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Abstrac t

The effectiveness of managed buffer zones in protecting an aquatic ecosystem

during fo rest harvesting was studied for a two year period on a small headwate r

stream in northeastern Newfound land, Canada . The study consisted of

exam ining several components including abiotic (water temperature and

sed imentation) and biotic (macroinvertebrates and salmon ids). These

components were studied pre- and poet-harvest to determine the impact of the

followin g riparian management schemes: 20 m no harvest buffer ; 20 m buffer

with 30 % of the basal area harvested ; 3D-50 m buffe r with 30 % of the basal

area harvested; and a no harvest 'control ' site.

Sedimentation significantly increased for the 20 m buffer with selecti ve

harvesting. Water temperature was slightly impacted within the optimum

temperature class for brook trout (Safvelinus fontinafis) only with a significan t

decrease for the 30-50 m buffer with selective harvesting and the 20 m buffe r

with selecti ve harvesting . The stress and lethal temperature classe s were not

significantl y different between pre- and post-harvest observatio ns. The wate r

temperature significantly increased within the upper and letha l temperature

classes for Atlantic salmon (Sa/mo salar) within the 30·50 m buffer with select ive

harvesting.



The effects of selective harvesting on aquatic macroinvertebrates varied

depending on the index and taxon. The number of Ephemero ptera , Plecoptera,

and Trichoptera (EPT) divided by the number of Diptera index was not

significantly affected by stte and year . However , the numbe r of total EPT.

Ephemeroptera, Plecoptera, Trichoptera , Diptera (excluding Chironom idae) and

Chironomidae were all significantly affected by site and yea r. The most notable

difference between pre- and post-harvest occurred within the 20 m buffer , where

a large inc rease in Oxythirasp., an algal consumer , was observed . The number

of species observed for each of the sites was slightly greater post-harves t.

howeve r the diffe rences were not significant.

Brook trout and Atlantic salmon populat ions significantl y increased for all three

experi mental sites except for brook trout within the 20 m buffer site . The

biomass of brook trout significantly increased within the 20 m buffer with

select ive harvesting, while all other differences for brook trout and Atlantic

salmon biomass were not significant. Young-of -the-year salmonid populations

increased for all three experimental sltes , with the except ion of brook trout within

the 20 m buffer. Young-o f-the -year salmonid biomass was not significantl y

differe nt for any of the experimental sites . For year 1+ and older Atlantic salmon

populations, the 20 m buffer displayed the only significan t increase between pre­

and post-harvest. The brook trout populati on estimates were not significantl y

different for any of the experimental sites as compared to the no harvest site.
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The bioma ss of both salmonid species were not significantly different for any of

the expe rimenta l sites .

Overall , the reach with the 30~50 m buffer with selective harvestlnq appeared to

be the leas t impacted , specifically in terms of sedimentatio n and invertebrate

community changes . These results suggest that managed buffers in this area of

Newfoundland should be 30·50 m.

The results of this study should be cautiously interpreted, owing to the short post­

harvest assessment, and longer term monitoring is recommended to assess the

implications of harvesting with managed buffers .
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Chapter 1

General Introduction

Canada 's boreal forest forms part of the world's largest forest ecosyste m. This

forest type makes up more than three-quarters of the forested landscape in

Canada , representing one-quarter of the world 's boreal forests (Canadian Senate

Subcommittee on the Boreal Forest 1999). The boreal forest contains some of

the largest river systems and also an estimated 1.5 million lakes (Canadian

Senate Subcom mittee on the Boreal Forest 1999). The boreal forest has been

called the heart and lungs of North America .

However, this ecosystem is in danger for several reasons. The logging industry

harvests millions of trees each year (Canadian Senate Subcomm ittee on the

Boreal Forest 1999). Oil and gas development removes forest cover, and mining

operations add waste to the rivers and lakes within the forests (Canadian Senate

Subcomm ittee on the Boreal Forest 1999). Hydroe lectric projects flood large

areas and re-direct andlor alter the flow of many streams and rivers (Canadian

Senate Subcommittee on the Boreal Forest 1999). Further, global warming has

the potential to drasticall y alter the boreal ecosystem .

Of these pressing concems ragging is at the forefront due to its acce lerat ing pace

and because of its rapid advancements into fragile and slow growing northern

regions. According to the Canadian Senate Subcommittee on the Boreal Forest
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(1999), about 90 percent of logging is c1earcutting, the legislated me1hodof forest

harvesting in Newfoundland and Labrador (Government of Newfoundland and

Labrador 2002). Associated with logging induced changes to the boreal forest

are changes to the riparian habitats that strongly influence the quality of stream

habita t for aquatic organisms .

Much of the existing research on forestry -ecosystem interactions has been

conducted either in the Pacific Northwes t or the northeastem United States

(Clarke et al. 1998; McCarthy et al. 1998; Scruton et at. 1998). These areas

have environmental, biological, and ecolog ical cond itions differing greatly from

those in Atlantic Canada (Clarke et al. 1998; McCarthyet at 1998 ; Scruton et at

1998). Throughout the 1990s there have been a few studies within Eastern

Canada including Copper Lake and the Small Stream Buffer Study ,

Newfoundland, and Catamaran Brook and Hayward Brook, New Brunsw ick. This

study is an extension of these other studies, with spec ific focus on the effects of

selective harvesting within buffers in northeast Newfoundland . Within

Newfoundland, forest harvesting has been occurring for nearly one hundred

years and the effects of these activities on freshwater fish and invertebrate

species still remains poorly understood (Scruton et al. 1998). Currently, it is

be lieved by many researchers that provisions of buffe r zones along waterbod ies

is one of the most important steps in reducing the hannful effects of toraetry

practices (Barton 1985; Murphy et al. 1986) . As a result of requests for
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protection for fish and wildlife habitat. regulations have been implemented on

timbe r harves ting activities (Scruton et al. 1997). The provision of buffe r strips is

one of the regulations implemented . and numerous studies have demo nstrated

the importa nce of buffer strips in reducing the negative impacts on fish habitat

(Scrivener and Brownlee 1989). Buffer zones provide protection by keeping

machinery and their associated sedimentation some distance from the stream

(Scruton et al. 1997). Managed buffer zones differ from the conventional buffer

zones in that they allow harvesting within the buffer. To maximize protection of

waterbodfes, the width of the buffer should be considered without greatly

affecting the economics of harvesting (Scruton et al. 1997). The effectiveness of

buffer zones is not dependent solely by the width, caution during logging

activ ities greatly affect buffer zone efficiency (Scruton et al. 1997) . For this

study, the effect iveness of selective harvesting within a buffer zone was

examined to determine whether significant changes to the adjacent stream

occurred. A wider buffer strip was studied to determine whether a wider buffer

further reduced the impact of harvesting near waterbodies, while permitt ing

selecti ve harvest ing within the buffer to offset the economic losses to forestry due

to the wider buffer width.

The ecolog ical processes of a stream are intimately related to those of the

surrounding terres trial ecosystem (Garman and Moring 1991). Miller (1987)

stated the quality of stream habitat for aquatic organ isms is largely influenced by
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the riparian vegetation . This project was conceived to evaluate advancements in

forest harvesting in Newfoundland, specifically the concept of 'managed' buffers.

The practica l nature of this project has allowed this new approach to be field­

tested and comparisons made of the full cost and benefits of conventional and

innovative harvest ing practices in support of adaptive ecosystem management.

It is vital to assess possible implications of Implementing a new harvesting

practice through the acquisition of new information and an improved

understanding of the effect of these activities on various components of an

ecosystem.

A study on various components of an aquatic ecosystem, including invertebrates

and fish as well as abiotic components, makes it possible to draw conclusions

from a more holistic viewpoint. In this thesis salmonid biomass and populations

were studied to determine whether there was a significant response to forest

harvesting. Salmon ids are the most valued group of freshwater fish in

Newfoundland and Labrador (Scruton at al. 1997) and are greatly dependent

upon the conditions of the surrounding forests (Meehan 1991). The diet of

salmonids is mainly composed of macro invertebrates, specifically

Ephemeroptera, Plecootera. and Tnchoptera (wedemolm 1984; Gordon et al.

1992; Waters 1995), therefore invertebrate community changes as a result of

forest harvesting could have implications for salmonids (Benke 1984).

Macroin vertebrates are also well known indicators of water quality and
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macroinvertebrates respond quickly to changes within the ir environment due to

their short life span (Reice and Wohlenberg 1993). Also , invertebrate community

structure reflects conditions within a small spatial area and may revea l change s

that salmonids would not display. Therefore changes to invertebrate communi ty

structure may indicate changes that would not be apparent by study ing

salmon ids alone.

Furthermore, abiotic conditions such as sedimentation can impact salmonids

directly through impaired vision from turbidity or abrasions, reduction in spawning

and egg incubation success, and reduct ion in habitat quality (Cordone and Kelly

1961 ; Saunders and Smith 1965; Alexander and Hansen 1983; Wesche 1985 ;

Furniss et at 1991; Nelson et al. 1991 ; Waters 1995) . As well , water

tempe rature increases could result in an increase in disease or Increases which

could lead to physiological impairment or death (lynch et al. 1984 ; Beschta et al.

1987 ; Gordon at at 1992). Indirectly, increases in sedimentation and water

temperature could negative ly affect macroinvertebrate populations (W iederholm

1984 ) thus decreasing food availability for salmonids (Gordon et at. 1992 ; W aters

1995).

The objective of this study was to assess whet her managed buffers are a

superior method of riparian zone management, protecting the ecolog ical integrity
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of an area , while maintai ning the total wood production for the forestry industry

within these areas .

[-6



References

Alexa nder, G.R. and Hansen, E.A. 1983. Sand sediment in a Michigan trout

stream Part II. Effects of reducing sand bedload on a trout population. North

American Journal of Fisheries Management 3: 365-372

Barton , D.R., Taylor, W.D., and Biette, R.M. 1985. Dimensions of riparian buffer

strips required to maintain trout habitat in Southern Ontario streams. North

America n Journal of Fisheries Management 5: 364-278.

Benke, A.C . 1984. Secondary production in aquatic insects . Pp. 289·322 . In

Resh, V. H. and D.M. Rosenberg (Eds). 1984. The Ecology of Aquatic Insects.

Praeger Publishers, New York. 625 p.

Beschta , R.L., Bilby. R.E., Brown, G.w., Holtby, L.B. and Hofstra , T.R. 1987.

Stream temperature and aquatic habitat: fisheries and forestry interactions. Pp.

191-232 /n Sale. E. and CundyTW . (eds.) Streamside management: forest ry

and fishery interactions. Institute of Forest Resources University of Washington,

Seatt le.

Canadian Senate Subcommittee on the Boreal Forest 1999. Available from

www.par1.gc.cai36/1/parlbus/commbuslsenate/ com-ercore-ereo-eeecosjonss­

e.htm {cited 19 May 2002]

1-7



Clarke , K.D., Scruton, D.A., Cole, L.J. and Ollerhead, L.M.N. 1998. Large woody

debris dynamics and its relation to juvenile brook trout (Salvelinus fontinalis )

densities in four small boreal forest headwater streams of Newfoundland,

Canada . Pp. 337~344 in MK Brewin and D.M.A. Monita, tech. coords. Forest­

fish conference: land management practices affecting aquatic ecosystems .

Proceedings of the Forest-Fish Conference , May 1-4,1996, Calgary, Alberta.

Natural Resources Canada. Canadian Forest Service, Northem Forestry Center,

Edmonton, Alberta. lnf. Rep. NOR~X·356.

Cordone. A.J. and Kelly, D.W. 1961. The influences of inorganic sediment on the

aquatic life of streams . California Fish and Game 47: 189-228.

Furniss, M.J., Roelofs. T.D., and Yee. C.S. 1991. Road construction and

maintenance. Pp. 297-324. In Meehan. W.R (ed.) Influences of forest and

rangeland management on salmonld fishes and their habitats. American

Fisheries Society Special Publication 19. Bethesda, Maryland.

Garman , G.C. and Moring, J.R. 1991. Initial effects of deforestat ion on physical

characteristics of a boreal river. Hydrobiolog ia 209: 29-37.

1·8



Gordon , N., T.A. McMahon, B.L. Finlayson. 1992. Stream hydrology: an

introduction for ecologists. John Wiley and Sons, Chichester. Pp. 296-297.

Government of Newfoundland and Labrador . 2002. Cutting of Timber

Regulations under the Forestry Act. Available from http://www.gov.nf.calHON

regulationsJrc96110B.htm#12 [cited 20 April 2002].

Lynch, J.A. , Rishel, G.B., and Corbett , E.S. 1984. Thermal alterations of streams

draining ctearcut watersheds: quantification and biological implications .

Hydrobiologia 111:161-169.

McCarthy , J.H., Scruton, D.A., Green , J.M.• and Clarke, K.D. 199B. The effect of

logging and road construction on brook trout movement in the Copper Lake

Watershed, Newfoundland , Canada. Pp. 345-352 in M.K. Brewin and D.M.A.

Monita , tech . coords. Forest-fish conference : land management practices

affecting aquatic ecosystems. Proceedings of the Forest-Fish Conference, May

1-4, 1996, Calgary, Alberta. Natural Resources Canada, Canadian Forest

Service, Northem Forestry Center, Edmonton , Alberta. Inf. Rep. NOR-X-356 .

Meehan, W.R. 1991. Introduction and Overview. Pp. 1-15. In Meehan , W.R.

(ed.) Influences of forest and rangeland management on salmonid fishes and

1· 9



their habitats . American Fisheries Society Special Publication 19. Bethesda,

Maryland.

Miller, E. 1987. Effects af forest practices on relationships between riparian area

and aquat ic ecosystems . Pages 40-47 in Managing southern forests for wildlife

and fish : a proceedings. January 1987, New Orleans, LA USDA Forest Service

General Technical Report S0-65.

Murphy, M.L., Heifetz, J ., Johnson, SW., Koski. K.V. and Thedinga, J.F. 1986.

Effects of dear-cut togging with and without buffer strips on juvenile salmonids in

Alaskan streams. Canadian Journal of Fisheries and Aquatic Sciences 43: 1521M

1533.

