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Abstract

Unmanned Surface Vehicles (USVs) have seen fast development in the past decades, and

they have opened up new ways for observing the ocean. A USV can run autonomous mis-

sions on the water surface with different payload sensors for characterizing the chemical

and physical properties of the water column. With a group of USVs operated simulta-

neously in a fleet, the ocean observation work can be extended to much larger areas to

achieve diverse scientific objectives. The ocean has very challenging environments, and to

enable a USV to successfully complete each survey mission under adverse weather condi-

tions, it is of great importance to investigate accurate and robust path-following control

algorithms. Further, the unexpected ocean disturbances on a USV can potentially lead

to critical motions, which may cause a USV to capsize. Therefore, the safety analysis of

a USV that runs a mission in the seaway becomes a particularly important subject.

This thesis provides a comprehensive investigation into the operation of a USV ex-

ecuting autonomous missions in adverse ocean environments. We investigate a USV’s

dynamic motion modeling and validation in 6 degrees of freedom (DOF), examine three

path-following control algorithms and their real-world performance in adverse weather

conditions, as well as establish the safe operational condition for a USV that operates in

dynamic ocean environments. We hope that our accomplished work can assist the USV

practitioners in choosing appropriate motion dynamics models and robust path-following

control strategies, and potentially implementing our safety analysis results to improve a
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USV’s operational safety and survivability during its ocean exploration mission. The pla-

nar motion dynamics are derived from the 6 DOF rigid-body motion equations, based on

which a hybrid identification method that combines the tow tank and field tests has been

carried out to determine the model parameter values. Depending on the constructed

planar dynamic motion model, we develop and test three path-following control algo-

rithms, i.e. Vector Field Method (VF), Carrot Chasing Method (CC) and Line-of-Sight

Method (LOS). Our investigation involves investigating their mathematical origins, per-

forming simulation tests and carrying out field experiments in adverse weather conditions

to examine each algorithm’s robustness.

Understanding the uncontrollable oscillatory motions in heave, roll and pitch are criti-

cal for the safety of a USV that operates in harsh ocean environments. The major influence

on a USV’s oscillatory motion comes from the ocean waves. Since this highly nonlinear

interactive dynamics are quite complicated, we implement three mathematical tools for

the safety analysis, which includes the Analytical Method, Melnikov’s Method and Ero-

sion Basin Method. Using the approximated analytical solution, we demonstrate the well-

known jump phenomenon for the nonlinear oscillatory motion. Using Melnikov’s function,

we determine a conservative critical condition to predict the occurrence of chaotic motion,

which can be regarded as a USV’s safe operation boundary condition. The erosion basin

numerical analysis has been implemented as a supplement for the Melnikov’s method, and

the results show that the achieved Melnikov boundary condition corresponds to the 90%

safe region proportion contour. The boundary condition has been successfully combined

together with the wave excitation moments to determine the safe and unsafe operational

regions for a USV. These results are summarized in a series of unsafe region contour plots

in the 2D polar coordinates.
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Chapter 1

Introduction

This starting chapter introduces the motivation of this research, provides detailed litera-

ture review and summarizes the main contributions.

1.1 Motivation

The ocean is of great importance for humankind. It covers 71 percent of Earth’s surface

and plays a key role in regulating the world’s climate. Surrounded by the ocean, we build

our civilization, and many of our businesses are dependent on the ocean such as fisheries

and shipping. However, it is astounding that we still know so little about our ocean.

Because the ocean is so vast, it is really difficult to explore. Traditionally, scientists rely

on large research vessels and expensive equipment to do ocean surveys. This conventional

method requires significant operational in-situ support, and therefore long time scientific

data series and large area coverage are prohibitively expensive and very rare. Further, the

ocean is very dynamic, and this challenging environment also makes it risky for human

beings to carry out persistent ocean observations.

The fast advancement of robotic technology in the past few decades has dramatically

changed the way we explore the ocean. In particular, Unmanned Surface Vehicles (USVs)

1
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have opened up new ways of observing the ocean’s processes across different time and

length scales. USVs are robotic platforms that work on the water surface. They can be

equipped with different payload sensors, which can be potentially employed for character-

izing the chemical, physical and biological properties of the water surface and the water

column. Such platforms are capable of performing long duration profiling missions, and

their collected fine resolution ocean data surpass the traditional methods that are based

on shipboard sampling or moored buoys. These vehicles are cost-effective and they can be

remotely controlled by a team of scientists. Persistent ocean observations are enabled by

their prolonged endurance, which is vital for monitoring and understanding the complex

ocean phenomena, such as the ocean-atmosphere interaction [1]. With sufficient numbers

of USVs operated simultaneously in a fleet, our observation work can be extended to much

larger spatial coverage to achieve diverse scientific objectives.

With the aforementioned advantageous features, USVs have been successfully em-

ployed for a variety of missions, such as bathymetric mapping [2] and environmental

monitoring [3], proving their considerable value for exploring the ocean. Nevertheless, to

be suited for persistent observations in the ocean, a USV has to be able to survive harsh,

fast-changing and often unpredictable ocean environments. Due to their small size and

low inertia, USVs are easily influenced by environmental factors such as waves, winds and

ocean currents. These disturbances will interact with a USV’s hull and superstructure and

potentially result in unfavorable motions in all degrees of freedom. Under the worst-case

scenario, a USV will capsize or suffer complete destruction.

A typical scientific mission requires a USV to perform sensor data collection while

following designated paths, and the path-following accuracy will directly influence the

utility of the gathered data. However, precise path tracking control is quite challenging

because of a USV’s complicated hydrodynamic characteristics and unexpected environ-

mental disturbances. There are many path-following control methods available in the
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robotics community, but few of them have been implemented on a USV in real experi-

ments under adverse weather conditions. Hence, their value and effectiveness are difficult

to evaluate.

With the increasing interest for deployment of USVs for persistent ocean survey tasks,

the safety of these platforms becomes a particularly important subject for ocean prac-

titioners. The ocean is very dynamic and the adverse weather conditions could lead to

an unsafe operational status for a USV. For example, excessive roll or pitch motion will

cause a USV to capsize. Some open questions need to be answered: such as how we

can determine a feasible path for a USV depending on the deteriorating environmental

conditions, and is it possible for a USV to have self-awareness of its own safety so that

more reliable and safer paths can be planned and executed on-line. The answers to these

questions are vital for their future mission success.

Although we are still at the beginning stage of employing autonomous vehicles for

ocean exploration missions, we can imagine the benefits of working with fully automated

vehicles in the near future. These enormous improvements will further shape the way we

study the ocean and deepen our understanding of this active hydrosphere.

1.2 Literature Review

1.2.1 Unmanned Surface Vehicles

Unmanned Surface Vehicles (USVs) have seen a large proliferation in the past two decades

[4, 5]. In 1993, a mono-hull USV ARTEMIS was introduced by the MIT Sea Grant

Program as a platform for initial testing of the guidance and control system [2]. Due to the

limited endurance and seakeeping capability of ARTEMIS, a catamaran-type USV ACES,

shown in Fig. 1.1a, was produced as a replacement for bathymetric mapping mission. The

USV SESAMO [1], as shown in Fig. 1.1b, was designed for Antarctic sea surface micro-



Chapter 1. Introduction 4

layer sampling tasks, but it could only work in smooth sea and wind conditions. The USV

Springer [3] was developed for pollutant tracking tasks and a research focus was on the

development of a fault-tolerant guidance and control system. To fulfill the requirements of

persistent observations, renewable energy has been utilised. In Fig. 1.1c, Wavegliders, for

instance, have successfully travelled thousands of miles across the ocean without human

intervention [6]. These platforms employ wave and solar energy to power their onboard

sensors and propulsion systems. Similarly, the USV C-Enduro from ASV Ltd. (Fig. 1.1d)

takes advantage of wind and solar energy for enduring ocean exploration missions.

(a) ACES [2] (b) SESAMO [1]

(c) Wavegliders [4] (d) C-Enduro (ASV Ltd.)

Figure 1.1: Different kinds of Unmanned Surface Vehicles (USVs).

There are a diversity of USVs, and they can be classified by their number of hulls, hull

forms and applicable scenarios. Based on the number of hulls, we have mono-hull USVs

and multi-hull USVs including catamaran and trimaran. The catamaran-type USVs have
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attracted the most interest from different research institutions [4, 3, 7], and that is because

they have good roll stability, provide sufficient payload capacity and are convenient to

construct. The hull form is another factor that can be used to categorize USVs. The

displacement-style USVs are supported exclusively or predominately by buoyant forces,

and these platforms are widely employed for scientific missions. Under this category,

semi-submersibles such as the buoy-type USV SeaDragon [8] can operate at low speeds

and can be very stable in high sea states. The planing hull USVs are designed to operate

at high speeds and are mainly used by coast guard for harbour patrol work [5]. Many

USVs are designed for fresh water applications, and their small size and maneuverability

make them suitable for missions in rivers and lakes [9]. Others are built with enhanced

robustness and can be potentially deployed for persistent ocean observation missions even

in the most dangerous weather conditions [8].

Effective ocean observations require a USV’s persistent presence to monitor compli-

cated ocean processes. For example, a recent field trial led by National Oceanography

Center (NOC) is aimed at using autonomous vehicles to perform mapping of marine life

for long duration in offshore environments. It is anticipated that there will be an increas-

ing demand for the use of USVs for long duration ocean survey missions in the next few

years [4]. A USV operating on the ocean surface has to survive the fast-changing ocean

environments. A fundamental question is how users and the vehicle itself can assess its

operational safety with respect to different adverse ocean influences. The safety of a USV

has been an ongoing concern since the USV technology emerged. In [2], it is clearly stated

that “large wave actions were a potential threat for the ACES USV’s operational safety”.

After years of development, however, we are still restricted to the field experiments in an

ideal environment and know little about a USV’s actual performance in the ocean with

adverse environmental influences.
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1.2.2 Guidance, Navigation and Control

Unmanned Surface Vehicles (USVs) have demonstrated their utility in various marine

applications, including seafloor mapping, environmental monitoring and sampling and

harbour surveillance [1, 2, 3, 10]. Many of these applications require a USV to accurately

follow designated paths in the survey environment. For example, while performing seafloor

mapping using a side scanning sonar, a USV is commanded to follow the lawn-mower

pattern to cover the studied ocean area. High-precision manoeuvring will notably improve

the accuracy and quality of the constructed seafloor images.

The guidance, navigation and control (GNC) system is the key component to enable

a USV to effectively carry out autonomous exploration missions. The block diagram in

Fig. 1.2 shows a typical GNC system structure for an autonomous marine vessel, and the

definition and functionality of each block have been summarized as follows [11]:

Figure 1.2: A typical guidance, navigation and control (GNC) system for an autonomous
marine vessel.



Chapter 1. Introduction 7

1. Guidance System depends on the user input and weather conditions to plan the

desired path for a marine vessel to follow. The vehicle position and velocity data

are collected by the navigation system, and the path-following control laws act to

provide the reference signals for the low level motion control system. It is important

to note that enhanced autonomy, for example obstacle avoidance, involves the real-

time replanning of the path based on data collected from auxillary perception sensors

such as cameras and/or radar systems.

2. Navigation System collects the data from a marine vessel’s onboard sensors, such

as Global Positioning System (GPS) and Attitude and Heading Reference System

(AHRS), to determine its position, velocity and course/heading angles. These real-

time vehicle status data are fed into the guidance and control system to support the

planning and motion control work. To provide an accurate estimation of the posi-

tions and velocities though, advanced filtering techniques like the Kalman Filter [12]

need to be employed. Currently, all-in-one navigation solutions that combine GPS

and AHRS sensor data and implement advanced filtering algorithms are available

on the market.

3. Control System or the low-level motion controller is responsible for providing ap-

propriate control commands for the vehicle actuators to achieve the desired control

objectives. For instance, to accurately follow predefined paths, the guidance system

provides the reference speed and heading angle for the motion controller. Through

feedback or advanced control algorithm, the motion controller will act to keep up

with the reference signal so that the vehicle can be successfully controlled to track

desired survey paths.

Much effort has been put into the research of the GNC system for a USV. In the project

of ACES [2], an initial design of the GNC system was completed. The navigation system
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integrated a differential GPS and a compass, and the control strategy was developed

using fuzzy logic. The guidance of ACES was based on waypoints, and the sea trial

results demonstrated the successful execution of the waypoint-tracking mission. However,

for vehicle safety reasons, the ACES was restricted to operations in the Charles River. In

[7], an aluminum monohull USV equipped with a basic GNC system was built. The GNC

system employed Line-of-Sight (LOS) guidance strategy, Kalman filter and a PD heading

controller. The developed system was successfully tested in calm water conditions. Four

monohull kayak-type USVs were developed as testbeds for high-level guidance strategy

development and demonstration [13]. Each platform integrated fundamental navigation

sensors that include a GPS and a compass, and the speed and heading were controlled

by using PID controllers. A guidance strategy for collision avoidance [14] was tested with

success. The Springer USV [3] implemented a new GNC system structure for its pollutant

tracking missions. To deal with sensor failure, a fault-tolerant navigation algorithm based

on fuzzy logic and Kalman filter was designed. The guidance system was based on a

common Line-of-Sight (LOS) method, and a linear-quadratic regulator (LQR) controller

was employed for motion control.

Although a variety of GNC systems have already been developed and tested on USVs

with different levels of success, it turned out that most constructed systems were only

tested in an ideal environment with minimum disturbances. Hence, it is difficult to

determine the effectiveness of each method in adverse weather conditions. Environment-

induced disturbances in a USV’s dynamical motion could be a potential threat for safe

operation. For instance, an excessive roll motion will cause capsizing. However, most

researchers were not able to take into account this potential problem because they lacked

the necessary safety analysis tools. Last but not least, although Line-of-Sight (LOS)

guidance strategy has been widely implemented, there are other available methods, such

as Vector Field Method or Carrot Chasing Method, that are potentially more efficient
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and robust. It will be of great value to investigate these different algorithms and compare

their performances in the real-world experiments.

In the scope of this research, we will mainly concentrate on the development of the

guidance and control (GC) system for a USV because we know that accurate navigation

solutions can be achieved by purchasing proper sensors. Our goal is to investigate and

test different guidance and control algorithms and evaluate their performances.

1.2.3 Dynamical Modeling and Parameter Identification

The increasing need for high-performance control motivates the investigation of high-

fidelity dynamic motion modeling and parameter identification for USVs. It is important

to note that many advanced control strategies, such as H∞ [15], sliding mode [16], back-

stepping [9] and adaptive control [17], are formulated relying on a USV’s dynamic motion

model. An accurate model and a proper estimation of the model parameter values are

essential for the ultimate manoeuvring control performance.

A USV’s planar dynamic motion model has been widely researched, because it is

closely related to guidance and control algorithm development. The catamaran-type USV

Springer [3] installed two independently controllable thrusters for its motion control. For

simplicity, the vehicle was assumed to operate at constant speed, and the yaw motion

was modeled as a black box single-input single-output (SISO) system. In this model, the

input was the differential rotational speed of the two propellers, and the output was the

heading angle. Although the simplified model could be conveniently used for control algo-

rithm development, the model was restricted to only one operating speed and a physical

propulsion system model was not included. The Charlie2005 [18] was also a catamaran-

type USV, and it was equipped with two thrusters and two rudders for its motion control.

The planar motion model was developed in surge and yaw direction, while neglecting

the sway motion. The rudder dynamics was included into the model and the propulsion
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system implemented a simplified affine thruster model. In [19], a complete planar mo-

tion model in surge, sway and yaw was derived from the 6 degrees of freedom rigid body

motion equations [20]. Based on this complicated coupled nonlinear model, the paper

introduced several methods to make model simplification for three kinds of USVs with

different propulsion system configuration. The validation results indicated that the linear

surge model was not able to capture the transient accelerating motion of each platform.

Additionally, the experiments with the differential-driven USV showed the deficiency of

the yaw model in capturing the relatively high turn rate. As a follow up, an improved

planar motion model that incorporated the bilinear thruster model was presented [9].

This research was based on the Ribcraft USV from Virginia Polytechnic Institute and

State University, and it employed one vectored thruster for riverine manoeuvring. The

constructed and identified motion model was speed-dependent, and it was validated using

the actual experimental data with satisfactory results.

To identify the hydrodynamic parameter values of a planar motion model, various

methods have been reported. A conventional way includes using the tow tank facility

to perform the standardized experiments, such as resistance, self-propulsion and planar

motion mechanism tests [21]. Using the collected data, most unknown model parame-

ter values can be accurately determined. However, this identification routine depends

on the availability of the towing tank and related facility, and it is always costly and

time-consuming. In addition, the strip theory and empirical methods are commonly used

in the field of Naval Architecture for calculation of some hydrodynamic coefficients [22].

Currently, on-board sensor based model parameter identification techniques have been

widely employed. The algorithms that have been implemented include least-squares fit-

ting [9, 18, 23, 24], extended Kalman filter (EKF) [25], numerical optimization [26] and

adaptive methodology [27]. These new techniques are cost-effective and enable poten-

tial in-field model parameter identification, which is important considering the normally



Chapter 1. Introduction 11

variable payloads for different USV missions.

A USV’s horizontal motion modeling and analysis for control purposes has been exten-

sively addressed, but it is the mostly uncontrolled motions, i.e. roll, pitch and heave, that

are the most critical for a vehicle’s safety. A USV operating in the seaway normally has

6 degrees of freedom (DOF) motion, and the oscillatory motions of roll, pitch and heave

may cause capsizing or system failure. The oscillatory motions of roll, pitch and heave

under the influence of environmental disturbances are complicated, and thus to make this

problem tractable, the conventional decoupled nonlinear model structure [28, 29, 30, 31]

is widely employed. This assumption is widely implemented for a ship’s roll motion dy-

namics analysis, and many techniques, such as analytical approximation and Melnikov’s

method, are available to be used. To identify the oscillatory motion model parameters,

the forced oscillation tests or free decay tests [32] are normally carried out.

1.2.4 Safety Analysis

Safety analysis of a marine craft is a very important subject, especially for those operating

in harsh ocean environments. Nonlinear ship rolling motion analysis traces back to the

1970s [29], and it has been a research topic since then because it is closely related to

the vessel stability against capsizing in the seaway. The rolling motion is conventionally

decoupled from the other degrees of freedom, and the roll exciting moments are normally

assumed to be from the harmonic waves. The nonlinearity in the roll motion leads to

some well-known complicated phenomena. For instance, due to the nonlinearity of the

roll restoring moments, the region around the roll resonant frequency may have multiple

steady-state roll response solutions [33].

To investigate the nonlinear roll dynamics and perform the safety analysis, many

approaches have been developed. In the early days, due to computational limitations, the

analytical approximations of the steady-state rolling response solutions were formulated.
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Some typical analytical methods include Perturbation Method and Harmonic Balance

Method [34], and they have demonstrated their effectiveness in the main rolling resonance

region. Melnikov’s method [35, 28] has been widely accepted and employed for analysing

ship rolling dynamics. As a global analysis technique, it assumes that the ship roll motion

is subjected to a harmonic excitation. Through calculating the value of the Melnikov

function, the distance between the stable and unstable manifolds can be determined as

a criteria for prediction of the system chaotic behaviour, i.e. the case that potentially

leads to capsizing. Recently, the Melnikov’s method has also been extended to take into

account strong damping effects [36]. Taking advantage of recent advances in computing

power, the numerical method, i.e. erosion basin method, has been extensively employed

for analysing a ship’s nonlinear roll motion and even the complex coupled motions in

the seaway. The erosion basin technique is commonly used to investigate the nonlinear

roll dynamics in regular seas [30, 31]. In this method, the concept of the safe basin is

used, which was first introduced in [37]. It has been demonstrated by several researchers

[29] that with the increment of the wave exciting amplitude, the area of the safe basin

will erode, and when this happens, the probability of a ship capsizing through rolling

increases. Some other methods including Lyapunov and bifurcation analysis have also

been introduced [29], but they are applied to limited scenarios.

In this research, we will investigate the commonly used safety analysis methods, i.e.

analytical approximation, Melnikov’s method and erosion basin, and try to extend them to

analyse the roll, pitch and heave motion for a USV. Our main interest resides in finding

out the relationship between a USV’s operational safety and the primary disturbances

from the ocean waves. Therefore, we will try to establish a safety criterion that links the

wave amplitude and wave frequency to the operational status of a USV.
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1.3 Research Platform

The Unmanned Surface Vehicle (USV) SeaCat shown in Fig. 1.3 is employed in this

research. This platform was built at the Autonomous Ocean Systems Laboratory of

Memorial University since 2010 for offshore scientific missions [38]. The vehicle itself is

1.5 m long and 1.0 m wide with a dry weight of 150 to 160 kg depending on the payload

configurations.

As can be seen from Fig. 1.3a, SeaCat is a catamaran-type USV with two indepen-

dently controllable propellers located at the rear part of each hull. It is powered by six 336

Wh lead-acid batteries, and they are enclosed in the main watertight compartments of the

two hulls. The onboard distributed communication and control system is developed based

on Controller Area Network (CAN) protocol [39], and all CAN node circuit boards and

sensors are housed in rugged and waterproof enclosures. The default navigational sensors

include an accurate GPS receiver with an external antenna installed on the superstruc-

ture and an Attitude and Heading Reference System (AHRS) for measuring the attitude

of the vehicle. The weather station measures wind speed, wind direction, temperature

and barometric pressure. The indoor localization sensors are needed when performing

some indoor tests. As shown in Fig. 1.3b, depending on the mission requirements, other

sensors such as sonar, camera and radar can also be integrated into the existing CAN bus

network.

The USV SeaCat’s wireless control and data logging system is developed so that the

platform can be conveniently used for new algorithms testing and field experiments. A

pair of long-range wireless communication modems are employed on the SeaCat and on

the shore-side computer for transmission of the sensor data and vehicle control commands.

As shown in Fig. 1.4, the shore-side configuration includes a laptop connected with the

wireless modem and a gamepad for intuitive control of the vehicle. The graphical user

interface (GUI) on the laptop is developed in the Matlab programming environment, and
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(a) The USV SeaCat in the preliminary tests

(b) The USV SeaCat’s onboard communication and control system structure

Figure 1.3: The USV SeaCat system configuration.
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all sensor data, time and propulsion system status can be visualized by the user in real

time at 1 Hz update rate. Using the synchronized sensor data, the guidance and control

algorithms can be developed on the shore-side computer on the backend of the GUI.

The outputs from these algorithms are the vehicle control commands, and they will be

transmitted to SeaCat through the wireless modem. This framework provides us with

the freedom to develop and update the guidance and control algorithms while the USV

has been deployed in the water, and it brings great convenience for users to tune different

algorithms online. Further, in this research, we will develop different guidance and control

algorithms in the simulation environments using Matlab, and thus the same programming

environment will make it possible for us to directly implement the developed code for the

real experiments. It is important to note that Matlab is not good at real-time data

processing, and it restricts our sensor data update and controlling rate at 1 Hz. However,

controlling SeaCat through 1 Hz wireless link is feasible due to the slow motion dynamics

of the studied platform, which has been demonstrated during the field tests.

Figure 1.4: The USV SeaCat’s shore-side control and data logging system.

The USV SeaCat has been successfully employed for a series of field experiments, and

in this process we kept improving and modifying the system in order to fulfill different

mission requirements. As shown in Fig. 1.5, we have summarised some typical appli-
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cation scenarios for the USV SeaCat. The top left picture of Fig. 1.5 shows the USV

SeaCat during the modeling and identification experiments, and it can be seen that the

superstructure then is supported by four aluminum tubings. The top right picture shows

the iceberg profiling experiment using SeaCat, and in order to increase the system pay-

load capacity for fitting camera, multibeam and side-scan sonar, we installed additional

fairings on the bottom of each hull. The two bottom figures of Fig. 1.5 show the configu-

ration with the new arch superstructure. In these experiments, we evaluated the guidance

and control algorithms and integrated a new sonar for the lakebed bathymetric mapping

mission. The achieved lakebed map has been depicted as shown in Fig. 1.6. Note that

we have defined a local origin and converted the distance to meters, and in the figure,

we overlay the vehicle’s lawn-mower type trajectory to indicate how we collect the lake

depth information. Although the modifications make it difficult for consistency in our

modeling and control algorithm development process, we try our best to keep the similar

hydrostatic and hydrodynamic characteristics of the platform after each system change.

1.4 Contributions

This research presents the following contributions toward realizing enhanced safe opera-

tion of a USV in dynamic and harsh ocean environments:

1. A USV’s high fidelity planar motion dynamics model with model parameters iden-

tified through performing tow tank and field experiments.

2. A comprehensive study and comparison of three well-accepted path-following con-

trol algorithms, including investigation of their mathematical origins, performing

simulation evaluations and carrying out field tests to examine their robustness un-

der adverse weather conditions.



Chapter 1. Introduction 17

Figure 1.5: A series of USV field experiments with different system configurations.

3. An investigation of the linear and nonlinear oscillatory motion modeling and pa-

rameter identification methods for a USV’s heave, roll and pitch motion.

4. A safety analysis of the studied USV in dynamic ocean environments through im-

plementing three different kinds of analysis methodology.

5. An establishment of the safe operational condition that can be conveniently em-

ployed on a USV’s path-planning system.

The control-related planar motion model is identified following a novel hybrid proce-

dure. A precise bilinear thruster model is first identified by performing standardized tow

tank tests, and then extensive field experiments are carried out for on-board sensor-based

identification of the remaining model parameter values [18, 9]. The three path-following
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Figure 1.6: The achieved bathymetric map of the lakebed and the USV SeaCat’s trajec-
tory. It is important to note that the water surface is represented as with random waves
(wave amplitude 0.2 m) as an indication of the operational environments of SeaCat.

control methods include Vector Field Method (VF), Carrot Chasing Method (CC) and

Line-of-Sight Method (LOS), among which VF and CC have been introduced and imple-

mented on a USV for the first time. We provide a novel insight into the theoretical origin

of each algorithm, reveal the same mathematical origin for VF and CC and demonstrate

the deficiency when using VF and LOS for tracking circular paths. Further analysis of

each algorithm involves a comparison between simulation study and actual field experi-

ments, which provides more convincing results than most existing associated researches.

We also present a unique examination of the robustness of presented algorithms, where

designated tests in adverse environmental conditions are performed. Uncontrolled oscil-
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latory motion is critical for a USV’s operation safety, however, this topic is not very well

addressed in the current community [23, 3, 9]. We present the methods to build and

identify the oscillatory motion model, depending on which the safety analysis of the the

studied USV has been carried out using the available analyzing tools. A key contribution

of this thesis is the establishment of a safe operational condition for a USV platform

that operates in harsh ocean environments. We have demonstrated the functionality of

the guidance and control system and experimentally validate the system’s path-following

control robustness in adverse weather conditions. The safe operational condition can be

regarded as a key supplement to the existing control system structure that can notably

improve a USV’s safety in an ocean survey mission.

1.5 The Scope of the Thesis

Chapter 1

Background information about the research has been presented in this chapter. Our re-

search motivation was introduced, based on which, literature review was conducted about

the recent development of the Unmanned Surface Vehicle (USV) technology, Guidance,

Navigation and Control (GNC) System, dynamics modeling methods and safety analysis

technique. The research platform was described and its system structure, functions and

applications were reviewed. Towards the end of this chapter, the main contributions of

this thesis are summarized.

Chapter 2

A systematic procedure for derivation of the USV’s planar motion model from the

6 DOF rigid-body motion equations has been introduced. Using this model, a hybrid

model parameter identification method that combines tow tank and on-board sensor-based

identification technique is followed. The identified dynamic motion model approximates
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the real-world planar motion data reasonably well, and a Matlab/Simulink model has

been constructed for further guidance and control algorithm development.

Chapter 3

Three well-accepted geometric path-following control methods, namely Vector Field

Method (VF), Carrot Chasing Method (CC) and Line-of-Sight Method (LOS), have been

comprehensively studied in this chapter. We provide the complete parameter space explo-

ration of each algorithm, based on which we show their mathematical origins and reveal

their intrinsic connection. Our search of the parameter space is demonstrated by per-

forming extensive simulation and real-world field experiments. Through comparison of

these test results, we can evaluate their varied straight-line, circular and waypoint path-

following performances. Our path-following control algorithms are evaluated in adverse

weather conditions, and thus these results will provide a valuable reference for USV prac-

titioners for their future work when they have to decide on an appropriate strategy for

completion of a specific ocean survey mission.

Chapter 4

The USV’s oscillatory motion in heave, roll and pitch is not very well researched in

the USV community, but they are closely related to a USV’s operational safety while

running a mission in dynamic ocean environments. In this chapter, we introduce well-

accepted decoupled linear and nonlinear oscillatory motion models. Through performing

the convenient and cost-effective tank tests, the model parameters are successfully identi-

fied. The primary contribution for the vehicle’s oscillatory movements comes from ocean

waves, and thus we introduce the formulation of the wave excitation forces and moments

for the corresponding degree of freedom. The results from this chapter serves as the basis

for a USV’s safety analysis.

Chapter 5

In this chapter, three methods including Analytical Method, Melnikov’s Method and
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Erosion Basin Method have been introduced to analyze a USV’s nonlinear roll and pitch

motion dynamics. Based on the discussion, the USV’s safe operational condition has

been established and expressed in 2D polar coordinates. Our analysis provides a helpful

reference for USV practitioners to determine on a USV’s operational safety considering

the unexpected environmental influences. Further, the safe operational condition can

be integrated into USV’s on-board path-planning system to improve the vehicle’s safety

during a survey mission.

Chapter 6

In this chapter, we present a concise summary of the significant results. Based on

the author’s research experience as summarized in this thesis as well as through design-

ing, developing and experimenting with the USV SeaCat, an outlook for the future USV

researchers towards safe and reliable USV operation in harsh ocean environments is pro-

vided.
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Planar Motion Dynamics Modeling

and Parameter Identification

In this chapter, we introduce a systematic procedure for Unmanned Surface Vehicle (USV)

planar motion modeling and parameter identification. Our objective is to build a dynamic

motion model that is convenient for model parameter identification and accurate enough

for efficient control algorithm development. The investigated USV model is simplified

from the 6 DOF rigid-body motion equations considering the vehicle’s hydrodynamics

and other external forces and moments [20]. Using this motion model, a hybrid method,

which combines the tow tank identification routine with the popular on-board sensor-

based identification technique, has been implemented for model parameter identification.

2.1 6 DOF Nonlinear Motion Model

In this section, we provide an overview of the derivation of the mathematical model for

describing a marine vehicle’s 6 DOF motion dynamics. By convention, the 6 motion

components are divided into two groups: the translational motion in surge, sway and

22
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heave, and the rotational motion in roll, pitch and yaw. We follow the SNAME (1950)

standard to define the motion variables, and they have been summarized in Table 2.1.

Table 2.1: SNAME (1950) notation used for marine vehicles

Degrees of freedom Positions and Linear and Forces and
Euler angles angular velocity moments

Surge x u X
Sway y v Y
Heave z w Z
Roll φ p K
Pitch θ q M
Yaw ψ r N

To analyse the dynamic motion of a marine vehicle, two reference frames are con-

sidered, i.e. the inertial and body frames. As shown in Fig. 2.1, in this research the

North-East-Down (NED) frame is chosen as the inertial frame {I}, and its origin OI is

fixed to the earth. The body frame {B} is a moving frame, and its origin OB is fixed to

the research platform. The body frame axes are defined as:

• OBxB is directed from aft to fore along the longitudinal direction of the vehicle

• OByB is directed to starboard along the transverse direction of the vehicle

• OBzB is directed from top to bottom along the normal direction of the vehicle

It is important to note that the position [x, y, z]T and orientation [φ, θ, ψ]T of the vehi-

cle are normally expressed in the inertial frame {I}, while the linear velocity [u, v, w]T ,

angular velocity [p, q, r]T , forces [X, Y, Z]T and moments [K,M,N ]T are expressed in the

body frame {B}. To formulate the motion equations for a marine vehicle in the following
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discussion, we define the vectors as below

η = [x, y, z, φ, θ, ψ]T

ν = [u, v, w, p, q, r]T

τ = [X, Y, Z,K,M,N ]T .

(2.1)

Figure 2.1: The standard notation for describing a marine vehicle’s 6 DOF motion
(SNAME, 1950). The inertial frame {I} is an earth-fixed frame, while the body frame
{B} is attached to the vehicle.

The kinematics deals with the geometric part of the motion, and it can be formulated

as [20]

η̇ = J(η)ν (2.2)
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where J(η) is a transformation matrix that depends on the Euler angles, and it transforms

the linear and angular velocity of a marine vehicle from {B} to {I}. The transformation

matrix can be written as

J(η) =

 J1 03×3

03×3 J2


where

J1 =


c(ψ)c(θ) −s(ψ)c(φ) + c(ψ)s(θ)s(φ) s(ψ)s(φ) + c(ψ)c(φ)s(θ)

s(ψ)c(θ) c(ψ)c(φ) + s(ψ)s(θ)s(φ) −c(ψ)s(φ) + s(ψ)c(φ)s(θ)

−s(θ) s(φ)c(θ) c(θ)c(φ)



and

J2 =


1 s(φ)t(θ) c(φ)t(θ)

0 c(φ) −s(φ)

0 s(φ)/c(θ) c(φ)/c(θ)

 .

Note that we define s() ∆= sin(), c() ∆= cos() and t() ∆= tan().

The kinetics, on the other hand, focuses on the forces and moments and their influences

on a vehicle’s motion. We consider the marine vehicle as a rigid body, using Newtonian

and Lagrangian formalism, the 6 DOF rigid-body motion equations can be formulated as

[20]

MRB ν̇ = τ − CRB(ν)ν. (2.3)
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MRB is the rigid-body inertia matrix that is given as

MRB =



m 0 0 0 mzG −myG

0 m 0 −mzG 0 mxG

0 0 m myG −mxG 0

0 −mzG myG Ixx −Ixy −Ixz

mzG 0 −mxG −Iyx Iyy −Iyz

−myG mxG 0 −Izx −Izy Izz



where m is the total mass of the vehicle, −→r G=[xG, yG, zG]T is the vector that defines the

location of the center of gravity in {B} and

I =


Ixx −Ixy −Ixz

−Iyx Iyy −Iyz

−Izx −Izy Izz



represents the inertia tensor where the off-diagonal terms arise from the asymmetry with

respect to the body frame axes. In Eq. 2.3, CRB(ν)ν denotes the Coriolis and centripetal
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forces and moments and CRB(ν) can be written as

CRB(ν) =



0 0 0

0 0 0

0 0 0

−m(yGq + zGr) m(yGp+ w) m(zGp− v)

m(xGq − w) −m(zGr + xGp) m(zGq + u)

m(xGr + v) m(yGr − u) −m(xGp+ yGq)

m(yGq + zGr) −m(xGq − w) −m(xGr + v)

−m(yGp+ w) m(zGr + xGp) −m(yGr − u)

−m(zGp− v) −m(zGq + u) m(xGp+ yGq)

0 −Iyzq − Ixzp+ Izzr Iyzr + Ixyp− Iyyq

Iyzq + Ixzp− Izzr 0 −Ixzr − Ixyq + Ixxp

−Iyzr − Ixyp+ Iyyq Ixzr + Ixyq − Ixxp 0



.

