 10.9,

34.36 25.,6 26.,-1 28.2,
3 68.5-1 51.18 5-1.29 5,.3,, 91.50 76.27 79.,0 82.31

6 1 9.;; 8.16 8.53 8.96, 28.12 19.20 20.7-1 23.23
58.30 40041 43.96 -18.0-1
86.70 67.03 72.28 76.40



Chapter 6

On the Test for Equivalence of
Treatments with respect to a
Control

6.1 Introduction

A problem frequently encountered in pharmaceutical and other fields is the com·

parison of k + 1 populations no, nt •... n~. where no is a standard or <:ontro[

population to be compared with the remaining k treatment Ilopulations. This

problem has received considerable attention in statistics o\"cr the past fifty years

and thl; loest known method is Dunnett"s multiple comparison procedure (1955).

Specifically, assume that we ha\'e independent obsen;ations 1;1 from J.: + 1 normal

populations widl unknown means J,l. (i = 0,1 ... . k,j = I... ,n,) and a common

but unknown variance (1~, where I~ denotes the control mean and Pl" •• 1"" de-

note the treatment means. \\"c may assume a larger treatment effect p, implies a

better treatment. Let Pl>ul = maxl:5.i:Sk lJi represent the mean of the best treat·

\,Ve shall consider the case of equal sample size n fOf each treatment but
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allowing for a different nllmber of obscn~tioll.:ii 110 under the control ill tllis chap-.

U!L let y = L~.~L;:"l(liJ - f;Flv. It is independent of Y = (ro.... fl.) and

uS'!/q2 ..... .\:; and v = r:~.o II, - (k-l) ='10 +~'n-(k+ I) > O. I\'here sample lIleilns

f; =L;:'I \;j!ni. It is well kllOWll thar. for large enough saml)lc size. the null hy·

pothesis of the eqllality oftrcll,tlllcllt lIICilllS and thct:olltrol IllC:\11 PlI::= PI = ... = J.lk

\\"ill almost always be rcjectt.'d as has been pointed alit by nIany researchers (St.>e

Berger (1985») if the underlying distrihution is continuous. SilH:C irrational \,tlll•.'"

cannot be recorded with perfect precision. Thl! point null hypothl'Sis is ulln:alistic

ill applications. Bofingcr and Bofingcr (1'J93) swdied thl) w,;t of iI uull hypothesis

that ~I, - 1-10 exceeds a prcilssigned constunt for sOllie treallllcnt with the alternativc

of all thl.! diffenmces 1-1, - J4J being no mor~ than the constant. Bolinger and Bolinger

(1995) de\'eloped stepwise tests for this type of hypothese:'i, Giani and Stra6burger

(199.,1) also considered the problem using the two-sided Dunnett's prO<:edure.

In many situations there is a prior kno,,·ledge that the treatments are at least

as effecth1! as the ~:ontrol. This type of prior knowledge may come from past expe

riences or it may arise in the experiments where, for example, a higher dose le\'el

of a drug has larger effect on the patients, The prior knowledge can be expressed

as J4J :5 Pi, i = 1. .. ,1.:, which is typically called the simple tree order in order

restricted inference, Robertson and Wegman (19i8) proposed a likelihood. ratio test

to test the null hypothesis as 110 :5 I-li (i = 1. .. , k), which is not a point null hy.

pothesis but a restricted hypothesis such as HI \1!rsus Hz. in Chapter 2. Howc\'er.

in some applications, although we ha\1! the prior knowledge that the treatments arc

at least as effective as the control, all the treatmcnts may not be significantly bet·

ter than the control; in other words, the best treatment mean, 1l1H..< = ma.....l~i~1< Ili



96

may not be substantially better than lIle control mc'lIl. ~IO, for pmctical purposes.

Thus. it is of intercst to establish a pmClicall.:qllh<llclIl"C of all tilt: tn:atllLcllts with

respect to the control 110 ulllier tlle prior knowlo.'tlgc 110 :::; /," Establishing this ~ui\'

alellee is the purpose of this chapter. As an example. UniOlLg the drugs il\'Uilabll~

for H(\', some may be too cxpt!llsin~ to be atfonlablc to people in lIudcrdc\',:lopcr!

nations whose funds for 1I1l"dicai programs are limitL'<.l and wlll,'re treatment COStS

are prohibiti\"c. Bl'C"illlSC to dille no drug has heen n:ry effccti\'c ill fighting HI\".

it is of interest to choose cheaper drugs \\'jth cOlllparnhlc trCUtllll.'nt t'lfL'Ct. This

idea leads to the consideration of interval hypothe>is HJ ; (Pw~l - ~ol/t1 S,j wnms

H[ : (/.1.1$1 - IJol/a > J. where Ii ~ 0 is a pnspccifiet.l critical thn-sholtl \,llllC. pos

sibly gh'en by drug enlluatioll guiddines. The constant d can be interpreted as the

amount of nniability about which we do not care. and the null hypothesis can be

explained as saying that there is little difference or thpfp is rractical equality among

treatments and the control. FOt" each treatment the threshold mlue J specifics the

largest ef[C(;t difference from the control that is not worth detecting for practical

purposes. For the intcn-al hypothesis in k popula.tions without a control. one can

refer to Bau, Chen, and Xiong (l!l!l3) and Chen and lam (1991).

In Section 6.2, a tcst statistic is proposed and its critical \-alue computation is

discussed. The distribution of the test statistic depends on all mean differences be-

tween treatments and the control. The least fa\'Ourable configuration (lfC) of (h~

parameters which ma. imizes the significance le\'el occurs at (1-10, lJo+uJ.... 1-10+0'.5)

under Pi ~ Pc (i = 1, k). Since the distribution under lFC in HJ in\'okes double

integrals, the double integrals is evaluated by a 64-point Gaussian-Legendre quadra

ture over 4 by 4 grids. for the special case of 5 = 0, the percentage points agree
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with existing tables (e.g. Bt.'t:hl\l}fcr an,1 Ommen (l9SS») to thr~ dL'CillLal pl:l.l.:L'S.

\\"e also construct lower conficl~llce bounds for (t(l.l) in St.'Ction 6.3. Such confi

dence bounds can be used to assist du~ ex~rimelltl'r to choose Ii when it is difficult

[0 specify .s in adn\nce.

6.2 Testing Equivalence of Treatment Means and
the Control Mean under I" :::: 1'0

The null hypothesis and the alternati\'e hypothesis arc r'~pccti\"(~ly

where.5 ~ 0 is a preassigned constant. Based.:m Dunnett"s (195.'5) multiple compar

ison procedure, the test statistic considered is:

The null hypothesis is rejected if D > c. where the critical \<llm~ c > 0 is chosen such

that the nominalle\-el 0 E (G. I} will be kept. To C\1\!II<lte the critical value c for

which the ma.:"imum Type I error probability just nuains the lc\"{~1 o. it is nI.'Ccssary

to determine the supremum of the power p(I'.D")(c) o\'er HJ, i.e, sUPHJ PlJ..... l(c) =
a E (0,1), where

{ -- 8 '}J11' .... )(c)=p ma..'i:\;-lo>cS -+-,
1~'51: no n

The supremum of the probability of rejecting HJ is calculated as follo\\'s:
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where.5,:= (II, - /Io)/o,i = 1. .. k. The {Z, = .jii;(f; - JI,)/q} (i = O. L .... k)

nre independent standard nOl'lnal random \"lHlal,les with p.d.f <)(.) and c.dJ ,j)(.).

the random \"Uriablc r..: = 5ja is distributed as \JVV with the probability dCllsity

function q..(') and degrees of freedom IJ = 110 + kn - (k + 1) > O. L"ndcr additional

conditions on the means, the follwoing result can be stated.

TheoreTn 6.2.1 \rhen p, 2: Po (i = 1 .... k). the least fanlrahle configuration for

nla.\:imum T:~:pe I error occurs at p" = (/-lo. JllJ + a,; .... Po + 0'.).

Proof" From HJ and the prior knowledge I-lo $ Pt. i = L. ... k. 0 :S rS, :S 6. ~otice

that 41(-) is increasing. On the condition that 5 =". the minimumofn~14l(::~+

IJ.C~ - .jR6.) is attained at Ji = 6: in other words, the maximum Type terror

probability occurs at IJo = (po. J./a + uri, ... JJ(J + CTef). Since 11" is independent of the

value u assumed. by the random \'<triable U, /-t" is the least fnxorable configuration

for p(,.... )(c) o\"er (/l,CT) E HJ. This completes the proof.

Let P6(c) = sup{,. ... )EIIJ p(I'... )(c), then we ha\'e
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:'\ote that in the special case wlll~rl' ,j = O. (6.:?) rt'rlUl-CS to

PoJ{c) 1- f jX "'(, (ii + '" ~)O(')'I.(<<)<I'd"o _>e V-;;:; V·-:-~

P{D > l'lfl.{: Po =JII =... =tl~}.

(6.3)

when,) I; is tbe corretiponding C('itical \'allll~ of Dlllll1'~lt.~ procedure in the d<l~kul

llull hypothesis of homogencil~'of the k treatment means and the Comfo! mean

\\'c now wam to obtain the l'ritil-al 11l.[UC c. where c is the SO[ut[OlllO the f(luatioll

(GAl

Sim:c the distributklll Ilf the t..,;t ,>tiuistic 0 at tlit' LFC illn)ln~s dll1lhlc intL'-

grals. Gaussialt quadrature and ~e\\·ton·Raphson'siteration method .w~ employed.

to obtain the percentage point c of the tCSt statistic D in (6.:?). ).loreo\'er. since

the double integrals im'olves infinite integral limits. it is necessary to truncate the

infinite limits to a finite one for case of calculution and ilvoiding lllLdtll"tlO\\" and/or

o\"erf!.ow, In this chapter. we truncatc the normal mriable z at -7 aud 7 with trll

cation error $ 2 x 10-' (because 'N7) > 1- 10-') and thc x"j.j'V \-ariable u at a

point b such that It:' q,,(u)du $ 10-!l 50 that the total truncation error is less than

2(k + I) x 10-' + (I.: + I) x 10-!l. In the numerical illtegration we use a 6~*point

Gaussian-Legendre quadrature o\-er each of ~ by .. subintegrals to e\-aluate the dou

ble integrals, At special case with 6 = O. these percentage points agree with existing

tables to at least three decimal places. (see Bechhofcr and Dunnett (1988»).

