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Abstract 

 

 S-glutathionylation has been found to control the production of mitochondrial reactive 

oxygen species (ROS), regulated by glutaredoxin-2 (GRX2). GRX2 deficiency is associated with 

heart disease, neurological deficits, and cataracts, which have all been linked to increased ROS 

production. Using GRX2+/- and GRX2-/- mice, we have shown that GRX2 controls the emission of 

superoxide (O2
●-) /hydrogen peroxide (H2O2) from liver and cardiac mitochondria in a tissue and 

substrate dependant manner. In cardiac tissue, GRX2+/- and GRX2-/- mitochondria display 

increased O2
●-/H2O2 production compared to WT when metabolizing succinate. In liver tissue, 

mitochondria isolated from GRX2-/- mice show a significant decrease in O2
●-/H2O2 emission when 

metabolizing pyruvate and 2-oxoglutarate. Our results show that GRX2 plays an important role in 

controlling mitochondrial ROS production in different tissues. Future work into the method of 

ROS control by GRX2 could highlight a method to control ROS production and prevent tissue 

damage from increased ROS. 
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1. Introduction 

1.1. Nutrient metabolism 

 Nutrient metabolism encompasses the many chemical reactions that occur in the body 

which are responsible for converting food into usable energy. Digested food can be broken down 

into three types of macromolecules: carbohydrates, lipids and proteins. These macromolecules can 

undergo catabolism to provide energy for powering cellular processes, or can be used for 

anabolism, in which they are used to build necessary proteins, lipids, nucleic acids or 

carbohydrates. During catabolism, each type of macromolecule is processed through different 

metabolic pathways that ultimately converge on the Krebs cycle in the mitochondria. Exceptions 

include mitochondrial dehydrogenases that can transfer electrons from certain types of carbon 

directly to the ubiquinone (UQ) pool (e.g. electron transferring flavoprotein:quinone 

oxidoreductase, ETF:QOR) Once carbon reaches this point, it’s electrons are converted to reducing 

equivalents that can be used by the electron transport chain (ETC) to form adenosine triphosphate 

(ATP). ATP is the energy currency of the cell, which is required to power the cellular reactions of 

the body.   

1.1.1. Glycolysis 

 Carbohydrates ingested from dietary sources are first broken down into monosaccharide 

units, which most commonly include the hexose sugars glucose, fructose, and galactose, prior to 

absorption via the gut (1). After absorption, these monosaccharides are distributed throughout the 

body for energy metabolism and storage. The use of monosaccharides for energy metabolism 

requires their breakdown in the cytoplasm by glycolysis, a series of ten enzymatic reactions that 

convert one monosaccharide into two molecules of pyruvate. The first five steps of glycolysis are 

labelled as the preparatory phase. In these steps, glucose is broken down into two three carbon 
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sugars. This phase requires the input of energy, two ATP per molecule of glucose, to proceed. The 

first step of glycolysis is catalyzed by hexokinase, which expends ATP to phosphorylate glucose, 

forming membrane impermeable glucose-6-phosphate. (2). The hexokinase isozyme in liver, 

glucokinase, has a lower affinity for glucose which is integral for maintaining blood glucose levels 

(3). The next step converts glucose-6-phosphate to fructose-6-phosphate via phosphoglucose 

isomerase (4). This is also the entry point for phosphorylated fructose into glycolysis. Next, a 

second molecule of ATP in the preparatory phase is used by phosphofructokinase to phosphorylate 

fructose-6-phosphate, producing fructose-1,6-bisphosphate (5). In the two remaining steps, 

fructose-1,6-bisphosphate is cleaved, forming two molecules of glyceraldehyde-3-phosphate (1).  

 The second half of glycolysis is known as the payoff phase. This phase encompasses five 

steps which ultimately end in the production of two pyruvate molecules per glucose. The second 

half is labelled the payoff phase because it produces four ATP and two molecules of reduced 

nicotinamide adenine dinucleotide (NADH) per glucose molecule. The sixth step of glycolysis is 

the oxidation and phosphorylation of the glyceraldehyde-3-phosphate, producing NADH from 

nicotinamide adenine dinucleotide (NAD+) (6). The phosphate on the carbon-1 position of 1,3-

bisphosphoglycerate is then transferred to adenosine diphosphate (ADP) forming ATP by 

phosphoglycerate kinase via a process called substrate level phosphorylation (7). The eighth and 

ninth steps involve an isomerase and enolase reaction which form high energy 

phosphoenolpyruvate (1). The last step of glycolysis encompasses the second substrate level 

phosphorylation of the pathway, forming ATP and producing the end product, pyruvate (8). 

Overall, glycolysis produces a net amount of two ATP and two NADH per molecule of glucose. 

If the cell does not have access to oxygen, it can obtain its energy anaerobically via glycolysis. 

However, aerobic respiration, which is discussed in detail below, produces a much larger sum of 
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ATP per glucose. In theory, aerobic respiration produces 38 ATP per molecule of glucose, but the 

yield is likely closer to 30 ATP in the cell (9). Anaerobic respiration still occurs throughout the 

body, most notably in red blood cells or fast twitch muscle fibers, and involves the re-oxidation of 

NADH through lactic acid fermentation. 

1.1.2. Beta-oxidation of fatty acids 

 Fatty acids that are obtained from the diet or from adipocyte storage can be oxidized to 

transform energy to a useable form. Fatty acids enter the mitochondrial matrix via the acyl-

carnitine/carnitine antiporter (10). Once inside the matrix, fatty acids are systematically stripped 

of electrons through β-oxidation which drives ATP production. Fatty acids are shortened two 

carbons per cycle by removing one acetyl-CoA unit from the terminal carboxyl end of the molecule 

(1). This process is performed in four steps. The first step involves the formation of a double bond 

between the alpha and beta carbon of the fatty acid by acyl-CoA dehydrogenase, reducing flavin 

adenine dinucleotide (FAD) to form a molecule of reduced flavin adenine dinucleotide (FADH2) 

(11). A molecule of water is added to the double bond by the enzyme enoyl-CoA hydratase, 

forming an alcohol group on the beta carbon of the fatty acid (12). In the third step, the alcohol is 

then dehydrogenated to a ketone by the enzyme -hydroxyacyl-CoA dehydrogenase (1). The 

electrons from this step are used to form NADH. The final step of beta-oxidation involves the 

liberation of a two-carbon unit that combines with coenzyme A (CoA) to form acetyl-CoA, 

facilitated by the enzyme thiolase (1). These four steps are repeated until the fatty acid has been 

completely broken down into acetyl-CoA. If the fatty acid is unsaturated, an extra step is required 

for isomerization into a trans configuration double bond, which can then proceed with beta-

oxidation (1). Overall, each pass of beta-oxidation produces one molecule of acetyl-CoA, FADH2 

and NADH. Acetyl-CoA can have many fates within the body. Acetyl-CoA produced from 
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oxidation of fatty acids in the mitochondria is mostly used to generate ATP via its entry into the 

Krebs cycle. However, it can also be used to make ketone bodies, a valuable source of energy for 

various tissues.  

1.1.3. Protein oxidation 

 Unlike carbohydrates and fatty acids, amino acids obtained from the digestion of proteins 

cannot be stored in the body for later use. They are either used to build proteins or they are oxidized 

for energy (1). Protein from the diet is hydrolysed into free amino acids in the small intestine and 

then transported to the liver via the blood. Once they reach the liver, most amino acids undergo 

deamination by a transaminase enzyme, transferring the amino group to 2-oxoglutarate, forming 

glutamate and leaving behind an alpha-keto acid (1). Glutamate can then be transferred to the 

mitochondria and deaminated by glutamate dehydrogenase to release an ammonium ion (NH4
+) 

into the urea cycle, leaving behind 2-oxoglutarate which can re-enter the Krebs cycle (13). 

Glutamate can also transfer its amino group to oxaloacetate by aspartate aminotransferase to form 

2-oxoglutarate and aspartate, which can directly enter the urea cycle (14).  

 Amino acids degraded in extrahepatic tissues produce NH4
+, which is combined with 

glutamate by glutamate synthetase to form glutamine (15, 16) that can be transported to the liver. 

Once glutamine has reached the liver mitochondria, it can be cleaved back to glutamate by 

glutaminase, releasing NH4
+ to the urea cycle (16). NH4

+ can also be transported to the liver by the 

glucose-alanine cycle. Glutamate present in the tissue can transfer the NH4
+ group to pyruvate via 

the enzyme alanine aminotransferase to form alanine which can travel through the blood to the 

liver (17). In the liver, alanine is then deaminated back to pyruvate, transferring NH4
+ to 2-

oxoglutarate to form glutamate (17).  
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 Any nitrogen which is not used by the body for protein synthesis must be excreted. This is 

performed through the urea cycle, which consists of five enzymatically mediated reactions that 

convert hepatic ammonia to urea so that it may be excreted by the kidneys (1). The urea cycle 

occurs in the mitochondria and cytosol of liver cells, and ultimately results in the production of 

urea. To enter the urea cycle, free NH4
+ is cleaved from glutamine and glutamate in the 

mitochondria. NH4
+ must first combine with bicarbonate and two molecules of ATP to form 

carbamoyl phosphate, driven by the enzyme carbamoyl phosphate synthetase 1 (18). Carbamoyl 

phosphate can then enter the urea cycle. The urea cycle results in the production of fumarate, which 

can re-enter the Krebs cycle, as well as urea, which enters the blood stream to be filtered out and 

excreted by the kidneys.  

 Once the amino group has been separated from the amino acids, the carbon skeletons are 

now free to be oxidized for energy production. There are several different amino acid degradation 

pathways, depending on the structure of the amino acid carbon skeleton. Some amino acids are 

known as ketogenic amino acids. This means that they can only be converted to acetyl-CoA and 

therefore can either enter the Krebs cycle and be oxidized into carbon dioxide (CO2) or they can 

be used to produce ketone bodies to feed the body during times of negative energy balance (1). 

Other amino acids are termed as gluconeogenic, meaning they can be converted back to glucose 

via the process of gluconeogenesis. These amino acids are converted to intermediates such as 

pyruvate, 2-oxoglutarate, succinyl-CoA, fumarate or oxaloacetate (1). These products are all 

intermediates of the Krebs cycle and can therefore enter at different points to be oxidized for fuel. 

Five amino acids exist that are classified as both gluconeogenic and ketogenic (1), and therefore 

can have different fates, depending on metabolic needs.  
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1.1.4. The Krebs cycle 

 The catabolism pathways of carbohydrates, fats, and amino acids ultimately form the 

common intermediates, acetyl-CoA, oxaloacetate, and 2-oxoglutarate, which enter the Krebs cycle 

for further oxidation. The Krebs cycle consists of eight enzymatically mediated reactions which 

function to oxidize carbon skeletons, forming CO2 as a by-product, and producing reduced NADH 

and FADH2, which can be further oxidized in the ETC to produce ATP. A diagram of the Krebs 

cycle can be found in Figure 1.1. The Krebs cycle is in the mitochondrial matrix and is required to 

produce fuel as dictated by the needs of the body.   

 For carbohydrates to enter the Krebs cycle, they must first undergo glycolysis, where they 

are used to produce pyruvate. Pyruvate is imported to the mitochondrial matrix by the symporter 

pyruvate translocase, which is powered by the symport of protons. Once inside the matrix, 

pyruvate is converted to acetyl-CoA by the pyruvate dehydrogenase complex (PDH). PDH is the 

gateway for carbohydrate oxidation in mitochondria since it is required to convert pyruvate to 

acetyl-CoA prior to its entry into the Krebs cycle. PDH is composed of three subunits, the first 

being pyruvate decarboxylase (E1 subunit), which facilitates the decarboxylation and transfer of 

pyruvate to thiamine pyrophosphate (TPP) (19). In the E2 subunit, dihydrolipoyl tranacetylase, the 

acetyl group and two electrons are transferred to the reduced lipoamide group, forming acyl 

lipoyllysine (19).  A transesterification reaction occurs next, in which CoA replaces the lipoamide 

on the acetyl group, forming acetyl-CoA and leaving behind reduced lipoyllysine (19). The E3 

subunit is termed dihydrolipoyl dehydrogenase and functions to re-oxidize the lipoyllysine group, 

passing the electrons on to a flavin group to form FADH2 (19). The reduced FADH2 then passes a 

hydride ion to NAD+ to form NADH (19). The enzyme is now returned to its original configuration 

and can proceed with further reactions. This can be visualized in Figure 1.2. Acetyl-CoA can now  
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Figure 1.1: The Krebs cycle 

This diagram shows the steps of the Krebs cycle, as well as its entry points. Acetyl-CoA is oxidized 

to CO2, producing three NADH, one FADH2, and one GTP/ATP. 
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Figure 1.2: The pyruvate dehydrogenase complex 

This diagram shows the overall reaction of PDH. (1) The decarboxylation of pyruvate by pyruvate 

decarboxylase, producing CO2 and passing the acetyl group to TPP. (2) The acyl group is passed 

from TPP to lipoyllysine. (3) Acyl lipoyllysine reacts with CoA to release acetyl-CoA and produce 

reduced lipoyllysine. (4) The oxidation of lipoyllysine by FAD, producing FADH2. (5) FADH2 is 

re-oxidized by NAD+. 
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proceed directly to the Krebs cycle. PDH is an important regulatory enzyme of the Krebs cycle. It 

is allosterically inhibited by its own product, acetyl-CoA, as well as by high ratios of ATP/ADP 

and NADH/NAD+ and long chain fatty acids (1). PDH can also be covalently regulated by 

phosphorylation of a serine residue on the E1 subunit, mediated by pyruvate dehydrogenase kinase 

and pyruvate dehydrogenase phosphorylase (19). 

 Fatty acids, as well as ketogenic amino acids, also enter the Krebs cycle as acetyl-CoA. 

Acetyl-CoA combines with oxaloacetate in a claisen condensation reaction to form citrate, a 

reaction catalyzed by citrate synthase, releasing CoA (20). Aconitase then catalyzes the 

isomerization of citrate to isocitrate through a cis-aconitate intermediate (21). The conversion of 

isocitrate to 2-oxoglutarate via isocitrate dehydrogenase releases CO2 and produces the first 

molecule of NADH in the cycle (1). 2-Oxoglutarate is a major entry point for amino acids into the 

Krebs cycle, specifically via the metabolism of glutamate by glutamate dehydrogenase. The next 

step of the cycle involves the oxidation of 2-oxoglutarate by the 2-oxoglutarate dehydrogenase 

complex (OGDH), producing succinyl-CoA, CO2 and NADH (22). In terms of basic structure, 

OGDH is highly homologous to PDH, utilizing a similar mechanism for the oxidation of 2-

oxoglutarate and the formation of NADH. The E1 subunit, 2-oxoglutarate decarboxylase, removes 

CO2 from 2-oxoglutarate and attaches the succinyl group to the TPP cofactor (22). Dihydrolipoyl 

succinyltransferase, the E2 subunit, catalyzes the transfer of the succinyl group to the oxidized 

lipoamide group, which is then transferred to CoA, releasing succinyl-CoA (22). The E3 subunit, 

dihydrolipoyl dehydrogenase, is the same enzyme present in PDH, and functions in the same 

manner, to pass electrons from the reduced lipoamide to the flavin group and then to NAD+, 

producing NADH and returning the complex to its original conformation (22). OGDH, like PDH, 

is also an important regulatory step of the Krebs cycle. The enzyme complex is allosterically 
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inhibited by high ratios of ATP/ADP, NADH/NAD+ and increased concentrations of succinyl-

CoA (1).  

 The sixth step of the Krebs cycle is catalyzed by succinyl-CoA synthetase, forming 

succinate from succinyl-CoA, with the substrate-level phosphorylation of ADP or guanine 

diphosphate (GDP) to ATP or guanine triphosphate (GTP), respectively (23). The next enzyme, 

succinate dehydrogenase, is both complex II of the ETC as well as the only membrane bound 

Krebs cycle enzyme, which catalyzes the conversion of succinate to fumarate and the production 

of FADH2 (1). Fumarate then undergoes a hydration reaction to malate, catalyzed by fumarase (1). 

The final step of the Krebs cycle is the dehydrogenation of malate to oxaloacetate by malate 

dehydrogenase, producing the final NADH of the cycle (24). Overall, each molecule of acetyl-

CoA that enters the Krebs cycle is oxidized to two molecules of CO2 and produces three molecules 

of NADH, one FADH2 and one substrate level phosphorylated GTP/ATP. The reducing 

equivalents generated in the Krebs cycle are oxidized by enzymes in the ETC to power to the 

process of oxidative phosphorylation.  

1.1.5. Oxidative phosphorylation 

 Oxidative phosphorylation is the method by which almost all aerobic organisms harness 

the energy derived from the metabolism of nutrients and use it to produce the universal energy 

currency, ATP.  Oxidative phosphorylation is performed by a series of enzymes collectively called 

the respiratory complexes (also called the electron transport chain or ETC), which consists of 

enzyme complexes I-V, located in the mitochondrial inner membrane (Figure 1.3). Electron donors 

produced during the Krebs cycle and other metabolic pathways, donate their electrons to 

complexes in the ETC, which shuttle them along the chain to the terminal electron accepter, 

molecular oxygen (O2), forming water (H2O) (note that the full reduction of O2 to H2O requires 4  
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Figure 1.3: The electron transport chain  

The flow of electrons through the ETC from NADH and succinate, to the terminal electron 

acceptor, O2. During this process protons are pumped from the mitochondrial matrix to the 

intermembrane space. 
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electrons in total). The passage of electrons through the chain is coupled to the pumping of protons 

from inside the mitochondrial matrix to the intermembrane space. This process forms the proton 

gradient, which can then be harnessed for the formation of ATP by ATP synthase.  

 The first enzyme complex of the ETC is NADH:ubiquinone oxidoreductase, known more 

commonly as complex I, which catalyzes the transfer of electrons from NADH to the coenzyme 

UQ. Complex I is the largest ETC complex, containing 45 subunits, a flavin mononucleotide 

(FMN), and seven iron-sulfur (Fe-S) clusters (25). The complex is “L” shaped, with one arm 

anchored in the mitochondrial inner membrane, and the other hydrophilic arm located in the 

matrix. The hydrophilic section of the complex contains the binding site for NADH. Two electrons 

are liberated from the oxidation of NADH and are transferred to FMN, then through the Fe-S 

clusters to UQ, reducing it to ubiquinol (UQH2) (26). During this process four protons are pumped 

from the matrix to the intermembrane space by complex I. UQH2 then carries the electrons down 

the chain to complex III (26). Complex I can exist in two different conformations: the catalytically 

active “A” form, as well as the inactive “D” form, which can occur during pathological conditions 

such as ischemia (27).  

 Complex II of the ETC, succinate-ubiquinone oxidoreductase, is also known as succinate 

dehydrogenase (SDH) of the Krebs cycle. Its function is to oxidize succinate and transfer the 

electrons through the complex to UQ. Mammalian complex II is a ~120 KDa protein complex (28) 

composed of four subunits: subunit A and B are hydrophilic subunits that are present in the 

mitochondrial matrix, while the hydrophobic subunits C and D are anchored in the membrane (29). 

Subunit A contains the binding site for succinate, as well as a bound FAD. Electrons are passed 

from succinate to FAD, producing FADH2 (30). Subunit B contains three Fe-S clusters, which 

tunnel electrons from FADH2 to the UQ binding site, located in subunits C and D (30). UQH2 is 
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produced which then transports electrons to complex III. Subunits C and D also contain a b-type 

heme that does not seem to be involved in the transfer of electrons, but may be involved in 

preventing their escape from the complex (29).  

