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ABSTRACT 

Pitting is one of the most challenging forms of corrosion to study and model due to complex 

pit behavior. Pitting can occur in different engineering alloys and can lead to catastrophic 

consequences. Pits are usually latent or difficult-to-detect and resulting degradation often 

causes in-service failure of process equipment. Therefore, the ability to predict pit behavior is 

key to design and maintenance of assets. In particular, pitting corrosion is a significant 

challenge in marine environments and offshore operations due to remoteness of operations 

and hidden damage under insulations. Thus, the ability to assess risk and estimate remaining 

life of assets affected by pitting corrosion is necessary for timely maintenance and safe 

operation of assets.  

This thesis proposes a methodology to assess and dynamically update the risk of pressurized 

components affected by pitting corrosion. To take into consideration the time-dependent 

growth of pits, the application of non-homogenous Markov process is proposed to model the 

maximum pit depth. The integration of the developed maximum pit model into a pressure-

resistance model is proposed to predict the failure probability of affected components. An 

economic consequence analysis model is developed to estimate both business and accidental 

losses due to failure of the affected component. Then, risk is estimated by integrating models 

developed for probability of failure and associated consequences. The application of 

Bayesian analysis is proposed to update estimated risk as new inspection data gets available 

and also as economic condition of the process evolves. This work also proposes a risk 

management strategy including corrosion prevention, control and monitoring measures to 

make effective decision related to pitting corrosion. The application of the proposed methods 

is demonstrated using different case studies.   
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1. INTRODUCTION 

 

1.1. Overview 

1.1.1. Background  

DNV-RP-C302 [1] reported that  60% of the world’s offshore structures have passed 

their theoretical design life of 20 years; many more approaching the end of their design 

life. Offshore structures often are being kept in operation for a prolonged period of time 

beyond their design life [1]. There is a need to manage material deterioration to ensure 

the ongoing integrity and safety of these aging structures. The process components in 

offshore operations are usually insulated to conserve energy and protect equipment 

against external environment. The insulation adds an extra level of complexity to the 

integrity management of these assets due to potential initiation and growth of corrosion 

under insulation, such as pitting corrosion. 

Pitting is defined as localized regions of metal loss that is characterized by a pit diameter 

on the order of the plate thickness or less, and a pit depth that is less than the plate 

thickness [2]. Pitting is one of the most destructive forms of corrosion as it is hard to 

detect and predict. Small pits can remain undetected using traditional visual inspection 

methods as corrosion products and equipment insulation cover the pits. More advanced 

inspection methods such as ultrasonic and radiography inspections may also be unable to 

effectively detect pits as small narrow pits have minimal metal loss. Undetected pits can 

result in the failure of engineering systems, with subsequent threats to people, assets and 

the environment. 
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In offshore structures, pitting usually occurs in materials that are coated or naturally 

protected by their passive layers [3]. Pitting corrosion damage is identified by Engelhardt 

et al. [3] as a three stage process including:  

i. Stage 1: Nucleation: in this stage, pits are initiated (nucleated)  

ii. Stage 2: Propagation: here, some pits begin to grow  

iii. Stage 3: Re-passivation: this stage includes pits that cease to continue to grow 

Stage 1 of the pitting mechanism is nucleation. Steel alloys, such as stainless steel and 

aluminum alloys, are comprised of a passive oxide layer that can form on the metal 

surface [4], [5]. For other types of steel, such as carbon steel, a protective coating is used 

for corrosion protection. However, such passive films or protective coatings are often 

susceptible to localized damages. A damage in the protective layer, either natural or 

applied, provides a nucleation point for the formation of pits in the presence of an 

electrolyte containing an aggressive anion [6]. The breakdown layer can be due to salt 

particles in the solution or due to other factors including chemical or physical 

heterogeneity at the surface, including second phase particles, inclusions, solute-

segregated grain boundaries, flaws, mechanical damage or dislocations [7]–[9]. 

Pit propagation is the second stage of pitting mechanism. Pitting growth is an 

autocatalytic reaction; once a pit starts to grow, the local conditions are altered so that 

further pit growth is promoted [10], [11]. Figure 1.1 shows the pitting growth mechanism 

on the metal, M, in a marine environment that contains Cl-. Dissolution of iron reaction 

occurs along with oxygen reduction. Fe2+ ions attract negative ions (Cl-) and as the result 

of the hydrolysis reaction, Fe(OH)2 cap is created over the pit and the pH of the 
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electrolyte inside the pit decreases. This creates a self-propagating system where the 

increased acidity in the pit cavity accelerates pitting corrosion of the steel walls [9], [12]. 
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Figure 1.1. Autocatalytic process occurring in a corrosion pit; adopted from [11] and modified by the 

author 

 

All pits that are initiated do not always continue to propagate. Pits can re-passivate and 

stop growing in materials that have a naturally produced passive layer such as stainless 

steels. According to Novak [13], the reason for pit re-passivation is an increase in the 

internal resistance of the local cells within the pit, due to the pit filling with corrosion 

products, the drying out of the surface and the reaction being limited by passive film of 

the cathode [9]. 

Pitting corrosion is one of the most expensive and challenging forms of corrosion to 

prevent by design. As discussed earlier, pits can attack carbon steel as well as the 

expensive engineering alloys, such as stainless steels and aluminum alloys. They can lead 

to accelerated failure of structural components by perforation or by acting as an initiation 

site for cracking [14]. Moreover, the occurrence of pits and their relative size in a region 

of a component are typically random and poorly understood [2]. Consequently, pitting 
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corrosion has been an active area of research to better understand and predict pitting 

behaviour.  

The charts in Figure 1.2 shows the cumulative trend of the journal and conference 

publications over time in the domain of pitting corrosion. This cumulative trend can be 

used as an index of the importance of pitting corrosion. The area charts in Figure 1.2 

show the trend of pitting corrosion publications in different disciplines. It is evident from 

Figure 1.2 that the number of publications focusing on pitting corrosion has increased 

significantly in recent decades, especially in the period of 1990 to 2010. In particular, 

engineering and material science fields have seen a sharp increase in the number of 

publications. This substantial increase can be attributed to the industries’ increased 

awareness of the importance of shifting from traditional reactive interval-based 

inspections and maintenance to proactive methods by understanding and predicting 

corrosion mechanisms and potential failure.   

 

Figure 1.2. The trend of publications in the domain of pitting corrosion over time 
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Figure 1.3 provides a holistic view of the pitting corrosion knowledge evolution over 

time. Figure 1.3 is developed by collecting publications from the Web of Science 

(www.webofknowledge.com) and the Scopus databases (www.scopus.com) in which the 

keywords identified in Figure 1.3 and “pitting corrosion” have co-occurred. As shown in 

Figure 1.3, the number of co-occurrences of keywords such as modelling, mechanisms 

and growth has increased sharply over the past two decades. This shows that researchers 

have responded to the industry’s need to develop more proactive integrity management 

methods by focusing on pitting mechanisms understanding and modelling. Other 

keywords such as “prediction” and “monitoring” have also been popular fields of 

research during this period. An important observation from Figure 1.3 is that topics such 

as “remaining life estimation”, “risk assessment” and “fitness-for-service assessment” of 

assets susceptible to pitting corrosion were almost unknown before the 1990s. These 

research areas have shown a very slow increase in popularity amongst researchers in the 

past decade. This observation highlights an important knowledge gap in pitting corrosion 

literature. Bridging this knowledge gap requires a shift toward risk-based integrity 

assessment methods to increase safety and prioritize inspection and maintenance 

resources.   
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Figure 1.3. The number of co-occurrences of “pitting corrosion” and some important keywords in 
journal and conference papers  
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piping and ASME Section VIII [18] for pressure vessels accepted the application of risk-

based techniques in inspection scheduling. Accordingly, inspection codes such as API 

510 [19] for pressure vessels, API 570 [20] for piping, and API 653 [21] for storage tanks 
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provides a detailed review of existing literature in the field of pitting corrosion risk 

assessment and fitness-for-service assessment.  

	

1.1.2. Pit Modeling 

The rate of pit growth can be used for predicting pitting behaviour of assets susceptible to 

pitting corrosion. Different corrosion growth rate models such as [22]–[29] have been 

developed to model the pitting rate. Table 1.1 provides a list of available pit growth rate 

models in the literature along with their characteristics and related references.  

Table 1.1. A list of major recommended pit growth rate model in the literature 

Model Characteristics 
Related 
References 

Single-Value 
Corrosion Growth Rate 
model 

• Constant value for pit growth rate 
• Growth rate is independent of age of asset and depth 

of corrosion feature 
• Deterministic model 
 

[29], [30] 

Linear Corrosion 
Growth Rate Model 

• Inline inspection (ILI) data should be available 
• Deterministic model 

 

[28], [31] 

Non-linear power law 
model 

• Deterministic approach 
• Inline inspection (ILI) data should be available 

 

[23], [30] 

Power law 
(Temperature and 
Stress Dependency) 
 

• Empirical model 
• Time independent 

 

[24], [30] 

Markov model • Requires the initial pit-depth distribution and soil-
pipe parameters 
 

[32], [30] 

Generalized Extreme 
Value Distribution 
(GEVD) model 
 

• Suitable for a generic textural soil 
• Complicated equations 

 

[28], [30] 
 

Gaussian model • The mean pit depth of the distribution, increased at a 
rate less than linear with time 
 

[27], [30] 

Gamma Process • Inline inspection (ILI) data should be available [26], [30] 

Bayesian network • Probabilistic model for the long-term pitting 
corrosion depth in marine environment  

[33] 
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Although pit growth rate and pit depth are important to evaluate the condition of an asset 

affected by pitting corrosion, the study of the deepest pits in large scale engineering 

structures is considered to be more relevant as it is the deepest pits that actually cause the 

system failure [34]. The Markov process [35] and Extreme Value Theory [36] are the two 

primary approaches which are often used in the literature to model maximum pit depth. 

While models based on extreme value theory have advantages such as simple practical 

applications, they have the major limitation of being static. To address this limitation, 

models based on the Markov process are introduced in the literature. In the Markov 

process, the material thickness is discretized in non-overlapping intervals, which 

correspond to the n possible Markov states i (i = 1, …, n). The assumption of the Markov 

process is that the probability of a pit growing deeper only depends on its current state.  

Besides the maximum pit depth, pit density (i.e. the number of pits in the unit area at each 

time) is another pit characteristic that is essential to estimate the overall risk for 

equipment affected by pitting corrosion. A comprehensive review of different maximum 

pit depth models, the Markov process, and pit density models are provided in Chapter 2.  

 

1.1.3. Fitness-for-Service Assessment 

Design codes are less useful to evaluate in-service degradation that may be found during 

subsequent inspections as they usually cover defects found during equipment fabrication 

[1]. The fitness-for-service (FFS) assessment, which is defined as “quantitative 

engineering evaluations that are performed to demonstrate the structural integrity of an 

in-service component that may contain a flaw or damage” [2], has been developed to 
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tackle this challenge by (i) evaluation of the current stage of damage, (ii) extrapolation 

from the current state to estimate the remaining safe and serviceable life [3], and (iii) 

providing guidelines to make “run, rerate, repair, or replace” decisions about equipment 

under pressure affected by damage and corrosion [37]. Research conducted and 

knowledge gained during the last couple of decades have led to the formulation of 

international standards and procedures for conducting FFS assessments such as BS 7910 

[38], API 579-1/ASME FFS-1 [2], FITNET [39], SINTAP [40], B31.G [17], R5 [41], R6 

[42] and RSE-M [43]. Among these standards, only API 579-1/ASME FFS-1 covers 

assessments of equipment susceptible to pitting corrosion. However, the FFS assessment 

in API 579-1/ASME FFS- 1 [2] is based on current pitting damage characteristics [37].  

 

1.1.4. Risk-Based Remaining Life Estimation 

The importance of using risk-based methods to schedule inspection and maintenance 

activities is now recognized by the industry to ensure safety while prioritizing limited 

resources. A risk-based approach can also provide a framework for remaining life 

evaluation and informed decision-making [44]. Several quantitative, semi-quantitative 

and qualitative models have been developed to help engineers to make risk-based 

decisions about damaged equipment [44]–[49] . 

Qualitative risk approaches assign subjective scores to the different factors that are 

thought to influence the probability and consequences of failure [50]. These scores are 

then combined using simple formulas to give an index representing the level of risk. 
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Semi-quantitative approaches use semi-quantitative models for consequence estimation 

as well as failure probability calculations [48], [50]–[52]. These approaches provide a 

tool to ascertain whether the estimated risk of failure satisfies a predetermined acceptance 

criterion [50]. Quantitative risk approaches such as [44], [53]–[57] estimate the level of 

risk based on direct estimates of the probability and consequences of failure. 

Risk is defined as the combination of three attributes: what can go wrong, how bad could 

it be, and how often might it happen. For risk estimation, both deterministic and 

probabilistic approaches are used in the literature to estimate failure probability due to 

corrosion. For instance, Race et al. [46] developed a deterministic corrosion scoring 

model based on corrosion susceptibility and severity [46]. In this study, the probability of 

failure is estimated using failure probability related to coating, cathodic protection and 

uncoated pipe. However, deterministic approaches are unable to incorporate the 

uncertainty associated with probability estimation. To address this shortcoming, 

probability distributions are usually used in the literature. In the case of corrosion, 

different studies have focused on developing probabilistic methods to estimate the failure 

probability in risk estimation, such as [58]–[66]. For example, in a study by [47] the 

authors used the thinning failure function proposed by Khan et al. [50] to assess failure of 

insulated piping. In this analysis, the variables are assumed to be random and follow 

normal distribution with a known mean and standard deviation [9]. 

Reliability assessment based on limit state function analysis has been another approach to 

probability assessment of corroded equipment. Hasan et al. [26] reviewed different burst 

pressure estimation models and provided guidelines to choose the best model based on 
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different factors such as component type, age, and type of service. Using burst pressure 

and state function, they estimated the failure probability for a corroded pipeline. The 

main shortcoming of the aforementioned models is that they are static models and the 

dynamic nature of a corrosion mechanism is not taken into consideration. The application 

of Bayesian network analysis has received increased attention in recent years to enable a 

dynamic estimation of failure probability [26], [67]–[69]. 

Risk analysis also requires analyzing the consequences of failure. Traditional 

consequence assessment techniques usually involve a variety of mathematical models, 

such as source and dispersion models that predict the release rate of hazardous materials, 

fire and explosion models, impact intensity models and toxic gas models [44], [70]–[74]. 

In these models, the consequences are usually estimated deterministically as a function of 

affected areas, ignoring the uncertainty associated with affecting parameters, which can 

lead to imprecise consequence analysis.    

	

1.1.5. Dynamic Risk Management 

The importance of using risk-based methods to schedule inspection and maintenance 

activities is now widely recognized by researchers and the industry to ensure safety while 

prioritizing the allocation of limited resources. Numerous quantitative, semi-quantitative 

and qualitative models have been developed to help engineers to make risk-based 

decisions about damaged equipment [44]–[49]. Most corrosion risk assessment methods 

discussed in the previous section have the common shortcoming of being static. 

However, pitting corrosion is a complex process and pit behaviour changes over time due 
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to different causes including, but not limited to, operational changes, feed variability, 

varying external environment and changes in asset conditions [9], [11]. Hence, it is 

essential to use a dynamic risk assessment approach which considers ‘prior’ knowledge 

of the pitting corrosion process along with inspection data and new information from the 

system in order to calibrate the model over time [75].  

Several studies have been conducted to investigate pit behaviour and models for pitting 

corrosion. These models are used in a variety of methods to predict failures, optimize 

maintenance and inspection schedules, and aid in material selection [56], [57], [65], [76]–

[80]. Pit models are also used in risk assessment to assess failure risk, remaining life 

estimation and risk-informed decision-making [44]. Moreover, there have been several 

efforts in dynamic corrosion risk assessment such as [44]–[49], [82]–[87]. However, this 

review observes that there is no model available for ‘dynamic risk assessment’ of pitting 

corrosion. The existing efforts in the field of dynamic evaluation of pitting corrosion are 

limited to updating pit behaviours [34], [75], [88]–[90] or the failure probability [90]–

[93]. A detailed review of the related literature is provided in Chapter 6 of this thesis.  

There is a need to develop a dynamic risk assessment model that can update pit behaviour 

and failure probability and use this information to update risk of failure due to pitting 

corrosion. Moreover, risk management strategies including prevention, control and 

mitigation measures should also be integrated with the developed dynamic risk 

assessment model to develop a risk management framework for pitting corrosion. A risk 

management approach is important for corrosion management to ensure appropriate 

resources and procedures are allocated with specific tasks to manage pitting corrosion. 
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Development of a dynamic risk management framework is one of the main objectives of 

this research. 

 

1.2. Knowledge Gap Analysis and Research Motivation 

As discussed earlier, pit density and maximum pit depth have been identified by most 

researchers as the key parameters to describe pit behaviour. There have been several 

attempts to model these pit characteristics. Also, risk-based assessments of corroded 

equipment have been investigated by several researchers for specific industries and 

components. However, in the case of pitting corrosion, it is observed that there has been a 

limited work on developing dynamic risk-based assessment methods; the majority of the 

existing works have covered pit modelling [34], [75], [88]–[90] or probability assessment 

[90]–[93]. Having evaluated the existing pitting evaluation and risk-based remaining life 

assessment methods, the following knowledge and technological gaps are identified: 

i. The effect of pitting characteristics such as pit depth and pit density on failure 

probability is not fully understood. There is a need to find an appropriate method 

to model and incorporate time-dependent pit behaviour in probability estimation.  

ii. The existing remaining life evaluation models are usually based on pit growth 

rates and the reduction of maximum allowable working pressure of corroded 

equipment. The application of a risk-based method for remaining life evaluation 

of an asset attacked by pitting corrosion is crucial to ensure consideration of both 

the probability and consequences of failure in decision-making.  
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iii. The current FFS assessment methods are based on known pitting damage and the 

procedure cannot be used for predictive FFS assessment and estimation of the 

pitting progression rate. Moreover, the uncertainties associated with input data, 

such as pit depth and pit density, are not taken into consideration.  

iv. Most existing pit models and risk assessment techniques are static in nature. 

There is a need to develop dynamic pit evaluation and dynamic risk assessment 

models to update estimated pit depths, and the estimated remaining life, based on 

system information such as inspection data.  

v. To estimate the consequences of failure, traditional approaches ignore the 

uncertainty associated with loss estimations when using deterministic values for 

losses. Moreover, the current methods do not consider the time value of money 

when estimating future losses based on the current dollar value. 

vi. There is a lack of a dynamic risk management framework for pitting corrosion to 

incorporate the effect of management measures in the risk assessment process. 

 

1.3. Objectives and Scope 

The proposed models in this thesis perform the required pitting evaluation by answering 

these questions:  

1. What is the probability of failure of an affected asset by pitting in future?  

2. How does inspection data affect the estimated probability? 

3. If failure happens, what will be the consequences?  
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4. What will be the effect of a corrosion remediation technique on a susceptible 

asset?  

To answer these questions, the following research objectives are identified for this 

research (illustrated in Figure 1.4): 

1. To develop a dynamic probabilistic pit evaluation methodology and study the 

importance of different parameters in modeling the pitting. 

2. To develop a predictive Fitness-For-Service (FFS) assessment for pitting 

corrosion.  

3. To develop a methodology for risk-based remaining life evaluation of assets 

affected by pitting corrosion. 

4. To integrate an economical consequence analysis model for assets susceptible to 

pitting corrosion with corrosion prevention, monitoring and management 

methods.	

5. To develop a dynamic risk management framework for pitting corrosion. 	
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Figure 1.4. Research objectives 

 

The scope of this research covers pitting modelling and a predictive risk-based evaluation 

of pitting corrosion in process facilities which may result in the release of chemicals or 

energy and cause loss of productivity. The models developed in this work are best suited 

for risk assessment of assets susceptible to pitting corrosion, such as those for offshore oil 

and gas development in harsh environments, where accurate risk estimation is required to 

ensure overall safety.  

 

1.4. Contributions  

This section highlights the contributions and significance among existing research efforts 

in the area of risk-based evaluation of pitting corrosion. A detailed description of each 

contribution is provided in the respective chapters.  

Development of a Model 
for Dynamic Risk-Based 

Evaluation and 
Management of Pitting 

Corrosion 

Development of a 
Dynamic Pit Behaviour 

Model 

Development of a 
Predictive FFS Model 

Development of a 
Remaining Life Evaluation 

Model 

Development of an 
Economical Consequence 

Model 
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1.4.1. Probabilistic Modelling of Pitting Corrosion  

The ability to predict pitting behavior is key to designing and maintaining equipment 

safely in offshore environments. In most conventional pit models, pit depth and pit 

density are considered to be deterministic. Chapter 2 of this thesis proposes a 

probabilistic pit evaluation methodology to take into consideration the uncertainties 

associated with these pit characteristics. In the proposed methodology, the Non-

homogeneous Poisson process is used to model pit generation and a Markov model is 

developed to model the dynamic nature of maximum pit depth over time. The practical 

application of the proposed models is demonstrated using a pressure vessel case study. 

 

1.4.2. Predictive FFS Assessment 

As discussed earlier, the existing pitting corrosion FFS assessment methods are not 

predictive and are based on known pitting damages. Moreover, the uncertainty of the 

input data for main pit characteristics is not taken into consideration. One of the 

contributions of this thesis is to tackle these limitations by developing a new predictive 

FFS assessment for pitting corrosion in Chapter 3. The proposed method uses predicted 

pit density, maximum pit depth and maximum allowable pressure of the defected 

component to conduct FFS assessments. 

 

1.4.3. Updating Predicted Pit Behaviour 
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Existing maximum pit depth models use either experimental data or expert knowledge to 

estimate model parameters, without the ability to revise the model parameters for a 

specific application. These methods do not consider the use of inspection data to update 

the maximum pit depth and revise the estimated remaining life. However, it is important 

to incorporate inspection data into models to predict the pit growth rate and estimate the 

maximum pit depth. The novelty of this research is the development of a hybrid method 

for pitting evaluation by integrating the Markov process with Bayesian analysis to 

provide a dynamic probabilistic framework, while overcoming the major limitation of the 

Markov process. This contribution is presented in Chapter 4. 
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1.4.4. Risk-based Economic Impact Analysis 

As mentioned earlier, in most of the current consequence assessment methods, the 

consequences are estimated using the affected area [44], [70]–[74]. These methods 

usually use deterministic values and the uncertainties associated with loss estimations are 

ignored. Also, the mitigating effects of corrosion prevention, monitoring and 

management on estimated losses are not considered. Moreover, the time value of money 

is not considered in loss estimation. Another contribution of this work (Chapter 5) is the 

development of risk-based economic impact analysis of pitting corrosion. The proposed 

model considers the uncertainty associated with loss estimations, the time value of 

money, and the mitigating effect of corrosion prevention, monitoring and management of 

estimated losses. 

 

1.4.5. Dynamic Risk Management of Pitting Corrosion 

As mentioned earlier, the limitation of most of the current risk assessment methods for 

pitting corrosion is that these are static models and the dynamic nature of corrosion 

mechanisms is not taken into consideration.  In Chapter 6, a methodology is developed to 

assess and dynamically update the risk for pressurized components that have been 

affected by pitting corrosion and subjected to regular inspection. Another contribution of 

the corresponding chapter is the evaluation of different risk management strategies 

including, prevention, control and mitigation measures to make effective decisions 

related to pitting corrosion. 
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1.5. Organization of the Thesis 

This thesis is written in a manuscript format (paper-based). Overall, the outcomes of this 

thesis are published in five peer-reviewed journal papers, two conference papers and two 

conference abstracts. Figure 1.5 shows the structure of this PhD thesis. As shown in this 

figure, Chapters 2 to 6 of this thesis are developed based on the paper submissions to 

peer-reviewed journals.   

RISK-BASED EVALUATION OF PITTING CORROSION IN 
OFFSHORE PROCESS FACILITIES

Abstract

Introduction

Pit Modelling Chapter 2

Probabilistic Modeling of Pitting Corrosion in Insulated 
Components Operating in Offshore Facilities, ASCE-ASME 
Journal of Risk and Uncertainty in Engineering Systems, Part 
B: Mechanical Engineering. 3 (2016) 011003-11. 

Probabilistic Modeling of Maximum Pit Depth in Corrosion 
Under Insulation”, NACE Northern Area Eastern Conference 
2014, Oct 2014, St. John’s, NL, Canada (abstract presentation)

Loss Modelling of 
Pitting Corrosion Chapter 5

Economic risk analysis of pitting corrosion in process facilities, 
International Journal of Pressure Vessel and Piping. 157 (2017) 
51-62.

A risk-based approach to pitting corrosion evaluation. 
EUROCORR 2015 Conference, Graz, Austria (full paper).

Summary, 
Conclusions and 
Recommendations

FFS Assessment of 
Pitting Corrosion Chapter 3

A predictive approach to fitness-for-service assessment of 
pitting corrosion, International Journal of Pressure Vessel and 
Piping. 137 (2016) 13–21. 

Risk based remaining life evaluation of offshore structures 
affected by pitting corrosion. SPE Annual Technical 
Conference and Exhibition (ATCE) 2016, Dubai, UAE  
(abstract presentation)

Dynamic Probabilistic 
Assessment of Pitting 
Corrosion

Chapter 4
Dynamic probabilistic assessment of pitting corrosion using 
Bayesian analysis, Engineering Failure Analysis (Submitted, 
2017)

Dynamic Risk 
Assessment of Pitting 
Corrosion

Chapter 6

Dynamic risk management of assets susceptible to pitting 
corrosion, Corrosion Science (Submitted, 2017)

Dynamic risk management of assets affected by localized 
corrosion under insulation. EUROCORR 2017 Conference, 
Prague, Czech Republic (full paper).

Chapter 1

Chapter 7

 
Figure 1.5. Structure of the PhD thesis and related publications  
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Chapter 2 reviews the models for pit characteristics and investigates the factors affecting 

pit initiation and pit growth on equipment under insulation operating in offshore 

environments. A methodology is proposed for studying the pitting CUI characteristics 

including pit initiation time, pit density and maximum pit depth over time.  

Chapter 3 presents a predictive fitness-for-service (FFS) assessment methodology for 

process equipment using pit characteristics to track and predict pitting corrosion. In this 

method, the uncertainties in input data, such as pit depth and pit density, are taken into 

consideration.  

Chapter 4 presents a hybrid method for pitting evaluation by integrating the Markov 

process with Bayesian analysis to provide a dynamic probabilistic framework. This 

method updates the remaining life estimates based on inspection data.  

Chapter 5 presents a predictive probabilistic model to estimate the overall economic 

impacts of pitting corrosion by considering both the corrosion costs and significant losses 

that may occur if failures occur because of pitting corrosion.  

Chapter 6 proposes a methodology to assess and dynamically update the risk of 

pressurized components affected by pitting corrosion. This chapter also evaluates 

different risk management strategies including prevention, control and mitigation 

measures to make effective decisions related to localized corrosion. 

Chapter 7 reports the summary of the thesis and the main conclusions drawn through this 

work. Recommendations for future work are presented at the end of Chapter 8.  
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2. PROBABILISTIC MODELING OF PITTING CORROSION IN 

INSULATED COMPONENTS OPERATING IN OFFSHORE 

FACILITIES1 
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Abstract 

Pitting corrosion under insulation is one of the challenging issues for safe operation of 

offshore facilities. Degradation usually remains hidden causing the inspection of 

insulated assets to be equally challenging. The modeling of the pitting corrosion under 

insulation (CUI) helps to better understand the current state of the asset and predict 

failure. This paper investigates the factors affecting the pit initiation and pit growth on 

equipment under insulation operating in offshore environments. A methodology is 

proposed for studying the pitting CUI characteristics including pit initiation time, pit 

density, and maximum pit depth over time. The proposed methodology provides a 

practical and more effective asset life management approach when supported by 

inspection data. The practical application of the proposed methodology is demonstrated 

in this paper using a pressure vessel case study in an offshore platform. 

Key words: corrosion under insulation; Markov model; pit depth; pit density; offshore 

operation 

 

2.1. Introduction 

Corrosion under insulation (CUI) is defined as a type of corrosion that happens in piping, 

pressure vessels and structural components resulting from water trapped under insulation 

or fireproofing. CUI can occur at -12oC to 177oC, the operating temperature range for 

most offshore applications [1]. Moreover, CUI affects different types of steel including 

carbon steel, alloy steel, 300 Series stainless steel, and duplex stainless steel [1]. It is 

reported that CUI accounts for 40-60% of piping maintenance costs in ExxonMobil 
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facilities [2]. Fathi [3] reported that CUI was the main cause for 10% of the total annual 

maintenance cost of fixed equipment and has been the main challenge in 17 out of 30 

process plants operated by Saudi Aramco. In another study, DuPont Company estimated 

that the direct costs of CUI repairs and replacements exceed $10 million per year for its 

facilities. These costs do not include normal preventative maintenance costs and indirect 

costs such as loss of production and revenue [4].  

CUI is typically difficult to identify because it remains hidden under insulation material, 

often until it becomes a serious problem [5]. Besides uniform corrosion and stress 

corrosion cracking, pitting corrosion is a dangerous form of CUI, which requires specific 

consideration for insulated equipment due to the technical difficulties in pitting detection 

and prevention. Pitting corrosion is a localized form of corrosion that occurs when one 

area of a metal surface becomes anodic with respect to the rest of the surface. It can also 

happen when highly localized changes in the corrodent in contact with the metal cause 

accelerated localized attack [6]. This type of CUI can lead to serious consequences. For 

instance, small pits can progress through equipment wall thickness and lead to a loss of 

containment of process materials or act as an initiation site for stress corrosion cracks. If 

pitting develops such that the strength of the material is affected, brittle failure can also 

occur [7]. 

In marine applications, pitting usually occurs in coated or naturally protected materials. 

For other types of steel, such as carbon steel, corrosion protection is sometimes due to an 

applied protective coating. Although these protective layers prevent corrosion over the 
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bulk of the equipment, defective or inappropriate coating can cause localized pitting 

corrosion [7]. 

Pitting corrosion can be considered as a combination of two physical processes: pit 

generation and pit depth growth. Both processes are random and cannot be adequately 

modeled by deterministic models [8]. The pit density is another characteristic of pitting 

corrosion that affects the stress distribution and load capacity of a component. From a 

practical point of view, in addition to pit density, quantification of the maximum pit depth 

is also important, since the deepest pit will cause the failure of the equipment [9]. As a 

result, along with the depth of the pit, pit density affects the structural integrity of 

components in marine environments. 

The ability to predict pitting behavior is key to designing and maintaining equipment 

safely in offshore environments [7]. In conventional life estimation methods, pit depth 

and pit density are considered to be deterministic. However, in reality, significant 

uncertainties are associated with these parameters [10]. To take these uncertainties into 

consideration, it is rational to employ a probabilistic framework to analyze the pitting. 

The modeling of pitting phenomena for insulated components is challenging. The 

insulation adds an extra level of complexity as the pitting corrosion remains hidden and is 

hard to inspect or maintain. In an earlier work, the authors developed a pit 

characterization and fitness-for-service (FFS) assessment methodology [11]. However, a 

comprehensive review of the literature shows that there is no specific study on 

probabilistic modeling of pitting CUI in marine environments.  
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The objective of this paper is to address the pitting CUI challenge in offshore applications 

and marine environments by proposing a probabilistic pit evaluation methodology. The 

first contribution of this paper is the investigation of different parameters and their 

importance in modeling pitting CUI. Furthermore, this paper proposes a methodology to 

integrate the pit initiation and pit density models in order to assess the maximum pit 

depth. The organization of this paper is as follows: Section 2.2 discusses the factors 

affecting the modeling of the pit characteristics in insulated components in offshore 

applications using comparative study of related works. Section 2.3 presents a 

methodology for probabilistic assessment of pitting CUI in marine environments. Finally, 

Section 2.4 presents the practical application of the illustrated methodology using a case 

study, followed by some concluding remarks.  

 

2.2. Pitting Corrosion Under Insulation 

Pitting in insulated equipment can occur when moisture penetrates the insulation and aids 

to create a corrosion cell. Average pit density and maximum pit depth are two important 

pit characteristics that need to be quantified for any quantitative evaluation of pitting 

corrosion [11]. The purpose of this section is to investigate the factors that should be 

taken into consideration to model pitting CUI in insulated equipment.  

Modeling pit characteristics in an insulated area adds an extra level of complexity into the 

stochastic process due to the hidden nature of corrosion. It results in difficulty in 

monitoring and inspection, which sometimes causes the degradation to remain undetected 

until failure. Therefore, the model used for pit characteristics in CUI should be flexible 
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enough to consider the inspection difficulty as well. Other important parameters that can 

affect the pitting CUI are discussed in the following sections and the results are 

summarized in Table 2.1.   

Insulation: Pitting in insulated equipment occurs in many ways including insulation 

damage or wicking, atmospheric wetness, or poor installation. Some insulation materials 

contain water-leachable salts that may contribute to corrosion, and some foam may 

contain residual compounds that react with water to form an acidic environment. Also, 

insulation can act as a transporter, as the movement of moisture from one area of 

insulation to another area causes spread of this phenomenon [12]. The water retention, 

permeability, and wettability properties of the insulation material also influence the 

pitting CUI [13]. 

Coating: For coated equipment under insulation, breaks or holidays in the coating cause 

the underlying metal to be exposed to moisture trapped under insulation. Damage to the 

protective coating and discontinuities in the protective coating are the critical factors for 

pit initiation. The coating specification that can affect the pit initiation includes surface 

preparation of the material, choice of coating, quality of the coating, and the maintenance 

activities  [14].  

