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Abstract 

Perfluoroalkyl acids (PFAAs) are persistent, bioaccumulative compounds found 

ubiquitously within the environment. They can be formed from the atmospheric oxidation 

of volatile precursor compounds and undergo long-range transport (LRT) through the 

atmosphere and ocean to remote locations. Ice caps preserve a temporal record of PFAA 

deposition making them useful in studying the atmospheric trends in LRT of PFAAs as 

well as understanding major pollutant sources and production changes over time.  

A 15 m ice core representing 38 years of deposition (1977 – 2015) was collected 

from the Devon Ice Cap in Nunavut and analyzed for PFAAs. Samples were concentrated 

by solid phase extraction and analyzed by UPLC-MS/MS, IC, and ICP-OES. Both short- 

and long-chain perfluorocarboxylic acids (PFCAs) and perfluorosulfonic acids (PFSAs) 

were detected in the samples, with fluxes ranging from <LOD to 4.44×104 ng m −2 yr−1.  

In this work I assess temporal trends in deposition, homologue profiles, ion 

tracers, air mass transport models, and production and regulation trends to characterize 

the PFAA depositional profile on the Devon Ice Cap and to further understand the LRT 

mechanisms of these persistent pollutants. In Chapter 3 my results demonstrate that the 

PFCAs and perflurooctane sulfonate (PFOS) have continuous and increasing deposition 

on Devon Ice Cap, despite recent North American regulations and phase-outs. I propose 

that this is the result of on-going emission and use of these compounds, their precursors 

and other newly unidentified compounds in regions outside of North America. Through 

modelling air mass transport densities, and comparing temporal trends in deposition with 



 iii 

production changes of possible sources, I find that Eurasian sources, particularly from 

Continental Asia are large contributors to the global pollutants impacting Devon Ice Cap. 

By comparing PFAAs to their precursors and correlating pairs of PFCAs, I determine that 

deposition of PFAAs is dominated by atmospheric formation from volatile precursor 

sources, and major ion analysis provides new information regarding the transport of 

PFAAs, confirming that marine aerosol inputs are unimportant to the LRT mechanisms of 

these compounds. In Chapter 4 my results from the Arctic ice core analysis show a ten-

fold increase in short-chain PFCA (scPFCA) deposition between 1986 and 2014, which 

coincides with increased production and atmospheric burden of chlorofluorocarbon (CFC)-

replacement compounds. This is the first multi-decadal temporal record of scPFCA 

deposition and indicates that Montreal Protocol-mandated introduction of CFC-replacement 

compounds for the heat-transfer industry is the dominant source of scPFCAs to remote 

regions. 
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1 Introduction and Overview 

1.1 Per- and Polyfluoroalkyl Substances 

Per- and polyfluoroalkyl substances (PFASs, CnF2n+1-R) are widely used 

anthropogenic chemicals found ubiquitously within the environment. PFASs have been 

used in surfactants and polymers for commercial and industrial applications since the 

1950s. They are a diverse group of highly fluorinated aliphatic compounds that differ in 

both their functional groups (-R = -COO−, -SO3
−) and carbon chain lengths (CnF2n+1 = 1-

17). The properties of thermal and chemical stability of the perfluoroalkyl moiety 

(CnF2n+1-), as well as their hydrophobic and lipophobic nature make them very useful for 

a variety of applications.1 These applications include use as stain-resistant coatings for 

textiles and other surfaces, use as polymerization aids and use in fire fighting foams 

(aqueous film forming foams, AFFFs).2 

There are a number of sub-groups of perfluoroalkyl substances, in which all of the 

carbon atoms of the alkyl chain are fully fluorinated. These sub-groups include the 

perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkyl sulfonic acids (PFSAs), 

perfluorosulfonamides and sulfonamide ethanols, fluorotelomer alcohols (FTOHs), and 

saturated and unsaturated fluorotelomer acids. Two of the most commonly investigated 

sub-groups are the PFCAs (CnF2n+1COO−) and PFSAs (CnF2n+1SO3
−), which are typically 

distinguished based on their chain-length (Figure 1.1). In the environment, less stable 

PFASs can degrade and transform into highly stable end products, such as the 

perfluoroalkyl acids (PFAAs), which have extraordinary environmental persistence. The 
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PFCAs and PFSAs are both members of the perfluoroalkyl acid (PFAA) family since they 

are strong acids and fully fluorinated.  

The environmental impact of PFASs emerged as a concern in the early 2000s 

when certain PFCAs and PFSAs were found ubiquitously in various environmental and 

biological matrices, particularly human blood.3,4 These compounds were also found to 

have effects on human health5 and the aquatic environment.6 Following these discoveries, 

many regulations have been implemented over the years to restrict the manufacture and 

use of certain PFASs.  

1.1.1 Perfluoroalkyl Acid Properties 

The environmental fate of all PFASs is determined by their different 

physicochemical properties, which will vary depending on their chain length and 

functional groups. The perfluoroalkyl acids themselves are persistent organic pollutants 

(POPs), but have different properties compared to traditional POPs. The PFAAs consist 

of a hydrophobic (perfluoroalkyl chain of varying length) and hydrophilic (carboxyl or 

sulfate) moiety. This duality gives rise to their surfactant properties by which they prefer 

to reside at the interfaces of sediment-water, air-water, and air-particle systems, as 

molecules and/or aggregates.7 Long-chain PFCAs (CnF2n+1COO−) refer to n ≥ 7 and long-

chain PFSAs (CnF2n+1SO3
−) are n ≥ 6, while short-chain PFAAs are n < 7 and n < 6, 

respectively. The short-chain PFCAs are commonly found in the dissolved phase, while 

the long-chain PFCAs and PFSAs tend to bind strongly to particles.8 
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Figure 1.1. Chemical Structure of a) PFCAs and b) PFSAs. 

PFAAs can exist as either linear (i.e. n-alkyl) or branched alkyl isomers (i.e. n-

PFOS (F(n-CF2)8SO3
−) versus iso-PFOS ((CF3)2CF(CF2)5SO3

−)). The mixtures of linear 

and branched isomers can present challenges in accurately quantifying PFAAs in 

environmental matrices, but they can also aid in understanding sources of PFAAs.9 The 

production of isomers varies by manufacturing process, with the telomerization process 

producing linear isomers based on polymerization of tetrafluoroethylene (TFE) 

(CF2=CF2) and the electrochemical fluorination (ECF) process producing a mixture of 

linear and branched isomers due to cleavage and rearrangements during the 

perfluorination reaction with hydrofluoric acid (HF).1,10 The ratio of linear to branched in 

the ECF process is roughly 70-80% linear and 20-30% branched.11 

In addition to their use in commercial products and consumer applications, PFAAs 

are also terminal degradation products from abiotic and biotic degradation of precursor 

PFASs. Numerous precursors to the PFCAs and PFSAs are summarized in Table 1.1.  
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Table 1.1. A list of PFAA precursor compounds and their chemical structures.1,12  
Name Acronym Chemical Structure 

Fluorotelomer Alcohols FTOHs CnF2n+1CH2CH2OH 
Unsaturated Fluorotelomer Alcohols FTUOHs CnF2n+1CF=CHCH2OH 
Fluorotelomer Acrylates FTAcs CnF2n+1CH2CH2OC(O)CH=CH2 
Fluorotelomer Methacrylates FTMACs CnF2n+1CH2CH2OC(O)C(CH3)=CH2 
Fluorotelomer Iodides FTIs CnF2n+1CH2CH2I 
Fluorotelomer Olefins FTOs CnF2n+1CH=CH2 
Fluorotelomer Aldehydes FTALs CnF2n+1CH2CHO 
Unsaturated Fluorotelomer Aldehydes FTUALs CnF2n+1CF=CHCHO 
Fluorotelomer Carboxylic Acids FTCAs CnF2n+1CH2COOH 
Unsaturated Carboxylic Acids FTUCAs CnF2n+1CF=CHCOOH 
n:3 Saturated Acids n:3 Acids CnF2n+1CH2CH2COOH 
n:3 Unsaturated Acids n:3 UAcids CnF2n+1CH=CHCOOH 
Fluorotelomer Sulfonic Acids FTSAs CnF2n+1CH2CH2SO3H 
N-Alkyl Perfluoroalkane Sulfonamides NAFSAs CnF2n+1SO2NH(CxH2x+1) (x=1,2,4) 
N-Alkyl Perfluoroalkane 
Sulfonamidoethanols 

NAFSEs CnF2n+1SO2N(CxH2x+1)CH2CH2OH, 
(x=0,1,2,4) 

N-Alkyl Perfluoroalkane 
Sulfonamidoacetic acids 

NAFASAAs CnF2n+1SO2N(CxH2x+1)CH2COOH, 
(x=0,1,2,4) 

Polyfluoroalkyl Phosphate Esters PAPs (CnF2n+1CH2CH2O)xP(=O)(OH)3-x, x=1,2 
Perfluorooctane Sulfonyl Fluoride POSF CnF2n+1SO2F 
Hydrochlorofluorocarbons HCFCs CnF2n+1CHFCl 

CnF2n+1CHxCly  (x=1,2, y=1,2) 
Hydrofluorocarbons HFCs CnF2n+1(CHF)xCHyFz 

CnF2n+1(CHF)x(CF2)yF  
(x=0,1,2, y=0,1,2,3, z=0,1,2,3) 

Hydrofluoroethers HFEs CnF2n+1O(CH2)xH (x=1,2) 
Hydrofluoroolefins HFOs CnF2n+1CF=CHxFy (x=0,1,2, y=0,1,2) 

Fluorinated Anaesthetics  
(Halothane, Desflurane, Isoflurane) 

 CnF2n+1CH(Clw)(Brx)(Fy)(OCHF2)z 
(w=0,1, x=0,1, y=0,1, z= 0,1) 

 

1.1.1.1 Physicochemical Properties 

PFAAs are widely distributed in the global environment due to their solubility in 

water, low-to-moderate sorption to soils and sediments, and resistance to biological and 

chemical degradation.7,13 PFCAs and PFSAs are ionized under most environmental 

conditions and will therefore reside in water. Despite their widespread occurrence, very 

little experimental data is available on the physicochemical properties of PFAAs in their 
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ionized form. This section will therefore only summarize the expected physicochemical 

properties of these compounds.    

PFCAs and PFSAs have relatively high water solubility’s (g L−1) due to the 

hydrophilic carboxylate and sulfonate groups on the molecules.14 The solubility of 

PFAAs is highest for short-chain PFAAs and decreases with molecular weight due to the 

increase in hydrophobic perfluorinated alkyl chain length. In natural waters (neutral pH), 

and under most environmental conditions, PFCAs and PFSAs will predominantly be 

present in their anionic form, due to their low acid dissociation constants (pKa).15,16 Their 

water solubility in natural waters will strongly depend on ion composition, temperature 

and other factors. PFAAs have low pKa values (pKa < 1) since they are strong acids and 

usually exist as dissociated anions under most environmental conditions,16 however there 

has been considerable debate regarding appropriate pKa values, especially for PFOA.7 In 

some limited cases PFAAs can be present in their protonated form, which has different 

physicochemical properties. For example, the perfluorooctanoate anion is highly water-

soluble and has negligible vapour pressure, whereas the protonated perfluorooctanoic acid 

has low water solubility and sufficient vapour pressure to partition out of water into air,17 

but this is very unlikely. Water solubility and acid dissociation constants for neutral 

PFAAs are summarized in Table 1.2. 

The PFAAs themselves have very low vapour pressures compared to their 

precursor counterparts (e.g. FTOHs), which have varying but higher vapour pressures 

than PFAAs and are classified as volatile. Vapour pressures decrease with increasing 

perfluorinated chain length.18 Wang et al.7 summarizes vapour pressures and other data 
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for condensed to gas-phase partitioning (KOA – octanol-air partitioning coefficient and 

KAW – air-water partitioning coefficient), but only for the neutral PFAAs and their 

precursors. Vapour pressures for the neutral PFCAs and PFSAs are given in Table 1.2 

The sorption and mobility of PFAAs can be estimated using different partitioning 

coefficients. The degrees to which PFAAs sorb to organic carbon in sediment and soils 

during transport in water are estimated by the organic-carbon partition coefficient (KOC) 

and the octanol-water partition coefficient (KOW).14 However, KOW values for ionized 

PFAAs are experimentally impossible to measure since they do not follow typical lipid 

partition dynamics and will accumulate at the interface, essentially forming another 

phase.14 In general, sorption of PFAAs will increase with increasing perfluorinated chain 

length. Although limited in evidence, surface sorption of PFAAs to charged mineral 

surfaces is also considered to be an important mechanism for PFAA transport in water.14 

Wang et al.7 summarize sorption partition coefficient values for the neutral PFAAs and 

their precursors. Partition coefficient values for KOC are provided in Table 1.2 for the 

neutral PFCAs and PFSAs.  
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Table 1.2. Physicochemical properties of neutral PFCAs and PFSAs. Data from 
references [7,14] and references therein.  

 
Name 

 
Acronym 

Water 
Solubility  
(g L-1)14 

Vapour 
Pressure 
(Pa)7,14 

log KOC 
(L kg-1)14 

Dissociation 
Constant 
(pKa)14 

Perfluoroalkyl Carboxylic Acids PFCAs     
Perfluorobutanoic Acid   PFBA Miscible 1307 1.88 −0.2 – 0.7 
Perfluoropentanoic Acid PFPeA 112.6 1057 1.37 −0.06 
Perfluorohexanoic Acid PFHxA 21.7 457 1.91 −0.13 
Perfluoroheptanoic Acid PFHpA 4.2 158 2.19 −0.15 
Perfluorooctanoic Acid PFOA 3.4 – 9.5 4 – 1300 1.31 – 2.35 −0.16 – 3.8 
Perfluorononanoic Acid PFNA 9.50 1.3 2.39 −0.17 
Perfluorodecanoic Acid PFDA 9.50 0.2 2.76 −0.17 
Perfluoroundecanoic Acid PFUnDA 0.004 0.1 3.30 −0.17 
Perfluorododecanoic Acid PFDoDA 0.0007 0.01 NA1 −0.17 – 0.8 
Perfluorotridecanoic Acid PFTrDA 0.0002 0.3 NA NA 
Perfluorotetradecanoic Acid PFTeDA 0.00003 0.1 NA NA 
Perfluoroalkyl Sulfonic Acids PFSAs     
Perfluorobutanesulfonic Acid PFBS 46.2 – 56.6 631 1.00 −6.0 to −5.0 
Perfluorohexanesulfonic Acid PFHxS 2.3 58.9 1.78 −6.0 to −5.0 
Perfluorooctanesulfonic Acid PFOS 0.52 – 0.57 6.7 2.5 – 3.1 −6.0 to −2.6 
Perfluorodecanesulfonic Acid PFDS 0.002 0.71 3.53 NA 

1NA – Data not available/not applicable 

1.1.1.2 Toxicity and Exposure 

PFAAs will bind to proteins and phospholipids, and are found at elevated 

concentrations in tissues with high protein and phospholipid content (e.g. liver, kidney, 

blood, etc.).19 Due to their chemical stability and resistance to biological degradation, 

they will persist in the environment and undergo bioaccumulation (i.e. [PFA]predator + 

[PFA]prey). Certain PFAAs (>7 perfluorocarbons) will undergo biomagnification (i.e. 

concentration gradient across an entire food web). The long-chain PFAAs are generally 

more bioaccumulative than the short-chain analogues and more likely to biomagnify into 

the food web, but for very large PFAAs (i.e. >12 perfluorocarbons), bioaccumulation is 

less due to limited bioavailability.20 
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PFAA uptake can occur by oral, inhalation or dermal exposure. For PFCAs, once 

exposed, approximately 90 – 99% of the compound in the blood will bind to serum 

albumin.21 There is no evidence to indicate that long-chain PFAAs will metabolize in 

mammals and thus elimination can only be achieved by excretion. 

