
A COMPUTER VISION BASED
ULTRASOUND OPERATOR SKILL

EVALUATION

by Zizui CHEN Thesis submitted

to the School of Graduate Studies in partial fulfilment of the

requirements for the degree of

M.Sc. Department of Computer Science

Memorial University of Newfoundland

November 2017

St. John’s, Newfoundland and Labrador

Abstract

The aim of this thesis is to research inexpensive and automatic methods for analysing sonogra-

phers skill level, which reduces cost and improves objectivity. The current approach of teaching

physicians to generate good quality ultrasound images is expensive and subjective, also takes

significant time and resources, because it requires experienced instructors to guide and assess

trainees in person. In this thesis, a distributed data collection system for synchronising and

collecting data from multiple different sensors, including Microsoft Kinect 2 and ultrasound

machine, was designed. Then hand movements are extracted from ultrasound images with an

intensity-based image registration algorithm. The extracted movements data are analysed to

find different patterns between novice and expert sonographers. A multi-sensor fusion algorithm

is used in this thesis to extend the field of view of Microsoft Kinect 2, as well as overcome the

cluttered environments and obstacles in clinics. Hand tracking is performed in the registered

large point clouds with a semi-automatic colour-based segmentation algorithm.

i

ii

Contents

Abstract i

1 Introduction 1

1.1 Objectives . 1

1.2 Thesis contribution . 2

1.3 Thesis organization . 2

2 Literature review 4

2.1 Clinical ultrasound evaluation . 4

2.2 Ultrasound image analysis . 4

2.3 Hand tracking using computer vision . 5

2.3.1 Multi-sensor fusion . 6

2.3.2 Three-dimensional hand tracking . 9

2.4 Summary . 10

3 Ultrasound image analysis 13

3.1 Data collection . 14

3.2 Experiment . 16

iii

iv CONTENTS

3.3 Results . 18

3.4 Discussion . 19

3.5 Conclusion . 19

4 Multi-sensor fusion 21

4.1 Experimental setup . 22

4.1.1 Dataset . 22

4.1.2 Methodology . 23

4.2 Detector/Descriptor Pair Performance Evaluation 24

4.3 Runtime Environment . 25

4.4 Results . 25

4.5 Discussion . 28

4.6 Conclusion . 30

5 Hand tracking in 3D point cloud 32

5.1 Experimental Setup . 32

5.1.1 Manual Hand Segmentation . 33

5.1.2 Automated Cluster Segmentation . 35

5.1.3 Seeding Automated Clustering . 37

5.1.4 Hand tracking in 3D point cloud . 37

5.1.5 Hand motion modelling and characterization 37

5.2 Results and discussion . 39

5.2.1 Automated Cluster Segmentation . 39

5.2.2 Seeding and Automated Clustering . 39

5.2.3 Hand tracking in 3D point cloud . 40

5.2.4 Hand motion modelling and characterization 43

5.3 Conclusion . 44

6 Conclusion and future work 46

6.1 Conclusion . 46

6.2 Future work . 47

A Distributed recording system 49

A.1 Controller node . 49

A.2 Recording node . 57

Bibliography 63

v

vi

List of Tables

4.1 Relative success rates . 26

4.2 Mean number of described keypoints and invalid correspondence rates 26

vii

viii

List of Figures

3.1 Experiement overview . 14

3.2 Network-based data collection system . 15

3.3 Intensity registration algorithm workflow . 17

3.4 Transducer movement extracted by intensity-based image registration 18

4.1 Sample objects from our dataset . 23

4.2 Absolute translate success rates for detectors/descriptors 27

4.3 Absolute rotate success rates for detectors/descriptors 27

4.4 Relative translate success rates for detectors/descriptors 27

4.5 Relative rotate success rates for detectors/descriptors 28

5.1 Workflow of hand tracking . 33

5.2 Colour-based hand segmentation . 35

5.3 Colour-based hand segmentation with selected hand cluster 40

5.8 A sample frame from the static test. 43

ix

x

Chapter 1 Introduction

Many experts believe that ultrasound (US) is the stethoscope of the 21st century - a tool that

extends the physical exam beyond the five senses [1]. It has been widely integrated into patient

care with applications in many disciplines of medicine [2, 3, 4]. Evaluating sonographers skills

to generate good quality ultrasound images takes significant time and resources [5]. At present,

experienced sonographers observe trainees as they generate hundreds of images, provide them

with feedback, and eventually decide if they have the appropriate skills and knowledge to

perform the ultrasound test independently [6]. This current practice for evaluating a trainee

is both expensive, due to the high salary of experienced sonographers, and subjective. The

research in this thesis outlines the foundational work toward developing a tool that can provide

a computerized evaluation of a sonographers skill level to reduce cost and enhance objectivity.

This thesis focuses on analyzing the ultrasound for hand movements and tracking hands in 3D

point clouds.

1.1 Objectives

The overall goal of the project is to analyse the hand movements of the trainee to determine

the trainees skill level. This thesis aims to satisfy three objectives through the project:

O1 To develop a method of capturing and synchronising multiple channels of data, including

ultrasound images and RGB-D images of the subjective. (Chapter 3)

O2 To evaluate the existing keypoint detectors and descriptors implementation in PCL and

extending the effective field of view of a 3D computer vision system by using Microsoft

1

2 Chapter 1. Introduction

Kinect 2 sensors through an automated, calibration free, multi-sensor fusion algorithm

that is used to capture the motion of the hands of the technician. (Chapter 4)

O3 To develop a semi-automated method of tracking an ultrasound operators hands in complex

indoor environments in 3D space by using computer vision. (Chapter 5)

1.2 Thesis contribution

The main contributions of this thesis are:

1. The identification of key factors determining the ultrasound trainees skill level and a

feature-free method for extracting hand movement from ultrasound images (Objective 1)

(Published in [7]).

2. A calibration-free pair-wise point cloud registration algorithm, and the exhaustive evalu-

ation of all keypoint detector and descriptor combinations in Point Cloud Library to test

3D reconstruction performance (Objective 2) (Published in [8]).

3. The development of a semi-automatic method for tracking hand movements in 3D space

(Objective 3).

1.3 Thesis organization

Typically, the evaluation of an ultrasound operators skill levels can be done by either evaluating

the transducer movement stability of ultrasound images or evaluating the patterns of hand

movements. Chapter 2 presents a review of related works on clinical ultrasound evaluation and

ultrasound image analysis techniques, followed by a review of literature related to automated

hand movement techniques relevant to this work, including Kinect 2 performance evaluation,

3D point cloud registration and hand-tracking in 3D space.

1.3. Thesis organization 3

Chapter 3 focuses on Objective 1 including 1. stability of transducer movement 2. sharpness

of edges in ultrasound images 3. the position of big structures and 4. time to acquisition, with

particular focus on the transducer movement stability analysis. A network-based distributed

data collection system is also proposed in this chapter to overcome various performance limita-

tions experienced during the data collection procedure. The contributions of this chapter were

published at the 2015 International Conference on Image and Vision Computing New Zealand

(IVCNZ) in our paper titled Feasibility of a semi-automated approach to grading point of care

ultrasound image generation skills.

Chapter 4 provides the work toward satisfying Objective 2. A review of the current techniques

for extending the field of view of sensors, including both 2D-based and 3D-based methods, is

presented, with a focus on 3D pair-wise registration, which is the most suitable approach for

clinic environments. An exhaustive experiment is also described in this chapter that evaluates

all available keypoint detector and descriptor pairs in PCL [9] to find out the best pair for

this application. This work utilizes a benchmark public 3D dataset from Washington State

University [10] to ensure the generalizability of the findings. The contributions of this chapter

were published at The International Symposium on Visual Computing, 2016 in our paper titled

Performance Evaluation of 3D Keypoints and Descriptors.

Chapter 5 builds on the review of the current state of the art of appearance-based and model-

based hand segmentation and tracking algorithms. Specifically, a novel semi-automatic method

that tracks hand movement of a person in a 3D point cloud is presented. Chapter 6 concludes

the thesis and proposes the potential future work to improve the current system.

Chapter 2 Literature review

2.1 Clinical ultrasound evaluation

Monitoring transducer movement as a measure of clinical skill has some applications in health-

care (e.g., surgical trainee knot-tying [11]). Specific to ultrasound skill development, Prinz

et al. [12] have established that ultrasound technician skill attributes such as time to image

acquisition and image quality improve with training. There have been many attempts to make

ultrasound evaluation more objective. For example, Corretti et al. [13] defined a guideline

for ultrasound assessment. Dubrowski et al. [11] proposed an assessment form to break down

ultrasound tasks into discrete sub-components. Hammer et al. [14] proposed a scoring sys-

tem for B-mode (BM) and power Doppler (PD) ultrasonography. Finally, Kimura [15] used

a 7-point scoring system to classify parasternal long-axis (PLAX) ultrasound images as satis-

factory or unsatisfactory. Unfortunately, all these evaluation schema depend on a human for

scoring, which is subjective [11] and not directly suitable for automated implementation. Prinz

et al. [11] have worked to formalize the evaluation process and make it more objective, but still

requires a human for analysis, which is both subjective and costly.

2.2 Ultrasound image analysis

Ultrasound image quality is an important factor related to the assessment of operator skills

[13]. Automated image quality analyses have been used in images captured using traditional

photography. For example, [16, 17] use structural similarity to examine image quality and

4

2.3. Hand tracking using computer vision 5

determine photographers expertise, while [17] use peak signal-to-noise ratio (PSNR) as video

quality metric. These methods rely on the clear structural patterns, or features, in images.

However, ultrasound images are usually blurred and distorted [18]. Specic to ultrasound, several

articles have been identied that discuss quality assessment and have been used to guide this

research [19, 20, 21], but they are only suitable for analysing a single ultrasound image. The

assessment of an ultrasound technicians ability requires a method of analysing the entire scan,

which is comprised of a sequence of possibly thousands of consecutive images, preventing the

direct application of existing methods.

The movement pattern of the transducer is another factor related to the assessment of operator

skills. Operators movements have been routinely used for years for the purposes of generating

3D ultrasound images [22]. The movements can be extracted from a sequence of ultrasound

images using image registration and speckle tracking techniques, again for 3D image generation

[23, 24, 25]. However, this method has not been applied to technician skill assessment rather

it requires the technician to move the probe within known and well-defined parameters.

Image stability has been deeply studied by many researchers with many published algorithms,

particularly with respect to digital cameras and images [12, 26, 27, 28]. The common uses

and most successful approaches are largely based on feature matching. Ultrasound imagery,

however, is extremely noisy and dynamic, limiting the utility of feature matching techniques

[18]. From the literature, an intensity-based image stabilization algorithm [29], which does

not rely on features, represents the best opportunity for success since defined features are not

present in ultrasound images.

2.3 Hand tracking using computer vision

Hand tracking in 3D space has been studied across a range of applications [30, 31, 32, 33, 34].

Donoser et al. [35] asserts that the methods for hand tracking can be categorized as either

appearance-based hand tracking (e.g., [35, 36]) or model-based hand tracking (e.g., [34, 37]).

The existing works mostly use 2D images as inputs, then segment and recover the hand position

6 Chapter 2. Literature review

in 3D space [30, 32, 37], with particular focus on identifying the positions of each finger [38, 39].

Other methods, such as the Kinect skeleton tracking, have also been used to track the hands

position when most of the skeleton is visible [40, 41, 42], and more recently to provide an

estimate of the hand pose [34, 43] and finger tracking [44].

However, in this project hand tracking is challenging because: 1. clinic environments are com-

plex and dynamic; 2. the field-of-view of each camera is limited by obstacles (self- and environ-

mental occlusions) and moving people; and 3. the visibility and resolution of the hands is poor

because the camera is far from the hands. Skeleton tracking [40, 41, 42], which is by far the

most robust 3D tracking approach currently available, as well as other 3D tracking approaches,

are not suitable here because it cannot be guaranteed that the camera will see the entire body.

Combining data from multiple sensors can help overcome the challenges faced in clinical ul-

trasound environments, particularly the first two. Approaches for combining (registering) data

from multiple cameras are well defined for 2D images [45, 46], extending the overall field-of-view

of the system and reducing occlusions. These approaches, however, generally require similar

camera perspectives (i.e., marginal difference in the translation and rotation of the images),

and 2D registration makes it difficult to recover the 3D coordinates in original space. Register-

ing 3D images directly allows the sensors to be arbitrarily placed in the environment since the

3D data is perspective-independent. However, 3D registration algorithms are not developed

beyond those that support incremental scene registration.

2.3.1 Multi-sensor fusion

Due to the complexity of clinic environments, the field-of-views of individual sensors are limited

by moving people, random obstacles and cluttered environments. To extend the field-of-view of

an overall system, multiple cameras need to be used. In a clinical environment, a calibration-

free algorithm is required to fuse data from all cameras in 3D space. Calibration prior to system

use is not feasible because clinicians are generally not trained to perform such tasks, or not

willing to invest the time.

Data from a 3D sensor is typically represented as RGB-D data (normal RGB images with

2.3. Hand tracking using computer vision 7

an additional depth image which represents the distance between objects in the view and the

camera), or point cloud (a set of data points in three-dimensional coordinate system)[47, 48].

Multi-sensor fusion is a process of registering multiple point clouds captured by a computer

vision system to one global point cloud. The two main methods of 3D fusion are pair-wise

registration [49] and Truncated Signed Distance Function (TSDF) [50]. TSDF is an incremen-

tal method for generating static 3D models in large scale [51], while pair-wise registration is

suitable for registering multiple point clouds. TSDF is not suitable for this application be-

cause clinic environment is highly dynamic, while TSDF only works for static environments.

Procedurally, pair-wise registration includes: 1. pre-processing both point clouds (filtering,

down-sampling, etc.); 2. extracting keypoints from each point cloud; 3. computing feature de-

scriptors for extracted keypoints; 4. finding correspondences between two sets of keypoints and

descriptors; and 5. finding the transformation matrix which is most suitable for the corre-

spondences [29]. The results are significantly affected by pre-processing methods and choosing

parameters for keypoint extraction and descriptor computation. Finding correspondences and

computing transformation matrices, however, have negligible impact on the performance of the

algorithm ([8]).

