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ABSTRACT 

 

Although extensive research has been conducted to understand the effects of dissolved 

organic matter (DOM) on fine particle transport, less attention has been paid to NOM 

in the transport medium (i.e., immobile rock and sediment grains). The objective of 

this study is to the roles of NOM in the transport medium in mediating particle 

transport. We conducted an experimental and modelling study on the transport of 

nanoscale titanium dioxide (nTiO2) and illite colloid in columns packed with quartz 

sand under water-saturated conditions. Peat moss was used as an example NOM and 

packed in some of the columns to investigate its influence on particle transport. 

Experimental results showed that NOM may either increase or decrease particle 

transport depending on the specific conditions. NOM in the transport medium was 

found to attract particles and reduce particle mobility when the energy barrier between 

particle and NOM is low or non-existent. NOM also adsorbed to Fe and Al 

oxyhydroxides and promoted the transport of negatively-charged particles at low pH. 

Partial dissolution of NOM releases DOM, and the DOM adsorbs to and increases the 

transport of positively-charged particles. Additionally, NOM changes pore water pH, 

which influences particle mobility by affecting the interaction energy between the 

particle and transport medium. Modelling results showed that the deposition sites of 

peat moss are very heterogeneous, and the NOM from peat moss may reduce particle 

deposition rate by adsorbing to the particle and/or transport medium. Findings from 

this study demonstrates that NOM in the transport medium not only changes 

properties of the medium, but also may alter water chemistry. Therefore, the role of 

NOM in mediating particle transport is complicated and dependent on the properties 

of the particle, NOM, and mineralogical composition of the medium. 
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Chapter 1: Introduction 

 

Natural organic matter (NOM) is ubiquitous in aquatic environments and plays important 

roles in mediating contaminant transport in groundwater (Aiken et al., 2011; Baalousha, 2009; 

Dudare and Klavins, 2013; Zhang et al., 2009). NOM contains large number of reactive sites 

such as carboxylic and phenolic groups, and therefore has high affinity for many solute 

contaminants including metal ions, radionuclides, and toxic organics (Edgington et al., 2010; 

Fisher-Power et al., 2016; McCarthy, 1998; McCarthy et al., 1998; Mizutani et al., 2017). When 

present in the immobile phase of an aquifer (i.e., rocks and sediments), NOM is expected to 

attract contaminants and reduce their transport. A large amount of NOM exists in the 

environment as dissolved organic matter (DOM). DOM moves with water flow and competes 

against binding sites in rocks and sediments for contaminants. As a result, DOM in general 

mobilizes and facilitates contaminant transport (Cheng and Saiers 2015; Grolimund and 

Borkovec 2005; Wang et al., 2014 and 2015).  

Fine clay particles (e.g., illite colloids) are abundant in subsurface environments and 

highly mobile under certain geochemical conditions (Cai et al., 2014; Filip and Alberts 1994; 

Lee et al., 2015; Wang et al., 2014). Previous research has demonstrated that clay colloids have 

the capacity of adsorbing a variety of contaminants due to their large specific surface area (Flury 

and Qiu, 2008; Saiers and Hornberger 1999; Turner et al., 2006; Wang et al., 2015). Therefore, 

when mobile, clay colloids can facilitate the transport of adsorbed contaminants (Flury and Qiu, 

2008; Turner et al., 2006; Wang et al.,2015; Zhuang et al.,2003). Engineered nano-materials like 

nanoscale titanium dioxide (nTiO2) and zinc oxide (nZnO) are synthesized and used in many 

products and processes to enhance quality and performance (Bayat et al., 2015; Fang et al., 2009; 
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Liu et al., 2012; Sun et al., 2015). Similar to clay colloids, engineered nanoparticles may adsorb 

and influence the transport of solute contaminants (Bradford et al., 2002 and 2004; French et al., 

2009; Huber et al., 2000). Additionally, many engineered nano-materials are toxic and 

potentially detrimental to microbes, plants, and animals (Miller et al., 2012; Sun et al., 2015). 

Therefore, transport of clay colloids and engineered nanoparticles are of great importance to 

contaminant migration and water quality. 

Extensive research has been conducted on the transport of clay colloids and engineered 

nano-particles in porous media (Chen et al., 2015; Fang et al., 2009; Liu et al., 2012; Remédios 

et al., 2012; Saiers and Hornberger 1999; Wang et al., 2015; Zhuang et al., 2003). Interaction 

energy between a particle and collector (i.e., immobile phase of an aquifer such as rock or 

sediment grain) is a key factor that controls particle deposition (i.e., immobilization) and 

transport. DLVO theory has been used to quantify the interaction energy between particle and 

collector based on experimentally measured zeta potential and particle size (Chen et al., 2012; 

Wang et al., 2012; Wu and Cheng, 2016). Water chemistry such as pH, ionic strength, and 

presence of divalent cations, which governs zeta potential and particle size, is found to have 

major influence on particle transport (Fang et al., 2009; French et al., 2009; Huber et al., 2000). 

DOM may substantially alter transport by adsorbing to particle and collector, and thus modifying 

surface properties (e.g., zeta potential) (Aiken et al., 2011; Chen et al., 2012; Franchi and 

O'Melia 2003; Wang et al., 2012 and 2013). For most cases, DOM adsorption increases particle 

transport (Ben-Moshe et al., 2010; Chen et al., 2012; Jones and Su, 2012; Jung et al., 2014; Tiller 

and O'melia 1993). Under certain conditions, however, DOM may reduce particle mobility by 

neutralizing particle charge and promoting particle deposition (Wu and Cheng 2016). 
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Although much work has been done to understand the effects of water chemistry on 

particle transport, less attention has been paid to the influence from the transport medium (i.e., 

rock and sediment). A large variety of minerals and natural organic matter co-exist in natural 

sediments, and the effect of each component on particle deposition could be very different. 

Additionally, natural organic matter and minerals can change water chemistry through 

geochemical reactions such as protonation, adsorption and dissolution (Fisher-Power et al., 2016; 

Mizutani et al., 2017; Redman et al., 2002; Wang and Mulligan, 2006). Changes in water 

chemistry, in turn, may alter particle transport. NOM, Fe and Al oxyhydroxides, and clay 

minerals are the most active components in soil and sediment that interact with water and change 

the transport of solute contaminants (Fisher-Power et al., 2016; Mizutani et al., 2017; Shi et al., 

2007 and 2013). A number of investigations also demonstrated that Fe oxyhydroxide patches on 

quartz sand surface have high affinity for and reduce the transport of negatively charged particles 

at acidic pH (Wang et al., 2012 and 2013; Wu and Cheng, 2016). While a recent study showed 

that clay mineral (kaolinite) packed in quartz sand columns enhances the transport of nanoscale 

zero valent iron (nZVI) through increased electrostatic and steric repulsion (Jung et al., 2014), 

another study reported that clay minerals (illite, kaolinite, and montmorillonite) in limestone 

porous media hinder the transport of aluminum oxide and titanium dioxide nanoparticles, 

attributable to straining of particles by the clays at the pore-throat and the morphology of the 

clays (Bayat et al., 2015). Morphology and surface properties of natural organic matter are very 

different from those of common minerals in aquifers (e.g., quartz and clay) (O'Kelly and 

Sivakumar 2014), and the interactions between NOM and water may change water chemistry. 

Thus, NOM in the immobile phase of an aquifer is expected to influence particle transport in 
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complicated manners. However, at this time, how NOM in the transport medium controls particle 

transport is largely unknown.  