Perfluorooctanesulfonic acid (PFOS, 8 perfluorinated carbons), the most-studied long-

chain PFSA, is excreted more slowly than perfluorooctanoic acid (PFOA, 7 

perfluorinated carbons), the most-studied long-chain PFCA, and thus PFOA has a shorter 

elimination half-life and higher rate of excretion.22 The PFOS half-life in humans is 5.4 

years, while the PFOA half-life is 3.8 years.23 It has also been shown that branched 

isomers are excreted more rapidly than the linear isomers, which tend to accumulate 

more, and short-chain PFAAs excrete more rapidly than long-chain PFAAs.22  

The toxicity of PFAS is an emerging field. PFOS and PFOA have been shown to 

have moderate acute toxicity in routine toxicological assays.22 PFOS and linear isomers 

are more toxic than PFOA and branched isomers, and can cause adverse effects at lower 

dosages, such as a decreased rate of excretion.24 Numerous publications have studied the 

biological properties of PFAAs, but are mostly limited to PFOS and PFOA.22 These two 

PFAAs have been toxicologically examined in many animal studies, and show that the 

subacute and subchronic effects of PFOS and PFOA vary depending on species,22 but 

generally show developmental toxicity, immunotoxicity, hepatoxicity, neurotoxicity, 

tumor induction, endocrine disruption, and other carcinogenic effects at high doses. There 

is emerging evidence that PFAS are more toxic to the second generation, which deviates 

from traditional toxicological approaches. In addition, various animal models have 
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indicated sex-specific pharmacokinetics and thus new ventures into evaluating toxicity of 

PFAS are cognizant of species, sex, and multigenerational effects. 

1.1.2 Perfluoroalkyl Acids in the Environment 

Due to their physicochemical properties, persistence and ability to be formed from 

precursor compounds, PFAAs are found ubiquitously in the environment. They have been 

detected in many environmental matrices, in urban, industrialized and remote locations 

worldwide. Many monitoring studies have confirmed that humans and the environment 

are exposed to a wide range of PFAS, with increasing ratios of unidentified ones.25 For 

many of these compounds, there is little to no understanding on how much has been, and 

will be, released and transformed or accumulated into the environment and biota over 

time. A brief overview of PFAA detection in the abiotic and biotic environment is 

summarized below. 

1.1.2.1 Abiotic Environment  

Through their widespread use and long-range transport potential, PFAAs are 

widely distributed in the global environment and are commonly found in remote regions 

such as the High Arctic. Many studies have monitored and measured PFAAs in air, 

precipitation, ice caps, and the terrestrial, freshwater and marine environments, with both 

short-term and long-term records (Tables 1.3-1.4).  

Atmospheric PFAAs as well as neutral precursors have been measured at long-

term air-monitoring sites, predominantly in the northern hemisphere,26–28 during ship 
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cruises along the Northern Atlantic Ocean and Canadian Archipelago,29,30 and in some 

industrialized and urban areas.31 Most PFAAs are measured in the particulate phase, 

while neutral precursors are measured in both gas and particulate phase.32 Measurements 

of these PFAAs are usually on the order of a few pg m−3, with concentrations in 

populated areas higher than those in remote areas. Similar trends in atmospheric 

measurements have been found in precipitation. PFAAs in precipitation are the result of 

wet deposition of PFAAs in particles and the gas phase, with levels ranging from 

hundreds of pg L−1 to a few ng L−1. Both short- and long-chain PFCAs and PFSAs have 

been measured in various types of precipitation samples worldwide, comprising 

rainwater, snow and ice. Many studies have investigated concentrations of PFAAs in 

ice/snow cores and surface snow in the Arctic.33–38 The high detection of these 

compounds in the remote Arctic environment is evidence of atmospheric and oceanic 

transport. Wet precipitation samples have been collected in several remote, rural and 

urban areas in North America, Europe and Asia.39–41 

Freshwater is the dominant abiotic medium sampled for PFAAs. Due to the 

relatively small volume of most freshwater bodies, concentration effects facilitate the 

detection of PFAAs with concentrations ranging from hundreds of pg L−1 up to tens of µg 

L−1. Point sources, such as AFFF release, have known to increase PFAA concentrations in 

downstream receiving bodies.42 A wide range of PFAAs have been detected in North 

American lakes including The Great Lakes43,44 and Canadian Arctic lakes.27,45 Similarly, 

PFAAs have been measured in river and surface water samples in areas such as 

Norway,38 Switzerland,46 China,47 and Japan.48 
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PFAAs are also globally distributed in the marine environment,49 albeit at lower 

concentrations. The ocean is an important sink and transport pathway for these 

compounds. Concentrations of PFAAs in seawater typically range from a few to hundreds 

of pg L−1. Spatial trends in PFAA contamination have been observed, where higher 

concentrations are detected near polluted coastal regions and lower concentrations in 

remote ocean waters.11 Many inflowing rivers are sources of PFAA contamination, with 

major rivers in Europe and North America delivering tonnes of PFAAs per year into the 

Atlantic Ocean and surrounding seas.50 Concentrations of PFAAs are also elevated in 

surface ocean waters where ice melting occurs.51 Additionally, there is a latitudinal 

gradient, where concentrations of PFOA, PFOS, and other PFCAs, are greater overall in 

the northern hemisphere than in the southern hemisphere.52,53 This is consistent with the 

location of most fluorochemical manufacturers and consumers in the northern 

hemisphere.  

There is limited data on PFAA concentrations in the terrestrial environment 

compared to freshwater and marine environments. Based on available data, the PFCA 

composition differs among types of vegetation. PFOA is the predominant PFCA in plants, 

while the longer chain PFCAs are predominant in lichen and moss,54 however further 

research is warranted to establish the consistency of these trends (Tables 1.5-1.6). 

1.1.2.2 Biotic Detection 

Many studies have detected and monitored PFAAs at all levels of the food web, in 

different aquatic and terrestrial species and in humans (Tables 1.5-1.6). However, due to 
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the complex and widespread distribution of these PFAAs, the relative contribution to 

source exposure is difficult to assess. PFAAs have been reported in organisms at all levels 

of the aquatic food web. They have been measured in plankton, benthic algae and various 

invertebrates from different regions across North America, Europe and Asia.6,45,49,55,56 

PFOS is the dominant PFAA detected in aquatic invertebrates, in addition to fish.57 

Elevated PFOS concentrations have been found in liver, muscle and egg samples of 

various fish species from different locations.58 Other long-chain PFAAs, including PFOA, 

will bioaccumulate in the marine food web, particularly in fish, with greater 

bioaccumulation with increasing chain length.55,59,60 Many PFCAs and PFSAs have been 

detected in both fresh and salt water fish samples from numerous regions.6,44,45,55,61,62 

Elevated levels of PFOS have also been reported in turtles and frogs from areas in the 

United States (U.S.).6  

In general, the highest PFAA concentrations have been found in organisms at 

higher trophic levels, such as predatory birds and marine mammals.61 Numerous PFAAs 

have been detected worldwide in seabirds, waterfowl and terrestrial birds,6,61,63,64 although 

most studies have focused on PFOS and PFOA.58 Fish-eating birds have higher PFAA 

concentrations than birds that are herbivores or insectivores, but lower concentrations 

than fish-eating mammals. This is likely linked to their trophic position in the food web or 

to a shorter elimination half-life.58 PFAAs have been detected in Arctic fox and mink at 

comparable concentrations to those in marine mammals,64 including polar bears,64 seals,65 

whales,66 and dolphins.67 The highest PFAA concentrations have been found in bottlenose 
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dolphins from the U.S. and in polar bears from the Arctic, who are top predators in the 

Arctic food web.58 

PFAAs have been detected globally in human blood and serum, with PFOS and 

PFOA most prevalent.4 Overall, higher concentrations of PFOS have been measured in 

the blood and serum of North Americans compared to people in other parts of the world.58 

Comparing PFAA contamination between humans and wildlife, different patterns are 

observed, suggesting fish and mammals are not major sources of PFAA contamination to 

most humans (exceptions would be populations subsisting on marine mammals such as 

Northern indigenous groups). Rather, human exposure to PFAAs can occur through a 

variety of pathways, including exposure from personal care and cleaning products, intake 

of drinking water and food, inhalation of indoor and outdoor dust, and exposure during 

gestation.68 The most prevalent PFAAs are readily detected in the plasma of pregnant 

women, in cord blood, and in neonatal blood spots.69 Exposure can also occur during the 

postnatal period. A longer duration of breastfeeding during infancy increases exposure of 

PFAAs and resulting blood levels, as do dietary sources in childhood and adulthood.69 

Young children may have a higher uptake of PFAAs than adults due to more hand-to-

mouth contact and exposure to dust on household surfaces, and greater food consumption 

relative to body weight.70 PFAAs have been detected in food-packaging71 and in food 

composites,57 both potential sources of direct exposure.72 Consumption of drinking water 

is another route of exposure, with numerous studies detecting PFAAs in various drinking 

water sources in different countries.57,73,74 Human PFAA exposure from drinking water is 

a serious concern because of the high aqueous solubility of these compounds. Elevated 
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PFAA concentrations in U.S. drinking water have been reported in numerous regions, 

especially near industrial sites that produce or use them.73 Many airports and military fire 

training areas are contaminated by PFAAs contained in AFFFs, used during firefighting 

training activities. Groundwater and surface waters surrounding these sites have been 

reported with concentrations 3 – 4 orders of magnitude higher than the United States 

Environmental Protection Agency (US EPA) health advisory level for drinking water.75 

Wastewater treatment plants (WWTPs) are important PFAA sources because these 

compounds are not removed by standard wastewater and drinking water treatment 

processes and precursor compounds biodegrade, which increases the concentrations of 

PFAAs in effluent relative to influent.76,77 Land application of the biosolids generated by 

WWTPs may then contribute to human exposure through subsequent contamination of 

water, food, livestock, and wildlife75 (Tables 1.3-1.4). Indoor and outdoor dust are also 

potential sources of human exposure, through inhalation of airborne material and hand to 

mouth contact, with very high concentrations of PFAAs detected in house dust78 and 

outdoor dust.79
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Table 1.3. PFCA concentrations (ng L−1) in selected abiotic samples. Air sample concentrations are in pg m−3. When 
analytes were not part of the monitored suite, cells are left empty. 

Matrix Site TFA PFPrA PFBA PFPeA PFHxA PFHpA PFOA PFNA PFDA PFUnDA PFDoDA 
Air (gas/particle) 

(2006) 
Albany, New York31 

(pg m−3) 
     <0.12-0.81  0.76-6.53 <0.12-0.40 0.13-1.56 <0.12-0.16 <0.12-0.38 

Air (particulate) 
(2005-2006) 

Europe (UK, Ireland, 
Norway)28 (pg m−3) 

    0.5-107 <0.001-14.4 8.9-552 0.2-26.6 <0.15-8.3 <0.002-4.6 <0.12 

Ice Core (1996-
2005, 1995-2008) 

Devon Ice Cap, Canadian 
Arctic33,34 

  0.258-2.62 0.06-0.693 0.052-0.604 0.219-1.05 0.034-1.02 0.005-2.27 0.004-0.369 0.003-0.376 0.002-
0.041 

Snow Core 
(1996-2008) 

Colle Gnifetti, Swiss Alps35   0.34-1.83 <0.03-0.40 0.06-0.34 0.04-0.22 0.20-0.63 <0.12-0.31 <0.06-0.24 <0.10-0.18  

Snow Core (1980-
1999, 1996-2007) 

Mt. Muztagata, Mt. 
Zuoqiupu, Tibetan Plateau36 

  <0.013-
0.056 

<0.025-
0.142 

<0.02-0.10 <0.02 0.038-0.243 <0.01-0.073 0.008-0.075 <0.005-
0.011 

<0.01-
0.033 

Surface Snow 
(2004) 

Greenland37     <0.01-
0.035 

0.012-0.085 0.051-0.52 <0.03-0.077 0.11-0.149   

Surface Snow 
(2006) 

Longyearbreen Glacier, 
Longyearbyen, Norway38 

  0.109 ± 
0.045 

0.030 ± 
0.004 

0.076 ± 
0.04 

0.017 ± 
0.006 

0.113 ± 0.02 0.051 ± 
0.009 

0.022 ± 
0.004 

<0.005 0.007 

Precipitation 
(1998-1999) 

Rural U.S. 
(Ithaca, New York)39 

3.0-360 <0.10-21 <0.10-4.60 <0.10-17 <0.10-10 <0.10-11 <0.10-10 <0.10-3.20    

Precipitation 
(2002) 

Remote Canada 
(Kejimkujik, Nova Scotia)39 

4.0-100 <0.10-59 <0.10-2.90 <0.10-1.90 <0.10-2.30 <0.10-5.40 <0.10-3.10 <0.10-3.30    

Precipitation 
(2003-2004) 

Urban Canada  (Toronto, 
Ontario)39 

87-270 0.80-2.40 0.10-2.10 0.20-1.10 0.20-0.90 <0.10-1.70 1.0-11 0.50-9.70 <0.07-1.0 <0.07-3.70 <0.07-5.20 

Precipitation 
(2007, 2008) 

Japan (Tsukuba & 
Kawaguchi) 40, 41 

52.4-69.8 0.90-45 <0.05-17.3 <0.05-4.97 <0.25-4.21 0.15-3.97 0.11-11 0.16-17.5 0.04-2.11 0.06-2.06 <0.05-0.62 

Precipitation 
(2007) 

U.S.A. (Slingerlands & 
Downtown Albany)41 

 1.08-20.3 <0.005-
1.01 

<0.05-2.24 <0.25-1.11 0.17-1.13 0.25-9.42 0.21-5.39 0.10-0.42 <0.25-1.91 <0.05-0.13 

Precipitation 
(2007) 

China (Hong Kong)41  1.13-3.08 0.53-1.79 <0.05-0.23 <0.25-0.62 <0.25-15.7 0.20-0.41 0.13-0.44 0.14-0.31 0.04-0.19 0.06-0.16 
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Table 1.3. PFCA concentrations (ng L−1) in selected abiotic samples continued. 
Matrix Site PFBA PFPeA PFHxA PFHpA PFOA PFNA PFDA PFUnDA PFDoDA 

Lake Water (2004-2010) The Great Lakes44  0.16-4.95 0.329-4.64 0.12-2.39 0.244-7.16 0.047-0.642 0.005-0.958 0.004-0.026 0.005-0.01 
Lake Water (2003-2005) Canadian Arctic Lakes27    0.30-49 0.40-16 0.20-6.10 0.50-29 0.20-5.90 0.50-2.30 

Surface Water (2009)  Shenyang, China47   1.26-37.6 0.56-4.00 1.83-10.9 <0.39-1.60 <0.33-0.66 <0.28-1.20 <0.30-2.48 
River Water (2008) Kansai, Japan48  0.10-0.80 0.10-1630 0.30-5.00 2.70-500 1.50-902 0.10-7.20 0.20-17.5  
River Water (2009) Switzerland46 <0.069-7.04 <0.041-13.5 0.071-15.5 0.028-3.07 0.036-30.3 <0.028-30 <0.010-5.05 <0.034-2.56 <0.051-0.303 