Unlike 2D keypoint and descriptor identification algorithms, methods of identifying 3D key-

points and descriptors are not as robust and numerous and not as efficient or well-developed

[52]. A widely adopted open source point cloud processing library, Point Cloud Library (PCL)

[9], currently implements nine keypoint detectors, and 20 keypoint descriptors. Of these nine

keypoint detectors, only five are suitable for unorganized point clouds (defined as point clouds

where data are stored sparsely, like those provided by the Microsoft Kinect). These detectors

are Harris3D [53], Harris6D [53], Intrinsic Shape Signatures (ISS) [54], Scale Invariant Feature

Transform (SIFT) [55], and Smallest Univalue Segment Assimilating Nucleus (SUSAN) [56].

In our work [8], we discuss the PCL keypoint detectors and descriptors in detail. For com-

pleteness, I provide a summary here. The five main 3D keypoint detectors suitable for 3D

unorganized point clouds in PCL are: Harris3D, Harris6D, ISS, SIFT and SUSAN. Harris3D

[53] is derived from the traditional Harris detector [57] and uses surface normal for corner de-

tection. Harris6D [53] extends Harris3D by combining both 3D and 2D information (intensity),

8 Chapter 2. Literature review

and removes weak keypoints using non-maximal suppression. ISS [54] is a highly discriminative

local shape descriptor developed specifically for 3D point clouds. The 3D version of SIFT [55]

extends the original 2D SIFT [58] by using 3D sub-histograms. Finally, the original 2D SUSAN

[56] has been re-implemented as a 3D corner detector. The other three keypoint detectors,

such as Normal Aligned Radial Feature (NARF) [59], Adaptive and Generic corner detection

based on the Accelerated Segment Test (AGAST) [60] and Binary Robust Invariant Scalable

Keypoints (BRISK) [61] [55] support range images or 2D point clouds only. Commonly used

keypoint descriptors include: Persistent Histogram Features (PFH) [62, 63], which is a robust

feature descriptor for 3D point clouds based on local geometry; Fast Persistent Histogram Fea-

tures (FPFH) [62], which improves PHF by caching and reusing results in previous calculations

and also reducing computation complexity by calculating the keypoint itself and its neighbours

only; View Point Histogram [63] and Clustered View Point Histogram [64], which are expanded

from FPFH to include viewpoint information; Rotation-Invariant Feature Transform [65], which

is a descriptor extended from SIFT [58] and using colour information in the computation; Sig-

nature of Histograms of Orientations (SHOT) [66] and SHOTColour [67], which combine both

signature and histogram for describing local features. Details on these and other descriptors

can be found in the PCL literature [9].

Beyond the development of the detectors and descriptors themselves, researchers have begun

to investigate their efficiency under certain real-world conditions. For example, Filipe et al.

[55] conducted a comprehensive evaluation of the invariance of all 3D detectors available in

PCL under various translations, rotations and scale changes by measuring their repeatability,

which is the capacity of the detector to find the same set of keypoints in different instances

of a particular model. They concluded that ISS was the most repeatable keypoint under

various transformations. But keypoint detection is only a single step in the recovery and

alignment process. Others have looked at the performance of both detectors and descriptors

during the alignment process. For example, Alexandre [68] compared the object and category

recognition of descriptors available in PCL with a single detector, the Harris3D [53] on a

small subset of the RGB-D Object Database [10]. Hnsch et al [52] evaluated the multi-sensor

registration performance of two detectors (NARF [10] [59] and SIFT [55]) with two descriptors

2.3. Hand tracking using computer vision 9

(PFH [69] and SHOT [66]) on a small set of 10 scenes. However, both studies are limited to

testing a small number of detector/descriptor combinations, and only used small datasets for

evaluation. Conversely, Moreels and Perona [70] evaluated the performance of several popular

3D detectors and descriptors available while finding matching correspondences in a moderate

set of 100 objects viewed from 144 unique perspectives. While this study is more comprehensive

in its inclusion of detectors and descriptors, it was conducted in 2007 before many mainstream

implementations were available. Furthermore, the focus of the Moreels and Perona study

was to investigate matching correspondences under an extremely wide range of rotations and

translations, well beyond practical applications of 3D field of view extension and occlusion

reduction.

Notably, the findings of the above studies suggest that the appropriate choice of a keypoint

detector and a descriptor is generally sensitive to the application, and is impacted by changes

in the scale, rotation and translation between different sensors [55]. The large number of

possible combinations of 3D keypoints and descriptors suggest that the ideal pairing for any

given application is difficult without knowledge of the performance of each pairing under the

different transformation conditions (translations and rotations).

2.3.2 Three-dimensional hand tracking

As noted earlier, Donoser et al. [35] asserted that there are two main methods of hand tracking:

appearance-based and model-based, and that the majority of the work in these areas utilizes

2D imaging. We extend the assertion of Donoser et al, given recent advances in 3D image

processing to suggest that there are three common methods for tracking hands in three di-

mensions: skeleton tracking, appearance-based hand tracking and model-based hand tracking.

Skeleton tracking is based on the reconstruction of the entire body skeleton, and hands are

represented as single joints in the skeleton. Existing work on skeleton tracking includes: using

surface estimation to recover the movement of the skeleton and possibly non-rigid temporal

deformation of the 3D surface [71]; using whole body skeleton tracking and reconstruction like

the Kinect SDK [72]; and using geodesic distances and optical flow to track human skeletons

10 Chapter 2. Literature review

[42]. These methods require most, if not all, of the body to be visible to the camera for skele-

ton reconstruction. This requires the ideal placement of the sensor(s), such that the tracker is

given priority over other objects in the room (e.g., for a gaming system). In clinical settings,

this is necessarily not the case. Rather, in clinical settings the clinician, patient and medical

equipment are placed with priority, and any sensors must be placed inconspicuously to avoid

interfering with any procedures. Accordingly, it cannot be assumed that most the body will

be visible, or that the sensor perspective will be ideal. Instead, the hands must be tracked

independently of the body in clinical applications.

Approaches that identify global hand locations in 3D space [73], [74] also need good visibility of

the entire human body and require the depth sensor to be located at approximately above the

ground, with the sensor viewing perspective oriented parallel to the ground. Recent work has

extended this purpose to more unique viewing perspectives such as overhead [75] and egocentric

[76] models.

Other approaches, including [77], [78], [79], track hand movements independently of the whole

body, and focus on the hands in extreme detail. The main purposes of these approaches

are identifying the movement of fingers, with the primary application of developing improved

human-computer interaction. The cameras must be placed very close to the hands () [39] to

capture the details of finger movement. Furthermore, these approaches are highly perspective-

and orientation-dependent, and require that only the hands (and perhaps lower arms) are visible

in the scene. This is currently an active area of research, but it is not directly relevant to our

application since we cannot guarantee that the sensor will be located close to the hands, that

the sensor orientation will be known, and that the operators hands will be dominant in the

scene.

2.4 Summary

The current approaches for clinic ultrasound evaluation highly depend on human involvement,

which leads to multiple issues such as expensive, slow and subjective training and evaluations.

2.4. Summary 11

Computerized technology can potentially assist the human in the evaluation process, increasing

the objectivity and reducing the cost.

Computerized ultrasound evaluation methods can be approached from two perspectives: analysing

the ultrasound image for image quality and analysing the operators hand movements for spe-

cific patterns. The operators hand movements can be inferred from transducer movements,

which can be extracted from ultrasound video. However, this extraction process is tricky, be-

cause feature-based image registration methods do not apply here due to extremely noisy and

dynamic images [18].

Clinic environments are cluttered, dynamic and complex. Thus, tracking operators hand move-

ments is hard in clinic environments with traditional 2D based hand tracking methods, such

as [34, 35, 36, 37]. A feasible solution to this issue is to track hands movements in 3D space,

necessitating an extended system field of view using multiple sensors. This introduces a new

issue: registering or combining data from these sensors.

Pair-wise registration is most suitable for dynamically registering multiple point clouds in real-

time, which extends the field of view. The performance of registration is highly dependent

on the choices of keypoint detectors and descriptors. Existing research on evaluating keypoint

detectors and descriptors is limited in scope and exhaustiveness, or is outdated with the current

state of the art of keypoint detection and description implementations. Accordingly, the best

keypoint detector and descriptor pair for 3D registration is currently unknown.

Finally, existing hand tracking methods require clear images, and either need to place the

sensor close to the hands (appearance- or model-based hand tracking), or require that most of

the body parts are visible (skeleton tracking). The former methods are more focused on the

micro-level, (e.g. the movement of each finger) instead of the hand position and orientation in

3D space. The later methods are designed for tracking hands as part of the whole body in 3D

space, but require an ideal sensor placement, and most of the body parts must be visible to

the sensor. Unfortunately, clinic environments are complex and highly dynamic. The sensors

cannot be placed in an ideal position, and it cannot be guaranteed that the whole (or most of)

the technicians body will be visible to the system.

12 Chapter 2. Literature review

The following chapters are focused on solving the issues highlighted above. Ultrasound trainees

hand movements are extracted from ultrasound videos, and are tracked by 3D RGB-D cameras.

To ensure the visibility of the hands, multiple 3D cameras are used to extend the field of view

and avoiding obstacles.

Chapter 3 Ultrasound image analysis

This chapter outlines the design and implementation of a data collection system for capturing

an ultrasound trainees scan data, as well as analysis of the ultrasound image to evaluate image

quality.

Real-time ultrasound images were captured and recorded with a DVI to USB camera converter

connected to a real ultrasound probe. The images were recorded as RGB images at [80]. The

captured images from the ultrasound machine include both the ultrasound image of the target

region and the user interface components of the ultrasound machine. Thus, it was essential to

crop the captured images to remove the user interface components surrounding the image.

As discussed in sec.2.2, an ultrasound trainees skill level can be evaluated by using the stability

of the transducer movement, which is more discriminative and easier to analyse using computer

vision techniques.

The movements of the transducer can be classified into three categories: in-plane movement,

out-of-plane movement and pivoting [81, 82]. In-plane movements are defined as the movements

along the long-edge of the transducer. Out-of-plane movements are defined as the movements

along the short-edge of the transducer. Pivoting is defined as moving the upper side of trans-

ducer while keep the transducer bottom in contact with the object. Out-of-plane movements

and pivoting are harder to detect from sequential images than in-plane movement because the

overlapped area between frames is smaller. When in-plane movement is the only movement,

the distance of movement can be obtained by applying image registration techniques on the

ultrasound images [83]. However, as discussed in sec.2.2, ultrasound images differ from photos

captured by a regular RGB camera in several ways. Most notably, ultrasound images are blurry

13

14 Chapter 3. Ultrasound image analysis

making it hard to extract features, contain fewer distinct features and suffer from more noise

[18]. Due to the above issues, feature-based image registration techniques are not efficient be-

cause in general only a small number of unreliable features are extracted. For images with fewer

features like ultrasound images, intensity-based algorithms are more efficient than feature-based

algorithms [29]. Accordingly, an intensity-based algorithm is used to first track the movement

of objects in a series of ultrasound images, then to infer the movement of transducer. This

chapter described how we fulfilled objective 1 (see chapter 1.1), to develop a method of au-

tomated ultrasound image capture and analysis facilitating operator performance evaluation.

The network-based collection program developed for this work is attached as A. The analysis

of recorded data is discussed in the following sections.

3.1 Data collection

A data collection system was designed to capture ultrasound images in a hospital room used

for simulation and training. The equipment used in this experiment included: an ultrasound

probe connected to a data acquisition system using a DVI to USB converter (Epiphan DVI2USB

3.0 [80]), two Kinect 2 depth sensors, installed on the left and right side of the testing area,

and a third depth sensor installed on the ceiling above the testing area. An overview of the

experimental setup is illustrated in fig.3.1.

Figure 3.1: Experiement overview

3.1. Data collection 15

Recording and synchronizing the raw data captured from the Kinect sensors presented many

challenges including:

1. Disk I/O - The images returned from Kinect sensors are 1080p high-resolution images

[84], requiring high disk bandwidth to write them to disk in real-time.

2. Processor usage - Images returned from Kinect sensors are encoded in the JPEG format.

Decoding and converting these data to video is computationally intensive. This problem

is compounded when processing images from multiple Kinect sensors concurrently.

3. USB bandwidth - Microsoft Kinect 2 sensors consume approximately halfof the bandwidth

of a single USB 3.0 controller [85]. Furthermore, most desktop and laptop computers only

have one USB controller.

Thus, a network-based distributed data collection system (fig.3.2) was designed to overcome

these issues.

Figure 3.2: Network-based data collection system

The collection system consisted of two types of nodes: recorder nodes and a controller node.

The recorder and controller nodes were connected through a local network via Ethernet cables.

Recorder nodes connected to the Kinect sensors and ran the recorder program (See A), which

listened to the commands sent from the controller node. Each recorder node could connect

to one Kinect 2 sensor, or up to two Kinect 360 sensors (legacy support). Recorder nodes

were running on a Macbook Pro (late 2013), which was equipped with an Intel Core i5 dual-

core 2.4GHz CPU, CPU built-in Iris graphic card, 4GB memory and 128GB SSD. OpenCL

16 Chapter 3. Ultrasound image analysis

hardware acceleration was enabled for processing data from the Kinect 2 at the recorder node.

The controller node ran a controller program (See A), which sent start and stop recording

commands through the local network to all recorder nodes at the same time. The controller

node was also a Macbook Pro (late 2013), with the same configuration as a recorder node.

Data retrieved from the sensors was processed and stored locally in the recorder nodes in the

raw JPEG format. The controller node only sent out commands to start or stop recording.

The controller node did not capture, store or process any data during data collection. Data

synchronization was achieved by timestamping the frame in each recorder node. The system

clocks of all recorder nodes were synchronized with Network Time Protocol (NTP) before

recording began. This was accomplished by manually configuring each node to enable the

built-in time synchronization mechanism [86].

3.2 Experiment

The experiment was performed with three experts and five novice operators (candidates). Each

candidate ran a FAST (Focused Assessment with Sonography for Trauma) scan [87], which is a

rapid bedside ultrasound examination performed by surgeons, emergency physicians and certain

paramedics as a screening test for blood around the heart (pericardial effusion) or abdominal

organs (hemoperitoneum) after trauma, on the test subject. All recordings were cropped to

multiple videos clips, each one containing only one single step of the scan. The procedures of

scans were recorded with the distributed data capture system proposed in the previous section,

and the recordings were further converted to video files with FFMPEG [88], by interpolating

the timestamped images. Each video file was manually decomposed into a series of discrete

movements using the software StudioCode [89]. An advantage of using StudioCode was the

ability to provide native support for synchronizing multiple videos with different frame rates,

which was necessary to synchronize the data collected asynchronously from the three Kinect

sensors.