The aim of this study is to investigate the effects of NOM in the transport medium on 

particle transport and identify the related mechanisms. Particle breakthrough curves in water-

saturated laboratory columns packed with quartz-sand were measured. Dried sphagnum peat 

moss, a common soil conditioner rich in natural organic matter, was used in packing some of the 

columns so that its influence on water chemistry and particle transport can be determined. 

Nanoscale titanium dioxide (nTiO2) and illite colloids were selected as examples of engineered 

nanoparticles and natural clay particles. pH, zeta potential (ZP), and hydrodynamic diameter 

(HDD) of the column influent and effluent were measured to identify changes in water chemistry 

and particle property. Derjaguin–Landau–Verwey–Overbeek (DLVO) theory was applied to 

analyze interaction energy between particle and collector. A mathematical model that accounts 

for particle advection and dispersion, as well as mass transfer between pore water and transport 

medium was used to simulate the experimental breakthrough curves. By comparing experimental 

and modelling results from different columns, mechanisms of how NOM influences particles 

deposition and transport are proposed. 
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Chapter 2: Materials and methods    

2.1 Experiments 

 2.1.1 Preparation of materials 

Unless stated otherwise, all the chemicals were certified ACS grade and purchased from 

VWR. Nanopure water, with resistivity >18.2 MΩ × cm and dissolved organic carbon (DOC) 

concentration <0.02 mg/L, generated by a Barnstead Nanopure Infinity ultrapure water system 

(Fisher Scientific), was used for preparation of all solutions and particle suspensions. 

Quartz sand.  Quartz sand (U.S. Silica) was sieved to the size range of 0.425 to 0.600 mm 

using stainless steel sieves and washed with nanopure water. Particle concentration in the sand-

washed water was monitored by measuring light absorbance of the supernatant using a 

spectrophotometer at a wavelength of 368 nm. The sand was considered “clean” when the 

absorbance of the supernatant <0.005. The “clean” quartz sand was transferred to an oven, dried 

for 12 hours at 110 ℃, cooled to room temperature, and stored in clean plastic containers for use 

in column transport experiments. 

Trace quantities of Fe and Al oxyhydroxides may present on quartz sand surface and 

change fine particle retention and transport (Lenhart and Saiers, 2002). To determine Fe and Al 

oxyhydroxide concentration of the water washed quartz sand, around 100 mg dry sand was 

mixed with trace-metal grade concentrated HF and HNO3 acids (1.25 mL and 0.25 mL 

respectively) and heated to 100 ℃ on a hot plate for 72 hours. During this time, the samples were 

ultrasonicated for 1h each of the days. Once completely digested, the solution was diluted, and 

metal concentrations were measured using an HP 4500 plus ICP-MS (inductively coupled 

plasma-mass spectrometry). Surface morphology and elemental composition of the quartz sand 
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was characterized by SEM-EDX (scanning electron microscopy with energy-dispersive 

spectroscopy). 

Peat moss.  Peat moss (Hoffman 15503, Canadian sphagnum peat moss, 10 quarts, 

premium grade), a common soil conditioner rich in natural organic matter, was sieved to smaller 

than 2 mm in size, and placed in an oven at 80 ℃ until dry. The drying process normally took 8 

hours, and moisture content of the peat moss was about 8%, determined by the mass difference 

before and after drying.  

To determine pH of the peat moss, 260 mg dry peat moss sample was mixed with 100 mL 

nanopure water in a 125 mL HDPE bottle, placed on a VWR orbital shaker table (Model 5000), 

and shaken at a speed of 20 rpm for 16 hours. Supernatant from the bottle was filtered through a 

0.45 μm mixed cellulose ester (MCE) filter for pH measurement using an 8302 Bnumd Ross 

Ultra pH/ATC Triode electrode (Orion). 

To determine the grain size distribution, about 30 mg dry peat moss sample was poured 

into a vibrating feeder to mix with nanopure water, and the sample was automatically diluted 

before being analyzed with a laser scattering particle size distribution analyzer (LA-950, Horiba 

Scientific). Organic carbon content of the dry peat moss sample was measured by elemental 

combustion analysis using a Carlo Erba NA1500 Series II elemental analyzer. SEM-EDX was 

used to characterize the surface morphology of the peat moss. 

nTiO2 particle suspension.  Titanium dioxide (TiO2) powder (Aeroxide™ TiO2 P25) with 

TiO2 content >99.5% was purchased from Fisher Scientific. According to the manufacturer, the 

specific surface area (BET method) of the powder and the primary particle size of the TiO2 

particle were 35−65 m2/g and 21 nm respectively. X-ray diffraction (XRD) analysis showed that 

the powder is a mixture of anatase (90%) and rutile (10%) with particle size of 23 and 40 nm 
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respectively (Wu and Cheng, 2016). nTiO2 particle suspensions were prepared by mixing 20 mg 

TiO2 powder with 1000 mL nanopure water. The mixture was sonicated using a Branson Digital 

Sonifier (Crystal Electronics) for 30 min with 200W power to disperser the particles. 

Illite colloid stock suspension.  Illite colloid stock suspensions were prepared by mixing 

4.0 g illite powder (IMt-2 Illite-Cambrianshale, Clay Mineral Society) with 1000 mL nanopure 

water. The mixture was sonicated for 30 min with 200W power, and let stand for 16 hours to 

settle out the larger particles. Illite particles remaining suspended were carefully transferred 

using a 5mL pipette into a glass storage bottle for characterization and use in column 

experiments. Particle concentration of the illite colloid stock suspension was determined 

gravimetrically by filtering 100 mL of the suspension through a 0.1 μm polyethersulfone 

membrane filter (Pall Life Sciences). 

2.1.2.  Zeta potential (ZP) and hydrodynamic diameter (HDD) measurement 

To determine zeta potential of the quartz sand, nanopure water washed quartz sand was 

crushed using a laboratory pulverizer (TE250, Angstrom). 4 grams of the crushed sand was 

mixed with 2000 mL nanopure water in a glass beaker, vigorously stirred, and sonicated for 30 

min. The beaker was then placed on a table to stand overnight to let the large particles settle, 

after which supernatant in the beaker was transferred into 50 mL polypropylene Falcon 

centrifuge tubes using a 5 mL pipette for zeta potential measurement. 

The procedure used for preparing peat moss samples for zeta potential measurement was 

similar to that for pH measurement, i.e., 260 mg dry peat moss was mixed with 100 mL 

nanopure water and gently shaken for 16 hours, and the supernatant from the mixture was 

filtered through 0.45 μm MCEfilter to remove larger particles. The filtrate was collected in 50 

mL polypropylene Falcon centrifuge tubes for zeta potential measurement. 



 

20 
 

To measure the zeta potential and size of the nTiO2 and illite particles, nTiO2 particle 

suspension was prepared using the procedure described in Section 2.1.1 and illite particle 

suspension was prepared by diluting illite colloid stock suspension. Concentration of the nTiO2 

and the illite particles in the suspension used for zeta potential and particle size measurement 

were 20 and 50 mg/L respectively, the same as those used in the column transport experiments. 

For all the zeta potential and particle size measurement, ionic strength of the background 

solution was adjusted to 1 mM by adding NaCl, and pH was re-adjusted to 5.0, 7.0 and 9.0 by 

adding small volumes of 1.0 M and 0.1 M NaOH and/or HCl solutions. These ionic strength and 

pH were the same as those in the column transport experiments. A zetasizer nano ZS (Malvern) 

was used for zeta potential and hydrodynamic diameter measurement. For all the samples, zeta 

potential and hydrodynamic diameter measurements were performed in triplicate. 

