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Abstract 

Objective: To develop a single nucleotide polymorphism (SNP) based genetic-based 

algorithm among patients with low back pain to screen for axial spondyloarthritis (SpA).  

Methods: An 18-plex genetic assay was designed using a MassARRAY, consisting of 

SNPs associated with ankylosing spondylitis (AS), psoriasis, inflammatory bowel disease 

(IBD) and uveitis. 1172 AS cases and 848 controls have been analyzed over two cohorts. 

A machine learning algorithm was created using a J48/C4.5 decision tree model; the first 

decision was human leukocyte antigen B 27 (HLA-B*27) status. The initial algorithm was 

validated in an independent cohort. The discovery and validation cohorts were then 

combined and the final genetic-based screening algorithm was weighted. 

Results: The SNP based algorithm that included HLA-B*27 positivity had a precision, 

specificity and sensitivity of; 0.83, 0.83, and 0.80, respectively which is higher than the 

current HLA-B*27 based Assessment of Spondyloarthritis International Society (ASAS) 

classification criteria. The SNP based algorithm that included HLA-B*27 negativity had a 

precision, specificity and sensitivity of, 0.58, 0.32, and 0.69, respectively.  

Conclusions: This genetic screening algorithm is inexpensive, out performs the clinical 

arm of the current ASAS classification criteria and can potentially lead to earlier 

detection of axial SpA.  
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Chapter 1 Introduction  

1.1 SpA in brief  
Inflammatory back pain is primarily associated with the disease spondyloarthritis (SpA). 

SpA is a group of inflammatory rheumatic diseases that encompasses axial 

spondyloarthritis (axial SpA) and peripheral spondyloarthritis [which includes psoriatic 

arthritis (PsA), reactive arthritis (reiter’s syndrome) and arthritis associated with 

inflammatory bowel disease (IBD)] (Figure 1.1). These disorders are interrelated and 

share overlapping pathophysiological pathways, clinical features, treatments and genetic 

variants (1). A characteristic feature of SpA is enthesitis which refers to inflammation on 

the insertion point of the tendons and ligaments on to the bone. SpA causes pain and 

stiffness of the axial spine, sacroiliac joints and occasionally axial SpA. The 

inflammation not only leads to pain and stiffness, but can also result in new bone 

formation, such as syndesmophytes causing bridging of the vertebral bodies (ankylosis) 

(2).  The ankylosis cannot be reversed; therefore, it is very important to diagnose this 

disease early in order to reduce inflammation and hopefully prevent disease progression. 

The broad term for this disorder is axial SpA. In some patients the scaroiliitis will 

progress to ankylosis and will become present on radiographic imagery such as an X-

Ray. When the disease is radiographic it can be referred to as ankylosing spondylitis 

(AS).  
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Figure 1.0.1  Classification of back pain. 

This figure focuses on spondyloarthritis and its subtypes. 

 

1.2 Pathogenesis of axial SpA 
Axial SpA is a seronegative arthritis, meaning it lacks circulating rheumatoid factor and 

anti- cyclic citrullinated peptide (CCP). SpA has characteristics of both an auto-

inflammatory and an auto-immune disease (3). Through many different types of 

investigations, many immune specific pathways have been attributed to SpA. The 

following will be discussed in this section; immune related pathways (antigen 

presentation, innate and adaptive response), microbial and synovial entheseal complex 

pathogenesis that have been associated to axial SpA. 

1.2.1 Immune related pathogenesis  
Human leukocyte antigen B 27 (HLA-B*27) has one of the strongest genetic associations 

of any complex disease (4-7). The main function of the HLA-B*27 molecules is to bind 

peptides and present them to the surface of cells to be recognized by CD8+ T cells (8). 
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HLA-B*27 is a very polymorphic locus and, dysfunction in this loci have been implicated 

in AS and axial SpA pathogenesis (8). The details of the pathogenesis and genetic 

variation of HLA-B*27 is in section 1.3.1 below.  

Interaction with HLA-B*27 has been studied and has shown association to AS 

pathogenesis. Particularly, three genes from the M1 family of zinc metallopeptidases 

have been associated with AS: encoding endoplasmic reticulum aminopeptidase 

(ERAP1), encoding endoplasmic reticulum aminopeptidase 2 (ERAP2) and encoding 

puromycin-sensitive aminopeptidase (NPEPPS) (9). These aminopeptidases act as 

molecular scissors and trim peptides presented by HLA-B*27, variation at these loci can 

cause unusual antigen processing which either increase or reduce the availability of these 

peptides (8). This altered concentration may have variable effects on antigen presentation, 

through differing HLA-B*27 heavy chain expression, enzymatic activity of the 

aminopeptidases and activation of T helper 17 (Th-17) cells (10). Direct HLA-B*27 and 

ERAP1 interaction is still not clear, however a reduction of ERAP1 activity causes a 

decreased stability of HLA-B*27 (11). Two studies have suggested that reduced ERAP1 

leads to increased amount of HLA-B*27 dimers and longer peptide lengths, whereas, 

another study attributed reduced ERAP1 activity to a decrease in HLA-B*27 heavy chain 

expression (10, 12, 13).  

It has been shown that when a person has a variant in ERAP1 with the combination of a 

variant in HLA-B*27, the risk of developing AS increases significantly (discussion in 

section 1.3) (9). Investigations have shown that ERAP1 and ERAP2 may have functional 

differences. ERAP1 and ERAP2 can form heterodimers which result in increased peptide 

trimming efficiency (14). However, a variant in ERAP2 is not sufficient for altered 
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expression of HLA-B*27. The study of these modifier proteins and variants has 

uncovered some evidence that antigen presentation and processing as well as the 

interaction of proteins with HLA-B*27 maybe involved in AS and axial SpA 

pathogenesis. 

An axial SpA multigenerational familial exome sequencing study showed that a rare 

variant in the gene SEC16 homolog A (SEC16A) was associated with disease (15). 

SEC16A is involved in the formation of the coat protein complex II and is required for 

the transport of proteins from the endoplasmic reticulum (ER) to the Golgi apparatus. In 

this multiplex family nine members had variants in both HLA-B*27 and SEC16A, seven 

of the nine had axial SpA (15). These variants were proven to have functional 

consequences and there is a suggestion of a gene-gene interaction between HLA-B*27 

and SEC16A. Studying families with axial SpA could give further insight into the 

pathogenic pathways into axial SpA as rare variants are exposed to be pathogenic.  

An initial hypothesis suggests that the early activation of the innate immune response 

associated with injury to enthesis may stimulate the development of axial SpA (16, 17).  

This potential prolonged auto-inflammation can stimulate dendritic cells in the synovial 

fluid to releases important immune cytokines such as interferon (INF) and tumor necrosis 

factor (TNF) (16, 18).  

INF interacts with immune receptors to stimulate production of pro-inflammatory 

cytokines such as TNFα and interleukin-1 (IL-1). Disruptions in this pathways, causes the 

accumulation of pro-inflammatory factors which lead to further inflammation and 

contribute to SpA pathogenesis. The INF signalling pathway is also required for the 

activation of the nuclear factor kappa-B (NFkB) signalling pathway, which is another key 
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innate immunity pathway. NFkB forms a protein complex that regulates transcription and 

cytokine production (TNFα, IL-1, IL-17) which can lead to an inflammatory response. 

Multiple studies have shown through genetic and functional dysregulation of the NFkB 

complex has contributed to SpA pathogenesis (2, 9, 19).  

The adaptive immune response is also linked to SpA pathogenesis. Traditionally this has 

been restricted to T helper 1 (Th-1) cells, given that the differentiation of these cells are 

complete by the upstream immune mediators TNFα, INFγ, INFα and IL-1β (16). When 

genetic variation disrupts this pathway Th-1 cells display a phenotype that contributes to 

SpA disease pathogenesis.  

In the last decade published work has outlined that Th-17 cells play an important role in 

pathophysiological role in SpA. Similar to Th-1 cells, TNFα, INFγ, INFα and IL-1β 

induce release of IL-12/IL-23 by dendritic cells, which in turn causes Th-17 cells to 

differentiate (20). Mature Th-17 cells produce and release IL-17. IL-17 induces cascades 

of pro-inflammatory cytokines and angiogenic factors (21), which causes naïve T cell 

determination to the Th-17 cell lineage – this is a positive feedback loop (20).  Genetic 

variation can cause disruption of this pathway thereby contributing to SpA pathogenesis. 

From GWA studies we know that multiple variants found to be significantly associated 

with SpA are involved with this pathway (2, 9, 19).  

Both the innate immunity response (through interferon and NFkB signalling) and the 

adaptive immunity response (through Th-1 and Th-17 signalling pathways) have links to 

disease pathogenesis. In addition many of the strongest genetic associations to axial SpA 

such as; HLA-B, HLA-C and ERAP1 are involved in immune related pathways (2, 5, 6, 9, 
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19). These significant genetic associations provide evidence that innate immune pathways 

play a pivotal role in SpA pathogenesis.  

1.2.2 Microbial pathogenesis  
Recently the Microbiome has developed a widening appreciation in the study of complex 

disease. Many studies have shown that the trillions of microbes living within our bodies 

can interact and effect complex disease. Various protective mechanisms have evolved to 

prevent these interactions such as physiological barriers (mucosal layers, proteins with 

antimicrobial properties), tight junctions in epithelial cells and the lamina propria. All of 

these mechanisms prevent the immune system activation and influence homeostasis. 

However, the guts interactions have been proven to disrupt homeostasis and initiate an 

inflammatory response via the adaptive and innate immune systems (22). Specifically, the 

interactions between the microbiome and the inflammatory response have been 

implicated in IBD, which as discussed above is a comorbidity of axial SpA. Furthermore 

it has been shown that AS patients and their first degree relatives have increased gut 

permeability, which facilitates gut and immune interaction (23). In addition, the 

bacterium Dialister is positively correlated with AS disease activity scores (24). In HLA-

B*27 Transgenic rat models, when the rats were exposed to a germ-free environment 

disease was prevented; however, when common gut bacterium were transferred to the 

animals, they developed disease (25, 26). Increasing evidence is showing that the 

microbiome plays a crucial role in disease pathogenesis, however as these findings are 

promising, research in this area has only just begun.  

1.2.3 Synovial Entheseal Complex  
Mechanical stress both internal and external can promote inflammation. Since SpA is 

attributed to inflammation it is very possible that mechanical stress plays a role in disease 
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pathogenesis. Axial SpA characterises itself from other forms of inflammatory arthritis 

by its defining symptoms of enthesitis of large weight barring joints and the axial 

skeleton. One possible reason for this distinct symptom could be from evidence that 

entheseal resident T cells (CD3+, CD4-, CD8-, ROR- γt+) cells are present at these 

effected joints (27). Another perspective is that since the entheses are subjected to 

repetitive mechanical stressing forces, this could lead to further inflammation within the 

effected joint. Jacques et al., investigated this hypothesis with a TNF overexpression 

mouse model (TNFΔARE mice). They suspended the hind limbs of mice so that significant 

stress was relieved from their load bearing joints (28). With the reduced stress there was a 

decrease in the development of enthesitis and osteoproliferation in the mice (28). The 

authors suggested that a possible explanation for these results are that  mechanoreceptors 

in weight bearing joints trigger the MAP kinase extracellular signal-regulated kinase 

(ERK) 1/2 pathway which then stimulates inflammatory pathways such as the TNF 

pathway (28) causing inflammation. Other studies also suggest a similar pathological 

mechanism; that mechanical stress stimulates prostaglandin which induces ERK and EP4 

receptors to inhibit sclerostin, therefore activating osteoblasts (29, 30). These 

hypothesises have been supported through GWA studies, as a variant that is involved in 

this pathway, prostaglandin receptor 4 (PTGER4) has shown significance in its 

association with AS (19).  Biomechanical stress seems to play a role in disease 

pathogenesis, however more work still needs to be completed to understand this concept 

further.  

1.3 Genetics   
A significant amount of work has been completed studying the genetics of AS and axial 

SpA. The precise etiology of AS remains uncertain, however genetic, environmental, 
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mechanical and immunological factors have provided evidence that contribute to disease 

susceptibility. Research projects studying the strong genetic bias of AS have used 

heritability, GWA studies, copy-number variation (CNV) and transcriptome analysis to 

try and provide evidence to the genetic component of AS.  

AS and axial SpA have the highest heritability of any immune-mediated complex disease 

with a calculated heritability of >90% (31, 32). This disease is also highly familial with a 

sibling recurrence risk ratio of ≥52 (33, 34). There is substantial evidence through twin 

studies that show that there is a large genetic susceptibility component to AS and axial 

SpA (31, 32).  

1.3.1 HLA B*27 
There have been multiple genetic associations to AS, particularly the genetic variant 

human leukocyte antigen B 27 (HLA-B*27) which has one of the strongest genetic 

associations of any complex disease (4-7), with an odds ratio of 40-90 and a p-value of 

<10-200 (2, 9, 19).  HLA-B*27 has a likelihood ratio of 9.0 (35) and is incorporated in the 

current axial SpA diagnostic evaluation used globally. However, only 1-5% HLA-B*27 

carriers actually develop axial SpA suggesting that there are other genetic factors 

influencing this disease (9). 

HLA-B*27 is a member of the major histocompatibility complex (MHC), and is a class I 

surface antigen encoded by the MHC B locus. The HLA-B*27 gene is located at the 

cytogenetic location; 6p21.33 and codes for 105 identified protein subtypes (36). The 

most common HLA-B*27 subtypes that are associated with AS are; HLA-B*27:05, HLA-

B*27:02, and HLA-B*27:04 (36).  HLA-B*27:05 is the most abundant protein variant in 

the European Caucasian population, this variant consists of approximately 90% of the 
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HLA-B*27 variants within this population. HLA-B*27:02 comprises approximately the 

remaining 10% of the variation in the Western European Caucasian population. Finally, 

HLA-B*27:04 is the primary associated variant subtype for East Asian populations. The 

remaining identified subtypes are considered rare and are restricted mainly to familial 

disease inheritance (36).     

Currently there are three major hypotheses for why HLA-B*27 plays such an important 

role in AS. The first hypothesis suggests that the HLA-B*27 heavy chain homodimerizes 

or misfolds, while in the ER (37). The mechanism to this misfolding is thought to be due 

to disulfide bonds formation because of the presence of Cys67 residue in the α1 domain 

(38).  These disulfide bonds cause the protein to form a heavy chain homodimer, which 

elicits the ER pro-inflammatory unfolded protein response (39). The second hypothesis is 

based on evidence that in diseased patients there is the presence of cell-surface expression 

of homodimers (39, 40). These cell-surface homodimers are thought not to come from 

misfolding of the protein in the ER but rather arise from endosomal recycling in normally 

folded HLA-B*27 protein (41). These cell-surface homodimers are recognized by natural 

killer cells leading to an inflammatory response (41, 42). The arthritogenic peptide theory 

is the last hypothesis and discusses the ability of HLA-B*27 to bind to unique peptides or 

arthritogenic peptides. These peptides are then recognized by CD8+ T cell receptors, 

thereby initiating a cytotoxic T cell autoimmune response (43).  

1.3.2 Additional MHC Genes  
The MHC region is one of the densest, and polymorphic regions of the genome, and 

contains a large amount of genes related to immune function.  Most immune-related 

disorders have genetic associations to this region of the genome. Thus it is not a surprise 
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that many MHC variants have prominent genetic associations to AS and axial SpA. 

Furthermore, HLA-B*27 is not the only MHC variant association to AS. These additional 

variants include HLA-B*13:02, HLA-B*40:01, HLA-B*40:02, HLA-B*47:01 and HLA-

B*51:01 (44).  

Other variants within the MHC locus have gained significance in axial SpA and its 

related phenotypes. Specifically, to AS and axial SpA there have been studies showing 

that HLA-B*40:01 is an important genetic variant to pathogenesis (45). HLA-B*40 is 

composed of the HLA-B serotypes B60 and B61. This variant has been linked to patients 

that are HLA-B*27 negative. 

Other HLA-B genetic variants have been linked to SpA with genome wide significance. 

Particularly with psoriasis and PsA, HLA-B*44, HLA-B*39, HLA-B*38 and HLA-B*08 

have reached significance. HLA-B*39 and HLA-B*38 have been associated with PsA 

(46). These variants have been associated with peripheral polyarthritis ion PSA (46) . 

The most prominent psoriasis risk allele known is HLA-Cw6 (47, 48). Similar to HLA-B, 

HLA-C is an MHC class I antigen. The HLA-C association to psoriasis also includes an 

early age onset of disease (47, 48). However, with the surge of information provided by 

genome-wide association (GWA) studies there is suggestion that non-MHC genetic 

variants also have an important role in disease pathogenesis. 

1.3.3 GWA Studies and non-MHC variants  
GWA Studies are used to identify what a genetic variants effect size is to a particular 

disease. These studies are designed in a case/control format and for a particular genetic 

variant to be deemed associated to the disease of study it must have a p-value of < 10-8.  
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 There have been a total of four GWA studies completed in AS (2, 9, 17, 19). Three of the 

GWA studies have been completed in the European population (2, 9, 19) and one has 

been completed in the Han Chinese population (17).  These studies have un-covered 

uncovered many immune specific pathways that are associated with this disease along 

with genetic variants outside the MHC region (2, 9, 17, 19). The latest total of variants 

that meet genome-wide association is 48 genetic loci, including many non-MHC variants 

that reached genome-wide significance (9).  These non-MHC significant variants have 

given insight into the specific pathogenesis of axial SpA, such that the pathogenesis has 

been attributed to auto-immune pathways (3) specifically, the up-regulation of the 

inflammatory response (3, 49). In particular genetic variation in the IL-12/23 and IL-17 

inflammatory pathway axis that promote the activation of Th-1 cells and Th-17 cells have 

proven to be strongly associated with axial SpA (49). It is hypothesized that transcript 

variation and differential expression in this area could also contribute to the susceptibility 

and heritability of axial SpA.  

Promotion and up-regulation of tumour necrosis factor α (TNFα) has been associated 

with an increased inflammatory response in axial SpA and other inflammatory diseases 

(33, 49). Similarly, to the IL-12/23 and IL-17 inflammatory pathways, genetic variants in 

the TNFα pathway have genome-wide significance (2, 9, 19). In addition to these 

immune specific pathways, modifier proteins and enzymes have been associated with 

axial SpA pathogenesis. Three aminopeptidases; ERAP1, ERAP2 and NPEPPS have 

genome wide significance in AS (9). ERAP1 and ERAP2 act as molecular peptide 

trimmers prior to presentation to MHC proteins. Genetic variants in ERAP1 have been 

associated with HLA-B*27 and HLA-B*60/B*40 positive variants (9, 44). This gene-gene 
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interaction has proven to increase the odds ratio (OR) of an individual developing disease 

from 40 to over 100 (9).  

These example provide information that other factors outside the MHC region may 

contribute to disease pathogenesis and progression. However, even with strong genome-

wide significant associations reported via GWAS, these findings have only accounted for 

25% of axial SpA heritability (9, 16).  

This gap in heritability can be attributed to the limitations of GWA studies as it primarily 

assesses one type of genetic variant (single nucleotide polymorphisms (SNPs)) and 

searches only common variants. In order to fully comprehend the pathogenesis of axial 

SpA alternative investigations using other techniques need to be completed (50). 

1.3.4 CNVs 
Copy number variants (CNV) are structural variants that are caused by duplications or 

deletions in a particular gene. CNVs have gained importance within the study of genetics 

in AS and axial SpA, however there have been few studies completed investigating 

CNVs (50). The first study to use a genome-wide CNV microarray analysis in the Korean 

population found 227 CNV regions associated with AS. Of the examined CNVs 9 were 

independently replicated (51).  Of the 9 CNVs, 5 were a deletion-type of CNV and were 

associated with an increased risk of AS - the remaining 4 CNVs were considered 

protective. The CNVs found to be significantly associated were physically related to 

genetic variants already implicated in AS pathogenesis (51). Another study used a 

genome-wide CNV microarray to examine a multiplex AS family. This study found that 

the CNV UDP-glucrosnosyltransferase 2 polypeptide B17 (UGT2B17) segregated within 

the affected family members (52).  Another study investigating CNVs in the Chinese 



 27 

population found that low copy numbers of the genes FCGR3A and FCGR3B were 

significantly associated to AS (53). These studies show that CNVs may contribute to AS 

pathogenesis.  

1.3.5 Gene expression profiling  
Gene expression profiling has been investigated through microarray analysis in AS. 

These studies have shown that cases can be differentiated from controls based on an 

individual’s transcriptome profile (50). Many of the differentially expressed genes are 

related to immune specific pathways such as the TNFα pathway, NFkB signalling, B-cell 

receptor signalling, T-cell receptor signalling and IFN genes (54-57) 

Although findings from these studies are interesting, these studies have many limitations.  

The majority of these studies investigate using peripheral blood instead of synovial fluid 

from affected joints, as well as have small cohort sizes. In addition, there are some 

inconsistencies between the gene expression profiles reported by these studies. This 

problem can be partly mended by meta-analysis, and thus far two transcriptome meta-

analyses have been completed in AS. One meta-analysis reported that 423 genes were 

downregulated and 482 genes upregulated; many of these differentially expressed genes 

were related to the antigen processing and presentation pathway (58). Another meta-

analysis identified 65 differentially expressed genes, 23 upregulated and 42 

downregulated (59). The upregulated gene with the largest effect size was integral 

membrane protein 2A (ITM2A) which is related to T-cell activation and the 

downregulated gene was mitochondrial ribosomal protein S11 (MRPS11) which is 

related to mitochondrial translation (59). Transcriptome analysis can explain missing 
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portion of the heritability of AS, however there are still many study limitations in the 

published literature. 

1.3.6 Linkage Analysis 
Linkage is the tendency of genetic information to be inherited together based on location 

of genetic loci. This is studied in multiplex families or sibling pairs as particular loci 

segregate together. Linkage analysis is a way of capturing the segregation of this genetic 

information. These studies can be helpful in identifying genetic loci that have large effect 

sizes.  

Thus far there have been three genome-wide linkage studies of importance using the AS 

population. All of these studies reported a strong linkage to MHC chromosomal regions. 

One study used an AS population from the United Kingdom; this study found that there 

was significant linkage in chromosome 16q and inferred linkage at chromosome 2q, 

9q,10q, and 19q (60). Another study that used a sibling pair from North America found 

that there was suggestive linkage at chromosome 6q and 11q (61). The last study was 

completed using a French AS population, this study found that there was suggestive 

linkage at the locus 5q, 9q, 13q, and 17q. A meta-analysis of the combined data from 

these three studies found that there was suggestive linkage at the 10q and 16q locus sites 

and nominal linkage in chromosomal regions 1q, 3q, 5q, 6q, 17q, and 19q (62). At the 

time these studies showed great importance and progress in AS genomics. However, with 

the advent of hundred of thousands of SNP markers arrays, the ability to detect genetic 

variant is superior in GWA studies rather than linkage analysis. 

1.3.7 Selection of Non-MHC Genetic variants for Panel  
The type of genetic variants that were selected for this genetic screening algorithm were 

SNPs. This is a SNP based algorithm. A full literature review was completed analyzing 
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the latest GWAS studies in AS, psoriasis, IBD, and acute anterior uveitis. SNP’s were 

selected based on clinical significance to identify extra-articular features, genome-wide 

significance and a minor allele frequency of between 5-45%.  20 different SNPs were 

chosen and the decision was finalized by Dr. Proton Rahman. See Table 2.1 in Methods. 

1.3.7a Antigen Presentation  
ERAP1 
As discussed above ERAP1 is an aminopeptidase that plays an integral to the MHC Class 

1 presentation pathway. ERAP1 acts on peptides that have been processed by 

proteasomes and have been transported from the cytoplasm into the ER. ERAP1 then 

trims any N-terminally extended peptides to 9 amino-acids in length (63, 64). This is the 

optimal length for MHC Class 1 loading and presentation. ERAP1 has been reported to be 

overexpressed in the dendritic cells of AS patients, resulting in a loss of function protein 

phenotype (9, 19). Interestingly, ERAP1 is only associated with AS in patients with a 

positive HLA-B*27 variant.  As discussed above this gene-gene interaction dramatically 

increases the OR of a person developing the disease (9, 19). Other gene-gene interactions 

have been reported with other MHC proteins in other diseases, such as; ERAP1 with 

HLA-B*51 in Bechet`s disease and HLA-Cw6 in psoriasis. These interactions with HLA 

genes suggest that ERAP1 is a very important regulator in complex disease pathogenesis 

(33).  

ERAP2 
As discussed above ERAP2 has a very similar function to ERAP1. ERAP2 shares 49% 

sequence homology to ERAP1 and these two proteins have been known to form minor 

heterodimers with ERAP1 (65). ERAP2 is in strong linkage disequilibrium with ERAP1, 

therefore is not possible to determine if ERAP2 is associated with AS in HLA-B*27 



 30 

positive patients (4, 9, 19). However, it has been determined that ERAP2 is associated 

with AS in patients negative to HLA-B*27 (9, 19). ERAP2 is also associated with other 

inflammatory diseases such as psoriasis and IBD (66, 67).  

1.3.7.b Th-17 Signalling  
IL-23R 
Interleukin 23 receptor (IL-23R) encodes a subunit of the IL-23 receptor. This receptor is 

crucial for the IL-23/IL-12 pathway axis, as IL-23 signals the transduction of this 

pathway through the receptor. Once this pathway is initiated, IL-23 stimulates the 

differentiation of CD4+ T cells into Th-17 cells, which secretes IL-17 a pro-inflammatory 

cytokine. Dysfunction of IL23R causes an upregulation of this pathway and animal model 

studies have shown that IL-23 overexpression is sufficient to cause SpA (68). IL23R 

particularly the SNP rs11209026 has been significantly associated with AS, psoriasis, 

uveitis and IBD (2, 9, 19, 66, 67, 69-72). Thereby showing the importance of the function 

of the IL-23/IL-12 axis of the pathogenesis of these inflammatory diseases.  

IL-12B 
Interleukin 12B (IL-12B) encodes the subunit of IL-23 and IL-12 cytokines, IL-12 p40 

(4). When the IL-12 p40 subunit combines with IL-12 p35 subunit it forms the IL-12 

cytokine and when the IL-12 p40 subunit is combined with the IL-23 p19 cytokine it 

forms IL-23. These protein products bind IL-23R and initiate the IL-12/23 pathway axis 

as described in the IL-23R section. IL-12B upregulated expression has also been reported 

in psoriatic skin lesions (73). The IL-12B variant is significantly genetically associated 

with AS, PsA, uveitis and IBD (2, 9, 19, 66, 67, 69-72). 
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TRAF3IP2 
TNF receptor-associated factor interacting protein 2 (TRAF3IP2) is responsible for 

regulating cytokines related to Th-17 cellular inflammatory response and the NFkB 

signalling pathway (74). TRAF3IP2 is mainly associated with PsA (75).  This particular 

variant has shown that it can no longer interact with TRAF6 (TNF receptor-associated 

factor 6) (75). Showing that TRAF3IP2 is an important link between the innate and 

adaptive IL-17 immunity (16).  