This experiment focused on assessing the stability of transducer movement from ultrasound

3.2. Experiment 17

video. As presented in sec.2.2, feature-based algorithms are not applicable to ultrasound images

because the images are noisy and blurred. Preliminary experimentation suggested that only

four or five features can be detected for most frames in an ultrasound video using the SIFT

feature descriptor [58], which is less than the minimal number of keypoints required running

FLANN [90]. Thus, an intensity-based image registration algorithm is proposed to calculate

the movement between two frames. The workflow of the intensity registration algorithm is

outlined in fig.3.3 [29].

Figure 3.3: Intensity registration algorithm workflow

The algorithm is an iterative process, which requires a pair of images, an image similarity

metric, an optimizer and transformation type to be specified. The image similarity metric

defines the registration accuracy, allowing two images to be compared with a resulting scalar

value that describes how similar the images are. The optimizer defines the methodology for

minimizing or maximizing the similarity metric. The transformation type defines the type of 2D

transformation that aligns the misaligned image (called the moving image) with the reference

image (called the fixed image).

The process begins with a specified transform type (e.g. translation-only, rigid transform,

similarity transform and affine transform) and an internally determined transformation matrix.

The transformation is applied with bilinear interpolation to the moving image, determined by

the transform type and the transformation matrix.

Then the similarity metric, mean squared error, is computed by comparing the transformed

moving image to the fixed image. Finally, the optimizer is used to evaluate the stop condition,

18 Chapter 3. Ultrasound image analysis

which ensures the algorithm terminates. The process stops when it reaches a point of dimin-

ishing returns or when it reaches the specified maximum number of iterations. Otherwise, the

optimizer adjusts the transformation matrix to begin the next iteration. The optimizer used

here is regular step gradient descent optimization [91]. It tunes transformation parameters to

make the optimization follow the gradient of the image similarity metric in the direction of the

extrema. The intensity-based algorithm computes in-plane movement between two frames.

3.3 Results

This section shows the analysis results from two clips, which consist one expert scan and one

novice scan. Both scans are performed at the same region, on the same patient.

Figure 3.4: Transducer movement extracted by intensity-based image registration

The red lines and blue lines in fig.3.4 represent the ultrasound image movements along the X

and Y direction, respectively. The expert scan includes 250 frames (from frame 1500 to 1750),

and the novice scan includes 300 frames (from frame 400 to 700). It is common that expert

operators scan faster than novice operators, because they are more familiar with the process

and they can identify the target region and obtain good quality images faster than novice

operators, explaining the temporal misalignment.

In the expert scan, the movements in the X axis remain stable to between 0-5 pixel/frame

between frames 1540 1750, and there are negative movements in frames 1620 1650. In

3.4. Discussion 19

the novice scan, there are 14 zero-crossings in the X direction and 14 zero-crossings in the

Y direction between frames 400 and 470. Also, the movements vary between -25 to +25

pixels/frame. There are four large movements at frames 480, 500, 510 and 570 in the novice

scan.

3.4 Discussion

In the expert scan fig.3.4, the stable movements in the x-axis indicates the transducer is moving

along the x-axis at a steady speed. There are negative movements indicating the transducer

moves backwards. The overall speed of the expert scan is 0-5 pixel/frame, which is stable. The

five zero-crossings shows the direction of movement is consistent, with no significant back and

forth movement.

In the novice scan, the 14 zero-crossings in both X and Y direction indicates the operator

moves the transducer in an unstable way; the transducer is moving back and forth. The speed

also changes much more significantly, ranging from -25 to +25 pixels/frame. Furthermore, the

four large movements indicate that the image registration completely failed, because the novice

operator lifted the transducer from test subject. Lifting transducer leads to a blank image,

because an ultrasound signal cannot propagate into the body through air.

3.5 Conclusion

This chapter described the method for extracting the hand movements of the trainee from

ultrasound videos and visually compared the stability of movement in novices and experts.

The analysis of results focused on in-plane movements, which are the movements in X-Y plane.

Although the results can be used for stability analysis and to further determine if the trainees

skill level is novice or expert, the missing data for out-of-plane movements will still affect the

accuracy.

20 Chapter 3. Ultrasound image analysis

The result may be further improved by adjusting the parameters of the intensity registration

algorithm to achieve better registration results. The configuration of the ultrasound machine

was also not necessarily optimized, and as such may be able to be improved to allow a consistent

contrast and brightness during and across scans.

The current implementation still relies on a human to recognize the acquisition of the target

region. However, it is possible to replace the human with an automated algorithm because the

image quality is expected to adhere to the following pattern:

• before acquiring the target region, the image quality changes between low to high because

the operator is trying to locate the region

• after acquiring the target region, image quality remains at a high level because the oper-

ator is viewing the target region from different angles, thus, the target region is kept in

the image

This chapter of the thesis outlines the following contributions:

• an experiment for ultrasound probe movement data collection

• a general method to pre-process the collected data

• a method for tracking transducer in-plane movements using ultrasound images

Building upon the successes and limitations presented in this chapter, I now consider pre-

liminary work toward tracking the transducer movements directly in 3D space with Kinect.

Ultimately, these tracking data would be cross-referenced to the ultrasound image processing

of this chapter.

Chapter 4 Multi-sensor fusion

Traditional computer vision-based object tracking technologies are not efficient in clinical ap-

plications because these environments are cluttered and dynamic, resulting in a limited field

of view. A multi-cameras configuration overcomes some of the above issues; particularly those

caused by occlusions of a single sensors field of view. However, camera calibration is required

to create a unified scene from multiple sensors. Camera calibration is not practical in most

clinic environments because technical personnel are not available, and clinicians are not trained

for this task or are simply not willing to calibrate a system when entering each new room or

following a room modification.

Accordingly, this chapter outlines the development of a 3D-based multi-sensor registration

approach that does not require manual (human) calibration. The approach reconstructs a

room with colour and depth images captured from multiple depth cameras. First, the colour

and depth images received from Kinect 2 sensors are registered to individual point clouds.

Then the individual point clouds are registered to a more complete global point cloud using

incremental pair-wise registration [92, 93].

Pair-wise registration consists of the following steps [92]: 1. Extract keypoints from the original

point clouds; 2. Compute keypoint descriptors for each keypoints in the original point clouds;

3. Find correspondences between the point cloud descriptors; and 4. Compute the 3D trans-

formation matrix that fits the correspondences best. The performance of pair-wise registration

is highly dependent on the first two steps: extracting keypoints and descriptors [8].

PCL implements nine keypoint detectors and 22 keypoint descriptors [94]. However, as shown

in sec.2.3.1, only five detectors and 20 descriptors can be used with Kinect 2 point clouds.

21

22 Chapter 4. Multi-sensor fusion

The performance of the large number of detector/descriptor pairs available for 3D point clouds

varies significantly based on the application. The performance of these detector/descriptor pairs

has been explored in scenarios where the translation and rotation between multiple images or

sensors is small (e.g. rotation less than 5 degrees) [55]. However, the performance of the

detector/descriptor pairs is unknown in scenarios where the transformation between sensors

is large. Accordingly, one important objective of this study is to extensively determine the

performance of all detector/descriptor pairs available in PCL. From this evaluation, the most

appropriate pair for our scenario, where the cameras can be placed arbitrarily in the room, can

be determined.

4.1 Experimental setup

We designed an extensive evaluation experiment to exhaustively test the performance of each

detector and descriptor pair available in PCL over a wide range of different translations and

rotations. Candidate pairs were used to recover an artificial transformation on a large set of

objects. The transformations were large enough to simulate most configurations in a common

clinic deployment.

4.1.1 Dataset

The evaluation was performed on a large, publicly available RGB-D Object Database [22] from

Washington University, which contains 300 household objects. The dataset is comprised of a

video clip (and in some cases multiple videos) for each object, created by rotating the camera

around the object from different angles. In this evaluation, the first frame of each video clip

was selected. Thus, the dataset used in this evaluation included 300 RGB-D images of 300

household objects, respectively. Four sample objects from the dataset are shown in Fig 5. Note

that the images are noticeably low in resolution, because the objects are small, (e.g. apples

and bananas), and the camera was not placed very close to the objects. Rather, the objects

4.1. Experimental setup 23

were cropped from a larger scene, and the resolution of the individual objects was restricted by

the hardware limitation of the Kinect 360 [47] .

4.1.2 Methodology

We considered the cases of translation and rotation separately for each image. We translated

each object from -100cm to +100cm in 5cm increments along the x, y and z axes independently.

We then rotated each image from −45◦ to +45◦ in 15◦ increments around the x, y and z axes

independently.

Figure 4.1: Sample objects from our dataset: ball; garlic; apple; coffee mug

The resulting transformation set was therefore 144 transformations for each detector/descriptor

pair for each image. Using this transformation set, we manually transformed each source object

per the source transformation matrix , creating a resulting target object. We then implemented

each of the five detectors with each of the 20 descriptors (100 detector/descriptor pairs) on the

source and target objects to attempt to recover the transformation matrix by aligning the

target object to the source object. For each implementation, keypoints were extracted from

both the source and target clouds using the detector, along with the associated descriptors.

Correspondences were found using the Fast Library for Approximating Nearest Neighbours

(FLANN) [25, 26, 27]. Random Sample Consensus (RANSAC) [28] was used for correspondence

outlier removal and alignment of the source and target correspondences. All parameters were set

to PCLs default, and we evaluated two sets of search radii for the keypoint detector and feature

descriptors. We defined the small search radii as 3mm/5mm and large radii as 30mm/50mm

for the detector/descriptor pairs. The error Err of the alignment was calculated per eq.4.1.

24 Chapter 4. Multi-sensor fusion

Err =
∑

n

Psn − Ptn (4.1)

where Ps and Pt are point clouds before and after transformation, separately, and and are coor-

dinates of the points in point clouds. The total evaluation set was then 144 transformations/pair

× 100 pairs × 300 images = 4,320,000 samples.

4.2 Detector/Descriptor Pair Performance Evaluation

We defined a learned error threshold θ from experience for recovery of each source object from

the associated target object on the 4,320,000 samples. Using eq.4.1, we defined a successful

recovery as Err < θ and a failed recovery as one where Err >= θ. To determine the effec-

tiveness of a detector/descriptor pair over a given set of samples we defined an absolute and

a relative success rate. The absolute success rate SA was defined as the number of successful

recoveries in the samples divided by number of samples, as in eq.4.2. The relative success rate

SR was defined as the number of successful recoveries in the samples divided by the difference

between number of samples and number of failures, as in eq.4.3. The failure is further defined

as the algorithm failed to compute a transformation matrix between original and transformed

point clouds in some cases.

SA = #successful recoveies/#samples (4.2)

SA = #successful recoveies/(#samples−#failures) (4.3)

For a given set of samples, the recovery alignment process could fail for the following reasons:

1. keypoint detection failure; 2. keypoint description failure; 3. correspondence estimation fail-

ure; and 4. too few correspondences for RANSAC alignment. For this reason, we defined the

relative success rate SR as the number of successful recoveries in the samples divided by total

4.3. Runtime Environment 25

number of recoveries for the samples. Due to the large number of detector/descriptor pairs, we

only considered those with an absolute success rate higher than 0.5.

We further defined the invalid correspondence rate as the number of invalid correspondences

over a given set of correspondences divided by the number of correspondences. We identified

invalid correspondences by counting the number of rejected correspondences from RANSAC.

We considered this invalid correspondence rate as well as the number of described keypoints

and number of correspondences as measures of the absolute (SA) and relative (SR) performance

of detector/descriptor pairs.

4.3 Runtime Environment

The substantial number of samples made serial or small-scale concurrent implementation of the

testing prohibitive. Accordingly, we implemented the experiments on the ACENET Placentia

computing cluster, a “3756 core heterogeneous cluster located at Memorial University”[29] as

an array job.

4.4 Results

The data set was configured to run on the ACENET cluster as batches, with each batch

containing all tests on 100 objects with processing executed concurrently in a queue utilizing

approximately 40 cores at a time (determined dynamically by the ACENET scheduler) taking

a total of 14 days to finish. The success rates SR for the detector/descriptor pairs over all

4,320,000 samples with a learned threshold theta = 10 are shown in tab.4.1 for pairs with a

success rate of over 0.5. The mean numbers of detected and described keypoints was equal

in all samples, and are shown in tab.4.2a and tab.4.2b for all detector/descriptor pairs with

a mean number of described keypoints greater than three over all samples for the small and

large search radii. The mean numbers of successful correspondences for all detector/descriptor

26 Chapter 4. Multi-sensor fusion

pairs and invalid correspondence rates are shown in Table 2 and Table 3 over all samples for

the small and large search radii for all pairs with an invalid rate less than 0.15.