The Newton-Raphson iteration is used to soh'c Equation (6.-1.) for c, for the nth

iteration
p.(c,,_d -Q

C,,=C,,_I- ~(c,.-tl '
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where P;(c) is the partial dcrl\'(\tl\"C of P6{C) with respect to c and is given by

(6.5)

which is negative since u, ((l(-). C(,) and qv(') are nonnegatl\"e. The solution is unique

since P6(C) is monotonically decreasing in c.

In (6.2l, the double integral is partitioned O\"er -l by -l subrectanglcs where the

.: variable is partitioned into (- i. -0.67..(5, O. 0.6745, 7) and the (J variable into

(a\,~.aJ,I1.l,a3)' where 4, is the lO-':Jth percentile, C12 is tbe 25th percentile, 0;3

is the median, a~ is the 75th percentile, and ao!> is tbe 1. - lO-9 t h percentile of t".

A 54-point Gaussian-Legendre quadrature is used to e\'aluate over each of 16 subin

tegrals and then the results are summed to obtain the Q\"erall probability integral

in (6.2). The same process is used to abatin the value of the probability integral in

(6.5).

Table 6.1 gh·es the percentage points with equal sample size case, Le., no = n,

for k =2(1)10, n =2(2)10,15,20,30(10)80, Ct = .05, and 15 = .10 and 1/3 (6 =.10

and 1/3 are presented here. Fortran 7i source code is a\'3.ilable which can be used

to make more tables). Table 6.2 is similar to Table 6.1 except that the a1loation

~ = ./k is considered, this type of allocation is called square root allocation rule

which was shown to be nearly optimal in Dunnett (1955) and other papers.

When the common ~-ariance is known or when the degrees of freedom v are very

large,S converges to (1. Thus, HJ is rejected if D > c, where c is the solution to
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The percentage points are gi\-en in Table 6.3 and Table 6.4 for a = .05, ..;no =
1(1)11, and k = 2(l)lO for equal sample size case no = nand no/n.,. ./k. r('Spec-

tively.

Example 1. Let us assume thm a psychologist wishes to test differences in LQ.

scores between a control group and -I treatment groups with equal sample size n =
15. According to her previous rest'l\rch, she believes that the mean LQ. scores for

each treatment group is at least as high as that of the control group. Because of

lack of precision of measurement, she regards difference of 1/3 standard unit to be

irrelevant. Assume that D = "'''''':i\i:,-r" = 2.83. The critical value at a = 0.05

for the point null h!o-pothesis /Jo = PI = JJ'1 = 1-13 = 1-'4 is 2.20 from Table E.2 in

Hsu (1996). If she U~ the point null hypothesis, she has to reject the point null

hypothesis. From Table 6.1, the critical \lllue for the interyal null hypothesis is 3.053,

she does not reject the interval null hypothesis and concludes that the differences

bewteen the control and treatments are no more than 1/3 standard unit.

6.3 Confidence Lower Bound

An e:cperimenter may not be able to specify the size of 0 in the null hypothesis. In

such situations, the tables can be used to construct a confidence lower bound for the

standardized range d{~} = (~I - 14J}/u instead. The confidence lower bound is

obtained as follows. For simplicity. we assume that q is known and no = n. Denote

L(c,o;k,n) = {$'''''~~)/",,"P$'{D:5 e} == 1 - ($'....~~)/...I P,,{D;:: e},
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which increases from 0 to 1 as c increases from 0 to.x.. Givcn Q > 0, we call find

C= C.l:.n(o} such that L(e, 0; k. n) = 1 - 0:. It follows that

P,{D sc".(6)} " 1-0.

Using (6.2) and the monotollicity of 41(·), one can easily show that cr....{J) in

creases strictly from e.t... (0) to oc as J increases from 0 to 00 for a given a, nand

k,

for all Jl with (J.lboUI -lJ.o)l(1 ::: J. Where c;.~(y) is the invcrse function of Ck ... and

is defined to be tcro when !J < q and q is the (1 - n) pen::emage point of thc

test statistic 0 of k + 1 independently and identically distributed random \"3.riables

N(P.,I":~) when <5 = O. The (1-0) percemage point lower confidence bound for d(lJ)

is gi ....en by c;;'(D).

As an illustration of the use of Table 6.3, suppose we want to compute a 95%

confidence lower bound for 6. Let k= 5 and assume that D = max'~i,,;!,-fa :IC 8.244.

From Table 6.3, I) = .05, k::o:5, d(lJ.) = 8.0/.;n for c = i.891 and 9.01..;n. for

C ::: 8.598. By a numerical algorithm, the 95% confidence lower bo~nd for 6 would

be 8.51,fii. When u is unknown and no/n = ..tk, the confidence lower bound for

d(lJ) can be similarly obtained from Table 6.1, Table 6.2 and Table 6.4.

6,4 Discussion

As a preliminary step in the problcm of comparing k treatments with a controi, it

is often desirable to test tbe null hypothesis Ho : J.I.o = IJl = ._. = 1Jr. versus tbe
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alternative hypothesis HI: Jlo $: Pi (i =- I, ", k) with at least one strict inequality.

Testing Ho \1'lrsus HI can be done by the Dunnett's procedure or the likelihood ratio

tcst statistic :(1 or tal which has b~ell introduced ill Section 2.5 of Chapter 2. Once

Hu is rejected, one may then consider to test HJ versus Ht to measure the dispersion

among treatment means and the control mean. There is a large body of work on

statistical methods for assessing equh-a(ence of several treatments with a control.

When the treatments are too expensh-c for most of the population. which is often

the case in many de\"e!oping cQumries, the equi\"alence under the simple tree prior

knowledge is advisable to study. \\"IlCll k = 2, the critical regions of the likelihood

ratio test and Dunnett's test for Ho \'ersus HI and the new test proposed in Section

6.2 for HJ \1!rsus H[ are presented in Figure 6.1.
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Table 6.2; Percentage Points with noln = ../k, a =.05.

n/k 6 10
IS -0.1

2.869 2.843 2.856 2.87i 2.899 2.921 2.942 2.961 2.980
4 2.337 2.460 2.548 2.616 2.672 2.719 2.•59 2.795 2.82.
6 2.269 2.413 2.513 2.590 2.652 2.704 2.748 2.787 2.822
8 2.256 2.408 2.513 2.594 2.658 2.712 2.759 2.•99 2.835
10 2.258 2.414 2.523 2.606 2.672 2.•28 2.ii'5 2.817 2.854
15 2.283 2.446 2.559 2.645 2.il4 2.772 2.821 2.864 2.902
20 2.314 2.482 2.508 2.685 2.756 2.815 2.865 2.908 2.947
30 2.378 2.550 2.669 2.760 2.832 2.892 2.944 2.988 3.028
40 2.436 2.612 2.733 2.825 2.899 2.960 3.013 3.058 3.099
50 2.489 2.668 2.791 2.885 2.959 3.022 3.075 3.121 3.162
60 2.538 2.•19 2.844 2.939 3.014 3.077 3.131 3.178 3.219
TO 2.583 2.•67 2.893 2.989 3.066 3.129 3.183 3.231 3.272
80 2.626 2.812 2.939 3.036 3.113 3.177 3.232 3.280 3.322

6 = 1/3
3.329 3.256 3.247 3.255 3.269 3.285 3.302 3.318 3.J3.l

4 2.780 2.900 2.987 3.056 3.111 3.159 3.200 3.236 3.268
6 2.770 2.919 3.024 3.1Q.l 3.169 3.223 3.269 3.310 3.346
8 2.813 2.976 3.089 3.1i5 3.244 3.302 3.352 3.395 3.433
10 2.869 3.040 3.158 3.248 3.321 3.381 3.432 3.477 3.517
15 3.012 3.197 3.324 3.-1.20 3.497 3.561 3.616 3.6&1 3.iOG
20 3.146 3.340 3.473 3.5.4 3.65-l 3.721 3.i78 3.827 3.871
30 3.384 3.591 3.733 3.8-1.0 3.925 3.996 4.056 4.108 -l.l5-1.
40 3.590 3.807 3.956 4.068 4.157 4.231 4.294 4.348 4.396
50 3.774 4.000 4.155 4.271 4.363 4.439 4.504 4.560 4.610
60 3.942 4.176 4.335 4.455 4.550 4.629 4.695 4.i53 4.804
TO 4.098 4.338 4.502 4.625 4.723 4.803 -l.8il 4.931 4.983
80 4.243 4A89 4.657 4.783 4.883 4.966 5.036 5.096 5.149

105
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Table 6.3: Perccntage Points for no = n with Variance I":nown.

jiiJ k
5 6 10. .01

1.0 3.265 3.392 3.479 3.54-1. 3.596 3.tHO 3.67i 3.•09 3.738
2.0 3.972 4.099 4.186 ".251 4.30-' 4.J.,li ..(,38-1. 4.416 -1..1.-15
3.0 4.679 4.8OG 4.893 -1..958 5.011 5.054 5.091 5.123 5.152
4.0 5.386 5.513 5.600 5.665 5,i18 5.761 5.798 5.831 5.859
5.0 6.093 6.220 6.307 6.373 6.-125 6.468 6.505 6.538 6.566
6.0 6.800 6.928 7.01-1. 7.080 i.132 7.175 1.212 7.245 7.273
7.0 i.508 i.635 i.'21 ;.787 7.839 7.882 7.920 i.952 7.980
8.0 8.215 8.342 8.428 8.-194 8.546 8.590 8.627 8.659 8.68.
9.0 8.922 9.0.:19 9.136 9.201 9.253 9,297 9.33-1 9.366 9.395
10.0 9.629 9.•56 9.8-1.3 9.908 9.960 10.004 lO.O-l.1 to.073 10.102
11.0 10.336 10.46J 10.550 10.615 10.667 10.711 10.748 10.780 10.809