 Electrons donated to UQ by complexes I and II are transported to complex III of the ETC, 

more formally known as ubiquinone:cytochrome c oxidoreductase. The function of this complex 

is to facilitate the transfer of electrons from UQH2 to the heme protein cytochrome c, while 

pumping four protons from the matrix to the intermembrane space. The structure of complex III is 

a homodimer, with each monomer containing 11 subunits (31). Three of these subunits are known 

to be involved in the passage of electrons: cytochrome b, which contains two b-type heme groups 

(bL and bH), the Rieske iron-sulfur protein, which contains two Fe-S centers, and cytochrome c1, 

which contains a c-type heme group (c1) (31). To pass only one electron from UQH2 to cytochrome 

c, complex III uses the Q cycle to recycle a lone electron back to UQ. The overall reaction involves 

the oxidation of two UQH2 to UQ, the reduction of one UQ to UQH2, the reduction of two 

cytochrome c molecules, the uptake of two protons from the matrix and the release of four protons 

into the intermembrane space (32). In the first round of the Q cycle, UQH2 binds to the Q0 site of 

complex III while UQ binds to the Qi site. UQH2 is oxidized, and its two protons are released to 

the intermembrane space (32). One electron is passed to the Fe-S center in the Rieske iron-sulfur 

cluster protein, then cytochrome c1 and ultimately to cytochrome c, which can then bring the 

electron further down the ETC (32). The other electron is passed from the bL to the bH heme and 

then to the bound UQ, forming a ubisemiquinone (32). To fully reduce the ubisemiquinone, a 

second round of the Q cycle is performed by binding another UQH2 and transferring one electron 

to the heme group of cytochrome c, releasing two more protons into the intermembrane space, and 

transferring the second electron to the ubisemiquinone, which also picks up two protons from the 



 14 

matrix to become UQH2 (32). The Q cycle explains how complex III can accommodate the transfer 

of electrons from the two-electron carrier, UQH2, to the one electron carrier, cytochrome c.  

 Once cytochrome c has obtained an electron from complex III, it passes that electron on to 

the fourth complex of the ETC, complex IV. The function of complex IV, also known as 

cytochrome c oxidase, is to pass electrons from cytochrome c to the final electron acceptor of the 

ETC, O2. Complex IV is composed of 14 subunits (33), with three critical ones that are known to 

be involved in electron transfer. They include: subunit I, which contains the heme groups a and a3 

and a copper ion, Cu3, which complexes with a3 to form the a3:Cu3 binuclear center, subunit II, 

which contains two copper ions complexed with two cysteine residues forming the binuclear center 

CuA, and subunit III (1). Electron transfer begins when two reduced cytochrome c molecules bind 

and donate one electron each to subunit II, which are transferred through the CuA center to heme 

a. Heme a transfers the electrons to the a3:Cu3 center (34). At this point, O2 binds to heme a3, and 

is reduced by the two electrons to O2
2- (34). The delivery of two more electrons through the 

pathway, and the addition of four protons from the matrix, forms two molecules of H2O. During 

this process four protons are transported into the intermembrane space (35).  

 One of the most notable aspects of the ETC is that electron movement from NADH or 

succinate down to the end of the chain to O2 is an energetically favorable process.  The energy 

obtained from the favorable “downhill” transfer is conserved as a transmembrane electrochemical 

gradient of protons which is formed by complexes I, III, and IV. It is important to note that complex 

II does not pump protons into the intermembrane space since it is not an integral membrane protein. 

In addition, the net Gibbs free energy change for electron transfer from succinate to UQ is ~0 

KJ/mol. This gradient is known as the proton motive force (PMF). The PMF has two components: 

chemical energy due to the chemical gradient from the concentration difference of H+ between the 
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matrix and the intermembrane space, and electrical potential energy due to the charge separation 

from the transfer of a positive ion across the membrane, leaving behind a more negatively charged 

matrix. For every NADH oxidized by the ETC, ten protons are transferred to the intermembrane 

space, and for every succinate molecule oxidized, six protons are transferred (since complex II 

does not translocate protons). The chemiosmotic model, proposed by Peter Mitchell, states that the 

energy stored in the PMF is used to power the production of ATP (36). This is achieved by the 

flow of protons down their electrochemical gradient through a channel in ATP synthase (37). The 

oxidation of substrates is therefore tied to the phosphorylation of ADP, hence the term oxidative 

phosphorylation. If the PMF is disrupted, then production of ATP cannot occur. This is evident 

when the PMF is uncoupled from ATP synthesis with proton ionophores or by mitochondrial 

uncoupling proteins. Proton ionophores, such as carbonylcyanide-p-

trifluoromethoxyphenylhydrazone (FCCP), are weak acids that are protonated in the 

intermembrane space allowing for diffusion into the matrix where a proton is released, dissipating 

the PMF (37). Uncoupling proteins are regulated proton channels located in the mitochondrial 

membrane that can also allow protons to diffuse down their gradient (38). When uncoupled, 

mitochondria can still oxidize substrates, but ATP production is diminished since uncoupling 

proteins return protons to the matrix, by-passing ATP synthase (38). Along with energizing the 

formation of ATP, the PMF is also used to transport vital substrates in and out of the mitochondrial 

matrix. The adenine nucleotide transporter transports ADP3- into the matrix in exchange for ATP4-

, which is energetically favourable due to the negative charge of the matrix (39). Phosphate 

translocase also transports the symport of a phosphate group and a proton down the gradient into 

the matrix. Other various nutrient carriers, like the pyruvate carrier, also rely on the PMF to drive 

solute uptake (40). 
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 ATP synthase, also known as complex V, is a large multi-subunit protein located in the 

mitochondrial inner membrane. The overall function of ATP synthase is to catalyze the 

phosphorylation of ADP to ATP, which is powered by the passage of protons down their 

electrochemical gradient through a channel in the enzyme. ATP synthase is composed of two 

functional domains: The F0 domain, which is embedded in the mitochondrial inner membrane and 

contains the channel through which protons travel, and the F1 domain, which is peripheral to the 

inner membrane on the matrix side, and contains the catalytic active sites (41). The F1 domain 

contains five different subunits: , , , , and , with the composition 33 (41). The three  

and  subunits alternate in a circular structure, surrounding a  shaft which associates with one of 

the  subunits. Although the  subunits are identical in composition, they differ in conformation 

due to their association with the  subunit. At all times, the three  subunits are in three different 

conformations: -empty, which contains no substrates, -ADP, which binds ADP and phosphate 

(P), and -ATP, which contains the recently formed ATP (42). The movement of protons down 

the F0 section powers the rotation of the  subunit of the F1 section, a process known as rotational 

catalysis (41). When ADP and P bind to the -ADP site, the conformation of the site changes to 

-ATP, tightly binding the two substrates and bringing them close enough to undergo 

phosphorylation. Once ATP is formed, the subunit changes to the -empty conformation, which 

releases the newly formed ATP due to a low affinity (42). Passage of the protons through the F0 

domain causes the rotation of the  subunit by 120, which allows it to associate with the next  

subunit, changing its conformation (42). The  subunits are held in place during the rotation by 

the  subunit of F1 (1). The interaction between the three  subunits dictates that if one -subunit 

is in the -ADP form, its neighbours must be in the -ATP and the -empty forms (1). One 

complete rotation of the  subunits allows the three  subunits to rotate through all three 
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conformations, catalyzing the production of three ATP molecules per full turn (1). These ATP 

molecules are then transferred out of the matrix to be used to power cellular processes.  

1.2. Reactive oxygen species in mitochondria 

 Reactive oxygen species (ROS) are chemically reactive molecules produced by the 

incomplete reduction of molecular oxygen. The molecular structure of oxygen includes two 

unpaired electrons in its outer most anti-bonding orbitals, meaning that oxygen can only accept 

one electron at a time (43). Therefore, the reduction of O2 to H2O results in the formation of several 

oxygen radical intermediates, namely, superoxide (O2
•-), hydrogen peroxide (H2O2) and hydroxyl 

radical (OH•). O2
•- and H2O2 are the two proximal ROS produced by mitochondria (44). Of all the 

oxygen consumed by the body for oxidative phosphorylation, it is estimated that approximately 

0.02-0.2% is converted to O2
•- (45, 46). H2O2 is a more stable form of ROS which, unlike O2

•-, is 

able to diffuse through membranes via aquaporin (47). Excess production of ROS is known to 

cause oxidative damage in cells, and has been associated with a wide array of diseases including 

cardiovascular, inflammatory, and degenerative diseases, as well as cancer (48). O2
•- can cause 

enzyme inactivation by disassembling Fe-S clusters (49), while H2O2 disables proteins by 

irreversibly oxidizing cysteine residues (50). Even more damage can occur when O2
•- and H2O2 

interact with transition metal ions in the body, most notably free iron or copper, initiating Haber-

Weiss and Fenton reactions which yields OH• (51). OH• is a very reactive molecule that can 

oxidize nucleotides, lipids, and amino acids, resulting in DNA, membrane, or protein damage 

culminating with cellular dysfunction and death.  

 Once thought to be unfortunate by-product of metabolism, ROS are now regarded as 

important secondary signalling molecules involved in modulating different cell functions. H2O2 

has been found to affect enzyme activity by reversibly oxidizing thiol groups to sulfenic acid 
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(SOH) (52). This is referred to as “redox signaling” where cysteine switches are reversibly 

oxidized in response to fluctuations in the surrounding cellular redox environment. In fact, it is 

hypothesized that cysteine switches serve as a critical interface required to modulate cellular 

responses at the genomic, proteomic, and metabolomic levels in response to alterations in the 

surrounding cellular environment. For instance, H2O2 is implicated in stress signaling (Nrf2 

activation (53), apoptosis (54)), T-cell activation (55), adipocyte differentiation (56), 

steroidogenesis (57), and insulin resistance and release (58). 

 ROS is currently known to have at least eleven sites of production within the mitochondria 

(Figure 1.4) (59). These ROS forming sites include respiratory complexes and dehydrogenases 

that are involved in substrate oxidation and the delivery of free electrons to O2 in the respiratory 

chain. They include complexes I and III of the ETC, as well as 2-oxoacid dehydrogenase 

complexes and dehydrogenases that deliver electrons to UQ, such as complex II (59). Seven of 

these sites produce ROS from a flavin group which is associated with the unique radical chemistry 

of FAD and FMN groups in different respiratory complexes and dehydrogenases. The other five 

sites produce ROS from a UQ/UQH2 binding site through the formation of ubisemiquinone 

radicals in different membrane bound dehydrogenases and respiratory complexes. Nine of the sites 

produce O2
•- and H2O2 into the mitochondrial matrix, while two sites, complex III and glycerol-3-

phosphate dehydrogenase, can produce ROS directly into the mitochondrial intermembrane space 

(59). Most work in discerning which enzymes serve as high capacity sites in mitochondria has 

been carried out in skeletal muscle mitochondria (59). It was found that complex III serves as the 

highest capacity site overall (59). Intriguingly, the 2-oxoacid dehydrogenase complexes, OGDH 

and PDH, were found to generate ~8x and ~4x more ROS than complex I during thr oxidation of 
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Figure 1.4: Sites of ROS production in mitochondria 

The known sites of ROS production in the mitochondria. They are divided into the NADH/NAD+ 

isopotential sites and the QH2/Q isopotential sites.  
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Kreb’s cycle linked substrates (59). In addition, complex II was found to be an important source 

as well as complex I, but only under conditions of electron back flow from succinate (60). Our 

group recently started examining which enzymes serve as high capacity ROS production sites in 

liver and cardiac tissue mitochondria. It was found that complex III produces ~45% of the 

mitochondrial ROS in liver tissue and OGDH yields ~35% while sites like PDH and complex I 

account for the rest (61, 62). By contrast, complex I and III serve as the highest capacity sites in 

cardiac tissue, regardless of what substrate is being oxidized (Krebs cycle linked substrates or 

carbon that donates electrons directly to the respiratory chain) (63).  

 Levels of ROS in the mitochondria are closely regulated by a few different mechanisms. 

O2
•- produced in the mitochondria is quickly dismutated to H2O2 by the enzyme superoxide 

dismutase (SOD). The kinetics for the dismutation of O2
•- have been estimated to approach a rate 

constant of 2.3 x 109 M-1 s-1, meaning that its concentration is very low, in the picomolar (pM) 

range (43). Within the mitochondrial matrix, O2
•- is dismutated by manganese SOD (MnSOD), 

while the intermembrane space relies on copper SOD (CuSOD) and zinc SOD (ZnSOD) (64). 

There are many different mechanisms by which mitochondria H2O2 can be degraded into less 

harmful chemicals. The three main systems include catalase, which degrades H2O2 into H2O and 

O2, and the glutathione (GSH) and thioredoxin (PRX) systems, which use their own mechanisms 

to quench H2O2 (62). Typically, the GSH and PRX systems are thought to the be major methods 

of clearance in mitochondria. However, catalase has recently been shown to play an important role 

in eliminating H2O2 (62). 
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1.3. Mitochondrial hydrogen peroxide clearing systems  

1.3.1. Glutathione antioxidant system 

 GSH is a tripeptide molecule made up of glutamate, cysteine, and glycine. The synthesis 

of GSH occurs in the cytosol and is mediated by -glutamylcysteine synthetase, which catalyzes 

the addition of glutamate and cysteine, and then glutathione synthase, which adds glycine (65). 

GSH is transported from the cytosol into the mitochondria through a still unknown transporter 

(66). The concentration of GSH in the matrix of mitochondria is 1-10 mM (varies between different 

tissues, with liver containing the most and muscle having the least), while the oxidized form, 

glutathione disulfide (GSSG), occurs at 0.01-0.1 mM. The ratio of GSH:GSSG in mitochondria is 

typically kept at approximately 100:1, but can decrease during times of oxidative stress (67). This 

ratio is maintained by the activity of glutathione reductase (GR), which reduces GSSG to two 

molecules of GSH, using the cofactor nicotinamide adenine dinucleotide phosphate (NADPH).  

One of the major functions of the GSH system is the degradation of H2O2 to H2O by the action of 

glutathione peroxidase (GPx). The reduction of H2O2 to two molecules of H2O also causes the 

formation of GSSG from two molecules of GSH. GSSG is then converted back to GSH by the 

activity of GR and NADPH (Figure 1.5) (68). There exist different isozymes of GPx which 

catalyze the reduction of different peroxides. The above reaction is catalyzed by the mitochondrial 

matrix soluble GPx1 (68). GPx4 is located on the matrix side of the mitochondrial inner membrane 

and functions to reduce phospholipid hydroperoxides to alcohols, slowing the propagation of lipid 

peroxidation within the membrane (68).  

 The GSH system is also involved in the detoxification of xenobiotic substrates and products 

of endogenous oxidative damage such as , -unsaturated aldehydes, epoxides, and alkyl 

hydroperoxides (68). These reactions are catalyzed by glutathione-s-transferase (GST), which  
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Figure 1.5: Catalytic cycle and functions of the glutathione system 

This diagram illustrates the different functions of the glutathione system. 
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transfers GSH to the targeted substrates, producing a GSH thioester-xenobiotic conjugate which 

is effluxed from the mitochondria (68).  

 The third known function of glutathione is redox signaling through the addition of GSH to 

protein cysteine thiols in a mechanism called S-glutathionylation. Reversible S-glutathionylation  

is catalyzed by the enzyme glutaredoxin (GRX) (69). In the mitochondrial matrix and nucleus of 

the cell, glutaredoxin-2 (GRX2) catalyzes the addition and removal of GSH (note though that 

GRX2 has only been found to occur in the lumen of the nucleus in cancer cells) (70), while 

glutaredoxin-1 (GRX1) catalyzes this reaction in the cytosol and intermembrane space of 

mitochondria. S-glutathionylation of enzymes within the Krebs cycle and the ETC is a vital 

mechanism for control of ROS production, which will be discussed further in section 1.5.  

1.3.2. Peroxiredoxin antioxidant system 

 To prevent toxic concentrations of H2O2 from accumulating within the cell, mitochondria 

contain a few different antioxidant systems, one of them being the peroxiredoxin system. 

Peroxiredoxins (PRX) are a family of thiol peroxidases which quench cellular H2O2. The catalytic 

cycle begins when H2O2 reacts with a cysteine thiol residue called the “peroxidatic cysteine”, 

forming SOH (71). Mitochondrial PRX isoforms include PRX3 and PRX5 (71). Mitochondrial 

PRX3 is a typical 2-Cys PRX, meaning it is a homodimer oriented in a head to tail fashion, using 

cysteine thiol residues from both subunits for degradation of H2O2 (71). Reduction of one H2O2 

molecule to H2O causes both cysteine thiols on PRX3 to become oxidized to SOH (71). The two 

PRX3 units then condense to form an oxidized dimer with two intermolecular disulfide bonds, 

releasing two molecules of H2O. The oxidized PRX3 is reduced by thioredoxin2 (TRX2), which 

in turn is reduced by thioredoxin reductase (TR) using the power of NADPH (71). PRX3 can be 

hyperoxidized to sulfinic acid (SO2H) in the presence of excess H2O2, causing it to be inactivated.  
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Hyperoxidized PRX3 can be reduced back to its active state by sulfiredoxin, but the reaction 

proceeds very slowly with a rate constant of k=0.18 min-1 (71). This mechanism of inactivation is 

thought to allow H2O2 to accumulate enough to exert signalling effects (64). This mechanism can 

be viewed in Figure 1.6. 

 Mitochondrial PRX5 proceeds via a different mechanism. It is an atypical 2-Cys PRX that 

exists as a monomer and forms an intramolecular disulfide bond when oxidized to SOH by H2O2. 

PRX5 is then reduced by to its active state via the same pathway as PRX3. PRX3 is a more 

effective H2O2 scavenger than PRX5, with a rate constant that is about two orders of magnitude 

larger (71). However, PRX5 has been found to be a more effective scavenger of organic 

hydroperoxides, indicating that it may be more suited for repairing oxidative damage (72). It has 

been estimated that the bulk of mitochondrially produced H2O2 is degraded by the PRX antioxidant 

system, with around 90% reacting with PRX3. However, mitochondria would not be able to keep 

ROS levels in check with PRX only, as depletion of GSH or knockdown of GPx1 has been shown 

to cause increases in cell susceptibility to oxidative stress (73, 74).  

1.4. Control over ROS production 

 The production of O2
•-/H2O2 by mitochondria depends on several factors including the 

concentration of the electron donating site, the redox state of the electron donor, and access to O2. 

While the degradation of O2
•-/H2O2 by antioxidant systems is an important method of ROS control, 

there exists other mechanisms by which mitochondria can exert control over the production of 

ROS from different sites. Three of the most important methods of control include: changes in 

proton leak, the formation of supercomplexes and the use of redox signals.  
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Figure 1.6: Peroxiredoxin catalytic cycle 

This diagram illustrates the catalytic cycle of PRX3, showing its oxidation to a dimer, and then 

how it is reduced back to its active state by TRX2. 
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1.4.1. Proton leak 

 Proton leak is the return of protons to the mitochondrial matrix independently of ATP 

synthase. This causes depletion of the PMF used to power the phosphorylation of ADP. There are 

two types of proton leak that occur in mitochondria. The first is basal leak, which is minor, 

unregulated leak through the lipid bilayer as well as through the membrane protein adenine 

nucleotide translocase (ANT) (75). The second is called inducible leak and is regulated by specific 

mitochondrial inner membrane proteins such as uncoupling proteins (UCP) 1-3 (75). Notably, this 

may seem energetically wasteful but is likely the most studied mechanism for the prevention of 

mitochondrial ROS formation. 

