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Abstract

The analysis of the existence and form of time trends in repairable systems is an

important issue in reliability studies. Hence, many trend tests have been proposed

and studied in the literature. There has been a recent interest in the use of robust

trend tests based on estimating functions to test the absence of time trends in the

rate functions of recurrent event processes. These tests are appealing because they do

not require strong assumptions about the nature of the processes, and are powerful

in a wide range of settings. In this study, we consider monotone time trends in

recurrent event data from repairable systems, and develop a robust trend test based

on rate functions of the power law processes. Our main goal is to discuss the power of

robust trend tests as well as to compare their power with other well-known trend tests

under various settings. We therefore conducted extensive Monte Carlo simulations to

compute and compare the power of these tests under various scenarios. Finally, we

analyze two data sets from industry to illustrate the methodology.
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Chapter 1

Introduction

The aim of this chapter is to introduce the main goal of this practicum. Some problems

involving recurrent events are discussed in Section 1.1 with practical examples. The

types of data are briefly introduced in Section 1.2. In Section 1.3, we introduce two

motivating examples analyzed later in the practicum. We present a literature review

on trend tests in recurrent events in Section 1.4. The outline of the practicum is given

in the last section.

1.1 Introduction

In many research fields, a well-defined event may repeatedly occur over randomly time

or space. Such an event is called a recurrent event, and processes generating recurrent

events are called recurrent event processes. The data obtained from a recurrent event

process are called recurrent event data. Recurrent event data often arise in various

research areas. For example, in reliability, failures of an air-conditioning equipment

or breakdowns of a machine may repeatedly occur over time (Cox and Lewis, 1966);

in medicine, patients may have repeated asthma attacks (Duchateau et al., 2013); or

in manufacturing, automobile manufacturers collect information on warranty claims
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(Lawless and Nadeau, 1995).

In this practicum, we focus on applications from reliability studies of repairable

systems. A repairable system is a system which can be brought back to the operational

condition after a failure occurrence by some repair process rather than by replacing the

entire system (Rigdon and Basu, 2000). Some examples of such systems include air-

conditioning equipment in aircrafts, printers, automobiles and diesel-operated power

generators etc.

Reliability is a crucial concept for manufacturers and system procedures to be

competitive. Statistical analysis of failure time data obtained from repairable systems

may facilitate reliability enhancement of repairable systems. In repairable systems

contexts, any event causing an unwanted system stoppage is usually defined as a

failure. Since such failures are recurrent, the statistical analysis of failure time data

of repairable systems is conducted under recurrent events framework through models

for recurrent event processes (Cox and Lewis, 1966; Cox and Isham, 1980; Rigdon

and Basu, 2000; Cook and Lawless, 2007).

One of the most important features of recurrent event processes is trend. There

are different definitions of a trend in recurrent event settings. We discuss this issue

in Section 2.3 in some detail. In most of the situations, a trend usually refers either

to a systematic change in the rate of event occurrences over time or to a situation in

which the times between event occurrences are stochastically increasing or decreasing

(Lawless et al., 2012). A trend is called monotonic if the rate of event occurrences

is monotonically increasing or decreasing over time. There are also non-monotonic

trends. Some examples of non-monotonic trends include seasonal fluctuations in the

occurrence of failures in power generators or U shaped rate functions. Non-monotonic

trends are not as common as monotonic trends in applications involving recurrent

events. Therefore, we focus on monotonic trends in this practicum. The reliability of
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repairable systems can be tracked and quantified by using failure data from a single

system or multiple systems. Detection of monotonic trends is a crucial step in the

reliability analysis of repairable systems to reveal problems and improve maintenance

practices. Because of these reasons, the rate of occurrence of failures in a repairable

system is usually monitored in many reliability settings with the goal of revealing the

failure patterns.

Many graphical methods and formal tests have been developed in the literature.

We outlined the frequently used or historically important ones in Section 1.4. Graph-

ical methods are useful to detect patterns in recurrent event data, especially when a

single process is observed over a long period. However, their interpretation is subjec-

tive and the patterns revealed by plots may be affected by the choice of the scales

of x and y-axes. In addition, graphical methods can be inefficient when too many

processes are under observation. Consequently, formal tests for trends have been pro-

posed to detect trends in recurrent event processes. Some of these tests have been

adopted as routine checks for trends in reliability settings. The validity of most of

these tests depend on the assumed “trend-free” nature of the processes as well as the

assumed observation schemes (data accrual period) of the processes (Lawless et al.,

2012).

Recently, robust procedures based on the theory of estimating equations have been

applied to developed tests for trend in recurrent event settings (Cook and Lawless,

2007; Cigsar, 2010; Lawless, et al, 2012). These tests are easy to implement and do

not rely on strong assumptions on the trend-free nature of the processes. The power

of these tests has not been investigated and compared in detail. The main goal of this

practicum is, therefore, to explore the power of robust trend tests and compare them

with other well-known trend tests for recurrent processes.
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1.2 Types of Data

Statistical analysis of recurrent event data is usually based on either times of event

occurrences or times between event occurrences. The event should be well defined.

Times of event occurrences are generally recorded in chronological order. The time

variable t denotes the calendar time or the global time, which means that the event

times are recorded as time since the initial startup of the processes (Rigdon and

Basu, 2000). Another common way of presenting recurrent event data is to use the

times between event occurrences, which is referred to as waiting times or gap times.

The elapsed time since the most recent event time is called the local time or backward

recurrence time (Rigdon and Basu, 2000). Some of these concepts are mathematically

defined in Chapter 2.

The use of event times or gap times for the analysis of recurrent events depend

on the context of a study. Generally speaking, if the event counts are of interest,

recurrent event processes are observed by recording the event occurrence times. In

such cases, the global time scale is a natural choice. On the other hand, the analysis is

often based on the gap times if the interest is in the prediction of the next event time

or in modeling the dependence between gap times. The local time is a canonical choice

with the gap time analysis. There are also some models based on both global and local

time scales (Lawless and Thiagarajah, 1996). These models can be useful if the failure

occurrence are associated with factors related to global time, such as stochastic ageing,

or local times, such as residual effects of repairs. We discuss fundamental models for

repairable systems in Section 2.2.

In many studies, recurrent event data are recorded along with a set of covariates

so that the effects of covariates on the event occurrences can be investigated through

regression models. Covariates in recurrent event studies can be time fixed or time
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varying. We discuss the definitions of different types of covariates in Section 2.2

in more detail. A time varying covariate is called exogenous if its values are not

affected by the event processes under study (Kalbfleisch and Prentice, 2002). Time

fixed covariates are exogenous by their nature. Some examples of fixed covariates

in reliability settings include the brand of a power generator, wall thickness of an

underlying gas pipeline, design of an electronic hardware, etc. Varying demand of

a power generator, seasonality effect for machines working outside and experience of

a dragline operator can be considered as exogenous time-varying covariates. In this

study, we do not discuss how to adjust the methods with covariates. Our main goal is

to compare important tests for monotonic trends in recurrent event processes in terms

of their power to detect trends. Some of the tests used frequently in applications as

well as graphical methods are not readily available to incorporate covariates. Because

of this reason, we focus on the main purpose of trend tests. However, robust tests

for monotonic trends can be easily extended to deal with exogenous covariates. A

discussion on the trend tests with covariates can be found in Lawless et al. (2012).

Data accrual process in recurrent event studies includes a starting time for the

follow-up and an end-of-follow-up time for each process in the study. These times

can be the same for all processes under observation or can vary. In many studies

involving recurrent events, observation of a process starts at an initial time and ends

at a prespecified end-of-followup time. Such an observation scheme is called Type 1

censoring. In such cases, the observed number of events for a process is random and

the last event time is not complete; that is, censored. There is also Type 2 censoring.

In this case, the total number of failures in a process is prespecified. In this case,

the end-of-followup time is random. There are many different versions of Type 1 and

Type 2 censoring schemes. For details of Type 1 and Type 2 censoring schemes and

their ramifications, we refer to Lawless (2003). As discussed in Chapter 3, certain
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trend tests are based on the assumption that the data are collected under a Type 2

censoring mechanism, which is not a common censoring mechanism in applications

comparing with the Type 1 censoring mechanism. It is a common practice to apply

those tests when the true censoring mechanism is Type 1. Lawless et al. (2012)

discussed the validity of some of these well-known tests under this violation through

simulations. Their results showed that these tests may be affected by the violation of

this assumption. We would also like to note that robust trend tests requires that the

start and ed-of-followup times should be completely independent of event processes.

We discuss this issue in Chapter 3 in some detail.

1.3 Motivating Examples

In this section, we discuss two data sets analyzed in Chapter 5 to illustrate the method-

ology discussed in this practicum. These data sets are from industry, and have been

analyzed by many authors as well.

1.3.1 Hydraulic Systems of LHD Machines

Kumar and Klefsjö (1992) presented and analyzed the failure times of a fleet of load-

haul-dump (LHD) machines. The main goal of their analysis was to decide the optimal

preventive maintenance policies for LHD machines operating in a mine in Sweden. For

this reason, they collected the failure time data of the hydraulic systems of LHD ma-

chines. They reported the times between successive failures of six hydraulic systems,

labelled as LHD 1, LHD 2, LHD 9, LHD 11, LHD 17 and LHD 20. This data set can

be found in Table A.1 in Appendix A as the waiting times between successive failures.

Kumar and Klefsjö (1992) categorized the LHD machines into three categories; (i)

new machines (LHD 17 and LHD 20), (ii) medium old machines (LHD 9 and LHD11),
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and (ii) old machines (LHD 1 and LHD 3). The number of failures are 23, 25, 27,

28, 26, and 23 for LHD machines 1, 3, 9, 11, 17, and 20, respectively. We used this

data set to apply the trend tests considered in this practicum in Chapter 5. For our

analysis, we took the last failure time of each machine (i.e., 2496, 3526, 4743, 2913,

3230, and 3309) as the corresponding end-of-follow-up time.

For the optimization of the replacement policies, it is crucial to detect monotonic

trends in the data. Therefore, we applied trend tests to detect the existence or ab-

sence of monotonic time trends in the failures of LHD machines. In the analysis

presented by Kumar and Klefsjö, graphical methods were used to detect any trends.

They applied Cramér-von-Mises test and MIL-HDBK-189 test for single processes to

decide the existence of time trends. In our analysis in Chapter 5, we used trends tests

with combined data for all six LHD machines. We also applied the power law process

model in reliability of repairable systems to analyze this data set.

1.3.2 Failures of Air-Conditioning Equipment

Proschan (1963) analyzed the failure data from air-conditioning equipment in thirteen

Boeing 720 aircrafts. This data set is considered as one of the most cited failure time

data in the history of reliability (Ascher and Feingold, 1983, p. 146; Lawless, 2000).

Cox and Lewis (1966) used this data set to illustrate the trend tests based on rank

statistics and exponentially distributed waiting times between successive failures (i.e.,

Poisson processes). There are only two failures recorded for Aircraft 11 in the original

data set. Therefore, Cox and Lewis (1966) discarded this aircraft from their analysis.

Lawless and Thiagarajah (1996) analyzed the failure data from two aircrafts. Their

analysis included trend tests as well. Cook and Lawless (2007, Section 5.2.4) con-

sidered intensity-based models for a single process to analyze the failure data from
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Aircraft 6. They included both trend and residue repair effects together in a single

model. This types of clustering and trend features of recurrent event processes were

further investigated by Cigsar (2010), who also used the same data set for illustration

purposes. In Chapter 5, we considered four aircrafts (Aircrafts 2, 3, 6 and 7), and

applied the tests given in Chapter 3 for the combined data set. This data set is pre-

sented in Table A.2 in Appendix A as the operating hours between successive failures

of air-conditioning equipment in four aircrafts (Aircrafts 2, 3, 6 and 7).

1.4 Literature Review

Recurrent events can be seen in many research areas. Most of the methodological

developments in the statistical analysis of recurrent events are based on the theory

in counting processes or point processes (e.g., Cox and Isham, 1980; Andersen et al.,

1993; Daley and Vere-Jones; 2003). Much of the early work involving recurrent event

processes focused on the analysis of trends in recurrent event processes. Therefore,

there is a vast literature in the tests for trend in recurrent event processes. As discussed

by Cox and Lewis (1966), reasons for the interest in trend testing include that the

main goal of many studies is to reveal the existence or absence and the type of a trend

and that the most of the statistical methods depend on the presence or absence of

trends in recurrent event processes. In this section, we give a summary of the trend

detection procedures in the literature. We only consider historically important or most

common tests and graphical methods in the literature. Ascher and Feingold (1984)

provide an excellent source on the discussion of the trends in repairable systems.

The graphical methods in the detection of trends in recurrent events have been

discussed by many researchers. As noted by Lawless et al. (2012), these methods



9

are especially useful when a trend detection in single process with many failures is

of interest. In this practicum, we do not consider single process case, but we briefly

discussed some important graphical methods in Section 3.2. A very simple graphical

method is based on dot plots. These plots can give some insight about the failure

patterns in the history of a process. Dot plots are discussed by Rigdon and Basu

(2000). A very useful plot is based on the Nelson-Aalen estimator of the cumulative

mean function. Plots based on the Nelson-Aalen estimator have been discussed in

many studies and applied in many settings. Among them, we refer to Andersen et al.

(1993) for a rigorous treatment of the Nelson-Aalen plots, and Kvaløy and Lindqvist

(1998), Lindqvist (2006) and Cook and Lawless (2007) for practical applications.

Duane (1964) introduced a plot of cumulative failures against cumulative operating

time, and very useful to assess the adequacy of power law processes. This plot is now

referred to as Duane plot, which is discussed by Rigdon and Basu (2000). Another

important graphical method, called the total time on test (TTT) plot, was developed

by Barlow and Campo (1975). The TTT plots was discussed by Klefsjo and Kumar

(1992) and Kvaløy and Lindqvist (1998) in detail. They also developed a test for

trend in interfailure times of a recurrent event process based on TTT plots.

Cox and Lewis (1966) considered trend testing in the third chapter of their seminal

monograph, which is still an excellent source on the analysis of recurrent events and

trend testing. They discussed the development of linear rank test and Laplace test

for monotone trend in single and multiple processes. Both of these tests are discussed

in Chapter 3 of this practicum, and included in our power comparisons in Chapter

4. These tests, especially the Laplace tests, have been later discussed by numerous

authors (e.g., Lawless and Thiagarajah, 1996; Kvaløy and Lindqvist, 1998; Lindqvist,

2006; Lawless et al., 2012). A rigorous treatment of rank statistics is given by Hajek

and Sidak (1967). It should be noted that, as we discuss in the next two chapters,
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the Laplace test is based on the null hypothesis that the trend free process is a

Poisson process. However, the linear rank test is based on the renewal processes as

the model under the null hypothesis. Another such test is called the Lewis-Robinson

test, which was developed by Lewis and Robinson (1973). This test is considered

as a generalization of the Laplace test in the sense that the trend free can be any

renewal process. This test is investigated by many authors as well (e.g., Lawless

and Thiagarajah, 1996; Lindqvist 2006; Lawless et al. 2012; ). We discuss the

Lewis-Robinson test in Section 3.3.2. There are trend tests based on the power law

processes. The power law process and its applications in the reliability of a single

repairable system are discussed by Rigdon and Basu (1989). Baker (1996) introduced

trend tests based on the power law process. She considered both single and multiple

systems. We developed a trend test based on power law process in Chapter 3.

There are also trend tests based on robust methods for the analysis of recurrent

events. These methods are based on the rate or mean functions of processes and using

theory of estimating equations for the development of the tests. The robust procedures

based on these functions in recurrent event processes is discussed by Lawless and

Nadeau (1995). A very useful introduction about the robust methods in recurrent

events, including the trend procedures, can be found in Cook and Lawless (2007,

Chapter 3). Also, more rigorous treatment of robust method are given Lin et al.

(2000). A more detailed discussion of the robust trend tests is given by Lawless et

al. (2012), they extended the Laplace test to the robust version, and called it the

generalized Laplace test for monotonic trend. We discuss this test in Chapter 3.

Furthermore, we follow the procedures given in Lawless et al. (2012) and developed a

robust version of the power law process in Chapter 3. We call this test the generalized

power law process test.

We would like to note that many of the papers mentioned in this section include
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limited power comparisons of the tests discussed. However, a more comprehensive

power comparison of the trend tests is still not widely available. Some important

papers in this context include Bain et al. (1985), where the power comparison of five

trend tests was given for single processes. A more detailed power comparison of three

trend tests, including the Lewis-Robinson test, rank test and the generalized Laplace

test, is given by Cigsar (2010). In this practicum, we considered seven tests including

two robust tests for trend.

1.5 Main Goal and Outline of the Practicum

In this section, we outline the remaining part of the practicum. The main goal of this

practicum is to compare important formal statistical tests for the absence of mono-

tonic trends in recurrent event processes in terms of their power in various settings.

Therefore, we first introduce important trend tests including Laplace test, rank test,

and Lewis-Robinson test which are frequently applied for the detection of monotonic

trends in recurrent event studies. Trends due to stochastic ageing in recurrent event

processes can be included in some basic models, such as non-homogeneous Poisson

process and renewal processes. An important limitation of the many existent trend

tests is that they require an assumption for trend-free model, which is usually a homo-

geneous Poisson process or renewal process. Our primary objective in this practicum

is to discuss trend tests based on robust methods, and compare their power with other

well-known trend tests. Our hypothesis is that robust trend tests provide good power

when the assumed trend-free model is correct or mildly misspecified as long as as-

sumed simple marginal characteristics of the processes such as rate or mean functions

are true. Therefore, robust tests can be applied as routine checks for the presence or

absence of monotonic trends in recurrent event processes without any detailed model
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assumptions. A power comparison of tests for trend is to provide an information

prospective in order to show the competitive advantage of robust trend tests.

In Chapter 2, we introduce the notation used in this practicum, mathematical

background and some foundational models for recurrent event processes. The defi-

nition of trends in recurrent event processes are discussed, not only in mathematical

and statistical point of views, but also from a practical perspective. We also introduce

the simulation procedures, which lead to the results given in Chapter 4.

In Chapter 3, we introduce the trend tests used in power studies. We first re-

view important tests for monotonic trends, which are widely applied in practice (e.g.,

Laplace test, power law process test, rank test, and Lewis-Robinson test) in identical

processes settings. We then discuss the development of two robust trend tests; the

generalized Laplace test and the generalized power law process (PLP) test in iden-

tical processes settings. To our knowledge, the generalized PLP tests has not been

discussed in the literature before. Therefore, we focus mostly on this test. Next, we

discuss all of these trend tests in non-identical processes settings.

In Chapter 4, we first introduce our setup for the simulation studies. This include

the models under the null hypothesis of the absence of a monotonic trend and the

models under the alternative hypothesis of an monotonically increasing trend. In

the subsequent sections, we give the steps of simulations in all cases considered in

simulation studies. In the simulations, we consider the accuracy of the standard

normal approximations under the trend-free models including a homogeneous Poisson

process, a renewal process with gamma distribution and delayed renewal processes

for identical and non-identical cases. Next, we study the power of the tests, and give

detailed explanation of this simulation study. The simulation results are presented in

Appendices B and C. We summarize the results of the simulation studies in the final

section of this chapter.
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We analyze two data sets from industry in Chapter 5. Our main goal with these

analyses is to illustrate the methods discussed in the previous chapters. Finally, we

give a conclusion and future work on trend testing in Chapter 6.



Chapter 2

Concepts and Terminology

A stochastic process is called a point process if it defines random occurrences of point

events over time or space. In this practicum, the times of event occurrences are failure

times of a repairable system observed as points on the time axis. Recurrent events

are usually modeled under the point process framework (Cox and Isham, 1980; Daley

and Vere-Jones, 2003). Fundamental models for recurrent events include renewal

processes, homogeneous Poisson processes which is also a special case of renewal

processes, and non-homogeneous Poisson processes. We introduce these models in

Section 2.2, and discuss their roles in testing for trends in recurrent event processes.

The goal of this section is to introduce the notation and some concepts that are

frequently used in this practicum.

2.1 Terminology and Notation

Suppose that m independent processes are under observation. We let Ti1, Ti2, . . .

denote the event times of the ith process (i = 1, . . . ,m), where 0 < Ti1 ≤ Ti2 ≤ . . . .

From now on, an event refers to any reason that causes an unexpected system stoppage

in a repairable system, and we call it a failure for most of the remaining part of
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this practicum. Thus, Tij denotes the time of the jth failure in the ith process, for

i = 1, . . . ,m and j = 1, 2, . . . . By convention, we also let Ti0 = 0 for i = 1, . . . ,m.

The jth gap (or waiting) time of the ith process is then defined by Wij = Tij −Ti,j−1,

for i = 1, 2, . . . ,m and j = 1, 2, . . . .

We let the random variable Ni(t) denote the number of failures in the ith process,

i = 1, . . . ,m, over the time interval (0, t]; that is, Ni(t) =
∑∞

j=1 I(Tij ≤ t), where

I(·) is a typical 0 − 1 valued indicator function and Ni(0) = 0. As an extension of

our notation, we next define Ni(s, t) to represent the number of failure occurrences

over the time interval (s, t]; that is, N(s, t) = N(t) − N(s) for any 0 ≤ s < t. We

let {Ni(t); t ≥ 0} denote a counting process. Many properties of counting processes

on the positive real line R+ can be found in point process books (e.g., see Daley and

Vere-Jones, 2003, Chapter 3). For example, the counting process {Ni(t); t ≥ 0} has

the mean function µi(t), where

µi(t) = E{Ni(t)}, t ≥ 0, (2.1)

which gives the expected number of failures over [0, t]. Assuming that µi(t) is differ-

entiable, the rate function (also sometimes called the rate of occurrence of failures or

shortly, ROCOF) for process i is then defined as

ρi(t) =
dµi(t)

dt
= µ

′

i(t), t ≥ 0. (2.2)

It follows that

E{∆Ni(t)} = ρi(t)∆t+ o(∆t), (2.3)

where ∆Ni(t) = Ni((t+△t)−)−Ni(△t−) represents the number of events in a short

interval [t, t + ∆t), and o(∆t) is a quantity that goes to zero more quickly than ∆t
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when ∆t tends to zero.

We say that a point process has stationary increments if, for any positive t and h,

the number of failures in (t, t+h] has the same distribution as the number of failures in

any other interval of length h. We also say that process has independent increments if,

for any disjoint partition of the interval [s, t] such that 0 ≤ l1 < u1 ≤ · · · ≤ lK < uK ,

we have Pr{Ni(l1, u1) = n1,. . . , Ni(lK , uK) = nK} =
∏K

k=1 Pr{Ni(lk, uk) = nk}.

Following the independent increments property, we call a point process {Ni(t); t ≥ 0}

without aftereffect if, for any 0 < l1 < l2 < · · · < lK and all K, Pr{Ni(lK−1, lK) =

nK |Ni(lk) = nk; k = 1, . . . , K − 1} = Pr{Ni(lK−1, lK) = nK}, where nk = 0, 1, 2, . . . ,

for all k = 1, . . . , K. A point process is without aftereffect if and only if it has

independent increments. A proof of this assertion can be found in Thompson (1988,

p.21).

We next let Hi(t) = {Ni(s); 0 ≤ s < t} denote the history of the ith process,

i = 1, . . . ,m. The history Hi(t) includes all observed information about the random

variable Ni(t) over the interval [0, t). Another essential concept, which gives the

instantaneous probability of an event (failure) that occurs at time t, conditional on

the process history Hi(t), is the intensity function λi(t|Hi(t)) of a counting process

{Ni(t) : t ≥ 0}. It is mathematically defined as follows.

λi(t | Hi(t)) = lim
△t↓0

Pr{△Ni(t) = 1 | Hi(t)}
△t

, t > 0. (2.4)

The intensity function (2.4) completely specifies a counting process in the continuous

time scale, in which more than one event cannot occur simultaneously at any time

t > 0 (Cook and Lawless, 2007, p.10).

The survival function of a positive valued continuous random variable W is given
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by

S(w) = Pr(W > w) =

∫ ∞

w

f(s)ds = 1− F (w), w > 0, (2.5)

where F (w) is the cumulative distribution function (c.d.f.) of W and f(w) is the

probability density function (p.d.f.) of W. The hazard function h(w) gives the con-

ditional probability of a failure at time w in the limit as ∆w approaches zero, given

that the individual survives up to w, where w > 0. That is,

h(w) = lim
△w↓0

Pr(w < W ≤ w +△w|W > w)

△w
=

f(w)

S(w)
, w > 0. (2.6)

Survivor and hazard functions are especially useful in modeling the gap times.

Let Yi(t) denote the at risk indicator function for process i, This is, Yi(t) = 1 if

the ith process is under observation and at risk of a failure at time t, and Yi(t) = 0,

otherwise. At risk indicator Yi(t) can be useful when extending the methods to the

cases with more complicated observation schemes. For example, in the simplest case,

where the process i is continuously observed over [0, τi] and τi is a fixed end-of-follow-

up time, then Yi(t) = I(0 ≤ t ≤ τi). Following this discussion, the τi can be random

variables as well. For example, if the ith process is continuously observed over [0, τi]

and censored randomly at time τi, then Yi(t) = I(0 ≤ t ≤ τi) which makes Yi(t)

a random variable. In a more complicated observation scheme, the τi can depend

on the history of a process. In this case, they are called stopping times (Daley and

Vere-Jones, 2003, p. 49). In this practicum, we consider the simple case in which

Yi = I(0 ≤ t ≤ τi) and the τi are fixed. However, many of the methods based on the

intensity function (2.4) are still valid under more complicated observation schemes

as long as the at risk indicator Yi(t) and the counting process {Ni(t); t ≥ 0} are

conditionally independent, given the history of the process Hi(t) at any time t > 0.