Lake Sediment (2003-2005) Canadian Arctic Lakes27     <0.18-6.80 <0.290-7.50 <0.059-3.20 <0.059-0.60 <0.46 <0.55 
Ocean Water (2005, 2008) Arctic Ocean50   0.003-0.065 0.011-0.084 0.007-0.054 0.003-0.047 0.002-0.033 0.0009-0.079 0.001-0.032 

Ocean Water (2010) Arctic Ocean51 <0.13-0.36 0.031-0.24 <0.027-0.028 <0.011-0.24 <0.020-0.067 <0.022-0.051 <0.035 <0.021-0.024 <0.009 
Ocean Water (2007, 2009) Atlantic Ocean50   0.003-0.15 0.002-0.11 0.003-0.26 0.002-0.13 0.003-0.03 0.0001-0.092 0.0002-0.094 

Ocean Water (2008) Atlantic Ocean52 <0.15-0.496 <0.014-0.097 <0.003-0.117 <0.003-0.037 <0.005-0.223 <0.003-0.039 <0.006-0.037 <0.011-0.066 <0.006-0.048 
Ocean Water (2011) Atlantic, Pacific, & Indian 

Oceans49 
  0.0008-0.20 0.003-0.080 0.013-0.10 0.0002-0.48 0.003-1.60   

Drinking Water (2013-2015) United States (UCMR3 Data)73    10-22 20-53     
Drinking Water (2007) Catalonia, Spain74   <0.87 <0.61-3.02 0.32-6.28 0.22-0.52 <0.82 <0.43 <0.34 
WWTP Effluent (2014) San Francisco Bay76 16 ± 5.80 12 ± 11 26 ± 5.10 4.40 ± 2.20 21 ± 13 8.40 ± 3.60 3.50 ± 1.70   
Influent/Effluent (2010) 20 Canadian WWTPs77 <1.00-89.0 0.50-192 0.70-258 1.08-74.6 <1.04-138 <0.986-18.2 <0.98-11.6 <1.07 <1.2 
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Table 1.4. PFSA concentrations (ng L−1) in selected abiotic samples. Air sample concentrations in pg m−3. 
Matrix Site PFBS PFHxS PFHpS PFOS PFDS FOSA 

Air (gas/particle) (2006) Albany, New York31  (pg m−3)  <0.12-0.44  0.35-3.0 <0.12-0.18  
Air (particulate) (2005-2006) Europe (UK, Ireland, Norway)28 (pg m−3) <0.09-3.2 0.04-5.9  1.0-46 <0.001-0.8 <0.2-2.1 

Ice Core (1996-2005, 1995-2008) Devon Ice Cap, Canadian Arctic33,34    0.006-0.18  0.092-1.24 
Ice Core (1992-2005) Longyearbreen Glacier, Norway38    0.008 ± 0.002   

Snow Core (1980-1999, 1996-2007) Mt. Muztagata, Mt. Zuoqiupu, Tibetan Plateau36    <0.025-0.346   
Surface Snow (2004) Greenland37    0.025-0.137  0.024-0.039 
Surface Snow (2006) Longyearbreen Glacier, Norway38    0.034 ± 0.013   

Precipitation (2007, 2008) Japan (Tsukuba & Kawaguchi) 40, 41 <0.05-2.00 <0.05  <0.10-4.21  <0.05-0.25 
Precipitation (2007) U.S.A. (Slingerlands & Albany)41 <0.05-0.62 <0.05  <0.10-0.64  0.03-0.31 
Precipitation (2007) China (Hong Kong)41 <0.05-3.07 <0.05  <0.10-0.70  <0.05-0.22 

Lake Water (2004-2010) The Great Lakes44 0.011-1.80 0.027-1.56  0.095-9.48   
Lake Water (2003-2005) Canadian Arctic Lakes27  1.50-24  0.90-90 1.00-14  

Surface Water (2009)  Shenyang, China47  <0.75-1.50  <0.20-3.32   
River Water (2008) Kansai, Japan48 0.10-4.90 0.20-18.4  0.30-104   
River Water (2009) Switzerland46 <0.015-9.99 0.033-14.8  <0.038-139   

Lake Sediment (2003-2005) Canadian Arctic Lakes27 <1.1 <0.55-3.50  <0.35-85 <0.53  
Ocean Water (2005, 2008) Arctic Ocean50  0.0007-0.019  0.009-0.039  0.001-0.044 

Ocean Water (2010) Arctic Ocean51 <0.017-0.078 <0.066 <0.019 <0.021-0.053 <0.006-0.01 <0.081-0.26 
Ocean Water (2007, 2009) Atlantic Ocean50 0.002-0.22 0.001-0.051  0.013-0.19  0.0005-0.046 

Ocean Water (2008) Atlantic Ocean52 <0.004-0.05 <0.004-0.053  <0.011-0.232  <0.003-0.067 
Ocean Water (2011) Atlantic, Pacific & Indian Oceans49 0.004-0.29 0.003-0.87 0.002-0.20 0.034-5.00   

Drinking Water (2013-2015) United States (UCMR3 Data)73  32-120  41-156   
Drinking Water (2007) Catalonia, Spain74 <0.27 <0.18-0.28  0.39-0.87  <0.19 
WWTP Effluent (2014) San Francisco Bay76 2.70 ± 1.50 4.80 ± 0.90  13 ± 4.40   
Influent/Effluent (2010) 20 Canadian WWTPs77 1.61-69.2 1.48-453  <2.01-1237  <0.972-86 
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Table 1.5. PFCA concentrations (w/w) (ng g−1) in selected biotic samples. 
Matrix Site PFBA PFPeA PFHxA PFHpA PFOA PFNA PFDA PFUnDA PFDoDA PFTrDA PFTeDA 

Vegetation (2008-2009) Canadian Territories54     <0.004-0.7 <0.004-0.228 <0.004-0.38 <0.004-0.121 <0.004-0.8 <0.004-0.092  
Plankton (2011) Atlantic, Pacific, Indian Ocean49 0.1-7.6 0.5-8.2 0.1 0.6-9.1 0.5-6.7  0.1-0.5 0.1-1.7 0.2 0.1 0.2 

Invertebrates (Benthic & 
Pelagic) (2010-2011) 

6 Canadian Arctic Lakes45   0.017-0.38   0.01-9.8 0.13-2.0 0.21-2.42    

Invertebrates/Fish (2001) Lake Ontario55      1.0-90 0.8-57 1.3-32 1.3-41 1.8-14 1.5-15 <0.5-7.3 
Seafood Soft Tissue 

(2004) 
China (Guangzhou, Zhoushan)56   <0.25-0.29 <0.25-0.41 <0.25-1.67 <0.25-0.61  <0.25-0.30  <0.25-0.77    

Char (Juvenile & Adult) 
(2010-2011) 

6 Canadian Arctic Lakes45   0.001-0.058  0.10-50.6 0.11-6.2 0.023-0.84 0.04-0.50    

Herring (liver) 
(1980-2014) 

Swedish Coast (Gulf of Bothnia, 
Baltic Proper)61 

    0.212-3.95 0.141-5.09 0.071-1.93 0.071-2.32 0.057-0.81 0.035-1.16  

Lake Trout (2006) Great Lakes (Lake Superior)44     <0.42 0.70 ± 0.12 0.39 ± 0.07 1.1 ± 0.30 0.38 ± 0.08 0.97 ± 0.26 0.21 ± 0.05 
Lake Trout (2001) 5 Great lakes62    <0.02-1.43 1.1-4.4 0.57-2.9 0.72-4.9 0.74-3.5 0.37-0.97 1.1-3.5 0.72-1.8 

Glaucous Gull Plasma 
(2004) 

Norwegian Arctic63     <0.70-0.74 <2.33-6.33 3.07-15.1 32-184 2.9-23.9 3.63-30.2 <0.25-2.77 

Eggs (White-Tailed Sea 
Eagles) (1966-2010) 

Sweden (Gulf of Bothnia, Baltic 
Proper, Lapland)61 

    0.072-2.23 0.059-47.1 0.015-40.9  0.036-49.6 0.019-11 0.112-45.9 0.021-4.11 

Arctic Species (polar bear, 
seal, fox, mink, loon, 

fulmar, fish) (1993-2002) 

Canadian Arctic (QC, NU, 
NWT, YK)64 

  <2.0-8.6 <0.5-80 <0.5-56 <0.5-63 <0.5-6.2 <0.5-11 <0.5-1.7 0.53-3.5 <0.02-0.84 

Pilot Whale muscle  
(1986-2013) 

Faroe Islands66     <0.006-
0.14 

<0.01-0.03 0.06-0.17 <006-0.51 <0.01-0.73 0.5-2.0 0.19-0.46 

Ringed Seal Liver  
(1972-2005) 

Nunavut, Canada65    <1.6 <0.85-6.2 0.15-12 0.14-10.2 0.20-36 0.17-5.8 0.11-8.1 0.01-1.05 

Bottlenose Dolphin Blood 
(2003) 

Western Atlantic Ocean, Gulf of 
Mexico67 

    0.6-163 3.0-547 4.3-542 1.7-343 <0.5-62 <0.5-37 <0.5-4.0 

Human Blood Serum 
(1998-2004) 

U.S., Columbia, Brazil, Italy, 
Poland, Belgium, India, 
Malaysia, Korea, Japan4  

    <1-256       

Maternal Human Blood 
Plasma (1999-2000) 

Massachusetts, U.S.70     0.90-20.5 <0.1-3.4 <0.1-1.0     

Child Blood Plasma 
(2007-2010) 

Massachusetts, U.S.70     <0.1-14.3 <0.1-25.7 <0.1-1.9     

Outdoor Dust (2013) Mainland China79 0.97-20 8.0-12 0.3-7.1 0.35-26 0.2-100 0.11-5.1 0.17-11 0.03-3.4 0.03-8.8   
House Dust (2000-2001) North Carolina & Ohio, U.S.78   54.2-1250 50.2-1150 142-1960 <11.3-263 <9.4-267 <10.7-588 <11-520   
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Table 1.6. PFSA concentrations (w/w) (ng g−1) in selected biotic samples.  
Matrix Site PFHxS PFOS PFDS FOSA 

Vegetation (2008-2009) Canadian Territories54  <0.003-0.231   
Plankton (2011) Atlantic, Pacific & Indian Oceans49 0.1-0.9 0.1-43 0.1-0.2  

Benthic Organisms (1998-1999) Rivers in Michigan and Indiana, U.S.6 <2 <2-41.3  <1-6.3 
Invertebrates (Benthic & Pelagic) (2010-2011) Six Canadian Arctic Lakes45  0.12-445  0.01-0.75 

Invertebrates/Fish (2001) Lake Ontario55   13-450  4.0-180 
Seafood Soft Tissue (fish, shrimp, mollusc, crab, 

shellfish) (2004) 
China (Guangzhou, Zhoushan)56 <0.25-0.28 0.33-13.9   

Fish Tissue (1999-2000) Michigan Waters, U.S.6 <34 64-263  <19 
Char (Juvenile & Adult) (2010-2011) Six Canadian Arctic Lakes45 0.18-2.0 <0.001-224  0.01-117 

Herring (liver) (1980-2014) Swedish Coast (Gulf of Bothnia, Baltic Proper)61 0.212-0.865 0.54-20.0  0.15-5.78 
Lake Trout (2006) Laurentian Great Lakes (Lake Superior)44 <0.10 2.3 ± 0.46 <0.10  
Lake Trout (2001) 5 Great lakes62 <0.01-6.2 4.8-121 0.69-9.8 0.25-2.1 

Turtles, Minks, Frogs (1998-2001) Michigan Watershed, U.S.6 <1-21 <35-18000  <1-103 
Glaucous Gull Plasma (2004) Norwegian Arctic63 0.29-2.71 48.1-349   

Bald Eagle Tissues (2000) Michigan, U.S.6 <38 <7.5-1740  <75 
Eggs (White-Tailed Sea Eagles) (1966-2010) Sweden (Gulf of Bothnia, Baltic Proper, Lapland)61 0.111-5.02 6.912-1514 0.007-11.39 0.007-1.64 

Arctic Species (polar bear, seal, fox, mink, loon, 
fulmar, guillemot, fish) (1993-2002) 

Canadian Arctic (QC, NU, NWT, YK)64  1.3-3100  0.36-19 

Pilot Whale muscle (1986-2013) Faroe Islands66 0.11-0.19 2.0-4.0 <0.01-0.06 7.4-22 
Ringed Seal Liver (1972-2005) Nunavut, Canada65  0.58-177  0.03-3.62 

Bottlenose Dolphin Blood (2003) Western Atlantic Ocean, Gulf of Mexico67 2.2-332 46-3073  <0.5-102 
Human Blood Serum (1998-2004) Various Countries (U.S., Columbia, Brazil, Italy, 

Poland, Belgium, India, Malaysia, Korea, Japan)4  
<0.4-32 <1-164  <0.4-26 

Maternal Human Blood Plasma (1999-2000) Massachusetts, U.S.70 <0.1-43.2 4.6-115   
Child Blood Plasma (2007-2010) Massachusetts, U.S.70 <0.1-56.8 <0.1-51.4  <0.1-0.5 

Outdoor Dust (2013) Mainland China79  1.4-19   
House Dust (2000-2001) North Carolina & Ohio, U.S.78 45.5-35700 201-12100   
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1.2 Long-Range Transport 

Long-range transport (LRT) refers to movement of pollutants over long distances. 

This section discusses the LRT potential of POPs and their precursor compounds, and the 

occurrence of these POPs in remote locations, such as the High Arctic, far from any 

sources. LRT implies that pollutants will move over political boundaries, necessitating 

that international regulations are critical. The LRT of POPs is therefore of political 

concern, with legislation, including the Aarhus Protocol and the Stockholm Convention, 

entering into force in the early 2000s.80 Legislation initially regulated a set of 12 

chemicals or groups of chemicals known as the ‘dirty dozen’. Since then, additional 

pollutants have been added including PFOS, one of the major PFAAs. The LRT 

mechanisms of POPs, in particular the PFAAs, are of interest due to their different 

properties and ubiquitous detection in remote environmental samples.  

In general, traditional POPs, those included in the ‘dirty dozen’, are persistent and 

volatile enough that they will undergo long-range atmospheric transport. POPs will 

undergo global distillation or multi-hopping, in which these persistent chemicals are 

emitted in temperate regions and transported to Arctic regions, where they condense with 

varying effectiveness, deposit, and accumulate in the environment, far from point 

sources.81 The rates of these processes and the degree to which these chemicals 

accumulate in the Polar Regions, is dependent on their physicochemical properties and 

the prevailing atmospheric and oceanic conditions.82 The PFAAs are different in that they 

are involatile with appreciable water solubility, and are therefore not subject to long-
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range atmospheric transport or this global distillation mechanism. Various PFAS 

precursors on the other hand are volatile or semi-volatile and can be transported to remote 

Arctic regions before subsequently oxidizing to the PFAAs.68 This too will depend on 

their physicochemical properties in terms of lifetime, whereby some compounds are long-

lived and therefore globally well mixed, depending on their level of reactivity in the 

atmosphere.83 The PFAAs, rather, are transported to remote locations via two other 

mechanisms: i) direct transport by oceanic currents and formation of marine aerosols;84 

and ii) atmospheric oxidative transformations and subsequent wet and dry deposition of 

volatile and semi-volatile precursors.12  

1.2.1 Direct versus Indirect Transport 

With direct transport, PFAAs can be directly transported in their carboxylic or 

sulfonic acid form to remote locations. PFAAs are first directly introduced into the ocean 

through either source locations or other water bodies, or deposited into the ocean from 

indirect formation of precursors.85 Once in the ocean, PFAAs can be transported long 

distances via oceanic currents,86,87 with high concentrations detected in the Arctic 

Ocean.50,88 They can also be transported to land through the formation of marine aerosols 

that act as substrates.89 PFAAs are highly acidic, surface-active compounds,90 and will 

partition strongly into the sea surface microlayer (SSML).91 The SSML is rich in organic 

matter content, has a thickness between 1 – 1000 µm and forms at the ocean surface.92 

When wave action occurs, air bubbles are formed containing organic-rich particles from 

the SSML, which will break, wafting these marine aerosols containing PFAAs and sea 

salts, into the atmosphere.34 The organic carbon fraction of these marine aerosols 
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increases with a decrease in particle size.93 Therefore, there is a greater enrichment of 

organic carbon and potentially PFAAs in smaller size particles.26 These marine aerosols 

can then wet or dry deposit to remote land locations.  