Q = .05
1.0 2.623 2.769 2.86. 2.941 2.999 3.048 3.089 3.124 3.156
2.0 3.331 3.4i6 3.575 3.6-18 3.;06 3.755 3.796 3.831 3.863
3.0 4.038 4.183 4.282 4.355 4.414 4.462 4.503 4.538 4.570
4.0 4.745 4.891 4.989 5.062 5.121 5.169 5.210 5.245 5.277
5.0 5.452 5.598 5.696 5.769 5.828 5.876 5.917 5.953 5.984
6.0 6.159 6.305 6.403 6.476 6.535 6.583 6.624 6.660 6.691
7.0 6.866 7.012 7.110 7.184 7.242 7.290 7.331 7.367 7.398
8.0 7.573 7.719 7.817 7.891 7.949 7.997 8.038 8.074 8.105
9.0 8.280 8.<126 8.524 8.598 8.656 8.704 8.745 8.781 8.812
10.0 8.987 9.133 9.231 9.305 9.363 9.412 9.453 9.488 9.519
11.0 9.695 9.840 9.939 10.012 10.070 10.119 10.160 10.195 10.227

Q = .10
1.0 2.284 2.441 2.545 2.623 2.685 2.736 2.j"j9 2.816 2.8-19
2.0 2.991 3.148 3.252 3.330 3.392 3.443 3.486 3.523 3.556
3.0 3.698 3.855 3.960 -1.038 4.(199 4.150 4.193 4.231 4.263
4.0 4.405 4.562 4.667 -1.745 4.806 4.857 4.900 4.938 4.971
5.0 5.113 5.269 5.374 5.452 5.513 5.564 5.607 5.645 6.566
6.0 5.820 5.976 6.081 6.159 6.221 6.271 6.315 6.352 6.385
7.0 6.527 6.683 6.788 6.866 6.928 6.979 7.022 7.059 7.092
8.0 7.234 7.390 7.495 7.573 7.635 7.686 7.729 7.766 7.799
9.0 7.941 8.097 8.202 8.280 8.342 8.393 8.436 8.473 8.506
10.0 8.648 8.805 8.909 8.987 9.049 9.100 9.143 9.180 9.213
11.0 9.355 9.512 9.616 9.694- 9.756 9.807 9.850 9.887 9.920
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Table 6.4: Percenlage Points ror no/n = .jk wilh VarianCe! Known.

fi6 k
5 6 16

Q- .01
1.0 3.329 3.495 3.609 3.695 3.764 3.821 3.870 3.912 3.950
2.0 4.095 4.291 4..125 4.526 4.607 4.673 4.729 4.il8 4.821
3.0 4.860 5.087 5.242 5.157 5.449 5.525 5.589 5.644 5.693
<.0 5.625 5.884 6.058 6.189 6.292 6.377 6.448 6.510 6.56-1
5.0 6.391 6.680 6.875 7.020 7.135 7.229 7.308 7.376 7.436
6.0 7.156 7.476 7.691 7.851 7.977 8.080 8.167 8.242 8.308
7.0 7.921 8.272 8.508 8.683 8.820 8.932 9.027 9.108 9.179
8.0 8.687 9.069 9.324 9.51-1 9.663 9.784 9.886 9.974 to.051
9.0 9..152 9.865 10.1-11 10.3-1.5 10.505 10.636 10.7-16 10.840 10.923
10.0 10.218 10.661 10.957 11.176 11.348 11.488 11.606 11.706 11.794
11.0 10.983 11.457 11.77-1 12.008 12.191 12.340 12,465 12.572 12.666

0' = .05
1.0 2.693 2.884 3.015 3.114 3.194 3.259 3.315 3.364 3,407
2.0 3.458 3.680 3.832 3.946 4.036 4.11: 4.175 4.230 4.279
3.0 4.223 4,476 4.648 4.il7 4.879 4.963 5.035 5.096 5.151
4.0 4.989 5.272 5.465 5.608 5.722 5.815 5.894 5.962 6.022
5.0 5.754 6.069 6.281 6.439 6.564 6.667 6.754 6.828 6.894
6.0 6.520 6.865 7.098 7.211 7A07 7.519 7.613 7.694 7.765
7.0 7.285 1·661 7.914 8.102 8.250 8.371 8A73 8.560 8.637
8.0 8.050 8,457 8.731 8.933 9.092 9.223 9.332 9.426 9.509
9.0 8.816 9.254 9.547 9.764 9.935 10.074 10.192 10.292 10.380
10.0 9.581 10.050 10.36-1 10.596 10.778 10.926 11.051 11.158 11.252
11.0 10.346 10.846 11.180 11.427 11.620 11.778 11.911 12.024 12.124

Q =.10
1.0 2.357 2.563 2.705 2.812 2.898 2.969 3.029 3.082 3.129
2.0 3.122 3.359 3.522 3.643 3.741 3.821 3.889 3.948 4.000
3.0 3.888 4.156 4.338 4,475 4.583 4.673 4.749 4.814 4.8i2
4.0 4.653 4.952 5.155 5.306 5.426 5.525 5.608 5.680 5.743
5.0 5.418 5.748 5.971 6.137 6.269 6.376 6.468 6.546 6.615
6.0 6.184 6.544 6.788 6.968 7.111 7.228 7.327 7.412 7,487
7.0 6.949 7.341 7.604 7.800 7.954 8.080 8.187 8.278 8.358
8.0 7.714 8.137 8,421 8.631 8.797 8.932 9.046 9.144 9.230
9.0 8.480 8.933 9.237 9,462 9.639 9.784 9.906 10.010 10.102
10.0 9.245 9.729 10.054 10.294 10,482 10.636 10.765 10.876 10.973
11.0 1O.0ll 10.526 10.870 11.125 11.325 11.488 11.625 11.742 11.845
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Figure 6.1: Critical Regions ror k~2
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Chapter 7

Identifying the Minimum Effective
Dose

1.1 Introduction

In toxicological and biopharmaceutical studies to investigate the effect of a com

pound se\-eral increasing dose levels are usually compared with a control. The

control may be a neutral control (a placebo) or an acthoe coatrol (a standard drug

known to be effecth-e). Therefore, a dose-response experiment is often conducted in

a one-way layout in which the doses of the compound under consideration are allo

cated to scperate groups of subjects. There are different concerns in these studies.

In toxicological studies, the main concern is tne safety of the toxin under considera·

tion and the goal is to estimate the highest dose that shows no significant difference

from the control. This highest dose is generally called the no statistical signiCance

for trend (NOSTASOT, see Tukey, Ciminera, and Heyse (1985» or no obsen'ed

adverse event level dose (NOAEL, see Ryan (1992». In biophannaceutical studies,

however, the primary goal is to assess whether there is indeed a dose-response effect

which means that at least one treatment mean is greater than that of the control,

109
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III

posed by Tuke~·, Ciminera, and Heyse (1985) for monotone dose-response effl:Ct

and modified it for dose-response effect with a reversal at higber doses. Tamhanc.

Hochberg, and Dunnett (1996) proposed a number of stepwise testing procedures for

identifying MED and studied familywise error rate (FWE), bias in identifying MED,

and power performance for Step-up and step-down multiple comparison procedures

using ~dollte Carlo simulation. They found that step.<!.own procedures generall)'

dominated step-up procedures and recommended some step-down procedures o\'er

others. Dunnett and Tnmhane (1998) used the step-down tests of Bartholomew and

Hayter's procedures for dose finding, ~Iore receutly, HSll and Berger (1999) consid·

ered the stepwise confidnece sets method. called the DR method, which is based on

pairwise t tests without monotone dose-response assumption. They partitioned the

parameter space with the idea that exactly one member of the partition contains

the true parameter.

We describe the necessory notation first. A typical dose-response study has

a (placebo or acth"e) control group indexed as °and k treatment groups indexed

as I, ", k with increasing dose lewis of a compound, wi.th ni subjects randomly

assigned to group i, i -= 0"", k. For patient j at dose le'-el i, let lij be the dose

response. We assume that all obsen"ations lij are mutually independent with FiJ "

N(IJi,17~), i = 0, .. ,k and j = 1,2," . . ,n;. The statisticS2 = EfzO Ej':'I(l-ij-l'-;V/u

is used as an estimator for 17~, and it is independent of the sample means i' =

(Yo, .. ,9,,), where ",52/ 17'J. ..... X: and /I -= L~=o n; - (k + 1) > O. Usually the dose

response curve is expected to be continuous. Accordingly, 1\·IED should be defined as

the minimum dose such that the mean response at that dose is clinically significantly
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better than the mean response of the neutral colltrols; that is

M£D == min{i;p.; > p.o +tS}, ('.1)

where tS defines a clinically significant difference preassigned by an experimenter.

Suppose that the control group is an acti\'e control group receiving a drug which is

known to be effective, then the :\·IEO can Ix! defined br (i.l) with tS either posith'e

or O.

In drug studies, increasing dose le\'els are frequently expected to produce stronger

or at least equal treatment effects. Sometimes the dose response increases mono

tonically at high dose le\'els, but, at low levels there might be a negative response,

as e\'idenced in the example in Section i"l. In that data, the dose response effect

at dose 1 dips compared with the effect at placebo. In general, it is possible that

p.o ~ JJi for some \'a1ues of i, particularly in the active control setting. In drug

de\'elopment, dose response studies generally are planned to ha\'e many acth'e doses

and perhaps some potentially ineffecth'e doses to help to characterize the ?iED.

Therefore we may assume that there e..'\":ists a q ~ I such that

(7.7)

where the value of q is preassigned by an experimenter based on past experience.

Bauer (1997) pointed out that only the classical many-one pairwisfo comparison of

different doses of the drug with a control will in general guarantee strong family

wise error control without the assumption of monotonicity among means. HO\\'e\'er,

pairwise contrasts do not utilize any prior knowledge about the shape of the dose

response function, and hence are not \'ery efficient. The motl\-ation for \Villiams'
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approach (1971, 1972) is presumably to take nd\'ll.ntage of the power of isotonic re.

gression when dose responses are monotonically ordered. althl>ugb the DR method

does not explicitly depend Oil this assumption. It does actual1~' take advantage of

this assumption when it is true to much the same extent that "'illiams's lest does

(see page -1/3 in Hsu and Berger (1999)).

Whereas dose response patterns subject to downturn at nigher dose Ic\-els could

occur in practice, this chapter has no intention of discussing this case. One can

consult related references like Simpson and ~[argolin (1986) and Rom, Costello, and

Connell (199-1) for this case.