1.3.7.c NFkB signalling genes 
TNFA1P3 
TNFAIP3 encodes TNF-induced protein 3 (TNFAIP3), this genes expression is induced 

by TNF (76). The ubiquitination of this protein occurs when the NFkB complex is 

activated in order to prevent additional NFkB complex activation (77). The protein is also 

involved with cytokine immune and inflammatory responses. TNFAIP3 is significantly 

genetically associated with psoriasis (66, 69, 78, 79). 

FBXL19 
F-box and leucine-rich repeat protein 19 (FBXL19) is significantly genetically associated 

with psoriasis (66, 69, 78, 79). FBXL19 protein product reversibly inhibits the NFkB 

signalling. This protein is found to be significantly elevated in psoriatic skin as compared 

to normal skin (80). 

CARD9  
CARD9 encodes for caspase recruitment domain-containing protein 9 (hCARD9), and is 

responsible for stimulating production of TNF, IL-6 and IL-23. hCARD9 uses the NFkB 

signalling pathway to induce differentiations of Th-17 cells, which secret IL-17 and IL-23 

(81). The CARD9 variant is significantly associated with AS (2, 9, 19) and was also 

associated with PsA and IBD.  
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1.3.7.d Autophagy  
CARD15/NOD2 
Nucleotide binding oligomerization domain containing 2 (NOD2) has many critical 

functions related to the immune system. NOD2 is very significantly associated to Crohn’s 

Disease (67, 82) but not AS itself. The NOD2 protein is active in monocytes, 

macrophages, and dendritic cells (83). It is also active in epithelial cells in the intestine 

recognizing certain bacteria and stimulating the immune system via the NFkB signalling 

pathway (83). NOD2 also plays an important role in autophagy and dendritic cells with a 

NOD2 variants show impaired autophagy (84). It is suggested that the NOD2 variant 

cannot recognize bacteria allowing chronic inflammation to accumulate (83).  

ATG16L1 
Autophagy related 16 like 1 (ATG16L1) is a protein that is required for the autophagy 

process (85). Autophagy is related to the inflammatory response and assists the immune 

system destroy harmful microbes (85). ATG16L1 is one of the most associated genetic 

variants to Crohn`s disease (67). Dendritic cells extracted from Crohn`s patients with 

variants in ATG16L1 show deficient autophagy processes, bacteria tracking and antigen 

presentation, resulting in chronic inflammation (84). This provides evidence that the 

autophagy process is key to chronic inflammation and Crohn`s disease pathogenesis   

1.3.7.e Intergenic 2p15 
The intergenic region 2p15 has no translated gene product encoded. RNA sequencing 

data has revealed that long non-coding RNA (ncRNA) transcripts are present (2). This 

gives insight that an unknown possible germline regulation mechanism is associated with 

this variant. Interestingly, this variant is associated with AS and uveitis (2, 9, 19, 72). 
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1.4 Clinical  
SpA is a group of rheumatic diseases that consists of axial SpA, psoriatic arthritis, 

reactive arthritis, undifferentiated SpA and SpA associated with IBD. There is increasing 

support that SpA disease group is a heterogenous disease with various phenotypic 

manifestations (86-88). SpA is considered axial or peripheral based on its dominant 

clinical feature displayed. Axial SpA involves predominant sacorilitis and spondylitis and 

is mainly attributed to chronic inflammatory back pain. Inflammatory back pain is 

diagnosed and defined as an age of onset younger than 40 years, chronic back pain of 

greater than 3 months, insidious onset, morning stiffness and improvement with exercise 

(89). 

Axial SpA predominantly affects males, commonly manifesting before the age of 40 (3), 

with a population prevalence of 0.55% in European and 0.23% in Han Chinese (9, 17). 

Axial SpA is an auto-immune disease; the increase inflammation causes ankylosis which 

leads to decreased spinal mobility. The most characteristic phenotypic trait is bamboo 

spine, which occurs when the vertebrae have fused resulting in a concave thoracic spine 

and thereby leads to the decreased mobility. As axial SpA is a part of the SpA family many 

individuals suffering from the disease have peripheral musculoskeletal manifestations, 

such as enthesitis and dactylitis. Enthesitis usually manifests in the Achilles tendon, 

costochondral and costovertebral joints. Whereas, dactylitis occurs in the fingers and toes 

due to inflammation of the tendon sheath. In addition, as discussed earlier in this chapter 

axial SpA has many extra-articular manifestations which includes AAU, psoriasis and IBD. 

All of these diseases are discussed in detailed and are included in the following section.  

Currently there is no cure for axial SpA; however, if treated the disease progression may 
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be halted and symptoms can be minimized. This is why it is very important to diagnosis 

this disease early in order to prevent vertebral fusion and overall disease progression.   

1.4.1 Diagnosis  
In 2009 the Assessment of Spondyloarthritis International Society (ASAS) changed the 

diagnostic evaluation and criteria of SpA (90, 91). The concept of axial SpA was 

introduced, in order to capture earlier and  broader spectrum of the disease. This new 

criteria captures AS which was classified by the modified New York Criteria (92) and non-

radiographic axial SpA (nr-axial SpA) (90, 91).  

Radiographic scaroiliitis is the hallmark symptom of AS, however it can take up to 7-10 

years to occur after the onset of inflammatory back pain. This is one of the main reasons 

of the diagnosis delay in AS. Therefore, with the ASAS criteria the goal was to improve 

patient care by encompassing nr-axial SpA with AS in order to speed up diagnosis and may 

prevent disease progression in patients, thereby introducing the new term axial SpA.  

The diagnostic evaluations has an initial criteria of chronic back pain for greater than 3 

months and an age of onset of less than 45 years (90) (Figure 1.2). From that initial step 

the diagnostic evaluation splits into two arms: the imaging arm and the clinical arm (90). 

The imaging arm criteria is based off the presence of scaroiliitis on imaging. Scaroiliitis on 

imaging meaning either; “active inflammation on magnetic resonance imaging (MRI) 

highly suggestive of scaroiliitis associated with SpA and or definitive radiographic 

scaroiliitis according to the modified New York Criteria” (90). In order to fulfill the 

imaging arm the patient must also have at least one SpA feature, SpA features are listed in 

Table 1.1 (90). The clinical arm criteria is based off a positive HLA-B*27 test and greater 

than 2 SpA features listed in Table 1.1 (90).  
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Figure 1.0.2: ASAS Classification Criteria for Axial SpA. 
Illustration of criteria’s imaging and clinical arms. Please refer to Box 1, for list of SpA 
features. Scaroiliitis on imaging refers to active inflammation on MRI suggestive of 
SpA characteristic scaroiliitis. As well as, radiographic scaroiliitis as defined by the 
New York Criteria. This figure was adaptive from the ASAS study by Rudwaleit et al., 
(90).  
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Table 1.1: SpA Features that are incorporated in the ASAS Diagnostic evaluation 

SpA Features 
•! Inflammatory Back Pain 
•! Arthritis 
•! Enthesitis (heel) 
•! Uveitis 
•! Dactylitis 
•! Psoriasis 
•! Crohn’s Disease/Ulcerative 

colitis 
•! Family History of SpA 
•! HLA-B27 
•! Elevated CRP 

 

The overall sensitivity and specificity of the ASAS criteria was reported at 82.9 and 84.4%, 

for the imaging arm the sensitivity and specificity was reported at 66.2 and 97.3% (90) and 

for the clinical arm it was reported at 56.6 and 83.3% (93). These sensitivities and 

specificities are low, and show the need for improvement, especially in the clinical arm. 

The ASAS criteria mainly relies on the imaging arm of the criteria, which is expensive on 

the health care system and time-consuming.  

Magnetic resonance imaging (MRI) is the gold standard for the imaging arm, it is able to 

detect active inflammation as well as structural abnormalities (1, 94, 95). It is of high 

diagnostic value, however, inflammation can still be picked up in healthy individuals so it 

is still important to consider the additional clinical features of the disease (94, 95). 

Therefore, it is important that an MRI is not used for the diagnosis unless the patient is 

highly suspected to have axial SpA. In addition, MRIs are very costly, and currently in 

Canada wait times for MRIs are quite long. Therefore, an improved clinical arm criteria 

would potentially alleviate the need for unnecessary MRIs. 
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1.4.2 Management  
There is currently no cure for axial SpA, however if the disease is treated early it may 

prevent disease progression. There are varied forms of management for axial SpA, these 

include both pharmacological treatments and non-pharmacological treatments such as 

physiotherapy. 

All patients diagnosed with axial SpA are recommended to visit a physiotherapist and 

participate in joint-directed therapeutic exercises (96). The effects of physiotherapy on 

management has been reviewed by a systemic literature review and all reviewed studies 

suggested that physiotherapy relieved symptoms such as pain, physical function, spinal 

mobility and patients over well-being as compared to no intervention and home-based 

exercise programs (97). Other forms of successful non-pharmacological are spa therapy 

and balneotherapy (97). One study suggested that balneotherapy had the same effect on 

pain as non-steroidal anti-inflammatory drugs (NSAIDs), however, this study was limited 

by its participant size (98).  

Initially axial SpA is treated with anti-inflammatory medications, specifically (NSAIDs). 

NSAIDs are very important to the treatment of axial SpA, as 70 to 80% of patients with 

axial SpA report a significant benefit and a good NSAIDs response is a part of the current 

diagnostic evaluation (96). The NSAIDs commonly used are naproxen, ibuprofen, 

meloxicam and or indomethacin. No one NSAID is  superior over another (96). For 

patients with localized joint swelling corticosteroids may be injected into joints or tendon 

sheaths (99). These medications allow for effective pain relief in a localized area.  

Some patients do not respond to the above forms of treatment. These patients are 

commonly prescribed disease-modifying antirheumatic drugs (DMARDs). Generally 
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DMARDs are not prescribed to treat axial inflammation, however these medications can 

be quite useful for patients with peripheral symptoms (96, 99). The most common 

DMARDs prescribed are sulfasalazine and methotrexate (99).  

Patients with more severe forms of the disease and have failed all of the above lines of 

treatment are treated with biologic agents. Biologic agents target patient’s immune 

system to supress the inflammatory response in axial SpA patients. Anti-TNF agents have 

been available for patients since 2003, these agents work by targeting and inhibiting the 

TNFα pathway. Anti-TNF agents significantly reduce axial inflammation, enhanced 

mobility and improved quality of life (96, 97). These agents may halt disease progression 

in some patients. Currently there are five types of anti-TNF agents available for patients; 

etanercept, adalimumab, infliximab, golimumab, and certolizumab (99).   

Recently another biologic agent, secukinumab, has been approved that inhibits IL-17 

activity (99). Secukinumab is an anti-IL-17A monoclonal antibody that inhibits the 

effector function of IL-17A (100). Anti-IL17 agents have shown promising success, 

especially for patients that have not responded to anti-TNF therapies. Biologic agents are 

expensive and sometimes result in adverse reactions in select patients, as well as can have 

serious side effects such as serious infections and malignancy. Therefore, it is important 

that they are managed properly and only used when necessary.  

In some cases surgical intervention is helpful, these include total joint replacements – the 

most common being a total hip replacement (97). Spinal surgery is rarely used, except for 

in extreme cases when there are traumatic factures (96).  



 39 

There are many different forms of axial SpA management. Some therapies have risk but 

it is important that proper treatments are put in place for patients with axial SpA in order 

to potentially prevent disease progression.  

1.4.2 Comorbid diseases of axial SpA  
When focusing on inflammatory back pain, the subset of SpA that is mainly responsible 

for this symptom is axial SpA. Axial SpA has extra-axial manifestations and is associated 

with other inflammatory diseases such as uveitis, psoriasis, and inflammatory bowel 

disease (IBD) (33, 87, 88). Epidemiological studies have reported the co-existence of 

these features with axial SpA. (33, 87, 88). Vander Cruyssen et al., (2007) published a 

study with a cohort of 847 patients stating that 42% of patients had one of these 

additional inflammatory diseases (101). Of this 42% of patients with an extra-axial 

manifestation, 50% had uveitis, 20% had psoriasis, 19% had IBD and 10% had a 

combination of the extra-axial manifestations (See Figure 1.2) (101). In addition these 

inflammatory diseases share common genetic loci, responses to treatment and etiological 

pathways (33, 87, 88).  
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Figure 1.0.3: Extra-Axial Manifestations in AS Patients.  

 

This has been supported with results from GWA studies that have showed notable genetic 

overlap in immune-mediated diseases (87, 102). Specifically to SpA, previous GWA 

studies have identified genetic associations to spondyloarthrophies that are shared 

amongst this disease group (33). In addition robust cohorts have demonstrated that these 

shared genetic loci are interrelated on wide-spread network analyses (87, 88).  

Evidence of the shared inflammatory response prove that there is a common 

pathophysiology pathway and follow the same pathophysiological axis’s (33, 87, 88). 

Particular pathways related to the IL-17 pathway, IL-23/IL-12 pathway, activation of 

nuclear factor kappa B (NFkB), amino acid trimming for MHC antigen presentation and 

the TNFα pathways (87, 88). Since these diseases share the same pathophysiological 

response, the same treatments are used to treat these diseases. These drugs specifically 
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target these common inflammatory pathophysiological pathways and include non-

steroidal anti-inflammatory drugs (NSAIDs) and biologic therapies that repress the 

TNFα, IL-12/IL-23 and IL-17 pathways. To conclude, there is increasing evidence that 

these inflammatory diseases are the same diseases just with different phenotypic displays.  

 

1.4.2.a Psoriasis  
Psoriasis is hyperproliferative auto-immune skin disorder that affects up to 2% of the 

North American population. This disease is characterized by demarcated, papular, scaly 

erythematous skin lesions which can vary in size and severity. These lesions usually 

occur on extensor surfaces on the elbows and knees.  

Approximately 30% of psoriasis patients develop psoriatic arthritis (PsA) which is in an 

inflammatory musculoskeletal disease. PsA affects both men and women at equal 

portions and onsets around middle-aged. As PsA is a form of SpA it is caused by 

enthesitis and can affects the spine (spondylitis) and peripheral joints. PsA also causes 

inflammatory of the digits (dactylitis) and nails.  

PsA has a strong genetic basis, its recurrence risk ratio among first-degree relatives is 

second only to AS with ranges from 30 to 55. This is substantially higher than the 

recurrence risk that is seen in psoriasis patients. 

Similar to axial SpA, there are strong genetic associations to MHC class 1 proteins (103). 

The major effect area of the MHC region is HLA-CW*0602 (48). Psoriasis patients with 

HLA-CW*0602 variant have earlier age of onset and higher likelihood of familial 

psoriasis (47). HLA-CW*0602 is associated with PsA, however the association is not as 

strong and PsA patients positive for the HLA-CW*0602 variant have a delayed onset of 
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symptoms (62). Other HLA variants have been associated with PsA; these include HLA-

B13, HLA-B27, HLA-B38/B39, HLA-B57 and HLA-DRB1*04 (46, 62).  

There have multiple large scale GWA studies that have been completed in psoriasis in the 

European Population. These studies have identified 36 genetic variants that have reached 

genome-wide significance. These variants account for 22% of heritability associated with 

psoriasis and are also comprised of non-MHC variants. Four GWA studies have been 

published in PsA, three of which were relatively small (70, 75, 78, 104). These studies 

have collectively identified 13 genetic variants associated with PsA. The largest and latest 

study identified 5 genetic variants at genome-wide significance, these were all known risk 

variants, HLA-B, IL12B, TRAF3IP2, TNIP1, and TYK2 (78).  

1.4.2.b Inflammatory Bowel Disease  
IBD is a group of conditions that are caused by chronic inflammation of the colon and 

small intestine. IBD encompasses both Crohn’s Disease and Ulcerative colitis. Crohn’s 

disease can affect the entire gastrointestinal tract, whereas ulcerative colitis only affects 

the large intestine and rectum. Symptoms of IBD include intense abdominal pain, 

vomiting, diarrhea, rectal bleeding, weight loss and inflammatory back pain. IBD has a 

disease onset of 20 to 30 years (105), and incidence rate is 1 per 1000 individuals (106, 

107).  

Key pathological features of Crohn’s disease includes the aggregation of macrophages 

that form non-caseting granulomas, these aggregations may be segmental and 

inflammation can be transmural (105). Ulcerative colitis commonly has diffuse mucosal 

inflammation that can produce a complex mixture of immune mediators such as 

significant numbers of neutrophils that aggregate in the lamina propria and crypts (105).  
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Disease heritability has long been recognized in IBD by the aggregation of this disease 

within families. First degree relative risk ratio of fivefold or greater (105), inherited 

component is stronger in Crohn’s disease as compared to UC (105). Multiple large scale 

GWA studies have been completed in IBD, mostly within the European population (67, 

106). The latest GWA studies included approximately 100,000 IBD patients and had 

approximately 10,000 non-European ancestry patients within the case cohort (67).  This 

studied showed that although most risk variants clustered within specific populations that 

some of these variants transcend all populations (67). To date these GWA studies have 

identified 200 genetic loci that are significantly associated with IBD (67, 106). Of the 200 

risk loci 138 showed overlap with other complex diseases (87, 88, 106).   

Certain variants have been pointed out as of importance with very strong p-values and 

have given insight into the pathogenesis of IBD. NOD2 was first found through 

hypothesis driven studies. NOD2 is primarily associated with increased risk of Crohn’s 

disease and resequencing and fine-mapping studies have confirmed this variant to be 

causal (108). NOD2 plays an important role in innate immunity system through the NFkB 

pathway by the risk variant failing to activate the autophagy pathway (105). Hypothesis 

suggest the NOD2 variants relation to IBD pathogenesis is related to epithelial cell 

lesions and downregulation of toll like receptors (106). 

Resequencing and fine mapping studies have also stated that additional variants are 

causal for IBD (108, 109). ATG16L1, is strongly associated with risk of Crohn’s disease. 

It encodes essential proteins for autophagy and several studies have identified this protein 

in inflammatory signalling. Interleukin 23 receptor (IL23R) has also been identified as 

causal variant for IBD. IL23R is also significantly associated with axial SpA, as well as 
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psoriasis and uveitis. IL23R is a key molecule in the IL-23/12 and IL-17 pathways and is 

curial for T-helper 17 (Th17) signalling (106). Another important variant of interest is 

CARD9 which is significantly associated with IBD and axial SpA. CARD9 encodes an 

important protein for innate immunity, which provides protection against infections and 

also assists in the activation of NFkB signalling (106).  

IBD is a chronic inflammation and recent investigations into the genomic architecture of 

this disease has proven that has shared pathogenesis and genetic loci with other forms of 

SpA.  

1.4.2.c Anterior Acute Uveitis  
Uveitis is a disease characterized by the inflammation of the uvea, which is the middle 

layer of the eye and contains most of the eye’s blood vessels. Uveitis can slightly 

decrease vision or cause severe vision impairment, it can also lead to other visual 

impairments such as glaucoma, the development of cataracts and complete vision loss 

(72). This disease primarily affects people between the ages of 20 and 60 years old and 

has an incidence rate of 0.2% in the European population (110), which accounts for 10% 

of blindness in Americans. Uveitis can be acute or chronic, specifically anterior acute 

uveitis (AAU) is an extra-articular manifestation of SpA, it occurs in 30-40% of patients 

with AS (4). Acute uveitis is sudden in onset and these episodes last for an average of 6-8 

weeks (111). It also increases in frequency with AS disease progression, with 60 % of > 

50 years AS patients developing AAU (112).   

Previous studies have reported that AAU has a large genetic component and similarly to 

axial SpA, AAU is strongly associated with HLA-B*27 (113). Approximately half of all 

patients with AAU are positive for HLA-B*27 (72). This corresponds with the first degree 
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relative recurrence risk of AAU, which is much higher when the patient is HLA-B*27 

positive (111).  

Recent genetic studies have made genome-wide significant findings for AAU outside the 

MHC region. These variants include; ERAP1, IL23R, GPR25-KIF21B, and the intergenic 

regions 2p15 and 21q22 (72, 114). All of these variants are associated with AS (72, 114), 

suggesting a common etiology. Specifically, the strong association with ERAP1, shows 

that aminopeptidases and MHC antigen presentation is critical portion of AAU disease 

pathogenesis. Similarly, IL23R suggest that the IL-12/23 and IL-17 pathways are also 

important factors for the pathogenesis of this disease.  

1.5 Rationale for the Study  
1.5.1 Back Pain – A world health problem 
Back pain is a very common health problem that most people will have to deal with at 

some point in their life. It is the largest cause of inactivity globally and causes a large 

financial burden on patients, families, communities and governments (115-119). Back 

pain has a high worldwide disease burden, once thought of as primarily a Western nation 

health problem, back pain is also a major problem in the developing world (115, 120).  

Low back pain is the most common and dominant kind of back pain. The Global Burden 

of Disease Study by the World Health Organization (WHO) reported that low back pain 

is the leading cause of years lived with a disability (120) and the lifetime prevalence of 

low back pain worldwide is estimated at 60-70% (121). In Canada, the reported back pain 

point of prevalence is 15%-25%, and a lifetime prevalence of 60%-80% (122-124). 

Multiple large-scale research studies have demonstrated that low back pain is a major 

health problem worldwide.  
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In Canada the overall annual socioeconomic burden of musculoskeletal disease was 

estimated to be $22.3 billion, in which low back pain was considered to be the dominant 

factor and contributor to this estimate (125). According to an estimate in the United 

States, low back pain cause an approximate yearly direct and indirect health care 

expenditure of $100-200 billion dollars (121, 126, 127).  

Low back pain can be acute, sub-acute and or chronic (121). Most define chronic back 

pain as greater than 3 months of consistent pain (90, 91). Chronic low back pain has 

many risk factors such as: obesity, posture and age; however, the cause of the onset 

remains mainly unclear and makes diagnosing back pain very difficult for physicians 

(121). To add to these difficulties, back pain can be primarily categorized into two 

categories: degenerative and inflammatory (See Figure 1.1). Both types of back pain 

present with very similar symptoms; however, the causes of the two classes are very 

different. Degenerative back pain can be attributed mainly to degeneration or physical 

injury to the musculoskeletal system or joints. Whereas, inflammatory back pain can be 

mainly attributed to chronic inflammation of the joints, which is primarily due to auto-

immune responses. Inflammatory back pain is primarily associated with the disease, 

spondyloarthritis (SpA).  

1.5.2 The challenge of diagnosing back pain and axial SpA 
The current primary care physician evaluation of patients with musculoskeletal pain, 

particularly inflammatory low back pain is very unreliable. When most general 

practitioners are confronted with axial SpA, symptoms overlap with mechanical low back 

pain – making it very difficult to distinguish.  These difficulties can be also be attributed 

to the volume of inflammatory back pain that general practitioners see in their clinics. A 
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combination of these problems is reflected by a delay of 7 to 10 years from the onset of 

symptoms to diagnosis (128). Additionally, the costs associated with inappropriate 

diagnostic evaluations such as x-rays, bone scans, CT scans, and MRI are significant 

(16).  

As discussed earlier HLA-B*27 is one the strongest genetic associations to any complex 

disease. But, HLA-B*27 has low positive predictive value when used to diagnosis axial 

SpA as only approximately 1-5% of carriers actually develop disease (9).  

However, with the surge of GWA studies in many of these inflammatory diseases 

(discussed above) have yielded large numbers of significant genetic associations. These 

individual variants are not very discriminative at predicting disease outcome individually. 

However, geneticists have shown that combining multiple significant loci into a global 

genetic risk model, can increase prediction accuracy for some complex diseases (129-

134). Therefore, given that the current evaluation is both expensive and time consuming - 

the development of a genetically enhanced screening algorithm will represent a major 

advance in the early detection of axial SpA. 

1.5.3 Genetic Risk Models  
A genetic risk model was published by a group studying psoriasis. These researchers used 

10 SNP variants to create two types of genetic risk models (129). They created an additive 

genetic risk model, where the risk variants were added together in order to equate combined 

risk. They also created a weighted genetic risk model where each SNP was weighted via 

each individual SNPs odds ratio. The conclusion of this study was that both genetic risk 

models were significantly better at predicting disease risk as compared to any individual 

SNP. When both genetic risk models were compared the weighted genetic risk model 
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significantly out preformed the additive genetic risk model at predicting risk of psoriasis 

(129). In addition, utilized MassARRAY technology, which can effectively and efficiently 

multi-plex multiple genetic variants into the same assay. This technology makes SNP-

based testing easy and cost effective.  

These models can aid in diagnosis; however, there is still a need for improvement. Two 

research groups studying heart disease created very similar additive genetic risk models to 

the psoriasis research group`s. They determined that although the creation of the genetic 

risk models were beneficial for risk prediction in two separate cohorts, it did not 

significantly improve the current risk prediction methods (133, 134). Genetic risk models 

can increase the prediction accuracy of complex disease diagnostic evaluations; however, 

the use of more sophisticated statistical programming techniques such as machine learning 

may improve risk prediction in complex diseases (135).  

1.5.4 Machine Learning in health care 
Machine learning is a type of artificial intelligence programming that provides the program 

the ability to learn without being explicitly programmed to do so (136). Machine learning 

algorithms can improve with experience, meaning the more data the program acquires the 

more sophisticated decisions the program can make. These programs can be as simple as a 

data sorter to as complex as making financial decisions on the New York Stock Exchange.   

When visualising how a machine learning algorithm works it is best to use an everyday 

example of complex decision making. For example, if you went shopping for oranges, your 

friend told you that the oranges with the brightest colour are the tastiest oranges. Therefore, 

you go to the shop and buy the brightest oranges. However, you learn when you try the 

oranges that this is not always the case and you notice that the oranges that are also 
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squishier are tastier. Then the next time you go to the shop you buy the squishy and bright 

oranges. Every time you go to the shop you learn a different way to identify which oranges 

are the tastiest – this is how machine learning works. The more data or experience the 

program has the better the program is at say buying delicious oranges or making a complex 

prediction.  

A machine learning algorithm works by first using a portion of a large data set as a training 

set. This training set gives the algorithm the ability to “train” and to understand data that it 

has been given (136). There are two main types of machine learning training methods: 

supervised and unsupervised learning (136). Supervised learning methods train on a dataset 

that have labels and make predictions on unlabelled examples, whereas unsupervised 

learning methods look for structures in data sets without using labels (136). For the purpose 

of this study I will describe the supervised learning method. This learning method uses 

training data set will have binary labels such as case and control. The algorithm then can 

produce a model from the training data set that can be used with a prediction algorithm to 

assign predicted labels (such as case or control) to an unlabelled testing data set. Every 

time the dataset grows the algorithm has the ability to “train” in order to increase the 

accuracy of the prediction algorithm (136).  