Chloride ion: Insulated equipment located in marine environment is exposed to chloride 

ions. The chloride acts as an important role for pit growth as an autocatalytic process [7, 

13]. The migration of chloride ions to the active corroding area can help to stabilize 

pitting corrosion. A study by Frankel et al. [15] states that pitting corrosion will only 

occur in the presence of aggressive anionic species which are usually chloride ions.  
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Temperature: Temperature is another factor that can accelerate the autocatalytic pit 

growth process. Temperature greatly influences the corrosion behavior of steels in 

seawater and offshore-insulated structures. Increasing temperature results in higher 

current transients and increases the conversion of metastable pits into stable pits. 

Temperature also has a relation to chloride ions. The increase in temperature in a chloride 

environment usually cause an increase in the growth rates of pits [14]. 

 

Table 2.1. Factors affecting pitting CUI	

Parameter Important Attributes Effect on Pit 
Mechanism 

Effect on Pitting CUI 
Modeling References 

Insulation • Water retention 
• Permeability 
• Wettability  
• Compounds 

Affects pit initiation 
due to providing 
annular space and 
wicking and/or 
absorbing of water  
 

Affects average pit 
density and transition 
state parameters in the 
Markov model by 
creating a corrosion 
cell in the presence of 
water. 

[12, 13]  

Coating • The surface 
preparation of the 
material  

• Type and quality of 
the coating 	

Affects pit initiation if 
coating breaks down  

Affects parameters of 
the pit initiation time 
and average pit density 
model by speeding up 
the pit generation rate, 
in case of coating 
failure. 

[7, 14] 

Chloride Ion Concentration Affects pit growth if Cl- 
penetrates the film due 
to its high diffusivity  
 

Affects average pit 
density and transition 
state parameters in the 
Markov model due 
acceleration of 
autocatalytic corrosion 
reactions. 

[7, 13, 15, 
16]  

Temperature Safe operating window Affects pit initiation by 
converting the 
metastable pits into 
stable growing pits and 
also by affecting the 
pitting potential  

Affects the transition 
state parameters in 
Markov model. 

[14, 17] 
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From Table 2.1, it can be concluded that a methodology to model pit characteristics must 

be flexible enough to consider the effect of the contributing parameters in pitting CUI. 

For this purpose, the model should include parameters enabling the modeling of complex 

non-linear pit behaviors. Moreover, as will be discussed later, a methodology should be 

in place to estimate the model parameters based on the insulation, coating, and marine 

environment, as well as operational conditions.  

 

2.3. Methodology for Modeling Pit Characteristics 

Figure 2.1 shows the proposed methodology to evaluate pitting CUI. As shown in Figure 

2.1, the methodology involves modeling of three characteristics of the pit- pit density, pit 

initiation time and maximum pit depth- as a part of an overall methodology to estimate 

probability of failure and associated risk. The scope of this study includes the pit 

evaluation and maximum pit depth estimation as the main characteristics in pitting risk 

assessment. A review of related works and different steps of the proposed methodology 

are discussed in the subsequent sections. 

 
Figure 2.1. The methodology for evaluation of pitting CUI modeling 
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2.3.1. Step 1: Average Pit Density Modeling 

2.3.1.1. Related Works 

Pits randomly initiate on the surface of metal. The initiation rate varies due to different 

composition of alloys and changes in the environment. The number of pits per unit area 

of metal, referred to as pit density in this work, can be predicted from the average number 

of estimated pits over an area of interest. 

Elola et al. [18] conducted field tests on aluminum alloy 1050 in different exposure times 

and presented a linear distribution with respect to time for the average pit density. 

However, Pride et al. [19] conducted tests on aluminum loop and concluded that pits 

generated rapidly at first but the generation rate slowed down with time and provide an 

exponential model for pit generation. In studies by Workman [20] and Zhao [21], a 

generalized average pit density model is presented, which combines the non-linear model 

in Pride et al. [19] with the linear model in Elola et al. [18] to determine the average pit 

density. In order to predict the pit density distribution Workman [20] and Zhao [21] 

integrate the non-homogenous Poisson distribution with their combined averaged pit 

density model to estimate the probability of specific number of pits in an area at a given 

time. Using this method, the inverse of the average pit density model is used to estimate 

the pit initiation times.   

In another study, Nuhi et al. [22] investigate the effect of temperature and stress on pit 

density of API 5L samples. They observe that the average pit density follows a lognormal 

distribution, and they show logarithmic dependency of pit generation with temperature 

and time.  
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Datla et al. [23] introduce a probabilistic model of steam generator tube pitting corrosion 

based on inspection data from a nuclear generating station. They present a time-

dependent model for the average pit density based on the non-homogeneous Poisson 

process.  

Table 2.2 summarizes the models for pit density reviewed in this section.  

Table 2.2. Pit density models 

Reference(s) Average pit 
density model Remarks 

Elola et al. [18] Linear model Based on lab experiments on aluminum alloy 
1050. 

Pride et al. [19] Exponential model Based on experiments on an aluminum loop. 
Workman [20], 
Zhao [21] 

Combination of 
linear and 
exponential model 

Based on lab test data from the published 
literature. 

Nuhi et al. [22] Lognormal 
distribution 

Based on experiments on API 5L carbon steel 
samples to consider the effect of temperature 
and stress. 

Datla et al. [23] Power law model Based on inspection data from a nuclear power 
generation station. 

 

2.3.1.2. Methodology for Modeling Pit Density  

In this section, a methodology is presented to model pit density for insulated equipment. 

The rate of pit initiation varies with the corrosive environment and the type of material 

considered and therefore must be considered as a random phenomenon [9]. To tackle the 

problem of random generation of pits under insulation, application of a non-

homogeneous Poisson model is identified as a suitable approach to model pit density 

distribution. When selecting the intensity function and estimating the mean of non-

homogeneous Poisson model in insulated equipment, the material properties, 

environmental conditions, process and operational conditions, and other factors such as 

the effect of insulation and coating should be considered. 
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The model presented by Workman [20] and Zhao [21] is used in this work to estimate 

average pit density (APD) as it has the ability to represent both linear and non-linear 

behaviors:  

 

 𝐴𝑃𝐷 𝑡 = !
!
1− 𝑒!!! + 𝑤𝑡!        (2.1) 

where A, w, ψ, and η are the parameters that could depend on time, allowing for changes 

in environmental conditions to be considered and t is time [20]. These parameters make 

the model adaptable to consider the parameters affecting the potentially complex pit 

generation mechanism in insulated equipment.  

Failure history analysis from similar processes and the expert’s knowledge can be used to 

estimate the starting value of the model parameters. Data analysis of accelerated 

corrosion test results for pitting corrosion in marine environment, recently proposed by 

Caines et al. [24], can also be used to estimate the model’s parameters. The Bayesian 

approach can be used to update the model parameters as new evidence from the 

inspection data and failure records become available. This is an interesting subject for 

future research.  

 

2.3.2. Step 2: Pit Generation Modeling 

2.3.2.1. Related Works 

 A pit initiates due to a local breakdown of the passivation layer or coating on a metal’s 

surface. The pit generation on the metal surface can be considered as a random 

phenomenon [20]. In real life problems pitting can be considered as a stochastic non-
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homogenous process since pit generation is not always constant over time. Mears and 

Brown [25] were among the first who used the Poisson distribution to model pit 

generation on the surface.  

In a study by Tsukaue et al. [26], using experimental data, the pit initiation time is 

determied to be exponentially distributed. Based on these results, the stochastic pit 

generation phenmoena is considered to follow a homogeneous Poisson process and the 

pit generation is considered to have occured randomly in time with a constant generation 

rate.  

Shibata and Suko [27] suggest analytical probabilistic models for pitting including a 

model based on exponential distribution for pit generation. They argue that the rate of pit 

generation and its re-passivation is a function of applied potential. In another study, 

Shibata [28] verifies this relationship by using experimental data and Monte Carlo 

simulations. Later, Shibata et al. [29] present two models for pit generation: pure birth 

stochastic models, which consider only pit generation events and birth and death 

stochastic models, which assume stochastic pit generation and subsequent pit re-

passivation processes. They prove that the exponential model for pit generation may not 

be suitable as the second model, the birth and death stochastic model, is fitted better for 

experimental data from different case studies [30]. 

Valor et al. [31] use a non-homogeneous Poisson process to model pit initiation. Based 

on the experiments in [32], they conclude that the initiation rate is not uniform with 

respect to time and most pits are generated at beginning. In this way, Valor et al. [31] use 

two interpretations for the initiation time for each of m pits generated on the surface: the 
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time of the first failure of each part of the system and the time of the first failure each of 

m non-homogeneous Poisson processes. They argue that in both cases, the Weibull 

distribution is the best distribution to simulate pit nucleation times.	They conclude most 

pits generated at beginning.  

In Workman [20] and Zhao’s studies [20, 21],  given that m pits initiate at time t by 

assuming all pits initiate in order at times t1, t2, . . . , tm, they obtain the initiation time tk 

for each pit by calculating the inverse of the pit density function so that tk = APD−1(k).  

Table 2.3 summarizes the pit generation models, which are discussed in this section.   

Table 2.3. Pit generation models 
References Pit generation model Remarks 

Tsukaue [26] 
 

Exponential distribution Based on experimental tests on 304 and 316 
stainless steels in wet air. 

Shibata and Suko [27] 
 

Exponential distribution Based on experimental tests on aluminum. 

Shibata [29] Empirical model Based on experiments on stainless steels, 
zirconium, and titanium. Assumed pitting process 
as birth and death of pits and proposed models to 
consider stochastic pit generation and pit re-
passivation. 

Valor et al. [31] Weibull distribution Based on lab test data from the published 
literature, including [32]. 

Workman [20], Zhao 
[21] 

Inverse of average pit 
density model 

Based on lab test data from the published 
literature. 

 

2.3.2.2. Methodology to Model Pit Generation 

As can be clearly seen in Table 2.3, although there is a general agreement in all the 

models about the necessity of considering pit generation as stochastic processes by 

considering probability distributions for the pit generation models, different probabilistic 

methods are used throughout the literature. In fact, choosing a proper model is a case-

specific task which requires consideration of the material properties, environmental 
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conditions, process and operational conditions, and other factors such as internal (process 

side) pitting versus external pitting as well as the effect of insulation and coating. 

Pit generation under insulation can be considered to follow a non-homogeneous Poisson 

process, as pit generation is not constant with time. Other models such as Weibull 

distribution assumes that most of pits are generated at early time, as a result it cannot be 

fit to experimental data as intuitively as the Poisson parameters can [20].  

To estimate the initiation times of pits in insulated equipment, it is supposed APD(t) is 

the result of curve fitting equation (2.1) to a data set. If t is the desired stopping time of 

the model predictions and APD at time of t is m, by assuming all pits initiate in order at 

times t1, t2, . . . , tm, the pit birth times tk for k = 1, 2, . . . , m are found by solving the 

equation APD(tk) = k [20, 21].   

 

 𝑡!  =  𝐴𝑃𝐷!!(𝑘) , for k = 1, 2, …, m     (2.2) 

 

As discussed in Step 1, expert knowledge estimates based on available literature and 

similar processes can be used as starting values for the model parameters. Then, analysis 

of inspection data and accelerated corrosion test data can be applied to revise the initial 

model parameters. 

 

2.3.3. Step 3: Maximum Pit Depth Modeling 

2.3.3.1. Related Works 
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In large-scale engineering structures, limited resources can make the measurement of pit 

depth un-affordable [30]. Thus, it is more practical to study only the deepest pits since it 

is the deepest pits that actually cause the system failure. As a result, most of the existing 

literature has focused on modeling the maximum pit depth using both deterministic and 

probabilistic methods  [31, 33-35]. 

Modeling the depth of a corrosion pit requires understanding the corrosion growth rate. 

Traditionally, deterministic approaches have been used to model the pitting growth rate 

[10, 36, 37]. For example, Romanoff [37] presents pit growth with the use of a simple 

power law. However, the deterministic models are unable to handle variability and 

uncertainties associated with alloy composition, microstructure, temperature and non-

homogeneity of the surrounding media [10]. The stochastic approach is, therefore, 

preferred due to its ability to represent the variability of the contributing factors in pit 

growth.  

To model the maximum pit depth, the extreme value statistics developed by Gumbel [38] 

are widely used [39- 42]. Sheikh [43] modeled pitting corrosion as a time-dependent 

damage process by exponential or logarithmic pit growth. Time dependence of the 

maximum pit depth is characterized by random functions of time, either by a logarithmic 

law or exponential law. Weibull extreme value is also used to model the time-to-first-leak 

for the pipeline. 

Shibata [39] reviews extreme value statistics and its application to the engineering area. 

In Shibata’s study, extreme value distributions are used for evaluating the maximum 

depth of corrosion penetration and the minimum time for corrosion failure. The 
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parameter estimation is accomplished using a minimum variance linear unbiased 

estimator (MVLUE) method.  

More recently, based on inspection data from a nuclear generating station, a probabilistic 

model for pitting of steam generator tubes has been presented by Datla et al. [23]. Their 

model is based on inspection data of pits with a depth greater than 50% thickness. In this 

model, the distribution of the largest pit among all generated m pits in time interval (0, t) 

is expressed using the generalized Pareto distribution. 

Although conventional methods of the extreme value statistical theory have been used for 

a long time, they have some limitations. The first limitation of extreme value theory is the 

static nature of methods based on this theory as time variable is not involved [30]. 

Furthermore, methodologies based on extreme value theory assume that the pit process is 

homogenous. In other words, such models assume that pits occur with the same 

frequency in time, however, it has been demonstrated that pitting corrosion is a stochastic 

process mainly related to its initiation stage [44]. 

Recently, Melchers [34] studied the pitting corrosion of mild steel in a marine immersion 

environment and presented new field data. A multiphase phenomenological model was 

proposed for general pit depth as a function of period of exposure. Later he found that a 

bi-modal probability distribution might fit the data better. This finding casts doubts on the 

conventional use of extreme value theory in representing the uncertainty associated with 

maximum pit depth [45]. He suggested high dependence of maximum pit depth should be 

the major reason for such a contradiction. 
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Melchers [33] studied the pitting corrosion of mild steel in marine immersion 

environments. He proposed a multiphase model for pit depth as a function of exposure 

time. In a subsequent study [45], Melchers presented a bi-modal probability distribution 

for maximum pit depth. This result challenged the conventional use of extreme value 

theory in representing the uncertainty associated with maximum pit depth [30]. Melchers 

concluded that the reason for this inconsistency is that pit depths are highly inter-

dependent. He further showed that it is not entirely appropriate to use the Gumbel 

distribution which is a conventional method to derive the extreme value statistics for 

maximum depth of pits in pitting corrosion [9]. The key issue is that the underlying 

population of pit depths typically used in this analysis is not homogeneous. Except for 

very short exposures, it consists of a bi-modal distribution [9].  

In another study, Melchers [46] presents a distribution for long-term exposures of steel in 

seawater. It is argued that for long-term exposures of steel to seawater the pitting process 

changes with exposure time and eventually becomes controlled by the rate of bacterial 

metabolism. He concludes that the Fréchet extreme value distribution can be used as the 

candidate distribution for maximum pit depth.  

One of the assumptions made for pitting corrosion is that it retains no memory of the 

past, so only the current state of the damage affects its future development [35]. This 

important characteristic allows pitting corrosion to be categorized as a Markov process, 

an alternative method from extreme value theory to model maximum pit depth. The 

discretization of the pit depth space in a finite or countable set of non-overlapping states 

makes pitting corrosion a good fit for Markov chain modeling [47]. The assumption of 
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Markov process is that the probability of a pit growing deeper only depends on its current 

state. This means that the probability calculation for maximum pit depth is not affected 

by previous states of a pit or its growth rate into its current state [20]. 

Provan and Rodrguez [48] are among the first who used the Markov stochastic to model 

pit depth growth. In their model, the thickness along with pit depth is divided into 

discrete, non-overlapping states and Kolmogorov’s forward equations are used to 

represent the transition probabilities Pij between damage states i and j:  

 

!!!" (!)

!"
=

𝜆!!! 𝑡  𝑝!,!!! 𝑡 − 𝜆! 𝑡 𝑝!,! 𝑡 , 𝑗 ≥ 𝑖 + 1
𝜆!(𝑡)𝑝!,!(𝑡)

    (2.3) 

 

The main limitation of this model, according to Valor et al. [31], is that the results of this 

study are not reproducible and the physical meaning of the expression for λj(t) are not 

discussed.  

Morrison and Worthingham [49] also applied the Markov process to determine the 

reliability of high-pressure corroding pipelines. To calculate the probability distribution 

function of the load-resistance ratio, the space of the load-resistance ratio was divided 

into discrete states and the Kolmogorov’s equations numerically solved. Hong [36] 

improved Morrison and Worthingham’s study [49] by integrating the Poisson-distributed 

initiation model and Provan and Rodriguez’s [48] Markov propagation model. In this 

non-homogeneous model, the Kolmogorov’s equations were solved analytically to 

evaluate the probability transition matrix and the probability of failure. To derive the 

parameters of the model, the sum of the squared differences between the estimated and 
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observed means of the maximum pit depths were minimized [31]. The main disadvantage 

of Hong’s model is that the extreme distributions do not fit with the probability 

distribution of the maximum pit depth [31]. Moreover, the analytical solution of Hong’s 

model was determined using constant growth rates for pit propagation. The problem, 

however, the pit growth rate from one depth to another is not always constant over time 

[20]. 

Valor et al. [31] improve Hong’s [36] and Provan’s [48] models by applying a non-

constant growth rate. To determine the transition probability from the first state to any 𝑗th 

state during a given time interval, Kolmogorov’s equations are solved analytically. From 

this solution, on the assumption that a pit is in state 1 at time t = 0, Valor  et al. [31]  

show that the probability that the pit depth is equal or less than state i after a time 

increment (t - tk) is: 

 

𝐹 𝑖, 𝑡 − 𝑡! = 1− 1− exp −𝜌 𝑡 − 𝑡! ! , 𝑖 = 1,… ,𝑛   (2.4) 

 

where n is the total number of states in the Markov chain and tk is the pit initiation time 

modeled by Weibull distribution. ρ(t) is the number of transited states by a corrosion pit 

and is assumed to be a power function: 

 

𝜌 𝑡 = 𝜒(𝑡 − 𝑡!)!           (2.5) 
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where χ has dimensions of distance over the ωth power of time and ω is less than one. 

Once the number of pits per unit area is determined, the cumulative distribution function 

of maximum pit depth for single pit determined from Equation (2.4) must be combined to 

estimate the distribution of the deepest pit, based on the assumption that pits nucleate and 

grow independently. In such a case, Valor et al. [31] propose a model to estimate the 

probability that the deepest pit is in a state less than or equal to a specific state at a given 

time. 

Valor et al. [31] prove that their proposed model follows extreme value statistics theory, 

which validates the model by confirming that small samples of pit depths can be induced 

to predict larger areas of pit propagation. One of the limitations of the Valor et al.’s [31] 

model is its inability to model growth of metastable pitting [20]. However, it can be 

updated given the proper data.  

In addition to the analytical solution for Kolmogorov’s equations, some authors [20, 21, 

50]  present numerical solutions of Kolmogorov’s equations in the Markov model. In 

Workman’s study [20], the model used relies upon the non-homogeneous Markov chain 

system to describe the propagation of pit depths throughout a discretized set of states. 

Workman’s study examines the flexibility of the model with respect to the probabilistic 

transition rates used in the Markov system. They consider factors such as the effect of 

cyclical changes, abrupt shifts in environmental parameters, and corrosivity in the 

expression of the transition rate of Markov process.  

Table 2.4 summarizes the maximum pit depth models discussed in this approach. 
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Table 2.4. Maximum pit depth modeling methods 
Reference  Maximum pit depth 

modeling approach  
Remarks 

Sheikh et al. [43] Weibull distribution (Extreme 
value method) 

Based on data from water injection pipeline 
systems and the published literature. 

Datla et al. [23]  Generalized Pareto 
distribution (Extreme value 
method) 

Based on inspection data of pits with a depth 
greater than 50% of thickness. 

Melchers [45] Bi-modal probability 
distribution 

Based on experimental data on mild steel in 
marine immersion environment. Their lab results 
cause doubt in the suitability of Extreme value 
theory application for maximum pit depth 
modeling.  

Melchers [46] Fréchet extreme value 
distribution 

Based on long-term exposures of steel in seawater 
in the presence of bacterial activity. 

Provan and 
Rodrguez [48] 

Markov process Assuming pit mechanism as a memory less 
process. The model failed to provide a physical 
interpretation for Markov transition rate. 

Hong [36] Markov process Based on analytical solution of Kolmogorov’s 
forward equations using constant growth rates for 
pit propagation. 

Valor et al. [31] Markov process Based on analytical solution of Kolmogorov’s 
forward equations using non-constant growth rates 
for pit propagation. 

Workman [20] Markov process Based on numerical solution of Kolmogorov’s 
forward equations. 

 

2.3.3.2. Methodology to model maximum pit depth  

As shown in Table 2.4, the extreme value theory [46, 51]  and the Markov process [20, 

21, 31, 35],  are two main approaches used in the literature to describe the growth of the 

maximum pit depth in pitting corrosion. Because of its stochastic nature, the Markov 

chain method is used in this study as the preferred approach to model the pitting 

mechanism in insulated equipment as a function of time. To model the maximum pit 

depth, by assuming the future growth rate is independent of its past growth, the time-

dependent pit growth rate is assumed to follow a non-homogeneous Markov process. The 

analytical solution for Markov process proposed by Valor the transition rate for Markov 

process, as proposed by Valor et al. [31], has flexibility for a combination of affected 
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factors on CUI pitting. In this study, Valor’s model [35] is improved by using the average 

pit density in Equation (2.1). The pit density model proposed by Workman [20] and Zhao 

[21] is applied to estimate m, as it has the ability to represent both linear and non-linear 

behaviors. Initiation times also are estimated using Equation (2.2). Figure 2.2 provides a 

schematic representation of the Markov states in a cylindrical component. Accordingly, 

by combination of the cumulative distribution function of maximum pit depth for single 

pit (Equation (2.4)) and the average pit density (Equation (2.1)), the probability that the 

deepest pit is in a state less than or equal to state i at time t is estimated as: 

 

 𝜃! 𝑖, 𝑡 = 1− 1− exp −𝜌 𝑡 − 𝑡! !!!!"#
!!! .    (2.6)  

 

where the number of pits (m) and initiation time (tk) are determined from Steps 1 and 2, 

respectively. The number of transited states by a corrosion pit, ρ(t), is assumed to be 

power function 𝜌 𝑡 = 𝜒(𝑡 − 𝑡!)!. The parameters of the transition rate must reflect the 

environmental factors affecting the growth of pits on insulated equipment. 
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(a) A cylindrical component containing pits 

 
(b) Section A-A 

Figure 2.2. Schematic representation of maximum pit growth in an insulated component using 
Markov process 

 

To show the applicability of the proposed model for representing maximum pit depth, an 

example data set previously published by Aziz [32] is used to test the model. The 

maximum pit depth in each coupon was measured using optical microscopy. In this 

experiment the maximum number of pits is considered 350 pits. Similar to Zhao’s study 

[21], using the pit density model in Equation (2.1), the parameters for the model are 

chosen A = 18.320, ψ = 0.020, η = 1.000, and w = 0.  

To model maximum pit depth, Equation (2.6) is curved to fit the data from Aziz’s study 

[32].	The values of the resulting parameters for the analytical solution for the Markov 

process proposed by Valor [31] are χ = 0.940 and ω = 0.102. The wall thickness of the 
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sample is discretized into 100 possible Markov states. A plot of the maximum pit depth 

data and proposed model for average maximum pit depth are displayed in Figure 2.3. As 

demonstrated, the model proposed in this paper, corresponds very closely with Aziz’s 

experimental data. 

 

 
Figure 2.3. The estimated mean distributions and observed values of maximum pit depth reported by 

Aziz’s pitting corrosion test [32] 

 

2.4. Case Study 

The practical application of the pit density and maximum pit depth models presented in 

Section 2.3 are demonstrated using a case study on the cylindrical shell section of a 

pressure vessel. The vessel was constructed to the ASME B&PV Code, Section VIII 

Division 1, 1986, and was newly installed on topside facilities of an offshore platform. 

The probability of internal corrosion is considered to be negligible due to the application 

of corrosion inhibitors and internal lining. However, external corrosion is expected as a 
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result of marine conditions and trapped moisture under insulation. The vessel had no 

fabrication and/or corrosion defects at the installation time (t = 0). The vessel design 

information is shown in Table 2.5. 

 
Table 2.5. Pressure vessel design information and basic assumptions 

Description Design Value 
Material SA − 516 Grade70 Year 1986 

Internal Pressure 2.4 MPa 
Inside Diameter 2.133 m 
Wall Thickness 10 mm 

Coating Single coat epoxy 
Insulation Calcium silicate 

  

Due to the difficulty in removing the insulation and remoteness of the facility, frequent 

periodic inspections to detect pitting corrosion are not feasible. Thus, the application of a 

predictive model for the pitting corrosion is required to determine the optimal inspection 

dates to ensure the safety and integrity of the vessel during service while considering the 

economical and operational constraints. To achieve this purpose the average pit density 

model and the probability of maximum pit depth evolving over time are estimated using 

Equations (2.1) and (2.6), respectively.  

The model parameters and assumptions, which are shown in Table 2.6, are determined 

from the expert’s knowledge, which is inevitable for new installations with no 

operational and inspection histories. As discussed in Section 2.3, these estimated model 

parameters can be updated over time.  
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Table 2.6. Parameters used to evaluate pitting corrosion in the case study 

Characteristic Equation Parameter 

Pit density 𝐴𝑃𝐷 𝑡 =
𝐴
𝜓
1 − 𝑒!!" + 𝑤𝑡! A = 35.00, 𝜂 =1, 𝜓 = 

0.09 and w = 0 

Number of transited states 𝜌 𝑡 = 𝜒(𝑡 − 𝑡!)! χ = 4.20 and ω = 0.09 

Maximum pit depth 𝜃! 𝑖, 𝑡 = 1 − 1 − exp −𝜌 𝑡 − 𝑡! !!!!"#
!!! . i = 1800 

 

2.4.1. Step 1: Average Pit Density 

Figure 2.4 illustrates the average pit density for a period of 15 years, determined from the 

proposed methodology in Section 2.3.1.2 and Equation (2.1). 

As can be seen in Figure 2.4, pits are generated right after the commissioning of the 

vessel and continue to increase in a relatively exponential order. As time passes, more 

pits are generated on the surface and the number of pits per unit area increase, those pits 

generated close to each other combine together and cause even bigger pits [19]. This 

decreasing rate in the average pit density over time has also been reported in several 

studies based on experimental data, as seen in [19].  
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Figure 2.4. Average pit density for 15 years 

 

2.4.2. Steps 2 and 3: Pit Generation and Maximum Pit Depth 

The cumulative distribution function (CDF) of maximum pit depth and the probability 

density function (PDF) are determined using the methodology presented in Section 2.3.3 

and Equation (2.6). As shown in Figure 2.5, the CDFs and PDFs shift to the right over 

time, this depicts the increase in the probability of deeper pits.  

Maximum pit depth growth over a period of 15 years is shown in Figure 2.6, and is 

estimated using Equation (2.6). Considering the stochastic nature of pitting corrosion, one 

of the advantages of developing the probability distribution of the maximum pit depth is 

the ability to investigate the uncertainty involved in the model outputs. In Figure 2.6, 

both the mean and 95th percentile of the estimated maximum pit depth distribution are 

shown over time. Based on the conservatism of the study and sensitivity of the operation 
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one can use the mean, 95th percentile, or any other statistic from the estimated maximum 

pit depth distribution. 

 

 
Figure 2.5. The probability density function of maximum pit depth in different years 

 

 
Figure 2.6. Maximum pit depth for 15 years 
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2.4.3. Sensitivity Analysis 

2.4.3.1. Effect of APD  

As different environments, coatings and insulations may cause different pit initiation rate 

affecting the average pit density, it can be useful to study the effect of uncertainty on 

estimated pit density on the mean maximum pit depth. As mentioned above, using 

different parameters the average pit density model in Equation (2.1), has the flexibility to 

consider different behaviors for pit initiation rates and hence pit density such as linear 

and exponential [21]. These results are shown in Table 2.7. The parameters for each 

model are determined using the assumption that after 10 years, the number of pits on the 

surface reaches 230 pits.  

 
Table 2.7. Parameters for different APD models 

Model Parameter values in Equation (2.1) Resulted equation 

APD1 A=0, 𝜂 =1.00, 𝜓 =1.00 and w=23.00 𝐴𝑃𝐷1 𝑡 = 𝑤𝑡 

APD2 A= 36.40, 𝜂 =1.00, 𝜓 =0.10 and w= 0 𝐴𝑃𝐷2 𝑡 =
𝐴
𝜓
1 − 𝑒!!"  
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Figure 2.7. Average pit density models 

 
Figure 2.8. Average maximum pit depth for different 

APD models	
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As can be seen in Figure 2.7, the pits in model APD2 initiate quickly at an early time, and 

this can be used to represent aggressive environments. Thus, by changing the parameters, 

the average pit density model in Equation (2.1) has the flexibility to represent different 

environmental, coating and insulation conditions.  

In Figure 2.8, APD2 model has the highest mean maximum pit depth in comparison with 

APD1 through the whole time since it has the faster pit initiation rate. As seen in Figure 

2.8, although the variation of pit density does not affect significantly the maximum pit 

depth, the higher pit initiation rate results in deeper pit and faster pit growth rate. 

 

 2.4.3.2. Effect of Transited States’ Parameters  

A sensitivity analysis is also conducted to investigate the effect of changing the 

parameters of the ρ, number of transition states, on maximum pit depth. As was 

mentioned above, ρ has two parameters: χ and ω, which are less than one. In the first part 

of this sensitivity analysis, χ is assumed to be constant and ω has values ω = 0.09, ω = 

0.09×(1 ±5%) and, ω = 0.09×(1 ±10%).  

In the second part, ω is assumed to be fixed and ρ has five different values, χ = 4.20, χ = 

4.20×(1 ±5%) and χ = 4.20×(1 ±10%), to see the effect of this parameter on maximum 

pit depth.   

As shown in Figures 2.9 and 2.10, while increasing ω, the maximum pit depth variation 

is not significant, however, a slight change of χ causes a considerable difference for the 

mean maximum pit depth. In larger χ values, the pit growth is faster, but in greater ω 

values pit growth mostly remains the same. Thus, χ is the parameter that can be affected 
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more in aggressive environments resulting in faster pit depth growth and higher 

probability of failure [21].  

 

 
Figure 2.9.  Mean Maximum Pit Depth in different values of ω 

 

Figure 2.10. Mean Maximum Pit Depth in different values of χ 
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2.4.4. Potential Applications  

The ability to predict pitting behavior is key to designing and maintaining assets in 

processing industries. As important equipment such as pressure vessels, piping, and 

storage tanks become older and maximum pit depth increases, the plant operator must 

decide if they can continue to operate safely and reliably enough to avoid injuries to 

personnel and to the public, environmental damage, and unexpected shutdowns.  

As shown in Figure 2.6, using the proposed model, the maximum pit depth-over-time 

plots can be used for remaining life evaluation of insulated equipment susceptible to 

pitting corrosion. For example, according to API 510 [52], when the maximum pit depth 

exceeds half of the pressure vessel thickness, the damaged component should be repaired 

or replaced. As a result, the remaining life of the component and its failure time can be 

determined as the time when the maximum pit depth curve will intersect half of the 

component thickness. A methodology for remaining life assessment of equipment 

susceptible to pitting using probabilistic maximum pit depth models is proposed in 

Shekari et al [11]. Using the estimated remaining life, inspections can be made at proper 

time intervals to ensure that pitting damage is detected and mitigated before failure 

happens. 

Fitness-for-service (FFS) assessment is another potential application of the presented 

pitting models. It can help engineers by: (i) Assessment of the current state of the 

(damaged) structure, and (ii) providing guidelines to make decision regarding running, 

rerating, repairing, or replacing aging pressure components and structures containing 

defects. As a result, developing a predictive FFS assessment for insulated equipment 
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affected by pitting in future studies using the presented maximum pit depth can help to 

predict the failure time and make decisions about affected components [11].  

Figure 2.11 is a schematic representation of the expected pitting damage predicted using 

the pit density and maximum pit depth model after 5 and 15 years. Actual pitting damage 

dimensions, determined using inspections, should be compared with the model 

predictions to verify the model results and adjust model parameters. As discussed above, 

integration of the presented models in this work with the Bayesian approach to revising 

model parameters using inspection data could be a subject for future research. For this 

purpose, the model parameter updating approach would deal with the pit generation and 

pit growth in a systematic way and their parameters will be revised using a Bayesian 

methodology.  
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Figure 2.11. Schematic representation of the expected pitting damage after 5 and 15 years 

 

2.5. Conclusions 

Pitting corrosion in insulated equipment is a form of CUI that occurs stochastically in an 

extensive range of metals and environments. This paper provides a comparative study of 

the methods and models for different pit characteristics including pit initiation, pit growth 
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rate, and maximum pit depth. Non-homogeneous Poisson process is found as a preferred 

approach to model pit generation under insulation as pits occur non-uniformly in time 

with variable generation rate. It is shown that the Markov process is an adequate method 

to model the dynamic nature of maximum pit depth over time. Moreover, for the case of 

pitting under insulation, the parameters and transition rate of the Markov model can 

illustrate the impact of the insulation and coating type. The practical application of the 

proposed models is demonstrated using a pressure vessel case study. The case study 

highlights the ability of the proposed methodology to track and predict pitting corrosion 

in insulated equipment, which is very difficult to inspect in real life problems, especially 

for the case of offshore facilities.    