With indirect transport, PFAAs are produced through atmospheric oxidative 

transformations of volatile and semi-volatile PFAS precursors in the atmosphere.12 These 

indirect precursor sources fall under three general categories: i) fluoropolymer industry, 

including both fluorotelomer-based and POSF-based products;94 ii) CFC-replacement 

compounds; and iii) anaesthetics. Within the fluoroploymer industry, there are a number 

of compounds that will degrade in the atmosphere to produce minor yields of the 

PFAAs.95–98 These compounds include perfluorinated aldehydes (PFALs), FTALs, FTOs, 

FTOHs, FTIs, FTAcs, and NAFSAs/NAFSEs, which are POSF-based precursors. The 

CFC-replacement compounds include HCFCs, HFCs, HFEs and HFOs. Anaesthetics 

include halothane, desflurane and isoflurane. The CFC-replacement compounds and the 

anaesthetics contain precursors that produce short-chain PFCAs as either major or minor 

products.12 These various precursors will all undergo oxidation in the gas phase to form 

the various PFAAs. The atmospheric lifetimes of these precursors are determined by their 

reactions with hydroxyl radicals. For example, FTOHs have an atmospheric lifetime of 

approximately 12 – 20 days with respect to hydroxyl radical reactions, depending on the 

hydroxyl radical concentrations in the atmosphere which can vary with both location and 

season.99,100 This relatively short lifetime means that FTOHs will have an inhomogeneous 

spatial distribution, but can be transported downwind long distances from emission 

points. An air mass travelling at the global average wind speed of 4 m s−1 could cover up 
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to 7000 km in ~20 days,99 confirming that the atmospheric lifetime of these precursors, in 

particular the FTOHs, are long enough that they can reach remote locations (e.g. the 

Arctic) by air transport, before subsequently oxidizing to the corresponding PFAAs and 

depositing via wet or dry deposition.  

1.2.2 Precursor Compounds 

This section will focus on precursor compounds including the fluorotelomer and 

related compounds. The compounds that will be discussed in this section include the 

PFALs, FTALs, FTOs, FTOHs, FTIs, FTAcs, NAFSAs, and NAFSEs (POSF-based 

precursors).  

Perfluoroalkyl iodides (PFAIs; CnF2n+1I), along with FTIs (CnF2n+1CH2CH2I) are 

the two starting raw materials that lead to the family of fluorotelomer-based products.1 

The accepted nomenclature uses FT as a prefix to designate fluorotelomer. FTOs 

(CnF2n+1CH=CH2) are synthesized by dehydrohalogenation of FTIs or as an impurity from 

the synthesis of FTOHs from FTIs.94 FTOHs (CnF2n+1CH2CH2OH) are key raw materials 

in the production of FTAcs (CnF2n+1CH2CH2OC(O)CH=CH2). Perfluoroalkane sulfonyl 

fluorides (PASFs; CnF2n+1SO2F) are main precursors in the manufacture of both PFSAs 

and other compounds containing the perfluoroalkane sulfonamido group 

(CnF2n+1SO2N<).1 Their major conversion is to the commercial product and building 

block, NAFSA (CnF2n+1SO2NH(CmH2m+1)), followed by a reaction to give NAFSE 

(CnF2n+1SO2N(CmH2m+1)CH2CH2OH).1 These intermediates are also principal building 

blocks for many fluorochemical products used in various applications. Overall, the above 
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mentioned compounds are all used as raw materials for surfactant and surface protection 

products.1 

The atmospheric fate of many of these PFAA precursors has been investigated 

using smog chamber techniques.101 The atmospheric oxidation of these precursors lead to 

the formation of PFAL as an intermediate precursor and the PFAAs as final products12 

(Figure 1.2). 

 
Figure 1.2. Atmospheric fate of volatile PFAA precursor compounds. Gray-shaded 
compounds are commercially produced. PFSA and PFCA are terminal products. 

Adapted from [12]. 

1.2.2.1 Atmospheric Chemistry of Precursor Compounds  

The atmospheric lifetimes for many of the fluorotelomer species, including FTAL, 

FTOH, FTO, NAFSA, and NAFSE, are dominated by their reaction with hydroxyl 
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Under most conditions, gas phase reactions are the primary degradation pathways of these 

above-mentioned precursors and their atmospheric lifetimes are expected to be on the 

order of days to weeks.99 Table 1.7 summarizes the averaged measured rate constants 

with respect to hydroxyl radical reactions in the atmosphere and estimated atmospheric 

lifetimes for these precursor compounds. Numerous additional factors can impact the 

degradation rate, such as: seasonal changes of available light, anthropogenic pollution, 

and proximity to the coast or an anthropogenic chlorine source.12 Conditions in the 

atmosphere will also influence product yield ratios, which depend on the available ratios 

of HO2 and RO2 to NOx (NO2 + NO).103 These ratios vary depending on local conditions, 

such as urban versus remote conditions, with NOx present at much greater mixing ratios 

near urban areas. Formation of PFAAs is more likely to occur in areas with low NOx 

levels (i.e. remote locations such as the Arctic), where HO2 and RO2 are present at similar 

mixing ratios as NOx.103   

Table 1.7. Average measured hydroxyl radical rate constants and calculated 
atmospheric lifetimes (assuming constant [OH] of 1x106 molecules cm−3). 

Precursor Compound �OH Rate Constant 
(cm3 molecule−1 s−1) 

�OH Average 
Lifetime (days) 

PFAL Hydrate104 1.22x10-13 90 
PFAL105 6.50x10-13 18 
FTAL100 29.6x10-13 4 
FTOH100 8.90x10-13 12 
FTO106 13.6x10-13 8.5 
FTI102 12.0x10-13 10 

FTAc107 113x10-13 1 
NAFSA108 3.74x10-13 35 
NAFSE96 58.0x10-13 2 
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Detailed mechanisms for the atmospheric reactions of each of these precursors 

with OH that form PFAAs have been elucidated, except for the formation of PFCAs from 

NAFSAs and NAFSEs12 (Figure 1.2). The PFAL is the main precursor to the long-chain 

PFCAs (carbon chain lengths ≥ 4) and can be formed either from the FTAL or directly 

from FTOs, in the presence or absence of NOx
12 (Figure 1.3). Other fluorotelomer 

compounds including FTOHs, FTAcs and FTIs will degrade in the atmosphere to form 

the FTAL as the primary product. These mechanisms are described elsewhere.12  

 
Figure 1.3. FTAL atmospheric oxidation mechanism. FTOH, FTI and FTAc form 

the FTAL through a number of oxidation steps. FTO will form the PFAL through a 
number of other steps. Data from [12] and references therein.  

 The PFAL, once formed from the reactions of other fluorotelomer precursors, will 

ultimately degrade to form the PFCAs via three different mechanisms (Figure 1.4). The 
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radicals in the absence of NOx to form the corresponding PFCAs.104 This reaction will 

form trifluoroacetic acid (TFA) as the primary product in 100% yield.12 The production of 

PFCAs from PFAL hydrates in the presence of NOx has not yet been studied. The second 

mechanism involves reaction of perfluoro acyl peroxy radicals (CF3(CF2)xC(O)OO) with 

HO2 to form the PFCAs.95 The perfluoro acyl peroxy radicals can also degrade by one of 

three channels, forming either PFCAs, perfluorinated peracids (CF3(CF2)xC(O)OOH), or 

perfluorinated acyl oxy radicals (CF3(CF2)xC(O)O).109,110 The only perfluorinated peracid 

that has been detected is CF3C(O)OOH.110 The reaction with HO2 leading to the 

formation of the PFCAs is most likely to occur in remote, low-NOx environments.111 The 

third mechanism involves the formation of perfluorinated radicals that will “unzip” to 

yield a carbon-equivalent number of molecules of carbonyl fluoride (COF2) through 

reaction with NO.95 Perfluorinated radicals can also react with peroxy radicals 

(R2CHCOO), to form the corresponding PFCAs, in addition to the loss of hydrogen 

fluoride (HF).95 The yield of PFCAs from fluorinated radicals will depend on the ratio of 

peroxy radicals to other reactive species, particularly NOx.97 FTOH degradation itself 

occurs on the order of weeks to months, therefore PFCA yields are highest in low-NOx 

environments, i.e. remote locations.112 Through the pathways illustrated in Figure 1.4, 

PFCAs of varying lengths will be formed. The biological fate of fluorotelomer-based 

compounds has been described in detail previously (e.g. Dinglasan et al., 2004113 and 

Wang et al., 2005114) and will not be discussed here.  
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Figure 1.4. PFAL atmospheric oxidation pathway, with three different mechanisms 

for the formation of PFCAs. Data from [12,95,104,109,110]. 
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Belgium and by 2002, there were 33 fluoropolymer manufacturing sites worldwide with 

the majority of them in North America, Japan, China and Europe.94 From 1975 – 2004, 

the remaining 10 – 20% of APFO was manufactured by fluorotelomerization via direct 

oxidation of FTI, in Germany and Japan.94 The total historical global production and 

emissions of APFO was estimated at 3.6 – 5.7 kt and 0.4 – 0.7 kt, respectively.94 Thus, 

there are historic sources of directly synthesized PFOA by ECF and fluorotelomerization. 

Between 1975 – 2004, ammonium perfluorononanoate (APFN; PFNA-based product) 

was manufactured primarily in Japan94 as a processing aid for polyvinylidene fluoride 

(PVDF) dispersion products.117 APFN was manufactured by the oxidation of FTOs to the 

corresponding odd-numbered PFCAs, as well as by the FTI carboxylation process. The 

total historical global production and emissions of APFN was estimated at 0.8 – 2.3 kt 

and 0.07 – 0.2 kt, respectively.94 From 1965 – 1975, PFCAs manufactured by ECF were 

used in AFFF,94 but the major component of AFFF was PFOS. These AFFF formulations 

were used by the military, airports, and in oil/gas production, refining and industries. 

PFCAs and derivatives were also used as additives in industrial and consumer products 

from 1960 – 2000.94 After 2002, 3M phased-out production of PFOA, and ECF 

manufacturing of APFO was replaced with the telomerization process.116  

Between 1949 – 2002, 3M was also the major manufacturer of POSF using the 

ECF process.118 They manufactured an estimated 65 kt of total global historic POSF from 

1957 – 2002.119 POSF-based products include diverse polymers and non-polymers in 

various industrial and consumer applications, where only the non-polymers readily 

degrade to PFOS.120 POSF was also used in a series of reactions to produce N-methyl and 
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N-ethyl perfluorooctane sulfonamidoethanol (xFOSEs),68 with total historic emissions of 

xFOSEs and PFOS estimated at 0.74 – 4.0 kt and 0.29 – 2.6 kt, respectively, from 1957 – 

2002.119 These xFOSEs were used in surface treatment and paper and board packaging 

applications. Commercial use of PFOS and its salts first started around 1970, and 

fluorotelomer-based products have also been manufactured since 1975 and used in many 

of the same consumer product and industrial applications as POSF-based products.117  

Fluorotelomer-based raw materials and products are manufactured by a series of 

steps beginning with Telomer A, a basic raw material.94 Other chemical reactions create 

fluorotelomer raw materials including fluorotelomer iodides, olefins, alcohols and 

acrylate monomers. FTOHs have been widely used in the production of polymers and 

surface coatings with an estimated production of 11 – 13 kt yr−1 in 2004.68 

Starting in 2000, actions were taken by industry and regulators to reduce the 

release of PFCAs, PFSAs, and precursors, due to the environmental and health risks that 

many researchers discovered. Between 2000 – 2002, 3M voluntarily phased out 

production of POSF, PFOA and related products, including those based on C6, C8 and 

C10 chemistry.121,122 They replaced this with products based on C4 chemistry, where 

compounds were derived from perfluorobutane sulfonyl fluoride (PBSF). This led to a 

decrease in POSF production by more than two orders of magnitude between 1998 and 

2002.123 During the phase out timeframe, a series of Significant New Use Rules (SNUR) 

were put in place in the U.S. to restrict production and use of materials that contained 

PFOS and its precursors.124 By 2006, PFOS and related substances derived from POSF 

were regulated under the European Union (EU) Directive 2006/122/EC.125 In 2006, the 
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US EPA worked with eight major fluoropolymer and fluorotelomer manufacturers to 

achieve the 2010/2015 PFOA Stewardship Program and reduce emissions and product 

content levels of PFOA, precursor compounds and related longer chain length 

homologues by 95% by 2010, and full elimination by 2015.126 The same agreement was 

made in Canada as part of the Environmental Performance Agreement for that time.127 In 

2009, PFOS and related substances were listed under Annex B (restriction of production 

and use) of the Stockholm Convention on Persistent Organic Pollutants.116 In 2012, long-

chain PFCAs were categorized as potentially harmful pollutants in the Candidate List of 

Substances of Very High Concern (SVHC) for authorization under the REACH 

regulation.128 

Since the early 2000s, there has been a geographical shift in PFAS production and 

emissions. Despite the phase-outs and regulations implemented by many major 

manufacturers in the United States, Western Europe and Japan, new manufacturers, 

largely in Continental Asia, have begun producing the long-chain PFCAs, PFSAs and 

their precursors. In China, PFOS production has increased rapidly since 2000 and PTFE 

production and PFOA use have increased ten-fold since the 1990s (60 kt of PTFE in 

2015).117 Between 2003 – 2008, China was reported to be the new main producer and 

user of PFOS substances, with <0.05 kt in 2003 and >0.25 kt of POSF-based products 

produced in 2008.129  

As a result of the phase-outs, many alternative fluorinated products have been 

introduced and there has been a general transition to production of shorter chain PFAS 

that are believed to be less bioaccumulative and less toxic.130 However, the short-chain 
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compounds are just as persistent and more mobile than their long-chain homologues131 

and most fluorinated products still contain highly complex, unpublicized mixtures with 

some still containing long-chain PFAS compounds.122
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Figure 1.5. Timeline of PFAS production trends and regulations.
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1.2.3 Chlorofluorocarbon-Replacement Compounds 

This section will focus on the CFC-replacement compounds (HCFCs, HFCs, 

HFEs, HFOs) and anaesthetics that produce short-chain PFCAs as both major and minor 

degradation products. CFCs are chemicals that have been used extensively for industrial 

and domestic purposes since the late 1930s. They have physical properties that make 

them ideal for many uses but are also broken down by photolysis in the stratosphere, 

releasing chlorine (Cl) atoms that destroy ozone (O3) molecules.132 This in turn depletes 

the stratospheric ozone layer, leading to greater ground-level exposure to UV radiation. 