Nelson , R.L., McHenry, M.L. and Platts, W.S. 1991. Mining. Pp. 425-458. In

Meehan, W.R. (00.) Influences afforest and rangeland management on salmonid

fishes and their habitats. American Fisheries Society Special Publication 19.

Bethesda , Maryland.

Reice, S.R. and Wohlenberg, M. 1993. Monitoring freshwater benthic

macroinvertebrates and benthic processes : measures for assessment of

ecosystem health. Pp- 287M305 In Rosenberg, D.M. and Resh, V. H. (Eds ).

I -to



Freshwater biomonitoring and benth ic macrolnvertebretes. Chapman & Hall, New

York. 488 p.

Saunders , J.w. and Smith, MW. 1965. Changes in a stream population of trout

associated with increased silt. Journa l of the Fisheries Research Board of

Canada 22: 3954 04.

Scrivener, J.C., and Brownlee , M.J. 1989. Effects of spawning grave l and

incubation survival of chum (Oncorychus keta) and coho salmon (0 . kffsutch) in

Carnation Creek, British Columbia. Canadian Journal of Fisheries and Aquatic

Sciences 46: 681-696.

Scruton , OA , Sooley, O.R., Moores , L., Barnes , MA, Buchanan, R.A., and

McCubbin, R.N. 1997. Forestry Guidelines for the Protection of Fish Habitat in

Newfoundland and labrador . Fisheries and Oceans, St. John 's, NF. iii + 63 p., 5

appendices.

Scruto n, OA , Clarke , K.D., and Cole, L.J. 1998. Water temperature dynam ics in

small forested headwater streams of Newfoundland, Canada: quantification of

thermal brook trout habita t to address initial effects of forest harvesting . Pp. 325~

336 in M.K. Brewin and D.M.A. Monita, tech . coo rds. Forest-fish confere nce:

land management practices affecting aquatic ecosystems . Proceedings of the

1-11



Forest-Fish Conference, May 1-4,1 996, Calgary, Alberta. Natural Resources

Canada , Canadian Forest Service, Northem Forestry Center, Edmonton, Alberta.

Inf. Rep. NOR-X-356.

Waters, T.F. 1995. Sediment in Streams: Sources , Biological Effects , and

Control. American Fisheries Society Monograph 7. 251 p.

Wesche, T.A. 1985. Stream channel modifications and reclamation structures to

enhance fish habitat. Pp. 103·163 in Gore, J.A. (00.) The Restoration of Rivers

and Streams: Theories and Experience. Butterworth Publishers , Boston. 280 p.

Wiederholm , T. 1984. Responses of Aquatic Insects to Environmental Pollution,

pp. 508-557 . in Resh, V. H. and D.M. Rosenberg (Eds). 1984. The Ecology of

Aquatic Insects . Praeger Publishers , New York. 625 p.

1-12



Chapter 2

Effect of managed buffer zones on sedimentation

2.1 Introduction

Natura l stream erosion is influenced by various factors such as water flow,

channel morphology, substrate type, soil characteristics, and vegetation. It is

known that forest harves ting can result in an increase in sediment input, resulting

in an upset of the natural balance. This occurs usually as a result of bank

erosion or influxes of sediment from upland sources (Gordon et at 1992). Road

building and clearcuts may cause or accelerate soil eros ion resulting in increased

sedimentation. Clearcuts increase runoff from other parts of the watershed,

resulting in increas ed storm flows , road failures, channel scouring , bank fail ure,

and debris accumulation (Toews and Brownlee 1981) .

Mechanical operat ions by the forest industry can have a large impact on the

forest floor through road bUilding, landing construction, and forwarder tracks,

exposing mineral soils to erosion resulting in increased sediment transport into

streams (Toews and Brownlee 1981) . The potentia l for surface erosion is directly

related to the amount of bare compacted soil exposed to rainfall and runoff

(Chamberlin et al. 1991 ). Chamberli n et al. (1991 ) also state that as a genera l

rule, surface erosion results from mineral soil exposure .
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Sedimentation affects several biotic communit ies at various trophic levels. It can

lower the productivity of primary producers such as photosynthesizing plants,

primary and seconda ry consumers such as benthic invertebrates, and seconda ry

consumers, top carnivores and plscivores such as fish (Hartman et al. 1983:

Waters 1995) . Sediment accumulation can be sufficient enough to seriously

reduce the available insect habitat. Recovery is usually not expecte d unless

sediment on the surface and in the interstices can be removed by natural means

(Slaney at al. 1977). Slaney et al. (1977) also stated that the lowest biomass and

density of benthic invertebrates was found in the sections of streams which had

the highest sediment concentrat ion. Similarly, Lenat et al. (1981) have shown

that as sediment is added to a stream, the area of available habitat decreased

which corresponded to a decrease in the density of benthic macroinvertebrates.

The potential effects of sediment on benthic invertebrates include interference

with respiration and the overwhelming of filtering insects such as caddisfly larvae

that collect drift ing food particles by using fine-meshed catchnets (Waters 1995).

Another concem with the implication of increased sediment on invertebrates is

the effect of changing invertebrate communities on fish popu lations (Waters

1995). One ofthe most obvious concerns is the change in invertebrate

communities from EPT (Ephemeroptera, Plecoptera , and Trichoptera), which are

common prey taxa for salmonids , to burrowing forms such as ctnronomlds,

2·2



midgefl y larvae, and oligochaetes (Wiederholm 1984; Gordon et at 1992; Waters

1995).

This chapter describes a study conducted to document the change in

sedimentation, attributable to forest harvesting activities with different buffer

widths. There is a need to research the effective ness of forest ed buffer strips as

"filters", and the influence of other factors within the watershed, since literature is

relatively limited (Belt et at. 1992). One of the major benefits associated with

implementation of managed buffer zones, in theory, is that there is a reduced

chance of blowdown which can contribute to erosion, as a result of exposed soil

from uprooti ng.

2.2 Methods

2.2.1 Study Area

The study area was located in northeast insular Newfound land, Canada in the

Indian Bay watershed, specifically within Hungry Brook (UTM coord inates: 21

5435423 N 700450 E for the upper reach to UTM coordinates : 21 5434294 N

698157 E for the lowest reach), a small second orde r tributary of Indian Bay

Pond (Figure 2.1; Figure 2.2). This watershed is approx imately 750 km2 in total

area and it is located in the central ecoregion (Damman 1983). Black spruce

(Picaa mariana) forest stands and trembling aspen (Popufus tremufoides)

dominate the ecoregion. Specifically , the study site is a product ive black spruce
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forest with an average height of 12 m and approximately 82 years old (Dr. Gary

Warren , Canadian Forest Service , pers. comm .). The topography varies from

rolling to undulating, and the soils are classified as sandy loam (Damman 1983).

The site has a slightly sloping terrain (gradient 1 % on average ) with a north

slope aspect .

Figure 2.1. Map of Indian Bay watershed with a map of Newfoundland (inset)

showing the location of the study .

The forest floor consists of predominantly feathermoss (Pfeurozium schreben)

and is considered a moist site . with gleysol soils (Meades and Moore 1989 ;

Bruce Roberts , Canadian Forest Service , pers comm .).

2- 4



.....".
majortorw ardinglrai l
minorlorwardlnglrail

ro""

30-S0m with S.H.

••••••........
r-

20m

~ ' }
-# No HONesting

20m with S.H.

05

Figure 2.2 Map of Hungry Brook indicating the location of the experimental sites ,

the no harvest control site , the forwarding trails , and the road .

2.2.2 Study Sites

Data were collected in 2000 to represent baseline conditions pre-harvest. Three

experimental buffers were established: (1) 20 m buffer , the current provincially

legislated requirement for a brook of this size and location. (2) 20 m buffer with

30 % of the basal area harvested; and (3) 30-50 m varying width buffer with 30 %

of the basal area harvested (Figure 2.3). To remove 30 % of the basal area , the

diameter at breast height of trees were measured and marked . and totaled until

30 % of the buffer area for each site had been selected. A no harvest area was

also established to serve as a 'control' against natural variation within this brook .
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All of the sites were 500 m in length and harvesting was conducted with a

mechanical harvester along one side of the brook during November 2000. Only

one side of the brook was harvested thus removing the effect of stream crossings

on the study's results . Data collected in 2001 after the establishment of these

buffers represented the experimental data.

Hungry Brook has a mean wetted width of 4.8 m and has an average channel

depth of 20.9 cm (summer data collection) . The substrate consists mainly of

cobble , rubble and gravel. The banks of the stream were considered to be stable

with a small percentage of undercut.

Figure 2.3. Aerial photo of the varying 30-50 m buffer with selective harvesting at

Hungry Brook.

2.2.3 Field and laboratory methods

Whitlock-Vibert boxes (Figure 2.4) were used to measure fine sediment

accumulation , as described by Wesche et al. (1989) . These boxes, typically
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Figure 2.4. Whitlock-Vibert boxes used for sedimentation.

used for egg incubation, are 14 x 6.4 x 8.9 em with 3.5 x 13 mm openings. The

boxes were filled with cleaned gravel , approximately 25 mm in diameter. Duct

tape was placed across the bottom of the box to prevent loss of fine particulates.

Two Whitlock-Vibert sediment boxes were deployed at 100 m intervals , with

placement beginning at 0 m. within each 500 m experimental and the no harvest

site . Two sediment boxes were fastened to a wire rack (approximately 40 x 10

em), with approximately 30 em between the boxes and then anchored to the

substrate to prevent loss or misplacement. Boxes were placed in riffle habitat

and situated such that flow was not impeded by other instream obstructions,

such as instream debris or large boulders. The boxes were changed again after

the spring run-off in June 2000 , and again late October 2000 prior to the

harvesting commencing. During collection, each box was carefully detached

from the apparatus and placed in plastic bags until analysis . For the post-harvest
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year , 200 1, the sediment boxes were changed after the sprtnq-run off in June

and retrieved again in November .

The sediment boxes were opened and the contents were wet sieved through the

following sieve sizes: 2.5, 1.4, 0.85, 0.50, and 0.09 mm and dried at 70 °C for 30

h, and then weighed . The sediment sizes were divided into two size classes :

greater than 1.4 mm (represented by sediment collected from the 2.5 and 1.4

mm sieves) and less than 1.4 mm (represented by sediment collected from the

0.85 ,0.50. and 0.09 mm sieves).

2.2.4 Statistical Analyses

The data were analyzed using the G statistic from a chi-squa re distribution with

one degree of freedom (a=0 .05). This statistic measures goodness of frt of chi­

square to the data (Devore 1995). The quantity of sediment accumulated for

each size class and the classes totaled within each site collected dUring 2000

(pre-harvest) and 2001 (post-harvest) were compared with the no harvest site to

determine whether there was a significa nt difference between pre- and post­

harvest.
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2.3 Results

The only experimental site that diffe red significantly between pre- and post­

harvest conditions, compared to the no harvest site was the 20 m buffer with

selective harvesting (Table 2.1, Figure 2.5). It had significantly greater tota l

accumulated sediment , for both sediment size classes.

The increase in sedimentation for the 20 m buffer (provincial legislation ) was

39.95 g (from 286.96 (2000) to 326 .92 g (2001) ) (Figure 2.5). For the 30-50 m

buffer with selective harvesting there was a 3.64 g decrease (from 35.92 (2000)

to 32.28 g (2001 )). However, the 20 m buffer with selective harvesting increased

drastically by 289 .85 g, (from 91.61(2000) to 381.46 9 (2001)). The amount of

sediment accumu lated for the no harvest site was from 43.45 g (2000) to 63.09 g

(2001), an increase of 19.64 g, which was not significant. Both 20 m buffers had

greater sediment accumulated than the no harvest site, with two times greater

sediment in the 20 m buffer, and 14.5 times greater in the 20 m buffe r with

selective harvesting .
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Table 2.1. Comparison of total, >1.4 mm, and <1.4 mm sedimen t accumulat ion
in the three experimental sites and the no harvest site and the p-vatues from the
G statistic.

Site Sedimen t Sediment Sediment p-vetue

size class accumulate d (g) accumulated (g)

2000 2001

20 m buffer Total 287.0 326.9 0.069

(provincial >1.4mm 175.4 192.9 0.294

legislation) <1.4mm 111.5 134.0 0.655

20 m buffer Total 91.6 381 .5 <0.0001

with selective >1.4mm 57.8 214.8 0.017

harvesting < 1.4 mm 33.8 166.7 0.0001

30·50 m Total 35.9 32.3 0.125

buffer with >1.4mm 20.5 14.8 0.354

selective < 1.4 mm 15.5 17.5 0.655

harvesting

No harvest Total 43.5 63.1 NA

>1.4mm 16.2 25.5 NA

< 1.4 mm 27.3 37.6 NA
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Figure 2.5. Comparison of total sediment accumulation (g) between the three
experimental sites and the no harvest site separated into two size classes: (i)
sediment greater than 1.4 mm and (ii)fine sediment (less than 1.4 mm).

The effectiveness of buffer strips of various widths on filtering sediment overland

has been investigated by various researchers. Belt et al. (1992) found that filter

strips on the order of 200·300 feet (60-90 m) are effective in controll ing sediment

that is not channelized. Their findings appear to concur with the results of this

study, where the only buffer that did not appear to be affected by overland flow of

sediment entering the stream was the 30·50 m buffer. Much of the literature
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refers to logging roads as the main source of increased sedimentation.

Observations during the study suggest the sedimentation problem orig inated

from heavily used forward ing trails that had mineral soils exposed . This

disturbance of the soil profile and exposure of mineral soils is similar to the

'grubbing' process common in road building ; hence the similarity in the findings of

Belt et al . (1992). There were also a few locations along this brook where point

sources were obvious. The sediment source originated approximately 200 m

from the stream, and sediment laden runoff was not completely filtered over a

distance of 180 m that was clearcut but with slash remaining. Belt et at. (1992)

also state that riparian buffer strip widths should be greater where slopes are

steep. In this study, the gradient was very slight, mostly less than 1 %, and did

not appear to playa role in the large sedimentation observed.