In future work, different aspects of coating and insulation impacts on the behavior of 

pitting corrosion should be further analyzed using experimental lab results. A risk 

assessment using the pit characteristic models will be developed to help engineers make 

decisions about pitting corrosion using the proposed models. 	

 

2.6. References 

[1] American Petroleum Institute, API RP 571 Damage Mechanisms Affecting Fixed Equipment in the 
Refining Industry, Second Edi. Washington: API Publishing Services, 2011. 

[2] B. J. Fitzgerald, C. Droz, and S. Winnik, “Piping System CUI: Old Problem; Different 
Approaches,” in European Federation of Corrosion, 2003, September. 

[3] Anton Hajj, “Simple approach to Corrosion Under Insulation prevention,” in Bring on the Heat, 
Nace, 2013. 

[4] M. Lettich, “Is There A Cure For Corrosion Under Insulation?,” Insulation Outlook, 2005. 

[5] American Petroleum Institute, API RP 581: Risk-Based Inspection Technology, Second Edi. 
Washington: API Publishing Services, 2008. 

[6] ASM Handbook Committee, ASM Metals Handbook Volume 11, Failure Analysis and Prevention. 
2002. 



63 

[7] S. Caines, F. Khan, and J. Shirokoff, “Analysis of pitting corrosion on steel under insulation in 
marine environments,” J. Loss Prev. Process Ind., vol. 26, no. 6, pp. 1466–1483, 2013. 

[8] H. Hong, “Application of the stochastic process to pitting corrosion,” Corrosion, vol. 55, no. 1, pp. 
10–16, 1999. 

[9] R. E. Melchers, “A new interpretation of the corrosion loss processes for weathering steels in 
marine atmospheres,” Corros. Sci., vol. 50, no. 12, pp. 3446–3454, Dec. 2008. 

[10] J. C. Velázquez, J. Weide, E. Hernández, and H. H. Hernández, “Statistical modelling of pitting 
corrosion: extrapolation of the maximum pit depth-growth,” Int. J. Electrochem. Sci., vol. 9, pp. 
4129–4143, 2014. 

[11] E. Shekari, F. Khan, and S. Ahmed, “A predictive approach to fitness-for-service assessment of 
pitting corrosion,” Int. J. Press. Vessel. Pip., vol. 137, pp. 13–21, 2015. 

[12] Yasser Mubarak Al-Mowalad, “Corrosion Under Insulation (CUI) Management,” no. 1, p. WP13 
and WP15, 2006. 

[13] H. S. Ahluwalia, “CUI: An In-Depth Analysis,” NIA, 2015. . 

[14] S. F. Wika, “Pitting and Crevice Corrosion of Stainless Steel under Offshore Conditions,” 
Norwegian University of Science and Technology, 2012. 

[15] G. S. Frankel and N. Sridhar, “Understanding localized corrosion,” Mater. Today, vol. 11, no. 10, 
pp. 38–44, 2008. 

[16] A. Pardo, E. Otero, M. C. Merino, M. D. López, M. V. Utrilla, and F. Moreno, “Influence of pH 
and chloride concentration on the pitting and crevice corrosion behavior of high-alloy stainless 
steels,” Corrosion, vol. 56, no. 4, pp. 411–418, 2000. 

[17] S. Matsch and H. Boehni, “Electrochemical Investigations of Pitting Events at Different 
Temperatures by Current Transients Analysis,” in Pits and Pores : formation, properties, and 
significance for advanced materials : proceedings of the International Symposium, 2000, vol. 8, no. 
entry 7, pp. 3–4. 

[18] A. S. Elola, T. F. Otero, and A. Porro, “Evolution of the pitting of aluminum exposed to the 
atmosphere,” Corrosion, vol. 48, no. 10, pp. 854–863, Oct. 1992. 

[19] S. T. Pride, J. R. Scully, and J. L. Hudson, “Metastable pitting of aluminum and criteria for the 
transition to stable pit growth,” J. Electrochem. Soc., vol. 141, no. 11, p. 3028–, 1994. 

[20] M. R. Workman, “On probabilistic transition rates used in Markov models for pitting corrosion,” 
Master’s thesis, The University of Akron, 2014. 

[21] J. Zhao, “Risk Management for Pitting Corrosion,” Master’s thesis, The University of Akron, 2014. 

[22] M. Nuhi, T. Abu Seer, A. M. Al Tamimi, M. Modarres, and A. Seibi, “Reliability Analysis for 
Degradation Effects of Pitting Corrosion in Carbon Steel Pipes,” Procedia Eng., vol. 10, pp. 1930–
1935, Jan. 2011. 

[23] S. V. Datla, M. I. Jyrkama, and M. D. Pandey, “Probabilistic modelling of steam generator tube 
pitting corrosion,” Nucl. Eng. Des., vol. 238, no. 7, pp. 1771–1778, Jul. 2008. 

[24] S. Caines, F. Khan, J. Shirokoff, and W. Qiu, “Experimental design to study corrosion under 
insulation in harsh marine environments,” J. Loss Prev. Process Ind., vol. 33, pp. 39–51, 2015. 

[25] R. B. Mears and R. H. Brown, “Corrosion Probability,” Ind. Eng. Chem, vol. 20, no. 10, 1937. 

[26] Y. Tsukaue, G. Nakao, Y. Takimoto, and K. Yoshida, “Initiation behavior of pitting in stainless 
steels by accumulation of triiodide ions in water droplets,” Corrosion, vol. 50, no. 10, pp. 755–760, 
1994. 



64 

[27] T. Shibata and M. Suko, “Stochastic-process of pit generation of aluminum,” Denki Kagaku, vol. 
58, no. 3, pp. 227–231, 1990. 

[28] T. Shibata, “Stochastic studies of passivity breakdown,” Corros. Sci., vol. 3, pp. 413–423, 1990. 

[29] T. Shibata, “Statistical and Stochastic Approaches to Localized Corrosion,” Corrosion, vol. 52, no. 
11, pp. 813–830, Nov. 1996. 

[30] D. Mao, “Bayesian Modeling of Pitting Corrosion in Steam Generators,” Master’s thesis, 
University of Waterloo, 2007. 

[31] A. Valor, F. Caleyo, L. Alfonso, D. Rivas, and J. M. Hallen, “Stochastic modeling of pitting 
corrosion: A new model for initiation and growth of multiple corrosion pits,” Corros. Sci., vol. 49, 
no. 2, pp. 559–579, Feb. 2007. 

[32] P. M. Aziz, “Application of the statistical theory of extreme values to the analysis of maximum pit 
depth data for aluminum,” Corrosion, vol. 12, 1956. 

[33] R. E. Melchers, “Pitting corrosion of mild steel in marine immersion environment- part 1: 
maximum pit depth,” Corrosion, vol. 60, pp. 824–836, 2004. 

[34] R. E. Melchers, “Pitting Corrosion of Mild Steel in Marine Immersion Environment—Part 2: 
Variability of Maximum Pit Depth,” Corrosion, vol. 60, no. 10, pp. 937–944, Oct. 2004. 

[35] A. Valor, F. Caleyo, L. Alfonso, J. C. Velázquez, and J. M. Hallen, “Markov chain models for the 
stochastic modeling of pitting corrosion,” Math. Probl. Eng., vol. 2013, pp. 1–13, 2013. 

[36] H. Hong, “Application of the Stochastic Process to Pitting Corrosion,” Corrosion, vol. 55, no. 
January, pp. 10–16, 1999. 

[37] M. Romanoff, Underground corrosion. Washington, DC: NBS Circular 579, National Bureau of 
Standard, 1957. 

[38] E. . Gumbel, Statistical Theory of Extreme Values and Sorne Practical Appl ications. 1954. 

[39] T. Shibata, “Evaluation of corrosion failure by extreme value statistics,” ISIJ Int., vol. 31, pp. 115–
121, 1991. 

[40] K. M. Deen and M. A. Virk and C. I. Haque and R. Ahmad and I. H. Khan, “Failure investigation 
of heat exchanger plates due to pitting corrosion,” Eng. Fail. Anal., vol. 17, 2010. 

[41] M. G. Stewart and A. Al-Harthy, “Pitting corrosion and structural reliability of corroding RC 
structures: Experimental data and probabilistic analysis,” Reliab. Eng. Syst. Saf., vol. 93, no. 3, pp. 
373–382, Mar. 2008. 

[42] S. Yamamoto and T. Sakauchi, “An extreme-value statistical analysis of perforation corrosion in 
the lap joints of automotive body panels,” Int. J. Mater. Prod. Technol., vol. 6, 1991. 

[43] A. K. Sheikh, J. K. Boah, and D. A. Hanen, “Statistical Modeling of Pitting Corrosion and Pipeline 
Reliability,” Corrosion, no. March, pp. 190–197, 1990. 

[44] A. Jarrah, M. Bigerelle, G. Guillemot, D. Najjar, A. Iost, and J.-M. Nianga, “A generic statistical 
methodology to predict the maximum pit depth of a localized corrosion process,” Corros. Sci., vol. 
53, no. 8, pp. 2453–2467, Aug. 2011. 

[45] R. E. Melchers, “Statistical Characterization of Pitting Corrosion — Part 2 : Probabilistic Modeling 
for Maximum Pit Depth,”  in Corrosion, 2008, pp. 766–777. 

[46] R. E. Melchers, “Extreme value statistics and long-term marine pitting corrosion of steel,” 
Probabilistic Eng. Mech., vol. 23, no. 4, pp. 482–488, Oct. 2008. 



65 

[47] F. Caleyo, J. C. Velázquez, A. Valor, and J. M. Hallen, “Markov chain modelling of pitting 
corrosion in underground pipelines,” Corros. Sci., vol. 51, no. 9, pp. 2197–2207, Sep. 2009. 

[48] J. W. Provan and E. S. Rodriguez, “Part I: development of a Markov description of pitting 
corrosion,” Corrosion, vol. 45, pp. 178–192, 1989. 

[49] T. Morrison and R. Worthingham, “Reliability of high pressure line pipe under external corrosion,” 
in ASME International ConferenceOffshoreMechanics and Arctic Engineering, 1992, pp. 401–408. 

[50] K. A. Mccallum, “Probabilistic analysis of pipeline reliability using a Markov process,” Master 
thesis, The University of Akron, 2012. 

[51] T. Shibata, “1996 W . R . Whitney Award Lecture : Statistical and Stochastic Approaches to 
Localized Corrosion,” Corrosion, vol. 52, no. 11, pp. 813–830, 1996. 

[52] API, API 510: Pressure Vessel Inspection Code: In-Service Inspection, Rating, Repair, and 
Alteration, 10th ed. Washington: American Petroleum Institute, 2014.  

 

  



66 

3. A PREDICTIVE APPROACH TO FITNESS-FOR-SERVICE 

ASSESSMENT OF PITTING CORROSION2 

	

Preface  

A version of this manuscript has been published in the International Journal of Pressure 

Vessels and Piping. I am the primary author of this paper. Along with the co-authors, 

Faisal Khan and Salim Ahmed, I developed the conceptual model for Fitness-for-Service 

assessment of pitting corrosion. I carried out the literature review, case study, data 

collection and analysis. I prepared the first draft of the manuscript 

and subsequently revised the manuscript based on the co-authors’ feedback and also the 

peer review process. The co-author Faisal Khan helped in developing the 

concepts/models and their testing, reviewed and corrected the models and results, and 

contributed in preparing, reviewing and revising the manuscript. The co-author Salim 

Ahmed contributed through support in the development, testing and improvement of the 

model. Salim Ahmed also assisted in reviewing and revising the manuscript. 

 

Abstract 

Pitting corrosion is a localized corrosion that often causes leak and failure of process 

components. The aim of this work is to present a new fitness-for-service (FFS) 

assessment methodology for process equipment to track and predict pitting corrosion. In 

																																																													
2 Shekari et al. International Journal of Pressure Vessels and Piping 2016; 137:13-21 
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this methodology, pit density is modeled using a non-homogenous Poisson process and 

induction time for pit initiation is simulated as the realization of a Weibull process. The 

non-homogenous Markov process is used to estimate maximum pit depth, considering 

that only the current state of the damage influences its future development. Subsequently, 

the distributions of the operating pressure and the estimated burst pressure of the defected 

component are integrated with Monte Carlo simulations and First Order Second Moment 

(FOSM) method to calculate the reliability index and probability of failure. This 

methodology provides a more realistic failure assessment and enables consideration of 

uncertainty associated with estimating pit characteristics. The practical application of the 

proposed model is demonstrated using a piping case study.  

Keywords: Pitting corrosion; fitness-for-service (FFS) assessment; maximum pit depth; 

probability of failure. 

 

3.1. Introduction 

Pitting is defined as localized regions of metal loss that can be characterized by a pit 

diameter on the order of the plate thickness or less, and a pit depth that is less than the 

plate thickness [2]. Small pits can progress through wall thickness and lead to a loss of 

containment of process facilities. Pits may also act as initiation sites for stress corrosion 

cracks or affect the component strength, causing brittle failure [3]. 

The ability to predict pitting behavior, and any other damage mechanism, is key to 

designing and maintaining assets in process industries. Pitting corrosion can lead to 

catastrophic consequences in marine applications [3]. Design-code-focussed methods of 
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structural analysis generally have specific (and usually tight) damage tolerances and their 

application for damage assessment during the operational life is likely to produce unduly 

conservative assessments [4]. Design codes do not provide rules to evaluate equipment 

that degrades while in-service, and deficiencies due to degradation or from original 

fabrication that may be found during subsequent inspections [2]. Fitness-for-service 

(FFS) assessment method has been developed in recent years to tackle this challenge by 

(i) assessment of the current state of the (damaged) structure, (ii) extrapolation from the 

current state to estimate the remaining safe and serviceable life [4], and (iii) providing 

guidelines to make run, rerate, repair, or replace decisions about ageing pressure 

components and structures containing defect. API 579-1/ASME FFS-1 [2] defines FFS as 

“quantitative engineering evaluations that are performed to demonstrate the structural 

integrity of an in-service component that may contain a flaw or damage.” 

The stochastic nature of the pitting corrosion has been recognized in the literature and 

several models have been presented to understand pitting in different material-

environment combinations [3–6]. However, a comprehensive review of the literature 

shows that other than API 579-1/ASME FFS-1 [2], no other FFS assessment 

methodology has been proposed for pitting corrosion. This methodology is applied when 

pitting corrosion has been found during an inspection to help make decisions about the 

possibility of continued service of the damaged asset. However, estimating the pitting 

rate and its application in remaining life assessment of the attacked assets is not covered 

in API 579-1/ASME FFS-1. Overall, to the best of the authors’ knowledge, there is no 

existing predictive FFS method to assess pitting corrosion. 
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Traditionally, the difficulty in choosing a suitable variable that can be measured 

quantitatively and treated mathematically has been the main challenge in the study of 

pitting corrosion [8]. Moreover, the model verification is another challenge for pitting 

study. From a practical point of view, the maximum pit depth (MPD) is usually used in 

pitting analysis since the deepest pit will cause the first perforation [4]. It is the depth of a 

pit that will affect the containment and structural integrity of pipes and other components 

in marine environments [3]. This is why much of the existing literature has focused on 

modeling the maximum pit depth [5,8–10]. The pit diameters and the distance among pits 

(i.e., the pit density) is another important characteristic of pitting corrosion that affects 

the stress distribution and load capacity of a component. It is recognized in this study that 

both MPD and pit density are time-dependent random variables. The importance of using 

a probabilistic analysis to address the uncertainty of MPD(t) and pit density, as well as 

the necessity of estimating the future pit progression rate, are recognized in API 579-

1/ASME FFS-1, however, its methodology does not address these aspects.  

In this paper, models are presented to estimate the distributions of MPD and average pit 

density (APD) as a function of time. Then, a methodology is provided to estimate the 

distribution of the future maximum allowable pressure for a component containing 

defects using the estimated MPD(t) and APD(t) through Monte Carlo simulations. The 

estimated maximum allowable pressure and the operating pressure of the component are 

then used to develop the performance function and estimate the failure probability. In 

Section 3.3.3, determination of the maximum pit depth and pit density are discussed, and 
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the proposed FFS method is presented. A case study is used in Section 3.3.4 to 

demonstrate the application of the method.   

 

3.2. Overview of FFS Methodologies 

Worldwide regulatory requirements entail that the FFS assessment must be based on 

recognized and generally accepted good engineering practices. Research conducted and 

knowledge gained during the past years have led to the formulation of international 

standards and procedures for conducting FFS assessments. Table 3.1 provides a list of 

major FFS procedures along with the addressed failure mechanisms and related industry 

sector.  

 

Table 3.1. Comparison of major FFS procedures 

Procedure Reference Status Industry sector 
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7910:2013 
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As can be seen from Table 3.1, the API 579-1/ASME FFS-1 is the only one that 

specifically addresses FFS assessment of pitting corrosion. API 579-1/ASME FFS-1 

includes two levels of FFS assessment for pitting corrosion. In level 1 assessment, 

observed pit damages are classified by using standard pit charts and wall thickness ratio 

to determine the associated remaining strength factor (RSF). Then, the actual RSF is 

compared with the allowable RSF to qualify the attacked asset for continued service. 

Level 2 assessment provides a better estimate of RSF for pitting damage in a component 

subject to pressure and supplemental loadings. For this purpose, a representative site is 

chosen for stress analysis and then procedure accounts for the orientation of the pit-

couple with respect to the maximum stress direction. In API 579-1/ASME FFS-1, the 

FFS assessment is based on known pitting damages and the procedure cannot be used for 

predictive FFS assessment and estimation of pitting progression rate. Moreover, the 

uncertainty in input data, such as pit depth and pit density, are not taken into 

consideration.  

 

3.3. The FFS Assessment Methodology 

Figure 3.1 shows the flow chart of the proposed methodology for the evaluation 

procedure of components with pitting. The details of the assessment procedure are 

provided in the following sections. 
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Figure 3.1. The predictive FFS assessment methodology  

 

3.3.1. Maximum Pit Depth Model	

The extreme value theory [4,17,18] and the Markov process [5,10,19,20] are two main 

approaches used in the literature to describe the maximum pit depth distribution in pitting 

corrosion. Because of its stochastic nature, the Markov chain method serves as an 

excellent approach to model the progression of corrosion [23] by considering pitting 

mechanism to be time and depth dependent. A Markov process assumes that the pit depth 

is examined at different time intervals, and that the depth in a future time interval relies 

only on the depth at the present time [21]. A review of the application of Markov process 

in modelling of pitting corrosion and the comparison of different pit models can be found 

in Workman [22] and Zhao [21]. The predictive FFS method presented in this work is 
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built upon the pit growth (Markov chain) and pit initiation model suggested by Hong [7] 

and Valor	et al. [6] to track and predict the maximum pit depth. To generalize the model 

presented by Valor	 et al. [6], a non-homogeneous Poisson distribution is used to 

determine the pit density. Then, the expected value of the future generated pits is 

combined with the maximum pit depth model to determine the probability distribution of 

the depth of deepest pit.  

For a single pit generated at time t, a non-homogeneous Markov process is used to model 

the of pit depth over time. As shown in Figure 3.2, the material thickness is discretized in 

non-overlapping intervals Δd, which correspond to the n possible Markov states i (i =1, 

..., n). For example, a pit in state i has a depth between 	and	 . On the 

assumption that a pit is in state 1 at time t = 0, Valor	et al. [6] showed that the probability 

that the pit depth is equal to or less than state i after a time increment (t - tk) is as follows: 

 

      (3.1) 

 

where n is the total number of states in the Markov chain and tk is the pit initiation time. 

The number of transited states by a corrosion pit, or the pit depth, is denoted by ρ(t) and 

is assumed to follow a power function: 

 

        (3.2) 

 

( )1i d− ×Δ i d×Δ

[ ]{ }( , ) 1 1 exp ( ) ,    1,...,
i

k kF i t t t t i nρ− = − − − − =

( ) ( )kt t t ωρ χ= −
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where χ has dimensions of distance over the ωth power of time and ω is less than 1.0. 

Derivation of Equation (3.1) can be found in Valor	et al. [6] and is skipped here to avoid 

repetition. In Equation (3.1), the pit initiation time (tk) is considered to follow a Weibull 

distribution with shape parameter ν and scale parameter ε: 

 

.       (3.3) 

 

Equation (3.3) reduces to the exponential distribution when ν = 1, representing pit 

initiation with constant occurrence time, or can represent more complex time-to-failure 

by changing v.  

 

 

Figure 3.2. The states of a Markov process for pitting on a metal surface 

 

Equation (3.1) is used to predict the probability that the maximum damage state is less 

than or equal to a given value for a time increment when multiple pits are considered, and 

each one of them is nucleated at a different time tk. When m pits are generated at different 

times tk, Equation (3.1) holds for each one of them.  
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Elola et al. [24] showed that pit density can follow a linear distribution with time, using 

field tests on 1050 aluminum. However, Pride et al. [25] showed that during pitting 

corrosion tests on aluminum loop, the pits nucleated rapidly but the initiation rate slowed 

down with time. Combining models from Elola et al. [24] and Pride et al. [25], Zhao [21] 

and Workman [22] proposed the following generalized equation to determine the average 

pit density: 

 		 	 	 	 	 	 	 (3.4) 

 

where A, Ψ, w, and η are the parameters that could depend upon time, allowing for 

changes in environmental conditions to be considered [22]. The parameters should be 

chosen in a way to best reflect data from literature or historical data. In order to predict 

the pit density in the future, a non-homogenous Poisson distribution is used. Using 

Equation (3.4), the probability of m pits in an area at time t is estimated by 

 

	 Pr 𝑚 = !
!!

−𝐴𝑃𝐷 𝑡 ! . exp −𝐴𝑃𝐷 𝑡 ,	 	 	 	 	 (3.5) 

 

It can be noted that the expected value of the Poisson distribution in Equation (3.5) is 

APD(t), which is an important simplification made to the combined model.  

Once the number of pits per area is determined, the cumulative distribution function of 

maximum pit depth for each single pit determined from Equation (3.1), 

APD(t) = A
ψ
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, must be combined in order to estimate the distribution of the 

deepest pit, under the assumption that pits nucleate and grow independently. In such a 

case, Valor	et al. [6] proposed that the probability that the deepest pit is in a state less 

than or equal to state i, at time t, can be estimated using the expression: 

 

.     (3.6) 

 

The product of the expected value of Equation (3.6) and the thickness of each state gives 

the mean maximum pit depth. Mean MPD and the 95th percentile of the MPD distribution 

are used in the proposed FFS assessment methodology to determine the maximum 

allowable working pressure of the corroded component.  

 

3.3.2. Allowable Pressure Model for Defected Component 

The strength of process components deteriorate due to pitting corrosion, and they 

generally become weaker with increasing age. Hence, the remaining strength of the 

component is required to be estimated by adopting any suitable method. In this work, the 

burst pressure of the defected component (Pcorr) is used as an indication of the reduced 

strength due to the presence of pitting corrosion. Hasan et al. [26] reviewed different 

burst pressure estimation models and provided some guidelines to choose the best model 

based on different factors such as component type, age, and type of service.    
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As an example, the Pcorr model in DNV F-101 [27] for corroded pipelines is adopted in 

this work, where the effective equipment thickness is determined after subtracting the 

maximum pit depth from the original equipment thickness. To simplify the model, an 

idealized rectangle is considered as the equivalent of the defect profile related to pitting 

(see Figure 3.3). The Pcorr for a component with pitting corrosion can be determined as 

follows: 

 

      (3.7) 

 

where Pcorr(t) is the burst pressure of the defected component as a function maximum pit 

depth over time, 	 and	

.	If ,	then the Pcorr 

value should be considered as zero [27]. In Equation (3.7), the parameters are defined as 

follows: D is the outside diameter of the pipe; l is the length of the pitted area and is 

assumed to be the total length of the component (pipe segment) under analysis; γd is the 

partial safety factor for pit depth; εd is a factor for defining a fractile value for the pit 

depth; τ is the component thickness; fu is the ultimate tensile strength; MPD(t) is the time 

dependent maximum pit depth determined as the expected value, or 95th percentile, of 

Equation (3.6); γm is the partial safety factor for longitudinal corrosion model prediction; 
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and StD[MPD/τ] is the standard deviation of the random variable (MPD/τ). The values of 

γd, γm, and εd are provided in DNV RP-F101 [27]. It is important to point out that the 

partial safety factor, γd, as well as the ratio (MPD/τ), depend on the accuracy of the 

applied method of inspection. Thus, partial safety factors are given to account for 

uncertainties associated with the sizing of the defect depth and the material properties.  

When using Equation (3.7), the component is considered to have sufficient material 

toughness. Temperature and/or process conditions that result in material embrittlement 

are discussed in API 579-1/ASME FFS-1 [2]. If there is uncertainty regarding the 

material embrittlement during operation due to temperature and/or the process 

environment, FFS assessment should also evaluate the brittle fracture, which is outside 

the scope of this study. Moreover, supplemental loads are assumed to be negligible and 

the component is considered to be subjected to internal pressure only with a uniform, 

through-wall stress distribution. 
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(a) A cylindrical component containing pits 

 
(b) Section A-A 

 
(c) The idealized rectangle considered as the 

equivalent of the defect profile 
 

Figure 3.3. The rectangular projection of pitting 

 

Once the maximum pit depth distribution is determined using Equation (3.6), the Monte 

Carlo simulation is integrated with Equation (3.7) to determine the distribution of the 

burst pressure of the defected component. Probability distributions can also be considered 

for other parameters of Equation (3.7), if available.  

For other component types, such as pressure vessels and storage tanks, the Pcorr models 

from applicable codes/standards and individual models can be adopted (similar to 

A	 A	

l 

τ	

l 

τr(t) 

MPD(t) 
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Equation 3.7) by replacing the corroded thickness with the maximum pit depth. A listing 

of the Pcorr formulations from different codes/standards can be found in Hasan et al. [26].  

 

3.3.3. Probability of Failure 

Based on the limit state analysis, the performance function of the corroded component is 

calculated using the Pcorr(t) and the operating pressure, Pop:  

 

g(t) = Pcorr(t) - Pop.         (3.8) 

 

where Pcorr(t) is evaluated as burst pressure of the defected component. Operating 

pressure, Pop, can be characterized by a Gumbel distribution as per CSA Z662-07 [28] 

recommendation. Pcorr(t) is considered as the resistance and the Pop is considered as the 

load in the limit state function [26]. When g(t) is less than zero, failure will happen.  

Using the First Order Second Moment (FOSM) reliability method and the limit state 

equation, Equation (3.8), one can now determine the reliability index, β, as a function of 

time from load and resistance variables [26]: 

 

 𝛽(𝑡) =
!!!"##(!)!!!!"

!!!"##
! (!)!!!!"

!
        (3.9) 

 

Once the reliability index, β, is calculated, the failure probability (Pf) as a function of 

time can be calculated using Equation (3.10): 
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.       (3.10) 

 

The proposed approach provides an estimate of the probability of failure for the time of 

assessment or a time in the future. 

 

3.3.4. Remaining Life Assessment 

Figure 3.4 shows a schematic representation of MPD distribution in different time 

periods. As MPD increases, failure probability also increases due to reduced allowable 

pressure of the effected component. Accordingly, the remaining life can be determined 

from a plot of the burst pressure of the defected component, failure probability, or 

remaining thickness versus time. In this work, it is suggested that the component-

remaining-life to be considered as the minimum of the remaining life determined from 

the following approaches:  

i. According to API 579-1/ASME FFS-1 [2], the time at which the allowable 

pressure curve, Pcorr(t), intersects the design allowable pressure, Pd, is defined as 

the remaining life of the component. The design allowable pressure is to be 

determined from the component construction code. 

ii. The remaining life can also be obtained as the intersection time of a threshold 

limit and the component failure probability determined from Equation (3.10). The 

minimum value of reliability index, β, in Equation (3.9) is assumed to be zero (it 

can be negative, but logically not correct), which corresponds to a highest failure 

probability of 0.5 for the limit state analysis [26]. Therefore, the threshold value 

( ) ( ) ( )1fP t t tφ β φ β= − = −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
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of the failure probability can be considered as 0.5, or it can be selected based on 

expert knowledge. 

iii. API 510, Pressure Vessel Inspection Code [29], API 570, Piping Inspection Code 

[30], and API 653, Storage Tank Inspection Standard [31], do not accept scatter 

pits during inspections if the remaining thickness below the pit is less than one-

half the required thickness. They also have requirements for the length of the 

damaged area. Accordingly, the remaining life of the component can be 

determined as the time when the maximum pit depth curve (expected value of 

Equation 3.6) intersects half of the component thickness.  

For a given equipment, the remaining life is taken as the smallest value of the remaining 

life determined from above criteria for individual components.  

 

Figure 3.4. An example representation of shift in MPD distribution over time (numbers provided are 
for illustrative purposes only) 
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3.3.5. Decision Making   

As a rule of thumb provided in inspection codes [25–27], inspection should be conducted, 

at maximum, half of the estimated component-remaining-life, unless a risk-based 

inspection (RBI) planning provides a different inspection date. Periodic inspections are 

critical to verify the maximum pit depths estimated by the model. Inspection results and 

in-service monitoring can also be used to qualify the assumption made to establish the 

remaining life [2] and to calibrate the model by adjusting the model parameters. The 

application of Bayesian approaches is a subject for further research to incorporate the 

inspection data and new evidence from the system to revise the model parameters.  

If pits are found during an inspection, the associated allowable pressure, Pcorr, and failure 

probability can be used by a FFS practitioner to make decisions about the possibility of 

continued service or the need for remediation (rerate, repair or replacement of the 

damaged component). In such cases, applicable alteration and repair codes and standards 

[25–27] should be followed. 

 

3.4. Case study: Piping 

3.4.1. Case Study Description 

The practical application of the proposed model is demonstrated using a hypothetical 

piping case study. The pipe under study is considered as a newly installed cylindrical 

straight section of an insulated piping component on topside facilities of an offshore 

platform. The piping has no fabrication and/or corrosion defects at the installation time (t 

= 0). The section of the piping under study is away from major structural discontinuities 
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(such as branches, supports, and girth welds). Therefore, there are no supplemental loads 

on this section of the piping.  

Pitting corrosion is expected due to water trapping under insulation and reported pitting 

damage in similar services. Due to the difficulty in removing the insulation and 

remoteness of the facility, frequent periodic inspections to detect pitting corrosion are not 

feasible. Thus, the application of a predictive FFS assessment model for the pitting 

corrosion is required to ensure the safety and integrity of the piping during the service.  

Based on the proposed methodology in Figure 3.1, application of the FFS model on this 

case study involves the following steps: 

1. Estimating the average pit density over time using Equation (3.4) and the 

probability of maximum pit depth evolving over time using Equation (3.6). 

2. Estimating the allowable pressure for the defected component (Pcorr) based on 

Equation (3.7). 

3. Determining the failure probability versus time (Equation 3.10). 

4. Remaining life assessment using the guidelines in Section 3.3.4. 

The description of parameters and their estimated values used in this case study are 

provided in Tables 3.2 and 3.3. The pipe thickness is discretized into 100 states of equal 

depth, Δd = 19.10×10-2 mm. For instance, a pit in state 1 has a depth between 0 and 

19.10×10-2 mm, a pit in state 11 has a depth between 1.910 mm and 2.101 mm, and a pit 

in state 100 implies a perforated pipe shell.  

The model parameters and assumptions are determined from expert knowledge and 

related literature [10,19,20], which is inevitable for new installations with no operational 
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and inspection histories. However, as more information from the operation, inspection, 

and maintenance of the piping system become available over time, such data can be used 

to adjust the initial model parameters. Alternatively, the data from accelerated tests can 

be used to estimate the initial values of the model parameters. The design and 

implementation of accelerated pitting corrosion tests for insulated equipment operating in 

marine environments is discussed in Caines et al. [32].  

 

Table 3.2. Parameters used for FFS assessment of piping case study 

Symbol Description Estimated Value 
n Number of Morkovian states. The thickness is divided into n layers to 

develop the Markov model. 
100 

A Parameter for pit density in Equation (3.4) 18.3192 
η Parameter for pit density in Equation (3.4) 1 
ψ Parameter for pit density in Equation (3.4) 0.0596 
w Parameter for pit density in Equation (3.4) 0 
ν Shape parameter in Weibull distribution in Equation (3.3) 4.79 
ε Scale parameter in Weibull distribution in Equation (3.3) 17.27 
χ Parameter in transited states equation of Markov process in Equation (3.2) 0.9152 
ω Parameter in transited states equation of Markov process in Equation (3.2) 0.1069 
 

Table 3.3. Probabilistic models of the basic variables of the pipe [22,29] 

 Tensile 
strength Thickness Diameter Operating 

Pressure Length 

Distribution 
Type 

Normal  Normal Normal Gumbel Length = 200 mm 

Mean Design tensile 
strength for API 
5L X65 (530.9 
N/mm2) 

Nominal 
thickness (19.10 
mm) 

Nominal diameter 
(812.8 mm) 

1.05 MAP† 
(15 bar) 

- 

Coefficient 
of Variation 

0.01 0.03 0.01 0.03 - 

† MAP: Maximum allowable pressure 

3.4.2. Result and Discussion 

Figures 5 and 6 show the average pit density and maximum pit depth over a period of 20 

years. As can be seen from Figure 3.5, pits are generated immediately after 

commissioning of the piping and continue to increase exponentially. As shown in Figure 
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3.6, considering the stochastic nature of the pitting corrosion, one of the advantages of 

developing the probability distribution of the maximum pit depth is the ability to 

investigate the uncertainty involved in the model outputs. In Figure 3.6, both the mean 

and 95th percentile of the estimated maximum pit depth distribution are shown over time. 