The test for overall drug effect on mean response can be assessed with the null

hypothesis of Ho : PI< - ~ ~ 6 \"ersus the alternative hypothesis of Ha : PI: - ~ > J.

In this chapter, we propose a multiple contrast test wbicb retains tbe pov:er or the

likelihood. ratio test. Then, we use it to derive a stepwise method to identify the

minimum effective dose under the partial monotone dose-response assumption in

(7.2). In Section 7.2, we introduce the multiple contrast test T,.k. In Section 7.3,

we present the stepwise method. In Section 7.4, we illustrate tn.e method on a dose·

response data. In Section 1.5. we conduct some power comparisons. Section 7.6

contains our final conclusions.

7.2 A Multiple Contrast Test Statistic Tq,k for Test
ing Dose-response

The contrast test is very popular in dose response detection. A.s pointed out by

Tukey, Ciminera and Heyse (1985), it offers a semi·nonparametric procedure in
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which the treatment effects arc I.·(t -fully saturalL'li~: that is, they are not restricted

by any particular model. and at the S<l.mc timt! Ol\~ CUll mooel other design £:\c

lOrj to increase the efficiency of the analysis. The contrast tc:lt will detat certain

expected dose response features without forcing those expected features into th,~

analysis Ulodel. furthermore. analysts can easily imerprcl L'OlItf'l.SlS and can dCi\r1~'

present them to clients. Dunnet(s procL>dure (1955). Williams' test (1971. 19,2).

the rl;!grcssion tests of Tukcy. CillLincra and Heyse (l9S.5). Ruherg's basin contrasts

(19S91, stepwise testing procedures il\ T,ullhanc, Hochberg and Dunnett (1996) and

Hsu and Berger (l90D) nrc all contrilst procedures to study dose-response.

However, the aforementionei.l contrast procedures do not fully employ the kmlld·

edge of the dose ordering and the expcctet.l dose shape, and tht! corresponding powers

may be quite low in sollie dirccti<>llS. Robertson. Wright and Dykstra (1988. page

t89) pointed out that the likelihood ratio test statistic may be expressed as the

ma.ximum of an infinite number of contrast statistics with the contrast coefficient

obtained from the data. Based on this idea, the genemlized mllitiple contrast test

statistic T,.J: considered in this section has an appealing power performance com·

pared to the lRT.

The layout orthis section is as follows. In Se<:tion 1.2.1, we introduce the multiple

contrast tCSt statistic T,.t ; in Section •.2.2, we present an algorithm to compute the

restricted ma.ximum likelihood estimates: in Section •.2.3. we show how to calculate

the mixing coefficients in the null distribution of the statistic T•.k : in Section 1.204., we

deri\'e the simultaneous confidence lower bound for ~I: - Po when the dose-response

effectiveness is presented; in Section 7.2.5, we compute the exact power ofTl.k when

k=2and3.
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7.2.1 A lVlultiple Contrast Test Statistic T".J:

The dose-response effecth'E'liess t;3n be tCSted through the lIuli hypothesis HrJ : lit 

J.La $ J \-ersus the alternath'c hypothesis H.: """-J.La > J. where J defines a c1inknlly

significant differencc. By incorporating the as..<;umption thilt It.. :5 1-1.....1 :5 ... $ lit.

onc rejects HrJ ill fa\"Our of H.. for large \<llucs of

L~",,, n,c, r; - (fil + J)
Tq,JI. = ~~'E; 5 JL~..'1 n,c; +;!;; .

where

C q .k = {c = (CO,CI'" .Ck): t'I'C, = L.el =... = t:'1_1 = ll.cy =-~.O:5 C.,,:5 . . :5 '·Ie}.

'.Vithout loss of generality we assume q = I and Ii = O. For simplicity we use T,. to

denote Tl,k and C to denote C 1.k • let tic....'" be the critical \-alue of Tic. then.. .
p,,{?;n.ciJJi ~ ~n.c.r: -t,. ....."S(~n.cWn. rorall cE C} = 1-0. (iA)

Let C={/-I : J.La = /-II = ... = ""Ie} and n = {~ E R!'-I : IJ<J :5 {i. :5 J-LI :5 .. S

J-Lk}, where {J. = Li?..:::'· Then n =c 6 C. let~' b.e the ~ILE of ~ under

n which will be discussed in the ne..\:t subsection. Csing the definition of isotonic

regression, one may show that

max L~~ nicil';
CEC~

~tn'(I-I:-l")1,
where f- = L~=o n,f";/ L~_o n•. From the above equation,

(i.5)
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\Vhen q'! is known. L~.u Il,l/l: - f-Fla'! is the likelihood ratio test statistic for

testin:; H~ : 1lO = POL = ... = If~ \ocrsus H~ : n - H~. \rh,~n q'! is unkno\\"u. ""C call

L~=o n,(J.I: - f")'! IS! the modified likelihood mtio tCSt stluistic for testing H~ \"CrsllS

By ullion-intersection principle. the null distribution of Tt under the least fa\"Or

able configuration C. of Ho when II" = III = .. = II" is ginm by

sup P[T" ~ t) = ~ P(l./.: + llP[F1_ l ... ::: ~l
~E~ I~~ -1

1'·6)

for allY t > O. where the mixing c0dficicnt P(l. k+ 1) is calbl the len~l probnbility of

I-l" which will be discussed in Section •.:1.3. \\"hen k is large. the precision Ofll1lmer·

ical computation for finding P(I. k + 1) is questiollnble, one mOlY obtain the critical

\-alues (It. ...... by simulation. The simulated critical \Ollues based on 1.000,000 item-

lions are pro\"ided in Table ;.1 for 0 :: .10. .05 and .01, k :: 2,3. -l, 5, 6, 7,8. 9. 10.

and the degrees of freedom II :: 5. 10. 15.20,25.30,40,50.60. and oc. For k = 2.3.-l.

the simulated critical values t"...... match those obtained br sol\·ing (l.G).

7.2.2 MLE p..

For any x E R!'+I and y E R"-l, we define an inner product < x, Y >= L~.:ot n,L,y,.

Then {1 is a dosed, convex cone. So is C q (i.e.. C q is dosed in the topology; x E C,

and y E C q implr that rx + (l - r)y E C q for all 0 S r S I: x E C q and .\ ~ 0

imply that ,,\x E C q).

The restricted maximum likelihood estimator 11· of 11 subject to n minimizes

E~..Oni(fi - ~;)2. The solution 11· is a projection of Y onto {1. According to

Theorem 8.2.7 of Robertson, Wright and Dykstra (1988), p,. is the projection if
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and only if #Jo" E f!,

('.')

and

('.S)

for any y E fl. The :\·ILE #Jo- can be computed as follows.

For a gh'en data Y = (fo.... 1""k). P; = f;, i = I .... '1 - L Without loss of

generality, one may assume that 'I 0= 1 and }~. 0= O.

Step 1 For (f'h ... 1/,) (excluding the control), using tlte pool adjacent \'ioiation

algorithm (PAVA) (sec Section 2.-1.1) to obtain the isotonic regression with

respect to PI $ II~ $ ... $ Pl:. the result i~ denoted b~' (f"t, ... f t'). If

lo ?: f~, then J.£; 0= 1"" i = 0, I, ", k. Otherwise. go to the ne."t step.

Step 2 For ('to, fOOt,. "f~) (including the control), ignoring those nonpositi\"e treat

ments, the new data is (lo. f:~. ". r~). here 0 $ r;', $ .. $ f~. Com

puting the average of the updated data. denoted by a\' 0= (l:~=j, n,fi' +

nofo)/Ct~j, n, + no). If a\" 0= O. stOp and #Jo- is

(fo.o .... 0, f:', .... f~).

Otherwise, go to Step 3.

Step 3 Subtracting a\' from each component. then ignoring those nonpositi\"e

treatment components, if there are any. The new data will have the following

form:
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go to Step 2.

In order to iUustrate now to usc the aoon! algorithm, let lIS consider the following

example. Suppose fa = -5. f"t = -Lf2 = 2. f3 = o. f~ =-2. f:s = '2 and f, = It.

then 1" = I. after subtracting 1 from Y. we consider Y:::: '-6. -2. I. -I. -3.1. 10).

Step 1 Through PAVAo the isotonic regression of (-2.1. -L -3.1.10) subjc<::t to

PI :S 1-'2 S lt3 S 1J4:$ ~~:5 I'.; is (-2. -L -1. -1. 1.10).

Step 2 Ignoring those nonpositiw components in (-2. -1. -1. -I. I. 10). thCll the

up-dated dam is (-6. l. to) and its average UI' =,j/3 > O.

Step 3 Subtracting 5/3 from (-G. l. 10). then ignoring those aonpositiw treutmcnt

components. thus. the new data is (-8. 8). Its a\"cmge uv = o. Stop. There-

fore, we han! that 1-£" =1 + (-5,0.0,0,0.0.8) = (-i, l.1, 1, 1.1,9).

One can USP. (i.7) and (i.8) [0 \'erify that (- i. 1. 1. l. 1. 1. 9) is the solution.

7.2.3 The Level Probability P(I, m + I)

When q > 1, we ignore the first q - 1 treatments and consider the remaining In =

k-q+l treatments. for simplicity, we only consider equal sizes no = nl = ... = n...

in this subsection. let

The COlle C is generated by the following 111 generators gl, where

g;=(-l, ~ ,l/(m-i+l), .. ,l/(m-i+l»).

i-I terms m-i+lterms



119

ror these //I generators g,. there exist corresponding III t'onstraint:; f, such that

j ::; m. Any point y E Rm-l with l::'.:.oi}i = 0 is the nonncgatin: cambilla-

lion of these generators and constraints. tor instance. whcn TIl = 2. C is gen-

crated by g\ = (-1, 1/'1. I/?) unci g~ = (-1,0.1). the corresponding twO COll-

straints arc f 1 = (1, -2. 1) and f~ = (0,1.-1). \\"hen til = 3, C b generated

by gl = (-1,1/3,1/3, 1/3). g~ = (-1. 0.1/2. In) and g3 = (-1. 0, O. 1), while

the corresponding tlm.'(! constraints an.' f\ = (1. -3.l.1). r~ = (0.1. -1.0) and

£3 = (0.0,1,-1).

