
SCADA System for Remote Control and Monitoring
of Grid Connected Inverters

by

c© Sarinda Lahiru Jayasinghe

A thesis submitted to the School of Gradate Stud-
ies in partial fulfillment of the requirements for the
degree of Master of Engineering.

Faculty of Engineering and Applied Science

Memorial University of Newfoundland

May, 2018

St. John’s, Newfoundland and Labrador, Canada

Abstract

This thesis presents a development of a supervisory control and data acquisition
(SCADA) system for remote control and monitoring of grid-connected inverters. Since
the number of battery energy storages connected to the grid is increasing the number
of inverters connected to the power system is also rapidly growing. Utilities need
to have the ability to monitor and control those inverters connected to the grid to
maintain the stability of the network, to improve the quality of the power supplied
and to stabilize the energy prices. After recognizing the requirement for a low-cost
SCADA system for grid-tied inverters, essential features that needs to be embedded
in the system have been identified by analyzing SCADA systems in the Wind Energy
Institute Canada (WEICAN). Based on available options to fulfill the requirement
selected SCADA systems were tested during the research. Based on the test results
an Internet of Things (IoT) based server has been kept as the core of the developed
SCADA system, and a SCADA development has been carried out to improve the
system to deliver features identified. A requirement was recognized to embed an au-
tomatic control algorithm to the SCADA system for optimal control of the inverter
to maximize the economic benefits out of it by considering the energy price variation
and the renewable energy variation through a specific period. Results illustrate that
the developed SCADA system has been able to deliver features identified during the
research and the wind prediction algorithm has been able to maximize the economic
benefits.

ii

Table of Contents

Title page i

Abstract ii

Table of Contents iii

List of Tables vii

List of Figures viii

List of Symbols x

List of Abbreviations xi

1 Introduction and Literature Survey 1
1.1 Background . 4

1.1.1 Low-cost SCADA system . 5
1.1.2 IoT based SCADA systems . 8
1.1.3 Security of SCADA systems . 10
1.1.4 Operation scheduling for Battery energy storage 11

1.2 Problem statement . 13
1.2.1 Problem I: Features of a SCADA for an energy storage (ES) . . 13
1.2.2 Problem II: High Cost of SCADA 15
1.2.3 Problem III: Monitoring of an energy storage 15
1.2.4 Problem IV: Controlling of an energy storage 15

1.3 Objectives and Expected Contributions 15
1.4 Thesis Overview . 17

1.4.1 Chapter 1: . 17

iii

1.4.2 Chapter 2 . 17
1.4.3 Chapter 3 . 17
1.4.4 Chapter 4 . 18
1.4.5 Chapter 5 . 18
1.4.6 Chapter 6 . 18

2 SCADA systems used at Wind Energy Institute of Canada: appli-
cation, issues, cost and limitations 19
2.1 Introduction . 20

2.1.1 Introduction to SCADA systems used in WEICAN 20
2.2 Features of SCADA systems . 24

2.2.1 Graphical User Interfaces (GUI) 24
2.2.2 Alarming . 24
2.2.3 Reporting . 27

2.3 Data Logging / Data Redundancy . 27
2.3.1 Data Operations . 28
2.3.2 Networking/ Protocols . 28

2.4 Costs Associated with SCADA . 30
2.5 Controlling . 30
2.6 Security . 30
2.7 Issues with existing SCADA . 30
2.8 Conclusion . 31

3 IoT Hardware-Based Low Resource and Limited Storage SCADA
Systems 33
3.1 Introduction . 33
3.2 Background . 34
3.3 Low Cost Client Side Options . 35

3.3.1 12E based client . 35
3.3.2 Arduino and Wi-Fi shield based client 37
3.3.3 Raspberry Pi based client . 37

3.4 SCADA Server Options . 37
3.4.1 RPI server with local data storage 39
3.4.2 Open Source SCADA software 39
3.4.3 IoT service provider . 40

iv

3.4.4 Private IOT server . 42
3.5 Comparison . 44
3.6 Conclusion and Future Works . 47

4 SCADA system Based on Private thingspeak Sever 48
4.1 Introduction . 48
4.2 Background . 50

4.2.1 SCADA systems for Monitoring and Control 50
4.2.2 Low-cost SCADA for controlling of energy storage 51

4.3 Methodology . 51
4.3.1 Description of the SCADA . 51

4.4 Key Features of the Developed SCADA 58
4.4.1 Monitoring . 58
4.4.2 Controlling . 60
4.4.3 Reporting and alerting . 61

4.5 Testing . 61
4.6 Results and Comparison . 63

4.6.1 Cloud assisted IoT SCADA Vs. Developed SCADA (Security
features) . 64

4.6.2 Commercial SCADA vs. Developed SCADA 65
4.7 Conclusion . 65

5 Control Strategies for Remote Control of a Grid Tie Inverter and
Its implementation using Low-Cost SCADA system 68
5.1 Introduction . 68
5.2 Problem Statement . 70

5.2.1 Problem formulation . 70
5.3 Methodology . 75
5.4 Results and Validation . 79
5.5 Conclusion and future works . 84

6 Summary and Recommendations 86
6.1 Summary . 87

6.1.1 Research Summary Based on Objective 1 87
6.1.2 Research Summary Based on Objective 2 87
6.1.3 Research Summary Based on Objective 3 87

v

6.1.4 Research Summary Based on Objective 4 88
6.2 Significant Contributions . 88
6.3 Directions for Future Work . 89
6.4 List of Publications . 89

Bibliography 91

A Protocol developed in UNB 95

B Appendix B: Code for Inverter SCADA 97

vi

List of Tables

2.1 Costs Associated with SCADA in CAD [30] 30

3.1 Comparison of client side . 44
3.2 Comparison of private IoT servers 45
3.3 Comparison of Server Side . 46

4.1 Comparison of Invert SCADA with VTscada 66

5.1 Input data for the algorithm . 82
5.2 Input data for the algorithm . 83

vii

List of Figures

1.1 Overview of a SCADA . 14
1.2 Overview of the proposed system . 16

2.1 Single Line Diagram for the Wind park [29] 21
2.2 Data Topology [30] . 22
2.3 Control and Monitoring of the Wind Farm 22
2.4 VTScada Interface . 25
2.5 PureWave Storage Management System interface 25
2.6 Moventas drive train condition monitoring web interface 26
2.7 Implementation of reports . 27

3.1 Client Side . 36
3.2 Server Side . 38
3.3 Remote desktop with local data storage 39
3.4 Data flow diagram for UBIDOTs based approach 41
3.5 Block diagram for private Blynk server 43
3.6 Block diagram for private thingspeak serverr 44

4.1 Scope of the SCADA . 52
4.2 Block diagram for the Inverter SCADA 53
4.3 Block diagram for python script . 56
4.4 GUI for the Inverter SCADA developed in python 57
4.5 Thingspeak interface . 59
4.6 Inverter Developed by the UNB . 62
4.7 Testing the SCADA with the Inverter 63

5.1 Model considered with wind turbines and an energy storage 71
5.2 Proposed architecture . 75

viii

5.3 Block diagram for the algorithm . 76
5.4 Price graph (CAD) . 80
5.5 Wind speed graph (ms−1) . 80
5.6 Wind power generated graph (kW) . 80
5.7 Actual power at common coupling point graph (kW) 81
5.8 Optimum power output (Pt) generated by the algorithm (kW) 81
5.9 Operating schedule generated by the algorithm 81
5.10 Optimum power flow to the BESS . 82

ix

List of Symbols

Bt Electricity selling or purchasing price at time “t”
Pt Power at Common coupling point at time “t”
Pwt Wind power generation for time “t”
Pdis Discharging power of BESS at time “t”
Pch Charging power of BESS at time “t”

Ploads Loads on the system at time “t”
PEt Net power delivered to the BESS at time “t”
LBp Lower bound for power Pt

UBp Upper bound for power Pt

LBEP Lower bound for power PET

UBEP Upper bound for power PET

Pcutoff Cutoff power for the wind turbine
Prated Rated power for the wind turbine

Et Energy at time “t”
LBE Lower bound for Energy
UPE Upper bound for Energy
η
ES

Round cycle efficiency for the BESS
ηe Self discharging efficiency

PF Power factor
Pr Real Power

Papp Apparent power
∆t Time difference between two iterations

x

List of Abbreviations

SCADA Supervisory Control and Data Acquisition
ES Energy Storage

BESS Battery Energy Storage System
WEICAN Wind Energy Institute Canada

RPI Raspberry Pi
IoT Internet of Things
GUI Graphical User Interface
DC Direct Current

GSM Global System for Mobile communication
RTC Real Time Clock
LCD Liquid Crystal Display
PIC Peripheral Interface Controller
AT ATtention command set

RTU Remote Terminal Unit
PLC Programmable Logic Controller

GPRS General Packet Radio Service
PV Photovoltaic

AVR Alf and Vegard’s RISC processor
IC Integrated-Circuit

EEPROM Electrically Erasable Programmable Read-Only Memory
DAQ Data Acquisition

WSAN Wireless Sensor and Actuator Networks
CI Critical Infrastructure

WoPeD Workflow Petri Net Designer
MTU Master Terminal Unit
GA Genetic Algorithm
EP Evolutionary Programming

PSO Particle Swarm Optimization
NSERC Natural Sciences and Engineering Research Council

GUI Graphical User Interface
HMI Human Machine Interface

UART Universal Asynchronous Receiver-Transmitter

xi

Chapter 1

Introduction and Literature Survey

Electricity can be identified as the most necessary commodity after man has moved

into the industrial age. The conventional power system has been built to supply

electricity from a central power source to distributed consumers. After the addition

of bi-directional power flow sources such as energy storages and mini and microgrid

concepts, the power system has become more and more vulnerable. To reduce the cost

of energy supplied and to improve the quality of the power provided, energy storage

systems are installed. This allows utility companies to lessen the cost of electricity by

utilizing, mainly renewable energy sources. Using more renewable energy sources to

replace high carbon emission generation plants help to slow down the climate change

where climate change has become the threat to everyone in the world [1].

According to the Global Energy Storage Database, 98% of energy storage systems

are hydro pump systems while BESS are becoming more popular with built-in features

associated with BESS [1]. Different technologies are being used in energy storage

other than BESS and Pump hydro. Fly wheels can be identified as one of the leading

techniques that have been used and compressed air systems can also be considered

as another emerging trend [2]. When it comes to the field of battery energy storage

2

systems (BESS), developmental work which is carried out to use decentralized BESS

in households as well as near to each distribution transformers [2]. And it is essential

to develop appropriate power converters especially made to be used with BESS and

other energy storages.

There are many advantages of integrating energy storage devices to the power

systems. Not only it enables to reduce carbon emission, but also it will improve the

quality of the electricity supplied by enhancing the reliability of the power supplied

[2]. It will also reduce the cost of the energy supplied by peak shaving and optimizing

the power generation. Those are some of the advantages which users will be benefited

by integrating energy storage systems into the power system. From the utility side,

energy storage has been recognized as the second technology with the most significant

potential as a future revenue source for utilities [2].

There are many barriers when integrating energy storage into the existing power

system. This includes the sizing of the energy storage, how to select the optimum size

of the energy storage, where to install the energy storage, how to operate the energy

storage to maximize the profit are few barriers out of them [2].

The interoperability of energy storage with other elements in the smart grid is an-

other challenge [2]. Specifically, when integrating different technologies to the existing

grid, there will be problems with protocols, hardware mismatches, etc. Many issues

need to be solved before integrating energy storage systems to the current network.

Most importantly just adding an energy storage into the system would not add any

benefit to the system and it has to be optimally controlled to get the maximum ben-

efit out of it. Since the workforce is not cheap energy storage must be monitored and

controlled remotely [2].

In most of the cases, power converters are being utilized to integrate energy storage

systems in the power system, and here inverters are used to inject inverted DC power

3

to the grid. DC power generated by Solar, Wind or any other renewable source of

energy or stored in a battery or any other energy storage device will be fed into the

grid. In present day scenario power injected by small-scale power producers are not

controlled or monitored by the utility, but it will become a requirement for the utility

when the capacity exceeds the stability limits.

Since there is an emerging market for BESS and other energy storage systems

other than pump hydro storage systems required to control and monitoring of power

converters (inverters) will also become a requirement.

There are many types of power converters (inverters) that can be found in the

market while high-end high-cost inverters are coming with embedded SCADA systems

and low-cost with the same efficiency inverters might not come with such sophisticated

features [3]. Usually, most of the expensive inverters like SMA provide embedded

SCADA systems. But most of the lower end inverters and small inverters do not offer

SCADA system. Therefore, there is a scarcity of open source low-cost SCADA for

inverters. For example, SMA sunny boy 10kW inverter costs around CAD 4000.00 [4]

and the maximum efficiency is 98% and a low-cost inverter can be found from Alibaba

at CAD 1000.00 with the same efficiency [5].

After identification of critical features of a SCADA, this research is being con-

ducted to identify the best available open source system so that it is available to be

used under an open source license with the lowest cost that can be used for remote

monitoring and control. Ultimately, to develop a SCADA system for monitoring and

control of a grid-connected inverter.

Many technologies are being utilized to satisfy the above purpose such as Labview

based systems, Simulink based systems, open source software based systems and dedi-

cated SCADA software [3]. But there are many disadvantages attached to each system

which is discussed in the later parts of this chapter. Therefore in this research, the

4

state-of-art technology, Internet of Things (IoT) based architecture has been selected

to develop the SCADA. Following problems are addressed in the thesis,

• Scarcity of user-friendly and secure SCADA systems that can easily integrate

with inverters.

• Optimum controlling of a battery energy storage.

1.1 Background

SCADA is not a novel field. Before the transistor comes into the picture, old telephone

wire based systems were emerging in the field of SCADA system. By the end of the

1950s, Westinghouse and North Electric Company developed the first SCADA called

Visicode [3]. Then it gradually developed after the invention of the transistor which

led to high power computers, minicomputers, microprocessors, etc. A SCADA has

three main parts, Master Terminal Unit (MTU), Remote Terminal Units (RTUs) and

Human Machine Interface (HMI).

Many SCADA systems are developed in the world for monitoring and controlling

purposes. Although this topic covers a vast area, in this literature survey, low cost and

open source options are mainly discussed. There are four primary objectives of this

literature survey. The first is to review low-cost conventional SCADA technologies.

Secondly, to evaluate IoT based technologies. Security of SCADA assessed systems

as the third objective, and finally, to control the battery bank, optimum operating

scheduling methods are being reviewed.

A. M. Gurilo et al. [6] present a SCADA for a wireless sensor and actuator net-

works for monitoring of critical infrastructure in a cost-effective way with eliminating

problems associated with typical SCADA. Problems that happen due to the lack of

deployment flexibility of the sensors that feed it with monitoring data . Authors

5

have given a solution using a gateway and a web services approach for a web-based

SCADA which can be accessed through the Internet. They have also presented a real

scenario using an open source SCADA called MANGO physically applying to monitor

an electrical grid. They have identified several characteristics in a SCADA,

• Dynamism: nodes are flexible and mobile, and that has to be easily added and

removed through less wiring.