The last term τ in Eq. 2.3 stands for the vector of generalized forces and moments that

potentially includes the hydrodynamic forces and moments τh, the forces and moments

from the propulsion system τp, the control surfaces τc, such as from the rudder and fins,

and the environmental disturbances τe. Therefore, τ can be formulated as

τ = τh + τp + τc + τe.

According to [20], the hydrodynamic forces and moments can be formulated as

τh = −MAν̇ − CA(ν)ν −D(ν)ν − g(η). (2.4)
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In Eq. 2.4, MA is the added inertia matrix and it is given as

MA = −



Xu̇ Xv̇ Xẇ Xṗ Xq̇ Xṙ

Yu̇ Yv̇ Yẇ Yṗ Yq̇ Yṙ

Zu̇ Zv̇ Zẇ Zṗ Zq̇ Zṙ

Ku̇ Kv̇ Kẇ Kṗ Kq̇ Kṙ

Mu̇ Mv̇ Mẇ Mṗ Mq̇ Mṙ

Nu̇ Nv̇ Nẇ Nṗ Nq̇ Nṙ



where each term can be employed for calculation of the added mass forces or moments.

For example,

Xu̇ ,
∂X

∂u̇

and Xu̇u̇ can be used for calculating the added mass force along surge direction with a

contribution from the surge acceleration or deceleration. The added mass Coriolis and

centripetal forces and moments are represented by CA(ν)ν and

CA(ν) =



0 0 0 0 −cA3 cA2

0 0 0 cA3 0 −cA1

0 0 0 −cA2 cA1 0

0 −cA3 cA2 0 −cA6 cA5

cA3 0 −cA1 cA6 0 −cA4

−cA2 cA1 0 −cA5 cA4 0


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where

cA1 = Xu̇u+Xv̇v +Xẇw +Xṗp+Xq̇q +Xṙr

cA2 = Xv̇u+ Yv̇v + Yẇw + Yṗp+ Yq̇q + Yṙr

cA3 = Xẇu+ Yẇv + Zẇw + Zṗp+ Zq̇q + Zṙr

cA4 = Xṗu+ Yṗv + Zṗw +Kṗp+Kq̇q +Kṙr

cA5 = Xq̇u+ Yq̇v + Zq̇w +Kq̇p+Mq̇q +Mṙr

cA6 = Xṙu+ Yṙv + Zṙw +Kṙp+Mṙq +Nṙr

.

It is important to note that both MA and CA(ν) are due to the inertia of the surrounding

fluid.

The damping forces and moments of D(ν)ν include those from the pressure drag, skin

friction and damping due to the vortex shedding and wave making. To achieve a tractable

model, we assume that D(ν) only consists of the linear laminar friction

Dl(ν) = −



Xu Xv Xw Xp Xq Xr

Yu Yv Yw Yp Yq Yr

Zu Zv Zw Zp Zq Zr

Ku Kv Kw Kp Kq Kr

Mu Mv Mw Mp Mq Mr

Nu Nv Nw Np Nq Nr


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and the quadratic pressure drag

Dq(ν) = −



Xu|u||u| Xv|v||v| Xw|w||w| Xp|p||p| Xq|q||q| Xr|r||r|

Yu|u||u| Yv|v||v| Yw|w||w| Yp|p||p| Yq|q||q| Yr|r||r|

Zu|u||u| Zv|v||v| Zw|w||w| Zp|p||p| Zq|q||q| Zr|r||r|

Ku|u||u| Kv|v||v| Kw|w||w| Kp|p||p| Kq|q||q| Kr|r||r|

Mu|u||u| Mv|v||v| Mw|w||w| Mp|p||p| Mq|q||q| Mr|r||r|

Nu|u||u| Nv|v||v| Nw|w||w| Np|p||p| Nq|q||q| Nr|r||r|



,

and thus,

D(ν) = Dl(ν) +Dq(ν).

The last term g(η) in Eq. 2.4 stands for the restoring forces and moments that arise

from the gravitational and buoyant forces and it can be formulated as

g(η) =



−ρg
∫ z

0 Awp(h)dh sin(θ)

ρg
∫ z
0 Awp(h)dh cos(θ) sin(φ)

ρg
∫ z

0 Awp(h)dh cos(θ) cos(φ)

ρg∇GMT cos(θ) sin(φ) cos(φ)

ρg∇GML sin(θ) cos(θ) cos(φ)

ρg∇(GMT −GML cos(θ)) sin(θ) sin(φ)



(2.5)

where ρ is the water density, g is the gravitational acceleration, ∇ is the displaced water

volume, Awp(h) is the water plane area with respect to the heave position, and the inte-

gration
∫ z

0 Awp(h)dh denotes the variation of the displaced water volume due to the heave

motion. Additionally, the transversal and longitudinal metacentric height are represented

as GMT and GML, respectively, and they are an indication of the initial roll and pitch

stability of a marine vehicle. To give an example, the transversal metacentric height has
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been depicted in Fig. 2.2, and it is measured as the distance between the center of gravity

CG and the metacentre. When the vehicle has a roll angle of φ, the center of buoyancy

CB moves to a new position, and the metacentre is denoted as the intersection point

of the new and original vertical lines that pass through CB. Similarly, the metacentric

height along the longitudinal direction can also be defined.

Figure 2.2: The transversal metacentric height GMT on a marine vehicle.

As a summary, a lumped form representation of the 6 DOF nonlinear motion model

for a marine vehicle operating in the ocean can be written as

(MRB +MA)ν̇ + (C(ν) + CA(ν))ν +D(ν)ν + g(η) = τp + τc + τe (2.6)



Chapter 2. Planar Motion Dynamics Modeling and Parameter Identification 32

2.2 Planar Motion Model

The 6 DOF motion model can describe the complete movement of the vehicle in the sea-

way, but it is highly nonlinear and the motion components are coupled. In this section,

we will derive a simplified planar motion model from the 6 DOF dynamic motion equa-

tions. We will later show that this model has a relatively good fidelity in representing the

vehicle’s actual planar motion, and further, it can be conveniently employed for model

parameter identification and guidance and control algorithm development.

The planar movement of a marine vessel includes three motion components, i.e. surge,

sway and yaw, and to get to this model we need to assume the vehicle’s motion in the

other three degrees of freedom, i.e. heave, roll and pitch, to be small and negligible. Note

that in most cases the oscillatory motions are relatively small compared to the planar

ones, and it will also be an appropriate assumption if we only consider about developing

path-following control algorithms for a surface vehicle in the horizontal plane [18, 19]. To

be consistent with the previous section, the same inertial and body frames as depicted in

Fig. 2.1 are chosen, and we also employ the same SNAME variable definitions. Therefore,

the position-orientation, linear-angular velocity and force-moment vectors in surge, sway

and yaw are given as

η = [x, y, ψ]T

ν = [u, v, r]T

τ = [X, Y,N ]T .

By substituting φ = θ = 0 into Eq. 2.2 and neglecting the rows and columns for heave,

roll and pitch, we can achieve the planar motion kinematics and the new transformation
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matrix as

J(η) =


cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1

 .

The planar motion kinetics keep the same form as Eq. 2.3, but in this section the

inertia matrix is simplified as

MRB =


m 0 −myG

0 m mxG

−myG mxG Izz



and the simplified Coriolis and centripetal forces and moments matrix is given as

CRB(ν) =


0 0 −m(xGr + v)

0 0 −m(yGr − u)

m(xGr + v) m(yGr − u) 0



The total forces and moments along surge, sway and yaw include those from the vehicle

hydrodynamics, propulsion system, control surfaces and the surrounding environmental

influences. In this research though, since the studied USV features no rudders or fins, we

can neglect τc, and thus

τ = τh + τp + τe

where τh can be expanded as Eq. 2.4.

By convention, the surge motion can be decoupled from the steering dynamics due to
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the xz-plane symmetry, so the added inertia of the vehicle can be simplified as [11, 20]

MA = −


Xu̇ 0 0

0 Yv̇ Yṙ

0 Nv̇ Nṙ

 , (2.7)

and similarly the added mass Coriolis and centripetal forces and moments matrix is sim-

plified as

CA(ν) =


0 0 Yv̇v + Yṙr

0 0 −Xu̇u− Yv̇v

−Yv̇v − Yṙr Xu̇u+ Yv̇v 0

.

The damping forces and moments can be calculated as the summation of the linear

laminar friction and the quadratic pressure drag. For simplicity, we assume that the

damping matrix is diagonal, and thus it is written as

D(ν) = −


Xu +Xu|u||u| 0 0

0 Yv + Yv|v||v| 0

0 0 Nr +Nr|r||r|

 .

It will be shown in the later section that the simplified damping model can approximate

the real experimental data reasonably well.

According to Eq. 2.5, when considering that the vehicle’s roll and pitch motion is

small, the restoring forces and moments for surge, sway and yaw are close to zero, so

g(η) =


0

0

0

 .
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Now, we can write down the compact form nonlinear planar motion model as

(MRB +MA)ν̇ + (C(ν) + CA(ν))ν +D(ν)ν = τp + τe (2.8)

where τp = [Xp, Yp, Np]T and τe = [Xe, Ye, Ne]T . Substituting the vectors and matrices

into Eq. 2.8 yields the expanded form motion equations as below

(m−Xu̇)u̇−myGṙ + (Yṙ −mxG)r2 + (Yv̇ −m)vr −Xuu−Xu|u|u|u| =Xp +Xe

(m− Yv̇)v̇ + (mxG − Yṙ)ṙ −myGr2 + (m−Xu̇)ur − Yvv − Yv|v|v|v| =Yp + Ye

−myGu̇+ (mxG −Nv̇)v̇ + (Izz −Nṙ)ṙ + (mxG − Yṙ)ur + (Xu̇ − Yv̇)uv

+myGvr −Nrr −Nr|r|r|r| =Np +Ne

. (2.9)

By choosing OB to coincide with the center of gravity, we get −→r G=[xG, yG, zG]T=[0, 0, 0]T ,

and Eq. 2.9 can be simplified to

(m−Xu̇)u̇+ Yṙr
2 + (Yv̇ −m)vr −Xuu−Xu|u|u|u| =Xp +Xe

(m− Yv̇)v̇ − Yṙṙ + (m−Xu̇)ur − Yvv − Yv|v|v|v| =Yp + Ye

−Nv̇v̇ + (Izz −Nṙ)ṙ − Yṙur + (Xu̇ − Yv̇)uv −Nrr −Nr|r|r|r| =Np +Ne

. (2.10)

Note that for a reasonably balanced vehicle, the values of Yṙ and Nv̇ will be much smaller

than the diagonal terms in the added inertia matrix of Eq. 2.7. Therefore, the planar

motion equations can be further simplified as

(m−Xu̇)u̇ = Xu|u|u|u|+Xuu+ (m− Yv̇)vr +Xp +Xe

(m− Yv̇)v̇ = Yv|v|v|v|+ Yvv − (m−Xu̇)ur + Yp + Ye

(Iz −Nṙ)ṙ = Nr|r|r|r|+Nrr + (Yv̇ −Xu̇)uv +Np +Ne

. (2.11)
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Our indoor and outdoor identification experiments are performed in an ideal condi-

tion with minimum environmental disturbances, so the forces and moments as the result

from different environmental factors can be neglected. Further, the studied USV SeaCat

employs two independently controlled thrusters for its steering control, and there is no

direct control input for the sway movement, i.e. Yp = 0. This propulsion system configu-

ration makes the planar motion control problem as underactuated [40], i.e. the number of

available control inputs is lower than the vehicle’s degrees of freedom. Finally, the planar

motion model for the research platform can be formulated as

(m−Xu̇)u̇ = Xu|u|u|u|+Xuu+ (m− Yv̇)vr +Xp

(m− Yv̇)v̇ = Yv|v|v|v|+ Yvv − (m−Xu̇)ur

(Iz −Nṙ)ṙ = Nr|r|r|r|+Nrr + (Yv̇ −Xu̇)uv +Np

. (2.12)

2.2.1 Surge Motion Modeling

The surge motion is dominant, and by convention it can be regarded as decoupled from

sway and yaw. Thus, we neglect the second-order term involving vr in Eq. 2.12 and the

further simplified decoupled surge model is given as

(m−Xu̇)u̇ = Xu|u|u|u|+Xuu+Xp. (2.13)

2.2.2 Steering Motion Modeling

The USV SeaCat’s designed maximum surge speed is 1 m/s and its sway motion is always

small, so the multiplication uv will be relatively small. Meanwhile, we know that Yv̇ and

Xu̇ are of a comparable order and the studied platform has a similar dimension in terms of

its length and width. Hence, without loss of generality, we neglect the term of (Yv̇−Xu̇)uv
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for the yaw motion model in Eq. 2.12 [20], and the steering dynamics is given as

(m− Yv̇)v̇ = Yv|v|v|v|+ Yvv − (m−Xu̇)ur

(Iz −Nṙ)ṙ = Nr|r|r|r|+Nrr +Np

. (2.14)

In the steering motion model of Eq. 2.14, the coupling term of (m − Xu̇)ur acts

as the control inputs for sway dynamics. The proposed simplification of the yaw motion

model decouples yaw dynamics from surge and sway, and this turns out to be a reasonable

assumption because a direct relationship between the applied steering moment Np and the

turning rate is conventionally employed. For instance, in the well-known Nomoto’s model

for describing a marine vessel’s steering dynamics, a linear or second-order relationship

between the rudder angle (steering moment) and the turn rate is established [9].

2.2.3 Thruster Dynamics Modeling

The two thrusters of the USV SeaCat are installed at the stern of two hulls, and thus the

water flow speed uf through the propellers will be affected by the surge motion of the

hulls. This effect can be modeled with the wake fraction coefficient wf as

uf = (1− wf )u. (2.15)

The available thrust from one thruster is also influenced by the hull-propeller interaction

[18] and it can be modeled as

Ta = (1− td)T (2.16)

where td is the thrust deduction factor with a typical value of 0.05 to 0.2, Ta represents

the available thrust and T is the propulsive force from one thruster. Using the bilinear
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thruster model [20], the available propulsive force exerted by one thruster is given by

Ta = (1− td)(k∗1Ω2 + k∗2(1− wf )uΩ) (2.17)

where k∗1 and k∗2 are the model coefficients and Ω is the propeller’s revolution rate. A

lumped-form representation for the port- and starboard-side thrust force Tp and Ts is

given as

Tp = k1Ω2
p + k2uΩp

Ts = k1Ω2
s + k2uΩs

(2.18)

where

k1 = (1− td)k∗1

k2 = (1− td)(1− wf )k∗2

are the lumped model coefficients for the bilinear thruster model, and Ωp and Ωs denote

the revolution rate of port- and starboard-side propellers. Based on Eq. 2.18, the surge

forces and steering moments from the propulsion system are formulated as:

Xp = Tp + Ts

Np = (Tp − Ts) · l
(2.19)

where l=0.41 m and it represents the perpendicular distance from one propeller’s axle to

the USV’s centerplane.
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2.3 Model Parameter Identification

This section introduces the detailed procedures we employ for planar motion model pa-

rameter identification. First, we carry out the standardized tests in the tow tank for

characterising the surge damping coefficients and identifying the bilinear thruster model.

Second, the on-board sensor-based identification routine has been followed, and exten-

sive field experiments are performed in open water conditions. Finally, the fidelity of the

identified model is demonstrated using the field test data.

2.3.1 Tow Tank Tests

Taking advantage of the small size of the studied platform, full-scale tow tank tests can be

performed. The tow tank is located at the Engineering Building of Memorial University

of Newfoundland, and it is 70 m long and 4 m wide. We follow the ITTC Recommended

Procedure 7.5-02-02-01 to setup the platform in the tank as shown in Fig. 2.3. In this

experimental setup, the superstructure has been removed and the measuring head of the

towing dynamometer from the tow carriage is fixed on an aluminum bar that is installed

across the two cross beams. The aluminum bar is in the centreplane of SeaCat, and the

measuring head is attached right above the longitudinal centre of buoyancy to prevent

artificial trim effects. This configuration prevents SeaCat from yawing and rolling, but

allows the vehicle to pitch and heave freely. The draft and trim of SeaCat have been

adjusted by adding more weights on the aluminum bar, so that we can keep the same

operational condition as the case with the superstructure. The towing force, vehicle speed

through water, trim and sinkage are measured during the tests. Before performing the

experiments, all devices have been calibrated, and all sensor data are recorded in the

same computer with a sampling rate of 1.6 KHz. In the following, we will introduce the

procedures for performing the resistance and self-propulsion tests for identification of the
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surge damping coefficients Xu|u| and Xu as well as the bilinear thruster model coefficients

k1 and k2.

Figure 2.3: Experimental setup of SeaCat in the tow tank. The measuring head is con-
nected to an aluminum bar that is installed across the two cross beams, and the vehicle
is positioned in the centreline of the tank parallel to the carriage rails.

2.3.1.1 Resistance Tests

According to ITTC Recommended Procedure 7.5-02-02-01, the test speed range is deter-

mined by calculating the Froude number as

Fr = u√
gL

where Fr is the Froude number that should be less than 0.45, g is the local acceleration of

gravity and L is the waterline length. Through calculation, u needs to be less than 1.73
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m/s so that the vehicle is in displacement mode. Since the designed operational speed of

SeaCat is around 1.0 m/s, we determine that the test speed range is from 0.2 m/s to 1.2

m/s with a step of 0.2 m/s.

Prior to each run, the zero readings for all sensors are recorded for around 10 s to

provide a representative mean offset value. Then, the vehicle is towed from rest to the

designated speed by the tow carriage. The steady-state moving condition is normally

maintained for around 20 to 30 s for required data logging. After that, the tow carriage

decelerates to a stop and moves back to the initial position for the next run. Note

that sufficient time is needed between the consecutive runs to keep the same testing

conditions. The resistance of the vehicle is calculated by subtraction of the zero offsets

from the measured average steady-state tow force. To reduce the propeller-induced drag,

both propellers are replaced by the same profile nose cones. The resistance test results are

depicted in Fig. 2.4, where the damping force is plotted with the standard deviation error

bars. It can be seen that a fast increment of the drag force occurs when the vehicle speed

exceeds 1.0 m/s, and this is caused by the heavy running trim making the bow head into

the water. Note that the tow point on the SeaCat is relatively high, and this will lead to

the bow-down pitch during high speeds. In the test runs where the vehicle speed is below

0.8 m/s though, the vehicle pitch angle is small and it has been used for compensation of

the calculated cross-sectional area. Therefore, when fitting the surge damping model, only

the data points between 0.2 m/s to 0.8 m/s are employed. According to Eq. 2.13, when

the vehicle is towed with constant speed through the water, the surge motion equation is

given as

0 = Xu|u|u|u|+Xuu+Xt

where Xt denotes the external tow force along the surge direction. The damping coeffi-

cients have been identified as Xu|u|=-13.21 kg/m and Xu=-1.31 kg/s, and the fitted curve

is plotted as dashed line in Fig. 2.4. A simpler damping model with only the quadratic
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term can also be used to represent the resistance characteristics of the vehicle. In this

case, we identify Xu|u|=-14.98 kg/m and the fitted curve is depicted as dot line in Fig.

2.4. It clearly shows that the two fitted curves are close to each other in the experimental

speed range.
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Figure 2.4: Resistance test results. Each data point is calculated as an average of the
steady-state towing force subtracted by the zero offset, and it is plotted with standard
deviation error bars. The dashed line shows the data fitting result using both quadratic
Xu|u| and linear Xu damping coefficients, while the dotted line shows the fitted model
with only the quadratic damping coefficient Xu|u|. Note that only the measurements up
to 0.8 m/s are employed for model coefficients identification and the others are shown for
completeness.
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2.3.1.2 Self-propulsion Tests

According to ITTC Recommended Procedure 7.5-02-03-01.1, the measurements of the

thrust, torque, revolution rate, vehicle speed through the water and external tow force

are required in the self-propulsion experiments. However, since our main goal is to use the

collected data from resistance and self-propulsion tests to identify the lumped coefficients

of k1 and k2 in Eq. 2.18, it is not necessary to determine the thrust deduction factor td

and the wake fraction wf . Therefore, the propeller open water tests are not performed

and the propeller thrust and torque measurements are not performed. Moreover, the

propeller’s revolution rate is controlled by the thruster’s inner closed-loop controller, so

no additional measurement sensor is needed. Finally, we only need to measure the vehicle’s

moving speed and the external tow force, which is the same configuration as the resistance

tests. This series of simplification can help us to save time and cost while carrying out

the tow tank experiments.

Prior to performing the self-propulsion tests, the propellers are re-installed on the

vehicle. The whole system is ballasted to maintain the same weight and trim as in the

resistance tests, and the measuring head is connected to the vehicle at the same location on

the aluminum bar. We follow the Load Varying Method (ITTC Recommended Procedure

7.5-02-03-01.1) to run the tests. The tow speed and propeller loading are determined in

advance according to the resistance test results and an estimation of the thrust. During

the tests, two propellers are commanded to run at the same rate of revolution, and then

the tow carriage accelerates from the rest to the designated moving speed. The steady-

state moving condition is maintained for 20 to 30 s for all required data logging. Sufficient

time is given between the consecutive runs, and we repeat the runs at the same vehicle

speed with three different propeller loadings. The self-propulsion test speed range is

determined to be from 0.4 m/s to 1.0 m/s with a step of 0.2 m/s. Our experimental

results are depicted in Fig. 2.5, and it shows that in all experiments the self-propulsion
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condition, i.e. zero external tow force condition, has been included by changing the

propeller loadings. The self-propulsion points have been summarized in Table 2.2, based

on which, a proportional relationship between one propeller’s revolution rate and the

vehicle’s steady-state moving speed can be established as

uss = 0.0043Ωc − 0.016

≈ 0.0043Ωc

(2.20)

where Ωc is the commanded revolution rate for both port- and starboard-side propellers,

and uss is the achieved steady-state surge velocity. This simple relationship will be vali-

dated by carrying out the field trials.

Table 2.2: A summary of the self-propulsion points
Surge velocity Propeller revolution rate

(m/s) Ωp = Ωs = Ωc (rpm)
0.4 98
0.6 140
0.8 187
1.0 236

2.3.1.3 Bilinear Thruster Model

In the self-propulsion tests, when the vehicle is towed with a constant speed the measured

external tow force can be formulated as

Xt = −(Tp + Ts +Xu|u|u|u|+Xuu)

= −k1(Ω2
p + Ω2

s)− k2u(Ωp + Ωs)−Xu|u|u|u| −Xuu

= −2k1Ω2
c − 2k2uΩc︸ ︷︷ ︸

Total thrust force

−Xu|u|u|u| −Xuu︸ ︷︷ ︸
Damping

.

(2.21)
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Figure 2.5: Self-propulsion test results. Each data point represents the measured external
tow force under the corresponding steady moving speed and propeller loading condition.
The test speed range is from 0.4 m/s to 1.0 m/s, and tests performed at the same speed
include three different propeller loadings to cover the self-propulsion condition.

In Eq. 2.21, the tow force is directly measured by the dynamometer, the damping force

have already been attained from the resistance tests, both propellers’ revolution rate is

commanded as Ωc, and tow carriage speed u is recorded. Therefore, the only unknown

part is the lumped model coefficients k1 and k2. The identification of k1 and k2 employs

all the self-propulsion experimental data with corresponding resistance test data, and the

surface fitting results are shown in Fig. 2.6. The root mean square error (RMSE) has

been calculated as 1.78 N , and the identified value of the coefficients are k1=0.000968

N/rpm2 and k2=-0.19425 kg/(s · rpm).
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Figure 2.6: Surface fitting results of the total thrust force versus vehicle speed and pro-
peller rate of revolution. The total thrust force from the two propellers are calculated as
a subtraction of the measured external tow force and the damping force. The data points
corresponds to those from the self-propulsion tests shown in Fig. 2.5.

2.3.2 Field Tests

The field experiments have been performed at Montreal’s Pointe Claire Yacht Club during

the NSERC Canadian Field Robotics Network (NCFRN) coordinated field trial. To

accurately identify the unknown planar motion model parameters, it is required to perform

the tests in an ideal weather condition, preferably with no current, waves and wind effect

[18]. We managed to complete the required experiments in some calm days with relatively

low disturbances. However, it is noteworthy that our tests are still inevitably influenced

by the water current, the travelling vessels and the wind gusts, which will cause the
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uncertainty of some identified parameter values.

The USV SeaCat’s dynamic motion in surge, sway and yaw is measured by its on-

board sensors, and these data are post-processed for model parameter identification. The

equipped GPS receiver provides the measurements of the vehicle position, course angle

to true north and the total velocity at 1 Hz update rate, with the accuracy of 2.5 m1,

0.5◦ and 0.1 m/s, respectively. The high-performance AHRS integrates the triaxial ac-

celerometer, gyro and magnetometer to accurately calculate the vehicle’s orientation in

roll, pitch and yaw in the inertial frame. For the purpose of this research though, only

the yaw rate and magnetic heading angle are employed for parameter identification.

The sway motion is not directly measured by the available sensors but can be calcu-

lated based on the sideslip angle when the vehicle is steering. For example, when a USV

turns at low speed as indicated in Fig. 2.7, the direction of the total velocity V =
√
u2 + v2

will differ from that of the surge velocity u. This angle difference is defined as the sideslip

angle β, and since the total velocity can be measured by the GPS receiver, the surge and

sway speed can be calculated as [9]

u = V cos(β)

v = V sin(β)
(2.22)

where β is given as

β = χ− ψ. (2.23)

Note that in Eq. 2.23, χ and ψ define the vehicle’s course and yaw angle, respectively,

and these angles are measured with respect to true north. The course angle is readily

available from the GPS measurement, and the yaw angle can be calculated as

ψ = ψM + ψD

1The position accuracy is evaluated using circular error probable (CEP), 50%.
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where ψM is the magnetic heading angle measured by the AHRS and ψD defines the local

magnetic declination angle and has been determined as -14.524◦.

Figure 2.7: The definition of the sideslip angle when the vehicle performs a turning at
low speeds. Note that OI and OB denote the origin of the inertial and body frame,
respectively.

Preliminary experiments have demonstrated the slow dynamics of the studied USV in

its surge, sway and yaw motion, and we find out that it normally takes above 10 s for

the vehicle to accelerate to a specific steady-state condition. Thus, the installed sensor

configuration and its sampling rate is sufficient for identifying the model parameters.

Further, considering the investigated surge and steering motion models in Eq. 2.13 and

Eq. 2.14 are of first-order type, to identify the model parameters we can simply apply

the step inputs while performing the straight-line and turning circle tests. There are

many techniques available for parameter identification, and here we will implement the

benchmark least-squares (LS) method. In the following, we will first provide a general

overview of the LS method, and then detailed procedures for performing the field tests

are introduced. Although our experiments are frequently interrupted by the traffic in the

docking area in the yacht club, we are able to perform some zigzag tests. The fidelity of
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the identified planar motion model is validated using the collected zigzag data.

2.3.2.1 Least-Squares Method

The least-squares method (LS) has been widely used for parameter identification in the

field of marine robotics [9, 23, 18, 24, 41], and it provides a benchmark for evaluation of

other identification techniques, such as adaptive identification [27]. In this research, the

surge and steering motion model in Eq. 2.13 and Eq. 2.14 can be rewritten as

u̇ = A11u|u|+ A12u+ A13Xp

v̇ = A21v|v|+ A22v + A23ur

ṙ = A31r|r|+ A32r + A33Np

(2.24)

where the coefficients of A11 to A33 are unknown lumped model parameters, which are

written as
A11 = Xu|u|

m−Xu̇

A12 = Xu

m−Xu̇

A13 = 1
m−Xu̇

A21 = Yv|v|
m− Yv̇

A22 = Yv
m− Yv̇

A23 = −m−Xu̇

m− Yv̇

A31 = Nr|r|

Izz −Nṙ

A32 = Nr

Izz −Nṙ

A33 = 1
Izz −Nṙ

(2.25)

Note that in order to get the lumped model of Eq. 2.24, m−Xu̇, m−Yv̇ and Iz−Nṙ 6= 0,

which is valid since the mass and moment of inertia of the vehicle is positive and the added

mass terms Xu̇, Yv̇ and Nṙ < 0. As shown in Eq. 2.24, the motion model in each degree

of freedom is of similar form, and thus a generalized model structure can be achieved as

ẋi = Aj1f(xi) + Aj2xi + Aj3ui (j = 1, 2, 3) (2.26)

where xi ∈ <1,1 and ẋi ∈ <1,1 represent the state variable of surge, sway and yaw and

their time derivative measured at time t = i, f() ∈ <1,1 is a nonlinear function and
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ui ∈ <1,1 is the control input. We can write down the unknown model parameters in

the vector form of Φ=[Aj1 Aj2 Aj3]∈ <1,3, which needs to be identified. Assuming that

the investigated model is linear and time-invariant in terms of its model parameters, a

least-squares fitting can be carried out. Sufficient data of the state variables and control

inputs can be measured during the experiments, and they are summarized in vector and

matrix form as

Xv = [xi xi+1 ... xi+n]

and

F (Xv) =


f(xi) f(xi+1) ... f(xi+n)

xi xi+1 ... xi+n

ui ui+1 ... ui+n

 .

Therefore, a lumped form representation of Eq. 2.26 including all sensor measurements

and control input history is given as

Ẋv = ΦF (Xv).

If F (Xv) is full rank, an estimation of the unknown parameters are calculated by

Φ̂ = ẊvF (Xv)T (F (Xv)F (Xv)T )−1.

The implemented LS method requires the value of the state derivatives Ẋv, which is

not directly measured during the field trials. Hence, a Savitsky-Golay filter [9] [42] is

employed for smoothing the data before the differentiation of the measured data to get

Ẋv. The percentile parameter error 100(σ̂Φ/|Φ̂|) [23] can be calculated to evaluate the

quality of the identified parameters. Note that σ̂Φ denotes the standard deviation of Φ̂
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and it can be calculated as

σ̂Φ =
√
diag((ΦTΦ)−1σ2

ε )

where σ2
ε denotes the variance of measurement noise that can be estimated by

σ̂2
ε = (Ẋv − Φ̂F (Xv))(Ẋv − Φ̂F (Xv))T

dim(Ẋv)− dim(Φ̂)
.

2.3.2.2 Straight-line Tests

We refer to the self-propulsion points in Table 2.2 as well as the identified proportional

relationship in Eq. 2.20 to determine the propeller setting profiles in the straight-line

tests. The experimental speed range is from 0.4 m/s to 1.0 m/s with a step of 0.1

m/s, and the propeller revolution rate Ωp = Ωs = Ωc is commanded from the list Ωls =

[98, 122, 140, 166, 187, 216, 236] rpm. In the preliminary tests, it is found that the open

loop step input can not drive the vehicle along the straight line owing to environmental

disturbances and the asymmetry of manufactured hulls. Therefore, a PI heading controller

has been developed and integrated to introduce the differential rotational speed ∆Ω for

the two propellers as

Ωp = Ωc + ∆Ω

Ωs = Ωc −∆Ω
(2.27)

Note that in Eq. 2.27, ∆Ω can be either positive or negative depending on the required

steering direction, and it is the output from the PI heading controller. When there is a

large difference between the actual and reference heading angle, ∆Ω can be potentially a

large value. To eliminate this aggressive steering control, we artificially apply a limit to

guarantee that ∆Ω ∈ [−25, 25] rpm. The introduction of ∆Ω will vary the total thrust

force from the propellers and we examine this according to Eq. 2.18 and Eq. 2.19, and
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the difference of the applied thruster forces can be calculated as

∆Xp = Xp|Ωp=Ωs=Ωc −Xp|Ωp=Ωc+∆Ω, Ωs=Ωc−∆Ω

= 2k1∆Ω2

where k1=0.000968 N/rpm2, so ∆Xp<=1.21 N . It can be concluded that with the dif-

ferential setting the propulsion system will provide less thrust force. However, since this

force difference is relatively small and will only occur during the vehicle’s steering motion,

its effect can be neglected in the identification process. Further, it is validated that during

each test the sway speed and turn rate is small, and thus we can perform the parameter

identification using the decoupled surge motion model in Eq. 2.13.

The straight-line tests are performed in a calm day with relatively low environmental

disturbances. We choose the value of Ωc from Ωls and carry out the tests one after another.

Since the vehicle moves along the straight path, the measured speed from the GPS can be

regarded as the surge velocity, using which the surge acceleration can also be calculated

in the post-processing.

The least-squares method from section 2.3.2.1 has been employed for identification of

the surge model parameters, and the identification results are summarized in Table 2.3. It

is noteworthy that our initial identification is based on the quadratic plus linear damping

model, but the results show an inconsistent identification of the value for A12 = Xu

m−Xu̇
.

This phenomenon is due to the small linear damping coefficient Xu, which has been

analytically determined in the resistance tests of section 2.3.1.1 with a value of around

10% of Xu|u|. For identification consistency, only the quadratic drag is included and

identified. This is a viable solution, because as shown in Fig. 2.4 the simulation of

the damping models with and without the linear laminar drag actually shows a close

performance.