One exception is the robust procedures based on the mean or rate functions. In this
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case, it is required that Yi(t) and {Ni(t); t ≥ 0} are independent. This condition

excludes observation schemes in which the τi are stopping times. More discussion on

stopping times can be found in Cook and Lawless (2007, Section 2.6).

2.2 Fundamental Models

The nature of repairs undertaken after each failure defines statistical models for the

analysis of failure time data in the context of repairable systems. The concept of a

minimal repair means that the repair conducted on a system after a failure leaves the

system in an “exactly the same” condition as it was just before the failure (Rigdon

and Basu, 2000). A system subject to minimal repair is usually modeled through

Poisson processes, which are discussed in Section 2.2.1. Another common assumption

about the nature of a repair is called a perfect repair, which means that, after each

failure, repairs bring the system to a like new condition. In other words, the system is

renewed after each repair conducted after a failure. Renewal processes are canonical

models for modeling perfect repairs. We discuss the renewal processes in Section 2.2.2.

2.2.1 Poisson Processes

Poisson processes are useful when there is an interest in modeling the counts in re-

current event processes. There are different ways to characterize a Poisson process,

one way is through the counting process properties for non-overlapping time intervals

(Daley and Vere-Jones, 2003, Chapter 2). Another way is through the intensity func-

tion given in (2.4). A counting process {Ni(t); t ≥ 0} is a Poisson process if and only

if its intensity function is equal to its rate function (Cook and Lawless, 2007). That

is, in a Poisson process

λi(t|Hi(t)) = ρi(t), t ≥ 0. (2.7)
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Therefore, the intensity function of a Poisson process is independent of the history of

the process. This fact implies that the probability of a failure in [t, t +∆t) does not

depend on failures occurred in the past. From the relation in (2.7), we can show that,

for Poisson processes,

Pr{∆Ni(t) = 0} = 1− ρi(t)∆t+ o(∆t), (2.8)

Pr{∆Ni(t) = 1} = ρi(t)∆t+ o(∆t), (2.9)

and

Pr{∆Ni(t) ≥ 2} = o(∆t). (2.10)

Poisson processes possess the independent increments property explained in Sec-

tion 2.1. For any 0 ≤ s < t, in a Poisson process,

Pr{Ni(s, t) = k} = 1

k!
[µi(s, t)]

ke−µi(s,t), k = 0, 1, 2, . . . , (2.11)

where µi(s, t) =
∫ t

s
ρi(u)du is the expected number of failures in [s,t]. The result

(2.11) implies that, if {Ni(t); t ≥ 0} is a Poisson process with rate function ρi(t), the

random variable Ni(s, t) has a Poisson distribution with mean µi(s, t) =
∫ t

s
ρi(u)du.

In addition, {Ni(t); t ≥ 0} is a Poisson process if and only if it has independent

increments property. The proofs of these well-known results can be found, for example,

in Rigdon and Basu (2000, Chapter 2).

If the Poisson process {Ni(t); t ≥ 0} has a constant intensity or rate function;

say, ρi(t) = ρ, where ρ is a positive constant, the process i is called a homogeneous

Poisson process (HPP); otherwise, it is called a non-homogeneous Poisson process

(NHPP). This distinction is important in the context of trend testing. As we discuss

in Section 2.3, an HPP model defines a constant rate of occurrence of failures over
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time, which implies that the model is free of any type of trend in its rate function.

On the other hand, a NHPP is a useful model for the analysis of repairable systems,

and can incorporate time trends in its rate function.

NHPP models are canonical when repairable systems are subject to minimal re-

pairs and time trends due to stochastic ageing (Lai and Xie, 2006). An important

NHPP model is of exponential form, in which the rate function is defined as follows.

ρi(t;αi, β) = eαi+βt, t ≥ 0, (2.12)

where αi, β ∈ R are unknown parameters. Another common NHPP model is the

power law process (PLP) with the rate function

ρi(t; θi, β) =
β

θi

(
t

θi

)β−1

, t ≥ 0, (2.13)

where β, θi > 0, i = 1, . . ., m, are unknown parameters (Rigdon and Basu, 1989).

In many applications, the values of some explanatory variables are recorded along

with the failure times. Such covariates can be easily included in Poisson processes

as explained by Cook and Lawless (2007, Section 2.2.2). This can be summarized

as follows. Let xi(t) denote a p × 1 vector of external time varying as well as fixed

covariates for process i. We consider Xi(t) as a covariate process denoted by Xi(t) =

{xi(s); 0 ≤ s ≤ t}. The rate function of a Poisson process is then of the form

ρi(t|Xi(∞)). Note that the rate function is conditional on the complete path of

the covariate process, which is denoted by Xi(∞). However, since the covariates are

assumed to be of exogenous types, at any time t, ρi(t|Xi(∞)) = ρi(t|Xi(t)). Therefore,

the interpretation of the rate function is based on the covariate process Xi(t) for any

t ≥ 0. Following this discussion, the exponential model (2.12) can be extended to
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include the covariates with the rate function

ρi(t|Xi(∞)) = ρi(t|xi(t)) = ρi0(t;αi, β) exp(γ
′

xi(t)), t ≥ 0, (2.14)

where ρi0(t;αi, β) = exp(αi + βt) is called the baseline rate function with parameters

αi and β, and γ is a p× 1 vector of regression parameters.

We now state some well-known theorems, which will be used later in this practicum.

The first one is useful to generate realizations of a HPP. Its proof can be found, for

example, in Rigdon and Basu (2000, Section 2.2).

Theorem 2.2.1. Let {Ni(t); t ≥ 0} be a counting process with the intensity function

λi(t|Hi(t)). Then it is an HPP with λi(t|Hi(t)) = ρ if and only if the gap times Wij,

j = 1, 2, . . . , are independent and identically distributed exponential random variables

with mean ρ−1.

Second theorem is useful to generate realizations of a NHPP. A proof of the theo-

rem can be found in Thompson (1988, p. 59).

Theorem 2.2.2. Let {Ni(t); t ≥ 0} be a NHPP with the mean function µi(t). Then

Wij, j = 1, 2, . . . , are the gap times of the process {Ni(t); t ≥ 0} if and only if the

random variables µ(Wij), j = 1, 2, . . . , are the gap times of a HPP with the rate

function ρi(t) = 1.

2.2.2 Renewal Processes

Renewal processes and their extensions provide canonical models when there is an

interest in the analysis of gap times in recurrent event processes. A renewal process

{Ni(t); t ≥ 0} is a stochastic process in which the gap times are independent and

identically distributed (i.i.d.). Following this definition, for i = 1, . . . ,m, if we let
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Wij, j = 1, 2, . . . be i.i.d. non-negative random variables with the c.d.f Fi(w), w > 0,

then the counting process {Ni(t); t ≥ 0}, where

Ni(t) = max{k : Tini
= Wi1 +Wi2 + · · ·+Wik ≤ t},

is called a renewal process. In this case, the intensity function of the process {Ni(t); t ≥

0} is given by

λi(t|Hi(t)) = hi(Bi(t)), t ≥ 0, (2.15)

where Bi(t) = t − TiNi(t−) is the backward recurrence time, which gives the elapsed

time since the most recent failure time. The function h(·) in (2.15) is the hazard

function for the gap times Wij, j = 1, 2, . . . , which is defined in Section 2.1.

Many properties of renewal processes are rigorously investigated in point process

books (e.g., see Cox and Isham, 1980, Section 3.2; Rigdon and Basu, 2000, Chapter 3;

Daley and Vere-Jones, 2003, Chapter 4). We summarize some of the important ones

here. First note that the events “Ni(t) ≥ k” and “Tik ≤ t”, for any k = 0, 1, 2, . . . and

t > 0, are equivalent. Therefore, Pr{Ni(t) = k} = Pr{Tik ≤ t} − Pr{Ti,k+1 ≤ t}. Let

Fik(t) be the c.d.f of Tik; that is, Fik(t) = Pr{Tik ≤ t}. Then, for any renewal process

{Ni(t); t ≥ 0}, we have µi(t) = E{Ni(t)} =
∑∞

k=1 Fik(t). This last result follows from

the fact that µi(t) = E{Ni(t)} =
∑∞

k=1 k Pr{Ni(t) = k}.

In renewal processes settings, the mean of the distribution of Ni(t) is usually called

the renewal function, which is of interest in many applications. It can be, however,

difficult to find a closed form of it. Exceptions include the cases in which the Wij

are i.i.d. gamma, exponential, or normal random variables. For example, if the Wij

are i.i.d. exponential random variables with rate ρ, then the renewal function of

{Ni(t); t ≥ 0} is µi(t) = ρt, t ≥ 0. We would like to note that the HPP with the
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rate function ρ defined in Section 2.2.1 satisfies the definition of a renewal process

in which the gap times are i.i.d. exponential random variables with mean ρ−1 (Cook

and Lawless, 2007). Let µi be the expected value of gap time Wij, j = 1, . . . ; that

is, E{Wij} = µi for the ith process, i = 1, . . . . Then, the average number of events

on (0, t], Ni(t)
t

, goes to 1
µi

with probability 1 as t goes to infinity. Elementary renewal

theorem is very useful and important in recurrent events analysis. It can be expressed

as the average of the mean of number of events µi(t) on (0, t], µi(t)
t
, converges to 1

µi
as

t goes to infinity.

If the process i, i = 1, 2, . . . , does not begin at an original point, we can not

use a natural renewal process to deal with the case. Cox and Isham (1980) intro-

duced a modified renewal process by comparing the distributions of gap times Wij,

j = 1, 2, . . . . If the gap times Wi2, Wi3, . . . are independent and identically dis-

tributed random variables, but the first gap time Wi1 follows a different distribution.

By the definition of renewal process, we can find that the renewal process starts from

the second gap time, therefore, we call it as delayed renewal process in this practicum.

Delayed renewal processes are very common, hence, we consider this case in simulation

studies later.

2.3 Definitions of Trends in Recurrent Events Pro-

cesses

In this section, we discuss the definition of a trend in recurrent event processes. In

many settings, a trend is simply defined as a systematic variation in either event

occurrence rate of a process or gap times between successive events. Even though it

sounds like a simple concept, it is in fact complex. For example, White and Granger

(2011) denoted that there is no generally accepted definition of a trend in time series.
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Similarly, Ascher and Feingold (1984) and Lawless et al. (2012) discussed the difficulty

in stating a general definition of a trend in recurrent event processes. Nonetheless,

we give the most common formal definitions of a trend or absence of a trend below.

These definitions are based on families of models introduced in Section 2.2.

The first family of models that can incorporate time trends is the Poisson processes.

As discussed in the previous section, NHPPs can be used to model time trends in the

rate of occurrence of failures. In this case, the trend free model corresponds to a HPP;

that is, the rate function (2.2) is constant for all t > 0. A monotonic time trend can

be included in the rate function by a designated function g(t) as follows. Suppose that

the NHPP {Ni(t); t ≥ 0} has the rate function ρ(t) = α exp{βg(t)}, where g(t) is a

specified function, α is a positive valued parameter and β is a real valued parameter.

For example, a choice of g(t) = t for t > 0 leads to the well known model behind the

Laplace test for trend. In this case, we want to test the trend free null hypothesis

H0 : β = 0 against the trend alternative hypothesis H1 : β 6= 0, where α > 0 is a

nuisance parameter.

An important disadvantage of the trend tests based on Poisson processes is that

the trend free process needs to be a HPP. However, there are trend free processes

which are not Poisson. This includes renewal processes introduced in Section 2.2.2.

Let {Ni(t) : t ≥ 0} be a renewal process with the rate function ρ(t), t ≥ 0. In this

case, by definition, the gap times, Wij, j = 1, 2, . . . , are i.i.d. random variables with

c.d.f. F (w), w > 0. A trend test then can be based on the null hypothesis H0 : the

Wij (j = 1, 2, . . . ) are i.i.d. In other words, we want to test whether the process

{Ni(t) : t > 0} is a renewal process or not. It should be noted that, since a HPP

is a special case of renewal processes in which the Wij are i.i.d. exponential random

variables with a constant rate function, the tests based on renewal processes can be

also used to test HPPs under the null hypothesis. We would like to note that the
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rate function ρ(t) of a renewal process Wi1,Wi2, . . . converges to E{Wij}−1, which

is a constant, as t approaches infinity. Therefore, the trend tests based on constant

rate functions in the null hypothesis can be used for testing the trend in renewal

processes observed long enough. However, the rate function of a renewal process may

fluctuate significantly for small values of t (Lawless et al, 2012), and the tests based

on constant rate functions may lead to the wrong conclusion about trends for such

renewal processes. In the renewal process framework, the monotonic trend alternative

usually includes a model in which the gap times Wij either stochastically increases or

decreases as j (j = 1, 2, . . . ) increases.

Many trend tests proposed in the literature have been focusing on the above two

trend free null hypotheses. Other definitions of the absence of a trend in a process

can also be given. For example, a process which produces identically distributed gap

times Wij (j = 1, 2, . . . ) can be considered as a trend free process. An exponential

autoregressive process of order 1 (EAR 1) where the Wij (j = 1, 2, . . . ) are identically

distributed but not independent can be given as an example (Cox and Isham, 1980,

p. 62). The trend tests based on renewal processes under the null hypothesis may

not be valid in such cases.

A more general definition of a trend free process can be obtained by checking for

stationarity of the processes. As defined by Cox and Isham (1980, Section 2.2), a

point process is called stationary if the translation of the time axis does not alter its

structure. In this sense, any point process that is stationary with respect to certain

characteristics can be considered as a trend free process. Many properties of stationary

processes have been discussed by Cox and Lewis (1966) and Cox and Isham (1980).

In this practicum, our goal is to compare the trend tests frequently used in practice

with trend tests based on robust methods. We focus on monotonic time trends. We

therefore consider the definition of trend free process either a renewal process or the
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process has a constant rate function. HPP is a special case of renewal processes, but

because of its importance, we investigate it as a separate case. We therefore consider

three trend free null hypothesis

(1) the process is a HPP with rate function α > 0.

(2) the process is a renewal process but not a HPP.

(3) the process has a constant rate function. (We do not specify any model in this

case).

In Chapter 3, we discuss important trend tests developed under above null hy-

potheses for multiple processes under observation simultaneously. Their asymptotic

properties and power were discussed in Chapter 4.

2.4 Likelihood Function for Recurrent Event Pro-

cesses and Related Procedures

Likelihood function for recurrent event processes can be written in terms of inten-

sity functions. Suppose that m independent processes are under observation. Let

{Ni(t), t ≥ 0} be the ith recurrent event process with the associated intensity func-

tion λi(t|Hi(t)), i = 1, . . . ,m. As discussed in Section 2.1, the intensity function

λi(t|Hi(t)) completely specifies the process {Ni(t); t ≥ 0} in the continuous time

scale. Suppose that the ith process is observed over the time interval [τ0i, τi], where

τ0i and τi are prespecified positive values such that 0 ≤ τ0i < τi. We now state the

likelihood function for the outcome “ni ≥ 0” events observed at times ti1 ≤ · · · ≤ tini

over the interval [τ0i, τi] for m independent processes.

Theorem 2.4.1. Following the setting stated above, the likelihood function for the

outcome “ni ≥ 0 events observed at times ti1 < · · · < tini
over [τ0i, τi], i = 1, . . . ,m”
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conditional on Hi(τ0i) is given by

L =
m∏

i=1

Li, (2.16)

where

Li = {
ni∏

j=1

λi(tij|Hi(tij))} exp{−
∫ τ

τ0i

λi(u|Hi(µ))du} (2.17)

A sketch proof of the above theorem is given by Cook and Lawless (2007, Section

2.1). A more rigorous treatment of the likelihood function for recurrent event processes

can be found in Daley and Vere-Jones (2003, Chapter 7). From now on, we assume

that the observation of a process starts at time 0 and so we take τ0i = 0, i = 1, . . . ,m.

Unless stated otherwise, the methods also work when the τ0i are not equal to zero.

Let the intensity function be parameterized by a p × 1 vector of parameters θ =

(θ1, . . . , θp)
t, where t stands for a vector transpose. Then, the likelihood function is

given by

L(θ) =
m∏

i=1

Li(θ), (2.18)

where

Li(θ) = {
ni∏

j=1

λi(tijH(tij); θ)} exp{−
∫ τi

0

λi(u|Hi(u); θ)du} (2.19)

The log likelihood function l(θ) = logL(θ) is

l(θ) =
m∑

i=1

li(θ), (2.20)

where

li(θ) =

ni∑

j=1

logλi(tij|H(tij); θ)−
∫ τi

0

λi(u|Hi(u); θ)du. (2.21)
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The p×1 score vector U(θ) = (U1(θ), . . . , Up(θ))
t includes the components of the form

Uk(θ) = ∂l(θ)/∂θk, k = 1, . . . , p, (2.22)

which are called score functions. Under some regularity conditions, an estimate of

θ, denoted by, θ̂ = (θ̂1, . . . , θ̂p)
t can be found by solving U(θ) = 0 for θ = θ̂, where

0 is a p × 1 vector of zeros. The Uk(θ) = 0, k = 1, . . . , p, are called the maximum

likelihood equations and the θ̂k are called the maximum likelihood estimators of the

θk, k = 1, . . . , p.

We next let I(θ) denote the p × p information matrix with components Ikl(θ) =

−∂2l(θ)/∂θk∂θl for k, l = 1, . . . , p. Similarly, we let J(θ) denote the p × p expected

or Fisher information matrix. That is, J(θ) = E{I(θ)}. Suppose that we want to

test the null hypothesis H0 : θ = θ0 where θ0 = (θ01, . . . , θ0p) are specified values of

parameters. The score test statistic for testing H0 is then defined by

δ = U t(θ0)J(θ0)
−1U(θ0). (2.23)

Under regularity conditions specified by Andersen et al (1993, Section VII 2.2), the

asymptotic distribution of the test statistic (2.23) is a chi-squared distribution with

p degrees of freedom under the null hypothesis as m approaches infinity (Cook and

Lawless, 2007).

Now, let the parameter vector θ be partitioned as θ = (αt, βt)t, where α =

(α1, . . . , αr)
t is an r × 1 vector of parameters and β = (β1, . . . , βq) is a q × 1 vec-

tor of parameters and r + q = p. We next define the score vectors Uα(θ) and Uβ(θ),

where

Uα(θ) =

[
∂l(θ)

∂α1

, . . . ,
∂l(θ)

∂αr

]t
, (2.24)
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and

Uβ(θ) =

[
∂l(θ)

∂β1

, . . . ,
∂l(θ)

∂βq

]t
. (2.25)

We next partition the information and Fisher information matrices accordingly. For

example, the partitioned information matrix is given by

I(θ) =



Iαα(θ) Iαβ(θ)

Iβα(θ) Iββ(θ)


 , (2.26)

where Iαα(θ) is an r × r matrix with components Ikl(θ) = −∂2l(θ)/∂αk∂αl for k, l =

1, . . . , r, Iαβ(θ) is an r × q matrix with components Ikl(θ) = −∂2l(θ)/∂αk∂βl for

k = 1, . . . , r and l = 1, . . . , q, etc. We also define the inverse of (2.26) as

I−1(θ) =



Iαα(θ) Iαβ(θ)

Iβα(θ) Iββ(θ)


 . (2.27)

Similarly, the expected or Fisher information matrix is then J(θ) = E[I(θ)] and given

by

J(θ) =



Jαα(θ) Jαβ(θ)

Jβα(θ) Jββ(θ)


 , (2.28)

and its inverse matrix is denoted by

J−1(θ) =



Jαα(θ) Jαβ(θ)

Jβα(θ) Jββ(θ)


 . (2.29)

Now, suppose that β0 is a specified value of β. Let α̃(β0) be the value of α that

maximizes L(α, β) or equivalently l(α, β). The functions L(α̃(β), β0) and l(α̃(β), β0)

are called profile likelihood and profile log likelihood functions for β, respectively. Let’s

consider the null hypothesis H0 : β = β0 and let α be vector of nuisance parameters.
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We also let θ̃0 = (α̃(β0)
t, βt

0)
t. A partial score test statistic for testing H0 is then

defined by

S2 = U t
β(θ̃0)J

ββ(θ̃0)Uβ(θ̃0). (2.30)

A test for H0 based on (2.30) is called a partial score test. Under the null hypothesis

H0 and some regularity conditions, the asymptotic distribution of S2 is a chi squared

with q degrees of freedom as m goes to infinity (Boos, 1992). It should be noted that

the same asymptotic result holds for any consistent estimator of Jββ(θ0) replaced

with Jββ(θ̃0) in (2.30). We are going to use these results later in Chapter 3 in the

development of a robust trend test.

2.5 Simulation Procedures

In this section, we first discuss how to generate realizations of a recurrent event process

with a given intensity function. We then provide steps of a general algorithm used in

this practicum, and discuss the methods based on the simulations.

2.5.1 Simulation of a Recurrent Event Process

Simulation of stochastic processes has been discussed by many authors. A procedure

which is sufficient for our purposes in this practicum is given by Daley and Vere-Jones

(2003) and Cook and Lawless (2007). We used this procedure to generate realizations

of recurrent event processes. It can be explained as follows.

Suppose that m independent processes are under observation and observation over

the time interval [0, τi], i = 1, . . . ,m. Let λi(t|Hi(t)) be the associated intensity

function of the ith process. It can be shown that

Pr{Ni(s, t) = 0|Hi(s
+)} = exp{−

∫ t

s

λi(u|Hi(u))du}, (2.31)
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where Hi(u) = {Hi(s
+), Ni(s, u) = 0; 0 ≤ s < u} in the integral. A proof of

this assertion is given by Cook and Lawless (2007, p.30). Note that the events

“Ni(ti,j−1, ti,j−1+w) = 0|Hi(ti,j−1)” and “Wij > w|Ti,j−1, Hi(ti,j−1)” are equivalent.

Therefore, from the result in (2.31), we have

Pr{Wij > w|Ti,j−1 = ti,j−1, Hi(ti,j−1)} = exp{−
∫ ti,j−1+w

ti,j−1

λi(u|Hi(u))du}, (2.32)

which follows a standard uniform distribution denoted by U(0, 1). The conditional

distribution of Wij in (2.32) given the previous event history can be used to generate

realizations of a recurrent event process by considering the gap times as follows. Let

Eij (i = 1, . . . ,m, j = 1, 2, . . . ) be a random variable defined by

Eij =

∫ ti,j−1+Wij

ti,j−1

λi(u|Hi(u))du. (2.33)

Then, from the result in (2.32), we have that Uij = exp{−Eij} for i = 1, . . . ,m and

j = 1, 2, . . . , which follows a standard uniform distribution. Therefore, given H(ti,j−1)

and ti,j−1, the random variable Eij = −logUij has a standard exponential distribu-

tion denoted by Eij ∼ Exp(1). We next provide a general algorithm to generate

realizations of a recurrent event process for a given intensity function.

2.5.2 Algorithms

In this practicum, we generate realizations of multiple recurrent event processes with

and without monotonic time trends. The major processes considered include HPPs,

RPs and delayed RPs for trend free processes and their trend alternatives.

A general algorithm for generating realizations of a recurrent event process with

the intensity function λi(t|Hi(t)) is given below. In Chapter 4, we give the algorithms
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used for each simulation scenarios separately. All of those algorithms are based on

this general one. The algorithm used in this study is then given as follows:

1. Set Pseudo-random number j=1 and initialize ti0 = 0 for process i.

2. Generate Uij ∼ U(0, 1).

3. By Tij ← ti0 − log(Uij), set the transformation as Eij = −log(Uij).

4. Calculate Wij by solving Eij =
∫ ti,j−1+Wij

ti,j−1
λi(t|Hi(t))dt. And the jth event time

Tij = ti,j−1 +Wij.

5. Deliver ti,j−1 = Ti,j−1 and j = j + 1 if Tij < τ . Otherwise, stop and Wi,ni+1 =

τ − Ti,ni

6. Go to Step (1)

The gap times Wij are equal to
−log(Uij)

ρ
if we generate the data from a HPP with the

rate function as ρ. It should be noted that in the above algorithm, we may need to

solve the integral Eij =
∫ ti,j−1+Wij

ti,j−1
λi(u|Hi(u))du numerically. A numeric method for

this purpose is explained by Lawless and Thiagarajah (1996). In this practicum, we

use R software in all simulations.

2.5.3 The Use of Simulations

We used simulations to study accuracy of the limiting distributions of trend tests in

finite sample sizes and obtain power of the trend tests considered in this practicum.

Using the algorithm explained previously, we generated D realizations of m (m > 1)

independent recurrent event processes under a trend free null hypothesis. Let Z be

one of the trend tests considered in this practicum. For d = 1, . . . , D, we calculated

the value of the test statistic, denoted by Zd, and values of other test statistics by
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using the same generated data. We then kept their values in D dimensional vectors.

We used these vectors to study the distribution of the test statistics under the null

hypotheses by using the normal quantile-quantile (Q-Q) plots.

As discussed in Section 2.4, the partial score statistic given in (2.30) is asymp-

totically χ2
(p) under the null hypothesis H0 : β = β0, where β is a p × 1 vector of

parameters. A p-value of the test can be calculated by using this approximation for

large values of m. If the χ2
(p) approximation is not accurate, a p-value can be obtained

with simulations as explained next.

Let Z⋆ be the value of the test statistic calculated using the observed data. We

generate D data sets under the null hypothesis with the algorithm given previously.