Table 4.1: Relative success rate of detector/descriptor pairs with a success rate over 0.5

Keypoint Descriptor Small radius Large radius
ISS IntensitySpin 0.99 0.99
ISS SHOTColor 0.94 0.94
ISS SHOT 0.93 0.94
ISS RIFT 0.88 0.71
ISS ShapeContext 0.82 0.8
Susan SHOTColor 0.76 0.77
Susan SHOT 0.76 0.78
Susan ShapeContext 0.59 0.62

Table 4.2: Mean number of described keypoints and invalid correspondence rate for the source
and target objects for all detector/descriptor pairs with invalid correspondence rate less than
0.15

(a) small search radii

Keypoint Descriptor Keypoint(source) Keypoint(target) Invalid corrs
ISS MomentInvariants 131.76 131.77 0
ISS IntensitySpin 131.76 131.77 0.01
ISS SHOT 131.76 131.77 0.01
ISS SHOTColor 131.76 131.77 0.01
Harris3D IntensityGradient 17.27 17.23 0.02
ISS FPFH 131.76 131.77 0.03
ISS IntensityGradient 131.76 131.77 0.03
Harris3D FPFH 17.27 17.29 0.04
ISS PFH 134.33 134.34 0.04
Sift FPFH 5.6 5.64 0.04
Susan SHOTColor 33.24 31.78 0.04
Sift IntensityGradient 5.59 5.64 0.05
Sift PFH 5.6 5.65 0.05
Sift ShapeContext 5.6 5.64 0.05
Sift SHOT 5.54 5.58 0.05
Sift SHOTColor 5.54 5.58 0.05
Susan FPFH 33.24 31.78 0.05
Sift BOARD 5.54 5.58 0.06
Susan SHOT 33.24 31.78 0.06
ISS BOARD 131.76 131.77 0.07
ISS ShapeContext 131.76 131.77 0.07
Sift MomentInvariants 5.6 5.64 0.07
Susan PFH 33.24 31.78 0.07
ISS RIFT 131.76 131.77 0.08
Sift PrincipalCurvatures 5.59 5.64 0.08
Susan MomentInvariants 33.24 31.78 0.09
Susan ShapeContext 33.24 31.78 0.09
Harris3D BOARD 17.26 17.29 0.11
Susan IntensityGradient 33.24 31.78 0.11
Susan BOARD 33.24 31.78 0.14

(b) large search radii

Keypoint Descriptor Keypoint(source) Keypoint(target) Invalid corr
Harris3D Boundary 7.49 7.50 0.00
Harris3D CVFH 17.17 17.21 0.00
Harris3D PFH 5.67 5.77 0.00
Harris6D Boundary 8.08 8.20 0.00
Harris6D CVFH 18.40 18.55 0.00
Harris6D PFH 6.38 6.44 0.00
ISS Boundary 12.75 12.75 0.00
ISS CVFH 143.45 143.45 0.00
ISS SpinImage 131.76 131.77 0.00
Sift BOARD 1.00 1.34 0.00
Sift Boundary 1.00 1.34 0.00
Sift CVFH 1.00 1.34 0.00
Sift FPFH 1.00 1.34 0.00
Sift IntensityGradient 1.00 1.34 0.00
Sift IntensitySpin 1.00 1.34 0.00
Sift MomentInvariants 1.00 1.34 0.00
Sift PFH 1.00 1.34 0.00
Sift PrincipalCurvatures 1.00 1.34 0.00
Sift RIFT 1.00 1.34 0.00
Sift SHOT 1.00 1.34 0.00
Sift SHOTColor 1.00 1.34 0.00
Sift ShapeContext 1.00 1.34 0.00
Sift SpinImage 1.00 1.34 0.00
Susan Boundary 8.77 8.51 0.00
Susan CVFH 34.40 33.77 0.00
Susan SpinImage 33.22 31.67 0.00
ISS PFH 27.58 27.58 0.00
Susan PFH 9.08 8.79 0.00
Harris3D SpinImage 17.27 17.29 0.00
Harris6D SpinImage 19.73 19.79 0.00
ISS SHOTColor 138.50 138.49 0.00
ISS SHOT 138.36 138.36 0.00
ISS IntensitySpin 131.76 131.77 0.01
Harris3D SHOT 17.09 17.13 0.02
Susan SHOTColor 34.33 33.71 0.02
Harris6D SHOT 18.36 18.52 0.02
Susan SHOT 34.23 33.62 0.02
Harris3D SHOTColor 17.18 17.23 0.02
Harris6D ShapeContext 9.96 10.01 0.03
Harris6D SHOTColor 18.42 18.58 0.03
Susan ShapeContext 9.07 8.78 0.03
ISS ShapeContext 27.58 27.58 0.03
Harris3D ShapeContext 8.44 8.53 0.04
Harris6D PrincipalCurvatures 18.46 18.61 0.05
Harris3D PrincipalCurvatures 17.11 17.15 0.06
Susan PrincipalCurvatures 34.24 33.61 0.11

We further consider the success rates for translations and rotations in (around) the x, y and

z axes individually for the detector/descriptor pairs with sufficiently high mean success rates

4.4. Results 27

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

T(m)

S
R

(a) Success rate in x-axis

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

T(m)

S
R

(b) Success rate in y-axis

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

T(m)

S
R

(c) Success rate in z-axis

Figure 4.2: Absolute success rates for detectors/descriptors with mean success rates over 0.5
over the range of translations from -100cm to 100cm in the x-axis (a), y-axis (b) and z-axis (c).

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

T(m)

S
A

(a) success rate in x-axis

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

T(m)

S
A

(b) success rate in y-axis

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

T(m)

S
A

(c) success rate in y-axis

Figure 4.3: Absolute success rates for detectors/descriptors with mean success rates over 0.5
over the range of rotations from -45 to 45 in the x-axis (a), y-axis (b) and z-axis (c).

(tab.4.1). The absolute and relative success rates for translations are shown in fig.4.2 and

fig.4.4 respectively. The absolute and relative success rates for rotations are shown in fig.4.3

and fig.4.5 respectively. The detailed versions of fig.4.2, fig.4.3, fig.4.4 and fig.4.5, with legends,

can be found in the appendix.

−40 −20 0 20 40

0

0.2

0.4

0.6

0.8

1

R(degree)

S
R

(a) success rate in x-axis

−40 −20 0 20 40

0.4

0.6

0.8

1

R(degree)

S
R

(b) success rate in y-axis

−40 −20 0 20 40

0

0.2

0.4

0.6

0.8

1

R(degree)

S
R

(c) success rate in z-axis

Figure 4.4: Relative success rates for detectors/descriptors with mean success rates over 0.5
over the range of translations from -100cm to 100cm in the x-axis (a), y-axis (b) and z-axis (c).

28 Chapter 4. Multi-sensor fusion

−40 −20 0 20 40

0

0.2

0.4

0.6

0.8

1

R(degree)

S
A

(a) success rate in x-axis

−40 −20 0 20 40

0.4

0.6

0.8

1

R(degree)

S
A

(b) success rate in y-axis

−40 −20 0 20 40

0

0.2

0.4

0.6

0.8

1

R(degree)

S
A

(c) success rate in z-axis

Figure 4.5: Relative success rates for detectors/descriptors with mean success rates over 0.5
over the range of rotations from -45 to 45 in the x-axis (a), y-axis (b) and z-axis (c).

4.5 Discussion

The main contribution described in this chapter is the design and development of the calibration-

free registration algorithm, and the comprehensive and exhaustive evaluation of all combina-

tions of keypoint detector and descriptor available in the PCL for use with depth sensor data on

an extensive 3D dataset. Individual detectors and descriptors have been evaluated in specific 3D

applications (e.g.[52, 53, 55, 68, 70]) but the real performance of all possible detector/descriptor

pairs has not yet been comparatively evaluated in the literature. The substantial amount of

processing necessary to accomplish this evaluation was possible because of our access to the

ACENET computational cluster which allowed significant use of concurrency across the data

samples.

The results presented in tab.4.1 suggest that several detector/descriptor pairs have relatively

high success rates over the entire dataset. These results are further supported by the data

presented in tab.4.2a and tab.4.2b, with a direct correspondence between high success rate,

large number of corresponding keypoints and low number of invalid correspondences. These

data suggest that the success rate of detector/descriptor pairs is largely dependent on the

number of keypoints detected. However, comparing the results for the small and large search

radii (see tab.4.2a and tab.4.2b) supports that the number of keypoints is likely less important

than the number of correspondences. For example, the pair ISS/MomentInvariants had an

average of 132 keypoints for both small and large search radii, but a success rate during recover

of 0.99 and < 0.5 for small and large search radii respectively. This is a result of the quality of

4.5. Discussion 29

the keypoints which was poorer for the large search radii, preventing efficient correspondence

estimation.

Inspection of the success rates in the axes individually (fig.4.2 and fig.4.3) under translation

reveals that many detector/descriptor pairs are not translation invariant. Some pairs (e.g. IS-

S/MomentInvariant, ISS/SHOT) are translation invariant, achieving near perfect performance

across all translations. Others (e.g. ISS/PFH, Susan/SHOT, Harris3D/IntensityGradient)

have a performance that degrades linearly with increasing translation symmetrically around

zero translation. Notably, all translations involving the SIFT 3D keypoint detector have a

performance that is like the linearly degrading symmetrical performance with an additional

cyclical modulation. The SIFT keypoint in PCL is the only implementation that utilizes voxel

down-sampling, inherent to the original 2D SIFT algorithm. This down-sampling involves the

computation of 3D voxels whose boundaries are impacted by floating point precision on trans-

lation. For example, a voxel with a boundary of zero, when translated by 70cm has a new,

real boundary of 0.7m. A real point that is at 0m will fall into the voxel to the left of the

down-sampling voxel under no translation. After translation, the boundary is represented in

floating point as 0.69999, placing the point in the voxel to the right of the boundary. In this

way, the down-sampling changes the point cloud, creating different keypoints and descriptors,

ultimately affecting the correspondence and final recovery. The issue can be mitigated by imple-

menting surface normal algorithm in double-precision. Accordingly, the current problems with

the implementation of SIFT 3D must be addressed in PCL before its algorithmic performance

can be evaluated. As evidenced in fig.4.2 and fig.4.3, some detector/descriptor (i.e. FPFH

with ShapeContext/SHOT) pairs show asymmetrical performance around zero translation in

the y-axis. This is the result of the fact that the PCL assumes surface normals always point

toward the viewport origin. The objects, under negative translation, cause a virtual “flipping”

of the surface normal for some surfaces, causing an undesirable behaviour in the detection and

description of the objects keypoints. Setting the viewport to a very far location remediates this

issue, transforming the results of the translations in the y-axis to mirror those of the x- and z-

axis (i.e., translation invariance and linearly variant symmetry). Inspection of the performance

of the detector/descriptor pairs shows similar performance in rotation compared to translation.

30 Chapter 4. Multi-sensor fusion

Some pairs (e.g. ISS/MomentInvariant, ISS/SHOT) are rotation invariant over the range. Oth-

ers, (e.g., Harris6D/FPFH, Harris3D/FPFH) show a sharp degradation in performance over

the first 15◦ of rotation symmetrically around zero rotation in all axes. However, this degrada-

tion plateaus between 15◦ and 45◦. This phenomenon is a result of our dataset, which contains

some objects that are symmetrical in nature. The performance degradation occurs for non-

symmetrical objects almost immediately even under small rotations, but performance for these

pairs does not change at all for symmetrical objects. The last set of pairs are rotation- variant,

experiencing a continuous degradation in performance with increased rotation, symmetrical

around zero rotation (e.g. Susan/IntensityGradient, ISS/ShapeContext).

Overall, considering the performance of all the detector/descriptor pairs over the varied objects,

extensive test dataset, conditions and parameters, the ISS keypoint with SHOT, SHOTColor,

FPFH, RIFT, MomentInvariants, IntensitySpin derivatives and SHOT descriptors performed

the best. Under translation, ISS/IntensitySpin, ISS/MomentInvariants, ISS/RIFT, ISS/FPFH,

ISS/IntensityGradient, ISS/SHOTColor and ISS/SHOT were considerably invariant, stable and

constant over the entire range on all three axes. Furthermore, under rotation, ISS/MomentIn-

variants, ISS/IntensitySpin, ISS/RIFT, ISS/SHOT, ISS/SHOTColor and ISS/FPFH were in-

variant, stable and constant over the entire range around all three axes. From these data, it

seems the most robust detector/descriptor pairs for 3D recovery or multi-sensor alignment are

ISS/SHOT, ISS/SHOTColor and ISS/FPFH.

4.6 Conclusion

This chapter presents a comprehensive evaluation of the performance of various popular 3D

keypoint detectors and descriptors currently available in the Point Cloud Library (PCL) to

recover transformation information. The results show insight into which pairs work the best

under various translations or rotations. After brute force testing all possible candidate pairs,

we found the best pairs in both translation and rotation were ISS and SHOT or ISS and

SHOTColor. However, the performance of both ISS/SHOT and ISS/SHOTColor pairs need to

4.6. Conclusion 31

be tested with real-world point clouds to make sure they can successfully reconstruct the clinic

environment. Future work will look to evaluate these detector/descriptor pairs in this real-

world context. Specifically, the real-world testing should be performed by placing two Kinect

2 side-by-side in a room and aligning the captured images together using the ISS/SHOT pairs.

If successful, one Kinect 2 sensor should then be moved incrementally along one direction

away from the second sensor which would remain stationary for the entire experiment. At

each gradual increment, alignment should be attempted on the captured images from each

sensor. This process evaluates the translation tolerance of the keypoint/descriptor pairs. The

same process should then be applied to the remaining two axes of translation, and along the

three axes of rotation independently. Finally, the study should be repeated with concurrent

translations and rotations along multiple axes.

By using the keypoint/descriptor pair identified by the work presented in this chapter, it is the-

oretically possible to combine point clouds from multiple Kinect 2 sensors to extend the field of

view of a single sensor, thus overcoming the limitations of a single-sensor system (e.g., occlu-

sions). The resulting combined point cloud will be substantially more suitable for tracking the

operators hand under the conditions present in cluttered and dynamic clinical environments.

Chapter 5 Hand tracking in 3D point cloud

The registered point cloud obtained from sec.4 is a large point cloud, which is comprised

of many static and dynamic environmental objects, including humans and the background.

Additionally, each object or human generally is a composition of several smaller objects or

regions of interest. For example, as noted earlier, in a clinical setting, identifying and tracking

the location of practitioners hands independently of the rest of the human body and amidst a

cluttered and dynamic environment is highly meaningful. Accordingly, it is essential to segment

the hands from the rest of the global point cloud to perform further analysis. The issue of hand

segmentation is approached experimentally through the development of a novel and easy to

implement semi-automatic 3D hand tracking algorithm.

5.1 Experimental Setup

The algorithm employs an iterative, semi-automatic process. Before using the system, one

hand is selected manually from the global point cloud, initializing the tracker. This step is

only completed one time. Next, the first frame of the 3D scene is segmented by both Euclidean

distances and colour, identifying clusters/objects in the scene. In this way, different parts of any

person in the scene are automatically segmented into clusters (e.g., body, head, arms and hands)

along with other environmental objects. The cluster representing the manually segmented hand

region is identified. Then, for each successive frame of new data, the point cloud is segmented

into clusters automatically. The centre of mass of the hand in the previous frame is used to find

the cluster that represents the hand in the current frame based on minimizing the 3D Euclidean

distance over all potential clusters. This process is shown in fig.5.1.

32

5.1. Experimental Setup 33

Start

Select first
frame

Colour-based
point cloud
segmentation

Compute
centres of
clusters

First frame?

Compute
the distances
between C and
the centres

of all clusters

Pick the cluster
at minimal

distance with C

Manually pick
the cluster

where hand is

Set C as the
centre of the
picked cluster

Last Frame?
Go to next

frame

End

No

Yes

No

Yes

Figure 5.1: Workflow of hand tracking

5.1.1 Manual Hand Segmentation

Two hand segmentation approaches were evaluated based on the available segmentation tools

in PCL. The first was a 3D geometric region-growing approach [9]. In this method, a seed

point is first selected from the global point cloud. The surface normal of the point is computed

and compared to all nearest neighbours. If the angle between the seed and any neighbour is

less than a defined threshold, the neighbour is added to the segmented object, the region is

expanded, and all new neighbours are checked until no new neighbours are found. This process

34 Chapter 5. Hand tracking in 3D point cloud

is repeated for all points in the global point cloud until all points are part of a segmented object.