2.1.3 Column experiments 

Twelve column experiments were conducted to measure nTiO2 and illite particle 

transport in quartz-sand packed columns (Table 1). Dry peat moss (65 and 260 mg per column 

respectively) was used in packing some of the columns in order to examine how natural organic 

matter in the transport media influences particle transport. pH of natural groundwater spans a 

wide range, therefore two influent pH (5 and 9 respectively) were used in our experiments to 

examine the effects of peat moss at different pH. 

A vertically orientated Kontes ChromaFlex chromatography column (length = 15 cm, 

inner diameter = 2.5 cm, made of borosilicate glass) was used to hold the quartz sand. Porous 

HDPE plates, with pore size of 20 µm, were fitted on both ends of the column to support the 

sand. To pack a column, a few milliliters of 1 mM NaCl background solution was slowly poured 

into the Kontes column, followed by pouring dry quartz sand or sand-peat moss mixture. The 
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amount of the quartz sand and peat moss was small so that the solids were submerged during 

packing. A small stainless-steel rod was used to stir the sand and peat moss in the column to 

homogenize the material and remove any trapped air bubbles. The above procedure was repeated 

until the column was fully packed (i.e., height of the water-saturated medium reached 15 cm). 

Pore volume, bulk density, and porosity of the column were calculated based on the volume of 

the solution, and mass of the sand and peat moss used for packing (Table 1). 

The packed column was flushed by particle-free 1 mM NaCl background solution for at 

least 12 hours before 10 pore volumes of nTiO2 or 7 pore volumes of illite particle suspension 

were injected. A peristaltic pump (Masterflex, ColeParmer) connected to the column base was 

used to transfer the background solution and particle suspensions into the column. During both 

flushing and injection of the particle suspensions, pore water flowed upward with a flow rate of 1 

mL/minute. nTiO2 particle suspensions were prepared using the method outlined in Section 

2.1.1., and illite particle suspensions were made by diluting the illite colloid stock suspension. 

Ionic strength of the particle suspensions was adjusted to 1 mM using NaCl, and pH was 

maintained at 5 or 9 by adding small volumes of 1 M and 0.1 M NaOH and HCl solutions. pH 

and ionic strength of the background solution used to pack and flush the columns was the same 

as that of the particles suspensions. All the column experiments were conducted in duplicate at 

room temperature (~22 ℃). Electrical conductivity of the effluent after the flushing, measured by 

a conductivity probe, was found practically the same as that of the influent, indicating that 

leaching of ions from the peat moss and quartz sand was negligible. DOC concentration of some 

effluent samples was determined by an OI Analytical Aurora 1030 TOC analyzer. 

Effluent from the top of the column was collected using a CF-2 fraction collector 

(Spectrum Chromatography), and particle concentration of the effluent was quantified by 
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measuring the light absorbance of the samples, which was converted to particle concentration 

based on calibration curves (Fig. A1 and A2). Light absorbance of the nTiO2 and illite particle 

suspensions was measured at wavelength of 368 nm and 290 nm respectively. Effluent pH was 

monitored during particle injection using a pH electrode. Effluent samples taken at V/V0 ≈ 5 (V 

is cumulative effluent volume, and V0 is pore volume of the column) were analyzed for zeta 

potential and particle size.  

2.2 Theoretical aspects 

2.2.1 Calculation of DLVO interaction energy 

Classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory was used to quantify 

interaction energies between particle and collector (i.e., sand and peat moss). Total interaction 

energy was calculated by combining the London-van der Waals energy (Equation 1) and 

electrostatic energy (Equation 2). 
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                         (1) 
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EDL 0 c s c s

1 exp( s)
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         (2) 

where A (J) is Hamaker constant (Hamaker, 1937), R (m) is radius of the particle, s (m) is 

separation distance, λ (m) is characteristic wavelength of interaction, usually taken as 10-7 m, ε0 

(8.85×10-12 C2J-1m-1) is permittivity of vacuum, εr (80) is relative dielectric constant of the 

medium, κ (m-1) is reciprocal of Debye length, and κ=2.32×109 (ΣCiZi
2)1/2, where Ci is the 

concentration of ion i and Zi is its valency value, ψc (V) is surface potential of the particle, and ψs 

(V) is surface potential of the collector (Elimelech et al., 2013). The use of Equation 1 and 2 
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assumes that the particles are spherical in shape, and the sand and peat grains are infinite large 

plates with smooth surface. 

Measured zeta potential and hydrodynamic diameter were used to approximate surface 

potential and diameter of the particles. To quantify the London–van der Waals energy, six 

Hamaker constants between particle and collector are needed: TiO2-H2O-quartz, TiO2-H2O-peat, 

peat covered TiO2-H2O-quartz, peat covered TiO2-H2O-peat, illite-H2O-quartz and illite- H2O-

peat. These Hamaker constants were estimated using Equation 3. 

           132 11 33 22 33A ( A A )( A A )  
             (3) 

where 1 is particle (nTiO2/illite), 2 is collector (quartz sand/peat), 3 is water, and the following 

constants: ATiO2-TiO2 = 15.3×10-20 J (Bergström, 1997), Aillite-illite = 8.6 ×10-20 J (Médout-Marère 

2000), Aquartz-quartz =6.5×10-20 J (Tong et al., 2011), AH2O-H2O = 3.7×10-20 J (Tong et al., 2011). 

Since the peat moss contains mostly natural organic matter, the Hamaker constant of natural 

organic matter (NOM) (4.85 ×10-20 J, Tong et al., 2011) was used for Apeat-peat. For nTiO2 

particles covered by NOM (i.e., nTiO2 with NOM absorbed), we followed the method used by 

Tong et al. (2011), i.e., the Hamaker constant of peat (Apeat-peat), instead of nTiO2 (A TiO2-TiO2), 

was used as A11 to calculate the Hamaker constant for Apeat covered TiO2-H2O-quartz and Apeat covered TiO2-

H2O-peat.  

Based on the Hamaker constant of the induvial materials listed above, the calculated 

ATiO2-H2O-quartz = 1.24 ×10-20 J, ATiO2-H2O-peat = 2.46 ×10-20 J, A peat covered TiO2-H2O-quartz = 1.74 ×10-21 J, 

A peat covered TiO2-H2O-peat = 7.77 ×10-22 J, Aillite-H2O-quartz = 6.32×10-21 J, Aillite-H2O-peat = 2.81×10-21 J. 

2.2.2 Transport modelling 

A model that describes colloidal particle transport in porous medium under steady-state 

flow conditions (Saiers and Hornberger, 1999) was applied to simulate the breakthrough curves 
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of the column experiments. The movement of particles through the columns was simulated by 

the advection-dispersion equation with a mass transfer term to account for particle transfer 

between pore water and the transport medium (Equation 4). 
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where C is particle concentration in water (mg/L), a is dispersivity (cm), v is average linear pore 

water velocity (cm/hr), ρb is bulk density of the transport medium (g/L), n is porosity (m3/m3), S 

is the total concentration of the particles attached to the medium (mg particle per gram of 

medium), t is time (hr), z is vertical coordinate (cm), taken to be positive in the upward direction.  