Mario J. Molina and F. Sherwood Rowland first discovered this in 1974,133 which earned 

them the 1995 Nobel Prize in Chemistry, along with Paul J. Crutzen. Following this 

discovery, The Montreal Protocol on Substances that Deplete the Ozone Layer was 

signed in 1987 and entered into force in 1989, to regulate the production and consumption 

of these ozone-depleting substances (ODSs). The Montreal Protocol is a protocol to the 

Vienna Convention for the Protection of the Ozone Layer and is an international treaty, 

ratified by all 197 parties, designed to protect the ozone layer by mandating the phase out 

and replacement of ODSs including the CFCs, to reduce stratospheric ozone depletion.  

HCFCs are CFC-replacement compounds used in a wide variety of applications. 

They are structurally similar to CFCs but contain a hydrogen atom that ultimately reduces 

the atmospheric lifetime of the molecule, resulting in reduced transport to the stratosphere 

and lower ozone depleting potential (ODP) compared to CFCs.134 HCFCs that are major 

precursors to the short-chain PFCAs include HCFC-123, -124, -133a and -225ca. All of 

these precursors have been detected in remote air samples. HCFC-123 was first 
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commercialized in 1989 as a replacement for CFC-11 and has been used in refrigerants, 

centrifugal chillers and fire suppression agent blends.135 It also has limited uses as a 

solvent and in foam blowing processes, and is used as an intermediate in the production 

of HFC-125. HCFC-124 began production in the early 1990s136 and is used primarily in 

refrigerants, specialised air conditioning equipment, fire extinguishers and as a 

component of sterilant mixtures.137 HCFC-133a has been detected in air samples since 

1978, is an intermediate product in the syntheses of HFC-125, -134a and -143a, and is 

used for the production of pharmaceuticals, agrochemicals and the anaesthetic 

halothane.138 HCFC-225ca was introduced as a replacement to CFCs in the early 1990s 

and is principally used in solvents.132  

HFCs are CFC-replacement compounds commonly used in air conditioning and as 

refrigerants. They are structurally similar to HCFCs but do not contain any Cl atoms. 

HFCs have a very low ODP but are potent greenhouse gases. There are a number of 

major HFC precursors that produce short-chain PFCAs. HFC-134a, which began 

production around 1990, is one of the most prominent CFC-replacement compounds and 

is mainly used in mobile air conditioning as a substitute for CFC-12.139 It is also used in 

domestic refrigeration,140 some stationary air conditioners, in insulating foam production 

and in some HFC blends.141 HFC-227ea emissions started in the mid-1980s through use 

in fire suppression, propellant, refrigerant, inhaler and foam blowing applications.142 

HFC-43-10mee was introduced in the mid-1990s as a cleaning solvent for the electronics 

industry, replacing other compounds including CFC-113, methyl chloroform, HCFC-

141b and some perfluorinated compounds.143 HFC-236ea is used as a replacement for 
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halons in fire suppression and as a refrigerant substitute.144 It can produce HFC-245eb 

which is then used to produce HFO-1234yf.145 There is little information on HFC-236cb, 

but it is structurally similar to the commonly used HFC-134a and is expected to be 

produced and released in small quantities.146  

HFEs are CFC-replacement compounds that began development in the mid-1990s 

and were later introduced in 1996 as acceptable alternatives.147 The HFEs that are major 

precursors to the short-chain PFCAs are also halogenated inhalation anaesthetics. HFE-

236ea2 (desflurane) was introduced in 1992 for use in general anaesthesia. Isoflurane and 

halothane are two other anaesthetics that degrade to PFCAs, but were not part of The 

Montreal Protocol. HCFE-235ca2 (isoflurane), which is a hydrochlorofluoroether was 

introduced in 1981 to replace enflurane (CFHClCF2OCF2H).148 Halothane (Halon-2311) 

was an early anaesthetic, mainly used in the 1960s and 1970s. It has since been replaced 

in developed countries due to its hepatotoxicity.148  

HFOs are next generation CFC-replacement compounds, introduced in response to 

the ozone depletion and climate implications of CFC, HCFC, HFC, and HFE use. HFOs 

are structurally similar to HFCs with the inclusion of a double bond that decreases the 

atmospheric lifetime from years to days. A few HFOs are known short-chain PFCA 

precursors. HFO-1234yf (also called HFC-1234yf) is being developed as a next-

generation mobile automobile air-conditioning refrigerant (MAC) to replace HFC-

134a.149,150 HFO-1234yf also has the potential for uses in other applications and is already 

being introduced as a propellant for aerosol products. HFO-1225ye(E) and -1225ye(Z) are 

two other HFO compounds, and have both been proposed as refrigerants.  
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1.2.3.1 Atmospheric Chemistry of CFC-Replacement Compounds 

CFC-replacement compounds produce short-chain PFCAs as both major and 

minor products at yields ranging from <10% to 100%.12 The lifetimes of these CFC-

replacement compounds are generally dominated by gas phase hydroxyl radical reactions 

in the troposphere and the tropospheric lifetimes are summarized in Table 1.8.12, 83  

The main degradation pathway for HCFCs, HFCs, HFEs and HFOs is hydroxyl 

radical reaction in the troposphere.83 All of these compounds can also be degraded by 

reaction with Cl and NO3 radicals, but not as main degradation pathways. These 

compounds can also transport to the upper atmosphere, but their atmospheric fates will be 

different.83 This section focuses on the atmospheric chemistry of these CFC-replacement 

compounds in the troposphere only.  

Table 1.8. Tropospheric lifetimes12, 83 with respect to reaction with hydroxyl 
radicals151 for CFC-replacement precursors. 

Precursor Compound Tropospheric Lifetime 
HCFCs 1.2-6.0 years 
HFCs 3.2-51 years 
HFEs 0.1-10.8 years 
HFOs 4.9-11 days 

 

 Mixed halides that are major precursors to the PFCAs include the HCFCs 

(CF3(CF2)nCHXY), where X is fluorine, chlorine or hydrogen and Y is chlorine, and the 

HFCs (CF3CFHX), where X is CF3, CFH2, CF2H, or CHFCF2CF3. These compounds will 

undergo hydrogen atom abstraction followed by reaction with molecular oxygen and NO 

to yield an acyl radical.12 The radical decomposes, eliminating the Y atom (in the case of 
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HCFCs) or X atom (in the case of HFCs), yielding a perfluoroacyl fluoride or chloride. 

This compound will readily hydrolyze to give the corresponding PFCA, usually TFA 

(Figures 1.6-1.7). The mechanism for HFC-134a (Figure 1.7) is similar to the mixed 

halide mechanism, but involves elimination of the H atom rather than a halide.152 The 

atmospheric fate of volatile anaesthetics including halothane, isoflurane and desflurane, 

follow three slightly different mechanisms that all yield TFA.12,153 Halothane follows the 

mixed halide mechanism illustrated in Figure 1.6. Isoflurane and desflurane, which both 

fall under the class of HFEs, will form alkoxy radicals that decompose and eventually 

hydrolyze to yield TFA,153 as illustrated in Figure 1.8. Finally, HFOs (CF3CF=CXY) 

where X and Y are either hydrogen and/or fluoride, will undergo atmospheric oxidation 

via the hydroxyl radical to produce a perfluoroacyl fluoride and subsequently, TFA,12,154 

as illustrated in Figure 1.9.  

Figure 1.6. Mixed halide mechanism for HCFCs (HCFC-123, -124, -133a, -225ca) 
and halothane12, where CnF2n+1 has n=1 or 2 and X = Cl, F, H and Y = Cl. 
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Figure 1.7. A) Degradation mechanism for HFC-134a to TFA152. B) Mixed halide 

mechanism for HFCs (HFC-227ea, -245eb, -236ea, -43-10mee)12,83 (X = CF3, CFH2, 
CF2H, or CHFCF2CF3). 

 
 

 
Figure 1.8. A) Degradation mechanism for isoflurane (HCFE-235da2) to TFA12. B) 

Degradation mechanism for desflurane (HFE-236ea2) to TFA153. 
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Figure 1.9. Mechanism for the atmospheric oxidation of HFOs (HFO-1234yf, HFO-

1225ye (E)/(Z), PFO-1216) to TFA12,154 (X = H, F and Y = H, F).  

1.2.3.2 CFC-Replacement Production Trends and Regulations 

Figure 1.10 outlines a general timeline of CFC-replacement compound production 
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1989.155 As a result of The Montreal Protocol, CFCs were phased out and quickly 

replaced with substitute compounds. These CFC-replacement compounds started being 

used on a large-scale around the 1990s. Halothane, an inhalation anaesthetic, was used 

mainly from 1960 – 1970.148 Other anaesthetics including isoflurane and desflurane were 

introduced around 1981 and 1992, respectively.148 From 1990 – 1999, a number of 

amendments were made to The Montreal Protocol to regulate HCFCs, with complete 

phase out by 2020 in developed countries and by 2030 in developing countries.141 

Emissions of HCFC-225ca began decreasing after 1999,132 while emissions for other 

HCFC precursors began decreasing after 2003.138,139 Production of HFCs has been 

increasing steadily since 1995 in developed countries, with China emerging as a major 

HFC producer and consumer in the early 2000s.156 Emissions of HFC-134a have been 

F3C

F
+OH +O2 +RO/NO

-RO2/NO2

F3C

O

OH

X = H, F
Y = H, F

TFA

X

Y CF3
F

X

Y

HO

CF3
F

X
Y

HO

O

O

CF3F

X Y

HO

O Δ

X

Y

O

CF3

F

OH

+

+O2

-HO2

CF3

F

O
+H2O

-HF



 

 41 

greatly increasing since the early 1990s137 and HFC-43-10mee emissions began after 

1995.143 With the Kigali Amendment to the Montreal Protocol in 2016, a phasedown of 

HFCs has been proposed, with a freeze in 2024 and an 80% reduction by 2043 in 

developed countries, and a similar phase-out plan in developing countries.155 HFOs are 

new CFC-replacement compounds, that are already being developed for use, with HFO-

1234yf as the next-generation MAC refrigerant to replace HFC-134a.149 Some of these 

HFOs have been introduced and production of HFO-1234yf in North America is already 

being estimated at 50 – 100 kt yr−1 in the next 50 – 100 years.157 
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Figure 1.10. Timeline of CFC and CFC-replacement compound production trends and regulations.
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1.3 Arctic Deposition and Sampling 

The Arctic is a pristine environment, vulnerable to human impact. These impacts 

include increases in resources, fossil fuel uses, and industrial manufacturing that have led 

to releases of anthropogenic compounds into the environment.158 Although remote, the 

Arctic is surrounded by populated continents that are releasing anthropogenic pollutants 

into the atmosphere and ocean. Following the industrial revolution, the Arctic has become 

very useful to researchers, as contaminants will persist in the Arctic for a long time and 

are effectively preserved and recorded in Artic ice and snow.159 By analyzing ice cores 

and surface snow, these impacts can be evaluated and help us in understanding the 

mechanisms that govern the Arctic environment.  

Ice cores provide an invaluable record of past atmospheric pollution by trapping 

and preserving this information in glaciers and ice caps following snow deposition.158 As 

snow accumulates from year to year, a temporal record in contaminant deposition is 

created. These long-term archives provide useful data that helps researchers determine 

production changes, pollutant sources and transport pathways of contaminants over time. 

Ice core samples are typically collected using a mechanical or thermal drill and provide 

long-term records of pollution.158 Snow pit samples are collected by digging a pit 

vertically into a snow pack and are used for short-term (due to depth restrictions via 

manual digging) reconstruction of pollution events. Remote arctic samples can be 

susceptible to contamination due to the trace analyses of pollutants in these samples and 

care must be taken at every step from sample collection to analysis.   
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Long-range transport mechanisms of PFAAs can be elucidated through the 

collection and analysis of ice core samples. High Arctic ice caps generally receive their 

contamination solely from atmospheric deposition due to their high elevation, and 

preserve a temporal record of that deposition. Various pollutants have been detected in 

remote Arctic environments and PFAAs themselves have been detected previously in ice 

cores, snow, and lake and ocean water, as summarized in Tables 1.3 and 1.4. Once 

collected, these ice cores can be sectioned and analyzed for PFAAs, and provide us with 

important information about their contamination and production changes over time and 

help us in understanding their transport mechanisms to the Arctic environment. 

1.4 Thesis Objectives 

This work aims to accomplish three main goals using an ice core collected from 

the Canadian Arctic: 1) examine a greater number of PFAA analytes, including the short-

chain PFCAs, over a larger timescale compared to previous studies; 2) compare the 

temporal trends in PFAA deposition to production trends; and 3) further understand the 

long-range transport mechanisms of PFAAs and their precursors. This will be 

accomplished by extraction of a 15 m ice core and PFAA analysis by liquid-

chromatography and ion-chromatography methods (Chapter 2); assessing the deposition, 

examining the temporal and homologue trends, correlating to production changes and 

previous measurements, and modelling to understand long-range transport (Chapters 3 & 

4). Chapter 3 focuses on the long-chain PFCAs and the PFSAs, while Chapter 4 focuses 

on just the short-chain PFCAs.  
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2 Methodology 

2.1 Introduction 

Perfluoroalkyl research in the Arctic presents many analytical challenges.1 Firstly, 

Arctic fieldwork is logistically challenging, due to cost, environmental conditions, 

weather, remoteness, and requirement of specialized personnel. Analysis of ice cores 

requires instrumentation and infrastructure capable of ultra-trace level analysis. Due to 

the unique physicochemical properties of PFAS, and their ubiquitous presence in the 

environment, extracting and analyzing for these compounds from ice core samples in the 

laboratory presents a challenge. Extensive care must be taken and appropriate materials 

and techniques employed when doing PFAS extraction and analysis. Contamination and 

analyte loss at all stages of collection and analysis requires cognizance. Some PFAS 

preferentially sorb to glass from the aqueous phase, therefore use of glass is avoided 

wherever possible. PFAS also have many uses in common laboratory consumables, 

leading to numerous potential sources of contamination in the lab. HPLC systems 

typically contain internal fluoropolymer parts that cause contamination. Quantifying 

PFAS is ideally accomplished using accredited standards, but some PFAS are not 

commercially available, or their analogous isotopically labeled internal standards are not 

available. Structural isomers of PFAS, associated with ECF manufacture, are routinely 

encountered for certain analytes, many of which may have different instrument response 

compared to the n-isomer standards. This chapter describes the method for the ultra-trace 

detection of PFAS in Arctic ice core samples.  
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2.2 Ice Core Collection and Dating 

The ice core collection and dating was carried out by specialized personnel 

outlined in the co-authorship statement, prior to the start date of my Master’s program. 

This section will therefore provide just a brief overview of the collection and dating 

process that took place for understanding purposes. A 15.5 m ice core was collected from 

the summit of Devon Ice Cap, Devon Island, Nunavut (75.2° N, 82.7° W, 2175 m above 

mean sea level (AMSL)) on May 17, 2015. Samples were collected using a stainless steel 

Kovacs ice drill with a 9 cm diameter. Dating of the Devon Ice Cap ice core was 

completed using the oxygen isotope record and other glaciochemical records measured in 

a replicate core drilled at the same location. Oxygen isotope analyses were run on a 

Picarro cavity ring-down spectroscopy analyzer (precision for δ18O of water samples is ≤ 

0.1%). Sample isotope ratios were standardized using three working standards calibrated 

against the International Atomic Energy Agency (IAEA) standards VSMOW and SLAP. 