Salo and Cundy (1987) state that during timber harvesting, as lonq as trees are

not felled directly into stream channels, the impact is usually small for erosion

processes. They also state the impact of yarding operations on ground

disturbance can be extensive when tractors are used, but when cable systems

are implemented, that either fully or partially suspend the logs, the impact is

minimal. In this study, logs and pulpwood were transported from the harvest site

to a landing using a forwarder with a self contained loading rear rack for

transporting wood. This forwarder was a six wheel drive unit with the two rear

wheels on each side contained within a metal track, supposedly to reduce soil
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disturbance . Conversely , the effects of yarding using a forwarder were extensive

with large ruts left from the established forwarding trails , that became a major

source of sedimentation overland, and eventually into the stream . It is quite

obvious there was excessive soil compaction as a result of these ruts in excess

of 0.50 m in depth at times (Figure 2.6) . This amount of compacted ground can

Figure 2.6. Photo of forwarding ruts in excess of 0.50 m as shown by the 0.60 m
measuring shck in the right rut .

reduce access and capacity of subsurface channels , and increase soil erosion ,

and this can have long term consequences on the hydrologic characteristics of

the soils (Sale and Cundy 1987).
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The Copper Lake study conducted in western Newfoundland found that

increased sedimentation was largely the result of road construction , specifica lly

the installation of culverts (Clarke et at. 1998). A limited clear cut also resulted in

increased sedimentation in addition to the accumulation attributed to culvert

insta llation (Clarke et a!. 1998). Within this study, road crossings were not

presen t, however , increases in sedimentat ion did result.

Brownlee et al. (1988) found increased sediment loading four to twelve times

greater tha n that observed in unlogged watershed . Erosion from skid trails was

one of the many identified sources contribut ing to the increased levels of

sediment. The results of this study found similar sources, except the source was

forwarder trails, identifying the process of transporting timber as one of the major

factors nega tively influencing aquat ic habitats.

An argument used against the use of buffer zones is that timber with in the strips

are subject to blowdown (Lantz 1971). One of the purposes of managed buffer

zones is to allow the lower section of the wind profile to perforate through the

buffer where trees had been selectively removed. Slowdown can result in the

exposure of tree roots , and unstable soils, thus increasing sediment transport

into streams . Howeve r, within the time frame of this study, differences between

percent of blowdown was not determined. Lantz (1971) suggests blowdown is a

local problem . One of the major problems with the longevity of a buffer is the
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amount of rot within the stand. Root and butt rotdecay fungi k ill the lateral root

systems and decay the structural hea rtwood in the major root and butt sectio n of

living tree s resulting in growth loss , tree morta lity and windth row. As wind moves

acros s an ope ning such as a clear cut, and then comes into conta ct with a forest ,

the upper porti on of the wind profile continues unimpeded above the forest

crown . However, the lower portion of the wind profile meet with the branches

and stems resurtlnq in a great deal of stress for the trees that have recentl y been

exposed to such winds for the first time and do not have the root system s

established to w ithstand the wind. A pre- and post-harvest assessment was

conducted to determine the percentage of trees within the experimental sites with

rot presen t.

One of the limitations of a study design such as this, is confounding

sedimentation. Howeve r, from my results . if sedimentation was confounding

between sites , then the 20 m buffer (the site downstream from both the 20 m

buffer w ith selective harvesti ng and the 30-50 m buffer with select ive harves ting)

should have displayed a large increase in sedimenta tion. However, only a small

increase was observed for the 20 m buffer, therefore confo unding sedimentation

was minimal. The no harves t site displa yed a very slight increase in

sedimentation betwee n pre- and post-harvest. indicating very litt le natu ral

variation. Natural variat ion within a short term ecological study is a concern.

However, this variation was not statisti cally diffe rent.
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Future investigations into possible mitigation to prevent forward ing from causing

such extensive damage to the soil, specifically in regions where soil

characteristics are similar to those observed in this study site, needs to be

investigated.
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Chapter 3

Effect of managed buffe r zones on stream temperature regime

3.1 Introduction

The temperature of water in forest streams is an important determinant for

various forms of life. including riparian vegetation, invertebrates, and fish

(Gordon et al. 1992). An increase of stream temperature can increase the

mortality of fish and other aquatic organisms. can cause tempo rary or permanent

abandonment of habitat. as well as cause changes to community structu re and

increase interspecific competition (Gregory et al. 1987) . It was not until the

1960's that the impact of forest harvesting on the temperature of forest streams

was considered (Beschta et al. 1987). Previously, most research on the effects

of forest harvesting focused mainly on changes to runoff and sedimentation

levels (Beschta et at 1987). The removal of the vegetated canopy often

accompanies an increase in stream temperature (Gregory et al. 1987) . Several

other studies on the effects of timber harvesting on stream temperature have

shown significant maximum stream temperature changes during the summer

months (Brown and Krygier 1970; Lynch et at 1977; Scruton et al. 1998).

Stream temperatu re is an important ecological factor because basic metabolic

processes of living organisms are temperature dependent and temperature can

also affect the hold ing capac ity for oxygen (Miller 1987). Water temperature is

an important determinant defin ing the geographical distribution of brook trout
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(Salvelinus fontinaJis) (Eschner and Larmoyeux 1963 ; MacCrim mon and

Campbell 1969) . One of the factors contributing to low aelmornd populations is

extremes in water temperature and streamflow (Ensign et af. 1990 ).

Smaller streams are highl y suscept ible to the effects of timber harvesting as a

res utt of changes to severa l parameters. Two of the most important parameters

that change in association with timber harvesting are light intensity and stream

temperature (Lynch et al. 1964). Removal of riparian vegetation results in an

increase of light intensit y which could then resu lt in a deterioration of trout habitat

by decreasing food availability through dec reased dissolved oxygen and/or

reduced drift from light intensity on macroinvertebrates (Lynch et at 1984) . T he

management of the riparian zones of headwater streams is very important in

maintaining community structure in a watershed. The ecological processes of

streams are intimately related to the surrounding terrestrial system (Gregory et

al. 1987; Garman and Moring 1991) with this relationship being even more

important for smaller streams and tributaries, thus increasing vulne rability to

changes to riparian hab itats. The objective of the work. in this chapter was to

exam ine how forest harvest ing affects temperature regimes and the implications

for brook trout and Atlant ic salmon in Hungry Brook .

3.2 Methods

3.2.1 Study Area
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Refer to section 2.2.1

3.2.2 Study Sites

Refer to section 2.2.2

3.2.3 Field methods

Water temperature was recorded from January to October 2000 to determine the

temperature regime pre-harvest. A Vemco Minilog-TR thermograph was

deployed at the upper and lower reach of the experimental sites and the contro l

sites. The thermographs have a temperature range between -5 and 35°C, with a

0.2 °C resolution. The thermographs were programmed to record the water

temperature every hour over that period. On 23 January 2000, ten thermographs

were deployed as described and then were subsequently retrieved and replaced

on 23 October, 2000, just prior to the commencement of harvesting. The

thermographs were retrieved and replaced again in June and November 2001.

Hourl y recordings were used to calcu late monthly means , minima, and max ima

and the daily temperature regimes for the months of June through September,

inclusive. During these months water temperatures often reach annual maxima.

Placement of thermographs at the upper and lower reach of each experimental

and no harvest site, allowed temperature dynamics and the ability of the riparian

vegetation to thermo-regulate stream temperatures to be examined .
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Specific attention was given to mean and max imum summe r month ly

temperatures in the upper and lower stations for each of the three expe rimen tal

buffers and the no harvest site, and dally summer temperature regime (minimum ,

maximum, and mean ) for the upper and lower stations for the three experimental

buffers and the no harvest site .

For each thermograph, the tota l number of hours during the summer months

(June 1 to September 3D, 2928 hours for pre- and post-harvest) was separated

into five temperature classes (Table 3.1). The temperature classes were defined

based on the therma l requirements of brook trout (Power 1980; Raleigh 1982 ;

Lynch at al. 1984 ; Jirka and Homa 1990 ; Scruton et et 1998) and Atlantic salmon

(Gibson 1978 ; Dwyer and Piper 1987 ; Chiasson at al. 1990; Elliott 1991 ; Siemien

and Carline 1991; ) and were as follows:

Brook trout

a) <11cC (Lower; below optimum but not stressful) ;

b) l1to 16°C (Optimum; good growth);

c) 16.1 to 20 .9°C (Upper; above the opt imum range but no induced stress );

d) 21 to 23 .goC (Stress; temperature range posing stress and increased

susceptibility to disease ); and

e) >24°C (Lethal; letha l if exposed for a period of time ).
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Atlan tic salmon

a) <15°C (Lower; below optimu m but not stressfu l);

b) 15 to 20°C (Optimum; good growth) ;

c) 20 .1 to 24.9°C (Upper; feeding ceases but no thermal stress behaviour);

d) 25 to 30°C (Stress; temperature range exh ibiting thermal stress

beha viour) ; and

e) >30 °C (Lethal; letha l if exposed for a period of time).

3.2.4 Statistical Analyses

To determine whether there was a significant difference betwee n pre- and post­

harvest for five temperature classes the data were analyzed using the G statist ic

from a ch i-square distribution with one degree of freedom (0=0 .05). This statistic

measures goodness of fit of the data (Devore 1995) . The va lues obtained for the

number of hours in each temperature class for the upper and lower thermograph

were averaged for each site to obta in one value for each site per study year.

3.3 Results

Daity summer temperature regimes (m inimum, maximum, mean) fo r the upper

and lower stat ions of each exper imental and no harvest site were graphed to

compare the daily regimes betwee n sites and within sites (i.e. upper versus lower
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station) (Figure 3.1 and 3.2). The number of hours in the five temperature

classes for brook trout (lower, optimum, upper, stress, and lethal) differed

between the experimental and no harvest sites (Table 3.1). There was an

increase in the number of hours in the lethal class for both 20 m buffers (Figure

3.1) during the post-harvest study period , however the 30·50 m buffer with

selecti ve harvesting did not show any increase . Statistically , there was no

difference in the number of hours in the lethal class for the experimental sites

compared to the no harvest site (Table 3.2).

Not obvlcus in Figures 3.1 and 3.2, is a signific ant difference in the optimum

tempe rature class for the 20 m with selective harvesting and the 30-50 m with

select ive harvesting (Table 3.2). There was a significant dec rease in the number

of hours in the optimum temperature range for the 20 m with selective harvesting,

whereas the 3D-SOm with selecti ve harvesting showed a significant increase.

For the 20 m buffer. none of the five tempera ture classes significantly differed

from the no harvest site between the pre- and post-harvest (Table 3.2. p=O.0320.

p=O.0404 , respecti vely).
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June July August Sept

Figure 3.1. Daily summer tempe rature regime (minimum, maximum , mean) for
the upper and lower stations of the 20 m buffer and the 20 m buffer with selective
harvest ing for pre- and post-harvest conditions for brook trout thermal
requirements.
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Figure 3.2. Daily summe r temperature regime (min imum. maximum , mean) for
the upper and lower stations of the 3D-50 m with selective harvesting and no
harvest site for pre- and post-harvest conditions for brook trout therma l
requirements.
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Tab le 3.1. Number of hours and percentages (in parentheses) of summer (June
1 to September 30) water tempera tures for each buffer zone for pre- and post-
harvest conditions , in each of five temperature categories accord ing to brook
trout temperature requirements.

Site Lo_ Optimum Upper Stress Lethal

« 11°C) (11-16°C) (16.1-20.9"<:) (21-24"<:) (>24°C)

20 m L (2000) 238 (8) 1366( 47) 1081 (37) 133(5) 110(4)

20m L(2001) 120 (4) 1449( 49) 1110 (38) 154 (5) 95 {3)

20m U (2000) 215 (7) 1342 (46) 1076 (37) 155(5 ) 140(5)

20m U (2001) 92(3) 1396 (48) 1168 (40) 160 (5) 112 (4)

20 m with s.h. L (2000) 210(7 ) 1319( 45) 1039(35) 154(5 ) 206 (7)

20 m with s.n. L (2001) 83(3) 1325 (45) 1181(40 ) 169(6) 170 (6)

20 m with s.h. U (2000) 167 (6) 1259(43) 1116 (38) 185 (6) 201(7)

20 m with s.h. U (2001) 62 (2) 1225(42) 1303 (45) 181(6) 156(5)

30-SOm with s.h. l (2000) 170(6) 1260 (43) 1110(38 ) 189 (6) 199 (7)

30-SOm with s.n. l (2001) 64(2) 1241 (42) 1278(44) 185(6 ) 160 (5)

30-SOm with s.h. U (2000) 118(4 ) 1175{40) 1241(42) 214(7) 180 (6)

3D-50m with s.h. U (2001) 61 (2) 1100 (38) 1408 (48) 211 (7) 148 (5)

No harvest L (2000) 141 (5) 1079( 37) 1236 (42) 203(7) 269 (9)

No harvest l (2001) 79(3 ) 1108 (38) 1294 (44) 224 (8) 223(8 )

No harvest U (2000) 125 (4) 911 (31) 1296 (44) 279 (10) 317 (11)

No harvest U (2001) 73(2 ) 1041 (36) 1282(44) 260 (9) 272 (9)



Table 3.2. The p-valuee obtained from the G statistic for five temperature
classes defined by brook trout thermal requirements for each of the experimental
sites compared with the no harvest for pre- and post-harvest. (" indicates p<0.05)

Experi mental Sit e Tempe rature Pwatue

Class ifi cation

20 m (provincia l legislation) Lower 0.2815

Optimum 0.6547

Upper 0.4543

Stress 0.5716

Lethal 1.0

20 m buffer with selective harvesting Lower 1.0

Optimum 0.0320·

Upper 0.1380

Stress 1.0

Lethal 1.0

30·50 m buffer with selective harvesting Lower 0.1871

Optimum 0.0404·

Upper 0.0571

Stress 1.0

Lethal 0.7184
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The number of hours in the five temperature classes for Atlantic salmon (lower,

optimum , upper, stress, and lethal ) were graphed with the daily summer

temperatu re regimes (minimum, maximum, mean) for upper and lower stations of

each experimental and no harvest site (Figure 3.3 and 3.4). The number of

hours differed between the experimental and no harvest sites (Table 3.3). There

was a significant increase in the number of hours in the upper and lethal

temperature class for the 30·50 m buffer with select ive harvesting (Table 3.4).

The temperature recordings were also used to compare the water temperature

difference between the upper and lower reaches of the study sites. on a monthly

basis. The mean monthly temperatures for three experimenta l sites and the no

harvest site show a slight decrease in water temperature over each of the

experimental sites for pre- and post-harvest observations (Figure 3.5). The re

was also an overall decrease in the water temperature from the upper site to the

lowest site over the entire study area (see Figure 2.2; Figure 3.5).