This type of programming can and will be very helpful in medicine. With the advent of 

electronic health records, large data sets can be more easily acquired (135). This gives the 

potential of making interesting predictions from machine learning algorithm and complex 

data structure. Machine learning could easily change the way diseases are diagnosis and 

pick up on risk factors that have not been researched in the medical field (135). The 
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potential of this field within medicine is huge, that is why it is important to start designing 

studies using machine learning in genomics.  

1.6 Research Objectives 
To develop a genetic screening algorithm using MassARRAY technology and a genetic 

risk model via machine learning to aid in the diagnosis of inflammatory back pain. 
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Chapter 2!Methods  

This study was approved by Memorial Universities ethics board. The study number is 

1999.172. Ethics board in University of Alberta and Toronto had approved DNA 

collection for genetics studies led by Drs. Walter Makysmowych and Robert Inman. An 

overview of this section is provided in the Figure 2.1.  
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Figure 2.1: Overview of the Methods for Project.  
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2.1 Participants  

Study case participants were recruited and ascertained by rheumatologist physicians at 

three sites; Memorial University, St. John’s, NL, University of Toronto, ON, and 

University of Alberta, Edmonton, AB. All participants were of European decent. All case 

participants were diagnosed by a rheumatologist with AS or non radiographic axial SpA 

at the time of collection.  Patients with non-radiographic axial SpA had MRI changes 

compatible with scaroiliitis. This is because DNA collection started prior to the ASAS 

classification. Now that we have a new classification criteria, patients with AS (defined 

by New York criteria) and non-radiographic axial SpA were now classified as imaging 

arm of axial SpA. Axial SpA is a broader clinical classification and therefore contains 

patients with both radiographic and nr-axial SpA. Axial SpA is diagnosed by the ASAS 

diagnostic evaluation.  

In this study all case participants met the current ASAS diagnostic evaluation. Clinical 

information for all participants was collected and blood was collected for DNA 

extraction. Controls participants were accessed from the existing control database from 

Memorial University, University of Toronto and University of Alberta. Control 

participants came from previous case control studies, where they acted as controls, in 

osteoarthritis and type 2 diabetes. The majority of the controls were assessed clinically by 

an internist and did not have an obvious autoimmune disease. Participant’s numbers that 

were genotyped for each set are listed in the results section (Table 3.1). 
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2.2 Genetic Variant Selection  

The type of genetic variants that were selected for this genetic screening algorithm were 

SNPs. This is a SNP based algorithm. A full literature review was completed analyzing 

the latest GWAS studies in ankylosing spondylitis, psoriasis, IBD, and acute anterior 

uveitis. SNP’s were selected based on genome-wide significance, a minor allele 

frequency of between 5-45%, gene-gene interaction and clinical significance. Eighteen 

different SNPs were chosen and the decision was finalized by Dr. Proton Rahman. See 

Table 2.1 below of SNPs (gene, MAF, rs number, clinical information). 
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Table 2.1: List of Genetic Variants included in Discovery Cohort.  

MAF is taken from the 1000 Genomes Project. Information that is missing from p-value, quoted 
paper did not supply value.  

SNP$ID$ Gene$ p+value$
Odds$
ratio$

Minor$Allele$
Frequency$
(MAF)$

Associations$
with$

Uveitis,$IBD,$
Crohn's,$AS$ Source$

rs116488202) HLA$B*2705+ <)1E,200) 40.8) T=0.0136/68)
AS/)Uveitis)/)

IBD) (9))

rs1265163)
LD+with+HLA$

B60+ ) 1.8) G=0.1825/914) AS) (137))

rs10456057)
LD+with+HLA$

CW6+ 4.06E,214) 4.66) G=0.1116/559) PS) (69))

rs3132528)
LD+with+HLA$

B44+ ) ) C=0.2308/1156) PsA/)PS) (138))

rs10781500) CARD9+ 1.10E,06) 1.1) T=0.3670/1838) AS/IBD) (19))

rs11209026) IL23R+ 8.12E,161) 2.013) A=0.0228/114)
AS/)Uveitis)/)

IBD) (102))

rs2032890) ERAP1+ 2.11E,16) 1.51) C=0.1619/811)
AS/)Uveitis)/)

IBD) (139))
rs2066844) CARD15/NOD2+ 9.19E,214) 2.13) T=0.0144/72) IBD) (67))

rs582757) TNFAIP3+ 2.65E−16) 1.6) C=0.2584/1294) PsA) (75))

rs6738490) ATG16L1+ 4.26E,78) ) C=0.3952/1979) IBD) (67))

rs33980500) TRAF3IP2+ 2.65E−16) 1.6) T=0.0837/419) PsA) (75))

rs6759298)
intergenic+

2p15+ 4.90E,47) 1.29) G=0.4097/2052) AS) (9))

rs6871626) IL12B+ 3.10E,08) 1.1) A)(HapMap)) AS/IBD) (9))
rs10782001) FBXL19+ 4.00E,08) 1.26) A=0.4932/2470) PsA) (69))

rs2910686) ERAP2+ 4.50E,17) 1.17) C=0.4177/2092) AS) (9))

rs2853931)
LD+with+HLA$

B*3906+ <0.0001) 3.74) T=0.2861/1433) PsA) (138))

rs3129944) HLA$B*3801+ <0.0001) 9.32) G=0.3313/1659) PsA) (138))

rs4349859) HLA$B*2705+ 1.00E,200) 40.8) A=0.0136/68)
AS/)Uveitis)/)

IBD) (19))

rs6457374) HLA$B*0801+ ) ) C=0.1310/656) PS) (138))

rs887466) HLA$C*0602+ 4.06E,214) 4.66) A=0.4283/2145) PS) (138))
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2.3 Assay Design  

2.3.1 Assay Design Suite (ADS) 

The web-based software offered by Agena Biosciences, Assay Design Suite (ADS) was 

used to design a 15-plex assay for the Sequenom MassARRAY. The version used was 

ADS v2.0.  

2.3.1.a Running ADS – Overview 

A user log in was created for ADS through agenacx.com, and ADS was accessed through 

this same website. The genetic variants with corresponding rs numbers were uploaded to 

ADS via the “Edit Text Input” tab by copy and pasting the rs numbers into the window. 

The order of the rs numbers was of importance when importing the SNPs as the SNPs 

imported first would be given priority when incorporated into the design. Due to this 

variable in the design stage, rs numbers deemed a higher priority for the design, such as 

the HLA variants were imported first.   

The organism for the design was selected as “Human”, the database selected was 

Feb.2009(GRCh37/hg19) and the chemistry selected was “iPLEX”. The multiplex level 

selected for the design was 15, as that was the amount of rs numbers imported. The 

software then runs through the following five steps: 1) Retrieve and Format Sequences, 

2) Find Proximal SNPs, 3) Identify Optimal Primer Areas 4) Design Assays 5) Validate.  

Step 1 – Retrieve and Format Sequences. This step transfers the inputted sequence into a 

SNP Group file format and then displays the sequence corresponding to the Flank Size 

specified in the advanced settings.  
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Step 2 – Find Proximal SNPs. This step aligns the SNP sequence with the genome 

selected, this is complete to specify if other proximal SNPs lie within the SNP sequences 

flanking region. Proximal SNPs can cause primer design problems and can prevent 

primers from being designed for the specific SNP sequence. 

Step 3 – Identify Optimal Primer Areas. The purpose of this step is to design specific 

PCR amplification primers for the SNP sequence. Once the primers are designed, they are 

referenced back to the genome selected in order to ensure that the PCR primers created 

are specific for the particular SNP sequence.  

Steph 4 – Design Assays. This step is the multiplexing step, where the extend primers 

sequence, directionality and position are created. This step creates a file containing the 

multiplexed design to use for ordering PCR and extend primers.  

Step 5 – Validate. The purpose of this step is to validate the primers created to ensure that 

they will accurately genotype the SNP sequences. This step also ensures that there are no 

unintended amplification causing false positives during the mass spectra analysis phase.  

These five steps must be completed in order for the design to be complete. After each 

step is completed you are able to view the steps results and summaries. At each step, you 

can export the results to Excel or Text Tab Delimited files or can view the results using 

the ADS browser. 

2.3.1.b Advanced Settings  

Advanced Settings are offered by ADS to make the design criteria more or less stringent. 

These settings can maximize ADS’s ability to create a design and can also be used to 

eliminate errors from the design. The settings are divided via which step of the ADS 
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process they affect. The advanced settings that were used that differed from the default 

settings are as follows: 

Step 1 - Retrieve and Format Sequence  

Flank Size – default is 100, changed to 300.  This is the size of the flanking region on 

either side of the polymorphism. Increasing this area gives the software more area to 

create a suitable primer for PCR amplification, however, it does not limit the designing 

capacities of the design.. Please refer to Table 2.2.  

Table 2.2: Advanced Settings for Step 1 - Retrieve and Format Sequence 

Step 1 - Retrieve and Format Sequence  

Setting  Default setting New setting Rationale 

Flank size  100 300 
Increasing this area gives the software more area 
to create a suitable primer for PCR amplification. 

 

Step 2 - Annotate Proximal SNPs 

In this step, the advanced settings are divided under two tabs, Matching Constraints and 

Filtering. Please refer to Table 2.3 for details of changes. The Matching Constraints tab 

was used to determine how much the SNP sequence has to be aligned and matched to the 

genome sequence. The Filtering tab allows filtering on the basis of frequency, population 

and/or validation status.  
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Table 2.3: Advanced Settings for Step 2 - Annotate Proximal SNPs 

Step 2 - Annotate Proximal SNPs 

Setting  Default setting New setting Rationale  

Matching Constraints tab  

SNP Flanking Sequence  100 300 

This is the same as Flank Size 
in Step 1 Retrieve and Format 
Sequence. It is very important 
to keep these values the same.   

Filtering tab  

Validation Status  unchecked checked 
This excludes proximal SNPs 
with statuses not validated.  

Filter proximal SNPs based 
on population  unchecked checked 

This filters the SNPs that are in 
the flanking regions of specific 
rs numbers by populations. For 
the case of this assay, it is only 
for a European population, 
therefore SNPs that are in the 
European population were 
selected to be included.  

Exclude proximal SNPS 
with frequency below cut 
off – 0.01 unchecked checked 

This is used to eliminate SNPs 
from the software that have low 
population minor allele 
frequencies. This was checked 
in this design because there 
were problems with proximal 
SNPs that were making it 
difficult for primers to design.  

Exclude proximal SNPs 
with no population 
information unchecked checked 

This is used to eliminate SNPs 
from the software that do not 
have any information. This was 
checked in my design because I 
had problems with proximal 
SNPs 

 

 

 



 60 

Step 3 - Identify Optimal Primer Areas 

Please refer to Table 2.4 for changes to this section of the design.  

Table 2.4: Advanced Settings for Step 3 - Identify Optimal Primer Areas 

Step 3 - Identify Optimal Primer Areas 

Setting  Default setting New setting Rationale  

Amplicon Length 

Minimum 80 80 
This is a very important setting. 

This increases the size of the 
possible amplicon (PCR 

product). Increasing this can 
increase the area in which the 
PCR primers can bind, thus 

making it easier for a primer to 
be designed. Changing this 

setting is the first recommended 
action to eliminate errors caused 

by proximal SNPs  

Optimum 100 100 

Maximum 120 300 

 

Step 4 - Design Assay  

In this step, there are 5 tabs that have corresponding advanced settings that can be 

adjusted. These tabs are: Quick Fix, General, Amplicon, Extend Primer, and Multiplex. 

When the Quick Fix tab settings are adjusted, it will change their parameters in the 

further sections of the advanced settings (See Table 2.5).  
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Table 2.5: Advanced Settings for Step 4 - Design Assay, Quick Fix Tab 

Step 4 - Design Assay  

Setting  
Default 
setting 

New 
setting Rationale  

Quick Fix Tab 

Amplicon Primer Potential     

False Priming  1 100 

This number is a penalty for the primer 
designs that have the potential to hybridize to 
alternative target sites. A higher value means 
a better primer – as it will only map to the 
specific site in the genome 

Hairpin/Dimer Extension 1 100 

This number is a penalty for primer design so 
the primer will not extend against themselves 
and a result in a hairpin or dimer substructure. 
A higher value means a stricter primer design.  

Extend Primer Potential      

Hairpin/Dimer Extension 1 0.9 

This number is a penalty for primer design so 
the primer will not extend against themselves 
and result in a hairpin or dimer substructure 

Multiplex Evaluation Potential    

False Priming  1 0.8 

This number is a penalty for the primer 
designs that have the potential to hybridize to 
alternative target sites. A higher value means 
a better primer – as it will only map to the 
specific site on the specific amplicon. This is 
not as crucial as the Amplicon primer stage as 
there are less binding sites on other amplicons 
for extend primers. This change was 
suggested in the Agena Protocol as well as by 
Agena employees.  

Hairpin/Dimer Extension 1 0.8 

This number is a penalty for primer design so 
the primer will not extend against themselves 
as a result of a hairpin or dimer substructure. A 
higher value means a stricter primer design. 
Cross-primer dimer potential is the main 
limiting factor to multiplexing efficiency. This 
change was suggested in the Agena Protocol as 
well as by Agena employees.   
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The Amplicon tab is the section strictly used for design settings of PCR primers and the 

production of the amplicon (See Table 2.6).  

Table 2.6: Advanced Settings for Step 4 - Design Assay, Amplicon Tab 

Step 4 - Design Assay  

Setting  Default setting New setting Rationale  

Amplicon tab 

Minimum 80 80 This is the same as above in Step 3 - Identify 
Optimal Primer Areas, you must change both to 
the same values. By expanding the maximum 
amplicon length it gives more options for the 

creation of the extension primer. 

Optimum 100 100 

Maximum 120 300 

 

The Extend Primer tab section is strictly used for the design settings of the extend primers 

(See Table 2.7). 

Table 2.7: Advanced Settings for Step 4 - Design Assay, Extend Primer Tab 

Step 4 - Design Assay  

Setting  
Default 
setting 

New 
setting Rationale  

Extend Primer Tab 

Minimum 15 17 This for the length of the extend primer. A longer extend 
primer would hopefully follow a more specific and strict 

design and would avoid possible false amplifications.  Maximum 30 30 

 

The Multiplex tab section is used to change the design settings relating to the multiplexing 

of the assay. Making it possible for multiple SNPs to be in the same plex and not interact 

with each other (See Table 2.8). 
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Table 2.8: Advanced Settings for Step 4 - Design Assay, Multiplex Tab 

Step 4 - Design Assay  

Setting  
Default 
setting 

New 
setting Rationale  

Multiplex Tab 

Design Iterations     

Number of Iterations  1 10 

This is the number of times the software 
will design the assay. The higher the 
number the more likely you will get the 
best design. 10 is the maximum setting 
available. 

Best Iteration 
Selection Criteria 

Highest 
Average 

Multiplex  

Fewest 
Rejects by 
Low Plex 

I chose this option as I was more 
concerned that my inputted SNPs would 
not be rejected than having a large 
number of SNPs in one well 

 

Once these advanced settings were adjusted the settings were saved and “Begin Run” was 

selected in order to start an ADS run. 

2.3.1.c ADS Output Design Reports 

When ADS has completed running through the five steps, there are a series of reports 

produced to show how “well” the design will theoretically work. These can be viewed 

online using the software or can be export as a zip folder containing them (these are using 

in excel). There are many reports outputted; however, the reports that will be described 

are the reports relevant to the design stage. 

Step 4 Report - Design Summary 

The Design Summary gives information of the design parameters, the designs overall 

statistics and a text summary report of the designed assay. This information from the 

software was accessed by, selecting the “View Results” tab next to Step 4 Design Assay 
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then select the “Design Summary” tab on the bottom bar. The Design Summary Report is 

attached in the Appendix 1.A and details of what is included in the report are below 

(Table 2.9). 

Table 2.9: Design Summary Report Contents 

Design Summary Report contents  

Number and which rs numbers are in each well 

Uniplex confidence percentages (this is to determine the probability of how “well” the rs number 
will work in the reaction) 

PCR Primers 

Extend Primers 

Primer lengths 

Primer direction  

Primer extension nucleotides 

Masses of un-extended primers and extended primers.  

A Spectrum of the Assay results of the MassArray 

Warnings for possible problems for the rs number in the reaction need to describe some 
warnings. 

o   D – primer dimer potential between primers of multiplexed assays 

o   H – primer hairpin or self-dimer potential  

o   Dh – both primer dimer potential and hairpin potential.  

 

Step 5 Report - Validation Hits Report 

Once you have checked the Design Summary it is very important to check the Validation 

Hits. This report gives details of each uniplex genomic alignment, how the primers 

created will map with the genome and the potential for false positives and negatives of 

each rs number. The Validation Hits report is below in Table 2.10. 
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Table 2.10: Validation Hits Report from the Summary Reports in ADS. 

See Description below in text for further details.  

Gene SNP ID 
True 
Hits 

False 
Hits 

Null 
Hits 

PCR2 
Hits 

PCR1 
Hits 

HLA-CW6 rs10456057 1 0 0 80 58 

CARD9 rs10781500 1 0 0 12 11 

FBXL19 rs10782001 1 0 0 71 46 

IL23R rs11209026 1 0 0 102 12 

HLA-B*2705 rs116488202 2 0 0 61 100 

HLA-B60 rs1265163 1 0 0 15 83 

ERAP1 rs2032890 1 0 0 112 23 

CARD15/NOD2 rs2066844 1 0 0 133 7 

ERAP2 rs2910686 1 0 0 81 49 

HLA-B44 rs3132528 1 0 0 82 174 

TRAF3IP2 rs33980500 1 0 0 73 26 

TNFAIP3 rs582757 1 0 0 42 22 

ATG16L1 rs6738490 1 0 0 61 29 

Intergenic 2p15  rs6759298 1 0 0 33 105 

IL12B rs6871626 1 0 0 65 43 

 

The following is a description of the values generated by the validation report and the 

importance of each descriptor.  True Hits – This is the number of amplicons produced by 

the PCR primer pair. Therefore, it is important that this value at 1, as a value of more than 

one will result in more than one amplicon produced. The SNP rs116488202, gave a True 

Hit of 2, this was checked with Agena and they confirmed that it would be OK, as well as 

this variant passed the secondary validation that this research group did in addition to 

using this software. False Hits – This is the number of amplicons produced that contain 

an invalid target for the extend primer of the same rs number. This is very important to 
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keep at 0, as we need the extend primer to be very specific. Null Hits – This is the 

number of amplicons produced by the primer pair that do not contain a target sequence 

for the extend primer to bind. This means that the extend primer will not bind therefore 

there will be no genotype generated for the rs number. It is very important to keep this 

value at 0. To summarize it is important to have the True Hits at 1, False Hits at 0, and 

Null Hits at 0.  

Other values that are reported that are of importance are the PCR1 Hits and PCR2 Hits.  

These are the number of matches to the genome each PCR forward (PCR1) and reverse 

(PCR2) primer has to the genome. These numbers are usually quite high (20-150) but on 

secondary validation through NCBI’s BLAST and UCSC’s Blat, these values mean 

incomplete matches to the genome. This will be discussed at length in the Secondary 

Validation section of the Methods.   

In the ADS browser under the validation report, there is additional information which is 

not exported to excel Validation report. By selecting each rs number ADS will give you 

more detail about each rs number reaction. The information provided is such as the 

amplicon and its length and SNP position in the genome. This information was double 

checked in the Secondary Validation to ensure that these positions correspond to the 

correct genomic position of each SNP of interest.  

Step 5 Report - Cross Assay Hits  

The Cross Assay Hits report provides information of the amount and types of amplicons 

that could result from a cross-hybridization reactions from primers in the designed assay. 

It is important that there are no results for this section. Results will only appear if there is 

a problem.  
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2.3.1.d Error Codes and Design Problems related to ADS 

If ADS encounters a problem it result in a step error. The error will be recorded as a 

“Reject”, as the error or “Reject” will exclude the problem SNP from the design. If the 

“Reject” is selected - the software will indicate why the SNP was rejected and will give 

information that can indicate what will need to be changed in the design for the specific 

rs number to be incorporated into the specific design.  

When designing the assay, a problem was encountered relating to error codes appearing 

in Step 3, Identify Optimal Primer Areas of the ADS process. This resulted in many 

SNPs being rejected from the design.  

The particular error code that was encountered was “Error 190 – Multiple Extend hits for 

scanned primer triplet”. This error indicates that a PCR amplicon containing a unique site 

for the extension primer cannot be generated. This is due to proximal SNPs in the binding 

regions of the primer or could be caused by highly repetitive regions surrounding the 

SNP of interest. These polymorphisms and repetitive regions make it unable to design 

primers for the SNP of interest. 

This error code was encountered for the all of the HLA variants selected for the design. 

These errors could be attributed to the HLA region as it is a highly polymorphic and 

highly repetitive region  – making it very difficult to design primers. It was very 

important for the stringency of the assay design to not be reduced and it was necessary 

for these variants to be incorporated into the design. Therefore, alternative measures were 

explored in order to incorporate these variants into the design.  
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In the advanced settings, the PCR amplicon length can be adjusted to eliminate the 

problem. Adjusting the amplicon to 1000 (a less stringent setting) did not improve the 

problem and there was the error code 190 still appeared for the HLA variants. Therefore, 

the PCR amplicon length was adjusted to 300 and a focus was put on finding a SNP in 

linkage disequilibrium (LD) with the SNP of interest that could be incorporated into the 

design. 

The SNPs in LD were found using the program tool HaploReg v4 issued by the Broad 

Institute and MIT (140). HaploReg is a tool for discovering LD variants on haplotype 

blocks, such as candidate regulatory SNPs at disease-associated loci (140). The LD 

information is provided by the latest 1000 Genomes Project data. When HaploReg was 

used the default settings were selected as they were advised by the published paper on 

this software (140). The following settings were used: an LD threshold, r2: 0.8.  The 1000 

Genome Phase 1 population for LD calculation: EUR (European) and the source for 

epigenomes: Chromm (Core 15-state model). The Mammalian conservation algorithm: 

SiPhy-omega and the position was relative to: GENCODE genes. 

By entering the rs number corresponding to the SNP of interest into the Query box, 

HaploReg provided a list of SNPs in LD with the SNP of interest. It provided r2 and D’ 

values, genomic position of the rs number, and additional information of each rs number 

listed. The HaploReg information was exported into excel and ranked the LD SNP by r2 

and D’ values.  

A new design in ADS was created, using the same advanced settings as listed above, and 

each LD SNP was run through the ADS program one at a time. This was repeated with a 
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different LD SNP until an LD SNP did not get rejected and the validation report resulted 

with True Hits of 1, False Hits and Null Hits of 0. This was a very lengthy process as 

many of the LD SNPs were rejected by the Error code 190 and the program takes 15 

minutes to run for each iteration. Once an LD SNP passed the criteria above, the LD 

information was recorded and incorporated the design with the other SNPs.  

The LD SNP is the best method in my opinion as there was no reduction of the stringency 

of the assay. The following is a table of the LD SNPs corresponding to the tag SNP that 

was selected in the original SNP selection. All LD SNPs selected had an r2 > 0.95 and a 

D’ > 0.98 (see Table 2.11).  

Table 2.11: LD SNPs that were incorporated into the design. 

Corresponding r2 and D’ values, MAF and Chromosomal location are listed. 

Gene 
SNP in 
assay 

Chr. 
Location 

Originally 
Associated 

tag SNP r² D' 

Minor Allele 
Frequency 

(MAF) Source 

HLA-B60 rs1265163 6p21.3 rs1265110 0.98 1 G=0.1825/914 (137) 

HLA-
CW6 rs10456057 6p21.33 rs10484554 0.95 0.98 G=0.1116/559 (69) 

HLA-B44 rs3132528 6p21.3 rs3130501 0.97 0.98 C=0.2308/1156 (138) 

HLA-B39 rs2853931 6p21.4 rs2844603 1 1 T=0.2861/1433 (138) 

 

LD SNP Validation Study 

All samples used in the discovery phase of this study were also used in the most recent 

AS GWAS. A validation was completed in order to determine the concordance of the LD 

SNPs genotype and the originally selected tag SNP. Please see Results section 3.5 for 

discussion of LD SNP Validation Study.  
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2.3.2 Typer 4 – Assay Designer 

2.3.2.a Typer 4 Overview  

Five HLA variant rs numbers could not be incorporated into an assay design using ADS. 

All five variants including these variants LD SNPs received the same error code, which 

was error code 190. These five variants were necessary for the design of the assay. 

Therefore, these five variants were designed using a different program – which was 

Typer 4. 

Typer 4 is a software program which is accessed offline and was purchased from Agena 

Biosciences. This program is similar to ADS; however, it has less advanced settings than 

ADS and computes the assay design much quicker than ADS. Typer 4 can generate a 

design in less than 10 seconds while it takes ADS approximately 15 minutes.  Typer 4 is 

located on the this research’s group shared computer. Typer 4 software offers four 

different tools, particularly for assay design the program Assay Designer will be 

discussed and was used for this portion of the study.  

When Typer 4 was opened, the “Assay Designer” tab on the Typer home page was 

selected in order to access the Typer 4 Assay Designer Program. The first step is to 

import the genetic variants into Typer 4. This step differs from ADS as the variants need 

to be submitted as a SNP group file which are in a text tab delimited file. The SNP group 

file used for the Typer 4 analysis was the SNP group file that was generated from ADS 

and accessed from Step 2 of the ADS process. This SNP group file had a flanking region 

of 300 nucleotides on each side of the SNP.  

Similar to ADS, Typer 4 offers design parameters that can be adjusted in order to 

maximize the assay design.  The “Assay Type” was selected as iPLEX from the drop-
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down menu and the “Max. Multiplex Level” was 5. Another similarity to ADS, Typer 4 

also has advanced settings. The advanced settings are separated into 4 tabs; 1) General, 2) 

Amplicons, 3) Probes and 4) Multiplexing. There was an effort to ensure that the settings 

were kept very similar to the advanced settings adjusted using ADS.  

For the General tab, nothing was changed from the default settings. In the Amplicon tab, 

which is dedicated to the design of the PCR primers and PCR product amplicon, there 

were changes from the default settings.  The amplicon length was changed to the 

following: minimum – 80 (default), optimum – 100 (default), maximum – 300 (default is 

120).  In the Amplicon tab, there is a tab that can be selected in order to specify the 

settings further, this tab is “Expert Settings”. In the Expert Settings, the False Priming 

Potential was adjusted to 100 from the default of 1 and the Hairpin/Dimer Extension 

Potential was adjusted to 100 from the default of 1. These adjusted values in the Expert 

Settings are penalties similar to the ones described in the ADS advanced settings section.  