• Retrofit: addition of new technology or features to older systems

• Ease of installation: sensor should not need a separate energy source.

• Redundancy: reliability is one of the one of the key feature that needs to be

added into SCADA system.

Additionally, they have defined some challenges associated with developing a

SCADA system as,

• Real-time communications

• Management support

• Security

1.1.1 Low-cost SCADA system

Low-cost hardware

PIC microcontroller based system: Y. P. Zhang et al. [7] presents a SCADA

system with low-cost elements such as PIC18F4620 microcontroller, GSM modem,

Ethernet controller, RTC board, digital thermometer and an LCD. In the proposed

solution remote commands and monitoring are enabled by using two solutions: 1)

6

GSM/3G Short Message Service (SMS) / phone calling or 2) the web page hosted by

the PIC microcontroller. AT commands are used to control the GSM modem .

Although PIC microcontrollers are lower in costs, it is much difficult to handle

pic microcontroller compared to an Arduino. And it is also challenging to interface

devices to PIC compared to Arduino.

ESP8266 based system: Design of a remote control plug using ESP8266 module

is presented by Y. P. Zhang et .al. [8] Since the concept behind IoT is to connect

every sensor and actuator to the internet through an IP address, this project can be

treated as a start.

Though remote controlling of a plug is not a new concept, this design can be treated

as a vital solution with an application of ESP8266 and home appliances plugged in

smart plug, as people can control devices anytime anywhere. WIFI module is essential

to the whole IoT services because existing approaches mainly deal with aspects and

issues related to connectivity and communication .

ESP12E can be considered as one of the emerging trends due to the IoT architec-

ture and low-cost nature of ESP8266. However, this paper narrow down the applica-

bility of ESP8266 for a home application where it has a vast span of the application

domain. This device can be used as a server itself as well as a client.

Arduino Based systems A SCADA system to visualize and monitor the status

of a critical infrastructure system has been presented in [9]. This potential has given

rise to the concept of a web-based controlling to allow end users to access and color

recognition is used. The proposed system in this paper is developed using Arduino

microcontroller board.

Although Arduino and web-based systems are much more superior compared to

PIC based systems, novel Arduino plus IoT based systems play much more superior

7

role compared to the web-based system [8].

Low-cost server

Labview and Simulink based implementations S. G. Hegde et. al. [10] intro-

duce a low-cost SCADA which behaves as a Remote Terminal Unit (RTU) and helps

in gathering the data from the PLC . In their approach, they have following steps,

• The remote terminal unit will collect data from a series of PLCs and make a

database of the received data.

• This data is then sent to a server with the help of Zigbee. The necessary factors

are also shared with the help of a Bluetooth module.

• It is done using Labview with including low-cost hardware devices such as the

ZigBee, Bluetooth, GSM/GPRS module and an LCD.

A. Soetedjo et al. [11] present a data acquisition systems which are technologically

advanced to monitor the wind speed, solar irradiation, and PV temperature based on

a low-cost AVR microcontroller. This project is also a one of the example for a

low-cost SCADA system which uses a low-cost PV module other than an expensive

pyranometer. When analyzing used software and hardware,

• The integrated-circuit (IC) temperature sensor LM35 and a cup-type anemome-

ter are used to measure the temperature and the wind speed respectively,

• Labview is used to develop the control algorithm,

• Instead of a desktop computer they have used a microcontroller to store data in

a serial EEPROM,

8

• Modbus is used as the protocol for communication between DAQ and other

devices.

They also present a framework of Intranet-SCADA using LabVIEW based data

acquisition and management. It describes a configuration of RTU to access and trans-

mit real-time data over the Intranet or Internet. Labview based program is developed

to control the water level in a reservoir. In this paper, cost of LabView not being taken

into account. Though it is straightforward to implement Labview based systems are

expensive compared to other low-cost approaches.

Using Open source SCADA software Grilo A. M et. al. [6] present, a web-

based SCADA software called Mango is used. A SCADA system using WSANs to

visualize and monitor the status of a CI system has been presented. Some of the

common challenges existing in these systems: real-time, management and security

are addressed in the paper [6].

The main drawback of using a standard SCADA software is that those only com-

municates using several protocols, and it is difficult to customize the protocol without

a specific training on the system [12].

1.1.2 IoT based SCADA systems

An agent-based distributed SCADA system is presented by B. T. Sergi et al. [13] and it

is a proposal to integrate Public Key Infrastructure (PKI) functionalities, concerning

on distributed features, into Industrial Control Systems (ICS).

To implement several agents are defined such as interface agent, agent controller,

instrument agent, process agent and host agent. Since it has agent-based architecture,

it can also be considered as a multi-agent based SCADA that having a lot of features.

Additionally, they have shown how a Public Key Infrastructure could be built with

9

distributed elements to be used within a distributed control system. Plus, in the

end, the discussion of security threats because of Multi-Agent system for a SCADA

is briefly discussed.

C. Felipe et al. [14] introduce a wireless communication system related sensor

concept that deals with temperature variations during the scaled industrial process.

There is access to these sensors from anywhere since these sensors are used IoT tech-

nology. The PLC executes according to the set points of temperature sensors, and

this PLC can be contact or control via a graphical programming platform using which

sensor data has been collected into a cloud. This system uses a SCADA to monitor

the system. Also, the system communicates by forming of Petri nets which acts ac-

cording to discrete events and the software used to model that communication system

is WoPeD software.

Thingspeak based SCADA

Due to open source nature of the thingspeak server, many research are now being

conducted using the thingspeak server.

In their project work author uses the IoT thingspeak web server which is an open

API service that can be used with sensors to monitor the sensed data at cloud level

and amalgamated [15]. A unique feature of getting the sensed data to the MATLAB

R2016a utilizing a channel ID and read API key that is assigned by services and able

to track data value at particular intervals. This project uses an Arduino UNO board,

ESP8266 Wi-Fi Module that helps to process and transfer the sensed data to the

thingspeak cloud. The main drawback of using thingspeak.com server is that it

only allows user to upload data at very low frequency, where the user can supply data

for each 15 S. But when the same server is installed locally it will enable the user to

upload data at any frequency [15].

10

1.1.3 Security of SCADA systems

Z. Bonnie et al. [16] present the differences between SCADA systems and standard

IT systems and also discussed how to identify the danger engaged with the SCADA

and how to protect SCADA. This paper has presented set of security property goals

as well.

Also, this article describes the way of identifying possible cyber-attacks like cyber-

induced cyber-physical attacks on SCADA and how to measure and safeguard SCADA

system from such attacks by measuring the impact on SCADA. Moreover, this gives

a comparison between SCADA and traditional IT networks. Authors have set several

security goals or features that should be included in a SCADA system,

• Security property goal

– Timeliness - the time-criticality of the control systems

– Availability - equipment within the system should be ready for use when

is needed

– Integrity - data within a SCADA system being genuine and intact without

unauthorized intervention.

– Confidentiality - unauthorized person should not have any access to infor-

mation.

– Graceful Degradation - Isolation of attacked without being spreading.

• Trust model - the underlying physical security is provided. Notably, the SCADA

server or Master Terminal Unit (MTU) is physically secure, i.e., we assume

there is no direct physical tempering on the server where the central control and

estimation algorithms reside [16].

11

• Threat Model - threats to sensor networks and to conventional IT systems are

also threats to SCADA system.

Hasan et al. [17] give an overview of Trust systems used for SCADA system which

includes fire-walling and network intrusion detection functionalities. Also, TRUST

system can monitor incoming and outgoing traffic as well. However, to lowering

both capital and operational costs, only the essential nodes have been connected to

the system, and those nodes are called TRUST nodes. From the point of network

topology, this paper has discussed forming the trust network also has achieved to

build up a method to protect SCADA while connecting a minimal number of nodes.

In that case, to distribute the nodes and to measure the geographical dispersion,

network segmentation approach and the minimum spanning tree (MST) methods has

been used.

1.1.4 Operation scheduling for Battery energy storage

Many types of research have addressed scheduling problem, and considerable effort

has been dedicated.

Conventional approaches

D.K. Maly et al. [18] present a dynamic programming algorithm for the optimal

charge/discharge scheduling of BESS. The algorithm safeguards the minimization of

the electricity bill for a given battery capacity and also reduces stress on the battery

and prolonging battery life. It shows that the optimal charging curve is expressively

different from the curve conventionally published for BESS.

Chin H. Lo et al. [19] show an algorithm combining multi-pass dynamic pro-

gramming (MPDP) with a time-shift technique which has been developed for two

12

purposes: economic dispatch of BESS and finding optimal BESS power and energy

capacities in a power system. A comparison between DYNASTORE and modified

MPDP approaches had been made with a reasonable discrepancy.

Mohammad S. H. et al. [20] used Lagrange Relaxation (LR) to address the same

optimization problem. The mathematical model discussed is based on the load curve

of a typical power utility shows that the introduction of stored energy in the system

reduces the need for an excessive generation to meet peak load demand. Additionally

it shows that the storage operation accomplishes dynamic operating cost savings by

letting the total sparing of a spinning reserve unit when the load variation between

peak and off-peak levels is less than 25 percent.

AI-based approach

Recently AI-based algorithms such as Genetic Algorithm (GA), Evolutionary pro-

gramming (EA), and Particle Swarm Optimization (PSO) have been used to address

the problem.

Thai D. H. C. et al. [21] use Evolutionary Programming (EP) to minimize the cost

of operating a power system with multiple distributed energy storage resources. The

evolutionary technique syndicates the advantages of both dynamic and evolutionary

programming by evolving piecewise linear convex cost-to-go functions (i.e., the storage

content value curves). Evolutionary programming is shown to be suitable for both

decentralized computing and market applications. Case studies demonstrate that the

technique is robust and efficient for this type of scheduling problem.

Lance C. C. F. et al. [22] suggest a fuzzy and genetic algorithm combined approach.

Two algorithms have been developed. One was based on a Pure Genetic Algorithm

(PGA) approach, and the other was based on a combined Fuzzy-logic and Genetic

Algorithm (FGA) approach. Regarding efficiency and charge-discharge cycles, the

13

FGA method is capable of providing improved results.

Tsung-Ying L. et al. [23] suggest a particle swarm optimization (PSO) based

approach. The new algorithm is named as multipass iteration particle swarm opti-

mization (MIPSO) while preparing the algorithm the effects of wind speed uncertainty

and load are considered.

1.2 Problem statement

Supervisory controlling and data acquisition, is vital for any devices connected with

a power system. There is an increasing demand for low-cost SCADA systems in

the field of smart grids. Figure 1.1 illustrates a typical arrangement of a SCADA;

it contains few remote stations which connected to a master station, and human-

machine interfacing is done through a communication network, typically through the

Internet.

1.2.1 Problem I: Features of a SCADA for an energy storage

(ES)

Although a broader dedication is put toward SCADA systems by the research com-

munity, features expected from a SCADA system are different from system to system.

Although energy storage is not a new field, requirement of monitoring and control

of ES is not necessary till it contributes a significant amount to the supply and de-

mand of power. Therefore there is a requirement to recognize and document expected

features from a SCADA uses for monitoring and control of an ES.

14

Human Machine
Interface

Communication
Network

SCADA Master
Station

SCADA Remote
Station 1

SCADA Remote
Station 2

SCADA Remote
Station 3

Figure 1.1: Overview of a SCADA

15

1.2.2 Problem II: High Cost of SCADA

There are some low cost, open source SCADA systems available. There is a require-

ment to conduct a study to identify suitability of those systems for monitoring and

control of ES.

1.2.3 Problem III: Monitoring of an energy storage

Energy storage systems are essentially be monitored to identify the power flow through

the ES as well as for maintenance purposes. Therefore, based on the adapted system,

SCADA needs to be developed with following features for the inverter developed at

the University of New Brunswick [24],

• Communicate using protocol described in the Appendix A

• Upload data in each second

• Low cost with an upper limit of CAD 500.00.

1.2.4 Problem IV: Controlling of an energy storage

Controlling is an essential feature that needs to be embedded in a SCADA system.

From the literature survey, it can be identified that there is a gap for an optimum con-

trolling of an inverter connected to an energy storage to maximize the profit. Energy

storage works as a load as well a source to the power system, therefore controlling

needs to be done while considering trending price data as well as load data.

1.3 Objectives and Expected Contributions

The primary objective of this research is to develop a low-cost SCADA for monitoring

and control of a grid tie inverter. Figure 1.2 The figure shows the architecture of the

16

Figure 1.2: Overview of the proposed system

designed system. The primary purpose is achieved by achieving four sub-objectives.

Objective 1 is to identify main features of SCADA system for remote control of

grid-connected inverter.

Objective 2 is to compare available low-cost SCADA options.

Objective 3 is to develop a low cost SCADA with features specified in the Figure

1.2.

Objective 4 is to control an inverter connected an energy storage system to

maximize the profit.

NSERC Energy Storage Technology Network (NESTnet) has been built to improve

the energy storage technologies in Canada, and it networks 15 universities around

the Canada. The research is carried out under four major themes, and the project

documented in this thesis comes under the theme two which investigate about power

converters for energy storage systems. Under theme 2.4 two main projects are being

conducted and the thesis describes developing a SCADA for monitoring and control

of grid tie inverter.

17

1.4 Thesis Overview

1.4.1 Chapter 1:

This chapter mainly gives an overview of the thesis where section 1.4 of the chapter

one gives a brief overview to the research. Section 1.1 gives thorough literature review

and identifies the problem. At the end of the chapter, the author defines objectives

of the research.

1.4.2 Chapter 2

As a part of the research, the author has visited WEICAN to study deferent SCADA

systems. Chapter 2 presents a review on SCADA systems used in WEICAN, their

applications, issues, costs, and limitations.

1.4.3 Chapter 3

This chapter demonstrates a study to compare IoT hardware-based low resource and

limited storage SCADA systems to achieve the objective 2. To achieve this objective

from the client side, an interface between an inverter and the SCADA has been devel-

oped. Three low-cost options are being tested and tabulated the chapter comparing

inherent advantages and disadvantages. For the server side, four different methods are

being tested and compared regarding security, ease of installation, ease of using and

ease of integrating new components. Content presented in this chapter have been pre-

sented at CCECE2017 [12] and part of the work have been presented at NECEC2016

[25].