The summe r average maximum monthl y temperatures for three experime ntal

sites and the no harvest site for the upper and lower reaches show slightly

different results than the mean monthly temperatures. The 20 m buffer with

selective harvesting differed from the other sites by having the lower reach

greater for August than the upper reach for the pre- and post-harvest stud y

period (Figure 3.6).
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Figure 3.3. Daily summer temperature regime (minimum, max imum , mean ) for
the upper and lower stations of the 20 m buffe r and the 20 m buffe r with selective
harvesting for pre- and post-harvest cond itions according to Atlanti c salmon
thermal requ irements.
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Figure 3.4 . Daily summer temperature reg ime (minimum, ma ximum . mean ) for
the upper and lower stations of the 30·50 m buffer with select ive harvesting and
the no harvest site for pre- and post-harvest conditions accord ing to Atla ntic
salmon thermal requirements.
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Table 3.3 . Number of hours and percentages (in parentheses ) of summer (June
1 to September 30) water temperatures for each buffer zone for pre- and post-
harvest cond itions, in each of ffve temperature categories according to Atlantic
salmon temperature requireme nts.

Site t ower Optimum Upper Stress lethal

«15"C) (15-2O"C) (21.1·24.9"C ) (25-30"C) (>30"C)

20ml(2000) 997 (34) 1366(4 7) 516( 19) 29 (2) 0 (0)

20m L(2oo1) 782 (27) 1489( 52) 595( 21) 14«1) 0(0)

20mU(2oo0) 953 (33) 1366 (47) 564( 190) 45(2) 0 (0)

20mU(2oo1 ) 753 (26) 1501 (52) 599(21 ) 36 (1) 0(0)

20 mwith s.n.L(2000) 960(33 ) 1318 (45) 555(1 9) 95 (3) 0(0)

20mwiths.h. L(2001) 792(28) 1358(47) 634 (22) 105 (4) 0(0)

20 m with s.h. U(2000) 879(30) 1334(46) 637(2 2) 76(3) 0(0)

20mwiths.h. U(2 001) 626 (22) 1498 (52) 722 (25) 41 (1) 4« 1)

30-50 m with s.h. L (2000) 879(30) 1333( 46) 842 (22) 74 (3) 0(0)

30-SOm with s.n.L (2001) 632(22) 1484(52) 725(25) 45 (2) 3«1)

30-SOm with s.h . U (2000) 755(26) 1404 (48) 689(24) 79(3) 1 {<1)

30-SOmwith s.h. U(2001 ) 643 (29) 1657( 58) 1000 (35) 105( 4) 4« 1)

No harvest L (2000) 710(24 ) 1370(4 7) 717(2 4) 124 (4) 7 «1)

No harvest L (2001) 5SO(19) 1444 (SO) 792(28) 103 (4) 1 « 1)

No harvest U (2000) 612(21) 1293(4 4) 857( 29) 152 (5) 14

No harvest U (2001) 560(19) 1317(45) 871(30) 139(5) 2 «1 )
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Table 3.4 . The p-values obtained from the G statistic for flve temperature
classes defined by Atlantic salmon thermal requirements for each of the
experimental sites compared with the no harvest for pre- and post-harvest. ("
indicates p<0.05)

Experimental Site Temperature P-value

Classification

20 m (provincia l legislation) Lower 1.000

Optimum 0.4386

Upper 0.5271

Stress 0.3711

Lethal 1.000

20 m buffer with selective harvesting Lower 0.2733

Optimum 0.6547

Upper 0.3173

Stress 1.000

Lethal 1.000

30-50 m buffer with selective harvesting Lower 0.3173

Optimum 0.0578

Upper 0.0042'

Stress 0.6547

Lethal 0.0052'
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Figure 3.5. Summer mean monthly temperatures for three experimental sites
and a no harvest site for pre- and post-harvest for the upper (dotted line) and
lower (solid line) stations ,
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Figure 3.6. Summer maximum monthly temperatures for three experimental
sites and a no harvest site for pre- and post-harvest for the upper (dotted line)
and lower (solid line) stations.
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Discussion

One of the effects of lncreased water temperature on salmonids is a decrease in

growth/potential. The growth efficiency is highest at low tempera ture, but the

activity of fish also becomes depressed during these lower temperatures, thus

depressing feeding (Beschta et al. 1987). The optimum stream temperature for

fish occu rs when activity levels are high enough to ensure feeding, and good

metabolic conversio n efficiency (Beschta et al. 1987). Higher water

temperatures also result in an increase of metabolic rate/oxygen consumption,

and thus increased food consumption (Gordon et a!. 1992).

The potential effeets of harvesting on stream temperature indicated in the three

experimental buffers implemented in this study showed no significan t change to

the ove rall therma l regime for brook trout The number of hours and percentage

of summer hours in various water temperature dasses changed signifICantly only

in the optimum category with a decrease for the 20 m buffer with selective

harvesting and the 30-50 m buffer with selective harvesting . Therefore , there

does not appea r to be any reason to suspect there would be a large negative

impact on brook trout since there was no significant change in the number of

hours post-harvest In the stress and lethal temperature classes . A slight

dec rease in growth potential could be expected due to the dec rease in the

number of hours of optimum dass temperatu res in these two sites.
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The effect of the three experimental buffer sites on the thermal regime of Atlantic

salmon was significantly diffe rent within the 30-50 m buffer with selective

harvesting. The upper and lethal catego ries significantly increased within the 30­

50 m site. However , the lethal category only observed an increase of three

hours, while the no harvest site observed a decrease of nine hours, resulting in

the significant increase in the lethal category . A slight decrease in growth

potential could be expected as a result of the increased number of hours in the

upper and letha l categories for Atlant ic salmon.

The dynamics of the temperature regime in this headwater stream were evident

when the mean monthly water temperatures were calculated. Usually as water

flows downstream, it equilibrates with the air temperature . The air immediately in

contact with the water surface is determined by the stream's shading among

other environmental factors (Beschta et al. 1987) . From the results for the mean

monthly stream temperatures there was a cooling trend over each of

experimental sites for pre- and post-harvest, l.e. the upper thermograph for each

of the sites was slightly greater than the lower thermograph within the same site.

Furthermore, there was also a cooling trend over the entire section of stream in

the study area . This small stream has streamside protection along its entire

length. which maintains the temperature. The harvesting in the buffer also did

not appear to have been intense enough to alter the shading provided by the

streamside vegetation or affect the groundwater influence, therefo re mainta ining
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temperature regimes. The most intense treatment occurred within the 20 m

buffer with selective harvesting, however the streamside vegetation provided

sufficient shade to maintain temperature regimes similar to pre-harvest

The maximum monthly temperatures were very similar for the pre- and post­

harvest study periods. The ability of a buffer strip (30 m) to effectivefy maintain

maximum temperature has been shown by Lynch et al. (1984). For my study, a

20 m buffer, and a 20 m with selective harvesting also effectively maintained

maximum temperatures similar to those observed post-harvest.

Other studies on water temperatu re changes due to logging have shown

increased summer temperatures (Lynch et at 1977; HoItby and Newcombe

1982; Scruton et at 1998). My study did not find an overall increases in summer

temperature . However, decreases and increases were observed for specific

temperature d asses for brook trout and Atlantic salmon. The provision of buffer

strips along streams is the one of the most important steps in reducing the effects

of forest harvesting (Barton at at 1985; Murphy et at 1986). With in my study,

the provision of buffer strips, at least 20 m in width, did not produce any adverse

effects on stream temperature suggesting that buffer strips provide adequate

protect ion for this component of an aquatic ecosystem. However, it is difficult to

base the adequacy of a buffer on two years of data (pre- and post-harvest). The

effect of these buffers may not become apparent until after several years of

temperatu re data collection.
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Chapte r 4

Effec t of managed buffe r zones on mac ro lnvertebrates

4.1 Introduction

One of the primary concerns associated with forest harvesting is the adverse

effects these activities may have on aquatic resources. The current common

logging pract ice in Newfoundland and Labrador is c1earcutting (Government of

Newfoundland and Labrador 2002). This type of Jogging can affect the physical

and biological conditions in streams, including increases in sediment, nutrients ,

and debris , and alterations to the hydrological and temperatu re regime. Changes

to any or all of these together could result in a change in aquatic production

(Murphy and Hail 1981). A change in aquatic primary production could result in a

change to higher trophic levels such as fish, if prey poputattons ara altered

(Hartman et el. 1983; Waters 1995). Therefore, the structure of the aquatic

macroinvertebrate community can reflect the state of the entire ecosystem

(Benke 1984).

Benthic macrcinvertebratee offer many advantages in biomonitoring direct ly

related to the biological characteristics of this group of organisms (Rosenberg

and Resh 1993). Biological characteristics of macroinverte brates important to

this project are: 1) macrcinverteb retes can be affected by various environmental

perturbations including sedimentation and react to them qUickly;
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2) macro invertebrates are ubiquitous , abun dant and relatively easy to collect; 3)

macro invertebrates are basically sedentary which permits effecti ve spatial

ana lysis of local conditions; and 4) the macroinvertebrate community is very

heterogeneous, consisting of several taxa; therefore there exists a high

probability some of the taxa will respond to environmenta l perturbation

(Rosenberg and Resh 1993).

Sedimentation effects on aquat ic macrolnvertebrates were examined to

determine whether sed imentation was severe enough to affect the

macroinvertebrate community. High levels of sediment in streams have been

shown to reduce the diversity and/or density of benthic macrolnvertebrates

(Lenat at at. 1981). Sedimentation can be sufficient enough to seriously reduce

the available insect habitat and recovery is usually not expected unless sed iment

on the surface and in the interstices is removed (Slaney et al. 1977 ). The

pote ntial effects of sediment on benthic invertebrates include interference with

respiration and the overwhelmlnq of fi ltering insects such as some cadd isfly

larvae (Waters 1995).

Most invertebrate-forestry interaction studies have been conducted on the Pacific

coast of North America or the central United States (Erman at al. 1977 ; Newb old

et al. 1980 ; Murph y and Hall 1981; Blosser 1984 ; Carlson at al. 1990 : Hartman

and Scrivener 1990; Kohlhepp and HellenthaI1992). These regio ns differ in
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many respects from Newfoundland 's environmental characteris tics , including

biogeography, climate, soil cond itions, fauna, and forest type. The exceptions

are the Co pper Lake buffer zone study conducted in weste m Newfoundland and

the Newfoundland Small Steam Buffer Study, both of which included a forestry­

inverteb rate component, however there is a need to furthe r this research to

determ ine how other watersheds and their associated aquatic ecosystems in

different eco-reqlone respond to managed buffer zones , and increased

harvesting intensity . This knowledge could then be incorporated into sustainable

forestry management for regions with similar environmental characteristics.

Studies as to whether buffer strip widths are effective as filters are also very

limited (Belt et al. 1992) . Furthermore , they also state that the literature is limited

on the advantages of varied-width buffers compared with fixed-width buffers, and

it is acknowledged that variable -width buffers allow the riparian zone to simulate

a more natural edge . The objective of the study in this chapter was to determine

if the ecological integrity of areas adjacent to forest harvesting activities was

maintained by three different buffer zones treatments, two of which had selective

harvesting within the buffe r. A variable-width buffer was also created for one of

the select ive harvesting treatments. Erman et al. (1977) found that streams that

had selectively cut riparian areas had less severe impacts on invertebrates than

those where clearcutting without bufferstrips occurred . Subsequently, field
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expe riments were designed specifically to test for effects of clearc ut logging

under various riparian zone treatme nts on stream benthos.

4.2 Methods

4.2.1 study Area

Refer to sect ion 2.2.1

4.2.2 Study Sites

Refer to section 2.2 .2

4.2.3 Sedimentation Analysis

Refer to section 2.2.3

4.2.4 Invertebrate Sampling

Twenty four artificial substrates (rock bags) cons isting of approximately 7.2 kg of

3.5 to 5.0 cm washed cobble encased in plastic Vexar mesh (1.5 em, stretch

measure ) (Rosenberg and Resh 1982; Merritt and Cummins 1996 ) were placed

in the three experimental buffers and the no harvest site within Hungry Brook

with in riffle habitat and were exposed to the stream flow , Le. were not placed

near large instrea m debris or boulders . The substrates (six bags in each of the

four sites ) were deployed May 11 for the pre-harvest and post-ha rvest and

retr ieved three weeks after dep loyment.
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When lifting the rock bags from the stream, special care was taken to capture

inverteb rates that may swim or drift away by making a sweep of the immediate

area with an aquatic sampli ng net. Each rock bag was shaken vigorously in a

five gallon bucket of water for 60 seconds to remove organisms and then visually

inspected to insure complete removal of all colonized invertebrates visible to the

naked eye . The water was then filtered through a 500 um Nitex screen and all

organisms retained were preserved in 95% ethanol. Twelve of the twenty four

rock bags (three from each of the four sites) were randomly selected and

analyzed due to the time and effort required for this component of the study.

4.2.5 Species Identification

Each specimen belongin9 to the Orders Trichoptera, Ephemeroptera, and

Ptecoptera were dassified to the species level, with a few exceptions to the

genus level using Merritt and Cummins 1996; Larson 1997a, b: Larson et al.

2000 . Specimens belonging to the Family Chironomidae were not classified to a

lower taxon, and all other Diptera were classified only to order . These orders

were given special attention based on the observation that the majority of taxa in

these orders are pollution sensitive (Lenat 1988) .
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4.2.6 Statistica' Analyses

The sed iment data was analyzed using the G statistic with a=0.05. The quantity

of sedime nt accumulated within each site collected during pre-ha rvest and post­

harvest was compared to determine whether there was a significant diffe rence .