For each generated data set, we calculate the test statistic, denoted by Zd, d =

1, . . . , D. The estimated p-value is then given by

∑D
d=1 I(Zd > Z⋆)

D
. (2.34)

In this practicum, we considered the cases in which the degree of freedom of the chi-

square distribution is 1. We, therefore, investigated the accuracy of the Z ∼ N(0, 1)

approximations in Chapter 4 under various finite sample scenarios.

We also calculated the power of the tests with simulations. The power function of

the hypothesisH0 : β = β0 againstH1 : β 6= β0 is given by Pr(β1) = Pr{reject H0 | β =

β1}, where β1 6= β0. We, therefore, generated D realizations of independent processes

under the alternative hypothesis for various scenarios in Chapter 4. For d = 1, . . . , D,

we calculated the values of test statistic Z, say Zd. We kept the values of test statistics

in D dimensional vectors. The empirical power of the test was then calculated for a

nominal test size. We used cut off points based on asymptotic distributions of test

statistics as well as empirical quantiles of test statistics based on 10,000 simulation
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runs under the null hypothesis. For example, let the nominal size of the test be 0.05

and cutoff1 and cutoff2 be the 0.025 quantile and 0.975 quantile of the values of 10,000

Z statistic calculated under the null hypothesis. The empirical power of the test is

then given by

P̂r(β1) =
D∑

d=1

{I(Zd < cutoff1) + I(Zd > cutoff2)}/D

We presented the empirical power of the tests in Chapter 4.



Chapter 3

Testing for Trend in Recurrent

Event Processes

In Chapter 2, we have introduced some fundamental concepts in recurrent event pro-

cesses. In this chapter, we first briefly discuss some graphical methods for determining

trends in Section 3.2. In Section 3.3, we introduce common model based tests for

monotonic trends, as well as robust trend tests, when m identical processes are under

observation. In particular, we focus on a robust trend test based on the rate function

of a power law process (PLP). We call this test the generalized PLP (GPLP) test. In

Section 3.4, we extend the tests introduced in Section 3.3 to deal with non-identical

recurrent event processes.

3.1 Introduction

Many formal tests for trend have been developed in the literature. Our main goal

in this practicum is to compare the power of some important tests for monotonic

trends in recurrent event processes. To do this, we included tests that can be easily
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applied in routine checks for the presence or absence of trend before developing any

elaborate model for the analysis. In the next section, we first introduce some simple

graphical methods for the detection of trends. As discussed in the previous concepts,

graphical methods can be useful and recommended as a starting point for any trend

analysis. However, they have important limitations since graphical methods are not

of interest in this practicum, our introduction is very brief and not comprehensive. In

the following sections of this chapter, we introduced the tests that more compared in

this practicum. We use first the model based procedures. That is, those procedures

require a fully specification of the trend free model under the null hypothesis. We

next consider the robust methods based on some marginal characteristics of recurrent

event processes. Trend tests based on these robust procedures do not require a fully

specification of a model, and can be applied in a wide range of applications. In

the robust trend tests sections, we introduce a robust test statistic based on power

law processes (PLPs), which has not been discussed in detail in the literature. The

development of this test statistic is based on a procedure recommended by Lawless

et al. (2012). We discussed the trend tests first when m identical processes are

under observation in Section 3.3 and then when m non-identical processes are under

observation in Section 3.4.

3.2 Graphical Methods

The graphical methods may provide some insight about the presence and form of

trends in recurrent event processes. These methods can be very useful especially then

a large number of events are observed in a single process. However, the detection

of trends in recurrent event processes can be challenging with graphical methods

when the observed number of events is small per processes or multiple processes are
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simultaneously of interest.

The first graphical method that can be used for the detection of trends is the

dot plot. Cook and Lawless (2007) described a graphical method which is called

event plots, in this practicum, we call it as dot plots. Dot plots is placing a dot on the

time point when an event occur, and it is possible occur more than one event on the

same time. Cox and Lewis (1966) gave failure data for air-conditioning equipment

which displays in Chapter 5. The number of failures for aircraft 6, with the operating

hours is shown in Fig 3.1.

Figure 3.1: Time dot plot for air-conditioning equipment for aircraft 6 (Cox Lewis,
1966).

The next plot is based on the cumulative sample mean function as defined below.

Suppose that m independent processes are under observation. Let {Ni(t); t ≥ 0} be a

counting process observed over [0, τi]. The cumulative sample mean function is then

given by

µ̂(t) =
1

m

m∑

i=1

Ni(t), t ∈ [0, τi], (3.1)

which is a nonparametric estimator of the mean function µ(t), that is assumed to

be common for all processes. A plot of µ̂(t) against cumulative time scale t can

be useful to reveal trends. For example, a convex or a concave shape indicates an

increasing or a decreasing trend in recurrent event processes, respectively (Kvaløy

and Lindqvist, 1998). A roughly straight line indicates the absence of a trend. A

similar plot can be used for single processes (m = 1) by plotting Ni(t) against t. A

more generalized version of the plot based on cumulative sample mean function is

called the Nelson-Aalen estimate (Cook and Lawless, 2007). This plot can be used
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with more complicated observation schemes as well. In this practicum, we used the

dot plots and the cumulative mean function plots for graphical checks for trend in

Chapter 5.

We next introduce two graphical procedures that are sometimes applied for the

detection of trends in applications. Duane (1964) introduced a scatter plot of
N(tij)

tij

versus tij on double logarithmic paper, i = 1, . . . ,m; j = 1, . . . , ni. That is, to plot

cumulative failures versus cumulative time graphically, where
N(tij)

tij
is the cumulative

failure rate. If the cumulative number of failures on the graph looks like concave

surface, then the inter-arrival times of an improving (deteriorating) system tend to

be larger (smaller). Note that Duane plots can be used to assess the adequacy of

power law process, a Duane plot should be roughly linear under power law process.

Barlow and Campo (1975) acknowledged Total time on test (TTT) plots for recurrent

events. TTT plots by plotting the ordered pairs ( i
N
, r(Ti)

r(τ)
) for non-repairable system,

where i is the individual can be checked, N is the total units, and r(Ti) represents

the total time that all units have been on test at the times of the ith failure, and

r(τ) is the total time on test at time t. It expects that the plots should converge to

the diagonal of the unit square. Therefore, TTT plots can be used as a good-fit-test

for the exponential distribution. Klefsjö and Kumar (1992) have developed a method

that suggested how to apply TTT plots to a data set from repairable system by the

properties of power law processes.

3.3 Testing for Trend in Identical Processes

In this section, we assume m identical processes are under observation. We introduce

the test statistics below under three categories: (i) Tests based on PPs, (ii) tests based

on RPs and (iii) robust tests based on marginal characteristics of recurrent event



39

processes. In many reliability studies, it is reasonable to assume that the processes

are identical. However, in the next section, we also consider the same test statistic

for the nonidentical processes. The tests considered in each category include:

(i) Tests on PPs: (1) Laplace test, (2) Power law process (PLP) test.

(ii) Tests based on RPs: (3) Lewis-Robinson test, (4) Rank test.

(iii) Robust tests: (5) the generalized Laplace test, (6) the generalized PLP test.

3.3.1 Tests Based on Poisson Processes

We introduced HPPs and NHPPs in Section 2.2.1. Following our notation, we let

{Ni(t) : t ≥ 0} be a PP with the intensity function λi(t|Hi(t)) = ρi(t), t > 0, for

i = 1, . . . ,m. A trend free process with the family of Poisson processes indicates

a constant intensity function. On the other hand, a monotonic time trend can be

incorporated through NHPPs. A very useful NHPP model incorporating a monotonic

trend is given by

λi(t|Hi(t)) = ρi(t;α, β) = α exp(βg(t)), t ≥ 0, (3.2)

where α > 0 and β ∈ R are parameters and g(t) is a function that specifies the time

trend. The model (3.2) can be easily extended to include external fixed or time varying

covariates if external covariates are of interest. Let Z(t) be a p× 1 vector of external

covariates and γ be a p × 1 vector of regression parameters. Then, the extended

model is ρi(t;α, β, γ) = α exp(βg(t) + γtZ(t)), t ≥ 0. In the following discussion, we

do not consider external covariates but methods can be easily extended to deal with

covariates as well.

With the NHPP model (3.2), a test for trend can be developed by considering the
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hypothesis H0 : β = 0, α > 0 against H1 : β 6= 0, α > 0. Note that under the null

hypothesis, the model is a HPP with the constant rate function α. A partial score

test for the absence of trend can be developed as explained in Section 2.4. However,

as discussed by Cox and Lewis (1966), α is a nuisance parameter and a simple test for

the absence of trend can be developed by conditioning on the value of the sufficient

statistic for α, which is the observed number of failures in the ith process; that is,

Ni(τi) = ni, i = 1, . . . ,m. The following discussion is given by Lawless et al (2012).

Suppose that m independent processes are under observation. The process {Ni(t);

t ≥ 0} with the intensity function (3.2) is observed over [0, τi], i = 1, . . . ,m. Let

ti1 < ti2 < . . . tini
be the failure times of the ith process over [0, τi]. From Theorem

2.4.1 in Section 2.4, the likelihood function of the outcome “ni failures are observed

at times ti1, . . . , tini
over [0, τi], for i = 1, . . . ,m” is given by

L(α, β) =
m∏

i=1

{αnieβ
∑ni

i=1 g(tij)e
∫ τi
0 αeg(u)du}. (3.3)

Since Ni(t) is a Poisson random variable with the mean µ(t) =
∫ t

0
αeg(u)du, we have

Pr{Ni(τi) = ni} =
αni(

∫ τi
0
eg(u)du)e−

∫ τi
0 αeg(u)du

ni!
(3.4)

Therefore, the conditional likelihood function Lc(β) of the failure times ti1, . . . , tini
,

i = 1, . . . ,m, given Ni(τi) = ni is proportional to

Lc(β) =
m∏

i=1

ni∏

j=1

{
eβg(tij)∫ τi

0
eβg(u)du

}
. (3.5)

Note that the nuisance parameter α does not appear in the conditional likelihood

function (3.5). There are different choices available for the function g(t) in (3.2). If

we let g(t) = t, t ≥ 0 and apply a score procedure based on Lc(β) given in (3.5),
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we obtain the Laplace test for trend. This test is discussed next. Another choice of

g(t) = log(t) leads to the Military Handbook test (Rigdon and Basu, 2000).

3.3.1.1 The Laplace Test

We follow the setup given above and let g(t) = t in (3.2). From (3.5), the conditional

score statistic Uc(β) =
∂lc(β)
∂β

, where lc(β) = logLc(β), is given by

Uc(β) =
m∑

i=1

{
ni∑

j=1

tij −
ni∑

j=1

∫ τi
0
ueβudu∫ τi

0
eβudu

}
. (3.6)

The variance of Uc(β) can be found as follows:

V ar(Uc(β)) = E

{∑m
i=1 n

2
i τ

2
i

12

}
+ V ar

{
m∑

i=1

niτi
2
−

m∑

i=1

ni∑

j=1

∫ τi
0
ueβudu∫ τi

0
eβudu

}
(3.7)

Under the null hypothesis, H0 : β = 0, (3.6) and (3.7) give

Uc(0) =
m∑

i=1

{
ni∑

j=1

tij −
niτi
2

}
, (3.8)

and

V arc(0) =
m∑

i=1

niτ
2
i

12
(3.9)

respectively. Therefore, the Laplace test statistic for testing the null hypothesis H0 :

β = 0, α > 0 is given by

ZLT =
Uc(0)√
V arc(0)

=

∑m
i=1{

∑ni

j=1 tij − niτi/2}
{∑m

i=1 niτ 2i /12}1/2
. (3.10)

The trend test on (3.10) is called the Laplace test. The development and properties

of the Laplace test can be found in Cox and Lewis (1966, Section 3.3).
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3.3.1.2 The Power Law Process Trend Test

We introduced the power law process (PLP) in Section 2.2.1. It is a NHPP with the

intensity function

λi(t |Hi(t)) =
β

θ

(
t

θ

)β−1

, t ≥ 0, (3.11)

where β > 0 and θ > 0 are unknown parameters. This process is sometimes called

the Weibull Poisson process, but as discussed by Rigdon and Basu (1989), we prefer

to call it the PLP.

It is easy to see from (3.11) that the PLP becomes a HPP with the rate function θ−1

when β = 1. Therefore, a test for trend can be developed for the hypothesisH0 : β = 1

againstH1 : β 6= 1. When β > 1, the intensity function (3.11) is an increasing function

of t.This case corresponds to a monotonically increasing trend. When 0 < β < 1, the

intensity function (3.11) is a decreasing function of t, which can model a monotonically

decreasing trend in the rate of event occurrences. The properties of the PLP and its

use as a model for single repairable systems have been discussed by Rigdon and Basu

(1989). In this section, we focus its role in the development of a test for the absence

of monotonic trends in m > 1 independent and identical systems.

Following the previous notation, we let {Ni(t); t ≥ 0} be a counting process with

the associated intensity function (3.11). The process {Ni(t), t ≥ 0} is observed over

the time interval (0, τi] for i = 1, . . . ,m. From Section 2.4, the likelihood function of

β and θ is given by

L(β, θ) =
m∏

i=1

{[
ni∏

j=1

β

θ

(
tij
θ

)β−1
]
exp

(
−τβi
θβ

)}
, (3.12)
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and the log likelihood function l(β, θ) = logL(β, θ) is

l(β, θ) =
m∑

i=1

{ni log β − niβ log θ + (β − 1)

ni∑

j=1

log tij − (
τi
θ
)β} (3.13)

The score functions are defined by Uθ(β, θ) =
∂l(β,θ)

∂θ
=
∑m

i=1 Uθi(β, θ) and Uβ(β, θ) =

∂l(β,θ)
∂β

=
∑m

i=1 Uβi(β, θ), where

Uθi(β, θ) = −
βni

θ
+

βτβi
θβ+1

, (3.14)

and

Uβi(β, θ) =
ni

β
− ni log θ +

ni∑

j=1

log tij − (
τi
θ
)β log(

τi
θ
) (3.15)

Under the null hypothesis of the absence of a trend in a PLP with the intensity

function (3.11); that is, under H0 : β = 1, we have

Uθ(1, θ) =
τ·
θ2
− n·

θ
, (3.16)

where τ· =
∑m

i=1 τi and n· =
∑m

i=1 ni. By solving Uθ(1, θ) = 0 for θ = θ̃, we obtain an

constant estimator of θ that maximizes l(1, θ) as follows

θ̃ =
τ·
n·
. (3.17)

From (3.15), the function Uβ(1, θ̃) can be rewritten as follows.

Uβ(1, θ̃) =
m∑

i=1

Uβi(1, θ̃) =
m∑

i=1

ni∑

j=1

log tij −
n·

τ·

m∑

i=1

τi log τi + n·. (3.18)
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From Section 2.4, a variance estimate of Uβ(1, θ̃) is given by

V̂ ar{Uβ(1, θ̃)} = Iββ(1, θ̃)− Iβθ(1, θ̃)I
−1
θθ (1, θ̃)Iθβ(1, θ̃), (3.19)

where Iββ(β, θ) = −∂2l(β,θ)
∂β2 , Iβθ(β, θ) = Iθ,β(β, θ) = −∂2l(β,θ)

∂βθ
and Iθθ(β, θ) = −∂2l(β,θ)

∂θ2
.

Therefore,

V̂ ar{Uβ(1, θ̃)} =
m∑

i=1

∫ τi

0

[
q(u)− G·

τ·

]2
n·

τ·
du, (3.20)

where G· =
∑m

i=1

∫ τi
0
(1− log τ·

n·

+ log u) du. That is,

Iββ(β, θ) =
n·

β2
+

m∑

i=1

(
τi
θ
)β[log(

τi
θ
)]2, (3.21)

Iβθ(β, θ) =
−
∑m

i=1 τ
β
i − β

∑m
i=1 τ

β
i log( τi

θ
) + n·θ

β

θβ+1
, (3.22)

and

Iθθ(β, θ) = −
βn·

θ2
+

β(β + 1)
∑m

i=1 τ
β
i

θβ+2
. (3.23)

We therefore obtain

Iββ(1, θ̃) = n. +
m∑

i=1

τi

θ̃
[log(

τi

θ̃
)]2, (3.24)

Iβθ(1, θ̃) =
−
∑m

i=1 τilog(
τi
θ̃
)

θ̃2
, (3.25)

and

Iθθ(1, θ̃) = −
n·

θ̃2
+

2τ·

θ̃3
. (3.26)

Once again, the variance estimate of Uβ(1, θ̃) can be simplified as

V̂ ar{Uβ(1, θ̃)} = n· +
τ·(
∑m

i=1[log τi]
2)− (

∑m
i=1 τi log τi)

2

τ·θ̃
, (3.27)
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where θ̃ = τ·
n·

. In simulation part, we define τi = τ , then V̂ ar{Uβ(1, θ̃)} = n·. A

partial score test statistic for testing the null hypothesis H0 : β = 1, θ > 0 against

the alternative hypothesis H1 : β 6= 1, θ > 0 is then given by

ZPLP =
Uβ(1, θ̃)√

V̂ ar{Uβ(1, θ̃)}
, (3.28)

where Uβ(1, θ̃) is given in (3.18) and V̂ ar{U2(1, θ̃)} is given in (3.27). We call a test

based on the test statistic ZPLP given in (3.28) a PLP trend test. By the discussion

in Section 2.4, the asymptotic distribution of the test statistic ZPLP is a standard

normal distribution as m→∞ for fixed τi values.

As discussed previously, a simple test for the null hypothesis H0 : β = 1, θ > 0 can

be based on the conditional likelihood function for β given the value of the sufficient

statistic of θ, and the following the score procedures. This test is called the Military

Handbook test (Kvaløy and Lindqvist, 1998; Lawless et al., 2012). We do not consider

the Military Handbook test in this practicum because power of this tests has been

investigated and compared with some other tests considered in this practicum by

other authors (e.g. Bain et al. 1985; Cohen and Sackrowitz, 1993).

3.3.2 Tests Based on Renewal Processes

An important drawback about the trend tests based on Poisson processes is that

the trend free model needs to be a HPP. Therefore, these tests may falsely reject

the absence of a trend when a process is trend free but not a HPP. For example,

as introduced in Section 2.2.2, the gap times in a renewal process are i.i.d. Thus,

if a process is a renewal process but not a HPP, which is a special case of renewal

processes, then trend tests based on Poisson processes may lead to false rejection

of the absence of trend. We therefore introduce two tests for monotonic trends in
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recurrent event processes for testing the null hypothesis which states the process is a

renewal process against monotonic trend alternatives.

3.3.2.1 The Rank Test for Trend

The rank test for monotonic trends was introduced by Cox and Lewis (1996). Write

the rank test, our aim is to test the null hypothesis H0 : theWij (j = 1, 2, . . . ) are i.i.d.

for each i. The rank test avoids parametric assumptions on the distribution of Wij for

each i (i = 1, . . . ,m). Once again, we consider m independent processes. The process

{Ni(t); t ≥ 0} is followed over [0, τi], i = 1, . . . ,m. The Tij and Wij (i = 1, . . . ,m

and j = 1, 2, . . . ) denote the failure times and gap times, respectively. It should be

noted that the rank test is developed under a Type 2 censoring mechanism; that is,

the values of ni are prespecified rather than the τi. This type of observation is not

as common as Type 1 censoring mechanism, where the values of τi are prespecified

rather than the ni values. A discussion of this issue can be found in Lawless et al.

(2012). We therefore do not discuss this here anymore. In the development of the test

statistic, we take the last event time as the end-of-followup time τi as it is common

in applications.

Following the approach of Cox and Lewis (1996, Section 3.4), we use exponential

ordered scores denoted by Sij, where

Sij =
1

ni

+ · · ·+ 1

ni − rij + 1
j = 1, . . . , ni, (3.29)

and rij is the rank of the gap time Wij in Wi1, . . . ,Wini
. Therefore, the exponential

ordered scores Sij in (3.29) are functions of the ranks rij of the gap times Wij for

any prespecified ni. The rank test is a test of the absence of association between the

gap times Wij (j = 1, . . . , ni) for the i th process and a specifically designed variable,
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denoted by Zij, j = 1, . . . , ni, for the ith process, i = 1, . . . ,m. Cox and Lewis (1996)

used Zij = j (j = 1, . . . , ni) in the development of the rank test. We also specify the

same values for the Zij.

Let Z̄i =
∑ni

j=1 Zij/ni, S̄i =
∑ni

j=1 Sij/ni and

Ui =

ni∑

j=1

Sij(Zij − Z̄i) (3.30)

Then, the rank test for monotonic trend is given by

ZR =

∑m
i=1 Ui√∑m

i=1 V ar{Ui}
, (3.31)

where

V ar(Ui) =

{
ni∑

j=1

(Zij − Z̄i)
2

}{
ni∑

j=1

(Sij − S̄i)
2

ni − 1

}
. (3.32)

The asymptotic distribution of the rank test statistic (3.31) is a standard normal as

m approaches infinity as well as as ni approaches infinity for a fixed m (Lawless et

al., 2012). The use of the exponential ordered scores (3.29) is especially useful in the

comparison of the rank test with trend tests based on Poisson processes where the

gap times are i.i.d. exponential random variables under the null hypothesis. However,

other choices are also possible. More details on rank tests can be found in Hajek and

Sidak (1967).

3.3.2.2 The Lewis-Robinson Test

The Lewis-Robinson test is another well know test for trend. It was proposed by Lewis

and Robinson (1974) as a modification of the Laplace test to deal with overdispersed

processes with respect to the Poisson process. They used an ad-hoc method based

on the coefficient of variation C(X), where C(X) =
√
V ar(X)/E(X), assuming that
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V ar(X) exists for a random variable X. Note that this quantity is equal to 1 when the

gap times Wij are exponentially distributed, which corresponds to HPPs. However,

Lewis and Robinson (1974) noted that the coefficient of variation of the distribution

of the gap times Wij is always greater than 1 for other renewal processes. Therefore,

they proposed the following test statistic for testing the null hypothesis of a renewal

process where Wij (j = 1, 2, . . . ) are i.i.d. for a single process {Ni(t); t ≥ 0}.

ZLRi =
W̄i

σ̂i

{∑ni−1
j=1 Tij − (ni−1)

2
Tini

Tini
( (ni−1)

12
)1/2

}
, (3.33)

where W̄i is the average of Wi1, . . . ,Wini
and σ̂i is any consistent estimate of the

standard deviation of Wi1, . . . ,Wini
. A pooled version of the test statistic (3.33) for

m independent processes is then given by

ZLR =
1√
m

m∑

i=1

ZLRi. (3.34)

The test statistic (3.34) has been investigated by Kvaloy and Lindqvist (2003),

where they used

σ̂2
i =

1

2(ni − 1)

ni−1∑

j=1

(Wi,j+1 −Wij)
2, (3.35)

for some reasons. However, in this practicum, we used the usual estimator S2
i =

∑ni

j=1(Wij − W̄i)
2/(ni − 1), i = 1, . . . ,m, in (3.34). For any consistent estimator of

the Lewis-Robinson test statistic (3.34) is asymptotically standard normal under the

null hypothesis when m approaches infinity as well as when ni approaches infinity for

a fixed m (Lawless et al., 2012).

Lawless et al. (2012) gave an alternative derivation of the Lewis-Robinson test

statistic. Their approach resulted in a slightly modified version of the Lewis-Robinson
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test statistic (3.34). We call this test statistic the adjusted Lewis-Robinson test statis-

tic, which is given by

ZALR =
1√
m

m∑

i=1

ZALRi =
1√
m

m∑

i=1

√
ni

ni + 1
ZLRi, (3.36)

where ZLRi is given in (3.33). They showed through simulations that ZALR performs

better than ZLR when the sample sizes ni are small. They also showed that ZALR is

asymptotically standard normal asm approaches infinity. In the next chapter, we only

considered Lewis-Robinson test and adjusted Lewis-Robinson test in our simulations.

3.3.3 Robust Trend Tests Based on Rate Functions

Robust procedures based on marginal characteristics of recurrent events have been

summarized by Cook and Lawless (2007, Section 3.6). Following their discussion,

Lawless et al. (2012) proposed a robust test for monotonic trends. We first introduce

this procedure and then two robust tests for monotonic trends in this section.

Suppose that m independent processes are under observation. We let {Ni(t), t ≥

0}, i = 1, . . ., m, be the ith process with the intensity function λi(t|Hi(t)) and the

rate function ρi(t). We also define dNi(t) as the number of observed failures in the

ith process over the time interval (t − dt, t], t ≥ 0. In the remaining part of this

section, we assume that the rate function of a process is correctly specified so that

E{dNi(t)} = ρi(t) dt. However, we do not assume any model such as a Poisson process

or renewal process for processes.

It should be noted that the development of robust tests requires that the counting

process {Ni(t); t ≥ 0} and the observation scheme of a process should be completely

independent (Cook and Lawless, 2007, Section 3.6). Since in this study we apply

an observation scheme in which the process {Ni(t); t ≥ 0} is continuously observed
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over the interval [0, τi], i = 1, . . ., m, and the τi are prespecified, this requirement

is satisfied. However, robust tests for trends based on marginal characteristics of

processes may not be applied in some situations. For example, an important exclusion

is the case where a Type 2 censoring mechanism is applied. In this type of censoring

mechanism, the τi are stopping times and the observation of a process and the counting

processes are not completely independent. More on this discussion can be found in

Cook and Lawless (2007, Section 3.6).