The parameters for geometric region-growing were: minimum cluster size = 100; neighbours =

30; curvature threshold = 1.0; and smoothness threshold = 3.0 degrees. The second method

utilizes the fact that hands are either skin colour or, in a clinical setting, wearing medical gloves

(e.g., an ultrasound operator wears latex gloves during scanning). Accordingly, we employed

colour-based region-growing [9, 95]. This approach is methodologically like geometric region-

growing except for two differences. The first difference is that pixel colour is used instead

of comparing the angle between the surface normal of a seed and its neighbour. The second

difference is that after an initial segmentation, regions that have similar mean colour and are

geometrically adjoined are merged to reduce over- and under-segmentation. After segmenting

the hand, we use PCL built-in function to perform statistical outlier removal to remove the

noise.

A static test was designed to evaluate the performance of the two different 3D segmentation

approaches. In this test, a participant stood in the field of view of the sensors for a learned

time of two seconds (30 frames), arms raised to the front and parallel to the ground, hands

pointing up. After multiple trials ranging from 0.5 10 seconds, two seconds was selected as the

trial time because longer times resulted in transient movements due to the difficulty of holding

ones hands still for longer times. A colour-based region-growing algorithm built-in in PCL was

used to segment the hand from other parts of the point cloud. The parameters of the algorithm

were set as: distance threshold = 10 cm; point colour threshold = 5; region colour threshold =

3 for post segmentation merging; and minimum cluster size = 100 points.

Two Kinects were set up in a room at a height of 1m with 0.2m offset and 15 degrees rotation

towards to each other. These positions maximized the view field of the test subjects. The

sensor point clouds were automatically aligned using the method with ISS/SHOT for keypoints

of multi-sensor fusion determined in chapter 4 to create a more comprehensive global reference

frame. A participant in natural clothing and wearing blue gloves to simulate a clinician stood

in the field of view of both sensors at a distance from the centre point of the sensors. The

participant put one hand forward and a sample data frame was captured (fig.5.2a shows the

colour image, fig.5.2b shows the depth image and fig.5.2c shows the generated point cloud).

5.1. Experimental Setup 35

The global point cloud was segmented using colour-based region-growing. In some frames, the

hands cannot be segmented due to lighting condition and sensor noise. Those frames were not

processed.

(a) RGB image

(b) depth image (c) original point cloud

Figure 5.2: Colour-based hand segmentation

5.1.2 Automated Cluster Segmentation

The point clouds captured from the cameras include partial human bodies, other objects in the

room, and the background scene. These complex point clouds can be decomposed into clusters,

depending on their 3D positions and/or colour differences between points that comprise the

clusters.

The PCL region-growing point cloud segmentation algorithm is extended from the original

2D version of algorithm [96]. The algorithm merges points that are similar in terms of the

smoothness constraint. The output of this algorithm is a set of clusters, where each cluster is a

set of points that are a part of the same smooth surface. Smoothness is computed by comparing

the angles between the point normals.

The pseudo-code of this algorithm is listed in alg.1 [97]. All points are sorted by curvature

values, from small to large, at first. The algorithm starts from the seed point which has the

minimum curvature value (a flat area). The surface normal of each neighbouring point of the

seed are then tested against the seeds normal. If the angle is less than a threshold value, then

the point is marked as in the same cluster of the seed. Also, these points become new seeds, and

repeat the previous algorithm, until seeds are empty, which means the region is fully grown.

36 Chapter 5. Hand tracking in 3D point cloud

Region-growing point cloud segmentation takes the continuity of points, or more exactly the

continuity of the surface normal, as the only factor. A variant of region-growing segmentation

is colour-based region-growing segmentation, which adds differences between the colours of

neighbouring points into the algorithm [95].

input: Point cloud = P
Point normals = N
Points curvatures = c
Neighbour finding function Ω(.)
Curvature threshold Cth

Angle threshold θth

1 begin
2 Region list R← ∅;
3 Available points list A← 1, ..., |P |;
4 while A is not empty do do
5 Current region RC ← ∅;
6 Current seeds SC ← ∅ Point with minimum curvature in A← Pmin;
7 SC ← SC ∪ Pmin;
8 RC ← RC ∪ Pmin;
9 A← A Pmin;

10 for i = 0 to size (SC) do do
11 Find nearest neighbours of current seed point BC ← Ω(SCi);
12 for j = 0 to size (BC) do do
13 Current neighbour point Pj ← BCj;
14 if A contains Pi and cos−1(|NSCi, NSCj|) < θth then then
15 RC ← RC ∪ Pj;
16 A← A Pj;
17 if cPj < Cth then then
18 SC ← SC ∪ Pj

19 end

20 end

21 end

22 end
23 Add current region to global segment list R← R ∪RC

24 end
25 return R

26 end

Algorithm 1: Pseudo-code of region-growing algorithm

5.1. Experimental Setup 37

5.1.3 Seeding Automated Clustering

The hand tracking algorithm is designed to find a cluster in the current frame that is the

closest, by Euclidian distance, to the cluster marked as the hand in the previous frame. This

iterative process is suitable for tracking the movement of a specific cluster (e.g. hand cluster) in

a sequence of point clouds. However, the algorithm cannot determine which cluster is the hand

for tracking. Thus, an operator needs to manually pick the hand cluster on the first frame. In

this application, the designed hand tracking system presents the point cloud of first captured

frame, then prompts the user to visually identify and select the hand cluster as the start point.

5.1.4 Hand tracking in 3D point cloud

On each new frame Fi of video data after the first, we segmented all clusters from the global

scene using both geometric and colour segmentation. The centroid and colour of the hand

cluster for the previous frame Fi−1 were then calculated, establishing the likely 3D location of

the centre of the hand. Then, the centroids of all clusters in Fi were calculated, and clusters

were ordered by their distance from the centroid of the hand cluster in Fi−1. The colours of

these clusters were compared to the colour of the hand identified in Fi−1, starting with the

nearest cluster. The first matched cluster was identified as the new centre of the hand. The

pseudo-code for the 3D hand tracking is summarized in alg.2.

5.1.5 Hand motion modelling and characterization

Segmenting and locating the hand in 3D space is useful for detecting interactions with other

humans and environmental objects. However, from a clinical perspective we are also interested

in characterizing practitioners hand motions. We consider the clinical task of tracking the

hand motion of a sonographer trainee to automatically and objectively assess his or her level of

skill while holding the ultrasound transducer and performing an ultrasound scan. Preliminary

data provided by clinicians skilled with ultrasound technique defined the preliminary motion

38 Chapter 5. Hand tracking in 3D point cloud

1 begin
2 cluster = show(segment(frames[0]);
3 centroid = getCentroid(cluster);
4 colour = getColour(cluster);
5 for I do=1 to length(frames) do
6 clusters = segment(frames[i]);
7 centroids = new List;
8 for cluster in clusters do
9 centroids.append(getCentroid(cluster));

10 end
11 Order by distance(centroids, centroid);
12 for j do=1 to length(centroids) do
13 currentCluster = getClusterByCentroid(centroids[i], clusters);
14 if colourMatch(currentCluster, colour) then
15 centroid = getCentroid(hand);
16 colour = getColour(currentCluster);
17 break;

18 end

19 end
20 Write(hand);

21 end

22 end

Algorithm 2: Hand tracking algorithm

parameters of interest to our study as: time to target, velocity and stability of movement.

However, due to the exploratory nature of this study we focus on velocity and stability of

movement. As determined in sec.5.1.4, the centroid of the hand cluster represented the hands

3D location. Each frame of data was time stamped, allowing the centroids movement to be

interpreted as a velocity over time. However, due to the hardware variations of Kinect devices,

the frame rate of each sensor was slightly variable and different between sensors. In this thesis,

the global frame rate was set at 30 FPS, and the centroids in the global reference frames were

interpolated to their nearest global time.

The velocities of the hands were calculated in each of the Cartesian axes (X, Y, and Z direction)

every 30 frames (1 second) using the interpolated 3D positions and times. The overall velocity

was also calculated over the 3D Euclidean distance for each interpolated time. To smooth

the result, velocity was averaged for every 5 frames (1/6 second). Stability of movement was

inferred from the acceleration, or rate-of-change of the velocity. Stable movement (smooth

acceleration) was defined as accelerations < 5cm2/frame.

5.2. Results and discussion 39

The experimental design was as follows:

1. Participants wore blue medical gloves and stood in front of a desk in a cluttered room.

2. A tape measure was placed on the desk to provide a ground truth distance measure.

3. Participants were asked to:

(a) Raise one hand above the tape measure to a starting position;

(b) Move his/her hand to the right, along X-direction to a target distance which set by

the specific experiment;

(c) Moves his/her hand to the left, along X-direction and back to the start position.

4. Step 3 was repeated in the Y-direction (upwards).

5.2 Results and discussion

The experiments included two participants, each of them performing a series of movements

in front of a Microsoft Kinect 2. The movements were measured directly through image data

captured by the Microsoft Kinect 2, and compared to the measurements from the tape measure.

5.2.1 Automated Cluster Segmentation

The subject was segmented into multiple clusters, including face, left and right hands. Seg-

mentation was based on colour-based region-growing segmentation. To enhance the result, the

subject was wearing a blue medical glove.

5.2.2 Seeding and Automated Clustering

The hand cluster was manually selected from the segmented point cloud as in fig.5.3. The

original point cloud is shown in fig.5.2c, and segmented point cloud is shown in fig.5.3 (left),

each colour represents a cluster. The selected cluster (hand) is shown in fig.5.3 (right).

40 Chapter 5. Hand tracking in 3D point cloud

Figure 5.3: Colour-based hand segmentation with selected hand cluster (left: segmented point
cloud, right: selected hand cluster)

5.2.3 Hand tracking in 3D point cloud

Subject 1

The colour segmentation stability results can be seen in fig.5.4a and fig.5.5a. A sample frame

of this test is shown in fig.5.8. The participant holds the hand visually still, the results are

stable to within variance of 2.86 × 10−5m2, suggesting that the centre of mass of the hand

point cloud over time corresponds to the actual movement of the hand. To evaluate the effec-

tiveness of the colour-based region-growing segmentation the participant again put one hand

forward to a start point at (−0.13m,−0.42m), then moved the hand from start point to right

at (0.42m,−0.45m), and back to start point (x-test). The results of x-test are shown in fig.5.4b

and fig.5.5b. The participant then put the hand at (−0.07m,−0.33m), lowered the hand down

to (−0.07m,−0.94m), and returned to start point (y-test). The results of y-test are shown in

fig.5.4c and fig.5.5c. The depth (z) coordinate was not considered for this test because the x

and y coordinates are inferred from z during world coordinate recovery, thus there is no need

for a separate z test.

For example, when evaluating motion in the x-axis, the x-component of the hand motion

increased from -13cm, reached a minimal at frame 57 (0.42m), then steadily decreased to -

0.26m. In test y, the y-component reached a maximum at frame 67, maximum at -0.94m, then

5.2. Results and discussion 41

0 20 40 60 80 100 120

0

1

2

Frame

W
or
ld

co
or
d
in
at
e
(m

)
X
Y
Z

(a) Stability test

0 20 40 60 80

0

1

2

Frame

W
or
ld

co
or
d
in
at
e
(m

)

X
Y
Z

(b) x-test

0 20 40 60 80 100 120 140

−1

0

1

2

Frame

W
or
ld

co
or
d
in
at
e
(m

)

X
Y
Z

(c) y-test

Figure 5.4: 3D coordinates of the centre of mass of the hand cluster in world coordinates
(experiment 1)

0 500 1,000 1,500 2,000

0

1

2

Frame

V
el
o
ci
ty

(m
/f
ra
m
e)

VX

VY

VZ

(a) Stability test

0 20 40 60 80

0

1

2

Frame

V
el
o
ci
ty

(m
/f
ra
m
e)

VX

VY

VZ

(b) x-test

0 20 40 60 80 100 120 140

−1

0

1

2

Frame
V
el
o
ci
ty

(m
/f
ra
m
e)

VX

VY

VZ

(c) y-test

Figure 5.5: Velocity of the centre of mass of the hand cluster in world coordinates (experiment
1)

decreased to -0.4cm, supporting 3D colour-based region-growing segmentation.

Subject 2

The fig.5.6a, fig.5.7a, fig.5.6b, fig.5.7b shows the x-test and y-test results in another trial. The

coordinates change trends are largely same as sec.5.2.3. However, this subject does not move

his hands as smooth as the subject in sec.5.2.3, the velocity figure is harder to analysis.

The participant put one hand forward to a start point at (0m, 0.5m), then moved the hand

from start point to the right (0.5m, 0.5m). After that, the participant moved his hand back to

the left (−0.4m, 0.5m), and finally to the start point, completing the x-test. For the Y-test,

the participant put the hand at (0.1m, 0.75m), then lowered the hand down to (0m,−0.25m),

and returned to the start point, completing the y-test.

42 Chapter 5. Hand tracking in 3D point cloud

0 20 40 60 80 100

0

1

2

3

Frame

W
or
ld

co
or
d
in
at
e
(m

)

X
Y
Z

(a) x-test

0 20 40 60 80

0

1

2

Frame

W
or
ld

co
or
d
in
at
e
(m

)

X
Y
Z

(b) y-test

Figure 5.6: 3D coordinates of the centre of mass of the hand cluster in world coordinates
(experiment 2)

0 20 40 60 80 100

−0.2

−0.1

0

0.1

Frame

V
el
o
ci
ty

(m
/f
ra
m
e)

VX

VY

VZ

(a) x-test

0 20 40 60 80

−0.10

−0.05

0.00

0.05

0.10

0.15

Frame

V
el
o
ci
ty

(m
/f
ra
m
e)

VX

VY

VZ

(b) y-test

Figure 5.7: Velocity of the centre of mass of the hand cluster in world coordinates (experiment
2)

5.2. Results and discussion 43

Figure 5.8: A sample frame from the static test. Automated scene segmentation using colour-
based region-growing (left). Extracted hand object (right)

Although the velocity figures (fig.5.7a and fig.5.7b) include noise, the overall trends are still

recognizable: in fig.5.7a, the velocity in X axis drops from 15m/frame to −0.125m/frame at

frame 21, which matches the coordination change in fig.5.6a. In fig.5.7b, the overall velocity

changes from negative to positive at frame 44, which also matches the coordinates change in

fig.5.6b, where the subject move his hand to −0.25m.