Final δ18O values are on the VSMOW/SLAP scale. The δ18O time series was used to 

establish an age-depth relationship by matching the δ18O core record with local summer 

and winter solstice dates (linearly interpolating between solstices) (e.g., Criscitiello et al., 

2014).2 Elemental, ion, and H2O2 analyses were performed on an ICP-MS.3 Where δ18O 

records were ambiguous, they additionally used the non-sea salt sulfur/sodium (nssS/Na) 

summer peak (indicative of summer solstice) as well as H2O2 to ascertain the annual δ18O 

maxima. They counted annual peaks in the remaining major ionic species to validate and 

confirm the accuracy of the age assignment. Validation of the oxygen isotope based 

dating was done using (in this order): nssS, Na+, H2O2, Mg2+, Cl-, and Ca2+. Further 
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confirmation of dating assignment was conducted using the Pb-enrichment time series 

wherein the 1979 spike in Pb enrichment was used as a tie-point. Total dating error is ±1 

year.  

Extensive care was taken in handling the ice core to avoid any introduction of 

contamination that could compromise the trace analysis. During collection process, 

handling, and sample preparation, no products containing fluoropolymer coatings came 

into contact with the ice cores. The samples were separated into 1 m ice core sections for 

packaging in polyethylene wrap and shipped frozen to the Canadian Center for Inland 

Waters (CCIW) in Burlington, Ontario, Canada. They were kept frozen at −35°C for four 

months prior to sectioning. 

2.3 Sample Sectioning 

I, along with assistance from Cora Young, John MacInnis and Cyril Cook, 

travelled to the CCIW, where we sectioned the ice cores in a −10°C freezer into discrete 

samples corresponding to individual years. Sectioning was done using stainless steel 

tools, cleaned with methanol (MeOH) (Omnisolv, 99.9%, EMD, ThermoFisher) before 

and after each sample. Ice core sections were placed into pre-cleaned 4 L high-density 

polypropylene bottles and kept frozen at −35°C prior to extraction and analysis. 

2.4 Sample Extraction 

I, along with assistance from John MacInnis, carried out extraction of the ice core 

samples, following training by Christine Spencer. Samples were thawed immediately 
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prior to extraction and 500 mL of the melted water was aliquoted into methanol-rinsed 

VWR-Polypropylene Wide Mouth bottles for extraction. Sub-samples for extraction were 

spiked with 30 µL of a surrogate mixture (Table 2.1), which acted as the internal standard 

(IS) to monitor recovery. Isotopically labeled IS’s account for losses due to extraction 

procedure and compensate for matrix effects. Samples were shaken, sonicated for 10 

minutes, and held for 30 minutes at room temperature.  

Table 2.1. Analyte quantifier and qualifier ion transitions (m/z) and internal 
standards used for PFAA analysis. Internal standards (IS) were used to evaluate 

recovery and matrix effects, while instrument performance (IP) standards were used 
to evaluate matrix effects only. Precursor ion/product ion transitions (m/z) are 

indicated in brackets. 
Analyte Quantifier/Qualifier Ion 

Transition (m/z) 
Internal Standard 

 
Instrument 

Performance Standard 
TFA 113 > 69   
PFPrA 163 > 119   
PFBA 213 > 169 13C4 PFBA (217/172) 13C3 PFBA (216/172) 
PFPeA 263 > 219 13C5 PFPeA (268/223) 13C3 PFPeA (266/222) 
PFHxA 313 > 269 / 313 > 119 13C2 PFHxA (315/270) 13C5 PFHxA (318/273) 
PFHpA 363 > 319 / 363 > 119, 169 13C4 PFHpA (367/322)  
PFOA 413 > 369 / 413 > 169 13C4 PFOA (417/372) 13C2 PFOA (415/370) 
PFNA 463 > 419 / 463 > 219 13C5 PFNA (468/423) 13C9 PFNA (472/427) 
PFDA 513 > 469 / 513 > 219 13C2 PFDA (515/470) 13C6 PFDA (519/474) 
PFUnDA 563 > 519 / 563 > 319, 269 13C2 PFUnDA (565/520) 13C7 PFUnDA (570/525) 
PFDoDA 613 > 569 / 613 > 169 13C2 PFDoDA (615/570)  
PFTrDA 663 > 619 / 663 > 169 13C2 PFDoDA (615/570)  
PFTeDA 713 > 669 / 713 > 169 13C2 PFTeDA (715/670)  
PFHxDA 813 > 769 / 813 > 169 13C2 PFHxDA (815/770)  
PFOcDA 913 > 869 / 913 > 169 13C2 PFHxDA (815/770)  
PFBS 299 > 80 / 299 > 99 13C3 PFBS (302/99)  
PFHxS 399 > 80 / 399 > 99 18O2 PFHxS (403/103) 13C3 PFHxS (402/99) 
PFHpS	
   449 > 80 / 449 > 99 18O2 PFHxS (403/103)	
   	
  
PFOS 499 > 80 / 499 > 99 13C4 PFOS (503/99) 13C8 PFOS (507/99) 
PFDS	
   599 > 80 / 599 > 99 13C4 PFOS (503/99)	
   	
  
FOSA 498 > 78 13C8 FOSA (506/78)  
PFECHS 461 > 381 / 461 > 99 18O2 PFHxS (403/103)  
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Targeted analytes included: trifluoroacetic acid (TFA), perfluoropropionic acid 

(PFPrA), perfluorobutanoic acid (PFBA), perfluoropentanoic acid (PFPeA), 

perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), perfluorooctanoic 

acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), 

perfluoroundecanoic acid (PFUnDA), perfluorododecanoic acid (PFDoDA), 

perfluorotridecanoic acid (PFTrDA), perfluorotetradecanoic acid (PFTeDA), 

perfluorohexadecanoic acid (PFHxDA), perfluorooctadecanoic acid (PFOcDA), 

perfluorobutane sulfonic acid (PFBS), perfluorohexane sulfonic acid (PFHxS), 

perfluoroheptane sulfonic acid (PFHpS), perfluorooctane sulfonic acid (PFOS), 

perfluorodecane sulfonic acid (PFDS), perfluoroethylcyclohexanesulfonate (PFECHS), 

and perfluorooctanesulfonamide (FOSA).  

Samples were concentrated using an OASIS® weak anion exchange (WAX) solid 

phase extraction (SPE) cartridge (6 cm3, 150 mg, 30 µm). Cartridges were conditioned 

prior to sample loading with 5 mL 0.1% NH4OH/MeOH, followed by 5 mL MeOH and 5 

mL SPE-cleaned HPLC Grade water (Fisher). Following sample concentration, the 

cartridges were rinsed with 25 mM ammonium acetate buffer acidified to pH 4 with 

acetic acid, and centrifuged at 4000 rpm for 2 minutes to remove any residual water. 

Samples were eluted into two fractions: the first fraction was eluted with 6 mL of MeOH 

for FOSA, and the second fraction was eluted with 8 mL of 0.1% NH4OH/MeOH for 

PFAAs. Both fractions were evaporated to dryness under a gentle stream of nitrogen and 

reconstituted in 0.5 mL 50/50 methanol-water containing the surrogate mixture (Table 

2.1) to monitor matrix effects. Isotopically labeled IP’s account for matrix effects and 
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instrumental drift and are typically used as a check. Reconstituted samples were sonicated 

for 5 minutes, vortexed and transferred to polypropylene vials for analysis.  

2.5 Analysis 

Ice core samples were analyzed by both liquid chromatography and ion 

chromatography. Liquid chromatography with mass spectrometry was performed to 

separate, analyze and quantify the different PFAA analytes. Major ion chromatography 

was performed to separate, analyze and quantify the different cations and anions in the 

samples.  

2.5.1 Liquid Chromatography 

I, along with John MacInnis prepared samples for analysis, while Christine 

Spencer operated the instrument, with already established analytical methods. I carried 

out the data interpretation, with training and assistance from Christine Spencer. Samples 

were analyzed using ultra performance liquid chromatography (Waters Acquity UPLC I) 

with tandem mass spectrometry (Waters Xevo® TQ-S, UPLC-MS/MS) detection 

operated in electrospray negative ionization mode. The mass analyzer was a tandem 

quadrupole mass spectrometer, operated in multiple reaction monitoring (MRM) mode. 

Common fragments that occur using this mode are CnF2n
− for PFCAs and FSO3

− (m/z 99) 

or SO3
− (m/z 80) for PFSAs. For the long-chain PFAA (PFCAs > C4, PFSAs > C4, 

FOSA) analysis, samples were separated using a C18 column (Waters Acquity UPLC® 

BEH, 2.1×50 mm, 1.7 µm) with a water-methanol 2 mM ammonium acetate gradient 

method (Table 2.2). For the short-chain PFAA (PFCAs < C8, PFOS) analysis, samples 
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were separated using a Shodex RSPak column (2.0×150 mm, 5 µm) with a water-

methanol 50 mM ammonium acetate method. Mobile Phase A was SPE-cleaned water 

and 50 mM ammonium acetate, adjusted to pH 9, and Mobile Phase B was MeOH. The 

isocratic LC method was 15 minutes, with a flow rate of 0.300 mL min−1, at 20% H2O 

and 80% MeOH. A summary of the inlet and mass spectrometric conditions are provided 

in Table 2.3. The conditions were the same for both methods except for column 

temperature which was 50°C for the long-chain PFAA analysis and 40°C for the short-

chain PFAA analysis.  

Table 2.2. Summary of chromatographic conditions for the long-chain PFAA 
analysis. 

Time 
(minutes) 

Flow rate 
(mL min−1) 

% H2O % MeOH 

0 0.400 75 25 
0.5 0.400 75 25 
5.0 0.400 15 85 
5.1 0.400 0 100 
5.6 0.400 0 100 
7.0 0.550 0 100 
9.0 0.400 75 25 

12.0 0.400 75 25 
 

Table 2.3. Summary of inlet and mass spectrometric conditions for both the long-
chain and short-chain PFAA analyses.  

Capillary Voltage (kV) 1.7 
Cone Voltage (V) 10 
Source Offset (V) 50 

Source Temperature (°C) 150 
Desolvation Gas Temperature (°C) 450 

Cone Gas Flow (L hr−1) 150 
Desolvation Gas Flow (L hr−1) 650 
Collision Gas Flow (mL min−1) 0.15 

Nebulizer Pressure (bar) 7.0 
Column Temperature (°C) 50 / 40 

Injection Volume (µL) 9.0 
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Analytes were quantified based on relative response to isotopically labeled 

instrument performance (IP) standards (Wellington Laboratories, Guelph, ON). Further 

details on recovery, standards, blanks and other calculations are covered in Section 2.6. 

2.5.2 Major Ion Chromatography 

Sub samples of the sectioned ice core (15 mL) were analyzed for major anions and 

cations. I carried out the major ion analysis for the anions, with training and assistance 

from Trevor Vandenboer and Jamie Warren. The Newfoundland and Labrador 

Department of Natural Resources did the cation analysis, as I did not have access to the 

instrument for this analysis on campus. Anions were measured by ion chromatography 

with conductivity detection and cations were quantified using inductively coupled plasma 

and optical emission detection. A range of cations (Na+, K+, Ca2+, Mg2+, Mn2+, Al3+) and 

other metals (e.g. iron and silicon), and anions (F−, Cl−, Br−, NO2
−, NO3

−, SO4
2−, PO4

3−) 

and organic acids (e.g. acetate, propionate, formate and butyrate) were measured.  

I conducted anion analysis using a Dionex ICS 2100 Ion Chromatography System 

coupled to a conductivity detector, DS6 heated conductivity cell (Thermo Scientific, 

Mississauga, ON, Canada). Injection volumes were 1 mL using an autosampler (Dionex 

AS-DV) and preconcentrated on a concentrator column (TAC-ULP1, 5 mm x 23 mm). 

Anions were separated on an anion exchange column (Dionex™ IonPac™ AS19, 4 mm × 

250 mm) with guard column (AG19, 4 mm × 50 mm) using gradient elution with 

potassium hydroxide at 1.5 mL min−1 flow rate. The eluent was suppressed (AERS 500 

ion suppressor, 4 mm) before the analytes were measured. I prepared calibration 
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standards by serial dilution from the stock standard (Dionex Seven Anion Standard II), 

which were run with the sample analysis, check standards and analytical blanks. I 

calculated the LOD and LOQ values for the anions based on S/N 3 and 10, respectively 

(Section 2.7). Detection limits ranged from 0.07 – 927 ppb.  

 Inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis for 

cations was performed by the Newfoundland and Labrador Department of Natural 

Resources, using an iCap 6500 Series ICP-OES (Thermo Scientific, Mississauga, ON, 

Canada). I prepared thirty ice core samples by acidifying 10 mL water samples with 2% 

(v/v) HNO3 prior to analysis, and prepared calibration standards by serial dilution from 

the stock standard (Dionex Six Cation Standard). In addition to calibration standards, two 

check standards and a reagent blank were run every 20 samples. Yttrium was added inline 

as an internal standard. They analyzed each sample four times using the following 

settings: nebulizer pump flush rate 100 rpm, analysis pump rate 50 rpm, pump relaxation 

time: 20 s, RF power: 1150 W, nebulizer gas: 0.55 L min−1, auxillary gas: 0.5 L min−1. 

They quantified the detection limits based on instrumental detection limits, which ranged 

from 0.40 – 20 ppb.  

2.6 Quality Assurance and Quality Control 

Cartridge blanks were used to validate the integrity of the extraction method, and 

isotopically labeled standards were used to validate recovery and matrix effects. I 

calculated the internal standard recoveries, which are summarized in Tables 2.4 – 2.5.  
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Table 2.4. Recovery of IS in sample extracts. IS analytes with numbers refers to the 
different ion transitions (m/z). Samples (500 mL) were spiked with internal standard 

(30µL) prior to extraction. Recovery is based on peak area comparison to solvent 
standard. Mean (standard error) recovery reported for n=42 samples from the 

Devon Ice Cap. 

IS Recovery (%) 
13C4 PFBA 
13C5 PFPeA 
13C2 PFHxA 
13C4 PFHpA 
13C4 PFOA 
13C5 PFNA 
13C2 PFDA 
13C7 PFUnDA 
13C2 PFDoDA 
13C2 PFTeDA 
13C2 PFHxDA 
13C4 PFOS 80 
13C4 PFOS 99 
18O2 PFHxS 103 
18O2 PFHxS 84 
13C3 PFBS 80 
13C3 PFBS 99 

 

89 (1) 
79 (1) 
90 (1) 
94 (1) 
96 (1) 
102 (1) 
104 (1) 
99 (1) 
70 (1) 
31 (1) 
61 (2) 
101 (1) 
101 (1) 
101 (1) 
100 (1) 
101 (1) 
102 (1) 
 

 

 
Table 2.5. Recovery of IP in sample extracts. IP analytes with numbers refers to the 

different ion transitions (m/z). Samples (500 mL) were spiked with instrument 
performance standard (30µL) prior to extraction. Mean (standard error) recovery 

reported for n=42 samples from the Devon Ice Cap. 
IP Recovery (%) 

13C3 PFBA 
13C3 PFPeA 
13C5 PFHxA 
13C2 PFOA 
13C9 PFNA 
13C6 PFDA 
13C2 PFUnDA 
13C8 PFOS 80 
13C8 PFOS 99 
13C3 PFHxS 99 

 

110 (1) 
96 (2) 
105 (1) 
104 (1) 
108 (1) 
111 (1) 
109 (2) 
105 (1) 
104 (1) 
104 (1) 

 



 

 81 

Three samples were extracted in triplicate and one sample in duplicate to evaluate 

reproducibility. A composite mixture of Devon Ice Cap samples was prepared and for 

three types of QA/QC measures in triplicate: one sample was spiked with PFASs before 

extraction, one sample spiked with PFASs after extraction, and the third sample spiked 

with the internal standard and processed akin to the larger sample set. The pre-extraction 

and post-extraction spiked samples were compared to evaluate recovery and matrix 

effects. There were no quantifiable PFAA levels detected in the routinely analyzed 

methods blanks (SPE cartridge blanks, n=6). Method recoveries for the PFAAs ranged 

from 79 – 117% with the exception of PFOcDA ranging from 127 – 255%. PFOcDA 

recoveries indicated enhancement of analyte signal due to matrix effects and incorrect 

recovery and matrix correction due to using MPFHxDA as the internal standard. Since 

PFOcDA was below detection limit in all ice core samples, this was not further explored. 