We discussed the likelihood function and score procedures for recurrent event

processes in Section (2.4). For i = 1, . . ., m and t ≥ 0, let ρi(t) = ρi(t;α, β)

= α exp{β g(t)}, where g(t) is monotonically increasing or decreasing function. Fol-

lowing our setup in this chapter and the likelihood and log likelihood functions given

in Section (2.4), we obtain the following score functions.

Uα(α, β) =
∂ℓ(α, β)

∂α
=

∑m
i ni

α
−

m∑

i=1

∫ τi

0

α eβ g(u) du, (3.37)

and

Uβ(α, β) =
∂ℓ(α, β)

∂β
=

m∑

i

ni∑

j=1

g(tij)− α

m∑

i=1

∫ τi

0

g(u) eβ g(u) du, (3.38)

where ℓ(α, β) = logL(α, β) is the log likelihood function and the likelihood function

L(α, β) is introduced in Section 2.4. We let α̃ be the value of α which maximizes

ℓ(α, 0). Solving Uα(α, 0) = 0, we find α̃ = (
∑m

i=1 ni)/(
∑m

i=1 τi). If we replace (α, β)

in 3.38, we obtain

Uβ(α̃, 0) =
m∑

i

ni∑

j=1

g(tij)−
(∑m

i=1 ni∑m
i=1 τi

) m∑

i=1

∫ τi

0

g(u) du. (3.39)

The function Uβ(α̃, 0) in (3.39) can be written as follows (Cook and Lawless, 2007,
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p. 117).

Uβ(α̃, 0) =
m∑

i=1

Uβi(α̃, 0) =
m∑

i=1

∫ τi

0

(
g(u)− g.∑m

i=1 τi

)
[dNi(u)− α du] , (3.40)

where g. =
∑m

i=1

∫ τi
0
g(u) du. It is clear that the expectation of (3.40) is zero under the

null hypothesis H0 : β = 0 as long as the rate function ρi(t) is correctly specified; that

is, E{dNi(t)} = ρi(t) dt. This result does not require the process {Ni(t), t ≥ 0} to be

a Poisson process. Furthermore, the expectation of (3.40) is greater or less than zero

if g(t) is an increasing or decreasing function of t, respectively. Since the Uβi(α̃, 0)

terms in (3.40) are independent, a variance estimate of Uβ(α̃, 0) in (3.40) is given by

(see, Cook and Lawless, 2007, p. 117)

V̂ ar(Uβ(α̃, 0)) =
m∑

i=1

Uβi(α̃, 0)
2. (3.41)

Therefore, a robust test for monotonic trends in recurrent event processes can be

based on the standardized test statistic

ZRobust =

∑m
i=1 Uβi(α̃, 0)

(
∑m

i=1 Uβi(α̃, 0)2)
1/2

. (3.42)

It should be noted that the robust variance estimator (3.41) is obtained from the

theory of estimating functions. To see this results, we note that, under some regularity

conditions, as m increases, (1/
√
m) [Uα(α, β), Uβ(α, β)]

′ converges in distribution to a

bivariate normal distribution with a 2 × 1 zero mean vector and a 2 × 2 asymptotic

variance matrix B(α, β) (Cook and Lawless, 2007, pp. 342–343). Let α̂ and β̂ be

the maximum likelihood estimators of α and β, respectively. An estimate of B(α, β)

is given by 1
m

∑m
i=1[Uαi(α̂, β̂), Uβi(α̂, β̂)] [Uαi(α̂, β̂), Uβi(α̂, β̂)]

′. This estimate of the

asymptotic variance (3.41) is valid as long as the rate functions of the processes are
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correctly specified, and thus, does not require the Poisson assumption. Similarly, this

result also holds under the null hypothesis H0 : β = 0, where (α̂, β̂) is replaced with

(α̃, 0), and the robust variance estimator (3.41) is obtained.

In the remainder of this section, we first introduce a robust trend test based on

the conditional approach explained in Section 3.3.1. We call this test the generalized

Laplace test (GL). Then, we will discuss another robust trend test which is based on

a similar method explained above in this section, but we will use the rate function

ρi(t) = (β/θ)(t/θ)β−1, where β > 0 and θ > 0. We call this test the generalized power

law process test (GPLP). To our knowledge, this test has not been studied in the

literature before.

3.3.3.1 The Generalized Laplace Test

The development of the generalized Laplace test is given by Lawless et al. (2012). In

this section, we will summarize this procedure and introduce the generalized Laplace

test statistic used in the next chapters.

We consider m independent processes with the rate functions ρi(t), i = 1, . . ., m.

We consider testing the hypothesis H0 : ρi(t) = α, where α > 0 and t > 0. In the

development, we use the model ρi(t) = α exp{βg(t)}, t > 0. From the conditional

likelihood function Lc(β) given in (3.5) in Section 3.3.1, we obtain

Uc(β) =
m∑

i=1

ni∑

j=1

g(tij)−
m∑

i=1

ni∑

j=1

∫ τi
0
g(u) eβg(u) du∫ τi
0
eβg(u) du

. (3.43)

When β = 0, this score function can be written as follows.

Uc(0) =
m∑

i=1

Ui(0) =
m∑

i=1

∫ τi

0

(
g(u)− 1

τi

∫ τi

0

g(u) du

)
dNi(u). (3.44)

The expectation of Uc(0) in (3.44) under the null hypothesis is zero. This result holds



53

as long as E{dNi(t)} = α dt even when the processes {Ni(t), t ≥ 0} are not Poisson.

Since Ui(0), i = 1, . . ., m, in (3.44) are independent, an estimate of the variance of

Uc(0) is

V̂ ar{Uc(0)} =
m∑

i=1

Ui(0)
2. (3.45)

From (3.44) and (3.45), we obtain the standardized test statistic

Z =
m∑

i=1

Ui(0)/

{
m∑

i=1

Ui(0)
2

}1/2

(3.46)

for testing the null hypothesis H0 : ρ(t) = α. As m → ∞, the distribution of Z in

(3.46) is asymptotically standard normal under the null hypothesis when the τi are

finite and the function g(t) is integral over the observation periods (Lawless et al.,

2012).

The generalized Laplace test is obtained by replacing g(t) = t in the above devel-

opment. In this case, from (3.44), the score function is given by

Uc(0) =
m∑

i=1

Ui(0) =
m∑

i=1

∫ τi

0

(
u− τi

2

)
dNi(u), (3.47)

where
∫ τi
i=1

udNi(u) =
∑ni

j=1 tij and
∫ τi
i=1

dNi(u) = ni for a process {Ni(t), t ≥ 0} with

ni events observed over (0, τi] at times 0 < ti1 < · · · < tini
. If we use (3.47) in (3.46),

we obtain the generalized Laplace test ZGL, which is given by

ZGL =

∑m
i=1

∑ni

j=1 tij − ni τi
2√∑m

i=1(
∑ni

j=1 tij − ni τi
2
)2
. (3.48)

The asymptotic distribution of the generalized Laplace test ZGL is the same with

the test statistic given in (3.46). The properties of ZGL has been discussed by Lawless

et al. (2012). One drawback about the generalized Laplace test is that it cannot be
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used when a single process is of interest. Lawless et al. (2012) recommended the

generalized Laplace test when m is large but the observed number of events (failures)

per process is small.

3.3.3.2 The Generalized Power Law Process Test

In this section, we develop a robust test for monotonic trends based on the generalized

power law processes. Our approach is based on a discussion given in Cook and Lawless

(2007, Chapter 3) and Lawless et al. (2012).

Derivations of the score functions Uθ(β, θ) and Uθ(θ, β)) for the power law process

with the rate function (β/θ)(t/θ)β−1, where t > 0, β > 0 and θ > 0, are given in

Section 3.3.1.2. Note that, from (3.14), we can rewrite the score function Uθ(β, θ) as

Uθ(β, θ) =
m∑

i=1

∫ τi

0

(
−β

θ

)[
dNi(t)−

β

θ

(u
θ

)β−1

du

]
. (3.49)

Also, from (3.15), we can obtain the score function Uβ(β, θ) as follows.

Uβ(β, θ) =
m∑

i=1

∫ τi

0

(
1

β
− log θ + log u

)[
dNi(t)−

β

θ

(u
θ

)β−1

du

]
. (3.50)

Assuming the rate functions are correctly specified and the τi are not random, It is

easy to see that the expectations of Uθ(β, θ) and Uβ(β, θ) are zero. This means that

Uθ(β, θ) and Uβ(β, θ) are unbiased estimating functions. We can therefore apply the

robust procedures explained in in Section 3.3.3.

Under the null hypothesis H0 : β = 1, θ > 0, we have

Uθ(1, θ) =
τ·
θ2
− n·

θ
, (3.51)

where τ· =
∑m

i=1 τi and n· =
∑m

i=1 ni. By solving Uβ(1, θ) = 0 for θ, we obtain a
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consistent (under the assumption β = 1) estimator θ̃ that maximizes l(1, θ) as follows

θ̃ =
τ·
n·
. (3.52)

Let g(t) = 1− log(θ̃) + log(t). Plugging (3.52) and β = 1 in (3.50), we obtain

Uβ(1, θ̃) =
m∑

i=1

Uβi(1, θ̃) =
m∑

i=1

∫ τi

0

g(t)
[
dNi(t)− θ̃−1 dt

]
. (3.53)

Now, note that

Uβ(1, θ̃) =
m∑

i=1

∫ τi

0

g(t)

[
dNi(t)−

1

θ
dt

]
+

m∑

i=1

∫ τi

0

g(t)

θ
dt−

m∑

i=1

∫ τi

0

g(t)

θ̃
dt. (3.54)

Let A =
∑m

i=1

∫ τi
0
g(t)

[
dNi(t)− 1

θ
dt
]
. Then,

Uβ(1, θ̃) = A+
m∑

i=1

∫ τi

0

(∑m
j=1

∫ τj
0

du
)

θ τ·
g(t)dt−

m∑

i=1

∫ τi

0

(∑m
j=1

∫ τjdNj(u)

0

)

τ·
g(t)dt,

(3.55)

= A+
1

θτ·

m∑

i=1

∫ τi

0

(
m∑

j=1

∫ τj

0

g(u)du

)
dt− 1

τ·

m∑

i=1

∫ τi

0

(
m∑

j=1

∫ τj

0

g(u)du

)
dNi(t)

(3.56)

If we let G· =
∑m

j=1

∫ τj
0

g(u) du in (3.56), we obtain

Uβ(1, θ̃) = A− 1

τ·

m∑

i=1

∫ τi

0

G· dNi(t) +
1

τ·

m∑

i=1

∫ τi

0

G·
1

θ
dt, (3.57)

=
m∑

i=1

∫ τi

0

g(t)

[
dNi(t)−

1

θ
dt

]
−

m∑

i=1

∫ τi

0

G·

τ·

[
dNi(t)−

1

θ
dt

]
(3.58)
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Therefore, we obtain

Uβ(1, θ̃) =
m∑

i=1

∫ τi

0

(
g(t)− G·

τ·

)[
dNi(t)−

1

θ
dt

]
. (3.59)

Note that, under H0 : β = 1, θ > 0, E{Uβ(1, θ̃)} = 0 because E{dNi(t)} = 1
θ
dt. This

result is true as long as the true rate function under the null hypothesis is 1/θ, θ > 0,

even if the model is not a Poisson process.

A robust estimate of the the score function can be based on the theory of estimat-

ing functions as discussed in Section 3.3.3. Following this discussion, since Uβ(1, θ̃)

is an unbiased estimating function, under the null hypothesis and some regularity

conditions (Cook and Lawless, 2007), 1√
m
Uβ(1, θ̃) converges in distribution to a nor-

mal distribution with mean 0 and variance B(1, θ) = limm→∞ E{Bm(1, θ)}, where

Bm(1, θ) = 1
m

∑m
i=1 Uβi(1, θ)

2, as m approaches infinity. A robust variance estimate

of Uβ(1, θ̃) is then given by 1
m

∑m
i=1 Uβi(1, θ̃)

2.

From the above results, we obtain the standardized test statistic

ZGPLP =

∑m
i=1 Uβi(1, θ̃)√∑m
i=1 Uβi(1, θ̃)2

. (3.60)

for testing the null hypothesis H0 : β = 1. We call the test statistic ZGPLP in (3.60)

the generalized power law process test statistic, and any test based on it a generalized

power law process test.

3.4 Testing for Trend in Non-identical Processes

In the previous section, we have discussed testing for monotonic trends in identical

processes. Heterogeneity in the rate functions or gap time distributions of processes

is common in applications (Rigdon and Basu, 2000), and ignoring heterogeneity may
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lead to wrong conclusions about the trend in recurrent event processes (Cox and Lewis,

1966; Kvaløy and Linqvist, 2003; and Lawless et al., 2012). Therefore, it is important

to extend the trend tests of the previous section to deal with the heterogeneity. In

this section, we therefore discuss tests for monotonic trends in nonidentical recurrent

event processes. The tests in this section are extensions of the tests given in the

previous section. Therefore, we briefly introduce the methodology. Our main goal is

to give the forms of the tests used in the following chapters.

In the remainder part of this section, we assume that there are m independent

processes are under observation over the observation window (0, τi], i = 1, . . ., m. The

process {Ni(t), t ≥ 0}, i = 1, . . ., m, has the associated intensity function λi(t |Hi(t)),

which may be different from process to process. We assume all process are exposed

to the same type of trend; that is, either monotonically increasing or decreasing.

However, methods can be extended in a straightforward manner if there is a need for

modeling different type of monotonic trends.

3.4.1 Tests Based on Poisson Processes

In Section 3.3.1, we discussed general procedures to develop tests for monotonic trends

in recurrent event processes pertaining to Poisson processes. Then, we focused on two

tests: (i) The Laplace test in Section 3.3.1.1, and (ii) the power law process trend

test in Section 3.3.1.2. In this section, we assume the processes are Poisson with rate

functions ρi(t), t > 0, for i = 1, . . ., m, but we do not require the rate functions are

the same for all processes.

We start with the Laplace test. Let the ith model, i = 1, . . . , m, under the null

hypothesis of no trend be a HPP with the rate function

ρi(t) = αi, t > 0, (3.61)
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where αi > 0 are unknown parameters. We define the model with a monotonic trend

as a NHPP with the rate function

ρi(t) = αi exp{βg(t)}, t ≥ 0, (3.62)

where β is a real-valued parameter representing the monotonic trend and g(.) is a

specified function. As we discussed at the beginning of this section, we assume that

the trend has a similar shape for all processes so that we use β in the above trend

model. If there is an indication of different trends, then β can be replaced with βi in

the above model.

A test for the absence of trend in nonidentical process is then defined by the null

hypothesis H0 : β = 0. In this case, the αi are nuisance parameters, and conditioning

on the observed number of events over the observation windows (0, τi], i = 1, . . . ,m

; that is, ni, i = 1, . . ., m, we obtain the conditional likelihood function proportional

to

Lc(β) =
m∏

i=1

ni∏

j=1

{
eβg(tij)∫ τi

0
eβg(u)du

}
. (3.63)

This is exactly the same conditional likelihood function given in (3.5). Therefore, by

replacing g(t) = t, where t > 0, in (3.62) and following the steps explained in Sec-

tion 3.3.1.1, we obtain the Laplace test statistic for monotonic trends in nonidentical

processes as follows.

ZLT =

∑m
i=1{

∑ni

j=1 tij − niτi/2}
{
∑m

i=1 niτ 2i /12}1/2
. (3.64)

The Laplace test statistic ZLT given in (3.64) is exactly the same with the Laplace test

statistic given in (3.10) in Section 3.3.1.1. Therefore, the asymptotic distribution of

ZLT in (3.64) follows from the asymptotic distribution of ZLT given in Section 3.3.1.1.

It should be noted that we obtained this result because we condition on the value



59

of the sufficient statistic Ni(τi) = ni of the nuisance parameter αi (Cox and Lewis,

1966).

Next, we consider testing for monotonic trends in nonidentical power law processes.

We discussed the trend tests based on identical power law processes in Section 3.3.1.2.

In this section, we assume the ith trend-free model, i = 1, . . ., m, is a HPP with the

rate function

ρi(t) =
1

θi
, t > 0, (3.65)

where θi > 0 for i = 1, . . ., m. The corresponding monotonic trend model is a power

law process with the rate function

ρi(t) =
β

θi

(
t

θi

)β−1

, t > 0, (3.66)

where θi > 0 for i = 1, . . ., m, and β > 0. Then, as we developed in Section 3.3.1.2,

the likelihood function for β and θ, where θ = (θ1, . . . , θm), is given by

L(β, θ) =
m∏

i=1

{
ni∏

j=1

β

θi

(
tij
θi

)β−1
}
exp

{
−
(
τi
θi

)β
}
, (3.67)

which gives the log likelihood function l(β, θ) = logL(β, θ) as follows.

l(β, θ) =
m∑

i=1

{
ni log β − niβ log θi + (β − 1)

ni∑

j=1

log tij −
(
τi
θi

)β
}
. (3.68)

The value of θ that maximizes l(1, θ) in (3.68) is given by θ̃ = (θ̃1, . . . , θ̃m). There-

fore, the score function can be developed by Uθ(β, θ) =
∂l(β,θ)

∂θ
=
∑m

i=1 Uθi(β, θ) and

Uβ(β, θ) =
∂l(β,θ)
∂β

=
∑m

i=1 Uβi(β, θ), where

Uθi(β, θ) = −
βni

θi
+

βτβi
θβ+1
i

, (3.69)
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Uβi(β, θ) =
ni

β
− ni log θi +

ni∑

j=1

log tij − (
τi
θi
)β log(

τi
θi
). (3.70)

To solve Uθ(β, θ) = 0, and define θ̃ = (θ̃1, · · · , θ̃m). We can obtain

θ̃i =
τi
ni

, i = 1, . . . ,m. (3.71)

Then, the function Uβ(1, θ̃i) is

Uβ(1, θ̃) = n· +
m∑

i=1

ni∑

j=1

log tij −
m∑

i=1

ni log τi. (3.72)

From (3.19), we can get

V̂ ar{Uβ(1, θ̃)} = Iββ(1, θ̃)− Iβθ(1, θ̃)I
−1
θθ (1, θ̃)Iθβ(1, θ̃), (3.73)

where Iββ(β, θ) = −∂2l(β,θ)
∂β2 , Iβθ(β, θ) = Iθ,β(β, θ) = −∂2l(β,θ)

∂βθ
and Iθθ(β, θ) = −∂2l(β,θ)

∂θ2
.

That is,

Iββ(β, θ) =
m∑

i=1

{
ni

β
+ (

τi
θi
)β log2(

τi
θi
)

}
, (3.74)

Iθθ(β, θ) =
m∑

i=1

−βni

θ2i
+

m∑

i=1

βτβi
θβ+2
i

(β + 1), (3.75)

and

Iβθ(β, θ) = −
m∑

i=1

{
τβi + βτβi log( τi

θi
)− niθ

β
i

θβ+1
i

}
. (3.76)

Plugging β = 1 and θ = θ̃, we obtain

Iββ(1, θ̃) = n· +
m∑

i=1

(
τi

θ̃i
) log2(

τi

θ̃i
), (3.77)
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Iθθ(1, θ̃) =
m∑

i=1

−ni

θ̃2i
+

m∑

i=1

2τi

θ̃3i
, (3.78)

and

Iβθ(1, θ̃) = −
m∑

i=1

{
τi log(

τi
θ̃i
)

θ̃2i

}
. (3.79)

We therefore obtain the PLP test statistic for testing H0 : β = 1 in the model (3.66)

ZPLP =
Uβ(1, θ̃i)√

V̂ ar{Uβ(1, θ̃i)}
. (3.80)

3.4.2 Tests Based on Renewal Processes

In Section 3.3.2, we discussed monotonic trend tests based on identical renewal pro-

cesses, where the gap times Wij independent and identically distributed (i.i.d.) ran-

dom variables for all i = 1, . . ., m and j = 1, . . ., ni. We then introduced two tests (the

rank test for trend in Section 3.3.2.1 and the Lewis-Robinson test in Section 3.3.2.2).

In this section, we allow the gap times Wij, j = 1, . . ., m, be i.i.d. for each i (i = 1,

. . ., m), but may not be identically distributed for all i. Trend tests for nonidentical

renewal processes can be then expressed as H0 : For each i,Wij, j = 1, . . . , ni are i.i.d.

As discussed by Lawless et al. (2012), the rank test given in Section 3.3.2.1 and the

Lewis-Robinson test given in Section 3.3.2.2 are combined tests developed separately

for the trend for each process under observation. Therefore, these tests can be directly

applied for testing monotonic trends in the nonidentical case as well. Therefore, the

rank test statistic ZR given in (3.31) and the Lewis-Robinson test statistic ZLR given in

(3.34) and its adjusted version ZALR given in (3.36) are used in the following chapters.

The asymptotic properties of these test statistics discussed in the previous sections

are the same in the nonidentical case.

We would like to note that, since rank test introduced in Section 3.3.2 is based on
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the rank of observations, it can be used for the nonidentical cases as well (Cox and

Lewis, 1966, Chapter 3). A similar discussion is also true for the Lewis-Robinson test.

Lawless et al. (2012) noted that if exponential ordered scores Sij in (3.30) are replaced

with the actual gap times Wij, we can obtain the term
∑ni−1

j=1 tij − (ni − 1)tini
/2.

Hence, (3.30) and (3.33) are related to rank statistics. As we discussed above, the

Lewis-Robinson and the adjusted Lewis-Robinson tests can be used for testing the

monotonic trends in nonidentical processes.

It also worth mentioning that these tests are developed when the observed number

of events are prespecified for each process (Type 2 censoring), instead of the presprec-

ification of the τi (Type 1 censoring). In many applications, Type 1 censoring scheme

is applied, but the researchers still use these test statistics. Aalen and Husebye (1991)

showed that the bias may occur with this practice. Also, this issue was investigated

by Lawless et al. (2012) through Monte Carlo simulations. They showed that the

Lewis-Robinson test may be affected by the violation of this assumption in some sit-

uations, but the rank test for monotonic trends still provides good results comparing

with the Lewis-Robinson test. The reason behind this result is that the rank test is

based on exchangeable rank statistics, which is not the case for the Lewis-Robinson

test (Lawless et al., 2012). In the next chapter, we investigate the power of these tests

(ZR, ZLR and ZALR) under Type 1 censoring scheme because this type of observation

scheme is common in applications and more suitable for the data types considered in

this practicum.

3.4.3 Robust Trend Tests Based on Rate Functions

The robust trend tests based on the marginal characteristics of the recurrent event

processes have been discussed in Section 3.3.3. In this section, we extend those pro-

cedures to non-identical processes settings. It should be noted that the generalized
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Laplace test given in Section 3.3.3.2 can be used in non-identical processes settings

as well. However, the generalized PLP test statistic can be applied after replacing θ̃

with (3.71) in non-identical processes settings. This is explained as follows.

As we discussed in Section 3.3.3.2, the variance of Uβ(1, θ̃) can be estimated by
∑m

i=1 Uβi(1, θ̃)
2. Therefore, the generalized PLP test statistic in non-identical pro-

cesses settings can be written as

ZGPLP =

∑m
i=1 Uβi(1, θ̃i)√∑m
i=1 Uβi(1, θ̃i)2

, (3.81)

where

Uβi(β, θ) =
ni

β
− ni log θi +

ni∑

j=1

log tij − (
τi
θi
)β log(

τi
θi
), (3.82)

and

θ̃i =
τi
ni

, i = 1, . . . ,m. (3.83)

This gives

Uβ(1, θ̃) = n· +
m∑

i=1

ni∑

j=1

log tij −
m∑

i=1

ni log τi. (3.84)

The asymptotic distribution of the test statistic ZGPLP is the same with the asymp-

totic distribution of the generalized PLP test derived in Section 3.3.3.2.



Chapter 4

Comparison of Trend Tests

In this chapter, we first explain the simulation procedures and then summarize the

results of extensive simulation studies conducted to assess the adequacy of the asymp-

totic normal approximations and to investigate the power of the tests considered in the

previous chapter. In Section 4.1, we enumerate the tests used in simulations, explain

the simulation procedures and introduce the models from which the data generated

under the null and alternative hypotheses. We also give the steps of the simulations

in each case considered. We present the results of simulations conducted to assess the

normal approximations for the tests first in identical processes and then in nonidenti-

cal processes with normal quantile-quantile plots as well as in tables in Appendix B.1

and Appendix B.2, respectively. Appendix C.1 and Appendix C.2 include the tables

of power based on simulations for identical and nonidentical cases, respectively. In

Section 4.2, we give a summary of the results obtained in through simulation studies.

4.1 Introduction

We generated B = 10,000 samples under the null models for various scenarios with

combinations of (m, τ), where m is the number of processes under observation and τ
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is the end of observation period for these processes. Our first goal is to investigate the

adequacy of the normal approximation for the test statistics under the null hypothesis.

Normal quantile-quantile (Q-Q) plots and tables were used to assess the accuracy of

N(0, 1) approximations. The tables and plots are given in Appendix B. In the tables,

we presented the empirical pth quantile Q̂p of the test statistics estimated under

10,000 generated samples and the estimates of the probability that the test statistic

is greater than the pth quantile Qp of the standard normal distribution. We used

p = 0.975 and 0.995 so that in the tables P̂ (1.96) and P̂ (2.576) represent the estimate

of P (Z > Qp) = 1 − p for a test statistic Z when Qp = 1.96 or 2.576, respectively.