18

1.4.4 Chapter 4

Chapter 4 presents the development of a low-cost SCADA system to achieve the

objective 3. This chapter describes a development of an IoT based open SCADA for

monitoring and controlling of inverters using an open source thingspeak local server

and Python. The usage of open source software reduces the cost while keeping the

security and the reliability at a higher level [16]. The python based program allows the

user to obtain data from the serial port and posts data on the thingspeak server and

the user is allowed to view and upload data from the server. A graphical user interface

(GUI) has been developed to interact with the SCADA system, and it shows current

data values and allows the user to set the controlling variables. Work demonstrated

in this chapter has been presented in NESTNet [26] conference as a poster.

1.4.5 Chapter 5

Control strategies for remote control of a grid tie converter which connects an en-

ergy storage and the power network are demonstrated in chapter 5. it also shows the

implementation of the suggested control strategy in low-cost SCADA system devel-

oped in chapter 4. Work presented in this chapter has been accepted to present at

NECEC2017 [28].

1.4.6 Chapter 6

Chapter 6 shows the conclusion of the thesis and recommendations for future direc-

tions.

Chapter 2

SCADA systems used at Wind

Energy Institute of Canada:

application, issues, cost and

limitations

This chapter presents a detailed review of SCADA systems used in WEIcan for moni-

toring and controlling of wind turbines as well as battery energy storage and inverter

associated. The primary objective of this chapter is to identify main features of a

typical commercial SCADA system by evaluating SCADA systems used in WEICAN,

Prince Edward Island (PEI). Other than identifying main features, this chapter also

evaluates issues that users faced after using conventional SCADA systems. Other

than features and problems, costs of the system and limitations in different systems

are also documented. While preparing the chapter, the author has visited the Wind

Energy Institute Canada (WEICAN) at the PEI and surveyed for two weeks.

20

2.1 Introduction

The WEICAN is a non-profitable organization formed in 1981. WEICAN facilitates

researchers to test their wind turbines on their site, and they run standard tests

to check the viability of the design. WEICAN is one of the best places to observe

different types of wind turbines at a single location. Apart from that, the research

institute also own a 10 MW wind park with five 2 MW wind turbines integrated

with a battery energy storage. Figure 2.1 illustrates the single line diagram of the

wind park. Because of their setup and the arrangement, WEICAN can be identified

as the best place to observe different SCADA systems at a single site. WEICAN

uses data acquisition systems to collect data for various wind turbines that they are

testing. Monitoring and the control of the wind park are done using a central SCADA.

For monitoring of the wind turbine blade conditions, monitoring, and control of the

battery energy storage, monitoring of the wind turbine generator condition are done

through separate SCADA systems. Figure 2.2 demonstrates the data topology for the

WEICAN. Figure 2.3 demonstrates the SCADA arrangement for the wind farm.

2.1.1 Introduction to SCADA systems used in WEICAN

VTSCADA (VTS)

VTS is the main SCADA system that is being used WEICAN for monitoring and

controlling of their wind park. Data taken from other SCADA systems are also fed

into the VTS. Fully integrated VTS provides following features,

• HMI interface built for operators

– Process displays

– Alarm and event management

21

Figure 2.1: Single Line Diagram for the Wind park [29]

– Historical data viewer (HDV)

– Report generator

– Ease-of-use features

• Secure universal SCADA access

– VTScada thin clients

– SCADA alarm notification

• Strong reliability

– Redundancy and automatic fail-over

– Real-time history and configuration backup

– Historical data logging

• Advanced connectivity

22

INTERNET

DeWind
Scada

IPC

CMaS CMaS CMaS CMaS CMaS
Blade

conditioni
ng

CMaS
database

Blade
conditioing
database

WEICan
Substation

Kepware
server

SEL
RTAC
3530

Substation
SEL

devices

BESS

VTS
ServerMECL

Server

VQ Data
PC

Campbell
Scientific
DATA PC

Report
server

END
USER

Windmatic Wesnet

SQL
server

Communication (Fiber and Ethernet)

Figure 2.2: Data Topology [30]

Figure 2.3: Control and Monitoring of the Wind Farm

23

– ODBC server

– OPC client / server

– Web services

– Modem management

– Polling management

Engineering Operating System (EOS)

EOS comes with the DeWind wind turbines. In this institute, VTScada provides the

upper-level control capabilities, and the EOS is working the lower level controller. It

is also designed for data acquisition. EOS is coming with following components

• EOS Control: Software, and hardware for the management and control of the

wind energy plants and communication links, as well as for handling local data

backups.

Campbell Scientific

Campbell Scientific has a vast range of products for data logging and SCADA systems.

In the institute they are using these systems for data acquisition process on a wind

turbine that are tested.

ION Data Acquisition

ION meter is an energy meter produced by Schneider Electric, and it keeps data about

power consumption. The user can import data from the meter using ION software.

24

IMC Data acquisition system

This data acquisition system supposes to get data from five turbines, met mast, and

strain gauges. It sends data to the central SCADA system.

CMAS Condition Management System

This system supposes to monitor gearbox condition. It also monitors other drive train

components in a wind turbine.

2.2 Features of SCADA systems

This section demonstrates how HMI is implemented analyzing few of SCADA systems.

2.2.1 Graphical User Interfaces (GUI)

Having user-friendly GUIs are one of the most important parts of the HMI. Figure

2.4, 2.5, and 2.6 show interfaces of different SCADA systems.

2.2.2 Alarming

When specifically talking on the alarm system most of their SCADA systems don’t

have an alarm system because most of them are just made to record data. But in the

main SCADA, VTScada alarming is implemented with following features.

• Alarm system interface has several tabs.

• Several levels of authorizations are given. Actions can only be taken by higher

level

• There are five categories of alarms,

25

Figure 2.4: VTScada Interface

Figure 2.5: PureWave Storage Management System interface

26

Figure 2.6: Moventas drive train condition monitoring web interface

1. Event

2. Critical

3. High

4. Warning

5. Notice

• In critical and above the system automatically sends a text message or email to

the responsible person. If someone acknowledges an alarm, his or her name will

be recorded in the system.

Implementing an alarm

Alarming events are needed to be entered to the SCADA following steps.

1. Tag (data point) must be created

2. An alarm Tag is made associated to the tag created in the first step

27

Figure 2.7: Implementation of reports

3. The criteria of the alarm condition within the alarm tag

4. Destination of the alarm condition must be entered (screen, email, SMS, etc)

2.2.3 Reporting

Reporting is also an important aspect of a SCADA system. Reports are generated

when the time period is selected from the GUI. Figure 2.7 shows a reporting interface

of VTS.

2.3 Data Logging / Data Redundancy

When it comes to data logging, WEICAN uses their servers to log data. Not only

that every data generating point they have installed data loggers with backup power

supplies which provide data redundancy to the system.

28

All SCADAs are written in such a way that when the network is broken data

logging parts are done in their storage, and it will be communicated to others such

as VTS when the system is fixed. This case is same in the power failure too. For this

kind of a scenario, where the network got failed due to power failures in routers and

other network equipment and data loggers near to data originating points log data

(these apparatus are provided with backup UPS system which can operate for 4- 5

hours).

2.3.1 Data Operations

Most analysis is done using Excel (for example to generate a power curve we developed

a spreadsheet with many macros to create a power curve according to IEC 61400-12-

1 Power Performance Measurements of Electricity Producing Wind Turbines) [30].

They also import data into other software such as Windographer and WindPro to do

analysis and generate reports. Sometimes students/visitors use MATLAB and their

software. On average it can estimate about 1 hour per week will be used for data

transferring from data loggers. About data sampling, representative data sampling is

1 Hz, storage backup is done daily/weekly when the project is active, storage backup

is manually backup every month to external hard drive.

2.3.2 Networking/ Protocols

In WEICAN, they use fiber optic, Ethernet, and WIFI (only in T5 for the blade

conditioning system, between nacelle and hub) for networking.

TCP/IP

• Transmission Control Protocol (TCP) and the Internet Protocol (IP) are net-

working protocols.

29

DNP3

• Distributed Network Protocol (DNP3) utilized between components in process

automation systems. Utilities such as electric and water companies are using

this protocol.

• Uses for communication between wind turbine and the SCADA and also for com-

munication between Maritime Electric Company, Limited (MECL) and SCADA

Modbus

• Modbus is a serial communications protocol [30].

• Communication between battery energy storage system and the SCADA

IMC/Canbus

• (T5 MET mast) Inter-Module Communication (IMC) protocol is a message-

oriented protocol. This protocol is mainly used for real time applications.

EtherCAT

• EtherCAT is a highly Ethernet network protocol.

SEL Fast messaging

• The SEL Fast Messaging protocol allows the SEL-3530 RTAC to communicate

directly to SEL relays and communications processors.

• Uses for communication between substation devices and the SCADA

30

Table 2.1: Costs Associated with SCADA in CAD [30]
System Description Installation Operational License Maintenance
Campbell
Scientific

WEICAN site 150, 000.00 2, 000.00 100.00 1, 500.00

ION Meter Power meters 60, 000.00 2, 000.00 750.00 1, 500.00
DeWind Turbine data 100, 000.00 5, 000.00 3, 000.00 2, 000.00
BESS Battery sys-

tems data
50, 000.00 2, 000.00 - -

VTScada BESS,
DeWind and
Substation

50, 000.00 2, 000.00 1, 500.00 1, 500.00

IMC T5 MET mast
and strain
gauges

250, 000.00 10, 000.00 1, 000.00 1, 500.00

2.4 Costs Associated with SCADA

2.5 Controlling

Controlling is another aspect of a SCADA. However, in most of the SCADA systems

in WEICAN do not have that facility. VTScada has controllability up to some extent

such that it allows to open and close breakers and to isolate the grid.

2.6 Security

All their system is behind their main firewall system (CISCO ASA 5510), every port is

closed on the firewall and only opened when needed by clients for their software/data

retrieval.

2.7 Issues with existing SCADA

• System is not redundant

31

• To improve the reliability, they replace computers every three years

• Data backup is manually done

• Each system has vulnerability if it’s main computer crashes and needs to be

replaced. Not having redundancy, but they are very technical and can get a

replacement system very quickly and replace.

2.8 Conclusion

From the analysis of different SCADA systems in WEICAN, following main features

have been identified,

Monitoring

• Allows to monitor system in real time

• Allows the user to view historic data in different intervals

• Allows to generate reports based on past data

• Alarms the user in predefined events

Control

• Let the user to control the device through a GUI

• Automatic controlling is given at possible scenarios

Security Security of the inverter is improved through different approaches,

• Adding different authorization levels

32

• Using a firewall

• Using locally installed servers for all operations

Redundancy: Data redundancy is achieved by two different methods,

• Adding redundant data storages

• Adding data storage near to the remote SCADA stations.

Identification of these features are vital to the rest of the thesis. When selecting a

low-cost SCADA system these features were kept as evaluation criteria. Additionally,

while developing a SCADA system in chapter 4, these features were embedded into

the system.

Chapter 3

IoT Hardware-Based Low Resource

and Limited Storage SCADA Systems

3.1 Introduction

This chapter presents low-cost hardware based, moderate resource and limited storage

SCADA systems that can fulfill the primary objective of the research. This study is

being conducted to identify the best available technology that utilized for remote

monitoring and control of energy storage. A testbed is developed with an inverter

and DC voltage sensor and a DC current sensor with a relay to disconnect from the

DC side. This chapter consists of two main parts. In the first part, available options

for the client side is discussed by the author. In the second part, options for the server

part are documented, and at the end of the chapter, both client and the server parts

are being compared.

34

3.2 Background

From the economical perspective cost of the system can be identified as one of the most

critical factors. As a part of the research, a survey has been carried out in WEICAN

to find out more details about commercially available SCADA systems [30].

In the research institute, VTscada is used for monitoring controlling of wind tur-

bines and battery energy storage system. The initial cost of the system for 1,000 I/O

tag Development Runtime package is about CAD 5,595.00 [32]. For maintenance and

emergency support 20% annual fee is charged for the initial price. In this chapter that

cost is being taken as the baseline. And security can be recognized as one of the most

critical factors to be considered in smart grids. IEC 62351 defines cybersecurity for

communication protocols. However, the security of the developed system is not tested

following this IEC 62351. Instead, going through someone else‘s server and having

open ports or not are considered [31].

In most of the literature, LabVIEW based monitoring and control methods are

being used [33]. M.N. Ashraf et al. [33] presents a framework of Intranet-SCADA us-

ing LabVIEW based data acquisition and management. Additionally, it describes the

configuration of remote terminal units to access and transmit real-time data over the

Intranet or Internet[33]. The main disadvantage of this method is to use LabVIEW,

because of its costs.S. Anam et al. [11] provide a good overview of the evolution

of SCADA technologies along with highlighting the security challenges of critical in-

frastructure (CI), also provides the existing best practices and recommendations for

improving and maintaining security. Additionally, it offers a reasonable explanation

on IoT based SCADA system. A review IoT based monitoring and control systems

have far more superior qualities such as natural maintain and easy to integrate [34].

Connecting the inverter to the SCADA can be recognized as the critical part of this

35

research. There are some ways to connect where in most of the literature for low-cost

SCADA systems PIC based data acquisition systems are used [7]. The main drawback

of PIC based systems is that, unlike Arduino based systems, it is more difficult to

connect to new peripherals.

3.3 Low Cost Client Side Options

As shown in the Figure 3.1 in this section, options for remote SCADA stations are

considered. Three main client platforms are used, namely ESP12E DEVKIT V2 based

client, Arduino and Wi-Fi shield based client and Raspberry Pi based client (RPI).

3.3.1 12E based client

ESP-12E is a UART-Wi-Fi module, with very modest prices in the trade and ultra-

low power consumption technology, designed especially for mobile devices and IoT

applications [8]. User’s physical device can be connected to a Wi-Fi wireless network,

Internet or intranet communication with networking capabilities. ESP12E can be

programmed with Arduino IDE. It can directly work as a Server itself or connect to

WiFi and send data to remotely located server with little cost and high processing

speed about 80 MHz (160 MHz maximum) where Arduino Mega has only (16 MHz).

This module has 4 Mb flash memory as well. But there are few drawbacks such as

it has just one Analog input because of that a multiplexer is used to overcome this

issue (SN 74LS151N). The major drawback is its low WiFi range. The total cost of

the client side is CAD 15.00 [35].

36

Human Machine
Interface

Communication
Network

SCADA Master
Station

SCADA Remote
Station 1

SCADA Remote
Station 2

SCADA Remote
Station 3

Figure 3.1: Client Side

37

3.3.2 Arduino and Wi-Fi shield based client

In this case, Arduino UNO is used along with an Arduino WiFi shield. All draw-

backs mentioned with the ESP12E are resolved with this. However, system reliability

depends on individual reliabilities as a system the reliability would be lower than indi-

vidual components. Major drawback comparing to ESP12E is the cost of the system

where the Arduino UNO will cost about CAD 40.00 [35] and WIFI shield cost CAD

130.00 [35] where the total cost is about ten times (10X) than ESP12E.