The level probability P(I.I/I + 1) of ~* is the probability that JJo can be

represented by the nonnegath"c combination of l - 1 distinct generators 9i and the

m + 1 - I constraints Ii of cone C under Ho ; 1-10 = III = ... = ~I",. The level

probability P(l, m + 1) satisfies the following t\\"O equations

m~l 1t; P(I,m+ 1) = 1. "~1\ P(/,In + 1) = l~J P(l.m + 1) = 2"

\\'hen m = 2, the space R1+-l n {y : 'i:~=oYi = O} can be decomposed into fOllr

com"ex cones, one cone is n which involves two generators, two cones im"ol\"e one

generator and one constraint. the remaining aile does not in\'oke any generator

but two constraints which is the dual of n. :\"ote That YEn if and only if

'Yo-2Y\ +f; S 0 and r"\-fz:S: O. Let Ul = -fo+2f\ -f;;::: O,U~ = -fi+fi 2:: o.

then (U\.U1 ) has a bh'ariate normal distributiOIl of zero means and correlation

coefficient Pl~ = -../3/2. Therefore. we have the level probability

PI3,3) P{U, > O,U, > oj

1/4+ ';;Sill- I
PI1
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= I/t~.

where the formulas fOr the orthant probabilities can be found on page .5 of Robert

son, Wright and Dykstra (l!l ). likewise for the other three COIICS. we can obtain

the le\1!1 probahilitit..'S for In::"! as follows. P(1.3) = 5/1:?, P("2,3) = 1/2. and P(3.3) :::

1/12. When In = 3. the SPUI."e R-1 -
1 n {y : r::=oY; =O} can be decomposed into

eight com"ex cones. Each cone is generatoo by three q~ctors consisting of gener-

alars 5i and constraints fJ' ('<me fl is generated by nil three generators 91.!12

and 9~; three cones iu\"oh-c tll'O generators and Ollt' constraint: thTl"e concs in-

\'ol\'e one generator and tll"O constraints: the remaining olle d'lCS not im'oh'e lilly

gf!nerators. For example. the c\"ent (l = 3) can be d~ompo"cd into three dis

joint c\"ents or three disjoint blocks wldeh urc denoted by Bl • B~, and 8 3 . respec-

tively. Say 8 i is generated b~' 81 = (-1.1/3.1/3.1/3), g:: = (-1.0.1/2.1/2). and

£3 = (0,0,1, -1); B'J, is generated by gl = (-1,1/3.1/3,1/3).83 = (-1. O. 0.1), and

£:: = (0.1. -1,0); B3 is generated b~' 8:: = (-1,0,1/2.1/2). g" = (-1.0.0.1).

and £1 = (1, -3, 1, 1). 8 1 can also be equi\'alently represented by the follow

ing three inequalities: < '9.g'l >< O. < Y'&'2 >< O. and < Y. r;, > < O. where

g'l =(1,-3.1.1). g; = (0,2.-l.-l). and r;, = (0.0.-1,1). It follows that

P(Bd p{<Y'.g'I><O.<Y.gi><O.<Y.r;,><O}

~p{< Y.g'l >< 0,< V,gi >< O}

~(l/H f;'in-'I-VS/31)

0.0270':3.

Similarly, P(B'J) = 0.048979, and P{B3 l = 0.041667. Accordingly, it follows that

pel = 3) = P(Bd + P(B2 ) + PCB,) = 0.11769. Other le\'el probabilities can be
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computed similarly. The "~\'el probabilitie:. are pn'SC:!nted iu Tab!e ,.2 for 1/1 =
2. J. -I., 5. For m ~ -I. no closcd-ftlrllL is axailablc. llUlliericOII computation is usai.

7.2.4 Confidence Lower Bound for 1J.k - J.Lo

In this section. without loss ofgcllcrality. wc assume II ~ 1 and Ii = O. Once the dose

response effecti\'encss is shown by rejecting Ho. we are interested in the sharpest

confidencc lower bound for J.1t - p;). The 1 - a one-sided simultaneous confidence

bound for the contrast r:~=;) Il,e,/I, with c € C is gh'clI by

Let JC = {c: c E C, r:~..o n,C,JI, :5 PI< - J.I(J. where P-l :5 ... ::;: p-d. The simul

tanoues confidence lower bound for PI< -1JfJ is gi\'E~n by.
L(p-I< - JIo) = ~,:~'(I(~n,cill,). 17.101

The following lemma ghoes another description of the set JC and its proof is tri\·ial.

Lemma 7.2.1 Suppose that Ho is rejected. for III :5 ... :5 Jl",. r:~..onic,ll. :5

PIt.u.-Po if and onl~' ifL~.inJcJ :51.i =I ... ,k. for all c E C.

The following theorem establishes an equi\"illence relationship between the positi\"e

ness of the abo\"C optimal lower bound and rejection of Ho by statistic Tk .

Theorem 7.2.1 Assuming JJ~ ::;: ... :0:; JJb T~J' > tl<_q+I ...... if and only if L{P.k-

1JfJ) > O.
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Proof. \\-ithOlit loss of gellerality assuming If = L (f T" > I,,"' .... theu dltlre l'xists a

1.'1 E C such that

t "_. t., In
I(?; rt,CI,IJ,) =~ fI,c lt l, - tt......S(~rt,Ci,) > o.

On the other hand. if L(JIl; -/l,}\ > O. then there exists a c~ E K:. such that.
[(Ill; -/IU) = l(~ II,C~,IJ.) > O.

This leads to

o

According to the algorithm of computing ~'ILE J,l" and through the contradiction

method, it is easy to prove the following lemma.

i:5 k-I, thene'{ = ci'+!. Here CO i$ the optimt1l.101uUon to the maximization problem

.Jubject to c E K:..

max{~n,c'll; - tt......S(~n.cr)ln}. (j.ll)

In order to obtain the optimal solution to the ma....imization problem (7.10).

we will solve the ma.... imization problem (T.ll) first, then we shall prove that the

maximization problem ('.lO) is cquimlent to the maximization problem (•. 11). A

necessary and sufficient condition for an optimal solution to (i.ll) (or ('T.1D)) i~

gi\'en below.
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Theorem 7.2.2 SIIP~ r", > ll.: ....,. Th<'11 e" E K. is:\n op[imal :>olmiou to (i.ll)

if and only if there exists a po:;iti\1~' p. 1 S. p 'S k such [holt ~ =- -;!;. r.'i =- .

c;-I =- 0, ~ =- ,,"~I + b-I(Jl: - Jj".,.t}. i =- p. ", k, where

and

N,J< =- ttl;, ii·pI.: =ttl;JI.:/Spl.:, S~ =- tll'(JL; -/j"·pd:!.
,"'p Itp

Proof. It is trh'ial that E~..ll fl,Cdl; - tk.n ...S( E~.n 11,e;) Ii:! is a concave fllUc:tiOll of

C<.\,Cl" .• c",. Let

!p(e,It,l',A)
'" k I'~ k_1

~ n,c,JI.; - tk .., ...S(~ fI,C:) ,- + ~ III(e,.,.1 - q)

+lLrJCI+l=:l'm(l- t nici)+.\(l-tn,c;) .
...:0 J .... ..-I , .. I

Let ~ denme the partial deri\'3.[i\'eS c\-aluated at the point ~. It'' =- (It;, ", '4_1)'

yO =- (l'o, ",tit_I)' and .\-, By the Kuhn-Tucker equl\-a.lence theorem (Kuhn and

Tucker (1951», r:- is the optimal solution if and only if

(i) ~ =- n,JI.: - n,c!b + lL,_1 - II, - ~;~ n,t'J - n,.\ =- 0. i = 1. .. ,k. where b =

tJ:A..,S/(r:~:o n,~)I/1:

(iOe: ;:: 0, c:'+1 - c:' ~ O,lL~(~..,.1 - c:') = O,i =- 1, ",k -l.lIocL =- O.u" ;::0:

L~=jnr~ S l,j =- 1, ... k.~·J(I-r:~..jn,~) =0, v";::O and -!f.; =0.

Suppose ~ is the optimal solution. For con\'cnience, let Uk =- O. Without loss of

generality, onc may assume that there exists a p (1 S. p:$ k) such that

~ =... =C:-I =- a< e~ ::; ... $ C:,
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\\'ith ~~=p 11.< = L Th<lll rrOlLl (ii). ":_1 = O. lIlt ,,; "" n. \. = L~:,' e; (If p = I.

I" = t·o). iUHllj =O.j = p.... k. From (i). r<Jr j =p .... k.

F·t~l

Adding these k -I' + 1 equations in (•. 1:2) llnd using ~~.",nJc; = I. one hit:>

Substituting .\0 + \. back in (;.12) . then iT. rollows that

Accordingly, b = tk.o."S/{~~all n,c:'~)1/2 can be written as

b~ = ti:i~~ ~.Jk.
Therefore, the nccessory part is sho\\·n. The sufficient part is trida!. 0

:\ow we prove that the ma.ximization problem (7.10) is CQuhlllent to the mu.'Ci·

mization problem (•.11).

Theorem 7.2.3 The rnarimum problem in (1.10) is equivalent to the rnarimi=ation

problem (7.11).

Proof. For con\'eniellce, let ftc) denote equation (7.10) and let g(c) denote equation

(7.11). Let CO be the optimal solution to (7.11). then, g(cl :5 g(CO) for any c E 1:..

\Vithout loss of generality we assume f l :5 ... :5 fi,. According to the algorithm of

finding 11" in Section 7.2.2, 11· = (fO - a, Y, ", r't fi - a, ", fi, - a), here a is a
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COllstant. Then by Theorem •.2.2 and leillma •.2.2.

t ., t t

L nJc~/ol; = 1'1(I~J..LO + L nJC;J!; = ntl~{fG - a) + L IIJc;<fj - n) = L f!J~f~.
poD J., J"P J"U

It follo\\'s that f(eO) = g(CO} ?: g(e). Since for nny e E C. c E n, by ('.S).

L~,.o nJc'Jfj :5 L~",o nJ~J.l;' It follows that !I(c) ?: f(c). This completes the proof.