 The production of ROS has been shown to be highly sensitive to changes in proton leak 

and to have a non-ohmic relationship with the PMF, meaning that small increases in the membrane 

potential can induce exponential increases in ROS production (54, 76). Induction of proton leaks 

has been shown to decrease the production of ROS from the ETC by preventing the over-reduction 

of electron donating sites for ROS formation (77). Indeed, loss of proton uncouplers like UCP2 or 

UCP3 is associated with the induction of oxidative stress and the overproduction of ROS by 

mitochondria (78, 79). Moreover, products of increased oxidative stress, such as 4-hydroxynonenal 

(4-HNE), have been found to induce proton leakage through UCPs, decreasing ROS production. 

A mechanism has been proposed which constitutes a negative feedback loop: increased 

concentration of ROS in the mitochondria leads to increased proton leakage, slowing down rate of 

ROS production (79).  

 UCP2 and UCP3 are thought to be major regulators of proton leakage in response to ROS. 

UCP2 is ubiquitously expressed throughout the body, while UCP3 is found mostly in skeletal 

muscle, cardiac muscle, and to a small extent in brown adipose tissue. Inhibition of UCP2 has been 
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found to cause increases in H2O2, while overexpression diminishes ROS production and protects 

from oxidative damage (80, 81). Similar trends have been found for UCP3. UCP3 knockout mice 

show increased levels of ROS and oxidative stress (82), while overexpression has been found to 

lower mitochondrial O2
•-/H2O2 emission (83). Although numerous studies have shown that UCP2 

and 3 play a role in decreasing oxidative stress, the exact mechanism is still up for debate. There 

have also been studies that provide evidence in contrary of their control of ROS production via 

changes in proton leak. Some studies have given evidence of alternate functions of UCP2 and 3 

(84, 85), while other studies have concluded that changes in the PMF do not cause any effect on 

ROS production (86).     

1.4.2. Supercomplexes 

The complexes of the ETC were originally assumed to exist individually and be randomly 

distributed in the mitochondrial inner membrane. However, recent evidence has indicated that this 

is not the case. The theory of supercomplexes, also called respirasomes, was proposed in 2000 to 

explain why some complexes migrate together during polyacrylamide gel electrophoresis (87). 

The isolated respirasomes were found to consist of complexes I, III and IV (87). Later, it was 

discovered that isolated respirasomes were active and able to reduce O2 in the presence of NADH 

(88). Complex I was found to form supercomplexes with other ETC complexes in many different 

combinations (88). The total evidence gathered about the nature of the ETC complexes cannot be 

completely explained by the supercomplex model, or by the free complex model and so, a model 

of complex plasticity has been proposed. The plasticity model postulates that complexes can exist 

as free units or as supercomplexes, depending on the nature of the environment (89, 90).  

 Supercomplex assembly has also emerged as a method for the control of ROS production. 

The loss of supercomplex assembly, and therefore the increase of free complex I, has been shown 
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to increase ROS production from the complex (91). Free complex I allows the FMN containing 

subunit to be more exposed, possibly increasing its chances of reacting with O2 to form ROS (92). 

Another possibility is that free complex I experiences increased over-reduction of the FMN 

containing subunit due to decreased electron transfer to complex III. Further research is required 

to validate either of these hypotheses. However, it is possible that mitochondrial ROS levels may 

be controlled by facilitating the assembly of complex I into supercomplexes with other respiratory 

complexes.   

1.4.3. Redox signals  

1.4.3.1. Sulfenylation 

 Protein cysteine thiol residues in the mitochondria have been studied extensively as targets 

for redox signalling and control and can undergo many reactions (Figure 1.7). The oxidation of a 

thiol group to SOH by H2O2 is termed sulfenylation and its significance as a redox signal has been 

reviewed considerably. It has been suggested that sulfenylation could be a negative feedback 

mechanism used by H2O2 to limit ROS production from certain enzymes. The caveat to this 

hypothesis is that few enzymes in the mitochondria have been found to be sulfenylated. Also, 

sulfenylation has not been found to fit the conditions for an effective post-translational 

modification. For a redox signal to be efficient, it should meet certain criteria, much like other 

well-known modifications like phosphorylation. Redox modifications must be specific, reversible, 

rapid, and fulfill some physiological role (93). Sulfenylation of thiols is a very slow reaction (rate 

constant: K=5-500 M-1s-1) and the reactions are not catalyzed by any known enzyme (93). Protein 

sulfonates are also strong nucleophiles and are thus very unstable and can form a number of 

different adducts (93). Sulfenic acids can be further oxidized by H2O2 to SO2H, and even further 

to the irreversible sulfonic acid (SO3H). Sulfenic and sulfinic acids can be reverted back to thiol 
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different adducts (93). Sulfenic acids can be further oxidized by H2O2 to SO2H, and even further 

to the irreversible sulfonic acid (SO3H). Sulfenic and sulfinic acids can be reverted back to thiol  

 

 

 

 

 

Figure 1.7: Reactivity of thiols 

The many possible fates of free thiols in the mitochondria are illustrated including: [1] sulfonic 

acid, [2] sulfonamides, [3] disulfides, [4] S-glutathionylated thiols and [5] thiosulfinate. 
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groups via the action of sulfiredoxin (94), however this is thought to be a defense mechanism to 

prevent the irreversible deactivation of enzymes by oxidation to SO3H. It has been proposed that 

sulfenylation may serve as a means to promote the formation of disulfide or sulfonamide bonds 

during protein folding (95). 

1.4.3.2. Protein S-glutathionylation 

 Protein S-glutathionylation has emerged as a strong candidate for the redox-sensitive 

posttranslational modification of proteins. S-glutathionylation is the addition of a glutathione 

molecule to a protein cysteine thiol residue. As opposed to sulfenylation, S-glutathionylation fits 

all the outlined criteria for an effective post translational modification. Proteins have been found 

to contain S-glutathionylation motifs which are cysteine rich amino acid sequences that are 

accessible and surrounded by positively charged lysine residues (96). This latter characteristic is 

vital since it lowers the pKa of a protein cysteine residue, allowing easier deprotonation and the 

formation of a strongly nucleophilic thiolate anion that can attack GSH molecules. A number of 

proteins have been found to be S-glutathionylation targets (Table 1.1) (64). S-glutathionylation 

reactions are catalyzed by GRX, small heat stable thiol oxidoreductases that specialize in the 

conjugation and removal of GSH from a target protein. Notably, GRX mediated S-

glutathionylation reactions are usually 102-105 M-1s-1 with the rate of the reaction increasing with 

a decreasing thiol pKa (96). The GST family has also been implicated in some cellular S-

glutathionylation reactions (97).  

Although S-glutathionylation can be enzymatically mediated, spontaneous S-glutathionylation is 

also able to proceed under the right conditions. During times of oxidative stress, when the 

2GSH/GSSG ratio approaches 1, the increased concentrations of GSSG can lead to non-enzymatic 
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Table 1.1: Known targets of S-glutathionylation 

 

 

 

This table lists mitochondria proteins that are known to be S-glutathionylated as of 2013.  
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protein S-glutathionylation (98). Non-enzymatic S-glutathionylation can also occur when cysteine 

is oxidized to SOH, which can then react with GSH (99). These are likely methods employed to 

protect proteins from irreversible oxidative inactivation when levels of H2O2 in the mitochondria 

are high. A third mechanism of spontaneous S-glutathionylation can also occur when cysteine 

forms a thiol radical that can react with GSH, forming a thiyl radical glutathionyl intermediate, 

which then passes an electron to O2, leaving behind a protein glutathione mixed disulfide (PSSG) 

(99). Some enzymes in the mitochondria are known to show persisted S-glutathionylation during 

normal physiological conditions, such as SDH (100). Conditions that lead to S-glutathionylation 

of proteins in the mitochondria can vary widely, due to some proteins being more susceptible, and 

also due to the highly folded nature of cristae, which can form microenvironments that contain 

highly variable levels of GSSG as compared to the rest of the mitochondria (101).   

 The importance of S-glutathionylation reactions in the mitochondria extends past 

protection from oxidative stress. S-glutathionylation also has roles in energy metabolism, as seen 

by its extensive levels of protein S-glutathionylation found on Krebs cycle enzymes (102). Many 

other mitochondrial processes have also been shown to utilize S-glutathionylation such as 

apoptosis, mitochondrial shape, protein import, and proton leakage.  

1.5. Glutaredoxin 

 GRXs are a family of GSH-dependent thiol oxidoreductases belonging to the thioredoxin 

fold superfamily (70). GRX was first discovered in E. coli, where it was found to catalyze the 

GSH-dependent reduction of ribonucleotide reductase (103). However, it was later found that the 

GSH-mediated modification of proteins was driven by GRX in mouse liver cells (104). This GRX 

isozyme was later identified as mammalian GRX1, a small 10-14 KDa protein located in the 

cytosol and the mitochondrial intermembrane space (103), which functions to keep thiols in the 
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reduced state, mainly by the reduction of PSSG adducts (105). The active site of GRX1 contains 

a Cys-Pro-Tyr-Cys sequence, with cysteine-22 harboring the requisite reductive power to 

deglutathionylate a target protein (105). Deglutathionylation forms a GRX1-SSG intermediate. In 

the second catalytic phase, GRX1-SSG binds GSH which is required to remove the glutathionyl 

moiety via a thiol disulfide exchange reaction that yields reactivated GRX1 and GSSG. GR and 

NADPH are then utilized to reduce GSSG reforming two GSH molecules. Other roles for GRX1 

include dehydroascorbate reduction, cellular differentiation, and regulation of cell signaling and 

apoptosis (106).  

 GRX2 is the second GRX to be discovered in mammals. There are three GRX2 isoforms: 

GRX2a is localized to the mitochondria matrix, while GRX2b and GRX2c are localized to the 

nucleus (106). GRX2a is ubiquitously expressed in the body, while GRX2b and GRX2c are 

expressed exclusively in the testis or cancer cells (107). GRX2 shares about 36% homology with 

mammalian GRX1 (105), one of the most noticeable differences being the Cys-Ser-Tyr-Cys active 

site sequence (106). GRX2 also differs from GRX1 in that it is more resistant to oxidative 

inactivation. GRX1 contains additional protein surface Cys residues that are amenable to 

irreversible oxidation whereas GRX2 does not, allowing it retain activity during periods of 

increased oxidation (70). In addition, unlike GRX1, oxidized GRX2 can be reduced and 

reactivated by TR2 as well as GSH (69).  

 There exist two different mechanisms for the deglutathionylation of proteins by GRX1 and 

GRX2. In the dithiol mechanism, the N-terminal active site cysteine residue attacks a protein-

glutathione disulfide bridge via a simple nucleophilic displacement reaction, releasing the reduced 

protein and a GRX-glutathione mixed disulfide, GRX-SSG (108). GRX-SSG immediately forms 

an intraprotein disulfide bond (GRX-SS), which is then reduced by two molecules of GSH, 
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reforming GRX and releasing GSSG (108). In the monothiol mechanism, the GRX-SSG adduct is 

reduced by GSH, reforming GRX and GSSG (108). These mechanisms can be viewed in Figure 

1.8. To facilitate protein S-glutathionylation, GRX must form an intermediate GRX-SSG•, which 

can react with protein thiols to form PSSG (109).  

 GRX2 can exist in the mitochondria as an active monomer and an inactive dimer (106). 

Closer examination of the structure of GRX2 has revealed that the enzyme contains Fe(III) in a  

tetrahedral sulfur coordination consistent with the presence of an [2Fe-2S]2+ cluster (106). A 

GRX2 dimer forms a [2Fe-2S]2+ cluster stabilized by two active site protein cysteines and two  

cysteines from separate molecules of GSH (110). The role of the Fe-S cluster in GRX2 is to allow 

the enzyme to function as a redox sensor. When mitochondria have low levels of oxidation, GRX2 

exists in the inactive dimer formation. However, during times of oxidative stress, the Fe-S cluster 

is degraded by O2
•-, releasing the active GRX2 monomers (106), which can then function to 

catalyze S-glutathionylation reactions to protect enzymes and modulate ROS production.  

GRX2 has been proven to be an important enzyme in maintaining cellular function. 

Overexpression of GRX2 has been found to protect mice from doxorubicin induced cardiac injury 

(111), while silencing GRX2 in HeLa cells increases their sensitivity to the drug (112). Deletion 

of GRX2 was also shown to accelerate the onset and formation of cataracts in mice, due to 

increased formation of PSSG, leading to increases in proteins aggregates (113). GRX2 has also 

been identified to have an important function in embryogenesis, playing a role in both brain (114), 

vascular (115) and cardiac development (116). GRX2 deficiency in mice is associated with the 

development of hypertension, left ventricular hypertrophy, and fibrosis (117). Lastly, GRX2 may 
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be  required to control apoptosis. Overexpression of 

GRX2 in HeLa cells decreases doxorubicin 

 

Figure 1.8: The dithiol and monothiol mechanisms of GRX 

The dithiol mechanism of GRX shows protein deglutathionylation and subsequent oxidation of 

GRX, forming GSH, and next the reduction of GRX with GSH. The monothiol mechanism of 

GRX shows protein deglutathionylation, forming glutathionylated GRX via a thiol exchange. 

Next, the reduction of GRX with GSH via thiol exchange. 
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be required to control apoptosis. Overexpression of GRX2 in HeLa cells decreases doxorubicin 

mediated apoptosis by preventing the release of cytochrome c by cardiolipin, avoiding the 

initiation of the caspase cascade (118). This evidence points to the conclusion that the regulation 

of S-glutathionylation reactions is vital for normal development and function.  

1.6. S-Glutathionylation reactions in ROS formation 

 The modification of enzyme function by S-glutathionylation has been found to be an 

important method of controlling ROS production from certain sites in the mitochondria. The 

addition of GSH causes a variety of outcomes depending on the enzyme and the site of S-

glutathionylation. In some cases, S-glutathionylation can decrease O2
•-/H2O2 production, while in 

others it can augment O2
•-/H2O2 emission. Some enzymes are only S-glutathionylated when local 

redox buffering networks are more oxidized (e.g. GSSG levels are higher due to increased H2O2 

production), while some are consistently S-glutathionylated during normal physiological 

conditions. So far, S-glutathionylation has been proven to occur on number of vital mitochondrial 

enzymes, altering oxidative phosphorylation and the production of ROS in response to redox 

signals.   

1.6.1. Complex I 

 One of the most studied sites of S-glutathionylation is complex I of the ETC. The effects 

of thiol modification of complex I were first noticed by Balijepalli et al., who found that diethyl 

maleate and iodoacetamide, which binds to protein cysteine thiols, can inhibit its activity (119). 

Notably, this effect could be reversed with the reductant dithiothreitol (DTT). Complex I was also 

found to be inhibited by nitric oxide, due to thiol S-nitrosylation, which could be reversed by the 

addition of GSH (120). This evidence indicated the possibility of a mechanism which controls 

complex I activity by modulating its thiol groups. Complex I was found to contain thiol residues 
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in the NDUSF1 (∼75 KDa) and NDUFV1 (∼51 KDa) subunits which were able to become 

reversibly S-glutathionylated in the presence of GSSG (117, 121, 122). These subunits are located 

on the arm of complex I which protrudes into the matrix (121). Taylor et al. also found that S-

glutathionylation of these complexes correlated with an increase in the concentration of 

mitochondrial ROS (121). In response to decreasing GSH/GSSG ratios, Beer et al. found complex 

I to be one the most persistently S-glutathionylated proteins in the mitochondria (123). Beer et al. 

also discovered that the S-glutathionylation of complex I could be reversed by the addition of 

purified GRX2 (123).  The overall effect of complex I S-glutathionylation on its ROS predicting 

capabilities has shown mixed results. While some studies have shown that S-glutathionylation of 

complex I increases O2
•-/H2O2 emission from the enzyme (117, 121), another study has provided 

evidence that it causes decreased ROS production (122). Decreases in ROS production could be 

caused by S-glutathionylation of the NDUSF1 and NDUFV1 subunits in complex I, blocking the 

transfer of hydride ions from NADH to FMN and decreasing the formation of the FMN semi-

radicals and fully reduced flavin molecules that produce ROS (99). S-glutathionylation could also 

block the flow of electrons to the UQ binding site, also lowering the production of ROS. There are 

also possible mechanisms that could explain increases in ROS. S-glutathionylation of ND3 subunit 

in the UQ binding pocket could block electron flow and lead to a buildup of electrons at the FMN 

site, increasing the likelihood of ROS formation (27). During long term complex I S-

glutathionylation, ROS production may also be increased from other sites due the increased levels 

of NADH caused by decreased complex I activity (99).  It has been proposed that the S-

glutathionylation of complex I is ultimately more complex than originally thought, and that 

different S-glutathionylation states of complex I can cause different outcomes in response to 

different stimuli (99). This hypothesis, also known as the “complex I cysteine code”, suggests that 
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S-glutathionylation of certain thiols can cause changes in ROS emission in response to changes in 

the environment.  

1.6.2. Succinate dehydrogenase 

 SDH, also known as complex II of the ETC, is also a significant site of ROS production in 

the mitochondria. SDH has been found to produce ROS from its FAD prosthetic group in the 

SDHA subunit during forward and reverse electron flow through the complex (124). During 

normal physiological conditions SDH is persistently S-glutathionylated on the 70 KDa FAD 

binding subunit, at Cys90 (100). Deglutathionylation of the enzyme causes decreased activity and 

increased production of ROS (100). One hypothesis is that S-glutathionylation of the specified 

residue causes a conformational change in the FAD binding site which increases electron transfer 

away from the flavin site, decreasing electron leakage (100). During ischemia in cardiac tissue, the 

highly reduced environment causes deglutathionylation of SDH, decreasing its activity and 

increasing ROS production (100). Increased levels of oxidation can also inactivate the enzyme, 

suggesting that S-glutathionylation may also act as a protective mechanism (100).  

1.6.3. OGDH and PDH 

 Although in the past complex I was considered the most important source of ROS 

production in the mitochondria, evidence has shown that several other enzymes in mitochondria 

can serve as high capacity sites for O2
•-/H2O2 formation. For instance, it was found that Krebs 

cycle enzymes, OGDH (125, 126) and PDH (127), can generation far more O2
•-/H2O2 than 

complex I. In skeletal muscle, the OGDH and PDH complexes have been found to produce eight 

and four times as much ROS than complex I, respectively, when NADH is the source of electrons  

(128). Similar observations have been made in cardiac and liver tissue, with OGDH producing 

more ROS than PDH (44). Moreover, it has been found in liver mitochondria that OGDH accounts 
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for ~35% of the ROS formed whereas PDH and complex I generate negligible amounts (62). These 

enzymes have also been shown to produce ROS during reverse electron transfer (e.g NADH is 

oxidized by PDH and OGDH and electrons flow backwards through the enzyme complex) (44). 

This can occur at physiological concentrations of NADH, indicating that reverse electron flow 

through these enzymes is a source of ROS even during normal mitochondrial function (44). Both 

enzymes complexes are likely to be important sites of redox signaling due to the evidence that they 

are major sources of ROS and because they are both essential entry sites for carbon into the Krebs 

cycle.  