3.3.3 Raspberry Pi based client

Raspberry Pi 3 is also an excellent option which is cheaper and reliable. But the

cost is again fifteen times more than ESP system when we include keyboard, mouse,

monitor, and power. As a part of the project, RPI 2 is tested with WI-FI adapter and

Ethernet where Arduino MEGA is working as the primary analog reader and data

transmitted to the RPI over SPI. In their paper A. D. Deshmukh et al. [36] use RPI

based system for monitoring purpose.

3.4 SCADA Server Options

SCADA master station shown in the Figure 3.2 is considered as the SCADA server.

As mentioned in the introduction there are four main options tested in this research.

Remote desktop connection with local data storage, open source SCADA software,

IOT service provider and private IoT server are the four options considered.

38

Human Machine
Interface

Communication
Network

SCADA Master
Station

SCADA Remote
Station 1

SCADA Remote
Station 2

SCADA Remote
Station 3

Figure 3.2: Server Side

39

Figure 3.3: Remote desktop with local data storage

3.4.1 RPI server with local data storage

This is the first and the easiest option out of four server-side options that are being

discussed in this section. In this method, remote desktop software like TeamViewer,

VNC, and Chrome Remote desktop has been used to access the client side com-

puter. However, security wise this option treated as the last out of four main options.

Another drawback is that this approach needs high bandwidth for remote desktop

communications. Figure 3.3 shows block diagram for this method.

3.4.2 Open Source SCADA software

Use an existing open source SCADA has been used to develop a suitable SCADA using

it. RapidScada, PV browser, Mango are several examples of open SCADA systems.

M. S. Almas et al. [37] show how to use SCADA BR for monitoring and limitations

such as it takes only two points per second (maximum resolution) when plotting the

data

For this research, Rapid SCADA has been tested. It is good to be used with

standard protocols like Modbus and OPC, but for developmental purposes, it is not

40

flexible. Especially, when it is used with proposed clients like Arduino, ESP12E, and

RPI, it takes more time to implement protocols. Security of this system can be quickly

improved by closing all ports and use inside the intranet. Unlike remote computer-

based system, since data stored inside the intranet, there is no need to open ports in

this method. Therefore, when it comes to security concerns, this option shows highly

secured.

3.4.3 IoT service provider

For last few years, internet connected many often referred as internet of things. In

IoT based SCADA systems with sensors and actuators, communications based on a

separate IP address each connected to a cloud. Most importantly this decentralized

approach allows sensors and actuators to communicate with each other and take their

own decisions and it provides autonomy to devices. When it comes to a broader

picture, IoT also allows centralized data management for larger networks wherein

conventional SCADA systems central data handling is complicated. SCADA systems

which are not capable of communicating together makes the involvement of a lot of hu-

man effort to collect data from one SCADA and feed some of those data to somewhere

else. IoT helps to eliminate this problem entirely where all sensors can feed their data

to the cloud, and the cloud platform does all the calculations like machine learning,

trend calculations, etc. Devices connected to power systems need such sophisticated

SCADA than anything else because of the complexity. Conventional SCADA has

been used for remote controlling and monitoring of an inverter with above-described

drawbacks.

41

Figure 3.4: Data flow diagram for UBIDOTs based approach

UBIdots

There are many cloud service providers in the world such as IBM Watson IoT [38],

Artik Cloud [39], GE Predix [40] and Google Cloud IoT [41]. UBIDOTs is one of the

cloud service providers that offer this service.UBIDOTs gives free plan which enables

to connect five devices, and it keeps up to 0.5 million data point for three months

under free plan [42]. Therefore, UBIDOTs is selected. UBIdotsAPI offer developers to

connect their devices to the internet. Figure 3.4 shows the block diagram of UBIdots

based approach.

Thingspeak

Thingspeak is also an IoT platform like UBIdots, and that even allows the user to

send data per every 15 seconds. And the user will be able to visualize and analyze

live data in the cloud instantly. The main advantage is that it allows integrating

Mathworks (Matlab) account and the thingspeak account so that user will be able to

42

use features such as machine learning platform from Matlab [43].

Blynk

Blynk is a platform that allows the user to control their Arduino, Raspberry Pi,

ESP12E boards using a mobile phone app. Both Android and iPhone users can use

the Blink app. Implementing this method is easy. However, this is also going through

a third party server. Therefore, data security and privacy will become an issue [44].

3.4.4 Private IOT server

Though it is easy to implement above methods, it will be unsecured to use someone

else‘s IoT cloud or a server. Therefore, in this fourth and final approach, open source

private IoT servers are tested.

Blynk private server

In this method, Blynk server will be installed locally. It gives most of the features

on the local server as well. Most importantly in this technique data will be securely

stored in a local server and data will not be following through third party server. The

main drawback of this method is that Blynk provides only mobile interfaces. And

the other issue is that from the client side, the user cannot make any changes to the

program because the device can just be programmed using the Blynk mobile app.

Implementation is simple. Figure 3.5 shows data flow diagram for the private Blynk

server.

Netlab toolkit private server

Netlab toolkit or NTK is also an HTML5 based platform. The user can locally

install the server. If the user uses Arduino, the user must use Firmata Standard

43

Figure 3.5: Block diagram for private Blynk server

program. But unlike Blynk, the user can use other pins after allocating data I/O pins

accordingly. The main drawback of this system is that they do not have any method

to store data. The user must use a separate database (that part has not been tested as

a part of the chapter because it is out of the scope). Communication is done through

the serial protocol, and that can be recognized as the other main drawback of this

system.

Thingspeak private server

This is the most sophisticated and secured method out of all practices discussed

throughout the chapter because, locally installed thingspeak server allows the user to

store data at any frequency. Unlike thingspeak.com server, the user can update data

less than 15 seconds. Though some features available on the thingspeak.com server is

not available on the local server, this server can be used for monitoring purposes. The

main drawback with a local thingspeak server is that they do not provide a method

44

Figure 3.6: Block diagram for private thingspeak serverr

to control equipment with the local server. The user needs to develop a separate

program to control devices, for example to on/off the inverter. Figure 3.6 shows data

flow diagram for the thingspeak private server based approach.

3.5 Comparison

The main objective of this research is to develop a low-cost SCADA for remote control

and monitoring of inverters. In the first part of chapter three different options for the

client side is being tested and in the second part, four different options for the server

side are being discussed.

Table 3.1: Comparison of client side
Method Cost

(CAD)
Drawbacks

ESP12E 15.00 Weak WiFi signal, 3.3V
Arduino+WiFi 150.00 Low Memory and slow, Larger in size and need

more power
RPI 200.00 Reliability depends on the SD card reliability,

3.3 V pins, no analog I/O

45

client side: From the client side, the main requirement would be to have low-cost

equipment because some equipment will be proportional to number of inverters that

will increase the cost of the client side with the number of inverters in the population.

The reliability of the component is also important. The comparison which has done

based on those two factors shown in the table 3.1.

server side Server-side is crucial for a SCADA system. The main idea of the server

side is to log data and visualize data when requested by an authorized user. Therefore,

the server should be competent enough to store data securely. In addition to that,

the other main objective of the server side is to convey the command sent by the user

to the client.

In table 3.3, four available approaches for the server side are being compared and

tabulated concerning security, ease of installation, ease of using and ease of adding

new components. In this case, security will become the primary concern because

sensitive data flows might be flowing. Therefore, going through third party server is

not a good option to be considered.

When it comes to private server, most important thing is easy of using and ease

of adding new components. In Table 3.2 available options for private IoT server are

tabulated.

Table 3.2: Comparison of private IoT servers
Method Installation Ease of Using
Blynk Easy to install,need Windows

computer
Easy to develop, but only
through mobile app

Netlab Tool
Kit

Easy to install, need Windows/
Linux computer (tested in Ubuntu
16.04)

Easy to use and configure but
no GUI

Thingspeak Difficult to install, need Linux
computer

Easy to use in a web browser

46

Table 3.3: Comparison of Server Side
Method Security Installation Ease of using Adding new

components
Remote
desktop
connection
with local
data storage

using someone
else’s server for
remote com-
puting is an
issue

Easy to install Easy to use Need a special
method

Open
SCADA
software
(RAPID-
SCADA)

High security Medium com-
plexity

Only support
few protocols
(OPC, Modbus)

Easy to add new
components with
same protocol

IoT service
provider

For most of these server user has to pay after certain data limit

Ubidots Data flows
through someone
else’s server is an
issue

User only has
to create an
account

Easy to connect
components with
internet access.
They provide
necessary code
as well

User has to pay
for more than 5
variables. Easy
to connect

Thingspeak Data flows
through someone
else’s server is an
issue

Account would
be enough

Easy to use and
easy to analyze
data through
Matlab

Easy to connect
new components

Blynk Data flows
through someone
else’s server is an
issue

Easy to install
the app and cre-
ate an account

Easy to use but
only through
mobile app, not
user friendly

Easy to connect
new components

Private IoT
server

Secured because
of the private
server is an issue

Difficult to in-
stall

Easy to use,
most of vari-
able limitations
and data point
limitations are
avoided

Easy to add
new compo-
nents.(There
is no need to
have internet,
Intranet would
be enough)

47

3.6 Conclusion and Future Works

There are some options available when developing a SCADA system for an inverter.

The primary objective of this chapter is to find out the best possible method among all

available techniques. Mainly chapter has two parts as client and server. Three main

approaches are being tested for the client side and, advantages and disadvantages of

each system are discussed. Considering all advantages and disadvantages ESP12E

based system can be recognized as the best option for a client which will gather data

and feed into a server. As the next stop, four significant approaches being tested

to identify the best approach. At the end of the chapter, all methods are compared

regarding security, ease of installation, ease of using and ease of integrating new

components. Considering all facts thingspeak based local server has been identified

as the best available option for the server side. Though ESP12E based client and

thingspeak based server are selected, there are some inherent drawbacks attached

with both systems. As future works developments can be carried out to improve

reliability and security plus improve controllability using a thingspeak local server.

Chapter 4

SCADA system Based on Private

thingspeak Sever

4.1 Introduction

The primary objective of this chapter is to demonstrate the development of a low-cost

open source SCADA system with sophisticated features adopted from commercial

SCADA systems for power converters. Work presented in this chapter was presented

at NESTnet annual conference [26].

As a part of the research, a survey has been carried out regarding SCADA software

that is being used in WEICAN to find out more details about commercially available

SCADA systems that can be used for monitoring and control of inverters. In the

research institute, VTscada is used for monitoring controlling of wind turbines and

battery energy storage system. Considering the cost of the system the Initial cost of

the system includes 1,000 I/O tag Development Runtime package is about 5,595.00

CAD. And for maintenance and emergency support 20% [32] of the annual fee is

charged from the initial price. The following features are being offered:

49

• It allows users to log data for monitoring purposes

• Sends email alerts for defined incidents

• Views data in time intervals

• It gives trending data

• Generates reports

• Allows sending control parameters

This chapter discusses IoT based approach to achieve the primary objective of

a conventional SCADA system that is to communicate with sensors and actuators

and with the Internet with a separate IP address when compared to a cloud. This

approach is designed based on IoT architecture as cloud assisted SCADA systems.

Most importantly, the decentralized approach in IoT architecture allows sensors

and actuators to communicate with each other and take their own decisions, and

it provides autonomy to devices. When it comes to the macro picture, IoT also

allows centralized data management for larger networks wherein conventional SCADA

systems central data handling is complicated. In research facilities like WEIcan [30],

they use several SCADA systems which cannot communicate together, and that needs

the involvement of a lot of human effort to collect data from one SCADA and feed

some of those data to somewhere else. IoT helps to eliminate this problem entirely

where all sensors can feed their data to the cloud, and the cloud platform does all

the calculations like machine learning, trend calculations, etc. Or else the thingspeak

server can act as a facilitator for other SCADA system using communication between

each other.

50

4.2 Background

4.2.1 SCADA systems for Monitoring and Control

Security of SCADA systems

Security of a conventional SCADA In the field of security of SCADA systems

B. Zhu et al. [16] present the differences between SCADA systems and standard IT

systems and also discuss how to identify the danger engaged with the SCADA and

how to protect SCADA. To do so, this article presented set of security property goals

as well [16]. Also, this article described a way of identifying possible cyber-attacks like

cyber-induced cyber-physical attacks on SCADA and how to measure and safeguard

SCADA system from such attacks by measuring the impact on SCADA. Moreover,

this gives a comparison between SCADA and traditional IT networks, how the attacks

affect such systems using methods like attack categorization and comparing important

feature and commonalities of such attacks. The Authors have set several security goals

or feature that should be included in a SCADA system,

Security of IoT SCADA systems: In their work on the security of cloud assisted

SCADA systems A. Sajid et al. [45] highlight the security challenges that the indus-

trial SCADA systems face in an IoT-cloud environment, and present attributes to be

taken into consideration in IoT SCADA systems.

• Data integrity and privacy

• Data logging

• Ownership

• Authorization and encryption

51

The requirement of a low-cost SCADA system for monitoring and controlling of

power converters is identified as the main problem which is addressed in this chapter.

Based on the results from the chapter 3, there is a requirement to develop a local

cloud assisted SCADA system. Figure 4.1 defines the scope of this chapter.

4.2.2 Low-cost SCADA for controlling of energy storage

DC/AC power converters used in energy storage systems necessarily need to be con-

trolled and monitored. Though there are many SCADA systems available in the

market, the cost of the system has become a barrier. Results from the research which

has been carried out to compare different SCADA systems and low-cost open source

SCADA options available for remote controlling and monitoring of inverters are pub-

lished in CCECE 2017 [12]. As the conclusion of that paper thingspeak based local

server that is being installed in a Ubuntu 16.04 has been identified as the best avail-

able solution for the problem. This chapter describes the developmental work that

has been done to use the server for monitoring and controlling of an inverter while

providing all the features of the commercially available software.

4.3 Methodology

4.3.1 Description of the SCADA

As illustrated in Figure 4.2, the server is installed in a X86 computer with Ubuntu

16.04. The developed SCADA mainly contains the following functions,

• Communication with the inverter

• Data logging

• Presenting data to the user

52

Human Machine
Interface

Communication
Network

SCADA Master
Station

SCADA Remote
Station 1

SCADA Remote
Station 2

SCADA Remote
Station 3

Figure 4.1: Scope of the SCADA

53

Figure 4.2: Block diagram for the Inverter SCADA

• Send email alerts at critical conditions

To achieve those decried functionalities three principal components are used.

Python Script

This python based script which is shown in the Appendix B is written to get data

from the serial interface and write data on the local server and update those values on

the GUI. For this application, a specially developed protocol has been used, and the

same algorithm can be used with any other specific protocol as well. Figure 4.2 shows

the block diagram for the algorithm and algorithm 1 shows the main algorithm. The

following libraries are being used in the development.

• serial: library has been used for serial communication between the inverter and

the server computer.