Obviously, 95th percentile values provide more conservative estimate of the maximum pit 

depth and represent a worst-case scenario.  

 

 
 

Figure 3.5. Number of pits over time Figure 3.6. Maximum pit depth over time	

 

The maximum allowable pressure values for the defected pipe (Pcorr) over time are 

estimated using Equation (3.7) and the results are shown in Figure 3.7. As can be seen in 

Figure 3.7, as pits grow over time, the maximum allowable pressure of the defected pipe 

is decreased accordingly. Both mean and 95th percentile values of the maximum 

allowable pressure are shown in Figure 3.7 to account for the uncertainty. 
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Figure 3.7. Maximum allowable pressure for the 
defected pipe over time 

Figure 3.8. Probability of failure of the defected 
pipe over time 

 

The estimated maximum allowable pressure and the operating pressure are then used to 

estimate the reliability index according to the performance function provided in Equation 

(3.9). Finally, the failure probability as a function of time is estimated using Equation 

(3.10). The mean and 95th percentile of the estimated failure probability over time are 

shown in Figure 3.8. These statistics, along with the three criteria introduced in Section 

3.3.4, are used to evaluate the remaining life of the pipe: 

i. Considering the intersection of the maximum pit depth curve and the half 

thickness of the pipe as the estimated life, Figure 3.6 shows the estimated 

remaining life of the pipe. Using the mean and the 95th percentile of the maximum 

pit depth values, the remaining life of the pipe is estimated as 9.53 and 3.40 years, 

respectively.  
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ii. Figure 3.7 shows the estimated remaining life of the pipe, determined as a point of 

time when the maximum allowable pressure of the defected pipe intersects the 

operating pressure. Using the mean and the 95th percentile of the maximum, the 

remaining life is estimated as 10.73 and 3.34 years, respectively. 

iii. Considering the failure probability of 50% as the threshold limit, Figure 3.8 

shows the remaining life using the mean and the 95th percentile of the failure 

probability curve, which are 10.37 and 3.67 years, respectively. 

Table 3.4 summarizes the estimated remaining life values using different criteria. As 

discussed in Section 3.3.4, the remaining life can be considered as the minimum of the 

values estimated from the above three criteria. Therefore, the remaining life for the pipe 

using the mean and 95th percentile statistics is determined as 9.53 and 3.34 years, 

respectively.  

Table 3.4. Estimated remaining life values for the piping case study 

 
Criterion Used Minimum of 

All Criteria MPD MAP POF 
Remaining Life (years) 

Using 95th Percentile 3.40 3.34 3.67 3.34 

Remaining Life (years) 
Using Mean 9.53 10.73 10.37 9.53 

MPD: Maximum Pit Depth; MAP: Maximum Allowable Pressure; POF: Probability of Failure 

 

Based on the quality and quantity of the data available and the severity and sensitivity of 

the service, an FFS practitioner may use the estimated remaining life based on other 

statistics besides the mean and 95th percentile. Having estimated the remaining life 

values, as discussed in Section 3.3.5, inspection using a proper technique should be done, 
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at maximum, half of the estimated remaining life to verify the maximum pit depth values 

estimated using the model. Alternatively, risk-based inspection (RBI) can be performed 

to determine the inspection schedules.  

 

3.5. Conclusions 

A new predictive FFS assessment for pitting corrosion is proposed, which uses pit 

density, maximum pit depth, and maximum allowable pressure of defected component to 

predict the failure time due to pitting corrosion. The model relies upon a non-

homogenous Markov chain system in order to describe the propagation of pit depths 

throughout a discretized set of states. Then, the burst pressure of the defected component 

is calculated by adopting the maximum allowable pressure models and using the 

estimated maximum pit depths. The burst pressure and operating pressure are then used 

to develop the limit state equation (performance function). Using FOSM, the reliability 

index is then calculated based on the burst pressure and operating pressure variables and 

used to determine the probability of failure.  

The methodology is implemented on a piping case study where mean and 95th percentile 

of the maximum pit depth and failure probability are used to determine the remaining life 

of the defected pipe. The results of the case study show the importance of choosing the 

remaining thickness and failure probability threshold limits when evaluating the 

remaining life. Moreover, the case study highlights the importance of implementing 

periodic inspections to verify the estimated maximum pit depths and to adjust the model 
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parameters. Some guidelines and criteria are provided to choose threshold limits and 

estimate the remaining life and inspection schedules of the defected component.   

The purpose of the presented methodology is to track and predict pitting corrosion for 

places with restricted availability to implement frequent inspections, such as offshore 

process facilities. In such facilities, however, piping and equipment are usually insulated 

to conserve energy and protect components. The existence of insulation adds an extra 

level of complexity to the model. Thus, to improve the flexibility of the presented FFS 

approach, model modification will be conducted in a future work to consider the type, 

condition and maintenance quality of the insulations. Application of Bayesian approaches 

is also a subject for further research to incorporate the inspection data and new evidence 

from the system to revise the model parameters. Moreover, the model will be extended 

into a risk-based approach to consider both the probability and consequences of pitting 

corrosion in FFS assessments.  
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4. DYNAMIC PROBABILISTIC ASSESSMENT OF PITTING 

CORROSION USING BAYESIAN ANALYSIS3 
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improvement of the models. Salim Ahmed also assisted in reviewing and revising the 

manuscript. 

 

Abstract 

This paper presents a methodology to evaluate and update the remaining life of 

pressurized components that have been affected by pitting corrosion and subjected to 

inspection. The methodology incorporates the Non-homogeneous Markov process, which 

																																																													
3  Shekari et al. Engineering Failure Analysis 2017; Under Review.  
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models the maximum pit depth, and a pressure resistance model to estimate the failure 

probability of affected components. To update the probability of failure and hence the 

remaining life of the pitted components, Bayesian updating is used. Markov Chain Monte 

Carlo (MCMC) simulation in conjunction with the Metropolis–Hastings (M–H) 

algorithm are employed to carry out the Bayesian updating. A case study involving a 

selected pipe of the gas condensate (GC) system in the North Sea is used to validate the 

proposed model and illustrate the application of the methodology. The results of the case 

study highlight the importance of the incorporation of inspection data using Bayesian 

analysis to update Markov model predictions over time. 

 

4.1. Introduction 

Pitting is a typical form of localized corrosion, which is prone to be very destructive due 

to its concentrated damage, with the potential to cause catastrophic failures [1]. 

Compared to periodic inspections, a potentially more viable and economical approach for 

controlling pitting corrosion is to predict the timing and severity of its effects [2]. This is 

especially useful for corrosive processes that are not easily accessible, such as those in 

remote operations and offshore facilities. Therefore, it is important to develop a 

methodology to predict pitting behaviour for remaining life evaluation and structural 

integrity assessment of process equipment. Moreover, utilizing the information from the 

inspection data to develop a realistic pit model is of great importance to the process 

industry.    
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The stochastic nature of pitting corrosion has been recognized in the literature and several 

models have been presented to understand pitting in different material-environment 

combinations [3–7]. The extreme value theory [3,8,9] and the Markov process [2,4,10,11] 

are two predominant approaches used in the literature to describe the maximum pit depth 

distribution in pitting corrosion. In an earlier work by authors [12], these methods were 

investigated and the Markov process was found to be the preferable approach to model 

the progression of corrosion because the pitting mechanism is considered to be time and 

depth dependent. More discussion on the advantages of using the Markov process in 

modeling pitting corrosion can be found in Shekari et al. [12]. 

More recently, Shekari et al. [13] presented a predictive remaining life evaluation method 

for a pitted area. They improved the non-homogenous Markov process from Valor et al. 

[11] to estimate maximum pit depth. Subsequently, they presented a time dependent 

equation for burst pressure and estimated the predictive failure probability of components 

affected by pitting corrosion [13]. The presented model in Shekari et al. [13] and most of 

the other models that apply the Markov process use either experimental data or expert 

knowledge to estimate model parameters, without the ability to revise the model 

parameters for a specific application. More specifically, none of these methods consider 

the effect of inspection data to update the maximum pit depth model and revise the 

estimated remaining life. However, it is important to incorporate inspection data for 

developing models to predict the pit growth rate and estimate maximum pit depth [14]. In 

addition, the Markov process suffers from some serious limitations such as lack of 

memory and lack of adaption of new evidence/data. 
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To address this challenge, the application of Bayesian analysis has been an active area of 

research to handle inspection data of different corrosion defects [15–21]. Bayesian 

analysis has received increased attention from industrial practitioners as it provides an 

updating mechanism to revise predictions provided by expert knowledge [20]. Zhang et 

al. [16] and Qin et al. [19] developed models for corrosion defect depth and updated the 

model parameters using the Bayesian framework. However, none of these methods are 

developed specifically to model pit characteristics such as the maximum pit depth, which 

is essential for evaluating the remaining life of components affected by pitting corrosion. 

In the context of pitting corrosion, for instance, Mao [22] presented a probabilistic model 

that considers the uncertainties of the in-service inspection. Mao’s model utilizes a 

Markov Chain Monte Carlo (MCMC) simulation-based Bayesian method for estimating 

the model parameters. However, Mao considered a static pit density and maximum pit 

depth [22]. Therefore, there is still a need to develop a model that is able to 

simultaneously capture the time-dependent pit characteristics’ behaviour and use 

inspection data to revise model parameters.  

Considering the aforementioned need, the objective of the present study is to develop a 

holistic methodology to: (i) develop a probabilistic method for remaining life evaluation 

using maximum pit depth predictions; and (ii) update the remaining life estimates based 

on inspection data. The chief contribution of this study is to develop a hybrid method for 

pitting evaluation by integrating the Markov process with Bayesian analysis to provide a 

dynamic probabilistic framework while overcoming the major limitation of the Markov 

process, which is the lake of adaptation of new data to update model parameters. The 
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proposed methodology in the next section has three parts. Part one includes a non-

homogeneous Markov process to model the maximum pit depth. The second part uses 

Monte Carlo simulations to estimate the future maximum allowable pressure and 

probability of failure for the affected component using the estimated maximum pit depth 

(MPD) and average pit density (APD). Part three uses a Markov Chain Monte Carlo 

(MCMC) simulation to carry out the Bayesian updating to revise the Markov process 

model parameters using collected inspection data. Finally, a case study is provided to 

demonstrate the practical application of the method.  

 

4.2. Methodology 

Figure 4.1 shows the proposed three-step methodology for evaluating the components 

susceptible to pitting corrosion. As shown in Figure 4.1, the methodology starts with the 

estimation of the prior distribution of maximum pit depth (MPD) using the Markov 

process. In Step 2, MPD distribution is used to estimate the maximum allowable pressure, 

which is subsequently used to obtain the probability of failure and the remaining life of 

the component. Step 3 uses Bayesian analysis to estimate the posterior distribution of 

MPD by incorporating inspection data over time. The posterior MPD is then used to 

revise the probability of failure and the remaining life of the component. Details of each 

step are discussed in the following sections.  

 



98 

 

Figure 4.1. Proposed methodology for assessment of pitting corrosion 

 

4.2.1. Step 1: Estimation of MPD Prior Distribution Using Markov process 

4.2.1.1. Step 1.1: Average Pit Density 

The number of pits per unit area of metal, referred to as average pit density (APD) in this 

work, can be predicted from the average number of estimated pits over an area of interest. 

A review of the pit density models is presented in Shekari et al. [12]. A combination of 
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exponential and power models, proposed by Zhao [10] and Workman [2], is used in this 

work to determine the average pit density as it is flexible enough to represent potentially 

complex pit behaviours: 

 

𝐴𝑃𝐷 𝑡 = !
!
1− 𝑒!!! + 𝑤𝑡!         (4.1) 

 

where A, w, ψ, and η are the model parameters. The distribution of pit density is 

considered to follow a non-homogenous Poisson process. Thus, using APD as the mean 

of the intensity function for the non-homogenous Poisson process, the distribution of pit 

density can be estimated by: 

 

𝑃{𝐴𝑃𝐷(𝑡!)− 𝐴𝑃𝐷(𝑡!)  =  𝑁′) = 𝑒! !"#!!
!"#!!

!!

!!!
 , 𝑁′ ≥ 0, 𝑡! > 𝑡!    (4.2) 

 

where  

  

𝐴𝑃𝐷! = 𝐴 𝑒!!! + 𝑤𝜂𝑡!!!!!
!! 𝑑𝑡          (4.3) 

 

4.2.1.2. Step 1.2: Maximum Pit Depth Model 

In this study, the maximum depth of pitting corrosion on a structure at time t (years), 

denoted by MPD(t), is characterized by a non-homogeneous Markov process, where t = 0 

represents the installation time of the equipment [2,4,10,11]. A Markov process assumes 
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that the pit depth is examined at different time intervals and that the depth in a future time 

interval relies only on the depth at the present time [10]. In this model, it is assumed that 

the pits initiate and grow independently, as pit depth dependency could only be assumed 

if the dissolution reactions that happen at one pit depend on what is taking place at other 

pitting sites. However, the stable pit growth process is affected by the autocatalytic 

reaction for the pit, where a low pH pit solution with a high concentration of Cl– ions is 

required to sustain the pit growth [23].  

Let Θi(i| Χ, ω), i = 1, …, n, denote the probabilities that the deepest pit is in a state less 

than or equal to state i, at time t, defined by Χ, dimensions of distance and ωth power of 

time. In fact, Χ and ω define ρ(t), which is the number of transited states of corroded pit 

and is assumed to be a power function [4]:  

 

ρ t = χ(t− t!)!.          (4.4) 

 

Then, the Cumulative Distribution Function (CDF) of the maximum pit depth can be 

estimated using the expression: 

 

θ! i, t χ,ω = 1− 1− exp (−ρ(t− t!) !!
!!!     i = 1, …, n     (4.5) 

 

where t is the time of assessment (year), tk is the initiation time of pits, n is the total 

number of states in the Markov chain, m is the average pit density (APD) at time of 

assessment and ρ(t-tk) is the number of transited states of a pit that grow in a short time 
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interval (tk, t). Equation (4.5) provides a predictive model that can be used to estimate the 

CDF of maximum pit depth in different years. The derivation of Equation (4.5) can be 

found in Valor et al. [4] and is omitted here to avoid repetition. Then, the probability 

distribution function can be estimated using: 

 

𝑓! 𝑖 𝑡 |𝛸,𝜔 = !!!!
!"

≃ !!!!!!!!!
!

 .       (4.6) 

 

In this study, Valor’s model [4] in Equation (4.5) is further developed by its integration 

with the average pit density model in Equation (4.2). By assuming all pits initiate in order 

at times t1, t2, ..., tm, the initiation time tk for each pit , k = 1, ..., m, can be estimated by 

calculating the inverse of the pit density [2,10]:  

 

t!  =  APD!!(k), k = 1, …, m.         (4.7) 

 

4.2.2. Step 2: Remaining Life Evaluation 

4.2.2.1. Step 2.1: Maximum Allowable Pressure 

In this work, the maximum allowable pressure of the corroded component (Pcorr) is used 

as an indication of the reduced strength due to the presence of pitting corrosion. Hasan et 

al. [24] reviewed different burst pressure estimation models such as CSA Z662-07 [25], 

AMSE B31G [26], the model of Netto et al. [27] and DNV F-101 [28] and provided 

guidelines to choose the best model based on different factors such as component type, 

age and type of service. Shekari et al. [13] adopted the Pcorr model in DNV F-101 [28] for 
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pitting corrosion in a pipeline and presented a time dependent modification of the model. 

This model is used in this work, where the effective equipment thickness is determined 

after subtracting the time-dependent maximum pit depth from the original equipment 

thickness. To simplify the model, an idealized rectangle is considered as the equivalent of 

the defect profile [13]. This conservative assumption simplifies the model by replacing 

the pitted area with a rectangle, where the length of the rectangle is the length of the 

pitted area and the width is the depth of the deepest pit. Accordingly, the Pcorr for a 

component with pitting corrosion can be determined as follows: 

 

 𝑃!"## 𝑡 = 𝛾!
!!!!(!!!!(

!"# !
! )∗

(!!!) !!
!!(

!"# !
! )∗

!

       (4.8) 

 

where Pcorr (t) is the maximum allowable pressure of the defective component as a 

function of maximum pit depth,  and 

. If , then the Pcorr 

value should be considered as zero [28]. In Equation (4.8), the parameters are defined as 

follows: MPD (t) is the maximum pit depth determined as the expected value of 

maximum pit depth distribution using Equation (4.5); D is the outside diameter of the 

pipe; l is the length of the pitted area and is assumed to be the total length of the 

component (pipe segment) under analysis; γd is the partial safety factor for pit depth; εd is 

a factor for defining a fractile value for the pit depth; τ is the component thickness; fu is 

( )21 0.31Q l Dτ= +

( )( ) ( )( ) ( )*
dMPD t MPD t StD MPD tτ τ ε τ= + ⎡ ⎤⎣ ⎦ ( )( )/ 1d MPD tγ τ ≥
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the ultimate tensile strength; γm is the partial safety factor for longitudinal corrosion 

model prediction; and StD[MPD/τ] is the standard deviation of the random variable 

(MPD/τ). The values of γd, γm, and εd are provided in DNV RP-F101 [28].  

 

4.2.2.2. Step 2.2: Probability of Failure 

Different deterministic and probabilistic methods have been developed in the literature to 

predict the remaining strength and assess the reliability of equipment affected by 

corrosion [29]. As the traditional design code-focused deterministic methods are unable 

to predict the failure probability of corroded components at a given time, a probabilistic 

method based on the limit state function is used in this work to conduct the remaining life 

prediction and reliability assessment [29]. The method takes into account the uncertainty 

in the operating pressure and the uncertainties associated with the burst pressure. 

In this work, the limit state function is defined as the difference between the maximum 

allowable pressure of the corroded component, Pcorr, and the operating pressure (Pop):  

 

Z(t) = Pcorr (t) - Pop.           (4.9) 

 

Operating pressure, Pop, can be characterized by a Gumbel distribution as in the CSA 

Z662-07 [25] recommendation and Pcorr is estimated using Equation (4.8).  

It is assumed that a component can work safely while Z > 0 (Pcorr > Pop), and that a 

failure would occur if Z ≤ 0 (Pcorr ≤ Pop). Therefore, the probability of failure can be 

equated with the probability that the failure pressure is equal to or lower than the 
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operating pressure [30]. Then, the failure probability of corroded equipment can be 

expressed as: 

 

𝑃! = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑍 ≤ 0 = 𝜙(−𝛽)       (4.10) 

 

where ϕ is the standardized normal distribution function and β is the reliability index. The 

reliability index β can be estimated from load and resistance variables using the First 

Order Second Moment (FOSM) reliability method and the limit state Equation (4.9): 

 

.        (4.11) 

 

Note that the calculation of failure probability above is conducted under the assumption 

that individual pits are mutually independent. Although FOSM cannot take into account 

the probability distribution tail behaviour, it is used in this work because of its simple 

practical implementation. 

 

4.2.2.3. Step 2.3: Remaining Life Estimation 

Pit growth over time results in increased pit depth, which consequently increases the 

failure probability due to reduced allowable working pressure of the affected component. 

Table 4.1 summarizes three criteria that have been frequently used in the literature to 

estimate the remaining life of defective components.  
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Table 4.1. Remaining life criteria 

Criterion Description Related works 
Maximum 
allowable 
operating 
pressure  

Maximum allowable 
operating pressure of 
the corroded 
equipment is estimated 
using a pressure 
resistance model  
 

• API 579-1/ASME FFS-1 [31], uses the intersection of the 
maximum allowable pressure curve and the threshold value, 
which is operating pressure, to estimate the remaining life 

Defect size Defect size and the 
intact thickness of the 
equipment is used for 
decision-making 

• Ossai [32] uses the time when the corroded wall thickness is 
in the range of 45% to 85% of the original wall thickness 

• API 510, Pressure Vessel Inspection Code [33], API 570, 
Piping Inspection Code [34], and API 653, Storage Tank 
Inspection Standard [35], use the time when remaining 
thickness below the pit is less than one half the required 
thickness. 

• DNV-F101 [28] uses the time until a defect reaches the 
acceptable measured defect depth curve by measuring  
corrosion rate mean with regard to burst limit state 

• Considering the effect of inspection accuracy for defect 
measurement and corrosion rate, DNV-F101 [28] uses the 
time until the first defect reaches the allowable defect size 
curve 
 

Failure 
probability 

Based on limit state 
analysis and FOSM 
reliability method  

• Hasan et al. [24] and Shekari et al. [13], use the intersection 
time of predicted failure probability of 0.5 and the 
component failure probability 

• DNV-F101 [28] uses the time before the annual probability 
of failure exceeds the annual target failure probability 

 

Application of any of the criteria in Table 4.1 could result in a different estimated 

remaining life. To address this challenge, in contrast to existing methods that usually use 

one of the criteria given in Table 4.1, this work uses all three criteria to estimate the 

residual life of corroded equipment. Then, the remaining life is considered as the 

minimum of estimated remaining life values using these criteria.  

Inspection codes such as API 510 [33], API 570 [34], and API 653 [35], do not accept 

scatter pits during inspections if the remaining thickness below the pit is less than one-

half of the required thickness. Consequently, using the defect size criterion in Table 4.1, 

this work considers the failure time as the time when the maximum pit depth curve (the 
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expected value of Equation 4.5) intersects half of the component thickness. For the 

failure probability (the third criterion in Table 4.1), the minimum value of reliability 

index, β, in Equation (4.11) is assumed to be zero (it can be negative, but this is logically 

incorrect), which corresponds to a highest failure probability of 0.5 for the limit state 

analysis [24]. Therefore, the threshold value of the failure probability can be considered 

as 0.5. Any other threshold value can be selected based on the criticality of the operation 

and the input of expert knowledge.  

Having selected the remaining life as the minimum of the remaining life values estimated 

from all three criteria, the maximum interval until the next inspection time is 

recommended to be half of the remaining life [36]. An appropriate inspection technique is 

recommended within this time interval to identify pitting corrosion [37].  

 

4.2.3. Step 3: Bayesian Updating 

4.2.3.1: Step 3.1. Developing a Standard MPD Distribution  

The last step of the methodology applies Bayesian analysis to update the probability 

density function (PDF) of maximum pit depth (Equation 4.6), estimated in Step 1, using 

inspection data. However, the predicted prior distribution for maximum pit depth for each 

year is an empirical distribution, which cannot be directly used in Bayesian analysis due 

to its structural restrictions. To address this challenge, before implementing the Bayesian 

updating, a standard distribution is fitted to the predicted MPD distribution for the year 

that the inspection has been conducted. Then, using the adjusted Anderson-Darling (A-D) 

statistic, a goodness-of-fit test is performed and the best fit is selected as the one with the 
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smallest A-D statistic. The best fitted distribution is considered as the revised prior MPD 

distribution.  

 

4.2.3.2. Step 3.2: Likelihood Distribution 

After each inspection, new data for maximum pit depth become available. This data is 

used in this step to estimate the likelihood probabilities of deteriorating components to 

update the prior distribution of maximum pit depth. The inspection data are subject to 

inspection measurement errors. The actual readings of pit depth from the inspection tool 

are subjected to measurement errors and hence, the measured pit depths are different 

from the actual pit depth. In this study, to address this concern, the measurement errors 

are assumed to be independent and modeled by Gaussian distribution with zero mean and 

known variance σE
2, where the standard deviation σE equals 0.05 [18]. Assuming that all 

of the pits are detected, a goodness-of-fit test using the probability plot and Anderson–

Darling (A-D) test is then used to select the best distribution for inspection data.  

For conciseness, this work only considers updating the MPD model parameters using pit 

depth inspection data. A similar approach can also be applied to update the parameters of 

the average pit density (APD) model using pit density inspection data. 

 

4.2.3.3. Step 3.3: Posterior MPD Distribution  

Using the prior distribution and likelihood distribution estimated in the previous steps, 

the posterior MPD distribution can be estimated using Bayes’ rule [17]: 
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      (4.12)   

 

where the denominator is known as the normalizing factor, L(MPD0|MPD) is likelihood, 

f’
MPD is the prior distribution, and f”MPD is the posterior distribution. The posterior 

probability is the likelihood that a variable will be in a particular state, given the values of 

the input variables, the conditional probabilities and an associated set of rules governing 

how the probabilities are combined [17].  

The traditional Bayesian updating approach, which assumes conjugate prior and 

likelihood distributions, is frequently used in many diverse applications, as the model is 

not highly data intensive. As conjugate priors lead to analytical solutions for the posterior 

distribution, this provides much computational ease and flexibility. However, because 

conjugate pairs are often unable to capture the realistic behaviour of the parameters [18], 

use of a traditional Bayesian approach (conjugate-likelihood pair) introduces significant 

errors. In this work, by applying the Markov process, the developed MPD prior 

distribution was observed to follow Type 1 Extreme Value distribution (Gumbel) [11]. 

Also, the likelihood distribution estimated in Step 2 follows one of the following 

distributions: Weibull, Lognormal or Type 1 Extreme Value distributions. As these prior 

and likelihood distributions are not conjugate pairs for application of traditional Bayesian 

analysis, an analytical close form solution of these distributions is not possible. 

Alternatively, methods based on numerical simulation should be used [38]. In this study, 

!!
′′fMPD(MPD|MPD0)=

L(MPD0 |MPD) ′fMPD(MPD)
fMPD0(MPD0)
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the Markov Chain Monte Carlo (MCMC) and Metropolis–Hasting (M–H) algorithm [39] 

are used to estimate posterior distribution for maximum pit depth.  

The MCMC simulation is a technique to sequentially generate random samples from a 

complicated distribution (in this case, the posterior distribution) by constructing a 

Markov chain that converges to become the target distribution. The commonly used 

sampling algorithm in MCMC simulation is the Metropolis–Hasting (M–H) algorithm. 

The M-H algorithm is a rejection-sampling algorithm used to generate a sequence of 

samples following a probability distribution that is difficult to sample directly. More 

details about the MCMC and M-H methods can be found in [38]. In this work, a code is 

developed using MATLAB software [40] to implement the MCMC simulation and the 

M-H sampling algorithm in order to estimate the posterior MPD distribution for the 

assessment year. 

 

4.2.3.4: Step 3.4: Updating Markov Transition Rate 

In Step 3.3, only the MPD distribution of the current year of assessment has been 

updated. However, apart from the current year, the MPD distribution should be updated 

for future years to revise the remaining life evaluation. For this purpose, the proposed 

cumulative distribution function for MPD distribution based on the Markov process 

(Equation 4.5) is fitted to the posterior MPD distribution obtained in Step 3.3. For 

simplicity, only the parameter χ of the Markov transition rate is updated. Then, a search 

procedure based on the least squares method is applied to find the parameter χ of the 
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fitted MPD distribution based on the Markov process (Equation 4.5). The new χ can be 

used to update the MPD distribution for the coming years.  

Once the MPD distribution is updated, as shown in Figure 4.1, Step 2 should be repeated 

to estimate both the new maximum allowable pressure and the revised remaining life of 

the component. The entire procedure must be repeated after each new inspection is 

performed to update the MPD distribution using Bayesian analysis.   

 

4.3. Case Study 

The inspection data of maximum pit depth obtained from an offshore production facility 

operating in the North Sea, taken from Thodi et al. [41], is used to test the presented 

model. The data used is obtained from a straight piping section of the gas condensate 

(GC) system flow lines. The selected pipe has a nominal outside diameter of 180 mm, an 

operating pressure of 14 MPa, a length of 15 m and a nominal wall thickness of 7.13 mm, 

with a specified minimum tensile strength (SMTS) of 510 MPa. The first inspections are 

conducted after six years of the piping’s installation on 11 pre-defined inspection 

locations on the selected pipe. The maximum pit depth in these 11 areas is found to be in 

the range of 0.4 mm to 1.2 mm. 

The description of model parameters and their estimated values used in this case study 

are provided in Tables 4.2 and 4.3. The initial model parameters for maximum pit depth 

are estimated using expert knowledge, which is standard for a new installation.  
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Table 4.2. Parameters used for pitting evaluation of piping case study 

Symbol Description Estimated Value 
n Number of Markovian states. The thickness is divided into n layers to 

develop the Markov model. 
300 

A Parameter for pit density in Equation (4.1) 18.3 
η Parameter for pit density in Equation (4.1) 0.06 
ψ Parameter for pit density in Equation (4.1) 0 
w Parameter for pit density in Equation (4.1) 1 
χ Parameter in transited states equation of Markov process  2.80 
ω Parameter in transited states equation of Markov process  0.09 
 

Table 4.3. Probabilistic models of the basic design and operational variables of the pipe [24,42] 

 Tensile 
strength Thickness Diameter Operating 

Pressure Length 

Distribution 
Type 

Normal  Normal Normal Gumbel 1520 mm 

Mean 510 
(N/mm2) 

Nominal thickness 
(7.12 mm) 

Nominal diameter 
(300 mm) 

1.05 Pop (14 bar) - 

Coefficient of 
Variation 

0.01 0.03 0.01 0.03 - 

 

4.3.1. Prior Maximum Pit Depth Distribution 

The proposed model based on the Markov process in Equation (4.5) is used to estimate 

the CDF of maximum depth at year 6 when the first inspection is performed. All figures 

and estimations in the following sections are determined for 10,000 simulation runs. 

Using the A–D statistics, the goodness-of-fit test has been conducted and the Type I 

Extreme Value (EV) distribution is selected as the best fit as it has the smallest A–D 

statistic. The empirical PDF for MPD distribution obtained from Equation (4.6) and the 

fitted EV distribution are shown in Figure 4.2. As can be seen in Type I Figure 4.2, the 

maximum pit depth modeled using the Markov process closely follows EV distribution, 

which matches the observations from experimental studies that found the extreme value 

theorem distributions to be the best fit for experimental data; see for example [43].  
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Although some studies [44,45] argue that the Type I EV distribution is not suitable to 

describe the distribution of pitting corrosion maxima in different materials and 

environments due to the dependency of maximum pit depth, most of the authors have 

considered the pits to be independent, making the assumption that this condition is 

satisfied at least approximately [46]. However, even with some dependence between pit 

depths, for example due to the interaction between growing pits, the Type I EV 

distribution is justified to describe the pit depth extreme values [46]. 

 

Figure 4.2. Prior maximum pit depth distribution at year 6 (first inspection) 

 

4.3.2. Likelihood Function 

To estimate likelihood distribution, first, random samples of measurement errors are 

generated using a normal distribution with zero mean and the standard deviation of 0.05 

mm. The resulting error distribution is added to the maximum pit depth dataset found 
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during inspections to account for the potential uncertainty associated with inspection 

measurement. The new inspection dataset is tested with frequently used probability 

distribution models such as Normal, Lognormal, 3 Parameter-Lognormal, Weibull, 3 

Parameter-Weibull, Exponential, 2 Parameter-Exponential and Extreme Value 

distributions. The goodness-of-fit test is performed using the A–D statistics and the best 

fit is reported as the one with the smallest A–D statistic. Type I EV distribution with local 

and shape parameters 19.37 and 12.77 was selected as the best fit for the MPD inspection 

data. The fitted distribution is shown in Figure 4.3. In this figure, the maximum pit depth 

data are shown using the Markov states number. The thickness of each Markov state can 

be obtained as τ/n, where n represents the number of states and τ is the thickness of the 

component. 

 

 

Figure 4.3. Extreme value distribution with local and shape parameters 19.37 and 12.77 for 
likelihood function of maximum pit depth inspection data 
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4.3.3. Posterior Distribution 

Since the prior-likelihood combinations are non-conjugate pairs, the simulation-based 

Metropolis-Hastings (M-H) algorithm is used to estimate the posterior models. Using a 

MATLAB code and the prior and likelihood parameters determined from previous steps, 

the M-H algorithm has been used to simulate the posterior samples and estimate their 

parameters. The posterior estimation based on the M-H algorithm converges to the results 

with around 10,000 samples [38]. 

Based on the result of the A-D test for posterior data estimated from MCMC, Type I EV 

distribution with local and shape parameters 89.86 and 33.23 is found to be the best fitted 

distribution. The prior-posterior analysis results obtained using the M-H algorithm for 

maximum pit depth of the case study are summarized in Table 4.4, and are shown 

graphically in Figure 4.4. These results show that the MPD values obtained from 

inspection data were lower than expected, as the posterior MPD distribution has shifted to 

the left. This shift of the MPD distribution to the left indicates that the prediction of the 

prior MPD distribution has been conservative. 