Particle attachment to the medium was modelled using an irreversibility kinetics process, 

based on our experimental results showing that the attached particles did not re-mobilize. 1st 

order kinetic model (Equation 5, N = 1) reasonably simulated all the breakthrough curves except 

for nTiO2 breakthrough curves of the experiments with peat moss in the transport medium and 

influent pH = 9 (i.e., Expt. # 5 and 6, Table 1). 
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where ki is particle deposition rate coefficient of type i site (1/hr), Si is the concentration of the 

particles attached to type i site (mg particle per gram of medium), Si, max is density of type i site 

(mg particle per gram medium). To mimic these breakthrough curves, 2nd order kinetic model 

(Equation 5, N = 2) was needed. The particle deposition rate coefficients (ki) and site densities (Si, 

max) were estimated through inversion by minimizing the sum-of-the-squared residuals between 

modelled and measured particle concentration in the effluent of each breakthrough curve. 
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Table 1. Physical and chemical conditions of the column transport experiments 

  

 Expt. #  

  

 

Influent 

nTiO2 

 (mg/L) 

 

Influent 

illite 

  (mg/L) 

 

Peat moss 

in the 

column 

(mg) 

 

Influent  

pH 

 

Average flow 

velocity* 

(cm/h) 

 

Column pore 

volume*  

(cm3) 

 

 Porosity* 

 

Bulk 

density* 

(g/cm3) 

         
1 20  0 5.0 31.09 ± 0.23 28.41± 0.22 0.39 ± 0.00 1.75 ± 0.00 

2 20  65 5.0 30.57 ± 0.12 28.89 ± 0.12 0.39 ± 0.00 1.76 ± 0.01 

3 20  260 5.0 31.73 ± 1.34 27.86 ± 1.17 0.38 ± 0.02 1.76 ± 0.02 

4 20  0 9.0 32.40 ± 0.73 27.26 ± 0.62 0.37 ± 0.01 1.75 ± 0.01 

5 20  65 9.0 31.45 ± 0.76 28.09 ± 0.68 0.38 ± 0.01 1.77 ± 0.01 

6 20  260 9.0 31.42 ± 1.46 28.14 ± 1.31 0.38 ± 0.02 1.78 ± 0.01 

         

7  50 0 5.0 30.95 ± 1.59 28.58± 1.46 0.39 ± 0.02 1.74 ± 0.00 

8  50 65 5.0 31.57 ± 0.60 27.98 ± 0.54 0.38 ± 0.01 1.75 ± 0.00 

9  50 260 5.0 31.29 ± 0.30 28.22 ± 0.28 0.38 ± 0.00 1.77 ± 0.02 

10  50 0 9.0 31.66 ± 0.57 27.90 ± 0.50 0.38 ± 0.00 1.74 ± 0.02 

11  50 65 9.0 31.29 ± 0.07 28.22 ± 0.06 0.38 ± 0.00 1.76 ± 0.01 

12  50 260 9.0 31.13 ± 0.60 28.38 ± 0.55 0.39 ± 0.01 1.78 ± 0.01 

 

* Data expressed as mean ± standard deviation of replicate measurement. 
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Chapter 3: Results and Discussions 

3.1. pH, grain size, and organic carbon content of the peat moss 

pH of the peat moss in 1 mM NaCl solution was around 6.8 ± 0.1. Mean diameter (mode 

± standard deviation) of the peat moss grain was around 0.682 ± 0.093 mm (Fig. A3). Organic 

carbon content was 40± 4.5 %, indicating the peat moss is made consist mainly of organic matter. 

3.2. Zeta potential and hydrodynamic diameter  

Zeta potential of nTiO2 in 1 mM NaCl solution was highly sensitive to pH change. At pH 

5, nTiO2 was positively charged with zeta potential of +23.6 mV, while at pH 9, nTiO2 carried 

negative charges with zeta potential of -37.8 mV (Fig. 1a). Zeta potential of nTiO2 was found 

near neutral (-0.5 mV) at pH 7, consistent with previously reported values of point of zero charge 

of nTiO2 (pHpzc, nTiO2 = 6.2 to 6.7) (Englehart et al., 2016, Wu and Cheng 2016). Unlike nTiO2, 

zeta potential of illite and quartz was not sensitive to pH change, i.e., illite and quartz were 

negatively-charged throughout the pH range of 5 to 9, with zeta potential ranging from -28.3 to -

42.3 mV for illite and from -40.6 to -42.1 mV for quartz (Fig. 1a). The negative zeta potential of 

illite and quartz under our experimental conditions are in agreement with previously reported 

point of zero charge of illite and quartz (pHpzc, illite = 2.5 to 3, pHpzc, quartz = 2.0) (Hussain et al., 

1996; Kim and Lawler 2005). 

Zeta potential of the peat moss was negative throughout the pH range of 5 to 9, and 

became slightly more negatively at higher pH, i.e., at pH 5, 7, and 9, the zeta potential was -10.1, 

-15.2 and -13.2 mV respectively (Fig. 1a). Peat moss is rich in natural organic matter such as 

humic substances, and the negative charge of the peat moss was presumably due to 

deprotonation of the carboxylic and phenolic groups of the organic matter. 
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Hydrodynamic diameter (HDD) of the nTiO2 was small at pH 5 and 9 (269 and 264 nm 

respectively) (Fig. 1b), due to the repulsive electrostatic forces between particles caused by 

surface charge. At pH 7, hydrodynamic diameter of the nTiO2 was much larger (839 nm), 

indicating particle aggregation due to reduced electrostatic forces. Size of the illite particles was 

not very much influenced by pH change, with hydrodynamic diameter ranging from 349 to 411 

nm in the pH range of 5 to 9 (Fig. 1b). 

 

 

Fig. 1. Zeta potential (ZP) and hydrodynamic diameter (HDD) of peat moss, quartz, illite colloid 

and nTiO2 in 1 mM NaCl solution at pH 5, 7 and 9. All the hydrodynamic diameter are intensity 

weighted. Data is expressed as mean ± standard deviation of triplicate measurement. 
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3.3. Effects of peat moss on particle transport 

3.3.1 Effluent pH 

In the nTiO2 transport experiments (Expt. #1-6, Table 1), when influent pH = 5.0, 

effluent pH of the quartz-sand only column (Expt. #1, Table 1) was stable (pH ≈ 5.3) during 

particle injection and similar to the influent pH (Fig. 2a). For columns with peat moss, effluent 

pH was also stable but noticeably different from that of the influent, i.e., for the columns with 65 

mg and 260 mg peat moss (i.e., Expt. #2 and #3), effluent pH were 6.5 and 7.0 respectively (Fig. 

2a), close to the natural pH of peat moss (6.8 ± 0.1). When influent pH = 9.0, effluent pH was 

different from the influent pH. For the quartz-sand only, 65 mg peat moss, and the 260 mg peat 

moss column (i.e., Expt. #4-6), effluent pH were 8.2, 7.7, and 7.5 respectively (Fig. 2b). 

Similar to the nTiO2 experiments, effluent pH of the illite transport experiments (Expt. 

#7-12, Table 1) was stable during particle injection but different from the influent pH except for 

the quartz-sand only column with influent pH = 5.0 (i.e., Expt. #7). When influent pH = 5.0, 

effluent pH of the quartz-sand only, 65 mg, and 260 mg peat moss column (Expt. #7-9) was 5.1, 

5.9 and 6.9 respectively (Fig. 3a). When influent pH = 9.0, effluent pH decreased to 7.6, 7.6, and 

7.8 respectively for the quartz-sand only, 65 mg, and 260 mg peat moss columns (Expt. #10-12) 

(Fig. 3b). 