 Initial studies have identified OGDH as a redox sensor, meaning that it undergoes changes 

in function in response to levels of ROS in the mitochondria. Nulton-Persson et al. found that 

treatment of mitochondria with H2O2 caused a decrease in oxidative phosphorylation, which was 

linked to a decrease in the activity of OGDH (129). This inactivation was reversed by either DTT 

or GRX1, demonstrating that H2O2 must cause some sort of modification of the sulfhydryl groups 

of OGDH (129). The discovery that OGDH is a source of ROS led to the hypothesis that production 

of ROS from the complex can negatively feedback and inhibit further production (22). Further 

inquiries into the modification of OGDH during oxidative stress showed that the lipoic acid 

residues of the E2 subunit were reversibly S-glutathionylated (130, 131). Since the lipoic acid 

residues of OGDH are susceptible to oxidation by H2O2, S-glutathionylation may be a method to 

keep them protected during times of increased oxidative stress (22). Initially, diminished ROS 

production seen during OGDH S-glutathionylation was considered to be caused by decreased 

NADH production, reducing its oxidation at complex I (22). However, it has been shown that S-

glutathionylation of OGDH can modulate the emission of ROS from the enzyme complex itself 

(44, 61, 132). Depending on where OGDH is S-glutathionylated, production of ROS can be either 
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decreased or increased. S-glutathionylation of the lipoic acid residues of the E2 subunit by GSSG 

leads to decreased O2
•-/H2O2 production by blocking the transfer of electrons to the E3 flavin 

group, also coinciding with decreased production of NADH (44, 132). Conversely, when OGDH 

is incubated with increased concentrations of GSH, the E1 subunit becomes S-glutathionylated, 

leading to increased O2
•-/H2O2 emission (132). OGDH does generate O2

•-/H2O2 from its E1 and 

E3 subunits and thus it is possible that S-glutathionylation of the E1 subunit leads to the 

accumulation of thiamine radicals, which can increase ROS production (132). The accumulated 

evidence indicates that OGDH can serve as a mitochondrial redox sensor that can increase or 

decrease ROS production in response to changes in the GSH/GSSG ratio.   

 Recent work from our laboratory has indicated that like OGDH, ROS production by PDH 

is also controlled by S-glutathionylation (61). Using the S-glutathionylation catalysts, diamide and 

disulfiram, during the forward oxidation of pyruvate, PDH has been found to show decreased O2
•-

/H2O2 emission (61). S-glutathionylation of PDH has been confirmed on all three enzyme subunits, 

with the E2 subunit being the most persistently S-glutathionylated (61). This indicates that like 

OGDH, PDH can also be S-glutathionylated on the E2 subunit to decrease ROS emission from the 

complex. PDH has also been shown to facilitate reverse electron flow though the complex, during 

which ROS is produced (44). Incubation of PDH with GSSG caused amplified ROS production 

through reverse electron transport when supplemented with NADH (61). This effect was reversed 

by the addition of GRX2, indicating it was driven by S-glutathionylation (61). S-glutathionylation 

of the E2 subunit of PDH during reverse electron transfer may block the flow of electrons from 

the E3 to the E1 subunit. This may allow for increased passage of electrons from the flavin group 

of the E3 subunit, to O2, increasing the production of ROS (61). During times of increased 

oxidative stress leading to high levels of GSSG and NADH, GRX2 may be an important method 
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to prevent S-glutathionylation of PDH and thereby prevent further increases in ROS production 

from the complex.  

1.6.4. Uncoupling proteins 2 and 3 

 Uncoupling proteins in the mitochondria have also been suggested to influence the 

production of ROS. These proteins can decrease the membrane potential in mitochondria by 

allowing protons to return to the matrix independently of ATP synthase, decreasing the membrane 

potential, which may decrease ROS production. UCP2 and UCP3, which are 73% homologous to 

each other, are integral proteins embedded in the mitochondrial inner membrane and part of the 

solute anion carrier superfamily. ROS production from complex I and III is known to be very 

sensitive to the PMF, therefore it was hypothesized that mitochondrial uncoupling may be a 

possible method of decreasing ROS production by the ETC (78). Over a decade ago, it was found 

that proton leakage through the mitochondrial UCPs can be activated by O2
•- (133). This indicated 

that ROS may be able to regulate its own production through a negative feedback loop that 

involved activation of proton leaks through the UCPs. Inhibition or knockout of UCP2 and UCP3 

has been found to increase production ROS, while overexpression of these proteins has the 

opposite effect (80, 82, 83). More recent work has identified that UCP2 and UCP3 can be S-

glutathionylated, which is thought to be required for the regulation of proton return to the matrix 

and the modulation of mitochondrial ROS production (77). UCP2 and UCP3 both contain reactive 

cysteine sites that can be S-glutathionylated, specifically Cys25 and Cys259 in UCP3 (77). S-

glutathionylation of UCP3 causes a decrease in UCP3 mediated proton leak (77). S-

glutathionylation of UCP3 was also discovered to be catalyzed by the enzyme GRX2 (134). In 

GRX2 knock out mice UCP3 was less glutathionylated and proton leak was increased in skeletal 

muscle mitochondria (134). The evidence may suggest a mechanism in which S-glutathionylation 
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of UCPs can alter proton leak, modifying the proton gradient and therefore altering ROS 

production by the ETC. 

1.7. Research objectives 

 The goal of this project was to further characterize the functionality of S-glutathionylation 

reactions in the mitochondria and how this redox sensitive covalent modification alters ROS 

production in liver and cardiac mitochondria metabolizing different substrates and subjected to 

different bioenergetic conditions. Using GRX2 homozygous knock out mice (GRX-/-) and mice 

heterozygous for GRX2 (GRX2+/-), changes in mitochondrial ROS production were measured and 

compared to wildtype (WT) C57BL/6N littermates. Since S-glutathionylation reactions are 

mediated by GRX2 in the mitochondria, the loss of the enzyme would lead to altered S-

glutathionylation states of important ROS production enzymes in the mitochondria. Changes in 

ROS emission from specific sites in the mitochondria was measured using site specific inhibitors.   

1.7.1. Hypothesis 

 My hypothesis is that the loss of GRX2 will lead to deregulated S-glutathionylation in the 

mitochondria, which will cause alteration in ROS emission from key sites, in particular, complexes 

I and II of the ETC and PDH and OGDH of the Krebs cycle.  Specific aims for this project will 

include: 

1. Characterizing the production of ROS in liver and cardiac mitochondria isolated from 

GRX2 deficient mice when supplemented with malate and pyruvate or 2-oxoglutarate.  

2. Characterizing the production of ROS in liver and cardiac mitochondria isolated from 

GRX2 deficient mice, when supplemented with succinate. 

3. Characterizing the change in ROS production in liver and cardiac mitochondria isolated 

from GRX2 deficient mice, when the membrane potential of the mitochondria is altered.  
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2. Materials and Methods 

2.1. Breeding 

Male and female GRX2+/- mice were a gift from Dr. Mary-Ellen Harper (University of 

Ottawa). GRX2+/- mice were generated using the C57BL/6N mouse strain as described in Wu et 

al. 2011 (135). Mice were housed in the animal care unit at room temperature (~23 °C, 12 hour 

(h) dark/12 h light cycle, lights on at 0700 h) and given free access to water and chow (Teklad 

Global 18% Protein Rodent Diet, 2018). Age-matched male and female GRX2+/- mice were paired 

for breeding and the generation of litters containing WT, GRX2+/-, GRX2-/- animals. Male mice 

were removed once it was confirmed female mice were pregnant. After birth, the male pups were 

weaned at 3 weeks of age and ear notched for genotyping. Ear notches were stored at -20 °C. 

Female pups were either kept for future breeding or culled. Male mice were fed a standard grain 

based chow diet (Teklad Global 18% Protein Rodent Diet, 2018) ad libitum and given free access 

to water for up to 10 weeks. Mice were weighed and examined routinely from the age of 4-8 weeks 

to ascertain if GRX2 deficiency caused any alterations in linear growth (change in weight over 

time). It is important to note that two previous studies found that deletion of the GRX2 gene does 

not alter linear growth, food and water consumption, or result in the development of any adverse 

phenotypes that may affect physiological function(s) (117, 134). Animals were cared for in 

accordance with the principles and guidelines of the Canadian Council on Animal Care and the 

Institute of Laboratory Animal Resources (National Research Council). All procedures using mice 

were approved by the Animal Care and Use Committee at Memorial University of Newfoundland.  
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2.2. Genotyping 

2.2.1. DNA extraction 

Mouse genotyping was conducted as described in Mailloux et al. and Wu et al. (117, 135). 

DNA extraction from ear notches was performed using the REDExtract-N-Amp Tissue PCR Kit 

(Sigma-Aldrich) according to the manufacturer’s instructions. Ear notches were placed in separate 

1.5 mL microcentrifuge tubes and treated with 100 L Extraction Solution and 25 L Tissue Prep 

Solution. Samples were then incubated at room temperature for 10 mins followed by a second 

incubation at 95 ºC for 3 mins. This was followed by the addition of 100 L of Neutralization 

Solution to each tube. Samples were then vortexed and used for polymerase chain reaction (PCR). 

Alternatively, samples were stored at -20 ºC for later use.  

2.2.2. Polymerase chain reaction  

Primers for Grx2 were obtained from Integrated DNA Technologies (Table 2.1). Primer 

sequences were provided by Dr. Mary-Ellen Harper (University of Ottawa) and were generated 

based on previously published studies by Mailloux et al. and Wu et al. (134, 135). In a PCR tube 

the following contents were added: 1 L of 0.5 M Grx2 forward primer, 1 M of 0.5 M Grx2 

reverse primer, 1 L of 0.5 M Grx2 neo primer, 4 L of DNA solution, 3 L nuclease-free water 

and 10 L of REDExtract-N-Amp Tissue PCR Kit Reaction Mixture, giving a final volume of 20 

L. DNA sequences were then amplified using an Eppendorf Mastercycler pro PCR System. The 

PCR sequence is shown in Table 2.2.  

2.2.3. Gel electrophoresis 

PCR samples were electrophoresed on a 1.5 % agarose gel which was made by dissolving 

0.75 g of agarose powder (Fisher Scientific) in 0.5X Tris-Borate-EDTA (TBE, 10X solution 

diluted to 0.5X in analytical water) under heat. SYBR Safe DNA Gel Stain (Fisher Scientific)  
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Table 2.1: DNA sequence of primers used for Grx2 genotyping 

Primer Sequence 

Grx2 Forward 5’-GAC CTA GCC TAC CAG ACT TGG CTG AAA TTT ATT C-3’ 

Grx2 Reverse 5’-CAT AGA CAC TCT TCA CTT TCA AGC CCA CCC TC-3’ 

Grx2 Neo 5’-CCT ACA TTT TGA ATG GAA GGA TTG GAG CTA CGG G-3’ 
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Table 2.2: Polymerase chain reaction protocol for Grx2 genotyping 

 Temperature (ºC) Time 

Step 1 94 5 min 

 

Step 2 

30 Cycles 

94 30 sec 

63 1 min 

72 1 min 

Step 3 72 7 min 

Hold 4 ∞ 
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was added to the molten agarose (1/10,000 dilution), which was then poured into the gel molding 

and allowed to solidify. The gel was then set up in a Fisher Biotech Horizontal Electrophoresis 

Systems gel box. Trackit 100 bp DNA Ladder (Fisher Scientific) was used to estimate DNA 

fragment size. Samples were electrophoresed for 40 mins at 90 V. Nucleotide sequences 

corresponding to the amplified Grx2 gene were visualized with the Alpha Innotech ChemiImager 

Ready System. WT mice produced a single nucleotide sequence that was 729 base pairs (bp) in 

length while GRX2-/- mice produced a fragment 510 bp in size. Samples collected from GRX2+/- 

mice contained both nucleotide fragments (510 bp and 729 bp).  

2.3. Mitochondrial isolation 

 All steps were performed on ice or at 4C. Prior to experiments 2 liters of MESH buffer 

(220 mM mannitol, 1 mM EGTA, 70 mM sucrose, and 20 mM HEPES, pH 7.4) was made and 

stored at 4 °C. Note that all substrates and reagents utilized for mitochondrial assays were prepared 

in MESH buffer. Mitochondrial isolation buffer (MESH-B; MESH + 0.5% (w/v) fatty acid-free 

bovine serum albumin (BSA) (Sigma-Aldrich)) was made fresh the day of experiments.  

Mitochondria were isolated from the livers and cardiac tissue of 8-10-week-old mice. Mice were 

deeply anesthetized using isoflurane and euthanized by cervical dislocation. Livers and hearts were 

then harvested and placed in MESH-B buffer, washed of any excess blood, dabbed dry, and 

weighed. Tissues were then cut into small pieces and washed in MESH-B. Tissue pieces were then 

minced with a razor blade and homogenized using the Potter-Elvjham method in 15 mL MESH-B 

(~15 passes with the pestle). Before homogenizing cardiac tissue, 1 unit of subtilisin A (Sigma-

Aldrich), a protease, was added to MESH-B to ensure proteolytic degradation of myofibers and 

the release of intermyofibrillar mitochondria. The amount of protease required was calculated 

using Equation 2.1: 
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Equation 2.1: Calculation of subtilisin A addition 

𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 1
𝑚𝑔

𝑚𝐿
 𝑠𝑢𝑏𝑡𝑖𝑙𝑖𝑠𝑖𝑛 𝐴 =

𝑚𝑎𝑠𝑠 𝑜𝑓 𝑚𝑢𝑠𝑐𝑙𝑒 (𝑔)

1
𝑚𝑔
𝑚𝐿  𝑥 11.7 

𝑚𝑔
𝑢𝑛𝑖𝑡

 

Liver mitochondria were isolated by first centrifuging the homogenate at 800 x g for 9 

minutes to remove nuclei and any undisrupted tissue. The pellet was discarded and the supernatant 

collected and centrifuged at 10,000 x g for 9 mins. The supernatant was then discarded and the 

pellet was resuspended in 20 mL MESH-B and centrifuged again at 10,000 x g for 9 mins. The 

wash step is vital for the removal of any contaminating organelles. The supernatant was discarded 

and the pellet was resuspended in 500 L MESH buffer devoid of BSA. For cardiac mitochondria, 

the homogenate was centrifuged at 10,000 x g for 9 mins and the supernatant was discarded to 

remove subtilisin A. The pellet was resuspended in 15 mL MESH-B and centrifuged at 800 x g for 

9 mins to remove contaminating organelles and undisrupted myofibers. The supernatant was 

collected and centrifuged at 10,000 x g for 10 mins. The supernatant was discarded and the pellet 

was resuspended in 100 l MESH buffer. Note that BSA was omitted to ensure accurate 

determination of protein equivalents to mitochondria.  

2.3.1. Bradford assay  

The concentration of the mitochondrial samples was determined with the Bradford assay 

(Sigma-Aldrich) using BSA (Sigma-Aldrich) as the standard, with a concentration range of 0 to 

1.875 mg/mL. An aliquot of mitochondrial suspension was diluted by 1000 times in analytical 

water and then vortexed for ~ 5 seconds. Two hundred microliters of Bradford reagent was added 

to a 1.5 mL microcentrifuge tube followed by 50 µL of diluted mitochondrial protein solution. The 

volume was then adjusted to 1 mL with analytical water. After a brief vortex 200 µL aliquots of 

the Bradford mixture was added to individual wells of a clear bottom black 96-well plate (Greiner 
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Bio-One) in duplicate. The final concentration of liver and cardiac mitochondria was calculated 

using the slope of the line and the equation y = mx + b (Figure 2.1). The final concentration of 

liver and cardiac mitochondria was approximately 15-20 mg/mL and 6-10 mg/mL, respectively. 

Samples were then stored on ice for assays. Once assays were completed, remaining samples were 

stored at -80 °C for immunoblot analysis.  

2.4. Amplex Ultra Red assay 

O2
•-  is often considered the proximal ROS formed by mitochondria. However, it is now well 

documented that flavin sites (either FAD or FMN) form a mixture of O2
•- and H2O2 (44). In 

addition, any O2
•- formed is quickly dismutated to H2O2 by endogenous SOD. The production of 

ROS by mitochondria oxidizing different substrates was examined using the Amplex Ultra Red 

(AUR) assay which selectively measures H2O2 levels. However, AUR cannot discriminate 

between H2O2 formed during nutrient oxidation or by the dismutation of O2
●-. Thus, for this study 

any measures of ROS emission by mitochondria was denoted as O2
●-/H2O2 to account for 1) any 

H2O2 generated directly by sites of production and 2) any H2O2 formed as a consequence of O2
●- 

dismutation. Prior to assays, liver and cardiac samples were diluted to 3 mg/mL and 1 mg/mL in 

MESH-B, respectively, and stored on ice. Twenty microliters of liver or cardiac mitochondria 

suspension was then transferred into individual chambers of a black 96-welled plate containing 

MESH-B. Mitochondria were allowed to equilibrate for a few minutes and then AUR assay 

reagents, enzyme inhibitors, and substrates were added. The final volume in each reaction chamber 

was 200 µL and the final concentration of liver and cardiac mitochondria was 0.3 mg/mL and 0.1 

mg/mL protein equivalent to mitochondria, respectively. For all assays, changes in fluorescence 

were tracked at 565/600 nm every 30 seconds for 5 minutes using a SpectraMax M5 plate reader 

at room temperature. 
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Figure 2.1: Examples of Bradford assay standard curve for protein concertation determination 

Increasing concentrations of BSA were mixed with the Bradford reagent at a constant volume and 

absorbance was measured. This allows for samples with unknown protein concentration to be 

determined via absorbance.  
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Rates of production were calculated using standard curves generated with different concentrations 

of H2O2 (30 % stock solution at 12.8 M, Sigma-Aldrich) ranging from 20-400 nM (Figure 2.2). 

Rates of O2
●-/H2O2 production were calculated using Microsoft Excel 2013. 

2.4.1. Measurement of O2
•-/H2O2 formation during pyruvate and 2-oxoglutarate 

oxidation 

Mitochondria have been documented to contain up to 11 sources of ROS during nutrient 

metabolism. This includes Krebs cycle enzymes, respiratory complexes I, II, and III, and several 

enzymes that feed electrons directly into the UQ pool. In order to ascertain the effect of GRX2 

deficiency on O2
•-/H2O2 from the different sites of production, different substrate and inhibitor 

combinations are used (Figure 2.3). Substrates that feed directly into the Krebs cycle can induce 

ROS production by OGDH, PDH (if pyruvate is present), and the ETC (Figure 2.3). By contrast 

other substrates like succinate or glycerol-3-phosphate donate electrons directly to the UQ pool, 

bypassing the Krebs cycle (Figure 2.3). To determine if GRX2 alters ROS production during Krebs 

cycle metabolism, O2
•-/H2O2 emission from liver and cardiac mitochondria was examined using 

either pyruvate (50 µM) or 2-oxoglutarate (50 µM) in combination with malate (50 µM). These 

concentrations were chosen because the physiological concentrations of the substrates are known 

to be in the M range. In addition, our group has shown previously that µM concentration of 

substrate can induce a measurable rate of ROS production (61, 62). Prior to initiating the assay, 

samples were incubated in 10 mM α-keto-β-methyl-n-valeric acid (KMV) (Sigma-Aldrich) or 4 

M myxothiazol (Sigma-Aldrich) for 5 mins at 25 C. KMV is a structural analog for 2-

oxoglutarate and thus selectively inhibits ROS production by OGDH (62). Myxothiazol is a 

selective inhibitor for ROS production by Complex III (62). Briefly, myxothiazol binds to the UQ 

binding pocket near the outer leaflet of the inner membrane (QO site) preventing the formation of 
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Figure 2.2: Examples of AUR assay standard curve for determination of O2
•-/H2O2 concentration 

The florescence of increasing known concentrations of H2O2 in MESH buffer was measured with 

the AUR assay in order to produce a standard curve, allowing for the concentration of unknown 

H2O2 to be determined when florescence is measured.  
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Figure 2.3: Sites of action for different inhibitors of the Krebs cycle and ETC 

 

Rotenone blocks the flow of electrons between the UQ site (IQ) of complex to UQ (CoQ). Atpenin 

A5 blocks electrons from travelling between the UQ site of SDH and CoQ. Myxothiazol blocks 

electrons from UQH2 to the UQH2 site of complex III (Q0). KMV is a competitive inhibitor of 

OGDH, blocking electron movement through the complex, decreasing ROS production.  
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semiquinone which drives O2
●- formation. The following reagents were then added to all reaction 

chambers: horseradish peroxidase (HRP, 3 U/mL, Sigma-Aldrich), superoxide dismutase (SOD, 

25 U/mL, Sigma-Aldrich), AUR (10 M, Invitrogen) and malate (50 M). SOD was added to 

convert any O2
•-  present in the intermembrane space into H2O2. Assays were then initiated by the 

addition of either 50 M pyruvate or 50 M 2-oxoglutarate.  