The other trails also show the same matches between velocity and coordinate changes.

5.2.4 Hand motion modelling and characterization

The centre of mass of the hand across successive frames was used to calculate both velocity and

stability of movement. Stability of movement was evaluated by examining the hand velocity in

the static test. Results are shown in fig.5.5a. The velocity is very small, and reflects the stable

positional data provided by the centre of mass of the hand during the static trial. Fluctuations

of this small magnitude are likely contributed by sensor noise, caused by the inaccuracy of the

Kinect sensor, and minor segmentation variability. The velocity of the hand was derived from

the interpolated times and positions. The velocity was decomposed to the two directions of

44 Chapter 5. Hand tracking in 3D point cloud

motion and shown in fig.5.5b and fig.5.5c separately. The noise in x/y-test velocity figures are

significantly larger than that in static test, because it is hard to move the hand stable and slow

for test subjects. However, the overall treads of velocity are still unambiguously matched the

coordinates changes. Also, the coordinates in fig.5.4a, fig.5.4b and fig.5.4c matches the tape

measure placed on the desk for reference.

5.3 Conclusion

This chapter presents work to capture and track hands using a perspective-independent 3D

computer vision-based approach in a complex, cluttered, and dynamic indoor environment.

We proposed a novel process for tracking and analysing hand movement in these more com-

plex clinic environments. To accomplish this, we processed entirely 3D video data, overcoming

two substantial limitations with existing 2D approaches. First, 3D video data from multiple

sensors can be combined into a more comprehensive global scene, overcoming issues such as

environmental- and self-occlusion, and expanding the field of view of the system. Combining

data from multiple sensors in 2D is challenging and often not possible. Second, the resulting

global scene is perspective-independent. In real world, clinical environments, the sensors place-

ment is for convenience rather than optimal system performance. Accordingly, we evaluated the

performance of several keypoint and feature extraction methods for aligning multiple 3D point

clouds with various sensor placements. We identified that ISS keypoints and SHOT features

provided the most robust alignment between two point clouds over a range of translations and

rotations. Using this alignment method, we then determined that colour-based region-growth

segmentation was effective at segmenting a human hand in a complex scene. We used the centre

of mass of the segmented hand to track the hands motion over successive frames, and evaluated

the hands motion stability and velocity characteristics. We conclude that with this method we

can effectively combine the 3D data from multiple, arbitrarily placed depth sensors, segment a

human hand, and track the hand over successive frames.

We noted several limitations through the exploratory nature of this study and the experimental

5.3. Conclusion 45

nature of the methodology. Most notably, we evaluated the different combinations of keypoints

and features on a relatively small synthetic data set. Manual transformations were performed on

a complex test point cloud, creating the synthetic set of target clouds. Future work must extend

this evaluation strategy to real-world data captured from multiple sensors in different physical

locations. Our proof-of-concept hand tracking also required manual initialization to identify

which of the segmented clouds was the hand. A fully-automated process of hand segmentation

and identification is critical for clinical applications. Furthermore, if the segmentation failed to

identify the hand as a clustered object the tracker may permanently lose the target. This could

happen, for example, if the segmentation combined the hand and arm. Once an incorrect cluster

is chosen, our current tracker cannot recover without user intervention. We propose utilizing

the hand colour and point cloud characteristics (e.g., number of points, shape) to perform

template matching among frames in conjunction with centre of mass. Finally, our hand motion

modelling currently characterizes motion stability and velocity. We evaluated these motion

characteristics through a static test and a simple dynamic test. We plan to expand testing of

these characteristics on larger, more diverse and more dynamic test sets. Furthermore, clinicians

identified time to target as another clinically relevant characteristic, particularly with respect

to the evaluation of tasks such as ultrasound competency. Accordingly, we propose extending

the capabilities of our model to include temporal measures.

Notwithstanding the limitations of the current study, our preliminary results suggest that au-

tomated multi-sensor registration, hand segmentation, tracking and modelling in full 3D is

promising. Our future work will seek to address the limitations of the current study, providing

more robust and generalizable results, toward a more automated system. Ultimately, a robust,

automated 3D hand tracker that can incorporate the data from multiple arbitrarily placed sen-

sors can support the automated assessment of care delivery. This can, for example, allow better

understanding of a clinicians skill during ultrasound training, or ensure the proper execution

of surgical procedures. Furthermore, automated systems of 3D tracking can also find broader

applications in gaming, human-computer interactions and security.

Chapter 6 Conclusion and future work

This chapter summarizes the work presented in this thesis, including a discussion of the main

results and contributions, then outlines the directions of future work. The work described

in this thesis outlines the theoretical background for a system that can track an ultrasound

technicians hand movements in complex 3D environments using 3D computer vision. However,

realizing such a system still requires significant work.

6.1 Conclusion

This thesis outlines the theoretical work toward a high-level framework for an automatic ap-

proach of ultrasound operator skill level analysis. Chapter 1 introduces the objectives of my

work: 1. Developing a method of automatic ultrasound image capturing and analysis; 2. Ex-

tending the effective field of view of a 3D computer vision system using Microsoft Kinect 2

sensors through an automated, calibration free, multi-sensor fusion algorithm; and 3. Devel-

oping a semi-automatic method of tracking an ultrasound operators hand in complex indoor

environments in 3D space using computer vision.

Chapter 2 reviews the overall background of this research, including ultrasound image analysis,

multi-sensor fusion (2D image registration and 3D point cloud registration) and hand tracking

(appearance-based and model-based approaches).

Chapter 3 outlines the use of image analysis techniques to analyse ultrasound images, extracting

transducer movements from a sequence of ultrasound images. A distributed capturing system

was designed to fit the synchronization and high-throughput requirements for capturing RGB-

46

6.2. Future work 47

D data from multiple Microsoft Kinect 2 and ultrasound data from ultrasound machines. The

captured data was analysed to find differences in patterns of transducer movements between

novice and expert operators, and the results showed that the differences are significant.

Chapter 4 presents the evaluation of all available keypoint detectors and descriptors available

in PCL [9] to identify the best combination for pair-wise registration [92]. This optimal pair

was used in an automatic, calibration-free multi-sensor fusion algorithm. The results show that

ISS performed best among all keypoint detectors. There are multiple keypoint descriptors,

such as IntensitySpin, SHOT and SHOTColor, that perform well. Importantly, this chapter

contains a discussion about the abnormities observed in the evaluation including potential ex-

planations. For example, the SIFT detector shows linearly degrading symmetrical performance

with an additional cyclical modulation, which may cause by the floating-point precision issues

on boundaries during voxel down-sampling.

Chapter 5 outlines the examination of existing hand tracking algorithms and proposes a semi-

automatic hand tracking algorithm in 3D point clouds. This proposed algorithm is suitable for

complex, cluttered, and dynamic indoor environments. Point clouds are first aligned together

to generate a more comprehensive global scene, which extended field of view and overcome

occlusion issues. Then the colour-based region-growth segmentation is applied to the scene,

and segment it into multiple clusters, and further compute the centre of mass of each cluster.

The cluster of the hand is manually identified in the first frame, then automatically tracked

with nearest cluster algorithm in following frames.

6.2 Future work

This thesis outlines the theoretical development and partial implementation of a framework for

automatic analysis of an ultrasound operators skill level. The implementations were focused

on multi-sensor fusion and hand tracking, using Microsoft Kinect 2 data and extracting hand

movements from ultrasound images. Future work on this project includes:

48 Chapter 6. Conclusion and future work

1. The automated analysis of ultrasound images for all identified key factors, including

time-to-acquisition, edges sharpness and position of big structures, with a single metric

synthesizing all these results that can be used to represent the ultrasound image quality.

2. Analysis patterns of ultrasound-image-quality-over-time from both novice and expert

scans.

The addition of a sophisticated outlier removal filter before registering point clouds. The

depth data of Kinect sensor suffer from noise [98], A sophisticated outlier removal filter

could help reducing or suppressing the error rate for point cloud registration.

3. The improvement of existing feature descriptors or the development of a better feature

descriptor which is more tolerant to the perspective changes. Most registration failures

were caused by inaccurate feature descriptors. This was evident because the keypoints

extracted from the point clouds remained stable before and after transformation, while

the outputs of the feature descriptors were more sensitive to transformation.

4. Improvement of the point cloud segmentation algorithm. Currently, the segmentation

algorithm is sensitive to noise and illumination conditions, because it was based on Eu-

clidean distances in 3D space and RGB colour similarities between two surfaces. Illumi-

nation changes may cause the segmentation algorithm to fail, and must be addressed.

5. Automatic identification of the hand cluster in the first frame by template matching or

other methods.

Appendix A Distributed recording system

A.1 Controller node

1 import wx

2 import sys

3 import cv2

4 import zmq

5 import json

6 import threading

7 import time

8 import struct

9 import numpy

10 import Queue

11 import logging

12

13 logging.basicConfig(level=logging.DEBUG)

14

15

16 class Parser(object):

17 def init (self, window, socket):

18 self.queue = Queue.Queue()

19 self.is shutdown = False

20 self.is saving = False

49

50 Appendix A. Distributed recording system

21 self.thread save = None

22 self.thread receive = None

23 self.window = window

24 self.socket = socket

25

26 def receive start(self):

27 self.is shutdown = False

28 self.is saving = False

29 self.thread receive = threading.Thread(

30 target=self.receive frame)

31 self.thread receive.start()

32

33 def receive stop(self):

34 self.is shutdown = True

35 self.is saving = False

36 self.thread receive.join()

37

38 def save start(self):

39 self.is saving = True

40

41 def save stop(self):

42 self.is saving = False

43

44 def receive frame(self):

45 header s = struct.Struct(’13cliiiiii’)

46

47 while not self.is shutdown:

48 # receive and decode

49 # logging.debug(’waiting...’)

A.1. Controller node 51

50 try:

51 msg = self.socket.recv(flags=zmq.NOBLOCK)

52 except zmq.Again:

53 logging.debug(’no data received’)

54 time.sleep(0.1)

55 continue

56

57 offset = 0

58 header = header s.unpack(msg[offset:header s.size])

59 header = list(header)

60 # logging.debug(header)

61 serial = ’’.join(header[0:12])

62 header = header[13:]

63 offset = offset + header s.size

64

65 timestamp = header.pop(0)

66

67 rgbwidth = header.pop(0)

68 rgbheight = header.pop(0)

69 rgbbp = header.pop(0)

70 rgbsize = rgbwidth ∗ rgbheight ∗ rgbbp

71 rgb = msg[offset:offset+rgbsize]

72 offset = offset + rgbsize

73

74 depthwidth = header.pop(0)

75 depthheight = header.pop(0)

76 depthbp = header.pop(0)

77 depthsize = depthwidth ∗ depthheight ∗ depthbp

78 depth = msg[offset:offset+depthsize]

52 Appendix A. Distributed recording system

79 offset = offset + depthsize

80

81 regsize = depthsize

82 reg = msg[offset:offset+regsize]

83 offset = offset + regsize

84 if offset != len(msg):

85 logging.warning(’redundant data? decoded: %s all: %s’,

offset, len(msg))

86

87 rgb = numpy.fromstring(rgb, numpy.uint8)

88 rgb = numpy.reshape(rgb, (rgbheight, rgbwidth, 4))

89 depth = numpy.fromstring(depth, numpy.float32)

90 depth = numpy.reshape(depth, (depthheight, depthwidth))

91 reg = numpy.fromstring(reg, numpy.uint8)

92 reg = numpy.reshape(reg, (depthheight, depthwidth, 4))

93

94 # show image

95 self.window.updateDevice(serial, rgb, depth, reg)

96

97 if self.is saving and not self.is shutdown:

98 try:

99 self.queue.put((serial, timestamp, rgb, depth, reg))

100 except Queue.Full:

101 logging.error(’Queue full!! skip current frame’)

102 continue

103

104 if not self.thread save:

105 thread save = threading.Thread(target=self.save)

106 thread save.start()

A.1. Controller node 53

107 self.thread save = thread save

108

109 if self.is shutdown:

110 # shutdown

111 thread save.join()

112

113 # socket.send string(command)

114 # # always reset command

115 # if command != ’ACK’:

116 # command = ’ACK’

117 logging.info(’mainloop: exited’)

118

119 def save(self):

120 while True:

121 try:

122 item = self.queue.get nowait()

123 except Queue.Empty:

124 if not self.is saving:

125 break

126 logging.debug(’save: queue underflow’)

127 time.sleep(1)

128 continue

129

130 serial = item[0]

131 timestamp = item[1]

132 logging.debug(’saving %s %s’, serial, timestamp)

133 numpy.save(’%s−%s−rgb.npy’ % (serial, timestamp), item[2])

134 numpy.save(’%s−%s−depth.npy’ % (serial, timestamp), item[3])

135 numpy.save(’%s−%s−reg.npy’ % (serial, timestamp), item[4])

54 Appendix A. Distributed recording system

136

137 self.thread save = None

138 logging.info(’save: exited’)

139

140

141 class MainWindow(wx.Frame):

142 def init (self, parent, title, size):

143 super(MainWindow, self). init (parent, title=title, size=size)

144

145 self.InitUI()

146 self.Centre()

147 self.InitNet()

148 self.Show()

149

150 self.devices = {}

151 self.parser = Parser(self, self.socket)

152 self.parser.receive start()

153

154 def InitUI(self):

155 self.Bind(wx.EVT CLOSE, self.onClose)

156

157 panel = wx.Panel(self, −1)

158 self.panel = panel

159 vbox = wx.BoxSizer(wx.VERTICAL)

160 self.vbox = vbox

161

162 hbox = wx.BoxSizer(wx.HORIZONTAL)

163 buttonStart = wx.Button(panel, label=’Start’, size=(70, 30))

164 buttonStart.Bind(wx.EVT BUTTON, self.onStart)

A.1. Controller node 55

165 hbox.Add(buttonStart, border=10)

166 buttonStop = wx.Button(panel, label=’Stop’, size=(70, 30))

167 buttonStop.Bind(wx.EVT BUTTON, self.onStop)

168 hbox.Add(buttonStop, border=10)

169 vbox.Add(hbox)

170

171 panel.SetSizer(vbox)

172

173 def InitNet(self):

174 fp = open(’config.json’)

175 self.config = json.load(fp)

176

177 self.ctx = zmq.Context()

178 self.socket = self.ctx.socket(zmq.SUB)

179 self.socket.setsockopt(zmq.SUBSCRIBE, ’’)

180 for url in self.config[’collectors’]:

181 print ’subscribe to’, url

182 self.socket.connect(url)

183

184

185 def onStart(self, e):

186 print ’start’

187 self.parser.save start()

188

189 def onStop(self, e):

190 print ’stop’

191 self.parser.save stop()

192

193 def onClose(self, e):

56 Appendix A. Distributed recording system

194 print ’close’

195 self.parser.receive stop()

196 self.Destroy()

197

198 def updateDevice(self, serial, rgb, depth, reg):

199 if serial not in self.devices:

200 hbox = wx.BoxSizer(wx.HORIZONTAL)

201 # create

202 self.devices[serial] = {

203 ’rgb’: wx.StaticBitmap(self.panel),

204 ’depth’: wx.StaticBitmap(self.panel),

205 ’reg’: wx.StaticBitmap(self.panel)

206 }

207 hbox.Add(self.devices[serial][’rgb’], border=10)

208 hbox.Add(self.devices[serial][’depth’], border=10)

209 hbox.Add(self.devices[serial][’reg’], border=10)

210 self.vbox.Add(hbox, border=10)

211

212 # update

213 rgb = cv2.resize(rgb, (256, 256))

214 rgb = cv2.cvtColor(rgb, cv2.COLOR BGRA2RGB)

215 depth = cv2.resize(depth, (256, 256))

216 # depth vis = cv2.cvtColor(depth, cv2.COLOR BGRA2RGB)

217 reg = cv2.resize(reg, (256, 256))

218 reg = cv2.cvtColor(reg, cv2.COLOR BGRA2RGB)

219 self.updateImage(self.devices[serial][’rgb’], rgb)

220 # self.updateImage(self.devices[serial][’depth’], depth vis)

221 self.updateImage(self.devices[serial][’reg’], reg)

222

A.2. Recording node 57

223 def updateImage(self, wximage, img):

224 wximg = wx.EmptyImage(img.shape[1], img.shape[0])

225 wximg.SetData(img.tostring())

226 wxbitmap = wximg.ConvertToBitmap()

227 wximage.SetBitmap(wxbitmap)

228

229

230 if name == ’ main ’:

231 app = wx.App(False)

232 MainWindow(None, ”Command Centre”, (260, 180))

233 app.MainLoop()

A.2 Recording node

1 #include <iostream>

2 #include <opencv2/opencv.hpp>

3 #include <libfreenect2/libfreenect2.hpp>

4 #include <libfreenect2/frame listener impl.h>

5 #include <libfreenect2/packet pipeline.h>

6 #include <libfreenect2/registration.h>

7 #include <zmq.h>

8 #include <sys/time.h>

9

10

11 extern int errno;

12

13 struct header t{

14 char serial[13];

58 Appendix A. Distributed recording system

15 long timestamp;

16

17 int rgb width;

18 int rgb height;

19 int rgb bytes per pixel;

20

21 int depth width;

22 int depth height;

23 int depth bytes per pixel;

24 };

25

26 bool protonect shutdown = false;

27 bool big image = false;

28

29 int main(int argc, char ∗∗argv){

30 libfreenect2::Freenect2 freenect2;

31 if((argc != 3) && (argc != 4)){

32 std::cout << ”usage:” <<

33 argv[0] << ” bindURL serial” << std::endl <<

34 ”example: ” << argv[0] << ” tcp://∗:5555 123456”

35 << std::endl;

36

37 int kinectnum = freenect2.enumerateDevices();

38 std::cout << ”detected Kinects: ” <<

39 kinectnum << std::endl;

40 for(int i = 0; i < kinectnum; i++){

41 std::cout << freenect2.openDevice(

42 i, new libfreenect2::CpuPacketPipeline()

43)−>getSerialNumber() << std::endl;

A.2. Recording node 59

44 }

45

46 return 0;

47 }

48

49 char ∗bindurl = argv[1];

50 char ∗kinectserial = argv[2];

51 if((argc == 4) && (std::string(argv[3]) == ”true”)){

52 big image = true;

53 std::cout << ”big image model” << std::endl;

54 }

55 std::cout << ”small image model” << std::endl;

56

57 void ∗zcontext = zmq ctx new();

58 void ∗socket = zmq socket(zcontext, ZMQ PUB);

59 std::cout << ”binding ” << bindurl << std::endl;

60 if(zmq bind(socket, bindurl) != 0){

61 std::cerr << ”bind failed” << std::endl;

62 return 1;

63 }

64 std::cout << ”binded” << std::endl;

65

66 libfreenect2::PacketPipeline ∗pipeline = NULL;

67 // pipeline = new libfreenect2::CudaPacketPipeline();

68 pipeline = new libfreenect2::OpenCLPacketPipeline();

69 // pipeline = new libfreenect2::OpenGLPacketPipeline();

70 // pipeline = new libfreenect2::CpuPacketPipeline();

71

72 libfreenect2::Freenect2Device ∗dev = freenect2.openDevice(

60 Appendix A. Distributed recording system

73 kinectserial, pipeline

74);

75 if(dev == NULL){

76 std::cerr << ”unable to open device.” << std::endl;

77 return 1;

78 }

79 std::cout << ”device opened” << std::endl;

80

81 libfreenect2::SyncMultiFrameListener listener(

82 libfreenect2::Frame::Color | libfreenect2::Frame::Depth);

83 dev−>setColorFrameListener(&listener);

84 dev−>setIrAndDepthFrameListener(&listener);

85 dev−>start();

86

87 std::cout << ”device serial: ” << dev−>getSerialNumber() << std::endl;

88 std::cout << ”device firmware: ” << dev−>getFirmwareVersion() << std::endl;

89

90 libfreenect2::Registration∗ registration =

91 new libfreenect2::Registration(

92 dev−>getIrCameraParams(), dev−>getColorCameraParams());

93

94 libfreenect2::FrameMap frame;

95 while(!protonect shutdown){

96 listener.waitForNewFrame(frame);

97 libfreenect2::Frame ∗rgb = frame[libfreenect2::Frame::Color];

98 libfreenect2::Frame ∗depth = frame[libfreenect2::Frame::Depth];

99 libfreenect2::Frame undistorted(depth−>width, depth−>height,

100 depth−>bytes per pixel);

101 libfreenect2::Frame registered(depth−>width, depth−>height,

A.2. Recording node 61

102 depth−>bytes per pixel);

103 registration−>apply(rgb, depth, &undistorted, ®istered);

104

105

106 header t header;

107 memcpy(header.serial, kinectserial, strlen(kinectserial));

108 struct timeval tp;

109 gettimeofday(&tp, NULL);

110 header.timestamp = tp.tv sec ∗ 1000 + tp.tv usec / 1000;

111 cv::Mat rgbsmall;

112 if(big image == true){

113 header.rgb width = rgb−>width;

114 header.rgb height = rgb−>height;

115 header.rgb bytes per pixel = rgb−>bytes per pixel;

116 }

117 else{

118 cv::Mat rgbmat(rgb−>height, rgb−>width, CV 8UC4, rgb−>data);

119 cv::resize(rgbmat, rgbsmall,

120 cv::Size(depth−>width, depth−>height));

121 header.rgb width = rgbsmall.cols;

122 header.rgb height = rgbsmall.rows;

123 header.rgb bytes per pixel = 4;

124 }

125

126 header.depth width = depth−>width;

127 header.depth height = depth−>height;

128 header.depth bytes per pixel = depth−>bytes per pixel;

129

130 size t rgbsize = 0;

62 Appendix A. Distributed recording system

131 if(big image == true){

132 rgbsize = rgb−>width ∗ rgb−>height ∗ rgb−>bytes per pixel;

133 }

134 else{

135 rgbsize = rgbsmall.cols ∗ rgbsmall.rows ∗ 4;

136 }

137 size t depthsize = depth−>width ∗ depth−>height ∗

138 depth−>bytes per pixel;

139 size t regsize = registered.width ∗ registered.height ∗

140 registered.bytes per pixel;

141

142 zmq msg t request;

143 zmq msg init size(&request, sizeof(header) +

144 rgbsize + depthsize + regsize

145);

146 char ∗pdata = (char∗)zmq msg data(&request);

147 memcpy(pdata, &header, sizeof(header));

148 pdata += sizeof(header);

149 if(big image == true){

150 memcpy(pdata, rgb−>data, rgbsize);

151 }

152 else{

153 memcpy(pdata, rgbsmall.data, rgbsize);

154 }

155 pdata += rgbsize;

156 memcpy(pdata, depth−>data, depthsize);

157 pdata += depthsize;

158 memcpy(pdata, registered.data, regsize);

159 if(zmq sendmsg(socket, &request, 0) < 0){

A.2. Recording node 63

160 std::cerr << ”send failed” << errno << std::endl;

161 }

162 std::cout << ”Sent” << std::endl;

163

164 listener.release(frame);

165 }

166

167 delete registration;

168 dev−>stop();

169 dev−>close();

170

171 zmq close(socket);

172 zmq ctx destroy(zcontext);

173

174 return 0;

175 }

Bibliography

[1] M. Camplani and L. Salgado, “Efficient spatio-temporal hole filling strategy for kinect

depth maps,” in IS&T/SPIE Electronic Imaging. International Society for Optics and

Photonics, 2012, pp. 82 900E–82 900E–10.

[2] E. Piette, R. Daoust, and A. Denault, “Basic concepts in the use of thoracic and lung

ultrasound,” Current Opinion in Anesthesiology, vol. 26, no. 1, pp. 20–30, 2013.

[3] L. Zieleskiewicz, L. Muller, K. Lakhal, Z. Meresse, C. Arbelot, P.-M. Bertrand, B. Bouhe-

mad, B. Cholley, D. Demory, and S. Duperret, “Point-of-care ultrasound in intensive care

units: assessment of 1073 procedures in a multicentric, prospective, observational study,”

Intensive care medicine, vol. 41, no. 9, pp. 1638–1647, 2015.

[4] M. D. Lo, S. H. Ackley, and P. Solari, “Homemade ultrasound phantom for teaching

identification of superficial soft tissue abscess,” Emergency Medicine Journal, vol. 29, no. 9,

pp. 738–741, 2012.

[5] B. S. Hertzberg, M. A. Kliewer, J. D. Bowie, B. A. Carroll, D. H. DeLong, L. Gray, and

R. C. Nelson, “Physician training requirements in sonography: how many cases are needed

for competence?” American Journal of Roentgenology, vol. 174, no. 5, pp. 1221–1227, 2000.

[6] C. J. Gardner, S. Brown, S. Hagen-Ansert, P. Harrigan, J. Kisslo, K. Kisslo, O. L. Kwan,

F. Menapace, C. Otto, and N. Pandian, “Guidelines for cardiac sonographer education:

report of the american society of echocardiography sonographer education and training

committee,” Journal of the American Society of Echocardiography, vol. 5, no. 6, pp. 635–

639, 1992.

64

BIBLIOGRAPHY 65

[7] Z. Chen, M. S. Shehata, M. Gong, H. Carnahan, A. Dubrowski, and A. Smith, “Feasibility

of a semi-automated approach to grading point of care ultrasound image generation skills,”

in Image and Vision Computing New Zealand (IVCNZ), 2015 International Conference on.

IEEE, 2015, pp. 1–5.

[8] Z. Chen, S. Czarnuch, A. Smith, and M. Shehata, “Performance evaluation of 3d keypoints

and descriptors,” in International Symposium on Visual Computing. Springer, 2016, pp.

410–420.

[9] PCL, “Point cloud library,” 2016.

[10] K. Lai, L. Bo, X. Ren, and D. Fox, “A large-scale hierarchical multi-view rgb-d object

dataset,” pp. 1817–1824, 2011.

[11] A. Dubrowski, R. Sidhu, J. Park, and H. Carnahan, “Quantification of motion character-

istics and forces applied to tissues during suturing,” The American journal of surgery, vol.

190, no. 1, pp. 131–136, 2005.

[12] C. Prinz, J. Dohrmann, F. van Buuren, T. Bitter, N. Bogunovic, D. Horstkotte, and

L. Faber, “The importance of training in echocardiography: a validation study using pocket

echocardiography,” Journal of Cardiovascular Medicine, vol. 13, no. 11, pp. 700–707, 2012.

[13] M. C. Corretti, T. J. Anderson, E. J. Benjamin, D. Celermajer, F. Charbonneau, M. A.

Creager, J. Deanfield, H. Drexler, M. Gerhard-Herman, D. Herrington et al., “Guidelines

for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the

brachial artery,” Journal of the American College of Cardiology, vol. 39, pp. 257–265, 2002.

[14] H. B. Hammer, P. Bolton-King, V. Bakkeheim, T. H. Berg, E. Sundt, A. K. Kongtorp,

and E. A. Haavardsholm, “Examination of intra and interrater reliability with a new ultra-

sonographic reference atlas for scoring of synovitis in patients with rheumatoid arthritis,”

Annals of the rheumatic diseases, p. annrheumdis152926, 2011.

[15] B. J. Kimura, M. Bocchicchio, C. L. Willis, and A. N. DeMaria, “Screening cardiac ul-

trasonographic examination in patients with suspected cardiac disease in the emergency

department,” American heart journal, vol. 142, no. 2, pp. 324–330, 2001.

66 BIBLIOGRAPHY

[16] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment:

from error visibility to structural similarity,” Image Processing, IEEE Transactions on,

vol. 13, no. 4, pp. 600–612, 2004.

[17] Q. Huynh-Thu and M. Ghanbari, “Scope of validity of psnr in image/video quality assess-

ment,” Electronics letters, vol. 44, no. 13, pp. 800–801, 2008.

[18] J. F. Krcker, C. R. Meyer, G. L. LeCarpentier, J. B. Fowlkes, and P. L. Carson, “3d spatial

compounding of ultrasound images using image-based nonrigid registration,” Ultrasound

in medicine & biology, vol. 26, no. 9, pp. 1475–1488, 2000.

[19] C. ø. Simpson, “Objective image quality metrics for ultrasound imaging,” 2009.

[20] T. Venkat and N. Rao, “Assessment of diverse quality metrics for medical images including

mammography,” International Journal of Computer Science and Network Security (IJC-

SNS), vol. 14, no. 11, p. 56, 2014.

[21] M. C. Hemmsen, M. M. Petersen, S. I. Nikolov, M. B. Nielsen, and J. A. Jensen, “Ultra-

sound image quality assessment: A framework for evaluation of clinical image quality,”

in SPIE Medical Imaging. International Society for Optics and Photonics, 2010, pp.

76 290C–76 290C–12.