54

Algorithm 1 Main Algorithm
1: import Libraries
2: ser ← serialPort
3: URL← thingspeakURL
4: procedure Serial Thread
5: Read Serial data
6: Put data to the queue
7: end procedure
8: procedure APP
9: procedure Initialize GUI

10: Define labels , buttons and etc
11: Position elements
12: end procedure
13: procedure UPDATE
14: if Set reactive power then
15: Read value from the label and update set value and write on serial
16: end if
17: if Set real power then
18: Read value from the label and update set value and write on serial
19: end if
20: end procedure
21: procedure update email
22: Send email using SMTP
23: end procedure
24: procedure Process Serial
25: while True do
26: Get data from the queue
27: Split data
28: Assign data to variables
29: Convert hex to dec
30: Show data on the GUI
31: Upload data to local server every one second
32: if voltage or current values exceeds limits then
33: Send email alert and show on GUI
34: end if
35: Read control variables from the server
36: Write control command on serial
37: Upload data to the server in every 5 seconds, 1 min, 30 min and 1 hour
38: end while
39: end procedure
40: end procedure

55

• requests: library has been used for communication with the local thingspeak

server.

• threading: gives flexibility to work with the GUI.

• tkinter: is used for GUI creations.

• smtplib: is used for automatic email alerting system.

Graphical User Interface

Figure 4.4 shows the GUI developed for the system. It has three main sectors, moni-

toring, controlling and alerting.

Monitoring: Under monitoring, it shows values sent by the inverter. Voltage, cur-

rent power, and the status are being sent by the inverter. Power factor and the Total

energy are also shown on the GUI.

Controlling: Under the controlling it allows the user to set real and reactive power.

And it also allows the user to increase the power values by 0.5.

Alerting: In alerts, if voltage and current values are greater than some value it

appears as High, and if those are within the range, it shows as normal. The alert

must be manually cleared.

At the bottom of the GUI inverter version and the current time is displayed.

Thingspeak local server

Thingspeak is an IoT cloud platform that allows users to send data in every 15 sec-

onds for free. The user will be able to visualize and analyze live data in the cloud

56

Figure 4.3: Block diagram for python script

57

Figure 4.4: GUI for the Inverter SCADA developed in python

58

instantly. The main advantage is that it allows integrating Mathworks account and

the thingspeak account so that the user will be able to use features such as machine

learning platform from Matlab.

As per developers, thingspeak is an open source IoT application and API to store

data from things using HTTP protocol. In this SCADA system thingspeak local

server has been installed in an X86 architecture-based computer. In this case, there is

no frequency limit, and the local server allows the user to send data even at a higher

frequency. Figure 4.5 shows data sent to the server, for one second period.

4.4 Key Features of the Developed SCADA

After completing the SCADA, it provides the following features to the user.

4.4.1 Monitoring

As mentioned earlier, the server allows the user to upload data at any frequency and

in this case data are being uploaded to the server at 1 Hz. Additionally, the GUI

shows instant data while the user uses web server to view historic data in 1 s, 5 s, 1

min, 5 min, 30 min, and 1 hr. The following parameters are being monitored.

Voltage (V): Voltage is displayed in volts. There is no maximum value.

Current (A): Current is displayed in amperes and there is no maximum value for

that as well.

Power (kW) Power values are displayed in kW. All three values are taken from the

data string coming from the inverter, and following values are calculated from the

acquired values.

59

Figure 4.5: Thingspeak interface

60

Power Factor: Power factor is calculated using basic power factor equations 4.1

and 4.2.

PF : Power factor

Pr : Real Power

Papp : Apparent power

V Voltage

I : Current

PF =
Preal

PApparent

(4.1)

PApparent = V × I (4.2)

Energy (kWh) Energy is displayed in kWh and is calculated using the equation

4.3. The energy displayed is the accumulated energy from the last restart of the in-

verter and value is shown in kWh.

Et : Energy at time “t”

Pt : Power at time “t”

∆t Time interval between two successful power readings

En = En−1 + Pt∆t (4.3)

4.4.2 Controlling

Control access has only been given through the server computer due to security rea-

sons. The person who can log into the server computer using an authorized username

61

and password will only be able to update controlling parameters. The authorized

person will be able to set real power, and reactive power values and that person will

also be able to increase or decrease the set value by 0.5 for smooth operation.

4.4.3 Reporting and alerting

The user will be able to download data at 1 sec, 5 sec, 1 min, 30 min and 1-hour

interval data sets while it is advisable to download lower frequency data reports such

as 1 hour and 30 min due to the high sizes of files. When it comes to alarming and

altering, the main program monitors data values and if current values are higher than

a specific value and it sends an email alert to the user mentioning that the current

value is high. The same logic is applied for the voltage as well. One hour data is kept

public so that everyone on the local area network can view 1-hour data. However,

only an authorized person will be able to see other data levels.

4.5 Testing

As mentioned in the introduction this research is being funded by the NSERC Energy

Storage Network fund. Under the theme 2 with the objective of development of power

converters for Energy Storage systems, the project 2.4 which is conduced in the MUN

is to develop low cost SCADA system for power converter developed in the University

of New Brunswick (UNB).

At the end of the development of the system, it has been tested with the inverter

developed in UNB Sustainable Power Research Lab. They are using a DSP2407A

board for communication purposes with the inverter and that has a RS232 port for

UART communication. The inverter side of the developed communication channel

has been connected to the serial port. Data string sent by the inverter according the

62

Figure 4.6: Inverter Developed by the UNB

protocol shown in the Appendix A has been successfully decoded by the system and

communicated to the other side through the LoRa link.

Decoding:

Sample data string:

55AA0200000064BF07001B4A76001B3E1E00A6009C02400FF71C643B1231

As per the Appendix A first two bytes represent synchronous word and next four

bytes represent the status. Where next twelve bytes represent data as current, voltage

and power respectively in four bytes. Then number of samples, maximum voltage and

the maximum current value and the version number sent in two bytes each respectively.

Following equations are implemented in the python script.

Current =

√
Current
Samples

× currentmax
4096

(4.4)

V oltage =

√
V oltage
Samples

× currentmax
4096

(4.5)

63

Figure 4.7: Testing the SCADA with the Inverter

Realpower =
Power × voltagemax× currentmax

samples× 4096× 4096
(4.6)

4.6 Results and Comparison

This section consists of three subsections where the first subsection illustrates security

features of the developed SCADA compared to a cloud-assisted IoT SCADA. The

second subsection features the developed SCADA are compared with a commercial

SCADA, and the third subsection shows validation of the optimization algorithm

using real data obtained from WEICAN during the visit to the plant by the research

group.

64

4.6.1 Cloud assisted IoT SCADA Vs. Developed SCADA (Se-

curity features)

As illustrated by A. Sajid et al. [45] there are few security issues in cloud supported

IoT SCADA systems when a third party provides the cloud service. However, in the

developed system the cloud is locally installed. The following subsection compares

the designed system with a cloud-assisted SCADA.

Data Logging: As mentioned in the [45], security risk related to data logging is

high due to logging data in a cloud than logging data locally. This issue has been

overcome in the developed Inverter SCADA by locally installing the IoT server.

Ownership: As per the paper when third-party cloud service provider comes into

the picture ownership of data can become a problem. That ownership issue has also

been overcome by using a local server.

Authentication and encryption: Another issue that has been identified is lack

of authentication and encryption. In the developed SCADA system authentication

has been assured by username and a password for the IoT server for monitoring

purposes. To control the inverter, the user needs to login into the server computer

using a separate username and password. Monitoring server and controlling parts

are made of two isolated systems, and it has increased the security of the SCADA

rather than providing controlling through the same server. Another problem that is

emphasized is lack of encryption where an attacker gets the IP address it makes super

easier for an attacker to hack into the system. Since this system runs on a local server

after closing all ports using a firewall, it will be difficult for attackers to hack into the

system.

The developed SCADA is much more secure than a cloud-assisted IoT based sys-

tem because, in the improved system the server is locally installed and it provides

65

hierarchical authentication for controlling.

4.6.2 Commercial SCADA vs. Developed SCADA

After developing the SCADA, it has been able to communicate with the inverter (in

this case Arduino Uno has been used as a replacement for the inverter with 9600bps),

and all claimed features are being tested and achieved in the laboratory environment.

To bench mark the developed SCADA, it is compared with commercially available

software that has been used by WEICAN for their monitoring and controlling of

their wind farm and the BESS. Table 4.1 illustrates the comparison. Although it

is compared with VTSCADA the proposed SCADA is not a replacement for the

VTSCADA system. Additionally, proposed system does not have costs associated

with any operator panels, alarm hardware and distributed control elements that are

part of the VTSCADA system installed on site. During the comparison it is assumed

that the developed this SCADA system is provided free to the end user. It is also

assumed that the implementation of the proposed system on the side is done for free

at 0 installation cost, and thereâĂŹs an expert user at site to attend to the system

when needed at zero cost.

4.7 Conclusion

This chapter documents the development of a SCADA using an open source Things-

peak local server for monitoring and controlling of inverters. The main features offered

by the SCADA system are discussed. It also shows that the security of the system

is higher compared to a cloud-assisted IoT based SCADA due to some reasons. Fea-

tures of the developed system are compared with a conventional SCADA system used

in WEICAN and identified that other than the low cost the developed system has

66

Table 4.1: Comparison of Invert SCADA with VTscada
Feature VTscada Inverter SCADA
Cost 5000 CAD without

hardware
300.00 CAD without
hardware,200 CAD for
hardware

Number of data
points

1000 data points for
the above cost

There is no limitation on
number of data points.
(It can be limited by
the bandwidth of the In-
tranet, processing speed
of the server computer)

Reporting Allows user to create
many reports

Only few reports types of
reports are available. But
can be developed

Protocols Modbus, DF1,
CIP/ENIP, Siemens
S7, Omron Host
Link, OPC

Can be developed for
any protocol, Currently it
only works with the pro-
tocol in Appendix A

Training Special training is
needed

No special training is re-
quired

Security System is protected
using passwords

Password protected and
the controlling is not con-
nected with the server.

Operating Sys-
tem

Windows Linux (32 bit)

Maintenance
cost/ license fee

20 % of initial cost(
annually)

Hardware maintenance
costs, user maintained

67

some superior features compared with the commercial SCADA. Finally, the devel-

oped SCADA has been tested with using a real Inverter developed in the UNB.

Chapter 5

Control Strategies for Remote

Control of a Grid Tie Inverter and Its

implementation using Low-Cost

SCADA system

5.1 Introduction

The primary objective of this chapter is to develop an algorithm to maximize the

profit generated by a battery energy storage which is connected to a wind turbine and

to implement the algorithm on a cloud assisted IoT server to automate the dispatching

of the battery energy storage. Linear programming based algorithm is developed to

maximize the revenue. Accuweather API based novel approach is used to implement

the algorithm in a Python based program and uploaded data to a local thingpseak

server so that the inverter can obtain data for controlling as well as to convey to the

dispatching center.

69

Predictive wind farming is an emerging topic with the increasing population of

wind farms and a grid. It is possible to improve the quality of the power exported

by a wind farm by integrating an energy storage system. According to the Global

Wind Report, installed wind capacity in 2015 is 432.9 GW around the globe and it

is expected to become 792.1 GW by 2020 [1]. Energy storage systems are becoming

increasingly popular as a result of cost reduction and improvements in technologies.

At the present, the term, energy storage is more often used and many researches are

being conducted to develop new methodologies. Many technologies are being used for

energy storages where pump hydro dominates as technology. Due to mass production

and developments in battery cell technologies BESS are emerging as a promising

technology with number of advantages over other storage methods. When BESS

installed in a wind farm it will be costly if the BESS is charged when wind turbines

are not producing energy. Study has been carried out by Wind Energy Institute

Canada situated in Prince Edward Island (WEICAN PEI) using their existing Wind

park and the battery energy storage. From the study it shows that when wind power

does not exist it is more profitable to use stored energy in BESS for auxiliary power

needs. Therefore, depending on the wind availability in the next few hours State of

Charge (SoC) of the BESS has to be decided.

Therefore, optimum operation scheduling of energy storage system is most im-

portant in an economic perspective because most of the energy storages like battery

energy storage systems have a specific number of cycles. In order to get the maximum

profit out of it, energy storage needs to be optimally controlled while using each cycle

to maximize the profit.

The chapter is organized as follows, Section 5.2 defines the problem with clear

boundaries. In section 5.4 the algorithm is validated with using actual data from

70

WEICAN. Finally, in section 5.5, the chapter is concluded with future recommenda-

tions.

5.2 Problem Statement

Although much literature can be found on optimum controlling of BESS using different

approaches, there is a gap in the BESS controlling field for optimization based on wind

availability for future hours.

5.2.1 Problem formulation

To formulate the problem, wind turbine arrangement in WEICAN is considered. Lay-

out for the WEICAN with 5 wind turbines and Figure 5.1 illustrates a configuration

of a wind park which has five 2 MW turbines and a battery bank with 1 MW/ 2

MWh. An objective of the algorithm developed is to achieve the minimum cost of

generation and to get maximum profit when wind speed is available for a week.

In order to maximize the profit, objective function can be modeled as follows,

Bt Electricity selling or purchasing price at time “t”

Pt Power at Common coupling point at time “t”

ObjectiveFunction =
72∑
n=1

BtPt (5.1)

Power at the common coupling point (CCP) is given by the Pt and the equation 5.2

shows the power calculation. Power consumed for ancillary activities are represented

by the PLoads.

Pwt Wind power generation for time “t”

Pdis Discharging power of BESS at time “t”

71

Figure 5.1: Model considered with wind turbines and an energy storage

72

Pch Charging power of BESS at time “t”

Ploads Loads on the system at time “t”

PEt Net power delivered to the BESS at time “t”

Pt = Pwt + Pdis − Pch − PLoads (5.2)

PEt = Pch − Pdis (5.3)

Lower and upper bounds of the energy storage adds limits to the power Pt are

defined according to the committed power to the control center and the limits of the

components.

LBp Lower bound for power Pt

UBp Upper bound for power Pt

LBEP Lower bound for power PET

UBEP Upper bound for power PET

Pcutoff Cutoff power for the wind turbine

Prated Rated power for the wind turbine

LBp ≤ Pt ≤ UBp (5.4)

LBEP ≤ PEt ≤ UBEP (5.5)

0 ≤ Pch ≤ UBEP (5.6)

73

0 ≤ Pdis ≤ −LBEP (5.7)

For the considered model minimum LBp = −1MW which is the charging power

for the BESS and the UBp = +10MW which is defined by the rating of the trans-

mission line and transformer. For each hour, energy of the energy storage Et can be

calculated using the following equation 5.8.