The difference between influent and effluent pH showed that pH of the pore water in the 

column was buffered by peat and quartz, and the buffering capacity of quartz was relatively 

weak around pH 5. These results also indicate that pH of pore water in the columns was not 

uniform, changing from influent pH at the column bottom (influent side) to effluent pH at the 

column top (effluent side). 
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Fig. 2. Influent and effluent pH, zeta potential (ZP), and hydrodynamic diameter (HDD) of the 

nTiO2 experiments of the quartz-sand only, 65 mg peat moss and 260 mg peat moss columns 

(empty bars: influent; dotted bars: effluent). Data is expressed as mean ± standard deviation of 

triplicate measurement. All the hydrodynamic diameter is intensity weighted. Zeta potential and 

hydrodynamic diameter data were not available for the effluent of the quartz-sand only columns, 

since no particle was present in the effluent. 
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Fig. 3. Influent and effluent pH, zeta potential (ZP), and hydrodynamic diameter (HDD) of the 

illite colloid experiments of the quartz-sand only, 65 mg peat moss and 260 mg peat moss 

columns (empty bars: influent; dotted bars: effluent). Data is expressed as mean ± standard 

deviation of triplicate measurement. All the hydrodynamic diameter is intensity weighted. 
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3.3.2. nTiO2 transport 

Transport of nTiO2 was pH dependent and influenced by the quantity of peat in the 

column. In all the experiments with influent pH = 5 (Expt. #1-3, Table 1), effluent nTiO2 

concentration was low, and peat in the column promoted nTiO2 transport. While no nTiO2 was 

detected in the effluent of the quartz-sand only column (Fig. 4a), nTiO2 mass recovery in the 

effluent of the columns with 65 mg and 260 mg peat moss approached 5% and 7% respectively 

(Table 2). Low mobility of nTiO2 was caused by the attractive electrostatic forces between nTiO2 

and the porous medium. Zeta potential of nTiO2, quartz, and peat moss at pH 5 were +23.6, -40.6, 

and -10.1 mV respectively (Fig. 1a), and the calculated DLVO energy profile showed negative 

energies between nTiO2 and quartz, and between nTiO2 and peat (Fig. 5a), indicating attractive 

forces between nTiO2 and the transport medium, and therefore low nTiO2 transport. 

The higher nTiO2 transport in columns with peat, in comparison to that in the quartz-sand 

only column (Fig. 4a) is the result of zeta potential change caused by DOC adsorption to the 

nTiO2. It is well established that DOC adsorption to colloidal particles and transport media 

enhances particle mobility via electrostatics and steric effects (Aiken et al., 2011; Chen et al., 

2012; Jung et al. 2014; Wu and Cheng, 2016). In the 65 and 260 mg peat moss columns (Expt. 

#2 and #3), size of the nTiO2 in the effluent (326 to 261 nm) was similar to that in the influent 

(269 nm) (Fig. 2e). Zeta potential of the effluent, in contrast, was very different from the influent 

(-33.3 and -21.5 mV vs. +23.6 mV) (Fig. 2c). Although pH of the column effluent increased with 

respective to that of the influent (pH = 6.5 and 7.0 vs. influent pH 5.0) (Fig. 2a), and such 

increase may lower the zeta potential, these effluent zeta potentials were much more negative 

than that in DOC–free 1 mM NaCl solution at similar pH (i.e., ZP nTiO2 = -0.5 mV at pH 7.0) (Fig. 

1a). In the 65 mg and 260 mg peat moss column experiments, the influent was DOC–free (i.e., 
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<0.02 mg/L), but the effluent could contain low concentration DOC (<1 mg/L) based on our 

preliminary tests, presumably due to partial dissolution of the peat moss. Wu and Cheng (2016) 

found that DOM, even at low concentrations, change considerably the zeta potential of 

positively-charged nTiO2 by adsorbing to nTiO2 surface. They reported that for nTiO2 

concentration of 20 mg/L, at pH 5 in 1 mM NaCl solution, with humic acid concentration of 0.33 

and 0.66 mg DOC/L, zeta potential of nTiO2 were -20.0 and -41.0 mV respectively, substantially 

lower than that in humic acid–free solution (+24.6 mV). The influent pH and nTiO2 

concentration (20 mg/L) in our column experiments are comparable to those in Wu and Cheng’s 

work (2016), therefore, it is expected that DOC could similarly interact with nTiO2 and reverse 

its zeta potential in our column experiments. 

In the columns with peat moss, nTiO2 transport was controlled by two competing 

processes, i.e., the positively-charged nTiO2 in pore water are attracted to the negatively-charged 

quartz and peat moss, which removes nTiO2 from water and decreases its mobility. At the same 

time, DOC adsorbs to nTiO2, changes the zeta potential to negative, and increases nTiO2 

transport. The relative importance of these two competing processes depends on factors 

including concentration and electrical charges of nTiO2 and DOC, kinetics of nTiO2 attachment 

to the transport medium and DOC adsorption to nTiO2. For the columns with 65 and 260 mg peat 

moss, only a small amount of nTiO2 (5% and 7% respectively) were recovered in the effluent. 

This result shows that nTiO2 attachment to the transport medium was the dominant process, 

which retained over 90% of the injected nTiO2. Nonetheless, a small fraction of nTiO2 gained 

sufficient negative charges and passed through the column. The DLVO energy profiles 

calculated based on the zeta potential and hydrodynamic diameter of nTiO2 in the effluent 
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showed large energy barrier between nTiO2 and quartz (64−159 kT), and between nTiO2 and 

peat (39−57 kT) (Fig. 5e and 5g), which explains the high mobility of these nTiO2 particles. 

In the experiments with influent pH = 9 (Expt. #4-6, Table 1), effluent nTiO2 

concentration was high, and peat moss in the column inhibited nTiO2 transport. In the quartz-

sand only column, almost 90% of the injected nTiO2 was recovered in the effluent, while for the 

columns with 65 and 260 mg peat moss, nTiO2 recovered in the effluent decreased to 72% and 

52% respectively (Fig. 4b and Table 2). The relatively high mobility of nTiO2 in these 

experiments was caused by repulsive electrostatic forces between nTiO2 and the porous medium. 

At pH 9, zeta potential of the nTiO2, quartz, and peat moss were all negative (i.e., -37.8, -42.1, 

and -13.2 mV, respectively) (Fig. 1a), indicating repulsive forces. DLVO calculation confirmed 

high energy barrier between nTiO2 and quartz (179-233 kT), and between nTiO2 and peat moss 

(42-87 kT) under both influent and effluent conditions (Fig. 5, right panels), consistent with the 

high mobility of nTiO2 observed in these experiments. 

Substantial amounts of nTiO2 (30-50%) were retained in the columns with peat moss 

(Expt. # 5 and 6, Fig. 4b and Table 2). This result shows that peat moss in the columns served as 

a sink for nTiO2, which contradicts the high energy barriers (42-87 kT) indicated by the DLVO 

calculation. In calculating the interactive energy between nTiO2 and the collector (e.g., quartz or 

peat), it was assumed that the collector was an infinite large plate with smooth surface. While 

this assumption is reasonable for the quartz sand (Fig. A4), it neglects the roughness, depressions, 

protrusions, and the pore structures on the peat moss surface (Fig. A5). Irregularities on collector 

surface can substantially reduce energy barrier between the particle and collector (Bradford et al. 