In the Probes tab of Typer 4, the tab is dedicated to the design of the extend primers. The 

oligo length was adjusted; the minimum to 17 from a default of 15 and the maximum to 

30 from a default of 28. In this tab, the Expert Settings were also adjusted. The 

Hairpin/Dimer Extension Potential was adjusted to 0.9 from a default of 1 in the ME 

Primer Design section of the Expert Settings. This adjusted value is a penalty.  

The last tab (Multiplex tab) focused on the design of the multiplexing of the assay. The 

Expert Settings were adjusted specifically within the Multiplex Evaluation section of this 

tab. The False Priming Potential was adjusted to 0.8 from a default of 1, and the Primer-

Dimer Potential was adjusted to 0.8 from a default of 1, similarly these adjusted values 

were penalties. These settings were saved by selecting close on each tab. By selecting the 
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“Reset” button, the advanced settings will return to default. Once all of the above was 

inputted into Typer 4, the tab “Run” was selected.  

2.3.3 Design Report  

When the program is finished running in order to view the assay design result, “Design 

Report” was selected. Typer 4 generates reports, one as a text tab delimited file with all 

the details including the advanced settings and information regarding the confidence of 

the assay to perform, as well as the primer details. The other report is exported into excel, 

this report gives more detailed information about the primers that can be used to import 

information into the MassARRAY system (Appendix 2.A) 

From a design stand point for Typer 4, the most important values to analyze are the 

multiplex confidence percentage and the uniplex confidence percentage. As well as the 

warnings detailed in the “Design Report” in the text tab delimited file. For the Assay 

which was designed in Typer 4, the multiplex confidence was quite high at 93.0% and 

there were only 2 warnings. 

2.3.4 Secondary Validation 

It is very important to do a Secondary Validation of the design through online software 

programs to ensure that ADS and Typer 4 produced a viable design. This in part due to 

troubles experienced with using that software. This was recommended to us by another 

group (correspondence Children’s Hospital of Eastern Ontario, Ottawa, ON). 

2.3.3.a PCR Primer Secondary Validation 

Four online software programs were used to validate the PCR primers created by ADS and 

Typer 4 were specific and sensitive to each rs number. The programs used were National 



 73 

Center for Biotechnology Information’s (NCBI) BLAST, University of California Santa 

Cruz’s (UCSC) Blat, UCSC’s In-Silco PCR, and SNPCheck. All of the results from the 

Secondary Validation are below in the Tables 2.12 and 2.13.  

BLAST 

NCBI’s Basic Local Alignment Search Tool (BLAST) specifically genomic BLAST is a 

bioinformatic tool that can be used to compare DNA sequences to a reference genome. 

BLAST can give information regarding primers to see if they are specific to the rs number, 

it also gives information with how many matches a primer has to the genome and the 

genomic position of each match.  

The PCR forward and reverse primers were copied and pasted into the query sequence box 

separately from the primer order form outputted by ADS. The human database, and the 

“Genome (all assemblies top-level)” database was selected – which were the latest 

databases available. The megablast optimization was selected – this selection ensures that 

only highly specific sequences to the primers were outputted in the results. Once all of the 

above the options were selected the tab “BLAST” was selected. The BLAST results were 

very similar to the PCR1 and PCR2 Hits. However, on closer inspection BLAST reports 

matches to the genome with sequence mismatches, i.e, the reported result could be a match 

of 18 out of 20 nucleotides from the primer. The BLAST results also output a genomic 

location, this genomic location for the complete match was cross referenced with the 

genomic location of the primer and rs number genomic location outputted by ADS. All 

PCR primers genomic location were concordant.  
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Blat 

UCSC’s Blat is another bioinformatics genomic alignment tool offered online very similar 

to BLAST. The PCR forward and reverse primers were copied and pasted into the query 

sequence box. The genome selected was “Human” and the assembly was “Dec.2013 

(GRCh38/hg38), and the query type was “DNA”. Once all of the above was selected the 

“submit” tab was selected. Similarly, to BLAST the database used by Blat is more update 

than the one used for designing primers in ADS. Blat only reported 100% matches to the 

genome, unlike BLAST. Blat also output’s a genomic location for the primer entered into 

the program. This genomic location was cross-referenced with the genomic location of the 

primer and rs number outputted by ADS and there was 100% concordance.  

In-Silico PCR 

UCSC’s In-Silico PCR is a computational software tool that is used to theoretically 

calculate the amplification products of forward and reverse primers. The genome selected 

was “Human” and the assembly was “Dec.2013 (GRCh38/hg38), and the target was 

“genome assembly”. The forward and reverse primers were copied and pasted into their 

specific query sequence boxes. When the above was completed the “submit” tab was 

selected. In-Silico PCR outputted the theoretical amplification product and the genomic 

location of that product. This result was then cross referenced with the genomic location 

and the sequence of the amplicon produced by ADS. The number of unique PCR 

amplification products should be and was the same value as the value of the True Hits for 

each rs number. Ideally, there should be only one PCR amplification product. All the results 

were 100% concordant with the results from ADS. 
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SNPCheck 

SNPCheck is a software tool used to check if there are proximal SNPs in PCR primer 

binding sites. The forward and reverse primers were copied and pasted into the sequence 

box along with the rs number and the chromosome which the rs number is located on. This 

secondary validation was important as discussed above in the error code proximal SNP 

problems when designing the assay. 
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Table 2.12: Secondary PCR Primer Validation for LBP_1W well. 

BLAT, BLAST, In-Sillico PCR Match, and SNP Checker descrptions are all above in section 2.3.3.a Chr denotes chromosome 

SNP ID Gene 
Forward Primer 

Sequence BLAT BLAST Reverse Primer Sequence BLAT BLAST 

In-
Silico 
PCR - 
Match 

SNP 
Checker 
(SNPS 
found) 

rs6759298 
Intergenic 
2p15 

ACGTTGGATGAGTTGC
AGGCTATTGGTGTC 1 68 

ACGTTGGATGCTTTGTGG
TGGTTCTGTAGG 1 138 1 1 

rs10782001 FBXL19 
ACGTTGGATGTGTTCCC
CTCATAGAGCAAG 1 26 

ACGTTGGATGACACAGT
TATCTGCTCCCAC 1 46 1 1 

rs6871626 IL12B 
ACGTTGGATGCATTAT
GGGCTAAGTGGGTG 1 122 

ACGTTGGATGGCAGAGA
AAGTTACCTGTCC 1 161 1 1 

rs1265163 HLA-B60 
ACGTTGGATGAGAAAC
TGGCACATCCAAGG 8 248* 

ACGTTGGATGTAACCTG
ACAGGTGTTCTCG 1 54 1 2 

rs2032890 ERAP1 
ACGTTGGATGTAAAGA
CCCAGTGGTGGGAG 2 101 

ACGTTGGATGCATCCTG
GCGAAACTCCTTG 1 32 1 0 

rs2910686 ERAP2 
ACGTTGGATGAACTTA
AATCCCAGCTCACC 1 210 

ACGTTGGATGACAAGTG
ACCACAATGTGGC 1 72 1 1 

rs11209026 IL23R 
ACGTTGGATGGGGAAT
GATCGTCTTTGCTG 1 85 

ACGTTGGATGGAAATTC
TGCAAAAACCTAC 2 255 1 3 

rs33980500 TRAF3IP2 
ACGTTGGATGCTGGGA
TTGGTTTCAGCAAC 2 177 

ACGTTGGATGTGAACCG
AAGCATTCCTGTG 1 45 1 1 

rs582757 TNFAIP3 
ACGTTGGATGTAGCCT
CATGTGGAATAAGC 1 108 

ACGTTGGATGATAAGGC
TACCAAGGCCTAC 1 60 1 0 

rs10781500 CARD9 
ACGTTGGATGTCTCTA
ACCATATCGGAAGC 1 13 

ACGTTGGATGATCTGTG
GGTTATTTAGCGG 1 72 1 0 

rs3132528 HLA-B44 
ACGTTGGATGAGCCTT
ATCTTGACCTGTTC 6 63* 

ACGTTGGATGCCATTTTA
AAAACTTGGGCTC 0 174 ** 1 1 
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rs6738490 ATG16L1 
ACGTTGGATGGTAAAC
CTGACGACTTTCTC 1 47 

ACGTTGGATGGAGAACT
ACTGATTTTGCAC 2 177 1 0 

rs116488202 
HLA-
B*2705 

ACGTTGGATGCCCGCA
CCAAATTCAGTACA 1 45 

ACGTTGGATGACCAAGC
CTCAGACCATGC 0 58 ** 2 5 

rs2066844 
CARD15/N
OD2 

ACGTTGGATGAGTGCC
AGACATCTGAGAAG 1 48 

ACGTTGGATGATGGAGT
GGAAGTGCTTGCG 1 72 1 2 

rs10456057 HLA-CW6 
ACGTTGGATGTGTTTTC
AGAGGTTCTGGAC 3 241* 

ACGTTGGATGGGCACTG
CAATATTGAGTTC 8 87* 1 3 

* Different results in Blast and BLAT, there was only 1 100% match in BLAST  
** Blast showed a 100% match
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Table 2.13: Summary of PCR Secondary Validation for HLA well. 

Same Description as Table 2.13 

SNP ID Gene Chr. 
Forward Primer 

Sequence BLAT BLAST 
Reverse Primer 

Sequence BLAT BLAST 

In-
Silico 
PCR - 
Match 

SNP 
Checker 
(SNPS 
found) 

rs887466 HLA-C*0602 6 
TCCGCACCTAT

CACACCTAC 6 76 * 
AATCCTTCCTG

ACCTAGAGC 7 205* 7 (2)** 1 

rs2853931 
LD with HLA-

B*3906 6 
ACGCTCTTTTC
AGGACGATG 7 114* 

GCATAGAATA
TCATGCTGCAC 7 55* 7 (2)** 3 

rs6457374 HLA-B*0801 6 
TTTCAAACCTC

CTGCATCTG 7 264* 
CCTAACAGTAT

GACACTCG 0 120* 5 (3) ** 3 

rs3129944 HLA-B*3801 6 
CTGTGGAGAAC

AAGGAAGAG 8 547* 
TGTGCTTATAA

GGTACCCAC 8 114* 8 (2) ** 2 

rs4349859  HLA-B*2705 6 
AAGCAGCCTA
ATCCCCTTAC 5 92* 

AGAGAGCAGT
CCTACAAATG 8 218* 5(1) ** 0 

* Different results in Blast and BLAT, there was only 1 100% match in BLAST 
** Blast showed a 100% match 
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2.3.3.b Extend Primer Secondary Validation 

There was no program online to validate the primers against a PCR amplification product, 

therefore a method was created using Microsoft Excel 2011 and an online software tool 

reverse complement primer. Extend primer sequences and direction and the PCR product 

amplicon was obtained from the Design Summary excel file outputted by ADS. Depending 

on the direction of the Extend primer. Forward primers were entered into the program 

reverse complement for generation of the complement sequence of the primer. This 

forward complement sequence was then validated to be within the amplicon by using the 

control + F function in Microsoft Excel 2011.  

For reverse primers, the primer was entered into the program reverse complement for the 

generation of the reverse complement sequence of the primer. This reverse primer reverse 

complement sequence was then validated to be within the amplicon by using the control + 

F function in excel. 

2.3.5 Final Design 

The final design consisted of a 2-well assay. One well was design using ADS comprising 

of a 15-plex assay and the other well was designed using Typer 4 and comprised of a 5-

plex assay. Below are Tables (2.6.1, 2.6.2, 2.6.3, and 2.6.4) of the PCR Primers for both 

designs which were ordered and created by Integrated DNA Technologies (IDT) 

technologies in December 2016 at the concentration of 25 nano moles (nm), 100 micro 

molar (µM) in 100 micro litres (µL) Below is also a Table of extend primers that were 

ordered and created by IDT technologies in December 2015 at a concentration of 250nm, 
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500µM in 40µL, And in March 2016 and Oct 2016 at a concentration of 250nm, 500µM 

in 80µL.  

2.4 Typer 4 – Plate Editor  

2.4.1 Importing Design Files into Typer 4 

In order to import the designs into the Typer 4, the program “Assay Editor” was opened 

and a new assay project was created using the Database Browser. This was completed by 

selecting the “Project Administrator” and adding a new “Assay Project”, for each design 

the name that was assigned was “LBP_1wdesign_v12” and “LBP_HLAwell”.  The design 

files used for importing was the Design Summary Report from ADS and the Design 

Summary excel report from the Typer 4 Assay Designer.  

2.4.2 Creating a Plate File in Typer 4 

The program Typer 4 was selected and on the home screen of the program “Plate Editor” 

was selected. Under the tab “Plate” the appropriate folder was selected (ROR lab -> LBP). 

Under that folder LBP was right clicked and then create a new plate was selected and the 

plate was given a name corresponding to the sample plate name and the assay design which 

was being run. Under the “Assay” tab, wells were highlighted corresponding to the reaction 

plate. The appropriate assay design was added to the plate by finding the appropriate folder 

then selecting the design “LBP_1wdesign_v12” or “LBP_HLAwell” depending on which 

assay design was run. Under the “Sample” tab, the sample group was uploaded first by 

right clicking on the folder which is needs to be in and then selecting import sample group. 

This sample group was given a specific name. This file must have the samples in vertical 

order, in a single column and in a text tab deliminted file. In Typer 4 the wells which will 

receive the samples must be highlighted. On the right side of the window under “Sample 
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Tab” settings the following must be specified; Apply sample direction – Vertical, 4 (96) – 

1(384) Mode should be “False”, keep in selected region should be “False”, No Sample ID 

– CROSS and No Sample ID Color should be 150; 150; 150. Once these settings are 

selected import the sample group onto the plate/chip by right clicking the sample group file 

and selecting “Apply Samples from Group…”. Once this is all complete the sample plate 

is ready to be linked to the MassARRAY machine.  

2.5 DNA Preparation 

DNA was extracted from peripheral blood (performed by a research assistant). This 

research assistant was trained by Memorial University, and/or University of Toronto and/or 

University of Alberta specifically to handle human specimens and extract DNA. This DNA 

extraction was extracted at three different sites; Memorial University, St. John’s, NL, 

University of Toronto, ON, and University of Alberta, Edmonton, AB. The stock DNA 

concentration was determined using the NanoDrop 1000 (Thermo Fischer Scientific) 

apparatus and the stock DNA was diluted to ~5-10ng/µL 

2.6 Primer Adjustment  

Primer mixes were made manually for both PCR and extend primers.  

2.6.1 PCR Primer Mix 

All the PCR Primers are ordered at the concentration 100µM. Both Forward and Reverse 

were included into the same mix. In order to make 1 mL of PCR primer mix, 5µL of each 

primer were added to the mix.  The remainder of the 1 mL is HPLC molecular-grade water. 

The calculations for the PCR Primer Mix are below. 
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2.6.1.a HLA well 

The HLA well is a 5-plex reaction with 5 Forward PCR primers and 5 Reverse PCR 

primers, for a total of 10 primers. The required primer concentration is 0.5µM. 50 µL of 

Primers and 950 µL of molecular-grade water was added to the PCR mix. Once this mix 

was completed it was vortexed spun and aliquoted.  See List of PCR Primers for this well 

below (Table 2.14).  

Table 2.14: List of PCR Primers for HLA well 

F denotes forward primer, R denotes reverse primer. 
SNP Primer ID Primer Sequence 

rs2853931_F ACGTTGGATGGCATAGAATATCATGCTGCAC 

rs2853931_R ACGTTGGATGACGCTCTTTTCAGGACGATG 

rs3129944_F ACGTTGGATGTGTGCTTATAAGGTACCCAC 

rs3129944_R ACGTTGGATGCTGTGGAGAACAAGGAAGAG 

rs4349859_F ACGTTGGATGAGAGAGCAGTCCTACAAATG 

rs4349859_R ACGTTGGATGAAGCAGCCTAATCCCCTTAC 

rs6457374_F ACGTTGGATGCCTAACAGTATGACACTCG 

rs6457374_R ACGTTGGATGTTTCAAACCTCCTGCATCTG 

rs887466_F ACGTTGGATGAATCCTTCCTGACCTAGAGC 

rs887466_R ACGTTGGATGTCCGCACCTATCACACCTAC 

 

2.6.1.b LBP_1W (15-plex) well 

The LBP_1W well is a 15-plex reaction with 15 Forward PCR primers and 15 Reverse 

PCR primers, for a total of 30 primers. The required primer concentration is 0.5µM. 150 

µL of Primers and 850 µL of molecular-grade water was added to the PCR mix. Once this 

mix was completed it was vortexed spun and aliquoted.  See list of PCR Primers below 

(Table 2.15). 
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Table 2.15: LBP_1W well PCR Primer Sequences. 

F denotes forward primer; R denotes reverse primer. 
SNP Primer ID Primer Sequence 
rs10456057_F ACGTTGGATGTGTTTTCAGAGGTTCTGGAC 
rs10456057_R ACGTTGGATGGGCACTGCAATATTGAGTTC 
rs10781500_F ACGTTGGATGTCTCTAACCATATCGGAAGC 
rs10781500_R ACGTTGGATGATCTGTGGGTTATTTAGCGG 
rs10782001_F ACGTTGGATGTGTTCCCCTCATAGAGCAAG 
rs10782001_R ACGTTGGATGACACAGTTATCTGCTCCCAC 
rs11209026_F ACGTTGGATGGGGAATGATCGTCTTTGCTG 
rs11209026_R ACGTTGGATGGAAATTCTGCAAAAACCTAC 
rs116488202_F ACGTTGGATGCCCGCACCAAATTCAGTACA 
rs116488202_R ACGTTGGATGACCAAGCCTCAGACCATGC 
rs1265163_F ACGTTGGATGAGAAACTGGCACATCCAAGG 
rs1265163_R ACGTTGGATGTAACCTGACAGGTGTTCTCG 
rs2032890_F ACGTTGGATGTAAAGACCCAGTGGTGGGAG 
rs2032890_R ACGTTGGATGCATCCTGGCGAAACTCCTTG 
rs2066844_F ACGTTGGATGAGTGCCAGACATCTGAGAAG 
rs2066844_R ACGTTGGATGATGGAGTGGAAGTGCTTGCG 
rs2910686_F ACGTTGGATGAACTTAAATCCCAGCTCACC 
rs2910686_R ACGTTGGATGACAAGTGACCACAATGTGGC 
rs3132528_F ACGTTGGATGAGCCTTATCTTGACCTGTTC 
rs3132528_R ACGTTGGATGCCATTTTAAAAACTTGGGCTC 
rs33980500_F ACGTTGGATGCTGGGATTGGTTTCAGCAAC 
rs33980500_R ACGTTGGATGTGAACCGAAGCATTCCTGTG 
rs582757_F ACGTTGGATGTAGCCTCATGTGGAATAAGC 
rs582757_R ACGTTGGATGATAAGGCTACCAAGGCCTAC 
rs6738490_F ACGTTGGATGGTAAACCTGACGACTTTCTC 
rs6738490_R ACGTTGGATGGAGAACTACTGATTTTGCAC 
rs6759298_F ACGTTGGATGAGTTGCAGGCTATTGGTGTC 
rs6759298_R ACGTTGGATGCTTTGTGGTGGTTCTGTAGG 
rs6871626_F ACGTTGGATGCATTATGGGCTAAGTGGGTG 
rs6871626_R ACGTTGGATGGCAGAGAAAGTTACCTGTCC 
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2.6.2 Extension Primer Mix 

Extend Primers are ordered at a concentration of 500µM. There is an inverse relationship 

between peak intensity and analyte mass; therefore, extension primers must be adjusted by 

concentration in order for low mass SNPs to perform well. Extension primers with a higher 

mass need a higher concentration in the primer mix then the lower mass extension primers. 

From the design file SNP’s primers extension primers are sorted by weight/analyte mass 

from lowest weight to highest weight. This design file was obtained from ADS. See tables 

of extend primers (Table 2.16 and 2.17). 

2.6.2.a LBP_1W (15-plex) well 

For the LBP_1W the three-tier method was used, which meant that the extend primers were 

separated into three groups by analyte mass. For the low mass extension primers, the 

concentration of the primer for the extend primer mix was 5µM, for the medium mass 

primers the concentration was 10µM and for the high mass the concentration was 15µM. 

For calculating the volume of each SNP’s primer that was added to the initial extend primer 

mix see the calculations below. Therefore, there was 5 primers in the low mass group, 5 in 

the medium mass group and 5 in the high mass group. Total water that was added to the 

mix = total volume – (25µL + 50µL + 75µL) = 500µL – 150µL = 350µL. The extend mix 

was then vortexed and spun quickly.  
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Table 2.16: LBP_1W well Extend Primer Sequences and Masses 

SNP ID Sequence Primer Mass 

rs2910686 AATCCCAGCTCACCATTTAC 5050.3 

rs116488202 TCAGACCATGCCCAGCCTAGCTTACT 5106.3 

rs6871626 CTGTCCTTCATCACTTGG 5127.3 

rs2032890 GAGAAACCTGATCCGGTAT 5194.4 

rs10782001 ATGAAGGCTTGTCAACA 5531.6 

rs6759298 TCTTCCAACACAGTGCC 5683.7 

rs6738490 ACTGATTTTGCACAATCAGAATGC 5786.8 

rs33980500 TGGGTATGGTTCTGATTCAT 5864.8 

rs11209026 CTGCAAAAACCTACCCAGTT 6030 

rs1265163 TCTCTTTCTGTCCTTTCAC 6240.1 

rs582757 CTGCATTTTTATCCTTTTAGCA 6352.1 

rs2066844 GCCAGACATCTGAGAAGGCCCTGCTC 6391.2 

rs3132528 CCTGTTCTATTAAAACCTGCCACA 6653.4 

rs10781500 GCTAAAAATCGGTAACAGATAT 6775.5 

rs10456057 CTGCAATATTGAGTTCATATAACAAG 7383.8 

 

2.6.2.b HLA Well 

For the HLA well, since it was a 5-plex reaction all of the extension primers were added at 

the same concentration of 10µM. For calculating the volume of each SNP’s primer that 

was added to the initial extend primer mix see the calculations below. Total water to be 

added = total volume – (50µL) = 500µL – 50µL = 450µL. This extend mix was then 

vortexed and spun quickly. See below the HLA Sequences  
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Table 2.17: HLA well Extend Primer Sequences 

SNP ID Sequence Primer Mass 

rs887466 TCTACCCTCTCCGGAAA 5090.3 

rs2853931 CTGCACATGAAGAAATAGG 5869.9 

rs6457374 ACCAGATAGGTTTAGTGGTG 6212.1 

rs3129944 AGTCAATAGACACTCAATAAAA 6728.4 

rs4349859 TCTTACATGTCTTTGTACTTACT 6945.5 

 

2.6.2.c Quality Control of Extension Primers 

From prepared extend mixes 1µL was added to 49µL of molecular-grade water. This was 

repeated three times and dispensed into three wells of a plate (Axygen PCR Microplate 96-

FLT-C). This was done for both designs. The primers were mixed by vortexing and quickly 

spin plate. Then the film from the plate was removed and place into the Agena 

Nanodispenser MTP1 position, well A1 forward. The quality control chip was placed into 

the Nanodispenser. The Nanodispenser was switched from the 6-pin format to the 1-pin 

format. Follow the spotting and running protocols that are discussed in Nanodispensing, 

Typer Plate setup, ChipLinker and SpectroAcquire sections of methods for the remaining 

time frame for the protocol.  

Once the running of the chip is completed, Typer 4 was opened and under “File” then 

“Reports”, “Primer Adjustment Report” was selected. The “Primer Adjustment Report” 

includes an excel file and a coloured histogram file. Using the excel file the average of the 

three wells using the value of “percent to add” is calculated. Primers with a value of >50 

average of percent to add were highlighted. The highlighted average was then multiplied 
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by the original value added, for example., low mass primer will have the average percent 

to add multiplied by 5µL, a medium mass primer multiplied by 10µL and the high mass 

primers by 15µL. The amount needed to be added was then added to the mix. The extend 

mix was then vortexed and spun quickly and the quality control spotting was run again 

using the same method as discussed above. Once the second run was completed, the Typer 

4 “Primer Adjustment Report” was exported and the average percent to add was calculated 

again. If no average percent to add values were > 50 then the extend mix was complete. 

However, if there was a primer with an average percent to add was > 50 then the amount 

to add was calculated again and the mix was respotted and run using the same method as 

discussed above until there were no primers with >50 average percent to add. 

2.7 Reaction 

Before initiating Agena MassARRAY reaction bench top and pipets are cleaned with 10% 

bleach and 70% ethanol. Clean filtered pipet tips are used at every step. All regents were 

aliquoted and stored at -20°C, these reagents were thawed on ice and mixed and spun 

quickly before use. All reagents and plates are kept on ice when in use. All lot numbers 

and expiry dates were recorded.  

2.7.1 Amplification/PCR Stage 

The samples genomic DNA must be amplified containing the SNP of interest, for each rs 

number via PCR. The PCR amplification product produces an amplicon containing the 

SNP of interest and binding sites for the extend primers to bind to. First a PCR master mix 

was made and contained: High Performance Liquid Chromatography (HPLC) molecular-

grade water, 10X PCR Buffer, 2mM MgCla, 25mM dNTP, 5u/µL Agena PCR Enzyme and 

0.5uM PCR Primer Mix.  These reagents have been optimized to ensure that proper DNA 
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amplification will occur. The PCR master mix was then mixed and spun quickly. See Table 

2.18 below with ratio volumes and concentrations. An overhang for the reaction of 15-20% 

was used to prevent pipetting errors. PCR Master Mix was dispensed per well at 3 µL on 

the plate used for the reaction. This was done by using a P20 multichannel pipet and the 

PCR master mix was divided by 8 and equally divided into each tube on the strip. The plate 

was visually inspected to ensure that all PCR Master Mix was dispensed appropriately into 

the plate. Next 2 µL of sample DNA was dispensed per well, at a concentration of ~5-

10ng/µL. A new filtered pipet tip was used for each well to prevent cross-contamination.  

Table 2.18: PCR Master Mix combination ratio per well. 

1X indicates the ratio per well reaction 
Reagent  1x 

HPLC  grade water 0.80 

10X PCR Buffer 0.50 

25 mM MgCl2 0.40 

25 mM dNTP 0.10 

5 u/µl Sequenom PCR Enzyme 0.20 

PCR Primer (0.5uM) 1.00 

Total Master Mix per well 3.00 

DNA per well 2.00 

 

Once all the PCR master mix and DNA is dispensed into the appropriate wells, the plate 

was tightly covered with film. The plate was then gently vortexed and spun quickly. The 

plate was then placed in a ThermoFischer Verti Thermocycler. The program used for the 

PCR stage was required by Agena Biosciences; 95°C for 2 min, (95°C for 30ssec, 56°C for 

30 sec, 72°C for 1 min, for 45 cycles), 72°C for 5 min, then held for 4°C until collected 
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from the thermolcycler. Table 2.19 thermocycler protocol. Once the thermocycler program 

ended the reaction plate could be held at 4°C or stored at -20°C for up to two weeks.  