2.4.2. Measurement of O2
•-/H2O2 formation during succinate oxidation  

 Succinate oxidation bypasses the Krebs cycle and Complex I, donating electrons directly 

to the UQ pool in mitochondria (Figure 2.1). Experimental conditions that employ succinate can 

be manipulated to allow for the measurement of ROS production by the ETC only. This can be 

advantageous since it eliminates O2
•-/H2O2 production from the Krebs cycle allowing one to zero 

in on which respiratory complex forms the most ROS. To ensure that we were measuring ROS 

formation by only the respiratory complexes, experimental conditions were manipulated to avoid 

priming ROS production by the Krebs cycle. This was achieved by excluding pyruvate which, 

after conversion to acetyl-CoA, can condense with oxaloacetate from succinate metabolism to 

yield citrate. To determine which site produces the most ROS several ETC inhibitors were used 

(Figure 2.3). Liver and cardiac mitochondrial samples were incubated with either 40 M Atpenin 

A5 (Santa Cruz), 4 M myxothiazol or 4 M rotenone (Sigma-Aldrich) for 20 mins at 25 C. 

Atpenin A5 is a selective inhibitor for Complex II where it blocks the UQ binding pocket 

preventing electron flow to Complex I or III (136). Rotenone is a selective inhibitor for Complex 

I which blocks electron flow from Complex II to the ROS forming FMN prosthetic group. After 

the incubation, AUR assay reagents were added to each well as described in section 1.4.1. The 

assay was initiated by the addition of 50 M succinate.  
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2.4.3. Examining the effect of membrane potential on ROS production 

The polarity of the mitochondrial inner membrane and the rate of proton extrusion and 

return can influence mitochondrial ROS production (76). The rate of proton extrusion and return 

and the strength of the PMF can be manipulated by artificially inducing different states of 

respiration or by short circuiting proton return by adding chemical uncouplers. Manipulation of 

the different states of respiration was achieved by exposing mitochondria to four different 

experimental conditions: (1) substrate alone (state 2 respiration), (2) substrate + 1 mM ADP (state 

3 respiration), (3) substrate + 1 mM ADP + 4 g/mL oligomycin (ATP synthase inhibitor, state 4 

respiration, Sigma-Aldrich), and (4) substrate + 1 mM ADP + 4 g/mL oligomycin + 4 M FCCP 

(uncoupled respiration, Sigma-Aldrich). The addition of ADP promotes proton return through 

Complex V of the respiratory chain which lowers the membrane potential. Oligomycin is a specific 

inhibitor for Complex V and thus impedes proton return and ATP production allowing for the 

hyperpolarization of the mitochondrial inner membrane. FCCP is a protonophore that “short 

circuits” the proton gradient by diffusing protons back into the matrix bypassing Complex V. After 

mitochondria were exposed to the four different conditions, assays were initiated by the addition 

of malate (50 M) and pyruvate (50 M) were added to all chambers.  

2.5. Polarographic measurement of oxygen consumption 

The different states of mitochondrial respiration were measured using a Hansatech 

Oxytherm Electrode. Respiratory states were defined as; state 1: mitochondria only, state 2: 

mitochondria + substrate, state 3: mitochondria + substrate + ADP, state 4: mitochondria + 

substrate + ADP + oligomycin, and inhibition of respiration: mitochondria + substrate + ADP + 

oligomycin + antimycin A (Figure 2.4). The electrode was assembled according to the 

manufacturer’s instructions. First, the silver (Ag) anode is inspected for any oxidation (depicted  
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Figure 2.4: The different states of respiration 

State 2 respiration of mitochondria is initiated by the addition of malate and pyruvate. State 3 

respiration occurs once ADP had been added. Oligomycin is added to block ATP synthase and 

induce state 4 respiration which allows the estimation of how much respiration can be attributed 

to proton leakage. Respiration is halted by the addition of antimycin A which binds to complex 

III, blocking the flow of electrons and collapsing the proton gradient. 

 

 

 



 57 

by brown spots). manufacturer’s instructions. First, the silver (Ag) anode is inspected for any 

oxidation (depicted by brown spots).If any oxidation was detected, the Ag anode was polished 

with specialized electrode polish provided by the manufacturer. The electrode was then rinsed well 

and dabbed dry. One drop of KCl (2.3 M, prepared by dissolving 17.5 g of KCl in 100 mL of 

analytical water) was first placed on the platinum (Pt) cathode which was then covered with a piece 

of filter paper and O2-permeant polyvinylidene difluoride (PVDF) membrane. The 

membrane/filter paper composite was then saturated with KCl solution and then held in place by 

a small O-ring which fits snugly around the Pt cathode. The large O-ring was then applied to the 

outer most part of the disk creating a small chamber on top of the Ag anode which was filled with 

KCl. This can be visualized in Figure 2.5. The completed electrode system was then attached to 

the Oxytherm chamber. The chamber was filled with 2 mL of fully oxygenated analytical water 

and heated to 37 ºC with constant stirring. The system was then calibrated by establishing a 100% 

oxygen saturation condition followed by a 0% oxygen condition which was achieved by adding a 

few crystals of sodium dithionite (Sigma-Aldrich) to the chamber. For experiments, the chamber 

was rinsed 5 times with water prior to adding buffer and samples. Mitochondrial samples were 

diluted to 0.5 mg/ml for liver and 0.1-0.2 mg/ml for cardiac in mitochondrial respiration buffer 

(220 mM mannitol, 70 mM sucrose, 1 mM EGTA, 2 mM Hepes, 10 mM KH2PO4, 2 mM MgCl2, 

pH: 7.4). Samples were added to the chamber and equilibrated until oxygen consumption 

stabilized. State 2 respiration was initiated with the addition of 2 mM malate and 10 mM pyruvate. 

State 3 respiration was initiated with the addition of 1 mM ADP. State 4 respiration was initiated 

by adding 4 mg/ml oligomycin. Respiration was ceased with the addition of 4 µM antimycin-A 

(Sigma-Aldrich). Respiratory control ratios (RCR) were calculated as the ratio of state 3 to state 4 

respiration which serves as a proxy measure for the efficiency of mitochondrial ATP production. 
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Figure 2.5: Assembly of the Hansatech oxytherm electrode 

(A) The electrode disk showing the positions of the Pt cathode and Ag anode. (B) The order of 

assembly: a drop of KCl buffer overlayed with filter paper and PTFE membrane. The inner O-ring 

was placed on top and pushed down into place. (C) The assembled electrode. The outer O-ring is 

placed in the groove, which is then filled with KCl buffer. 

 

 



 59 

 

 

 

Respiration states were measured in WT, GRX2+/- and GRX2-/- mice. WT, GRX2+/- and GRX2-/- 

mitochondrial samples were performed 4 times in duplicate. Respiration rates were then 

normalized to the concentration of protein equivalent to mitochondria.  

2.6. Gel electrophoresis and Immunoblot 

Mitochondria stored at -80 °C were thawed, vortexed vigorously, and then placed on ice. 

Samples were diluted to 1-6 mg/ml in analytical water containing Laemmli buffer (2X stock 

diluted to 1X in water, Bio-Rad) and heated for 10 minutes at 100C. The variable dilution of 

protein samples depended on the amount required to afford proper detection of enzymes of interest 

(e.g. 40 µg of protein was required to detect GRX2 whereas only 10 µg was needed for OGDH). 

Reducing conditions, if used, were induced by adding 2% v/v -mercaptoethanol to each sample 

Electrophoresis buffer was prepared as a 10X solution in analytical water (25 mM Trizma base, 

1920 mM glycine and 1% (v/v) sodium dodecyl sulfate (SDS)) and stored at room temperature. 

On the day of experiments electrophoresis buffer was diluted to 1X in analytical water (100 mL 

10X electrophoresis buffer + 900 mL analytical water). Samples were electrophoresed in 10% SDS 

resolving gel for proteins with a molecular weight > 40 KDa and a 12% SDS resolving gel for 

proteins < 40 KDa. Resolving gels were prepared by first adding 40% acrylamide solution (36.7% 

w/v acrylamide/3.3 % w/v bis-acrylamide, Biorad) to a 50 mL conical tube followed by the 

addition of 4X Trizma/SDS resolving gel solution (1.5 M Trizma base + 0.4% (w/v) SDS in 100 

mL of analytical water, pH 8.8 with 6 N hydrochloric acid (HCl)). The volume was then adjusted 

to 20 mL with analytical water. Gel polymerization was initiated by adding N,N,N',N'-

tetramethylethane-1,2-diamine (TEMED, Biorad) and 1% (w/v) ammonium persulfate solution  
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 (APS, Biorad). The exact recipes for each gel can be found in Table 2.3. The gel solution was then 

quickly poured into the gel cast filling the chamber three quarters of the way from the top of the 

small glass plate. The gel solution was then overlaid with 100% isopropyl alcohol. Once the gel 

had polymerized, the isopropyl alcohol was removed and the top of the gel carefully dabbed dry 

and overlaid with a stacking gel. The stacking gel was prepared by first adding acrylamide solution 

to a 15 mL conical tube (for a 4% (v/v) acrylamide concentration only 1 mL was required). This 

was followed by the addition of 2.5 mL of 4X Trizma/SDS stacking gel solution (0.5 M Trizma 

Base + 0.4% (w/v) SDS in 100 mL, pH 6.8). The volume was adjusted to 10 mL with analytical 

water and then gel polymerization was initiated by the addition of TEMED and APS. The gel 

solution was then quickly placed on top of the resolving gel and then a 1 mm wide 15 well comb 

was inserted into the stacking gel. Once polymerized the comb was removed and the wells were 

dabbed dry.  

Samples were loaded into the gel and the Mini-protean Tetra System (Bio-Rad) apparatus 

was filled with electrophoresis buffer (2.5 mM Trizma base, 192 mM glycine and 0.1% v/v SDS). 

Samples were electrophoresed at 80 V through the stacking gel. Once the running front penetrated 

the resolving gel the voltage was increased to 240 V. Fifteen microliters of PageRuler Plus 

Prestained protein ladder (Fisher Scientific) was also loaded into each gel to track protein 

migration, gel transfer efficiency, and confirm the molecular weight of proteins of interest detected 

by immunoblot. Gels were stopped once the running front reached the bottom of the gel. Gels were 

then removed from the electrophoresis apparatus and equilibrated for at least 15 minutes in 1X 

transfer buffer. A 10X transfer buffer solution was prepared in advance and stored at room 

temperature (500 mM Trizma, 380 mM glycine, 10% w/v SDS). One times transfer buffer solution 

was prepared the day of experiments by diluting 100 mL of buffer in 800 mL of analytical water  
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Table 2.3: Immunoblot gel recipes 

 4X 

Tris/SDS 

8.8 Buffer 

(mL) 

4X Tris/SDS 

6.8 Buffer 

(mL) 

40% 

Acrylamide/Bis 

Solution (mL) 

Analytical 

water 

(mL) 

TEMED 

(L) 

APS (L) 

10% 

Resolving 

Gel 

5 0 5 10 150 75 

12% 

Resolving 

Gel 

5 0 6 9 150 75 

4% 

Stacking 

Gel 

0 2.5 1 6.5 75 50 
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and 100 mL methanol. Extra thick blotting paper (Bio-Rad), electroblotting sponges (Bio-Rad), 

and nitrocellulose membranes (Bio-Rad) were also equilibrated for at least 15 mins in transfer 

buffer. Proteins were electroblotted onto a nitrocellulose membranes (Bio-Rad) for one hour at 

120 V at room temperature in transfer buffer with the Mini Trans-Blot Electrophoretic Transfer 

Cell (Bio-Rad). Successful transfer was confirmed with Ponceau-S (Sigma-Aldrich) staining. 

Membranes were then blocked at room temperature for at least one hour under constant agitation 

in a blocking solution consisting of Tris-buffered saline (TBS; 1mM Trizma base and 68 mM 

NaCl) containing 0.1% (v/v) Tween-20 (Bio-Rad) (TBS-T) and 5% (w/v) non-fat skim milk (Lab 

Scientific). After three, 5 min room temperature washes in TBS-T, membranes were probed with 

primary antibodies diluted in TBS-T + 5% (w/v) BSA + 2% (w/v) NaN3 (Sigma-Aldrich). Primary 

antibodies used included anti-OGDH (Abcam, catalogue #ab137773), anti-PDH cocktail 

(Mitoscience, catalogue #ab110416), anti-GRX1 (Abcam, catalogue #ab45953), anti-GRX2 

(Abcam, catalogue #ab191292), anti-GSH (Abcam, catalogue #ab19534), anti-SOD (Santa-Cruz, 

catalogue #sc-30080) and anti-SDHA (Santa-cruz, catalogue #sc-377302). Further details on the 

dilution factor for each antibody and the amount of protein utilized for detection can be found in 

Table 2.4. The membrane was incubated in the primary antibody solution overnight at 4C while 

shaking continuously. The membranes were rinsed 3 times with TBS-T for 5 mins at room 

temperature. Membranes were then incubated in secondary goat antibody conjugated to HRP 

diluted in blocking solution, either anti-mouse or anti-rabbit, depending on the primary antibody, 

for 70 mins while shaking at room temperature. Immunoreactive bands were visualized using 

WestPico Super Signal Chemiluminescent substrate and the ImageQuant LAS 4000 system. Band 

intensities were quantified using ImageJ software. Blots were performed in triplicate.  
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Table 2.4: Immunoblot specifications 

Immunoblot 

(Primary Ab) 

Tissue Amount 

of 

protein 

loaded 

per well 

(g) 

Acrylamide 

gel 

percentage 

(%) 

Primary 

Ab 

dilution 

(L) 

Secondary 

Ab-HRP 

conjugate 

dilution 

(L) 

Loading 

control and 

dilution (L) 

Secondary 

Ab-HRP 

conjugate 

dilution 

(L) 

OGDH 

(polyclonal) 

Liver 20 10 1/3000 

 

Goat anti-

rabbit 

1/3000 

 

 

SOD 

1/2000 

(polyclonal) 

 

 

 

Goat anti-

rabbit  

1/3000 

Cardiac 10 10 

PDH 

(monoclonal) 

Liver 20 10 1/3000 Goat anti-

mouse 

1/3000 Cardiac 10 10 

GRX1  

(polyclonal) 

Liver 30 12 1/2000 

 

Goat anti-

rabbit 

1/3000 

 

 

SDHA 

1/3000 

(monoclonal) 

 

 

 

Goat anti-

mouse  

1/3000 

Cardiac 60 12 

GRX2 

(polyclonal) 

Liver 40 12 1/500 Goat anti-

rabbit 

1/3000 

GSH 

(monoclonal) 

Liver 20 10 1/500 Goat anti-

mouse 

1/3000 

None N/A 

Cardiac 
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2.7. Data analysis 

All data analysis was performed with Graphpad Prism 6 software. Unpaired T-tests were 

used for comparison between two groups, one-way analysis of variance (ANOVA) with Fischer’s 

least significant difference (LSD) test was used for comparison between multiple groups. A one-

way ANOVA test was used to test for significant difference in ROS production between the 

genotypes. The significance within the genotypes when using inhibitors was not tested, as these 

inhibitors have already been proven to significantly inhibit ROS production. LSD is an appropriate 

post-hoc test for this data as the experiments are well controlled and do not contain many variables. 

Values are presented as mean + standard error of mean (SEM). Statistical significance was 

calculated and indicated (****P < 0.0001, ***P < 0.001, **P < 0.01 and *P < 0.05). 
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3. Results 

3.1. Profile of GRX2 deficient mice  

3.1.1. Mouse genotyping and confirmation of GRX2 deficiency 

 Successful deletion of GRX2 was achieved by the elimination of the second exon of the 

gene encoding the enzyme (135). This resulted in the production of a shortened Grx2 gene that is 

510 bp in length. This is in contrast to the WT Grx2 gene product, which is 729 bp long. Mice 

heterozygous or homozygous for the truncated Grx2 gene were identified by PCR amplification 

and agarose gel electrophoresis. As shown in Figure 3.1, amplification of the Grx2 gene by PCR 

allowed for easy identification of WT, GRX2+/-, and GRX2-/- mice in different litters. WT mice 

contain a Grx2 gene sequence that is 729 bp while GRX2-/-mice have a truncated form that is 510 

bp long (Figure 3.1). Mice heterozygous for GRX2 contain both bands at 510 and 729 bp, 

respectively. GRX2 enzyme deficiency was confirmed by immunoblotting for the thiol 

oxidoreductase in mitochondria prepared from liver (Fig. 3.2). GRX2 protein expression was 

completely abolished in the knockout mice, while GRX2+/- mice did not show a significant 

difference in GRX2 expression from that of WT mice (Fig. 3.2). 

3.1.2. Effect of GRX2 deficiency on total body and organ weight 

 Mice deficient in GRX2 were monitored for changes in overall body weight and liver and 

cardiac weight. It was shown in a previous study that GRX2-/- mice displayed a very small decrease 

in total body weight when compared to WT littermates fed a standard chow diet ad libitum (134). 

In this study, GRX2-/- and GRX2+/- mice did not show any significant differences in body weight 

from 4-8 weeks of age (Fig. 3.3).  Previous studies have also shown an increase in cardiac weight 

in GRX2-/- and GRX2+/- mice, which is associated with increased cardiomyocyte size, left 

ventricular hypertrophy, and fibrosis (117). However, excised hearts from 8-10-week-old 
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Figure 3.1: Gel electrophoresis of PCR Grx2 gene amplification 

The 729 bp band represents full length Grx2 product (WT) and the 510 bp band corresponds to 

Grx2 devoid of exon 2 (GRX2-/-). Mice harboring both bands are GRX2+/-.  
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Figure 3.2: Confirmation of GRX2 deficiency 

Protein abundance of GRX2 was measured in liver mitochondria samples from WT, GRX2+/-, and 

GRX2-/- mice. (A) Immunoblot of GRX2 abundance in each genotype. (B) Densitometry analysis 

of GRX2 immunoblot using ImageJ software. GRX2 was found to be significantly decreased in 

GRX2-/- mice, as compared to WT mice. Succinate dehydrogenase subunit A (SDHA) was used 

as the loading control. N=3, mean + SEM. This blot was completed by my supervisor, Dr. Ryan 

Mailloux.  
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Figure 3.3: Overall body weight of GRX2 deficient mice 

WT, GRX2+/-, and GRX2-/- mice were weighed weekly from 4 to 8 weeks of age. No significant 

difference in weight was noticed between genotypes at any age. N=12-21, mean  SEM, one-way 

ANOVA with a Fischer’s LSD post-hoc test.  
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GRX2-/- and GRX2+/- mice did not show any significant changes in heart weight (Fig. 3.4A). Livers 

from GRX2 deficient mice also did not show any differences in weight as compared to WT mice, 

an observation that is consistent with previous findings (Fig. 3.4B) (134).   