2002; Martines et al. 2008; Shen et al. 2011), therefore, actual energy barrier between nTiO2 and 

peat moss is expected to be lower than those calculated. Wu and Cheng (2016) reported nTiO2 
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attachment to Fe oxyhydroxides at pH = 9, even though calculations based on classic DLVO 

theory indicated energy barrier and repulsion. Similarly, Bayat et al. (2015) found aluminum 

oxide and titanium dioxide nanoparticles retained by kaolinite, illite, and montmorillonite in 

limestone columns under unfavorable deposition conditions.  Both Fe oxyhydroxides and clay 

minerals have unsmooth surfaces and the attachment of fine particles were attributable surface 

morphology. Our results further showed that natural organic matter such as peat moss may also 

attract nanoparticles under unfavorable conditions due to surface roughness. 

 

 

 

Fig. 4. Experimental (symbols) and modeled (lines) breakthrough curves and effluent mass 

recovery of nTiO2 (C0 = 20 mg/L) in quartz sand columns with 0, 65, and 260 mg peat moss 

(circles: 0 peat moss; triangles: 65 mg peat moss; squares: 260 mg peat moss). Solid and open 

symbols in panel (a) and (b) represent measurements from duplicate experiments, and lines 

represent modeled breakthrough curves. 1 mM NaCl solution was used as background electrolyte 

for all the experiments.  
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Fig. 5 nTiO2-to-quartz (dashed lines) and nTiO2-to-peat moss (solid lines) DLVO interaction 

energy profiles in the influent (a, b) and effluent (c, d, e, f, g and h) for experiments with 0, 65, 

and 260 mg peat moss packed in the column. pHin: influent pH; EB(nTiO2-quartz): energy 

barrier between nTiO2 and quartz; EB(nTiO2-peat): energy barrier between nTiO2 and peat moss. 

Energy profile was not available for the effluent of the quartz-sand only column (panel c), since 

no particle was present in the effluent. 

 

 

Table 2. Model calculated particle deposition rate coefficient (k1 and k2) and site density (S1, max 

and S2, max) for nTiO2 and illite breakthrough curves. 

 

 

 

 

 

 

 

Expt. 

# 
Peat  moss  

(mg) 

Influent 

pH 

Particle mass 

recovery (%)  
k1 

(1/hr) 

S1, max  

(mg/g) 

k2  

(1/hr) 

S2, max  

 (mg/g) 
R2 

1 
0 5.0 

0.3 ± 0.0 not calculated (no 

breakthrough) 

not calculated (no 

breakthrough) 

  

 

2 65 5.0 5.0 ±0.5 7.53 ± 0.08 1.211 ± 0.908 

  

0.93 

3 260 5.0 7.4 ±0.4 6.36± 0.09 1.462 ±1.218 
  

0.91 

4 0 9.0 89.3 ± 0.9 0.44 ± 0.12 0.005 ± 0.001 
  

0.94 

5 65 9.0 71.6 ± 4.0 2.51 ± 0.00 0.003 ± 0.000   0.56± 0.00 0.001± 0.000 0.97 

6 260 9.0 51.9 ± 5.4 5.09 ± 0.60 0.009 ± 0.001 0.58 ± 0.24 0.010 ±0.001 0.95 

         

7 0 5.0 27.2 ±0.8 4.43 ± 0.14 0.152 ± 0.011   0.94 

8 65 5.0 54.5 ±7.2 1.36 ± 0.09 0.961 ± 0.301   0.96 

9 260 5.0 73.5 ±5.6 0.84 ± 0.11 0.085 ± 0.057   0.93 

10 0 9.0 86.5 ± 3.7 0.41 ± 0.09 0.016 ± 0.006   0.97 

11 65 9.0 89.4 ± 8.4 0.27 ± 0.00 0.325 ± 6.809   0.94 

12 260 9.0 94.8 ± 2.2 0.19 ± 0.05 0.019 ± 0.023   0.98 
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In the experiments with influent pH = 9 (Expt. #4-6), while size of the nTiO2 in the 

effluent (253, 274, and 253 nm) was similar to that of the influent (264 nm) (Fig. 2f), zeta 

potential of the effluent was less negative than that in the influent, i.e., zeta potential of nTiO2 in 

the influent was -37.8 mV, and effluent zeta potential of the quartz-sand only, 65 mg, and the 

260 mg peat moss column were -26.7, -21.5, and -32.8 mV respectively (Fig. 2d). Zeta potentials 

of the 65 mg and 260 mg peat moss column effluents were close to the zeta potential of the 

effluent from the quartz-sand only column (-26.7 mV) (Fig. 2d), and were within the range of 

reported zeta potential of nTiO2 in DOC-free 1 mM NaCl solution at similar pH (-20 to -30 mV 

at pH ≈ 7.5) (Loosi et al., 2013). These results indicate that the less negative zeta potential of the 

effluent with respective to that of influent was due to pH decrease (Fig. 2b), instead of the 

influence from DOC. This is very different from what we observed in the experiments with 

influent pH = 5 (Expt. #2 and 3), where zeta potential of nTiO2 changed from positive to 

negative as the water flew through the columns (Fig. 2c). In the experiments with influent pH = 9, 

pore water pH in the columns ranged from 7.5 to 9.0 (Fig. 2b), higher than the point of zero 

change of nTiO2 (pHpzc, nTiO2 = 6.2−6.7). Therefore, the nTiO2 particles were negatively-charged 

and repelled the like-charged DOC. As a result, little DOC should adsorb to the nTiO2. This is 

consistent with the results of Wu and Cheng (2016), who showed that, at pH 9, humic acid 

adsorption to nTiO2 is low and humic acid does not influence the zeta potential of nTiO2. 

3.3.3 Illite colloid transport 

To further understand the effects of peat moss on fine particle transport, we conducted 

experiments to measure illite colloid transport in columns packed with the same quartz sand and 

peat moss. In all the experiments, illite recovery in the effluent was higher than that of nTiO2. In 

the experiments with influent pH = 5, 27% of the injected illite colloids were recovered in the 
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effluent of the quartz-sand only column (Fig. 6a and Table 2), and illite recovery increased to 

55% and 74% respectively for the columns with 65 mg and 260 mg peat moss. In the 

experiments with influent pH = 9, illite recovery were 87%, 89%, and 95% respectively for the 

quartz-sand only, 65 mg, and 260 mg peat moss columns (Fig. 6b and Table 2). 

At pH 5 and 9, illite colloid, quartz, and peat were all negatively charged (Fig. 1a), 

indicating repulsive electrostatic forces between particle and the transport medium. DLVO 

energy profiles calculated based on the influent and effluent conditions showed high energy 

barrier between illite and quartz under all conditions (> 217 kT) (Fig. 7). Energy barriers 

between illite and peat moss were lower but still substantial, ranging from 24 to 90 kT for the 

experiments with influent pH = 5 (Fig. 7, left panels), and from 62 to 73 kT for the experiments 

with influent pH = 9 (Fig. 7, right panels). These calculated energy barriers indicated strong 

repulsive forces between illite colloid and the transport medium, and explains the high mobility 

of illite, especially in these experiments with influent pH = 9. 

For the quartz-sand only experiment with influent pH = 5, despite the high energy barrier 

between illite and quartz (>217 kT), only 27% of the injected illite were recovered (Fig. 6a and 

Table 2). The high particle retention is attributable to illite attachment to Fe/Al oxyhydroxides. 

The quartz sand used in our experiments was not acid washed, therefore trace quantities of Fe/Al 

oxyhydroxides could exist as coatings on the sand (Lenhart and Saiers, 2002). This was 

confirmed by the SEM-EDX results, which detected Fe and Al on sand surface (Appendix 5). 