Table 2.19: Thermocycler program and cycling 

Abbreviations: Temperature (Temp), Seconds (sec) 

Temp ˚C  Time (sec)    

95 2 min   

95 30 sec 45 cycles 

56 30 sec   

72 1 min   

72 5 min   

4 ∞   

 

2.7.2 Shrimp Alkaline Phosphatase (SAP) Stage  

The SAP stage is a cleaning step used to remove any unincorporated nucleotides.  

The SAP master mix was prepared in a 1.5 ml micro-centrifuge tube and contained: HPLC 

molecular-grade water, 10X SAP Buffer, 5u/µL Agena SAP Enzyme. The SAP master mix 

was kept on ice and mixed and spun quickly. 

See Table 2.20 below with reaction volumes and concentrations. An overhang of 15% was 

used to ensure there was enough master mix if there was a pipetting error.  
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Table 2.20: SAP Master Mix Combination and Ratio 

1X indicates the ratio per well reaction 
Reagent  1x 

HPLC grade water 1.53 

SAP Buffer 0.17 

SAP Enzyme 0.30 

Total per well 2.00 

 

The PCR-treated reaction plate was removed from the thermocycler at 4°C and was quickly 

spun. The film on the reaction plate was removed very carefully using a special technique. 

The special technique went as follows: Hold plate firmly and pull film from side with no 

samples on the plate, peal the film carefully and slowly off one column at a time and pullet 

a 180° angle. It is very important to do this carefully to ensure no reaction mixture splatters 

and cross-contaminates another well. This technique was used each time the film was 

removed. 

Then 2 µL of the SAP master mix was dispensed per well onto the reaction plate. The plate 

was visually inspected to ensure that all SAP Master Mix was dispensed appropriately into 

the plate. A new film was then tightly sealed onto the reaction plate and the plate was then 

mixed gently and spun quickly. The reaction plate was then placed into the ThermoFishcer 

Verti thermocycler. The program used for the SAP stage was; 37°C for 40 min, 85°C for 5 

min, then held for 4°C until collected from the thermocycler. Table 2.21 thermocycler 

protocol. 



 91 

 
Table 2.21: SAP thermocycler program and cycling  

Abbreviations: same as 2.19 

Temp ˚C  Time  

37 40 

85 5 

4 ∞ 

 

Once the thermocycler program ended the reaction plate could be held at 4°C or stored at 

-20°C for up to two weeks.  

2.7.3 Extension Stage  

The extend master mix was prepared and contained: HPLC molecular-grade water, iPLEX 

10X Buffer Plus, iPLEX 10X Termination Mix, Extend Primer Mix, iPLEX Pro Enzyme 

32 u/µL. The extend master mix was kept on ice and mixed and spun quickly. See Table 

2.22 below with reaction volumes and concentrations. An overhang of 15% was used to 

ensure there was enough master mix if there was a pipetting error. The SAP-treated reaction 

plate was removed from the thermocycler at 4°C  or thawed from -20°C and was quickly 

spun. The film on the reaction plate was removed very carefully using the special technique 

described above. Then, 2 µL of the extend master mix was dispensed per well onto the 

reaction plate using a clean pipet tip each time. The plate was visually inspected to ensure 

that all extend master mix was dispensed appropriately into the SAP-treated reaction plate. 

A new film was then tightly sealed onto the plate and was gently mixed and spun quickly. 

The reaction plate was then placed into the ThermoFischer Verti thermocycler. The 

program used for the extend stage was required by Agena Bioscience; 95°C for 30 sec, 
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[94°C for 5 secs, (52°C for 5 secs, 80°C for 5 sec for 5 cycles), for 40 cycles] 72°C for 3 

mins and then held for 4°C until collected from the thermocycler. Table 2.23 thermocycler 

protocol. Once the thermocycler program ended the reaction plate could be held at 4°C or 

stored at -20°C for up to two weeks.  

Table 2.22: Extension Master Mix Combination and ratio 

1X indicates the ratio per well reaction 
Reagent  1x 

HPLC grade water 0.62 

iPLEX-PRO Buffer 0.20 

iPLEX Termination Mix 0.20 

iPLEX PRO Enzyme 0.04 

Extend Primer 0.94 

Total per well 2.00 

 

Table 2.23: Extension thermocycler program and cycling. 

Abbreviations: same as 2.19 
Temp ˚C  Time (sec) Cycling  

94 30     

94 5   40 cycles 

52 5 5 cycles   

80 5     

72 180    

4 ∞     
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2.7.4 Resin Stage 

The resin Stage is completed to deionize the reaction contents so that the reaction can be 

performed on the MassARRAY system. The reaction plate was centrifuged for a quick 

spin. Clean resin was carefully spooned out (~3 spoonful’s) onto a clean, dry dimple plate 

(that is mirrored to the 96 well reaction plate). Starting at one end a scraper was used to 

spread the Clean Resin out along the dimple plate. It was made sure that all necessary wells 

(depending on the sample number) were filled with the Clean Resin. Excess Clean Resin 

was scraped off and was returned to the stock container. The resin plate was dried for 10-

12 minutes at room temperature. While the resin was drying, 41 µL of HPLC molecular-

grade water was added to each well of the reaction plate and was centrifuged at 2500 g for 

1 min. When the resin plate is dried, the reaction plate was gently inverted. The reaction 

plate was aligned with the resin plate to ensure resin would be in each reaction well. By 

tightly pressings the reaction and resin plates together, both plates were inverted so the 

resin dropped out of the dimple plate and into the reaction plate. If the resin did not come 

out of the resin plate, the plate was tapped until it fell out. The resin plate was dimple plate 

was removed and cleaned. The reaction plate was sealed firmly and then rotated for 15-45 

mins at room temperature. The rotator rotated the reaction plate along a 360° axis. Once 

the rotation was complete, the reaction plate was centrifuged for 5 mins at 2000g.  

2.8 Nanodispensing iPLEX Assay samples onto chips  

In this step of the procedure the reaction mix was dispensed onto the MassARRAY chip. 

The supply and waste tanks and ultrasonic wash supply bottle was checked to confirm that 

the Agena Nanodispenser was ready for use. From the Nanodispenser computer home 

screen the “Tools” icon. “Sonicator Drain” was selected, which drains the 100% ethanol 
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the pins were soaking in. “Sonicator Fill” was then selected, this moves the pins out of the 

a=way to get the container. The container was then removed and filled with 50% ethanol. 

The container is then inverted and put back into place. The pins are then cleaned 5 times 

with the 50% ethanol that was just placed in the container in the machine. Once this was 

completed “soak” was selected. The “Tools” icon was selected again and the 6-pin format 

was selected. 

2.8.1 Mapping 

The mapping step was used to make sure that the Nanodispenser dispenses the reaction 

mix in the appropriate place on the chip. The “Mapping” icon was selected and a new 

mapping method was created and was used for the all runs completed. In the mapping 

methods. “Tuning” was selected. The 96 well plate (96 MTP) to 96 spectochip-1 was 

selected using a 6-pin format.  

2.8.2 Method 

The method stage purpose was to ensure that the proper methods are used to ensure the 

Nanodispenser is working optimally as well as in a standard procedure. From the home 

screen, the “Method” icon was selected and a new method was created and used for the 

remaining runs. Under the first tab “setup”, sample tracking was not selected, auto-tuning 

was enabled and a target volume was selected at 14 nL, and the Volume check was enabled 

with a lower limit of 8 nL and an upper limit of 18 nL. Under the second tab which was 

“cleaning set-up” the following was selected; pre-rinse, wash, post-rinse, dry (pre), dry 

(wash), and dry (post) which a pre-transfer cleaning cycles of 5. The rinse time was 3.5, 

the wash 5 and the 0.2 for dry. Under the third tab “aspiration/dispensing” in the operation 

section: analyte and calibrant was selected, the spotting was selected as wet, the calibrant 
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section was adjusted to a dispense of 1 and a speed of 150. The aspirate settings were 

adjusted to a time of 5, offset of 6.75 and speed of 60 and the dispense setting were set at 

a time of 0.2 and an offset of 1.0 and a speed of 100 – it was very important that these 

settings were kept at these values to ensure optimal volumes dispensed onto the chip.  

2.8.3 Transfer 

At the transfer stage the Nanodispenser transferred the reaction mix onto the chip. The 

chip’s package was open carefully lifted out of the package and placed in the upper left slot 

with the barcode facing forward. The calibrant was brought to room temperature and 60µL 

was added to calibrant holder and placed in the Agena Nanodispenser. The reaction plate’s 

film was removed using the special technique discussed above and placed in the plate rack 

with the title A1, which was on the left side. It was confirmed that the reaction plate was 

securely placed in the plate rack. The created “Method” file was then opened and then 

“Run” was selected. It was then confirmed that the Agena Nanodispenser’s rinse station 

was operating. Once this was completed the run was initiated. Volumes and speed volumes 

were monitored during the spotting by selecting the tuning and volume tabs. 

2.9 Chip Linker 

The purpose of the Chip Linker step was to ensure that the Nanodispenser Chip layout is 

imported onto the MassARRAY, so the software can connect the Genotyping result with 

the Sample ID. The plate that was going to be run on the MassARRAY was selected on the 

left-hand side of the screen. Selected the Terminator chemistry as “iPLEX”, the process 

was selected as “Genotype + Area”, the dispenser was selected as 96-96 and the experiment 

name corresponded to the project which was “LBP”. The Chip Barcode for Chip Linker 
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was the barcode provided on the chip. This was saved. Chip Linker connects the plate 

information to the MassARRAY. 

2.10 SpectroAcquire 

At the SpectroAcquire step the MassARRAY genotyped the samples. The MassARRAY 

machine was opened and the stage was taken out of the machine. The chip that needed to 

be run was placed into the stage onto slot 1, if only one chip was being run a blank chip 

was placed onto slot 2. The stage was then placed back into the machine and then sent into 

the MassARRAY machine. The SpectroAcquire program was then selected on the desktop 

and the tab “Automatic run set-up” was selected. A “Barcode Report” then confirmed that 

the machine had the right information. The status of the machine was checked in order to 

ensure that the pressure within the machine had stabilized (this usually elapsed to be 10 

mins). Then “Autorun” was selected and the MassARRAY initiated the run.  

2.11 Plate Data Analysis  

2.11.1 Typer 4 – Typer Analyzer  

First pass data analysis was performed using the Typer 4 software specifically the “Typer 

Analyzer” program. Once Typer Analyzer was opened, the Assay of interest was selected 

under the “Chip List” section on the right-hand side of the program. Using the “Traffic 

Light pane” NTC’s were selected to determine if there were any genotyping calls in these 

controls. Then each SNP’s assay was examined in the “Post Processing Clusters” 

specifically the “Call Cluster Plot” to determine how the assay was clustering, the height 

of the peaks and the SNR of each assay. This was first completed by analyzing the high 

mass peak height vs. low mass peak height (log axes) and then yield vs. skew plot was 

analyzed to determine if the assay had sufficient yield and was performing adequately. 
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While analyze this Call Cluster Plot, the Detail pane was analyzed for the samples selected 

showing peak height, SNR and call probability. Calls that clustered far out of cluster from 

the other calls of that specific genotype and samples that had low SNR and low peak heights 

were manually changed to a “No Call” distinction. All changes were recorded in a log book 

and the software changed the call description to a “User Call”. See next section for detailed 

calling algorithm.  

2.11.2 Genotype Calling Decision Tree 

A variety of Quality Control metrics were applied to the genotyping calls for the samples 

used in this project. This Genotyping calling decision tree metrics were determined by 

reviewing trends and investigating this projects assay, as well as 4 other assays 

performance on the MassARRAY platform. This was done as a collaboration by Memorial 

University and Eastern Health’s Medical Genetics Laboratory. It was important to 

determine a calling algorithm that would give trusted results. Figures outlining this calling 

decision tree are below (Fig 2.2, 2.3, 2.4). Agena Biosciences was contacted and specific 

metrics of the Typer 4 software was outlined and based on this information the decision 

tree quality metrics. The first decision in this genotyping calling decision tree was “Call 

Description”. This metric encompasses many different quality control metrics such as peak 

height, Signal to Noise Ratio (SNR), Call Probability and Distribution to give a qualitative 

standard. The next standard that had to meet was peak height, followed by SNR, then Peak 

Height Ratio (ΔPH). 15 out of the 18 assays followed the genotyping decision tree in Figure 

2.2. After reviewing the data extensively and comparing these metrics three assays required 

different genotyping calling decision trees, this was based on assay performance and 



 98 

genotyping clustering. One SNP (rs6871626) followed Figure 2.3, while two SNPs, 

(rs1265163 and rs6457374) followed Figure 2.4. 
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Figure 2.2: SNP Genotyping Calling Decision Tree for 15 out of 18 SNPs in assays 
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Figure 2.3: SNP Genotyping Calling Decision Tree for rs6871626. 
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Figure 2.4: SNP Genotyping Calling Decision Tree for rs1265163 and rs6457374. 
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2.11.3 Plate Data Pane formatting  

The Plate Data Pane was accessed for each experimental plate processed. This was done 

by accessing Typer 4 and opening the Plate Data Pane on the display browser. Once the 

Plate Data Pane was opened it was copied and pasted into an excel document and saved 

individually. All Plate Data Panes for every experiment were then combined on the basis 

of 4 categories; Discovery LBP_1W well, Discovery Cohort HLA well, Validation Cohort 

LBP_1W well and Validation Cohort HLA well. Once the Plate Data Panes were combined 

into these categories they were processed on the basis of the above quality control metrics. 

The data was first filtered, then each rs number was separated onto its own sheet within 

each category document. Once the quality control metrics were applied all un-necessary 

information was removed. The only information that was left was rs number, genotyping 

call and sample ID. All samples with less than 95% genotyping information were removed 

from the analysis.  

2.12 Assay Optimization 

2.12.1 Discovery Optimization  

Before the Discovery Cohort was initialized the assay was optimization. The quality 

control metric that was used for optimization was peak height. A cohort of case samples 

was used for this optimization. These samples were all run twice by two different users 

(Amanda Dohey and Rebecca Power). A summary peak height table was constructed which 

was separated by each rs number and each call (Homozygous wild-type, homozygous 

mutant and heterozygous). Under each rs number heading the peak heights were 

summarized via average, standard deviation, minimum and maximum (See results section 



 103 

3.3).  Each rs number was examined and it was determined that three rs numbers did not 

meet quality control metrics. These rs numbers were rs1265163 (HLA-B*60), and rs582757 

(TNFAIP3), rs6871626 (IL12B). rs1265163 had a low yield, meaning a high proportion of 

un-extended primer was leftover in the reaction. From a literature review and reviewing 

the Agena standard protocol this was indicative of a low PCR efficiency reaction. 

Therefore, 50% more PCR primer was added to a 1mL PCR primer mix for rs1265163 

(2.5uL for each forward and reverse primer). Both rs582757 and rs6871626 had low peak 

heights, from experience and review of the Agena standard protocol 50% more extend 

primers were added for each rs number. Rs6871626 was a low mass extend primer and 

rs5872757 was a medium mass extend primer, therefore there was a different volume added 

to the extend primer mix. These adjustments were made and then tested on the same cohort 

of samples and there was a marked improvement in the performance of all three rs numbers. 

This analysis was completed in Microsoft Excel and Typer 4. 

At the end of the discovery section genotyping two SNPs were removed from the panel as 

they were removed. Two SNPs were included for both HLA-B*27 and HLA-Cw6 variant. 

It was only necessary to include one SNP for each variant therefore the best performing 

SNP for each was chosen (See results section). Rs4349859 was chosen for HLA-B*27 as it 

performed excellently with high yield and signal. Rs887466 was chosen for HLA-CW6 as 

it was the tag SNP not an LD one like rs10456057, and it performed excellently with high 

yield and signal. These changes made the LBP_1W into a 13-plex reaction from a 15-plex 

reaction.  
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2.12.2 Validation optimization 

Once the discovery cohort genotyping was completed, summary tables were constructed 

(see tables in results section 3.3). Similar to the discovery optimization, peak heights were 

determined to be the quality control metric for optimization.  

2.12.2.a HLA-B60 optimization 

Rs1265163 performed poorly in the discovery cohort genotyping. Many samples fell below 

quality control metrics and had to be repeated. Agena was consulted about the issue. 

Agena’s response was that the extend primer for rs1265163 had low ionization efficiency. 

This extend primer had an enrichment of thymine’s, this enrichment of thymine’s gives the 

primer a positive charge causing difficulties with the ionization ability. Furthermore, 

causing the primer not to fly as high on the MassARRAY causing low peak heights. This 

function cannot be controlled for on either of Agena’s assay design software platforms, 

ADS or Typer 4 Assay Designer. Agena recommended to redesign the extend primer 

stating a combination of a poor PCR reaction and low ionization efficiency of the extend 

primer caused a poor reaction. Since the original extend primer was designed in the reverse 

direction, Agena suggested to design a primer in the forward direction. This change can be 

made by entering the original design in ADS, selecting “Current input: View”, then 

selecting “SNPs” next to the SNP of choice (rs1265163). A window will appear and option 

for the direction of the extend primer will be available, by selecting forward, the primer 

will only be designed in the forward direction. The subsequent design, also designed new 

PCR primers for this new extend primer (see Table 2.24 below). The new primer set was 

named rs1265163F (F for forward) and the old primer set was named rs1265163R (R for 
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reverse). These primers followed the same quality control metrics as previously outlined 

in methods section 2.3.4.  

Table 2.24: Replication HLA-B*60 Optimization PCR Primers 

rs1265163 
Primer 
Direction 

Amplicon 
length Forward PCR Primer Reverse PCR Primer 

Reverse 103 
ACGTTGGATGAGAAACT
GGCACATCCAAGG 

ACGTTGGATGTAACCTGA
CAGGTGTTCTCG 

Forward 117 
ACGTTGGATGTAACCTG
ACAGGTGTTCTCG 

ACGTTGGATGACTACTCT
TCCCCCAGAAAC 

 

In order to compare the performances of the new primers we made 2 experimental groups 

in order to determine the effectiveness of the new primers. Two groups to determine the 

performances in the LBP_1W well.  

For the LBP_1W well, the original reaction was a 13-plex reaction. The first group had 

both rs1265163 primer sets in it (forward rs1265163 and reverse rs1265163). The group 

was titled “Original 13-plex + New Primer (14-plex)”. The second group only had the new 

rs1265163F primer set, it was titled “New Primer 1W (13-plex)”. (See Figure 2.25) 
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Table 2.25: LBP_1W HLA-B*60 Variations experimental group's comparison. 

 

PCR primer mixes were made and a new extend primer adjustment was completed for all 

experimental groups.  The first round of analysis on the optimization was performed on 22 

case samples that had genotyping information from the discovery cohort. Two separate 

runs on different dates of the four groups were run. 11 samples were replicated for each 

experimental group for each separate run (See Tables 2.26, 2.27, 2.28).  
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Table 2.26: Peak Height Comparisons of LBP_1W well Optimization Experimental Groups for 
Homozygous Wild-Type Call 

See description in text above  

  
Original 13plex + New 

Primer (14-plex) 
New Primer 

(13 plex) 
Sample Id Call rs1265163 F rs1265163 R rs1265163 F 
NF_AS_001_0001 C 10.6 11.1 9.4 
NF_AS_002_0001 C 10.9 18.9 14.9 
NF_AS_003_0001 C 13.8 23.4 6.8 
NF_AS_004_0001 C n/a n/a 12.2 
NF_AS_006_0001 C 16.6 24.3 n/a 
NF_AS_005_0001 C 11.7 21.7 13.4 
NF_AS_009_0001 C 10.1 17.7 17.6 
NF_AS_010_0001 C 13.8 21.3 9.0 
NF_AS_012_0001 C 10.1 20.7 15.4 
AS_NF_122-0001 C 7.7 9.6 7.5 
AS_NF_132-0001 C 9.2 8.9 8.9 
 AVG 11.5 17.8 11.5 
 SD 2.5 5.5 3.5 
 MIN 7.7 8.9 6.8 
 MAX 16.6 24.3 17.6 

 

Table 2.27: Peak Height Comparison on LBP_1W well Optimization Experimental Groups for 
Homozygous Mutant Comparisons. 

See description above in text.  

  
Original 13plex + New 

Primer (14-plex) 
New Primer 

(13 plex) 
Sample Id Call rs1265163F rs1265163R rs1265163F 
NF_AS_030_0001 G 11.6 18.3 10.9 
1-0340 G n/a n/a n/a 
1-0436 G 4.5 11.6 6.3 
 AVG 8.0 15.0 8.6 
 SD 3.5 3.4 2.3 
 MIN 4.5 11.6 6.3 
 MAX 11.6 18.3 10.9 
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Table 2.28: Peak Height Comparison on LBP_1W well Optimization Experimental Groups for 
Heterozygotes Comparison 

See description above in text.  

  
Original 13plex + New Primer (14-

plex) New Primer (13 plex) 
Sample Id Call rs1265163F rs1265163R rs1265163F 
NF_AS_007_0001 CG 4.1 5.5 4.1 5.8 4.5 4.6 
AS_NF_127-0001 CG 3.4 6.0 7.8 8.6 2.2 4.1 
AS_NF_138-0001 CG 2.2 3.6 n/a n/a 5.1 3.0 
AS_NF_144-0001 CG 2.0 2.8 3.5 4.7 3.5 3.0 
AS_NF_148-0001 CG n/a n/a 4.1 3.3 n/a n/a 
AS_NF_165-0001 CG 4.1 5.6 5.6 7.0 n/a n/a 
AS_NF_191-0001 CG 2.6 4.7 5.4 4.6 3.2 4.8 
AS_NF_203-0001 CG 2.5 3.4 2.0 3.0 3.7 4.3 
 AVG 3.0 4.5 4.6 5.3 3.7 4.0 
 SD 0.8 1.2 1.7 1.9 0.9 0.7 
 MIN 2.0 2.8 2.0 3.0 2.2 3.0 
 MAX 4.1 6.0 7.8 8.6 5.1 4.8 

 

The conclusion from this comparison between the “Original 13plex + New Primer (14-

plex)” group and the “New Primer (13-plex)” group, was that the primer set rs1265163F 

consistently performed poorly compared to the original primer set rs1265163R. Therefore, 

the option to have the primer set rs1265163F was eliminated. It was noticed that 

rs1265163R performed significantly better when in a well with rs1265163F’s primer set. 

From this observation, it was determined to keep rs1265163F’s PCR primers as these PCR 

primers significantly boosted rs1265163R’s performance. To conclude the final 

combination of primers for the LBP_1W well was rs1265163R and rs1265163F’s PCR 

Primers and only rs1265163R’s extend primer.  
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2.12.2.b Extend Primer concentration changes  
 

Once optimization of the HLA-B*60 primers was completed there was still other variants 

that needed to be optimized. A new extension mix calculation was released from Agena 

when the Discovery cohort was complete. This extension mix had a higher concentration 

of extend primer in the mix and a lower amount of water. This change is illustrated in the 

Figure 2.5 below; this was an 18% increase in the extend primer mix in the total extension 

mix.  

 

Figure 2.5: Changes in Extension Mix Calculation. 

Abbreviations same as Table 2.22  

 

In order to test that this change was beneficial for the assay. Both wells were tested using 

22 samples from the discovery cohort (these were different samples than were used in the 

replication optimization). Both wells were tested in the original extend primer 

concentration and the new extend primer concentration. For the LBP_1W well there was 

increased peak heights using the new extend primers concentration. This was measured by 
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comparing the same samples with the old extend primer concentrations versus the new 

concentration (Table 2.29). For the HLA well there was no observed improvement or 

benefit (Table 2.30). A decision was made to use the increased extend primer concentration 

for the Replication phase. A decision was made to also use the increased extend primer 

concentration, as to be consistent with the other well. 
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Table 2.29: Peak Height Comparison Table of New Extend Mix Primer Concentrations vs. Original Primer Mix Concentrations for LBP_1W. 

Row with Reg (Regular) means original extend primer concentration, row with 18% + means extend primer concentration 
increased by 18%. Less than 7 and than 3.5 means number of samples that feel below this metric. Highlighted in yellow were 
minimums that fell below these metrics and Highlighted in blue are Averages that were below 10 for Homozygotes and 5 for 
Heterozygotes. Count meant number of samples per genotype. 
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See description of Table 2.30 

 

 

 

 

 

 

Table 2.30: Peak Height Comparison Table of New Extend Mix Primer Concentrations vs. Original Primer Mix Concentrations for 
HLA well. 
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2.13 Algorithm construction 

The genetic-based screening algorithm, statistical analysis and machine learning were 

programmed by Dr. Quan Li using the IBM cluster at the Centre for Health Informatics 

and Analytics (CHIA) at Memorial University Faculty of Medicine.  

2.13.1 F-Score Analysis  

Each maker included in the algorithm was interrogated for how discriminative it was at 

predicting disease individually. This was done using an F-Score Analysis for the 

discrimination between the affected and un-affected samples. Given training vectors Xk, k 

= 1, ..., n, if the number of affected and un-affected samples are n+ and n−, respectively, 

then the F-score of the ith marker is defined as: 

 

 

Where    are the average of the ith marker of the whole, affected, and un-

affected samples, respectively. The larger the F-score means the marker is more 

discriminative.  
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2.13.2 Machine Learning  

Machine Learning methods are algorithms that can learn over time and make intelligent 

decisions that they were not explicitly programmed to do so. For this genetic-based 

screening algorithm a decision tree model was chosen. In machine learning, decision 

trees can easily show the process of interpretation and the structure of the decisions 

within the tree, making this model a good candidate for a strategic screening process. 

The decision tree model was programmed in C/R using the J48/C5.0 decision tree model 

using a supervised learning technique. The first branch in the tree was HLA-B*27 status. 

It was decided that this would be the first decision as HLA-B*27 is the most 

discriminative and significant genetic variant to SpA. This was coded in a dominance 

inheritance form, with A/G or A/A as positive and G/G as negative. Once the model 

programming was complete, reduced-error based global pruning was applied to prevent 

overfitting the model.  

First, a machine learning decision tree algorithm was performed for the discovery cohort. 