[22] T. J. MacGillivray, E. Ross, H. A. Simpson, and C. A. Greig, “3d freehand ultrasound

for in vivo determination of human skeletal muscle volume,” Ultrasound in medicine &

biology, vol. 35, no. 6, pp. 928–935, 2009.

[23] A. Krupa, G. Fichtinger, and G. D. Hager, “Full motion tracking in ultrasound using image

speckle information and visual servoing,” pp. 2458–2464, 2007.

[24] C. Laporte and T. Arbel, “Combinatorial and probabilistic fusion of noisy correlation mea-

surements for untracked freehand 3-d ultrasound,” Medical Imaging, IEEE Transactions

on, vol. 27, no. 7, pp. 984–994, 2008.

[25] ——, “Learning to estimate out-of-plane motion in ultrasound imagery of real tissue,”

Medical image analysis, vol. 15, no. 2, pp. 202–213, 2011.

BIBLIOGRAPHY 67

[26] B. Tordoff and D. W. Murray, “Guided sampling and consensus for motion estimation,”

pp. 82–96, 2002.

[27] K.-Y. Lee, Y.-Y. Chuang, B.-Y. Chen, and M. Ouhyoung, “Video stabilization using robust

feature trajectories,” pp. 1397–1404, 2009.

[28] D. P. Bahner, E. J. Adkins, R. Nagel, D. Way, H. A. Werman, and N. A. Royall, “Brightness

mode quality ultrasound imaging examination technique (b-quiet) quantifying quality in

ultrasound imaging,” Journal of Ultrasound in Medicine, vol. 30, no. 12, pp. 1649–1655,

2011.

[29] I.-B. A. I. Registration, “http://www.mathworks.com/help/images/intensity-based-

automatic-image-registration.html,” 2015.

[30] T. Heap and D. Hogg, “Towards 3d hand tracking using a deformable model,” in Automatic

Face and Gesture Recognition, 1996., Proceedings of the Second International Conference

on. IEEE, 1996, pp. 140–145.

[31] I. Oikonomidis, N. Kyriazis, and A. A. Argyros, “Efficient model-based 3d tracking of hand

articulations using kinect.”

[32] M. Bray, E. Koller-Meier, P. Mller, L. Van Gool, and N. N. Schraudolph, “3d hand tracking

by rapid stochastic gradient descent using a skinning model,” in In 1st European Confer-

ence on Visual Media Production (CVMP. Citeseer, 2004.

[33] R. P. Poudel, “3d hand tracking.” Ph.D. dissertation, Bournemouth University, 2014.

[34] I. Oikonomidis, N. Kyriazis, and A. A. Argyros, “Efficient model-based 3d tracking of hand

articulations using kinect,” in BmVC, vol. 1, 2011, p. 3.

[35] M. Donoser and H. Bischof, “Real time appearance based hand tracking,” in Pattern

Recognition, 2008. ICPR 2008. 19th International Conference on. IEEE, 2008, pp. 1–4.

[36] Y. Cui and J. Weng, “Appearance-based hand sign recognition from intensity image se-

quences,” Computer Vision and Image Understanding, vol. 78, no. 2, pp. 157–176, 2000.

68 BIBLIOGRAPHY

[37] B. Stenger, A. Thayananthan, P. H. Torr, and R. Cipolla, “Model-based hand tracking

using a hierarchical bayesian filter,” IEEE transactions on pattern analysis and machine

intelligence, vol. 28, no. 9, pp. 1372–1384, 2006.

[38] F. Weichert, D. Bachmann, B. Rudak, and D. Fisseler, “Analysis of the accuracy and

robustness of the leap motion controller,” Sensors, vol. 13, no. 5, pp. 6380–6393, 2013.

[39] L. Motion, “Api overview,” 2016.

[40] A. Baak, M. Mller, G. Bharaj, H.-P. Seidel, and C. Theobalt, “A data-driven approach

for real-time full body pose reconstruction from a depth camera,” in Consumer Depth

Cameras for Computer Vision. Springer, 2013, pp. 71–98.

[41] X. Wei, P. Zhang, and J. Chai, “Accurate realtime full-body motion capture using a single

depth camera,” ACM Transactions on Graphics (TOG), vol. 31, no. 6, p. 188, 2012.

[42] L. A. Schwarz, A. Mkhitaryan, D. Mateus, and N. Navab, “Human skeleton tracking

from depth data using geodesic distances and optical flow,” Image and Vision Computing,

vol. 30, no. 3, pp. 217–226, 2012.

[43] C. Keskin, F. Kra, Y. E. Kara, and L. Akarun, “Real time hand pose estimation using

depth sensors,” in Consumer Depth Cameras for Computer Vision. Springer, 2013, pp.

119–137.

[44] J. L. Raheja, A. Chaudhary, and K. Singal, “Tracking of fingertips and centers of palm

using kinect,” in Computational intelligence, modelling and simulation (CIMSiM), 2011

third international conference on. IEEE, 2011, pp. 248–252.

[45] L. G. Brown, “A survey of image registration techniques,” ACM computing surveys

(CSUR), vol. 24, no. 4, pp. 325–376, 1992.

[46] B. D. Lucas and T. Kanade, “An iterative image registration technique with an application

to stereo vision,” 1981.

[47] Microsoft, “Kinect for windows sdk,” 2017.

BIBLIOGRAPHY 69

[48] I. Occipital, “Using your structure sensor for the first time,” 2017.

[49] N. J. Mitra, N. Gelfand, H. Pottmann, and L. Guibas, “Registration of point cloud data

from a geometric optimization perspective,” pp. 22–31, 2004.

[50] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison, P. Kohi,

J. Shotton, S. Hodges, and A. Fitzgibbon, “Kinectfusion: Real-time dense surface mapping

and tracking,” in Mixed and augmented reality (ISMAR), 2011 10th IEEE international

symposium on. IEEE, 2011, pp. 127–136.

[51] N. Fioraio, J. Taylor, A. Fitzgibbon, L. Di Stefano, and S. Izadi, “Large-scale and drift-free

surface reconstruction using online subvolume registration,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2015, pp. 4475–4483.

[52] R. Hnsch, T. Weber, and O. Hellwich, “Comparison of 3d interest point detectors and

descriptors for point cloud fusion,” ISPRS Annals of the Photogrammetry, Remote Sensing

and Spatial Information Sciences, vol. 2, no. 3, p. 57, 2014.

[53] I. Sipiran, B. Bustos, I. Sipiran, and B. Bustos, “Harris 3d: a robust extension of the harris

operator for interest point detection on 3d meshes,” 2011.

[54] Y. Zhong, “Intrinsic shape signatures: A shape descriptor for 3d object recognition,” pp.

689–696, 2009.

[55] S. Filipe and L. A. Alexandre, “A comparative evaluation of 3d keypoint detectors in a

rgb-d object dataset,” pp. 476–483, 2014.

[56] S. M. Smith and J. M. Brady, “Susana new approach to low level image processing,”

International Journal of Computer Vision, vol. 23, no. 1, pp. 45–78, 1997.

[57] C. Harris and M. Stephens, “A combined corner and edge detector.” p. 50, 1988.

[58] D. G. Lowe, “Object recognition from local scale-invariant features,” pp. 1150–1157, 1999.

[59] B. Steder, R. B. Rusu, K. Konolige, and W. Burgard, “Narf: 3d range image features for

object recognition,” 2010.

70 BIBLIOGRAPHY

[60] E. Mair, G. D. Hager, D. Burschka, M. Suppa, and G. Hirzinger, “Adaptive and generic

corner detection based on the accelerated segment test,” pp. 183–196, 2010.

[61] S. Leutenegger, M. Chli, and R. Y. Siegwart, “Brisk: Binary robust invariant scalable

keypoints,” pp. 2548–2555, 2011.

[62] R. B. Rusu, N. Blodow, and M. Beetz, “Fast point feature histograms (fpfh) for 3d regis-

tration,” pp. 3212–3217, 2009.

[63] R. B. Rusu, G. Bradski, R. Thibaux, and J. Hsu, “Fast 3d recognition and pose using the

viewpoint feature histogram,” pp. 2155–2162, 2010.

[64] A. Aldoma, M. Vincze, N. Blodow, D. Gossow, S. Gedikli, R. B. Rusu, and G. Bradski,

“Cad-model recognition and 6dof pose estimation using 3d cues,” pp. 585–592, 2011.

[65] S. Lazebnik, C. Schmid, and J. Ponce, “A sparse texture representation using local affine

regions,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 27, no. 8,

pp. 1265–1278, 2005.

[66] F. Tombari, S. Salti, and L. Di Stefano, “Unique signatures of histograms for local surface

description,” pp. 356–369, 2010.

[67] F. Tombari, S. Salti, and L. D. Stefano, “A combined texture-shape descriptor for enhanced

3d feature matching,” pp. 809–812, 2011.

[68] L. A. Alexandre, “3d descriptors for object and category recognition: a comparative eval-

uation,” p. 7, 2012.

[69] R. B. Rusu, N. Blodow, Z. C. Marton, and M. Beetz, “Aligning point cloud views using

persistent feature histograms,” pp. 3384–3391, 2008.

[70] P. Moreels and P. Perona, “Evaluation of features detectors and descriptors based on 3d

objects,” International Journal of Computer Vision, vol. 73, no. 3, pp. 263–284, 2007.

[71] J. Gall, C. Stoll, E. De Aguiar, C. Theobalt, B. Rosenhahn, and H.-P. Seidel, “Motion

capture using joint skeleton tracking and surface estimation,” in Computer Vision and

BIBLIOGRAPHY 71

Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE, 2009, pp. 1746–

1753.

[72] D. S. Alexiadis, P. Kelly, P. Daras, N. E. O’Connor, T. Boubekeur, and M. B. Moussa,

“Evaluating a dancer’s performance using kinect-based skeleton tracking,” in Proceedings

of the 19th ACM international conference on Multimedia. ACM, 2011, pp. 659–662.

[73] J. Shotton, T. Sharp, A. Kipman, A. Fitzgibbon, M. Finocchio, A. Blake, M. Cook,

and R. Moore, “Real-time human pose recognition in parts from single depth images,”

Communications of the ACM, vol. 56, no. 1, pp. 116–124, 2013.

[74] A. Hernndez-Vela, N. Zlateva, A. Marinov, M. Reyes, P. Radeva, D. Dimov, and S. Es-

calera, “Graph cuts optimization for multi-limb human segmentation in depth maps,” pp.

726–732, 2012.

[75] S. Czarnuch and A. Mihailidis, “Development and evaluation of a hand tracker using depth

images captured from an overhead perspective,” Disability and Rehabilitation: Assistive

Technology, pp. 1–8, 2015.

[76] C. Li and K. Kitani, “Pixel-level hand detection in ego-centric videos,” pp. 3570–3577,

2013.

[77] C. Qian, X. Sun, Y. Wei, X. Tang, and J. Sun, “Realtime and robust hand tracking from

depth,” pp. 1106–1113, 2014.

[78] S. Sridhar, F. Mueller, A. Oulasvirta, and C. Theobalt, “Fast and robust hand tracking

using detection-guided optimization,” pp. 3213–3221, 2015.

[79] Z. Ma and E. Wu, “Real-time and robust hand tracking with a single depth camera,” The

Visual Computer, vol. 30, no. 10, pp. 1133–1144, 2014.

[80] E. S. Inc., “Dvi2usb 3.0 - usb video grabber for hdmi video capture,” 2017.

[81] M. J. Ledesma-Carbayo, J. Kybic, M. Desco, A. Santos, M. Suhling, P. Hunziker, and

M. Unser, “Spatio-temporal nonrigid registration for ultrasound cardiac motion estima-

tion,” IEEE transactions on medical imaging, vol. 24, no. 9, pp. 1113–1126, 2005.

72 BIBLIOGRAPHY

[82] F. Yeung, S. F. Levinson, D. Fu, and K. J. Parker, “Feature-adaptive motion tracking

of ultrasound image sequences using a deformable mesh,” IEEE Transactions on Medical

Imaging, vol. 17, no. 6, pp. 945–956, 1998.

[83] B. Kim, J. L. Boes, P. H. Bland, T. L. Chenevert, and C. R. Meyer, “Motion correction

in fmri via registration of individual slices into an anatomical volume,” 1999.

[84] Microsoft, “Kinect hardware,” 2017.

[85] ——, “Known issues with the kinect for windows v2 sensor,” 2017.

[86] A. Inc., “Os x el capitan: Set the date and time on your mac,” 2017.

[87] T. M. Scalea, A. Rodriguez, W. C. Chiu, F. D. Brenneman, W. F. Fallon, K. Kato,

M. G. McKenney, M. L. Nerlich, M. G. Ochsner, and H. Yoshii, “Focused assessment with

sonography for trauma (fast): results from an international consensus conference,” Journal

of Trauma and Acute Care Surgery, vol. 46, no. 3, pp. 466–472, 1999.

[88] ffmpeg, “Ffmpeg,” 2017.

[89] D. T. Solutions, “Sports video performance analysis software — gamebreaker sportscode,”

2015.

[90] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu, “An optimal

algorithm for approximate nearest neighbor searching fixed dimensions,” Journal of the

ACM (JACM), vol. 45, no. 6, pp. 891–923, 1998.

[91] I. Van Der Bom, S. Klein, M. Staring, R. Homan, L. Bartels, and J. Pluim, “Evaluation of

optimization methods for intensity-based 2d-3d registration in x-ray guided interventions,”

in Proc. SPIE, vol. 7962, 2011, pp. 796 223–796 223–15.

[92] PointClouds.org, “The pcl registration api,” 2017.

[93] I. The MathWorks, “3-d point cloud registration and stitching,” 2017.

[94] F. Tombari, “Keypoints and features,” 2013.

BIBLIOGRAPHY 73

[95] Q. Zhan, Y. Liang, and Y. Xiao, “Color-based segmentation of point clouds,” in Proc.

ISPRS Laser Scan. Workshop, 2009, pp. 248–252.

[96] A. Tremeau and N. Borel, “A region growing and merging algorithm to color segmenta-

tion,” Pattern recognition, vol. 30, no. 7, pp. 1191–1203, 1997.

[97] PointClouds.org, “Region growing segmentation,” 2016.

[98] C. V. Nguyen, S. Izadi, and D. Lovell, “Modeling kinect sensor noise for improved 3d

reconstruction and tracking,” in 3D Imaging, Modeling, Processing, Visualization and

Transmission (3DIMPVT), 2012 Second International Conference on. IEEE, 2012, pp.

524–530.