In Table 2.3, the steady-state velocity is calculated as the average of the tabulated
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Table 2.3: A summary of the identified surge model parameters for different acceleration
processes

Steady-state Â11 Â13 100 σ̂A11
|Â11|

100 σ̂A13
|Â13|

RMSE Xu|u| ≈ Â11
Â13

velocity (m/s) (m−1) (kg−1) (m/s) (kg/m)
0.40 -0.1035 0.0047 5.39 4.34 0.007 -22.02
0.51 -0.0704 0.0035 5.23 3.55 0.007 -20.11
0.60 -0.0453 0.0026 4.74 2.88 0.009 -17.42
0.71 -0.0553 0.0034 2.64 1.91 0.010 -16.26
0.80 -0.0568 0.0036 3.36 2.30 0.019 -15.78
0.92 -0.0564 0.0035 2.34 1.79 0.017 -16.11
1.00 -0.0440 0.0026 2.86 2.02 0.021 -16.92

velocity after 15 s in each acceleration process, and these measurements validate the

accuracy of the achieved self-propulsion points from the tow tank tests. In addition,

the percentile error of the estimated parameters Â11 and Â13 shows a good consistency

and accuracy. The root mean square error (RMSE) has been calculated to measure the

difference between the surge model and the actual observed values, and the small values

indicate the fidelity of the identified model. It is evident that except for the first two rows,

the estimated value of Xu|u| from the open water tests is very close to that of the tow

tank tests in section 2.3.1.1 considering the sensor measurement errors and unexpected

environmental influences. As for the first two rows, a probable reason for the notable

difference is that while the vehicle moves with low speeds it is easily influenced by the

steering motion from the PI controller and environmental disturbances. We have shown

the simulation results of four identified models in Fig. 2.8, and through comparison to the

measured speed, it can be concluded that our identified motion models can approximate

the observed surge motion reasonably well.

Using the identified parameter values from Table 2.3, a speed-scheduled motion model

is normally established [9]. However, in this research, based on our experimental results,

we are able to generate a generic surge motion model that is more convenient to be used for
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simulation study and guidance and control algorithm development. As shown in the table,

the independently identified parameter values are quite close to each other, especially for

the steady speed range from 0.7 m/s to 0.9 m/s. Since the operation speed of the USV

SeaCat is normally above 0.5 m/s, we determine to use an average of the identified values

of Â11 and Â13 in this speed range, i.e. Â11 = −0.0562 m−1 and Â13 = 0.0035 kg−1, for

the generic surge model. The performance of the generic model has been investigated,

and the simulation results are depicted in Fig. 2.9. It shows that the generic model has a

relatively good fidelity with regards to the sampled surge speed data when the vehicle’s

steady-state speed is above 0.5 m/s as expected.
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Figure 2.8: The evaluation of the identified surge motion models for the acceleration
processes to 0.4 m/s, 0.6 m/s, 0.8 m/s and 1.0 m/s. The performed simulation employs
different model parameter values as indicated in the corresponding row of Table 2.3.
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Figure 2.9: The evaluation of the generic surge model for the acceleration processes to 0.4
m/s, 0.6m/s, 0.8m/s and 1.0m/s. Every simulation employs the same model parameter
values with Â11 = −0.0562 m−1 and Â13 = 0.0035 kg−1.

2.3.2.3 Turning Circle Tests

Through the initial tests, it is found that the vehicle has an evident difference between

its port- and starboard-side turning dynamics. This may be a result of the asymmetry

of the manufactured hulls, the non-ideal ballast condition and the minor difference of the

two thrusters. Therefore, in order to build a complete steering motion model, we need to

perform both clockwise (starboard-side) and counter-clockwise (port-side) turning circle

tests with step inputs. The identified port- and starboard-side steering model can be

combined together for simulation and control algorithm design purposes.
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The turning circle tests are performed without incorporating any speed or heading

control algorithms. The two propellers are just set at a constant revolution rate following

Eq. 2.27, and we wait for the vehicle to accelerate and turn until it completes a couple

of full circles. The differential propeller setting is maintained the same as |∆Ω|=50 rpm

through all the tests, and Ωc is chosen from the list Ωlc=[100 142 186 238] rpm. During

the tests, sufficient sensor data including total velocity, course angle, magnetic heading

angle and turn rate are recorded.

To identify the steering motion model parameters in Eq. 2.24, we need to postprocess

the collected data. We employ Eq. 2.22 and Eq. 2.23 to get the surge and sway speed

during the vehicle’s turning. Using the calculated sway speed and measured yaw rate,

their time derivative can be computed. The steering torque Np is calculated following Eq.

2.19. Now, the least-squares fitting technique can be carried out to identify the unknown

parameters from A21 to A33, and these results are summarized in Table 2.4 and Table 2.5,

respectively. Again, for identification consistency, only the quadratic damping related

terms of A21 and A31 are kept in the sway and yaw motion model.

We analyse the sway model parameter identification results in Table 2.4. According

to Eq. 2.27, since Ωc is positive, when 2∆Ω · Ωc>0 the USV undergoes a starboard-

side turning, otherwise it is turning to the port-side. The two columns of the computed

percentile error represent a relatively high uncertainty of the identified parameters. A

probable reason is that the sway motion of the vehicle is quite small, and it is potentially

influenced by environmental disturbances. The calculated RMSE is small, but it is due to

the small sway velocity. The last column of the identified quadratic damping coefficient

Xv|v| clearly indicates that the studied USV has quite different damping characteristics

between its port- and starboard-side turning. Four models from Table 2.4 (two clockwise

and two counter-clockwise) have been chosen and their simulation results are depicted in

Fig. 2.10. Through checking the actual measured sway speed, we can determine that the
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vehicle is affected by the constant environmental disturbances, and this is the reason that

the sway speed oscillates around a roughly constant value. Although there are adverse

factors that reduce the identification accuracy, through comparison of the actual and

simulated sway motion in the figure, we can conclude that our identified models still

provide a reasonably good representation of the sway motion dynamics. In particular,

if we only refer to the port-side (or starboard-side) turning case, the identified damping

values Xv|v| are close through different turning scenarios. However, owing to the different

identified parameter values of Â21 and Â23, we have to implement a speed-scheduled sway

motion model to perform simulation studies in the later discussion.

Table 2.4: A summary of the identified sway model parameters for different turning circle
tests

2∆Ω · Ωc Â21 Â23 100 σ̂A21
|Â21|

100 σ̂A23
|Â23|

RMSE Xv|v| ≈ Â21
Â23

(rpm2) (m−1) (rad−1) (m/s) (kg/m)
10000 -0.5472 -0.4654 15.39 14.95 0.026 1.18
14200 -0.2680 -0.2881 27.11 27.08 0.038 0.93
18600 -0.6025 -0.4784 12.57 12.36 0.019 1.26
23800 -0.7038 -0.4373 12.44 12.49 0.025 1.61
-10000 -0.9415 -0.2343 23.35 22.87 0.018 16.11
-14200 -0.7854 -0.1113 28.32 28.70 0.019 16.92
-18600 -1.5176 -0.2940 19.59 20.84 0.025 16.26
-23800 -1.0886 -0.0704 26.61 49.49 0.038 15.78

According to Table 2.5, we can discuss about the yaw motion model identification

results. Based on the percentile errors, we can summarize that the performed identifi-

cation is reliable and accurate. The calculated RMSE through the evaluation tests has

really low values, and it represents the accuracy of the identified models. Again, the

last column, where the yaw quadratic damping coefficient Xr|r| is computed, suggests the

different yaw dynamics for the port- and starboard-side turning. It is also noteworthy

that for the maximum propeller settings in clockwise and counter-clockwise cases, i.e. the

rows of ±23800 rpm2, the calculated Xr|r| stands out from the others. This phenomenon
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Figure 2.10: The evaluation of the identified sway motion models for clockwise and
counter-clockwise turning scenarios, i.e. 2∆Ω ·Ωc=10000, 18600, -10000 and -18600 rpm2.
The depicted simulation results employ the model parameter values in the corresponding
row of Table 2.4.

has actually been observed for large marine vessels [20], and it may indicate that the

yaw motion dynamics enter the nonlinear area with the increment of the steering torque.

Four evaluation results (two clockwise and two counter-clockwise) are picked and shown

in Fig. 2.11. Although our collected data are potentially influenced by environmental

disturbances, the identified yaw motion model performs reasonably well in representing

the yaw dynamics.

A generic yaw motion model can be achieved based on our identification results in

Table 2.5. For clockwise turning, we propose to use the average of the first three rows to
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calculate the average of Â31,cw = −1.387 rad−1 and Â33,cw = 0.003 rad · kg−1 ·m−2. In

terms of the counter-clockwise turning, the fifth, sixth and seventh rows are used, and

thus Â31,ccw = −2.5959 rad−1 and Â33,ccw = 0.0021 rad · kg−1 ·m−2. The evaluation of

the generic model is performed and the results are shown in Fig. 2.12. It turns out that

the two generic models work well when |2∆Ω · Ωc| <= 18600 rpm2.

Table 2.5: A summary of the identified yaw model parameters for different turning circle
tests

2∆Ω · Ωc Â31 Â33 (rad· 100 σ̂A31
|Â31|

100 σ̂A33
|Â33|

RMSE Xr|r| ≈ Â31
Â33

(rpm2) (rad−1) kg−1 ·m−2) (rad/s) (kg ·m2 · rad−2)
10000 -2.0729 0.0044 6.36 6.23 0.0042 -476.04
14200 -1.1277 0.0025 9.30 9.08 0.0063 -449.17
18600 -0.9604 0.0021 11.27 11.12 0.0052 -462.97
23800 -1.2715 0.0020 7.42 7.31 0.0070 -634.01
-10000 -2.8859 0.0024 12.88 12.82 0.0046 -1221.1
-14200 -2.5340 0.0021 9.04 8.92 0.0055 -1225.1
-18600 -2.3677 0.0018 10.76 10.63 0.0051 -1314.4
-23800 -2.6540 0.0010 12.74 12.75 0.0071 -2631.8

The surge dynamics during the USV’s steering can be different from the straight-

line moving case, and thus we need to re-examine if the originally determined surge

model is still applicable. Through investigation, we find that our identified generic surge

motion model from section 2.3.2.2 works well while the vehicle undergoes a clockwise

turning, but for the counter-clockwise turning, the surge dynamics is quite different.

Therefore, we need to identify the surge motion model parameters to take into account

the counter-clockwise situation. Following the procedures in section 2.3.2.2, the generic

surge motion model parameters in clockwise turning is the same as Â11,cw = −0.0562

m−1 and Â13,cw = 0.0035 kg−1, while for the counter-clockwise case they are given as

Â11,ccw = −0.0657 m−1 and Â13,ccw = 0.00255 kg−1.
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Figure 2.11: The evaluation of the identified yaw motion models for clockwise and counter-
clockwise turning, i.e. 2∆Ω · Ωc=10000, 18600, -10000 and -18600 rpm2. The depicted
simulation results employ the model parameter values as indicated in the corresponding
row of Table 2.5.

2.3.2.4 Zigzag Evaluation Experiments

Based on the parameter identification results, we can construct the USV SeaCat’s planar

motion model in the simulation environments of Matlab/Simulink for evaluation tests

and further guidance and control algorithms development. A summary of the identified

parameter values in surge, sway and yaw depending on the vehicle moving conditions

has been summarized in Table 2.6. Note that for surge and yaw motion, we have the

option to use the generic model parameter values without much sacrifice of the model’s

performance, and this will bring considerable convenience when we build the Simulink
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Figure 2.12: The evaluation of the generic yaw motion model for clockwise and counter-
clockwise turning, i.e. 2∆Ω·Ωc=10000, 18600, -10000 and -18600 rpm2. The two clockwise
turning simulations employ the same parameter values of Â31,cw = −1.387 rad−1 and
Â33,cw = 0.003 rad ·kg−1 ·m−2, and the two counter-clockwise turning simulations use the
same parameter values of Â31,ccw = −2.5959 rad−1 and Â33,ccw = 0.0021 rad · kg−1 ·m−2.

model and develop the control algorithm. In terms of the sway motion, however, we need

to construct a speed-scheduled model. In the following chapters, we will demonstrate

how we can tune the low-level controllers and carry out different path-following control

algorithm tests using the constructed Simulink planar motion model, and we will show

its close performance to the real-world trails.

Finally, the zigzag experiments are performed and the collected data are used for

evaluation of the identified planar motion model as a whole. A conventional zigzag test is
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Table 2.6: A summary of the planar motion model parameter values

Motion Straight-line Clockwise turning Counter-clockwise
turning

Surge
Â11 = −0.0562 m−1 Â11,cw = −0.0562 m−1 Â11,ccw = −0.0657 m−1

Â13 = 0.0035 kg−1 Â13,cw = 0.0035 kg−1 Â13,ccw = 0.00255 kg−1

or Table 2.3
Sway Â21 = Â23 = 0 Table 2.4 Table 2.4

Yaw Â31 = Â33 = 0

Â31,cw = −1.387 rad−1 Â31,ccw = −2.5959 rad−1

Â33,cw = 0.003 rad· Â33,ccw = 0.0021 rad·
kg−1 ·m−2 kg−1 ·m−2

or Table 2.5 or Table 2.5

carried out for large marine vessels to examine their manoeuvrability, and in a traditional

setting the rudder deflection angles will be changed between positive and negative values

so that the vehicle will have this zigzag motion. In this study, however, we steer the USV

SeaCat by applying differential thrust from the two stern propellers. During the tests, we

set ∆Ω to vary between ±50 rpm, and Ωc is kept as a constant value of 142 rpm. Using

Eq. 2.27, Ωp and Ωs can be calculated and their time history has been shown in the first

plot of Fig. 2.13. The zigzag tests involve the vehicle’s motion dynamics in surge, sway

and yaw, and thus it serves as a good candidate for evaluation of the identified planar

motion model. The evaluation is based on our constructed Simulink model (Table 2.6),

where the generic models for surge and yaw motion are used and the sway motion model

implements the tabulated parameter values from Table 2.4.

As shown in the second and fourth graph of Fig. 2.13, the identified generic surge and

yaw motion model has a reasonably good fit to the actual observed motion data. Due

to the imperfection of the manufactured hulls and the small difference of the thrusters,

the surge speed value will vary between the clockwise and counter-clockwise turning as

shown in the second graph. However, the implemented surge model can fully capture this

difference with really small errors. The yaw motion model, on the other hand, shows a
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promising performance for the steady-state conditions considering the different damping

characteristics during clockwise and counter-clockwise steering motion. Nevertheless, the

simulated yaw model lags the actual measured sensor data. This phenomenon is owing

to the usage of a simplified decoupled yaw motion model that only includes the quadratic

damping term. In order to improve the performance, a higher-order coupled yaw motion

model structure can be implemented, but the increased complexity will make it difficult

for model parameter identification and the further investigation of different control al-

gorithms. Therefore, considering the benefits of a simple model and its relatively good

performance for matching the steady yaw rate, this generic yaw model will be employed

for further discussion.

The evaluation of the sway motion has been depicted in the third graph of Fig. 2.13,

and it indicates that the identified model is considerably lagging the observed sway veloc-

ity, and this will result in a relatively large mismatch during the transition period. If we

consider the simplified sway motion model structure, the small sway movement compared

to unexpected environmental disturbances and the high uncertainty of the identified pa-

rameter values, the simulation results are understandable. Although there is an evident

defect of the identified sway motion model, it will not affect our further investigation

of different guidance and control algorithms. It is important to note that the studied

USV SeaCat is underactuated, and there is no direct control inputs for the sway motion

according to Eq. 2.24. Therefore, our low-level controllers will be designed around the

surge and yaw motion, and the sway movement of the vehicle can be taken into account

by the proper guidance strategy. Meanwhile, although not very accurate, the integrated

Simulink sway motion model is a necessary part for the vehicle’s planar motion dynamics

and it is of great importance for determination of the vehicle’s location in the inertial

frame. Without the sway model, it is not able for us to examine the performance of the

developed guidance and control strategy. We also want to point out that the environ-
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mental factors of wind, wave and water current can play an important role in varying the

sway motion of the vehicle because it is not controllable, so a sway model with relatively

high uncertainty can potentially represent these adverse conditions.
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Figure 2.13: Zig-zag experimental data collected from the field trials are used for evalua-
tion of the identified planar motion model as a whole.

2.4 General Chapter Summary

In this chapter, a planar motion model of the USV SeaCat was derived from the general 6

DOF rigid-body motion equations. The achieved model was in a concise form, and it could

be conveniently employed for parameter identification. To identify the model parameters,
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a hybrid method that combined the standardized tow tank tests and the onboard sensor-

based identification routine had been implemented. Based on the tank tests, we had

successfully identified the surge damping coefficients and a precise bilinear thruster model.

Extensive field experiments were carried out to collect the motion data for identification

of the remaining unknown model parameters. We employed the step inputs for straight-

line and turning circle tests (clockwise and counter-clockwise), and using the gathered

data the surge, sway and yaw motion model parameters were successfully determined.

The control-related planar motion models showed a really promising performance in the

evaluation tests, considering their simplicity and fidelity to the observed vehicle motion.

In the next chapter, we will demonstrate how we can employ the constructed dynamic

motion model to develop and test different guidance and control algorithms.



Chapter 3

Path-Following Control

Many ocean survey missions require an Unmanned Surface Vehicle (USV) to accurately

follow predefined paths, and thus, an efficient and robust path-following control algorithm

is essential for many applications [4]. This chapter introduces and compares three exten-

sively employed geometric path-following control strategies, namely Vector Field Method

(VF), Carrot Chasing Method (CC) and Line-of-Sight Method (LOS). We provide a com-

prehensive study of each individual method, which includes investigating their mathe-

matical origins, performing simulation evaluations and carrying out field experiments in

adverse weather conditions.

3.1 Problem Statement

Preplanned and re-planned paths are usually defined by a list of waypoints, which are

specified by the operator considering weather conditions, obstacles and so forth. Accord-

ing to the well-known results from Dubins [43], for a USV moving with constant forward

speed in the 2D plane, the shortest path between two configurations (waypoint positions

and vehicle heading), can be constructed by straight lines and circular arcs. To provide a

complete analysis, we investigate each path-following control method in both straight-line

66
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and circular path-following scenarios. In a later section, we will also discuss how linear

and circular paths can be joined together so that the vehicle can transit smoothly between

adjacent waypoints to complete a specific mission.

The two path-following control problems have been illustrated in Fig. 3.1. Again,

the North-East-Down (NED) frame is chosen as the inertial frame, and a position in this

coordinate is defined as pr = (nr, er)T , where nr and er denote the translational position

along north and east direction, respectively. Therefore, the straight-line path can be

explicitly defined based on the location of the two adjacent waypoints, i.e. wpi = (ni, ei)T

and wpi+1 = (ni+1, ei+1)T . The circular path, on the other hand, can be specified by

the position of the circle’s origin pc = (nc, ec)T and circle radius R. If we define the

generalized followed path as P ∈ <2 in the 2D plane and the time-varying USV position

as p(t) = (n(t), e(t))T , the goal is to develop the path-following control law that can guide

a USV to adjust its speed and heading to minimize the cross track error d(t), i.e. ds or

dc in Fig. 3.1, which can be written as

lim
t→∞
||d(t)|| = lim

t→∞
||p(t)− P || = 0. (3.1)

Referring to Fig. 3.1, the kinematic model of the vehicle can be formulated as

ṅ = V cos(χ)

ė = V sin(χ)
(3.2)

where ṅ and ė denote the USV’s speed along OIN and OIE axes, V is the total velocity

and χ represents the course angle with respect to true north. It is important to note

that in this chapter we employ (n, e)T to represent the vehicle’s location instead of (x, y)T

from chapter 2. The reason is that this definition can be intuitively related to inertial

NED frame, which will bring great convenience while formulating different path-following
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Figure 3.1: An illustration of the USV path-following control problems. The left figure
shows that a straight-line path-following control algorithm needs to be implemented to
steer the USV towards the path from wpi to wpi+1. On the right, a USV is controlled to
follow the circular path in the clockwise direction by employing the circular path-following
control methods.

control algorithms. In Eq. 3.2, the total velocity is measured by a USV’s onboard GPS,

and it may be considered as the summation of the platform’s own moving speed, the water

current speed and the contribution from other environmental disturbances. The course

angle χ measures the direction of the total velocity, and it needs to be distinguished from

a USV’s heading. We have already shown an example where χ and ψ differs from each

other during a USV’s steering motion in Fig. 2.7. In fact, for a USV working in an

environment with constant water current influences, the course and heading angles are

always different except for the case where a USV drives towards or follows the current

direction. In this framework, considering the dynamic ocean environments with varying

current, wind and wave disturbances, we can argue that the two angles are hardly the

same.

The following introduced path-following control laws are developed by adjusting the



Chapter 3. Path-Following Control 69

course angle instead of the heading angle of the vehicle. This is a practical choice be-

cause the course angle is directly measured by a USV’s onboard GPS receiver, and more

importantly, employing χ in the closed-loop path-following control system can increase

the path tracking robustness and accuracy. For instance, as shown in Fig. 3.2, a USV is

assumed to be readily positioned on the followed straight-line path and it just needs to

follow the path direction χp until it reaches the next waypoint. The left figure depicts

the case where the vehicle’s heading direction is controlled. It can be seen that due to

the constant water current influences, the USV’s total velocity diverges from the path

direction, and the vehicle will move away from the followed path. The path-following

control algorithm works to bring the USV back, but whenever the vehicle’s heading angle

is aligned with χp, it will, again, leave the followed path. On the contrary, if the course

angle is chosen for path-following control, shown on the right graph of Fig. 3.2, the USV

can precisely follow the desired path. Note that when there is current influences, the

vehicle’s heading will differ from χp, but the direction of χ can always be controlled to

align with the path direction. Hence, employing the course angle in the control law can

improve the path-following accuracy and robustness, especially when considering the con-

stant current influences. It is important to note that the purpose of the path-following

control algorithm is to minimize the cross track error as indicated in Eq. 3.1. Therefore,

with regard to other potential environmental disturbances that push the USV away from

the followed path, the implemented path-following control law will be able to bring the

USV back to the followed path regardless of the scenarios of controlling either the heading

or course angle.

A couple of terms will be repeatedly used in the following discussion, and thus they

are introduced in detail in this section. The straight-line path direction with respect to
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Figure 3.2: A USV’s straight path-following control with constant water current influ-
ences. On the left, the vehicle’s heading angle is employed in the closed-loop path-
following control algorithm, while the figure on the right shows that the course angle is
used and adjusted to follow the desired path.

true north is defined as χp and it can be calculated as

χp = arctan2(ei+1 − ei, ni+1 − ni) (3.3)

where arctan2 is the four-quadrant inverse tangent function, so χp ∈ (−π, π]. For the

circular path in Fig. 3.1, the direction of the vector −→pcp with respect to true north is

defined as χOrbit and it is computed as

χOrbit = arctan2(e(t)− ec, n(t)− nc). (3.4)

The distance between the USV location and the circle origin is given as

||−→pcp|| =
√

(e(t)− ec)2 + (n(t)− nc)2.
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As shown in Fig. 3.1, the cross track error d(t) denotes the difference between the USV

location and the desired followed path. For the straight path case, it is the perpendicular

distance that is given as

ds = −(n(t)− ni) sin(χp) + (e(t)− ei) cos(χp), (3.5)

while for the circular path

dc = ||−→pcp|| −R. (3.6)

Note that the cross track error can be either positive or negative. In Eq. 3.5, when ds > 0

it indicates that the USV is located on the starboard-side of the straight-line path, while

if ds < 0 the USV is on the port-side. Similarly, Eq. 3.6 suggests that when dc > 0 the

USV is located outside of the circle, while dc < 0 means the USV is inside the circle.

3.2 Guidance and Control System Architecture

Before we move on to discuss about different path-following control algorithms, we need

to introduce the guidance and control system architecture of the research platform. The

block diagram of the implemented guidance and control system has been depicted in Fig.

3.3. In the figure, the rounded rectangular area with the dash dot boundary line defines

the USV’s guidance module, where the reference speed Vd and desired course angle χd are

generated for the low-level controllers. In a survey mission, we normally command a USV

to operate at a constant moving speed so that the payload sensor data can be collected

with equally travelled distance. The list of waypoint positions are calculated from path

planning algorithms or from user settings, and they are normally defined following the

geographic coordinate using latitude and longitude. Note that in Fig. 3.3, the blocks of

coordinate conversion are used to transform the waypoint positions and measured USV
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Figure 3.3: The USV SeaCat’s guidance and control system block diagram.

positions into the local NED frame in meters. Through implementation of a specific path-

following control method, the desired course angle is calculated to direct the USV to the

followed path.

In Fig. 3.3, the structure of the low-level speed and course-keeping controller is shown

in the rounded rectangular area with the dash boundary line. The speed controller needs

to be designed so that the USV can maintain a specific cruising speed or speed profile,

and the course-keeping controller is responsible for adjusting the vehicle’s course direc-

tion according to the desired course angle. In this study, we employ the well-accepted

proportional-integral-derivative (PID) controller for the speed and course-keeping control

system development. The input signal for the speed controller PID1 is the speed error

es = Vd − V

where Vd and V represent the reference and current moving speed of the USV, respectively.

Hence, this PID controller can be formulated as

Ωsp = Kp1es +Ki1

∫ t

0
esdt+Kd1

des
dt
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where Kp1, Ki1 and Kd1 > 0 and Ωsp defines the output signal from PID1. The input

signal for the course-keeping controller PID2 comes from the error term

ec = χd − χ

where χd and χ define the desired and current course angle of a USV. Similarly, the control

law for PID2 is written as

Ωca = Kp2ec +Ki2

∫ t

0
ecdt+Kd2

dec
dt

where Kp2, Ki2 and Kd2 > 0 and Ωca defines the output signal from PID2. In this multi-

variable control system, to provide the correct control command for port- and starboard-

side propellers, i.e. Ωp and Ωs, we formulate the output signals from the two PID con-

trollers as

Ωsp ,
Ωp + Ωs

2

and

Ωca ,
Ωp − Ωs

2 .

Therefore, the function of the two low-level PID controllers can be summarized as follows:

PID1 will act to increase or reduce both propellers’ rotational speed to manipulate the

vehicle’s velocity, while PID2 will vary the differential speed between the two thrusters in

order to change the USV’s course angle. This interpretation serves as the basis for us to

tune the PID control parameters in the following discussion.
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3.3 Path-Following Control Algorithms

In this section, three extensively employed path-following control algorithms, i.e. Vec-

tor Field Method (VF), Carrot Chasing Method (CC) and the well-known Line-of-Sight

(LOS) Method, are investigated [44]. We will provide detailed procedures for derivation

of all algorithms, based on which, their mathematical origins, connections and distinc-

tions are revealed. We explore the parameter space of each algorithm, and through this

process we examine different control parameters and their influences on the controller

performance. The in-depth analysis in this section provides rationale for the following

simulation studies and field experiments.

3.3.1 Vector Field Method

The vector field method was introduced in [45] for path-following control of small Un-

manned Aerial Vehicles (UAVs), and in this research we will examine the applicability of

this algorithm for USVs. The idea is to construct the vector fields around the followed

path so that the vector direction serves as the reference angle for the vehicle to follow. For

example, the vector fields formed around the straight-line and circular paths are depicted

in Fig. 3.4. While implementing this algorithm, the vector at a specific location in the

NED frame denotes the desired USV course angle direction. Through following a series

of vectors, a USV will finally converge to the followed path.

The constructed vector fields need to meet two conditions. If a USV is far away from

the followed path, the vector direction needs to guide the vehicle back to the path at the

maximum approaching angle. If, however, the USV is close to the path, the vector field

should align the vehicle with the straight path direction or the tangential direction of the

circular path. Therefore, the desired course angle for the straight-line and circular path



Chapter 3. Path-Following Control 75

−100 −50 0 50 100
−100

−50

0

50

100

East (m)

N
or

th
 (

m
)

−100 −50 0 50 100
−100

−50

0

50

100

East (m)

N
or

th
 (

m
)

Figure 3.4: An example of the vector fields constructed around the straight-line and
circular paths. The vectors in both figures indicate the reference course angle for a USV
to follow.
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can be formulated as

χd = χp −
2
π

(χMs) arctan(ksds) (3.7)

and

χd = χOrbit + ρd

[
π

2 + 2
π

(χMc) arctan(kcdc)
]
, (3.8)

respectively.

In Eq. 3.7 and Eq. 3.8, ks and kc are control parameters (positive real number) for

the vector field convergence rate, and a larger value indicates a group of faster converging

vectors. The maximum approaching angles are defined as χMs and χMc, and they are

user selectable within the value range of (0, π/2]. A USV may be required to follow the

circular path in a clockwise or counter-clockwise direction and ρd denotes this direction

with a corresponding value of 1 or −1. For completeness, we summarize the vector field

path-following control methods in Algorithm 1 and Algorithm 2.

Algorithm 1 Vector field path-following control law (straight-line path).
1: Initialize: p(t) = (n(t), e(t))T , wpi = (ni, ei)T , wpi+1 = (ni+1, ei+1)T , χMs, ks
2: χp = arctan2(ei+1 − ei, ni+1 − ni)
3: ds = −(n(t)− ni) sin(χp) + (e(t)− ei) cos(χp)
4: χd = χp − 2

π
(χMs) arctan(ksds)

Algorithm 2 Vector field path-following control law (circular path).
1: Initialize: p(t) = (n(t), e(t))T , pc = (nc, ec)T , R, χMc, kc, ρd
2: χOrbit = arctan2(e(t)− ec, n(t)− nc)
3: ||−→pcp|| =

√
(e(t)− ec)2 + (n(t)− nc)2

4: dc = ||−→pcp|| −R
5: χd = χOrbit + ρd

[
π
2 + 2

π
(χMc) arctan(kcdc)

]

Our parameter space exploration is based on Eq. 3.7 and Eq. 3.8, using which we can

examine how the desired course angle is generated depending on the cross track error and

different control parameter configurations. For the straight-line path case, without loss
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of generality, we assign the desired path direction as χp = 0◦, and the exploration of the

parameter space of Eq. 3.7 is depicted in Fig. 3.5. The solid curves are simulated with

the same maximum approaching angle of χMs = 90◦ or π/2, and they can be compared to

examine how the control parameter ks will influence the changing tendency of the desired

course angle χd. It can be seen that when ks = 0, χd = χp = 0◦ regardless of the cross

track errors, and this case defines the vector fields where all vectors point to the same

direction as the followed path χp. When ks 6= 0, the curves follow the shape of the inverse

tangent function, and their asymptotic lines are given as χd = ±χMs = ±90◦. If the

vehicle is far away from the desired path, i.e. |ds| is large, it will be directed by a course

angle close to ±χMs, while if it is in close proximity of the path, χd will quickly converge

to χp. It is evident that with larger values for ks, χd will have a faster convergence rate.

In Fig. 3.5, a group of green curves have been generated to check how χd is influenced by

χMs. We can see that χMs controls the maximum approaching angles or the asymptotic

lines.

In terms of exploring the parameter space for circular path following, it is assumed

that χOrbit = 0◦ and that the maximum approaching angle is χMc = 90◦ or π/2, the circle

radius is 50 m and the desired circular path-following direction is clockwise, i.e. ρd = 1.

The exploration of parameter space is shown in Fig. 3.6. Again, when kc = 0, χd = 90◦

regardless of the cross track error dc and it corresponds to the tangential direction of the

circle. By following this direction, however, a vehicle can not converge to the desired

circular path. If kc 6= 0, the desired course angle follows the tendency of the inverse

tangent function curves like the straight-line path case. When dc > 0, χd ∈ (90◦, 180◦], it

represents that the USV is directed towards the followed path from outside of the circle.

On the contrary, if dc < 0 and χd ∈ [0◦, 90◦), the USV approaches the path from inside

of the circle. As depicted in Fig. 3.6, we can observe that the control parameter kc

determines the convergence rate of χd, and the maximum approaching angle when the
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Figure 3.5: The exploration of the parameter space for Eq. 3.7 to determine the relation-
ship between desired course angle χd and the cross track error ds with varied settings of
ks and χMs. The performed search of the parameter space is based on the vector field
method for straight-line path-following control.

vehicle is far from the circle is decided by the value of χMc.

3.3.2 Carrot Chasing Method

The Carrot Chasing Method (CC) is extensively used in missile guidance systems [46],

but in this research we will try to implement this algorithm for a USV’s path-following

control. While implementing CC, a virtual target point (V TP ) is always defined on the

followed path that is right ahead of the vehicle. Through chasing V TP , the vehicle will

be directed towards and eventually converge on the path.
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Figure 3.6: The exploration of the parameter space for Eq. 3.8 to determine the relation-
ship between desired course angle χd and the cross track error dc with varied settings of
kc and χMc. The performed search of parameter space is based on the vector field method
for circular path-following control.

3.3.2.1 Conventional Carrot Chasing Method

An intuitive representation of the CC path-following control method is depicted in Fig.

3.7. On the left, the USV’s current location p(t) = (n(t), e(t))T is projected on the followed

straight-line path as p(t)′ = (n(t)′, e(t)′)T . If the look-ahead distance is given as a constant

number ∆s, the V TP1 position can be determined on the followed path. The V TP1

position will be updated when the USV’s projected location changes. Since the V TP1 is

always ahead of the vehicle, through chasing V TP1 the USV will eventually converge to

the followed path. We follow the conventional procedures to calculate the target point
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position [46]. The distance between wpi and the USV location can be calculated as

||
−→
L || = ||p(t)− wpi|| =

√
(e(t)− ei)2 + (n(t)− ni)2,

where the direction of −→L with respect to true north is given as

χ−→
L

= arctan2(e(t)− ei, n(t)− ni).

Hence,

χβ = χ−→
L
− χp.

Using the look-ahead distance ∆s, the V TP1 position pv1 can be computed as

pv1 =

nv1

ev1

 =

(||−→L || cos(χβ) + ∆s) cos(χp) + ni

(||−→L || cos(χβ) + ∆s) sin(χp) + ei

 .

Note that when cos(χβ) < 0, the vehicle’s projected location p(t)′ is on the extended line

of the followed path through the end point wpi, otherwise p(t)′ is located between wpi

and wpi+1, which is the case drawn in Fig. 3.7. Therefore, the desired course angle can

be calculated as

χd = arctan2(ev1 − e(t), nv1 − n(t)). (3.9)

The right plot of Fig. 3.7 indicates the carrot chasing method implemented on the

circular path-following problem. The look-ahead angle is defined as a constant number

∆c and the virtual target point on the circle is defined as V TP2. Note that ∆c can be

either a positive or negative angle, and they represent the clockwise and counter-clockwise

path-following scenarios, respectively. We follow the same definition from section 3.1, and

thus the circle origin is pc = (nc, ec)T , the radius is R and −→pcp defines the vector pointed
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Figure 3.7: The demonstration of the Carrot Chasing path-following control for straight-
line and circular paths.

to the vehicle position from the circle origin. We can compute the unit vector of −→pcp as

−→q −→pcp =
−→pcp
||−→pcp||

= (n(t)− nc, e(t)− ec)T√
(n(t)− nc)2 + (e(t)− ec)2

.