The power of the tests was found from 1,000 simulation runs. We used the empirical

0.05 quantiles of test statistics obtained from the 10,000 simulation runs under various

(m, τ) combinations, as well as theoretical size (Type I error rate) 0.05.

We considered the following trend test statistics:

1. Laplace test statistic ZLT given in (3.10).

2. Power law process (PLP) test statistic ZPLP given in (3.28).

3. Linear rank test statistic ZR given in (3.31).

4. Lewis-Robinson test statistic ZLR given in (3.34).

5. Adjusted Lewis-Robinson test statistic ZALR given in (3.36).

6. Generalized Laplace test ZGLT given in (3.48).

7. Generalized PLP test statistic ZGPLP given in (3.60).

The details of these test statistics can be found in the previous chapter. We

considered three cases (Case (a), Case (b) and Case (c)) to generate the data from

trend-free models, and generated the simulated failure data from the following models.
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(a) H0: Process i is a HPP with rate αi, i = 1, . . . , m.

(b) H0: Process i is a RP with the gap times following a gamma distribution

with scale ai and shape b (i.e., Wij ∼ G(ai, b), j = 1, 2, . . .) for i = 1, . . . ,m.

(c)H0: Process i has intensity function αi exp(βZi(t)), where Zi(t) = I(Ni(t
−) >

0)I(Bi(t) ≤ ∆), for i = 1, . . . ,m. Here, Bi(t) = t − TNi(t−) gives the elapsed

time since the last event.

In Case (a), we generated the data from a HPP with the rate functions αi =

0.5 + (i − 1)/(m − 1) for i = 1, . . . ,m. In Case (b), ai = (αib)
−1 and b = 0.75. We

consider ∆ = 0.05 and exp(β) = 5 in Case (c). The model in Case (c), λi(t |Hi(t)) =

αi exp(βZi(t)), is called the carryover effect model. It is actually a delayed RP, where

the first gap time Wi1 has an exponential distribution with the rate parameter αi

and the remaining gap times Wij (j=2, 3, . . . ) has a mixture type with the hazard

function hi(w) = αie
βI(w ≤ ∆) + αiI(w > ∆) for i = 1, . . . ,m. This model has no

trend, but incorporates carryover effects and shows some kind of clustering of events

together over time. Furthermore, since it is a delayed RP, the gap times are identically

distributed. In the scenarios of the simulations, we took τ = 5, 10, 20 and m = 10,

20, 50 throughout this chapter. It should be noted that these cases were also used

by Cigsar (2010) and Lawless et al. (2012). Therefore, we also compared our results

with theirs.

We considered two types of settings; (1) identical (homogeneous) processes, and

(2) non-identical (heterogeneous) processes. In the identical processes setting, all

processes have the same intensity function; that is, αi = α (i = 1, . . ., m), where α

is a positive constant. We took α = 1, which is the average of αi ranging form 0.5 to

1.5 in the nonidentical processes settings. For nonidentical processes, the parameters

are different for each process. In this setting, we applied Case (a), Case (b) and Case
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(c) given above. The steps of the data generation procedures for each case is given

later in this section.

We considered three models (Case (d), Case (e) and Case(f)) with monotonic

trends to generate data with trend. We obtained the power of the tests, and then

made a comparison between them. Once again, we followed the studies by Cigsar

(2010) and Lawless et al. (2012), and we used the following models under trend

alternatives:

(d) Process i is a NHPP with rate function ρi(t) = α⋆
i exp(γt) for i = 1, . . . ,m.

(e) Process i is a Markov RP in which the gap timesWij (i = 1, . . . ,m; j = 1, . . . , ni)

are gamma distributed random variables with the scale and shape parameters

a
′

i exp(γj) and b, respectively.

(f) Process i has intensity function λi(t | Hi(t)) = α⋆
i exp(γt+βZi(t)) (i = 1, . . . ,m).

When γ = 0, the null models considered in Case (a), Case (b), and Case (c) corre-

spond to the alternative models given in Case (d), Case (e) and Case (f), respectively.

Therefore, a test for the absence of monotonic trends can be based on the hypotheses

H0 : γ = 0 vs H1 : γ 6= 0. (4.1)

In Case (d) and Case (f), α⋆
i were assumed as the expected total number of events

in Case (a) and Case (b), respectively. Similarly, in Case (e), we used a
′

i = (α
′

ib)
−1.

The values of γ, the parameter that represents the monotonic trend, was decided by

R = exp(γτ). We considered two values of R; R = 1.5 or R = 2. The data generation

steps for these cases are explained in Sections 4.1.4, 4.1.5 and 4.1.6.

We presented the results of the power studies in tables in Appendix C. We showed
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the results under the identical processes setting in Appendix C.1 and under the non-

identical processes setting in Appendix C.2. As discussed before, we defined Q̂p as

the empirical pth quantile based on 10,000 samples. P̂ (·) is the proportion of the

values of a test statistic in 10,000 samples which exceeded the standard normal pth

quantile (p = 0.975 or 0.995). In the power tables, Ω̂(1) gives the proportion of the

values of test statistics greater than Q̂0.975 or less than Q̂0.025. Similarly, Ω̂(2) gives

the proportion of the values of test statistics greater than Q̂0.995 or less than Q̂0.005.

Also, Ω(1) is defined as the proportion of the values of test statistics less than -1.96 or

greater than -1.96 (0.025th and 0.975th quantiles of the standard normal distribution,

respectively). Similarly Ω(2) is defined as the proportion of the values of test statistics

less than -2.576 or greater than 2.576 (0.005th and 0.995th quantiles of the standard

normal distribution, respectively).

4.1.1 Simulation Procedure for Case (a)

1. Set i = 1.

2. Set j = 1 and ti0 = 0.

3. Generate Uij ∼ U(0, 1).

4. Use the transformation Eij = −log(Uij).

5. Obtain Wij =
Eij

αi
, where αi is the rate function and i = 1, . . . ,m.

6. Calculate the event time Tij = ti,j−1 +Wij.

7. If Tij ≤ τ , let tij = Tij and set j = j+1, and return to the third step. Otherwise,

observed event times for the ith process are ti1, . . . , tini
, where ni = j − 1, and

go to Step 8.
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8. Set i = i+ 1. If i ≤ m, go to Step 2. Otherwise, stop.

4.1.2 Simulation Procedure for Case (b)

1. Set i = 1.

2. Set j = 1 and ti0 = 0.

3. Generate Wij from G(ai, b), where ai = (αib)
−1 and b = 0.75, i = 1, . . . ,m.

4. Calculate the event time Tij = ti,j−1 +Wij.

5. If Tij ≤ τ , let tij = Tij and set j = j+1, and return to the third step. Otherwise,

observed event times for the ith process are ti1, . . . , tini
, where ni = j − 1, and

go to Step 6.

6. Set i = i+ 1. If i ≤ m, go to Step 2. Otherwise, stop.

4.1.3 Simulation Procedure for Case (c)

1. Set i = 1.

2. Generate Ui1 ∼ U(0, 1), and set ti0 = 0.

3. Use the transformation Ei1 = −log(Ui1).

4. Obtain Wi1 =
Ei1

αi
. Then, Ti1 = ti0 +Wi1.

5. If Ti1 ≤ τ , let ti1 = Ti1 and set j = 2, and go to Step 6. Otherwise, Ni(τ) = 0

and jump to Step 10.

6. Generate Eij from Exp (1) distribution.

7. If Eij ≤ αie
β∆, then Wij =

Eij

αieβ
. Otherwise, Wij =

Eij

αi
−∆eβ +∆.
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8. Calculate the event time Tij = ti,j−1 +Wij.

9. If Tij ≤ τ , let tij = Tij and set j = j + 1, and return to Step 6. Otherwise,

observed event times for the ith process are ti1, . . . , tini
, where ni = j − 1, and

go to Step 10.

10. Set i = i+ 1. If i ≤ m, go to Step 2. Otherwise, stop.

4.1.4 Simulation Procedure for Case (d)

1. Set i = 1.

2. Set j = 1, and ti0 = 0.

3. Set α
′

i =
γαiτ
eγτ−1

= γαiτ , where γ = log(R)
τ

and R = eγτ .

4. Generate Eij ∼ Exp(1) distribution. If j = 1, let Wi1 = log
(

γEi1

α
′

i

+ 1
)
/γ.

Otherwise, let Wij = log
(

γEij

α
′

i

+ eγti,j−1

)
/γ − ti,j−1.

5. Calculate the event time Tij = ti,j−1 +Wij.

6. If Tij ≤ τ , let tij = Tij and set j = j+1, and go to Step 4. Otherwise, observed

event times for the ith process are ti1, . . . , tini
, where ni = j − 1, and go to

Step 7.

7. Set i = i+ 1. If i ≤ m, go to Step 2. Otherwise, stop.

4.1.5 Simulation Procedure for Case (e)

1. Set i = 1.

2. Set j = 1 and ti0 = 0.

3. Generate Wij come from G(a
′

i, b), where ai = (α
′

ib)
−1 and b = 0.75.
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4. Calculate the event time Tij = ti,j−1 +Wij.

5. If Tij ≤ τ , let tij = Tij and set j = j+1, and return to the third step. Otherwise,

observed event times for the ith process are ti1, . . . , tini
, where ni = j − 1, and

go to Step 6.

6. Set i = i+ 1. If i ≤ m, go to Step 2. Otherwise, stop.

4.1.6 Simulation Procedure for Case (f)

1. Set i = 1.

2. Generate Ui1 ∼ U(0, 1), and set ti0 = 0.

3. Use the transformation Ei1 = − log(Ui1).

4. Obtain Wi1 = log
(

Ei1

α
′

i

+ 1
)
/γ, where α

′

i = γαiτ/(e
γ − 1). Let Ti1 = ti0 +Wi1.

5. If Ti1 ≤ τ , let ti1 = Ti1 and set j = 2, and go to Step 6. Otherwise, Ni(τ) = 0

and jump to Step 10.

6. Generate Eij from Exp(1) distribution.

7. Set d =
α
′

ie
β

γ

{
eγ(ti,j−1+∆) − eγti,j−1

}
, where α

′

i = γαiτ/(e
γj − 1).

8. If Eij ≤ d, then Wij =
{
log
(

γEij

α
′

i

+ eγti,j−1

)
/γ
}
− ti,j−1. Otherwise, Wij =

{
log
[
γEij

α
′

i

− eβ
(
eγ(ti,j−1+∆) − eγ(ti,j−1+∆)

)]
/γ
}
− ti,j−1.

9. Calculate the event time Tij = ti,j−1 +Wij.

10. If Tij ≤ τ , let tij = Tij and set j = j + 1, and return to Step 6. Otherwise,

observed event times for the ith process are ti1, . . . , tini
, where ni = j − 1, and

go to Step 11.
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11. Set i = i+ 1. If i ≤ m, go to Step 2. Otherwise, stop.
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4.2 Summary of Results

In this chapter, we first discuss the validity of normal approximations for the seven

test statistics discussed in Chapter 3. We used normal Q-Q plots based on 10,000

simulation samples of test statistics. We also provided tables to have a better un-

derstanding of approximations in the tails of the standard normal distribution. The

tables include the empirical pth quantiles based on 10,000 samples and the propor-

tion of the values of test statistics in 10,000 samples which exceeded standard normal

pth quantiles for p = 0.975 and 0.995. The normal Q-Q plots and tables can be

found in Appendix B for two settings; (i) identical processes in Appendix B.1 and

(ii) non-identical processes in Appendix B.2. We next considered the power of the

tests through simulations under various scenarios. The results of the power studies

are presented in Appendix C, once again, for two settings; (i) identical processes in

Appendix C.1 and (ii) non-identical processes in Appendix C.1. The details of the

simulation procedures are given in Section 4.1. We summarize these results in this

section. For all simulations, we considered (m, τ) combinations where m = 10, 20, 50

and τ = 5, 10, 20. The test statistics considered are

1. Laplace test statistic ZLT given in (3.10),

2. Power law process (PLP) test statistic ZPLP given in (3.28),

3. Linear rank test statistic ZR given in (3.31),

4. Lewis-Robinson test statistic ZLR given in (3.34),

5. Adjusted Lewis-Robinson test statistic ZALR given in (3.36),

6. Generalized Laplace test ZGLT given in (3.48),

7. Generalized PLP test statistic ZGPLP given in (3.60).
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We first summarize the results for normal approximations in identical processes

setting when the trend-free model is a HPP (i.e., Case (a) in Section 4.1). The

normal Q-Q plots resemble a straight line for the test statistics ZLT , ZR, ZLR, and

ZALR under all scenarios with (m, τ) combinations. This result indicates that the

standard normal approximation is adequate for these statistics under the scenarios

considered in this study. For the power law process test statistic ZPLP , the normal

Q-Q plots (Figure B.4, Figure B.5, and Figure B.6) are little off at the extreme tails

when m = 10 and τ = 5 and 10. As m or τ increases, the normal Q-Q plots form

roughly straight lines, which indicates that the normal approximations are adequate

for these scenarios. As for the robust test statistic ZGL, the normal Q-Q plots (Figure

B.16, Figure B.17 and Figure B.18) show that the normal approximations are off

when m = 10, and τ = 5, 10, or 20. When m = 20, and τ = 5, 10, or 20, the normal

approximations are adequate. With m increasing from 20 to 50 and τ = 5, 10, or 20,

normal approximations are better. These results show that the normal approximations

can be used for the generalized Laplace test when there are moderate to large number

of processes (e.g., m > 10) are under observation. A similar conclusion to ours was

also given by Lawless et al. (2012). We obtained similar results for the other robust

test statistic ZGPLP as well. However, in this case, as m increases, the convergence is a

little slower comparing with the convergence of ZGL. For example, when m = 10 and

20, τ = 5, 10, or 20, the normal Q-Q plots (Figure B.19, Figure B.20 and Figure B.21)

reveal that the normal approximations are not adequate. When m increases from 20

to 50, the normal Q-Q plots of generalized power law process test statistic ZGPLP are

roughly a straight line; that is, the normal approximations are good when m is large

enough, for example, m > 20. All of these results are also supported by the results

given in Table B.1. We also obtained similar results under the non-identical processes

settings. The normal Q-Q plots for the non-identical processes in Case (a) are given in
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Figures B.64–B.84. Furthermore, extreme tail approximations of the standard normal

distribution in Case (a) and identical processes setting can be found in Table B.4 in

Appendix B.

We would like to note that our careful investigation of the normal Q-Q plots and

tables given in Appendix B showed similar results for Case (b) and Case (c) as well.

Therefore, in summary, the normal Q-Q plots and tables given in Appendix B indicate

that the normal approximations are adequate for ZLT , ZR, ZLR, ZALR test statistics

for all scenarios and cases considered in our study when identical or non-identical

processes are under observation. Therefore, the standard normal approximation can

be used to find p-values for the tests based on these tests statistics when m and τ are

as small as 10 and 5, respectively. For the power law process test statistic ZPLP , the

standard normal approximation is off in the extreme tails when m and τ are small.

However, the convergence is fast and p-values can be obtained by using the standard

normal distribution when m and τ are moderately large, say m and τ are larger than

10 and 5, respectively. The normal approximations for the robust trend test statistics

ZGL and ZGPLP are not adequate with small m values in all cases and settings. The

normal Q-Q plots become roughly a straight line as m increases. The convergence is,

however, slower for the ZGPLP test statistic. Our simulation results showed that the

standard normal approximation can be used when m ≥ 20 for the ZGL test statistic

and when m > 20 for the ZGPLP test statistic. When the normal approximations

are not adequate, the p-values can be estimated by using a bootstrapping procedure

(Davison and Hinkley, 1997). It should be noted that the generalized Laplace test

ZGL and the generalized power law process test ZGPLP cannot be applied when a

single process is under observation (i.e., m = 1).

The tables given in Appendix B include the values of P̂ (1.96) and P̂ (2.576), the

proportion of the absolute values of the seven test statistics in 10,000 samples exceeded
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the standard normal pth quantiles when p = 0.975 and 0.995. When τ is fixed and

m increases, we obtained similar conclusions based on normal Q-Q plots. This can

be summarized as follows. In Case (a), the null model (i.e., the trend-free model)

is an HPP. In this case from Table B.1, P̂ (1.96) was close to its nominal value 0.05

for the robust tests (ZGL and ZGPLP ) in almost all scenarios, except when m = 10

for the generalized Laplace test. We obtained good results for P̂ (1.96) from all other

tests as well, but the Lewis-Robinson test (ZLR) when τ = 5 and 10. In these

scenarios, the expected numbers of events per process are 5 and 10, respectively. As

discussed by Lawless et al. (2012), the Lewis-Robinson may not perform well when

the number of observations per process is small, and the adjusted Lewis-Robinson test

is recommended in such cases. Table B.1 shows that P̂ (1.96) is close to its nominal

value 0.05 for all values of τ in the simulations when ZALR test statistic is used. We

also obtained similar conclusions in the non-identical processes setting in Table B.4.

In Case (b), we generated samples from a renewal process. As expected, the

values of P̂ (1.96) in Table B.2 are close to the nominal value 0.05 of a two-sided test

for the tests based on renewal processes; rank test (ZR), Lewis-Robinson test (ZLR)

and adjusted Lewis-Robinson test (ZALR). Among these tests, rank test performed

the best in terms of approximating the nominal value 0.05, and the adjusted Lewis-

Robinson performed much better than the Lewis-Robinson test. The tests based

on Poisson processes and robust trend tests were not adequate to approximate the

extreme tails of the standard normal distribution. Among these test, the generalized

Laplace test (ZGL) performed the best.Table B.5 shows the results for the non-identical

processes setting. The conclusions are similar.

For Case (c), we generated the samples from a delayed renewal process. The only

difference between renewal processes and the delayed renewal processes is that the first

gap times of the processes follow a different distribution than the remaining gap times.
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The results given in Table B.3 show that the values of P̂ (1.96) are not close to 0.05

for the tests based renewal processes as well as Poisson processes. However, robust

trend tests performed much better than the other tests in terms of approximation

of P (1.96) in this case. We also obtained similar results given in Table B.6 for the

non-identical processes setting.

We next discuss the power of the seven tests considered in simulation studies under

monotonically increasing trend alternatives given in Section 4.1 (i.e., Case (d), Case

(e) and Case (f)). Once again, we conducted power studies for various scenarios of (m,

τ) combinations (m = 10, 20, 50 and τ = 5, 10, 20) under two settings; (i) identical

processes and (ii) non-identical processes. We took two values of R (R = 1.5 and 2),

where R = exp(γτ) is the relative risk of a failure occurrence under the trend model

at the end of the observation periods (i.e., when t = τ) comparing with the trend-free

process (i.e., γ = 0). Note that, when γ = 0, the alternative models given in Cases

(d), (e) and (f) reduces to their corresponding trend-free null models given in Cases

(a), (b) and (c), respectively. We presented the results in tables in Appendix C; first,

in identical processes setting in Appendix C.1, and then, in non-identical processes

setting in Appendix C.2. In the remaining part of this section, we summarize these

results.

Table C.1 shows the proportions of rejection of the null hypothesis H0 : γ = 0

against the alternative hypothesis H1 : γ 6= 0 for the Case (d) in identical processes

setting when R = 2. In this case, we generated 1,000 samples from a NHPP with

a trend component. As discussed before, we obtained the proportions based on the

quantiles of the standard normal distribution (denoted by Ω(·)) as well as the empirical

pth quantile of the test statistics from 10,000 simulation runs corresponding to the

matching null hypothesis Case (a) (denoted by Ω̂(·)). We considered power of the

tests with size 0.05 and 0.01 (Type 1 errors). In the tables in Appendix C, Ω(1) and
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Ω̂(1) show the proportions corresponding to the size 0.05, and Ω(2) and Ω̂(2) show

the proportions corresponding to the size 0.01. In this section, we only compare Ω̂(1)

values to discuss the performance of test statistics so that the adequacy of the standard

normal approximations is not an issue in the power comparisons. We obtained similar

conclusions when Ω̂(2) is used. In Case (d), the Laplace test (ZLT ) is overall the most

powerful test among the seven tests. The other tests performed well in terms of power

include the generalized Laplace test (ZGL) and the power law process (ZPLP ). Other

tests performed poor in this case. As m increases for a fixed τ , the power increases

for all tests, but the increase is more significant with the robust tests. Therefore,

we conclude that ZLT , ZGL and ZPLP tests have good power in Case (d) for testing

the monotonic trend alternatives even when τ is small (τ = 5) and m > 10. For

moderate τ and m values such as τ = 10 and m = 20, ZLT and ZGL performed better

than the other tests. Furthermore, for large τ and m values, all tests provide good

power for testing the trend alternative. The results given in Table C.2 lead to similar

conclusions. Also, Table C.7 and Table C.8 show the proportions in non-identical

processes setting when R = 2 and 1.5, respectively. We obtained similar conclusion.

In Case (e), we generated samples from a Markov renewal process, in which the

gap times Wij have gamma distribution with an increasing scale parameter a′i exp(γt)

and a constant shape parameter b. Note that the scale parameter increases as j

increases for the ith process, i = 1, . . ., m. We presented the proportions of rejection

of H0 : γ = 0 in Table C.3 when R = 2 in the identical processes setting. In this

case, the generalized Laplace test ZGL has the highest power overall among the tests

included in this study. However, the overall power of ZGL, ZPLP , ZLT and ZGPLP

tests are close. In this case, the overall power of the tests based on the renewal

processes (i.e., ZR, ZLR and ZALR) are less than the other tests. This is an interesting

result because the trend-free model in this case is a renewal process, and we may
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expect to observe that the tests based on renewal processes perform better than the

tests based on HPPs in terms of power. However, it should be noted that the ZR,

ZLR and ZALR tests are developed under the Type 2 censoring mechanism. In our

simulation studies, we applied a Type 1 censoring mechanism, which is more common

in applications (see Section 1.2 and Section 3.3.2). This might result in a little lower

power in these tests. Lawless et al. (2012) also obtained similar results in a power

study comparing the ZGL, ZR and ZALR tests. They found that overall the most

powerful test was the ZGL test. Table C.4 shows the power results when R = 1.5 in

identical processes setting. The conclusions are similar to those found when R = 2.

Furthermore, in non-identical processes settings, we presented the power results in

Table C.9 and Table C.10 when R = 2 and R = 1.5, respectively. We obtained similar

results with the identical processes setting. Therefore, we conclude that, when there

is a monotonically increasing trend in the gap times of a recurrent event process given

in Case (e), the robust generalized Laplace test ZGL was the most powerful in the

scenarios and settings considered in this study. However, its power was close to ZPLP ,

ZLT and ZGPLP tests. Based on our simulations, we do not recommend to use of the

rank test ZR, and the Lewis-Robinson test ZLR and the adjusted Lewis-Robinson test

ZALR.

In Case (f), we generated the sample from a carryover effect model with a monoton-

ically increasing time trend. Under the null hypothesis of no trend (i.e., H0 : γ = 0),

the model becomes a carryover effect model given in Case (c). Carryover effect is an

effect that may result in cluster of events together over time after each event occur-

rence in the same process. In essence, the carryover effect model given in Case (c) is a

delayed renewal process, where the first gap time follows an exponential distribution

with rate parameter α⋆
i and the remaining gap times have a mixture type of distribu-

tion with a substantial mass given over ∆ time period after each event occurrences.
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In this case, Table C.5 shows the power results for the seven test statistics under iden-

tical processes setting when R=2. The results indicate that the generalized Laplace

test ZGL is the overall most powerful test. The Laplace test ZLT follows the ZGL. The

overall power of the ZPLP and ZGPLP are similar and lower than the overall power

of ZLT and ZGL tests. The tests based on renewal processes (ZR, ZLR and ZALR)

are once again provided low overall power results. In this case, we recommend the

use of the generalized Laplace test for testing the monotonic trends in recurrent even

processes. For R = 1.5, we presented the power results in Table C.6. We obtained

similar conclusions. Also, Table C.11 and Table C.12 show the power of the tests in

non-identical processes setting when R = 2 and R = 1.5, respectively. Once again,

we observed that the generalized Laplace test ZGL is overall the most powerful test

among the trend tests included in our study.

In summary, we recommend the robust tests statistics ZGLT and ZGPLP when m

is moderately large and there are relatively few events per process. The tests ZR,

ZLT , and ZLR can be considered when m is small (10 or less) and there are moderate

number of events per process. We found that robust trend tests perform well in all

scenarios considered in this practicum.



Chapter 5

Applications

In this chapter, we discuss two data sets from industry. These data sets have been

discussed by other authors in the literature. Our goal in this chapter is to illustrate

the methods discussed in the previous chapters.

5.1 Example 1: Hydraulic Systems of LHD Ma-

chines

Kumar and Klefsjö (1992) provided failure data of hydraulic systems of six load-haul-

dump (LHD) machines working on a mine in Sweden. This data set is discussed

in Section 1.3. In this section, we apply the trend tests considered in the previous

chapter to test whether there is a monotonic trend in the data or not. This data set

was analyzed by many other authors as well, including Kumar and Klefsjö (1992),

Baker (1996) and Lawless et al. (2012). It includes the gap times between successive

failures in six LHD machines. The data set is given in Appendix A.1. The reliability

study considered by Kumar and Klefsjö (1992) originally includes failure times of a

fleet of LHD machines, but as they mentioned, the data collection and putting them
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Figure 5.2: Plots of cumulative number of failures versus operting hours for LHD
machines

LHD 1, LHD 9 and LHD 17 as the operating time t increases. To further investigate

these patterns, we next present the Nelson-Aalen plots (cumulative number of failures

versus cumulative operating time in hours) in Figure 5.2. The concave up shapes in

these plots indicate an increasing monotonic trend in LHD 1, LHD 9 and LHD 17

machines. The Nelson-Aalen plots of LHD 3, LHD 11 and LHD 20 machines resemble

an approximate linear line, indicating the absence of a time trend.