For the programming the cohort was subdivided into a training set (80%) and a testing set 

(20%) during 5-fold cross validation. Then another machine learning decision tree 

algorithm was separately programmed for the validation cohort. A similar subsetting of 

the cohort was also applied. Once both the discovery and validation cohort’s training 

were completed they were compared the performance with F-measure and precision and 

it was determined that both of the training precisions and F-measure were equally 

comparable and high enough (both > 0.6) for the two cohorts to be combined.  
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In machine learning, the sample complexity is concerned with the performance of 

learning. In some cases, small sets of samples could not cover most of the domain of the 

data knowledge. Commonly, larger sample sizes are better than smaller one, as 

performance tends to increases with the size of the cohort. This was the main reason for 

the cohort combining in this project.  For the cohort combining, first, the discovery cohort 

was used as the training set and the validation cohort was used as the testing set. For this 

considerable performance was obtained.  Then we combined both the discovery cohort 

and validation cohort for the final tree model training. For the performance of combing 

cohort, we also randomly chose the 80% samples as training set and 20% as test set.  For 

the combined cohort algorithm, the programming went one step further and markers 

voting weights were applied. The voting weights were based on the confidence its 

confidence value, the highest total vote is chosen as the final prediction. 

When the final genetic-based screening algorithm was programmed the sensitivity (true 

positive (TP) rate), specificity (1.0 - false positive (FP) rate), precision (positive 

predictive value, TP/(TP+FP) ), F-Measure and ROC were measured. Widely accepted 

performance measures can be derived from the following quantities;  

(1) TP, the number of correctly classified as affected  

(2) TN (True Negative), the number of correctly classified un-affected 

(3) FP, the number of incorrectly classified as affected 

(4) FN (False Negative), the number of incorrectly classified un-affected 
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 The F-measure (highest value of 1 and lowest value of 0) was defined as the harmonic 

mean of precision and recall:  

 

 

Also by varying the threshold, a receiver operating characteristic (ROC) curve can be 

obtained by plotting true positive rate against false positive rate. The area under the ROC 

curve (AUC) can be used as a reliable, threshold-independent performance measure. The 

ROC curve of a random predictor had an AUC of 0.5 and of a perfect predictor has an 

AUC of 1.0.  
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Chapter 3!Results  

3.1 Participant Info  

All case participants in this study had been previously diagnosed by a Rheumatologist 

(Please see Methods Section). Participants that were included had 100% genotyping 

information for the 18 SNPs. In the discovery cohort 1075 samples were used (593 cases, 

482 controls). In the validation cohort 943 samples were included (578 cases, 365 

controls) (Table 3.1).  

Table 3.1: Participant Ascertainment and Population Size. 

The following table illustrates the number of participants from each ascertainment site that were 
included in the genetic-based algorithm. In addition, for the case participants the percent of males 
is included as well as the age of diagnosis. 

Participant ascertainment 

Control Case 

N N Percent Male (%) Mean Age at Diagnosis 

Newfoundland & Labrador 388 99 0.75 35 

Ontario 95 495 0.72 31 

Alberta 365 578 0.73 24 

Total 848 1172 0.73 28 

 

3.1.2 Case Participant Clinical Info 

All case participants in this study had been diagnosed by a Rheumatologist (Please see 

Methods Section). Case samples that were ascertained from the University of Toronto 

have detailed clinical info. Specifically, these samples have HLA-B27 status, C-reactive 

protein levels and info on if the patient has an extra-articular manifestations such as; 
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Iritis, Psoriasis, Cardiac Disease, Ulcerative Colitis, and or Crohn’s Disease. Further 

details noted in Table 3.2.  

Table 3.2: Clinical Information of Case Study Patients. 

This info was ascertained by the Rheumatology Clinic at the University of Toronto. n/a means not 
applicable to certain category in table. 

Clinical 
Information  Count Positives  

Frequency in 
cohort (%) AVG 

HLA-B27 Status  440 334 75.9 n/a 

Iritis 462 142 30.7 n/a 

Psoriasis  460 45 9.8 n/a 

Cardiac disease 461 128 27.8 n/a 

Ulcerative Colitis 462 27 5.8 n/a 

Crohn's Disease 462 35 7.6 n/a 

CRP Level 450 n/a n/a 13.8 

 
3.2 Assay Optimization 

3.2.1 15-plex assay – 1 well vs. 2 well design 

Across all assays for every rs number in the 15-plex reaction, the 2 well design had 

higher peak heights (Table 3.3). However, the 1 well design with the assay optimization 

met the quality metrics for peak heights outlined in the methods section. In addition, upon 

further inspection using Typer IV Analyzer, one rs3132528 (HLA-B*44) had abnormal 

clustering on the “Call Cluster Plot” of the “Post Processing Clusters” (Figure 3.1). This 

abnormal clustering occurred in homozygote samples with the genotype CC, these 

samples clustered near the heterozygote axis of the plot. This clustering made it difficult 

to determine the genotypes of certain samples. For an illustration of the abnormal cluster 
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please refer to Figure 3.1 of the 2 well design which is the Typer IV Call Cluster Plot. 

Refer to Figure 3.2 for the Call Cluster Plot of the same assay and samples in the 1 well 

design. Another reason why the 1 well design was chosen over the 2 well design was that 

the 1 well design had a significant reduction of cost and labour. For these reasons the 1 

well design was chosen over the 2 well design for the 15-plex reaction and the name of 

the well was then labelled LBP_1W. 
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Table 3.3: Peak Height Comparison of 1 well design vs. 2 well design. 

Abbreviations; Average (AVG), Standard deviation (SD), Minimum (MIN) and Maximum (MAX). Cells of table Highlighted in Blue are 
metrics for the 1 well design assay. 
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Figure 3.1: Typer IV Analyzer Call Cluster Plot for rs3132528 (HLA-B*44) for 2 well design. 
Illustration of the abnormal clustering of the assay, as genotypes clustering near heterozygote 
zone.    
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Figure 3.2: Typer IV Analyzer Call Cluster Plot for rs3132528 (HLA-B*44) for 1 well design. 

Illustration shows clustering of genotypes near the homozygous axis.  
 

 



 123 

3.2.2 Gold vs. Pro iPLEX Regeant Kit 

The Gold iPLEX regent kit is the more economical version of the regent set offered by 

Agena Biosciences. Using the Gold Regent kit offers a significant cost reduction than 

using the PRO regent kit. The difference between the kits is the extension enzyme 

(iPLEX Enzyme) used in the extend phase of the reaction. Agena Biosceicences states 

that these two product kits perform the same task.  

Both kits had sufficient peak heights for the criteria established (Table 3.4 and 3.5). The 

iPLEX Pro Reagent kit had a higher average peak height in the majority of assays. A 

major problem was encountered with the Gold regent kit it was found that there were 

genotyping inconsistency. See Tables 3.6 and 3.7 below for disconcordant of Genotyping 

errors with Gold Kit. There were two errors which occurred in rs2853931 in the HLA 

well (Table 3.6) and rs2066844 in the 15-plex well (Table 3.7). All samples compared 

were run using both Gold and Pro and had been previously genotyped by the most recent 

AS GWAS study. These samples were then cross referenced with the ASGWAS study 

results, and the pro results. The PRO results were concordant with the AS GWAS 

microarray results.  

Agena Biosciences was contacted and the company stated that in the past the Gold regent 

kit has yielded incorrect results and that the PRO kit is superior. Since there were major 

genotyping errors, the PRO Kit was chosen for genotyping this project.  
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Table 3.4: Peak Height Comparison of Gold iPLEX Reagent Kit vs. PRO iPLEX Reagent 
Kit for HLA well. 

Only 4 assays were compared in the HLA well, as rs2853931 had 3 discrepant calls between the 
kits. Highlighted cells in yellow represent the kit that had the higher peak height average. The 
PRO iPLEX Reagent Kit had higher peak height averages in 12 out of the 14 comparisons. 

 

 

 

 

 

 

 

rs2853931 rs3129944 rs4349859 rs6457374 rs887466
LD#with#HLA*
B*3906 HLA*B*3801 HLA*B*2705 HLA*B*0801 HLA*C*0602

AVG/ 45.8 35.0 34.3 26.2 66.1
MIN 22.4 11.8 3.9 12.7
AVG 52.8 42.0 57.2 30.5 34.5
SD 28.2 19.9 24.8 18.5
AVG/ 67.8 42.0
MIN 21.6
AVG 45.6 52.3
SD 43.7

AVG/1/ 19.9 20.1 19.1 10.9 22.2
MIN#1# 7.5 9.1 2.4 6.5 9.2
AVG/2/ 19.0 14.7 15.0 10.5 20.5
MIN#2# 8.0 7.7 2.2 5.1 7.5
AVG/1/ 26.4 24.2 26.0 12.4 27.3
MIN#1# 19.1 16.4 15.1 10.7 18.1
AVG/2/ 25.5 25.4 27.2 21.5 30.2
MIN#2# 18.7 14.7 8.1 17.5 18.8

GOLD
Homo/
WT

PRO
Homo/
WT

GOLD
Homo/
Mutant/

PRO
Homo/
Mutant/

GOLD Hetero/

PRO Hetero/
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Table 3.5: Peak Height Comparison of Gold iPLEX Reagent Kit and PRO iPLEX Reagent Kit for LBP_1W well. 

Only 14 out of the 15 assays were compared in the 15-plex well, as there were discrepant genotyping calls between kits. Peak height 
averages for this Cells with red font are highlighted because in this assay one or more fell below the quality control metric set at the time 
of experimentation. Abbreviations same as Table 3.3 and Description for highlighting same as Table 3.4. 

 

 

rs10456057 rs10781500 rs10782001 rs11209026 rs116488202 rs1265163 rs2032890 rs2066844 rs2910686 rs3132528 rs33980500 rs582757 rs6738490 rs6759298 rs6871626

LD#with#CW6 CARD9 FBXL19 IL23R HLA6B*2705 LD#with#B60 ERAP1 CARD15/NOD2 ERAP2 LD#with#B44 TRAF3IP2 TNFAIP3 ATG16L1
intergenic#

2p15# IL12B

AVG0 19.8 27.0 9.9 35.3 12.9 11.2 8.3 16.3 25.2 26.8 33.0 11.8 26.0 20.4 11.3
MIN 13.0 19.9 9.6 22.0 8.1 6.6 5.6 11.2 18.4 18.5 22.2 19.8 12.5 5.2
AVG 17.6 24.3 14.8 37.4 20.6 7.5 23.9 18.4 27.2 27.8 28.4 11.5 18.4 21.8 9.6
MIN 8.8 15.4 5.9 14.8 16.1 2.5 11.3 8.5 18.1 16.0 16.1 16.8 6.6 6.0

AVG0 18.4 5.1 21.6 25.1 32.8 34.5 12.3 26.8 21.0 7.7
MIN 14.4 3.4 15.9 19.2 19.9 21.9 3.9 17.8 17.6 5.5
AVG 20.4 15.0 19.3 28.2 35.8 28.9 14.1 25.1 23.7 13.0
MIN 15.9 14.5 8.7 22.1 23.7 12.5 8.4 17.2 16.8 10.6

AVG010 6.6 14.0 4.3 23.7 13.2 7.7 14.5 17.9 12.1 8.6 14.0 10.5 6.3
MIN#1# 4.7 9.1 1.5 9.4 4.9 8.6 4.1 8.2 7.4 4.0
AVG020 14.5 9.6 3.3 16.9 10.4 5.1 9.7 7.2 8.7 6.3 13.9 10.4 5.0
MIN#2# 11.1 5.8 1.7 8.2 3.2 3.6 2.8 9.9 6.7 3.3
AVG010 6.0 11.5 8.2 13.5 12.8 11.1 12.1 6.7 8.0 14.1 9.4 5.9
MIN#1# 4.7 5.3 4.9 8.8 8.1 4.4 5.1 6.5 6.8 3.0
AVG020 12.3 10.1 8.1 13.7 10.3 11.1 13.0 8.0 8.2 13.1 10.5 4.5
MIN#2# 9.9 5.0 5.8 7.0 6.5 5.2 5.3 5.4 7.5 2.6

PRO
Homo#
Mutant#

GOLD Hetero#

PRO Hetero#

GOLD Homo#WT

PRO Homo#WT

GOLD
Homo#
Mutant#
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Table 3.6: Discrepant iPLEX Gold Reagent Kit Genotyping for HLA well rs2853931 (HLA-
B*39). 

Comparison between Gold Reagent Kit, Pro Reagent Kit and Microarray Genotyping calls. 
Microarray and iPLEX Pro Reagent Genotyping was concordant. 

    Gold Reagent Kit  PRO Reagent Kit 

Sample ID 
Microarray 
Genotype Call 

Peak 
Height - 

T 

Peak 
Height - 

C Call 

Peak 
Height - 

T 

Peak 
Height - 

C 

AS_NF_017-0001 TT TC 27.4 24.2 TT 50.4 1.5 

AS_NF_036-0001 TT TC 22.0 17.6 TT 77.8 2.2 

AS_NF_040-0001 TT TC 29.1 24.9 TT 37.6 0.8 

 

 

 

Table 3.7: Discrepant iPLEX Gold Reagent Kit Genotyping for HLA well rs2066844 
(CARD15/NOD2). 

Comparison between Gold Reagent Kit, Pro Reagent Kit and Microarray Genotyping calls. 
Microarray and iPLEX Pro Reagent Genotyping was concordant. 

    Gold Reagent Kit  PRO Reagent Kit 

Sample 
ID 

Microarray 
Genotype Call 

Peak 
Height - 

C 

Peak 
Height - 

T Call 

Peak 
Height - 

C 

Peak 
Height - 

T 

P-789 CC CT 5.2 3.7 CC 13.5 0.0 

P-792 CC CT 4.6 3.3 CC 20.1 0.0 
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3.3 Quality Control Metric Analysis 

A series of quality control metrics were applied for genotype calling results as described 

in Methods section 2.11.  

3.3.1 Peak Height Summaries 

In the Tables below illustrate the peak heights for each rs number in both the LBP_1W 

well and the HLA well (Tables 3.8, 3.9, 3.10, and 3.11) for bot cases and controls 

combined by cohort. These tables have the peak height means, standard deviations, and 

range (minimum and maximum). These values were collected in order to monitor the 

quality of genotyping produced in each cohort.  
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Table 3.8: LBP_1W well Discovery Peak Heights. 

Same abbreviations as above Table 3.3 
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Table 3.9: HLA well Discovery Peak Heights. 

Same abbreviations as above Table 3.3 

      rs2853931 rs3129944 rs4349859 rs6457374 rs887466 

      

LD with 
HLA-

B*3906 
HLA-

B*3801 
HLA-

B*2705 
HLA-

B*0801 
HLA-

C*0602 

Homo 
WT 

Peak 
Heights 

AVG 33.7 30.0 29.0 28.8 38.7 
SD 14.6 13.2 14.5 16.9 16.4 

MIN 2.4 1.8 1.2 2.0 3.0 

MAX 92.7 74.7 72.1 64.6 81.9 

Homo 
Mutant 

Peak 
Heights 

AVG 31.0 29.6 30.6 27.1 41.4 
SD 13.1 12.5 12.1 13.9 18.9 

MIN 4.3 2.5 12.2 2.0 3.2 
MAX 59.5 60.1 55.1 75.2 108.2 

Hetero  
Peak 

Heights 

AVG 
1 15.4 14.3 13.9 11.2 18.1 

SD 1 7.3 6.5 6.8 6.5 8.0 
MIN 

1 1.2 1.1 0.9 1.0 1.3 
MAX 

1 37.5 35.1 51.9 40.0 48.6 
AVG 

2 14.4 14.6 13.9 14.8 20.4 
SD 2 6.8 6.6 6.6 8.2 9.1 
MIN 

2 1.2 1.0 0.7 1.1 1.2 
MAX 

2 35.66 42.3 36.6 45.1 54.0 
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Table 3.10: LBP_1W well Replication Peak Heights. 

Same abbreviations as above Table 3.3. rs11209026 only had one genotype call homozygous mutant for this cohort. 
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Table 3.11: HLA well Replication Peak Heights. 

Same abbreviations as above Table 3.3 
 

 

 

3.3.2 Signal to Noise Ratio Summaries  
 

The following illustrate the Signal to Noise Ratio (SNR) for each rs number in both the 

LBP_1W well and the HLA well (Tables 3.12, 3.13, 3.14, and 3.15) for both cases and 

controls by cohort. These tables have the SNR means, standard deviations, and range 

(minimum and maximum). These values were collected in order to monitor the quality of 

genotyping produced in each cohort 

   rs2853931 rs3129944 rs4349859 rs6457374 rs887466 

   

LD with 
HLA-

B*3906 
HLA-

B*3801 
HLA-

B*2705 
HLA-

B*0801 
HLA-

C*0602 

Homo 
WT 

Peak 
Heights 

AVG  40.4 30.9 29.7 34.9 49.5 
SD 25.8 21.4 22.2 22.4 31.9 

MIN 5.8 5.6 5.1 5.3 6.6 

MAX 130.7 102.4 139.1 108.2 153.8 

Homo 
Mutant 

Peak 
Heights 

AVG  30.6 29.4 45.9 31.6 43.6 
SD 19.5 22.7 33.4 20.1 26.7 

MIN 7.0 8.0 8.7 10.1 8.1 

MAX 89.7 100.0 122.0 89.4 153.9 

Hetero  
Peak 

Heights 

AVG 1  18.9 14.3 21.2 12.6 23.8 
SD 1 13.0 10.6 16.8 8.3 16.5 

MIN 1  3.4 2.9 2.7 2.8 4.2 
MAX 1 66.9 56.6 90.6 55.6 83.9 
AVG 2  17.3 14.7 22.3 20.4 27.0 
SD 2 11.5 10.7 17.8 14.2 19.6 

MIN 2  3.3 3.0 3.6 2.7 4.9 

MAX 2 61.8 55.2 89.7 74.0 95.4 
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Table 3.12: LBP_1W well Discovery Signal to Noise Ratio. 

Same abbreviations as above Table 3.3 
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Table 3.13: HLA Well Discovery cohort Signal to Noise Ratio. 

Same abbreviations as above Table 3.3 

 

   rs2853931 rs3129944 rs4349859 rs6457374 rs887466 

   

LD with 
HLA-

B*3906 
HLA-

B*3801 
HLA-

B*2705 
HLA-

B*0801 
HLA-

C*0602 

Homo 
WT 

Peak 
Heights 

AVG 94.5 72.8 64.4 71.3 95.6 

SD 21.4 18.6 17.0 19.5 21.0 

MIN 18.1 6.0 4.4 6.1 15.8 

MAX 142.1 120.1 110.1 123.1 149.9 

Homo 
Mutant 

Peak 
Heights 

AVG 89.1 77.2 75.2 72.4 107.3 

SD 18.4 19.7 9.7 22.6 25.9 

MIN 26.2 4.9 55.8 17.0 26.3 

MAX 132.7 113.8 90.8 119.0 177.1 

Hetero 
Peak 

Heights 

AVG 1 55.5 44.61 33.5 38.1 63.6 

SD 1 15.0 11.92 10.1 15.4 17.2 
MIN 1 8.6 2.79 3.6 8.0 7.0 

MAX 1 90.1 74.18 72.8 91.6 107.1 

AVG 2 50.6 41.0 38.7 49.0 64.6 

SD 2 13.4 11.0 11.1 17.5 16.1 

MIN 2  8.5 3.1 3.4 7.4 6.8 

MAX 2 79.2 70.3 66.9 91.4 109.5 
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Table 3.14: LBP_1W well Replication Cohort Signal to Noise Ratio. 

Same abbreviations as above Table 3.3 
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Table 3.15: LBP_1W well Replication Signal to Noise Ratio. 

Same abbreviations as above Table 3.3. 

   rs2853931 rs3129944 rs4349859 rs6457374 rs887466 

   

LD with 
HLA-

B*3906 
HLA-

B*3801 
HLA-

B*2705 
HLA-

B*0801 
HLA-

C*0602 

Homo 
WT 

Peak 
Heights 

AVG  84.0 58.3 59.0 66.9 82.1 
SD 16.8 17.3 10.3 12.8 15.5 

MIN 19.7 8.2 25.2 19.0 32.8 

MAX 127.2 104.4 93.0 101.4 129.8 

Homo 
Mutant 

Peak 
Heights 

AVG  76.0 66.6 67.2 70.5 84.6 
SD 15.1 13.5 15.9 10.6 14.3 

MIN 21.0 34.9 32.5 35.9 28.7 

MAX 114.5 98.7 92.9 94.2 126.5 

Hetero  
Peak 

Heights 

AVG 1  50.7 35.5 33.4 33.7 47.0 
SD 1 12.8 10.4 8.7 10.5 10.3 

MIN 1  9.9 4.3 9.3 12.1 14.9 
MAX 1 81.7 64.3 56.9 78.5 84.5 
AVG 2  45.8 32.8 40.1 52.0 52.0 
SD 2 11.1 9.9 9.9 12.8 10.4 

MIN 2  9.7 4.1 10.8 13.9 22.7 

MAX 2 71.7 60.1 66.9 84.0 96.1 
 

 

3.4 Genotype Frequency  

Allele frequencies were determined for the discovery cohort, the following Tables (Table 

3.16 And 3.17) show the allele frequencies for each variant in the discovery cohort.  
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Table 3.16 A and B: Case and Control Genotyping Frequencies HLA well for Discovery 
Cohort. 

A) Case genotypes for HLA well. B) Control Genotypes for the HLA well. Published MAF was 
accessed through the 1000 genomes project. Abbreviations: Homo WT: Homozygous wild-type 
genotype, Hetero: Heterozygous genotype, Homo Mutant: Homozygous mutant genotype.  
A 

 
 
B 

!

!

!

!
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Table 3.17 A and B: Case and Control Genotyping Frequencies LBP_1W well for Discovery 
cohort. 

A) Case genotypes for LBP_1W well. B) Control Genotypes for the LBP_1W well. The 
abbreviations are the same as the Table 3.16 
A 

 
 
B 

 
 

Allele frequencies were determined for the validation cohort, the following Tables (Table 

3.18 And 3.19) show the allele frequencies for each variant in the discovery cohort. 

Hardy Weinberg was calculated for each variant. 

 



 138 

Table 3.18 A and B: Case and Control Genotyping Frequencies for HLA well in Replication 
Cohort. 

A) Case genotypes for HLA well. B) Control Genotypes for the HLA well. The abbreviations are 
the same as the Table 3.16 
A 

 
 
B 
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Table 3.19 A and B: Case and Control Genotyping Frequencies for LBP_1W well for 
Replication Cohort. 

A) Case genotypes for LBP_1W well. B) Control Genotypes for the LBP 1W well. The 
abbreviations are the same as the Table 3.16 
A 

 
 
B 
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3.5 Concordance Analysis  
 

3.5.1 Genotyping concordance between Microarray genotyping and iPLEX Pro 
Genotyping  
 

A concordance analysis was completed using the results from the genotype results from 

this study and the genotype results from microarray genotyping information that was 

acquired from the previous AS GWA study. The rs numbers that were in both studies had 

100 percent genotyping concordance see Table 3.20 below.  

Table 3.20: Discovery Genotyping Concordance Analysis. 

Comparison of Case Genotyping information from Microarray genotyping and iPLEX PRO 
genotyping. 

rs number  Gene Cohort Concordance (%) 

rs10781500 CARD9 100 

rs11209026 IL23R 100 

rs2066844 CARD15/NOD2 100 

rs887466 HLA-C*0602 100 

 

3.5.2 Linkage Disequilibrium Validation Study  

The rs numbers that were in LD with rs numbers that were significantly associated with 

the axial SpA were compared. The LD rs numbers genotype data came from this study 

and the significantly associated rs numbers came from the microarray genotyping 

information from the previous AS GWA study. Please see the Table below for 

concordance percentages. (Table 3.21) 
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Table 3.21: Cohort Concordance between assays that were in LD in the assay design. 

The LD SNPs have a SNP that is associated at a genome-wide significance. 

rs number Genetic variant  LD rs number r² D' Cohort Concordance % 

rs2844603 HLA-B*3906 rs2853931 1 1 100 

rs1265110 HLA-B60 rs1265163 0.98 1 98.9 

rs3130501 HLA-B44 rs3132528 0.97 0.98 100 

 

3.5.3 Concordance between assays which were replicated in the design  

When the Discovery Cohort was genotyped there was two genetic variants that were 

replicated with two separate rs numbers. These genetic variants were HLA-B27 and HLA-

CW6. Both of these variants are very significantly associated with SpA, therefore it was 

important to capture the superior variant for the assay.  

For the HLA-CW6 the two rs numbers are not linked. The SNPs were compared to see if 

the results were concordant by comparing rs887466 and rs10456057. These genotypes 

were not concordant and were not in linkage disequilibrium. This is further illustrated by 

Table 3.22, if you observe the count for each genotype there are large differences in the 

allele frequency. Using the allele peak heights as a quality metric, rs887466 had higher 

average peak heights as compared to rs10456057. For these reasons the decision was 

made to only include rs887466 in the final panel. 
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Table 3.22: HLA-Cw6 Redundant Variants Peak Height and Allele Count Comparison. 

Less than 7 (%) and Less than 3 (%); indicates the percentage of samples that feel below this 
quality control metric. 

 

For the HLA-B*27 the two rs numbers were in linkage disequilibrium with r2 – 0.6 and 

D`- 0.77. These genotypes were somewhat concordant. Using the allele peak heights as a 

quality metric (Table 3.23), the rs4349859 outperformed rs116488202. Rs4349859 had a 

higher average of peak heights. In addition, after the Discovery cohort was complete it 

rs10456057 rs887466
LD#with#HLA*

CW6
HLA*

C*0602

AVG- 16.6 38.7
SD 7.0 16.4
MIN 1.0 3.0
MAX 47.3 81.9

Less-than-
7-(%) 8.9 3.5

1103 375
AVG- 41.4
SD 18.9
MIN 3.2
MAX 108.2

Less-than-
7-(%) 2

346
AVG-1- 5.3 18.1
SD-1 2.6 8.0
MIN-1- 1.0 1.3
MAX-1 16.7 48.6

Less-than-
3.5-(%) 21.8 2.0
AVG-2- 11.8 20.4
SD-2 5.6 9.1
MIN-2- 2.5 1.2
MAX-2 24.3 54.0

Less-than-
3.5-(%) 4.1 2.1

243 814Hetero#

Peak#
Heights

Count#

Homo#
Mutant

Peak#
Heights

Count#

Homo#
WT

Peak#
Heights

Count#
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was observed that some of the samples were clustering off axis. It was then found that 

some samples had a proximal SNP in the primer binding area causing this strange 

clustering. For these reasons the decision was made to only include rs4349859 in the final 

panel.  

Table 3.23: HLA-B*27 Redundant Variants Peak Height and Allele Count Comparison. 