If the V TP2 position is defined as pv2 = (nv2, ev2)T , the unit vector along −−→pcpv2 can be

calculated using the rotation matrix

J∆c =

 cos(∆c) sin(∆c)

− sin(∆c) cos(∆c)


as

−→q −−−→pcpv2 = J∆c

−→q −→pcp.
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Hence, the V TP2 position can be formulated as

pv2 = pc +Rq−−−→pcpv2 .

and the desired course angle can be calculated as

χd = arctan2(ev2 − e(t), nv2 − n(t)). (3.10)

Based on the previous analysis, we summarize the carrot chasing algorithms for straight-

line and circular path-following cases in Algorithm 3 and Algorithm 4.

Algorithm 3 Carrot chasing path-following control law (straight-line path).
1: Initialize: p(t) = (n(t), e(t))T , wpi = (ni, ei)T , wpi+1 = (ni+1, ei+1)T ,∆s

2: χp = arctan2(ei+1 − ei, ni+1 − ni)
3: ||
−→
L || =

√
(e(t)− ei)2 + (n(t)− ni)2

4: χ−→
L

= arctan2(e(t)− ei, n(t)− ni)
5: χβ = χ−→

L
− χp

6: nv1 = (||−→L || cos(χβ) + ∆s) cos(χp) + ni

7: ev1 = (||−→L || cos(χβ) + ∆s) sin(χp) + ei
8: χd = arctan2(ev1 − e(t), nv1 − n(t))

Algorithm 4 Carrot chasing path-following control law (circular path).
1: Initialize: p(t) = (n(t), e(t))T , pc = (nc, ec)T , R,∆c

2: χOrbit = arctan2(e(t)− ec, n(t)− nc)
3: −→q −→pcp = (n(t)−nc,e(t)−ec)T√

(n(t)−nc)2+(e(t)−ec)2
= (qn, qe)T

4: nv2 = R(qn cos(∆c) + qe sin(∆c)) + nc
5: ev2 = R(−qn sin(∆c) + qe cos(∆c)) + ec
6: χd = arctan2(ev2 − e(t), nv2 − n(t))

Similar to section 3.3.1, we carry out the exploration of the parameter space to examine

the relationship between the desired course angle and the cross track errors with different

control parameter settings using the conventional CC algorithm. For the straight-line

path case, we still assume the path direction χp = 0◦, and since the V TP1 position is
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determined, the cross track error can be calculated as

ds = ±
√

(ev1 − e(t))2 + (nv1 − n(t))2 −∆2
s

where ds > 0 or ds < 0 represent that the vehicle is on the starboard- or port-side of the

followed path. The parameter space exploration results with the look-ahead distance ∆s

changing from 0 to 5 m have been depicted in Fig. 3.8. It can be seen that a smaller

value of ∆s corresponds to the curve that has a faster changing rate. When ∆s = 0

m, the virtual target point is the projected position of the vehicle on the straight-line

path and this features the steepest tendency of the desired course angle for a vehicle to

follow. It is interesting when we compare these results with those in Fig. 3.5, because

both vector field and carrot chasing algorithms construct similar shaped reference course

angle. Through comparing Algorithm 1 and Algorithm 3, we can conclude that both

algorithms implement the inverse tangent function to formulate the desired course angle.

In the following section, we will implement a different methodology to derive CC, based

on which the intrinsic connection between the two methods can be revealed.

We keep the same testing condition as section 3.3.1 to explore the CC circular path-

following algorithm parameter space. The results with look-ahead angle ∆c varying from

0◦ to 10◦ have been shown in Fig. 3.9. Again, the curves follow the shape of the inverse

tangent function that are close to those constructed in Fig. 3.6 using the vector field

method, and a small ∆c is related to the curve with a faster convergence rate. However,

it is important to note that the CC algorithm might not be feasible for accurate circular

path tracking control. For instance, as depicted in the enlarged graph of Fig. 3.9, when

the USV is on the circular path, i.e. dc = 0, the desired course angle χd > 90◦ for the

cases where ∆c > 0. In cases where the look-ahead angle is nonzero, the vehicle’s desired

course angle is not aligned with the tangential direction of the circular path. This control



Chapter 3. Path-Following Control 84

−20 −15 −10 −5 0 5 10 15 20

−90

−60

−30

0

30

60

90

Cross track error d
s
 (m)

D
es

ire
d 

co
ur

se
 a

ng
le

 χ
d (

de
gr

ee
)

 

 
Delta

s
=0

Delta
s
=1

Delta
s
=2

Delta
s
=5

Figure 3.8: The exploration of the parameter space for Algorithm 3 to determine the
relationship between desired course angle χd and the cross track error ds with varied
settings of ∆s. The performed search of parameter space is based on the carrot chasing
method for straight-line path-following control.

configuration violates our goal of precise path tracking, and its deficiency will potentially

prevent this method from being employed for precise circular path-following control.

3.3.2.2 Connection Between Carrot Chasing Method and Vector Field Method

In this section, we will provide a novel insight into the theoretical origin of the carrot

chasing algorithm. An alternative method for derivation of the CC path-following control

algorithm will be introduced, based on which the connection to the vector field algorithm

can be revealed.
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Figure 3.9: The exploration of the parameter space for Algorithm 4 to determine the
relationship between desired course angle χd and the cross track error dc with varied
settings of ∆c. The performed search of parameter space is based on the carrot chasing
method for circular path-following control.

A conventional carrot chasing method, as presented in section 3.3.2.1, requires us to

compute the position of the virtual target point and then calculate the desired course

angle χd for a USV to follow. However, as shown in Fig. 3.7, there is another more

compact way to formulate χd using just the path direction χp, cross track error ds and

the look-ahead distance ∆s, and it is given as

χd = χp − arctan
(
ds
∆s

)
. (3.11)
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Interestingly, although the carrot chasing and vector field methods are derived from differ-

ent perspectives, through comparing Eq. 3.11 and Eq. 3.7, we can see that the theoretical

origin of both methods are intrinsically the same. The control parameter ks is equivalent

to the inverse of the look-ahead distance ∆s, i.e. ks = 1/∆s. Note that we denote the

maximum approaching angle χMs = π/2 in Eq. 3.7 for the comparison.

In a similar way, as for the circular path in Fig. 3.7, the desired course angle is given

as

χd = χOrbit + ρd

[
π

2 + arctan
(
||−→pcp|| −R cos(∆c)

R sin(∆c)

)]
. (3.12)

Although Eq. 3.12 and Eq. 3.8 have similar form, CC is not efficient in following the

circular path accurately. We have already demonstrated this deficiency in section 3.3.2.1

through performing the parameter space exploration, but here we can provide an al-

ternative view through analysing the formula directly. Concretely, when the vehicle is

positioned on the circle and it follows in the clockwise direction, if the look-ahead angle

∆c > 0, Eq. 3.12 can be written as

χd = χOrbit +
[
π

2 + arctan
(
R−R cos(∆c)
R sin(∆c)

)]

6= χOrbit + π

2 ,

which indicates that the desired course angle is not following the tangential direction of

the circle. If ∆c is close to zero, though, we can apply L’Hopital’s rule as

lim
∆c→0

χd = lim
∆c→0

[
χOrbit + π

2 + arctan
(
R−R cos(∆c)
R sin(∆c)

)]

= lim
∆c→0

[
χOrbit + π

2 + arctan
(

sin(∆c)
cos(∆c)

)]

= χOrbit + π

2 ,

and it shows that only when the look-ahead angle is close to zero will the vehicle be
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directed to follow the circle’s tangential direction. Nevertheless, a really small look-ahead

angle ∆c corresponds to a fast converging reference course angle as shown in Fig. 3.9,

and it may not be viable for a USV to track.

Inspired by Eq. 3.8, we can make a small modification of Eq. 3.12 to solve its problem.

As shown in Fig. 3.7, we denote po as the intersection point of vector −→pcp and the circle,

and a new virtual target point V TP3 is defined on the extended line of pcV TP2 such that

poV TP3 is tangent to the circle. The USV can track V TP3 instead of V TP2, and thus,

the new desired course angle can be computed as

χd = χOrbit + ρd

[
π

2 + arctan
(
||−→pcp|| −R
R tan(∆c)

)]
. (3.13)

Now in cases where the vehicle is positioned on the followed circle, the desired course

direction will be the same as the tangential direction of the circular path. It is important

to note that, if in Eq. 3.8 the maximum approaching angle is assumed as χMc = π/2,

we can compare it with the modified carrot chasing method in Eq. 3.13. It clearly shows

that the two methods have exactly the same form, and the control parameter kc in Eq.

3.8 is actually equivalent to inverse of R tan(∆c) in Eq. 3.13, i.e. kc = 1/(R tan(∆c)).

3.3.2.3 Integral Gain for the Carrot Chasing Method

In the carrot chasing method, the control parameters of 1/∆s (Eq. 3.11) and 1/(R tan(∆c))

(Eq. 3.13) act like the proportional gain of a conventional PID controller [11]. For exam-

ple, according to the simulation results in Fig. 3.8 and Fig. 3.9, we can conclude that a

larger proportional gain, i.e. smaller value of ∆s and ∆c, will lead to a more aggressive

reference course angle curve for the vehicle to follow. Based on this analysis, we artificially
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add the integral gain into the original carrot chasing algorithms, which are given as

χd = χp − arctan
(
Kpsds(t) +Kis

∫
ds(t)dt

)
(3.14)

and

χd = χOrbit + ρd

[
π

2 + arctan
(
Kpcdc(t) +Kic

∫
dc(t)dt

)]
. (3.15)

In Eq. 3.14, Kps = 1/∆s and it denotes the proportional gain, and Kis is the integral

gain for the straight-line path-following control case. Similarly, in Eq. 3.15, we have

Kpc = 1/(R tan(∆c)) as the proportional gain and Kic as the integral gain for the circular

path tracking control case. Note that Eq. 3.15 is generated based on the modified version

of the CC method in Eq. 3.13.

Although the introduction of the integral gain can notably increase the path-following

control robustness to the unexpected environmental disturbances, this algorithm may

introduce aggressive path tracking overshoot depending on the initial position of the

vehicle relative to the followed path. We will illustrate this phenomenon in the following

sections.

3.3.3 Line-of-Sight Method

The Line-of-Sight (LOS) path-following control algorithm is very popular in the USV

research community, and there are many variants [1, 11, 40, 46]. In this research, we

will employ the conventional LOS concept as shown in Fig. 3.10. We define a circle

with a time-varying center that coincides with the USV’s body frame origin at p(t) =

(n(t), e(t))T , and the radius of this vehicle circle is defined as a constant number Rp.

When the USV is close enough to the followed path, the circle Rp will intersect the path

at two points and the one that is closer to the next waypoint is chosen as the line-of-sight

position. For example, in Fig. 3.10, pt1 and pt2 are the target line-of-sight positions that
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the vehicle is directed to. When the vehicle is moving, the intersection point will change

to a new location, and through following this target position the USV will follow the

desired path.

Figure 3.10: The demonstration of the Line-of-Sight path-following control for straight-
line and circular paths.

The size of the circle surrounding the USV determines the path-following control

performance, and in practice, it is difficult to assign a large enough circle to guarantee

the intersection of the circle with the followed path at all time. A practical way is to

formulate the desired course angle based on whether the intersection points exist. If there

are no intersection points, the USV can be steered to the followed path at the maximum

approaching angle π/2. After the USV moves closer and the intersection points exist,

the vehicle can choose the right line-of-sight point to track. The LOS algorithms are
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summarized in Algorithm 5 and Algorithm 6.

Algorithm 5 Line-of-sight path-following control law (straight-line path).
1: Initialize: p(t) = (n(t), e(t))T , wpi = (ni, ei)T , wpi+1 = (ni+1, ei+1)T , Rp

2: χp = arctan2(ei+1 − ei, ni+1 − ni)
3: ds = −(n(t)− ni) sin(χp) + (e(t)− ei) cos(χp)
4: if ds > Rp then
5: χd = χp − π

2
6: else if ds < −Rp then
7: χd = χp + π

2
8: else
9: χd = χp − arcsin

(
ds

Rp

)
10: end if

Algorithm 6 Line-of-sight path-following control law (circular path).
1: Initialize: p(t) = (n(t), e(t))T , pc = (nc, ec)T , ρd, R,Rp(Rp < R)
2: χOrbit = arctan2(e(t)− ec, n(t)− nc)
3: ||−→pcp|| =

√
(e(t)− ec)2 + (n(t)− nc)2

4: if ||−→pcp|| > R +Rp then
5: χd = χOrbit + π
6: else if ||−→pcp|| < R−Rp then
7: χd = χOrbit
8: else
9: χd = χOrbit + ρd

(
π
2 + arcsin

(
||pcp||2+R2

p−R2

2||pcp||Rp

))
10: end if

Using the formulated line-of-sight path-following control algorithms, we can investigate

the relationship between the desired course angle and the cross track errors with varied

circle radius Rp. We still keep the same testing conditions as in section 3.3.1 and 3.3.2.

For the straight-line path case, the parameter space exploration results are depicted in

Fig. 3.11. In the figure, the flat parts when χd = ±90◦ indicate that the USV is directed

to the followed path by the maximum approaching angle, and when the intersection

happens, the desired course angle χd changes according to the inverse sinusoidal function

as summarized in Algorithm 5. When the cross track error ds = 0, the USV’s desired

course angle will be equal to the followed path direction χp = 0◦. It can be seen that a



Chapter 3. Path-Following Control 91

larger value of Rp will generate a smoother transition to χp. However, it is important to

note that χd is not changing smoothly. According to the figure, at the point where the

circle-path intersection occurs, χd will quickly drop from 90◦ to a much smaller angle.

This abrupt change of the desired course angle might be adverse for the path-following

control of a USV, especially for those with slow motion dynamics. Note that the low-level

controller can maneuver SeaCat to keep up with the desired course angle, but due to its

slow motion dynamics, there will be a time delay. We will demonstrate this phenomenon

in the following PID controller tuning section.

−20 −15 −10 −5 0 5 10 15 20

−90

−60

−30

0

30

60

90

Cross track error d
s
 (m)

D
es

ire
d 

co
ur

se
 a

ng
le

 χ
d (

de
gr

ee
)

 

 
R

p
=4

R
p
=8

R
p
=12

R
p
=16

Figure 3.11: The exploration of the parameter space for Algorithm 5 to determine the
relationship between desired course angle χd and the cross track error ds with varied
Rp. The performed search of parameter space is based on the line-of-sight method for
straight-line path-following control.
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In terms of the circular path, the results are depicted in Fig. 3.12 with a similar

changing pattern of χd as in the straight-line case. Again, the abrupt change of the

desired course angle exists, and it is adverse for a USV’s motion control. When the

vehicle is on the followed circular path, i.e. ||−→pcp|| = R, we can calculate χd as

χd = χOrbit + π

2 + arcsin(Rp

2R). (3.16)

According to Eq. 3.16, only when Rp = 0 could the desired course angle be the tangential

direction of the circular path, i.e. χd = χOrbit + π/2. This characteristic has been clearly

shown in the enlarged graph of Fig. 3.12, in which we can see when dc = 0, χd 6= 90◦ that

indicates the desired course direction is not along the tangential direction.

3.3.4 Summary of Path-Following Control Methods

A summary of the investigated Vector Field Method (VF), Carrot Chasing Method (CC),

Carrot Chasing Method with integral gain (CCI), and Line-of-Sight Method (LOS) has

been shown in Table 3.1.

Table 3.1: A summary of path-following control algorithms
Straight-line path Circular Path

VF (Eq. 3.7) / CC (Eq. 3.9 or Eq. 3.11) VF (Eq. 3.8) / Modified CC (Eq.3.13)
CCI (Eq. 3.14) CCI (Eq. 3.15)
LOS (Algorithm 5) LOS (Algorithm 6)

It is important to note that since VF and CC have the same mathematical origin,

they will show the same path-following control performance. This is the reason that they

are listed in the same row. In the following, we will evaluate all the algorithms listed in

Table 3.1 by performing simulations and real-world field experiments.
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Figure 3.12: The exploration of the parameter space for Algorithm 6 to determine the
relationship between desired course angle χd and the cross track error dc with varied Rp.
The performed search of parameter space is based on the line-of-sight method for circular
path-following control.

3.4 Simulation Experiments

In chapter 2, the USV SeaCat’s planar dynamic motion model in surge, sway and yaw

has been constructed and the model parameters are successfully identified by performing

tow tank tests and extensive field experiments. Taking advantage of this realistic motion

model, a Matlab/Simulink simulator with the guidance and control system structure

as shown in Fig. 3.3 has been built so that we can perform different path-following

control experiments. For example, according to the flow chart in Fig. 3.13, we build the

Simulink model for testing the vector field method. In Fig. 3.13, the initialization or the
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preparation stage reads in the waypoint locations and perform the required coordinate

conversion. The vector field path-following control stage decides whether we need to

follow the straight-line or circular path, and depending on the relative position of the

vehicle and the followed path, the desired course angle can be determined. The low-level

control stage implements the PID controllers and continuously adjusts the two propellers’

speed in order to track the desired speed and course direction. The flow chart in Fig.

3.13 displays an advantageous modular structure, based on which some advanced features

can be conveniently incorporated. The initialization stage can integrate different path-

planning features (e.g. obstacle avoidance) so that the waypoint list can be autonomously

generated online instead of being defined by users. The path-following control stage is

swappable, and the other two presented path-following control methods can be included

without changing the rest of the whole structure.

The simulator is of great importance at the preliminary testing stage, because it can be

conveniently employed for tuning and improving the guidance and control programs. In

this section, we first introduce procedures to determine the PID parameter values for the

two low-level motion controllers. Then, the metrics for evaluation of the performances

of different algorithms are defined. Finally, a series of straight-line and circular path-

following control tests are carried out to further illustrate the results we achieved from

the parameter space exploration in section 3.3.

It is important to note that simulation experiments in this section are quite differ-

ent from the previous parameter space exploration. Through exploring each algorithm’s

parameter space, we can only theoretically study the desired course angle with respect

to different cross track errors. However, in the following discussion, when incorporating

a USV’s motion dynamics, we can investigate whether a platform can track the gener-

ated desired course angle successfully. This will be a valuable experience for us to choose

appropriate path-following control parameters before we do any further field experiments.
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Figure 3.13: The USV SeaCat’s guidance and control strategy flow chart. The guidance
system implements the vector field method and the low-level controllers are responsible
for speed and course-keeping control.
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3.4.1 PID Controller Parameter Tuning

The low-level motion control system in Fig. 3.3 is Multiple-Input-Multiple-Output (MIMO)

type, where the vehicle speed and course angle need to be controlled by the two thrusters.

Our strategy is to first tune the PID control parameters for the speed controller to gain the

best performance, and then we keep the settings and try to find the appropriate control

parameter values for the course keeping controller.

The speed controller needs to quickly respond to the reference speed setting and

minimize the steady-state speed error. Following this principle, we manually tune the

speed controller parameters using the constructed simulator. It is assumed that the

reference speed is 0.8 m/s, and some simulation results during the tuning process have

been chosen and depicted in Fig. 3.14. In the figure, it can be seen that the incorporation

of the integral gain Ki1 will notably reduce the steady-state errors, and with larger values

for Ki1 the system response speed is increased until the overshoot happens when Ki1 =

100. It has been found that using the derivative gain will not effectively vary the system

response speed, and thus we use a constant value of Kd1 = 20 in the last three tests in

Fig. 3.14. If we use a higher proportional gain of Kp1 > 250, we can further reduce

the response time. However, a large value of Kp1 corresponds to a large control signal

for the two thrusters in the real-world tests, which may make them wear fast as time

goes on. Additionally, when the USV is accelerated from zero speed, an instant large

propeller setting will introduce large pitch motion, which is adverse for on-board sensor

data collection and system stability. Therefore, we finally determine to use the parameter

values of Kp1 = 250, Ki1 = 80 and Kd1 = 20 for the following path-following control

simulation experiments.

Based on the determined speed controller, we can start tuning the course-keeping

controller parameters by implementing the heuristic Ziegler-Nichols method [47]. We

assume that the reference speed is still 0.8 m/s, the vehicle’s initial course angle is 0◦
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Figure 3.14: Demonstration of the speed controller with different control parameter set-
tings. In this set of simulations, the reference speed is 0.8 m/s.

and the desired course angle is 40◦. The parameter tuning results are shown in Fig.

3.15. In the figure, the blue line represents when the proportional gain is increased to

a large value when the vehicle’s controlled course angle oscillates around the desired

course angle. In this scenario, the proportional gain value and the oscillation period are

determined and recorded as Ku = 4 and Tu = 40 s. Following the Ziegler-Nichols method,

we can compute the PID parameter values as Kp2 = 0.6Ku = 2.4, Ki2 = 1.2Ku/Tu = 0.12

and Kd2 = 3KuTu/40 = 12. However, it turns out that when we implement the Ziegler-

Nichols suggested controller, there is a large course angle overshoot. Through performing

extensive tests as depicted in Fig. 3.15, we find out that by reducing the integral gain of

Ki2 the overshoot reduces.
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To compare the performances with different PID parameter value settings, we employ

the standard performance measure that includes rise time, settling time, steady-state

error and percent of overshoot. A summary of the performance measure is given in Table

3.2. We can conclude that a larger integral gain Ki2 will lead to a shorter rise time, but

the percent of overshoot and settling time are much longer. Ultimately, to gain the best

performance, we choose to implement the PD controller as our course-keeping controller,

i.e. Kp2 = 2.4, Ki2 = 0 and Kd2 = 12.

Table 3.2: Performance measure of the PID course-keeping controller
Integral Rise Settling Steady-state Percent of
gain Ki2 time (s) time (s) error (◦) overshoot

0.12 (PID) 14 55 0 72.9%
0.06 (PID) 15 100 0 45.7%
0 (PD) 17 31 0 17.8%

3.4.2 Evaluation Metrics

In this section, we introduce the employed metrics for evaluation of the performance

of different path-following control algorithms. In either simulation or field experiments,

the USV SeaCat will be commanded to start from a remote location with respect to

the followed path. Through implementation of a specific path-following control law, the

platform will converge to and finally track the path. We define the time it takes from the

initial position to when the vehicle enters the ±2 m band around the followed path as the

convergence time Tc. Therefore, we can name the time range before Tc, i.e. t ∈ [0, Tc], as

the vehicle’s transition period, while the time range of t ∈ [Tc,+∞) as the steady-state

path-following period.

Two groups of metrics are developed corresponding to each time period. The first

group focuses on the controller’s performance during the transition period, and under
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Figure 3.15: Demonstration of the course-keeping controller with different control param-
eter settings. In this set of simulations, the reference speed and course angle are 0.8 m/s
and 40◦, respectively.

this category we define the total control energy as

U1 =
t=Tc∑
t=0

(Ωs(t) + Ωp(t))2,

the total steering energy as

U2 =
t=Tc∑
t=0

(Ωs(t)− Ωp(t))2,
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and the total path tracking error for the transition period as

E =
t=Tc∑
t=0
|d(t)|

where d(t) represents the cross track error for either straight-line or circular path tracking

case. The metrics of U1 and U2 provide a direct measure of the energy it takes for a USV

to follow the desired path using the specific algorithm. A large number will indicate that

this algorithm’s control demand is high. For example, a large value of U2 may indicate

that the vehicle undergoes multiple turns to follow the straight-line path, which is not

desirable.

The second group is used for evaluating the steady-state path tracking performance,

and we choose to compute the average and standard deviation of the cross track errors as

EAV = 1
Nt

t=Tf∑
t=Tc

|d(t)|

and

ESD =

√√√√√ 1
Nt

t=Tf∑
t=Tc

(d(t)− EAV )2.

Note that for these two metrics, the calculation time range is selected as t ∈ [Tc, Tf ], and

since the sampling rate is 1 Hz, Nt = Tf − Tc is the number of samples of the cross track

error in this time range.

Although we have introduced five different metrics for evaluation of a path-following

controller’s performance, it is necessary to point out that some metrics may be more

significant than others depending on the specific application. For example, if we need to

operate a USV for an enduring mission, the total control energy and steering energy will

be more important. We will need to find an algorithm that is most energy efficient, while

the path tracking accuracy may not be a big concern. On the contrary, there may be
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cases where a USV can only operate safely following a specific path in the seaway, under

this circumstance, the safe path tracking accuracy will be much more important than the

controller’s consumed energy.

3.4.3 Straight-line Path-Following Control

In this section, we test the vehicle’s straight-line path-following control performance by

implementing the vector field, carrot chasing with integral gain and line-of-sight methods.

Without loss of generality, in the simulation experiments, the straight-line path to be

followed by a USV is defined in the NED frame with the northern path direction χp = 0◦.

The two waypoints (endpoints) of the path are defined as wpi = (ni, ei)T = (0, 0)T and

wpi+1 = (ni+1, ei+1)T = (250, 0)T , and the initial USV location is assumed to be on the

starboard side of the path, which is given as p(0) = (n(0), e(0))T = (0, 40)T . The vehicle’s

initial and desired moving speed is determined to be 0.8 m/s, and from the starting

location the vehicle’s initial course angle χi = 0◦. In addition, χ is the vehicle’s actual

course angle, and χd is the desired course angle computed from a specific path-following

control algorithm.

3.4.3.1 Vector Field Method

In this section, we will examine how the control parameter ks and the maximum ap-

proaching angle χMs in Eq. 3.7 influence the vector field (VF) path-following control

performance. By changing ks and χMs, the desired course angle curve varies, and we can

investigate if a USV can track the generated reference angles successfully.

The simulation results with varied ks have been depicted in Fig. 3.16. The left graph of

Fig. 3.16a shows the vehicle trajectory while tracking the straight-line path. As expected,

with larger values for ks, the vehicle can be controlled to converge to the followed path

at a faster rate. Nevertheless, if ks is too large the vehicle will oscillate around the path.
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Referring to the right graph in Fig. 3.16a, we can conclude that ds will converge to zero

with appropriate ks values, but when ks is too large ds will oscillate around 0 m that

indicates a bad path tracking performance. It is interesting to note that in the figure the

path tracking error is not symmetric about ds = 0, and this is due to the difference of

the vehicle’s starboard- and port-side turning dynamics as introduced in chapter 2. The

graph in Fig. 3.16b compares the actual course angle χ with the desired course angle

χd. Note that the curves of χd are related to the inverse tangent curves as shown in the

parameter space exploration part in Fig. 3.5. Through this set of simulations, we can see

when χd changes slowly, such as the case when ks = 0.03, χ can be controlled to follow χd

with a small mismatch. Whereas, when ks = 0.1, due to the slow dynamics of the vehicle,

it will take the vehicle some time before χd can be tracked. When the changing rate of

χd is too fast, i.e. ks = 0.3, χ will not converge to χd but oscillates around it.

Similarly, we can illustrate the influence of the maximum approaching angle χMs. In

section 3.3.1, we have already shown that the value of χMs is related to the asymptotic

lines of χd, and a larger value of χMs corresponds to the χd curve with a faster changing

rate. In this set of simulations, we keep a constant value of ks = 0.1 and change three

different settings of χMs to check the path-following performance. The simulation results

with varied χMs are depicted in Fig. 3.17. Again, the left graph of Fig. 3.17a shows

three different USV trajectories while tracking the path, and it clearly demonstrates that

with a larger χMs the vehicle will be controlled to converge faster. To the right of Fig.

3.17a, we can see the cross track error ds converges to zero in all scenarios at different

convergence rates. The plots in Fig. 3.17b further show that a larger value of χMs will

make the desired course angle χd converge at a faster rate, which makes it difficult for a

USV to track. For example, when χMs = 90◦, there is a large mismatch between χ and

χd. It can also be visualized in Fig. 3.17b that a small oscillation occurs near (0,0) before

χ finally converges to χd or χp.
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Figure 3.16: Simulation results using the vector field method with varied control parame-
ter values of ks. In the left graph of Fig. (a), the vehicle’s initial location is marked with
a circle, and it corresponds to the initial condition of (ds, χ) = (40, 0) in Fig. (b), which
has been marked with a diamond.
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Figure 3.17: Simulation results using the vector field method with varied maximum ap-
proaching angles of χMs. In the left graph of Fig. (a), the vehicle’s initial location is
marked with a circle, and it corresponds to the initial condition of (ds, χ) = (40, 0) in Fig.
(b), which has been marked with a diamond.
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Using the introduced metrics from section 3.4.2, we can numerically compare the path-

following control performances with varied parameter settings of ks and χMs, and these

results have been summarized in Table 3.3. The term ks controls the vehicle’s path-

following convergence rate, and the column of Tc clearly shows that with larger values

for ks the convergence time Tc decreases. The transition period can be evaluated by U1,

U2 and E, and we can see that with a shorter transition time, the computed U1 and E

values are also smaller. However, in order to quickly converge, the steering control energy

will increase as indicated by U2. During the steady-state path-following period, the best

performance is achieved when ks = 0.1. Comparing the simulation results in Fig. 3.16 to

the last two columns in Table 3.3, we can see that when ks = 0.3 the vehicle will oscillate

around the desired path that will lead to large values of EAV and ESD.

The term χMs defines the maximum approaching angle, and it will also affect the

vehicle’s convergence rate to the desired path. In Table 3.3, we can see that with larger

values for χMs, the vehicle can be controlled to converge faster, which corresponds to

lower control energy U1 and path tracking error E, and a higher energy demand for the

steering control U2. Whereas, the increment of χMs will not increase the steady-state path

tracking performance. Actually, in the case when χMs = 90◦, the vehicle will undergo the

oscillation before it finally track the desired path, and this phenomenon leads to larger

computed values of EAV and ESD. Through comparison, we can determine that both ks

and χMs should not be set to a very large value, or the USV will not be able to track the

desired path successfully with acceptable performance.

3.4.3.2 Carrot Chasing Method with Integral Gain

We employ the same testing conditions as in section 3.4.3.1, i.e. the initial position

p(0) = (n(0), e(0))T = (0, 40)T , χi = 0◦ and the desired speed is 0.8 m/s. In terms of

the control parameters, the proportional gain is set as Kps = 0.1 and the integral gain
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Table 3.3: Performance evaluation of the vector field straight-line path-following method

Parameter Value Tc U1 (×107 U2 (×105 E (×103 EAV ESD
(s) rpm2) rpm2) m) (m) (m)

ks
(Fig. 3.16)

0.03 166 2.109 1.327 2.762 0.641 0.531
0.1 85 0.940 2.446 1.862 0.128 0.362
0.3 69 0.744 2.696 1.721 3.463 3.355

χMs

(Fig. 3.17)

50◦ 108 1.275 1.485 2.199 0.143 0.392
70◦ 85 0.940 2.446 1.862 0.128 0.362
90◦ 75 0.810 3.367 1.725 0.142 0.411

Kis is varied to achieve different path-following control performances. The simulation

results have been depicted in Fig. 3.18. The left graph of Fig. 3.18a compares different

vehicle trajectories, and it clearly shows that with larger values for Kis, the path tracking

overshoot becomes larger. For instance, when Kis = 0.01, the overshoot is so large

and the USV system turns unstable. The cross track error shown to the right of Fig.

3.18a indicates that the integral gain can cause a significant overshoot for ds if it is not

properly chosen. If Kis = 0.0001, ds will converge to zero at a really slow rate during the

steady-state period, while if Kis = 0.01, ds will oscillate with large amplitude around the

followed path. When 0.0001 < Kis < 0.01, there will be a path tracking overshoot before

the vehicle starts to converge. It can also be seen that a larger Kis setting in this range

will cause more significant overshoot but will also drive the vehicle back to the path faster.

Basically, we can summarize that we have to choose Kis carefully for the USV SeaCat,

because the path-following performance is very sensitive to the value of this integral gain.

In Fig. 3.18b, a comparison of the desired and actual course angle is depicted. Note

that we only include the cases when the path-following control system is controllable. If

Kis = 0.0001, the integral action is very small and there is no overshoot, and we can see

that the existence of Kis introduces an offset, i.e. when χd = 0◦, ds 6= 0. We can explain

this situation by referring to Eq. 3.14. Because the vehicle approaches the path from one

side, the integration Kis

∫
ds(t)dt will be a positive number that is added to Kpsds(t) and
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it acts as an offset. In the other two cases, the existence of integral gain will stretch the

curve of χd to the negative plane first, and then the curve converges back to the origin.

This effect corresponds to the occurrence of the overshoot in Fig. 3.18a.

To reduce the path tracking overshoot, one solution is to start the tests with small

initial cross track error. In order to validate this, we perform the following supplementary

simulation. All other testing conditions are maintained except that the vehicle’s initial

position is changed to p(0) = (0, 20)T . The simulation results shown in Fig. 3.19 demon-

strate our predictions. The trajectories and cross track errors depicted in Fig. 3.19a

indicate that in all simulated scenarios the overshoot is reduced significantly compared

to the results of Fig. 3.18a. However, when Kis = 0.0001, the path tracking offset still

exists.

We evaluate the controller performance by using the metrics from section 3.4.2. Ow-

ing to the large overshoot for some tests, we need to make small modifications for the

calculation of the convergence time Tc. If the overshoot occurs, Tc will be measured until

the second time the vehicle enters the ±2 m narrow band around the path. The other five

metrics will be kept the same. The numerical evaluation results for experiments shown

in Fig. 3.18 have been summarized in Table 3.4. Note that the case when the system

is unstable is not included. With larger values for the integral gain Kis, Tc reduces and

the total control energy U1 also decreases since shorter time is needed for the vehicle’s

transition stage. As Kis increases, U2 drops a little bit and then increases to a large

number, and the reduced transition time Tc is believed to be the reason for the initial

reduction of the value U2. When Kis = 0.003, the overshoot is so large and it requires

much more steering energy than the other two cases. The overshoot has adverse effects

for the transition period path-following accuracy and this can be directly seen from the

column of E. According to the computed EAV and ESD, we can conclude that a larger

integral gain is better for the steady-state path tracking performances.
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Figure 3.18: Simulation results using the carrot chasing method with different integral
gain settings Kis. In the left graph of Fig. (a), the vehicle’s initial location is marked
with a circle, and it corresponds to the initial condition of (ds, χ) = (40, 0) in Fig. (b),
which has been marked with a diamond.
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Figure 3.19: Simulation results using the carrot chasing method with different integral
gain settings Kis. In the left graph of Fig. (a), the vehicle’s initial location is marked
with a circle, and it corresponds to the initial condition of (ds, χ) = (20, 0) in Fig. (b),
which has been marked with a diamond.
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In summary, the integral gain needs to be chosen carefully, or there will be offset and

large overshoot that are not favorable for the path tracking control of the vehicle. The

path tracking performance is also closely related to the initial position of the vehicle with

respect to the desired path, and a closer initial position will lead to smaller overshoot.

Although the integral gain is disadvantageous during the vehicle’s transition period, it

shows a promising performance if only the steady-state path tracking stage is considered.