3.1.3. GRX2 deficiency does not induce a compensatory increase in GRX1 expression  

 GRX1 is a GRX2 isoform that localizes to the cytosol and mitochondrial intermembrane 

space. The abundance of the GRX1 thiol oxidoreductase in mitochondria isolated from liver and 

cardiac tissue was examined by immunoblot to determine if GRX2 deficiency caused any 

compensatory increases in GRX1 abundance. GRX2-/- and GRX2+/- mice did not show any 

significant increases in the protein abundance of GRX1 when compared to WT mice (Fig 3.5). The 

densities of the bands in Figure 3.5 were still within the quantitative range of the antibody. GRX2 

plays a vital role in conjugating and removing GSH from protein cysteine thiols. It was reported 

in two previous studies that complete ablation of the Grx2 gene results in a significant increase in 

the overall number of S-glutathionylated proteins in mitochondria (134, 135). As shown in Figure 

3.6, GRX2+/- mice also displayed a significant increase the total number of mitochondrial proteins 

modified by GSH. Electrophoresis was carried out under nonreducing conditions to preserve the 

S-glutathionylated proteome. To confirm antibody specificity, samples were also treated with β-

mercaptoethanol, a strong reducing agent known to reverse protein S-glutathionylation. Figure 3.6 

demonstrates that conducting the electrophoresis under reducing conditions almost completely 

abolishes the presence of immunoreactive bands corresponding to S-glutathionylated proteins.   

3.2. Examination of the O2
●-/H2O2 release potential of GRX2 deficient mitochondria 

3.2.1. O2
●-/H2O2 release by liver mitochondria oxidizing Krebs cycle-linked substrates 

 Protein S-glutathionylation is known to alter O2
●-/H2O2 production from different sites in 

mitochondria including complex I, OGDH, and PDH (61, 121). However, whether or not GRX2  
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Figure 3.4: Cardiac and liver weight in GRX2 deficient mice 

(A) Hearts and (B) livers were excised from mice of each genotype at 8-10 weeks of age and 

weighed. Cardiac weight was normalized to femur length. No significant difference in weight was 

noticed in either organ between the three genotypes. N=12-21, mean + SEM, one-way ANOVA 

with Fischer’s a LSD post-hoc test.  
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Figure 3.5: There is no compensatory increase in GRX1 protein expression in GRX2 deficient 

mice 

The relative protein abundance of GRX1 was measured by immunoblot in mitochondrial samples 

from (A) liver and (B) cardiac tissue in each genotype. Densitometry analysis (C & D) was 

performed on the resulting bands with ImageJ software. No significant changes in protein 

abundance was noted compared to WT mice. N=3, mean + SEM, one way ANOVA with a 

Fischer’s LSD post-hoc test. 
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Figure 3.6: GRX2 deficiency increases the overall number and intensity of immunoreactive 

bands corresponding to PSSG adducts 

(A) The abundance of PSSG adducts was measured by immunoblot in WT and GRX2+/- 

mitochondria isolated from liver and cardiac tissue. Non-reducing conditions were initiated with 

-mercaptoethanol. (B) Densitometry analysis of the resulting liver bands was performed with 

ImageJ software. (C) Densitometry analysis of the resulting cardiac bands was performed with 

ImageJ software. N=3, mean + SEM, unpaired t-test.   
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controls O2
●-/H2O2 release from these sites has not been studied. Thus, we decided to profile the 

O2
●-/H2O2 forming capacity of liver and cardiac mitochondria oxidizing different substrates. The 

rate of O2
●-/H2O2 production was first examined in liver mitochondria treated with or without 

KMV or myxothiazol, two potent inhibitors for ROS production by OGDH and complex III, 

respectively. Mitochondria were supplemented with 50 M malate, to replenish Krebs cycle 

intermediates, and then treated with either 50 M pyruvate (Fig. 3.7A) or 50 M 2-oxoglutarate 

(Fig. 3.7B) to stimulate Krebs cycle metabolism and ROS production. Liver mitochondria prepared 

from GRX2+/- and GRX2-/- mice displayed no significant change in O2
●-/H2O2 release when 

compared to WT mitochondria regardless of which substrate was being oxidized (Fig 3.7A and 

Fig 3.7B). In addition, no differences were observed with mitochondria treated with KMV or 

myxothiazol. Notably, KMV, a structural analog of 2-oxoglutarate and site-specific inhibitor for 

OGDH, induced a ~85% decrease in O2
●-/H2O2 emission from liver mitochondria isolated from 

WT, GRX2+/-, and GRX2-/- mice metabolizing either pyruvate or 2-oxoglutarate (Fig 3.7A and Fig 

3.7B). This indicates that OGDH, not PDH, is a high capacity site for O2
●-/H2O2 production in 

liver mitochondria, even when pyruvate and malate serve as substrates. Myxothiazol, on the other 

hand, induced a ~30% decrease in O2
●-/H2O2 production by mitochondria metabolizing pyruvate 

or 2-oxoglutarate (Fig 3.7A and Fig 3.7B). It is important to point out that the concentrations of 

inhibitors used represent the amount required to achieve maximal inhibition of ROS production 

by either site of O2
●-/H2O2 formation (62). Myxothiazol has been shown to cause inhibition of 

complex I, but the effect is small (137) and likely does not affect these results. Overall, these results 

confirm findings from a previous study that showed OGDH and Complex III were the highest 

capacity sites for O2
●-/H2O2 release in liver mitochondria (62).  
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Figure 3.7: O2
●-/H2O2 production rates in liver mitochondria oxidizing pyruvate or 2-

oxoglutarate 

Liver mitochondria (0.3 mg/ml) were supplemented with 50 µM malate and either 50 µM (A) 

pyruvate or (B) 2-oxoglutarate. Mitochondria were treated with 10 mM KMV or 4 µM 

myxothiazol to examine the source of O2
●-/H2O2. The rate of O2

●-/H2O2 production was measured 

using AUR at 565/600 nm. N=4-6, mean + SEM, one-way ANOVA with a Fisher’s LSD post-hoc 

test. 
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 Enzyme concentration plays a vital role in dictating in how much O2
●-/H2O2 will be formed 

by a particular site of production (e.g. as the [electron donating site] increases, so will the potential 

for ROS production). Thus, the overall abundance of PDH and OGDH in WT, GRX2+/-, and 

GRX2-/- liver mitochondria was assayed by immunoblot. OGDH displayed a significant increase 

in abundance in GRX2-/- mitochondria when compared to WT (Fig. 3.8). Large differences are 

seen in the abundance of PDH subunits in the WT mice due to E1, E2, and E3 being present in a 

40:40:20 ratio (138). In addition, all three subunits for PDH were significantly higher in liver 

mitochondria isolated from GRX2-/- mice (Fig. 3.8). These findings prompted us to normalize the 

O2
●-/H2O2 production rates in Figure 3.6 to the relative abundance of OGDH and PDH. 

Normalization of the results to the relative abundance of an enzyme complex is a commonly 

accepted method (139). In Figure 3.9A, the rate of O2
●-/H2O2 production from pyruvate 

supplemented mitochondria was normalized to the abundance of the E2 subunit of PDH. 

Normalization of the rate of O2
●-/H2O2 production to PDH levels revealed that liver mitochondria 

from GRX2-/- mice displayed a significant decrease in O2
●-/H2O2 emission when compared to WT 

(Fig. 3.9A). Similar observations were made with liver mitochondria metabolizing 2-oxoglutarate 

(Fig. 3.9B). Indeed, a decrease in O2
●-/H2O2 production was observed in GRX2 deficient 

mitochondria following the normalization of O2
●-/H2O2 production rates to OGDH abundance 

(Fig. 3.9B). These observations confirm previously published studies showing that the protein S-

glutathionylation of OGDH and PDH decreases O2
●-/H2O2 emission from either enzyme complex 

(44, 61). Moreover, these findings show that GRX2 is required to modulate the reversible S-

glutathionylation of both proteins, an observation our group has made in two separate publications 

(44, 61). 
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Figure 3.8: Protein abundance of OGDH and PDH in liver mitochondria of GRX2 deficient mice 

(A) Immunoblot with liver mitochondrial samples using anti-OGDH (B) Immunoblot with liver 

mitochondrial samples using anti-PDH cocktail. Note that the loading control was performed on a 

separate blot with the same concentrations and conditions. (C) Densitometry analysis was 

performed on OGDH blot with ImageJ analysis. (D) Densitometry analysis was performed on PDH 

blot with ImageJ analysis MnSOD was used as a loading control. N=3, mean + SEM, one-way 

ANOVA with a Fischer’s LSD post-hoc test.   
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Figure 3.9: Production of O2
●-/H2O2 in liver mitochondria supplemented with pyruvate or 2-

oxoglutarate normalized to enzyme content.  

Liver mitochondria (0.3 mg/ml) were supplemented with 50 µM malate and with either 50 µM (A) 

pyruvate or (B) 2-oxoglutarate. Mitochondria were treated with either 10 mM KMV or 4 µM 

myxothiazol to examine the source of O2
●-/H2O2. The rate of O2

●-/H2O2 production was measured 

using AUR at 565/600 nm. N=4-6, mean + SEM, one-way ANOVA with a Fisher’s LSD post-hoc 

test. Results were normalized to either the expression of the PDH E2 subunit or the OGDH E1 

subunit as determined from immunoblotting. 
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3.2.2. O2
●-/H2O2 release by cardiac mitochondria oxidizing Krebs cycle-linked substrates 

 Mice deficient for GRX2 develop left ventricular hypertrophy and fibrosis, hypertension, 

and metabolic inflexibility (117), indicating that deregulation of S-glutathionylation reactions in 

mitochondria can potentially cause cardiovascular disease. On a molecular level, the loss of GRX2 

in cardiac mitochondria induces an increase in overall mitochondrial ROS production, an effect 

that is associated with a ~50% decrease in oxidative phosphorylation (117). It is important to point 

out though that the O2
●-/H2O2 release capacity of GRX2 deficient cardiac mitochondria was never 

profiled. Thus, we decided to examine the impact of GRX2 deficiency on O2
●-/H2O2 production in 

WT and GRX2 deficient cardiac mitochondria oxidizing either 50 M pyruvate or 50 M 2-

oxoglutarate with 50 µM malate. KMV and myxothiazol were used to pinpoint the location of O2
●-

/H2O2 production. No significant differences in the rate of O2
●-/H2O2 production between the 

GRX2 deficient and WT mice were noticed when the mitochondria were oxidizing either substrate 

(Fig. 3.10A and Fig. 3.10B). The inhibitors, KMV and mxyothiazol, had the opposite effect on 

O2
●-/H2O2 release rates in cardiac mitochondria when compared to results collected with liver 

mitochondria (Fig. 3.7). In mitochondria metabolizing pyruvate, KMV and myxothiazol both 

elevated O2
●-/H2O2 emission from cardiac mitochondria isolated from WT and GRX2 deficient 

mice (Fig. 3.10A). Collectively, these findings indicate that high capacity sites for O2
●-/H2O2 

production differ between liver and cardiac mitochondria. Indeed, in this and a previous study, it 

was found that OGDH and complex III represent the major sources for O2
●-/H2O2 production in 

liver mitochondria (62). By contrast, complex I and III have been documented to serve as chief 

sources of O2
●-/H2O2 in cardiac mitochondria (43, 63).  

 Due to the significant changes in PDH and OGDH abundance in GRX2 deficient liver 

mitochondria, we also decided to look for any changes in the protein abundance levels of both  
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Figure 3.10: Production of O2
●-/H2O2 in cardiac mitochondria supplemented with pyruvate or 2-

oxoglutarate 

Cardiac mitochondria (0.1 mg/ml) were supplemented with 50 µM malate and either 50 µM (A) 

pyruvate or (B) 50 M 2-oxoglutarate. Mitochondria were inhibited with either 10 mM KMV or 

4 µM myxothiazol to examine the source of O2
●-/H2O2. The rate of O2

●-/H2O2 production was 

measured using AUR at 565/600 nm. N=4-6, mean + SEM, one-way ANOVA with a Fisher’s LSD 

post-hoc test. 
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complexes in cardiac mitochondria via immunoblotting. There was no significant difference in 

either complex between WT and GRX2 deficient mice (Fig. 3.11). In the liver, increased S-

glutathionylation and inactivation of PDH and OGDH caused by GRX2 loss may induce increases 

in their abundance. This effect may not be present in cardiac mitochondria, which may experience 

less S-glutathionylation of Krebs cycle enzymes in GRX2 deficiency. 

3.2.3. O2
●-/H2O2 release by liver and cardiac mitochondria supplemented with succinate 

 Complexes I, II, and III are significant sources of O2
●-/H2O2 and complexes I and II are 

also known targets for S-glutathionylation, while complex III may also be a target (86, 121, 140). 

Thus, we decided to examine the effect of GRX2 deficiency on succinate-driven O2
●-/H2O2 

production. Using succinate supplemented mitochondria also has the added advantage of 

examining O2
●-/H2O2 production exclusively by the respiratory complexes since succinate cannot 

be metabolized any further by the Krebs cycle following its oxidation to fumarate. Liver 

mitochondria from GRX2+/- mice displayed a significant increase in O2
●-/H2O2 release during 

succinate oxidation (Fig. 3.12A). However, this trend did not hold for mitochondria isolated from 

GRX2-/- mice (Fig. 3.12A). In addition, rotenone, atpenin A5, and myxothiazol, inhibitors for 

complexes I, II, and III, respectively, had little to no effect on succinate-driven O2
●-/H2O2 

production. Indeed, inhibition of complex I with rotenone, as well as complex II with atpenin A5, 

had little effect on the rate of O2
●-/H2O2 production in liver mitochondria (Fig. 3.12A). Inhibition 

of complex III with myxothiazol did induce a minor decrease in O2
●-/H2O2 production which 

confirms that complex III is a significant source of ROS in liver mitochondria (62). The low levels 

of O2
●-/H2O2 produced from succinate supplementation, as well as the minor effect of these ETC 

inhibitors, indicates that the ETC complexes, particularly complexes I and II, are not a major 

source of O2
●-/H2O2 in liver mitochondria.   
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Figure 3.11: Immunoblot of OGDH and PDH cardiac abundance between genotypes 

A) Immunoblot with cardiac mitochondrial samples using anti-OGDH B) Immunoblot with 

cardiac mitochondrial samples using anti-PDH cocktail. C) Densitometry analysis was performed 

on OGDH blot with ImageJ analysis. D. Densitometry analysis was performed on PDH blot with 

ImageJ analysis. MnSOD was used as a loading control. N=3, mean + SEM, one-way ANOVA 

with a Fischer’s LSD post-hoc test.   
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Figure 3.12: Sources of O2
●-/H2O2 production in succinate supplemented mitochondria 

(A) Liver mitochondria (0.03 mg/ml) or (B) cardiac mitochondria (0.01 mg/ml) were 

supplemented with 50 µM succinate. Mitochondria were inhibited with either 40 µM atpenin A5, 

4 µM myxothiazol or 4 µM rotenone to examine the source of O2
●-/H2O2. The rate of O2

●-/H2O2 

production was measured using AUR at 565/600 nm. N=5, mean + SEM, one-way ANOVA with 

a Fisher’s LSD post-hoc test 
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The results above indicate that succinate is a poor substrate for O2
●-/H2O2 production in liver 

mitochondria. By contrast, succinate served as an excellent substrate for O2
●-/H2O2 release in 

cardiac mitochondria (Fig. 3.12B). O2
●-/H2O2 production displayed a significant increase (almost 

2-fold higher) in cardiac mitochondria isolated from GRX2+/- and GRX2-/- mice (Fig. 3.12B). In 

addition, succinate-induced O2
●-/H2O2 production by cardiac mitochondria was inhibited by 

rotenone, atpenin A5, and myxothiazol. Rotenone is a competitive inhibitor for complex I that 

binds the UQ binding pocket, preventing reverse electron flow from complex II. Since the use of 

rotenone induced a significant decrease in O2
●-/H2O2 production during succinate oxidation, we 

can deduce that reverse electron flow from succinate to complex I is a major source of O2
●-/H2O2 

in cardiac tissue. Similar reasoning can apply to complex III - myxothiazol blocks the UQH2 

binding site of complex III preventing the accumulation of semiquinone radical, a vital source of 

ROS in mitochondria. It is possible that some decrease in ROS production may be due to 

membrane potential collapse by mxyothiazol, but it has been established that myxothiazol does 

decrease ROS production by decreasing the formation of semiquinone in complex III (62). Indeed, 

myxothiazol supplementation almost completely abolished mitochondrial O2
●-/H2O2 production 

(Fig. 3.12B).  Atpenin A5, on the other hand, selectively binds the UQ binding site upstream from 

the FAD center in complex II. Similar to rotenone and myxothiazol, atpenin A5 treatment almost 

completely abolished mitochondrial O2
●-/H2O2 release (Fig. 3.12B). The FAD center serves as the 

electron donating site for O2
●-/H2O2 production in complex II. Therefore, if complex II was a 

significant source of ROS, blocking the UQ binding site with atpenin A5 would augment O2
●-

/H2O2 production during succinate oxidation. Since this is not the case, it can be concluded that 

complexes I and III are high capacity sites for ROS production in cardiac mitochondria. 
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3.2.4. Tissue specific effect of substrates in O2
●-/H2O2 production 

 In C57Bl/6N WT mice, it was observed that there were tissue specific effects in terms of 

the capacity of different substrates to stimulate O2
●-/H2O2 release from mitochondria. For example, 

it was observed that 2-oxoglutarate and pyruvate served as better substrates for O2
●-/H2O2 

production in liver mitochondria (Fig. 3.7) in comparison to cardiac mitochondria (Fig. 3.10). By 

contrast, opposite trends were observed when succinate served as the oxidizable substrate (Fig. 