"
The optimal solution CO can bt.o ubtaiuet.l itcrilti\"ely in a few steps by tht! following

algorithm.

(i) let.81+! = tV,.kUi"·"k-/ol;,J.lk.o.._, ... = [S~,t+,jr{n;\+.Vp~k)rr-/S. Iftk.o,_" .. :5

tt.o,.. , the optimal solution is CO with p:: Pl. Otherwise, go to (ii).

7.2.5 The Power Function of Tk When k = 2 and k = 3

For simplicity, we assume (71/ n :: 1. We consider k = 2 first. leI. f~ _ -'"lJ.l" I)

for i :: 0, 1,2 \\ith. fa, fi, f; independent. Since the e\"E'nt (l = 3) implies that

J.li = fi (i::o, 1,2), then for any constant a >0. by (i.b), P{T-: > a,l =3} can be

computed as follows. This probability is

p{Lf_on;f - r·rz
> a-:,l =3}

,
P{f; - rOl > 0, 2:f'\ - 'Yo - f; > 0, ~(f~ _ r~)l ?: al }.
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By making the orthogonal tmIL~fMm<lti,m \'1 = If: - rli:'vf:!" and l; = (f", + fz

2fo)fV6, through simple computarioll \\'ith L~_Glf; - r):: = \'1::+ \ ~::. the probability

can be written as

Applying the polar transformation lOt = Rcus9, \:1 = Rsin8. the conditions lOt >

O. and 41;- ~\'I > 0 are eqlli\1\lellt to coso> 0, ~sill8 - ~cos9 > O. t!tut

is. ~13 < 0 < 1'012, Be<:ullse l"1 and \; are independent normal \<l.riablr:s with

means '\1 =~ and '\1 = '''_':'~_2'~' and unit \-arianc':s. with.\1 = ~sinj and

"\z = ~cosj. where ~z = I:;",a(lI, - li)2 with {I = (11ij + III +- JI,!)/3. thc abo\'c

probability is

exp{ -_~Z/2} !."n J
/.,," rexp{ _ ~,r2+r~Sin9}drd8

2.. ,,/J J.. _

= exp{ -~Z/2}!."'I'!."'Jt:(~si1l8,a)d8 (i.l3)
2:0 '!t/J_J

where tI( x, a) = (x<ll(x-a)+o(z-all/o(z) with <Il(x) and o(z) being the cumulati\'e

distribution function and probability density function of a standard normal \'Uriable.

respecti\'ely_ \"ext, P{Tz > a.l = 2} is considered, The e\'ent (I = 2) is the union

of (fl - f~ ;::: 0, f"t + f'i - 2lo;::: 0) and (10 - :rf"1 + f; ;:: o. f; - fil ?: 0), For the

case WI - f; ;::: o. fi + f; - 2io;::: 0). 1J0 =(Io. Wt + f;)!2.WI + f;l/2). With the

same transformation as abo\'e. Ii = \i. and

p{ I't - Ii ;::: o. f"t + I; - 210 ;::: o. Tz> a}

= P{Ft:S 0, vi ~ 0, l~'!.?: a1
} = 't'(-~sin,3)'1l(~cos.J - til. (i.14)

Similarly,
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= <fl( - a + j,cos(J - ;r/6))<fJ{..hin(.1- ;r/6)). (i.15)

For the enmt (l = l), T~ =O. In summary. when k = '2 ilnd n/a~ = l. the power

function of T,. is

",p{ - -"'I'} /."".,
... (~) --,-);;--- ~i3.,.J 1.·(.:lsin8,fl)J8

+<fJ( -j. sin J)'fJ(j. cos 8 - a)

L'sing the method ill Lee (19Si). one can show tlmt the power functioll of 'f.J

is increasing on [-W. TIl and dccrl'using on [TI,1ffl Furthermore. the minimulII

power of T,- is located at the two boundary points ,3 =0 and ,3 =i.
Xow we consider k = 3, Let f; .... X(~•. 1) for i = 0, 1. '2. 3 with fa, f·(. f~. fi inde·

pendent. The determiuation of power when k = 3 presents a number of difficuLties

which do not arise in an acute form when k = 1.

Since the e\1!nt (I = -I) implies that f.J; = f~ (i = O. 1,2. J). then for any constant

a> 0, P{T3 > a,l = 4} can be computed as follows.

P(T3 > a.t =-1)

which is equi\'3.1ent to

,
p{fi- f'l > O.ri- f; >o,3ft - fa - fi - fi >O,~{f'; -f-}:! ;?:a'-}.

Let \'i = (Y3 - Y~)/v'2, t-~ = (f; + f; - 2ra)/v'6, and t 5 = (Jr'l - fa - V:! -

Y3)/v'i2. Then V3'~' and \'5 are independent normal variates with unit \<lriances

and means >'3 = ~, >.~ = 1,..+,&-21'<1), and >'5 = !3"'-j~;--e,1 . Tllrough simple
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(I = -I) can be written as

p{l.i > 0, r; > 0, -~ti + ~l~ - hti > o. \;~ + I~~ + 1~~?: a·J }.

Changing to spherical coordimucs. Ii = Rcos8sinfl. I~ = RsillOsinfj. and 1\ =

RCO:Hl with 0 :5 0 :5 2::',a:5 11:5 :;". the conditions la > 0, \:~ > O. and -~\i +

~I~ - J2\i > 0 are eqlli\'al~llt to j < 8 < 3 and arctan(~) < /1 < ~.

Therefore, th~ probability for (I = -I) is

(T.!T)

where :41 = .\3 cos8sin rl + .\.. sin () sin " .... '\.lCOSfj. The determination of P{T3 >

a,1 = 3} involves the evaluation of three probabiliti(!S. since the e\"t!nt (I = 3) is

the union of three cases. For example. in the case (fi - fi > o. fi + fi - 2f"1 >

a,3}"\ - fa - fi - 1i > 0), the ~ILE p,. = (fa, l-l' ¥" ¥). and then

Ii = l~~i + (3fa - f! ~ fi - fifl + 2(f; + fi ;;, fa - f"d~ .

The probabilit~·corresponding to this case is

Since the distribution of fi - f,! is independent of the distribution of Ii, 3fa - f l 

f; - fi, f; + fi - fa - f"l, and f; + 1i -2f"l' and hence of T" the abo\·e probability

mar be ~\Titten as
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The second term is IIOW found b~' a straightforward extension of the method llsed

for p{ T2 > 'I, [ ::: :}}. The rl,,'Sllltill:';; expn.-s.sioll fllr p{ Tl > '1.[ ::: 3} thus h(.'(;1l11lCS

"p { - (.\, + >11/2 } t'"'·", (4)
P{Tl>n.[:::3} <to(-'\ll 2:r in 1;'(.\:u,II)"9

"p{ -(.\1+.\)1/2} I~'~(;I,) .
;- '{>(-·\,l 2" in c,(.~!"t)<18

. "p { - ("1 + .\;)/2} Ii
.,.. <Co( -.\~) 2;; in I..'(.\u, a)dO

(7.1S)

where At; "" ("";2""'. ,\~ "" (''l-".?,'-t''). '\6 "" 12"-'-:~'-"'). '\:11 "" .\~Cl)SO·;' .\~sin8.

.h! = '\6co:>8+.\,siI18..\:u = A-ICtlslJ+A6sinfJ. The thrl~~ comributions til P{Tl >

a.l = 2} are readily fOUlld by similar methods. Thus for tile first term we have that

p{ i\ + f; + fi - 3}o > o. f; ;- fi - 2f, < 0, 2fi - f'l - f~ < O. T3 > a},

where p. ==(fo, ~!_~_f"" ~,"'~._f!. ft_~._~!) and 11 = (3f~-f''';;f.-fW. We therefore

have that

p{ - 2f\ + f; + f; < o. -f'l - f; + 2f; < 0, f l + f; + f; - .1fo> ./i2a}

p{ - 2['1 +}i + f; < O. -['1 - f 1+ 2f; < O}P{f'l + f~ + fj - 3fo > .Ji1(I}

<Co(Aj,Alo.lf2)<I>(-a + '\1I)'

where ~ = -""~r+"', A,o = ""-...".1-"•. All .,. ·'-""JS-3"". and

1 I~[ 1
<f)(:r,y;p) = 2-;;J(l-p2)J~ • exp{ -2(I_iT)(u'- 2PUlt+ l")}dudt,.

The total probability for p{T3 > a, I = 2} is then found to be
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The power function is now obtained by adding (;".1'.). (7.l~). and (7.19).

If (71 is unkllon-n. ont! call ol)[ain till' puwcr by l.-ondiliollill~ on S"! anti applying

the results for a:!. known.

\\l\en k > 3 the abo\oc method to obtain exact value of the powers becomes

\-ery complex and no longer pf'ilctical. Cnl' llIay simply usc ~Iollte-Carlo methods

to obtain sufficiently precise estimates of power.

7.3 The Proposed Method

We propose the following proccdnrt> to find th.' :\[EO by making u~e of the priM

knowledge of (7.2). We denoll! 10 ... as the upper lOO( L - 0) percentile oJf the t

distribution witn degrees of freedom II.

Step 1: Only the treatment means f~.... it and the control mean fil will be used

to compute Tk_.~t. If T.. ...,_t > [I<_.,_LO..,' then claim IJk > Po + IS and go to

Step 2; else claim that there is no non·zero dose len!1 which is significantly

better than the control and

., - '" > ,Te' {t n.c,.: -.; -1,_.....5 ~ -'- + tn,,,).
_ ••k ••" no ."'"

then stop.

Step 2: Treatment means f~ .... fi.:_l and the control mean fa will be used to

compute Tk _,. If Tk _, > tk_"....v, then claim 1Jo/:-1 > IJoc + J and go to Step 3;

else claim ,HED = k and
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then stop.

Step k - q: Treatment means f~ and f~H ann the control mean iii \\;11 be used

to L-ompute T~. 1fT:!:> l"!A .... then clainll"'~L > pu+,j and S,l to Step k-fl+ 1:

else claim ?<lED::: q +2 and

then stop.