Additionally, acid digestion also showed the presence of Fe and Al (107 ± 7 mg Fe/kg sand, and 

158 ± 2 mg Al/kg sand). Fe/Al oxyhydroxides, which have high point of zero charge (pHpzc, Fe 

oxyhydroxide = 8.7 to 9.1) (Ewbank et al., 2014; Jain et al., 2009; Liu et al., 2005), carry positive 

charges at pH 5, and are known to increase the retention of negatively-charged colloids and 
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nanoparticles at low pH due to electrostatic attraction (Han et al., 2014; Wu and Cheng, 2016; 

Wang et al., 2012 and 2013).  

 

 

 

Fig. 6. Experimental (symbols) and modeled (lines) breakthrough curves and effluent mass 

recovery of illite colloid (C0 = 50 mg/L) in quartz sand columns with 0, 65, and 260 mg peat 

moss (circles: 0 peat moss; triangles: 65 mg peat moss; squares: 260 mg peat moss). Solid and 

open symbols in panel (a) and (b) represent measurements from duplicate experiments, and lines 

represent modeled breakthrough curves. 1 mM NaCl solution was used as background electrolyte 

for all the experiments. 
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Fig. 7. illite-to-quartz (dashed lines) and illite-to-peat moss (solid lines) DLVO interaction 

energy profiles in the influent (a, b) and effluent (c, d, e, f, g and h) for experiments with 0, 65, 

and 260 mg peat packed in the column. pHin: influent pH; EB(illite-quartz): energy barrier 

between illite colloid and quartz; EB(illite-peat): energy barrier between illite colloid and peat. 

 

In the columns with peat moss, effluent illite recovery was much higher, i.e., illite 

recovered in the 65 mg and 260 mg peat moss column were 55% and 74% respectively (Fig. 6a 

and Table 2). As previously discussed, peat moss increased nTiO2 transport at low pH (Fig. 4a) 

by releasing DOC, which adsorbed to and reversed zeta potential of nTiO2 (Fig. 2c). For the 

negatively-charged illite colloids, however, DOC is unlikely to adsorb or influence their zeta 

potential due to electrostatic repulsion. This is evidenced by the similarity in effluent zeta 

potential of the columns packed with and without peat moss (Fig. 3c and 3d). The higher illite 

transport in columns with peat moss is presumably caused by organic matter adsorption to the 

Fe/Al oxyhydroxides. In these experiments, pH of the pore water were 5.9 and 6.9 respectively 

(Fig. 3a), lower than the pHpzc of Fe/Al oxyhydroxides, indicating positively-charged metal 

oxyhydroxides, which have high affinity for DOC. Previous studies showed that DOC competes 

with negatively charged particles for binding sites on Fe oxyhydroxides and promotes particle 

transport at low pH (Han et al., 2014; Wang et al., 2012 and 2013). In our experiments, organic 

matter from the peat moss could be attracted to the Fe/Al oxyhydroxides, which masked the 

positive charges of Fe/Al oxyhydroxides and made them unavailable for illite attachment. 

Even with the attachment of organic matter to the Fe/Al oxyhydroxides, a substantial 

percentage of illite (25-45%) was retained by the transport medium in these experiments (Fig. 6a 

and Table 2). This is attributable to illite attachment to the peat moss. While the DLVO 

calculation showed energy barriers between illite and peat moss (24 to 90 kT), as discussed 
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previously, the actual energy barrier should be lower and therefore some of the illite particles 

could be retained due to surface morphology of the peat moss. 

In the experiments with influent pH = 9, illite recovery was higher than that with influent 

pH = 5, i.e., for influent pH = 9, illite recovery were 87%, 89% and 95% respectively (Table 2). 

With influent pH = 9, pH of the effluent ranged from 7.6 to 7.8 (Fig. 3b), higher than that for the 

experiments with influent pH = 5, which ranged from 5.1 to 6.9 (Fig. 3a). The higher pH 

indicated lower positive charges on Fe/Al oxyhydroxides, and therefore lower attractive forces 

between illite and the Fe/Al oxyhydroxides, which is consistent with the higher illite recovery 

observed in these experiments. 

 

3.4 Transport modelling 

Modelling results showed that the one-site model worked well for all the breakthrough 

curves except for nTiO2 breakthrough curves for the experiments with peat moss in the column 

and influent pH = 9 (i.e., Expt. #5 and #6), where a two-site model was needed (Fig. 4 and 6, 

Table 2). In the two-site model, nTiO2 attachment was characterized by a slow-kinetic site of 

higher site density (k1 and S1, max) and a fast-kinetic site of lower site density (k2 and S2, max). As 

discussed previously, in Expt. #5 and #6, the main mechanism of nTiO2 retention was particle 

attachment to the peat moss. For all the other experiments, the main mechanism was particle 

attachment to quartz or Fe/Al oxyhydroxides. Although in some experiments (e.g., Expt. #2 and 

#3), peat moss may also contribute to particle retention, due to the much greater mass of quartz 

and greater attractive forces between particle and quartz, peat moss was expected to play only a 

minor role. The necessity of two-site model for simulating particle deposition to peat moss 
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suggests that sites of the peat moss were more heterogeneous than those of quartz and Fe/Al 

oxyhydroxides. 

Due to the strong attractive forces between particle and the transport medium, no nTiO2 

was detected in the effluent of the quartz sand only column with influent pH = 5 (Expt. #1), 

therefore no transport modelling exercise was performed (Table 2). nTiO2 breakthrough in the 

quartz sand only column with influent pH = 9 (Expt. #4) was characterized by single deposition 

site with very low deposition rate (k1 =0.44 /hr) and low site density (S1, max = 0.005 mg/g) (Table 

2). For all the columns packed with peat moss, the deposition rate coefficient (k1) and site density 

(S1, max) in the experiments with influent pH = 5 (i.e., Expt. # 2 and 3) were higher than those for 

the experiments with influent pH = 9 (i.e., Expt. #5 and 6) (Table 2). This is reasonable, since in 

the pH 5 experiments, the main mechanisms of deposition were attachment of positively-charged 

nTiO2 to negatively-charged quartz, and therefore there were abundant sites and no energy 

barrier, resulting in high site density and high deposition rate. While in the pH 9 experiments, the 

main mechanism of particle retention was nTiO2 attachment to the peat moss, which was much 

less abundant compared to quartz, and accordingly lower site density. Additionally, nTiO2 and 

peat moss were like charged, and nTiO2 retention was caused by surface morphology of the peat 

moss. Therefore, the attractive forces between nTiO2 and the transport medium was low, 

resulting in low deposition rate. With influent pH = 5, both deposition rate (k1) and site density 

(S1, max) decreased with increasing peat moss mass (Expt. #2 vs. #3, Table 2). This was caused by 

DOC adsorption to nTiO2, through which reversed the zeta potential of some nTiO2, resulting in 

decrease of the overall deposition rate and site density. Conversely, with influent pH = 9, both 

deposition rate (k1) and site density (S1, max) increased with increasing peat moss mass (Expt. #5 

vs. #6, Table 2), which was attributable to the larger amounts of sites provided by the peat moss.  
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For illite colloid transport, deposition rate coefficient (k1) and site density (S1, max) were 

also higher for the experiments with influent pH = 5 than those for the experiments with influent 

pH = 9 (Expt. #7−9 vs. Expt. #10−12, Table 2). As discussed previously, in the pH 9 

experiments, as a result of higher pH, the attractive forces between illite and metal 

oxyhydroxides diminished. The modelling results showed that the decrease in the interactive 

forces reduced both the rate of deposition (k1) and site density (S1, max). 