I evaluated matrix effects by comparing the peak area of IP compounds to peak 

areas at equivalent concentrations in a solvent standard. I evaluated recovery by 

comparing the recovered analyte concentration in the spike and recovery sample to the 

theoretical spiked concentration. Each sample was corrected for recovery and matrix 

effects by quantifying based on relative response to isotopically labeled standards added 

before extraction. A 15 level calibration curve was employed ranging from 0.02 – 8.5 ng 

mL−1, along with analytical blanks. Analytical blanks (MeOH) and cartridge blanks were 

included in the method analysis. The method detection limit (MDL) was based on 3× the 

standard deviation of the cartridge blanks. The majority of the PFAA analytes were not 
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detected in the method blanks and were therefore below the instrument detection limit 

(IDL) (Table 2.6).  

The limit of detection (LOD) and limit of quantitation (LOQ) were defined as 

concentrations corresponding to signal-to-noise (S/N) ratios of 3 and 10, respectively 

(Table 2.7). Detailed methods for LOD calculations are provided in Section 2.7.  

Table 2.6. Method detection limit based on 3× the standard deviation of the blanks.  
Perfluoroalkyl Substance Method Blanks 

TFA <IDL* 
PFPrA <IDL 
PFBA <IDL 

PFPeA <IDL 
PFHxA <IDL 
PFHpA <IDL 
PFOA 0.010 
PFNA 0.0042 
PFDA <IDL 

PFUnDA 0.0070 
PFDoDA <IDL 
PFTrDA <IDL 
PFTeDA <IDL 
PFHxDA <IDL 
PFOcDA <IDL 

PFBS <IDL 
PFHxS 0.0036 
PFHpS <IDL 
PFOS 0.0017 
PFDS <IDL 

PFECHS <IDL 
FOSA 0.0055 

*Analytes <IDL (instrument detection limit) were not detected in the method blanks. 
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Table 2.7. Instrument limit of detection (LOD) and quantitation (LOQ) for PFAAs. 
Compound Ion LOD (pg L−1)1 LOQ (pg L−1)2 Reproducibility3 

TFA  151 503 5.95 
PFPrA  154 514 10.9 
PFPrA  39.8 133 7.37 
PFPeA  10.4 34.7 8.53 
PFHxA 269 2.52 8.41 9.67 

 119 14.6 48.5 11.9 
PFHpA 319 3.05 10.2 11.0 

 169 1.79 5.96 11.4 
PFOA 369 2.44 8.12 9.76 

 169 1.44 4.81 3.48 
PFNA 419 3.49 11.6 6.48 

 219 1.44 4.80 7.67 
PFDA 469 3.75 12.5 2.50 

 219 1.18 3.94 15.1 
PFUnDA 519 4.72 15.7 1.10 

 269 1.17 3.91 4.25 
PFDoDA 569 3.61 12.0 9.53 

 169 1.54 5.12 9.67 
PFTrDA 619 3.21 10.7 11.6 

 169 0.98 3.25 5.65 
PFTeDA 669 3.73 12.4 5.79 

 169 1.02 3.39 6.02 
PFHxDA 769 4.64 15.5 4.42 

 169 1.85 6.16 1.23 
PFOcDA 869 24.4 81.2 9.90 

 169 31.9 106 13.4 
PFBS 80 0.91 3.04 12.9 

 99 3.62 12.1 7.56 
PFHxS 80 0.37 1.23 7.40 

 99 1.83 6.09 6.76 
PFHpS 80 1.16 3.86 6.30 

 99 1.43 4.77 13.2 
PFOS 99 1.27 4.23 25.8 
PFDS 80 0.28 0.94 15.0 

 99 1.33 4.44 9.21 
PFECHS 99 0.94 3.14 3.25 

 381 1.09 3.63 4.80 
FOSA  0.18 0.59 14.8 

1LOD is concentration corresponding to signal-to-noise (S/N) ratios of 3. 2LOQ is concentration 
corresponding to S/N of 10. 3Reproducibility is given by the percent relative standard deviation 

for triplicate extraction and analysis of a sample. 
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2.7 Data Handling 

I used the instrument software package, MassLynx, to integrate chromatographic 

peaks for analytes using two precursor-to-product ion transitions including the data for 

the IS and IP in each analyte. Using this, MassLynx outputs the peak area, calculated 

concentration, % recovery of internal standard and signal-to-noise (S/N) ratio. I also did a 

check to see if similar results were obtained by doing calculations by hand. 

Concentrations were corrected for extraction efficiency and matrix effects since the 

calibration curve and quantification is based on relative response to the internal standards, 

providing a built-in correction factor. For analytes with two transitions, I calculated the 

average concentration if the difference between transitions was <15%. I then corrected 

the concentrations for the initial and final sample volumes used. The IS and IP percent 

recoveries can be compared and used to calculate the extraction efficiency and matrix 

effects of the samples.  

Matrix effects (ME) are calculated as follows: 

ME =
IP!"#$  !"#!  !"#$%& − IP!"#$  !"#!  !"#$%#&%

IP!"#$  !"#!  !"#$%#&%
×100% 

Signal enhancement is occurring if ME > 100% and signal suppression is if ME < 100%.  

An ME closest to zero represents an ideal absence of matrix influence. 

 Extraction efficiency (EE) is calculated as follows, where SSB is spiked sample 

before and SSA is spiked sample after extraction: 
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EE =
IS!"#$  !"#!  !!"
IS!"#$    !"#!  !!"

×100 

Fluxes for each analyte were calculated and given in ng m−2 yr−1. Fluxes were 

calculated as follows: 

Flux =
Analyte  Concentration   𝑛𝑔  𝐿!! ×  Total  ice  volume  per  year  (L)

Area  (𝑚!)  

(Area = πr!  where  r = 4.5cm) 

The limit of detection (LOD) refers to the lowest quantity that can be reliably 

distinguished from the blank. The limit of quantitation (LOQ) refers to the lowest 

quantity that can be quantified accurately. I calculated these values as follows: 

1. From the MassLynx data, MeOH blank runs and standard calibration curves were 

used to calculate LOD. Five standard calibration curve sets were run over 2 days.  

2. The chromatographic data for each blank and standard from MassLynx was 

transferred to Excel, which provided the retention time and signal height in counts 

for each chromatogram.  

3. For the MeOH blanks, two blanks each were chosen: a blank that was run before 

and one run after the calibration curve. For each of the two blanks, the standard 

deviation (SD) of the counts and the average (avg.) of those two standard 

deviations were calculated.  

4. For each standard in the curve, the avg. noise was calculated by taking the avg. of 

the counts directly before the peak in the chromatogram. The max value in the 
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peak was also determined and then the signal was calculated by subtracting the 

avg. noise from the max value. (Signal = Max Value − Avg. Noise) 

5. The signal was divided by the avg. SD of the blanks to obtain the Signal/Noise 

ratio (S/N = signal/avg. SD). The S/N was determined for each of the standards 

and then S/N vs. calculated concentration (ng mL−1) of the standards was plotted. 

6. The linear regression of the plot was determined by letting y-intercept = 0. 

7. LOD = 3/m and LOQ = 10/m (m = slope) (y = mx). 

8. Steps 2-7 were repeated for two more sets of calibration curves with two blanks. 

Overall LOD and LOQ values were obtained by averaging the avg. of the 3 LOD 

and 3 LOQ values, respectively. 

9. Steps 1-8 were repeated for each analyte and each ion transition. 

10. The LOD and LOQ values were compared to the uncorrected concentrations (ng 

mL−1) of the analytes determined by mass lynx. Corrected concentration values 

that were <LOD/LOQ were replaced with ½ LOD/LOQ.  

11. Statistics on these values were obtained using the SD of the 3 slopes and the avg. 

of the 3 slopes. The SD was divided by the avg. and multiplied by 100 to get % 

precision. The SD of the 3 LOD values was divided by one LOD value and 

multiplied by 100 to get the relative SD (relative SD=(SD of 3 LOD values/1 

LOD value)*100). The % Precision and relative SD were below 15% for all 

analytes suggesting the LOD/LOQ values are reasonable.  

12. The method detection limit (MDL) values were calculated by multiplying the 

LOQ values by 0.5 mL (extract volume) and dividing by 500 mL (theoretical 
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sample volume) in order to report MDL and LOQ that were in units (ng L−1) 

directly translatable to sample concentrations.  

2.8 Air Mass Transport Modelling 

To trace the origins of air masses arriving at the sampling site on Devon Ice Cap 

and characterize source regions, I computed 5-day air mass back trajectories using the 

HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model.4 I 

performed the trajectory analysis using the global NCEP-NCAR Reanalysis meteorology 

data set at 2.5 degrees resolution. I initiated back trajectories at 2175 meters AMSL at the 

Devon Ice Cap sample site location, every 6 hours for a month-long duration and each 

trajectory was run backwards for 120 hours. I compiled monthly back trajectories to 

create yearly trajectories for 1994 and 2013. I then computed quantitative geographic 

sector assignment in Igor Pro by running a custom-built procedure on raw trajectory end 

point latitude and longitude coordinates.5 Back trajectory end points were thus assigned to 

one of four quadrants (northeast, northwest, southeast, southwest) centered on the 

sampling site location. Raw end point output files for entire years were integrated and 

sorted before being imported to Igor Pro for sector assignment. The integrity of the data 

was qualitatively verified as unchanged and intact after the integration and sorting 

procedure was performed by visually inspecting the re-plotted trajectories using 

supplemental software designed for importing raw HYPLIT data into Igor Pro.6 

Following the air mass back trajectory analysis; Alison Criscitiello used this data 

to compute air parcel back trajectories, which further allow us to examine air mass 
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moisture source regions. For this analysis, she initiated daily, 10-day back trajectories at 

the same location, for years 1994 and 2013. Residence time analysis was then used to 

identify air mass transport densities for those two years.7 This approach analyzes a large 

number of trajectories to reduce uncertainties, develop reliable pathways of airflow and 

account for variations in transport speed and direction.8 For this analysis, Alison 

Criscitiello summed the total number of trajectory endpoints within each equal-area pixel, 

and then divided by the zonal distance between the Devon ice core sampling site and each 

pixel to remove concentric patterning. The air mass transport densities were scaled on a 

0-1 scale, for the low-elevation air masses (0–500 m above terrain), which are more likely 

to be representative of evaporation moisture source.  

2.9 Conclusions  

This chapter described the detailed method used for the ultra-trace detection of PFASs 

in ice core samples. During all steps of sample collection, preparation, extraction, and 

analysis, many precautions were undertaken to avoid contamination and sample loss. We 

used methods previously outlined for this type of analysis and I did extensive QA/QC to 

monitor the recovery of our sample extracts. With increased sampling and analytical 

capabilities, I am confident in the methods we applied for the analysis of PFASs in ice 

core samples.  
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3 Continuous Non-Marine Inputs of Per- and Polyfluoroalkyl Substances to 

the High Arctic: A Multi-Decadal Temporal Record 

3.1 Introduction 

Per- and polyfluoroalkyl substances (PFAS) are a diverse group of compounds 

that have been used in surfactants and polymers for over 60 years.1 Perfluoroalkyl acids 

(PFAAs) are persistent contaminants that are ubiquitous in the environment. 

Perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) are 

two of the most widely known and studied groups of PFAAs.1,2 PFAAs are prevalent in 

remote locations, such as the Arctic,3 due to their ability to undergo long-range transport 

through the atmosphere and/or the ocean.4 Long-range transport can be a combination of 

both direct transport and indirect formation. With direct transport, PFAAs are directly 

transported in their carboxylic (PFCA) or sulfonic (PFSA) acid form to remote locations. 

This can occur via oceanic water currents or by marine aerosol formation.5 With indirect 

formation, PFAAs are produced through chemical transformation of PFAS precursors in 

the atmosphere.6 These compounds are environmentally persistent and longer chain acids 

(>6 carbons) have a tendency to bioaccumulate and biomagnify in food webs.3,7,8 

In the atmosphere, volatile and semi-volatile precursors such as fluorotelomer 

alcohols (FTOHs), N-alkyl perfluoroalkane sulfonamides/sulfonamidoethanols 

(NAFSAs/NAFSEs) and heat transfer fluids (i.e. chlorofluorocarbon-replacements) 

undergo oxidation in the gas phase to form PFAAs.6,9,10 The atmospheric lifetime and 

persistence of these precursors is long enough to reach remote locations by wind and air 
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transport, before subsequently oxidizing to the corresponding PFAAs and depositing to 

remote locations.11,12  

Once these PFAAs are formed indirectly in the atmosphere, they will undergo wet 

or dry deposition. Further transport can occur via ocean currents13–15 and marine 

aerosols.16 PFAAs are highly acidic, surface-active compounds, usually present as anions 

in the aqueous phase under environmental conditions.17 These surface-active compounds 

will concentrate at the air-water interface and are therefore expected to be in the sea 

surface microlayer (SSML) and to be present in marine aerosols.18  

The long-range transport mechanisms of these compounds can be elucidated 

through the collection and analysis of remote samples, such as ice core samples. Ice caps 

receive their contamination solely from atmospheric deposition due to their high 

elevation, and preserve a temporal record of that deposition. Devon Ice Cap, located on 

the Devon Island in Nunavut, Canada, was previously sampled for PFAAs in May of both 

2006 and 2008 through collection from the sidewall of a snow pit.12,19 This ice cap has a 

high latitude and elevation20 and is not expected to receive any local or oceanic sources 

of contamination. These previous studies detected PFAAs in snow profiles that spanned a 

10 – 14 year period in deposition. In this study, a 15 m ice core was collected in 2015, 

allowing me to examine PFAA deposition over a much longer (38 year) period. Within 

this chapter I discuss: (1) PFAA deposition and temporal trends; (2) homologue patterns 

and volatile precursor mechanisms; (3) transport of PFAAs to the Arctic via ion tracer 

analysis; and (4) PFAA source regions via transport modelling. This work represents the 

first multi-decadal analysis of PFAAs in an ice core from the summit region (2175 m 

above mean sea level) of a large Arctic ice cap.  
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3.2 Methods 

Methods are similar to those outlined in reference [19]. Further details on sample 

collection, preparation, extraction, analysis, and transport modelling are provided in 

Chapter 2 – Methodology. 

3.3 Results and Discussion 

3.3.1 PFAA Concentrations and Fluxes in the Devon Ice Cap: Comparisons to 

Previous Studies 

A comprehensive analysis of perfluoroalkyl acid (PFAA) and FOSA annual 

deposition on the Devon Ice Cap was carried out on ice core samples dating from 1977 – 

2015. In general, PFCAs from TFA (C2) to PFTrDA (C13) were detected on the Devon 

Ice Cap with concentrations ranging from <3.21 pg L−1 to 208 ng L−1 (Table A.1). 