Et Energy at time “t”

LBE Lower bound for Energy

UPE Upper bound for Energy

η
ES

Round cycle efficiency for the BESS

ηe Self discharging efficiency

Et = ηeEt−1 + ηESPch∆t− Pdis∆t (5.8)

Same as power bounds, upper and lower bounds of Et are defined according to

the limits of the energy storage where the lower bound of the Et is defined by the

committed energy to the grid and the upper bounded by the maximum energy capacity

of the system.

LBE ≤ Et ≤ UBE (5.9)

Wind turbine modeling

Using the wind data taken from the predicted wind data for upcoming one week.

Wind turbine model has been used to predict the power generated by wind turbines

[46].

74

K Constant

V Wind Velocity

R Rotor diameter

Cp Betz limit

λ ratio of wind speed downstream to wind speed upstream of the turbine

Pwt = 0.5KV 3πR2Cp(λ, β) (5.10)

PCutoff ≤ Pwt ≤ Prated (5.11)

Assumptions

To make the optimization process linear the following assumptions are made.

• Power produced by the wind turbine is proportional to the cube of the wind

speed till the rated value.

• ηe = 2− 5% per month [47], ηch and ηd value are constants and gives round trip

efficiency of 85% [48].

• In order to make the optimization algorithm more accurate,

E0 = Ent (5.12)

• BESS is charged up to 1MWh, (E0 = 1MWh) at the beginning of the the

simulation.

75

Figure 5.2: Proposed architecture

5.3 Methodology

Block diagram of the proposed system is shown on Figure 5.2. As illustrated in the

Figure 5.3, algorithm calculates optimum power levels and uploads to the locally

installed thingspeak server where inverters takes control data from the thingspeak

server.

Python Scipy library

To embed the controlling lingprog method SCIPY library has been used (scipy.optimize.linprog()).

When the objective function is given by the equation 5.13 and if equality constraints

are given by equation 5.14 and inequality constraints are given by 5.15 where all vari-

ables are bounded by minimum and maximum pairs. The linprog() can be used as

shown in the equation 5.16.

76

Obtain API from the Accuweather
based on the location

GET wind speed data from
Accuweather

Use optimization algorithm to
calculate state of charge

Upload data to thingspeak server

Figure 5.3: Block diagram for the algorithm

Objective− function = CTX (5.13)

AeX = Be (5.14)

AinX = Bin (5.15)

linprog(−c, Aub = Ain, bub = Bin, Aeq = Ae, beq = Be) (5.16)

The following matrices are used for as the input for the equation 5.16 and the

sequence is Pt, Pch, Pdis, Et. The matrix Ain is made with using 5.2 is the inequality

matrix and Ae is for equation matrix. Wind data obtained from the ACCWEATHER

will be used in the Bin.

77

Ain72,288 =


1 .. 1 .. −1 .. 0 ..

..

.. 1 .. 1 .. −1 .. 0



Bin72,1 =



Pwindpower

..

0

..

..

..

0



Ae is made using equation 5.8 and η values assumed under the section 5.2.1 and

other assumptions.

Ae72,288 =

 0 .. 0 0 .. 0 0 .. 1 0 ..

0 .. −1 0 .. ηES 0 .. −ηe 1 ..

0 .. 0 −1 .. 0 ηES .. 0 −ηe 1

0 .. 0 0 0 0 0 .. 0 .. −1



Be72,1 =



1000

0

..

..

..

0



78

Optimum Controlling Algorithm

This algorithm is developed for optimum controlling of the energy storage by consid-

ering all the variables affecting to the profit. Objective function is illustrated in the

equation 5.1 and boundaries for all variables are also defined in the equations 5.4 and

5.9.

Step 1: At the beginning of each day (at 00.00 hours) obtain forecast weather

data from the Accuweather using API key for next 72 hours. Users need a paid

account to acquire data where it allows researchers to use six month trial version (this

trial version allows user to obtain data only for 12 hours). Requests library has been

used to get data and extract wind speed data using JSON library.

Step 2: Use equation 5.10 and 5.11 to calculate the power generated. Matrix B

is generated using wind power data and save it to matrixb.csv. Upload wind power,

wind speed data to the server for future usage with the predicted hour.

Step 3: Use pricing data to generate matrixA and save it in objectivefunction.csv

file.

Step 4: Use equation 5.16 to find the optimum output operating schedule for

the BESS for next 72 hours.

Step 5: In the case where the user committed to submit a day ahead schedule to

the utility, the user can submit generated schedule. The lower boundaries and upper

boundaries of the system will be automatically updated for the next 24 hours based

on the schedule.

Step 6: In each hour, main algorithm GET operating schedule data using the

Requests library from the thingspeak server and based on the operating schedule

prepared, control sequence will be sent to the inverter.

79

5.4 Results and Validation

For validation of the optimization algorithm, real data obtained for the model il-

lustrated in the figure 5.1 from the WEIcan are used. Other than the assumptions

already made while developing the algorithm following assumptions were also made

during the validation process.

• Battery energy storage can discharged upto 0% can be charged upto 100% (Typ-

ically BESS does not discharged upto 0% or charged to 100%)

• BESS is initially charged up to 50% (To give fair condition for the BESS to be

charged or discharged)

Figure 5.4 shows price data which are assumed for the Spring and those prices are

tabulated in the Table 5.1. Figure 5.5 shows wind speed data for 25th April, 2016

and Figure 5.6 shows wind power generated by all five turbines within the day. Wind

power generated data are also shown in the 3rd column of the Table 5.1.

Real data are then fed in to the algorithm to find out the optimum operating

schedule. Figure 5.9 shows the operating schedule prepared by the algorithm. Based

on the optimum operating schedule, power inflow and outflow for the BESS is pre-

pared. Figure 5.10 illustrates the input power to the BESS and that data will be fed

in to the power converter in automatic controlling.

From the real data set obtained for a real Wind turbines and real BESS are used

to validate the algorithm and the output shows that the algorithm has maximized the

revenue of the wind farm. Power flow at the point of common coupling is shown in

the Figure 5.8 and are tabulated with actual operating data the comparison in the

Table 5.2.

Data for power measurement on 69 kV bus are also taken for the same day. Due

to their bus ratings and transformer ratings, power measurements of the 69 kV bus

80

Figure 5.4: Price graph (CAD)

Figure 5.5: Wind speed graph (ms−1)

Figure 5.6: Wind power generated graph (kW)

81

Figure 5.7: Actual power at common coupling point graph (kW)

Figure 5.8: Optimum power output (Pt) generated by the algorithm (kW)

Figure 5.9: Operating schedule generated by the algorithm

82

Figure 5.10: Optimum power flow to the BESS

Table 5.1: Input data for the algorithm
Time (hours) Price (CAD) per

MWh
Wind Power (kW)

1 10.00 10024.54
2 10.00 7250.88
3 10.00 8540.76
4 10.00 9904.35
5 10.00 9892.82
6 11.00 8030.73
7 10.00 7301.15
8 10.00 7022.22
9 24.00 10029.89
10 35.00 10011.51
11 56.00 10017.62
12 38.00 10016.83
13 38.00 8892.49
14 38.00 8832.36
15 38.00 6748.42
16 38.00 6911.20
17 14.00 8825.58
18 35.00 8684.35
19 35.00 9666.55
20 14.00 10038.53
21 35.00 9783.48
22 60.00 10032.58
23 35.00 9681.94
24 10.00 9795.18

83

Table 5.2: Input data for the algorithm
Time
(hours)

Pt Actual
Power
(kW)

Pt Alg. output (kW)

1 10002.66 9834.68
2 7228.84 7228.84
3 8519.71 8519.71
4 9883.53 9883.53
5 9871.50 9871.50
6 8008.39 8008.39
7 7280.29 6280.29
8 7000.93 7000.93
9 10008.48 10000.00
10 9991.53 9991.53
11 9996.13 10000.00
12 9996.07 10000.00
13 8868.94 9868.94
14 8811.00 9803.21
15 6727.65 6727.65
16 6889.22 6889.22
17 8804.15 7804.15
18 8665.40 9515.40
19 9645.48 9645.48
20 10017.24 9172.79
21 9762.11 10000.00
22 10011.98 10000.00
23 9659.91 10000.00
24 9774.77 8774.77
Revenue CAD

5687.40
CAD 5765.03

84

was similar to the wind power changes. That means the control strategy actually

followed does not use the battery bank to improve profits. As illustrated in Table 5.2

new algorithm optimize the output of the system by storing energy in the low price

periods to sell in the high demand periods. In the row one and seven of Table 5.2

algorithm sells less than the actual power because then power can be sold at later

hour with high prices. As per the assumption, the battery is initially charged to 1

MWh, and it can get 1 MWh energy. Therefore, at the 7th hour, it will keep 1000

kwh to sell at the 13th hour which has a higher price. The Same thing is happening

in the 17th hour and the 18th hour as well.

Observing row eleven to twenty four, it can concludes that the algorithm has been

able to maximize the profit by selling power at high price regions by storing from low

pricing regions.

In the last row of the Table 5.2 illustrates the revenue generated by each method

that was calculated using the pricing data shown in the second column of Table 5.1. It

shows that revenue generated with the operating schedule produced by the algorithm

is higher than the actual revenue generated where it could have been increased by

adding a revenue optimization algorithm. Figure 5.9 shows the operating schedule

prepared by the algorithm, it show the set value of State of Charge for the battery.

It does not reflect the actual behavior of the BESS.

5.5 Conclusion and future works

This chapter presents a novel implementation of optimal control algorithm for a bat-

tery energy storage system connected with a wind turbine and to a grid. Python

based program has been developed using Accuweather API to gather wind data and

to optimize the revenue and a locally installed thingspeak server has been used for

85

data storage . Performance of the algorithm has been verified using real wind data

obtained from the WEICAN. Results shows that the algorithm has been able to in-

crease the profit by changing the operation schedule considering the wind availability

for next twenty four hours. As a future work, control algorithm will be improved to

use minimize the electricity bill for households by training a neural network to predict

the load pattern for the house and optimally control the BESS.

Chapter 6

Summary and Recommendations

Aiming to improve the power quality and reducing the cost of the power produced at

peak hour energy storages are implemented. Control of energy storage is becoming

essential. Power flow of an energy storage can be controlled by controlling the power

converter attached to the energy storage system. There is a gap in the field of the

smart grid for low-cost SCADA system for monitoring and control of inverters. This

research is conducted to develop a low-cost SCADA for monitoring and control of a

grid-connected inverter. This objective is achieved with achieving four sub-objectives,

1. Identify main features of SCADA systems.

2. Compare available low-cost SCADA options

3. Develop a low cost SCADA with features specified in the Figure 1.2.

4. Control an inverter connected an energy storage system to maximize the profit.

87

6.1 Summary

6.1.1 Research Summary Based on Objective 1

Although a sincere dedication has been given to the field of SCADA by the research

community, features of the SCADA system varies with the system that is monitored by

the SCADA. Therefore, initially, research has been conducted to recognize elements of

a SCADA system. Based on that features needs to be embedded in a SCADA system

that would be used for monitoring control of a SCADA system have been recognized

and documented.

6.1.2 Research Summary Based on Objective 2

Based on features recognized under the objective one, few SCADA systems were

selected and tested to verify their suitability for the application. Based on the results

of the tests local thingspeak based local cloud assisted SCADA has been identified as

the most suitable technology to fulfill the objective.

6.1.3 Research Summary Based on Objective 3

Then, a SCADA has been developed using the open source Thingspeak local server

for monitoring and controlling of inverters. The usage of open source software reduces

the cost while keeping the security and the reliability at a higher level. The python

based program allows the user to obtain data from the serial port and posts data

on the thingspeak server and the user is allowed to view and upload data from the

server. A graphical user interface has been developed to interact with the SCADA

system, and it shows current data values and allows the user to set the controlling

variables. During the field testing the developed python-based program has been able

88

to communicate successfully with an inverter and post data to the server.

6.1.4 Research Summary Based on Objective 4

Finally, the thesis developed a linear programming based controlling strategy designed

for a SCADA system to control a grid-connected inverter which is used to interface a

battery energy storage with the grid. To control the inverter, a predictive wind speed

algorithm is proposed where parameters are being automatically set by the linear

programming based optimization algorithm that can be embedded into the SCADA

system utilized for the inverter. The algorithm intends to take pricing data from

the utility and obtain wind speed data from the Accuweather to generate operating

schedule for the battery bank to maximize the revenue. Real data collected from

the Wind Energy Institute Canada (WEIcan) are used to validate the controlling

algorithm, and the results emphasize that the algorithm has produced the optimum

operating schedule while maximizing the profit.

6.2 Significant Contributions

As a summary, this thesis has made following key contributions in the field of SCADA

systems by fulfilling all of the outlined research objectives,

1. Recognized and documented core features that needs to be embedded in a

SCADA which are used for monitoring and control of an inverter.

2. Developed a low cost open source SCADA for monitoring and control of a grid

connected inverter.

3. Developed an optimization algorithm to maximize the profit generated by an

energy storage.

89

6.3 Directions for Future Work

• The primary objective of the research is to develop a low-cost SCADA system.

The implemented SCADA server consumes around 52VA which is high and

not suitable for small-scale energy storages. Therefore, the server needs to be

installed in a low power consumption computer and test it.

• The developed system communicates only with the given protocol. Therefore,

the system needs to be improved with more protocols. Since the AI filed and

machine learning is enhancing AI bot can be attached to the SCADA.

• Optimum usage of home energy storage control algorithm will be improved to

use to minimize the electricity bill for households by training a neural network

to predict the load pattern for the house and optimally control the BESS.

6.4 List of Publications

All the contributions in the thesis are published in the following technical papers and

posters:

Journal Articles

1. Sarinda Jayasinghe, Tariq Iqbal and George K Mann, An Internet of Things

based open SCADA for Monitoring and Controlling of Inverters, prepared for

submission.

Peer-reviewed Conference Articles

2. Jayasinghe L. Sarinda, Tariq Iqbal, George Mann, Low-cost and open source

SCADA options for remote control and monitoring of inverters, presented at

CCECE 2017, Windsor ON Canada.

90

Abstract-reviewed Conference Articles

3. Sarinda Jayasinghe, Tariq Iqbal, George Mann, Optimum Control of a Grid

Connected Battery Energy Storage, accepted to present at 26th IEEE NECEC

conference 2017.

4. Sarinda Jayasinghe, Tariq Iqbal, George Mann, IoT based low cost SCADA

system for an inverter, presented at 25th IEEE NECEC conference 2016.

Poster presentations

5. S.L. Jayasinghe, T. Iqbal and G. Mann, Internet of Things (IoT) based open

SCADA for Monitoring and Controlling of Inverters, Poster session presented

at: NESTNet Technical Conference. 1st Annual conference. 21-22 July, 2017;

Toronto, ON.

Bibliography

[1] E. Chemali, M. Preindl, P. Malysz and A. Emadi, "Electrochemical and Elec-
trostatic Energy Storage and Management Systems for Electric Drive Vehicles:
State-of-the-Art Review and Future Trends," in IEEE Journal of Emerging and
Selected Topics in Power Electronics, vol. 4, no. 3, pp. 1117-1134, Sept. 2016.