For the insect data, the generalized linear model , with poisson errors, and log link

was used (SAS 1988; McCullagh and Neider 1989) with a=0.05. The

assumptions of this model are that the residuals are homogeneous, normal, and

independent. An of the assumpt ions were met. The number of Ephemeroptera,

Plecoptera, and Trichoptera (EPT) were tota led and divided by the number of

Diptera (including Chironom idae) (EPTfD) index that were observed for each

sample (Resh and Jackson 1993). This index is based on the rationale that taxa

belonging to EPT are pollution sensitive (t.ena t 1988; Resh and Jackson 1993)

and that members of Diptera are pollutio n tolerant, specifically Chironomidae

whe n compared with members of EPT (Resh and Jackson 1993). A stressed

community will reflect an imbalance with in the invertebrate communit y (Resh and

Jackson 1993) . The EPT/D index was compared between the four sites for pre­

and post-harvest using the explanatory variable of site and year as an interacti on

term . This model was also used to determin e whether there was a statistical

difference between pre- and post-harvest for the fallow ing response variables

using the interaction term site and year: number of EPT, number of
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Ephemeroptera. number of Plecoptera, number of Tricnoptera.number of Diptera

(excluding Chironomidae), and the number of Chironomidae.

For the purposes of the study design the interaction term site and year was of

interes t. If the response variable was fou nd to be statistically significant. then

from the parameter estimates it could be determined which buffer treatments

were sign ificantly different relative to the no harvest site (McCullagh and Neider

1989). For this study design there were two years of data, with the method

being the same for both years. and three explanatory variables: experimental

treatment, year (pre- or post-harvest ), and the natural changes between the two

years for each of the experime ntal treatments - interaction term . If the

interaction term was significant then the overall means between the treatments

and the years could not be interpreted individually. Furthermore , by using th is

type of analysis and using the interaction term as the explanatory variable it is

possib le to take into consideratio n inter-annual variation, relative to the no

harvest site .

The data were also analyzed using Krebs ' (1991) RAREFACT to determine

rarefact ion values. Rarefaction gives an estimate of how many species are likely

to be represented in a sample of a qiven size. thus allowing sample size to be

standard ized between treatments so that spec ies diversity can be compared on

an even basis between samples of variable sample size. It is empirical and can
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not be extrapo lated beyond the maximum observed species numbers for a

sample . The rarefaction values for the number of species for the sites were

compared using the G statistic with a=0.05 to determine if there was a significant

difference between pre- and post harvest samples.

Sediment accumulat ion increased significantly for the 20 m buffer with select ive

harvesting (Figure 4.1). This increase was significant (p<0.0001) and was four

times greater post-h arvest. The post-harvest results from other sites, including

the no harvest , was not significant ly differe nt from the pre-harvest results .

f
I

o Pre-harvest

lID Post-harvest

20 m 20 m wi th s.h . 30-50 m with e.h, No harvest

Experimental Sites

Figure 4.1. Comparison of total sediment accumulation between three
experimenta l sites and the no harvest site pre- and post-harvest. Sites were 20
m buffer (20 m), 20 m buffer with selective harvesting (20 m with s.h.), and 30-50
m buffer with select ive harvest ing (30·50 m with s.h.) .
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For the EPTID index the interaction term of site and year was not significant

(p=O.4995, Table 4.1, Table 4.2). The number of EPT was signifICantly related to

the inte raction term of site and year (p<0.OOO1) and all three experimental buffers

were significantly differen t from the no harvest site (Table 4.1, Table 4.2) . The

percent change for the number of EPT increased for the 20 m buffer wbue for the

20 m buffer with harvesting and the 30-50 m buffer with harvesting there was a

decrea se in percent change from pre- to post-harvest conditions (Table 4.1,

Figure 4.2 ).

Table 4.1 . Compariso n of the number of each taxa and the number of species
for each taxa for each of the experi mental and no harvest sites for pre- and post-
harvest . (N.B. Number of Oiptera excludes Chironomida e).

20m 20m 20m 20m JO.50m JO.50m No No
(p<e) -) .,., .,., wiltIl .h. wiltIs.h. harvest """"'''s.h. s.h. we) -) (pre) (POOl)

(pre) (POOl)

NEPT n 86 '86 42 172 70 185 73
Nsp EPT 21 18 20 20 15 23 30 18
Ntr'ct1op tera 23 26 B2 9 182 59 115 34
N sp trichoptera 12 6 9 8 8 I. 14 8
N-.o 4 9 3 2 , 2 18 17
Nsp plecoptera 2 3 , 2 , 2 5 6
N ephemerop tera 45 51 ' 03 31 9 11 11 6
N sp epllemeroptera 7 9 I. to 6 " 11 6
N chironomids 400 390 266 301 99 246 295 196
Ndiplera 22 15 144 28 17 283 711 241
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Tab le 4.2 . The p-values from the generalized linear model for several response
variables for the experimental sites that differed from the no harvest (control) site.

Response va riab le Pwarue Sites statistically di ff erent from the

no harvest site fo r the Interaction

term site and year

Number of EPTJD 0.4995 NA

Numbe r of EPT <0.0001 20 m; 20 m with harvesting : 30-50 m

with harvesting

Number of <0.0001 20 m; 20 m with harvesting: 30·50 m

Ephemeroptera with harvesting

Number of Plecoptera 0.0001 20 m; 20 m with harvesting

Number of Trichopte ra <0.0001 30-50 m with harvesting

Number of Diptera <0.0001 20 m; 20 m with harvesting ; 30·50 m

with harvesting

Number of Chironomidae <0.000 1 20 m; 30·50 m with harvesting
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1S 1 : ~g ~=T~~~;~~:Jng
1

_ 30-50 m buffer with selective harvesting
DNoha rvest

Figure 4.2. Percent change in variou s taxa betwee n pre- and post -harvest
observatio ns for three experimental buffers and a no harvest (control) site. (N.B.
Number of Diptera excludes Chironomidae ).

The number of Ephemeroptera was significantly different for atl three of the

experimental buffers (p<O.OOO1, Tab le 4 .1, Table 4.2) when compared with the

no harvest site for the interaction term - site and year. The numbers observed

decreased for each of the experimental sites. with the greatest decrease

observed fo r the 3D-50 m buffer with harvesting (Table 4.1. Figure 4.2).

The number of Plecoptera in both 20 m buffe rs (with and witho ut selective

harves ting) also differed sign ificantly (p=O.000 1. Table 4.1, Table 4 .2) from the

no harve st site for the interaction te rm site and year with the percent change of

Ptecoptera decreasing for both 20 m buffers (with and without selective
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harvesting; Figure 4.2). The 30·50 m with harvesting site was not significantl y

diffe rent from the no harvest site.

The number of Trichoptera was significantly related to the interaction term site

and year (p<0 .OOO1 , Table 4.1, Table 4.2) with the number of Trichopte ra

increas ing for all sites including the 'control'. The only site that differed

significa ntly from the no harvest site was the 30-50 m buffer with harvest ing

(p<O,0001, Table 4.2). The largest percent increase was observed for the 20 m

buffer (Fig ure 4.2). Upon examination of the raw data, a single genus, Oxyethira

sp. was responsible for this large increase in the 20 m buffer site, pre- and post­

harvest , increasing 52 times (n=3 pre-harvest; n=155 post-harvest) (Append ix 1).

The number of Diptera (excluding Chironomidae) was also significantly related to

the interaction term site and year (p<0.OOO1) with all three experimental buffers

differing significantly from the no harvest site (Table 4,1, Tab le 4.2). All sites,

including the control, demonstrated increased numbers of Diptera with the largest

percent increase observed with the 20 m buffer with harvesting; an 18.9 %

increase (Table 4.1).

The number of Chironomidae was also significa ntly related to the interaction term

site and year (p<0.0001) with the 20 m buffer and the 30-50 m buffer with

harvesting both signmcantly different from the no harvest site. The 30-50 m
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buffe r with harvesti ng demonstrated the only positive percent change, while the

20 m buffer demonstrated the greatest negative percen t change in the number of

Chironomidae (Table 4.1 , Figure 4.2).

As shown by the values obtained from RAREFACT, the number of taxa of

macroinvertebrates expected to be collected from samples of various sizes was

greater for each of the experimental sites and the no harvest site during the post­

harvest year when compared with the values obtained for the pre-harvest year

(Figure 4.3) . However, the difference observed was not statistically significant for

any of the experimental sites. Thus, even if the sample size had been much

greater than the effort in this study, the species diversity would not have

significantly differed.

Discussion

The literature on the effects of forest harvesting on invertebrates provides

conflicting results . For example , several studies state that higher densities of

benthic invertebrates were observed for streams that had been logged (Newbold

et al. 1980; Murphy and Hall 1981 ). Conversel y, Smith (1980) and Trayler and

Davis (199B ) noted reduced invertebrate abundance following stream-side

harvesting.
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Figure 4.3. Rarefaction curves of expected number of species of
macroinvertebrates to be collected from various sample sizes for the three
experimental buffers and the no harvest sites. pre- and post-harvest.

Lenat at at (1981) found that when sediment was added to a stream. the habitat

avai lable to inverteb rates on rocks decreased resulting in a decrease in benthi c

density , however com munity structure did not change . Sedimentatio n affects

severa l biotic communities at various trophic levels. It lowers the productivity of

primary producers such as photosynthesizing plants. primary and secondary
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consumers such as benth ic invertebrates, and secondary consumers, top

cam ivores and plsclvores such as fish (Hartman et al. 1983; Waters 1995).

Physical changes to invertebrate habitat that may have caused the observed

responses by invertebrates are not clear . Sediment accumulation increased for

the 20 m buffer with selective harvesting for Hungry Brook post-harvest. It is

known that populations of macroin vertebrates respond in various ways to

disturbance. The Copper Lake study conducted in western Newfoundl and did

not show any clear trend related to increased sediment accumulation (Clarke et

al. 1998) . It has also been shown that macroinvertebrate biomass may increase

with sediment addit ion with the proliferation of sediment tolerant taxa (Blosse r

1984) . Blosser (1984) found gradually decreasing numbers of Hydropsyche sp.

with increas ing fine sediments . Similarly, Barton (1977) found reduced densities

of Hydropsyche slossonae with increased sediment. In contrast , Kohlhepp and

Hellenthal (1992) found significantl y greater densities of Hydropsyche morosa

with increased sediment. In my study , in the 20 m buffer with select ive

harvesting, the number of Hydropsyche betten; was equal for pre- and post­

harvest (Appendix 1). The number of Hydropsyche betteni in the 20 m buffe r in

pre-harvest decreased to zero post-harvest (Appendix 1). This site disp layed an

increase in sedimentation, howe ....er the increase was not significant. The 30-50

m buffer also displayed a decrease in the number of Hydropsyche bette n;

(Append ix 1), however sediment accumulation at this site, from pre- to post-
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harvest conditions. was almost unchan ged. Furthermore, the large increase in

sedimen tation for the 20 m buffe r with selective harvesting did not affect the

number of Diptera (exd uding Chironomid ae) which increased dramatically

(AppendiX 1).

The number of Plecopte ra decreased for both 20 m buffers , wher eas the other

sites incr eased . This decrease corresponds with the observed increases in

sedimenta tion for the 20 m buffers, specifically the 20 m buffe r with selective

harvesting . Similarly, Carlson et at. (1990) found that Plecoptera decreased for

logged sites, however the difference was not significant. Pleco ptera are typicall y

intolera nt of pollution and the ir presence indicates good water qua lity (lydy et at

2000).

It has been sugges ted that buffe r zones act prima rily as "pcuce man" against

logg ing nea r stream banks , or even more detrimental acts such as fo rwarding

through streams (Newbold et at 1980). Furthennore, the expe rimental buffer in

my sbJdy tha t rece ived the mo st intense harvesting (20 m buffer with selective

harvesting) exhibited a larg e increase in sedimen tation, thus suggesting that

buffers of wider width may be more effect ive in "filtering- by reducing some of the

overland flow of sedimen tation from fo rwarding trails and possib ly reduci ng the

eff ects observed in thi s study on the invertebrate community.
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Members of the orders EPT are known to be sensitive to pollution. so it is

expected that the numbers of individuals in these orders would decrease with a

decrease in water quality (Norris and Georges 1993). However. Murphy and Hall

(1981) and Murphy et al. (1981) found that the density of invertebrates is higher

in ctearcu t sites . This is similar to the findings of this study where the percentage

change in the number of EPT only increased for the 20 m buffer and this

response was driven by the large percentage increase in Oxyethira sp.

Changes within the invertebrate community following forest harvesting have been

attributed to changes within the food pathways which results in a change within

the primary produce r biomass (Erman et at, 1977; Vannote et a1.1980; Murphy et

al. 1981; Gregory et al. 1987). Erman et al . (1977) suspected the changes in the

invertebrate communities within logged streams was the result in a change of the

stream's energy budget as a result of increased nutrients and light. These

results might indicate a possib le increase in primary productio n possibly from an

increase in nutrient input within Hungry Brook .

Oxyethira sp. was also responsible for the large percent change increase

between pre- and post-harvest for the number of Trtchcpte ra in the 20 m buffe r.

This species is often associated with filamentous algae which it consumes

(Winterbourn and Gregson 1989 ). Several authors have reported increased

primary product ion after c1earcuting when compared to foreste d areas (e.g .

Gregory 1976; Johnson et al. 1986) and even thinning of the riparian canopy



allowed fo r jncreased solar radiation with subsequent increa sed primary

produ ctio n (Bums 1972). In my study a trea tme nt invoMng cano py remova l was

not inclu d ed . and the other buffe r treatmen ts maintai ned full canopy closure . thus

an incre ase in direct sunl ight on Hungry Brook did not occur as a resu lt of

harvesting (pers . ob s.). Therefore the dramatic increase in Oxyethira sp . is not

likely rela ted to increased primary production caused by an increase in solar

radiation. Borman n et at (1966 ) observed incre ased nutrient runoff in

watersheds post -harvesti ng and if such an increase occurred in my study, it may

have res u lted in increased prim ary produ ction , possi bly resul ting in the increased

num ber of Oxyethira sp.

The find ings of my study for Trichoptera numbers is cons istent with Carlson et al.

(1990 ) who observed caddisllies to be morenumerous at logged sites .

Tricho ptera increased in my study in the twoselective harvesting experimental

sites . but the increase was less than that observed for the no harvest site . The

20 m buffer observed the greatest increase and was greater than the no harve st

site.