Intrinsically, the integral gain will be the most effective if there are constant environmental

influences that push the vehicle away from the followed path. The reason is the constant

cross track errors will be accumulated to a large value, and thus the computed desired

course angle χd in Eq. 3.14 will be further increased or decreased so that the vehicle can

be guided back to the desired path.

Table 3.4: Performance evaluation of the carrot chasing straight-line path-following
method with integral gain

Parameter Value Tc U1 (×107 U2 (×105 E (×103 EAV ESD
(s) rpm2) rpm2) m) (m) (m)

Kis

(Fig. 3.18)

0.0001 481 6.396 1.831 3.030 1.981 0.0316
0.001 282 3.638 1.770 3.145 0.705 0.515
0.003 182 2.244 3.163 3.491 0.166 0.371

3.4.3.3 Line-of-Sight Method

In this part, we evaluate the Line-of-Sight (LOS) path-following control method. There is

only one control parameter that can be changed to vary the controller’s performance and

it is the circle radius Rp around the vehicle. In section 3.3.3, we have demonstrated that

when the circle-path intersection happens, an abrupt change of χd might make it difficult

for a USV with slow dynamics to track. In this series of simulations, the vehicle motion

dynamics are considered, and we can determine if LOS can be successfully employed for

straight-line path tracking.
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We keep the same simulation test conditions, and the results are depicted in Fig.

3.20. The left graph of Fig. 3.20a shows that during the initial transition period, i.e.

t ∈ [20, 40], the three trajectories coincide. If we refer to Fig. 3.20b, we can determine

that the reason is when the vehicle is too far away from the path the desired course angle

is −90◦ in all three testing conditions. In Fig. 3.20a, the vehicle trajectories become

different after the circle-path intersection occurs, and it shows that when Rp = 8 the

system tends to be unstable and the vehicle will oscillate around the followed path. The

cross track error shown to the right of Fig. 3.20a suggests that small Rp will quickly drive

ds to zero but will generate the ds oscillation. In Fig. 3.20b, χd will be orthogonal to

the followed path direction χp = 0◦ until the path and circle intersects. It can be seen

that when Rp varies, the intersection points are different, which has been indicated by

the three arrows. The abrupt change of χd also happens at these positions, where a large

mismatch between χ and χd occurs. If Rp = 8, χd converges at a fast rate which makes

it even impossible for the USV with slow dynamics to track successfully, and this will

cause path tracking oscillation during the steady-state period. As for the other two cases,

the vehicle will undergo small oscillations before χd finally converges to the followed path

direction.

The numerical evaluation using the introduced metrics is summarized in Table 3.5.

The small Rp corresponds to a fast converging χd as the reference, and it will lead to

a short converging time. For the other two cases, Tc is larger and their values are close

with each other. The column of U1 is mainly influenced by Tc, and a longer time requires

higher energy. The steering energy U2 shows much larger values compared to Table 3.3

and Table 3.4, and this is because at the initial stage the vehicle is directed by the

maximum approaching angle of χd = −90◦. The transition path tracking error E is the

smallest when Rp = 8. Whereas, during the steady-state path tracking period, Rp = 8

will control the vehicle to oscillate around the path with large and choppy path tracking
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Figure 3.20: Simulation results using the line-of-sight method with different settings Rp.
In the left graph of Fig. (a), the vehicle’s initial location is marked with a circle, and it
corresponds to the initial condition of (ds, χ) = (40, 0) in Fig. (b), which has been marked
with a diamond.
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errors indicated by EAV and ESD. As for the other two cases, we can summarize that the

path can be accurately tracked with really small cross track errors.

Table 3.5: Performance evaluation of the line-of-sight straight-line path-following method

Parameter Value Tc U1 (×107 U2 (×105 E (×103 EAV ESD
(s) rpm2) rpm2) m) (m) (m)

Rp

(Fig. 3.20)

8 65 0.722 4.993 1.661 1.228 1.576
12 81 0.929 5.954 1.722 0.153 0.378
16 79 0.882 4.981 1.740 0.139 0.344

3.4.3.4 Comparison of Straight-line Path-Following Control Methods

The best parameter setting for each path-following control algorithm has been chosen

for comparison, and the results are summarized in Table 3.6. The CCI method has a

relatively bad performance for the transition period, and the reason is the occurrence of

large overshoot. Through comparison of the other two algorithms, we can find LOS will

make the vehicle converge at a faster rate, but at the same time it requires a higher steering

energy U2. Additionally, a smaller Tc will correspond to a smaller control energy U1 and

transition tracking error E. Although LOS provides a better transition performance, we

have to be aware that it is at the cost of supplying twice the energy that is needed for

VF. According to the last two columns, we can see the steady-state path tracking stage

features a close performances across the three methods. However, it is noteworthy that

CCI will be more robust to the environmental disturbances, and potentially, it will have

a better performance in the real tests.

3.4.4 Circular Path-Following Control

In this part, we will evaluate the circular path-following performance using the introduced

algorithms from Table 3.1. Similar to the straight-line path tests, we employ the USV
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Table 3.6: Comparison between the three straight-line path-following control methods

Method Value Tc U1 (×107 U2 (×105 E (×103 EAV ESD
(s) rpm2) rpm2) m) (m) (m)

VF ks=0.1 85 0.940 2.446 1.862 0.128 0.362
CCI Kis=0.003 182 2.244 3.163 3.491 0.166 0.371
LOS Rp=16 79 0.882 4.981 1.740 0.139 0.344

SeaCat’s dynamic motion model from chapter 2 and the guidance and control system

structure in Fig. 3.3. Without loss of generality, in the simulation the circular path

origin is defined as the local origin, i.e. pc = (nc, ec)T = (0, 0)T , and the USV position is

defined in NED frame in meters. We assume that the USV’s starting position is located

at p(0) = (n(0), e(0))T = (0, 60)T , its initial and desired moving speed is 0.8 m/s, and

the initial course angle χi = 0◦.

3.4.4.1 Vector Field Method

We start by examining the followed circle radius R and its influence on the path-following

control performance. We assume that kc = 0.1, the maximum approaching angle χMc =

70◦ and R has values of 20 m, 50 m and 100 m. The simulation results are depicted in

Fig. 3.21. In Fig. 3.21a, the desired circular paths are represented by solid lines. Through

comparison, we can conclude that in all simulated cases the desired paths can be tracked

successfully. However, referring to the top graph of Fig. 3.21b, we can determine that the

steady-state cross track errors dc for different sized circles are non-zero. Actually, it turns

out that when the followed circle is larger, the steady-state value of dc gets smaller with

less oscillation. This phenomenon is owed to the slow yaw dynamics of the USV SeaCat.

In section 3.4.1, we have investigated the tuning of the course-keeping PID controller

parameters. As shown in Fig. 3.15, even with the well-tuned parameters, it will still take

around 30 s to reach the reference desired course angle χd. While tracking the circle, χd

is always changing and the low-level controller is not able to keep up with it as shown to
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the top of Fig. 3.21b, and this will result in the constant offset dc during the steady state.

A smaller circle corresponds to χd that changes at a much faster rate, which will make

it more difficult for a USV to keep up with. The bottom graph compares the desired

and actual course angle of the vehicle. To clearly show the results, both χd and χ are

unwrapped so that the angles are not restricted within (-180◦,180◦]. We can summarize

that in all testing conditions, χ will be successfully controlled to converge to χd. When

R = 20, the steady-state χd will oscillate around a constant offset dc, while in the other

two cases, the offset and oscillation are smaller.

We have already shown the similar control effects when adjusting ks and χMs in section

3.4.3.1, and for simplicity, in this part we will only examine control parameter kc and its

influence on following the circular path. We assume that R = 20 m and χMc = 70◦. The

results have been shown in Fig. 3.22. In Fig. 3.22a, we can see with larger values for

kc, the vehicle converges much faster. Whereas, if kc is too large, the system will start

to oscillate around the desired path. The graph to the top of Fig. 3.22b depicts the

converging tendency for dc, and it clearly shows that in the first two cases, the increased

value of kc will lead to a smaller steady-state value of dc, as can also be visualized in Fig.

3.22a. However, for the last case, the system tends to be unstable and dc will oscillate

around zero. The bottom graph of Fig. 3.22b shows that if kc is small the desired course

angle χd changes slowly and it is easy for the vehicle to follow with small oscillation.

We can numerically evaluate the controller performance using the metrics introduced

in section 3.4.2, and these results are summarized in Table 3.7. When evaluating the

controller performance with varied circle radius R, the initial relative positions of the

vehicle are quite different with respect to the followed circle as shown in Fig. 3.21. Hence,

we can only compare the steady-state cross track errors using EAV and ESD. It is evident

that a larger circle will be tracked with better accuracy. The remaining computed metrics

can be used for comparison with other path-following algorithms in our later discussion.
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Figure 3.21: Circular path-following simulation results using the vector field method with
different followed circle radius R. In Fig. (a), the vehicle’s initial position is marked
with a circle, and it corresponds to three different initial conditions for the three circular
path tracking cases, i.e. (ds, χ) = (40, 0), (10, 0) and (−40, 0), which have been marked
with diamonds to the bottom of Fig. (b). Note that Fig. (a) shows circles that appear
non-circular due to the aspect ratio of the plot.
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Figure 3.22: Circular path-following simulation results using the vector field method with
different control parameter kc settings. In Fig. (a), the vehicle’s initial position is marked
with a circle, and it corresponds to the initial condition (ds, χ) = (40, 0) that has been
marked with a diamond to the bottom of Fig. (b). Note that Fig. (a) shows circles that
appear non-circular due to the aspect ratio of the plot.
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The term kc controls the convergence rate, and the column of Tc clearly shows that

with larger values for kc the convergence time reduces. During the transition period,

when Tc is smaller, the required total and steering energy, i.e. U1 and U2, will get lower.

Meanwhile, a smaller tracking error E will be achieved. During the steady-state path-

following period, when kc is too small, there will be a large constant cross track error dc

with small variance. If, however, kc is too large, the vehicle will follow the desired path

with large oscillations. The best performance is achieved when kc = 0.1 but with a small

constant error. Through analysis, we can determine that due to the slow dynamics of

the studied platform, it is easier to track larger circles with better performance. Further,

the control parameter kc needs to be chosen with an appropriate value or the system will

have a large circular path tracking error and the system may turn unstable.

Table 3.7: Performance evaluation of the vector field circular path-following method

Parameter Value Tc U1 (×107 U2 (×105 E (×103 EAV ESD
(s) rpm2) rpm2) m) (m) (m)

R
(Fig. 3.21)

20 116 1.333 6.302 2.084 1.878 0.477
50 66 0.760 10.836 0.454 0.756 0.314
100 85 0.923 4.164 1.820 0.639 0.274

kc
(Fig. 3.22)

0.03 247 2.924 8.535 3.520 4.924 0.194
0.1 116 1.333 6.302 2.084 1.870 0.496
0.3 75 0.850 5.537 1.849 2.279 2.525

3.4.4.2 Carrot Chasing Method with Integral Gain

To the best of the author’s knowledge, there is no equivalent study of implementation of

the carrot chasing method with integral gain (CCI) for the circular path-following control.

However, it is important to research this method since the incorporation of the integral

gain can potentially increase the path-following robustness to environmental disturbances.

We examine the controller performance on different sized circles, and the results are

shown in Fig. 3.23. It is assumed that Kpc = 0.1 and Kic = 0.0001. As shown in Fig.
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3.23a, started from the same location the USV can be successfully controlled to follow

each desired circle. Referring to the top graph of Fig. 3.23b, we can determine that

incorporation of the integral gain will make the vehicle slowly converge to the followed

path so that dc tends to zero. The enlarged plots show that when R = 100, dc converges

slowly with less oscillation. While, if R = 20 or R = 50, dc will converge faster to zero

but there are more oscillations around the path. The bottom graph of Fig. 3.23b shows

that while tracking a larger circle the oscillation around the path becomes smaller. When

R = 100, dc will have an overshoot before the vehicle is slowly directed back to the desired

path. This phenomenon has also been revealed in section 3.4.3.2 for the straight-line path

case.

Now, we can examine the integral gainKic and its influence on the vehicle performance.

The followed circle radius is assumed as 20 m, and Kpc = 0.1 is kept as constant. The

simulation results have been depicted in Fig. 3.24. In Fig. 3.24a, we can see with larger

values for Kic the vehicle can be controlled to converge more quickly, but the control effort

also becomes more aggressive. For instance, when Kic = 0.001, the vehicle is controlled

to move inside the followed circle and then converges to the path. We can refer to the top

graph of Fig. 3.24b to compare the system performance. Apparently, large Kic introduces

large overshoot of dc, but if time is long enough, in all simulated conditions the cross track

error will converge to zero. A similar finding can also be visualized in the bottom graph

of Fig. 3.24b, where for the cases of Kic = 0.0003 and Kic = 0.001, χd stretches to the

negative plane and then converges back to the line of dc = 0. A very large gain setting

may introduce significant overshoot with respect to the followed circle. Therefore, we

can conclude that the integral gain needs to be chosen carefully to achieve the best path

tracking performance. For the long run, Kic can drive the cross track error to zero and this

is a better characteristic than the vector field method in section 3.4.4.1 where a constant

tracking error exists.
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Figure 3.23: Circular path-following simulation results using the carrot chasing method
with integral gain. In Fig. (a), the vehicle’s initial position is marked with a circle, and it
corresponds to three different initial conditions for the three circular path tracking cases,
i.e. (dc, χ) = (40, 0), (10, 0) and (−40, 0), which have been marked with diamonds to the
bottom of Fig. (b). Note that Fig. (a) shows circles that appear non-circular due to the
aspect ratio of the plot.
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Figure 3.24: Circular path-following simulation results using the carrot chasing method
with different integral gain settingsKic. In Fig. (a), the vehicle’s initial position is marked
with a circle, and it corresponds to the initial condition (dc, χ) = (40, 0) that has been
marked with a diamond to the bottom of Fig. (b). Note that Fig. (a) shows circles that
appear non-circular due to the aspect ratio of the plot.
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The numerical evaluation is based on the defined metrics from section 3.4.2, and the

results are summarized in Table 3.8. Again, we only compare EAV and ESD for varied

sized circles, and the remaining calculated metrics will be used for later discussion. Based

on the last two columns, we can conclude that the best performance is achieved when

tracking the 50 m circle, and when the tracked circle is 20 m, there will be relatively large

oscillations as suggested by ESD. Combining the table with Fig. 3.23, we can see when

R = 100 the vehicle needs time to converge to the path, and this is the reason EAV has

a large value.

The integral gain Kic will introduce significant path tracking overshoot, and it will

elongate the convergence time as indicated by the column of Tc. It can be seen that a

larger Tc corresponds to a higher value of U1, U2 and E. In terms of the steady-state

path tracking stage, we can see when Kic = 0.0001 the mean tracking error EAV is the

smallest. Still, our evaluation time is limited and for the cases where overshoot is large

it needs long time to converge. This is the reason the computed EAV for the other two

scenarios has relatively large values.

The incorporation of the integral gain will lead to overshoots with respect to the

followed circle in the transition stage. However, for the long run, the integral gain can

potentially reduce the path tracking error and behave more robust when considering the

environmental disturbances in the real tests.

Table 3.8: Performance evaluation of the carrot chasing circular path-following control
algorithm with integral gain

Parameter Value Tc U1 (×107 U2 (×105 E (×103 EAV ESD
(s) rpm2) rpm2) m) (m) (m)

R
(Fig. 3.23)

20 78 0.881 5.297 1.867 0.656 0.737
50 66 0.761 10.991 0.453 0.421 0.439
100 67 0.689 3.939 1.592 1.409 0.420

Kic

(Fig. 3.24)

0.0001 78 0.881 5.297 1.867 0.643 0.738
0.0003 149 1.734 6.313 2.045 2.201 0.895
0.001 268 3.151 10.678 3.152 2.157 0.677
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3.4.4.3 Line-of-Sight Method

The exploration of the parameter space in section 3.3.3 reveals that the Line-of-Sight

(LOS) method may not be feasible for the accurate circular path tracking. In this part,

we employ the dynamic motion model to evaluate LOS’s performance.

The LOS method applied on varied sized circles is firstly evaluated, and the results are

depicted in Fig. 3.25. In this set of simulation, Rp = 8 and the followed circle is changed

from 20 m to 100 m. In Fig. 3.25a, started from the same position, the USV can be

successfully controlled to follow each desired path. The top graph of Fig. 3.25b indicates

that in all cases the steady-state cross track error converges to zero, and the enlarged

plots also show that dc will oscillate around zero. The bottom graph provides another

perspective for evaluation of dc and it can be seen that in all cases dc will eventually

converge and oscillate around zero. From this plot, we can also notice that the abrupt

change of χd, highlighted by the arrows, will make it difficult for a USV with slow dynamics

to track and it is where large mismatch occurs.

We evaluate the path tracking performance with different control parameter values of

Rp, and the results are shown in Fig. 3.26. Note that the followed circle radius is assumed

as R = 20 m. In Fig. 3.26a, an interesting phenomenon can be visualized where with

larger values for Rp the vehicle turns out to operate inside the followed circle with a close

to constant cross track error. This feature is owed to the fact that when implementing

LOS, the target point position is towards the inside of the circle instead of the circle’s

tangential direction, which has already been discussed in section 3.3.3. It also shows that

with the larger setting of Rp the path-following convergence rate decreases. The graph to

the top of Fig. 3.26b displays that the best performance is achieved by setting Rp = 8,

and in the other two cases, there will be constant negative cross track errors. The graph

on the bottom shows that with larger values for Rp, the actual course angle χ will diverge

from the line dc = 0, which suggests a bad path-following performance. However, when
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Figure 3.25: Circular path-following simulation results using the line-of-sight method with
different followed circle radius R. In Fig. (a), the vehicle’s initial position is marked with
a circle, and it corresponds to three different initial conditions for the three circular path
tracking cases, i.e. (dc, χ) = (40, 0), (10, 0) and (−40, 0), which have been marked with
diamonds. Note that Fig. (a) shows circles that appear non-circular due to the aspect
ratio of the plot.
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Rp = 8 the desired path can be followed with acceptable accuracy, but there are also

oscillations around the path.

We numerically analyse the LOS path-following controller and the results are summa-

rized in Table 3.9. For different circles, we can see the mean cross track errors EAV are all

within 1 m, but there are also relatively large oscillations around the path as indicated by

ESD. With larger values for the control parameter Rp, the converging time Tc increases,

but it also shows that Tc is not varied very much. Similarly, U1, U2 and E are computed

with close values. The column of EAV shows that the best performance is achieved when

Rp = 8 with the steady-state cross track error of around 1 m. According to ESD though,

the smallest oscillation while tracking the path is achieved when Rp = 12.

Table 3.9: Performance evaluation of the line-of-sight circular path-following control al-
gorithm

Parameter Value Tc U1 (×107 U2 (×105 E (×103 EAV ESD
(s) rpm2) rpm2) m) (m) (m)

R
(Fig. 3.26)

20 67 0.733 5.787 1.758 0.883 1.077
50 64 0.750 12.551 0.447 0.773 0.892
100 62 0.655 4.852 1.534 0.921 1.124

Rp

(Fig. 3.25)

8 67 0.733 5.787 1.758 1.153 1.470
12 68 0.747 6.070 1.760 1.509 0.820
16 69 0.759 5.623 1.765 3.654 1.712

3.4.4.4 Comparison of Circular Path-Following Control Methods

The computed evaluation metrics data while tracking three different sized circles have been

collected from the previous sections and summarized in Table 3.10. Through comparison,

it can be seen that LOS will drive the vehicle to the desired path with the minimum

time Tc in all cases. It requires the smallest total energy U1, relatively large steering

energy U2, and the transition path tracking error E is the smallest. During the steady-

state path-following stage, the CCI algorithm provides the best performance owing to
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Figure 3.26: Circular path-following simulation results using the line-of-sight method with
different control settings Rp. In Fig. (a), the vehicle’s initial position is marked with a
circle, and it corresponds to the initial condition (dc, χ) = (40, 0) that has been marked
with a diamond. Note that Fig. (a) shows circles that appear non-circular due to the
aspect ratio of the plot.
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the integral gain. It is important to note that when R = 100, the computed EAV of

CCI is larger than VF and LOS, but that is because the evaluation time is not long

enough. We can also expect CCI performs better than the other two methods considering

about the unexpected environmental disturbances in the real experiments. Although when

implementing VF there is constant cross track errors during the steady-state stage, the

path-following oscillation is the smallest among all experimented algorithms. Additionaly,

the same algorithm may have different performance for different followed circles. For

instance, CCI has the best performance for R = 50, and that is because this method is

sensitive to the initial relative position with respect to the circle. VF will behave much

better if the followed circle is large. LOS is very consistent through all testing scenarios,

but note that the abrupt change of the desired course angle χd will make it difficult for a

USV with slow dynamics to follow during the transition period.

Table 3.10: Comparison of the three circular path-following control methods

Method Radius Tc U1 (×107 U2 (×105 E (×103 EAV ESD
(m) (s) rpm2) rpm2) m) (m) (m)

VF
20

116 1.333 6.302 2.084 1.878 0.477
CCI 78 0.881 5.297 1.867 0.656 0.737
LOS 67 0.733 5.787 1.758 0.883 1.077
VF

50
66 0.760 10.836 0.454 0.756 0.314

CCI 66 0.761 10.991 0.453 0.421 0.439
LOS 64 0.750 12.551 0.447 0.773 0.892
VF

100
85 0.923 4.164 1.820 0.639 0.274

CCI 67 0.689 3.939 1.592 1.409 0.420
LOS 62 0.655 4.852 1.534 0.921 1.124

3.4.5 Waypoint Path-Following Control

In this part, we examine the three path-following control methods and their performances

on a specific survey mission. If the waypoints are determined, the paths that link the

waypoints can be constructed based on the straight lines and circular arcs. An illustrative
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example is given in Fig. 3.27. For instance, if we would like the vehicle to follow the path

from wpi to wpi+2, the circular arc will be planned for wpi+1 and it will intersect the two

adjacent paths at pc and pn. The lines of oi+1pc and oi+1pn can divide the followed path

into three different regions, i.e. region R1 where the vehicle has to follow the straight-line

path before reaching the line of oi+1pc, region R2 where the vehicle needs to track the

circular path, and region R3 where the vehicle passes the line of oi+1pn and switches back

to the straight-line path-following mode.

Figure 3.27: Illustration of the construction of waypoint paths.

The flow chart showing the combination of waypoint path generation and path-following

control algorithms has been depicted in Fig. 3.28. During the initialization stage, the

waypoint position and circle radius are achieved from the end users. Based on these
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settings, the position of the circle origin and the tangential points of the circle can be

computed. The USV position p(t) is measured by the GPS receiver, and it can be com-

pared with the boundary line oi+1pc and oi+1pn to determine if the vehicle has moved into

a new region. The path-following control algorithm is switched depending on whether the

desired path is straight or circular.

Figure 3.28: The flowchart indicating the generation of the waypoint paths and the switch-
ing between straight-line and circular path-following control.

In the simulated survey mission, we determine to use four waypoints defined using the

geographic coordinates of latitude and longitude as

wp1 = (47.5773◦,−52.7341◦)

wp2 = (47.5776◦,−52.7349◦)

wp3 = (47.5784◦,−52.7341◦)

wp4 = (47.5779◦,−52.7331◦).

(3.17)
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Note that these waypoints were chosen within the testing area using Google Earth, and

they will be used in the real-world field trials in our later discussion. To make it convenient

to implement the formulated path-following control algorithms, we convert the designated

waypoints into the local NED frame with respect to the origin wp1. Therefore, the

waypoint positions in NED frame using the unit of meters are computed as

wp1 = (0, 0)T

wp2 = (−59.4144, 34.6847)T

wp3 = (2.7321, 122.2464)T

wp4 = (76.6891, 64.9991)T .

To gain the best performance for each investigated method, we employ the control

parameter values as listed in Table 3.11 to perform the waypoint path-following simulation

tests. It is assumed that the vehicle’s initial position is p(0) = (n(0), e(0))T = (0,−20)T ,

its initial and desired moving speed is 0.8 m/s, the initial course angle χi = 0◦ and the

connection circle radius is chosen as R = 20 m. The waypiont path tracking results using

VF, CCI and LOS are depicted in Fig. 3.29, Fig. 3.30 and Fig. 3.31.

In Fig. 3.29a, the simulated vehicle trajectory is plotted using the dash line. We

can see that a reasonably good path tracking performance is achieved, especially for the

straight-line paths. We have demonstrated that VF is not good at tracking the circular

path in section 3.4.4.1, and this phenomenon can also be visualized in the figure. The

top graph of Fig. 3.29b shows the time history of the cross track error d(t). Started

from the initial position, d(t) converges to zero smoothly. The vibration of d(t) mainly

happens around the circular path-following part, and a maximum error is around 2 m. A

comparison of the desired and actual course angle has been shown to the bottom graph

of Fig. 3.29b, and to clearly illustrate the results the path direction has also been drawn
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on the figure. Apparently, owing to the slow yaw dynamics, the vehicle can not track the

changing desired course angle during the circular path tracking stage very well. However,

when it starts to track the straight-line path, the vehicle works quite well.

As shown in Fig. 3.30a, while implementing the CCI algorithm, the vehicle’s trajectory

is choppy after the circular path-following stage. Compared to Fig. 3.29a, we can see the

vehicle’s circular path tracking performance is improved a little. However, the oscillation

around the desired path is unfavorable. It also shows that when tracking the first straight-

line path wp1wp2, there is a large cross track error. If we refer to the top graph of Fig.

3.30b, we can determine that the value of d(t) for the first followed path is around 2 m,

and it converges quite slowly due to the small integral gain Kis. As the vehicle starts

to track the path of wp2wp3, due to the accumulation of the error d(t) and the effect

of integral gain, the straight-line path tracking performance is improved with small d(t).

The bottom graph of Fig. 3.30b compares the desired and actual course angle, and it can

be seen that the big mismatch occurs around the circular path-following stage.

The LOS waypoint path-following control simulation results are shown in Fig. 3.31.

As depicted in Fig. 3.31a, the vehicle trajectory is quite choppy, but it shows that the

circular path-following performance is the best among the three methods. As shown,

it takes some time before the vehicle can settle down to follow the straight-line path.

Referring to the top graph of Fig. 3.31b, the maximum cross track error d(t) is around 4

m. It also demonstrates that d(t) oscillates around zero through the whole waypoint path

tracking process. The bottom graph of Fig. 3.31b shows that the actual course angle can

follow the desired one relatively well.

A numerical comparison of the three methods are performed, and the results are

summarized in Table 3.11. Note that since the vehicle is commanded to track multiple

line segments, we employ the evaluation time Te instead of the convergence time Tc. The

term Te measures the time it takes from start to the end of a survey. In the performed
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Figure 3.29: Waypoint path-following control simulation tests using the vector field
method. In Fig. (a), we show the actual USV trajectories compared to the desired
path. The desired circular path is indicated by the dot line. In Fig. (b), we show the
time history of cross track error, desired course angle, actual vehicle course angle and the
path direction.
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Figure 3.30: Waypoint path-following control simulation tests using the carrot chasing
method with integral gain. In Fig. (a), we show the actual USV trajectories compared to
the desired path. The desired circular path is indicated by the dot line. In Fig. (b), we
show the time history of cross track error and desired course angle, actual vehicle course
angle and the path direction.



Chapter 3. Path-Following Control 134

−80 −60 −40 −20 0 20 40 60 80 100
−20

0

20

40

60

80

100

120

140

wp1

wp2

wp3

wp4

East (m)

N
or

th
 (

m
)

(a) USV trajectories in NED frame

0 50 100 150 200 250 300 350 400 450
−20

−10

0

10

C
ro

ss
 tr

ac
k 

er
ro

r 
(m

)

Time (s)

0 50 100 150 200 250 300 350 400 450
−200

−100

0

100

200

D
es

ire
d/

ac
tu

al
co

ur
se

 a
ng

le
 (

de
gr

ee
)

Time (s)

 

 
χ

d

χ
χ

p

(b) path-following control performance

Figure 3.31: Waypoint path-following control simulation tests using the line-of-sight
method. In Fig. (a), we show the actual USV trajectories compared to the desired
path. The desired circular path is indicated by the dot line. In Fig. (b), we show the
time history of cross track error, desired course angle, actual vehicle course angle and the
path direction.
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Table 3.11: Comparison of the waypoint path-following control simulation experiments

Method Value Te U1 (×107 U2 (×106 E (×102 EAV ESD
(s) rpm2) rpm2) m) (m) (m)

VF ks=kc=0.1 437 5.521 0.574 7.218 0.872 1.172
χMs=χMc=70◦

CCI Kps=Kpc=0.1 447 5.594 1.079 9.540 1.546 1.701
Kis=Kic=0.001

LOS Rp=12 443 5.451 1.850 8.031 1.247 1.586

simulations, the ending condition is when the vehicle is within 20 m of wp1. While

computing U1, U2 and E, we use Te. Hence, U1 and U2 represent the total control energy

and steering energy, and E is the summation of the absolute cross track error through the

whole waypoint path tracking event. The values of EAV and ESD are calculated using the

time range started from when the vehicle first enters the ±2 m band of the followed path.

Through comparison, we find that VF provides the best waypoint path-following results.

To complete the same mission, VF requires the lowest time and steering energy. The

path-following cross track error is also the smallest among the three methods. Although

CCI does not show as good performance as VF in terms of control energy and path

tracking accuracy, it can be expected that CCI will have an improved performance in the

real-world tests since it has more robustness to environmental disturbances. The LOS

method requires the lowest total control energy U1, but since the vehicle trajectory is

quite choppy, the consumed steering energy is the highest. The path tracking accuracy is

average among the three methods.

3.5 Field Trial Experiments

The field trial experiments were carried out at Long Pond near Memorial University of

Newfoundland providing the opportunity to evaluate different path-following control algo-
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rithms and check their actual performances under unknown environmental disturbances,

such as gusting winds and a strong localized current running through the lake. We chose

to perform some typical straight-line and circular path-following tests to illustrate and

compare with the simulation tests. Based on the successful results, we imitate an ocean

survey mission where a USV is required to follow the paths defined by a list of waypoints.

It is important to note that the employed dynamic motion model in the simulation tests

was identified based on the original USV SeaCat’s system configuration. However, due to

the requirements of other experiments, a new type of superstructure was installed and a

sonar head had been integrated into the port-side hull. Therefore, our field experiments

had to be performed based on the new heavier system settings, whose motion dynamics

were altered from the simulated motion model. We tuned the PID controllers for the real

platform in the field based on our experience in section 3.4.1, and the parameters were

selected as Kp1 = 200, Ki1 = 90 and Kd1 = 20 for the speed controller, and Kp2 = 3 and

Kd2 = 12 for the course keeping controller. The actual implemented PID controllers varied

a little from the simulated ones in section 3.4.1, and again it is owed to the different system

dynamics. The difference between the simulated model and the real platform will also

influence our tuned parameters for different path-following controllers. We will provide

more details in the following discussion.

3.5.1 Straight-line Path-following Control

The straight-line path-following field experiment results using Vector Field Method (VF),

Carrot Chasing with Integral Gain (CCI) Method and Line-of-Sight Method (LOS) are

depicted in Fig. 3.32, Fig. 3.33 and Fig. 3.34. In each test, the USV SeaCat’s initial

speed is close to zero, the desired moving speed is 0.8 m/s and the vehicle is commanded

to follow the straight-line path defined from wp4 to wp2 in Eq. 3.17. Due to the changing

weather conditions, it is difficult to make the vehicle start from exactly the same location
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in the field trail, and thus we tried to maintain the initial position of the vehicle within

a small region. The same initial course angle χi is also difficult to be achieved among

different experiments. However, through performing the simulation we find that χi will

not play an important role in varying the vehicle’s path tracking performance. Again, to

clearly show the results the waypoint positions and collected GPS data are converted to

the local NED coordinates in meters. As for the local origin, we still use wp1 from Eq.

3.17.

The onboard weather station and sonar head P66 can be employed to measure envi-

ronmental conditions while performing the straight-line path-following experiments. The

list of variables that can be measured include the average apparent wind speed Vaw, max-

imum apparent wind speed Vmaw, dominant wind direction χaw with respect to magnetic

north, air temperature Ta, barometric pressure Bp and the water temperature Tw. A

summary of the measured variable values is shown in Table 3.12.

As for the water current condition, it is not measured but is estimated by performing

a drifting test. In this test, the USV SeaCat’s propellers are turned off, and the vehicle

will drift with the water current. The onboard GPS can measure the moving speed and

course direction, and they can be regarded as an indication of the current velocity and

direction. Hence, mean current speed and direction are determined as 0.1 m/s and 180◦

with respect to true north.

Table 3.12: Environmental conditions for straight-line path-following experiments
Method Vaw (m/s) Vmaw (m/s) χaw (◦) Ta (◦C) Bp (kPa) Tw (◦C)
VF 2.291 3.133 -8.782 12.103 100.676 15.500
CCI 2.329 4.500 7.036 12.186 100.760 14.688
LOS 2.858 4.623 -9.034 12.045 100.701 15.500

Our field trial results demonstrate the fidelity of the performed simulations and the

robustness of each straight-line path-following control algorithm. We can compare the
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Figure 3.32: The straight-line path-following field trial results based on the vector field
method with varied value of ks. The maximum approaching angle χMs = 70◦. Note that
the USV is controlled to follow the path from wp4 to wp2.

trajectories of the vehicle from Fig. 3.32 with those of Fig. 3.16, and it can be seen

that the increment of the control parameter ks from 0.03 to 0.1 can reduce the vehicle’s

response time to follow the desired path. Due to the different initial positions, we choose

to start evaluating the cross track error ds when the vehicle enters within 40 m of the

path, and the results are depicted to the bottom of Fig. 3.32. This is a reasonable choice

because the vehicle will have enough time to accelerate to the desired moving velocity from

its starting position, and it will also make it convenient for us to compare the evaluation

results with those in Fig. 3.16. Through comparison, we can determine that in the field

experiments, ks = 0.3 will not lead to the vehicle’s oscillation around the followed path,

and this is a result of varied dynamics of the studied platform and the added drag in the

real-world experiments. Other than that, the actual and simulated vehicle motion are
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Figure 3.33: The straight-line path-following field trial results based on the carrot chasing
method with integral gain. The experiments are performed with different values of Kps

and Kis. Note that the USV is controlled to follow the path from wp4 to wp2.

very close, and in both cases ds converges to zero.