 

Table 4.4. Prior and posterior distributions for the Maximum Pit Depth (MPD) 

Variable Distribution Type  Scale parameter  Location parameter  
Prior MPD  Extreme Value 21.73 100.8 

Posterior MPD Extreme Value 33.23 89.86  
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Figure 4.4. Prior and posterior maximum pit depth distributions for year 6 (first inspection) 

 

Figure 4.5 demonstrates the effect of incorporating inspection data using the proposed 

Bayesian method on the initially estimated maximum pit depth values using the Markov 

model. This figure also illustrates the time-variant nature of the maximum pit depth 

model. As shown Figure 4.5, the distribution of MPD values shifts toward the deeper pits 

values over time. However, this shift happens at a lower rate after updating the initial 

predictions using the inspection data, indicating relatively less severe pit behaviour for 

this case study compared to the initial expectations based on expert knowledge. A shift 

with higher rate may also occur if the inspection results show a more aggressive pit 

growth rate compared to the initial predictions. This illustrates the significance of the 

proposed method to revise the Markov model predictions using the inspection results. 
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Figure 4.5. Prior and posterior distributions of maximum pit depth over time 

 

The box plots for predicted prior and posterior MPD distributions are shown in Figure 4.6 

to represent their distributional characteristics. As can be seen in Figure 4.6, pits are 

generated immediately after the commissioning of the piping system and continue to 

grow. In these plots, each box represents 50% of estimated MPD values for the 

corresponding year. The median of the values is shown by the line that divides the box 

into two parts. The upper and lower whiskers represent MPD values outside the middle 

50%. The plots also show the minimum, maximum and outlier values. These plots help to 

study the distributional characteristics and the level of uncertainty of the data; the smaller 

the boxes, the lower the amount of uncertainty. The curve passing through the box plots 

represents the mean MPD values. 
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Figure 4.6. Box plots of maximum pit depth values: (left panel) prior distributions, (right panel) 
posterior distributions. Posterior MPDs in the right panel are shown for year 6 and later, as the first 

inspection is performed at year 6. 
 

4.3.4. Maximum Allowable Pressure 

Figure 4.7 shows the box-and-whisker plots for maximum allowable pressure for the 

defective pipe (Pcorr) using both prior and posterior MPD distributions. Figure 4.7(a) 

represents the Pcorr predictions over time determined at installation time using Equation 

(4.8) and the prior MPD distribution from Figure 4.2. After estimation of the posterior 

MPD distribution in year 6 and application of the least squares method, the updated 

parameter χ of the Markov transition rate is changed from 2.80 to 2.76. Then, using 

updated MPD distribution with new χ, Pcorr values are updated and presented in Figure 

4.7(b). As can be seen, the estimated Pcorr using the initial mean of prior MPD 

distribution, denoted by MMPD, are lower than the updated MMPD. Figure 4.7 

demonstrates that as pits grow over time, due to reduction in material strength, the 

maximum allowable pressure of the defective pipe decreases accordingly.  
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Figure 4.7. Box plots of maximum allowable pressure (Pcorr) for the defective pipe over time: (left 
panel) using prior MPD distribution, (right panel) using posterior MPD distribution. Posterior Pcorr 
values in the right panel are shown for year 6 and later, as the first inspection is performed at year 6. 
 

As shown in Figure 4.7, the allowable pressure of the defected pipe decreases with an 

increased exposure period due to metal loss and the consequent degradation of material 

strength. This, in turn, reduces the capacity of the piping system to resist the effects of 

internal fluid pressure. Moreover, as shown in Figure 4.7, the relationship between time 

and decreased allowable pressure is found to be slightly nonlinear. It is also shown in 

Figure 4.7 that after updating the MPD distribution, the allowable pressure falls below 

the nominal operating pressure of 14 MPa only after an exposure period of about 10.5 

years. If a longer operational period is required, it will be necessary to repair or remove 

the damaged section of the pipe or to reduce the operating fluid pressure. 
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4.3.5. Probability of Failure 

The estimated prior and posterior Pcorr distributions in Figure 4.7 are plugged into 

Equation (4.11) to obtain reliability index values for different exposure times. Then, the 

estimated reliability index values, β(t), are used in Equation (4.10) to obtain probability 

of failure curves over time and the results are shown in Figure 4.8. Figure 4.8 shows the 

increase in the probability of failure (POF) of the defective component as pits grow and 

Pcorr decreases over time. In both POF curves in Figure 4.8, pits start to form at almost 

the same time, as in this case only the MPD model is updated and the pit initiation model 

parameters are considered constant. However, the rate of increase in the updated POF 

curve, determined using posterior MPD distribution, is higher due to the conservative 

estimation of the Markov model parameters at the installation time. These results show 

the importance of integrating Bayesian updating with the Markov model to facilitate the 

incorporation of inspection data in remaining life calculations. 

 
Figure 4.8. Probability of failure (POF) of the defected pipe over time 
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4.3.6. Remaining Life Evaluation 

For this case study, three criteria discussed in Section 4.2.3 are used to estimate the 

remaining life of the piping section affected by pitting corrosion and the results are 

shown in Table 4.5. As discussed in Section 4.2.3, the remaining life of the pipe under 

analysis in this case study can be considered as the minimum of the remaining life values 

based on each of the three criteria. Accordingly, from Table 4.5, the remaining life of the 

pipe using prior and posterior distributions is determined as 8.8 and 9.9 years, 

accordingly.  

Table 4.5. Estimated remaining life values for the piping case study using different criteria 

Criteria Related Figure 

Estimated Life (Years) 
Using Prior 
Distribution 

Using Posterior 
Distribution 

Defect size  Figure 4.6  10.3 11.3 

Pcorr Figure 4.7 9.5 10.5 
Probability of failure Figure 4.8 8.8 9.9 

 

In Figure 4.8, the mean value of the pit depth ranges from 0.0 to 4.2 mm over a period of 

15 years; however, the updated maximum pit depth will reach 3.9 mm in year 15. 

Consequently, the failure time estimated based on maximum allowable pressure and 

probability of failure changed from 9.5 years to 10.5 years and from 8.8 years to 9.9 

years, respectively. The increase in the estimated remaining life using the posterior 

distributions is due to the reduction in the conservatism of the estimations after 

incorporation of inspection results. This indicates that the combination of the 

environment and the material used was less susceptible to pitting corrosion than the 

initial experts’ expectation. These results highlight the importance of updating the 

parameters of the Markov model for reliable estimation of allowable pressure and the 
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remaining life. The proposed integration of Bayesian updating with the Markov model 

satisfies this need by revising and improving the model predictions over time as 

inspection results from the system become available.  

In this study, only the mean value of MPD distribution is used for estimation of the 

failure probability. Alternatively, other statistics such as 95% of MPD distribution can be 

used to obtain more conservative results. Thus, one of the advantages of developing the 

probability distribution of the maximum pit depth is the ability to investigate the 

uncertainty involved in the model outputs [13].  

 

4.3.7. Sensitivity Analysis 

An important part of the proposed model to predict pit behaviours and probability of 

failure (POF) is to use expert knowledge for the estimation of Markov model parameters, 

in particular the Markov transition rate parameters. Expert knowledge is defined as what 

qualified decision makers know because of their technical practices, training, and 

experience. It can be the best source of information when empirical data are scarce or 

unavailable; for example, in new installations with no operational and inspection histories 

[47]. However, the use of expert knowledge adds to the uncertainty of the estimated 

model outputs. This section describes two sensitivity analyses to investigate the 

significance of the uncertainty associated with using expert knowledge in the proposed 

method.  

In the first sensitivity analysis, for year 6 (first inspection), 11 experiments were 

conducted using the Markov transition rate χ = 2.8 as the base value (taken from Table 
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4.2) and then changing the χ in the range of -20% to +20% to estimate the corresponding 

prior MPD distributions. For each experiment, the inspection data from Section 4.3.1 

were used to carry out the Bayesian updating to estimate the posterior MPD distributions. 

Then, for each experiment, the mean MPD (MMPD) values from both prior and posterior 

distributions were estimated and the results are shown in Figure 4.9. As can be seen in 

Figure 4.9, for 10,000 Monte Carlo simulation runs, changes in χ in the range of -20% to 

+20% have resulted in approximately a -28% and +39% change in estimated prior 

MMPD values, and about a -31% and +34% change in estimated posterior MMPD 

values, respectively. These results indicate that the impact of change in χ follows the 

same relatively linear change in both prior and posterior MMPDs.  

Another sensitivity anaylsis is conducted to investigate the sensitivity of the POF values 

to changes in χ. For this purpose, 11 experiments were conducted by changing χ in the 

range of -20% to +20% and investigating the effect on estimated probability values. All 

experiments were conducted for 10,000 simulations runs and the results are shown in 

Figure 4.9. As can be seen from Figure 4.9, in general, the negative change in χ results in 

an underestimation of POF and positive changes in χ leads to the overestimation of POF. 

Also, prior and posterior POF values approach zero rapidly for negative changes in χ 

values. The reason for these low probability values is that the sensitivity analysis has 

been conducted for year 6, when the pits are still not very deep. Moreover, negative 

changes in χ represent lower transition rates between Markovian states, indicating a lower 

pit growth rate. On the other hand, positive changes in χ represent higher Markovian 

transition rates and higher pit growth rates, which will result in a rapid increase in POF.  
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Figure 4. 9. Sensitivity analysis: the effect of change in the Markov transition rate (χ) on MMPD and 
probability values for year 6 (first inspection) 

 

4.3.8. Discussion 

As was shown in the sensitivity analysis section, the potential error in estimating the 

initial model parameters due to the uncertainty associated with expert knowledge 

estimates can result an in inaccurate prediction of pit depth and POF values, which is not 

surprising. This fact justifies the fundamental objective of this work to use inspection 

results to update initial predictions by integrating the Markov model with Bayesian 

analysis. The incorporation of inspection results in the reduction of uncertainties 

associated with model estimates by revising the Markov model parameters. The 

application of data from similar operations can be used to reduce the uncertainty 

associated with initial model parameters using expert knowledge. In the absence of data 

from similar operations, accelerated laboratory and field tests, such as those suggested by 
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Caines et al. [48], can be used to collect data for similar metal and operational conditions. 

The collected data can be used to calibrate the Markov model and estimate the model 

parameters. Then, the methodology proposed in this work can be used to improve these 

estimates using the inspection data over time.  

The proposed updating procedure can be repeated when the next inspection is performed 

and new data become available. By conducting more inspections and repeating the 

procedure over time, the revised model becomes more representative of a real-world 

situation. Using the information from the updated failure probability values, a more 

reliable decision can be made regarding the next course of action, such as run, repair, 

rerate, or replace the damaged component. 

To keep the paper concise, Bayesian updating is only applied to revise the Markov model 

parameters. This is not a limitation of the proposed methodology, as a similar updating 

mechanism can be easily applied to revise the APD model parameters using the pit 

density inspection data. Moreover, in this study, the uncertainty of inspection data is 

considered by using a probability distribution (likelihood function) and a measurement 

error distribution for inspection data. To further investigate the inspection uncertainty, 

future studies can also incorporate the effect of inspection data sample size and the 

probability of detection of pits. 

In this work, the maximum pit depth and the number of pits are assumed to be 

independent. The potential dependency between these pit characteristics and other 

potential dependencies, such as material-environmental conditions, cannot be captured 

using the proposed model due to the inherent limitations of the Bayesian approach. These 
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limitations can be addressed in future works by using the concept of the Copula Bayesian 

Network proposed by Elidan [49] and Hashemi et al. [50]. 

 

4.4. Conclusions 

The prediction of the life of assets susceptible to pitting corrosion is important to ensure 

timely implementation of inspection activities to avoid catastrophic failures. In this paper, 

a methodology is developed to update a time dependent, predictive maximum pit depth 

model by using a non-homogenous Markov process. The model enables the prediction of 

the remaining life of assets affected by pitting corrosion. This is an important requirement 

for new installations with scarce data, particularly for critical services in remote areas 

such as offshore operations. The methodology further incorporates the inspection data in 

the remaining life analysis by using the Markov Chain Monte Carlo and Metropolis–

Hasting algorithm to carry out Bayesian updating to revise the prior distribution of 

maximum pit depth. Using the least squares method, the proposed methodology estimates 

the updated parameter of the Markov process to revise the predicted distributions of 

maximum pit depth, failure pressure, failure probability and the remaining life of the 

asset. Although some of the models used in this work are from the literature, this work 

provides a probabilistic framework for modelling and incorporating inspection data to 

culminate results in an effective remaining life analysis. 

The application of the proposed method is illustrated using a piping case study with real 

corrosion inspection data. The results of the Bayesian updating showed that the time 

dependent MPD distribution as well as the remaining life estimations were overestimated 
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using expert knowledge. These results highlighted the fact that the incorporation of 

inspection data using Bayesian analysis to revise the Markov model parameters can 

provide a more realistic prediction of pit behaviour and failure time. A sensitivity 

analysis is conducted to investigate the effect of uncertainty of expert knowledge on the 

estimation of the prior Markov transition parameter. Overall, the case study results 

showed the importance of integrating Bayesian updating with the Markov process to 

address the uncertainty in the initial model parameter estimates and to revise these 

estimates using inspection results. 
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5. ECONOMIC RISK ANALYSIS OF PITTING CORROSION IN 
PROCESS FACILITIES4 
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manuscript. 

 

Abstract 

This paper presents a predictive probabilistic model to estimate the overall economic 

impacts of pitting corrosion by considering both the corrosion costs and significant losses 

that may occur if failures occur because of pitting corrosion. The major loss categories 

are considered as business loss and accidental loss. Models are proposed to estimate the 

elements in each loss category. Corrosion prevention, monitoring, maintenance and 
																																																													
4 Shekari et al. International Journal of Pressure Vessels and Piping 2017; 157: 51-62. 
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management (CPM3) costs are considered as the main categories of corrosion costs and 

the probabilistic models are proposed to estimate these costs. The Monte Carlo (MC) 

method is used to integrate the loss and cost models and also to address the uncertainties 

in these models. The effect of inflation on loss values and the mitigating impact of CPM3 

costs are also taken into consideration in the developed models. The application of the 

proposed risk model is demonstrated using a piping case study. As highlighted in the case 

study, the developed models help to assess corrosion economic risk, which is used for 

corrosion prevention and control’s decision-making. 

 

5.1. Introduction 

Corrosion is not only an engineering issue but also an economic problem. A study 

supported by NACE International estimated the global cost of corrosion to be US$2.5 

trillion in 2013, which is equivalent to 3.4% of the global Gross Domestic Product (GDP) 

[1]. Corrosion can be a life-limiting cause of deterioration by general corrosion, pitting, 

and environmentally assisted cracking to plant equipment which in turn can lead to loss 

of containment of hydrocarbon fluids and other process fluids [2]. However, several 

studies, such as ASM [3], Kruger [4] and NACE [1] concluded that between 15 and 35% 

from the loss of corrosion could be saved by the application of existing technology to 

prevent and control corrosion. Therefore, it is vitally important that risk practitioners and 

engineering managers be aware of the overall economic impact of corrosion by taking 

into account the potential corrosion consequences as well as the positive effect of 

corrosion management.  
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Different approaches are needed to investigate the probabilistic aspects of each specific 

corrosion mechanism. The focus of this work is to develop a risk-based economic impact 

analysis approach for pitting corrosion. Pitting corrosion is a localized metal loss that can 

be characterized by a pit diameter on the order of the plate thickness or less, and a pit 

depth that is less than the plate thickness [5]. If growing pits remain undetected, the 

damaged equipment may experience leakage once the pits transform into holes, breaking 

through the equipment shell. Moreover, the reduced strength of the pressurized 

equipment suffering from pitting corrosion can cause equipment failure, leading to the 

release of material and energy and environmental pollution. Furthermore, the interrupted 

operation due to equipment failure causes loss of production and affects company profit 

[5]. Thus, consequence analysis is to be integrated into pitting risk assessment to identify 

and evaluate such outcomes. 

Traditional consequence assessment techniques usually involve a variety of mathematical 

models, such as source and dispersion models that predict the release rate of hazardous 

materials, fire and explosion models, impact intensity models and toxic gas models [6–

11]. In these models, the consequences are usually considered as a function of affected 

areas. The following challenges were identified for corrosion consequence analysis using 

the traditional approaches: 

i. Ignoring the uncertainty associated with loss estimations when using deterministic 

values for consequence assessment. 

ii. Not considering the mitigating effect of corrosion prevention, monitoring, and 

management on estimated losses. 
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iii. Not considering the time value of money when estimating future losses based on 

the current dollar value. 

The purpose of this work is to develop models for overall economic impact analysis of 

pitting corrosion, while addressing the issues identified above. As will be discussed in 

Section 5.2, the overall loss is considered as the summation of accidental losses due to 

loss of containment and subsequent business losses. One major contribution of this work 

is to consider business loss as a function of time, which is usually ignored in most 

traditional consequence analysis literature [6–11].  

The second major contribution of this work is the consideration of uncertainty in the 

proposed loss models through development of probability distributions for the input 

parameters. For this purpose, the uncertain input parameters of each loss model are 

identified. Then, the distribution of each is proposed by identifying uncertain parameters 

based on expert knowledge, operational history and related literature.  

As will be discussed later in this paper, the investment in CPM3 strategies can 

substantially reduce failure losses. Furthermore, reduction in failure frequency is equally 

important, as it not only reduces costs and losses but also positively affects market share 

and company morale and reputation [12]. Therefore, it is of critical importance to model 

both corrosion losses and costs considering the remediating measures for corrosion. 

Another important contribution of this work is to address this challenge through the 

application of the CPM3 adjustment factor.   

One of the major shortcomings of traditional corrosion consequence analysis methods is 

using constant (today’s) dollar values for loss and risk estimation, ignoring the effect of 
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inflation. This work applies engineering economics rules to incorporate the effect of 

inflation when projecting estimated loss into the future. 

The organization of this paper is as follows: Section 5.2 describes the differences 

between failure costs and failure losses and the application of the Program Evaluation 

Review Technique (PERT) distribution to capture expert knowledge. Section 5.3 reviews 

the consequence analysis techniques and proposes the methodologies to estimate 

accidental and business losses. The practical application of the proposed methodology is 

demonstrated using a case study in Section 5.4, followed by concluding remarks. 

 

5.2. Preliminaries  

5.2.1. Corrosion Costs vs. Corrosion Losses  

It is advisable that corrosion losses be presented in monetary values to facilitate better 

financial planning and control. Such economic impact analysis also provides a 

performance assessment tool to identify and evaluate corrosion cost saving opportunities. 

Accordingly, corrosion costs and corrosion losses are defined in this work as: 

• Corrosion cost is the cost of all efforts that prevent, control, or mitigate corrosion 

losses;  

• Corrosion loss is financial loss caused by failures due to corrosion  

The classification above is used in this work to discriminate between corrosion costs and 

corrosion losses. Intuitively, corrosion costs are the sum of all costs that would disappear 

if there were no corrosion problems. In other words, the informative difference between 
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“corrosion cost” and “corrosion loss” is that the former adds value, while the latter 

reduces value.  

 

5.2.2. Elements of Corrosion Losses and Corrosion Costs 

In order to develop the corrosion economic consequence analysis model, the first steps 

are to classify the corrosion costs and losses and to identify the elements of each class. 

The classification of corrosion induced failure losses is straightforward. There is a 

general agreement in the literature to classify these losses as [6–8,11,13,14]: 

i. Accidental losses: The loss due to release of hazardous fluids from pressurized 

processing equipment and subsequent consequences for people, properties and the 

environment [15].   

ii. Business losses: business loss occurs when an organization fails to generate 

enough revenue to cover the expenses associated with the process operation [14]. 

The two most common causes for process systems to incur business loss are: (i) 

process shutdown due to the activation of safety systems; and (ii) process 

downtime after an incident. The causes of business loss often have a severe 

impact on the organization in terms of business disruption and the services 

provided to clients, which eventually affects reputation. 

In contrast to corrosion losses, there have been different classifications of corrosion costs 

in the literature. Corrosion costs vary in relative significance from industry to industry; 

some are readily recognized and others are less recognizable. The main basis used in this 

study to classify and identify the elements of corrosion costs is the study published by the 
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U.S. Congress directed the National Bureau of Standards (NBS) in 1978 [16] . This study 

was, and still remains, probably the most comprehensive investigation of the full extent 

of corrosion on the economy of a nation [4] and has been used in different corrosion 

literature to investigate corrosion costs [17]. Accordingly, the corrosion costs are 

classified in this work as follows, with the definitions adopted from the BS 6143 Part 2 

[12]: 

i. Prevention costs: The cost of any action taken to install, operate, improve and 

maintain corrosion prevention activities.  

ii. Monitoring costs: The cost of monitoring, evaluating, and assessing the system to 

control corrosion.  

iii. Maintenance costs: The cost incurred to keep equipment in good working order to 

function under stated conditions. 

iv. Management costs: The cost of any management actions taken to investigate, 

reduce, and transfer the corrosion risk. 

Table 5.1 summarizes the elements of corrosion costs and potential losses. Capital and 

design costs and associated costs are excluded in this classification as the scope of this 

work covers the operational expenses during the useful life of the asset.  
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Table 5.1. Elements of corrosion losses and corrosion costs 
Type of Economic 
Impact Classification  Examples 
Corrosion Costs Prevention costs • Coatings 

• Inhibitors 
• Cathodic protection 

 
Monitoring costs • Corrosion monitoring (corrosion coupons and 

probes)  
• Corrosion tests  
• Inspection  

 
Maintenance costs 
 

• Maintenance and repair 
• Replacement of equipment 
• Redundant equipment 

 
Management costs • Training  

• Quality assurance 
• Corrosion control planning  
• Safety and integrity management systems 
• Administration  
• Insurance 

 
Corrosion Losses Accidental Losses • Human health loss 

• Asset loss  
• Environmental cleanup cost 

 
Business Losses • Business interruption loss 

• Reputational loss  
 
 

5.2.3. Application of PERT Distribution to Capture Expert Knowledge 

The monetary quantification of corrosion costs is a challenging task due to scarce and 

unreliable data, particularly for new installations with no operational and business 

performance histories. In such cases expert knowledge is often regarded as the best or 

only source of information. However, the application of expert knowledge to estimate 

unavailable data is usually criticized in the literature due to obvious shortcomings such as 

potential inconsistency and uncertainty. The potential inconsistency in using expert 
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knowledge can be significantly reduced using techniques such as the use of multiple, 

diverse experts and the inclusion of pretesting, training, and validation stages [5,18]. 

Also, the potential uncertainty of any quantified variable using expert knowledge can be 

incorporated into the estimation process using the technique known as Program 

Evaluation Review Technique (PERT) distribution.  

PERT distribution is a special case of Beta distribution (Equation 5.1) that uses three 

expert-estimated parameters: minimum, most likely (mode), and maximum values to 

convert these three discrete values into a continuous cost distribution. For this purpose, as 

shown in Equations 5.2 and 5.3, the PERT distribution uses these three discrete values of 

expert estimates to generate the distribution shape parameter [19]. PERT distribution has 

also been used recently to estimate business losses due to abnormal situations in process 

facilities [14]. PERT distribution is used in this work for the estimation of corrosion costs 

and their effectiveness in remediating corrosion losses. As PERT distribution is used in 

different sections of this paper, the method is explained here to avoid repetition.   

Using the PERT distribution, the expert is asked to estimate three values (minimum, most 

likely and maximum) for the selected variable (in this work, corrosion costs and shape 

parameter of adjustment factors) [14]. Then, a set of modified PERT distributions is 

plotted using Equation (5.1) and the expert is asked to select the shape that fits his/her 

opinion most accurately: 

 

  

f x( ) = x − xmin( )v−1
xmax − x( )w−1

B vPERT ,wPERT( ) xmax − xmin( )v+w−1      (5.1) 
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where x is any of the elements and B(v, w) is a Beta function with parameters of the Beta 

distribution as: 

 

      (5.2) 

 

and  

 

.       (5.3) 

 

In standard PERT distribution, the default value of 4 can be used for  [19]. A higher 

or lower value of  can be used for the cases where the desired distribution should be 

more peaked or flatter around the mode, respectively [14]. 

 

5.3. Methodology 

Figure 5.1 shows the proposed framework to estimate the economic consequences of 

corrosion. The proposed methodology starts with estimation of losses due to release of 

hazardous fluids and subsequent consequences on the business performance of the 

system, people, assets and the environment. Probability distributions are used to take into 

consideration the effect of stochastic factors contributing to the uncertainty in each loss 
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category. Having estimated the overall loss distribution, and to provide a more realistic 

loss estimation, the mitigating effects of corrosion prevention, monitoring, maintenance 

and management factors are considered to adjust the estimated corrosion induced failure 

probability. A mathematical model is also proposed to consider the effect of inflation on 

overall loss value. The details of each step of the loss assessment methodology are 

provided below: 

 
Figure 5.1. Methodology for risk-based economic impacts analysis of pitting corrosion 
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5.3.1. Step 1. Identification of Loss Elements 

Table 5.2 shows the main elements of accidental and business losses in this work. The 

methodology to estimate each of the identified elements is provided in the following 

sections. Reputational loss is another element of the business loss due to damaged 

organization’s trustworthiness in the marketplace after a major incident [14]. To keep the 

work concise, the reputational loss is not included within the scope of this work.  

 

Table 5.2. Loss categories due to pitting corrosion 

Loss Category Loss type Remarks 
Accidental Loss Asset loss (AL) Loss of physical assets, such as damage to property and loss of 

equipment due to failure  

Human health loss 
(HHL) 

The loss due to the fatalities/injuries and the costs associated with 
fatality and/or injury  

Environmental 
cleanup cost (ECC) 

Costs of removing, containing, and/or disposing of hazardous waste 
from property, or material and/or property that consists of hazardous 
waste during permanent or temporary closure or shutdown of 
associated equipment 
 

Business Loss Business loss due to 
lost production (BLdt) 

Business loss during process downtime. This loss can be determined 
as the expected gross revenues from sales of the product over a period 
of time by projecting the past 12 to 24 months of the company’s sales 
forward, minus expected changes in inventory values, material use and 
transportation costs [14] 
 

Business loss over the 
recovery period (BLrp) 

Business loss due to lost market share after the business is restored. 
This loss is determined by comparing the organization’s business 
performance in the past 12 to 24 months before process downtime 
with the performance over the recovery period 

 
 

5.3.2. Step 2. Estimation of Business Loss 

Business loss is associated with the interruption in production and subsequent financial 

consequences when a loss of containment occurs. The main elements of business loss are 

the losses due to plant downtime and lost market shares after an accident occurs. In most 

existing methodologies [6,8,11,15], the profit loss is calculated based on production 
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hours lost during process downtime multiplied by the production cost per hour. This 

approach does not consider the cost elements required to repair and restore the damaged 

unit or the uncertainty associated with them. Moreover, this approach relies on the 

assumption that once the production from a damaged unit is restored after an accident, 

the unit will have the same business performance as before the accident. However, in 

reality, the business might need a period of time to recover, especially after long 

downtimes, due to lost market share, return of the personnel, and potential failures after 

the commissioning of repaired/new equipment.   

To address these shortcomings, the PERT distribution technique, adopted from project 

management literature [19] is used in this work to model the business loss.  

 

5.3.2.1. Step 2.1. Estimation of downtime and recovery time 

Downtime (Δτdt) is the time period between accident occurrence and the production 

restart time. When a component fails, it enters into a repair process, which itself includes 

several subtasks. Therefore, the estimation of the downtime requires the consideration of 

all major subtasks: 

i. Access time, defined as the amount of time required to gain access to the failed 

component.  

ii. Troubleshooting time, which is the amount of time required to determine the 

cause of failure.  

iii. Repair or replacement time, defined as the actual hands-on time to complete the 

restoration process.  
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iv. Verification time, which is required to validate the restoration to ensure that the 

unit has been returned to an operational condition. 

Supply and maintenance delays can also significantly affect the downtime. If all the 

needed replacement parts are readily available and the necessary maintenance resources 

and facilities are immediately available upon failure, then supply and maintenance delays 

can be considered as zero [20].  

The downtime reflects the maintainability of equipment and is usually measured using 

the mean time to repair (MTTR). MTTR is considered a random variable and is modeled 

in this work using an exponential distribution assuming a constant repair rate. However, 

for the case of non-constant repair rates, distributions with a time-dependent hazard 

function, such as Weibull and lognormal, can be used [20]. 

The recovery period (Δτrp) is defined in this work as the time span that an organization 

would take from the production restart to the restoration of business income to the same 

position it had before the failure occurred. Recovery period is also considered to follow 

an exponential distribution. When information is lacking, Hashemi et al. [14] 

recommended the use of Δτrp = 0.5×Δτdt as a starting value. This value can be revised 

later based on expert knowledge and failure history.  
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5.3.2.2. Step 2.2. Overall business loss 

In almost all traditional loss models, business loss (BL) is a linear function of time [14]. 

The reason for this assumption is that the production loss rate is considered constant 

(time independent). However, it is more realistic to consider BL as a nonlinear function 

of time. Compared to a linear model, a nonlinear BL model penalizes the system for 

consistent business loss because companies face a reduced market share due to 

interrupted operations. In addition to elements such as loss of production, this reduction 

in operational output may include laying off employees, selling equipment or assets and 

closing underperforming business facilities, losing market share especially for long-term 

downtimes.  

To address these challenges, Equation (5.4) is proposed to consider nonlinear cases of 

business loss as a function of time: 

 

 𝐵𝐿 = 𝐵𝐿!" + 𝐵𝐿!"        (5.4.a) 

where  

 

𝐵𝐿!" = 𝐵𝐿!"!"#$ ∙ 1− 𝑒𝑥𝑝 −𝑀𝑇𝑇𝑅! 2𝐵! ! + 𝐵! ∙𝑀𝑇𝑇𝑅!!   (5.4.b) 

𝐵𝐿!" = 𝐵𝐿!"!"#$ ∙ 1− 𝑒𝑥𝑝 −Δ𝜏!"
! 2𝐵!! ! + 𝐵!! ∙ Δ𝜏!"

!!!  (5.4.c) 

 

where 𝐵𝐿!"!"#$ and 𝐵𝐿!"!"#$ are business losses during downtime and recovery periods 

estimated from PERT distribution, 𝑀𝑇𝑇𝑅 is the mean time to repair and Δτrp is the mean 
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value of the recovery period. 𝐵! and 𝐵!! are parameters that are chosen in a way to best 

reflect business loss from historical data. This equation can address both linear and non-

linear behaviours for business loss in downtime and recovery periods. For example, if 𝐵! 

is set to be 0 and 𝐵! to 1, the business loss and downtown period will have a linear 

relationship. On the other hand, the business loss in the downtime period follows an 

exponential distribution if 𝐵! is zero. Having estimated the distribution of different 

elements in 4.a, Monte Carlo simulation is used to model the distribution of overall BL.  

 

5.3.3. Step 3. Estimation of Accidental Loss Elements 

As shown in Table 5.2, human health loss, asset loss and environmental cleanup loss are 

three main elements of accidental loss. These consequences are caused by loss of 

containment and their values are usually estimated as a function of the affected area and 

are expressed in financial terms. In this work, the impact (damage) area is calculated 

based on the level I consequence analysis outlined in API RP 581 [6], as it provides a 

standardized and reproducible methodology for application in process plants. However, 

users may apply different source and dispersion models to determine impact areas [9]. 

Based on the API RP 581 methodology, impact areas from events such as pool fires, flash 

fires, fireballs, jet fires and vapour cloud explosions are quantified based on the effects of 

thermal radiation and overpressure on surrounding equipment and personnel. The event 

tree technique is then utilized to assess the probability of each of the various event 

outcomes and to provide a mechanism for probability-weighting the consequences of loss 
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of containment.  Having estimated the impact areas, the elements of accidental loss are 

calculated, as discussed in the following sections. 

5.3.3.1. Step 3.1. Asset Loss  

The asset loss can be calculated as multiplication of the cost of damage to the component, 

as well as to other components and buildings in the vicinity of the failure, damage area 

and assets’ density ($/area) [9,11]. To reduce the complexity and required input data, a 

constant value of the process unit replacement cost is used to compute the total damage 

cost to other assets based on the damage area. Beside the value of the components, the 

installation cost of the component in the damaged area is another important factor that 

needs to be taken into consideration. For this purpose, the Lang factor is used, which is 

defined as the ratio of the total cost of installing a process in a plant to the cost of its 

major technical components [21]. Therefore, asset loss (AL) can be calculated as: 

 

           (5.5) 

 

where fL is the Lang factor, Cu is the process unit replacement cost ($/unit area) and ad is 

the damage area. Equation (5.5) has two terms: the first part estimates the component(s) 

cost and the second term estimates the total replacement cost using the Lang factor. The 

mean value of the Lang factor varies from plant to plant; however, a mean value of 3.7 

can be used as a reasonabe estimate [21]. In this study, a normal distribution with mean 

µFL = 3.7 and standard deviation σFL = 1 is considered for the Lang factor to take into 

account the associated uncertainty. To recognize the uncertainty associated with 

( )1 L d uAL f a C= + ⋅ ⋅
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estimating unit cost (Cu), the PERT distribution approach described in Section 2.1 is used 

to assign a distribution to Cu, given an estimated empirical mean and variance. Having 

estimated the distribution of different parameters in Equation (5.5), the MC simulation 

method is used to estimate the distribution of asset loss. 

 

5.3.3.2. Step 3.2. Human Health Loss  

Another consequence to consider when a corrosion failure occurs is the potential injury 

and fatality losses, collectively referred to as human health loss (HHL) in this work. For a 

given scenario, HHL is calculated in terms of the number of fatalities/injuries and the 

costs associated with fatality and/or injury [8,9]: 

 

         (5.6) 

 

where ad is the damage area; dp is the population density (people/area); and Chh is the unit 

human health (fatality/injury) loss. The concept of the value of statistical life (VSL) can 

be used as a basis to estimate Chh. The VSL is the value that individuals place on 

a marginal change in their likelihood of death [22]. Although VSL is very different from 

the value of an actual immeasurable human life, when looking at risk/reward trade-offs 

that people make with regard to their health, economists often consider the VSL in 

financial decision-making. The estimation of VSL and the cost of injuries should be 

based on the unique situations of the facility as this depends in several facility/country-

specific factors [23]. However, when lacking such information, the VSL data in a study 

d p hhHHL a d C= ⋅ ×
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by Bellavance et al. [23] and the ratio between cost of fatality versus moderate and slight 

injuries reported by [24] can be used as the starting values. Finally, the MC simulation is 

integrated with Equation (5.6) to simulate the distribution of the human health loss. 