We next consider trend tests that can be used for a single processes. Therefore,

we calculate the Laplace test statistic ZLT , rank statistic ZR, the Lewis-Robinson

statistic ZLR, the adjusted Lewis-Robinson statistic ZALR and the power law process

test statistic ZPLP . The values are given in Table 5.1 along with their corresponding

standard normal distribution based p-values in parenthesis. It should be noted that,

when m = 1, simulation studies conducted by other authors showed that the tests

statistics ZLT , ZR, ZLR, ZALR converge to the standard normal distribution very fast

as the observed number of event increases. Therefore, we obtained p-values by using

the standard normal distribution. We also conducted a simulation study (results are

not shown here) to discuss the validity of the normality assumption for each LHD
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ZLT ZR ZLR ZALR ZPLP

LHD 1 2.294(0.022) -1.218(0.223) 1.613(0.107) 1.579(0.114) 1.850(0.064)
LHD 3 1.075(0.282) -0.321(0.748) 0.699(0.484) 0.686(0.493) 1.650(0.099)
LHD 9 2.409(0.016) -1.681(0.093) 1.888(0.059) 1.854(0.064) 2.054(0.040)
LHD 11 0.565(0.572) -0.441(0.659) 0.255(0.799) 0.251(0.802) 1.272(0.204)
LHD 17 1.855(0.064) -1.655(0.098) 1.561(0.119) 1.531(0.126) 1.763(0.078)
LHD 20 0.455(0.650) 0.183(0.855) 0.114(0.909) 0.112(0.911) 0.864(0.387)

Table 5.1: The values of trend test statistics and corresponding two-sided p-values for
the single LHD machines.

machine. Our results showed that the standard normal approximations are quite

accurate for all these test statistics but ZPLP . The results in Table 5.1 shows that, for

single LHD machines, the absence of monotonic trend in LHD 1 machine is rejected

by only ZLT test at 0.05 level of significance (p-value = 0.022). All tests have p-values

greater than 0.05 for testing the absence of monotonic trend in LHD 3. We note that

the Laplace test and the power law process test indicate a significant trend in LHD 9

at 0.05 level of significance, but trend is significant in all tests at 0.10 level. All tests

show that the monotonic trend is not significant in LHD 11, LHD 17 and LHD 20

machines at 0.01 level. This is also true when the significance level is 0.05, but only

Laplace test show significant monotonic trend in LHD 17 at this level.

We next consider the trend tests for the combined data set, which includes the

failure times of LHD 1, LHD 3, LHD 9, LHD 11, LHD 17 and LHD 20 machines to-

gether. In this case, m = 6, and we apply all seven tests including the robust tests ZGL

and ZGPLP . We obtain the p-values based on the standard normal approximations.

It should be noted that, since the number of processes is small (m = 6), the normal

approximation may be off at the extreme tails for the robust tests. Our simulation

studies also indicate that the standard normal approximation for the power law pro-

cess tests may not be accurate for this data set. However, p-values can be estimated

by using a parametric bootstrap procedure as well. Table 5.2 shows the values of the

test statistics and their corresponding p-values within parenthesis. The Generalized

Laplace test, Laplace test, rank test, Lewis-Robinson test, adjusted Lewis-Robinson
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ZGL ZLT ZR ZLR ZALR ZPLP ZGPLP

LHD 2.017(0.0437) 3.567(0.0004) -2.145(0.0320) 2.502(0.0120) 2.454(0.0140) -0.522(0.6020) -2.443(0.01470)

Table 5.2: The values of trend test statistics and corresponding two-sided p-values for
the combined LHD machines.

test and Generalized PLP test reject the absence of a monotonic trend in the combined

data set at 0.05 level of significance. The p-values of ZPLP is quite big. We would like

to underline again that these p-values are based on standard normal distribution, and

the standard normal approximation for these tests may not be accurate when m = 6.

5.2 Example 2: Failures of Air-Conditioning Equip-

ment

Proschan (1963) gave a data set of air-conditioning equipment failures on thirteen

aircrafts. We discussed this data set briefly in Section Cox and Lewis (1966) used

this data set to illustrate the Laplace test and rank test for testing the monotonic

trends in the rate of occurrence of failures. Lawless and Thiagarajah (1996) analyzed

the trend in Aircraft 6 and Aircraft 7. We selected four aircrafts (Aircrafts 2, 3,

6 and 7), and applied the tests considered in the previous chapters. Table A.2 in

Appendix A shows the gap times between successive failures in these four aircrafts in

operation hours. In the original data set, the end-of-followup times were not given.

Therefore, we take the last failure occurrence times as the end-of-followup time for

the observation. Therefore, the observation periods lasted 33074, 30853, 33847 and

27373 hours for Aircrafts 2, 3, 6 and 7, respectively. Over these time periods, there

were 23, 27, 29 and 30 failures of air-conditioning equipment observed in Aircrafts 2,

3, 6 and 7, respectively.

We start our analysis with simple plots. Figure 5.3 shows the dot plots of the
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air-conditioning equipment failures in four aircrafts. The dot plots indicate a mild

increasing number of failures in Aircraft 2 and Aircraft 6. It appears that there are

some clustering of failures in Aircraft 3, but there is no indication of a monotonic

trend in Aircrafts 3 and 7. We also observe a similar pattern in the Nelseon-Aalen

plots of the failure times given in Figure 5.4.

Next, we use the formal tests to test the absence of monotonic trend in the com-

bined data set. The values of tests statistics and corresponding p-values based on the

standard normal distribution are given as follows. The values of ZLR and ZALR test

statistics are 0.612 and 0.599, respectively, and the corresponding p-values are 0.541

and 0.549, respectively. Also, the value of the rank test statistic ZR is -0.375, and the

corresponding p-value is 0.708. Therefore, the tests based on renewal processes under

the trend-free model do not reject the absence of a monotonic trend in the combined

data set. Similarly, the values of ZLT and ZPLP test statistics are, respectively, 1.543

with a p-value of 0.436 and 0.123 with a p-value of 0.873. This result shows that the

trend tests based on the HPP under the trend-free model do not reject the absence

of a monotonic trend in the combined data set as well. Finally, we also obtain the

values of the robust trend test statistics ZGL and ZGPLP . The value of the generalized

Laplace test statistic ZGL is 0.874 with a p-value of 0.382 and the value of the gen-

eralized PLP test statistic ZGPLP is -1.987 and the corresponding p-value is 0.0469.

Therefore, all trend tests considered in this chapter do not reject the absence of a

monotonic trend in the combined data set.



Chapter 6

Conclusion and Future Work

Detection of trends is crucial in the analysis of recurrent event data. In this practicum,

we discussed concept of trends and compared seven trend tests in terms of their power

to detect monotonic trends. These tests include five classical tests, which are the

Laplace test ZLT , power law process (PLP) test ZPLP , linear rank test ZR, the Lewis-

Robinson test ZLR and the adjusted Lewis-Robinson test ZALR, as well as the two

robust tests, the generalized Laplace test ZGLT and the generalized PLP test ZGPLP .

The classical tests are developed under certain model assumptions, and may lead

to wrong conclusions about the presence of trends if these assumptions do not hold.

Robust tests usually hold good power if the model assumptions are mildly violated.

Therefore, they are important alternatives to the classical trend tests, and can be

applied as routine checks for trends in multiple recurrent event processes.

In Section 4.2, we have discussed the validity of normal approximation for the

formal test statistics. The normal approximation of ZLT , ZR, ZLP and ZALR tests is

valid, but it is off in the extreme tails for ZPLP when m is small. As m approaches

to infinity when τ is fixed or as τ approaches infinity when m is fixed, the normal

approximation holds for all test statistics considered in this practicum. Therefore,
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p-values may be calculated by using this approximation for sufficiently large m or τ

values. In finite sample size (m or τ) settings, we found in our simulations that the

normal approximation is not valid in the extreme tails for the robust test statistics

ZGLT and ZGPLP . In these settings, p-values can be calculated via bootstrapping.

In the power studies, we found that robust test statistics ZGLT and ZGPLP per-

formed well for prespecied observation periods τ and fixed number of processes m

when m is moderately large. When m is small ZR, ZLT and ZLR tests can be consid-

ered.

The main assumption for all simulations is that only monotonic trends may occur.

Although generalized PLP test statistic ZGPLP and generalized Laplace test statistics

ZGLT can not deal when a single process (m = 1) is under observation, they can

be used when multiple processes are under observation (m > 1). Strictly speaking,

we cannot conclude that which test statistic should be applied for all applications.

Another important point is that the use of normal approximation to calculate p-values

should be carefully applied for the robust test statistics. We hope that our simulation

results given in Chapter 4 can be a reference for finite sample size settings.

In this practicum, we only discussed monotonic time trends as the only factor in

event occurrence. More discussions should be considered in the future for the case of

many factors affecting the intensity functions of the processes. For example, cluster

is one of such important factors in analyzing recurrent event processes. In Chapter 5,

Figure 5.1 and Figure 5.3 have showed some forms of cluster of events together over

time. Cigsar (2010) discussed several carryover effect models to deal with some forms

of event clustering in recurrent event processes. We will consider the power of these

tests when carryover effects are present in the data as a future work. Non-monotonic

trends can also appear in some applications. When non-monotonic trends are present,

we recommend graphical checks and more elaborate modeling approach to detect such
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trends. This will be considered as a future work.
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Appendix A

Data Sets

Table A.1: Table of the time between successive failures of LHD machines

Failure
Number

Time between successive failures of hydraulic system

LHD 1 LHD 3 LHD 9 LHD 11 LHD 17 LHD 20

1 327 637 278 353 401 231
2 125 40 261 6 36 20
3 7 397 990 49 18 361
4 6 36 191 211 159 260
5 107 54 107 82 341 176
6 277 53 32 175 171 16
7 54 97 51 79 24 101
8 332 63 10 117 350 293
9 510 216 132 26 72 5
10 110 118 176 4 303 119
11 10 125 247 5 34 9
12 9 25 165 60 45 80
13 85 4 454 39 324 112
14 27 101 142 35 2 10
15 59 184 38 258 70 162
16 16 167 249 97 57 90
17 8 81 212 59 103 176
18 34 46 204 3 11 370
19 21 18 182 37 5 90
20 152 32 116 8 3 15
21 158 219 30 245 144 315
22 44 405 24 79 80 32
23 18 20 32 49 53 266
24 248 38 31 84
25 140 10 259 218
26 311 283 122
27 61 150
28 24
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Table A.2: Table of the intervals in operating hours between successive failures of
airconditioning equipment in 13 Boeing 720 aircraft

Failure
Number

Operating hours between successive failures of airconditioning equipment

Aircraft 2 Aircraft 3 Aircraft 6 Aircraft 7

1 413 90 23 97
2 14 10 261 51
3 58 60 87 11
4 37 186 7 4
5 110 61 120 141
6 65 49 14 18
7 9 14 62 142
8 169 24 47 68
9 447 56 225 77
10 184 20 71 80
11 36 79 246 1
12 201 84 21 16
13 118 44 42 106
14 34 59 20 206
15 31 29 5 82
16 18 118 12 54
17 18 25 120 31
18 67 156 11 216
19 57 310 3 46
20 62 76 14 111
21 7 26 71 39
22 22 44 11 63
23 34 23 14 18
24 62 11 191
25 130 16 18
26 208 90 163
27 70 1 24
28 101 16
29 208 52
30 95
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Figure B.24: Normal Q-Q plots of 10,000 simulated values of Laplace test when
τ = 20, and (1) m = 10, (2) m = 20, (3) m = 50: Case (b) with αi = 1.

Figure B.25: Normal Q-Q plots of 10,000 simulated values of PLP test when τ = 5,
and (1) m = 10, (2) m = 20, (3) m = 50: Case (b) with αi = 1.

Figure B.26: Normal Q-Q plots of 10,000 simulated values of PLP test when τ = 10,
and (1) m = 10, (2) m = 20, (3) m = 50: Case (b) with αi = 1.
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Figure B.27: Normal Q-Q plots of 10,000 simulated values of PLP test when τ = 20,
and (1) m = 10, (2) m = 20, (3) m = 50: Case (b) with αi = 1.

Figure B.28: Normal Q-Q plots of 10,000 simulated values of Rank test when τ = 5,
and (1) m = 10, (2) m = 20, (3) m = 50: Case (b) with αi = 1.

Figure B.29: Normal Q-Q plots of 10,000 simulated values of Rank test when τ = 10,
and (1) m = 10, (2) m = 20, (3) m = 50: Case (b) with αi = 1.
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Figure B.30: Normal Q-Q plots of 10,000 simulated values of Rank test when τ = 20,
and (1) m = 10, (2) m = 20, (3) m = 50: Case (b) with αi = 1.

Figure B.31: Normal Q-Q plots of 10,000 simulated values of Lewis-Robinson test
when τ = 5, and (1) m = 10, (2) m = 20, (3) m = 50: Case (b) with αi = 1.

Figure B.32: Normal Q-Q plots of 10,000 simulated values of Lewis-Robinson test
when τ = 10, and (1) m = 10, (2) m = 20, (3) m = 50: Case (b) with αi = 1.
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Figure B.33: Normal Q-Q plots of 10,000 simulated values of Lewis-Robinson test
when τ = 20, and (1) m = 10, (2) m = 20, (3) m = 50: Case (b) with αi = 1.

Figure B.34: Normal Q-Q plots of 10,000 simulated values of Lewis -Robinson test
with adjustment when τ = 5, and (1) m = 10, (2) m = 20, (3) m = 50: Case (b) with
αi = 1.

Figure B.35: Normal Q-Q plots of 10,000 simulated values of Lewis -Robinson test
with adjustment when τ = 10, and (1) m = 10, (2) m = 20, (3) m = 50: Case (b)
with αi = 1.
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Figure B.36: Normal Q-Q plots of 10,000 simulated values of Lewis -Robinson test
with adjustment when τ = 20, and (1) m = 10, (2) m = 20, (3) m = 50: Case (b)
with αi = 1.

Figure B.37: Normal Q-Q plots of 10,000 simulated values of generalized Laplace test
when τ = 5, and (1) m = 10, (2) m = 20, (3) m = 50: Case (b) with αi = 1.

Figure B.38: Normal Q-Q plots of 10,000 simulated values of generalized Laplace test
when τ = 10, and (1) m = 10, (2) m = 20, (3) m = 50: Case (b) with αi = 1.
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Figure B.39: Normal Q-Q plots of 10,000 simulated values of generalized Laplace test
when τ = 20, and (1) m = 10, (2) m = 20, (3) m = 50: Case (b) with αi = 1.

Figure B.40: Normal Q-Q plots of 10,000 simulated values of generalized PLP test
when τ = 5, and (1) m = 10, (2) m = 20, (3) m = 50: Case (b) with αi = 1.

Figure B.41: Normal Q-Q plots of 10,000 simulated values of generalized PLP test
when τ = 10, and (1) m = 10, (2) m = 20, (3) m = 50: Case (b) with αi = 1.
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τ m Q̂0.975 Q̂0.995 P̂ (1.96) P̂ (2.576) Q̂0.975 Q̂0.995 P̂ (1.96) P̂ (2.576)

ZGL

5 10 1.636 2.040 0.048 0.002

ZLT

1.844 2.480 0.095 0.028
5 20 1.571 2.095 0.064 0.011 1.758 2.410 0.110 0.035
5 50 1.236 1.845 0.097 0.021 1.387 2.092 0.152 0.051
10 10 1.734 2.173 0.047 0.003 1.928 2.631 0.091 0.026
10 20 1.627 2.243 0.059 0.009 1.829 2.604 0.104 0.034
10 50 1.469 2.071 0.076 0.016 1.641 2.310 0.129 0.043
20 10 1.779 2.296 0.046 0.002 2.047 2.779 0.091 0.028
20 20 1.712 2.202 0.051 0.007 1.948 2.672 0.092 0.029
20 50 1.590 2.253 0.066 0.013 1.821 2.539 0.112 0.035

ZR

5 10 1.959 2.563 0.046 0.008

ZLR

2.063 2.664 0.070 0.018
5 20 1.939 2.524 0.051 0.009 2.112 2.777 0.066 0.016
5 50 1.948 2.553 0.050 0.010 2.154 2.818 0.070 0.016
10 10 1.930 2.502 0.049 0.008 2.078 2.686 0.061 0.015
10 20 1.966 2.575 0.050 0.010 2.092 2.730 0.064 0.016
10 50 1.904 2.481 0.047 0.008 2.086 2.698 0.065 0.014
20 10 1.960 2.579 0.049 0.010 2.015 2.607 0.055 0.013
20 20 1.964 2.516 0.050 0.010 2.013 2.712 0.056 0.013
20 50 1.947 2.483 0.051 0.010 2.064 2.700 0.058 0.012

ZALR

5 10 1.867 2.413 0.044 0.007

ZGPLP

1.753 2.248 0.043 0.001
5 20 1.904 2.513 0.041 0.007 1.394 2.130 0.066 0.006
5 50 1.949 2.545 0.045 0.008 0.865 1.472 0.169 0.040
10 10 1.973 2.545 0.051 0.009 1.699 2.248 0.046 0.003
10 20 1.981 2.592 0.051 0.011 1.450 2.110 0.071 0.009
10 50 1.974 2.565 0.050 0.009 0.990 1.686 0.154 0.036
20 10 1.957 2.537 0.049 0.010 1.713 2.250 0.044 0.002
20 20 1.964 2.644 0.049 0.011 1.479 2.024 0.064 0.008
20 50 2.005 2.634 0.051 0.010 1.089 1.798 0.139 0.028

ZPLP

5 10 1.565 2.120 0.153 0.067
5 20 1.346 1.946 0.191 0.091
5 50 0.881 1.458 0.321 0.172
10 10 1.641 2.327 0.137 0.056
10 20 1.451 2.199 0.183 0.077
10 50 1.053 1.714 0.281 0.143
20 10 1.743 2.419 0.118 0.044
20 20 1.552 2.124 0.150 0.058
20 50 1.184 1.922 0.238 0.112

Table B.2: The empirical pth quantiles and p values for case (b) with identical pro-
cesses

τ m Q̂0.975 Q̂0.995 P̂ (1.96) P̂ (2.576) Q̂0.975 Q̂0.995 P̂ (1.96) P̂ (2.576)

ZGL

5 10 1.914 2.303 0.039 0.001

ZLT

2.355 3.115 0.101 0.029
5 20 1.996 2.529 0.049 0.007 2.453 3.144 0.098 0.033
5 50 2.018 2.578 0.051 0.008 2.434 3.153 0.102 0.033
10 10 1.875 2.260 0.037 0.001 2.322 3.063 0.091 0.029
10 20 1.944 2.508 0.047 0.009 2.366 3.063 0.104 0.030
10 50 1.926 2.571 0.046 0.009 2.304 3.163 0.095 0.028
20 10 1.914 2.308 0.041 0.002 2.318 3.075 0.099 0.030
20 20 1.902 2.406 0.043 0.006 2.302 2.953 0.093 0.027
20 50 1.945 2.505 0.049 0.009 2.332 3.052 0.098 0.031

ZR

5 10 1.575 2.158 0.063 0.012

ZLR

2.485 3.079 0.091 0.022
5 20 1.427 2.026 0.087 0.019 2.727 3.275 0.117 0.035
5 50 1.107 1.665 0.133 0.040 3.092 3.691 0.182 0.066
10 10 1.592 2.273 0.060 0.013 2.375 2.986 0.074 0.019
10 20 1.561 2.161 0.070 0.017 2.526 3.101 0.084 0.023
10 50 1.293 1.912 0.097 0.027 2.731 3.311 0.113 0.036
20 10 1.756 2.358 0.053 0.011 2.214 2.822 0.061 0.014
20 20 1.649 2.244 0.056 0.013 2.243 2.761 0.061 0.013
20 50 1.479 2.059 0.073 0.018 2.480 3.038 0.081 0.020

ZALR

5 10 2.274 2.799 0.059 0.012

ZGPLP

2.165 2.541 0.052 0.004
5 20 2.472 3.008 0.086 0.020 2.329 2.858 0.061 0.012
5 50 2.840 3.421 0.140 0.044 2.253 2.856 0.059 0.011
10 10 2.286 2.854 0.062 0.014 2.125 2.515 0.049 0.004
10 20 2.413 2.963 0.070 0.016 2.186 2.717 0.055 0.010
10 50 2.613 3.168 0.096 0.028 2.165 2.797 0.050 0.012
20 10 2.169 2.767 0.056 0.011 2.087 2.506 0.046 0.003
20 20 2.197 2.707 0.056 0.010 2.050 2.672 0.047 0.009
20 50 2.423 2.968 0.075 0.018 2.094 2.722 0.052 0.010

ZPLP

5 10 2.119 2.674 0.088 0.023
5 20 2.254 2.845 0.093 0.027
5 50 2.318 2.955 0.096 0.026
10 10 2.208 2.787 0.090 0.027
10 20 2.259 2.879 0.099 0.030
10 50 2.295 2.975 0.091 0.028
20 10 2.262 2.852 0.094 0.028
20 20 2.218 2.870 0.090 0.027
20 50 2.313 2.964 0.095 0.031

Table B.3: The empirical pth quantiles and p values for case (c) with identical pro-
cesses
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B.2 Normal Approximation with Non-identical pro-

cesses

Figure B.64: Normal Q-Q plots of 10,000 simulated values of Laplace test when τ = 5,
and (1) m = 10, (2) m = 20, (3) m = 50: Case (a) with non-identical processes.

Figure B.65: Normal Q-Q plots of 10,000 simulated values of Laplace test when τ = 10,
and (1) m = 10, (2) m = 20, (3) m = 50: Case (a) with non-identical processes.

Figure B.66: Normal Q-Q plots of 10,000 simulated values of Laplace test when τ = 20,
and (1) m = 10, (2) m = 20, (3) m = 50: Case (a) with non-identical processes.
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Figure B.67: Normal Q-Q plots of 10,000 simulated values of PLP test when τ = 5,
and (1) m = 10, (2) m = 20, (3) m = 50: Case (a) with non-identical processes.

Figure B.68: Normal Q-Q plots of 10,000 simulated values of PLP test when τ = 10,
and (1) m = 10, (2) m = 20, (3) m = 50: Case (a) with non-identical processes.

Figure B.69: Normal Q-Q plots of 10,000 simulated values of PLP test when τ = 20,
and (1) m = 10, (2) m = 20, (3) m = 50: Case (a) with non-identical processes.
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Figure B.70: Normal Q-Q plots of 10,000 simulated values of Rank test when τ = 5,
and (1) m = 10, (2) m = 20, (3) m = 50: Case (a) with non-identical processes.

Figure B.71: Normal Q-Q plots of 10,000 simulated values of Rank test when τ = 10,
and (1) m = 10, (2) m = 20, (3) m = 50: Case (a) with non-identical processes.

Figure B.72: Normal Q-Q plots of 10,000 simulated values of Rank test when τ = 20,
and (1) m = 10, (2) m = 20, (3) m = 50: Case (a) with non-identical processes.
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Figure B.73: Normal Q-Q plots of 10,000 simulated values of Lewis-Robinson test
when τ = 5, and (1) m = 10, (2) m = 20, (3) m = 50: Case (a) with nonidentical
processes.

Figure B.74: Normal Q-Q plots of 10,000 simulated values of Lewis-Robinson test
when τ = 10, and (1) m = 10, (2) m = 20, (3) m = 50: Case (a) with non-identical
processes.

Figure B.75: Normal Q-Q plots of 10,000 simulated values of Lewis-Robinson test
when τ = 20, and (1) m = 10, (2) m = 20, (3) m = 50: Case (a) with non-identical
processes.
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Figure B.76: Normal Q-Q plots of 10,000 simulated values of Lewis -Robinson test
with adjustment when τ = 5, and (1) m = 10, (2) m = 20, (3) m = 50: Case (a) with
non-identical processes.

Figure B.77: Normal Q-Q plots of 10,000 simulated values of Lewis -Robinson test
with adjustment when τ = 10, and (1) m = 10, (2) m = 20, (3) m = 50: Case (a)
with non-identical processes.

Figure B.78: Normal Q-Q plots of 10,000 simulated values of Lewis -Robinson test
with adjustment when τ = 20, and (1) m = 10, (2) m = 20, (3) m = 50: Case (a)
with non-identical processes.
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Figure B.79: Normal Q-Q plots of 10,000 simulated values of generalized Laplace test
when τ = 5, and (1) m = 10, (2) m = 20, (3) m = 50: Case (a) with non-identical
processes.

Figure B.80: Normal Q-Q plots of 10,000 simulated values of generalized Laplace test
when τ = 10, and (1) m = 10, (2) m = 20, (3) m = 50: Case (a) with non-identical
processes.

Figure B.81: Normal Q-Q plots of 10,000 simulated values of generalized Laplace test
when τ = 20, and (1) m = 10, (2) m = 20, (3) m = 50: Case (a) with non-identical
processes.
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Figure B.82: Normal Q-Q plots of 10,000 simulated values of generalized PLP test
when τ = 5, and (1) m = 10, (2) m = 20, (3) m = 50: Case (a) with non-identical
processes.

Figure B.83: Normal Q-Q plots of 10,000 simulated values of generalized PLP test
when τ = 10, and (1) m = 10, (2) m = 20, (3) m = 50: Case (a) with non-identical
processes.