For both influent pH = 5 or 9, deposition rate (k1) generally decreased with increasing 

peat moss mass (Expt. #7−9 and Expt. #10−12, Table 2). Either Expt. #10 or Expt. #11 seemed 

an outliner, for which the trend reversed. The decrease in deposition rate with increasing peat 

moss mass was attributable to organic matter adsorption to the Fe/Al oxyhydroxides, which 

reduced and/or eliminated the positive charges on these metal oxyhydroxides, and therefore 

decreased the attractive forces between illite and metal oxyhydroxides, resulting in lower 

deposition rate. However, for either influent pH, no obvious trend could be determined with 

regard to how the site density varied with the peat moss mass, due to the large uncertainties 

involved in the calculated site density. 
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Chapter 4: Summary, conclusions and recommendations 

Summary and conclusions 

In this study, we used peat moss as a representing NOM and identified a number of 

mechanisms through which NOM may change nTiO2 and illite particle transport. NOM in the 

transport medium can attract particles and reduce particle mobility. This happens when the 

particle and NOM carry opposite charges (e.g., nTiO2 in the experiments with influent pH = 5), 

or when the energy barrier between particle and solid-phase organic matter is relatively low, in 

which case the particle may be retained due to surface morphology of the NOM (e.g., nTiO2 in 

the experiments with influent pH = 9). Under some other conditions, however, NOM may 

increase particle mobility, e.g., NOM can adsorb to the positively-charged Fe/Al oxyhydroxides 

and increase the transport of negatively-charged illite colloids. In addition to altering properties 

of the transport medium, NOM influences particle mobility by changing water chemistry. E.g., 

NOM may change pore water pH, which influences particle mobility by affecting the interaction 

energy between particle and the transport medium. Additionally, partial dissolution of NOM 

releases DOM to water, and the DOM thus generated adsorbs to particles and modifies particle 

zeta potential. This process was found to reverse the zeta potential of positively-charged particles 

and increase the transport of such particles (e.g., nTiO2 particles at pH < pHpzc, nTiO2). However, 

DOM hardly influences negatively-charged particles due to electrostatic repulsion. Results from 

modelling of the particle breakthrough curves showed that deposition sites of peat moss are more 

heterogeneous than those of quartz or Fe/Al oxyhydroxides, and deposition rates are usually 

higher for particle-to-quartz than those for particle-to-peat moss, due to the stronger attractive 

forces between particle and quartz. Modelling results also showed that the adsorption of peat 

moss organic matter to nTiO2 and Fe/Al oxyhydroxides diminishes the attractive forces between 
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particle and collector, and therefore reduces deposition rate. Findings from this study 

demonstrates that NOM in the transport medium not only changes property of the medium, but 

also alters water chemistry, both of which could substantially influence fine particle retention 

and transport in aquifers.  

Recommendations for Research 

Progress has been made in particle transport by the influence of natural organic matter in 

the transport medium, but there are many significant research topics and technical support still 

need remain. The following recommendations are offered for future research in the groundwater 

contaminant transport. 

1. Given the changing of the percentage of solid organic matter (peat moss) and quartz sand, 

since limited attention has been focused on the effect of the transport medium on particle 

transport, and surface roughness of solid organic carbon can affect the transport and deposition 

of nanoparticles and clay colloids in saturated groundwater conditions.  

2. The alterative of peat moss as the represent of NOM, which resulting in particles surface 

coating, surface properties modifications (e.g., zeta potential), aggregation and stabilization, can 

be selected to further identify the effect of NOM on nanoparticle transport in groundwater 

system. The major components of NOM, like carbon content, physicochemical characteristics, 

can be analysed in future studies. 

3. To gain more insight into the effects of NOM on particles transport, a range of solution 

chemistry background conditions, e.g., pH, ionic strength, divalent cations, should be considered. 

Since background water chemistry, which governs zeta potential and particle size, have major 

influence on particle transport and deposition. 
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4. Clay particles (e.g., illite colloids) are abundant in the natural subsurface environments. Based 

on the review of previous studies, the important groundwater research gap is identified and 

should be discussed in the future research: how mineral clay and NOM, as the mixer transport 

media, impact the particles migration.    
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Appendix 1: Calibration curves of nTiO2 and illite at pH 5 and 9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. A1. Calibration curves of nTiO2 at pH 5 (a) and pH 9 (b) in 1 mM NaCl solution. Light 

absorbance was measured at a wavelength of 368 nm by a spectrophotometer.  
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Fig. A2. Calibration curves of illite suspensions at pH 5 (a) and pH 9 (b) in 1 mM NaCl solution. 

 Light absorbance was measured at a wavelength of 290 nm by a spectrophotometer.  
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Appendix 2: Grain size distribution of the peat moss  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. A3 Grain size distribution of the peat moss. Different symbols represent results from 

replicate measurements 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

60 
 

Appendix 3: SEM of quartz sand 

 

Fig. A4. Representative SEM images of quartz sand 
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Appendix 4: SEM of peat moss  

 

 

Fig. A5. Representative SEM images of the dry peat moss. 
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Appendix 5: Energy dispersive X-ray (EDX) spectrum of quartz sand 

 

 

 

 

 

 

 

 

 

Image Name: Base(4) 

Image Resolution: 512 by 384 

Image Pixel Size: 1.08 µm 

Acc. Voltage: 15.0 kV 

Magnification: 220 
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Image Name: Base(7) 

Image Resolution: 512 by 384 

Image Pixel Size: 0.36 µm 

Acc. Voltage: 15.0 kV 

Magnification: 650 
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Image Name: Base(8) 

Image Resolution: 512 by 384 

Image Pixel Size: 0.13 µm 

Acc. Voltage: 15.0 kV 

Magnification: 1799 
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Appendix 6: Energy dispersive X-ray (EDX) spectrum of peat moss 

 

 

 

 

Image Name: Base(1) 

Image Resolution: 512 by 384 

Image Pixel Size: 0.26 µm 

Acc. Voltage: 15.0 kV 

Magnification: 899 
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Image Name: Base(2) 

Image Resolution: 512 by 384 

Image Pixel Size: 0.36 µm 

Acc. Voltage: 15.0 kV 

Magnification: 650 
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Image Name: Base(3) 

Image Resolution: 512 by 384 

Image Pixel Size: 0.11 µm 

Acc. Voltage: 15.0 kV 

Magnification: 2200 
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Image Name: Base(4) 

Image Resolution: 512 by 384 

Image Pixel Size: 0.15 µm 

Acc. Voltage: 15.0 kV 

Magnification: 1600 
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Image Name: Base(5) 

Image Resolution: 512 by 384 

Image Pixel Size: 0.88 µm 

Acc. Voltage: 15.0 kV 

Magnification: 270 
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Image Name: Base(6) 

Image Resolution: 512 by 384 

Image Pixel Size: 0.59 µm 

Acc. Voltage: 15.0 kV 

Magnification: 400 
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Image Name: Base(7) 

Image Resolution: 512 by 384 

Image Pixel Size: 0.30 µm 

Acc. Voltage: 15.0 kV 

Magnification: 800 
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Image Name: Base(8) 

Image Resolution: 512 by 384 

Image Pixel Size: 0.30 µm 

Acc. Voltage: 15.0 kV 

Magnification: 800 