 

5.3.3.3. Step 3.3. Environmental Cleanup Cost  

Environmental consequences as a result of loss of containment can be significant and 

should be added to other costs including fines and other penalties. Adopted from API RP 

581, the environmental cleanup cost (ECC) due to hydrocarbon spill is calculated as [6]:  

 

        (5.7) 

 

where fe is the estimated fraction of material to evaporate as a function of the normal 

boiling point and can be determined from a table or an empirical equation in API RP 581 

[6]. m is the discharge mass of the released fluid, ρl is the liquid density at storage or 

normal operating conditions, and Cec is the environmental clean-up cost (including fines, 

penalties, and other applicable costs) in $/barrel (bbl). The distributions of the m and Cec 

are to be determined from operational history and applicable environmental regulations. 

Then, the Monte Carlo simulation is conducted with Equation (5.7) to obtain the Cec 

distribution. Applicable regulatory legislator as well as related literature along with 

expert knowledge can be used to estimate the distribution of Cec. For example, DNV-RP-

( )1ec e

l

C m f
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ρ
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G101 [25] provides some guidelines to estimate a base value for ECC for offshore 

platform oil spills.  

 

5.3.4. Step 4. Overall Loss Estimation and Effect of Inflation 

In order to estimate the overall risk of failure due to pitting corrosion, the overall loss 

should be determined first by aggregating individual loss elements. The overall loss is 

estimated by the superposition principle as the summation of the business loss and 

accidental loss elements, estimated from previous steps. The application of the 

superposition principles is based on the independency assumption among losses. 

Therefore, overall loss can be determined as: 

  

 𝑂𝐿! = 𝐵𝐿 + 𝐻𝐻𝐿 + 𝐴𝐿 + 𝐸𝐶𝐶      (5.8) 

 

Related consequence analysis literature such as API RP 581 [6], CCPS [11] and DNV-

RP-G101 [25] also considers independent losses for overall loss calculation due to easier 

practical applications. This assumption can be relaxed by considering the potential 

dependency among losses and the application of copula-based loss aggregation methods, 

such as the one proposed by Hashemi et al. [26]. 

The overall loss estimation is Equation (5.8) is based on a constant dollar value 

assumption. However, prices of goods, services, shares, equipment and components 

bought and sold by firms, as well as factors such as the value of environmental damage 

fines and penalties, change over time. Consequently, the assumptions made for loss 
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estimation change and adjustments should be made accordingly for projected loss values. 

Most existing corrosion consequence analysis approaches only estimate the constant 

(today’s) dollar value of the losses in coming years and the effect of inflation is not 

considered in the estimation. However, to ensure more accurate estimation of losses in 

the future due to corrosion failures, actual dollar value should be used. Actual dollar is 

expressed in the monetary units at the time the cash flows occur. 

Inflation is an important concept in any economic analysis because the purchasing power 

of money rarely stays constant. Because of inflation, a unit of currency in one period of 

time is not equivalent to the same unit at another time. Economic analysis requires that 

comparisons be made on an equivalent basis. Thus, it is important to incorporate the 

effect of inflation in analysis of the losses. For this purpose, for each year, the inflation 

rate is applied to the overall loss determined from Equation (5.9) to consider the effect of 

actual dollar value for the estimated loss. 

Converting the estimated today’s dollars into actual dollars in year t relative to a base 

year (current year of assessment) is performed using Equation (5.9): 

 

 𝑂𝐿! 𝑡, 𝑓 = 𝑂𝐿!. (1+ 𝑓)!        (5.9) 

  

where: 

• 𝑂𝐿!: actual dollars in year t relative to the base year; 

• 𝑂𝐿!: today’s dollars estimated from Equation (5.8) equivalent to 𝑂𝐿!;  

• f: the inflation rate per year, assumed to be constant from year 0 to year N.  
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5.3.5. Step 5. Estimation of Initial POF 

The probability of failure is estimated using limit state function analysis. For this 

purpose, Maximum Pit Depth (MPD) is considered as the critical characteristic of pitting 

corrosion. Then, a time-dependent MPD model [5], proposed earlier, is integrated with 

the maximum allowable operating pressure model in DNV-RP-F101 [27] as follows:  

𝑃!"## 𝑡 = 𝛾!
!!!!(!!!!(

!"# !
! )∗

(!!!) !!
!!(

!"# !
! )∗

!

       (5.10) 

where τ is the component thickness (mm) and Pcorr (t) is the maximum allowable pressure 

(N/m2)  as a function of time for a component susceptible to pitting corrosion,
 

and . MPD (t) is 

the maximum pit depth (mm); D is the outside diameter of the pipe (mm); l is the length 

of the pitted area (mm); fu is the ultimate tensile strength (N/m2) ; γm is the partial safety 

factor for longitudinal corrosion model prediction; γd is the partial safety factor for pit 

depth; εd is a factor for defining a fractile value for the pit depth; and StD[MPD/τ] is the 

standard deviation of the random variable (MPD/τ). The values of γd, γm, and εd are 

provided in DNV RP-F101 [27]. 

To estimate MPD, the methodology in [5,28] is adopted in this work. In this 

methodology, the non-homogenous Markov process is used to estimate the MPD. The 

probability of a deepest pit in a state less than or equal to state i, at time t, can be 

estimated using the expression: 

 

( )21 0.31Q l Dτ= + ( )( ) ( )( ) ( )*
dMPD t MPD t StD MPD tτ τ ε τ= + ⎡ ⎤⎣ ⎦
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θ! i, t χ,ω = 1− 1− exp (−ρ(t− t!) !!
!!!     i = 1, …, n  (5.11)  

 

where t is the time of assessment (year), tk is the initiation time of pits (year), n is the total 

number of states in the Markov chain, m is the average pit density (APD) at time of 

assessment and ρ(t-tk) is the number of transited states of  a pit that grows in a short time 

interval (tk, t). 

 

    

𝐴𝑃𝐷 𝑡 = !
!
1− 𝑒!!! + 𝑤𝑡!

  
      (5.12) 

 

tk is the pit initiation time. By assuming that all pits initiate in order at times t1, t2, ..., tm, 

the initiation time tk (year) for each pit , k = 1, 2, ..., m, can be estimated by calculating 

the inverse of the pit density [29,30]:  

 

 t!  =  APD!!(k), k = 1, 2, …, m        (5.13) 

 

Finally, probability of failure (POF) due to corrosion is calculated as follows: 

 

𝑃𝑂𝐹! = 𝜙 −𝛽 = 1− 𝜙 𝛽         (5.14) 

 

where ϕ is the normal cumulative distribution function and β is the reliability index, to be 

determined as: 
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 𝛽 =
!!!"##!!!!"

!!!"##
! !!!!"

!
        (5.15)  

 

where 𝜇!!"##  and 𝜇!!" are the average of Pcorr and the operating pressure, and σPcorr and 

σPcorr are the standard deviation of Pcorr and operating pressure distribution, respectively. 

Pcorr is determined using Equation (5.10). Equation (5.15) is developed using the limit 

state function, where Pcorr and Pop are load and resistance variables. The estimation of 

POF is dependent on the precision of the independent variable of the limit state function 

[6]. The extent of corrosion damage to estimate the limit state variables may have 

considerable uncertainty, especially when damage is into the future.  

 

5.3.6. Step 6. Application of CPM3 Adjustment Factors 

As discussed earlier, Corrosion Prevention, Monitoring, Maintenance and Management 

(CPM3) costs are incurred by an organization to prevent potential losses to people, 

property and the environment. The CPM3 costs have a mitigating effect on potential 

corrosion losses. As stated in BS 6143-2 [12], an increased awareness of the cost to the 

organization due to corrosion leads first to an increase in control costs. Then, as corrosion 

monitoring and control identify areas of improvement, more is spent on corrosion 

prevention compared to mitigation. Finally, as preventive actions take effect, both the 

frequencies of failures due to corrosion and the consequent losses reduce [12]. 
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Other than insurance, that has a direct mitigating impact on overall loss by transferring 

part of the residual risk to a third party, the quantification of the mitigating impact of 

other corrosion cost elements is not straightforward. Spending more on prevention, 

monitoring, maintenance and management does not necessarily reduce the overall loss. In 

fact, the effectiveness and the frequency of these measures, which are also a function of 

cost, indicate their mitigating performance. Therefore, adjustment factors are used in this 

work to take into account the effectiveness of corrosion costs in reducing either the 

probability or severity of corrosion losses. 

5.3.6.1. Step 6.1. Effect on Corrosion Loss Severities 

Insurance coverage is a corrosion management strategy that can directly affect the 

severity of the overall loss by transferring a part of the residual risk to an insurer as 

follows: 

 𝑂𝐿 = 𝑂𝐿′− 𝐼𝑅         (5.16) 

where OL’ is the overall loss ($) estimated from Equation (5.9) and IR denotes insurance 

recovery ($). Thus, by knowing the amount of potential IR, the adjusted overall loss can 

be estimated using Equation (5.16) by incorporating the mitigating effect of insurance. 

The estimation of insurance recovery is not within the scope of this work. 

 

5.3.6.2. Step 6.2. Effect on Corrosion Loss Probabilities 

The effectiveness of CPM3 techniques directly affects the probability of corrosion losses. 

Industry best practices and standards consider the effect of corrosion inspection and 

maintenance effectiveness using effectiveness factors. For instance, API RP 581 [6], 
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categorizes effectiveness factors  as “A” through “E”, with an “A” category providing the 

most effective program and “E” representing an ineffective or missing program. In the 

API 581 approach, the effectiveness values are point-based, ignoring the associated 

uncertainty. To address this challenge, a methodology for estimation of CPM3 

adjustment factors is presented in this section considering uncertainty.  

In this work, the adjusted POF is determined by applying the adjustment factors as 

follows:  

 

 𝑃𝑂𝐹 𝑡 = 𝐴𝐹!"#!×𝑃𝑂𝐹!(𝑡)      (5.17) 

 

where 𝑃𝑂𝐹!(𝑡) is the original POF estimated using Equation (5.14), ignoring the 

mitigating impact of CPM3 actions. In Equation (5.17), 𝐴𝐹!"#! denotes the CPM3 

adjustments factor. It considers the overall mitigating impact of all CPM3 costs and their 

influence on the mechanical integrity of the component attacked by corrosion. 𝐴𝐹!"#! is 

defined as: 

 

 𝐴𝐹!"#! = 1 − 𝑒𝑥𝑝 !!!

!!"#$%& !!"
!        (5.18) 

 

where t is time, 𝑡!"#$%& is the design life of the equipment, and 𝛼!" is the shape factor. 

The value of 𝐴𝐹!"#! varies between 0 and 1, where the value of 1 shows the 

ineffectiveness, or lack of, the associated CPM3 element and values closer to 0 show 
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more effectiveness to reduce the POF. The consideration of the impact of design life in 

𝐴𝐹!"#! is required as its value directly affects the selection and implementation of CPM3 

actions over the asset life cycle.  

The shape factor 𝛼!" can have values between 0 to 10, where the value of 0 represents 

fully effective CPM3 (i.e., a corrosion proof system). As the value of 𝛼!" approaches 10, 

the adjusted POF curve becomes closer to the original POF, representing ineffective 

CPM3 actions. The exact estimation of the 𝛼!" value is not an easy task, as different 

factors could affect the value of the shape factor, including: 

• The effectiveness of selected methods for detecting/mitigating pitting corrosion. 

This is also referred to as probability of detection (POD) in the literature.  

• The frequency of selected CPM3 methods. 

• The operator/management skill in implementing the selected CPM3 methods. 

• The existence of proper procedures and auditing system to ensure compliance 

with procedures. 

Moreover, if the selected CPM3 actions are not appropriate for detecting and mitigating 

pitting corrosion, higher CPM3 costs do not necessarily mean a lower probability of 

pitting corrosion failure. However, higher investments in proper CPM3 actions directly 

affect the POF due to pitting corrosion. The estimated CPM3 costs are important 

parameters to be considered when estimating 𝛼!". Therefore, as discussed in Section 

5.2.3, the application of PERT distribution is proposed in this work to estimate the cost 

associated with CPM3 strategies.  
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Quantifying the individual effect of all aforementioned factors on 𝛼!" using a separate 

model is cumbersome due to the lack of reliable data for CPM3 effectiveness, cost data, 

operator skill, and management performance. Furthermore, the uncertainty associated 

with estimating the effectiveness of CPM3 measures should be taken into consideration. 

Therefore, the use of expert knowledge, along with the PERT distribution, is a better 

approach to estimate the value of the CPM3 adjustment factor based on the estimated cost 

and other contributing factors mentioned above. Thus, the PERT distribution explained in 

Section 5.2.3 is used to estimate 𝛼!". The aforementioned guidelines for 𝛼!" estimation, 

along with the maintenance, operation and management histories should be used to assign 

minimum, most likely and maximum 𝛼!" values. Having estimated the PERT distribution 

for 𝛼!", Monte Carlo simulations are used to obtain a distribution for 𝐴𝐹!"#! using 

Equation (5.18).   

 

5.3.7. Step 7. Risk Calculation  

The overall risk is calculated using the Monte Carlo Simulation method to take samples 

from the overall adjusted loss and adjusted probability distributions and then calculating 

the risk for each pair of realized probability and loss values using this equation: 

 

𝑅(𝑡) = 𝑃𝑂𝐹 𝑡 ×𝑂𝐿(𝑡)            (5.19) 

 

where POF(t) and OL (t) distributions are estimated from Equations (5.17) and (5.16), 

respectively. To evaluate the equipment using the estimated risk, an acceptable risk level 
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(in dollars) can be defined. When the risk at a time t exceeds the acceptable level, risk 

mitigation actions must be carried out to prevent the occurrence of an accident or mitigate 

its consequence.  

 

5.4. Case Study 

5.4.1. Case Study Overview 

The practical application of the proposed risk-based economic impact analysis of pitting 

corrosion is demonstrated using a case study. The pipeline under study is newly installed 

on an offshore oil rig and the inspections confirmed that it was free from fabrication 

damage at the time of installation. However, based on experiences from similar offshore 

facilities, pitting corrosion can occur anywhere in the production environment, including 

in downhole tubulars, topside equipment and pipelines. The system is susceptible to 

internal pitting corrosion due to favorable conditions and the presence of process 

contaminants such as CO2 and H2S. The pipe specifications include: outside diameter of 

200 millimeter (mm), thickness of 7.036 mm, length of 1.5 m, tensile strength of 410 

N/mm2 and operating pressure of 15 MPa.  

Undetected pitting corrosion can result in loss of containment, entailing potential fire, 

explosion and extensive damage to topside equipment with the subsequent production 

shutdown. Due to the remoteness of operations and difficulties in scheduling regular 

inspections, the application of the proposed risk-based pitting evaluation model can help 

operators to estimate the risk of pitting corrosion. The estimated risk can be used for 

different decision-making purposes such as prioritization of inspection and maintenance 
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activities. For this purpose, the proposed methodology in Figure 5.1 to estimate pitting 

corrosion risk is applied. In the following sections, first, the estimated elements of 

business and accidental losses are estimated to assess the overall loss. Then, the 

calculated overall loss is adjusted considering the inflation rate. The probability of failure 

is calculated and adjusted using the CPM3 adjustment factor. Finally, risk is calculated as 

the product of probability and consequences of failure due to pitting corrosion. 

  

5.4.2. Estimation of Business Loss 

The proposed PERT methodology is applied to estimate business loss elements. Table 5.3 

shows the following information, which is used to estimate overall business loss due to 

pitting corrosion: 

• Minimum, mode and maximum values for each loss element. These conservative 

values are estimated using expert knowledge from similar processes and can be 

updated as more reliable information becomes available. 

• Parameters of PERT distributions, i.e. 𝑣!!"#$ and 𝑤!!"#$, calculated using 

Equations (5.2) and (5.3) based on minimum, mode and maximum loss values. 

• Parameters of Equation (5.4), which are selected for illustration purposes to 

represent the non-linear relationship between the business loss and time.  

The recovery period and MTTR are considered as random variables and are modeled 

using exponential distributions assuming a constant repair rate. Based on the previous 

experiences and performance history of the repair and maintenance team, the mean of 

MTTR is considered as 90 days. Accordingly, the mean of the recovery period is 
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considered as half of the MTTR, to represent the time required for the business to be 

restored after a failure.  Parameters of Equation (5.4) in Table 5.3 and other parameter 

values can be adjusted over time as more information becomes available by comparing 

the organization’s business performance in the past 12 to 24 months. Finally, Equation 

(5.4.a) and Monte Carlo simulations with J = 106 iterations are used to estimate the 

overall business loss. The mean, standard deviation, 50% percentile (P50) and 99.9% 

percentile (P99.9) of the estimated overall business loss are shown in Table 5.3. 

 

Table 5. 3. Business interruption loss elements for the case study 

Loss 
Element  Description Minimum 

($/day) 
Mode 
($/day) 

Maximum 
($/day) 

PERT 
Parameters 

Parameters of 
Equation 5.4 

𝑣!"#$ 𝑤!"#$ B1 B2  B3 

BLdt
 

Profit loss due 
to production 
loss over 
process 
downtime 

375×103 575×103 875×103 2.6 3.4 0 1.08 1.01 

BLrt
 Profit loss 

over recovery 
period 

125×103 192×103 292×103 2.6 3.4 0 0.5 0.6 

 
 

5.4.3. Estimation	of	Accidental	Loss	Elements	

5.4.3.1. Damage Area Estimation  

To determine accidental losses, the first step is to estimate the component damage and/or 

personnel injury. For this purpose, API RP 581 [6] methodology is used for consequence 

area modeling. In API RP 581, for different discrete hole size scenarios (small, medium, 

large and rupture), release rates are calculated based on the phase and properties of the 

fluid, such as flow rate, type of fluid, initial phase, total mass, equipment volume and 

percentage of liquid volume. The release rates are then used in closed form equations to 



160 

determine the consequence areas for component damage and personnel injury [6]. For 

illustration purposes, the impact areas are considered to follow Lognormal distributions 

as it can model positive real values of potentially skewed and asymmetric distributions 

with possible extreme values. A mean of 260 ft2 and standard deviation of 210 ft2 for the 

Lognormal distribution of component damage area, and a mean of 1310 ft2 and standard 

deviation of 625 ft2 for the Lognormal distribution of personnel injury consequence area 

are used. However, these numbers and associated distributions should be calculated using 

approaches such as API RP 581 [6] methodology for the process under study. To keep the 

work concise, no environmental cleanup loss is assumed for this case study, by assuming 

that the released hydrocarbon will readily evaporate. 

 

5.4.3.2. Asset Loss Modeling  

Equation (5.5) is used to estimate the asset loss, which includes the replacement cost for 

the pipe and the total damage cost to other assets located within the estimated component 

damage radius. The process unit replacement cost (Cu) is considered to follow a Normal 

distribution with mean of $24,000/ft2 and standard deviation of $1,600/ft2, determined 

from the project design information and construction contract. Then, Equation (5.5) is 

used to determine the overall asset loss by applying Monte Carlo simulations with J = 106 

iterations. Table 5.4 shows the statistical information of the asset loss distribution. 

 

5.4.3.3. Human Health Loss Modeling  
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Equation (5.6) is used to model the human health loss, which requires the estimation of 

population density, personnel injury area and the value of statistical life (VSL). The 

population density is estimated using the PERT distribution of the number of people on 

board with a minimum of 60, maximum of 120 and a mode of 100 people during 

operations and considering a uniform distribution of personnel over the rig unit area of 

18,000 ft2. The VSL is significantly influenced by the country of origin of the study, year, 

and other sources of the risk variables [23]. For the purpose of this case study, the VSL is 

considered to follow a lognormal distribution with a mean of $8,420,568 and variance of 

$7,890,597, taken from a study by Bellavance et al.  [23]. The use of lognormal 

distribution helps to consider potential extreme observations in rare major events due to 

its ability to have fat tails. It is assumed that all people in the personnel injury 

consequence area (Section 5.4.3.1) will be fatally injured. The human health loss is then 

estimated using Equation (5.6) by applying MC simulations with J = 106 iterations and 

the results are shown in Table 5.4. 

 

5.4.4. Overall Loss Estimation 

Table 5.4 summarizes the results of loss evaluations for this case study. The P50 (50th 

percentile) and P99.9 (99.9th percentile) for each loss element are also provided in Table 

5.4, which helps to communicate the uncertainty associated with each estimated loss. 

From Table 5.4, the expected BL value contributes approximately 41% of the overall 

expected loss. This is not a surprising observation as the production unit will typically 

experience several days of downtime due to loss of containment. Finally, the overall loss 
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is estimated as the summation of all loss elements and the results are shown in Table 5.4. 

Figure 5.2 shows the distribution of the overall loss for this case study with a mean value 

of 151 million dollars. The application of probability distributions to model losses is one 

of the advantages of the proposed methodology, compared to the point-based 

deterministic approaches in traditional consequence modeling models such as API RP 

581 [6] and CCPS [11]. The estimated overall loss distribution is integrated later with 

failure probability distribution to obtain the risk distribution.  

Table 5.4. The value of estimated loss elements for the case study (all losses are reported in USD 
million) 

Loss  Mean Standard 
Deviation P50 P99.9 

Percentage 
(Mean/Total Loss) 

BL 
61.8 62.9 41.6 467.5 40.9 

AL 29.4 6.6 29.2 51.0 19.5 
HHL 59.8 55.9 43.2 494.7 39.6 
Overall 151.0 84.2 130.2 632.9 -- 

 

 
Figure 5.2. Overall loss for the case study 

 
 

5.4.5. Probability Estimation 
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5.4.5.1. Initial Probability Estimation 

As discussed in Step 5 of the presented methodology, the state function approach in 

Shekari et al. [5] is used to calculate the probability of failure (POF). The first step is to 

estimate the maximum pit depth (MPD) change over time. As shown in Figure 5.3, MPD 

is considered as a function of time and is modelled using Equation (5.11). Then, the Pcorr 

distribution is estimated using Equation (5.11) and is plugged into Equation (5.15) to 

obtain reliability index values for different exposure times. Finally, the estimated 

reliability index values, β(t), are used in Equation (5.14) to obtain the initial POF time 

plot and the result is shown in  

Figure 5.4. As can be seen in Figure 5.4, the POF is negligible until year two. However, 

as pits grow, the POF increases sharply after the second year due to the reduction in 

material strength and maximum allowable operating pressure. As will be discussed later 

in Section 5.4.7, the developed POF curve is used to estimate overall risk over time.  

 

Figure 5.3. Internal pit growth over time for the pipe case study 
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Figure 5.4. Initial and adjusted probability of failure (POF) curves due to pitting corrosion for the 

case study. The box plots represent the minimum, first quartile, median, third quartile, and 

maximum values of adjusted POF over time. 

 

5.4.5.2. Adjusted Probability Curve 

The initial POF curve in Figure 5.4 did not take into account the mitigating impact of 

existing Corrosion Prevention, Monitoring, Maintenance and Management (CPM3) 

measures. The proposed approach in Step 6.2 is used in this section to adjust the 

estimated initial POF by incorporating the effective CPM3. For this purpose, the expert is 

asked to estimate minimum, most-likely, and maximum shape factor values of the 

adjustment factor (𝛼!") based on the guidelines provided in Step 6.2 and the plant-

specific information such as type, effectiveness, and frequency of CPM3 actions, 

operators’ skill, management effectiveness and compliance with procedures. Table 5.5 

shows the selected 𝛼!" values and the calculated PERT distribution parameters for the 

CPM3 adjustment factor (𝐴𝐹!"#!). The distribution parameters of 𝛼!" are calculated 
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using Equations (5.2) and (5.3). Conservative values are used in Table 5.5 as starting 

values, which are inevitable for new installations and for cases without proper operational 

history. However, these values can be revised over time as more information becomes 

available from the system.  

Using Equation (5.17), the initial POF is adjusted by incorporating the estimated 

adjustment factor distribution and the results are shown in Figure 5.4. The representation 

of the POF adjustment factor using a probability distribution aids to capture the 

uncertainty associated with CPM3 strategies and their impact on adjusted POF. The 

minimum, first quartile, median, third quartile, and maximum values of the adjusted POF 

are shown in Figure 5.4 using box plots. The solid line in Figure 5.4 shows the mean 

values of POF over time. These box plots help practitioners to consider the potential POF 

uncertainty for inspection, maintenance and management planning. From Figure 5.4, it 

can be seen that the adjusted POF values start to increase at a lower rate compared to 

initial POF values, considering the mitigating impact of CPM3 actions to prevent, detect 

and correct pitting damage. Consequently, there is a significant decrease in estimated 

POF values compared to the initial POF where the impact of CPM3 methods was 

ignored. For instance, as shown in Figure 5.4, in year 4 the failure probability is 

decreased from 0.23 to 0.019 by incorporating the impact of CPM3 methods. The 

advantages of the proposed approach to quantify the mitigating impact of CPM3 

strategies are discussed further in the next section. 

 

5.4.6. Risk Calculation  
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The estimated overall loss in Step 6.1 and adjusted POF in Step 6.2 are combined using 

Equation (5.19) to determine the risk versus time profile. For simplicity, inflation is 

considered to be a constant value of 2% throughout the system life cycle and its impact 

on loss is determined using Equation (5.9). The estimated overall risk as a function of 

time is shown in Figure 5.5. Since risk is the combination of probability and loss, the 

estimated risk is negligible for the first three years, as the POF is negligible (see Figure 

5.4). As POF starts to increase due to the pits’ growth, so does the risk. The solid line in 

Figure 5.5 shows the increase in mean risk values and the box plots represent the 

variability in estimated risk over time due to uncertainty associated with POF and loss 

estimations. The increasing boxplot sizes over time in Figure 5.5 represent an increasing 

trend of the uncertainty of risk predictions over time. In other words, as the time interval 

between the assessment time (current time) and the intended prediction time (future time) 

increases, so does the uncertainty of pit behaviour (depth) and risk predictions, unless 

inspection data becomes available to update the model predictions. This increasing trend 

of uncertainty over time shows the importance of conducting periodic inspections to 

validate and update model predictions and decrease the associated uncertainties. The 

integration of the proposed pitting corrosion economic impact analysis model with a 

Bayesian analysis is a subject for future research by authors to address this need.  

The proposed probabilistic pitting risk assessment provides a significant improvement 

compared to the methods used in traditional corrosion risk assessment literature (such as 

API 581 [6], DNV-RP-C302 [31], Thodi et al. [7]) where risk is simply shown using a 

risk matrix or a simple curve. Application of the developed risk time plot in Figure 5.5 
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aids to make risk-informed decisions while considering the uncertainty associated with 

both POF and loss estimates. As will be discussed in the next section, by assigning a 

threshold risk value, the developed risk plot can be used for remaining life evaluation and 

risk-based inspection and maintenance planning.    

 

 
 

Figure 5.5. Box plot of risk of pitting corrosion over time for the case study  
 

5.4.7. Sensitivity Analysis 

A sensitivity analysis is conducted to investigate the impact of each loss category on 

estimated risk. For this purpose, 11 experiments are conducted by changing the values of 

each loss category in Table 4 in the range of -25% to +25% to estimate the corresponding 

change in overall risk in years 15. As can be seen in Figure 5.6, for 10,000 Mote Carlo 

simulation runs, changes in both business and human health losses in the range of -25% 

to +25% have resulted in approximately the same amount of changes in the range of -
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10% to +10% in estimated risk values. The similar trend in risk chnages for these two 

loss catgeories is because of the close values of their means and standrad variations (see 

Table 5.4). However, the same amount of changes in asst loss values have resluts in only 

a change in the range of -5% to +5% in estimated risk values. This is not a suprising 

obseravtion as the mean value of asset loss is almost half of the mean values of business 

and human health lossees. Similar senesitivity analysis was conducted for year 10, which 

resulted in almost the same results. Another obseravtion from Figure 5.6 is the linear 

change in risk values due to the change in the amount of each loss category. This linear 

relationship is due to the linear relationship between risk and loss in Equation 5.19. The 

sensisticity analysis of the effects of loss categories is a case-specific problem and should 

be repeated if the assumptions for estimation of losses change.    

 

Figure 5.6. Sensitivity analysis of the effect of loss categories on estimated risk for year 15 
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5.4.8. Discussions 

One of the primary applications of the proposed methodology is risk-based remaining life 

evaluation of components affected by pitting corrosion. For instance, by defining a 

threshold risk for the system, the intersection of the risk profile and threshold risk value 

can be used as a criterion to make inspection, repair, rerating, or replacement decisions. 

As shown in Figure 5.5, for instance, considering the threshold risk as 120 million United 

States dollars (USD) for this case study, the risk exceeds the threshold value after 11.2 

years. Alternatively, other criteria such as remaining intact thickness or POF can be used 

for remaining life evaluation [32]. However, use of the proposed risk-based approach in 

remaining life evaluation helps to consider both POF and loss in decision-making.  

To facilitate a better investigation of the importance of considering inflation as well as 

Corrosion Prevention, Monitoring, Maintenance and Management (CPM3) adjustment 

factors (𝐴𝐹!"#!) in overall risk estimation, the proposed model is applied to two 

different scenarios and the results are compared with the estimated remaining life values 

from Figure 5.5. The considered scenarios are: 

• Base Scenario: Base case scenario is taken from the previous section (Figure 5.5) 

where the effects of both inflation and 𝐴𝐹!"#! are considered.  

• Scenario 1: The effects of both 𝐴𝐹!"#! and inflation are ignored.  

• Scenario 2: Only the effect of 𝐴𝐹!"#! is considered (0% inflation).  

Table 5.5 shows the information for all scenarios. CPM3 costs are also shown in Table 

5.5 to facilitate cost-benefit analysis by comparing the amount of change in the remaining 

life with the investment in CPM3 methods. Similar CPM3 costs are considered for both 



170 

Base Scenario and Scenario 2; only the effect of inflation is ignored in Scenario 2. The 

CPM3 costs are reported in dollars per day in Table 5.5, as offshore platforms are usually 

rented by operators and maintenance costs are reported as an average value per unit of 

time. In Scenario 1, it is assumed that the only existing corrosion protection is the initial 

design and material selection and no CPM3 action is considered after putting the platform 

into service. Although this is an unrealistic scenario, the purpose here is to show how the 

proposed methodology can be used for cost-benefit analysis of investing in CPM3 

strategies.  

Using the assumptions in Table 5.5, the overall risk due to pitting corrosion is estimated 

for each scenario and the time plot’ mean values are shown in Figure 5.7. The developed 

risk time plots are then used to estimate the remaining life of the pipe and the results are 

shown in Table 5.5. 

 

Table 5.5. Different scenarios for remaining life evaluation of the pipe case study 

Sc
en

ar
io

 

In
fla

tio
n CPM3 Costs (thousands $/day) 𝜶𝑨𝑭 (AF shape parameter) 

Remaining 
Life (Years) 

% Change in 
Rem. Life 

(compared to 
Scenario 1) 

Min Mode Max 𝑣!"#$!"#$  𝑤!"#$!"#$  Min Mode Max 𝑣!!"#$  𝑤!!"#$  

Base 2% 13 15 18 2.6 3.4 3 3.3 3.8 2.5 3.5 11.2 90% 

1 0% 0 0 0 0 0 NA NA NA NA NA 6.1 NA 

2 0% 13 15 18 2.6 3.4 3 3.3 3.8 2.5 3.5 14 137% 
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Figure 5.7. Mean values of risk of pitting corrosion over time for different scenarios of the case study 

 

As can be seen from Figure 5.7, compared to Scenario 1 with no CPM3 action and 0% 

inflation, the risk is decreased significantly in the base scenario and also shifted to the 

right. The reason is that the application of CPM3 strategies decreases the rate of pitting 

corrosion by detecting, preventing, monitoring, and/or repairing the pitting damage. From 

Table 5.5, investing in CPM3 strategies with a mode value of USD 5.475 million/year 

(estimated from Table 5.5 as the product of 365 days and CPM3 cost of $15,000 per day) 

has resulted in a 90% increase in the estimated life in the Base Scenario compared to 

Scenario 1 (considering the threshold risk of USD 120 million). This helps the risk 

practitioners to investigate the effect of investment in CPM3 strategies and the resulting 

reduction in the risk. For example, with the current assumptions in Table 5.5, the risk in 

Scenario 1 exceeds the threshold value after 6.1 years. However, an annual investment of 
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USD 5.475 million (estimated from Table 5.5) in CPM3 has resulted in 75.7% reduction 

in risk in year 6.1 from USD 120 million in Scenario 1 to USD 29 million in the base 

scenario.  

On the other hand, as can be seen in Figure 5.7, ignoring the effect of inflation in 

Scenario 2 has resulted in under-estimation of the risk and a 25% increase in the 

estimated remaining life compared to the base scenario. The risk in both Scenarios 1 and 

2 approaches a maximum value of USD 151 million over time, which is estimated based 

on the worst-case failure scenario and maximum credible loss of USD 151 million (from 

Figure 5.2). However, the risk in the base scenario keeps increasing over time due to the 

consideration of the effect of inflation and the increases in the dollar value of the loss if 

the failure happens in the future. These results show the importance of taking into 

account the effects of both inflation and CPM3 strategies in overall economic impact 

analysis of corrosion, which are usually ignored in traditional corrosion loss modeling 

methods. Moreover, the estimated risk time plots can be used for cost-benefit analysis of 

plant upgrade programs and decision-making about investments to improve the 

effectiveness of CPM3 techniques. 