Figure B.84: Normal Q-Q plots of 10,000 simulated values of generalized PLP test
when τ = 20, and (1) m = 10, (2) m = 20, (3) m = 50: Case (a) with non-identical
processes.
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Figure B.106: Normal Q-Q plots of 10,000 simulated values of Laplace test when
τ = 5, and (1) m = 10, (2) m = 20, (3) m = 50: Case (c) with non-identical
processes.

Figure B.107: Normal Q-Q plots of 10,000 simulated values of Laplace test when
τ = 10, and (1) m = 10, (2) m = 20, (3) m = 50: Case (c) with non-identical
processes.

Figure B.108: Normal Q-Q plots of 10,000 simulated values of Laplace test when
τ = 20, and (1) m = 10, (2) m = 20, (3) m = 50: Case (c) with non-identical
processes.
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Figure B.109: Normal Q-Q plots of 10,000 simulated values of PLP test when τ = 5,
and (1) m = 10, (2) m = 20, (3) m = 50: Case (c) with non-identical processes.

Figure B.110: Normal Q-Q plots of 10,000 simulated values of PLP test when τ = 10,
and (1) m = 10, (2) m = 20, (3) m = 50: Case (c) with non-identical processes.

Figure B.111: Normal Q-Q plots of 10,000 simulated values of PLP test when τ = 20,
and (1) m = 10, (2) m = 20, (3) m = 50: Case (c) with non-identical processes.
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Figure B.112: Normal Q-Q plots of 10,000 simulated values of Rank test when τ = 5,
and (1) m = 10, (2) m = 20, (3) m = 50: Case (c) with non-identical processes.

Figure B.113: Normal Q-Q plots of 10,000 simulated values of Rank test when τ = 10,
and (1) m = 10, (2) m = 20, (3) m = 50: Case (c) with non-identical processes.

Figure B.114: Normal Q-Q plots of 10,000 simulated values of Rank test when τ = 20,
and (1) m = 10, (2) m = 20, (3) m = 50: Case (c) with non-identical processes.
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Figure B.115: Normal Q-Q plots of 10,000 simulated values of Lewis-Robinson test
when τ = 5, and (1) m = 10, (2) m = 20, (3) m = 50: Case (c) with non-identical
processes.

Figure B.116: Normal Q-Q plots of 10,000 simulated values of Lewis-Robinson test
when τ = 10, and (1) m = 10, (2) m = 20, (3) m = 50: Case (c) with non-identical
processes.

Figure B.117: Normal Q-Q plots of 10,000 simulated values of Lewis-Robinson test
when τ = 20, and (1) m = 10, (2) m = 20, (3) m = 50: Case (c) with non-identical
processes.
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Figure B.118: Normal Q-Q plots of 10,000 simulated values of Lewis -Robinson test
with adjustment when τ = 5, and (1) m = 10, (2) m = 20, (3) m = 50: Case (c) with
non-identical processes.

Figure B.119: Normal Q-Q plots of 10,000 simulated values of Lewis -Robinson test
with adjustment when τ = 10, and (1) m = 10, (2) m = 20, (3) m = 50: Case (c)
with non-identical processes.

Figure B.120: Normal Q-Q plots of 10,000 simulated values of Lewis -Robinson test
with adjustment when τ = 20, and (1) m = 10, (2) m = 20, (3) m = 50: Case (c)
with non-identical processes.
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Figure B.121: Normal Q-Q plots of 10,000 simulated values of generalized Laplace test
when τ = 5, and (1) m = 10, (2) m = 20, (3) m = 50: Case (c) with non-identical
processes.

Figure B.122: Normal Q-Q plots of 10,000 simulated values of generalized Laplace test
when τ = 10, and (1) m = 10, (2) m = 20, (3) m = 50: Case (c) with non-identical
processes.

Figure B.123: Normal Q-Q plots of 10,000 simulated values of generalized Laplace test
when τ = 20, and (1) m = 10, (2) m = 20, (3) m = 50: Case (c) with non-identical
processes.
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Figure B.124: Normal Q-Q plots of 10,000 simulated values of generalized PLP test
when τ = 5, and (1) m = 10, (2) m = 20, (3) m = 50: Case (c) with non-identical
processes.

Figure B.125: Normal Q-Q plots of 10,000 simulated values of generalized PLP test
when τ = 10, and (1) m = 10, (2) m = 20, (3) m = 50: Case (c) with non-identical
processes.

Figure B.126: Normal Q-Q plots of 10,000 simulated values of generalized PLP test
when τ = 20, and (1) m = 10, (2) m = 20, (3) m = 50: Case (c) with non-identical
processes.
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τ m Q̂0.975 Q̂0.995 P̂ (1.96) P̂ (2.576) Q̂0.975 Q̂0.995 P̂ (1.96) P̂ (2.576)

ZGL

5 10 1.907 2.293 0.039 0.002

ZLT

1.969 2.593 0.049 0.010
5 20 1.922 2.399 0.046 0.005 1.950 2.489 0.050 0.010
5 50 1.983 2.632 0.051 0.011 2.007 2.649 0.054 0.010
10 10 1.914 2.308 0.041 0.002 1.978 2.613 0.052 0.010
10 20 1.921 2.419 0.047 0.004 1.930 2.572 0.050 0.009
10 50 1.971 2.583 0.050 0.010 1.978 2.613 0.051 0.010
20 10 1.881 2.308 0.042 0.002 1.931 2.531 0.046 0.009
20 20 1.926 2.422 0.047 0.006 1.953 2.635 0.051 0.010
20 50 1.908 2.497 0.048 0.008 1.921 2.551 0.050 0.010

ZR

5 10 1.925 2.491 0.049 0.008

ZLR

2.121 2.734 0.066 0.016
5 20 1.921 2.539 0.047 0.007 2.036 2.670 0.064 0.013
5 50 1.931 2.523 0.051 0.010 2.116 2.740 0.068 0.017
10 10 1.992 2.576 0.053 0.009 2.071 2.727 0.065 0.013
10 20 1.963 2.536 0.048 0.008 2.054 2.648 0.060 0.014
10 50 1.942 2.454 0.048 0.007 2.081 2.695 0.064 0.013
20 10 1.941 2.496 0.049 0.009 2.007 2.622 0.055 0.012
20 20 1.985 2.567 0.052 0.011 1.992 2.686 0.057 0.012
20 50 1.928 2.523 0.048 0.009 2.002 2.615 0.055 0.012

ZALR

5 10 1.931 2.437 0.043 0.007

ZGPLP

2.148 2.508 0.053 0.003
5 20 1.833 2.391 0.040 0.006 2.197 2.693 0.053 0.008
5 50 1.903 2.476 0.043 0.008 2.164 2.817 0.053 0.012
10 10 1.958 2.575 0.048 0.009 2.059 2.468 0.046 0.003
10 20 1.919 2.489 0.048 0.009 2.104 2.626 0.046 0.007
10 50 1.963 2.557 0.050 0.009 2.048 2.708 0.049 0.010
20 10 1.951 2.551 0.048 0.010 2.016 2.372 0.042 0.002
20 20 1.934 2.595 0.050 0.010 2.076 2.619 0.048 0.008
20 50 1.941 2.526 0.049 0.010 2.041 2.618 0.048 0.009

ZPLP

5 10 1.839 2.328 0.050 0.010
5 20 1.840 2.347 0.051 0.011
5 50 1.923 2.531 0.051 0.011
10 10 1.881 2.401 0.052 0.011
10 20 1.885 2.403 0.050 0.008
10 50 1.923 2.443 0.052 0.009
20 10 1.895 2.409 0.051 0.009
20 20 1.925 2.525 0.050 0.012
20 50 1.911 2.548 0.048 0.011

Table B.4: The empirical pth quantiles and p values for case (a) with non-identical
processes

τ m Q̂0.975 Q̂0.995 P̂ (1.96) P̂ (2.576) Q̂0.975 Q̂0.995 P̂ (1.96) P̂ (2.576)

ZGL

5 10 1.646 2.150 0.049 0.003

ZLT

1.858 2.512 0.095 0.028
5 20 1.548 2.067 0.061 0.009 1.717 2.321 0.108 0.034
5 50 1.300 1.868 0.102 0.027 1.456 2.142 0.150 0.058
10 10 1.695 2.166 0.045 0.002 1.942 2.602 0.094 0.027
10 20 1.627 2.133 0.058 0.009 1.834 2.536 0.101 0.030
10 50 1.442 2.043 0.076 0.018 1.639 2.301 0.125 0.044
20 10 1.758 2.208 0.041 0.002 2.055 2.751 0.091 0.029
20 20 1.765 2.249 0.055 0.008 1.986 2.694 0.096 0.030
20 50 1.548 2.103 0.059 0.013 1.785 2.408 0.105 0.033

ZR

5 10 1.963 2.517 0.049 0.007

ZLR

2.080 2.674 0.064 0.013
5 20 1.921 2.494 0.048 0.009 2.076 2.676 0.064 0.015
5 50 1.950 2.542 0.049 0.008 2.077 2.781 0.065 0.016
10 10 1.928 2.533 0.047 0.009 2.040 2.627 0.063 0.013
10 20 1.958 2.577 0.047 0.010 2.036 2.685 0.063 0.015
10 50 1.962 2.606 0.051 0.010 2.115 2.744 0.068 0.015
20 10 1.951 2.625 0.051 0.011 2.026 2.618 0.057 0.012
20 20 1.957 2.613 0.052 0.011 2.012 2.676 0.058 0.013
20 50 1.969 2.555 0.050 0.008 2.007 2.548 0.058 0.010

ZALR

5 10 1.868 2.422 0.040 0.006

ZGPLP

1.767 2.254 0.041 0.001
5 20 1.864 2.424 0.040 0.006 1.465 2.110 0.066 0.007
5 50 1.872 2.524 0.039 0.008 0.948 1.706 0.162 0.036
10 10 1.920 2.481 0.048 0.008 1.732 2.220 0.043 0.002
10 20 1.924 2.528 0.049 0.010 1.440 2.120 0.068 0.009
10 50 2.001 2.563 0.053 0.010 0.992 1.621 0.148 0.037
20 10 1.962 2.548 0.050 0.010 1.694 2.238 0.045 0.002
20 20 1.968 2.595 0.052 0.011 1.521 2.114 0.063 0.008
20 50 1.951 2.476 0.051 0.008 1.123 1.765 0.125 0.029

ZPLP

5 10 1.593 2.182 0.151 0.064
5 20 1.354 1.966 0.192 0.090
5 50 0.974 1.652 0.325 0.170
10 10 1.673 2.194 0.139 0.053
10 20 1.437 2.107 0.171 0.070
10 50 1.075 1.658 0.275 0.138
20 10 1.740 2.361 0.124 0.046
20 20 1.566 2.237 0.146 0.055
20 50 1.186 1.913 0.237 0.100

Table B.5: The empirical pth quantiles and p values for case (b) with non-identical
processes
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τ m Q̂0.975 Q̂0.995 P̂ (1.96) P̂ (2.576) Q̂0.975 Q̂0.995 P̂ (1.96) P̂ (2.576)

ZGL

5 10 1.949 2.314 0.040 0.002

ZLT

2.476 3.224 0.110 0.035
5 20 2.013 2.448 0.046 0.005 2.491 3.248 0.110 0.034
5 50 2.092 2.715 0.049 0.009 2.629 3.380 0.112 0.037
10 10 1.917 2.302 0.038 0.001 2.382 3.151 0.103 0.032
10 20 1.918 2.376 0.042 0.005 2.346 3.096 0.100 0.030
10 50 1.945 2.561 0.048 0.009 2.371 3.126 0.105 0.031
20 10 1.910 2.290 0.041 0.003 2.350 3.240 0.104 0.032
20 20 1.913 2.416 0.044 0.005 2.360 3.139 0.099 0.032
20 50 1.988 2.535 0.051 0.009 2.394 3.120 0.108 0.035

ZR

5 10 1.592 2.083 0.061 0.025

ZLR

2.440 3.060 0.082 0.020
5 20 1.406 1.965 0.078 0.016 2.670 3.435 0.107 0.031
5 50 1.138 1.757 0.121 0.035 2.997 2.910 0.171 0.063
10 10 1.677 2.259 0.057 0.010 2.354 2.836 0.072 0.017
10 20 1.553 2.269 0.061 0.013 2.432 3.060 0.082 0.020
10 50 1.338 1.975 0.095 0.025 2.781 3.435 0.118 0.037
20 10 1.765 2.338 0.053 0.011 2.219 2.910 0.061 0.014
20 20 1.662 2.317 0.055 0.012 2.295 2.836 0.065 0.014
20 50 1.551 2.163 0.072 0.018 2.464 3.059 0.082 0.021

ZALR

5 10 2.218 3.019 0.055 0.010

ZGPLP

2.178 2.513 0.055 0.004
5 20 2.429 3.269 0.076 0.016 2.286 2.759 0.058 0.011
5 50 2.740 3.620 0.130 0.037 2.326 2.987 0.061 0.015
10 10 2.225 2.928 0.057 0.012 2.112 2.509 0.049 0.004
10 20 2.318 3.060 0.066 0.014 2.117 2.593 0.058 0.006
10 50 2.640 3.435 0.100 0.029 2.190 2.781 0.061 0.011
20 10 2.170 2.910 0.054 0.012 2.068 2.435 0.047 0.002
20 20 2.237 2.836 0.059 0.012 2.112 2.587 0.050 0.006
20 50 2.408 3.059 0.075 0.018 2.096 2.737 0.051 0.010

ZPLP

5 10 2.204 2.752 0.096 0.026
5 20 2.295 2.842 0.095 0.026
5 50 2.413 3.168 0.098 0.029
10 10 2.233 2.915 0.096 0.030
10 20 2.221 2.828 0.095 0.026
10 50 2.365 3.024 0.100 0.029
20 10 2.282 2.969 0.095 0.030
20 20 2.307 2.958 0.103 0.030
20 50 2.373 3.058 0.103 0.031

Table B.6: The empirical pth quantiles and p values for case (c) with non-identical
processes



Appendix C

Power Comparison of Trend Tests

C.1 Power of Tests with Identical Processes

τ m Ω̂(1) Ω̂(2) Ω(1) Ω(2) Ω̂(1) Ω̂(2) Ω(1) Ω(2)

ZGL

5 10 0.247 0.072 0.195 0.014

ZLT

0.290 0.133 0.273 0.118
5 20 0.464 0.188 0.441 0.164 0.493 0.262 0.504 0.270
5 50 0.856 0.654 0.849 0.614 0.882 0.680 0.879 0.671
10 10 0.419 0.127 0.396 0.046 0.523 0.265 0.521 0.278
10 20 0.777 0.509 0.770 0.431 0.813 0.592 0.814 0.606
10 50 0.993 0.957 0.993 0.955 0.992 0.970 0.993 0.971
20 10 0.728 0.408 0.685 0.171 0.829 0.630 0.820 0.625
20 20 0.946 0.811 0.946 0.756 0.965 0.906 0.965 0.899
20 50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

ZR

5 10 0.140 0.230 0.141 0.043

ZLR

0.168 0.060 0.195 0.070
5 20 0.275 0.379 0.274 0.099 0.285 0.125 0.340 0.158
5 50 0.548 0.683 0.553 0.315 0.579 0.350 0.644 0.411
10 10 0.357 0.474 0.341 0.131 0.362 0.144 0.411 0.184
10 20 0.610 0.731 0.613 0.352 0.671 0.426 0.707 0.470
10 50 0.947 0.974 0.948 0.842 0.971 0.870 0.974 0.901
20 10 0.713 0.796 0.698 0.465 0.742 0.517 0.751 0.524
20 20 0.932 0.963 0.932 0.801 0.935 0.841 0.948 0.845
20 50 1.000 1.000 1.000 0.998 1.000 0.999 1.000 0.999

ZALR

5 10 0.171 0.059 0.145 0.040

ZGPLP

0.159 0.039 0.215 0.027
5 20 0.293 0.131 0.281 0.113 0.301 0.105 0.396 0.161
5 50 0.587 0.351 0.572 0.320 0.698 0.464 0.752 0.526
10 10 0.368 0.141 0.372 0.144 0.337 0.118 0.382 0.070
10 20 0.671 0.429 0.671 0.422 0.582 0.309 0.650 0.368
10 50 0.970 0.874 0.969 0.874 0.966 0.820 0.972 0.878
20 10 0.741 0.519 0.733 0.506 0.547 0.258 0.585 0.176
20 20 0.936 0.841 0.938 0.828 0.855 0.639 0.877 0.660
20 50 1.000 0.999 1.000 0.999 0.999 0.996 0.999 0.997

ZPLP

5 10 0.232 0.112 0.182 0.049
5 20 0.401 0.177 0.346 0.137
5 50 0.773 0.528 0.748 0.494
10 10 0.429 0.208 0.384 0.160
10 20 0.686 0.452 0.665 0.432
10 50 0.977 0.906 0.975 0.904
20 10 0.737 0.492 0.700 0.425
20 20 0.919 0.786 0.911 0.765
20 50 1.000 0.999 1.000 0.997

Table C.1: Probability of rejection H0 : γ = 0 under the case (d) with identical
processes when R = 2
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τ m Ω̂(1) Ω̂(2) Ω(1) Ω(2) Ω̂(1) Ω̂(2) Ω(1) Ω(2)

ZGL

5 10 0.133 0.051 0.107 0.005

ZLT

0.156 0.050 0.143 0.036
5 20 0.212 0.058 0.196 0.044 0.227 0.074 0.232 0.074
5 50 0.430 0.210 0.420 0.184 0.433 0.227 0.425 0.218
10 10 0.172 0.052 0.149 0.017 0.214 0.081 0.210 0.082
10 20 0.355 0.124 0.338 0.096 0.387 0.180 0.388 0.186
10 50 0.734 0.460 0.734 0.454 0.747 0.510 0.753 0.523
20 10 0.313 0.127 0.275 0.041 0.387 0.185 0.382 0.183
20 20 0.584 0.291 0.584 0.245 0.655 0.449 0.651 0.412
20 50 0.955 0.838 0.945 0.825 0.963 0.863 0.957 0.859

ZR

5 10 0.082 0.147 0.082 0.020

ZLR

0.097 0.037 0.112 0.037
5 20 0.127 0.201 0.124 0.039 0.133 0.036 0.172 0.052
5 50 0.244 0.353 0.248 0.089 0.246 0.104 0.313 0.144
10 10 0.166 0.249 0.162 0.052 0.158 0.062 0.190 0.074
10 20 0.247 0.357 0.251 0.108 0.280 0.123 0.311 0.139
10 50 0.546 0.677 0.548 0.311 0.573 0.320 0.609 0.382
20 10 0.300 0.393 0.292 0.133 0.332 0.153 0.341 0.155
20 20 0.547 0.674 0.544 0.295 0.553 0.342 0.581 0.348
20 50 0.896 0.930 0.886 0.740 0.916 0.793 0.920 0.786

ZALR

5 10 0.091 0.035 0.079 0.022

ZGPLP

0.105 0.040 0.148 0.025
5 20 0.134 0.044 0.119 0.030 0.144 0.030 0.202 0.052
5 50 0.254 0.101 0.244 0.088 0.310 0.131 0.371 0.174
10 10 0.163 0.062 0.166 0.057 0.147 0.051 0.176 0.029
10 20 0.282 0.120 0.281 0.116 0.245 0.077 0.299 0.105
10 50 0.574 0.322 0.566 0.323 0.568 0.292 0.605 0.370
20 10 0.331 0.153 0.320 0.141 0.225 0.090 0.254 0.056
20 20 0.555 0.341 0.559 0.320 0.423 0.200 0.471 0.213
20 50 0.917 0.794 0.914 0.763 0.866 0.679 0.877 0.697

ZPLP

5 10 0.125 0.057 0.095 0.017
5 20 0.180 0.054 0.157 0.031
5 50 0.348 0.161 0.333 0.145
10 10 0.187 0.070 0.152 0.044
10 20 0.316 0.120 0.286 0.104
10 50 0.616 0.356 0.600 0.355
20 10 0.307 0.131 0.282 0.097
20 20 0.534 0.276 0.512 0.250
20 50 0.900 0.763 0.892 0.715

Table C.2: Probability of rejection H0 : γ = 0 under the case (d) with identical
processes when R = 1.5

τ m Ω̂(1) Ω̂(2) Ω(1) Ω(2) Ω̂(1) Ω̂(2) Ω(1) Ω(2)

ZGL

5 10 0.336 0.125 0.182 0.018

ZLT

0.313 0.139 0.271 0.126
5 20 0.648 0.368 0.429 0.152 0.585 0.349 0.487 0.265
5 50 0.959 0.870 0.853 0.635 0.945 0.824 0.858 0.688
10 10 0.547 0.259 0.378 0.066 0.498 0.244 0.493 0.254
10 20 0.863 0.689 0.772 0.414 0.847 0.619 0.820 0.607
10 50 0.999 0.987 0.989 0.960 0.997 0.988 0.993 0.976
20 10 0.778 0.472 0.657 0.157 0.763 0.505 0.780 0.586
20 20 0.972 0.914 0.954 0.798 0.966 0.901 0.966 0.917
20 50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

ZR

5 10 0.160 0.241 0.147 0.048

ZLR

0.174 0.062 0.205 0.076
5 20 0.246 0.371 0.245 0.088 0.282 0.125 0.320 0.147
5 50 0.576 0.683 0.569 0.318 0.603 0.364 0.634 0.436
10 10 0.342 0.457 0.339 0.132 0.368 0.183 0.406 0.192
10 20 0.625 0.728 0.604 0.375 0.674 0.442 0.700 0.479
10 50 0.943 0.969 0.944 0.814 0.955 0.856 0.970 0.896
20 10 0.656 0.775 0.660 0.413 0.701 0.466 0.723 0.487
20 20 0.913 0.953 0.922 0.830 0.940 0.854 0.943 0.869
20 50 1.000 1.000 1.000 0.998 1.000 1.000 1.000 1.000

ZALR

5 10 0.180 0.061 0.156 0.036

ZGPLP

0.306 0.124 0.218 0.039
5 20 0.290 0.126 0.253 0.098 0.601 0.356 0.419 0.187
5 50 0.609 0.366 0.586 0.351 0.950 0.831 0.754 0.536
10 10 0.380 0.185 0.363 0.165 0.478 0.243 0.376 0.097
10 20 0.682 0.453 0.670 0.434 0.832 0.584 0.648 0.366
10 50 0.958 0.873 0.963 0.867 0.999 0.985 0.968 0.870
20 10 0.707 0.469 0.708 0.455 0.708 0.396 0.570 0.153
20 20 0.939 0.856 0.940 0.861 0.962 0.864 0.896 0.711
20 50 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.995

ZPLP

5 10 0.326 0.124 0.186 0.053
5 20 0.622 0.368 0.370 0.150
5 50 0.952 0.853 0.759 0.507
10 10 0.511 0.284 0.381 0.151
10 20 0.829 0.618 0.676 0.424
10 50 0.999 0.986 0.975 0.890
20 10 0.735 0.468 0.652 0.373
20 20 0.960 0.878 0.918 0.797
20 50 1.000 1.000 1.000 0.999

Table C.3: Probability of rejection H0 : γ = 0 under the case (e) with identical
processes when R =2
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τ m Ω̂(1) Ω̂(2) Ω(1) Ω(2) Ω̂(1) Ω̂(2) Ω(1) Ω(2)

ZGL

5 10 0.194 0.089 0.107 0.006

ZLT

0.152 0.043 0.135 0.035
5 20 0.336 0.154 0.200 0.046 0.284 0.107 0.224 0.078
5 50 0.726 0.481 0.422 0.198 0.669 0.387 0.447 0.238
10 10 0.257 0.106 0.180 0.020 0.241 0.074 0.233 0.083
10 20 0.466 0.198 0.315 0.081 0.412 0.149 0.360 0.158
10 50 0.877 0.669 0.714 0.455 0.831 0.614 0.738 0.494
20 10 0.383 0.120 0.294 0.038 0.346 0.147 0.372 0.197
20 20 0.672 0.441 0.558 0.269 0.631 0.371 0.629 0.401
20 50 0.974 0.898 0.946 0.812 0.963 0.865 0.958 0.856

ZR

5 10 0.092 0.138 0.083 0.013

ZLR

0.097 0.047 0.122 0.040
5 20 0.129 0.207 0.132 0.036 0.120 0.045 0.153 0.058
5 50 0.247 0.353 0.259 0.095 0.246 0.089 0.297 0.130
10 10 0.168 0.258 0.168 0.046 0.157 0.050 0.196 0.060
10 20 0.247 0.353 0.240 0.086 0.243 0.095 0.289 0.122
10 50 0.534 0.661 0.534 0.306 0.535 0.331 0.580 0.371
20 10 0.308 0.404 0.304 0.127 0.323 0.147 0.344 0.152
20 20 0.517 0.648 0.516 0.305 0.542 0.290 0.568 0.345
20 50 0.894 0.941 0.897 0.716 0.910 0.752 0.926 0.797

ZALR

5 10 0.094 0.044 0.081 0.024

ZGPLP

0.196 0.069 0.140 0.022
5 20 0.122 0.047 0.111 0.034 0.394 0.153 0.199 0.074
5 50 0.248 0.093 0.246 0.084 0.775 0.582 0.395 0.187
10 10 0.157 0.049 0.167 0.045 0.266 0.102 0.184 0.030
10 20 0.252 0.097 0.255 0.098 0.511 0.245 0.300 0.105
10 50 0.545 0.333 0.548 0.327 0.902 0.712 0.606 0.367
20 10 0.328 0.148 0.328 0.134 0.369 0.140 0.253 0.044
20 20 0.544 0.291 0.546 0.321 0.697 0.470 0.494 0.217
20 50 0.913 0.751 0.921 0.771 0.978 0.906 0.870 0.696