3.12). Overall, this suggests that liver and cardiac mitochondria utilize different enzymes as high 

capacity sites for O2
●-/H2O2 production. To examine this effect further, the O2

●-/H2O2 production 

rates for liver and cardiac mitochondria oxidizing pyruvate, 2-oxoglutarate, or succinate was 

compared (Fig. 3.13). It was observed that pyruvate and 2-oxoglutarate were ~2-3-fold more 

effective than succinate at generating O2
●-/H2O2 in liver mitochondria. By contrast, succinate was 

~4-fold more effective at stimulating O2
●-/H2O2 release in cardiac mitochondria in comparison to 

pyruvate or 2-oxoglutarate (Fig. 3.13). The capacity of succinate to stimulate O2
●-/H2O2 production 

in cardiac and liver mitochondria was also compared. As shown in Figure 3.13B, succinate was 

~4x more for effective and inducing O2
●-/H2O2 emission from cardiac mitochondria. Opposite 

findings were made with 2-oxoglutarate and pyruvate. Indeed, pyruvate and 2-oxoglutarate were 

~2-fold more effective at stimulating O2
●-/H2O2 formation in liver mitochondria (Fig, 3.13C & 

3.13D). Collectively, these findings demonstrate that liver and cardiac mitochondria utilize 

different enzyme combinations as high capacity sites for O2
●-/H2O2 production. Moreover, these 

findings confirm a recent publication by Slade et al. which demonstrated that OGDH and complex 

III are the main sources of O2
●-/H2O2 in the liver whereas complex I and III are the chief sites in 

cardiac tissue (43, 63). 
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Figure 3.13: Tissue specific effects of different substrates on wildtype mice 

(A) Wildtype C57Bl/6N mitochondria supplemented 50 µM of various substrates. (B) Wildtype 

C57Bl/6N mitochondria supplemented with 50 µM succinate. Wildtype C57Bl/6N mitochondria 

supplemented with 50 µM malate and either 50 M (C) pyruvate or (D) 2-oxoglutarate. AUR 

florescence was measured at 565/600 nm. Stars represent significant differences between tissues 

while hashes represent significant differences within tissues, between genotypes. N=4-6, mean + 

SEM, (A) two-way ANOVA with a Fisher’s LSD post-hoc test, (B, C, & D) unpaired t-test. This 

figure shows replotted data from the previous data to highlight key differences.     
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3.2.5. GRX2 loss on proton gradient driven O2
●-/H2O2 production 

 The polarity of the mitochondrial inner membrane has been shown to play an integral role 

in influencing mitochondrial ROS production in various tissue types. In addition, protein S-

glutathionylation and GRX2 have been shown to modulate proton return to the matrix and the 

strength of the mitochondrial membrane potential (134, 141). Therefore, we decided to examine 

the impact of GRX2 deficiency on O2
●-/H2O2 production in mitochondria displaying differences 

in the rate of proton return to the matrix. In order to vary proton return, mitochondria were 

subjected to different respiratory states (states 2-4) which correspond to the stepwise addition of 

substrate, ADP, and oligomycin to a reaction chamber. Mitochondria were also supplemented with 

FCCP, a protonophore, to test the impact of proton gradient uncoupling on ROS production. The 

addition of pyruvate and malate induces state 2 respiration which corresponds to an increase in 

membrane potential. The addition of ADP stimulates state 3 respiration which augments proton 

return to the matrix through complex V lowering the membrane potential. Introducing oligomycin 

to the system causes the mitochondria to enter state 4 respiration. Oligomycin binds to the F0 

subunit of ATP synthase, blocking the return of protons to the matrix, which leads to 

hyperpolarization of the inner membrane. The addition of FCCP increases proton return to the 

matrix, dissipating the membrane potential. According to the prevailing theories, increasing the 

proton gradient should lead to an increase in the rate of mitochondrial ROS production, due to a 

slowing of electron transfer through the respiratory chain and an over-reduction of electron 

donating sites in the complexes. Likewise, decreasing the potential should lead to a decreased rate 

of mitochondrial ROS production. To our surprise induction of proton return with ADP or FCCP 

augmented O2
●-/H2O2 production in liver and cardiac mitochondria (Fig. 3.14). The addition of 

oligomycin did lead to an increase in O2
●-/H2O2 production in both tissues, which may be  
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Figure 3.14: Production of O2
●-/H2O2 during state 3 respiratory conditions between genotypes 

(A) Liver mitochondria (0.03 mg/ml) or (B) cardiac mitochondria (0.01 mg/ml) were incubated 

with 50 µM malate and pyruvate, and then either 1 mM ADP, 1 mM ADP + 4 µg/ml oligomycin 

or 1 mM ADP + 4 µg/ml oligomycin + 4 µM FCCP to examine O2
●-/H2O2 production. The rate of 

O2
●-/H2O2 production was measured using AUR at 565/600 nm. N=3-5, mean + SEM, one-way 

ANOVA with a Fischer’s LSD post-hoc test.  
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associated with the hyperpolarization of the mitochondrial inner membrane (Fig. 3.14). Our results 

indicate that there may not necessarily be a relationship between the mitochondrial membrane 

potential and the rate of O2
●-/H2O2 production.  

 In the liver mitochondria (Fig. 3.14A), there was a significant decrease in the rate of O2
●-

/H2O2 production for GRX2+/- when the proton gradient was dissipated with FCCP. A more intense 

difference between genotypes was noticed in the cardiac mitochondria, where GRX2+/- mice 

showed decreased rates of O2
●-/H2O2 production in state 2 and 4 respiration, and both GRX2+/- and 

GRX2-/- mice showed decreased respiration when treated with FCCP. This decrease in O2
●-/H2O2 

production is possibly due to changes in S-glutathionylation in the mitochondrial matrix.  

 

3.3. Mitochondrial respiration 

 The bioenergetics of isolated mitochondrial samples was assessed for the liver and cardiac 

tissue to look for any changes in respiration caused by GRX2 deficiency, as well as to ensure that 

the mitochondria remained functional after isolation. In liver tissue, GRX2+/- mice showed 

significant increases in both state 2 and 3 respiration (Fig. 3.15A) However, in cardiac tissue there 

was a significant decrease in state 3 respiration for both GRX2+/- and GRX2-/- mice (Fig. 3.15B). 

This decrease in state 3 respiration in cardiac mitochondria deficient in GRX2 was observed in a 

previous study (117), and is likely due to increased S-glutathionylation of complex I. The loss of 

GRX2, leading to increased complex I S-glutathionylation, likely decreases the activity of complex 

I, diminishing the flow of electrons through the ETC, causing reduced oxygen consumption.  

 The RCR is a measurement of the mitochondrial coupling state. Typical RCR values vary 

from 3 to 15 (142), which indicate that the mitochondria are functional and undamaged from the 

isolation procedure. RCR values for each genotype in cardiac tissue were measured and found to  
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Figure 3.15: Changes in respiratory states due to loss of GRX2 

(A) The oxygen consumption of 0.5 mg/ml of liver mitochondria from each genotype was 

measured with a clarke electrode. All rates were normalized to the rate of oxygen consumption 

with the addition of 4 μM antimycin A. (B) The oxygen consumption was measured under the 

same conditions with 0.1-0.2 mg/ml of cardiac mitochondria from each genotype. N=4, mean + 

SEM, one-way ANOVA with a Fischer’s LSD post-hoc test.  
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be consistently approximately 3, indicating the mitochondria were functioning properly (Fig. 

3.16). In the liver tissue, WT and GRX2+/- mice had consistent RCR values, however, GRX2-/- 

mice had a significantly increased RCR, almost twice as large as WT mice (Fig. 3.16). This may 

indicate that the loss of GRX2 in liver tissue causes increased mitochondrial coupling, due to 

decreases in proton leak. This may be due to changes in the S-glutathionylation profile of the 

mitochondria.  
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Figure 3.16: Deregulated S-glutathionylation in the liver may lead to decreased proton leak 

The RCR of mitochondria from each genotype was measured as the ratio of state 3: state 4 

respiration. RCR values were compared within tissues. N=4, mean + SEM, one-way ANOVA 

with a Fischer’s LSD post-hoc test.   
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4. Discussion 

4.1. Summary 

 The purpose of this investigation was to examine the role of the thiol oxidoreductase GRX2 

in the regulation of O2
●-/H2O2 production from various sites in liver and cardiac mitochondria. 

Using mice deficient for GRX2, mitochondria isolated from liver and cardiac tissue were examined 

for rates of O2
●-/H2O2 production using various substrate and inhibitor combinations. It was 

initially found that the major sources of O2
●-/H2O2 production differ between cardiac and liver 

mitochondria. In liver mitochondria, the major sources of O2
●-/H2O2 included Krebs cycle enzyme 

OGDH and complex III of the ETC. Meanwhile, in cardiac mitochondria, complexes I and III of 

the ETC served as the high capacity sites for ROS release. It was also found that GRX2 deficiency 

affected O2
●-/H2O2 production differently in liver and cardiac mitochondria. Most of the GRX2 

deficiency effects were associated with decreased O2
●-/H2O2 release from OGDH and PDH in liver 

mitochondria. By contrast, in cardiac mitochondria, the absence of GRX2 significantly augmented 

succinate induced O2
●-/H2O2 production by the ETC. 

 Measurement of the rate of O2
●-/H2O2 production in liver mitochondria with different 

substrates allowed for the identification of the high capacity sites for ROS production in this tissue. 

Pyruvate or 2-oxoglutarate were excellent substrates for O2
●-/H2O2 production, while 

supplementation with succinate induced low rates of O2
●-/H2O2 production. Inhibition of OGDH 

with KMV induced a large decrease in O2
●-/H2O2 production. Myxothiazol, a complex III inhibitor, 

also induced a small decrease in ROS production. These results indicate the Krebs cycle complexes 

OGDH, and likely PDH, along with complex III, are the major sources of ROS in liver 

mitochondria. The loss of GRX2 in liver mitochondria metabolizing pyruvate was found to cause 

decreased O2
●-/H2O2 production. This is likely due to increased S-glutathionylation of Krebs cycle 
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enzymes PDH and OGDH, which have already been shown to decrease O2
●-/H2O2 production 

following S-glutathionylation of the E2 subunit (44, 61). The protein abundance of PDH and 

OGDH was also found to be increased in liver mitochondria. It is likely that chronic deregulation 

of protein S-glutathionylation reactions due to GRX2 deficiency induces mitochondrial stress 

signals to increase PDH and OGDH in an effort to maintain Krebs cycle flux.  

 Mitochondria isolated from cardiac tissue show a very different profile from that of the 

liver. When supplemented with pyruvate or 2-oxoglutarate, the rates of O2
●-/H2O2 production from 

cardiac mitochondria are much lower than the liver. When metabolizing these substrates, KMV 

had little effect on O2
●-/H2O2 production, and the use of myxothiazol increased ROS production. 

Rates of O2
●-/H2O2 production by cardiac mitochondria oxidizing succinate on the other hand were 

~4x higher than the rate of ROS release during pyruvate or 2-oxoglutarate metabolism. Inhibition 

of the complexes in the ETC during succinate supplementation lead to drastic decreases in O2
●-

/H2O2 production. All this evidence suggests that complexes I and III are the major sources of ROS 

in cardiac mitochondria. GRX2 deficiency in cardiac mitochondria had no effect on O2
●-/H2O2 

production during pyruvate and 2-oxoglutarate oxidation. However, cardiac mitochondria from 

GRX2+/- or GRX2-/- mice displayed a significant increase O2
●-/H2O2 production when succinate 

was being metabolized. This may be caused by increased S-glutathionylation of complex I in 

cardiac mitochondria, which has previously been shown to lead to increased O2
●-/H2O2 production 

from the complex (121). GRX2 deficiency also leads to decreased state 3 respiration in cardiac 

mitochondria, as S-glutathionylation of complex I has been shown to decrease its activity (117, 

123).  

 The combined results of this study indicate that GRX2 plays an important role in regulating 

the production of O2
●-/H2O2 in mitochondria by altering the S-glutathionylation profile. The effects 
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of GRX2 and S-glutathionylation on ROS production are different between cardiac and liver 

tissue, as the amount of ROS emitted from mitochondrial sites of production differs between the 

two tissues.  

4.2. Importance of GRX2 in health and development 

4.2.1. GRX2 is required to regulate cell metabolism and survival 

 The role of GRX2 in cellular models has been thoroughly examined to determine its 

significance in maintaining mitochondrial function. GRX2 has been found to have a protective 

effect in HeLa cells when challenged with doxorubicin, an anti-cancer drug which is known to 

increase the production of ROS (112). Silencing GRX2 expression via short inferring RNA, led to 

the dramatic sensitization of HeLa cells to cell death by doxorubicin treatment, decreasing the 

median effective dosage from 40 M to 0.7 M (112). These results suggest that the presence of 

GRX2 is required to restore the redox status of one or more targets in the mitochondria, preventing 

cell death during increased levels of oxidative stress (112).  

 The function of GRX2 in protecting cells from cell death through prevention of oxidative 

stress has been also been examined in cells overexpressing GRX2. Overexpression of GRX2 in 

HeLa cells was found to decrease susceptibility to apoptosis following doxorubicin treatment 

(118). Indeed, GRX2 overexpression inhibited cytochrome c release, preventing the induction of 

intrinsic apoptotic signaling cascades (118). Increased expression of GRX2 was found to prevent 

the doxorubicin-mediated loss of cardiolipin, the lipid which anchors cytochrome c to the 

mitochondrial inner membrane (118). Other studies suggest that the ability of GRX2 to prevent 

apoptosis induced by oxidative stress lies in its ability to preserve the function of complex I. Wu 

et al. (143) found that in human epithelial lens cells, that GRX2 protected cells from H2O2 

mediated apoptosis, which correlated with increased complex I activity. By contrast, in GRX2 
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knock down cells, the activity of complex I was significantly diminished following a H2O2 

challenge (143). Using primary cell culture of epithelial lens cells collected from GRX2 knock out 

mice, further proof was found that GRX2 protects complex I function (135). Treating these cells 

with H2O2 showed that the loss of GRX2 induces mitochondrial inner membrane leakage, 

decreased complex I activity and ATP production, and a weakened ability to detoxify H2O2 (135). 

Results from this thesis agree with these findings, as the loss of GRX2 was found to increase the 

production of ROS from complex I in cardiac cells, likely due to increased S-glutathionylation of 

the complex.  

 Cellular studies have also been used to examine the function of GRX2 in protection against 

disease. GRX2 has been studied for its role in neuronal dopamine-induced apoptosis, a 

phenomenon seen in neurodegenerative diseases, such as Parkinson’s disease. Using a primary 

culture of granule neurons from BALB/c mice, the overexpression of GRX2 was found to reduce 

dopamine induced apoptosis by stabilizing nuclear factor NF-B, which resulted in the expression 

of genes related to the immune response, stress, inflammation, and the inhibition of apoptosis 

(144). This was mediated by GRX2 induced expression of Ref-1, a redox controlled factor that 

activates NF-B (144). The ability of GRX2 to maintain a reduced mitochondrial matrix may also 

be important in the prevention of amyotrophic lateral sclerosis. The overexpression of GRX2 in 

both murine and human neuronal cell lines has been shown to prevent the aggregation of mutant 

SOD1 in mitochondria (145). Mutant SOD1 has been suggested as a possible cause for the 

degeneration of motor neurons, and its aggregation results in the impairment of oxidative 

phosphorylation (145). Finally, GRX2 has also been found to protect oligodendrocytes from 

nitrosative stress by scavenging nitric oxide (146).The role of GRX2 in maintaining functionality 

in the mitochondrial matrix has been linked to the prevention of many cellular dysfunctions. The 
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evidence discussed above is indicative of the importance of GRX2 and S-glutathionylation in the 

mitochondria. It is possible that GRX2 plays a major role in healthy cellular function and its loss 

can be detrimental. Exploring the mechanisms by which GRX2 exerts its control may lead to 

further understanding of certain diseases.  

4.2.2. Understanding the physiological function of GRX2 using mouse models  

 GRX2 is required to protect from oxidative stress and maintain mitochondrial function 

through reversible S-glutathionylation reactions. To understand its physiological function, 

transgenic animals either deficient or overexpressing GRX2 have been utilized in a number of 

studies. Most of this work has focused on the function of GRX2 in regulating cardiac physiology 

and protecting heart tissue from oxidative stress. For instance, it was found that the overexpression 

of GRX2 protected cardiac tissue from doxorubicin-induced heart damage by preserving 

mitochondrial respiration, ATP production, and preventing the release of pro-apoptotic factors 

from the intermembrane space of mitochondria (111). Mice with increased GRX2 expression were 

also protected from a decline in left ventricular function and damage to cardiac tissue (111). 

Treatment of GRX2 transgenic mice with iBid, an inducer of apoptosis, also showed decreased 

release of cardiolipin when compared to WT mice (111). This indicates that regulation of protein 

S-glutathionylation in cardiac tissue is essential for maintaining its physiological function. In the 

present study, it was demonstrated that GRX2 deficiency augments succinate-induced ROS 

production which is associated with a substantial decrease in phosphorylating respiration. Cardiac 

tissue relies heavily on a steady supply of ATP to maintain its hemodynamic function. In addition, 

cardiomyocytes are quite vulnerable to the over production of ROS which can lead to oxidative 

stress and damage. Therefore, it is likely that the absence of GRX2 results in cardiac dysfunction 

by compromising the delivery of ATP while simultaneously exposing healthy heart cells to high 
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ROS levels. These effects are likely associated with the inability of GRX2 to catalyze reversible 

S-glutathionylation reactions.  

  The results from this thesis indicate that GRX2 is required for the regulation of ROS 

production in mitochondria. Many previous studies have highlighted the importance of GRX2 in 

maintaining proper health and development. Mice with a whole body GRX2 knock out have been 

extensively profiled and found to show certain detrimental characteristics. In a previous study, 

GRX2-/-  mice were found to display a slight decrease in body weight when compared to their WT 

littermates (134). This was related to deregulated proton leaks in skeletal muscle mitochondria 

which resulted in increased overall mitochondrial respiration and carbon catabolism (134). It needs 

to be emphasized though that GRX2 deficient mice do not display any changes in linear growth or 

food intake in comparison to WT litter mates (134). GRX2 deficient mice were also found to have 

significantly heavier hearts than WT mice (117). Upon closer examination, GRX2-/- mouse hearts 

were found to display left ventricular hypertrophy and fibrosis by 9 weeks of age (117). It was also 

found that left ventricular hypertrophy developed as early as 6 weeks of age, which was not 

associated with an increase in hypertension (117). In the same study, it was also found that hearts 

from GRX2-/- mice rely heavily on glucose as a source of ATP indicating that mice develop 

metabolic inflexibility which is normally associated with mitochondrial dysfunction, a hallmark 

of cardiac disease (117). At the molecular level, GRX2 deficient mice were found to have a lower 

GSH/GSSG ratio than WT mice, which was associated with an increase in the total number of S-

glutathionylated proteins (117). In the present study, it was also found that GRX2 knockout leads 

to hyper-glutathionylation of the mitochondrial proteome in cardiac and liver tissue (134, 135). In 

addition, a previous report showed that elimination of GRX2 induces mitochondrial fragmentation 

and alterations in the expression of the respiratory complexes, including complex I, and the 



 98 

availability of cytochrome c (117). GRX2 is well known to target complex I in cardiac tissue for 

regulation by reversible S-glutathionylation (121). Without GRX2 present to regulate S-

glutathionylation reactions, increased S-glutathionylation of complex I causes significant increases 

in ROS production (121). Since complex I is an integral source of O2
●-/H2O2 in cardiac 

mitochondria, deregulation of its S-glutathionylation due to a loss in GRX2 function is the likely 

cause for oxidative damage to cardiac tissue. In this thesis, cardiac mitochondria from GRX2-/- 

mice displayed decreased state 3 respiration, an observation that is consistent with other reports 

showing GRX2 and protein S-glutathionylation are vital for regulating complex I activity and 

mitochondrial respiration. This change in mitochondrial respiration has been previously noted, and 

further research has also found that GRX2-/- mice have decreased ATP production (117). 

Modulation of mitochondrial bioenergetics in cardiac tissue, causing increased ROS production 

and decreased oxidative phosphorylation efficiency, are likely the cause of the ventricular 

hypertrophy and hypertension noted in these mice. This evidence indicates that the presence of 

GRX2 is required for normal cardiac function, as S-glutathionylation reactions must be regulated 

in the mitochondria to prevent unwanted changes in mitochondrial physiology.  