The number of Diptera (excludi ng Chiro nomidae) displayed the largest percent

Increase of all invertebrate orders. Carls on et et. (1990) also found that true flies

we re significanUy more numerous at logged sites . Oiptera increased at all sites .

induding 'contro l' and only the 20 m with harvesting exhibited increa ses greater
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than the no harvest site. The vast majority of Diptera were members of the

fam Ry Simuliidae and this taxa was responsible for the large increase observed

for the 20 m buffer with selective harvesting. Sim~arty, Newbold et al. (1980)

found larg e numbers of Simulium sp. at a logged site compared with none at the

paired control site, however this taxa was sparse at another paired set of study

sites .

The number of Chironomidae did not display any pattem with respect to pre- and

post-harvesting. Both 20 m buffers and the 'control' displayed a decreas e in

percentage change, whereas the 30-50 m buffer with harvesting exhibited a

slight increas e. On the contrary, Eonsn et at. (1977) found increased numbers of

Chirono midae in logged streams with in their study.

The results of the rarefaction analysis indicated no signif1C8ntdiffer ence in the

species diversity between pre- and post-harvest conditions . Blosser (1984)

found no d ear relationship in the study they conducted between diversity and

sediment content. Conversely , Newbold et al. (1980) found invertebrate diversity

in unprotecte d streams to be lower than in controls . Erman et at (19n) found

simila r results with control streams having much greater invertebrate diversity

than logged stream s. It appears the response of the macroinverteb rate

community to forestry harvesti ng may be site specific, largely dependent on the

resident fauna and the degree of dis turbance to the stream. This d early
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indicates the need to incorporate local data in forest management practices ,

particutert y when considering the diverse and often contradictory findings in the

literature on invertebrate response to disturbance.

Erman et at, (19n ) conduded that buffers less than 30 m were ineffective as

protective measures , however buffers greater than 30 m provided protection

equivalent to condit ions In unlogg ed streams. The results of my study are similar

in that the buffer with the least amount of change overall was the 3Q..50m buffer

with select ive harvesting.

My results suggest that increased sediment accumula tion does not necessaril y

decrease the number of macroinvertebrates, however. a change in the taxonomic

composition was found . As well, the potentia l for increased primary production,

as suggested by the increase In algal consumers for the 20 m buffer in my study

needs more investigation in future studies with similar environmenta l

characteristics as those In Newfoundland .

4-20



Barton, B. 1977. Short-term effects of highway construction on the limnology of

a small stream in southern Ontario. Freshwater Biology 7:99-108.

Belt, G., O'Laughlin , J., and T. Merrill. 1992. Design of forest riparian buffer

strips for the protection of water quality: analysis of scientific literature . Idaho

Forest , Wildlife and Range Policy Analysis Group, Report No.8. 35 pp.

Benke, A.C. 1984. Secondary production in aquatic insects. Pp. 289-322 In The

Ecology of Aquatic Insects. Resh, V.H. and Rosenberg, D.M. (eds.) Praeger

Publishers, New York.

Blosser , R. (Tech. Oir.) 1984. The relationship between fine sediments and

macrclnvertebrate community characteristics - a literature review and results

from NCASI fine sediment studies. Technical Bulletin No. 418. National Council

of the Paper Industry for Air and Stream Improvement, Inc., New York. 32 pp.

Bormann, F., Likens, G., Fisher, D., and Pierce, R. 1968. Nutrient loss

accele rated by clear-cutting of a forest ecosystem. Science 159: 882~884 .

4-21



Bums . J. 1972. Some effects of logging and associated road construction on

northe rn California streams. Transactions of the American Fisheries Society

101: 1 ~17 .

Carlson. J., Andrus , C., and Froehlich , H. 1990. Woody debris, channel

features, and rnacrolnvertebrates of streams with logged and undisturbed

riparian timber in northeastern Oregon, U.S.A. Canadian Journal of Fisheries

and Aquat ic Sciences 47: 1103-1111.

Clarke, K.D. , Scruton, D.A., Cole, L.J. and Ollerhead, L.M.N. 1998. Large woody

debris dynamics and its relation to juvenile brook trout (Salvefinus fontinalis)

densities in four srnall boreal forest headwater streams of Newfoundland .

Canada . Pp. 337-344 in M.K. Brewin and D.M.A. Monita, tech . coords. Forest­

fish conference : land management practices affecting aquatic ecosystems.

Proceedings of the Forest-Fish Conference, May 1-4, 1996, Calgary , Alberta .

Natural Resources Canada, Canadian Forest Service, Northern Forestry Center ,

Edmonton, Alberta. Inf. Rep. NOR~X~356. 64 p.

Erman, D., Newbold, J. and Roby, K. 1977. Evaluation of streamside

bufferstrips for protecting aquatic organisms . Technical Complet ion Report ,

Contribution No. 165. California Water Resources Center , Davis, California. 39

pp.

4-22



Gregory, S. 1976. Primary production in a stream in a c1earcut and old-growth

forest in the Oregon Cascades. Bulletin of the Ecological Society of America

57:41

Gregory, S.V., Lamberti, GA, Erman, D.C., Koski, K.V., Murphy, M.L. and

Sedell, J .R. 1987. Influence of forest practices on aquatic production. Pp. 233·

255. In Streamside management: forestry and fisheries interactions. E.O. Salo

and TW. Cundy (Eds.). College of Forest Resources Contribution No. 57,

University of Wash ington, Seattle, Washington

Government of Newfoundland and Labrador . 2002. Cutting of Timber

Regulations under the Forestry Act. Available from http://www.gov.nf.caJHOAl

regulationslrc961108.htm#12 [cited 20 April 2002].

Hartman, G.F., Scrivener, J.C., Brownlee, M.J. and Morrison , D.C. 1983. Fish

habitat protection and planning for forest harvesting in coastal streams of British

Columbia : some research and management implications. Canadian Industry

Report of Fisheries and Aquatic Sciences 143: v + 73 p.



Hartman , G.F. and Scrivener, J.C. 1990. Impacts of fores try practices on a

coastal stream ecosystem , Carnation Creek, British Columbia. Can. Bull. Fish.

Aq uat. Sci. 223: 148 p.

Johnson , S., Heifetz, J., and Koski, K. 1986. Effects of logging on the

abundance and seasonal distribution of juvenile steelhead in some southeas tern

Alaska streams . North America Journal of Fisheries Management 6:532-537 ,

Kohlhepp, G., and Hellenthal , R. 1992. The effects of sediment deposition on

insect populat ions and production in a northe rn Indiana Stream. Pp. 73-84 .

In Midwest Pollut ion Control Biologists, Meeting (March 19-22, 1991) ,

Lincolnwood, Illinois. EPA Report 90S/R-921003.

Krebs, C. 1991. Fortran programs for ecological methodo logy. Exeter software ,

New York .

Larson, D. 1997 (a). Keys to larvae of Newfoundland and Labrador Plecopt era.

Unpub lished manuscript. Memo rial University of Newfound land , St. John 's, NF.

6 pp.

Larson, D. 1997 (b). Keys to larvae of Newfoundland and Labrador Caddisflies.

Unpubl ished manusc ript. Memorial University of Newfoundland , St. John 's, NF.

18 pp.

4-24



Larson , D. , Genge, P. and Corbo, M. 2000. Key to larvae of Newfoundland and

Labrador Ephemeroptera. Unpublished manuscript. Memorial University of

Newfoundland, St. John's, Newfoundland. 20 pp.

Lenat, D. 1988. Water quality assessment of streams using a qualitative

collection method for benthic macroinvertebrates . Joumal of the North American

Bentholog ical Society 7: 222-233.

Lenat, D., Penrose, D., and Eagleson, K. 1981. Variable effects of sediment

addition on stream benthos. Hydrobiologia 79: 187-194.

Lydy, M.J., Crawford, C.G., and Frey, J.w. 2000. A comparison of selected

diversity , similarity, and biotic indices for detecting changes in benthic­

invertebrate community structure and stream quality. Archives of Environmental

Contamination and Toxicology 39: 469-479 .

McCullagh, P. and Neider, J. 1989. Generalized Linear Models. Chapman and

Hall, New York.

Merritt , R., and Cummins , K. 1996. An Introduction to the Aquatic Insects of

North America . Kendall/Hunt Publishing Company, Dubuque. 862 pp.

4-25



Murphy, M. and Hall. J. 1981. Varied effects of c1ear-cutlogging on predators

and their habitat in small stream of the Cascade Mountains, Oregon. Canadian

Journal of Fisheries and Aquatic Sciences 38:137-145.

Murphy, M., Hawkins, C.• and Anderson, N. 1981. Effects of canopy

modification and accumulated sediment on stream communities . Transactions of

the American Fisheries Society 110: 469-478.

Newbo ld, J., Erman, D., and Roby, K. 1980. Effects of logging on

macroinvertebrates in streams with and without buffer strips. Canadian Journal

of Fisheries and Aquatic Sciences 37: 1076-1085.

Norris, R.H., and Georges, A. 1993. Analys is and interpretation of benthic

macroinvertebrate surveys. Pp. 234-286. In: Freshwater biomonitoring and

benthic macroinvertebrates. Rosenberg, D.M. and Resh, V.H. (eds .). Chapman

and Hall, London .

Resh, V.H. and Jackson, J.K. 1992. Rapid assessment approaches to

biomonitoring using benthic macroinvertebrates . Pp. 195-233. In Freshwater

biomonitoring and benthic macroinvertebrates . Rosenberg, D.M. and Resh, V.H.

(eds.). Chapman and Hall, London.

4-26



Rosenberg, D.M. and Rash, V.H. 1982. The use of artificial substrates in the

study of freshwater benthic macroinvert ebrates. In ArtificialSubstra tes. Cairns,

Jr.• J . Ann Arbor Science Pubs.• Ann Arbor, MI. Pp. 175-235 .

Rosenberg , D.M. and Resh. V.H. 1993. Introduction to freshwate r biomonitoring

and benth ic macrclrwertebrates. Pp. 1·9. In Freshwater biomonitoring and

benth ic rnacroinvertebrates. Rosenberg, D.M. and Resh, V.H. (eds.). Chapman

and Hall , London.

SAS, 1988. SAS/STAT Release 6.03 SAS Institute Inc. Cary. North Carolina .

Slaney. P., Halsey, T., and Smith. H. 19n. Some effeets of forest harvesting on

salmonid rearing habitat in two streams in the central interior of British Columb ia.

Fish and Wildlife Branch.

Smith. B. 1980. The effects of affore staton on the trout of a small stream in

southern SCoUand . Fisheries Management 11: 39--58.

Trayler, K., and Davis, J. 1998. Forest ry impact s and the vertical distribution of

stream invertebrates in south-western Australi a. Freshwater Biology 40 :331· 342.

4-27



Vannote, R., Minshall, G., Cummins, K., Sedell, J., and Cushing, C. 1980. the

river continu um concept. Canadian Joumal of Fisheries and Aquatic Sciences

37: 130-137.

Waters, T.F . 1995. Sediment in streams: sources, biological effects, and

control. America n Fisheries Society Monograph 7. Pp. 251

Wesche. T.A., Reiser. DW., Hasfurther, V.R., Hubert, W.A., and Skinner, QD.

1989. A new technique for measuring fine sediment in streams. North American

Joumal of Fisheries Management 9: 234-238.

Winterboum, M.• and Gregson, K. 1989. Guide to the aquatic insects of New

Zealand. Second Edition. Bulletin of the Entomological Society of New Zealand

9: 92 pp.

4-28



Chapter 5

Effects of managed buffe r zones on salmon ld population and biomass

5.1 Introduction

Salmonids depend greaUy on the cond ition of the adjacent forests (Meehan

1991 ). The habitat requirements are precise, and activities that alter water

quality, can have implications for fish productiv ity (Meehan 1991) . Studies on the

overall impact of fores t harvesting on salmonids in streams has produced

contradictory results (Bums 1972; Murphy and Hall 1981; Murphy et al. 1981;

Bisson and Sedell 1984) . Negative effects from stream-bed sedimentation on

the survival of salmonid embryos and larvae have been reported (Coble 196 1;

Cordone and Kelley 1961; Shelton and Pollock 1966; Phillips et al. 1975; Hausle

and Coble 1976; Alexander and Hansen 1983; Wesche 1985 ; Berkman and

Rabeni 1987; Nelson et al. 1991: Waters 1995). Sedimentat ion rates are often

accelera ted as a result afforest harvest ing (Shapley and Bishop 1965) . Salmon

and trout are primarily sight feeders therefore suspended sediment can influence

feed ing ability (Scruton et al. 1997). Streams must allow sunlight to penetrate for

algae to grow, which are importa nt for the insect population, a food source for

trout and salmon (Scruton et at, 1997).

An increase in sedimentati on can have irreversible effects on a fish population.

Suspended sediment can cause difficulty for developing eggs and fry (Waters

1995). Sedimentation will reduce dissolved oxygen levels if water canno t
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perco late throughout the substrate of spawning beds (W esche 1985 ; Nelson et

al. 1991; Waters 1995). This movement of water is also imperative in removing

metabolic waste (Wesche 1985; Waters 1995) . It appears that any sediment less

than 3 mm can cause adverse effects on salmon id production . For examp le,

Phillips et at (1975) found an increase in 1 to 3 mm sand in the spawning grave l

from 20 % to 30 % decreased the emergence of coho salmo n from 65 % to 40 %.

Add itionally, Shapley and Bishop (1965 ) concluded that salmon product ion is

inversely related to percentage of stream substrate less than 0 .833 mm diameter.

Fry and juvenile habitat can be affected by increased sediment deposition.

Sediment also fills interstitial spaces which are vital for winter survival of fry

(Fum iss et at. 1991; W aters 1995) . Bustard and Narver (197 5) demonstrated

that salmonid fry show a strong preference for clean cobble as compared to

silted cobble. Some stud ies have suggested that a temporary increase in

productivity can be expected after logging, as long as no major changes occu r to

the stream channel (Bisson and SOOeIl1984), thus no increase in sedimentation

would occur if the stream channel is not erode d.

In this chapter, the impact af forest harvesting on salmon id populations and

biomass was the focus . with consideration given to the potential role of

sed imentat ion and macroinvertebrate product ion on salmon ids . As well.
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population estimates and biomasses were studied separately for both species of

young-of-the~year compared with 1+ fish.