In section 3.4.3.2, we have demonstrated that the integral gain for the conventional

carrot chasing method will introduce significant overshoot for the vehicle while tracking

the path. This phenomenon has been further demonstrated in the real tests of Fig. 3.33.

The results comply well with the simulation tests. However, since the vehicle dynamics

is different, we have to tune the parameters again to find the best settings. We find that

when Kps = 0.3 and Kis = 0.006, the vehicle will be brought back to the followed path

within a reasonable time. The bottom graph of Fig. 3.33 shows that when Kis is small,

for example when Kis = 0.0001, the cross track error converges to the path slowly, which

is similar to the simulated cases. The large overshoots occur when the value of Kps is

large, and it can be dealt with if the vehicle’s initial position is closer to the tracked
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Figure 3.34: The straight-line path-following field trial results based on the line-of-sight
method with varied value of Rp. Note that the USV is controlled to follow the path from
wp4 to wp2.

path. This characteristic has also been shown in section 3.4.3.2. Note that CCI is robust

to environmental disturbances, and we will show this feature in the section of waypoint

path-following control tests.

The LOS straight-line path tracking results are depicted in Fig. 3.34. In the real

case scenario, the value of Rp can be chosen as small as 4 m and the system will still

be operating correctly without large oscillation around the followed path. Again, this is

due to the varied dynamics of the studied platform and additional damping in the field

trial. The graph of the cross track error to the bottom of Fig. 3.34 shows that when Rp

gets smaller, the converging speed of ds increases a little. When Rp = 4, there will be a

small path tracking overshoot before the vehicle converges back to the followed path. The

transition process of the vehicle in the real tests suggests a good consistency with respect
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Table 3.13: Evaluation of different straight-line path-following control algorithms in the
field trials

Method Value Tc U1 (×107 U2 (×105 E (×103 EAV ESD
(s) rpm2) rpm2) m) (m) (m)

VF ks=0.3 54 1.396 2.366 1.124 0.581 0.604
χMs=70◦

CCI Kps=0.3 51 1.312 5.253 1.302 5.207 2.472
Kis=0.001

LOS Rp=4 48 1.347 7.530 1.092 1.803 2.124

to the simulations in Fig. 3.20. In all field tests scenarios, ds will finally converge to zero.

We evaluate the path-following control performance based on our field trial experi-

mental data. To be consistent, we still implement the defined six metrics from section

3.4.2. Owing to the different initial vehicle positions, we make a small adjustment for

measuring the convergence time Tc, and it is calculated starting from when the vehicle

enters the 40 m range of the followed path. The evaluation results have been summarized

in Table 3.13. Note that only the path-following controllers with the best performance

are included. Due to the restriction of the testing area, we can not collect enough data

for the CCI tests until the vehicle converges and that is the reason the calculated values

of EAV and ESD are large. Whereas, we can notice that the CCI algorithm performs well

in the real experiment during the transition stage, and that is due to the fine tuning of

the controller settings.

Through comparing VF and LOS, we can see LOS has a faster convergence rate.

During the transition stage, LOS consumes smaller total control energy U1 but much larger

steering energy U2. The path tracking accuracy E is close between the two methods, but

LOS has a little bit better performance. These results comply well with those in Table

3.6. During the steady-state path-following period, VF has a better average cross track

error EAV and standard deviation ESD, which also follows our previous analysis from the

simulation section.
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3.5.2 Circular Path-Following Control

In this part, we evaluate the real-world performance of different circular path-following

control algorithms. Due to the limitation of the testing area, we decided to perform the

experiments with the circle radius of 5 m, 10 m, 20 m and 40 m. When evaluating

VF and LOS methods, we manually change the reference circle radius in one trial such

that the vehicle can follow the circle from small to large in one path-following mission.

In terms of CCI, we have to carry out separate experiments for each followed circle,

because the cross track error keeps accumulating and a bad path tracking result from

one circle will influence another. Among all experiments, the circle origin is chosen as

pc=(47.5779◦, -52.7341◦), which provides us with the largest space for doing the tests.

Similar to the straight-line path tests, the recorded vehicle position data are converted

from the geographic coordinate of latitude and longitude to the NED local coordinate

frame in meters with respect to the chosen origin.

The environmental conditions while performing the circular path-following control

tests have been summarized in Table 3.14, and we predict the mean water current speed

as 0.1 m/s from 225◦ south-west. In Table 3.14, CCI and LOS were performed on a rainy

day that is different from when the VF experiments were carried out.

Table 3.14: Environmental conditions for circular path-following experiments
Method Vaw (m/s) Vmaw (m/s) χaw (◦) Ta (◦C) Bp (kPa) Tw (◦C)
VF 2.702 5.785 8.363 11.826 100.682 15.870
CCI 3.783 7.030 -4.623 7.634 99.300 14.000
LOS 3.643 7.150 9.321 7.322 99.300 13.900

The field experimental results converted to the local NED frame based on VF, LOS

and CCI circular path-following methods are depicted in Fig. 3.35, Fig. 3.36 and Fig.

3.38, and their cross track error evaluation results are depicted in Fig. 3.37 and Fig.

3.39. In Fig. 3.35, we can see when the followed circle is 5 m or 10 m, there is a large
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constant path tracking error dc. With larger circle radius, the path-following performance

improves. Through comparison of Fig. 3.35a and Fig. 3.35b, we can determine that

by increasing the control gain of kc, the vehicle can still track the circle without any

oscillation. Further, the increment of kc can also improve the small circle’s path-following

performance. An evaluation of the cross track error for the performed two experiments

are depicted in Fig. 3.37a. It shows that large spikes occur when the vehicle switches from

one to another followed circular trajectory. On one hand, it proves our previous discussion

that VF is more suitable for tracking large circles than small ones, on the other hand,

the actual vehicle dynamics allow us to implement a higher control gain kc = 0.3, which

provides a better circular path-following performance. By comparing the results in this

section with those in section 3.4.4.1, we find that the actual VF’s circular path-following

characteristics comply well with our simulation study.

The LOS field experimental results are depicted in Fig. 3.36. When Rp = 4 and the

followed circle is 5 m or 10 m, we can see the vehicle can partially track the desired circle,

and the portion with large mismatch may be due to the environmental influences and the

vehicle’s slow dynamics limit. LOS definitely has a better performance than VF when

considering about tracking small circular paths. At the same time, when Rp = 4, there

will be a large overshoot when the vehicle transits from one to another followed path as

shown in Fig. 3.36a. The analysis can be further proved by the evaluation results shown

in the top graph of Fig. 3.37b. It can be seen the transition stage involves multiple

oscillation before the vehicle can be successfully controlled to track the desired paths.

With a larger setting, i.e. Rp = 8, the vehicle can follow the path without any oscillation

as shown in Fig. 3.36b. However, we can see the vehicle trajectory is inside the followed

circle with a constant value of dc. Again, this scenario agrees with the LOS simulation

study in section 3.4.4.3. Note that to implement LOS, we need to guarantee that Rp < R

(Algorithm 6), and this is the reason we did not perform the tests to track the 5 m circle
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when Rp = 8.

The field trail results for the CCI algorithm have been depicted in Fig. 3.38. While

tracking the small circle with radius of 5 m or 10 m, CCI will drive the vehicle inside the

followed circle, and this phenomenon can be regarded as the vehicle is over-controlled.

Comparing Fig. 3.38a and Fig. 3.38b, we can see by only increasing the value of Kps,

the small circle’s tracking performance is improved. However, the vehicle’s yaw dynamics

is slow, even the integral gain is included we still can not effectively control the vehicle

to quickly converge to the desired small circular paths. To follow the larger circles with

radius of 20 m or 40 m, we can achieve better results. However, as discussed in section

3.4.4.3, the small integral gain may introduce the path tracking overshoot, and the vehicle

will converge to the path slowly, and we can see these characteristics in both figures. The

evaluation of the cross track error is depicted in Fig. 3.39, and it clearly shows the cross

track error overshoot and the slow converging process for each path-following control

process.

We compute the metrics values for numerical evaluation of different circular path-

following controllers. Note that for comparison we only include the best controller from

each algorithm for tracking the circle with radius of 20 m and 40 m, and these results are

summarized in Table 3.15. Owing to different initial positions and experimental conditions

of the vehicle, the convergence time Tc is calculated differently for the 20 m and 40 m

circle cases. For the 20 m circle, Tc is computed from when the vehicle first enters the

8 m range of the circle to the 2 m narrow band around the followed path. As for the

40 m circle, the measured time is between 18 m and 2 m around the path. The large

overshoot of LOS will influence the vehicle’s transition stage performance, and thus its

Tc is measured until the vehicle enters the 2 m narrow band around the circular path for

the second time. Due to the large overshoot of the LOS method, Tc is much larger than

the other two methods as shown in Table 3.15, and our analysis of the transition stage of
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Figure 3.35: Circular path-following field experiments using the vector field method.
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Figure 3.36: Circular path-following field experiments using the line-of-sight method.
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Figure 3.37: Cross track error time history for VF (Fig. 3.35) and LOS (Fig. 3.36)
methods.
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Figure 3.38: Circular path-following field experiments using the carrot chasing method
with the integral gain.
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Figure 3.39: Cross track error time history for CCI (Fig. 3.38) method.

LOS may be different from our simulation studies in section 3.4.4.3.

From Table 3.15, we can see that the 20 m circle can be tracked well by the LOS

algorithm. Through comparison with the other two methods, we can determine that

LOS has a better steady-state path tracking performance. However, due to the path

tracking overshoot, LOS requires larger Tc, U1 and U2 than the other two algorithms, and

its transition error is also the largest. The CCI algorithm provides the best transition

control performance, but its steady state is not showing promising results because our

evaluation time is not long enough for the vehicle to converge. The VF method shows a

balanced performance, where the steady-state path-following performance is close to LOS

and the energy cost and path tracking error in the transition stage is relatively small. As

for the 40 m circle, interestingly, the VF algorithm has the best performance. Note that

VF and the other two methods were experimented on two different days, and thus the

environmental disturbances on the vehicle are different. The LOS still needs the largest
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Table 3.15: Evaluation of different circular path-following control algorithms

Method Radius Tc U1 (×107 U2 (×105 E (×103 EAV ESD
(m) (s) rpm2) rpm2) m) (m) (m)

VF
20

12 0.164 0.225 0.0616 0.540 0.585
CCI 9 0.161 0.0119 0.0507 2.428 0.879
LOS 38 0.507 7.006 0.173 0.418 0.466
VF

40
27 0.338 0.235 0.286 0.371 0.468

CCI 26 0.296 0.718 0.273 0.753 0.670
LOS 46 0.348 6.335 3.357 0.821 0.689

energy during the transition stage evaluated by U1 and U2, and since there is path tracking

overshoot, the transition path tracking error is also the largest. The CCI algorithm has

a close transition stage performance as VF, but it requires larger steering energy U2.

The CCI’s 40 m circle tracking steady-state performance shows a better performance

compared to the 20 m case, and their calculated values of EAV and ESD are close to

the LOS case. As a summary, VF and CCI algorithms have a better performance in the

transition stage, while both VF and LOS provide a reasonably good steady-state path

tracking characteristics.

3.5.3 Waypoint Path-Following Control

In this section, we investigate the three path-following control methods and their actual

performances for a survey mission with unexpected environmental disturbances. Again,

we employ the waypoints defined in Eq. 3.17 from our previous simulation tests in section

3.4.5. To clearly show the vehicle trajectory, we convert the waypoint and measured GPS

position data into the local NED frame with respect to the origin wp1. In this specific

mission, the USV SeaCat is commanded to continuously follow the paths defined by the

four waypoints from wp1 to wp4. The generation of straight-line and circular paths that

link the four waypoints have been discussed in the previous section. The USV is equipped

with a sonar in the actual mission, and it can be used to measure the depth information
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during the experiments. The connection circle radius is chosen as 10 m since we would

like to push the turning dynamics limit of the vehicle, and the desired cruising speed is

still selected as 0.8 m/s.

Note that the waypoint experiments were purposely performed in bad weather con-

ditions with relatively large wind and water current influences, so we can examine each

algorithm’s path tracking robustness to the adverse environmental conditions. Due to the

lack of required equipment, the wave condition is not numerically measured. However,

by observing the water surface, we can determine there are small waves with frequent

breaking crests. The measured environmental parameter values have been summarized in

Table 3.16. Through performing the drifting tests, we can predict the mean water current

speed as 0.1 m/s from 197◦ south-west.

Table 3.16: Environmental conditions for waypoint path-following experiments
Method Vaw (m/s) Vmaw (m/s) χaw (◦) Ta (◦C) Bp (kPa) Tw (◦C)
VF 3.895 9.360 5.029 8.979 100.813 11.400
CCI 3.701 8.330 18.830 10.249 100.900 11.460
LOS 4.746 9.610 4.669 9.327 100.899 11.437

The field trial results have been depicted in Fig. 3.40, Fig. 3.41 and Fig. 3.42.

Through comparison of Fig. 3.40a, Fig. 3.41a and Fig. 3.42a, we can determine that

all introduced algorithms provide a relatively good path tracking robustness considering

the unexpected environmental disturbances. As shown to the top graph of Fig. 3.40b,

when implementing VF, the transition from one to another straight-line path is smooth

with small overshoot, and the cross track error remains a small value through the survey

mission. In the bottom graph of Fig. 3.40b, we can see the vehicle’s actual course angle

χ can closely follow the desired course angle χd. Whereas, for the abrupt change of

the reference angle χd from 180◦ to -180◦, there will be a small lag due to the vehicle’s

slow motion dynamics. The CCI algorithm has a promising path tracking performance,
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especially during the steady-state straight-line path-following stage as indicated in the

top graph of Fig. 3.41b. However, as shown in the bottom graph of Fig. 3.41b, the

downside of CCI is during the transition between the circular and straight-line path,

where significant path tracking overshoot occurs. The incorporation of the integral gain

makes the vehicle respond quickly to the abrupt change of χd from 180◦ to -180◦. The

LOS algorithm provides a reasonably good performance for following both circular and

straight-line paths as indicated in Fig. 3.42b. Referring to the top graph, we can see in

most cases the cross track error is within 2 m range of the followed paths. The bottom

graph of Fig. 3.42b indicates that LOS can control the vehicle’s course angle well to

follow χd, and there is really small mismatch between χ and χd through the whole survey

mission. Again, when χd changes abruptly from 180◦ to -180◦, there will be a small lag.

Based on the collected data, we can numerically evaluate the USV SeaCat’s waypoint

path-following performance in completion of the same survey mission. Since we are more

concerned about the vehicle’s steady-state path tracking characteristics, we make small

modifications of the existing metrics similar to section 3.4.5. The evaluation time Te is

defined to measure the time it takes from start to the end of a survey mission, and it has

been used for calculating the values of U1, U2 and E instead of the convergence time Tc.

To achieve the same initial condition through all performed experiments, Te is calculated

from when the vehicle starts tracking the path between wp2 and wp3 until it comes back

to wp1. In this way, we can guarantee that the vehicle has already converged to the path

and starts from a close region.

The computed metrics values are summarized in Table 3.17. Owing to the constant

changing environmental conditions, the actual experimental results may differ from our

simulation studies. As can be seen, the VF method features the smallest control energy

U1 while it requires the largest steering energy U2 during the survey mission. The CCI

algorithm is more efficient in the steering motion and it provides a relatively good steady-
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Figure 3.40: Waypoint path-following field experiments using the vector field method. In
Fig. (a), we show the actual USV trajectories compared to the desired path. The desired
circular path is indicated by the dot line. In Fig. (b), we show the time history of cross
track error, desired course angle, actual vehicle course angle and the path direction.
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Figure 3.41: Waypoint path-following field experiments using the carrot chasing method
with integral gain. In Fig. (a), we show the actual USV trajectories compared to the
desired path. The desired circular path is indicated by the dot line. In Fig. (b), we show
the time history of cross track error, desired course angle, actual vehicle course angle and
the path direction.
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Figure 3.42: Waypoint path-following field experiments using the line-of-sight method. In
Fig. (a), we show the actual USV trajectories compared to the desired path. The desired
circular path is indicated by the dot line. In Fig. (b), we show the time history of cross
track error, desired course angle, actual vehicle course angle and the path direction.
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Table 3.17: Comparison of the waypoint path-following field experiments

Method Value Te U1 (×107 U2 (×106 E (×102 EAV ESD
(s) rpm2) rpm2) m) (m) (m)

VF ks=kc=0.3 367 4.682 2.966 3.870 1.054 1.080
χMs=χMc=70◦

CCI Kps=Kpc=0.3 367 4.750 2.804 3.991 1.087 1.257
Kis=Kic=0.001

LOS Rp=4 358 4.858 2.873 2.794 0.780 0.858

state path tracking performance. However, due to the oscillation motion when the vehicle

switches between the followed circular and straight-line paths, EAV and ESD are calculated

with large values. LOS consumes the maximum energy U1, but it is the fastest method

to complete one survey mission. When implementing LOS, the total and average path

tracking error is the lowest across the three investigated algorithms.

In summary, by spending time tuning each individual control parameters, the evalu-

ated algorithms, i.e. VF, CCI and LOS, provide reasonably good performance to complete

the desired survey mission. The VF algorithm has a balanced performance without intro-

ducing large path tracking overshoot, but it is not good for following the circular path.

The CCI algorithm has a better performance when performing the long-term mission,

because the integral gain will have enough time to accumulate errors and influence the

path tracking performance. However, as for the short followed path and the case where

the vehicle has to switch between circular and straight-line paths frequently, it may not be

a promising candidate. Interestingly, LOS provides the best path tracking results among

the three methods. In the parameter space exploration section, we have investigated the

potential problem of LOS for tracking the circular paths. Nevertheless, this deficiency

becomes the advantage of LOS due to the vehicle’s slow dynamics. The LOS can be

regarded as providing an aggressive control for the vehicle to follow the straight-line and

circular paths, and this will complement the slow motion dynamics of the vehicle.
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3.6 General Chapter Summary

In this chapter, we investigated three well-accepted methods, i.e. Vector Field Method

(VF), Carrot Chasing Method (CC) and Line-of-Sight Method (LOS), for path-following

control of an Unmanned Surface Vehicle (USV). We provided a complete parameter space

exploration and illustrated and evaluated these algorithms in simulations and real-world

experiments. Our analysis and comparison of these methods are pioneering in the USV

research community, and we hope our research can provide a good reference for the USV

practitioners for their future work when they have to decide on an appropriate strategy for

completion of a specific ocean survey mission. It is important to note that although there

are minor differences between each controller, after well tuning of the control parameters,

their path tracking performances in the field trial are close. Therefore, a self-tuning

algorithm will be of great interest for future application of the introduced algorithms.

The successful field trial results had also proved the functionality of the guidance and

control system architecture, and the path tracking accuracy demonstrated the robustness

of the introduced algorithms. However, during the experiments we found out that the

adverse weather conditions could sometimes cause the USV SeaCat to suffer significant

unsafe rolling and pitching motion. Although we had already been able to control a USV

to accurately track the desired paths in the horizontal plane, the uncontrollable oscillatory

motion caused by the environmental factors can potentially lead to the capsizing at any

moment. Therefore, in the next two chapters, we will investigate the oscillatory motion

of a USV.



Chapter 4

Oscillatory Motion Modeling and

Parameter Identification

We have already introduced the planar motion modeling, and based on that, three differ-

ent path-following control algorithms have been successfully developed, implemented and

tested on a USV. However, in reality, a USV experiences all six degrees of freedom motion

simultaneously in the seaway, and it is the oscillatory movement of heave, roll and pitch

that is closely related to a USV’s operational safety. In this chapter, detailed procedures

for building the oscillatory motion model and performing model parameter identification

are introduced. To make the considered problem tractable, we follow the convention and

investigate the decoupled linear and nonlinear model in heave, roll and pitch. We assume

the primary disturbance for the oscillatory motion is from the ocean waves, and thus, we

also present the calculation method of the wave excitation forces and moments for the

corresponding degree of freedom. Using the presented model, we will carry out the safety

analysis of a USV in the next chapter.

158
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4.1 Heave, Roll and Pitch Motion Modeling

In this section, we will introduce the decoupled linear and nonlinear model for a USV’s

heave, roll and pitch motion. As we know, a marine vessel’s dynamic motion in the seaway

is complicated, but for simplicity, we assume that each oscillatory motion can be decoupled

from the other degrees of freedom. This assumption has actually been widely employed

for analysing a ship’s roll motion dynamics [29] in the naval architectural community, and

it will also bring great convenience for the parameter identification process.

According to our defined 6 DOF motion variable vectors in Eq. 2.1, we can formulate

the generic oscillatory motion model along heave, roll and pitch as

(Mi +MAi)η̈i +Di(η̇i) +Ri(ηi) = τi (i = 3, 4, 5) (4.1)

where we define

[η3, η4, η5]T ∆= [z, φ, θ]T

[τ3, τ4, τ5]T ∆= [Z,K,M ]T

following the SNAME (1950) notation. In Eq. 4.1, Mi denotes the mass inertia or

the moment of inertia, MAi is the added mass or the added moment of inertia, Di(η̇i)

includes the damping terms and Ri(ηi) stands for the restoring forces or moments. It is

worth noting that the hydrodynamic coefficients in Eq. 4.1 are generally wave frequency

dependent. In the scope of this study, however, the condition of regular wave excitation

and small-amplitude response is assumed. Hence, the hydrodynamic coefficients can be

treated as constant. In Eq. 4.1, τi stands for the excitation forces or moments, which

may include the disturbances from wind, waves and ocean currents. The studied USV

SeaCat has a relatively small portion above the water, so the wind effect is negligible.
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The ocean current can be regarded as a constant or slowly changing vector in the vehicle’s

translational motion, and it can also be neglected from the oscillatory motion. Therefore,

we can assume that the main contribution for τi is from the ocean waves.

The damping forces and moments are normally formulated as a linear, linear plus

quadratic or higher order polynomial [48]. In this study, we will examine two common

forms, i.e. linear and linear plus quadratic, which is given as

Di(η̇i) = Di1η̇i +Di2η̇i|η̇i| (4.2)

where Di1 and Di2 are the damping coefficients, and for the linear case Di2 = 0. The

restoring forces and moments can be regarded as a linear function of ηi within the small

range of the equilibrium position. However, when the displacement position and angle

are large, this relationship is nonlinear and it is normally modeled as an odd polynomial

form as [30]

Ri(ηi) = Ri1 · ηi +Ri3 · η3
i +Ri5 · η5

i + ...

In the following, we will introduce the linear model for heave, roll and pitch and the

nonlinear model for roll and pitch. Note that we assume that the platform’s heaving

motion is not as critical as rolling and pitching, because the two latter movements can

directly cause the capsizing.

If we assume that the vehicle’s oscillatory motion is within a small range of the equi-

librium position, the case for most USV’s operations, the damping and restoring forces

and moments can be regarded as linear. Therefore, the decoupled generic linear model

can be written as

(Mi +MAi)η̈i +Di1η̇i +Ri1ηi = τi (i = 3, 4, 5) (4.3)
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A USV operating in the harsh ocean environments may encounter large oscillatory

motions, and thus the linear model is not valid and we need to consider the nonlinearity in

the damping and restoring forces and moments. A simplified generic decoupled nonlinear

model for roll and pitch is given as

(Mi +MAi)η̈i +Di1η̇i +Di2η̇i|η̇i|+Ri1ηi +Ri3η
3
i = τi (i = 4, 5) (4.4)

where we assume that the damping model includes the linear and quadratic terms, and

the nonlinear restoring moment is modeled as a 3rd-order odd polynomial.

For convenience of the further discussion, we write down the vehicle’s decoupled non-

linear roll and pitch motion model as

Irφ̈+D41φ̇+D42φ̇|φ̇|+R41φ+R43φ
3 = K (4.5)

and

Ipθ̈ +D51θ̇ +D52θ̇|θ̇|+R51θ +R53θ
3 = M, (4.6)

respectively. It is noteworthy that the virtual roll and pitch moment of inertia Ir and

Ip include the added moment of inertia due to the surrounding water, and they can be

calculated using the transverse and longitudinal metacentric height GMT and GML as

[49]

Ir = (Tn4

2π )2∇gGMT (4.7)

and

Ip = (Tn5

2π )2∇gGML (4.8)

where Tn4 and Tn5 denote the natural roll and pitch period, ∇ defines the vehicle dis-

placement and g is the gravitational acceleration.



Chapter 4. Oscillatory Motion Modeling and Parameter Identification 162

4.2 Parameter Identification

Free decay tests in calm water conditions are carried out to collect the USV motion data

for parameter identification. Note that to analyse a USV’s safety, we need to find the worst

case scenario considering the wide band wave influences in the dynamic ocean. Hence, the

identified hydrodynamic parameter values at the natural frequency or resonance frequency,

is helpful for us to determine the maximum motion response, i.e. the worst oscillatory

motion.

During the tests, the USV SeaCat is put into a deep tank in engineering building

of Memorial University. External forces are applied on the vehicle to introduce a static

heave, roll or pitch displacement separately. When the external forces are removed, the

vehicle will decay in the specific degree of freedom until the motion stabilizes around the

equilibrium position. We employ the 3DM-GX1 Attitude and Heading Reference System

(AHRS) to record the vehicle motion in heave, roll and pitch. The sensor has a sampling

rate of 100 Hz, and its acceleration and angle measurement accuracy are 0.0015 m/s2

and ±0.5◦, respectively.

4.2.1 Linear Model Parameter Identification

In this section, we will introduce the parameter identification for linear heave, roll and

pitch motion model. The results from this section will be used in Chapter 5 for dynamic

response analysis.

When τi = 0 in Eq. 4.3, the oscillation of heave, roll and pitch is known as damped

oscillatory motion, and its solution in time domain is given as [32]

ηi = Amie
−υit sin(ωdit+ δi) (4.9)
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where

υi = Di1

2(Mi +MAi)

is the decaying constant, ωdi is the damped oscillation frequency which is given as

ωdi =
√
ω2
ni − υ2

i , (4.10)

Ami is the constant that can be determined from the initial condition, and δi is the initial

phase angle. Note that ωni is the natural frequency of the undamped oscillatory motion

when Di1 = 0, and it can be calculated as

ωni =
√

Ri1

Mi +MAi

.

In order to get the solution in Eq. 4.9, the following condition needs to stand

Di1 <
√

4(Mi +MAi)Ri1.

The linear model coefficients of ξi = [Ami, υi, ωdi, δi]T in Eq. 4.9 can be identified by

solving the problem of

min
ξi

||f(ξi, t)− ηim||2 = min
ξi

∑
n

(f(ξi, t)− ηim)2 (i = 3, 4, 5) (4.11)

where f(ξi, t) = ηi denotes the solution of the oscillatory motion, ηim represents the

measurement of heave translation, roll angle and pitch angle from the decay experiments,

and n represents the number of samples. Based on the sensor configuration, we have the

direct measurement of the roll and pitch angle, and they can be directly used for parameter

identification. As for the heave motion, we need to double integrate the acceleration data

to get the translational distance. However, this integration process will not provide us
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Table 4.1: Parameter identification results for the linear heave, roll and pitch model

Motion Ami υi
ωdi δi or ωni Tni

(rad/s) δi − ε (rad) (rad/s) (s)
Heave (i = 3) 0.0254 0.1619 4.6806 -1.7292 4.6833 1.3416
Roll (i = 4) 3.2981 0.0793 3.1189 8.1284 3.1199 2.0139
Pitch (i = 5) -4.6440 0.0892 3.2992 1.5776 3.3004 1.9038

with accurate results due to sensor bias and noises. Therefore, instead we calculate the

second-order derivative of Eq. 4.9 for heave motion as

η̈3 =Am3e
−υ3t[(υ2

3 − ω2
d3) sin(ωd3t+ δ3)− 2υ3ωd3 cos(ωd3t+ δ3)]

=Am3e
−υ3tsin(ωd3t+ δ3 − ε)

(4.12)

where

ε = tan−1( 2υ3ωd3

υ2
3 − ω2

d3
).

Depending on this new form, we can directly use the measured acceleration data and

identify the heave motion model parameters. The minimization problem for the heave

motion is updated as

min
ξ3
||f(ξ3, t)− η̈3m||2 = min

ξ3

∑
n

(f(ξ3, t)− η̈3m)2.

A series of decay tests have been carried out with small initial displacement values

from the equilibrium position for the heave, roll and pitch motion. It has been found

that the identified parameter values of Ami and δi (δi − ε) will vary depending on the

specific initial condition, while as for the main characteristic parameters of ωdi and υi, the

identified values are close. Therefore, only one set of data have been chosen and shown in

Table 4.1. Note that according to Eq. 4.10, the natural frequency ωni and natural period

Tni are also computed and included in the table.
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Employing the identified model parameter values from Table 4.1, we perform the

simulation and compare it with the original experimental data. These results have been

depicted in Fig. 4.1, Fig. 4.2 and Fig. 4.3. Through comparison, we can conclude that

the identified linear models can closely approximate the studied platform’s oscillatory

movement within a small range of the equilibrium position.
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Figure 4.1: The comparison between the measured and simulated heave acceleration data
using the linear heave motion model.

A set of independent data have been recorded to further prove the reliability of the

identified roll and pitch linear motion model. In this experiment, we introduce an initial

static roll and pitch angle at the same time, and then we let the vehicle have both roll

and pitch decaying motion. In the simulation, we employ the identified parameter values

of ωdi and υi from Table 4.1 and the newly identified values of Ami and δi in the new

test. The comparison results are depicted in Fig. 4.4, and we can see that our identified

models have a reasonably good performance to approximate the vehicle’s actual motion
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Figure 4.2: The comparison between the measured and simulated roll motion data using
the linear roll motion model.

in roll and pitch.

Depending on our identification results, we can write down the generic linear state-

space model for heave, roll and pitch as

η̈i + 2υiη̇i + ω2
niηi = 0 (i = 3, 4, 5)

where we assume that τi = 0 and the value of (Mi +MAi) 6= 0 so we can divide it on both

sides of Eq. 4.3.

4.2.2 Nonlinear Model Parameter Identification

In this section, we will follow the physical properties of rolling and pitching motion to

identify the nonlinear model parameter values. Since the heave motion is not as critical
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Figure 4.3: The comparison between the measured and simulated pitch motion data using
the linear pitch motion model.

as roll and pitch in terms of the evaluation of a vehicle’s safety, its nonlinear model is not

included in our following discussion.

The virtual roll and pitch moment of inertia Ir and Ip can be computed based on Eq.

4.7 and Eq. 4.8. The required parameter values have been summarized in Table 4.2. Note

that the natural period Tn4 and Tn5 have already been calculated in Table 4.1, so they are

not included. In Table 4.2, ∇ denotes the vehicle displacement and g is the gravitational

acceleration. The metacentric height GMT and GML are experimentally determined by

performing the inclining tests and these values are also validated using Rhinoceros 5

with Orca3D naval architecture toolbox [50]. Note that using Orca3D we will be able

to compute intact hydrostatics for various type vessels. The produced report by Orca3D

includes tabular data at the specified flotation condition as well as plots of calculated

parameters. Finally, we calculate and validate Ir=48.7613 kg ·m2 and Ip=32.2438 kg ·m2.
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Figure 4.4: The comparison between the measured and simulated roll and pitch motion
data. In this experiment, the vehicle has the roll and pitch decay motion simutaneously.

Table 4.2: Parameter values in Eq. 4.7 and Eq. 4.8

Parameters ∇ g GMT GML

(kg) (m/s2) (m) (m)
Values 163.4 9.81 0.2961 0.2191

We import the 3D model of the vehicle into the Rhinoceros 5 software and use its

hydrostatics analysis package to generate the restoring moment curve. The critical roll

angle is determined as around 45◦, above which the vehicle will capsize. Our nonlinear roll

restoring moment model coefficients can be identified by fitting the polynomial equation

to the collected data in the range of φ ∈ [−45◦, 45◦], and this fitting result is depicted

in Fig. 4.5. As for the pitch restoring moment, we achieve its critical angle as 57.2◦,

and by implementing the method from [32], we can calculate R51 = ∇gGML. The pitch

restoring moment is a 3rd-order odd polynomial as shown in Eq. 4.6, and thus using
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Figure 4.5: A comparison of the measured and fitted roll restoring moment curve, and
the data fitting range is in φ ∈ [−45◦, 45◦].

the value of R51 and the critical angle, R53 can also be calculated. A summary of the

identified restoring moment coefficients for roll and pitch motion has been provided in

Table 4.3.

Table 4.3: Roll and pitch restoring moment model coefficients
Motion Ri1 Ri3

Roll (i = 4) 499.1269 -792.4587
Pitch (i = 5) 351.2072 -352.3752

The energy method [51] has been used for identification of the nonlinear damping

terms in Eq. 4.2. The nonlinear damping effect is evident with large roll motions, so we

choose to use the experimental data set where we have a relatively large roll oscillations

for the parameter identification. The decaying curve for vehicle’s roll motion can be fitted
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as an exponentially damped sinusoidal solution [52] with the form

φ = Am4e
−
∑N

j=1 βjt
j

cos(ωd4t+ δ4) (4.13)

where Am4 and δ4 depend on the initial condition in the performed experiment. Compared

to Eq. 4.9, we use ∑N
j=1 βjt

j as the exponent so that we can better represent the steeper

nonlinear decaying envelope. The parameter values of βj can be identified by using the

maximum measured positive roll angle in each decay cycle, and the least-squares fitting

results have been summarized in Table 4.4. Two fitted envelopes where one only uses the

linear term β1 and the other implements a 3rd-order polynomial of βi have been depicted

in Fig. 4.6. It clearly shows that the one with higher order decay terms can represent the

decay envelope more accurately.

Table 4.4: Identified decay term values for Eq. 4.13
Order Am4 δ4 β1 β2 β3
1st 10.4341 0 0.1129 0 0
3rd 10.4341 0 0.1507 -0.0049 0.0001

In the roll decay process, the total energy at each time instant tj can be formulated

as
E(tj) = Ektj + Eptj

= 1
2Irφ̇

2 +
∫ tj

0
(R41φ+R43φ

3)φ̇dt

where Ektj represents the kinetic energy and Eptj stands for the potential energy due to

the rolling motion. The total energy will decrease due to the damping forces such as

from skin friction effects. Therefore, the reduction of the total energy in a specific time

range will be equal to the negative of the work that is done by the damping forces. This
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Figure 4.6: A comparison of the decay envelop with 1st-order decay term and 3rd-order
decay terms. The 3rd-order one shows a better fitting to the experimental data.

relationship has been summarized in

E(tj+1)− E(tj) = −
∫ tj+1

tj
(D41φ̇+D42φ̇|φ̇|)φ̇dt

= −D41

∫ tj+1

tj
φ̇2dt−D42

∫ tj+1

tj
φ̇2|φ̇|dt

(4.14)

In Eq. 4.14, φ̇ can be calculated based on Eq. 4.13, and the numerical integration is

calculated using Euler Method. Therefore, the only unknown terms of D41 and D42 can

be identified by performing the least-squares fitting, and the results have been summarized

in Table 4.5. Note that for comparison, we also include the identification result where

only the linear damping is considered.