Step k -,/+ 1; If f~-(fo+Jl-t"."SJl/llo+L/It~ > O. thl'lldaiJllJJq > J.lo~J

and go to Step k - '1+2: else claim that .\lED = q + 1 and

IJ." - /-10:> f~ -};, - t",."SJl/no -;. 1/,,'1'

tnen stop.

Step k: rrfi -(fo+6)-t.....SJl/II{}+ I/nl > o. thClI claim P-l > 110 +,j and go

to Step k -;. I; else claim that .\{ED =:2 and

then Stop.

Step k + 1: If f'l -(fo+6) -t"."SJl/no -;. 1/!11 :> 0, then claim J.ll > lJo +6 with

AlSD = 1 and minI95:A:J.li - ~ = minIS'S,J.l, - Po> min'aL,.,q {f'i - fa
t .....sJl/no -;. l/nl}, then stOp.
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Let step M (l ~ :\1 ~ k+ 1) be the step 1\t which the stepwise method stOps. [f

.II> 1, then the stepwise m~t1H){1 dl~clares doses k -.II + '1 ., •. k to be dficacl<:ltIs.

(f .II < k + 1, then the stepwise method fails to declare doses 1 ... , k - .If -;- 1 to

be efficacioo. If :If =k .... 1. thell tile stepwise method giVl'S a lower bOllnd on ho\\'

efficaciolls e\l~ry dose is. This lower bound is greater than J. The DR method is the

special case of ,Jur metitOd when q "" k.

Bauer (1991) showed that for halanced design COntrasts like tne Hennen contrast

(Ruberg (1989) ) or the re\'ersc Hcrmert contrast do not control th~ prohability thiU

a noneffective dose will be erroneollsly identified as the :\IEO if nontllonotolliciry at

lower doses occurs. In our stepwise method, jU:lt as ill the DR metltOd. no (\

adjustment is needed. but the familywise error rate is controlled due to the multiple

contrast statistic Tk .

7.4 A Numerical Example

In order to illustrate the proposed method in Section i.3, let us consider the data ill

Table i.3, taken from Ruberg (1995). This is an experiment of dose response stltdies

done in laboratory animals. There are ten groups with six animals per group. group

1 with dosage le\"C1 0 is the control (placebo). the remaining 9 active groups are the

treatments. The mean responses are fo= 25.5, f l = 23.9, fi = 2i.7, fi = 33.-1., f~ =
-IO.5,}~ = 5i.9, \~ = 7-1.-1., f~ = 73.-1.. f~ = 73.5. f; = 76.2. The pooled mean

square error is 52 = 60.087 with the degrees of freedom /I = 50. Table ';'.4 shows

the different ['..IEDs inferred by the three methods, where M PCl''- is the stepdown

fashion of Dunnett's method in Hsu 1: Berger (1999). Table 7.5 presents the 95%
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step-down confidence lo\\"t'f bound:! on It, - 1'0 (i :::: 1 .... 9) br the three methods.

These lower bounds CUll be llsed It) specify the size of 6. rrom Table ,A and Tuble

•.5. \\"11I~n fi is ver~' close to the tfUe ?\rED. our method tends to identify more doses

to be Cffl'Cti,"cj e~'en jf fl is lIot dose to the true :-.rED. our method is still as good

as lhe DR method.

7.5 Power Comparison of Methods for Dose-response
Studies

In order to compare the behador of the proposed method with rhe DR method

and Dunnett's method. a power smdy is conducted. Throllghout this section for

simplicity we assume that cr'1n:::: 1 and 1-10 = O. \re first consider the exact power

for k = 2 and k = 3 with the configuration III = ~11 and III = J.L2 = 1-13 rcspecti\"t!ly

in section 7.5.1. Then we conduct simulation studies in section 7.5.2.

7.5.1 Exact Power for k = 2 and k = 3

).[any dose-responses tend to be sigmoidal. They increase slowly O\'er small d~.

Therefore, we consider the configuration of JJl = JJ~ and JJI = IJ-.:. = JJ~. respecti\'ely.

.-u it will be seen in section i ..a.2. the po\\'ers for detecting tbe true ).IED by Dun

nett's method is inferior to our method and the DR method. \\'e only consider our

method and the DR method in this case. According to (i.16) with.3 =0 for k = 2.

the power for TI.2 is as follows,



The p<l\\-er ofthe DR method is 'l>( -;...;- +). where.::.. is the 100(1-0) p<'rcentill"

of stalldard normal distribmion. For J.: :::: 3. the power of the DR method is 4>( -.::" +

~). One can obtain the po\\-er of Tl.l by substituting 110:::: 0.//1 = /-l"'! :::: 11:1:::: ~

into those expressions in section i.2.5. Figure i.l is the (!xact power for these two

methods when J.: = "2 and 3. The power difference bct\\·I~n Tl."'! and DR method hlL~

the following analytical exprl'Ssion

exp{ ;;r..1
1
/:!} {.l! l,;·(..1sint).11...... }dH + 'fl(..1 -11....,,)/'2

+.,( - 1'_._0 + ";")'''''1'1 - .,( - '0 + ";")_ ('_2l1

Figure 7.2 describes the power differences between Tl.k and the DR method for J.: = 2

and 3. From Figure 7.1 and Figure 7:2, it is clear th,l.( Tu• is superior to the DR

method for J.: = 2 and 3. :-;"ext we con.sider whether this superiority is maintained

for J.: > 3 in stepwise f;\Shioll.

7.5.2 A Simulation Power Comparison

In this section, we conduct a simulation study comparing the perfonnance of the

abo\"e three methods: the DR method (denoted by DR in Table 7.6). our method

(denoted br Tq,.k) and Dunnert·s method (denoted br D). Strong control of the

familywise error is guaranted br these tllcce methods. The number of dose le\·els

(including a control) is 7 and the nominal error rate Q is fixed at 0.05. A typical

sigmoidal dose response curve is formulated by equation I(x) =~ + D, where
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.z is the dose level and f(.z} is dIe l:orro..'Sp<)lldill~ dOSt~ r':sp')I\S('. .-1. is th'l oI!JSC

rt'Sponsc of the control. D L"i the dose fl..':ip.JlLSC at the kth ,ltlSo.! lenl!. C is Loqual to

the £ D.'iQ. which is th~ dose producing a 5Q% respolLSC. and B is the slopt) at C

(sec Rllber~ (1995)). We consider six configurations hased on the four-p..rameter

logistic dose response with .-l. =O. D = I and B =- 4.5. G. C = 1."2.3.4. they arc

at til.:: bottom of Table i.G. For {'adl configuration. the \lllue of q is considered to

be the true ~[ED minus i (ll ill Table 7.G). or the trlle ~!ED {(t ill Table 7.G). or

the true ~IED plus i (q" ill Table 7.6). Thle! nl1uc: I,)f d is ~ual to 0.4. 0.5. 1.0 and

1.5. Thert! is replicated 10000 timcs for each cGllfigumtion. Table ;.6 reports tilt!

simulation rl'5ults.

The probability of detecting the dose relponse is the clIllLulati\"e probabilitil'5 for

identifing effective dl,)se levels from :\IED to d'JSC le\'cl k, which is dCflOted by 0 in

Table i.5. The probability of identifying the true ~IED gi\"t!S all estimate of the

power of the method. which is denoted by [ in Table 7.6.

When q is very close to the true ~[ED. Table ;.6 shows that the new method

has the highest probabilities (lor 0) among these three methods for different values

of ~,IED and J. for the three different q \lllues. the new method has roughly the

same probability of detecting the dose response. When q equals the true ~[ED. T,.t

alway's has larger probabilities (I and D) thun that of DR method and Dunnett's

method. In this case, The ma....imum gains of T,.t over the DR method and Dunnett

method can reach 6.16% (for I) and and 11.67% (for D) and 14.59% (for I) and

and 7.8% (for D) respecti\·ely. When ~[ED ~ 2, Dunnctt method has tlle lowest

probability of identifing the true ~[ED for all the cases. This is not surprising since

Dunnett method does not utilize the dose ordering and the dose response shape.
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The probabilit~.. of identifying the true ).IED for 't' = ?\IED +! arc lower than that

for q = ?\IED as expected. lmt the prohability of dctl'Ctin(; tlte dose response for

l' = :\tED + 1 is higher than tbat for q = ?\IED. \rhen,/::::: ?\IED - 1. the T..,k

method still outperforms the other twO methods for :\1£0 < k in deh.'Cting the daiC

response. and the T....k method is also better tll,lll DUllllCIt'S method in identifying

the true :\IEO.

Based on the reslllu in Table 7.6. \\"ILl!ll the dOSl,.'-rcspol1Sll cur\"!' is lo~'istic and

the experimenter bclil!\l!s his or her f{ \'uluc is around the trlle :-'[£0. tbe T~.k. 1lI1!thad

is recommended.

7.6 Conclusions

We hal'c proposed a multiple contrast test and developed it into a stepwise method

for the analysis of dose response under the partially monotonically assumption. The

proposed method is more powerful than the DR method and Dunnett meth~d.
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Table 7.1: L'pper Percentage PointS for T",.

m_trentment groups
df 0 2 3 , 5 6 S 9 10

.10 1.712 1.81~ 1.871 1.908 l.936 1.952 1.972 1.980 1.987

.05 2.212 2.396 2..154 2..194 2.534 2.5~S 2.565 2.577 2.588

.01 3.701 3.878 3.947 3.999 4.032 '.068 4.100 4.106 ~.I10

10 .10 1.581 1.670 1.720 1.749 1.772 1.792 1.800 1.81-1 1.819
.05 2.027 2.121 2.t75 2.202 1.22; 2.1~9 2.258 2.269 2.280
.01 3.005 3.11-1 3.L':'2 3.205 3.223 :J.2Ei6 3.26·) 3.2':'9 3.29:!