Same description as Table 3.23 

 

 

 

 

rs116488202 rs4349859

HLA$B*2705
HLA$

B*2705

AVG/ 16.9 29.0
SD 6.7 14.5
MIN 0.8 1.2
MAX 44.1 72.1

Less/than/
7/(%) 7.6 5.6

896 972
AVG/ 15.9 30.6
SD 7.4 12.1
MIN 1.5 12.2
MAX 41.6 55.1

Less/than/
7/(%) 9.9 0

252 23
AVG/1/ 9.7 13.9
SD/1 4.9 6.8
MIN/1/ 0.7 0.9
MAX/1 27.9 51.9

Less/than/
3.5/(%) 8.4 4.3
AVG/2/ 7.8 13.9
SD/2 3.8 6.6
MIN/2/ 0.8 0.7
MAX/2 18.6 36.6

Less/than/
3.5/(%) 9.8 4.3

143.0 541Hetero/

Peak/
Heights

Count/

Homo/
Mutant

Peak/
Heights

Count/

Homo/
WT

Peak/
Heights

Count/
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3.6 F-score (Discrimination Testing) 

The F-score was used for the feature/markers selection to indicate the discrimination 

between the cases and controls. The larger of the F-score, the more likely this marker is 

more discriminative. This was completed using the Discovery Cohort. From the Figure 

3.3 of F-score, we can find the HLA-B*2705 and other HLA alleles are the most 

informative markers for individually predicting AS and axial SpA. This is the only figure 

of F-score analysis that will be published in this thesis as the remaining results and 

individual F-scores for this testing can not be published as it is apart of a patent 

application that is currently in progress.  
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Figure 3.3: F-score Analysis of Discovery Cohort. 

HLA alleles are the most discriminatory markers at predicting AS individually. All 18 markers listed on the x-axis.
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3.7 Machine Learning Algorithm  
 

A J48/C5.0. Decision tree model was applied independently on both the discovery and 

validation cohort samples to construct this tree. The decision tree uses each variant has a 

classifier. At each classifier a decision is made based on genotype and as each 

combination, each patient genetic information falls into a leaf which can give a risk score 

for how likely the person is to develop disease.  The tree is spilt into two portions the 

HLA-B*27 positive tree and the HLA-B*27 negative tree. The results will be presented in 

tables based on these two trees and via cohort (Discovery Tables 3.24, 3.25 and 

Validation Tables 3.26, 3.27).  Figure 3.4 shows a visualization of decision tree model for 

the discovery cohort. 

Table 3.24: Discovery HLA-B*27 Positive Decision Tree Results 

Disease Class  Sensitivity Specificity ROC F-Measure Precision 

Case 0.74 0.84 0.8 0.79 0.85 

Control 0.84 0.74 0.8 0.78 0.72 

Total 0.78 0.8 0.8 0.78 0.79 

 

Table 3.25: Discovery HLA-B*27 Negative Decision Tree Results 

Disease Class  Sensitivity Specificity ROC F-Measure Precision 

Case 0.21 0.91 0.58 0.30 0.50 

Control 0.91 0.21 0.58 0.81 0.73 

Total 0.70 0.43 0.58 0.65 0.66 
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Figure 3.4: Discovery Cohort Machine Learning Decision Tree Model. 

Grey leaves indicate cases and black leaves indicate controls. Nodes are Genes and each branch is the type of genetic variation of the node 
(the gene).  
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Table 3.26: Replication Cohort HLA-B*27 Positive Decision Tree Results 

Disease Class  Sensitivity Specificity ROC F-Measure Precision 

Case 0.76 0.86 0.82 0.82 0.90 

Control 0.86 0.76 0.82 0.77 0.70 

Total 0.80 0.82 0.82 0.80 0.82 

 

 

Table 3.27: Replication Cohort HLA-B*27 Negative Decision Tree Results 

Disease Class  Sensitivity Specificity ROC F-Measure Precision 

Case 0.08 0.93 0.53 0.14 0.34 

Control 0.93 0.09 0.53 0.80 0.70 

Total 0.68 0.34 0.53 0.60 0.60 

 

Both cohorts were then combined into one cohort. In order to make sure both of these 

cohorts were able to be combined multi-dimensional scaling was performed. This 

analysis showed that both cohorts were similarly distributed. The results for the combined 

cohort are displayed in Tables 3.28 and 3.29.  

Table 3.28: Combined Cohort HLA-B*27 Positive Decision Tree Results 

Disease Class  Sensitivity Specificity ROC F-Measure Precision 

Case 0.71 0.92 0.80 0.80 0.92 

Control 0.92 0.71 0.80 0.79 0.70 

Total 0.80 0.83 0.80 0.80 0.83 
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Table 3.29: Combined Cohort HLA-B*27 Negative Decision Tree Results 

Disease Class  Sensitivity Specificity ROC F-Measure Precision 

Case 0.03 0.97 0.50 0.05 0.31 

Control 0.97 0.03 0.50 0.81 0.70 

Total 0.69 0.32 0.50 0.58 0.58 

 

3.7.1. Additional Observations from Machine Learning Algorithm Discovery Cohort  
 

Upon further investigation of the machine learning decision tree algorithm trends within 

the data appeared showing high predictive values for certain clusters of genotypes. HLA-

B*2705 positive patients with genetic variants in HLA-B60, ERAP1, IL23R, and CARD9 

occurs in 9% of the cohort population and resulted in specificity of 100%. For HLA-

B*2705 negative patients, with a combination of HLA-B08, CARD9 and ATG16L1 occurs 

in 10% of the cohort population and resulted in specificity of 96%. 

In addition, to the machine learning algorithm an logistic regression algorithm was 

performed. This model used HLA-B*2705 and all 18 variants reached the best 

performance of accuracy 0.871 with specificity 0.905 and sensitivity 0.716, Area under 

the curve (AUC) of 0.87, Matthew's Correlation Coefficient (MCC) of 0.636. These 

results were disregarded as it did not have the visual component as well as HLA-B*27 

was not given the most important weight. 
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3.8 Comparison of Genetic Screening Algorithm to the current 
Diagnostic Evaluation 
 

A comparison was done using results from the clinical trial of the current diagnostic 

evaluation and this genetic-based screening algorithm (Table 3.30). 

Table 3.30: Comparison of HLA-B*27 negative and positive decision tree to current ASAS 
Clinical Diagnostic Evaluation. 

B27 represents HLA-B*27, ASAS Clinical represents the sensitivities and specificities of the 
clinical arm 

Type of Sample Sensitivity Specificity 
B27 Positive  0.80 0.83 
B27 Negative 0.67 0.32 
ASAS Clinical (B27 Positive) 0.57 0.83 
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Chapter 4!Discussion 

Back pain is very prevalent, most people will experience back pain at some point in their 

life and it is the largest cause of disability worldwide (120). Back pain can be categorized 

into two main categories; non-inflammatory (degenerative or mechanical) and 

inflammatory. Presently the evaluation of musculoskeletal pain in the primary care setting 

is unreliable, particularly as it relates to inflammatory low back pain as it is difficult to 

visualize the axial spine, unlike peripheral joint pain. The management plan and overall 

prognosis of degenerative and inflammatory back pain is quite different, particularly with 

the advent of biologic therapy that has revolutionized the management of inflammatory 

back pain. Thus, there is a need a reliable and relatively inexpensive method to differentiate 

between these two fundamentally different causes of low back pain.  

The most common disorder for inflammatory low back pain is axial SpA. Inflammatory 

back pain, particularly AS, is a highly heritable disease. AS exhibits the largest effect size 

of any genetic variant to a complex disease. More strategically utilizing the genetic basis 

of this disease may lead to a better screening process to discriminate inflammatory from 

degenerative low back pain. Although the utility of HLA-B*27 is highly debated for the 

screening of low back pain (141), it is recommended to use this as a screening tool, as per 

the ASAS suggestions. HLA-B*27 is very sensitive for AS and moderately sensitive for 

axial SpA at predicting disease; however, it is not very specific. HLA-B*27 has a high MAF 

at around 7- 10%, meaning depending on the population, one in ten in the population carry 

this variant. However, only 5% of people with this variant actually develop disease. This 

causes problems when screening for inflammatory back pain and SpA, as the positive 

predictive value is poor.  
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In 2009, the ASAS developed a new diagnostic evaluation for axial SpA, with hopes to 

diagnose the disease earlier. The current ASAS diagnostic evaluation consists of two arms; 

the imaging arm that relies on scaroiliitis imaging and the clinical arm that relies on a 

positive HLA-B*27 status and clinical features (90, 93).  The imaging arm of the criteria 

has superior sensitivity and specificity as the MRI can detect inflammation and structural 

abnormalities (1, 90, 94, 95). Presently, to satisfy the classification criteria for axial SpA, 

a patient must have radiographic or MRI evidence to satisfy the criteria. Access to MRI 

may be challenging for some jurisdictions due to cost and so the clinical arm provides an 

avenue for identifying patients with axial SpA. The clinical arm capitalizes on HLA-B*27 

statuses along with some extra-articular manifestations or inflammatory features. However, 

the clinical arm is not as sensitive and there is sufficient need for improvement. This leads 

to the goal of this project which was to improve the clinical arm of axial SpA. Thereby, 

developing a genetically enhanced screening algorithm that will potentially represent a 

major advance in the early detection of SpA. 

4.1 SNP based testing  
 
The type of genetic variation selected in this genetic-based screening algorithm were SNPs. 

Previous work in our research group has shown that SNP-based testing can effectively 

replace HLA-B*27 locus testing with high concordance and accuracy. Lehr et al., (2017) 

reported that in 1000 consecutive patients receiving HLA-B*27 locus testing was also 

sequenced for the rs116488202 and rs4349859 HLA-B*27 SNPs via real-time PCR (142). 

They found that both these SNPs had an analytical sensitivity and specificity of 97.6% and 

99.9%. These results showed that SNP-based testing is a sufficient replacement for full 

HLA-B*27 locus testing and SNPs can potentially accurately determine genetic risk. In 
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addition, HLA-B*27 locus testing costs $64.91 per patient and the replacement SNP based 

HLA-B*27 testing costs $4.61 per patient. Therefore, SNP-based testing can offer the 

health care system large savings (142). Another example of SNP-based testing is from 

macular degeneration where the SNPs HTRA serine peptidase 1, complement factor H, and 

apolipoprotein E predict disease outcome.  

Variant selection for this panel was very important. As discussed earlier in the methods 

section of this thesis, all of the chosen SNP variants for the gene panel came from large 

robust GWA studies. These robust studies have been completed using SNP microarrays to 

determine association, particularly using the Illumina Immunochip (200,000 SNP array). 

However, SNPs are not the only type of genetic variation and other variants such as CNVs, 

insertions and deletions could be a more predictive disease markers of SpA. It is hard to 

know which other variants would have been most effective as genome-wide studies on 

CNVs have been limited and the identification of exonic insertion and deletion variants 

have only been limited to next-generation sequencing studies in families. As more and 

more genome-wide studies are performed on other variant types, a more informative 

variant may come to light. At the time, these variants were closely considered and 

determined to be the most important to be included in this genetic panel, this process and 

selection may not be perfect. For example, there may have been a variant that was missed 

that was released in the literature recently that has a high predictive power. This is a 

limitation of this study that must be considered; however, the variants were selected very 

strategically in order to potential maximize predictive power.  Other genetic prediction 

approaches will be discussed in a later section when other genetic screening algorithms for 

axial SpA are discussed and compared.  
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4.1.1 MassARRAY  
For this project, it was determined that the most time efficient and cost-effective technology 

platform to use was the Agena Biosciences MassARRAY. The technology enables 

multiplexing variants together within one assay, it is cost-effective (approximately $25 a 

sample) and less-time consuming when compared to other genotyping platforms. The 

protocol for the MassARRAY is very automated and requires limited reaction volumes and 

produces accurate genotyping calls. Most importantly for the purpose of this project is that 

these multiplexed assays were custom designed. With the use of the ADS and Typer 

Software packages, various variants were able to be multiplexed over 2 assays. In addition, 

this was especially helpful as the HLA region is difficult to sequence, due to its repetitive 

and polymorphic nature.  With this custom designed assay, appropriate custom changes 

were able to be made in order to ensure accurate genotyping results were produced.  

4.1.2 Rationale for each SNP 
Eighteen (18) SNPs were selected for this panel based on their GWA significance, clinical 

significance, MAF and odds ratio. These SNPs were also chosen on the basis of their 

association with AS, psoriasis, IBD and uveitis. The genetic variants HLA-B*27, HLA-B60, 

CARD9, IL23R, ERAP1, intergenic region 2p15, IL12B, and ERAP2 were associated with 

axial SpA and AS. The genetic variants HLA-B*27, ERAP1 and intergenic region 2p15 

were associated with uveitis. The genetic variants HLA-CW6, HLA-B44, HLA-B38, HLA-

B39, HLA-B08, TNFAIP3, TRAF3IP2, and FBXL19 were associated with psoriasis. 

Finally, the genetic variants CARD15/NOD2, HLA-B*27, CARD9, ATG16L1 and IL12B 

were associated with IBD. The pathological significance of each SNP was discussed in 

detail in the introduction section of this thesis. All of these SNPs play important roles in 

the pathophysiology of SpA and related diseases. By targeting multiple diseases associated 
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genes, the panel was able to increase the sensitivity of the screening algorithm by predicting 

risk for related extra-articular manifestations, as well as increase specificity by including 

non-MHC associated genes and expanding the scope of the genetic screening in SpA from 

just HLA-B*27.  

4.2 Positive HLA-B*27 Arm 
The ASAS’s clinical arm of the diagnostic evaluation is the most applicable to be compared 

to the HLA-B*27 positive portion of the decision tree algorithm. Mainly, because in order 

for a physician to utilize the clinical arm, the patient must first be positive for HLA-B*27 

and secondly, as one of the primary goals of this project was to improve the genetic 

component of this classification criteria. When the machine learning algorithm was 

compared to the clinical arm, there was an improvement in the sensitivity and a similar 

specificity. This shows that an enhanced genetic based risk algorithm can give a more 

informative diagnostic screen than the current diagnostic evaluation. As well as utilizing 

SNP based technology, cost will be less than current PCR based methods of HLA-B*27 

locus testing. Thus, the HLA-B*27 positive portion of the screening algorithm has a higher 

sensitivity, the same specificity and lower costs than the clinical arm of the ASAS criteria.  

Another interesting finding was that the results were comparable to the ASAS’s overall 

diagnostic evaluation (the overall evaluation includes both the imaging and the clinical 

arm). The current overall ASAS’s sensitivity and specificity are slightly greater than the 

sensitivities and specificities of this genetic-based screening algorithm, however, these 

values are only slightly higher. Thus, this shows that a genetic-based screening algorithm 

may not be as specific as scaroiliitis imaging, it can potentially attain similar prediction 

power needed for a diagnosis of axial SpA.  
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Although HLA-B*27 is a fair indicator of for screening axial SpA, as a whole the ASAS 

diagnostic evaluation is not very sensitive, with low values in both arms of the criteria. A 

possible explanation for the increase of the sensitivity of this genetic screening algorithm, 

could be that related extra-articular features genetic variants were included. These 

comorbid diseases are already included as a SpA feature in the ASAS diagnostic evaluation 

(90, 91). Thereby, including their genetic contribution is both targetable and could have 

increased the sensitivity result from this genetic screening algorithm.  

These related phenotypes are all seronegative immune-driven diseases and the current 

literature has shown that these chronic inflammatory diseases have substantial comorbidity. 

These extra-articular manifestations are commonly found in patients with inflammatory 

back pain (33, 87, 88). Vander Cruyssen et al., (2007) published a study with a cohort of 

847 AS patients, they found that 42% of patients had one of these additional inflammatory 

diseases (101). Of this 42% of patients with an extra-axial manifestation, 50% had uveitis, 

20% had psoriasis, 19% had IBD and 10% had a combination of the extra-axial 

manifestations (101). Robust consortium studies using pathway network analysis have 

shown that these auto-immune diseases share common genetic loci, responses to treatment 

and etiological pathways (33, 87, 88).  In addition, all of these auto-immune diseases have 

large genetic associations. Psoriasis has a known genetic contribution of approximately 

one-third, and IBD of about 40%. These extra-articular feature phenotypes tend to worsen 

with disease progression and by incorporating these genetic variants the risk can potentially 

be established even before the onset of these extra-articular features manifest. This offers 

an opportunity as the possibility of having one of these diseases is both targetable and does 

not change over time. Thus, including the genetics of these diseases could have caused the 
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screening algorithm to be more sensitive. Adding the genetic risk of these comorbid 

diseases also expands the predictive power of the algorithm to these other auto-immune 

diseases.  

Possible explanation for why there was a slight increase in specificity in the algorithms of 

this project is that strictly testing for HLA-B*27 is sensitive; however, it is not very specific. 

As stated above HLA-B*27 has a MAF of about 10%; however, 10% of the population does 

not develop axial SpA – only approximately 5% of people with a positive HLA-B*27 

genetic variant develop disease. Most importantly, non-inflammatory back pain is very 

common, but inflammatory back pain is rare. The incidence rate of AS is 0.1 -0.3% and 

axial SpA is 0.3-1%. This incidence rate combined with the MAF of HLA-B*27 creates a 

major diagnosing problem. As a person who is HLA-B*27 positive is more likely to have 

chronic low back pain then have axial SpA. This makes testing for HLA-B*27 genetic 

variant alone not very specific.  

Previous GWA studies and Immunochip data have reported multiple SNP associations that 

have reached GWAS significance for AS as well as other related phenotypes; psoriasis, 

IBD and uveitis (33, 50). There have been 31 non-MHC genetic variants reaching genome-

wide significance from previous GWA studies (9, 19, 50). These identified non-MHC 

genetic variants have uncovered new insight into pathways of pathogenesis of axial SpA 

and could be the answer to genetic specifically axial SpA diagnosis (4, 16). For example, 

ERAP1 is one of the non-MHC loci that has a strong genetic associations to axial SpA and 

functionally this gene appears to be very important to our current understanding of AS (2, 

9, 19). The ERAP1 variant is correlated with axial SpA patients that are also positive for 

HLA-B*27 (19). In patients that are positive for both ERAP1 and HLA-B*27 the odd ratio 
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of disease increases to over 200 (19). There is strong evidence that ERAP1 interacts with 

HLA-B*27 (19), as ERAP1 is a modifier protein and when it is mutated there is less efficient 

trimming of HLA-B*27 (3). By combining these loci on the genetic algorithm, the 

specificity will increase.  

Many other non-MHC genetic variants are incorporated into the genetic screening 

algorithm. These other variants will capture the broader population and make the panel 

more specific. Even if the effect sizes of these non-MHC variants are low individually, by 

combining these loci together the genotypes of each individual will be more specifically 

related to SpA. Inclusion of the extra- articular features variants may further increase the 

sensitivity of the genetic-based screening algorithm and the addition of additional markers 

reaching GWAS significance and with MAF over 1% may help in improving the 

specificity. Thus, a combination of these two approaches were used to develop our 

screening algorithm. 

4.3 Negative HLA-B*27 Arm 
Currently, there are no genetic screening tools or tests for HLA-B*27 negative patients. 

Thus, this screening algorithm could be the first screening tool to attempt to screen HLA-

B*27 negative patients and therefore the HLA-B*27 negative side of the tree cannot be 

compared to any other screening tool. Unfortunately, the HLA-B*27 negative side of the 

tree did not perform very well and it can be inferred from the results that it is likely not 

going to be a very predictive tool for picking up negative HLA-B*27 cases. However, from 

analysing the decision tree it was observed that certain patients with axial SpA that were 

HLA-B*27 negative with genetic variants in HLA-B08, CARD9, and ATG16L1, which 

occurred in 10% of the population had a specificity of 96%. This shows that although the 
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overall positive predictive value of the HLA-B*27 negative tree is poor, a small subset of 

patients can be screened using this algorithm, if certain pattern of SNPs are found.  

In addition, as the goal is for many screening tools, it is not to find everyone, but eliminate 

and catch as many people as possible. That being said the HLA-B*27 negative side of the 

tree has a high negative predictive value. Meaning that it can effectively identify patients 

that do not have SpA. For example, if a patient is HLA-B*27 negative and is also negative 

for a couple other variants within the tree, it can confidently be concluded that this person 

likely does not have or will not develop SpA. For a screening tool, this is a very good 

benefit as a physician can be told that a patient has a very high likelihood of never 

developing SpA; therefore can stop testing for SpA and continue on a track to the proper 

diagnosis.  

4.4 The two cohorts: Discovery and Validation  
This study had two separate cohorts: the discovery and the validation cohort. This was a 

valuable approach as there was two genetic-based screening algorithms created in separate 

independent cohorts. Each cohort had a different population make-up. The discovery 

cohort was comprised of participants from Newfoundland and Ontario, whom were 

diagnosed with both axial SpA and AS. While the validation cohort was comprised from 

participants from Alberta who were diagnosed with AS. Results from the discovery cohort 

were replicated in the validation cohort. Furthermore, from using this approach it was 

determined that both cohorts gave similar results, and were similarly distributed. Since both 

cohorts were similarly distributed, it was decided to combine the cohorts as they had similar 

precision values and machine learning are more robust the larger the cohort.  
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4.5 Genetic Screening Algorithms  
4.5.1 Genetic risk score  
In the current literature, genetic epidemiologists have concluded that that combining 

multiple significant loci into a global genetic risk model, can increase prediction accuracy 

for some complex diseases (129-134). Most of published genetic risk models rely on 

additive genetic risk, meaning equating risk to how many minor or risk allele an individual 

possesses. A genetic risk model was published by a group studying psoriasis. These 

researchers used 10 SNP variants to create two types of genetic risk models (129). They 

created an additive genetic and a weighted genetic risk model. The authors concluded that 

both genetic risk models were able to significantly better predict disease risk as compared 

to any individual SNP could (129). Thus, certain groups have shown that a genetic risk 

model can have a higher predictive power as compared to the predictive power of an 

individual genetic variant (129). This approach is useful as it includes additional variants 

rather than focusing on the monogenic approach which is currently in use in axial SpA. 

However, it neglects to include how discriminative each marker is individually as well as 

gene-gene interactions. This approach has just been used in axial SpA and will be discussed 

in a later section. It should be noted that when applying this approach to SpA, we have 

HLA genes that are very sensitive at predicting disease, compared to other non-MHC 

variants that should have different weightings.  

4.5.2 Machine learning  
Machine learning can capitalize on large complex data sets in order to make intelligent 

complex decisions. This type of programming is being implemented everywhere around us 

and particularly in health care machine learning is proving to be very useful in improving 

health care outcomes. Recently, Google has used machine learning to demonstrate its 
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predictive power for diagnostics and screening. They used a deep learning algorithm to 

detect metastasis in cancer patients (143). Metastasis is hard to diagnosis by pathologists 

even with very extensive training. There are large number of slides to analyze and it is easy 

to miss something. Google programmed an algorithm that could detect metastasis in 

patients from tumour cell images from biopsy’s and CT scans. This same dataset was then 

analysed by pathologists. The algorithm detected 89% of the metastasis in the dataset, 

while the pathologists given no time constraint only detected 73% (143). This study shows 

how from large amounts of data machine learning algorithms can assist highly trained 

specialists in diagnosing complex diseases and this approach can be applied in many other 

fields of medicine.  

There are many different types of machine learning approaches. These range from deep 

learning and simple vector machine models to decision tree models. In this project, we 

decided to choose a decision tree model as it is the easiest machine learning model to 

visualize. Decision trees are unique as users can easily understand why the classifier or 

node makes a decision. They are one of the few models where the results are interpretable. 

This can be very useful in practice as users can determine exactly why the classier makes 

a decision. This is very helpful especially in settings where un-trained individuals are 

receiving information from the algorithm. As physicians with no training in machine 

learning algorithms and limited training in genetics will be potentially receiving the 

information from this algorithm, the decision tree model best fits with this consideration. 

It was important to make sure that the information from the algorithm was easy to 

understand and a decision tree algorithm can be assist in the ease of transfer of information 

from the result. The decision tree algorithm makes the result from the algorithm easy to 
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understand and also assists in making the communication between the physician more 

effective and educational.  

When programming the decision tree, the first decision made in the algorithm was chosen 

as HLA-B*27 status (Figure 4.5.1). HLA-B*27 is the most descriptive and informative 

genetic variant by far. In a study in 2005, Reudewalit et al determined that HLA-B*27 status 

had a likelihood ratio of 9 of developing disease (144). In addition, a positive HLA-B*27 

status is required for a patient to be diagnosed and screened under the clinical arm of the 

ASAS criteria. Therefore, from the literature review of both clinical and genetic practice, 

HLA-B*27 was by far the most important variant and therefore the algorithm selected it as 

the first decision. When this algorithm splits it represents two separate tests an improved 

HLA-B*27 screening tool that is more specific and the first ever negative HLA-B*27 

screening tool.  
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Figure 4.1: Machine Learning Decision Tree Model First Decision. 

This decision was coded in a dominant form of inheritance.  

 

4.6 Other Genetic Risk Algorithm studies in axial SpA 
4.6.1 Immunochip Based Study  
A study out of Australia was just published using whole genome SNP microarrays to profile 

axial SpA (145). This group used the Immunochip 200,000 SNP array used in previous 

GWA studies in AS. This study had a large cohort of 9,638 controls and 4,428 AS cases 

diagnosed via the previously used New York criteria and the current ASAS criteria (145). 

The genetic risk model for this study used was an ROC curve programmed in R. In this 

study, when patients that meet the ASAS imaging arm of the criteria were compared to the 

controls the genetic risk model gave an AUC of 0.83 (145). Within this study, patients 

negative for the ASAS imaging arm were compared to patients positive for the ASAS 

imaging arm, the AUC for this comparison was 0.65. This study showed that there is a 

significant difference in the genetics between axial SpA patients and controls (145). This 
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is a promising step forward for utilizing multiple genetic loci to diagnosis; however, even 

with a 200,000 SNP array, this genetic-based screening algorithm’s performance markers 

were comparable to the results of this study. This suggests that having additionally variants 

to diagnosis or predict risk of SpA may not be necessary. As well when you compare the 

costs of a SNP array to the Agena MassARRAY, the MassARRAY is significantly cheaper 

to implement and use. Making the MassARRAY more accessible (See discussion on 

economics).  

4.6.2 Selected SNPs and CNV’s study  
Thus far, one other study has been published that utilized a genetic risk score to assist 

diagnosing AS. This study was done in the Korean population and consisted of 5 CNVs, 7 

SNPs and HLA-B*27 (146). The genotyping was done using a TaqMan assay, making this 

approach a much more time-consuming and costly approach to genotyping 13 variants. The 

genetic risk score was derived using a multi-variant logistic regression analysis. This 

genetic risk score was constructed similar to this project in a two-cohort approach with 

both a discovery and validation cohort. This study reported that their genetic risk score had 

an excellent AUC of 0.95 (146). The group also reported that their model performed 

superiorly over the current HLA-B*27 model currently in use. In addition, the variants 

chosen by this study were primarily from the same gene locus, 6 out of the 7 SNPs were 

different SNPs in the ERAP1 locus (146). This is a restricted approach as compared to this 

project where variants from various genetic loci were chosen to consist the genetic panel. 