 

5.5. Conclusions 

Evaluating the pit growth rate of assets is not enough to ensure their safe operation. 

Instead, both probabilities and consequences of failure due to pitting should be 

considered to enable a risk-informed decision-making process for evaluating 

deteriorating assets. In this study, a risk-based approach is proposed for overall economic 
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impact analysis of pitting corrosion. The proposed model estimates the business loss and 

accidental losses due to pitting corrosion failure. By modelling the maximum pit depth 

growth and using the state function approach, the initial probability of failure is 

estimated. The mitigating impact of corrosion prevention, monitoring, maintenance and 

management (CPM3) is recognized by modeling the cost of CPM3 strategies and the 

application of the adjustment factor based on the effectiveness of corrosion remediation 

techniques and their associated costs. The consideration of CPM3 costs affects the 

probability of failure and the severity of failure losses.  To ensure more accurate 

prediction of risk in the future due to corrosion failures, the actual dollar value is used by 

incorporating inflation in the proposed loss model. Compared to traditional methods, 

such as API RP 581, that only consider the impact of inspection effectiveness and 

management factors using point-based adjustment factors, the proposed method provides 

a mechanism to (ii) consider the impact of all corrosion prevention, monitoring, 

maintenance and management factors, (ii) capture the uncertainty associated with 

effectiveness and costs of CPM3 strategies, and (iii) conduct a risk based cost-benefit 

analysis by considering the overall cost of CPM3.  

The proposed models are applied to an offshore piping case study. In the case study, 

losses are classified into two categories: business loss and accidental loss. The 

consideration of the CPM3 adjustment factor has resulted in an increase in the estimated 

remaining life because of the mitigating effect of corrosion control measures. Also, the 

results of the case study highlight the fact that ignoring inflation can significantly cause 

underestimation of overall loss. The integration of the Bayesian approach with the 
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proposed loss models can be a subject for future research to update the estimated risk 

dynamically based on new information from the system.  
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6. DYNAMIC RISK MANAGEMENT OF ASSETS SUSCEPTIBLE 

TO PITTING CORROSION5  
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Abstract 

This paper presents a methodology to assess and dynamically update the risk of 

pressurized components affected by pitting corrosion. The proposed dynamic risk 

management framework considers the time-dependent growth of pits and uses the non-

homogenous Markov process to model the maximum pit depth. The developed maximum 

pit depth model is incorporated into a limit state function to model probabilities of 

affected components. Economic consequences are estimated considering both business 

and accidental losses due to failure of the affected component. Finally, risk is estimated 

by integrating the probability of failure and associated consequences. The estimated risk 

is updated using Bayesian analysis as new inspection data become available and the 

economic condition of the process evolves. This paper also evaluates different risk 

management strategies including prevention, control and mitigation measures to make 

effective decisions related to localized corrosion. The application of the proposed method 

is demonstrated using an offshore piping system.   

 

6.1. Introduction 

Insulation of offshore assets is required to conserve energy and ensure safe, reliable and 

cost-effective operations. Corrosion Under Insulation (CUI) occurs in the operating 

temperature range for most offshore applications and has been reported to attack different 

types of carbon steel and stainless steel [1]. The presence of external insulation can lead 

to corrosion which is much more severe than would be expected if the equipment was 

uncoated [2]. Pitting corrosion is one of the most dangerous forms of CUI and requires 
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specific consideration of insulated equipment due to the technical difficulties of pit 

detection and prevention. Pitting corrosion is a localized form of corrosion that occurs 

when one area of a metal surface becomes anodic with respect to the rest of the surface. It 

can also occur when highly localized changes in the corrodent in contact with the metal 

cause an accelerated localized attack [3], [6]. 

Several studies have been conducted to investigate pit behaviour and the proposed 

models for pitting corrosion. These models are used in a variety of methods to predict 

failures, optimize maintenance and inspection schedules and aid in material selection [4]–

[11]. Pit models are also used in risk assessment to predict a failure by providing a 

framework for remaining life evaluation and risk-informed decision-making [12]. The 

importance of using risk-based methods to schedule inspection and maintenance activities 

is now recognized by the industry as ensuring safety while prioritizing limited resources. 

Numerous quantitative, semi-quantitative, and qualitative models have been developed to 

help engineers make risk-based decisions about damaged equipment, such as [12]–[17]. 

Most corrosion risk assessment methods, such as those discussed in [12]–[17], have the 

common shortcoming of being static. However, pitting corrosion is a complex process 

and pit behaviour changes over time due to different causes including, but not limited to, 

operational changes, feed variability, uncertainty in expert knowledge estimates and 

changes in asset conditions due to maintenance activities [18], [19]. Hence, it is essential 

to use a dynamic risk assessment approach which considers prior knowledge of the 

pitting corrosion process along with inspection data and new information from the system 

in order to calibrate the model over time [20].  
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Bayes’ rule and Bayesian analysis have gained popularity in the dynamic risk assessment 

literature as a promising tool, suitable to cope with complex and uncertain situations [21]. 

For the case of corrosion, Farias and Netto [22] applied the Bayesian method to predict 

the corrosion distribution combined with a nonlinear corrosion evaluation model [23]. 

Zhang et al. [24] and Qin et al. [25] developed models for corrosion defects’ depth and 

updated have been model parameters using the Bayesian framework. However, none of 

these methods are developed specifically to model pit characteristics, such as the 

maximum pit depth, which is essential for remaining life evaluation of components 

affected by pitting corrosion. In the context of pitting corrosion, for instance, Mao [26] 

presented a probabilistic model that considers the uncertainties of in-service inspection. 

Mao’s model utilized a Markov Chain Monte Carlo (MCMC) simulation and a Bayesian 

method for estimating the model parameters [26]. Mokhtar et al. [27] used a Bayesian 

methodology to update corrosion model parameters according to the evolution of 

environmental conditions. Bhandari et al. [20] presented a probabilistic model for 

predicting the long-term pitting corrosion depth of steel structures in a marine 

environment using Bayesian analysis. In a study by Kasaie et al. [23], the experimental 

results were used to develop a pitting corrosion evaluation method by combining extreme 

value analysis and Bayesian inference analysis [23].  

One of the important advantages of Bayesian analysis is its ability to use inspection data 

to update the prior belief about the pit’s behaviour. For instance, Straub [9] used new 

inspection data (pit depth measurements) to estimate the likelihood probabilities of 

deteriorating components to update the prior distribution of the model predictions for 
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maximum pit depth (MPD). The traditional Bayesian updating approach assumes 

conjugate prior and likelihood distributions. Conjugate priors provide computational ease 

and flexibility that facilitate the development of analytical solutions for the posterior 

distribution. As conjugate pairs are often unable to capture the realistic behaviour of the 

parameters [26], use of the traditional Bayesian approach (conjugate-likelihood pair) may 

introduce significant potentially uncertainty. To address this limitation, the Markov Chain 

Monte Carlo (MCMC) and Metropolis–Hasting (or M–H) algorithm [28] are used to 

estimate posterior distribution for non-conjugate distributions. 

Most available models update pit characteristics, such as pit depth, as a function of time. 

The pit behaviour leads to the failure probability, which is an element of a risk 

assessment framework. Dundulis et al. [29] presented a method to estimate and update 

failure probability using new inspection data. In their study, they developed an overall 

framework based on statistical data analysis and the Bayesian method. Qin et al. [25] 

presented time-dependent failure probability of the corroding pipeline by considering the 

measurement errors associated with inline inspection tools using the Bayesian updating. 

Maleki and Xin [30] proposed a quantitative method to revise the risk calculated in the 

Risk-Based Inspection (RBI) scheduling. Their proposed approach estimates 

unconditional probability of failure, which is modified using a Bayesian updating 

method, allowing the conditional probability to represent a new failure likelihood to be 

utilized in RBI planning [30]. In Mokhtar et al. [27], the Bayesian updating on the basis 

of the Metropolis - Hastings algorithm is used to update the failure probability of the 

whole system using observed data. More recently, a hybrid model is developed by the 
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authors [31] for pitting evaluation, integrating the Markov process with Bayesian analysis 

to provide a dynamic probabilistic framework, overcoming the major limitation of the 

Markov process. This model is further improved in the current work by using probability 

distributions for Markov model parameters to address the uncertainty associated with 

estimating these parameters. 

Despite several efforts in dynamic corrosion risk assessment such as [21], [32]–[36], to 

the best of authors’ knowledge, there is no model developed specifically for dynamic risk 

assessment of pitting corrosion. The existing efforts in the field of pitting corrosion 

dynamic evaluation are limited to updating pit behaviours [20], [23]–[26] or failure 

probability [25], [27], [29]–[31]. This review of pitting corrosion literature identifies two 

major research gaps: (i) there is a need to develop a dynamic risk assessment model that 

can update pit behaviour and failure probability and use this information to update risk of 

failure, and (ii) a risk-based pitting corrosion management system is required to integrate 

corrosion prevention, control and monitoring measures with the risk assessment model to 

support successful implementation of the dynamic risk management framework for 

pitting corrosion. A risk-based corrosion management approach ensures appropriate 

resources and procedures are allocated, with specific tasks and actions to prevent and 

manage pitting corrosion.  

The purpose of this work is to address the two identified knowledge gaps by making two 

main contributions. The first contribution is to improve and integrate a dynamic failure 

probability estimation model previously proposed by the authors [31] with a loss 

estimation methodology to develop a dynamic risk assessment framework. The proposed 
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model uses inspection data to update the distribution of Markov model parameters. The 

dynamic probability estimation model is then integrated with an economic impact 

analysis model to dynamically estimate the risk of pitting corrosion and to determine the 

remaining life of the asset susceptible to pitting corrosion. The second contribution of this 

work is to propose a dynamic pitting corrosion management framework. The proposed 

pitting corrosion management framework provides a mechanism to support decision-

making about the selection and implementation of corrosion management strategies. The 

practical application of the proposed model is demonstrated using an offshore piping 

system case study. 

 

6.2. Methodology 

The proposed dynamic risk management methodology for pitting corrosion is shown in 

Figure 6.1. It consists of two major parts: (i) initial risk assessment and (ii) dynamic risk 

management of pitting corrosion. The first column in Figure 6.1 shows different steps of 

the proposed methodology; the other four columns categorize different steps in four 

major phases of corrosion risk management, which are (i) initial pit modeling, (ii) risk 

assessment, (iii) evaluation of corrosion management measures and (iv) data collection 

and model updating. The purpose of this categorization is to relate each step of the 

methodology to different phases of the Plan-Do-Check-Adjust corrosion management 

steps (described later) to ensure adequate allocation of resources to support the 

implementation of each step. 
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The proposed initial pitting corrosion risk assessment consists of six steps. Figure 6.1 

shows the references to the previous works by authors developing methodologies for each 

of these six steps. The main contribution of this work for the initial risk assessment part 

of the methodology is to recognize the uncertainty of the Markov model parameters in 

Step 1 of the methodology by considering a probability distribution for these parameters, 

rather than point-estimate values, as in Shekari et al. [31]. As shown in Figure 6.1, the 

second part of the methodology includes the adoption of the Plan-Do-Check-Adjust 

(PDCA) risk management strategy proposed by Khan et al. [37] and its integration with 

the proposed pitting corrosion risk assessment model, which is another main contribution 

of this work. The details of each step of the methodology are described in the following 

sections. 
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2) Estimate probability of failure
Chapter 3 and 4: Shekari et al. 
[31,49]

1) Model maximum pit depth
Chapter 2: Shekari et al. [3]

3) Estimate overall loss 
Chapter 5: Shekari et al. [50]

5) Conduct initial risk assessment
Chapters 3 and 5: Shekari et al. 
[49,50]

6) Estimate remaining life 
Chapters 3 and 5: Shekari et al. 
[49,50]

8-4) Evaluate risk by comparing 
the predicted risk with threshold 
risk from Step 8-2

8-1) Update predicted pit 
characteristics and estimated risk 
using new information and 
inspection data

8-3) Update predicted risk based 
on planned changes

8-5) Improve CPM3 actions; 
Identify if new CPM3 actions are 
required

PDCA Cycle

Repeat Steps 7 and 8 (PDCA 
cycle); Ensure proper procedures 
and audit are in place

4) Evaluate the effectiveness of 
corrosion management measures
Chapter 5: Shekari et al. [50]

8-2) Plan a change to maintain 
risk within an acceptable range

7) Conduct inspections and 
remediation and collect data
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Figure 6.1. Dynamic risk management methodology for pitting corrosion 
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6.2.1. Step 1: Maximum Pit Depth (MPD)  

The deepest pits are a major concern for causing system failure [26]. Markov process 

[38] and Extreme Value Theory [39] are the two primary approaches which are used in 

the literature to model maximum pit depth. In an earlier study, Shekari et al. [3] 

conducted a comprehensive review of these maximum pit depth models and concluded 

that the Markov process is a preferred method for MPD modelling, as it can address the 

structural limitations of models based on the Extreme Value Theorem, such as being 

static and time-independent [3]. The authors also studied the important factors that should 

be considered in modeling MPD in insulated equipment and adopted a model based on 

the time dependent non-homogenous Markov process (for simplicity, henceforth it is 

referred to as the Markov process) to model MPD under insulation [3].  

The MPD model based on the Markov process proposed by Shekari et al. [3] is adopted 

in this work to model MPD in an insulated asset. For this purpose, the pit density should 

be estimated first. There are different studies to model pit density (pit per unit area) such 

as [40]–[43]. To address both linear and non-linear behaviours of pit initiation, the 

following model is used to estimate average pit density:  

 

𝐴𝑃𝐷 𝑡 = !
!
1− 𝑒!!! + 𝑤𝑡!     (6.1) 

 

where A, Ψ, w, and η are the parameters [42], [43]. The relationship between APD and 

time is then used to estimate the pit initiation times by assuming all pits occur in order at 

times t1, t2, …, tm. Based on this assumption, using tk to represent pit birth times and 
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considering that APD at time t is m, the pit initiation time can be determined by solving 

this equation:  

 

 t!  =  APD!!(k), k = 1, 2, …, m.       (6.2) 

Then, the Markov process is used to model MPD by discretizing the material thickness to 

non-overlapping intervals Δd, which correspond to the n possible Markov states i (i = 1, 

..., n). For example, a pit in state i has a depth between (i-1) × Δd and i × Δd. Then, the 

probability that the deepest pit is in a state less than or equal to state i, at time t, can be 

estimated using the expression: 

 

 θ! i, t χ,ω = 1− 1− exp (−ρ(t− t!) !!!!"#
!!! ,    i = 1, …, n, (6.3)  

 

where n is the total number of states in the Markov chain, tk is the pit initiation time, and 

m is average pit density. The variable ρ(t) is the number of transited states by a pit and is 

assumed to be a power function [44] with parameters Χ and ω:  

 

    ρ t = 𝜒(t− t!)!.         (6.4) 

 

In the original model proposed by Shekari et al. [3], point-based estimates based on 

literature and expert knowledge were used for the model parameters 𝜒 and ω, ignoring 

the potential uncertainty associated with these parameters. To address this shortcoming, 
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this work uses probability distributions for both parameters to capture the associated 

uncertainty.  

As mentioned above, ρ(t) is the number of transited states by a pit and is controlled by 

two parameters, 𝜒 and ω. The parameter ω varies between 0 and 1 to allow for both 

linear and nonlinear pit transition behaviour and is assumed to follow a Normal 

distribution. The parameter 𝜒 is assumed to follow a Weibull distribution, allowing for 

flexible representation of different pit transition behaviours [27]: 

 

,       (6.5) 

where  is the cumulative distribution function of the parameter 𝜒, and w1 and w2 

are respectively the shape and scale parameters of the Weibull distribution. The 

parameters of the 𝜒 and ω distributions can be determined from a set of maximum pit 

depth inspection data from the system under study, or similar operations, by the use of 

the least square method or by any other statistical model [27], [45], [46]. 

 

6.2.2. Step 2: Failure Probability 

The common method in the literature to estimate the probability of failure of defected  

equipment is to use burst pressure and operating pressure in the limit state equation. 

Standards and codes such as AMSE B31G [47] and DNV F-101 [48] give different 

failure pressure models for this purpose. Some guidelines to choose the best model based 

on different factors such as component type, age and type of service are provided in [11]. 

( )
1

2

1 exp
w

xF x
wχ

⎛ ⎞⎛ ⎞⎜ ⎟= − −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

( )F xχ



188 

Shekari et al. [49] used failure pressure models and proposed a methodology for the 

probability of failure of equipment affected by pitting corrosion.  

The model presented by Shekari et al. [49] is used in this work to estimate the probability 

of failure of pitting damage, as it provides a mechanism to incorporate the uncertainty 

associated with predicted pit growth. To determine maximum allowable pressure for a 

defected  component (Pcorr), the time-dependent MPD model from Step 1 is integrated 

with the maximum allowable pressure model in DNV-RP-F101 [48]. For this purpose, 

the effective thickness is determined after subtracting the MPD from the original 

equipment thickness. To simplify the model, an idealized rectangle is considered as the 

equivalent of the defect profile related to pitting [49]. Thus, the Pcorr for a component 

with pitting corrosion can be determined as follows: 

 

      𝑃!"## 𝑡 = 𝛾! ∗ 2𝜏𝑓!(1− 𝛾!(
!"# !

!
)∗ (𝐷 − 𝜏) 1−

!!(
!"# !

! )∗

!
, (6.6) 

 

where: 

• τ is the component thickness (mm)  

• 
Pcorr(t) is the maximum allowable pressure (N/m2) as a function of time for a 

component susceptible to pitting corrosion
 

• 𝑄 = 1+ 0.31 1 𝐷𝜏
!
  

• 𝑀𝑃𝐷 𝑡 𝜏 ∗ = 𝑀𝑃𝐷 𝑡 𝜏 + 𝜀!𝑆𝑡𝐷 𝑀𝑃𝐷 𝑡 𝜏    

• MPD(t) is the maximum pit depth (mm)  
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• D is the outside diameter (mm) 

• l is the length of the pitted area (mm) 

• fu is the ultimate tensile strength (N/m2) 

• γm and γd are partial safety factors for longitudinal corrosion model prediction and 

pit depth 

• εd is a factor for defining a fractile value for the pit depth based on the accuracy of 

the inspection method 

• StD[MPD/τ] is the standard deviation of the random variable (MPD/τ)  

The values of γd, γm, and εd are provided in DNV RP-F101 [48]. Using the distribution of 

MPD from Step 1, Monte Carlo simulations then obtain the distribution of Pcorr for a 

specific time t using Equation (6.6).   

Based on the limit state analysis and the First-Order Second-Moment (FOSM) reliability 

method, the reliability index, β, as a function of time can be determined by Equation (6.7) 

using load (operating pressure, Pop) and resistance (Pcorr) variables. Probability 

distributions are used for Pcorr and Pop to treat the uncertainty associated with them. 

Equation (6.6) provides the probability distribution for Pcorr. The probability distribution 

of Pop can be determined from process operational information. Then, β(t) is determined 

as:  

 

 𝛽(𝑡) =
!!!"##(!)!!!!"

!!!"##
! (!)!!!!"

!
       (6.7) 
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where µPcorr and µPop are the mean and σPcorr and σPop are the standard deviation of Pcorr 

and Pop distributions, respectively. Once the reliability index, β, is calculated, the 

probability of failure (POF) as a function of time is calculated as: 

 

    𝑃𝑂𝐹!(𝑡) = ∅ −𝛽(𝑡) = 1− ∅ 𝛽(𝑡)       (6.8) 

 

where  is the normal cumulative distribution function. Equation (6.8) determines the 

POF as a function of time, since MPD, used to obtain Pcorr(t) in Equation (6.6), is a 

function of time.  

Equation (6.7) is applicable for the linear limit state function assuming normally 

distributed variables [27]. If any, or both, of these conditions is not satisfied, the 

application of Equation (6.7) causes an error in estimation. The size of the error will 

depend on the degree of nonlinearity and on the amount of mismatch between the normal 

and real distribution function [27]. For such cases, an iterative algorithm can be used 

instead of Equation (6.7) to solve the problem, such as the one proposed in [27]. 

However, the change in the method of reliability index computation will not affect the 

rest of the methodology in this work for calculating POF.  

 

6.2.3. Step 3: Loss Modeling 

In an earlier work by the authors, Shekari et al. [50] conducted a comprehensive review 

of corrosion consequence analysis methodologies such as [51]–[56] and identified three 

main shortcomings with most of the existing approaches: (i) use of point-based estimates 

( )φ ⋅
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for consequence assessment, (ii) ignoring the time value of money, and (iii) not 

considering the mitigating effects of corrosion management measures. In this study, the 

economic impact analysis model for pitting corrosion proposed by Shekari et al. [50] is 

used, as it can address the identified limitations. In this model, two main categories of 

loss are considered: (i) business loss, and (ii) accidental losses including asset loss (AL), 

human health loss (HHL), and environmental clean-up cost (ECC). Table 6.1 illustrates 

the models used to estimate these loss elements, recognizing the uncertainty associated 

with estimation of each loss element. An interested reader may refer to Shekari et al. [50] 

for the detailed procedure to estimate each  

 
Table 6.1. Models to estimate corrosion loss elements [50] 

Loss Element Model 
Business loss (BL) 𝐵𝐿 = 𝐵𝐿!" + 𝐵𝐿!"                  (6.9.a) 

𝐵𝐿!" = 𝐵𝐿!"!"#$ ∙ 1 − 𝑒𝑥𝑝 −𝑀𝑇𝑇𝑅! 2𝐵! ! + 𝐵! ∙𝑀𝑇𝑇𝑅!!     (6.9.b)	

𝐵𝐿!" = 𝐵𝐿!"!"#$ ∙ 1 − 𝑒𝑥𝑝 −Δ𝜏!"
!

2𝐵!! ! + 𝐵!! ∙ Δ𝜏!"
!!
!

  (6.9.c)	

• 𝐵𝐿!"!"#$ and 𝐵𝐿!"!"#$ are business losses during downtime and recovery 
periods estimated from PERT distribution by having minimum, most 
likely, and maximum loss values, estimated using expert knowledge 

• 𝑀𝑇𝑇𝑅 is the mean time to repair  
• Δτrp is the mean value of the recovery period that can be modelled 

using exponential distribution  

• 𝐵! and 𝐵!! are parameters that are chosen in a way to best reflect 
business loss from historical data		

Asset loss (AL) 	                      (6.10) 
• fL is the Lang factor, and is considered to follow a normal distribution 

with mean  = 3.7 and standard deviation  = 1 

• Cu is the process unit replacement cost ($/unit area), estimated using 
PERT distribution, given an estimated empirical mean and variance 
[50] 

• ad is the damage area, calculated based on the level I consequence 
analysis outlined in API RP 581 [56] 
 

Human health loss 
(HHL) 

                   (6.11) 
• ad is the damage area [56] 
• dp is the population density (people/area)  

( )1 L d uAL f a C= + ⋅ ⋅

Lf
µ

Lf
σ

d p hhHHL a d C= ⋅ ⋅
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Loss Element Model 
• Chh is the unit human health (fatality/injury) loss, estimated using the 

reported values of statistical life (VSL) [57] 
 

 
Environmental 
cleanup cost (ECC) 𝐸𝐶𝐶 = !!".!!".(!!!!)

!!
                                       (6.12) 

• fe is the estimated fraction of material evaporating as a function of the 
normal boiling point [56] 

• mdm is the discharge mass of the released fluid 
• ρl is the liquid density at storage or normal operating conditions  
• Cec is the environmental clean-up cost (including fines, penalties, and 

other applicable costs) in $/barrel (bbl).  
The distributions of the mdm and Cec are to be determined based on the 
information from operational history and applicable environmental 
regulations. 

  
 
 

Assuming independence between losses and constant dollar values, the summation of the 

business loss (Equation (6.9.a)) and accidental loss elements (Equations (6.10) to (6.12) 

in Table 6.1) is used to estimate the overall loss:  

 

.     (6.13) 

 

To consider the effect of inflation on estimated loss, Equation (6.14) is used to convert 

the estimated today’s dollars into actual dollars in year t relative to a base year (current 

year of assessment): 

 

 𝑂𝐿! 𝑡 = 𝑂𝐿!. (1+ 𝑓)!      (6.14) 

  

( )0OL t BL HHL AL ECC= + + +
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where 𝑂𝐿! is overall loss in actual monetary value (for example, in dollars) in year t 

relative to the base year, 𝑂𝐿! is the overall loss based on today’s monetary value, 

estimated from Equation (6.13) and f is the inflation rate per year, assumed to be constant 

from year 0 to year t. The estimated overall loss is a function of time as (i) business loss 

in Equation (6.9.a) is a function of the duration of downtime and recovery periods, and 

(ii) the value of predicted loss in the future is adjusted based on the inflation rate. 

 

6.2.4. Step 4: Impact of Corrosion Management Measures 

Corrosion Prevention, Monitoring, Maintenance and Management (CPM3) costs are 

incurred by an organization to prevent potential damage to people, property and the 

environment. Shekari et al. [50] proposed the application of CPM3 adjustment factors to 

take into account the effectiveness of corrosion management measures in reducing either 

the probability or severity of corrosion losses.  

 

6.2.4.1. Step 4.1. Effect on Corrosion Loss Probabilities 

The effectiveness of CPM3 techniques directly affects the probability of corrosion losses. 

The adjusted POF is determined by applying the adjustment factors as follows:  

 

 𝑃𝑂𝐹 𝑡 = 𝐴𝐹!"#!×𝑃𝑂𝐹!(𝑡)      (6.15) 

 

where 𝑃𝑂𝐹!(𝑡) is the original POF estimated using Equation (6.8) and 𝐴𝐹!"#! denotes 

the CPM3 adjustments factor, which considers the overall mitigating impact of all CPM3 
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costs and their influence on the mechanical integrity of the component attacked by pitting 

corrosion and is estimated by: 

 

 𝐴𝐹!"#! = 1− 𝑒𝑥𝑝 !!!

! !!"#$%& !!"
!       (6.16) 

 

where t is time, 𝑡!"#$%& is the design life of the equipment, and 𝛼!" is the shape factor, 

which can have values between 0 to 10, where 10 represents ineffective CPM3 actions. 

For 𝛼!" → 0, the second term in Equation (6.16) approaches 1 and 𝐴𝐹!"#! approaches 0, 

representing fully effective CPM3. The Program Evaluation Review Technique (PERT) 

distribution using expert estimates of minimum, most-likely, and maximum shape factor 

values (𝛼!") is then used to recognize the uncertainty associated with estimating 𝛼!" 

values. Finally, the estimated PERT distribution of 𝛼!" and Monte Carlo simulations are 

used to estimate the distribution of 𝐴𝐹!"#! [50]. 

 

6.2.4.2. Step 4.2. Effect on Corrosion Loss Severities 

Insurance is a corrosion management strategy that has a direct mitigating impact on 

overall loss by transferring part of the residual risk to a third party as follows: 

 

 𝑂𝐿(𝑡) = 𝑂𝐿′(𝑡)− 𝐼𝑅,       (6.17) 



195 

where OL’ is the overall loss ($) estimated from Equation (6.14) and IR denotes 

insurance recovery ($). Estimation of insurance recovery is not within the scope of this 

work. 

 

6.2.5. Step 5: Risk Calculation  

The product of overall adjusted loss and adjusted probability distributions are used to 

estimate the overall risk using Monte Carlo simulations: 

 

𝑅(𝑡) = 𝑃𝑂𝐹 𝑡 ×𝑂𝐿(𝑡),           (6.18) 

where POF(t) and OL(t) distributions are estimated from Equations (6.15) and (6.17), 

respectively. 

 

6.2.6. Step 6: Remaining Life Estimation 

Shekari et al. [31] reviewed three criteria that have been frequently used in the literature 

to estimate the remaining life of defected components. These criteria include maximum 

allowable working pressure, defect size and failure probability. Then, the remaining life 

is considered as the minimum of estimated remaining life values using these criteria. 

However, the application of these criteria as a decision-making factor for remaining life 

evaluations does not take into account the consequences of failures due to pitting 

corrosion. To address this shortcoming, the risk of failure due to pitting corrosion can be 

used as the decision criterion for remaining life evaluation [50]. Thus, the calculated risk 

of failure in the previous section and its intersection with a threshold risk value is used in 
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this work to determine the remaining life of the asset susceptible to pitting corrosion. 

This approach provides a risk-informed framework to consider both the probability and 

the consequences of failure for remaining life estimation. An inspection, repair, or 

replacement is required before the remaining life is calculated in order to maintain the 

risk of failure below the threshold value.   

 

6.2.7. Step 7: Inspection, Remediation, Data Collection 

Deterioration processes, such as pitting corrosion, commence from day one of the 

equipment’s service [58]. Thus, in order to ensure that the condition of the assets remains 

in compliance with the safety requirements throughout their operational life, a certain 

number of inspections, condition monitoring and maintenance is required throughout the 

asset service life [58]. Thus, once the remaining life is estimated, the proposed 

methodology continues with detailed pitting inspection, repair and maintenance of the 

corroded component and data collection to update and validate the model outputs. 

Discussion of proper inspection and remediation methods for pitting corrosion is not in 

the scope of this work. API 571 [1] provides general guidelines for important factors and 

potential inspection techniques for different damage mechanisms, including pitting 

corrosion. More detailed guidelines for inspection and repair of different components can 

be found in API 510 [59] for pressure vessels, API 570 [60] for piping systems, API 653 

[61] for storage tanks, and CSA Z662 [62] and DNV-RP-F101 [48] for pipelines.  
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6.2.8. Step 8: Pitting Corrosion Management  

The integration of the proposed pitting risk assessment model with a corrosion 

management system is required to develop a detailed picture of asset condition over time, 

re-assess the asset integrity using new information, and to revise inspection and 

maintenance strategies based on the latest asset conditions. To achieve this purpose, a 

structured corrosion management system is proposed in Figure 6.2 to monitor and record 

the performance of corrosion management (CPM3) measures and to feed the information 

into the risk management model. The result is a robust risk-informed decision-making 

process to promote continuous improvement of corrosion management processes. 

 
Figure 6.2. Relationship of ISO 31000 risk management principle and the proposed risk-based pitting 

corrosion management approach; adopted from ISO 31000 [63] and DNV-RP-C302 [58] 
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The left side of Figure 6.2 shows the six-step procedure proposed by ISO 31000 [63] to 

conduct an effective risk management process. The right side of Figure 6.2 shows the 

proposed steps for conducting pitting corrosion risk management. As shown in Figure 

6.2, the information from Steps 1 to 7 of the initial risk assessment process should be fed 

to Step 8 to conduct a risk-based corrosion management. The required sub-activities of 

the corrosion management process are illustrated in the lower panel of Figure 6.1 (the 

overall methodology) and are explained in the following sections.  

 

6.2.8.1. Step 8.1. Bayesian Updating 

The first step of the proposed corrosion management process is to update the model 

predictions based on new inspection data. Estimated probability of failure can change 

over time due to changing pit behaviour. The predicted pit behaviour is a function of 

Markov model parameters in Equation (6.4), which are originally determined from prior 

information. However, due to complex pit behaviour and changing external conditions, 

the pitting corrosion may evolve differently from the predictions. For this reason, the 

Markov model parameters have to be updated when new information becomes available. 

The Bayesian method is one of the most appropriate and popular methods used for this 

purpose [27]. The Bayesian approach incorporates new information from a system in a 

probabilistic framework, in order to update the prior state of knowledge. For this purpose, 

Bayes’ theorem is used here to determine the posterior distribution of the Markov model 

parameters through the expression: 
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  𝜋 𝜃 𝑥!" = ! !!" ! !(!)
! ! !!" !(!)!"

      (6.19)   

 

where: 

• 𝜃 is a vector of Markov model parameters 

• 𝑥!" is a set of observations (inspection data) 

• 𝜋(𝜃) is the prior distribution of 𝜃  

• 𝐿 𝜃 𝑥  is the likelihood function of the observation x given the unknown 

parameter 𝜃 

• 𝜋 𝜃 𝑥!"  is the posterior distribution of 𝜃  

In an earlier study by the authors [31], a hybrid model is developed for pitting evaluation 

by integrating the Markov process with Bayesian analysis to provide a dynamic 

probabilistic framework, overcoming the major limitation of the Markov process, which 

is the lack of adoption of new data to update model parameters. However, the model in 

[31] has two limitations: (i) point-based values are used for Markov model parameters, 

ignoring the uncertainty associated with estimating these parameters, and (ii) only one 

parameter is updated, for simplicity. This study aims to address these limitations by 

considering a probability distribution for both parameters and updating both parameters 

using inspection data. 

The purpose of Bayesian updating in this section is to use the maximum pit depth 

(MPD*) determined from inspection data at the corresponding time t to obtain the 

posterior distribution of θ, which is a vector of the Markov model parameters (i.e. 
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). However, the Bayes’ rule cannot be used in this form in Equation (6.19) due 

to the difficulty of analytical integration of the denominator (the normalizing factor). To 

address this challenge, the Markov Chain Monte Carlo (MCMC) and Metropolis - 

Hastings (M-H) algorithm are used in the literature [27], [64] for general corrosion. 