[2] https://www.ryerson.ca/nestnet/themes/

[3] Ujvarosi, Alexandru. "EVOLUTION OF SCADA SYSTEMS." Bulletin of the
Transilvania University of Brasov. Engineering Sciences. Series I 9.1 (2016): 63.

[4] https://www.gogreensolar.com/products/sma-sb-10000tlus-10-sunny-boy-grid-
tie-inverter-10000w-with-dc-disconnect

[5] https : //www.alibaba.com/product− detail/SAJ − 10kw − 3− phase− 380V −
on60643486889.html?

[6] A. M. Grilo, J. Chen, M. DÃŋaz, D. Garrido and A. Casaca,. 2014. "An In-
tegrated WSAN and SCADA System for Monitoring a Critical Infrastructure."
(IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS) 10 (3).

[7] Andreescu, E. H. Gurban and G. D. 2011. "SCADA element solutions using Eth-
ernet and mobile phone network." 2011 IEEE 9th International Symposium on
Intelligent Systems and Informatics. 303-308.

[8] P. Zhang, T. Liu, Z. X. Yang, Y. Mou, Y. H. Wei and D. Chen,. 2015. "Design of
remote control plug." 2015 IEEE International Conference on Applied Supercon-
ductivity and Electromagnetic Devices (ASEMD). 29-30.

[9] S. Sanap, R. Nawale, S. Kapse, A. Kale and M. Korade,. 2015. "Exact virtualiza-
tion of Industrial Environment on Web Using SCADA with Artificial Intelligence."
Green Computing and Internet of Things (ICGCIoT), 2015 International Confer-
ence on, Noida. 99-103.

[10] S. G. Hegde, S. R. Desai, D. R. Gajanan, S. B. Kowligi and Sachin RC. ndustrial
Instrumentation and Control (ICIC). "Implementation of SCADA in industries
using wireless technologies." 2015. Pune.

92

[11] A. Soetedjo, Y. I. Nakhoda and D. Suryadi,. 2013. "Development of data acquisi-
tion system for hybrid power plant." QiR (Quality in Research), 2013 International
Conference on, Yogyakarta, 2013. 197-201.

[12] J. L. Sarinda, T. Iqbal and G. Mann, "Low-cost and open source SCADA options
for remote control and monitoring of inverters," 2017 IEEE 30th Canadian Con-
ference on Electrical and Computer Engineering (CCECE), Windsor, ON, 2017,
pp. 1-4.

[13] Sergi Blanch-Torn, Fernando Cores, Ramiro Moreno Chiral. 2015. "Agent-based
PKI for Distributed Control System." World Congress on Industrial Control Sys-
tems Security (WCICSS-2015). 28-35.

[14] Felipe. C, Yeison. C, Leonardo. R,. 2014. "Wireless Sensor System According
to the Concept of IoT -Internet of Things." 2014 International Conference on
Computational Science and Computational Intelligence.

[15] Pasha, Sharmad. 2016. "Thingspeak Based Sensing and Monitoring System for
IoT with Matlab Analysis." International Journal of New Technology and Research
(IJNTR) 19-23.

[16] Bonnie Zhu, Anthony Joseph, Shankar Sastry. 2011. "A Taxonomy of Cyber
Attacks on SCADA Systems." 2011 IEEE International Conferences on Internet
of Things, and Cyber, Physical and Social Computing.

[17] Hasan, M., and H. T. Mouftah. 2016. "Optimal Trust System Placement in Smart
Grid SCADA Networks." (IEEE Access) PP (99).

[18] D.K. Maly, K.S. Kwan. 1995. "Optimal battery energy storage system (BESS)
charge scheduling with dynamic programming." IEE Proceedings - Science, Mea-
surement and Technology.

[19] Chin H. Lo, Max D. Anderson. 1999. "Economic dispatch and optimal sizing of
battery energy storage systems in utility load-leveling operations." IEEE Trans-
actions on Energy Conversion.

[20] M. S. Habibi. 2001. "Model for impact of storage on spinning reserve requirements
and distributed generation." Proceedings of the 33rd Southeastern Symposium on
System Theory 161-165.

[21] Kaye, Thai Doan Hoang Cau and R. J. 2001. "Multiple distributed energy storage
scheduling using constructive evolutionary programming." PICA 2001. Innovative
Computing for Power - Electric Energy Meets the Market. 22nd IEEE Power
Engineering Society. International Conference on Power Industry Computer Ap-
plications. Sydney. 402-407.

93

[22] L. C. C. Fung. 2000. "Combined fuzzy-logic and genetic algorithm technique for
the scheduling of remote area power system." IEEE Power Engineering Society
Winter Meeting. 1069-1074.

[23] T. Y. Lee. 2007. "Operating Schedule of Battery Energy Storage System in a
Time-of-Use Rate Industrial User With Wind Turbine Generators: A Multipass
Iteration Particle Swarm Optimization Approach." 774-782.

[24] Shuang Xu, Riming Shao and Liuchen Chang, "Single-phase voltage source in-
verter with voltage-boosting and power decoupling capabilities," 2017 IEEE 8th
International Symposium on Power Electronics for Distributed Generation Sys-
tems (PEDG), Florianopolis, 2017, pp. 1-8.

[25] Sarinda Jayasinghe, Tariq Iqbal, George Mann, "IoT based low cost SCADA
system for an inverter", presented at 25th IEEE NECEC conference 2016.

[26] S. L. Jayasinghe, T. Iqbal and G. Mann, "Internet of Things (IoT) based open
source SCADA for Monitoring and Controlling of Inverters," Poster session pre-
sented at: NESTNet Technical Conference. 1st Annual conference. 21-22 July,
2017; Toronto, ON.

[27] Sarinda Jayasinghe, Tariq Iqbal and George K Mann, An Internet of Things
based open SCADA for Monitoring and Controlling of Inverters, submitted with
IEEE Access 2017.

[28] Sarinda Jayasinghe, Tariq Iqbal, George Mann, Optimum Control of a Grid Con-
nected Battery Energy Storage, accepted to present at 26th IEEE NECEC con-
ference 2017.

[29] D. Watson, C. Hastie and M. Rodgers, "Comparing Different Regulation Of-
ferings from a Battery in a Wind RnD Park," in IEEE Transactions on Power
Systems, vol. PP, no. 99, pp. 1-1. doi: 10.1109/TPWRS.2017.2747517

[30] Gerald Giroux, Data Topology, Wind Energy Institute of Canada

[31] 2007. Core IEC Standards. 05 15. Accessed 2016.
http://www.iec.ch/smartgrid/standards/.

[32] https://www.trihedral.com/scada-software-pricing

[33] M. N. Ashraf, S. A. B. Khalid, M. S. Ahmed and A. Munir,. 2009. "Implemen-
tation of Intranet-SCADA Using LabVIEW Based Data Acquisition and Man-
agement." Computing, Engineering and Information, 2009. ICC ’09. International
Conference on, Fullerton, CA. IEEE. 244-249.

94

[34] ANAM. S, HAIDER. A, KASHIF. S. 2016. "Cloud-Assisted IoT-Based SCADA
Systems Security: A Review of the State of the Art and Future Challenges."
(SPECIAL SECTION ON THE PLETHORA OF RESEARCH IN INTERNET
OF THINGS (IoT)).

[35] https://www.adafruit.com/product/2491

[36] A. D. Deshmukh, U. B. Shinde. 2016. "A low cost environment monitoring system
using raspberry Pi and arduino with Zigbee." 2016 International Conference on
Inventive Computation Technologies (ICICT). Coimbatore, India. 1-6.

[37] M. S. Almas, L. Vanfretti, S. LÃÿvlund and J. O. Gjerde, "Open source SCADA
implementation and PMU integration for power system monitoring and control
applications," 2014 IEEE PES General Meeting | Conference and Exposition, Na-
tional Harbor, MD, 2014, pp. 1-5.

[38] https://www.ibm.com/watson/

[39] https://artik.cloud/

[40] https://www.ge.com/digital/predix

[41] https://cloud.google.com/iot-core/

[42] n.d. UBIDOTS. http://ubidots.com/.

[43] n.d. thingspeak.https://thingspeak.com/.

[44] n.d. Blynk.http://www.blynk.cc/.

[45] A. Sajid, H. Abbas and K. Saleem, "Cloud-Assisted IoT-Based SCADA Systems
Security: A Review of the State of the Art and Future Challenges," in IEEE
Access, vol. 4, no. , pp. 1375-1384, 2016. doi: 10.1109/ACCESS.2016.2549047

[46] Wagner HJ. Introduction to wind energy systems. In EPJ Web of Conferences
2013 (Vol. 54, p. 01011). EDP Sciences.

[47] Divya, K. C., and Jacob ÃŸstergaard. "Battery energy storage technology for
power systemsâĂŤAn overview." Electric Power Systems Research 79.4 (2009):
511-520.

[48] Durathon DC System Technical Specifications âĂŤ MWh Series,

Appendix A

Protocol developed in UNB

96

Appendix B

Appendix B: Code for Inverter

SCADA

import serial

import threading

import queue

import tkinter as tk

from tkinter import IntVar, Label, Button, W, E, LEFT, Entry, END

import requests

import time

import smtplib

import math

import datetime

real_power_actual_value_from_arduino =0

current_actual_value_from_arduino=5

reactive_power_actual_value_from_arduino=5

voltage_actual_value_from_arduino=5

version_number_actual_value_from_arduino=5

max_current_actual_value_from_arduino=5

max_voltage_actual_value_from_arduino=5

realpowerseturl =’http://0.0.0.0:3000/update?key=UEHSNP6C9WTZKMCH&field5=’

98

realpoweractualurl = ’http://0.0.0.0:3000/update?key=UEHSNP6C9WTZKMCH&field3=’

reactivepowerseturl = ’http://0.0.0.0:3000/update?key=UEHSNP6C9WTZKMCH&field6=’

reactivepowersactualurl = ’http://0.0.0.0:3000/update?key=UEHSNP6C9WTZKMCH&field4=’

current_actual_string =’http://0.0.0.0:3000/update?key=UEHSNP6C9WTZKMCH&field1=’

voltage_actual_string =’http://0.0.0.0:3000/update?key=UEHSNP6C9WTZKMCH&field2=’

real_power_actual_string = ’http://0.0.0.0:3000/update?key=UEHSNP6C9WTZKMCH&field3=’

reactive_power_actual_string = ’http://0.0.0.0:3000/update?key=UEHSNP6C9WTZKMCH&field4=’

reactivesetvalue=0

reactivepoweractualvalue =0

query = {’field’: 120}

ser3 = ’6’+ ’8’

ser4 =’6’

senddata =""

voltagealert="Normal"

currentalert = "Normal"

voltagealert_pre="Normal"

currentalert_pre = "Normal"

time1 = datetime.datetime.now()

energy_accumilated = 0

class SerialThread(threading.Thread):

def __init__(self, queue):

threading.Thread.__init__(self)

self.queue = queue

def run(self):

s = serial.Serial(’/dev/ttyACM1’,9600)

#start_time=time()
while True:

text = s.readline()

z =senddata.encode()

#print(senddata)
y= s.write(z)

time_string1 = time.strftime(’%H:%M:%S’)

print(time_string1)

99

#print(y)
self.queue.put(text)

class App(tk.Tk):

def __init__(self):

print("1")

tk.Tk.__init__(self)

print("2")

self.geometry("1152x900")

print("3")

#..
self.title_lable = Label(self, font=’TimesNewRoman 30’,fg="green", text="Inverter SCADA")

self.title_lable.grid(row=0, column=4)

#...
#Monitoringpart
#...

self.monitoring_lable = Label(self, font=’TimesNewRoman 20’,fg="red", text="Monitoring")

self.monitoring_lable.grid(row=1, column=4)

#..
#buttons
self.stop_button = Button(self, text="Stop", command=lambda: self.update_setone("set_real_power"))

self.start_button = Button(self, text="Start", command=lambda: self.update_setone("set_real_power_add"))

self.input_button = Button(self, text="Input", command=lambda: self.update_setone("set_real_power_subtract"))

self.showRx_button = Button(self, text="ShowRx", command=lambda: self.update_setone("set_reactive_power"))

self.quit_button = Button(self, text="Quit", command=lambda: self.update_setone("set_reactive_power_add"))

#positionbuttons
self.stop_button.grid(row=2, column=1)

self.start_button.grid(row=2, column=3)

self.input_button.grid(row=2, column=5)

self.showRx_button.grid(row=2, column=7)

self.quit_button.grid(row=2, column=9)

100

self.spaceone_lable = Label(self, font=’TimesNewRoman 20’,fg="red", text="")

self.spaceone_lable.grid(row=3, column=4)

#...

self.voltage_value = 0

self.voltage_text = IntVar()

self.voltage_text.set(self.voltage_value)

self.voltage_text_label = Label(self,font=’TimesNewRoman 14’,fg="blue", textvariable=self.voltage_text)

self.voltage_lable = Label(self, font=’TimesNewRoman 14’, text="Voltage (V): ")

self.voltage_lable.grid(row=4, column=0)

self.voltage_text_label.grid(row=4, column=2)

#...

self.current_value = 0

self.current_text = IntVar()

self.current_text.set(self.current_value)

self.current_text_label = Label(self,font=’TimesNewRoman 14’,fg="blue", textvariable=self.current_text)

self.current_lable = Label(self, font=’TimesNewRoman 14’, text="Current (A): ")

self.current_lable.grid(row=4, column=5)

self.current_text_label.grid(row=4, column=8)

#...

self.power_value = 0

self.power_text = IntVar()

self.power_text.set(self.power_value)

self.power_text_label = Label(self,font=’TimesNewRoman 14’,fg="blue", textvariable=self.power_text)

self.power_lable = Label(self, font=’TimesNewRoman 14’, text="Power (W): ")

self.power_lable.grid(row=5, column=0)

self.power_text_label.grid(row=5, column=2)

#...

self.pf_value = 0

self.pf_text = IntVar()

self.pf_text.set(self.pf_value)

self.pf_text_label = Label(self,font=’TimesNewRoman 14’,fg="blue", textvariable=self.pf_text)

self.pf_lable = Label(self, font=’TimesNewRoman 14’, text="PF: ")

101

self.pf_lable.grid(row=5, column=5)

self.pf_text_label.grid(row=5, column=8)

#...

self.status_value = 0

self.status_text = IntVar()

self.status_text.set(self.status_value)

self.status_text_label = Label(self,font=’TimesNewRoman 14’,fg="blue", textvariable=self.status_text)

self.status_lable = Label(self, font=’TimesNewRoman 14’, text="Status: ")

self.status_lable.grid(row=6, column=0)

self.status_text_label.grid(row=6, column=2)