ZPLP

5 10 0.181 0.059 0.092 0.016
5 20 0.354 0.149 0.149 0.046
5 50 0.772 0.542 0.359 0.147
10 10 0.242 0.078 0.162 0.036
10 20 0.480 0.193 0.269 0.097
10 50 0.889 0.680 0.596 0.347
20 10 0.366 0.143 0.278 0.115
20 20 0.665 0.445 0.518 0.274
20 50 0.973 0.891 0.884 0.716

Table C.4: Probability of rejection H0 : γ = 0 under the case (e) with identical
processes when R= 1.5

τ m Ω̂(1) Ω̂(2) Ω(1) Ω(2) Ω̂(1) Ω̂(2) Ω(1) Ω(2)

ZGL

5 10 0.215 0.070 0.192 0.019

ZLT

0.159 0.045 0.263 0.116
5 20 0.412 0.161 0.432 0.140 0.296 0.118 0.481 0.258
5 50 0.837 0.638 0.852 0.638 0.750 0.486 0.868 0.696
10 10 0.420 0.201 0.371 0.064 0.370 0.149 0.511 0.280
10 20 0.766 0.451 0.762 0.410 0.683 0.394 0.819 0.591
10 50 0.997 0.956 0.997 0.955 0.994 0.907 0.997 0.975
20 10 0.719 0.415 0.695 0.168 0.710 0.418 0.817 0.607
20 20 0.972 0.867 0.968 0.799 0.948 0.844 0.977 0.917
20 50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

ZR

5 10 0.086 0.136 0.140 0.037

ZLR

0.094 0.045 0.184 0.075
5 20 0.141 0.200 0.266 0.119 0.123 0.064 0.331 0.154
5 50 0.263 0.377 0.569 0.329 0.274 0.114 0.667 0.443
10 10 0.280 0.372 0.369 0.163 0.288 0.123 0.440 0.220
10 20 0.432 0.568 0.612 0.348 0.464 0.256 0.684 0.448
10 50 0.822 0.900 0.939 0.825 0.870 0.725 0.969 0.897
20 10 0.640 0.760 0.728 0.462 0.684 0.443 0.770 0.533
20 20 0.885 0.937 0.930 0.803 0.917 0.803 0.951 0.863
20 50 0.999 1.000 1.000 0.999 1.000 0.998 1.000 0.999

ZALR

5 10 0.089 0.039 0.138 0.048

ZGPLP

0.161 0.047 0.240 0.038
5 20 0.126 0.056 0.282 0.110 0.262 0.106 0.422 0.181
5 50 0.264 0.106 0.605 0.349 0.681 0.433 0.778 0.539
10 10 0.278 0.123 0.402 0.187 0.286 0.094 0.360 0.073
10 20 0.458 0.254 0.650 0.402 0.572 0.294 0.660 0.371
10 50 0.866 0.721 0.965 0.873 0.949 0.828 0.966 0.887
20 10 0.682 0.441 0.753 0.503 0.557 0.229 0.625 0.187
20 20 0.917 0.798 0.946 0.835 0.884 0.619 0.906 0.673
20 50 1.000 0.998 1.000 0.999 0.997 0.989 0.999 0.992

ZPLP

5 10 0.148 0.037 0.192 0.054
5 20 0.247 0.085 0.366 0.146
5 50 0.631 0.356 0.763 0.506
10 10 0.298 0.100 0.395 0.150
10 20 0.536 0.297 0.677 0.397
10 50 0.946 0.801 0.978 0.905
20 10 0.578 0.312 0.700 0.427
20 20 0.880 0.692 0.927 0.786
20 50 0.998 0.992 1.000 0.996

Table C.5: Probability of rejection H0 : γ = 0 under the case (f) with identical
processes when R =2
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τ m Ω̂(1) Ω̂(2) Ω(1) Ω(2) Ω̂(1) Ω̂(2) Ω(1) Ω(2)

ZGL

5 10 0.130 0.046 0.119 0.014

ZLT

0.15 0.056 0.243 0.122
5 20 0.223 0.072 0.241 0.067 0.232 0.095 0.385 0.210
5 50 0.456 0.235 0.486 0.235 0.473 0.25 0.63 0.435
10 10 0.226 0.085 0.195 0.016 0.255 0.109 0.365 0.201
10 20 0.391 0.123 0.381 0.101 0.433 0.210 0.578 0.363
10 50 0.808 0.532 0.797 0.528 0.821 0.564 0.888 0.747
20 10 0.361 0.161 0.339 0.060 0.441 0.226 0.569 0.354
20 20 0.706 0.445 0.677 0.330 0.752 0.556 0.839 0.674
20 50 0.978 0.927 0.978 0.908 0.984 0.939 0.991 0.974

ZR

5 10 0.091 0.155 0.162 0.047

ZLR

0.103 0.048 0.225 0.080
5 20 0.151 0.240 0.317 0.118 0.152 0.056 0.376 0.185
5 50 0.258 0.381 0.605 0.332 0.260 0.113 0.673 0.436
10 10 0.220 0.288 0.284 0.111 0.189 0.075 0.306 0.137
10 20 0.301 0.437 0.484 0.221 0.288 0.117 0.543 0.274
10 50 0.637 0.760 0.849 0.646 0.667 0.455 0.878 0.721
20 10 0.363 0.485 0.440 0.230 0.371 0.197 0.489 0.257
20 20 0.636 0.758 0.734 0.492 0.679 0.483 0.774 0.557
20 50 0.954 0.980 0.987 0.933 0.959 0.885 0.988 0.953

ZALR

5 10 0.109 0.051 0.167 0.050

ZGPLP

0.110 0.036 0.167 0.026
5 20 0.163 0.058 0.320 0.142 0.150 0.052 0.262 0.103
5 50 0.265 0.114 0.623 0.362 0.338 0.174 0.431 0.233
10 10 0.183 0.075 0.277 0.115 0.168 0.055 0.22 0.038
10 20 0.296 0.116 0.508 0.234 0.272 0.093 0.353 0.135
10 50 0.670 0.458 0.865 0.684 0.652 0.407 0.722 0.501
20 10 0.371 0.195 0.464 0.239 0.258 0.101 0.313 0.074
20 20 0.678 0.480 0.769 0.527 0.545 0.280 0.584 0.312
20 50 0.960 0.888 0.988 0.945 0.927 0.761 0.946 0.807

ZPLP

5 10 0.136 0.056 0.172 0.066
5 20 0.206 0.085 0.298 0.124
5 50 0.390 0.201 0.502 0.304
10 10 0.212 0.079 0.299 0.118
10 20 0.350 0.147 0.472 0.229
10 50 0.712 0.486 0.801 0.621
20 10 0.355 0.172 0.465 0.250
20 20 0.642 0.411 0.741 0.514
20 50 0.947 0.862 0.971 0.912

Table C.6: Probability of rejection H0 : γ = 0 under the case (f) with identical
processes when R = 1.5
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C.2 Power of Tests with Nonidentical Processes

τ m Ω̂(1) Ω̂(2) Ω(1) Ω(2) Ω̂(1) Ω̂(2) Ω(1) Ω(2)

ZGL

5 10 0.243 0.081 0.213 0.024

ZLT

0.287 0.114 0.289 0.117
5 20 0.452 0.218 0.426 0.142 0.496 0.282 0.493 0.252
5 50 0.861 0.624 0.867 0.654 0.877 0.689 0.885 0.715
10 10 0.398 0.165 0.363 0.053 0.485 0.253 0.493 0.263
10 20 0.757 0.518 0.745 0.412 0.806 0.599 0.795 0.597
10 50 0.989 0.940 0.989 0.942 0.993 0.953 0.994 0.955
20 10 0.721 0.399 0.668 0.153 0.810 0.612 0.799 0.588
20 20 0.970 0.870 0.964 0.796 0.975 0.916 0.975 0.929
20 50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

ZR

5 10 0.161 0.247 0.162 0.037

ZLR

0.158 0.071 0.200 0.074
5 20 0.273 0.374 0.260 0.116 0.299 0.123 0.316 0.147
5 50 0.566 0.699 0.573 0.315 0.598 0.348 0.646 0.409
10 10 0.356 0.498 0.372 0.145 0.380 0.156 0.425 0.197
10 20 0.640 0.727 0.626 0.380 0.650 0.427 0.680 0.459
10 50 0.940 0.968 0.939 0.824 0.948 0.879 0.957 0.904
20 10 0.703 0.791 0.702 0.442 0.738 0.483 0.756 0.505
20 20 0.936 0.966 0.937 0.834 0.957 0.842 0.962 0.866
20 50 0.999 1.000 0.999 0.999 1.000 1.000 1.000 1.000

ZALR

5 10 0.161 0.073 0.149 0.053

ZGPLP

0.170 0.065 0.229 0.050
5 20 0.305 0.130 0.257 0.087 0.280 0.122 0.379 0.156
5 50 0.608 0.360 0.586 0.310 0.686 0.422 0.759 0.522
10 10 0.385 0.159 0.385 0.158 0.320 0.136 0.367 0.090
10 20 0.668 0.436 0.650 0.400 0.600 0.342 0.660 0.367
10 50 0.948 0.883 0.948 0.879 0.949 0.823 0.963 0.851
20 10 0.740 0.488 0.739 0.472 0.561 0.316 0.586 0.170
20 20 0.960 0.846 0.956 0.852 0.882 0.665 0.907 0.681
20 50 1.000 1.000 1.000 0.999 0.997 0.993 0.997 0.994

ZPLP

5 10 0.240 0.104 0.200 0.045
5 20 0.394 0.189 0.343 0.123
5 50 0.766 0.538 0.760 0.510
10 10 0.408 0.213 0.383 0.149
10 20 0.699 0.488 0.675 0.145
10 50 0.960 0.899 0.958 0.868
20 10 0.685 0.493 0.657 0.417
20 20 0.940 0.806 0.936 0.791
20 50 0.999 0.997 0.999 0.997

Table C.7: Probability of rejection H0 : γ = 0 under the case (d) with non-identical
processes when R =2

τ m Ω̂(1) Ω̂(2) Ω(1) Ω(2) Ω̂(1) Ω̂(2) Ω(1) Ω(2)

ZGL

5 10 0.105 0.042 0.087 0.004

ZLT

0.131 0.050 0.133 0.043
5 20 0.200 0.071 0.187 0.034 0.216 0.093 0.214 0.078
5 50 0.398 0.147 0.413 0.168 0.401 0.187 0.422 0.209
10 10 0.163 0.056 0.145 0.017 0.198 0.080 0.202 0.082
10 20 0.368 0.168 0.342 0.123 0.402 0.194 0.391 0.192
10 50 0.691 0.430 0.695 0.431 0.715 0.478 0.725 0.493
20 10 0.298 0.109 0.267 0.038 0.377 0.186 0.365 0.167
20 20 0.621 0.345 0.600 0.275 0.655 0.396 0.654 0.410
20 50 0.952 0.858 0.945 0.837 0.954 0.880 0.952 0.873

ZR

5 10 0.083 0.138 0.083 0.020

ZLR

0.095 0.040 0.125 0.041
5 20 0.130 0.208 0.124 0.044 0.156 0.055 0.168 0.061
5 50 0.220 0.334 0.224 0.083 0.234 0.094 0.283 0.117
10 10 0.132 0.216 0.143 0.037 0.146 0.047 0.172 0.059
10 20 0.284 0.388 0.273 0.112 0.285 0.132 0.324 0.153
10 50 0.520 0.655 0.513 0.282 0.559 0.329 0.597 0.370
20 10 0.298 0.394 0.296 0.124 0.317 0.125 0.325 0.142
20 20 0.514 0.651 0.522 0.307 0.576 0.313 0.585 0.356
20 50 0.888 0.926 0.888 0.742 0.910 0.798 0.919 0.814

ZALR

5 10 0.091 0.043 0.086 0.026

ZGPLP

0.091 0.038 0.137 0.019
5 20 0.159 0.061 0.133 0.035 0.136 0.051 0.197 0.066
5 50 0.240 0.099 0.221 0.082 0.304 0.111 0.367 0.168
10 10 0.148 0.048 0.148 0.044 0.133 0.036 0.163 0.015
10 20 0.297 0.143 0.282 0.115 0.270 0.099 0.326 0.113
10 50 0.568 0.330 0.568 0.326 0.557 0.293 0.588 0.357
20 10 0.317 0.133 0.317 0.120 0.237 0.103 0.262 0.031
20 20 0.581 0.325 0.564 0.333 0.462 0.206 0.521 0.219
20 50 0.913 0.811 0.910 0.792 0.867 0.677 0.888 0.695

ZPLP

5 10 0.112 0.043 0.097 0.021
5 20 0.179 0.073 0.152 0.046
5 50 0.332 0.137 0.324 0.127
10 10 0.159 0.061 0.141 0.036
10 20 0.320 0.147 0.293 0.106
10 50 0.599 0.387 0.583 0.325
20 10 0.306 0.134 0.273 0.108
20 20 0.539 0.283 0.527 0.273
20 50 0.902 0.743 0.893 0.735

Table C.8: Probability of rejection H0 : γ = 0 under the case (d) with non-identical
processes when R = 1.5
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τ m Ω̂(1) Ω̂(2) Ω(1) Ω(2) Ω̂(1) Ω̂(2) Ω(1) Ω(2)

ZGL

5 10 0.333 0.122 0.181 0.022

ZLT

0.301 0.121 0.263 0.107
5 20 0.649 0.384 0.479 0.171 0.607 0.317 0.532 0.278
5 50 0.972 0.885 0.871 0.656 0.961 0.850 0.897 0.734
10 10 0.564 0.278 0.367 0.036 0.532 0.316 0.517 0.287
10 20 0.840 0.605 0.729 0.391 0.820 0.620 0.788 0.586
10 50 0.996 0.982 0.986 0.952 0.995 0.984 0.989 0.968
20 10 0.774 0.429 0.636 0.124 0.771 0.533 0.799 0.591
20 20 0.974 0.909 0.956 0.771 0.967 0.901 0.969 0.921
20 50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

ZR

5 10 0.166 0.053 0.134 0.034

ZLR

0.161 0.049 0.180 0.055
5 20 0.293 0.117 0.267 0.100 0.289 0.119 0.328 0.141
5 50 0.619 0.386 0.586 0.319 0.611 0.379 0.648 0.420
10 10 0.377 0.198 0.365 0.154 0.367 0.183 0.399 0.202
10 20 0.637 0.418 0.631 0.377 0.624 0.411 0.672 0.427
10 50 0.945 0.865 0.947 0.863 0.941 0.855 0.957 0.880
20 10 0.693 0.438 0.695 0.440 0.692 0.432 0.712 0.475
20 20 0.940 0.831 0.941 0.830 0.941 0.828 0.942 0.851
20 50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

ZALR

5 10 0.180 0.061 0.156 0.036

ZGPLP

0.281 0.093 0.214 0.025
5 20 0.290 0.126 0.253 0.098 0.614 0.357 0.446 0.208
5 50 0.609 0.366 0.586 0.351 0.964 0.872 0.772 0.543
10 10 0.380 0.185 0.363 0.165 0.512 0.212 0.359 0.063
10 20 0.682 0.453 0.670 0.434 0.812 0.582 0.656 0.340
10 50 0.958 0.873 0.963 0.867 0.997 0.981 0.961 0.863
20 10 0.707 0.469 0.708 0.455 0.690 0.390 0.566 0.118
20 20 0.939 0.856 0.940 0.861 0.969 0.861 0.896 0.644
20 50 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.997

ZPLP

5 10 0.308 0.119 0.166 0.053
5 20 0.637 0.332 0.394 0.177
5 50 0.968 0.895 0.788 0.536
10 10 0.514 0.246 0.383 0.165
10 20 0.827 0.602 0.669 0.413
10 50 0.997 0.977 0.967 0.883
20 10 0.730 0.478 0.654 0.402
20 20 0.969 0.879 0.928 0.792
20 50 1.000 1.000 1.000 0.999

Table C.9: Probability of rejection H0 : γ = 0 under the case (e) with non-identical
processes when R =2

τ m Ω̂(1) Ω̂(2) Ω(1) Ω(2) Ω̂(1) Ω̂(2) Ω(1) Ω(2)

ZGL

5 10 0.180 0.051 0.084 0.003

ZLT

0.130 0.043 0.119 0.035
5 20 0.311 0.129 0.186 0.033 0.264 0.095 0.212 0.071
5 50 0.662 0.425 0.404 0.189 0.613 0.360 0.419 0.229
10 10 0.270 0.105 0.150 0.009 0.223 0.078 0.216 0.068
10 20 0.510 0.247 0.337 0.101 0.429 0.218 0.386 0.194
10 50 0.859 0.650 0.712 0.444 0.821 0.597 0.736 0.506
20 10 0.389 0.139 0.277 0.033 0.339 0.146 0.380 0.187
20 20 0.700 0.446 0.587 0.256 0.627 0.354 0.654 0.411
20 50 0.976 0.907 0.945 0.823 0.963 0.876 0.952 0.873

ZR

5 10 0.093 0.148 0.088 0.012

ZLR

0.096 0.046 0.120 0.030
5 20 0.137 0.213 0.145 0.041 0.133 0.054 0.170 0.064
5 50 0.223 0.325 0.220 0.086 0.237 0.091 0.276 0.108
10 10 0.161 0.244 0.148 0.040 0.147 0.056 0.173 0.054
10 20 0.269 0.387 0.267 0.105 0.269 0.127 0.307 0.135
10 50 0.544 0.663 0.544 0.297 0.549 0.299 0.597 0.356
20 10 0.292 0.403 0.295 0.119 0.295 0.132 0.318 0.152
20 20 0.513 0.650 0.509 0.280 0.555 0.309 0.580 0.339
20 50 0.898 0.942 0.894 0.725 0.907 0.762 0.917 0.795

ZALR

5 10 0.100 0.047 0.083 0.011

ZGPLP

0.184 0.057 0.130 0.011
5 20 0.141 0.053 0.123 0.039 0.344 0.151 0.211 0.067
5 50 0.243 0.094 0.207 0.073 0.760 0.480 0.362 0.171
10 10 0.155 0.056 0.144 0.039 0.275 0.091 0.185 0.023
10 20 0.273 0.127 0.272 0.107 0.513 0.229 0.290 0.112
10 50 0.554 0.305 0.565 0.303 0.907 0.717 0.615 0.351
20 10 0.297 0.135 0.299 0.135 0.378 0.153 0.263 0.037
20 20 0.556 0.312 0.562 0.000 0.688 0.442 0.517 0.220
20 50 0.909 0.767 0.908 0.773 0.983 0.893 0.869 0.670

ZPLP

5 10 0.168 0.052 0.085 0.017
5 20 0.333 0.123 0.160 0.041
5 50 0.755 0.495 0.321 0.137
10 10 0.251 0.075 0.155 0.041
10 20 0.495 0.229 0.284 0.096
10 50 0.897 0.698 0.614 0.332
20 10 0.364 0.138 0.280 0.103
20 20 0.669 0.411 0.526 0.266
20 50 0.978 0.898 0.883 0.713

Table C.10: Probability of rejection H0 : γ = 0 under the case (e) with non-identical
processes when R =1.5
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τ m Ω̂(1) Ω̂(2) Ω(1) Ω(2) Ω̂(1) Ω̂(2) Ω(1) Ω(2)

ZGL

5 10 0.242 0.092 0.238 0.014

ZLT

0.345 0.148 0.520 0.314
5 20 0.500 0.265 0.537 0.191 0.575 0.350 0.740 0.550
5 50 0.909 0.708 0.925 0.767 0.915 0.770 0.969 0.918
10 10 0.469 0.192 0.431 0.047 0.623 0.386 0.756 0.554
10 20 0.834 0.589 0.815 0.463 0.882 0.702 0.936 0.844
10 50 0.999 0.984 0.998 0.984 0.999 0.994 1.000 0.998
20 10 0.776 0.432 0.742 0.145 0.892 0.694 0.936 0.856
20 20 0.983 0.925 0.979 0.869 0.993 0.966 0.996 0.992
20 50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

ZR

5 10 0.198 0.311 0.321 0.124

ZLR

0.208 0.080 0.374 0.174
5 20 0.371 0.468 0.536 0.310 0.326 0.151 0.588 0.357
5 50 0.719 0.807 0.906 0.754 0.687 0.470 0.936 0.816
10 10 0.464 0.584 0.558 0.315 0.470 0.255 0.615 0.372
10 20 0.710 0.799 0.811 0.614 0.749 0.498 0.863 0.704
10 50 0.974 0.991 0.995 0.974 0.990 0.930 0.999 0.993
20 10 0.773 0.861 0.833 0.621 0.804 0.554 0.873 0.686
20 20 0.978 0.986 0.986 0.930 0.976 0.927 0.989 0.954
20 50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

ZALR

5 10 0.212 0.079 0.311 0.116

ZGPLP

0.187 0.055 0.297 0.039
5 20 0.339 0.160 0.538 0.291 0.358 0.166 0.527 0.238
5 50 0.704 0.492 0.920 0.757 0.790 0.543 0.871 0.718
10 10 0.479 0.254 0.580 0.329 0.363 0.112 0.453 0.079
10 20 0.753 0.510 0.847 0.657 0.680 0.445 0.753 0.451
10 50 0.990 0.937 0.999 0.991 0.981 0.916 0.988 0.945
20 10 0.805 0.563 0.863 0.664 0.608 0.293 0.684 0.158
20 20 0.978 0.928 0.989 0.951 0.938 0.773 0.963 0.779
20 50 1.000 1.000 1.000 1.000 0.999 0.997 0.999 0.998

ZPLP

5 10 0.296 0.135 0.391 0.186
5 20 0.498 0.298 0.629 0.390
5 50 0.851 0.661 0.926 0.818
10 10 0.529 0.286 0.640 0.414
10 20 0.802 0.616 0.863 0.703
10 50 0.990 0.968 0.996 0.986
20 10 0.787 0.572 0.856 0.703
20 20 0.980 0.921 0.990 0.964
20 50 1.000 1.000 1.000 1.000

Table C.11: Probability of rejection H0 : γ = 0 under the case (f) with non-identical
processes when R =2

τ m Ω̂(1) Ω̂(2) Ω(1) Ω(2) Ω̂(1) Ω̂(2) Ω(1) Ω(2)

ZGL

5 10 0.096 0.034 0.095 0.004

ZLT

0.142 0.052 0.259 0.125
5 20 0.208 0.083 0.231 0.050 0.235 0.093 0.405 0.213
5 50 0.514 0.229 0.573 0.281 0.510 0.288 0.713 0.520
10 10 0.189 0.065 0.173 0.011 0.273 0.102 0.401 0.219
10 20 0.374 0.163 0.349 0.100 0.449 0.208 0.562 0.359
10 50 0.804 0.557 0.799 0.546 0.821 0.608 0.895 0.770
20 10 0.334 0.131 0.302 0.029 0.452 0.211 0.586 0.377
20 20 0.712 0.432 0.689 0.336 0.769 0.515 0.867 0.699
20 50 0.975 0.906 0.975 0.901 0.981 0.942 0.993 0.974

ZR

5 10 0.088 0.164 0.168 0.047

ZLR

0.090 0.036 0.208 0.070
5 20 0.152 0.244 0.305 0.111 0.151 0.050 0.364 0.167
5 50 0.325 0.435 0.587 0.366 0.298 0.134 0.670 0.439
10 10 0.170 0.263 0.243 0.091 0.176 0.071 0.281 0.127
10 20 0.318 0.416 0.423 0.209 0.302 0.140 0.488 0.254
10 50 0.619 0.739 0.831 0.616 0.616 0.375 0.871 0.687
20 10 0.345 0.465 0.421 0.217 0.358 0.145 0.457 0.236
20 20 0.658 0.764 0.740 0.492 0.648 0.439 0.764 0.551
20 50 0.952 0.977 0.986 0.925 0.965 0.867 0.990 0.952

ZALR

5 10 0.092 0.036 0.157 0.043

ZGPLP

0.080 0.027 0.146 0.010
5 20 0.158 0.049 0.301 0.119 0.148 0.060 0.251 0.087
5 50 0.306 0.150 0.615 0.362 0.363 0.155 0.504 0.281
10 10 0.184 0.072 0.253 0.094 0.150 0.042 0.195 0.027
10 20 0.303 0.144 0.453 0.214 0.288 0.121 0.351 0.128
10 50 0.623 0.377 0.853 0.649 0.641 0.388 0.727 0.481
20 10 0.361 0.153 0.440 0.209 0.248 0.070 0.309 0.308
20 20 0.652 0.440 0.754 0.530 0.548 0.305 0.633 0.308
20 50 0.965 0.868 0.990 0.947 0.925 0.765 0.936 0.835

ZPLP

5 10 0.124 0.052 0.191 0.066
5 20 0.201 0.088 0.316 0.133
5 50 0.437 0.197 0.598 0.394
10 10 0.223 0.072 0.313 0.136
10 20 0.372 0.177 0.458 0.257
10 50 0.709 0.485 0.810 0.649
20 10 0.353 0.154 0.480 0.264
20 20 0.665 0.419 0.760 0.563
20 50 0.942 0.853 0.965 0.922

Table C.12: Probability of rejection H0 : γ = 0 under the case (f) with non-identical
processes when R =1.5
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