The M-H algorithm was originally developed by Metropolis et al. [65] and generalized 

later by Hastings [66] with the purpose of generating a sequence of samples following a 

probability distribution that is difficult to sample directly. The M-H algorithm is used in 

this work to overcome the computational difficulties of the normalizing factor by using 

the same sequence used in MCMC simulation to compute an integral [31], [64].  

The M-H algorithm in this work is adopted from the work by [27]. The proposed 

algorithm starts from the initial distributions of Markov model parameters 

. As described earlier in the Markov modeling section, the initial 

parameters ω and 𝜒 are assumed to follow Normal and Weibull distributions, 

respectively, and can be obtained from a sample of maximum pit depth data or 

information from similar operations. Then, the generated candidate is compared against 

an acceptance criterion using a proposal distribution. If the generated candidate is 

accepted, it is used to generate the next candidate; otherwise, another candidate is 

sampled from the previous state.  

Once the parameters of the Markov model transition rate are updated using the M-H 

algorithm, the MPD distribution is also updated using Equation (6.3). Then, other steps of 

the pitting risk assessment methodology should be repeated to estimate both the new 

maximum allowable pressure and risk to revise the remaining life of the component. The 

{ },θ χ ω≡

( ) ( ) ( ){ }0 0 0,θ χ ω≡



201 

entire procedure must be repeated after a new inspection is performed to update the MPD 

distribution using Bayesian analysis.  

 

6.2.8.2. Steps 8.2 to 8.5 Corrosion Management’s PDCA 

As discussed above, a fundamental principle of corrosion risk management is iteration 

[58] to:  

i. Ensure control and continuous monitoring of the corrosion threat 

ii. Analyze the performance of corrosion management strategies 

iii. Analyze lessons learned 

iv. Detect changes in estimated risk 

v. Revise inspection and maintenance strategies    

To achieve these objectives, the integration of the Plan-Do-Check-Adjust (PDCA) 

management method with the proposed risk assessment approach is proposed, adopted 

from the process safety dynamic risk management framework in Khan et al. [37]. Figure 

6.1 shows how the proposed PDCA management cycle integrates with the ISO 31000 

Risk Management Process and Figure 6.2 highlights the required steps of the proposed 

PDCA corrosion risk management methodology. As shown in Figure 6.1, once the 

parameters of the pitting model are updated using inspection data, the proposed PDCA 

corrosion management cycle continues as follows: 

i. Step 8.2: Based on lessons learned during the operation and inspection of the asset 

as well as the feedback from the risk updating step, plan a change, or revise an 

initial change plan, to ensure all controls are effective to maintain the asset risk 
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within an acceptable range. This step also involves setting or revising the 

threshold risk based on the corporate overall risk policy and culture. 

ii. Step 8.3: Update predicted risk based on planned changes in Step 8.2 by 

following Steps 2 to 6. 

iii. Step 8.4: Test the planned change by comparing the updated predicted risk with 

the planned risk and evaluating the effectiveness of the planned CPM3 actions.  

iv. Step 8.5: If the planned reduction in risk is not achieved, repeat Steps 8.2 to 8.4 

by improving the effectiveness of existing CPM3 actions or identifying and 

applying new corrosion management strategies. 

Table 6.2 shows examples of different CPM3 strategies. More discussions on risk-cost-

trade off analysis to support corrosion management decision making are provided later in 

the case study.     

Table 6.2. Examples of CPM3 strategies  
CPM3 Elements  Examples 
Prevention  • Coatings 

• Inhibitors 
• Cathodic protection 

 
Monitoring  • Corrosion monitoring (coupons and probes)  

• Corrosion tests  
• Inspection  

 
Maintenance  
 

• Maintenance and repair 
• Replacement of equipment 
• Redundant equipment 

 
Management  • Training  

• Quality assurance 
• Corrosion control planning  
• Safety and integrity management systems 
• Administration  
• Insurance 

 
The information transfer between PDCA phases of the proposed methodology in Figure 
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6.1 is shown using loops, because the evaluation of different scenarios of corrosion 

management actions may be required by repeating these steps to ensure the selection of 

an adequate and cost-effective scenario without compromising the safety of the system. 

Once the change in corrosion management measures is decided and implemented, the 

PDCA cycle is repeated by collecting new information and inspection data and updating 

the estimated risk. More details about the development of different corrosion 

management scenarios and the evaluation of their mitigating impact on overall pitting 

corrosion risk and cost are described in an earlier work by the authors [50]. 

 

6.3. Application of the Proposed Framework 

The inspection data obtained from an offshore production facility operating in the North 

Sea (Figure 6.3) has been used to test and validate the proposed dynamic risk-based 

pitting evaluation model. The data is obtained for a gas condensate system. The system 

came into service in 1995. The first inspection was conducted in 1997 due to proven 

susceptibility of similar systems to pitting corrosion, followed by another inspection in 

2001. For illustration purposes, the inspection data of a 6-inch flowline of the gas export 

system is used, as more data for pitting corrosion was available for this pipe section. The 

selected pipe has an operating pressure of 16 MPa, a length of 20 m and a nominal wall 

thickness of 7.113 mm, with a specified minimum tensile strength (SMTS) of 75 ksi. The 

Maximum Pit Depth (MPD) from each inspection year’s dataset for this pipe section was 

extracted to test the model. The MPD values for 1997 and 2001 inspection years were 

respectively 0.4 mm and 1.2 mm. The dataset [2,0.4] is used to update the model 
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predictions and the dataset [6,1.2] is used to validate the model predictions, where the 

first and second number in each dataset show the time since installation and the observed 

MPD value. 

 

 

Figure 6.3. Piping isometric sketch of the offshore production facility case study 

 

6.3.1. Maximum Pit Depth (MPD) Modeling 

6.3.1.1. Initial MPD Model 

The proposed pit depth model based on the Markov process in Equations (6.3) and (6.4) 

is used to estimate the distribution of MPD in different years. For this purpose, the 

distribution of the parameters of the Markov process transition rate in Equation (6.3) 

should be estimated first. This can be challenging for a new installation with a lack of 
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prior inspection data. For new installations, the prior distribution of Markov parameters 

can be estimated using a set of maximum pit depth inspection data from similar 

operations, using least square method or by any other statistical model such as those in 

[67], [68] . Otherwise, expert knowledge estimates should be used as starting values, 

which can be updated as new information from the system becomes available. For the 

system under study in this work, an inspection of a similar offshore platform in the North 

Sea after 7 years of operation showed that the maximum pit depth of a pipe with similar 

specifications was 1.5 mm. Thus, a search procedure based on the least squares methods 

[27] and the dataset [7,1.5] was used to estimate prior Markov model parameters. Figure 

6.4 shows the inspection data point and the mean values of prior MPD distributions over 

time. The estimated prior Markov model parameters are shown in Table 6.3.  

 

 
Figure 6.4. Initial MPD model, trained using sample inspection data from a similar offshore 

production facility 
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Table 6.3. Distribution parameters of Markov model parameters 

 𝜒 (Weibull Distribution)� ω (Normal Distribution) 
Distribution w1 w2   
Prior 8.20 1.98 0.20 0.04 
Posterior 11.94 1.91 0.19 0.05 

�	 	w1 and w2 are the shape and the scale parameters of the Weibull distribution.  and  are mean and 
standard deviation of each parameter. 
 
6.3.1.2. Updating and Validating MPD Model 

From the inspection data, the MPD value in 1997 (2 years after the installation date) is 

0.4 mm. However, as shown in Figure 6.4, the predicted MPD value in year 2 using the 

Markov model is 0.65 mm. To calibrate the model for more accurate MPD predictions, 

the inspection data in 1997 and the proposed Bayesian analysis based on the M-H 

sampling algorithm are used to update the model prediction by revising the distributions 

of prior Markov model parameters. The MCMC simulation and the M-H sampling 

algorithm described in Step 7 are implemented using 105 iterations in order to estimate 

the posterior MPD distribution for each assessment year. The updated MPD values are 

shown in Figure 6.5.  

Although the updating mechanism enables incorporation of inspection data, the revised 

predictions should be validated to ensure improvements in model predictions after 

updating. For this purpose, the inspection data for 2001 (year 6) is used to evaluate and 

validate the revised predictions of the model. As shown in Figure 6.5, the revised model 

prediction of MPD value at year 6 is 1.3 mm. These results in Figure 6.5 show the 

efficiency of the proposed updating algorithm, as the initial model prediction at year 2 

was 62.5% higher than the actual inspection observation (0.65 mm model prediction 

compared to the real observation of 0.4 mm) compared to only 8% over estimation at 

ωµ ωσ

ωµ ωσ
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year 6 (1.3 mm model prediction compared to the real observation of 1.2 mm) using the 

updated model. The relatively higher overestimation value of initial model prediction is 

justifiable from a practical point of view as higher level of conservatism is desirable 

when no information is available for a new installation. However, the results in Figure 

6.5 show that the level of conservatism in model predictions has decreased significantly 

after model updating using the first inspection data. Obviously, as more inspection data 

becomes available over the asset service, the accuracy of the model predictions improves 

by repeating the updating procedure. 

For this case study, the inspection data at year 2 has shown that the actual pit growth rate 

has been lower that the expected values. Therefore, the updating mechanism using the 

inspection data has shifted the model prediction curve downward, as shown in Figure 6.5, 

to avoid over estimation. Another scenario is also considered to test the ability of the 

updating algorithm to revise the predictions in cases where the aggressiveness of the 

pitting corrosion has been higher than the initial prediction. For this purpose, it is 

assumed that at year 2 the inspection data has obtained the value of MPD as 0.9 mm. The 

updated model result for this scenario is also shown in Figure 6.5, showing that the 

revised curve has shifted upward to calibrate the model. Overall, Figure 6.5 shows the 

ability of the proposed updating algorithm to adjust model predictions with the changing 

aggressiveness of the environment (i.e. the prior parameters are overestimated or 

underestimated).     
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Figure 6.5.	Revised MPD model based on real inspection data. The revised model prediction is 

validated by comparing the model prediction with real inspection data at year 6. 

 
Figure 6.5 also shows boxplots to represent the variability in MPD predictions. For 

clarity, only the boxplots for selected years are shown. These boxplots represent the 

minimum, first quartile, median, third quartile and maximum values of estimated MPD 

over time. Two important characteristics can be observed from the boxplots in Figure 6.5. 

Firstly, the size of the boxplots in each year is relatively bigger for the aggressive pit 

growth scenario compared to the initial prediction scenario. This observation can be 

attributed to the larger mismatch between the model prediction (prior information) and 

the actual MPD (observations) obtained from inspection in year 2 for the aggressive pit 

growth scenario, resulting in higher values of standard deviation. The second observation 

from Figure 6.5 is that the size of the boxplots increases over time, due to higher 
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uncertainty associated with MPD predictions as the time interval between the inspection 

date and the intended prediction time in the future increases. As will be discussed later, 

this shows the importance of repeating the model updating using periodic inspections to 

decrease the model prediction’s uncertainty.  

 

6.3.2. Risk Calculation 

To estimate the risk of failure due to pitting corrosion, first the probability of failure 

(POF) of the defected pipe over time is calculated using Equations (6.6) to (6.8). For this 

purpose, both the initial and revised MPD distributions over time in the previous steps are 

used in the burst pressure model, Equation (6.6). Then, Monte Carlo simulations with 105 

iterations are performed to estimate POF values using Equation 8. Then, Equation (6.15) 

is used to take into account the mitigating impact of existing Corrosion Prevention, 

Monitoring, Maintenance and Management (CPM3) measures and adjust the initial POF 

value. For this purpose, the expert is asked to estimate minimum, most likely and 

maximum shape factor values of the adjustment factor (𝛼!") based on the guidelines 

provided in Shekari et al. [50] and the plant-specific information such as type, 

effectiveness, and frequency of CPM3 actions, operators’ skill, management 

effectiveness and compliance with procedures. Then, the PERT distribution technique 

described in Step 4.1 by Shekari et al. [50] along with Monte Carlo simulations with 105 

iterations are used to estimate the adjusted values of both the initial and updated POF 

value using Equation (6.15). The results of the adjusted POF values are shown in Figure 

6.6. The results in Figure 6.6 show a shift to the left in the POF curve and a reduction in 
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conservatism of the POF estimation after updating the prior POF using inspection data. 

The proposed POF estimation method allows both updating of POF based on inspection 

data and adjustment of estimated POF based on the effectiveness of CPM3 actions. 

 
Figure 6.6. Adjusted values of initial and updated POF values 

 

Since loss data for the current case study were not available, the loss estimation values 

from an earlier case study on an offshore platform were used for illustrative purposes 

[50]. Table 6.4 summarizes the results of loss evaluations for this case study. The P50 

(50th percentile) and P99.9 (99.9th percentile) for each loss element are also provided in 

Table 6.4, which help to communicate the uncertainty associated with each estimated 

loss. Table 6.4 also shows the estimated overall loss, estimated as the summation of all 

loss elements. Figure 6.7 shows the distribution of the overall loss for this case study, 

with a mean value of 151 million USD.  



211 

 

Table 6.4. The value of assumed loss elements for the case study (all losses are reported in million 
USD) 

Loss  Mean Standard 
Deviation P50 P99.9 

Percentage 
(Mean/Total Loss) 

BL 
61.8 62.9 41.6 467.5 40.9 

AL 
29.4 6.6 29.2 51.0 19.5 

HHL 59.8 55.9 43.2 494.7 39.6 
Overall 151.0 84.2 130.2 632.9 -- 

 

 
Figure 6.7. Overall loss distribution 

 
Equation (6.18) is used to combine the overall loss distribution and failure probability 

distribution to obtain the risk distribution for each corresponding time. A constant 

inflation rate of 2% is considered for simplicity and its impact on loss is determined using 

Equation (6.14). Figure 6.8 shows the estimated risk profiles using both initial and 

updated POF values. The solid line in Figure 6.8 shows the increase in mean risk values 
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and the boxplots represent the variability in estimated risk over time due to uncertainty 

associated with POF and loss estimations. As shown in Figure 6.8, the updated risk 

profile starts to increase at a lower rate compared to initial risk, as the inspection results 

in 1997 have shown a less aggressive pit growth compared to the initial expected pit 

behaviour. The boxplots in Figure 6.8 represent the uncertainty of risk predictions, which 

shows an increasing trend over time (larger boxplot sizes over time). For clarity, only the 

boxplots for the updated risk profile for the enhanced CPM3 scenario (explained in the 

Corrosion Management Decision Making Section) are shown for every five years. 

Intuitively, the level of uncertainty of future predictions increases over time due to 

uncertainty in pitting corrosion behaviour affecting the parameters in the future, unless 

inspection data becomes available to update the model predictions. This increasing trend 

in risk estimation uncertainty over time shows the importance of conducting periodic 

inspections to validate and update model predictions. 
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Figure 6.8. Estimated initial and updated risk profiles   

 

6.3.3. Remaining Life Evaluation 

As shown in Figure 6.8, the remaining life of the pipe section is estimated as the 

intersection of the threshold risk values and risk profiles. For illustrative purposes, the 

threshold risk value for this case study is considered as 100 million dollars. Estimation of 

threshold risk value is organization-specific and so is determined by asset decision-

makers based on the organizations’ risk acceptance and the criticality of the operation. 

Using the threshold risk value, the remaining life of the pipe is estimated as 12.2 and 13.1 

years using initial and updated risk profiles. This means that the next inspection and 

maintenance turnaround for this pipe section should be performed well before these 

estimated remaining life values to maintain the risk of failure due to pitting corrosion at 
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lower values. Based on the American Petroleum Institute’s (API) piping, storage tank and 

pressure vessel inspection codes [25–27], inspection should be conducted, at maximum, 

half of the estimated component-remaining-life. This recommendation can be used as a 

starting point and can be revised based on the criticality of the operation and available 

resources. As shown earlier in this case study, the inspection data was used to revise 

model predictions. Such periodic inspections are critical to only to update the predicted 

MPDs, but also to validate the model outputs. 

 

6.3.4. Corrosion Management Decision Making 

The effectiveness of corrosion mitigation measures and CPM3 actions plays an important 

role in the integrity and risk of failure of the asset. Both initial and updated risk curves in 

Figure 6.8 are determined based on the initial estimates of the effectiveness of CPM3 

actions. Another important advantage of the proposed risk-based pitting evaluation model 

is providing a risk-based tool to conduct a cost-benefit analysis of enhancing corrosion 

management strategies. To demonstrate this feature of the model, another scenario is 

shown in Figure 6.8, where the effectiveness of CPM3 strategies is improved after the 

inspection in year 2. Consequently, the risk profile of this scenario is shifted to the right, 

resulting in the remaining life extension, compared to the original updated risk profile.  

Shekari et al. [50] proposed a methodology based on the PERT distribution technique to 

estimate the associated cost of each CPM3 strategy. The estimated cost of each CPM3 

strategy combined with the risk-based remaining life evaluation in this work provides a 

risk-based cost-benefit analysis framework. For instance, let CA denote the annual cost 
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associated with the original CPM3 strategies and CB show the annual cost associated with 

the enhanced CPM3 scenario in Figure 6.8. Then, the remaining life of the pipe can be 

increased by 26% from 13.1 years for the case of the original CPM3 strategy to 16.5 

years for the enhanced CPM3 scenario by investing 	dollars on CPM3 actions 

to further decrease the rate of pitting corrosion by improving the methods used for 

detecting, preventing, monitoring, and/or repairing the pitting damage. Compared to 

traditional corrosion risk assessment literature (such as API 581 [56], DNV-RP-C302 

[58], Thodi et al. [12]) where risk is simply shown using a risk matrix or a simple curve, 

the proposed methodology provides an effective risk-based approach to quantify and 

compare the value of different investment portfolios of asset integrity management 

strategies while addressing the uncertainty associated with risk estimation. 

It should be noted that the proposed methodology only estimates the risk of failure due to 

pitting corrosion. The estimation of risk due to other damage mechanisms and the 

aggregation of all estimated risks are required to provide a more accurate picture of the 

overall asset integrity due to different failure mechanisms. The scope of the proposed 

risk-based pitting corrosion management can be expanded to apply to other corrosion 

mechanisms by changing the corrosion model in Step 1 of the methodology.  

 

6.4. Conclusions  

This paper provides a risk-based management approach for pitting corrosion. The 

application of the Markov process allows time-dependent modeling of pit depth. On the 

other hand, the application of Bayesian analysis provides a mechanism to dynamically 

( )B AC C−
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update the prior distributions of the Markov model for pitting corrosion, which finally 

results in updating the probability of failure. The Markov Chain Monte Carlo and 

Metropolis - Hastings algorithm which have been adapted for pitting corrosion provide 

flexibility to adapt to the observed data using a non-conjugate distribution with the 

consideration of the prior distributions of the time dependent Markov model parameters. 

The application of the proposed dynamic risk management framework ensures 

continuous improvement of the corrosion management process based on the performance 

and effectiveness of corrosion prevention, maintenance, monitoring and management 

actions. 

The case study results show the effectiveness of the proposed dynamic risk estimation 

approach where the failure probability and risk of failure of a pipe due to pitting 

corrosion are updated from observed inspection data for both increased and decreased 

aggressiveness of the corrosion environment. The case study also shows the advantage of 

the proposed risk-based pitting corrosion management model used as a time-dependent 

metric to measure and monitor the performance and effectiveness of corrosion mitigation 

strategies. This model can help engineers to use both cost and risk to make decisions for 

inspection and maintenance planning and improve safety performance of systems 

susceptible to pitting corrosion. The application of the dynamic risk management 

framework to the case study established its effectiveness for the risk-informed decision-

making process by constantly monitoring, evaluating and improving the corrosion 

management performance. 
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7. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

 

7.1. Summary 

This thesis proposes new methodologies and models to conduct dynamic risk evaluation 

and management of pitting corrosion. These methodologies and models provide a 

comprehensive tool to predict and monitor pitting corrosion progress, make operational 

decisions based on both probability and consequences of failure due to pitting corrosion, 

and evaluate the performance of corrosion management strategies.  

The proposed methodology models pit density using the non-homogenous Poisson 

process and induction time for pit initiation is simulated as the realization of a Weibull 

process. The non-homogenous Markov process is then used to estimate maximum pit 

depth in order to describe the propagation of pit depths throughout a discretized set of 

states. The burst pressure capacity of the defected component is calculated by adopting 

the maximum allowable pressure models and using the estimated maximum pit depths. 

The burst pressure and operating pressure are then used to develop the limit state 

equation. Using the First Order Second Moment (FOSM) method, the reliability index is 

then calculated, which is finally used to determine the probability of failure.  

A predicative Fitness-for-Service (FFS) approach is also proposed in this work that uses 

multiple time-dependent decision criteria including remaining intact thickness, 

probability of failure, burst pressure and risk of failure to make operational decisions and 

predict the remaining life of the defected asset. To update the probability of failure and 

the remaining life of the pitted components, Bayesian updating is used. The Markov 
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Chain Monte Carlo (MCMC) simulation in conjunction with the Metropolis–Hastings 

(M–H) algorithm are employed to carry out the Bayesian updating. This overcomes the 

restrictive assumptions of conjugate prior and likelihood distributions in traditional 

Bayesian updating methods.  

This thesis also presents a predictive probabilistic model to estimate the overall economic 

impacts of pitting corrosion by considering both the corrosion costs and significant losses 

that may occur if failures occur because of pitting corrosion. Corrosion prevention, 

monitoring, maintenance and management (CPM3) costs are considered as the main 

categories of corrosion costs and probabilistic models are proposed to estimate these 

costs. The effect of inflation on loss values and the mitigating impact of CPM3 costs are 

also taken into consideration in the developed models. Finally, a structured corrosion 

management system is proposed by adoption of the Plan-Do-Check-Adjust (PDCA) risk 

management strategy to monitor the performance of corrosion management measures 

(CPM3 actions) and to feed the information into the risk management model. The result 

is a robust risk-informed decision-making process for susceptible assets to promote 

continuous improvement of corrosion management processes by constantly monitoring, 

evaluating and improving the corrosion management performance. The application of the 

proposed models and methodologies is demonstrated using different case studies.  
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7.2. Conclusions  

7.2.1. Pit Characteristics: Initiation Time, Density and Maximum Depth  

As discussed in this thesis, pit generation, pit density and maximum pit depth are three 

important characteristics of pitting damage that should be taken into consideration. Since 

pits under insulation occur non-uniformly in time with variable generation rates, it was 

concluded that the non-homogeneous Poisson process is a preferred method to model pit 

generation. To model the average pit density, a multi-variable model with a combination 

of linear and exponential modes is used to ensure flexibility to model complex pit 

behaviour. It is also concluded that the non-homogeneous Markov process is an adequate 

method to model the dynamic nature of maximum pit depth under insulation over time, as 

the parameters and transition rate of the Markov model provide flexibility for capturing a 

combination of important factors for pitting corrosion. The case study results in Chapters 

2 and 3 highlight the ability of these proposed approaches to track and predict pit 

characteristics in insulated assets, which are difficult to inspect in real life problems, 

especially for the case of offshore facilities. 

 

7.2.2. Stochastic Pit Behaviours: The Importance of Probabilistic Approaches 

Pitting corrosion behaviour changes over time due to different causes including process 

and operational changes, variability in the effectiveness of corrosion management 

strategies, uncertainty in expert knowledge estimates and changes in asset conditions due 

to maintenance activities. Such causes are the source of uncertainties when estimating the 

model parameters for pit characteristics. Thus, it was concluded that probabilistic 
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approaches are preferred over deterministic methods to enable capturing such 

uncertainties. Therefore, this thesis uses probabilistic methods to estimate Probability of 

Failure (POF), Consequences of Failure (COF) and the remaining life of assets attacked 

by pitting corrosion. The Monte Carlo (MC) simulations are used to integrate the 

proposed POF and COF models to address the variabilities in the proposed probabilistic 

models.  

 

7.2.3. Evolving Pitting Behaviours: The Importance of Dynamic Approaches 

Pitting corrosion is a complex process and its behaviour can change over time due to 

changing process and operational conditions. Therefore, developing a static model with 

assumed model parameters for accurate prediction of pitting corrosion during the entire 

asset life is ambitious. Moreover, a lack of prior inspection data for new installations and 

uncertainties associated with expert knowledge add to the unreliability of using static 

models with constant model parameters. Therefore, it was concluded that a mechanism is 

required to update and adjust model parameters as new inspection data become available 

since such data provide better information about the latest pitting corrosion status. The 

proposed methodology in this thesis incorporates the inspection data in the remaining life 

analysis by using the Markov Chain Monte Carlo and the Metropolis–Hasting algorithm 

to carry out the Bayesian updating to revise the prior distribution of maximum pit depth. 

The application of the proposed method on a real case study in Chapter 6 highlights the 

fact that the incorporation of inspection data using Bayesian analysis to revise the model 
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parameters for maximum pit depth can provide a more realistic prediction of pit 

behaviour and failure time.  

 

7.2.4. Resource-Intensive Challenge: The Importance of Corrosion Risk 

Management 

It has been shown in numerous studies that several major losses in the oil and gas 

industry might have been prevented if a dynamic risk approach like the one presented in 

this work was integrated into the management framework. The implementation of a 

dynamic risk assessment approach could be a complex, resource-demanding process. 

Quantitative and dynamic risk assessment tools are data-intensive and usually involve 

numerical work, which make them less attractive for practical applications. The 

integration of the proposed dynamic risk assessment model for pitting corrosion with 

day-to-day management workflow is used in this thesis to address these limitations by 

providing management support and resources to collect required data and conduct the 

evaluations. This objective is achieved by integrating a systematic Plan-Do-Check-Adjust 

(PDCA) risk management strategy with the proposed pitting corrosion risk assessment 

model to ensure adequate allocation of resources to support the implementation of each 

step. 

  

7.2.5. Proactive Decision-Making: The Importance of Predictive FFS Assessments  

Fitness-for-Service (FFS) assessments help engineers to make decisions about the 

structural integrity of an in-service component that may contain a flaw or damage. For 
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time-dependent degradation mechanisms, such as pitting corrosion, a predictive FFS 

approach is required to ensure effective planning of inspection, repair and maintenance 

activities. However, having reviewed the existing FFS assessment approaches, it was 

concluded that the existing methods are based on known damage dimensions. Although 

FFS assessment based on known damage dimensions is an important decision-making 

tool for corroded components, such methods cannot be used for proactive inspection and 

maintenance planning. To address this shortcoming, a predictive FFS assessment for 

pitting corrosion is proposed by modelling the change in burst pressure capacity of 

defected components due to growing pits over time. This outcome provides a failure 

prediction tool for assets susceptible to pitting corrosion by calculating a time-dependent 

limit state function. This predictive tool can help engineers to make “run, repair, replace 

and re-rate” decisions regarding defected components. Such predictive tools are of 

particular importance to track and predict pitting corrosion for places with restricted 

availability to implement frequent inspections, such as offshore process facilities.  

 

7.2.6. Corrosion Risk-Cost Balance: The Importance of Risk-Based Economic 

Assessment  

Corrosion models that only estimate failure probability cannot be used for effective 

inspection and maintenance planning as they do not take into account the economic 

impacts of corrosions such as corrosion management costs and failure consequences. 

Both probabilities and consequences of failure due to pitting should be considered to 

ensure safe operations by making risk-informed decisions for deteriorating assets. In 
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addition to the analysis of risk of failure, it was concluded that the risk-cost trade-off 

should be also taken into consideration by analyzing corrosion management costs. This 

approach will help both safe and cost effective operation of assets susceptible to pitting 

corrosion and will ensure the observation of the highest value from an asset during its 

entire life cycle. Consequently, a methodology is proposed to consider the mitigating 

impact of corrosion prevention, monitoring, maintenance and management (CPM3) 

strategies to evaluate the overall economic impact analysis of pitting corrosion. The 

proposed methodology also helps to estimate more accurate business and accidental 

losses due to pitting corrosion by considering the decreasing time value of money due to 

inflation. The case study results in Chapters 5 and 6 highlighted the advantages of the 

proposed approach to risk-based cost-benefit analysis and the selection of cost-effective 

CPM3 strategies without compromising plant safety.  

 

7.2.7. High-Risk Operations: The Importance of Quantitative Methods 

As discussed earlier, the application of the quantitative risk assessment methods may 

seem demanding and not practical when dealing with the problem of ranking a large 

population of assets susceptible to pitting corrosion. It should be noted that quantitative 

methods like those proposed in this work are meant to complement fast-screening 

qualitative techniques. While qualitative methods are key to identify high-risk equipment 

from a large population of susceptible assets, quantitative methods are essential for more 

rigorous and in-depth analysis of critical equipment. As shown in this thesis, quantitative 
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models can also be used to predict corrosion risk and provide early warnings based on 

data collected from different sampling, monitoring and inspection tools. 

 

7.2.8. Overall Conclusion: Safe and Productive Operations Through Risk-Based 

Corrosion Management  

Overall, it has been shown in this thesis that the evolving, complex and uncertain pitting 

corrosion mechanism calls for a predictive risk-informed decision-making tool to ensure 

safe and cost-effective operation of assets susceptible to pitting corrosion. This thesis has 

made a leap step toward development of such tool by providing new methods, insights 

and guidance to: 

• Improve understanding of how to model pitting corrosion under dynamic 

conditions 

• Help engineers to make a decision regarding an asset affected by, or susceptible 

to, pitting corrosion through predictive FFS assessment 

• Develop different criteria for remaining life evaluation of equipment affected by 

pitting corrosion 

• Ensure safety and productivity in process operations susceptible to pitting 

corrosion through dynamic corrosion risk management 

 

7.3. Recommendations 

The present work attempts to introduce new concepts and also overcome the limitations 

of existing techniques in the field of dynamic risk management of assets susceptible to 
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pitting corrosion. This study can be extended further by addressing the following main 

limitations: 

 

7.3.1. Consideration of Other Damage Mechanisms   

It should be noted that the proposed methodology only estimates the risk of failure due to 

pitting corrosion. Corrosion is a complex process and multiple mechanisms might be 

present at a same time. For instance, pitting corrosion can occur simultaneously with 

general corrosion. Moreover, the generated pits can act as stress concentration points, 

causing or enhancing the rate of stress corrosion cracking. A framework should be 

developed for cases where multiple damages mechanisms are present to capture the 

overall effect of active mechanisms on the probability of failure. The estimation of risk 

due to other damage mechanisms and the aggregation of all estimated risks are required 

to provide an accurate picture of the overall asset integrity due to different failure 

mechanisms. The scope of the proposed risk-based pitting corrosion management can be 

expanded to apply to other corrosion mechanisms. 

 

7.3.2. Further Investigation of Insulation Effect on Pitting Corrosion 

This thesis identified the factors that should be taken into consideration to model pitting 

in insulated equipment. In future work, different aspects of coating and insulation effects 

on the behaviour of pitting corrosion should be further analyzed using experimental lab 

results. 
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7.3.3. Consideration of Dependencies in Degradation Modelling 

The Bayesian approach is used in this work to incorporate new inspection data to revise 

model parameters. However, Bayesian analysis has some restrictions, which are mainly 

lack of control of the marginal probability distribution of variables and an inability to 

capture the non-linear dependence structure. The integration of Bayesian analysis with 

statistical tools such as copula functions can be a subject for future studies to capture 

dependencies among different factors affecting pitting corrosion6.  

 

7.3.4. Development of Data Gathering Methodologies  

Most of the proposed approaches in this study demand a high amount of quality data 

which are often difficult to obtain, particularly for remote operations such as offshore and 

marine facilities. Choosing appropriate data that best represent the asset conditions in a 

given operation is challenging. To tackle this challenge, potential sources of information 

and data include: 

• Expert experience and knowledge  

• Information shared across industries that have operations in similar environments 

• Accelerated corrosion tests, such as the one proposed by Caines et al.7 

The development of advanced data acquisition systems and their integration with the 

proposed dynamic risk management model for pitting corrosion could be another subject 

for further studies to systematically gather, share and analyze information.  

																																																													
6	Hashemi, S.J., F. Khan, and S. Ahmed, Multivariate probabilistic safety analysis of process facilities 
using the Copula Bayesian Network model, Comput. Chem. Eng. 93 (2016): pp. 128–142. 
7 Caines, S., F. Khan, J. Shirokoff, and W. Qiu, Experimental design to study corrosion under insulation in 
harsh marine environments. J. Loss Prev. Process Ind. 33 (2015): pp. 39–51. 
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7.3.5. Conducting Uncertainty Modeling 

Probability distributions are used in this work to model uncertainties. Uncertainty 

associated with the selection of proper probability distributions and the estimation of 

probability distribution parameters can significantly affect the accuracy of risk 

assessment. Uncertainty analysis investigations have been conducted in different parts of 

this thesis to address this challenge. However, a more formal uncertainty modelling 

study, separating the epistemic and aleatory uncertainties, is recommended to ensure 

consideration of all sources of uncertainty when applying the proposed methods in this 

thesis. A recent study by Bedford et al.8 can be used as a guideline to approximate 

uncertainty modeling in risk analysis.  

 

7.3.6. Development of Commercial Tools  

MATLAB® codes are used in this thesis for the development and implementation of the 

proposed models. However, there is a need to develop a commercial and user-friendly 

software tool for implementation of proposed models for practical applications. The 

developed software tool should be compatible with current inspection, maintenance and 

corrosion monitoring methods in the oil and gas industry to facilitate its application for 

in-line risk control of aging assets.  

 

																																																													
8 Bedford, T., Daneshkhah, A., Wilson, K.J., 2016. Approximate Uncertainty Modeling in Risk Analysis 
with Vine Copulas. Risk Anal. 36, 792–815. doi:10.1111/risa.12471 