5.2 .1 Study area

Refer to section 2.2.1

5.2.2 Study sites

Refer to section 2.2.2

5.2.3 Electrofishing methods

Two electrofishing sites were established within each of the three experimental

sites and the no harvest site. Each electrofis hing site had two barrier nets

installed to barricade a 200 m" section (50 m-length x 4 m-width) of the stream

from immigration and emigration of fish, with the downstream net being installed

first. The barrier nets were made of black fly screen with mesh size used to

prevent young of the year salmonids from escaping or entering the eleclrofishing

section . Rubble and small boulders were positioned along the bottom of the net

to secure the net to the substrate . The area was then intensely electrofished

using a Smith-Root, Type VillA electrofisher making a minimum of three sweeps

of the section (Scruton and Gibson 1995) . Electrofising was conducted betwee n

August 29 and September 6, 2000 (pre-harvest), and between August 22 and
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Augus t 26 . 2001 (post -harvest). The removal method was used to estimate

popula tion (Zippin 1958). The time was recorded in seconds according to the

electrofisher's internal timer to ensure consistent effort on each run. The

electrofishing team consisted of three people, one person operat ing the

electroflsher. the second person with a dip net, and the third person carrying a

live well in which captu red fish were placed prior to process ing. The fisher started

at the downstream end of the station and slowly fished across the stream in

standardized widths, gradually moving upstream towards the upper barrier net.

Between each run, all salmonid specimens collect ed during the sweep were

identified to species, measur ed (to the nearest mm), and weighed (to the nea rest

gram). All collected specimens were then released downst ream from the

electrofishing site.

5.2.4 Statistica l Analyses

The population estimate for each site was obtained from Microflsh 3.0 which

uses a maxim um likelihood estimator (Van Deventer and Platts 1983) . The

average of the two population estimates with in each experime ntal site was

compared with the estimate for the no harvest site for pre- and post-ha rvest . The

data were analyzed using the G statistic from a chi-square distribut ion with one

degree of freedom, with 0=0.05 . This statist ic measures goodness of fit of the

data (Devore 1995).
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Biomass was determined by multiplying the population estimate for each site by

the averag e weight (g) of a given species captured within the site to yield an

estimate d biomass per electrofish ing site. This number was then divided by the

surface area of the elect rofishing site to obtain a biomas s estimate in glm2. The

G statistic was then used to determine whether the biomass was significantly

different for pre- and post-harvest for each experimental site compared with the

no harves t site.

To separate fish into younq-of-the- year and 1+ and older , for brook trout , any fish

less than 70 mm fork length was consid ered to be younq-ot-me-year . All

remaining brook trout were conside red to be 1+ and older. Similarly, the same

method was used for Atlantic salmon, except the maximum fork length for young­

of-the-year was 60 mm.

5.3 Results

The population estimate of Atlantic salmon significantly increased for alt three

experimental buffers compared to the no harvest (Figure 5.1, Table 5.1).

However, Atlant ic salmon biomass decreased in the 20 m buffer site , and

increased within the 20 m with select ive harvesting and 30-50 m with selective

harvesting, but not significantly (Figure 5.2, Table 5.2).
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The population estimate of brook trout increased for all three experimental sites,

but the increase was only significant for the 20 m with selective harves ting and

the 30·5 0 m with selective harvesting (Figure 5.3 , Table 5.1). The 20 m buffer

with selective harvesting and the 3D-50 m buffe r with selective harvesting both

displayed increases in biomass , however only the biomass increase in the 20 m

buffer was significant (Figure 5.4, Table 5.2). The 20 m buffer observed a slight

decrease in biomass (Figure 5.4).
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Figure 5.1. Atlantic salmon population estimates fo r three experimental sites and
the no harvest site for pre- (2000) and post -harvest (2001) . Error bars = standard
error.
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Table 5.1. The p-values obtained from the G statistic for population estimates for
the experimental sites compared with the no harvest site for pre- and post­
harvest for both species of salmonids .

Experimental Site Species P-value

20 m (prov incial legislation) Atlantic salmon <0.0001

Brook trout 0.3428

20 m buffer with selective harvesting Atlantic salmo n <0.0001

Brook trout 0.0007

30-50 m buffer with selective harvesting Atlantic salmon 0.0001

Brook trout 0.0059
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Figure 5.2. Biomass of Atlantic salmon for the three experimental sites and the
no harves t site pre- (2000) and post-harvest (2001).
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Figure 5.3. Brook trout population estimates for three experi mental sites and the
no harvest site for pre- (2000) and post-harvest (2001). Error bars = standard
error .
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Figure 5.4. Biomass of brook trout for the three experimental sites and the no
harvest site pre- and post-harvest. Error bars = standard error.
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Table 5.2. The p-velues obtained from the G statistic for biomass for each of the
experimental sites compared with the no harvest site for pre- and post-ha rvest for
both spe cies of salmonids.

Ex perimental Site Spec ies P-v alu e

20 m (provincial legislation) Atlantic salmon 1.0

Brook trout 0.8875

20 m buffe r with selective harvesting Atlantic salmon 0.7083

Brook trout 0.0191

30-50 m buffer with selective harvesting Atlantic salmon 0.6892

Brook trout 0.5598

The popu lation estimate for young-of-the-year Atlantic salmon increased

significantly for all three experimental sites (Figure 5.5; Table 5.3) . However, the

biomass for young-of-the-year Atlantic salmon were not significa ntly different

compared to the no harvest site (Figure 5.6; Table 5.4).

The populat ion estimate for young-of-the-year brook trout significantly increased

for the 20 m buffer with selective harvesting and the 30-50 m buffer with selecti ve

harvesting (Figure 5.7; Table 5.3). The biomass for young-of-the-year brook

trout was not significantly different from the no harvest site for any of the

experimental buffers (Figure 5.8; Table 5.4).

5·10



The population estimate for 1+ and older Atlantic salmon increased for all three

experimental sites, however it was only significant for the 20 m buffer (Figure 5.9;

Table 5.5 ). The biomass for 1+ and older was not significantly different from the

no harvest site for any of the three experimental sites (Figure 5.10; Table 5.6).

For 1+ and older brook trout , all three experimental sites displayed increases in

populat ion estimates. however, none of the increases were significant (Figure

5.11; Tab le 5.5). The biomass for 1+ and older brook trout remained relatively

unchanged for both 20 m buffers. however an increase was observed for the 30-

50 m buffer . but it was not significa nt (Figure 5.12; Table 5.6).

70 1------~~===;_____=-1

50

~ 40

j30

20 m wlth
harves ting

30·SOmwlth
harvesting

Figure 5.5. Population estimate of Atlantic salmon younq-of -the-year for the
three exper imental sites and the no harvest site pre- and post-harvest. (Error
bars=standard error).
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Figure 5.6. Biomass of Atlantic salmon ycunq-ot-the-year for the three
experimenta l sites and the no harvest site pre- and post-harvest . (Error bars =
standard error) .

Table 5.3. The p-values obtained from the G statistic for population estimate of
young-of-the-year for the experimental sites compared with the no harvest site
for pre- and post-harvest for both species of salmonids.

Experimental Sit e Spec ies P-value

20 m (provincial legisiation) Atlantic salmon <0.0001

Brook trout 0.5271

20 m buffer with selective harvesting Atlantic salmon 0.0002

Brook trout 0.0002

3D-50 m buffer with selective harvest ing Atlantic salmon <0.0001

Brook trout 0.0002
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Table 5.4. The p-values obtained from the G statistic for biomass for young-of­
the-year for the experimental sites compared with the no harvest site for pre- and
post-harvest for both species of salmonids.

Experimental Site Spec ies Pwatue

20 m (provincial legislation) Atlantic salmon 0.8003

Brook trout 1.0

20 m buffer with selective harvesting Atlantic salmon 0.7850

Brook trout 0.7970

30-50 m buffer with selective harvesting Atlantic salmon 0.8176

Brook trout 1.0

20 m wlttlh81"11fttlng 30-50mwlth
twva.t1ng

Figure 5.7. Population estimate of brook trout young-of-the-year for the three
experime ntal sites and the no harvest site pre- and post-harvest. (Error
bars=standard error).
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Figure 5.8. Biomass of brook trout young-of-the-year for the three experimental
sites and the no harvest site pre- and post-harvest. (Error bars=standard error).
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Figure 5.9. Population estimate of Atlantic salmon 1+ and older for the three
experimental sites and the no harvest site pre- and post-harvest. (Error bars =
standard error.
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Figure 5.10. Biomass of Atlantic salmon 1+ and older for the three experimental
sites and the no harvest site pre- and post-harvest. (Error bareestandard error).

Table 5.5. The p-values obtained from the G statistic for population estimate for
year 1+ for the experimental sites compared with the no harvest site for pre- and
post-harvest for both species of salmonids .

Experimental Site Species p-vetue

20 m (provincial legislation) Atlantic salmon 0.0038

Brook trout 0.2367

20 m buffer with selective harvesting Atlantic salmon 0.1380

Brook trout 0.2733

30·50 m buffer with selective harvesting Atlantic salmon 0.1069

Brook trout 0.0943
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Table 5.6 . The p-values obtained from the G statistic for biomass for year 1+ for
the experimental sites compared with the no harvest site for pre- and post­
harvest for ro th species of salmonids.

Expe rime nta l Site Species Pw elue

20 m {provincial legislation) Atlantic salmon 1.0

Brook trout 0.8875

20 m buffer with selective harvesting Atlantic salmon 0.2367

Brook trout 0.8415

30·50 m buffer with selective harvesting Atlantic salmon 0.6892

Brook trout 0.5839

20 m wlth hIlfVHtlnll 3G-5Omwlth
hIlfVntl r>(l

Figure 5.11. Popu lation estimate of brook trout 1+ years for the three
experimental sites and the no harvest site pre- and post-harvest. (Erro r
bars=standard error ).
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Figure 5.12 . Biomass of brook trout 1+ years for the three experimental sites and
the no harvest site pre- and post-harvest. (Error bars= standard error).

5.4 Discussion

Bisson and Sedell (1984) found that salmonid density in streams within clearcuts

was greater than streams in old-growth forests by a factor of 1.6. Murphy et at.

(1981) found that trout (cutthroat and rainbow) had greater abundance and

biomass in dear-cut sites than in forested sites. Similarly, increases in

population estimates of brook trout were found in my study. The 20 m buffer

displayed an increase of 1.2 times post-harvest, the 20 m buffer with selective

harvesting increased 6.25 times, and the 30-50 m buffer with selective harvesting

increased 2.6 times. Increases in population estimates of AUantic salmon were

also observed. The 20 m buffer increased 1.2 times, the 20 m buffer with



selective harvesting increased 2.4 times, and the 30-50 m buffer with selective

harvesting increased 1.4 times.

The Copper Lake study conducted in westem Newfoundland found brook trout

dens ities decreased (ClarKa et at 1996). Younq-of-me-year brook trout

significantly decreased in density within one of the affected streams (Clarke et al.

1998) . Clarke et al. 1998 also state that the effects on brook trout populations

became more evident and greate r if the sediment source was in close proximity .

Bisson and Sedell (1984) noted that salmonid biomass was greater in streams in

clearcuts tha n stream s in fores ted sites with an average biomass 1.5 times

greate r. The only increase in biomass (for all fish or for both age classes) that

was significant in my study was for brook trout in the 20 m buffer with selective

harvesting, with 2.1 times greater biomass post-harvest.

Increased sedimentation can have a devastat ing effect on incubating eggs.

Sed iment can decrease the permeability of oxygen , carbon dioxide , and other

metabolites, thus decreasing survival (McNe il and AhneIl1964; Scrivene r and

Brownlee 1989). Further , if sediment pores are too small , then alevlns may

become restricted preventing intergravel movement (Phillips 1971; Scrivener and

Brownlee 1989). For my study the popu lation estimate for younq-of-the-year

Atlantic salmon increased significantly for all three experimental sites . The

biomass for young -of-the-yea r Atlant ic salmon increased slightly for the 20 m



buffer wit h select ive harvesting and the 3D-50 m buffer with selective harvesting,

and the 20 m buffer showed a slight decrease , however, none of these biomass

changes were statistically significant.

The population estimate for younq-of-the-year brook trout also increased

significantly for the 20 m buffer with selective harvesting and the 30-50 m buffer

with select ive harvesting . The biomass of young-of-t he-yea r brook trout was not

significantly different post-harvest for any of the experimenta l sites . The 20 m

buffer disp layed a very slight decrease, while both the 20 m buffer with selective

harvesting and the 3D-SOm buffer with selective harvesting both displayed a

large increase poet-harvest.

From these results , it appears that there was no negative impact on salmonid

emergence or develo pment for younq-of -the-yeer ,

The popu lation estimate of 1+ and older Atlantic salmon increased for all three

experimental sites, however only the 20 m buffe r increase was significant.

Biomass of 1+ and older Atlantic salmon displayed increases for the 20 m buffer

with selective harvest ing and the 30-SOm buffer with selecti ve harvesting, and

the 20 m buffer observed a decrease , however none of the changes obse rved

were significan t.
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The popu lation estimate of 1+ and older brook trout increased for all three

experimental sites , however none of the increases were significant. Biomass of

1+ and older brook trout displayed increases for the 20 m buffer with selective

harvesting and the 30-50 m buffer with selective harvesting , and the 20 m buffer

observed a very slight decrease , but none of these changes were statistica lly

significant.

There ma y be severa l factors that are contribu ting to this increase in population

of salmon ids. The results from another componen t of this project on

macro invertebrates (Chapter 4) indicated there may have been an increase in

nutrient input, with an associa ted increase in algal product ion, resuttlnq in

increased macroinverteb rate production as potential "fish food ". which in turn

could have resulted in increased salmonid production.

Anoth er component of research in this project was sedimentatio n. Desp ite large

observed increases in sedimentation for the 20 m buffer with selective

harvesting , salmonid population estimates and biomass did not appear to be

negatively affected. The results of this component of the study demonstrated no

negative impacts on salmonid population estimates . Despite decreases in

salmon id biomass for some of the exper imental sites, the decreases observed

were not significan t. Further research is required to determ ine whethe r the

increase in algal consum ing macroinvertebrates was the result of increased
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primary production which could provide more insight into possible reasons for the

observed salmonid increase.
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Chapter 6

General Disc uss ion

6.1 Overview of the impact of halVesting with managed buffer zones

Riparian vegetation plays a large role in detennin ing the health of the associated

aquatic community. The ecological processes of a stream are intimatel y related

to those of the surrounding terrestria l ecosystem (Gannan and Moring 1991).