Furthermore, the CNVs chosen for the Korean study may not be generalizable as there is 

not very robust evidence in the literature outlining the pathogenic features and associations 

of these CNVs at predicting AS. Particularly, the CNVs which have never been associated 
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in the larger European ancestry studies, making it likely that this genetic risk score 

constructed would not be able to be translated across other populations.   

4.6.3 HLA-B*27/B*60 Markers Study  
Another study based out of the Netherlands was attempted but never made it to completion. 

This study’s aim was to make a negative HLA-B*27 test, by utilizing the genetic variant 

HLA-B60. As discussed in the introduction section of this thesis, patients with axial SpA 

that are negative HLA-B*27 have been proven to have the variant HLA-B*60. However, 

when this group investigated the predictive power of HLA-B*60 in a diagnostic setting, 

they determined that the results were inconclusive (Personal Communication with Dr. 

Rahman, from the International Congress of SpA 2016, Ghent, Belgium). When a 

comparison is made between this project and the studies and techniques discussed above it 

can be inferred that it’s a powerful approach to use multiple unique variants as well as 

limiting the number of SNPs included. However, most importantly all of these other studies 

have only used regression-based analysis to make predictions of disease. As discussed in 

this thesis, machine learning is by far a more comprehensive and more powerful technique 

in order to establish risk and prediction in a population.  

4.7 Limitations  
4.7.1 Case definition: Radiographic versus non-radiographic spondylitis.   

The case cohort used in this study, consisted of participants whom were mostly diagnosed 

with AS by experienced rheumatologist in three Canadian centres. All AS patients satisfied 

the modified New York criteria for AS. Therefore, they had at least bilateral grade 2 

scaroiliitis or at least unilateral grade 3 scaroiliitis. A smaller subset of patients had non-

radiographic axial SpA and were diagnosed by the new ASAS diagnostic evaluation. 

However, all patients satisfied the ASAS diagnostic evaluation. However, now that 
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radiographic and non-radiographic AS has fallen into the broader category of axial SpA, 

this is why we have used this term throughout our discussion. Thus essentially our SNP 

based test was determining the performance of our test with a population that primarily had 

radiographic AS. The validation cohort primarily had individuals diagnosed with AS in the 

study. This may have impact on the stratification of the two cohorts, as well as the 

development of the algorithm. This will be tested eventually when this research is tested in 

a clinical trial.  

4.7.2 Comparison to gold standard  
As discussed earlier in this thesis, the MRI is the gold-standard for the diagnosis of SpA. 

The current costs for this diagnostic technology is quite high; however, these prices are 

decreasing. In addition, if the MRI becomes more accessible or if the price of the MRI 

significantly decreases, this may affect the utility of this project and research. Thus, the 

main limitation of this research is that it has not been tested in a clinical setting. Therefore, 

it is difficult to make conclusions if this genetic-based screening tool will be helpful in the 

current health-care system if the MRI is routinely available.   

4.7.3 Control Cohort   
This project’s control cohort was selected from previous studies examining the genetics 

of complex disease. The controls selected were from studies in Type 2 Diabetes Mellitus, 

Obesity and Osteoarthritis. The controls from Newfoundland were ascertained on the 

basis that they did not have autoimmune disease and were Caucasians of North European 

ancestry. A small subset of the controls were from the Newfoundland and Labrador 

Colorectal Cancer Study. No information was acquired from these Cancer controls, 

however since the prevalence of auto-immune disease is very low, it very unlikely that 

these controls would possess SpA. Another limitation with this control population is the 
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potential for population stratification. Most of the cases are from Alberta and Ontario, 

while most of the controls are from Newfoundland and Labrador. This cases the potential 

for population stratification, however population stratification was controlled and 

adjusted for when the machine learning algorithm was constructed.  

4.7.4 LD within the MHC region  
Including SNPs that were in linkage disequilibrium with GWA study-associated SNPs was 

not an ideal scenario. The HLA region of the genome is an extremely difficult area of the 

genome to sequence, as it is very polymorphic and repetitive. Therefore, these SNPs could 

either not be imported into the design or would only import in with drastically reducing the 

stringency of the assay; thereby causing problems for other variants within in the assay. 

This modification is a limitation but it was necessary in order to include these important 

SNPs (HLA-B*39, HLA-B60 and HLA-B44). The r2 and D’ values were all greater than 

0.97 and 0.98 respectively, making the linkage between both the LD SNP and the GWA 

study SNP very strong. In addition, this project is lucky to be a part of large consortium 

(SPARCC), so we had microarray data available to compare both genotypes. Upon 

comparison, we saw an increase in concordance in this data set as compared to the r2 and 

D’ values published.  

4.7.5 Machine Learning - Overfitting  
As discussed above machine learning algorithms gains power as the sample size increases. 

Therefore, a limitation of this study is the population. If there was a larger population used 

in the study, it may have increased the power and prediction value of the study. Another 

limitation to this projects machine learning is the potential of overfitting the model. 

Overfitting can easily happen in a machine-learning decision tree model, as the model gets 

more specific to the data set the algorithm gets more specific or “fitted” to the data set used 
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to create it. If the model is over-fitted it will not be able to be applied to external data sets. 

This project attempted to address this issue by using the separate data sets to ensure that 

the model would not be over-fitted as well as this project used a global pruning technique 

to prevent this from occurring. It will not be able to be officially determined if this model 

is over-fitted until the screening algorithm is applied in a broader setting. 

4.7.6 Generalizability  
Another limitation surrounding this projects study cohort is the ethnicities of the 

participants. The genetic-based screening algorithm is most suited for the Caucasian 

population. Currently, the algorithm was created and replicated with participants from 

European ancestry only. The genetic panel was created using SNPs that had genome 

significance in the European population, not SNPs from other ancestries. Therefore, it 

cannot be determined how predictive this genetic-based screening algorithm will be at 

predicting disease risk in other populations.  

4.7.7 Clinical Utility  
We have developed a screening algorithm to fast track patients with high likelihood of axial 

SpA and suggest conservative management for patients that screen negative for axial SpA. 

For patients that screen positive, we may have overestimated the prevalence as our cohort 

was enriched for cases (approximately 50% cases and 50% controls) as compared only 5 

to 10% of patients with inflammatory low back pain having axial SpA (which is seen in 

the current clinical setting). For patients that screen negative we likely underestimated the 

true negative predictive value. A better estimate of the clinical utility will be determined 

when consecutive patients presenting to primary care physicians are evaluated. The 

addition of more SNPs could have been helpful to increase the power of the genetic-based 

screening tool. This makes the number of SNPs included in the panel a potential limitation. 
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However, it is difficult to judge how helpful this approach would have been toward the 

performance of the screening algorithm. Another factor to consider is that as the number 

of variants increase, the algorithm and decision tree becomes more detailed and difficult to 

understand/visualise.  

4.7.8 Implementation of genetic-based screening algorithm  
As non-experts will be eventually receiving the information from this screening algorithm, 

it is important to ensure that the information being presented is easily understood and 

communicated. This illustrates that it is important to have a balance between the number 

variants on the panel and potential power from significant amounts of variants. The 

addition of multiple variants may have made the panel a more informative predictor of 

disease. It is hard to quantify how many variants of importance are needed to make the 

most predictive screening algorithm. It is also difficult to understand how primary-care 

physicians will adapt to this genetic-based screening algorithm. As many primary-care 

physicians will be unfamiliar with genetic risk and machine learning this may be a potential 

limitation in the future. That is why it will be important to ensure that physicians are well 

educated about this genetic screening process and the associated risks.  

4.8 Future directions 
4.8.1 Economics 
Musculoskeletal disease has a large socioeconomic burden in Canada, in 2014 it was 

estimated to cost $22.3 billion, representing approximately 3% of Canada’s gross domestic 

product and 5.7% of health expenditures (125). Low back pain is the primary expenditure 

of these estimates and the assessment and treatment of SpA is approximately $7 billion.  

 A study by Kobelt et al., (2006) estimated the average annual cost of treating and 

diagnosing axial SpA in Canada. This study estimated that it costed an average of $9,008 
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yearly to treat/diagnosis a patient with axial SpA (147). The total Canadian cost of treating 

and diagnosing axial SpA was estimated at $2.2 billion. This study also estimated that 

patient’s out-of-pocket costs represented 33.1% and lost work capacity was 38% of this 

total figure (147). In addition, a trend was demonstrated that as physical function of the 

patient decreased the cost of management per year went from $4,000 to $30,000 annually 

(147).  

When focusing on in on replacing the current HLA-B*27 typing testing with this project’s 

genetic-based screening algorithm, there are large cost savings. These costs savings will be 

the results of 1) the lower cost of the genetic-based screening algorithm versus the current 

HLA-B*27 typing. 2) Fewer false positive results, thus avoiding unnecessary expensive 

investigations and consultations to confirm results. 3) Fewer false negatives, thus avoiding 

delayed diagnosis and treatments of affected patients. 4) A reduction of the need of 

advanced scaroiliitis imaging, such as bone scans, CT scans and MRIs and multiple 

consultations of specialist physicians.  

From this project, a preliminary cost savings was estimated. This is illustrated in Figure 

4.2, which is an economic decision tree used to estimate cost savings from this study. It 

was determined if this screening tool was implemented, there will be significant cost 

savings for the Canadian health-care system. Currently more than 50,000 patients need to 

be or are tested annually for HLA-B*27. This estimate was determined by the number of 

actual HLA-B*27 tests that were ordered in Newfoundland and Labrador over a one-year 

period and then was extrapolated to match the Canadian population. Currently HLA-B*27 

gene locus typing costs $50 per test in Canada, the estimate cost for the genetic-based 

screening algorithm is $20 per test. Therefore, it is estimated that the genetic-based 
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screening test would save an estimated $1.5 million dollars annually in direct genetic 

testing.  

As discussed above the genetic-based screening algorithm has superior accuracy. If we 

analysed the cost estimates per 100 tests. By introducing the genetic-based screening 

algorithm we can estimate that there will be 10 fewer false positives and 10 fewer false 

negatives per 100 tests. The current direct health-care expenditure for a false positive is 

$800; this would include the cost of a CT scan and/or a MRI, which would be necessary to 

obtain the correct result. The current expenditure for a false negative is approximately 

$1000; which would be based on delayed treatment and unnecessary imaging. From these 

estimates, we can estimate that by reducing the false positive and negative rate we can have 

a total savings of $18,000 per 100 patients tested. When this analysis goes a step further 

and accounts for eliminating the need for scaroiliitis imaging for an estimate of 50 patients 

who test as true positives, the costs are reduced $800 per true positive (similarly cost 

estimate to the false positives). This estimate suggests a potential for a savings of $40,000 

per 100 patients tested.  

When an estimate of the total savings per 100 test, it is estimated a reduction of $30,000 

can be accounted for with the replacement of HLA-B*27 typing with the genetic-based 

screening algorithm. Thus, the total cost savings is shows a savings of $88,000 per 100 

tests ordered. These estimated are based on direct health-care expenditure making these 

estimates a conservative. It is difficult to quantify potential savings and costs of fewer 

physician visits and costs associated with work loss from SpA.   

From an economic model evaluation using these numbers above the total direct health-care 

expenditure for diagnosing inflammatory back pain costs approximately $45.5 million. 
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From this economic model, an estimated $27 million dollars of direct health-care 

expenditure can be saved by utilizing this genetic-based screening algorithm. This is a very 

conservative estimate; however, as this estimate does not account for savings for fewer 

physician visits and associated absences from work. While it costs to offer patients a new 

screening test, the capital added to initiating the technology would be easily offset by 

substantial long term cost savings. These long-term cost savings would include less 

scaroiliitis imaging and time-consuming laboratory testing, reduction of primary-care 

physician visits, more appropriate treatments and less work absences.  
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Figure 4.2: Economic Decision Tree 

This figure was created by Dr. Hai Van Nguyen (an health economist at Memorial University) 
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4.8.2 Ethics  
Over the last decade primary care physicians have been surveyed about genomic 

technologies and these surveys have resulted with positive attitudes towards the benefits of 

these technologies. However, they have low confidence concerning implementations of 

these technologies into their clinical practices, mainly because of a lack of credible 

evidence surrounding the clinical utility of this technology (148). There may be many 

barriers to these feelings and most importantly there is a need to address the knowledge 

deficit in this area of technology as well as knowledge management (handling and 

understanding the sheer volume of evidence across the breadth of a clinician’s practice).  

For the sake of this project this genetic-based algorithm is a screening tool not a diagnostic 

test. Meaning that the results of this algorithm can give a probability or risk of disease not 

a strict diagnosis. It is still important that a rheumatologist finishes the diagnosis. 

Therefore, it is very important that with genetic screening there has to be caution. Genetics 

is a complex discipline that not many in the general public fully understand and as genetic 

testing becomes more and more common it is important that people are properly informed 

for what information they are receiving means. A patient might fall into what is known as 

the “worried –well”.  

A “worried-well” patient is a patient that seeks medical treatment continually, in order to 

be reassured by their physical or emotional support. When a patient hears that they have a 

relative risk for developing a disease it is very important that this is communicated 

appropriately. This point further reiterates that importance of effective communication 

between the primary-care physician and the patient as well as to ensure that the primary-

care physicians understands what it meant by the relative risk. This can be accomplished 
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by ensuring that physicians are well educated on genetic relative risk and this genetic-based 

screening algorithm.  

4.8.3 Prospective Clinical Trial  
As compared to the current studies released by the Australian and Korean groups, no one 

has tested their genetic algorithm in a real-life clinical setting. This is the true test to ensure 

that a genetic-based screening algorithm has high clinical utility. Therefore, the future 

direction of this project is that it will be implemented into a prospective clinical trial to 

assess the ability of the algorithm to perform in a clinical setting (Figure 4.3). This will be 

completed at SPARCC rheumatology clinics. Patients that meet the criteria of younger than 

40 years and have been suffering from chronic back pain for greater than 3 months will be 

eligible to enter the study. The aim is to recruit and enrol 1,200 patients. Patients enrolled 

in the prospective study will follow the current management and ASAS diagnosis 

guidelines, as well as DNA will be collected and patient’s genotyping information will be 

assessed via the genetic-based algorithm.  
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Figure 4.3: Flow Chart of Genetic-Based Screnning Algorithm Developement and 
Prospective Clinical Trial 

A common bootstrap web server has been developed and can be accessed at the website; 

http://bioinformatics.med.mun.ca/HLA/. Once the individual’s genotyping is completed, 

they can be submitted based on the web based tool (Figure 4.4). From there the physician 

would receive an easy to understand, animated decision-making graph outlining the results 

(Figure 4.5). The exact subsets will eventually be determined using a health technology 

assessment for each possible permutation.  From this step, a patient will be given a genetic 

risk factor for disease (Figure 4.6). Patients that are given a high risk will be given a fast 

track referral to a rheumatologist, patients that are given an indeterminate risk will follow 

the current management guidelines and the ASAS diagnostic evaluation. Patients that are 
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given a low risk of developing SpA will be referred back to a primary care physician and 

allied health care professionals.  

 

 

Figure 4.4: Genetic-Based Screening Algorithm Website. 

Access to the algorithm will be through a web portal. http://bioinformatics.med.mun.ca/HLA/ 
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Figure 4.5: Web-based tool Prediction Screening Algorithm Output 

Access to the algorithm will be through a web portal. http://bioinformatics.med.mun.ca/HLA/ 
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Figure 4.6: Prospective Screening Process. 

Criteria of ≥ 3 months of severe lower back pain, age of onset < 45 years. Patients determined 
various levels of risk. 
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Conclusion 
A large proportion of SpA patients exhibit low back pain which is often misdiagnosed as 

muscular skeletal problems.  SpA represents one of the most common inflammatory 

rheumatic diseases with axial SpA and psoriatic arthritis being the most representative. 

Currently, from symptom onset to diagnosis is around 10 years with an estimated health 

care expenditure of 45 million. This disease is a highly treatable subset of low back pain 

among individuals less than the age of 45 at symptom onset. A genetic-based screening 

algorithm can facilitate large changes in the screening and evaluation of axial SpA and its 

related phenotypes.  

This genetic-based screening algorithm has a higher sensitivity and similar specificity 

when compared to the current ASAS diagnostic evaluation for axial SpA. Importantly, 

this genetic screening algorithm is relatively inexpensive, can potentially facilitates early 

diagnosis, has a high negative predictive value and could also limit further diagnostic 

evaluations for a subset of patients. 
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Appendix  
Appendix 1.A: Design Summary Report for LBP_1W well.  

This is the Design Summary Report generated by ADS. See Methods section 2.3.1c for specific details. 

WELL$ TERM$ SNP_ID$ 2nd1PCRP$ 1st1PCRP$
AMP$
_LEN$

UP_$
CONF$

MP_$
CONF$ Tm(NN)$ PcGC$

W1# iPLEX# rs6759298#
ACGTTGGATGAGTTGCAGGCT
ATTGGTGTC#

ACGTTGGATGCTTTGTGGT
GGTTCTGTAGG# 125# 97.5# 82.8# 49.8# 52.9#

W1# iPLEX# rs10782001#
ACGTTGGATGACACAGTTATC
TGCTCCCAC#

ACGTTGGATGTGTTCCCCT
CATAGAGCAAG# 128# 96.9# 82.8# 46.5# 41.2#

W1# iPLEX# rs6871626#
ACGTTGGATGGCAGAGAAAG
TTACCTGTCC#

ACGTTGGATGCATTATGG
GCTAAGTGGGTG# 94# 98.6# 82.8# 47.5# 50#

W1# iPLEX# rs1265163#
ACGTTGGATGTAACCTGACAG
GTGTTCTCG#

ACGTTGGATGAGAAACTG
GCACATCCAAGG# 103# 100# 82.8# 46.9# 42.1#

W1# iPLEX# rs2032890#
ACGTTGGATGTAAAGACCCA
GTGGTGGGAG#

ACGTTGGATGCATCCTGG
CGAAACTCCTTG# 120# 95.6# 82.8# 48.9# 47.4#

W1# iPLEX# rs2910686#
ACGTTGGATGAACTTAAATCC
CAGCTCACC#

ACGTTGGATGACAAGTGA
CCACAATGTGGC# 99# 98.6# 82.8# 50.6# 45#

W1# iPLEX# rs11209026#
ACGTTGGATGGAAATTCTGCA
AAAACCTAC#

ACGTTGGATGGGGAATGA
TCGTCTTTGCTG# 115# 87# 82.8# 51.3# 45#

W1# iPLEX# rs33980500#
ACGTTGGATGCTGGGATTGGT
TTCAGCAAC#

ACGTTGGATGTGAACCGA
AGCATTCCTGTG# 92# 99.7# 82.8# 49.1# 40#

W1# iPLEX# rs582757#
ACGTTGGATGTAGCCTCATGT
GGAATAAGC#

ACGTTGGATGATAAGGCT
ACCAAGGCCTAC# 119# 97.1# 82.8# 47.8# 31.8#

W1# iPLEX# rs10781500#
ACGTTGGATGTCTCTAACCAT
ATCGGAAGC#

ACGTTGGATGATCTGTGG
GTTATTTAGCGG# 118# 95.9# 82.8# 46.5# 31.8#

W1# iPLEX# rs3132528#
ACGTTGGATGAGCCTTATCTT
GACCTGTTC#

ACGTTGGATGCCATTTTAA
AAACTTGGGCTC# 104# 88.8# 82.8# 53.7# 41.7#

W1# iPLEX# rs6738490#
ACGTTGGATGGAGAACTACT
GATTTTGCAC#

ACGTTGGATGGTAAACCT
GACGACTTTCTC# 119# 91.7# 82.8# 53.3# 37.5#
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W1# iPLEX# rs116488202#
ACGTTGGATGACCAAGCCTCA
GACCATGC#

ACGTTGGATGCCCGCACC
AAATTCAGTACA# 112# 90.5# 82.8# 61.8# 53.8#

W1# iPLEX# rs2066844#
ACGTTGGATGAGTGCCAGAC
ATCTGAGAAG#

ACGTTGGATGATGGAGTG
GAAGTGCTTGCG# 111# 98.1# 82.8# 63.1# 61.5#

W1# iPLEX# rs10456057#
ACGTTGGATGGGCACTGCAAT
ATTGAGTTC#

ACGTTGGATGTGTTTTCAG
AGGTTCTGGAC# 103# 97.1# 82.8# 48.8# 30.8#
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Appendix 1.A Continued. Table could not fit on one page this is the table continued.  

 

PWA
RN 

UEP_ 
DIR 

UEP_ 
MASS UEP_SEQ 

EXT1_
CALL 

EXT1_
MASS EXT1_SEQ 

EXT2_
CALL 

EXT2
_MAS

S EXT2_SEQ 

d F 5090.3 
TCTTCCAACACA
GTGCC C 5337.5 

TCTTCCAACACA
GTGCCC G 5377.5 

TCTTCCAACACAG
TGCCG 

d R 5218.4 
ATGAAGGCTTGT
CAACA G 5465.6 

ATGAAGGCTTGT
CAACAC A 5545.5 

ATGAAGGCTTGTC
AACAT 

d R 5416.5 
CTGTCCTTCATCA
CTTGG C 5703.7 

CTGTCCTTCATCA
CTTGGG A 5743.6 

CTGTCCTTCATCA
CTTGGT 

  R 5646.7 
TCTCTTTCTGTCC
TTTCAC G 5893.9 

TCTCTTTCTGTCC
TTTCACC C 5933.9 

TCTCTTTCTGTCCT
TTCACG 

  F 5836.8 
GAGAAACCTGAT
CCGGTAT C 6084 

GAGAAACCTGAT
CCGGTATC A 6108 

GAGAAACCTGAT
CCGGTATA 

  F 5980.9 
AATCCCAGCTCA
CCATTTAC C 6228.1 

AATCCCAGCTCA
CCATTTACC T 6308 

AATCCCAGCTCAC
CATTTACT 

d R 6030 
CTGCAAAAACCT
ACCCAGTT G 6277.1 

CTGCAAAAACCT
ACCCAGTTC A 6357 

CTGCAAAAACCTA
CCCAGTTT 

h F 6169 
TGGGTATGGTTCT
GATTCAT C 6416.2 

TGGGTATGGTTCT
GATTCATC T 6496.1 

TGGGTATGGTTCT
GATTCATT 

Dh F 6641.3 
CTGCATTTTTATC
CTTTTAGCA C 6888.5 

CTGCATTTTTATC
CTTTTAGCAC T 6968.4 

CTGCATTTTTATC
CTTTTAGCAT 

  F 6775.5 
GCTAAAAATCGG
TAACAGATAT C 7022.6 

GCTAAAAATCGG
TAACAGATATC T 7102.5 

GCTAAAAATCGGT
AACAGATATT 

  F 7231.7 
CCTGTTCTATTAA
AACCTGCCACA C 7478.9 

CCTGTTCTATTAA
AACCTGCCACAC T 7558.8 

CCTGTTCTATTAA
AACCTGCCACAT 
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dH R 7335.8 
ACTGATTTTGCAC
AATCAGAATGC T 7607 

ACTGATTTTGCAC
AATCAGAATGCA C 7623 

ACTGATTTTGCAC
AATCAGAATGCG 

d R 7851.1 

TCAGACCATGCC
CAGCCTAGCTTA
CT T 8122.3 

TCAGACCATGCC
CAGCCTAGCTTA
CTA C 8138.3 

TCAGACCATGCCC
AGCCTAGCTTACT
G 

dH F 7941.2 

GCCAGACATCTG
AGAAGGCCCTGC
TC C 8188.3 

GCCAGACATCTG
AGAAGGCCCTGC
TCC T 8268.3 

GCCAGACATCTGA
GAAGGCCCTGCTC
T 

D R 7977.2 

CTGCAATATTGA
GTTCATATAACA
AG G 8224.4 

CTGCAATATTGA
GTTCATATAACA
AGC A 8304.3 

CTGCAATATTGAG
TTCATATAACAAG
T 
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Appendix 2.A: Design Summary Report for HLA well.  

This is the Design Summary Report generated by ADS. See Methods section 2.3.1c for specific details. 

 
 
$
$
 
 
 
 
 
 
 
 
 

WELL 
TER

M SNP_ID 2nd-PCRP 1st-PCRP 
AMP_
LEN 

UP_ 
CON

F 
MP_ 

CONF Tm(NN) 
PcG

C 

W1 iPLEX rs887466 
ACGTTGGATGAATCCT
TCCTGACCTAGAGC 

ACGTTGGATGTCCGCA
CCTATCACACCTAC 114 97.8 93 49.1 52.9 

W1 iPLEX rs2853931 
ACGTTGGATGGCATAG
AATATCATGCTGCAC 

ACGTTGGATGACGCTC
TTTTCAGGACGATG 86 93.8 93 46.1 42.1 

W1 iPLEX rs6457374 
ACGTTGGATGCCTAAC
AGTATGACACTCG 

ACGTTGGATGTTTCAA
ACCTCCTGCATCTG 102 96.4 93 49.3 45 

W1 iPLEX rs3129944 
ACGTTGGATGTGTGCT
TATAAGGTACCCAC 

ACGTTGGATGCTGTGG
AGAACAAGGAAGAG 105 98.5 93 45.5 27.3 

W1 iPLEX rs4349859 
ACGTTGGATGAGAGAG
CAGTCCTACAAATG 

ACGTTGGATGAAGCAG
CCTAATCCCCTTAC 133 94.4 93 47.4 30.4 
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Appendix 2.A Continued. Table could not fit on one page this is the table continued.  

PW
ARN 

UEP_
DIR 

UEP_
MASS UEP_SEQ 

EXT1_
CALL 

EXT1_
MASS EXT1_SEQ 

EXT2_
CALL 

EXT2_
MASS EXT2_SEQ 

  R 5090.3 
TCTACCCTCTCCG
GAAA G 5337.5 

TCTACCCTCTCCGG
AAAC A 5417.4 

TCTACCCTCTCCGG
AAAT 

  R 5869.9 
CTGCACATGAAG
AAATAGG T 6141.1 

CTGCACATGAAGA
AATAGGA C 6157.1 

CTGCACATGAAGA
AATAGGG 

d F 6212.1 
ACCAGATAGGTTT
AGTGGTG C 6459.2 

ACCAGATAGGTTT
AGTGGTGC T 6539.1 

ACCAGATAGGTTT
AGTGGTGT 

  R 6728.4 
AGTCAATAGACA
CTCAATAAAA G 6975.6 

AGTCAATAGACAC
TCAATAAAAC C 7015.6 

AGTCAATAGACAC
TCAATAAAAG 

d R 6945.5 
TCTTACATGTCTT
TGTACTTACT G 7192.7 

TCTTACATGTCTTT
GTACTTACTC A 7272.6 

TCTTACATGTCTTT
GTACTTACTT 
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