15 .10 1.539 1.622 L670 1.703 1.':'23 1.7H 1.751 1.761 1.772
.05 1.9·57 2.0-10 2.088 2.119 2.142 2.159 2.173 :US-I 2.19:3
.01 2.816 2.902 2.958 2.990 3.010 3.035 3.053 3.0·55 3.071

20 .10 1.523 1.603 1.6-19 [,6;6 1.700 1.71S t.':'29 1.73.5 L.7-1~

.05 L.921 2.005 2.052 2.078 2.100 2.119 2.133 2.138 2.1-1·5

.01 2.i31 2.818 2.862 2.902 2.919 2.936 2.9-13 2.953 2.960
25 .10 1.507 1.587 1.63~ 1.66i L688 1.i03 Li09 Lin 1.729

.05 1.897 1.9i7 2.027 2.057 2.078 2.093 2.101 2.114 2.119

.01 2.676 2.762 2.80-1 2.839 2.865 2.872 2.88-1 2.898 2.909
30 .10 1.500 1.581 1.628 1.6.58 1.6.6 1.691 1.700 1.712 1.123

.05 I.S8-4 1.9.0 2.012 2.045 2.062 2.078 2.086 2.098 2.110

.01 2.642 2.733 2.7j'j' 2.80. 2.825 2.839 2.8-48 2.858 2.812
'0 .10 1.493 l.575 1.616 1.6-13 1.667 1.685 1.691 1..03 1.706

.05 1.871 1.952 1.995 2.0"22 2.045 2.059 2.069 2.081 2.0$6

.01 2.610 2.694 2.•33 2.•59 2.782 2.796 2.805 2.812 2.821
50 .10 1.-187 1.568 1.609 1.6-10 1.658 1.676 1.685 1.69. l.i"OO

.05 1.860 1.9-12 1.9S2 2.012 2.030 2.0-11 2.059 2.071 2.071

.01 2.579 2.661 2.i02 2.735 2.•50 2.767 2.782 2.798 2.793
60 .10 1.4.83 1.565 1.606 1.637 1.655 1.667 1.682 1.691 1.697

.05 1.857 1.93-1 1.975 2.(Xl5 2.022 2.037 2.052 2.057 2.066

.01 2.571 2.6-1-1 2.68i 2.718 2.735 2.750 2.;64 2.768 2.775

.10 1.459 1.5-13 l.58-1 1.612 1.634 1.6-16 1.6·55 1.667 1.673

.05 1.822 1.897 1.9-12 1.970 1.985 2.002 2.010 2.025 2.027

.01 2A92 2.565 2.608 2.636 2.6.55 2.666 2.680 2.683 2.69-1



Table 7.2: lC\"l~l Probabilities for Equal \\·cights.

m .,
m:=:3 m _, m -5

0.-11667 0.38231 0.3635.') 0.35147
OOסס0.5 0.-19269 0.'18685 0.-18208
0.08333 0.11769 0.1360-1 0.1-1750

0.00731 0.01315 0.01532
0.000-11 0.00091

0.00272
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Table •.3: Do~ Response D;H~l.

Dosage Sample :\Iean SO
Croup (mg/kg) size response response

0 0 25.5 2.6
1 .5 23.9 '.0., 1.0 2•.• 3.3

1.5 33.< 2.3
2.0 -10.5 10.5
2.5 57.9 9."
3.0 7~A 1..&.6
3.5 73.~ ;.G
'.0 73.5 ~.5

~.5 76.2 7.9
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Table 7..1: :--1£0 Inrerred by Three :-.[!~t1l\l(ls.

10.00.37.201 6
(38.50, 39.50} 9
(40..1040.46) XA
(40.60,40.70) :\"A
(-1.0.92,..&1.02) ~A

(-Il.02.·n.17) XA
(-11.17,-11.95) :\"A
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Table 7.5: Step-down 9·j'7c Confideul.:c Lower Bounds for p, -II~

", "" ~IPG:\ DR Tz·'J
1 3 , .j 6 S 9

", "" -11.06 -9.10 -9.10 -9.10 -9.10 -9.10 -9.10 -9.10 -9.10 -9.10 -9.10
Jj~-~ -7.06 -5.30 -6.12 -5.30 -5.30 -5.30 -5.30 -5.30 -·5.30 -·j.30 -5.30
Jj]-/.Io -1.56 0.40 -0.79 -0.-12 0.-10 0.-10 0.-10 0..10 0.-10 0.-10 0.-10
/.1.. -/.10 5.08 •.50 6.13 6.31 6.68 7.50 7.50 7.50 7.50 7.50 7.50
/.I~ -/.10 22.13 2-1.90 23.-10 23.53 23.71 2-1.08 2-1.90 2-1.90 2-1.90 2-1.90 2-1.90

"'-"" 3i.22 -10.-10 39.82 39.90 -10.03 -10.21 -10.58 -ILl7 -10.-10 -10.-10 -10.-10
/.1;-/.10 37.22 -10.-10 -10.-17 -10.53 -10.60 010.72 010.87 .j.Ll7 010.-10 010.010 -10.-10
/.I. -/.10 37.94 -10.50 010.7-1 -10.79 -10.85 010.92 -11.02 .j.Ll7 -10.;01 -10.50 010.50
/.19-/.10 39.57 43.20 -11.95 -11.99 .j.2.o-l 012.10 -12.17 012.28 -12.26 -12.1-1 013.20



Figure 7.1: Exact Powers of Tk and DR ?\Iethod for k = 2 and 3.
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Figure 7.2; Power Differences between Tit; and DR :\Iethod
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Tabl!.! •.6: Simulated Probabilitil'S of hlclllifyillg the True ~IED and Silllulal~1

Probabilities of Detecting the Dose Re:;.ponSl..'S.

C~, ~IED q ,; ?llflthod
DR T<t,k Td , t:c.i: D

1 0.·) 1 25.80 :'\A 31.11 29.41 29.5$
D 83.S6 :'\A !I·tO:! 94.19 90.7:)

0.5 1 -H.T' 39.73 ·W.83 -1.5.58 3':i.27
D 9-1..1., 96.03 9u.2!! 96.3' 9·j.32

0'< 1 15.71 16.97 21.8, 19.13 13.97
0 69.92 80.79 81.59 82.12 ;3.,9

3 1.0 1 33.51 30.18 36.50 3-1.16 22.99
0 90.98 93.01 93.63 93.87 90.5.

3 0.5 t 39.6. 3M3 ..11.-15 -1.0.28 27.17
0 92.19 9-1.26 9-1..70 9-1..8-5 93.08, 1.5 1 29.52 26.31 31.6, 29.79 1•.08
0 89.02 89.12 9llD5 90.86 82.69

Case I: (0. 2.110. 3.972...1.169. -I.2Q.l. -1..214. -1..21 i)
Case 2: (0,0.333.2.829. -1..725. 5.326. 5.518, 5.590)
Case 3: CO, 0.055.1.7701,3.262.3.-19-1..3.53-1.,3.5-1.3)
Case -I.: (0. 0.073. 0.988. 2.996. 4.M2. 5.30-1.. 5.639)
Case 5: (D. 0.007, 0.-1.36. 2.698. -1.581, 5.156, 5.31-1)
Case 6: (o. 0.006. 0.198. 1.255.3.273. -1.930. 5.78-1)



Chapter 8

Summary and Further Research

Typit:ully. the goal in compamt[\"c clinical trials is llJ select tile treatments thut arc

"better" than the control. Then a one-sided procedure is preferred. On the OdWf

hand, when the prior knowledge indicates that treatments arc at least effecti\1! as

the control. sharper statistical procedures call be expected to enhance the infer

ence. it is "-en known that h~'pothesis testing does not com'e~; the magnitude of

the differences between treatments and the control. Howc\-er. confidence intervals

is more informati\"l~ than hypothesis testing. In this thesis. we hall:! presented $Ollie

procedures to yield sharp simultaneous confidence lower bounds for the differences

of (combined) treatments and the control. A thorough study has been done on mul

tiple contrast tests. ThE!S4! multiple contrast tcsts ha\1J closed-form null distribution

functions. Because aU multiple test procedures proposed in this thesis control the

type I FWE (5ee Chapter 1) at le\-el o. only the PO\\-ers of the pro~edures are given

in the tables.

When the treatments constitute a two-way no presence of interaction model, it

is of interest to comparing ro\\" (or column) factor means with the control meau.
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The one-sided multiple contrast test Pt'oposed in Chapter 3 is marc efficient th,m

the one-sided Dunnteu's proceJ1ll"l:'.

Oucc there is a signilk:ant differe:tcc between the treatments and the control. the

magnit\lele of IJ.k" - Jill is a useful quantity for evaluating the difference betwcell the

trcatments and the control. \\'c fOCllS all the duality of the m<\ximi~L'(1 confidence

lower bound for /LI><'I - Po aud the multiple Contrfuit test statistit"s T and T~.

The LRT Sal for testing Ho against HI ha.~ the strong advantage of good power

propcrtic:;. Ho\\"e\'er, the LRT SOl i::i IIOt conI' order monotone. The test statistic T"

for testing Ho against a more narrow alternati\'e than HI in Chapter.j is cone order

monotone. Of course, cone order monotonidty is !lot necessarily uniformly good.

but it is nOt uniformly bad.

Even if the prior knowledge of treatments are at least as good fui the control is

available, it is still of interest to consider the equivalence of treatments with respect

to the control. The problem is to find the least fa\urable configuration since the

lIull hypothesis is not a classical homoJ1;eneity hypothesis.

In dose-response studies, the typical assumption is monotone response means

which is not always the case in rcal situation. Cnder more realistic partially mono

tone assumption, we propose a more efficicnt test by utilizing the partially mono

tone assumption to identify the ?\lED. The method in Chapter j can also be used

to determine the no observed ad\'erse effect leye! (?\O:\EL) in safety assessment of

toxicological studies,

The constrained optimization problems in Chapter -i and Chapter j arc soh-cd

through the Kuhn-Tucker equi\'alence theo!em. It is a new insight in comparing

treatments with. a control. The ideas and approaches presented herein provide a
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foundation, and they can be appli~ to other constrained optimization problems.

In futllre research rehlting to this thesis. of p;.trticlliar interl'St i..... the situation

where the response '-ariable is dichotomous. in which case we are looli:ing at inde

pendent hinomial populations. This is a \"Cr~· importallt problem from a practical

,·iew. because often au investigaTor is nOt measuring a particular resl>OUSC to a drug

or medical procedure. but is l·otlcerm.od \\·jth the SIlCCl"SS or failur~ of the drug or

procedure. Future research will also inl"()!ve [he inclusion of \·arianec heterogeneity

and the area of nonparamclric scnillg.
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