We substitute all identified parameter values, including Ir, restoring moment and

damping terms, into Eq. 4.5 to get the decoupled nonlinear roll motion model in state
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Table 4.5: Identified damping parameter values for roll and pitch motion model
Damping model Di1 Di2

Linear roll damping (i = 4) 12.8211 0
Linear pitch damping (i = 5) 6.7322 0
Nonlinear roll damping (i = 4) 6.8840 14.6273
Nonlinear pitch damping (i = 5) 4.5529 6.1423

space form. The simulation in time domain neglecting the wave exciting moments is

performed, and the results are depicted in Fig. 4.7. It can be seen that the model with

quadratic and linear damping terms shows a better agreement with the experimental data.
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Figure 4.7: A comparison between the simulated and measured roll decay motion using
the state space model in Eq. 4.5 without exciting moments. The dash line indicates
the simulated data with the quadratic and linear damping terms, while the dash dot line
represents the simulation with only the linear damping term.

For the pitch decay motion model, we follow a similar procedure as in the roll case

to identify the damping terms. The identified parameter values of Ip and pitch restoring

moment in Table 4.3 are used, and the damping terms have been determined as summa-
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rized in Table 4.5 using the energy method. The simulation results of the nonlinear pitch

model is shown in Fig. 4.8. Again, the model that takes into account the quadratic term

provides a better fitting to the measured motion data.
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Figure 4.8: A comparison between the simulated and measured pitch decay motion using
the state space model in Eq. 4.6 without exciting moments. The dash line indicates
the simulated data with the quadratic and linear damping terms, while the dash dot line
represents the simulation with only the linear damping term.

4.3 Wave Excitation Forces and Moments

In this section, we will introduce how we can formulate the wave-induced excitation forces

and moments for the heave, roll and pitch motion. Some fundamental concepts of the

waves are reviewed for convenience of the following discussion [32]. The equation of a

sinusoidal wave travelling at a velocity of Vw in the positive xs direction can be written
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as

ζ = ζA cos[k(xs − Vwt)]

= ζA cos(kxs − ωwt).
(4.15)

In Eq. 4.15, ζ is the surface wave elevation, ζA is the wave amplitude, t is time in seconds,

ωw is the wave circular frequency and k is the wave number given as

k = 2π
Lw

= ω2
w

g
(4.16)

where Lw denotes the wave length. Assuming the deep water conditions, the wave velocity

can be approximated as

Vw = gLw
2π ,

which indicates that the wave velocity is proportional to wave length.

4.3.1 Heave Excitation Forces

To model the excitation force for heaving motion, we follow the method from [32]. The

ocean waves may come from a specific direction χw with respect to a USV’s heading angle,

and thus the effective wave number can be computed as

ke = 2π
Lwe

= k cos(χw).

where Lwe defines the effective wave length.

In the calculation of the heave exciting force, the wave is assumed to pass the USV

gradually so that the platform remains stationary at any time instant. The excitation

force can be calculated as the integration of the buoyancy force along the USV hulls. By

assuming that at time t the wave crest is amidships, the buoyancy force can be computed
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as the integration from the stern to the bow as

Z =
∫ L/2

−L/2
2ρgB(xs)ζdxs (4.17)

where we define Osxs as an axis pointing to the positive surge direction with its origin

Os located amidships. In this equation, L is the total length of the USV, B(xs) is the

beam width at a specific position along Osxs, ζ is the wave profile defined in Eq. 4.15,

ρ is the fluid density and g is the gravitational acceleration. The multiplication of 2 into

the equation is owing to that our studied USV platform is catamaran type. Through

substitution of ζ from Eq. 4.15 into Eq. 4.17 and using the effective wave number ke, the

excitation force can be written as

Z = ρgζA

∫ L/2

−L/2
2B(xs) cos(kexs − ωwt)dxs.

The studied USV is roughly symmetric about the midship plane, so the excitation

force can be simplified as

Z = 2ρgζA
∫ L/2

−L/2
B(xs) cos(kexs)dxs cos(ωwt)

= Z0 cos(ωwt)
(4.18)

where Z0 is the amplitude of the heave excitation force, which is related to the wave

amplitude ζA, wave number k and wave direction χw given as

Z0 = 2ρgζA
∫ L/2

−L/2
B(xs) cos(kxs cos(χw))dxs. (4.19)

We apply the well-known Simpson’s Rules [32] for calculation of this integration. A

summary of the beam width related with the station number is shown in Table 4.6.
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Therefore, we can achieve

Z0 = 2ρgζA
∆xs

3 [B0 cos(kxs0 cos(χw)) + 4B1 cos(kxs1 cos(χw)) + 2B2 cos(kxs2 cos(χw))

+ 4B3 cos(kxs3 cos(χw)) + 2B4 cos(kxs4 cos(χw))

+ 4B5 cos(kxs5 cos(χw)) +B6 cos(kxs6 cos(χw))]

where ∆xs = 0.254 m.

Table 4.6: Station number, position and beam width for one hull
Station number j 0 1 2 3 4 5 6

xsj (m) -0.762 -0.508 -0.254 0 0.254 0.508 0.762
B(xsj) or Bj (m) 0 0.155 0.171 0.171 0.171 0.155 0

We simulate the heave excitation force amplitude Z0 with respect to the wave frequency

(Eq. 4.16) and wave direction, and this result is shown in Fig. 4.9. Note that the polar

coordinate system has been used and the radial distance represents the wave frequency

value. In the simulation, the wave amplitude ζA is assumed as 0.2 m, and the wave

frequency range is ωw ∈ (0, 2π] rad. As shown in the plot, under the beam sea conditions,

the USV will encounter the maximum exciting force from the waves regardless of their

frequencies. Actually, by substituting χw = 90◦ or 270◦ into Eq. 4.19, the maximum

exciting force can be computed as

Z0max = 2ρgζAAWP

where AWP is the waterplane area for one of the hulls. In the heading sea (χ = 180◦) and

following sea (χ = 0◦) conditions, a USV will suffer less wave-induced excitation force

with the increment of the wave frequency.

If a USV operates with a surge velocity of u with respect to the mean water current

in the horizontal plane, ωw in the cosinusoidal term cos(ωwt) of Eq. 4.18 needs to be
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Figure 4.9: Heave exciting force amplitude Z0 with respect to the wave frequency and
wave direction represented in the polar coordinate systems. The maximum forces occur
with beam sea conditions, while the minimum exciting force is when the USV heads
towards or follows the sea waves direction.

substituted by the wave encounter frequency ωe according to

ωe = ωw −
ω2
wu

g
cos(χw). (4.20)

Here we perform the simulation as shown in Fig. 4.10 to demonstrate the relationship

between ωw and ωe with different wave directions χw. In Fig. 4.10, the thick line marks

the beam wave conditions, and in this case ωe = ωw. Under the quartering sea conditions,

i.e. χw ∈ (0◦, 90◦) or (270◦, 360◦), ωe < ωw. While if a USV heads towards wave direction,

i.e. χw ∈ (90◦, 270◦), ωe > ωw. In the simulation of Fig. 4.10, we assume the vehicle

has the maximum moving speed of 1 m/s. When the moving speed is lower than 1 m/s,

it has been demonstrated that ωe is not varied as much from ωw as shown in Fig. 4.10.
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Note that in the safety analysis chapter, we will investigate the relationship between the

excited USV motion amplitude and the wave encounter frequency ωe.
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Figure 4.10: The relationship between wave frequency and wave encounter frequency for
different wave directions relative to the USV heading angle, assuming a constant surge
speed of 1 m/s.

4.3.2 Roll and Pitch Excitation Moments

In this section, we investigate the formulation of the excitation moment for a USV’s roll

and pitch motion. A complete derivation can be found in [53] and [54], and here we only

provide a brief overview.

The potential of fluid velocities contributed from the sinusoidal wave on a USV body

can be expressed as

ϕw = ϕI + ϕD

where ϕI denotes incident waves potential and ϕD is the potential of the fluid velocities
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caused by the diffracted waves from the USV hulls. If we assume that the incident wave

elevation has the same form as Eq. 4.15, the pressure acting on the USV body caused by

ϕw can be written as

pw = ϕwρζAωw sin(ωwt) (4.21)

where ρ is the fluid density, ζA is the wave amplitude, ωw is the incident wave frequency

and t denotes the time instant. Note that Eq. 4.21 is derived using the Bernoulli’s

equation and maintaining only the first order terms. The dimension of the studied USV

is Length×Width=1.5 m×1.0 m and we are considering the wind waves that have a

wavelength of over 10 m. Since the size of the USV is small compared to the wavelength,

we can apply the Froude-Krylov hypothesis and neglect the influence of the hull body on

the pressure field of the incident waves, i.e. ϕD = 0. Thus, the wave exciting moment is

calculated by integration of the wave pressure pw acting over the surface SB of the USV

hull as

−→
MFK

w =
∫∫

SB

pw(−→r ×−→n )dS

= ρ
∫∫

SB

ϕIζAωw sin(ωwt)(−→r ×−→n )dS
(4.22)

where −→r is the position vector of a unit area on the hull body with respect to the center

of gravity and −→n is the unit normal vector on the body surface directed into the body.

Based on Eq. 4.22, the roll and pitch excitation moment about the center of gravity

can be derived as [54]

K = ρgV0kζAGMT sin(χw) sin(ωwt)

and

M = −ρgV0kζAGML cos(χw) sin(ωwt)− 2ρζAxGFg cos(ωwt)AWP .

where xGF is the distance between the center of gravity and the center of flotation along the



Chapter 4. Oscillatory Motion Modeling and Parameter Identification 180

longitudinal direction and AWP defines the water plane area for one hull. If it is assumed

that the metacentric height GMT and GML are constant while the USV operates in the

seaway, a compact form representation can be formulated

K = IrαAω
2
n4 sin(χw) sin(ωwt)

= K0 sin(ωwt)
(4.23)

where

K0 = IrαAω
2
n4 sin(χw), (4.24)

and

M = −IpαAω2
n5 cos(χw) sin(ωwt)− ρζAxGFg cos(ωwt)2AWP

= −M0 sin(ωwt+ ε′)
(4.25)

where

M0 =
√

(IpαAω2
n5 cos(χw))2 + (ρζAxGFg2AWP )2, (4.26)

ε′ = tan−1 ρζAxGFg2AWP

IpαAω2
n3 cos(χw)

and αA is the amplitude of wave slope, which is given as

αA = kζA.

According to Eq. 4.24 and Eq. 4.26, we can compute the wave excitation moment

amplitude for roll and pitch motion with respect to wave direction and wave frequency.

The wave amplitude is still assumed to be 0.2 m. The roll exciting moment amplitude in

the polar coordinate system has been depicted in Fig. 4.11a. It clearly shows that when

a USV heads towards or follows the sea waves direction, K0 is close to zero regardless

of the wave frequency. The unsafe condition occurs when there are beam waves, and if
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χw = 90◦ or 270◦, K0 increases rapidly with the increment of the wave frequency. We can

also show the result from another point of view in the Cartesian coordinates as shown

in Fig. 4.11b. In general, the roll exciting moment amplitude is small when the wave

frequency is low, and with the increment of the wave frequency it starts to grow fast. The

beam sea condition features the fastest increment of the exciting moments.

As for the pitch exciting moment amplitude M0, the adverse condition happens when

a USV is heading towards or following the sea wave direction, which has been shown in

Fig. 4.12. In the Cartesian coordinates of Fig. 4.12b, with the increment of the wave

frequency, the pitch exciting moment amplitude increases quickly, especially for the case

when χw = 0◦ or 180◦. Again, if a USV operates with a surge velocity of u in the horizontal

plane, when calculating K and M , we need to employ the encounter wave frequency as

in Eq. 4.20 instead of ωw for the cosinusoidal term in Eq. 4.23 and Eq. 4.25.

4.4 General Chapter Summary

The oscillatory motion of a USV is closely related to its operational safety, but it is often

omitted by researchers. In this chapter, we introduced the decoupled linear and nonlinear

oscillatory motion model, and through performing the experiments, the model parameter

values had been successfully identified by following different routines depending on varied

model structures. The primary environmental disturbances come from the ocean waves,

and we provided detailed discussion about how we could mathematically model the hull-

wave interaction including computing the exciting forces and moments for heave, roll and

pitch motion. In the next chapter, we will start investigating the safety of a USV under

different wave conditions. We hope to discover the safe operational boundary conditions

that can be conveniently integrated into a USV’s guidance and control system so that we

can realize a USV’s safe and reliable ocean survey mission.
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Figure 4.11: Roll exciting moment amplitude K0 with respect to the wave frequency and
wave direction represented in the polar and Cartesian coordinate systems.
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Figure 4.12: Pitch exciting moment amplitude M0 with respect to the wave frequency
and wave direction represented in the polar and Cartesian coordinate systems.



Chapter 5

Safety Analysis

A USV operating on the ocean surface has to be able to survive fast-changing ocean envi-

ronments. A fundamental question is how we can assess the vehicle’s safety in real-time

considering the primary disturbances from ocean waves. This is a prerequisite for a suc-

cessful USV mission. In this chapter, depending on our introduced heave, roll and pitch

motion model from chapter 4, we perform the safety analysis of a USV considering various

ocean wave conditions. Three well-known methods, i.e. Analytical Method, Melnikov’s

Method and Erosion Basin Method, for the linear and nonlinear oscillatory motion dy-

namics analysis have been implemented on a USV platform for the first time. Extensive

simulations are performed, and the safe operation boundary condition for a USV running

a mission in harsh ocean environments has been established. The presented safe oper-

ational condition can be conveniently integrated into a USV’s path-planning system to

enable a safe and enduring survey mission.

5.1 Analysis Tools

In this section, we introduce the Analytical Method, Melnikov’s Method and Erosion

Basin Method for analyzing the oscillatory motion dynamics of a USV that operates

184
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in harsh ocean environments. When considering about the linear heave, roll and pitch

model, a linear analytical solution is enough for determination of the worst operating

conditions. However, as for the nonlinear roll and pitch motion dynamics, we need to

employ advanced analysis tools. As we know, the nonlinearity in the oscillatory motion

model leads to some well-known complicated phenomena, such as jumping and system

chaos [29]. For instance, due to the nonlinearity of the roll restoring moments, the region

around the roll resonant frequency may have multiple steady-state roll response solutions

[33]. In the following, we first introduce the linear and nonlinear analytical methods. It

is noteworthy that through solving for the nonlinear analytical solutions, we can demon-

strate the complicated behaviour of the vehicle roll and pitch motion considering different

wave conditions. Further, to provide an insightful analysis of the complicated motion dy-

namics, we introduce the Melnikov’s Method and Erosion Basin Method, based on which

the safe operational boundary condition is finally achieved. By convention, during our

discussion the regular ocean waves are considered [28, 31, 55].

5.1.1 Analytical Method

Various analytical methods have been discussed in the literature depending on differ-

ent oscillatory motion model structures [29]. For the linear oscillatory motion model, a

close-form solution can be generated. Whereas, as for the nonlinear case, only an an-

alytical approximation of the steady-state response solutions can be formulated. Some

typical nonlinear analytical methods include Perturbation Method and Harmonic Balance

Method [34], and they have demonstrated their effectiveness in the dynamic motion’s main

resonance region.
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5.1.1.1 Linear Model

In section 4.2.1, we have already introduced the linear model for a USV’s heave, roll and

pitch motion. In Eq. 4.3, if τi 6= 0, the motion is termed as forced and damped oscillation.

In a simple case, we can assume that the excitation forces and moments result from a

specific incident wave with an encounter frequency of ωe, and they can be written as

τi = τ0i cos(ωet),

so the analytical solution can be formulated as [32]

ηi = Amie
−υit sin(ωdit+ δi) + ηai cos(ωet+ δi) (i = 3, 4, 5) (5.1)

where ηai is the motion amplitude as a result of the excitation forces and moments and

δi is the phase angle of the forced motion related to the exciting forces and moments.

Compared to Eq. 4.9, we can conclude that the analytical solution in Eq. 5.1 is a

summation of the free damped oscillation solution and the steady-state oscillatory motion

solution due to the encountered waves.

In this section, it is assumed that a wave of a certain length and amplitude passes

along rather slowly so that the USV is in position to balance itself statically on the wave

at every instant of its passage. Hence, the USV will encounter a static amplitude of heave,

roll and pitch while it rises and falls slowly according to the incident wave. We define this

static amplitude as

ηist = τ0i

Ri1
,

so the magnification factor is given as [32]

µi = ηai
ηist

= 1√
(1− Λ2)2 + 4κ2Λ2

.
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where Λ is the tuning factor

Λ = ωe
ωni

,

κ is the damping factor

κ = υi
ωni

,

and the phase angle δi is

δi = tan−1 2κΛ
1− Λ2 .

Using the identified linear model parameter values of heave, roll and pitch from Table

4.1, we perform the dynamic response analysis as shown in Fig. 5.1. In the figure, we

display the dynamic response of the three oscillatory motion together, and it can be seen

that when the wave encounter frequency is less than 1 rad/s, the magnification factor

is close to unity in all three cases. When the wave encounter frequency is higher than 4

rad/s for roll and pitch or higher than 6 rad/s for heaving motion, the magnification will

decrease to lower than unit magnification. Owing to the small damping value of υi for

heave, roll and pitch, when the wave encounter frequency is close to the corresponding

natural frequency, the magnification factor becomes really large. Therefore, according to

our investigation of the linear model, it is clear that the resonance condition is adverse

for a USV’s safe operation and should be avoided.

5.1.1.2 Nonlinear Model

However, for a USV that operates in dynamic ocean environments, the oscillatory motion

dynamics is hardly close to linear. When considering about the nonlinear roll and pitch

motion model, there are no analytical solutions available in the closed form, and only

approximate methods can be used. In this section, we will implement the well-accepted

harmonic balance method (HBM) for the nonlinear motion dynamics analysis. Due to

the similarity of the formulated roll and pitch model, we can focus on the rolling motion,
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Figure 5.1: The dynamic response of the studied USV’s heave, roll and pitch motion
implementing the identified linear dynamic motion models.

and the pitching motion can be investigated following a similar procedure. HBM is only

applicable for the linear damping case, and thus the employed roll motion model for

analysis is given as

Irφ̈+D41φ̇+R41φ+R43φ
3 = K0 cos(ωet) (5.2)

where the model parameters have already been determined in chapter 4. Note that we

consider a vehicle moving with surge speed u in the horizontal plane, and thus we need

to use the wave encounter frequency ωe on the right hand side of Eq. 5.2. If we divide
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both sides of Eq. 5.2 by Ir, we get

φ̈+ d41φ̇+ r41φ+ r43φ
3 = k0 cos(ωet) (5.3)

where we define k0 as the non-dimensional roll exciting moment amplitude. Note that Eq.

5.3 has a similar form as the well-known Duffing oscillator with the external oscillatory

influences [56]. Assuming that the steady-state response of the system is

φ(t) = φa cos(ωet+ δ2),

we can substitute the steady-state solution back to Eq. 5.3. By equating the coefficients

of the orthogonal functions cos(ωet) and sin(ωet) on both sides of the equation, we get

k0 = [(r41 − ω2
e)φa + 0.75r43φ

3
a] cos(δ2)− d41φaωe sin(δ2) (5.4)

and

0 = −[(r41 − ω2
e)φa + 0.75r43φ

3
a] sin(δ2)− d41φaωe cos(δ2) (5.5)

By squaring and summation of Eq. 5.4 and Eq. 5.5, the relationship between the

non-dimensional exciting moment amplitude k0, the roll motion amplitude φa and wave

encounter frequency ωe can be formulated as

k2
0 = [(r41 − ω2

e)φa + 0.75r43φ
3
a]2 + d2

41φ
2
aω

2
e . (5.6)

This equation can be expanded and arranged as

ω4
e + (d2

41 − 2r41 − 1.5r43φ
2
a)ω2

e + (r41 + 0.75r43φ
2
a)2 − (k0

φa
)2 = 0. (5.7)
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Since Eq. 5.7 is quadratic in ω2
e , we can solve for the two positive solutions as

ωe1,2 =

√√√√√r41 + 3
4r43φ2

a −
1
2d

2
41 ±

√√√√1
4d

2
41(d2

41 − 4r41 − 3r43φ2
a) + k2

0
φ2
a

. (5.8)

In order to have the real solutions for ωe, the following two conditions need to hold

1
4d

2
41(d2

41 − 4r41 − 3r43φ
2
a) + k2

0
φ2
a

≥ 0 (5.9)

and

r41 + 3
4r43φ

2
a −

1
2d

2
41 ±

√√√√1
4d

2
41(d2

41 − 4r41 − 3r43φ2
a) + k2

0
φ2
a

≥ 0. (5.10)

Using the approximate solutions in Eq. 5.8, we can generate the frequency response

curve for the nonlinear roll motion as shown in Fig. 5.2. It is noteworthy that the

subscript 1 and “ + ” sign in Eq. 5.8 refer to the right branch of the response curve,

while the subscript 2 and “− ” sign refer to the left branch. The x axis is defined as the

normalized wave encounter frequency as

ωne = ωe
ωn4

.

The thick curve line in Fig. 5.2 is called the backbone curve [54], and it is achieved by

setting the damping and exciting amplitude as zero. The roll motion frequency response

curves bend to the left according to the backbone curve, and this phenomenon is quite

different from the linear case in Fig. 5.1. This complicated nonlinear characteristic leads

to the jump phenomenon [33], which has been proved by researchers through performing

capsize tests. To further illustrate the jump phenomenon, we extract one of the frequency

response curves (k0 = 0.32) and show it in Fig. 5.3. If ωne starts from zero and keeps
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Figure 5.2: The dynamic response of the USV’s roll motion considering the restoring
moments nonlinearity. The x axis is the normalized wave encounter frequency ωne, and
the y axis is the steady-state roll response amplitude.

increasing, there exists a jump-up point, highlighted as a star point, where the roll am-

plitude jumps instantly from the left to the right branch. After the jump-up point, the

amplitude starts to decrease. On the contrary, if ωne decreases from a large value, there

will be a jump-down point where the amplitude reduces quickly to the left branch. The

jump-up and jump-down points bring in the discontinuity of the roll motion response

with the variation of encounter wave frequency. It is noteworthy that between the two

jump points, three roll amplitude solutions exist for a given value of ωne. In this range, it

has been demonstrated that the final steady-state rolling motion depends on the provided

initial conditions [33].

As shown in Fig. 5.2, when k0 = 0.4 the two branches will not intersect. To explain
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Figure 5.3: The nonlinear roll motion frequency response when k0 = 0.32. The ar-
rows indicate the amplitude changes with the variation of the normalized wave encounter
frequency. The jump-up and jump-down points are highlighted using star and circle,
respectively. The dash line indicates the unstable roll motion where multiple solutions
exist.

this phenomenon, we can employ the approximation of the jump-up and jump-down

frequencies as [57]

ωju = ω0(1− 1
2(3

2)4/3|Γ|1/3) (5.11)

and

ωjd = ω0

√√√√1
2 +

√
1
4 + 3Γ

16Υ2 (5.12)

where

ω0 =
√
R41

Ir
,
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Γ = I2
rR43

R3
41

k2
0

and

Υ = D41

2
√
IrR41

.

In order for the jump-down point to exist 1+ 3Γ
4Υ2 ≥ 0, and thus the non-dimensional wave

exciting amplitude k0 ≤ 0.3855.

The nonlinear pitch motion model has a similar form as the roll model

Ipθ̈ +D51θ̇ +R51θ +R53θ
3 = M0 cos(ωet), (5.13)

and by dividing both sides of Eq. 5.13 with Ip, we can get

θ̈ + d51θ̇ + r51θ + r53θ
3 = m0 cos(ωet)

where m0 is denoted as the non-dimensional pitch exciting moment amplitude. The

frequency response curve has been depicted in Fig. 5.4, and it is noteworthy that the

backbone and the response curves all bend towards left. Similar to the roll motion case,

we can refer to Eq. 5.11 and Eq. 5.12 to compute the jump-up and jump-down frequency.

Through calculation, we find out that when the pitch excitation amplitude m0 > 0.3968,

there will be no jump-down points, and this scenario has been demonstrated in Fig. 5.4

when m0 = 0.40.

Based on the aforementioned discussion, we can see a USV operating in harsh ocean

environments has highly nonlinear roll and pitch dynamics, and many complicated phe-

nomena exist. In order to further investigate these oscillatory motions and generate the

safe operational condition, we will introduce more advanced tools including Melnikov’s

Method and Erosion Basin Method.
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Figure 5.4: The dynamic response of the USV’s pitch motion considering the restoring
moments nonlinearity..

5.1.2 Melnikov’s Method

In this section, we employ the geometric global analysis method, i.e. Melnikov’s Method,

for investigation of the USV’s nonlinear oscillatory motion. When using the nonlinear

analytical approximation in section 5.1.1.2, we can only investigate the roll and pitch

motion model with linear damping, otherwise the analytical solutions are not tractable.

However, while performing the Melnikov’s analysis, we can also take into account the

quadratic damping terms that make our analysis more realistic. The studied roll and

pitch motion models have already been formulated in Eq. 4.5 and Eq. 4.6, and their

model parameters have been successfully identified.

Before moving on to analyse the motion model using the Melnikov’s Method, we first
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Figure 5.5: An example of the phase portrait for the nonlinear roll motion without exci-
tation moments. The circles indicate three different initial conditions for the simulation,
while the star points represent the roll motion equilibrium positions. The arrows in the
phase plane represent the tendency at a specific phase plane point which guides the evo-
lution of the roll motion dynamics.

introduce the concept of the phase plane [58], which serves as a foundation for the following

discussion. As we know, while the vehicle undergoes rolling or pitching, it is both the

angle and angular velocity that determine the operational safety of the USV. For instance,

provided a USV’s roll angle passed over the critical angle, if we do not consider the roll

angular velocity, we can readily decide that the USV will certainly capsize. Whereas,

if for some reason the USV captured a roll angular velocity that could bring the vehicle

back to the upright position, the vehicle would still be operating safely. On a phase plane,

each point represents a particular angle and angular velocity at the specific time instant,

and with the evolution of the system motion in time, the phase trajectory is formed.
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An intuitive example is depicted in Fig. 5.5, where the roll motion model of Eq.

4.5 without excitation moments is used. Three different initial conditions are considered

and they are indicated as circles in the figure, i.e. (φ, φ̇)=(34.38◦, 34.38◦/s), (0◦, -

34.38◦/s) and (-22.92◦, 0◦/s). Depending on the roll motion formula in Eq. 4.5, we can

calculate the equilibrium positions by setting the roll restoring moments as zero. The

three equilibrium points are highlighted as the star points, in which (0◦, 0◦/s) represents

the upright equilibrium position, while the (±45.47◦, 0◦/s) are the critical roll angles or

the angles of vanishing stability.

The stability of the equilibrium positions can be evaluated by applying a small per-

turbation and check if the system returns back to that position. Multiple methods are

available to be used, which include evaluating the eigenvalues of the linearized equation

around the equilibrium position or using the Lyapunov Direct Method. More details

about these methods can be found in [54]. As for the studied USV, the upright position

is validated to be a stable position, and the other two equilibrium points are unstable and

are called the saddle points. As shown in Fig. 5.5, in all three simulation cases the USV

will finally converge to the safe upright equilibrium position, i.e. (φ, φ̇)=(0◦, 0◦/s). In

the physical world, there are another two equilibrium positions located at (±180◦, 0◦/s)

that have not been shown in the figure, and they are the upside-down or unsafe stable

positions for a USV.

We start with the nonlinear roll motion model analysis. For calculation convenience,

the original roll motion model with harmonic wave excitation moments given in

Irφ̈+D41φ̇+D42φ̇|φ̇|+R41φ+R43φ
3 = K0 cos(ωet)

has been written in the non-dimensional form as

ẍφ + εσ1ẋφ + εσ2ẋφ|ẋφ|+ xφ − αx3
φ = εf(t′) (5.14)
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where the second and first-order derivative is with respect to the new timescale t′ = ωn4t,

and the other terms are defined as [28]

xφ = φ, ωn4 =
√
R41

Ir
, εσ1 = D41ωn4

R41
, εσ2 = D42

Ir
,

α = −R43

R41
, εf(t′) = K0

R41
cos(ωnet′), ωne = ωe

ωn4
.

(5.15)

The damping and wave excitation moments are assumed to be small and they are multi-

plied by a small parameter ε. Using this representation, we can still investigate the large

roll motions of the vehicle since the roll angle and the restoring moments are not scaled.

We can also formulate Eq. 5.14 in the first-order form as

ẋφ = yφ

ẏφ = −xφ + αx3
φ + ε(f(t′)− σ1ẋφ − σ2ẋφ|ẋφ|)

(5.16)

where the terms multiplied by ε can be regarded as the small perturbation into the system.

When the perturbation is zero, i.e. ε=0, the remaining first-order equations become the

integrable Hamiltonian type and the closed form solutions can be represented using the

Jacobi elliptic functions as

xφ =

√√√√ 2k2

α(1 + k2)sn( t′√
1 + k2

, k)

yφ = ±
√

2
α

k

1 + k2 cn( t′√
1 + k2

, k)dn( t′√
1 + k2

, k).

(5.17)

In Eq. 5.17, sn, cn and dn are Jacobi elliptic functions, and k ∈ [0, 1] defines the modulus

for the elliptic function, which represents the energy level of the system.

As shown in Fig. 5.6, the solutions with different k values have been plotted as

the orbits around the upright equilibrium position. When k reaches its highest value

of 1, it corresponds to the two thick boundary curves, i.e. separatrixes or heteroclinic
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Figure 5.6: Phase portrait of the nonlinear roll motion without damping and excitation
moments. The stars mark the three equilibrium positions, and the thick curves represent
the heteroclinic orbit that separates the safe and unsafe oscillatory motions.

orbit, that connect the two saddle points, i.e. (φ, φ̇)=(±45.47◦, 0◦/s). When the initial

condition for the roll motion is within the two boundary curves, the USV will be safe since

bounded oscillatory motions will occur. Otherwise, when outside of the separatrixes, the

vehicle motion will be unbounded and tend to capsize. It is important to note that the

separatrixes can be regarded as an overlay of the unstable and stable manifolds of the two

saddle points [54]. There are another two stable equilibrium positions, i.e. (φ, φ̇)=(±180◦,

0◦/s), that are not shown in Fig. 5.6. These two points represent a USV’s upside-down

motion status.

When damping is nonzero in Eq. 5.16, the roll motion phase portrait will change, and

the results are depicted in Fig. 5.7. The original heteroclinic orbits split and form the
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Figure 5.7: Phase portrait of the nonlinear roll motion when there is damping but no
excitation moments. The stars mark the three equilibrium positions and the thick curves
indicate the boundary curves that separate the safe and unsafe oscillatory motions.

new boundary curves. Through comparison with Fig. 5.6, we can conclude that when

there is damping the stable and unstable manifolds of the two saddle points get separated,

and the boundary curves are formed by the stable manifolds. Inside the region bounded

by the new boundary curves, the roll motion will converge to the upright position, while

on the outside, a USV will converge to the upside-down equilibrium position, i.e. capsize.

If wave excitation is also present in Eq. 5.16, the equilibrium points of the roll motion

model become oscillatory. Under this circumstance, the safe roll motion will be those that

converge to an oscillation around the upright position with a small amplitude, while the

unsafe roll motion will be those that result in vehicle capsizing.

The area within the boundary curves is called the safe basin [37]. With the increment
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of the wave excitation amplitude, the safe basin area will shrink and the boundary lines

can become fractal [29]. The reduction of the safe basin area is adverse for a USV’s safe

operation, because some original safe initial conditions turn unsafe. Therefore, finding

out the parameter condition that can predict the onset of the fractal basin boundary can

be regarded as a criteria to determine a USV’s roll motion safety. The occurrence of

the fractal boundaries comes from the intersection of the stable and unstable manifolds.

Through implementing Melnikov’s method, we can analytically calculate the separation of

the two manifolds. For detailed derivation of the Melnikov function, interested readers can

refer to [35], and here we only provide a general overview. We start with the integrable

Hamilton system in Eq. 5.16 with ε = 0. According to Eq. 5.17, when k = 1 the

separatrixes that connect the two saddle points are given as

xφs =
√

1
α

tanh( t
′
√

2
)

yφs = ±
√

1
2αsech

2( t
′
√

2
)

where ± denotes the upper and lower separatrixes, respectively. It is also noteworthy that

|yφs| = ẋφs. The Melnikov integration is along the two separatrixes, and the Melnikov’s

function can be formulated as

Ms(t′0) =
∫ +∞

−∞
yφs(f(t′ + t′0)− σ1yφs − σ2yφs|yφs|)dt′

=
√

2
α

K0

R41
πωne

cos(ωnet′0)
sinh(πωne√

2 ) −
2
√

2
3α σ1 −

8
15( 1√

α
)3σ2

(5.18)

where t′0 denotes an arbitrary initial time on the separatrix loop. The detailed derivation

of Eq. 5.18 can be found in [55] and [59], and note that in our study we set ε = 1. When

the separation measure Ms(t′0) changes sign as the point moves along the separatrix loop,

the stable and unstable manifolds intersect with each other. This is a sufficient condition



Chapter 5. Safety Analysis 201

for the existence of the fractal basin boundaries.
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Figure 5.8: The critical roll excitation amplitude K0c under different wave encounter
frequencies.

Therefore, by setting Ms(t′0) = 0 and ∂Ms(t′0)/∂t′0 = 0, we can solve for this critical

condition as

K0c =
2
√

2
3α σ1 + 8

15( 1√
α

)3σ2√
2
α
πωne

R41 sinh(πωne√
2

) (5.19)

where K0c is the critical wave excitation amplitude and it sets the boundary condition for

the safe basin to shrink and become fractal. As illustrated in [36], the derived criteria is

a conservative one, and it can be conveniently used for this research because we need to

define a conservative operational condition for the operational safety of a USV. According

to Eq. 5.19, the critical wave amplitude is directly related to the wave encounter frequency.

This relationship has been plotted as shown in Fig. 5.8, and it shows that when the
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wave excitation amplitude is above the boundary curve, the USV will have an increasing

probability of capsizing through rolling motion.