#...

self.totlakwh_value = 0

self.totlakwh_text = IntVar()

self.totlakwh_text.set(self.totlakwh_value)

self.totlakwh_text_label = Label(self,font=’TimesNewRoman 14’,fg="blue", textvariable=self.totlakwh_text)

self.totlakwh_lable = Label(self, font=’TimesNewRoman 14’, text="Total kwh: ")

self.totlakwh_lable.grid(row=6, column=5)

self.totlakwh_text_label.grid(row=6, column=8)

#...
#controllingpart
#...

self.reactive_power_lable = Label(self, font=’TimesNewRoman 20’,fg="red", text="")

self.reactive_power_lable.grid(row=12, column=4)

self.reactive_power_lable = Label(self, font=’TimesNewRoman 20’,fg="red", text="Controlling")

self.reactive_power_lable.grid(row=13, column=4)

#..

self.reactive_power_lable = Label(self, font=’TimesNewRoman 14’,fg="black", text="Set Value")

self.reactive_power_lable.grid(row=15, column=2)

#..

self.reactive_power_set_value = 0

self.reactive_power_set_value_text = IntVar()

self.reactive_power_set_value_text.set(self.reactive_power_set_value)

self.reactive_power_set_value_text_label = Label(self,font=’TimesNewRoman 14’,fg="blue", textvariable=self.reactive_power_set_value_text)

102

self.reactive_power_lable = Label(self, font=’TimesNewRoman 14’, text="Reactive P:")

self.reactive_power_lable.grid(row=19, column=0)

self.reactive_power_set_value_text_label.grid(row=19, column=2)

#...

self.real_power_set_value = 0

self.real_power_set_value_text = IntVar()

self.real_power_set_value_text.set(self.real_power_set_value)

self.real_power_set_value_text_label = Label(self,font=’TimesNewRoman 14’,fg="blue", textvariable=self.real_power_set_value_text)

self.real_power_lable = Label(self, font=’TimesNewRoman 14’, text="Real Power:")

self.real_power_lable.grid(row=18, column=0)

self.real_power_set_value_text_label.grid(row=18, column=2)

#..

vcmd = self.register(self.validate)#wehavetowrapthecommand
self.entry = Entry(self, validate="key", validatecommand=(vcmd, ’%P’))

self.lable_set_value_lable = Label(self, font=’TimesNewRoman 14’, text="Set the value :")

self.lable_set_value_lable.grid(row=20, column=0)

self.entry.grid(row=20, column=2, columnspan=2, sticky=W+E)

#...
#buttons
#...

self.set_real_power_lable = Label(self, font=’TimesNewRoman 14’, fg="black", text="Set Real Power: ")

self.set_real_power_lable.grid(row=21, column=0)

self.real_power_set_button = Button(self, text="Ok", command=lambda: self.update("set_real_power"))

self.real_power_set_button.grid(row=21, column=2)

self.real_power_add_button = Button(self, text="+ 0.5", command=lambda: self.update("set_real_power_add"))

self.real_power_add_button.grid(row=21, column=4)

self.real_power_substract_button = Button(self, text="− 0.5", command=lambda: self.update("set_real_power_subtract"))

self.real_power_substract_button.grid(row=21, column=5)

self.set_reactive_power_lable = Label(self, font=’TimesNewRoman 14’, fg="black", text="Set Reactive Power: ")

self.set_reactive_power_lable.grid(row=22, column=0)

self.reactive_power_set_button = Button(self, text="Ok", command=lambda: self.update("set_reactive_power"))

self.reactive_power_set_button.grid(row=22, column=2)

self.reactive_power_add_button = Button(self, text="+ 0.5", command=lambda: self.update("set_reactive_power_add"))

103

self.reactive_power_add_button.grid(row=22, column=4)

self.reactive_power_substract_button = Button(self, text="− 0.5", command=lambda: self.update("set_reactive_power_subtract"))

self.reactive_power_substract_button.grid(row=22, column=5)

self.Blackstart_button = Button(self, text="− 0.5", command=lambda: self.update("set_reactive_power_subtract"))

#...
#alerts
#...

self.reactive_power_lable = Label(self, font=’TimesNewRoman 20’,fg="red", text="")

self.reactive_power_lable.grid(row=23, column=4)

self.reactive_power_lable = Label(self, font=’TimesNewRoman 20’,fg="red", text="Alerts")

self.reactive_power_lable.grid(row=24, column=4)

#..
self.voltagealert_value = voltagealert

self.voltagealert_text = IntVar()

self.voltagealert_text.set(self.voltagealert_value)

self.voltagealert_text_label = Label(self,font=’TimesNewRoman 14’,fg="blue", textvariable=self.voltagealert_text)

self.voltagealert_lable = Label(self, font=’TimesNewRoman 14’, text="Voltage: ")

self.voltagealert_lable.grid(row=25, column=0)

self.voltagealert_text_label.grid(row=25, column=2)

self.voltagealert_button = Button(self, text="Clear", command=lambda: self.update_clear("voltage alert clear"))

self.voltagealert_button.grid(row=25, column=4)

#...

self.currentalert_value = currentalert

self.currentalert_text = IntVar()

self.currentalert_text.set(self.currentalert_value)

self.currentalert_text_label = Label(self,font=’TimesNewRoman 14’,fg="blue", textvariable=self.currentalert_text)

self.currentalert_lable = Label(self, font=’TimesNewRoman 14’, text="Current: ")

self.currentalert_lable.grid(row=26, column=0)

self.currentalert_text_label.grid(row=26, column=2)

self.currentalert_button = Button(self, text="Clear", command=lambda: self.update_clear("current alert clear"))

self.currentalert_button.grid(row=26, column=4)

#...

104

#details of theinverter
#...

self.version_value = 0

self.version_text = IntVar()

self.version_text.set(self.version_value)

self.version_text_label = Label(self,font=’TimesNewRoman 10’,fg="purple", textvariable=self.version_text)

self.version_lable = Label(self, font=’TimesNewRoman 10’, fg="purple", text="Inverter Version: ")

self.version_lable.grid(row=35, column=0)

self.version_text_label.grid(row=35, column=1)

#..

self.time_value = 0

self.time_text = IntVar()

self.time_text.set(self.time_value)

self.time_text_label = Label(self,font=’TimesNewRoman 10’,fg="purple", textvariable=self.time_text)

self.time_lable = Label(self, font=’TimesNewRoman 10’, fg="purple", text="Time: ")

self.time_lable.grid(row=35, column=3)

self.time_text_label.grid(row=35, column=4)

#..

print("7")

self.queue = queue.Queue()

print("8")

thread = SerialThread(self.queue)

print("9")

thread.start()

print("10")

self.process_serial()

print("11")

def update(self, method):

if not self.entered_number ==0:

if method == "set_real_power":

self.real_power_set_value = self.entered_number

elif method == "set_reactive_power":

self.reactive_power_set_value = self.entered_number

elif method == "set_real_power_add":

self.real_power_set_value+=0.5

elif method == "set_real_power_subtract":

105

self.real_power_set_value−=0.5
elif method == "set_reactive_power_add":

self.reactive_power_set_value+=0.5

elif method == "set_reactive_power_subtract":

self.reactive_power_set_value−=0.5

self.real_power_set_value_text.set(self.real_power_set_value)

self.reactive_power_set_value_text.set(self.reactive_power_set_value)

ser6 = str(self.real_power_set_value)

url = realpowerseturl+ser6

r = requests.post(url, data=query)

print (r.text)

ser7 = str(self.reactive_power_set_value)

url2 = reactivepowerseturl +ser7

s = requests.post(url2, data=query)

print (s.text)

self.entry.delete(0, END)

def update_setone(self, method):

print(method)

def update_email(self, method):

print(method)

server = smtplib.SMTP(’smtp.gmail.com’, 587)

server.starttls()

server.login("monitoringbbscada@gmail.com", "Lab1234%")

msg = method

server.sendmail("monitoringbbscada@gmail.com", "slj681@mun.ca", msg)

server.quit()

def update_clear(self, method):

print(method)

global voltagealert

106

global currentalert

global voltagealert_pre

global currentalert_pre

if method == "voltage alert clear":

voltagealert="Normal"

self.voltagealert_text.set(voltagealert)

voltagealert_pre =voltagealert

if method == "current alert clear":

currentalert = "Normal"

self.currentalert_text.set(currentalert)

currentalert_pre =currentalert

def validate(self, new_text):

if not new_text:#the field is beingcleared
self.entered_number= 0

return True

try:

self.entered_number = int(new_text)

return True

except ValueError:

return False

def process_serial(self):

while self.queue.qsize():

try:

x = self.queue.get()

ser1 =x.upper()

#ser2=list(ser1)
print (ser1)

if(chr(ser1[0])==’5’):

if len(ser1)>55:

ser_1 = chr(ser1[0])+chr(ser1[1])

ser_2 = chr(ser1[2])+chr(ser1[3])

ser_byt0 = chr(ser1[4])+chr(ser1[5])

ser_byt1 = chr(ser1[6])+chr(ser1[7])

ser_byt2 = chr(ser1[8])+chr(ser1[9])

107

ser_byt3 = chr(ser1[10])+chr(ser1[11])

ser_byt4 = chr(ser1[12])+chr(ser1[13])

ser_byt5 = chr(ser1[14])+chr(ser1[15])

ser_byt6 = chr(ser1[16])+chr(ser1[17])

ser_byt7 = chr(ser1[18])+chr(ser1[19])

ser_byt8 = chr(ser1[20])+chr(ser1[21])

ser_byt9 = chr(ser1[22])+chr(ser1[23])

ser_byt10 = chr(ser1[24])+chr(ser1[25])

ser_byt11 = chr(ser1[26])+chr(ser1[27])

ser_byt12 = chr(ser1[28])+chr(ser1[29])

ser_byt13 = chr(ser1[30])+chr(ser1[31])

ser_byt14 = chr(ser1[32])+chr(ser1[33])

ser_byt15 = chr(ser1[34])+chr(ser1[35])

ser_byt16 = chr(ser1[36])+chr(ser1[37])

ser_byt17 = chr(ser1[38])+chr(ser1[39])

ser_byt18 = chr(ser1[40])+chr(ser1[41])

ser_byt19 = chr(ser1[42])+chr(ser1[43])

ser_byt20 = chr(ser1[44])+chr(ser1[45])

ser_byt21 = chr(ser1[46])+chr(ser1[47])

ser_byt22 = chr(ser1[48])+chr(ser1[49])

ser_byt23 = chr(ser1[50])+chr(ser1[51])

ser_byt24 = chr(ser1[52])+chr(ser1[53])

ser_byt25 = chr(ser1[54])+chr(ser1[55])

number_of_samples=ser_byt17+ser_byt16

number_of_samples_dec= int(number_of_samples , 16)

max_current =ser_byt19+ser_byt18

max_current_dec =int(max_current , 16)

max_voltage = ser_byt21+ser_byt20

max_voltage_dec = int(max_voltage , 16)

print (ser1)

real_current = ser_byt7+ser_byt6+ser_byt5+ser_byt4

real_current_dec1 = int(real_current ,16)

sqrt_for_max_C = math.sqrt(real_current_dec1/number_of_samples_dec)∗max_current_dec
real_current_dec2 = sqrt_for_max_C/4096

108

real_current_dec = round(real_current_dec2 ,2)

ser_real_current = str(real_current_dec)

url_real_current = current_actual_string +ser_real_current

s_real_current = requests.post(url_real_current , data=query)

print (s_real_current.text)

self.current_text.set(ser_real_current)#updateongui

global voltagealert

global currentalert

global voltagealert_pre

global currentalert_pre

#set alert if current is greaterthan300
if real_current_dec >300:

currentalert="High"

if currentalert_pre =="Normal":

self.currentalert_text.set(currentalert)#updateongui
currentalert_pre="High"

self.update_email("Your inverter current is high")

print("current is high")

real_voltage = ser_byt11+ser_byt10+ser_byt9+ser_byt8

real_voltage_dec1= int(real_voltage ,16)

sqrt_for_max_V = math.sqrt(real_voltage_dec1/number_of_samples_dec)∗max_voltage_dec
real_voltage_dec2 = sqrt_for_max_V/4096

real_voltage_dec = round(real_voltage_dec2 ,2)

ser_real_voltage = str(real_voltage_dec)

url_real_voltage = voltage_actual_string +ser_real_voltage

s_real_voltage = requests.post(url_real_voltage , data=query)

print (s_real_voltage.text)

self.voltage_text.set(ser_real_voltage)#updateongui

if real_voltage_dec >250:

voltagealert="High"

if voltagealert_pre =="Normal":

self.voltagealert_text.set(voltagealert)#updateongui
voltagealert_pre="High"

109

self.update_email("Your inverter voltage is high")

print("voltage is high")

real_power_actual_value = ser_byt15+ser_byt14+ser_byt13+ser_byt12

real_power_actual_value_dec1= int(real_power_actual_value , 16)

#real_power_actual_value_dec2=(real_power_actual_value_dec1∗max_voltage_dec∗max_current_dec)/(number_of_samples_dec)
#16777216
real_power_actual_value_dec2 = (real_power_actual_value_dec1∗max_voltage_dec∗max_current_dec)/(number_of_samples_dec∗16777216)
real_power_actual_value_dec = round(real_power_actual_value_dec2 ,2)

ser_real_power_power = str(real_power_actual_value_dec)

real_power_actual_value_from_arduino = ser_real_power_power

#real_power_actual_value_from_arduino=10
url_real_power_actual = real_power_actual_string + ser_real_power_power

s_real_power_actual = requests.post(url_real_power_actual , data=query)

print (s_real_power_actual.text)

ser_real_power_power = str(real_power_actual_value_dec)

self.power_text.set(ser_real_power_power)#updateongui

apperentpower= real_voltage_dec∗real_current_dec
pf = real_power_actual_value_dec/apperentpower

self.pf_text.set(str(pf))#updateongui

version_number =ser_byt25+ser_byt24

version_number_dec = int(version_number , 16)

self.version_text.set(str(version_number_dec))#updateongui

time2 = datetime.datetime.now()

elapsedTime = time2− time1

print(elapsedTime.total_seconds())

duration = elapsedTime.total_seconds()

time1 = datetime.datetime.now()

energy_acc = real_power_actual_value_dec∗duration/3600000
global energy_accumilated

110

energy_accumilated = energy_accumilated + energy_acc

self.totlakwh_text.set(str(energy_accumilated))

print (real_current_dec)

print (real_voltage_dec)

print (real_power_actual_value)

print (number_of_samples_dec)

print (max_voltage_dec)

print (max_current_dec)

print (version_number_dec)

time_string = time.strftime(’%H:%M:%S’)

self.time_text.set(time_string)#updateongui

global time1

except queue.Empty:

pass

self.after(100, self.process_serial)

app = App()

app.mainloop()