 The loss of GRX2 expression in the mouse model has not been found to cause any 

subsequent upregulation of related enzymes in the oxidoreductase family. This study, as well as 

others (113), found no compensatory increase in GRX1. This is expected since GRX1 resides in 

the mitochondrial intermembrane space and thus would not be able to compensate for a loss in 

GRX2 function. Another more likely candidate for GRX2 compensation would be TRX2, a 

member of the thioredoxin-fold family that has been implicated in driving S-glutathionylation 

reactions. However, it has also been shown that the loss of GRX2 does not lead to compensatory 

increases in TRX1 or TRX2 in mitochondria isolated from lens, muscle, or cardiac tissue (117, 



 99 

134, 135). It should be noted though that several studies have documented that TRX2 does not 

catalyze S-glutathionylation since it lacks the GSH motif required to remove GSH from a target 

protein (147). It is possible that the loss of GRX2 may lead to regulation of S-glutathionylation 

reactions by GST. Isoforms of GST are present in the mitochondrial matrix (148), but little is 

known about whether these enzymes have the ability to perform reversible S-glutathionylation 

reactions in the matrix of mitochondria.  

 A GRX2 whole body knock out model has also been used in the study of cataract formation. 

Previous studies in mouse epithelial lens cells have indicated that GRX2 is required to maintain 

the functionality of complex I during oxidative stress, preserving mitochondrial oxidative 

phosphorylation (135). Compared to WT mice, GRX2-/- mice were shown to induce the formation 

of age-related cataract development approximately three months sooner (113). The lenses of the 

GRX2 null mice contained lower levels of protein thiols and GSH than WT mouse lenses, with a 

significant increase in S-glutathionylation proteins (113). The inappropriate addition of GSH to 

proteins may lead to protein destabilization, and the eventual formation of water-insoluble protein 

aggregates that cause clouding of the lens (113). The mitochondrial function in the lenses of GRX2 

null mice was also affected. Mitochondrial preparations from the GRX2 null lens showed 

decreased complex I activity as well as decreased overall ATP production (113). These results 

indicate that multiple tissues require the activity of GRX2 to maintain properly functioning 

mitochondria, and to allow the tissue to perform its physiological function.  

4.2.3. The role of GRX2 in embryogenesis 

 In addition to its role in maintaining mitochondrial function, GRX2 has also been shown 

to be required for proper embryonic development. GRX2 has been implicated in the cardiac, 

vascular and brain development. In the zebrafish model, GRX2 has been found to be necessary for 
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the migrations of cardiac neural crest cells into the primary heart field (116). The knockdown of 

GRX2 led to impaired migration of these cells, causing obstructed blood flow and reduced 

pumping efficacy due to disrupted looping of the cardiac tube (116). It was suggested that this 

impairment is caused by disruptions in the reversible S-glutathionylation of actin by GRX2 (116).  

GRX2 deficiency also causes delayed and disordered blood vessel network development (115). 

Investigation of this phenomenon led to the discovery that for proper blood vessel development, 

the presence of GRX2 is required for the deglutathionylation of a certain cysteine residue on 

NAD+-dependant protein deacetylase sirtuin-1 (115). This mechanism was also confirmed in HeLa 

cells, demonstrating that it is applicable to humans as well as zebrafish. Lastly, the role of GRX2 

was also studied in zebrafish brain development. Silencing the expression of GRX2 in a zebrafish 

model led to increased apoptosisin neurons, as well as the loss of the ability to develop an axonal 

scaffold (114). In a zebrafish and human cell model, it was demonstrated that GRX2 is required 

for the thiol redox regulation of collapsin response mediator protein 2, which is needed for axon 

growth guidance (114). These studies further highlight the important role of GRX2 in numerous 

thiol redox reactions that are required throughout the body for health and development.  

4.3. Production of O2
●-/H2O2 during pyruvate/2-oxoglutarate oxidation  

4.3.1. Liver mitochondria metabolizing pyruvate/2-oxoglutarate 

 The results of this thesis indicate that the majority of O2
●-/H2O2 produced in liver 

mitochondria comes OGDH of the Krebs cycle and complex III of the ETC. PDH is also an 

important source but produces less ROS than OGDH and complex III. Previous studies examining 

the main sources of ROS production in liver mitochondria agree with these findings. Findings by 

Slade et al. (62) showed that while complex III is the main source of O2
●-/H2O2 production, OGDH 

also produces a significant amount. Complexes I and III are traditionally viewed as the main 
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sources of ROS production in mitochondria (86). However, identification of PDH and OGDH as 

important sources of mitochondrial O2
●-/H2O2 has challenged this view. Indeed, PDH and OGDH 

have been found to be important sources of ROS production in liver, muscle, and brain 

mitochondria (44, 128). In fact, in skeletal muscle, PDH and OGDH have been found to produce 

4x and 8x more ROS than complex I during the oxidation of Krebs cycle-linked substrates (128). 

Although PDH and OGDH have analogous structures, their ROS production potentials are not 

equal. In skeletal muscle, PDH is found to produce about half as much ROS as OGDH (128). In 

liver mitochondria, OGDH accounts for ~35% of the ROS emission whereas PDH produces ~7% 

of the total amount of O2
●-/H2O2 (62). In this thesis, the inhibition of OGDH with KMV in liver 

mitochondria led to a ~85% decrease in O2
●-/H2O2 production when pyruvate or 2-oxoglutarate 

served as the substrate. It is important to emphasize that malate was also included in the reaction 

mixtures to complete the Krebs cycle and ensure that any acetyl-CoA formed by PDH can be 

condensed with oxaloacetate allowing for further oxidation. Therefore, as in previous studies, 

OGDH is a far more significant source for O2
●-/H2O2 than PDH.  

 Mitochondrial O2
●-/H2O2 production depends on the concentration and redox state of the 

electron donating site. Both OGDH and PDH were also more abundant in liver mitochondria 

isolated from GRX2-/- mice. Therefore, we decided to normalize the amount of O2
●-/H2O2 

production to the abundance of each complex since the overall concentration of both enzymes will 

influence the rate of ROS release. Normalizing the results to overall PDH and OGDH content 

revealed that a deficiency in GRX2 results in a significant decrease in O2
●-/H2O2 production. It is 

likely that this is associated with the increased S-glutathionylation of OGDH and PDH, since it 

has been established in two previous studies that GRX2 is required to deglutathionylate both 

enzymes (44, 61). The compensatory increase in PDH and OGDH protein abundance is either 
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related to mitochondrial stress signaling to the nucleus or an increase in mitochondrial 

proliferation.  

 It was shown nearly a decade ago that OGDH can be S-glutathionylated on the lipoic acid 

site of its E2 subunit (130). This S-glutathionylation was found to occur when mitochondria were 

challenged with high levels of H2O2 (130). Hydrogen peroxide has a high activation energy which 

prevents it from spontaneously oxidizing most protein cysteine thiols. However, at high enough 

concentrations, H2O2 can oxidize protein cysteine thiols forming highly nucleophilic SOH. 

Sulfenic acid is very unstable and can undergo a range of modifications – during oxidative stress 

sulfenic acids can either be irreversibly oxidized by H2O2 further or can be covalently modified by 

lipid peroxidation degradation products like 4-HNE (99). The vicinal thiols on the lipoic acid of 

the E2 subunit in OGDH and PDH are highly sensitive oxidative deactivation by H2O2 (22). 

Moreover, oxidative deactivation of OGDH occurs in several neurological and metabolic disorders 

(99). S-glutathionylation of OGDH is required to protect the enzyme complex from irreversible 

oxidative deactivation (130). In addition, the GSH moiety can be removed by the action of GRX2 

(22). On top of this protective function of S-glutathionylation, recent work by our group has found 

that this redox sensitive modification can also regulate ROS emission from OGDH. OGDH has 

been shown to alter its production of O2
●-/H2O2 depending on its state of S-glutathionylation (132). 

S-glutathionylation of the lipoic acid residues of OGDH leads to decreased production of O2
●-

/H2O2 during forward electron flow, as GSH blocks the flow of electrons from the oxidation of 2-

oxoglutarate, to the E3 subunit, where O2
●-/H2O2 is produced by the flavin site (132). Based on 

this, it seems likely that the loss of GRX2 leads to hyperglutathionylation of matrix proteome, 

including the S-glutathionylation of OGDH, decreasing its production of O2
●-/H2O2. Since OGDH 
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is a major source of ROS in liver mitochondria, this change causes a large decrease in the overall 

production of O2
●-/H2O2.  

 Fisher-Wellman et al. showed in two studies that depletion of mitochondrial GSH or 

NADPH augments O2
●-/H2O2 production by PDH (127). It was hypothesized that this regulation 

may actually occur through the S-glutathionylation of PDH (127). However, in the same study, 

the authors used GSH depleting agents to study ROS production by PDH and were thus unable to 

determine if the change in O2
●-/H2O2 production was related to the depletion of a critical 

antioxidant, GSH, or via redox sensing by PDH. Our group provided the first evidence that PDH 

can undergo S-glutathionylation, an observation that should not be surprising given that PDH is 

highly homologous to OGDH (61). S-glutathionylation of PDH also lowers the production of O2
●-

/H2O2 in the forward electron transfer (61). Moreover, in the same study it was found that GRX2 

can remove GSH from PDH. Therefore, it is likely that the loss of GRX2 also induces the S-

glutathionylation of PDH, decreasing its O2
●-/H2O2 production and contributing to the overall 

decrease of ROS production in the mitochondria. However, as PDH is a less significant source of 

O2
●-/H2O2 than OGDH in liver tissue (44), it is likely that its inhibition has a lesser effect on the 

overall ROS production as compared to the S-glutathionylation of OGDH. The loss of GRX2 is 

likely to affect the S-glutathionylation status of both OGDH and PDH, as both complexes have 

been shown to be deglutathionylated by GRX2 (61, 132).  

4.3.2. Cardiac mitochondria metabolizing pyruvate/2-oxoglutarate 

 The results of this experiment indicate that both pyruvate and 2-oxoglutarate are poor 

substrates for inducing O2
●-/H2O2 production in isolated cardiac mitochondria. Utilization of either 

of these substrates induced O2
●-/H2O2 production rates approximately 5x lower than in liver 

mitochondria. This indicates that OGDH and PDH are not likely to be important sources of O2
●-
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/H2O2 production in cardiac mitochondria. A previous study by the Mailloux group (44) also found 

that liver mitochondria generated approximately ~3-4.5x more ROS than cardiac mitochondria, in 

the presence of either pyruvate or 2-oxoglutarate. Since the Krebs cycle is not found to be an 

important source of ROS in cardiac mitochondria, inhibition of OGDH with KMV did not lead to 

a decrease in O2
●-/H2O2 production. The inhibition of complex III with myxothiazol led to an 

increase in O2
●-/H2O2 production. This indicates that complexes upstream of complex III may be 

important sites of ROS production, such as complexes I and II. Myxothiazol binds to the UQH2 

binding site of complex III, preventing the complex from accepting electrons. This leads to reverse 

electron transfer to complexes I and II, indicating a significant amount of ROS is being produced 

from either of these sites.  

 The loss of GRX2 in cardiac mitochondria did not lead to any significant change in O2
●-

/H2O2 production during supplementation with pyruvate or 2-oxoglutarate. Unlike liver 

mitochondria, there was also no changes in OGDH and PDH abundance between WT and GRX2 

deficient mice. Therefore, we did not normalize O2
●-/H2O2   production rates to enzyme content in 

this tissue. It’s possible that increased S-glutathionylation of Krebs cycle complexes does not have 

a very noticeable effect on overall ROS production rates in cardiac mitochondria, as they do not 

produce significant amounts of ROS in this tissue.  

4.4. Production of O2
●-/H2O2 during succinate supplementation 

4.4.1. Liver mitochondria metabolizing succinate 

 The supplementation of isolated liver mitochondria with succinate was determined not to 

be an effective method of inducing O2
●-/H2O2 production. The rates of O2

●-/H2O2 production in 

liver mitochondria were about ~3x lower in comparison to pyruvate or 2-oxoglutarate. This data 

supports the previously discussed notion that enzyme complexes PDH and OGDH are important 
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sources of O2
●-/H2O2 production in liver mitochondria. Electrons from succinate are passed to UQ 

via complex II of the ETC, therefore bypassing both PDH and OGDH, eliminating their ability to 

produce O2
●-/H2O2. Since the supplementation with succinate led to a significant decrease in O2

●-

/H2O2 production, we can deduce that complexes I and II are not significant sources of O2
●-/H2O2 

in liver mitochondria. It is likely that the O2
●-/H2O2 being produced with succinate 

supplementation is from complex III, which has previously been discussed to be a significant O2
●-

/H2O2 source in liver mitochondria (62). The use of ETC inhibitors in liver mitochondria 

supplemented with succinate also provides data which supports these conclusions. Mxyothiazol, 

an inhibitor of the UQH2 binding site of complex III, induced a small decrease in O2
●-/H2O2 

production. Both atpenin A5, a complex II UQ inhibitor, and rotenone, a complex I UQ inhibitor, 

did not alter the rate of O2
●-/H2O2 production in WT mice. These results indicate that when liver 

mitochondria are metabolizing succinate, complex III may be a significant source of O2
●-/H2O2 

production, while both complexes I and II are not.  

 We also noted a significant increase in O2
●-/H2O2 production in GRX2+/- mouse liver tissue, 

as compared to WT, during succinate supplementation. This is possibly due to increased S-

glutathionylation of complex I, which has been shown to lead to increased production of O2
●-/H2O2 

(121). While complex I was not found in the liver to be a significant source of O2
●-/H2O2 in the 

liver, it’s possible that increased S-glutathionylation induced increased rates of O2
●-/H2O2 

production during reverse electron flow from complex II. Previous research with GRX2 deficient 

mice has shown that they present with increased S-glutathionylation of complex I, leading to 

decreased activity (117). It is possible that since succinate results in such low rates of ROS 

production in the liver mitochondria, that it is difficult to know if the increase seen in heterozygotes 

is truly significant, or if it is based in error. A larger n value could fix this problem. However, it is 
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also possible that there is a compensatory response occurring in the GRX2 KO mice preventing 

the increase of ROS production, which is not present in the heterozygous mice.  

4.4.2. Cardiac mitochondria metabolizing succinate 

 Cardiac mitochondria supplemented with succinate showed a robust increase in O2
●-/H2O2 

production as compared to pyruvate or 2-oxoglutarate. These results indicate that succinate is an 

effective stimulator of O2
●-/H2O2 production in cardiac mitochondria. This is likely because sites 

of ROS production in the ETC have been found to be more significant sources of O2
●-/H2O2 

production in cardiac mitochondria when compared to sites in the Krebs cycle. Since succinate 

enters the ETC at complex II, it is able to stimulate O2
●-/H2O2 production from complexes II and 

III, as well as by complex I via reverse electron transport by UQH2. Inhibitors of ETC complexes 

were also used in cardiac mitochondria to pinpoint sites of O2
●-/H2O2 production. All three 

inhibitors: rotenone, atpenin A5, and mxyothiazol, had a noticeable effect, inducing large 

decreases in the rates of O2
●-/H2O2 production. Interpretation of these results lead to the conclusion 

that complexes I and III are significant sources of O2
●-/H2O2 production in cardiac mitochondria, 

as blocking electron transfer to these sites led to large decreases in overall O2
●-/H2O2 production. 

Complex II was found not to be a significant source of O2
●-/H2O2 production in cardiac tissue, as 

blocking electron flow out of the complex by atpenin A5 led to a decrease in O2
●-/H2O2 production, 

whereas an increase would be expected if complex II was a major site of O2
●-/H2O2 production. 

Previous research in brain mitochondria has shown similar results, with complexes I and III being 

the major sites of ROS production (149). Combined with the results from this thesis, it appears 

that tissues with high-oxygen requirements, such as brain and cardiac tissue, rely heavily on 

complexes I and III for ROS production.  As complex I is known to be an important site in the 

mitochondria for regulation of ROS production (117, 121, 123), this likely allows high-oxygen 
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tissues to control their ROS production and oxidative phosphorylation efficiency by altering the 

glutathionylation state of complex I.  

 GRX2 deficient mice also showed significant increases in O2
●-/H2O2 production as 

compared to WT mice during succinate supplementation. Both GRX2-/- and GRX2+/- mouse 

cardiac mitochondria showed levels of O2
●-/H2O2 production approximately twice as large as WT 

mice. This increase in O2
●-/H2O2 due to the loss of GRX2, like in the liver tissue, is also likely due 

to increases in the S-glutathionylation status of complex I. Since complex I is a much more 

significant source of ROS in cardiac tissue, rates of O2
●-/H2O2 production are very significantly 

increased when S-glutathionylated in the absence of GRX2. The increased S-glutathionylation of 

complex I is very likely in GRX2 deficient mice as they showed decreased state 3 respiration, 

likely due to the decreased activity of complex I which occurs when S-glutathionylated (121). 

Recent evidence in yeast studies have indicated that complex III may also contain sites for S-

glutathionylation (140). It is possible that, like complex I, increased S-glutathionylation of 

complex III may increase O2
●-/H2O2 production, however this is only speculative as no studies 

have yet examined S-glutathionylation of complex III in mammals and its effects on ROS 

production.  

4.5. Proton gradient on O2
●-/H2O2 production 

 The theory that mild uncoupling of mitochondria may reduce ROS induced damage has 

been widely examined, and still there is much debate about the veracity of this hypothesis. In this 

study, there seemed to be no correlation between the proton gradient and the rate of O2
●-/H2O2 

production in liver or cardiac tissue. The addition of FCCP, which dissipates the mitochondrial 

membrane potential, led to an increase in O2
●-/H2O2 production in both tissues. This contrasts with 

the theory that decreases in membrane potential should lead to reduced ROS production.  However, 
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there is much evidence that does not support this theory. Previous research has indicated that ROS 

production from complex I-linked substrates is not sensitive to decreases in the proton gradient 

mediated by chemical uncouplers in liver or heart tissue (150). However, some studies have found 

a correlation (76). The evidence for the regulation of ROS production by mild uncoupling through 

UCP 1/2/3 has been widely disputed (151). Therefore, the results obtained in this study support 

the emerging theory that membrane potential does not play a role in controlling the amount of 

ROS produced in the mitochondria. 

4.6. Conclusions 

The present study demonstrates that protein S-glutathionylation reactions mediated by GRX2 

are integral for the regulation of mitochondrial O2
●-/H2O2 production. In addition, the evidence 

presented herein indicates that S-glutathionylation reactions target different enzymes in different 

tissues. For example, GRX2 deficiency decreased pyruvate and 2-oxoglutarate driven O2
●-/H2O2 

release in liver, an effect that was absent in cardiac mitochondria. This indicates that PDH and 

OGDH are targets for regulation by GRX2 in liver mitochondria. By contrast, GRX2 deletion 

augmented succinate driven ROS production in cardiac mitochondria, which is most likely related 

to the S-glutathionylation of complex I. Therefore, we can surmise that GRX2 targets high capacity 

sites of ROS production for regulation by S-glutathionylation. Loss of this function compromises 

the regulation of mitochondrial O2
●-/H2O2 production which can either limit mitochondrial ROS 

signaling or induce oxidative stress due to over production. In aggregate, the results collected in 

this study illustrate that redox signals are vital for regulating mitochondrial O2
●-/H2O2 production. 

Based on this, we hypothesize that mitochondrial S-glutathionylation reactions are required to 

regulate mitochondrial ROS signaling. Furthermore, our results demonstrate that GRX2-mediated 
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S-glutathionylation reactions target different enzymes in different tissues to properly modulate 

ROS production.  

4.7. Future Directions 

Based upon the results obtained in this thesis, future directions for this work will include: 

1. Challenging the GRX2 deficient mice with a high fat diet and examining changes in 

ROS production as compared to WT mice 

2. Cardiac ischemia reperfusion modelling and doxorubicin challenging of GRX2 

deficient cardiac mitochondria 

3. Investigation of how S-glutathionylation reactions modulate the production of 

mitochondrial ROS in skeletal muscle 
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