The Melnikov analysis of the pitch motion follows the same routine. The phase portrait

of the unforced and undamped pitch motion has been depicted in Fig. 5.9. Again, the

integration along the separatrixes gives the measure of the distance between the stable

and unstable manifolds, which serves as a prospect criteria for determination of a USV’s

unsafe operational condition regarding its pitch motion. The critical pitch excitation

amplitude M0c versus the wave encounter frequency has been depicted in Fig. 5.10.
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Figure 5.9: Phase portrait of the pitch motion without damping and excitation moments.
The stars mark the three equilibrium positions and the thick curves indicate the hetero-
clinic orbit.
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Figure 5.10: The critical pitch excitation amplitude M0c under different wave encounter
frequencies.

5.1.3 Erosion Basin Method

Taking advantage of recent advances in computing power, numerical methods have been

extensively employed for analysing the ship’s nonlinear dynamic motion. In this section,

we will implement the erosion basin technique [30, 31, 60] to investigate the nonlinear roll

and pitch motion dynamics of a USV in regular seas. It has been demonstrated by several

researchers [29] that with the increment of the wave exciting amplitude, the area of the

safe basin will reduce or erode. When this happens, the probability of a ship capsizing

increases. It is noteworthy that through our analysis using the Melnikov’s function, we

have already determined the condition for the basin erosion to set in. Therefore, the

investigation using another method can complement and validate our previous study in

section 5.1.2.
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The stability of a nonlinear dynamic system is very sensitive to the initial conditions.

We can use the phase portrait in Fig. 5.7 as an example. Assuming that in the phase

plane, there are two points that are located close to each other, and one is inside the

boundary cure while the other is on the outside. We can imagine quite different motion

behaviours, since the inside one leads to the upright safe position, while the other one

will cause the capsizing. The erosion basin method is advantageous, because it helps to

examine all possible initial conditions in the phase plane.

We employ the non-dimensional model in Eq. 5.14 for the roll motion erosion basin

analysis. Unlike in section 5.1.1.2, here we formulate the non-dimensional roll excitation

amplitude k0 as

k0 = K0/R41

according to Eq. 5.15. It is important to note that as a lumped parameter k0 (K0)

already takes into account the wave direction information according to Eq. 4.24. While

implementing the erosion basin method, the studied phase plane area is divided into equal

sized small grids, and the center of each grid is regarded as a particular initial condition,

i.e. initial roll angle and angular rate, for the roll motion simulation. The numerical

solution is calculated based on these initial conditions. Based on the boundedness of each

simulated solution, different zones of safe and unsafe initial conditions in the phase plane

can be determined. In this study, the graphs only plot the safe zones. If we vary the wave

excitation amplitude k0 (K0), we can investigate the process of the safe basin erosion.

The basin erosion process for a particular example has been depicted in Fig. 5.11. In

this series of simulation, the wave encounter frequency is defined as ωe=2.6 rad/s and the

non-dimensional roll excitation amplitude, k0, is varied from 0.4 to 1.8. In each plot, the

studied roll motion area is φ ∈ [−80◦, 80◦] and φ̇ ∈ [−80◦/s, 80◦/s] and it has been divided

into 161×161 equal sized grids. The center of each grid is used as the initial condition

for the integration and the simulation time is defined as 100 s. The numerical solution is
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solved by using the fourth-order Runge-Kutta algorithm. After the integration, if the final

roll motion converges to the vicinity of the upright roll position, i.e. (φ, φ̇) = (0◦, 0◦/s),

this initial condition is safe and will be plotted out in the final phase plane. Otherwise,

if the simulation indicates the divergence, that initial condition is unsafe and will be left

blank. It shows clearly in Fig. 5.11 that with the increment of k0, the boundary becomes

fractal and shrinks quickly at some point. There are actually two trends in Fig. 5.11.

When k0 ∈ [0, 1), the safe basin will reduce from all directions simultaneously. Whereas,

if k0 ≥ 1.0, the safe basin erodes irregularly. In other words, even the area that is close

to the upright position turns out to be unsafe.

To demonstrate this tendency, we generate a plot based on the proportion of the safe

initial conditions. When there is no exciting moments, the safe region or the safe initial

points reach the maximum number Nm. While in the simulation where there is wave

excitation, we calculate the number of the safe points Ns and normalize it by Nm, i.e. the

safe region proportion is defined as Ns/Nm. This result has been depicted in Fig. 5.12.

It can be concluded that the safe region starts to shrink around k0 = 0.6, and it reduces

slowly until k0 = 1.0. When k0 > 1.0, the safe region decreases at a much faster rate.

This phenomenon is clearly indicated by the last two plots in Fig. 5.11, and it has been

suggested by [61] that system chaos may have occurred.

The safe region proportion Ns/Nm can be employed for representation of a USV’s

rolling motion safety. With the increment of the wave exciting amplitude or the sea

state, the safe region will reduce, which indicates a more severe operational environmental

condition. To examine the relationship between Ns/Nm and different wave encounter

frequencies, more erosion basin simulations have been performed. A summary of these

results have been provided in Table 5.1.

We plot the data in Cartesian coordinates as shown in Fig. 5.13, where the x and y

axes are the wave encounter frequency and k0, respectively, and z axis is the safe region
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(b) k0=0.8
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−80 −60 −40 −20 0 20 40 60 80
−80

−60

−40

−20

0

20

40

60

80

Roll angle (degree)

R
ol

l a
ng

ul
ar

 r
at

e 
(d

eg
re

e/
s)

(e) k0=1.4
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(f) k0=1.8

Figure 5.11: Erosion basin of the dynamic roll motion model with the wave encounter
frequency of ωe=2.6 rad/s or ωne = 0.8334. Note that k0 is the non-dimensional roll
exciting amplitude.
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Figure 5.12: The proportion of the safe region versus the non-dimensional wave excitation
amplitude k0 when the wave encounter frequency is 2.6 rad/s.

proportion. It can be seen that when k0 < 0.5, the safe region will not reduce a lot, but

with the increment of k0 the basin erosion becomes more evident. The worst case is when

the wave encounter frequency is around 2.2 rad/s, which features the fastest decrement

among all the simulations. This simulation result complies well with our analytical anal-

ysis in section 5.1.1.2, where we find out that the nonlinear roll resonance bends towards

the low frequency range as shown in Fig. 5.2. This theoretically explains why the worst

case occurs when the encounter frequency is lower than the natural roll frequency that is

around 3.12 rad/s.

The erosion basin results can be used to verify our Melnikov’s analysis. For example,

since both erosion basin and Melnikov methods are based on the phase plane, we can

overlay their results together and check the safe basin boundary. This result has been
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Table 5.1: Safe region proportion under different wave encounter frequencies and non-
dimensional wave exciting amplitudes

k0ωe 0 0.4 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.2 1.0000 0.9761 0.8324 0.6971 0.5897 0.4946 0.4139 0.3405 0.2754
0.6 1.0000 0.9831 0.9296 0.8827 0.8170 0.7168 0.6019 0.5252 0.4572
1 1.0000 0.9916 0.9626 0.9255 0.8482 0.6755 0.5451 0.4413 0.3534
1.4 1.0000 0.9954 0.9805 0.8974 0.8000 0.6695 0.5032 0.3505 0.2495
1.8 1.0000 0.9987 0.9980 0.8354 0.6822 0.5084 0.3365 0.1797 0.0663
2.2 1.0000 0.9997 0.9970 0.9874 0.4467 0.1586 0.0013 0 0
2.6 1.0000 0.9982 0.9896 0.9711 0.9226 0.5592 0.3512 0.2263 0.1176
3 1.0000 0.9966 0.9795 0.9605 0.9378 0.9011 0.8301 0.7036 0.5605
3.4 1.0000 0.9950 0.9782 0.9630 0.9448 0.9253 0.9028 0.8628 0.8185

depicted in Fig. 5.14, where the phase portrait is directly taken from Fig. 5.7, and

the shaded area is achieved from the erosion basin analysis assuming no wave excitation

moments. We can conclude that through using two different methods, we actually achieve

the same boundary condition to distinct the safe and unsafe regions.

Further, we can use the erosion basin analysis results to validate the critical wave

excitation amplitude computed using the Melnikov function. According to Table 5.1, the

contour plot has been generated as shown in Fig. 5.15, and it has been overlayed with

the critical excitation amplitude curve, i.e. thick line, in Fig. 5.8. The numbers on each

contour represent the safe region proportion. It is evident that the critical amplitude

curve generated from the Melnikov method provides a good estimate of the boundary

conditions for the roll motion. When the exciting moment amplitude K0 has the value

above the critical curve, the safe region will reduce quickly. Again, this plot clearly shows

the worst wave encounter frequency for the USV’s roll motion is around 2.2 rad/s. The

critical exciting amplitude curve is close to the contour that represents the 90% safe region

proportion, especially in the high encounter frequency range. Note that using the results

from Fig. 5.15, we can also define a boundary condition based on the 80% safe region

proportion contour or even lower ones. However, it is better to be more conservative on
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Figure 5.13: The safe region proportion versus k0 and the wave encounter frequency
expressed in the Cartesian coordinates.

the safety of a USV operating in harsh ocean environments. In summary, the boundary

condition suggested by Melnikov’s Method is a conservative condition, and it can be

employed as the safety criteria for the roll motion. As for the nonlinear pitch motion,

the analysis is similar, and to be concise no erosion basin analysis results are included.

However, according to our previous analysis, the conservative critical condition in Fig.

5.10 can be used as the pitch motion safety criteria.

5.2 Safe Operational Condition

We have already studied the USV’s heave, roll and pitch motion using three different

analysis tools, i.e. linear and nonlinear analytical methods, Melnikov’s method and ero-
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Figure 5.14: Overlay of the erosion basin analysis results and the phase portrait achieved
from the Melnikov’s analysis. Note that in both simulations, we assume that the wave
excitation moments are zero.

sion basin method. Using the linear model, we can achieve the close-form solution and

analytically compute the resonance frequency for heave, roll and pitch motion. Consid-

ering a USV that operates in harsh ocean environments, the nonlinear oscillatory motion

models are more reasonable. However, by using the analytical tool, we can only for-

mulate an approximated analytical solution. Melnikov’s function can be implemented

to analyze the complicated nonlinear oscillatory motion, and it has been employed to

compute the critical wave exciting moment amplitude for a USV’s nonlinear rolling and

pitching movement. By performing the erosion basin simulation, we further validate the

critical conditions suggested by the Melnikov’s analysis. In this section, we will use the

achieved critical condition to discover a USV’s safe operational condition under ocean
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for roll motion based on the Melnikov analysis. The thick line indicates the Melnikov
suggested critical value of K0.

wave influences. In the following discussion, it must be borne in mind that the studied

USV platform is underactuated, and only the USV’s moving speed and heading angle (or

course angle) are controllable.

First, we determine the safe operational region for the roll motion. We assume the

wave amplitude is 0.2m, the USV’s moving speed is 0.5m/s and the vehicle heads towards

the sea waves. We can plot the critical exciting amplitude K0c in the polar coordinates

as a function of wave frequency ωw and wave direction χw and overlay it on top of the

wave-induced roll exciting moments in Fig. 4.11a of section 4.3.2. Note that the critical

roll exciting moment amplitude is related to the wave encounter frequency (Fig. 5.8), and

thus it has to be converted to the wave frequency using Eq. 4.20 before generating the
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3D surface plot in the polar coordinates.

The results have been depicted in Fig. 5.16, and it shows that the two surfaces

intersect with each other. Therefore, the safe (unsafe) region can be defined as where the

wave-induced roll exciting moment is below (above) the critical wave exciting amplitude,

i.e. the surface of K0c. We can imagine that by varying the wave conditions or the vehicle

operation status, the safe regions will change depending on the intersection of the two

surfaces.
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Figure 5.16: Roll excitation moment amplitude and the critical roll excitation moment
amplitude plotted together in the polar coordinates.

To clearly show the safe operational region and make it usable for a USV’s guidance

and control system, we choose to use the contour plot and only draw the unsafe regions

using polar coordinates. Two sea states are considered, i.e. when ζA = 0.2 m and when

ζA = 0.5 m, and the two groups of plots with varied vehicle moving speed are depicted
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in Fig. 5.17 and Fig. 5.18. In each graph, χw is measured from the vehicle’s heading

direction and the value is in the range of χw ∈[0◦, 360◦). Again, χw =0◦ represents the

following sea condition, while χw =180◦ stands for the head sea condition. The radial

distance is measured with respect to the polar origin in each graph, and it denotes the

wave frequency in the range of ωw ∈[0,2π] rad/s with each division representing π/3

rad/s.

As shown in Fig. 5.17, the USV’s moving speed is varied from 0 m/s to 1.0 m/s

with a step of 0.2 m/s, and the unsafe area in the polar coordinates are highlighted

with contours. The wave-induced roll exciting moment amplitude (K0) is represented

according to the color bar on the right of each graph. In Fig. 5.17a, when u = 0 it clearly

shows that the beam sea waves are the most dangerous case for a USV’s roll motion

safety. We can see when ωw > 2π/3 rad/s and the wave direction belongs to the range

of χw ∈[75◦, 135◦] and χw ∈[225◦, 315◦], the vehicle will operate in the unsafe regions.

Inside the unsafe regions, with the increment of ωw the wave exciting moment increases

quickly, and the vehicle will have a higher probability of capsizing. On the contrary, if the

wave comes from other directions, i.e. the safe operational region, the vehicle will operate

safely without any need to consider about the roll safety issues even ωw is high. Through

comparing the series of graphs in Fig. 5.17, we can conclude that the unsafe operational

region changes dynamically according to the vehicle’s moving speed. For instance, when

u = 0.6 m/s, the unsafe wave direction changes to χw ∈[15◦, 100◦] and χw ∈[260◦, 345◦].

As suggested by the drawn graphs, when the vehicle runs at high speed, it is a reasonable

choice to drive the vehicle in head sea condition, since large safe operational region can

be found around χw =180◦.

When the sea state increases, the unsafe region will expand evidently, which has been

demonstrated in Fig. 5.18. In Fig. 5.18a, if ωw <= 2π/3 rad/s, a USV can survive

the ocean waves from any directions. However, if ωw > 2π/3 rad/s, the vehicle can
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(b) u=0.2 m/s, ζA=0.2 m
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(c) u=0.4 m/s, ζA=0.2 m
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(d) u=0.6 m/s, ζA=0.2 m
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Figure 5.17: The unsafe (safe) operational region for a USV’s roll motion while the vehicle
operates in the seaway with different moving speeds. In this group of simulation, the wave
amplitude ζA=0.2 m, and the unsafe region is indicated by the contours.
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(a) u=0 m/s, ζA=0.5 m
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(f) u=1.0 m/s, ζA=0.5 m

Figure 5.18: The unsafe (safe) operational region for a USV’s roll motion while the vehicle
operates in the seaway with different moving speeds. In this group of simulation, the wave
amplitude ζA=0.5 m, and the unsafe region is indicated by the contours.
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easily enter the unsafe region with a high probability of capsizing. With an increment of

the vehicle speed, it is more favorable if a USV operates at the head sea condition, i.e.

χw =180◦.

Similarly, we can investigate the safe operational condition for the pitch motion fol-

lowing the same routine. In Fig. 5.19, we overlay the critical pitch exciting amplitudeM0c

surface on top of the achieved wave-induced pitch exciting moment amplitude. In this

group of graphs, we assume the head sea condition with the wave amplitude of ζA=0.2 m

and the vehicle’s moving speed as 0.5 m/s. The two surfaces intersect with each other,

based on which we can determine the safe and unsafe operational regions.

Again, the 2D contour plots in polar coordinates are generated to better show the

results. The pitch unsafe (safe) operational regions under varied vehicle moving speed,

wave frequency ωw and wave direction χw have been shown in Fig. 5.20 and Fig. 5.21 with

the wave amplitude of ζA =0.2 m and ζA =0.5 m, respectively. As shown in Fig. 5.20,

the most harmful waves are those that come from the head sea or follow sea directions,

i.e. χw = 180◦ or χw = 0◦, which is just opposite to the roll motion safety. Interestingly,

when the moving speed increases, the unsafe region around χw = 0◦ expands. On the

contrary, the area around χw = 180◦ reduces significantly until only a small portion of

unsafe region is left. When the sea state increases, i.e. ζA=0.5 m in Fig. 5.21, the unsafe

region expands significantly, and only a small region around beam sea directions is safe.

When the vehicle captures a high speed, the original large unsafe region around the head

sea direction χw = 180◦ reduces.

Finally, we can combine the unsafe regions of roll and pitch together so that we can

determine the thorough safe operational condition. The results are shown in Fig. 5.22

where the wave amplitude is assumed as 0.2 m. In general, the vehicle is suitable to

operate in an environment with low-frequency ocean waves, preferably below ωw < 2π/3

rad/s. With the increment of ωw, the exciting moment exceeds the roll and pitch boundary
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Figure 5.19: Pitch excitation moment amplitude and the critical pitch excitation moment
amplitude plotted together in the polar coordinates.

condition and the vehicle tends to capsize. When a USV operates at high speed though,

the unsafe region will converge to the following sea directions, i.e. the area where χw = 0◦,

and thus the heading sea operation is the most reasonable choice to make the platform

operate safely.

5.3 Safety-Based Path-Planning

The ocean environment is very dynamic and becomes harsh sometimes, so it is very

important for a researcher to determine a USV’s safety according to the environmental

conditions before running a survey mission. More importantly, if a USV is equipped with

powerful computing capability, it is of great value if the vehicle can assess its safety on-line
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(c) u=0.4 m/s, ζA=0.2 m
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(d) u=0.6 m/s, ζA=0.2 m
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(e) u=0.8 m/s, ζA=0.2 m
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Figure 5.20: The unsafe (safe) operational region for a USV’s pitch motion while the
vehicle operates in the seaway with different moving speeds. In this group of simulation,
the wave amplitude ζA=0.2 m, and the unsafe region is indicated by the contours.
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Figure 5.21: The unsafe (safe) operational region for a USV’s pitch motion while the
vehicle operates in the seaway with different moving speeds. In this group of simulation,
the wave amplitude ζA=0.5 m, and the unsafe region is indicated by the contours.
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Figure 5.22: The unsafe (safe) operational region for a USV’s roll and pitch motion
while the vehicle operates in the seaway with different moving speeds. In this group
of simulation, the wave amplitude ζA=0.2 m, and the unsafe region is indicated by the
contours.
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during a mission. In this section, we discuss how we can integrate our defined safe (unsafe)

operational condition into a USV’s path-planning system to improve its survivability.

To provide a concrete example, we assume that the depth information of a polygon-

shape survey area, defined with the four waypoints in Fig. 3.40a, is required to be

sampled by a USV. To fully cover this survey area, the Coverage Path Planning (CPP)

algorithm is normally employed [62, 63]. An example of the generated survey paths has

been depicted in Fig. 5.23, where the scanning path direction is χsc = −45◦ with respect

to true north and the interval between the parallel scanning lines is decided to be din=10

m. The group of parallel straight lines will intersect with the polygonal boundary lines

at different points. These points will be combined together with the polygon vertices to

form an orderly waypoint list for a USV to follow. Through implementing one of the

three path following control algorithms from chapter 3, the vehicle will be capable of

covering the desired region and generating the required seabed image. Note that we have

already introduced the guidance and control system architecture and program flow chart

in chapter 3, and the CPP algorithm can be conveniently executed in the initialization

stage as shown in Fig. 5.24.

There are multiple choices of the scanning direction χsc to complete the survey mission,

but the question is how we can guarantee that the vehicle can successfully complete the

mission safely in dynamic environments. The ocean wave conditions, i.e. dominant wave

amplitude and wave direction, can be acquired by either on-board sensors, such as radar,

or from the ocean forecasting network. In the following discussion, we will assume these

environmental conditions are known.

5.3.1 Case Study 1

In this case, we assume the wave amplitude ζA=0.2 m, the designated vehicle speed

u = 0.8 m/s and the wave frequency ωw < 2π/3 rad/s. Hence, we can refer to Fig. 5.25
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Figure 5.23: An illustration of the generated waypoints and paths based on the coverage
path planning algorithm.

to determine the safe (unsafe) operational condition of the studied USV. As shown in

Fig. 5.25, inside the circular region CS1 where ωw < 2π/3 rad/s, the vehicle can operate

safely with any heading directions. In this scenario, the user or the vehicle itself can freely

choose the survey direction. According to Fig. 5.22, the vehicle’s moving speed can also

be assigned to a higher or lower value without any safety issues.

5.3.2 Case Study 2

If the wave amplitude and vehicle speed are kept the same while the wave frequency

increases to π rad/s (circle of CS2), there will not be many choices of the survey direction.

As depicted in Fig. 5.25, for the safety of the studied platform, the survey direction needs

to be within the range of χw ∈[128◦, 138◦] and [218◦, 228◦]. If we refer to the series of
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Figure 5.24: The flowchart indicates the generation of the coverage waypoint paths and
the implementation of the path following control algorithms, i.e. switching between the
straight and circular path following control.

plots in Fig. 5.22, the vehicle speed needs to be greater than 0.4 m/s, or there will be no

safe heading direction for the USV. However, CPP requires the vehicle to track the path

using the lawn-mower pattern. As shown in Fig. 5.25, although we can choose χw = 135◦

as one survey direction (marked with a cross), when the vehicle travels back, χw becomes

315◦, and the vehicle inevitably enters the unsafe operational region. The user or the

USV itself can compute the wave excitation moments, and in this case, we calculate the

value as 64.95 Nm. According to Eq. 4.20, using the wave frequency π rad/s, wave

direction 315◦ and vehicle speed 0.8 m/s, we can compute the wave encounter frequency

as 2.57 rad/s. Until this point, by referring to Fig. 5.15, we can determine that the safe

region proportion for roll motion is around 54.5%, and this operation will be at a high

risk of the USV’s capsizing, about which the user should be aware of. This is a relatively
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Figure 5.25: The unsafe (safe) operational region for a USV’s roll and pitch motion while
the vehicle runs at 0.8 m/s in the seaway. The wave amplitude ζA=0.2 m, and the unsafe
region is indicated by the contours.

unsafe condition, because a USV can not guarantee its safety during the whole mission.

Under this circumstance, a user can choose different operation conditions according to

Fig. 5.25 and find the one that provides the maximum safe region proportion. Otherwise,

it is necessary to cancel the designated survey mission. It is important to note that wave

conditions, i.e. wave frequency and amplitude, are known beforehand by using either on-

board radar or collecting information from the forecasting network. Therefore, the safety

analysis actually provides a prediction of the vehicle’s operational status in a future time,

and users have enough time to retrieve the vehicle or drive the USV to a new place with

acceptable safety analysis results.
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5.4 General Chapter Summary

In this chapter, we introduced three mathematical methods, i.e. analytical method, Mel-

nikov’s method and erosion basin method, to analyze a USV’s complicated nonlinear roll

and pitch motion. Through formulating the nonlinear analytical solution, we investigated

and demonstrated the well-known jump phenomenon for the rolling and pitching mo-

tion. Melnikov’s function was used to calculate the distance between stable and unstable

manifolds, using which the onset of the system’s chaotic behavior could be predicted.

This conservative condition had been employed as the USV’s safe operation boundary

condition, and the results had been further proved by using the erosion basin technique.

The wave-induced excitation amplitude analysis in chapter 4 had been combined together

with the boundary condition to establish the basis for derivation of a USV’s safe (unsafe)

operational conditions. These results are quite novel in the USV’s research community,

and it is helpful for USV practitioners to decide on if a USV’s survey mission should be

carried on or aborted. Towards the end of this chapter, we discussed the possibility of

integration of the safe operational condition into a particular path planning system.



Chapter 6

Conclusions and Future Work

In this chapter, we will provide a general review of this research and highlight the signif-

icance of our results, based on which we provide our suggestions for future USV practi-

tioners.

6.1 General Summary and Significant Results

Unmanned Surface Vehicles (USVs) have demonstrated significant value for ocean explo-

ration missions. To be fitted for these missions, a USV has to be capable of operating

in the dynamic and sometimes harsh marine environment. Presently available research

mainly concentrates on a USV’s planar motion control using advanced guidance and con-

trol algorithms. However, most work only experiments with the developed strategies in

optimal weather conditions, which makes it difficult for USV researchers to determine the

efficiency and robustness of these algorithms. Further, a USV that operates in the seaway

experiences all six degrees of freedom (DOF) motion, and the oscillatory motion dynamics

in heave, roll and pitch are vital factors for a vehicle’s operational safety. Unfortunately,

only very little work has been done alleviating this potentially disastrous problem.

In this thesis, we provide a comprehensive treatment of USV operations including

226
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a USV’s 6 DOF motion dynamics modeling and validation, path-following control algo-

rithms investigation and real-world testing, as well as a complete safety analysis of a USV.

We hope that our accomplished work can support and inspire future USV practitioners

to choose appropriate motion dynamics models, develop more efficient and robust path-

following algorithms, and incorporate more accurate safety analysis results for mission

planning to improve a USV’s robustness and survivability during a specific survey task.

Some of our significant research results are summarized as follows.

The need for high-performance control of USVs motivates us to research high-fidelity

planar motion modeling and parameter identification methods. The investigated planar

motion dynamics model in surge, sway and yaw is derived from the general 6 DOF rigid

body motion equations considering the hydrodynamics and major external influences.

In order to identify an accurate motion model, a hybrid model parameter identification

method that combines tow tank tests and the on-board sensor based identification routine

has been introduced. An accurate bilinear thruster model has been identified by perform-

ing the tow tank tests. Using this model, the remaining model parameters are successfully

identified through carrying out the field experiments. Using the collected field trial data

we evaluate the self-propulsion points and validate the surge damping value from the tow

tank tests. We are also able to generate the generic surge and yaw motion model, which

stands out from the presently available researches. These models bring great convenience

for construction of the simulation model and development of advanced control algorithms.

Although the chosen planar motion model structures are highly simplified, through eval-

uation of the model using the collected zigzag experimental data, we can determine that

the achieved model can approximate the vehicle’s actual motion with reasonably good

performance.

Much effort has been put into the research of path-following control for mobile robots.

However, as for USVs, most attention has only been paid on the Line-of-Sight Method
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(LOS), and the evaluation experiments are performed in ideal weather in most cases.

To compare with the LOS method and extend the options for future USV practitioners,

we comprehensively investigate three mainstream path-following control algorithms, i.e.

Vector Field Method (VF), Carrot Chasing Method (CC) and the well-accepted LOS

method. To the best of the author’s knowledge, VF and CC are tested on a USV plat-

form for straight-line and circular path-following control study for the first time. Each

algorithm has been analytically derived, and based on the parameter space exploration

results, we theoretically investigate their different path-following control characteristics.

Although VF and CC are generated from quite different perspectives, we have revealed

the mathematical relationship between them. An integral gain can be integrated into

the conventional CC algorithm (CCI) with considerable improved path-following control

robustness. To evaluate the performance of each algorithm on an actual dynamic system,

we perform the preliminary simulation tests using the identified USV’s planar motion

dynamics. A Matlab/Simulink model has been developed incorporating the USV’s mo-

tion dynamics and the guidance and control system architecture. Using this model, we

successfully carry out the straight-line, circular and waypoint path-following experiments

using VF, CCI and LOS methods. By performing the simulation tests, we gain valu-

able experience in tuning the low-level controllers as well as each path-following control

algorithms. The achieved results have been used to validate the exploration of the pa-

rameter space results. Eventually, field trial experiments are performed on the real USV

platform in adverse weather conditions to further evaluate the efficiency and robustness

of each individual path-following method. Similar to the simulation case, we still perfom

the straight-line, circular and waypoint path-following control tests. Although the actual

testing platform has varied motion dynamics compared to the simulated model, our ex-

perimental results show a relatively good consistency with those from the simulation. For

instance, we validate that all three methods can drive the vehicle to track the straight-line
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path successfully, among which VF has a little bit better performance. However, similar

to the simulation, we discover VF is not good at controlling a USV to track the small

circular paths and there will be steady-state cross track errors; LOS, on the other hand,

will control the USV to track the circular path from inside of a circular path; CCI has

a better performance than VF, but it requires a relatively long time before the vehicle

can converge to the circular path. The final waypoint path-following control experiments

that resemble a real ocean survey mission are carried out in bad weather conditions. In

general, all three methods provide a reasonably good performance to complete the desig-

nated survey mission under the adverse weather influences. To complete the same survey

task, LOS is the fastest with an average path-tracking error of less than 1 m and VF

requires the lowest total control energy. Although we predict that CCI will have a much

better performance in the real-world tests, it turns out that the integral gain will bring

in large path tracking overshoot when the vehicle transits between the straight-line and

circular path segments.

The introduced path-following methods can control a USV to operate reliably in the

horizontal plane in the adverse weather conditions. However, the uncontrollable oscilla-

tory motion in heave, roll and pitch are critical for a USV’s operational safety, and this

topic is not very well addressed in the USV research community. To make the problem

tractable, we follow the convention and introduce decoupled linear and nonlinear models

for the three oscillatory motion analysis. The linear model parameters can be identified

using nonlinear least-squares solver based on the collected free decay data. As for the

nonlinear model, we need to employ additional tank tests, the hydrostatics software and

the energy method to correctly determine the model parameter values. The identified

models have been successfully validated through comparison with the actual measured

data. To investigate a USV’s operational safety, we consider the primary influences from

the ocean waves and construct the model to represent the wave-hull interaction forces
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and moments. This highly nonlinear interactive dynamics are quite complicated, and

we implement three well-accepted tools, i.e. Analytical Method, Melnikov’s Method and

Erosion Basin Method, to perform the safety analysis. Through formulating the approx-

imation of the nonlinear analytical solution, we investigate the jump phenomenon for

the roll and pitch motion and demonstrate their distinctive characteristic compared to

the linear solutions. Melnikov’s method has been employed to analyze the onset of the

chaotic behavior of a USV’s rolling and pitching motion as a result of the excitation

waves. Using Melnikov’s function, we can determine a conservative critical condition to

predict the occurrence of the chaotic motion, and the fractal boundary can be regarded

as a USV’s safe operation boundary condition. The erosion basin numerical analysis has

been implemented as a supplement of the Melnikov’s method, and the results prove the

fidelity of the boundary condition and show that the achieved boundary condition corre-

sponds to the 90% safe region proportion contour. The boundary condition computed by

Melnikov’s method has been plotted in 3D polar coordinates has been overlayed on top of

the wave-induced excitation moments to determine the safe (unsafe) operational region

for a USV. To clearly show the results, unsafe region contours are depicted in the 2D

polar coordinates. We find out that the wave amplitude plays a key role in changing the

size of the safe (unsafe) operational region. Further, through alternating a USV’s moving

speed and heading direction (wave direction), the safe region will change dynamically in

the 2D polar coordinate frame. A USV practitioner can use the measured wave frequency

information and refer to the generated 2D polar graph for determination of the safe con-

figuration, i.e. speed and heading, for a USV to complete a specific mission. In the cases

that the vehicle enters the unsafe region, we can also evaluate the safe region proportion

to decide whether it is worth risking the safety of the vehicle to finish the specific mission.

Through our analysis, we find that although the small catamaran-type USV has been a

popular research platform for different research institutions across the world, it is only
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capable of operating in coastal and some low sea-state conditions. The small platform

will start to suffer serious limitations in terms of its operational safety in realistic open

sea conditions.

6.2 Suggestions for Future Work

With the fast development of Unmanned Surface Vehicle (USV) technology, now we are

more capable of exploring the vast ocean. These robotic platforms are cost-effective and

can be deployed for persistent observation of the ocean even in the most challenging

environments without endangering humans. In this work, we provide a complete study of

a USV’s motion dynamics modeling, guidance and control system development and safety

analysis. Our suggestions for the future USV practitioners are summarized as follows.

The presented planar motion model and parameter identification methods are applica-

ble for the displacement-style USVs with slow motion dynamics. In terms of the planing

hull ones, to accurately identify the model parameter values, a varied model structure

and a faster motion data sampling rate is needed. Although the affine thruster model

has been widely used, we recommend the usage of bilinear thruster model since it takes

into account the thrust deduction and hull thruster interaction, which can better repre-

sent the generated propulsive forces. Owing to the simplicity and fidelity of the achieved

generic surge and yaw motion models, they can be conveniently implemented for further

development of advanced motion control algorithms.

The investigated three geometric path-following control algorithms, namely Vector

Field Method (VF), Carrot Chasing Method (CC) and Line-of-Sight Method (LOS), can

be successfully implemented on a USV platform. However, it is important for the future

researchers to note that VF and conventional CC have the same mathematical basis,

which will lead to similar path tracking results. While implementing each algorithm, the
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controller parameters need to be fine tuned to gain the best performance. It will also be

an interesting research topic about the comparison of these algorithms with optimization-

based path-following control methods. The slow motion dynamics of the USV platform

is a key element when choosing the low-level control algorithm, and it will be helpful

to investigate feed-forward control and other advanced control schemes to speed up the

system response time in the future. When planning a USV mission, such as survey of

restricted area, it is also important to take into account these dynamics limit.

The operational safety of a USV is vital in successful completion of a designated

mission, and thus it is of great importance for future researchers to pay more attention to

this subject. We have introduced a convenient and simple experimental method, i.e. free

decay tests, to identify the oscillatory motion model parameters. To identify the nonlinear

damping terms, we implement the energy method, but if there is required equipment and

available funding, forced oscillation in calm water is suggested for more accurate results.

The wave-hull interaction is a highly nonlinear complicated problem, and our analysis

makes the assumption of regular waves from a specific direction. We have implemented

Melnikov’s function to calculate the critical wave amplitude, and the erosion basin method

has demonstrated the correctness of this safe operational boundary condition. However,

more tank experiments with various wave conditions are needed to further validate this

critical condition in future work. The generated safe (unsafe) region contour plot in 2D

polar coordinates has practical value for USV practitioners. Before a specific mission,

depending on the current wave condition, researchers can determine a proper survey

trajectory for a USV to follow. On the other hand, if the platform can acquire the wave

condition information on-line, the safe (unsafe) region plots can be recorded on-board

the vehicle so that the system itself can make correct decisions to maximize its mission

execution safety. In this research, we only provide a simple coverage path planning case

for discussion. To achieve fully autonomous safety awareness, researchers will need to
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develop new algorithms to optimize the process of searching for the best USV speed

and heading settings. It is also important to note that to further increase the region of

safe operations, researchers can develop and incorporate fin stabilizers or roll and pitch

stabilization mechanisms according to the USV payload capacity and project budget.
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