Therefore, a comprom ise has to be reached that permits the retrieval of natural

resources without reducing the ecological integrity of the area; a delicate

balance . The primary purpose of my research project was to determine whethe r

harvesting within buffer zones resulted in adverse effects to aquat ic fauna and

habitat. The results from the components of the study yielded varied results on

the impact of harvesting.

Sediment deposit ion within the 20 m buffer with select ive harvesting was

significantl y affected , however the 30-50 m buffer with selective harvesti ng did

not appea r to have been affected, as indicated by the slight change betwee n pre­

and post-harvest conditions. In the 20 m buffer with selective harvest ing the

increase in sediment was 14.5 times greater post-harves t, an indication that

buffe rs of this width are insufficient in 'filtering' overtand flow containing

sed imentation from entering a stream . The implication of this increase within this

site could adverse ly affect the aquatic habitat and fauna as sediment is known to

affect the producti vity of an aquatic environment at various trophic levels.
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The effect of this large increase in sedimentation within the 20 m with select ive

harvest ing site was not determined. The number of Plecopterans , known as

indicators atwater quality, decreased the greatest within both 20 m buffers, while

the 30-50 m with selective harvest ing site increased simila rly to the no harvest.

Plecoptera are typically intoleran t to pollution, such as increased sediment , and

their presence indicates good water quality (Lydy et at. 2000) . This suggests 20

m buffers, with or without select ive harvesting may not be sufficient to maintain

the macroinvertebrate community . However , the 30-50 m buffer with selective

harvesti ng appeared to have been sufficie nt in terms of not affecting the

macroinvertebrate community .

Converse ly, the number at Diptera exhibited a large increase within the 20 m

buffer with selecti ve harvesting, much greater than the other experimental sites.

Slaney et at. (1977) found that Dipterans increased with sedimentation, therefore

the increase in Dipterans observed in Hungry Brook may be the result of

increased sedimen tat ion. The other significant change within the

macroinvertebrate community was a 52 times greater number of Oxyethira sp.

post-harvest compared with pre-harvest observati ons for the 20 m buffer . This

genus is an algal consumer . It may be that this increase indicated an enhanced

nutrient input from increased nutrient runoff as observed by Bormann et at.

(1968).
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The impact of increased sedimentation on the salmonid fishes appeared to have

been negligible. Increases in brook trout and Atlantic salmon population

estimates were significant for all three experimenta l sites except for brook trout

within the 20 m buffer site. The biomass of brook trout did not appear to be

negatively affected by the increased sedimentation for any of the experimental

sites. The biomass of Atlantic salmon did exhibit a decrease within the 20 m

buffer, however it was not significant. The young-of -the-year salmonid

populations increased for all three exper imental sites, with the except ion of brook

trout within the 20 m buffer , which was relatively equal between pre- and post­

harvest observatons. The young-of-the-year salmonid biomass was not

significantly different between pre- and post-harvest for any of the experimental

sites . If there was any effect of sediment on egg incubation and hatching

success, it would have been reflected in young-of-the-year populations . For 1+

and older Atlantic salmon population estimates, the 20 m buffer displayed the

only significant increase between pre- and post-harvest. The brook trout

population estimates were not significant for any of the experimental sites . As

well . the biomass of both salmonid species were not significantl y differen t for any

of the experimental sites .

The impact the changes within the macroinvertebrate community will have on the

salmonids may not be evident until 2002 or later. therefore caution is warranted
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in drawing conclusions as to the impact on the salmon id populations. Changes

appear to have had minimal impact on salmon id productivity during the two year

time frame of this study. However, effects of harvesting on fish population, the

highest trophic level in the aquatic food chain of Hungry Brook, would be

expected to lag observed changes in habitat and at lower trophic levels (e.g.

macroinverteb rates ).

Water temperature is an important determinan t of the occurrence and distribution

of various aquatic fauna (Gordon et a1.1992). Within this study, emphas is was

placed upon the potential impact of water temperature regimes on brook trout

and Atlantic salmon . Changes in water temperatu re and other water quality

parameters have restricted brook trout within headwater streams (MacCrimmon

and Campbell 1969) , and several studies on the effects of timber harvesting on

stream temperature have shown significant maximum stream temperature

increases dUring the summer months (Brown and Krygier 1970; Lynch et al.

1984; Scruton et at. 1998) .

The results of my study do not suggest any adverse effects of harvesting on

water tempera ture regimes for brook trout. The number of hours within various

water temperature classes, defined by brook trout thermal requirements .

changed significantl y only in the optimum catego ry with a decreas e in the 20 m

buffer with selecti ve harvesting and an increase in the 30-50 m buffer with

selective harvest ing . The most notable observa tion was the lethal and stress
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tempe rature classes were not significantly affected . A slightly better growth

potential could be expected within the 30~50 m buffer with select ive harvesting

due to the increase in the number of hours for the optimum class, and in contrast,

for the 20 m buffer with selective harvesting a slight decrease in growth potential

cou ld be expected . Growth potent ial could also affect biomass , however the

biomass of brook trout increased in both of these sites, with a significant increase

observed for the 20 m buffer with selective harvesting .

For Atlant ic salmon, within the 30·50 m buffer with selective harvesting, there

was an increase in the number of hours with in the upper and lethal therma l

regimes. All other sites and temperature classes were not significantly different.

It is poss ible the increases in the upper and lethal thermal categories could result

in a decrease in growth potential , and maybe a slight decrease in population.

The find ings of my study can only be considered within the twoyear time frame

of the research . For this study, only one year of post-harvest data was collected .

Therefore any observat ions should be cautiously assessed with respect to

assessin g harvest ing effects with managed buffe r zones . It is possible some of

the effects , negative and positive, may take longer tha n one year to become

evident. Over the longer term. some of the components of this project are being

studied by the Department of Fisheries and Oceans . These include

sedimentation , temperature regime, salmonid population estimates and biomass.
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6.2 Future research

Further research on the effects of timber harvesting within buffers need to focus

on two areas : the impact of forward ing and nutrient runoff . Firstly , the impact of

forwarding on soil compact ion, and subsequent sub-surface hydrological

characteristics needs to be investigated further since field observa tions from my

study suggest this may be causing long term damage and may be the principal

source of sedimentat ion. The increase in algal consuming Trichopteran s in the

20 m buffer site indicates an increase in nutrient runoff . This study did not

investigate the nutrient levels within the exper imental buffers , however it needs to

be investigated to determ ine whether there could be an increase in primary

production from increased nutrient runoff . And if there is an increase. to what

extent could the nutrient input increase primary production , within the nutrient

poor waters of Newfoundland.

With limited research on these potent ial infractions, and Newfound land 's unique

environmental conditions , the effect of this method of buffer zone management

should be studied over a longer terrn. More data on sedimentati on could assist

in determining whether increased sedimentation occurs over a long time frame or

just immediately post-harvest. As well, the impact of these buffe rs on water

temperature in the longer term should be studied . Furthermore , changes to
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salmonid populations and biomass should be studied to determ ine the long term

effects of th is method of buffer zone manageme nt.

The initial study design for this project included two no harvest site replicates.

Despite immense effort by the researcher to maintain these two areas , there was

partial non-compliance, consequentl y one of the areas was harvested , removing

a no harvest replicate. Therefore, any future research collaborating with the

forestry industry must incrude assurance that harvesting plans will be strictly

adhered to, and this compliance needs to be enforced.

6.3 Recommendations

For this study, a six wheel drive Fabtek forwarder was used with "Eco-tracks" to

enclose the two rear wheels on each side . It was observed that compaction and

rutting was minimal when the forwarder drove over the slash beds left by the

harvester. Howeve r, compactio n and rutt ing were severe in numerous areas as

a result of the machine making numerous passes over the same area. In these

establ ished paths, large ruts were evident. Also, extensive rutting was very

noticeable in the areas that had wet terra in. Whenever the mach ine did not

make repetit ive passes over the same area , and when wetter terrain was

avoided. the effect was minimal.
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These deep ruts, in excess of 0.50 m resulted in water becoming channeled and

confined to these paths, and following repeated passes created very turbid water

with high conc entrations of suspended sediment. The channeled water

eventuall y would overflo w these ruts and the result was suspended sediment

flowing across the slash covered cutover, and entering the stream . Throughout

the landscape there are numerous small tributaries entering headwaters streams,

and it was observed that some of these tributaries became 'feeder' tributaries for

these large ruts. These ruts then become "artttlclat streams" that begin to

domi nate the landscape .

My recom mendation to ameliorat e these negat ive impacts includes altering

forwardin g schedu les to minimize soil disturbance. Winte r harvest ing in areas

near waterbodies could result in negligible soil disturbance . Furthermore, by

forwardlnq during winter months, frozen soil cond itions wou ld minimize the

impact that forwarde r ruts and soil compaction had when conditions were wet.

The findings and observations of this study suggest that concentrated forwarding

with in watersheds should be a concern . Subsequent rutt ing and slttatlon were

observed as problem s even when they were in excess of 200 m from Hungry

Brook . Frequentl y used forward ing trails with minera l soils exposed in the ruts

appeared to be the major problem particu larly on susta ined slopes of stream

valleys. Further, methods to mitigate sediment transport from forwa rder trails to

streams should be developed .
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Of the different experimentat buffers for this study , the 3D-50 m buffer with

selecti ve harvesting appeared overall to have had the least impact, specifica lly in

terms of sedimentation and invertebrate community changes. The 20 m buffer

and the 20 m buffe r with selective ha rvesting showed a decrease in the number

of Plecoptera. possib ly indicating a dec rease in water quality. Furthe r. the 20 m

buffer with selective harvesting site exhibited a large increase in sedimenta tion.

The concept of ecofo restry is based on the understanding tha t there are

thousa nds of life forms that form comp lex communities and whic h live within

forests, or are intima tely dependent on forests such as aquatic ecosystems .

These life forms have intrinsic value which needs to be recogn ized and

respected (Thorn 1997) . Ecoforestry attempts to ma intain these comp lex

interactions while harvest ing forest resources to meet the requirements of

humans over the long-term, in othe r words, sustai nable forestry (Thorn 1997). It

places priority first on maintaining the ecological integrity of forests , so that they

can provide the economic needs of humans and the forestry industry. To this

end , if future research suggests the 30-50 m buffe r with selecti ve harvesting is

superior to the current method of riparian protect ion, more widespread

application of this method to provide adequate protection along waterbodies

should be cons idered . To mainta in susta inab le forests maybe we should be

attempting to leave as much value as we can in a forest, instead of taking as
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much value as we can out of a forest ; a new concept that is long overdue within a

century old industry in Newfoundland .
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Appendix 1

Site S ecies Number
20 m (pre) Habrophfebia vibrans 15

Euryfophefla prudenta/is 1
Acerpenna pygmaeus 27
Drunella comuta 2
Hydropsyche betten; 9
Ceraclea so. 1
Micrasema sp. 4
Polycentropus sp. 2
Pycnopsyche sp. 1
Oxyethira so. 3
Leucfra ferruginea 4
Aeshna eremita 1
Anabofia sp. 2
Hydropt ila metoeca 1
Chironomids 400
Simuliidae 22

20m (post) Oxyethira sp. 155
Leptophlebia cupida 3
Simulliidae 17
Drunella comuta 1
Ceractea sp. 1
Chironomids 99
Habrophtebia vibrans 1
Eury/ophella prudentafis 2
Anabolia sp. 1
Hydroptil a metoaca 1
Acerpenna pygmaeus 1
Leuctra ferruainea 1

20 m with s.h. (pre) Chironomids 390
Simuliidae 15
Acerpenna pygmaeus 40
Drunefla comute 7
Habrophlebia vibrans 3
Eurylophella prude nteNs 1
Lauctra farrug;nea 7
Hydropsyche betten; 23
Oxyethira sp. 4
Anabolia Sf). 1

20 m with s.h. (post) Chironomids 246
Simuliidae 283
Oxyethira sp. 23
HvdroClsvche betten ; 19
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Acerpenna pygmae us 27
Drunella comuta 10
Pycnopsyche sp. 2
HablOphfebia vibrans 3
Ceraclea sp. 8
Podmosta macdunnoug hi 1
EuryJopheffapnJdentalis 2
Ephemerefla subvaria 1
Cheumatopsyche pettiti 1
Dip/ectrona sp. 1
Leuctra ferruginea 1
Lvpe diverse 3

30· 50 m with s.h. (pre) Chironomi ds 266
Simuliidae 144
HabrophJebia vibrans 51
Euryfophel/a pnJdentalis 2
Drune/fa comuta 11
Acerpenna pygmaeus 38
Hydroptifa metoeca 30
Hydropsyche batteni 42
Oxyethira sp. 7
Leuctra ferruginea 3
Leptophlebia cupida 1
Pycnopsycha sp. 2
Glossosoma niarior 1

3Q..50m with s.h. (post) Chirono mids 285
Simuliidae 711
Drunafla comuta 14
Oxyethira sp. 52
Hydropsyche batteni 18
Hydroptila metoeca 22
Leptophleb ia cupida 3
Acarpenna pygmaeus 19
Podmosta macdunnoughi 2
Garac/ea sp. 10
Pycnopsyche sp. 1
Euryfophelle prudentaJis 6
Leuctra fenvginea 16
Po/ycentropus sp. 6
Habro/Jh/ebia vibrans 10

No harvest (pre ) Chironom ids 301
Simul iidae 28
Acerpenna pygmaeus 11
Habrophlebia vibrans 9
Leptoph febia cupida 7
fSO/Jarla transmarina 1
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Leuclra fetTVginea 1
Oxyethira sp. 1
Cheumatopsyche pettiti 1
Pycnopsyche so. 3
Polycentropus sp. 2
PoIycentTopus sp. 1
Hydroptile metoeca 1
Aeshne eremita 1

No harvest (post) Chironomids 196
Simuliidae 241
Lype diverse 2
Podmosta macdunnoughi 15
Leuetra ferrug inea 3
Leptophlebia cupids 6
Habrophlebia vibrans 3
Pycnopsyche sp. 6
Acerpenn e pygmaeus 10
Oxyethira $p. 23
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