Concentrations of all of the PFAS analytes detected in a single year are represented in 

Figure 3.1. PFCAs from TFA to PFUnDA (C2 – C11) were detected in almost every 

sample, with the exception of PFBA and PFUnDA, which were not detected in one year 

each and PFPeA, which was not detected in 5 separate years. The long-chain PFCAs 

including PFDoDA and PFTrDA were only quantifiable in <3 years, while PFTeDA, 

PFHxDA, and PFOcDA were <LOQ throughout the 38 year time period and will not be 

discussed further. TFA had the highest concentrations of all the PFCAs (6.56 – 208 ng 

L−1), with PFPrA having the second highest concentrations. PFSAs including PFBS, 

PFHpS and PFOS, as well as FOSA were detected on the Devon Ice Cap with 

concentrations ranging from <0.18 pg L−1 to 391 pg L−1 (Table A.2). PFOS was detected 

in every sample while PFBS and PFHpS were only detected >LOD in two years. 
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Evidence of the presence of PFHxS, PFDS and PFECHS was sought, but not found. 

FOSA was detected >LOD in most samples up until 2000 and only in three samples after 

2000.  

 
Figure 3.1. Concentrations of all the detected PFAS analytes for the year 1996, as a 

single representative year. Measurements in light grey are <LOD. 

 Concentrations (pg L−1) of the PFAAs were converted to fluxes (ng m−2 yr−1) 

(Tables A.3-A.4) to determine annual deposition of these compounds in the Canadian 

Arctic. Annual snow accumulation was 0.15 – 0.64 m yr−1, which is consistent with 0.22 

– 0.24 m wet equivalents yr−1 reported by Pinglot et al.,21 for Devon Ice Cap from 1963-

2000. Fluxes of PFAAs, including PFOA to PFUnDA (C8 – C11) and PFOS, were 

compared to fluxes of these PFAAs in two previous samples collected from snow pits on 

Devon Ice Cap in 200612 and 2008.19 The data sets generally agree within the uncertainty 

of the measurements, with the exception of PFOS (Figure 3.2).  
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Figure 3.2. Calculated enrichment factor comparison between the sums of PFAA 
fluxes for 2001 – 2006 and 1995 – 2000, for the three Devon Ice Cap studies. The 

data sets generally agree albeit some subtle differences (i.e. the mean +/- uncertainty 
overlap between the three studies), the exception being PFOS. 

These slight discrepancies between Devon Ice Cap studies could be the result of 

multiple factors. In the 2006 study, there was limited availability of isotopically labeled 

and native standards of sufficient purity. The current study represents an improvement in 

analytical methods since that time, both in terms of instrument detection limits and 

accuracy. The 2006 and 2008 sampling strategies are also in contrast to the current 

approach of ice core drilling. In the earlier efforts, depth samples were obtained by 

horizontal cylindrical sampling the face of an ice pit (2006) and vertically sampling the 

face of a snow pit continuously (2008). Those datasets likely represent semi-continuous 

depth measurements. In the current method, ice cores were obtained using a custom drill 

designed for Arctic sampling and conventional practices in ice sampling for temporal 

profiling.20,22 Lastly, the Devon Ice Cap sampling locations in the earlier research were 
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not at the summit of the ice cap as in the current research. These differences in location 

may have resulted in some variability in fluxes. The most accurate temporal record of 

atmospheric deposition is obtained at the summit of an ice cap; thus, the current research 

is hypothesized to be a better representation of PFAA deposition to Devon Island.   

Concentrations of PFCAs and PFSAs detected in this study are comparable to a 

number of other studies as summarized in Chapter 1. Comparable levels of PFCAs 

ranging from PFPeA to PFUnDA were detected in remote snow core and surface snow 

samples from Cole Gnifetti,23 Longyearbreen,24 and from glaciers on the Tibetan Plateau 

and Lake Namco.25 Short-chain PFCAs had higher concentrations than other PFCAs 

detected in precipitation, lake and river water samples.26–29 In general, concentrations of 

the PFCAs were much lower in the Arctic and Atlantic Oceans compared to the Devon 

Ice Cap concentrations. PFOS and FOSA concentrations were variable among all studies 

with no discernable trend for sample matrix or sample site. 

3.3.2 Air Mass Transport Density Analysis 

The use of air mass transport models is a commonly employed interpretation 

technique in understanding atmospheric observations. Previous studies using back 

trajectory analysis of air masses30,31 have provided evidence for atmospheric LRT to the 

Devon Ice Cap from North America and Eurasia. Air masses on Devon Island originated 

three times more often from populated regions of Northern Europe and Asia compared to 

North America, and that Southern and Eastern Asia were significant source regions. Little 

variation was observed in Devon Ice Cap air mass source regions over the time period 

1994 – 2008.30 Previous studies on spatial patterns of pollen deposition in the High Arctic 
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further support these findings. Devon Ice Cap is located within an air mass boundary 

between 74° N and 76° N, between sites north of 76° that receive dominantly Eurasian 

pollen sources and sites south of 74° that receive dominantly North American pollen 

sources.32 Devon Ice Cap therefore receives air masses and pollen/pollutant sources from 

both North America and Eurasia. 

To do the HYSPLIT modelling, I chose the reanalysis meteorological data set, as 

it is the only data set that encompasses global data that dates back to 1977. A test was 

performed to determine whether trajectory arrival height influences the trajectory 

modelling and geographical sector assignment, by varying the back-trajectory arrival 

heights,33 and found no influence on the quantitative back trajectory analysis with arrival 

height. Trajectories were initiated every 6 hours to increase the number of data points and 

reduce bias. This parameter was selected based on previous studies where back-

trajectories were initiated every 6 hours for the long-term study of pollutant transport.30,34 

Finally, each trajectory was initiated every 3 hours and run 5 days backwards to 

determine the potential influence of LRT on our observations. This parameter was set 

since the HYSPLIT program limits frequency back trajectories to a maximum of 5 days 

and running a trajectory 7 – 10 days backwards leads to higher uncertainty in air mass 

origin.35 

Figure 3.3 illustrates the air mass back trajectory models for 1994 and 2013. I 

modeled the year 1994 to compare to the Meyer et al. study and found similar results 

using these methods. Eurasian regions were among the dominant air mass source areas. 

Because of the unusual PFAA observations in 2013, I also examined this year to see if 

there were any transport anomalies, but found both years (1994 and 2013) to be 
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comparable with one another. A geographical sector analysis was applied to 

quantitatively assign the source region sectors where these air masses are originating. I 

calculated the percentage of air masses arriving from each sector (NE, NW, SE, SW) and 

found them to be equivalent, with an average of 25 ± 5.3 % for 1994 and 25 ± 2.2 % for 

2013, for each sector. This analysis confirms that Devon Ice Cap is impacted by air 

masses from both North America and Eurasia.  

 
Figure 3.3. 5-Day back trajectory HYSPLIT model for Devon Ice Cap, for the years 

a) 1994 and b) 2013. Devon Ice Cap location is indicated by the red dot.  

Air mass transport densities have previously been employed for investigating 

probable source regions and flow pathways of air masses in the Canadian Arctic.36 Figure 

3.4 illustrates the air mass transport density analyses calculated using the HYSPLIT 

model for Devon Ice Cap for the years 1994 and 2013. The year 1994 was again selected 

to compare to previous trajectory analyses and 2013 was examined to identify any 

transport anomalies. Both years were again found to be comparable. Air mass transport 
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densities for both 1994 and 2013 reveal elevated residence time densities in parts of Asia, 

and particularly high residence time densities along the west coast of Greenland. 

 
Figure 3.4. Air mass transport density maps (scaled 0-1) for air parcels reaching the 

Devon Ice Cap ice core site (red star) for the years a) 1994 and b) 2013.  

3.3.3 PFCA Deposition and Temporal Trends on Devon Ice Cap 

The temporal trends of short-chain PFCAs (C2 – C4) are discussed in more detail 

in Chapter 4. Annual fluxes of PFCAs ranged from <LOD to 4.44 × 104 ng m−2 yr−1. In 

general, all PFCAs demonstrated an increase in flux after 1985 (Figures 3.5 – 3.6), but 

with diverging trends from 1995 – 2015.  
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Figure 3.5. Temporal flux trends for the short-chain PFCAs including TFA, PFPrA 

and PFBA. Dotted lines represent annual fluxes and solid lines are the 5-year 
moving averages of the fluxes. 

 

Figure 3.6. Temporal flux trends for the long-chain PFCAs including PFPeA, 
PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnDA, PFDoDA, and PFTrDA. Dotted 
lines represent annual fluxes and solid lines are the 5-year moving averages of the 

fluxes. 
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Various glaciology studies have shown that Devon Ice Cap has experienced 

strong summer warming since 2000 and especially after 2005.37–39 This is consistent with 

Inuit traditional knowledge of overall warming in the Arctic.40 The variability in fluxes 

within the past 15 – 20 years could, therefore, be partially attributed to melting effects. 

When melting events occur, the ability to discern temporal trends in chemical deposition 

of various compounds can be compromised by the percolation of meltwater or elution of 

particles by meltwater flow.41,42 These melting events could bias annual flux 

measurements of PFAAs in ice core samples during the melt period, since PFAAs on the 

ice cap surface can be eluted into the snowpack, before refreezing at ice layer interfaces 

where temperatures at depth are below the pressure melting point.38 One study has 

examined elution behavior of PFAAs from a melting snowpack and found that the elution 

of PFAAs is largely driven by water solubility in the snowpack.43 This melting has likely 

happened periodically over the last 15 – 20 years, thereby blurring to some extent, the 

vertical profile. However, I expect any melting that occurred to have primarily affected 

the seasonal trends. Variability of ± 1 year could be caused by inaccuracies in dating 

and/or error associated with ice core sectioning. To circumvent the compounding impacts 

of recent melt events and consequent meltwater percolation, and any error associated 

with ice core dating and sectioning, a 5-year moving average was applied to the flux 

measurements, thereby facilitating long-term temporal trend analysis of PFAS deposition 

to Devon Ice Cap. 

Both PFOA and PFNA fluxes have increased from 1977 up until at least 1995 

(Figure 3.7). In the period post-1995 until 2013, fluxes have plateaued, with <25 ng m−2 

yr−1 variance in annual flux. From 2012 to 2015 a large decline in PFOA and PFNA 
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fluxes is apparent. The decrease in flux post-2012 was noted for the entire suite of PFCAs 

(Figures 3.5 – 3.6).  

 
Figure 3.7. Annual deposition fluxes on Devon Ice Cap: a) PFOA and b) PFNA. The 
solid black line represents the 5-year moving average and the dotted coloured lines 

represent the estimated and reported consumption or production volumes of PFOA-
based products including polytetrafluoroethylene (PTFE), perfluorinated ethylene-

propylene copolymers (FEP), perfluoroalkoxyl polymers (PFA), and related 
ammonium and sodium salts (APFO/NaPFO), as well as PFNA-based products 

including polyvinylidene fluoride (PVDF) and related ammonium salts (APFN).44  
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This most recent decrease in PFCA fluxes could be due to melting events, or ice 

core dating and sectioning inaccuracies, but it also corresponds to anticipated PFCA 

emission reductions through the United States Environmental Protection Agency (EPA) 

PFOA Stewardship Program,45 as well as the Canadian Environmental Performance 

Agreement.46 In 2006, the EPA invited eight major fluoropolymer and fluorotelomer 

manufacturers to commit to eliminating emissions and product content levels of PFOA, 

precursor compounds, and related longer chain length homologue chemicals. 

Corporations voluntarily committed to achieving a 95% reduction by 2010, measured 

from a year 2000 baseline, and full elimination of these products and emissions by 

2015.45 In Canada, the federal government established The Environmental Performance 

Agreement with the same commitment between Environment and Climate Change 

Canada (ECCC), Health Canada and four major manufacturers with known 

organofluorine products in Canadian commerce.46 As of 2016, all companies 

participating in the PFOA Stewardship Program and Environmental Performance 

Agreement reported they had met the goals of the Program (Tables A.5 – A.6). As part of 

both agreements, all major manufacturers reduced their production and emissions of 

PFOA and related compounds by at least 95% from 2006 – 2010. The observed decrease 

in PFOA and PFNA flux from 2012 – 2015 cannot solely be attributed to these phase-

outs, since it would be expected that the phase out would cause a large decrease in PFCA 

deposition between 2006 and 2010 and a small decrease after 2012. It is probable that 

existing products continued to emit after the stewardship program took effect, which 

could delay the detection of this effect.4 This is evident in temporal trend analysis in 
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Canada and the U.S. such as in human blood, freshwater fish, and non-migratory birds, 

which do not show any declines in PFCAs from 1990s to 2012.47,48  

In addition, other historical and on-going sources of PFAS have emerged. 

Manufacturers that were not signatories to the PFOA stewardship program have been 

producing PFAS since 1985. China started polytetrafluoroethylene (PTFE) production 

around 1985 and was producing up to 60 kilotonnes (kt) in 2015.44 Some manufacturers 

have emerged more recently that produce PFAAs and precursor compounds.44,49 In 

general, from 2000 onward, long-chain PFCAs have been phased-out through regulation 

or voluntary reduction by major producers in Japan, Western Europe, the United States 

and Canada.44,50 Meanwhile, new manufacturers (e.g. China) have begun producing these 

long-chain PFCAs and their precursors.49 The total estimated annual emissions of PFBA 

to PFTeDA for Canada, the United States, Western Europe, and Japan were 25 – 50 t yr−1 

in 2010, while estimated emissions of PFBA to PFTeDA were 40 – 193 t yr−1 in China in 

2013.44 Thus, global emissions of PFAAs and their precursors have not decreased 

significantly, which is consistent with observed temporal trends on Devon Ice Cap. 

Furthermore, the phase-out has created a market for numerous alternative fluorinated 

products,51,52 some of which may be precursors to long-chain PFCAs. Observed temporal 

trends in PFAA fluxes may represent combined-effects of the stewardship program in 

North America and increasing production and emissions in other regions.  

3.3.4 PFSA and FOSA Deposition and Temporal Trends on Devon Ice Cap 

The observed concentrations of PFSAs and FOSA correspond to annual fluxes 

from <LOD to 80.3 ng m−2 yr−1 (Table A.4). Since PFBS and PFHpS were only detected 
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in three samples, there are no observable trends. PFOS and FOSA each show distinct 

temporal trends. PFOS occurred at consistent levels below 10 ng m−2 yr−1, with an 

anomaly (80 ng m−2 yr−1) detected in 2012 (Figure 3.8a). FOSA was measured in almost 

every year from 1977 – 2000 with fluxes increasing until 1995. After 2000, FOSA was 

only detected in three samples with levels <0.76 ng m−2 yr−1 (Figure 3.8b). FOSA is a 

known volatile precursor and can degrade to PFOS;9 however, PFOS was continually 

measured after 2000, whereas FOSA was not. In addition, there was no correlation 

between PFOS and FOSA measurements (Table 3.1). This suggests FOSA is not the 

primary source of PFOS to the Devon Ice Cap. 
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Figure 3.8. Annual deposition fluxes on the Devon Ice Cap: a) PFOS and b) FOSA 

with global POSF production (kt) from 1977 – 2003 and POSF production for 
Western Europe, Japan, USA and China from 2003 – 2015.44,53 Solid black lines 

represent 5-year moving averages.  
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Table 3.1. Coefficients of determination (R2) and statistical significance (p<0.0001) (bold) for PFAAs (n=30). Weak 
correlations (0.3 – 0.5) (green), moderate correlations (0.5 – 0.7) (blue) and strong correlations (0.7 – 0.99) (red). PFOS and 

FOSA did not correlate (R2=0.037; p=0.2517) 

 
TFA PFPrA PFBA PFPeA PFHxA PFHpA PFOA PFNA PFDA PFUnDA PFDoDA PFTrDA PFBS PFHpS 

PFPrA 
R2= 0.455 

             p<0.0001 
             

PFBA 
R2= 0.772 R2= 0.517 

            p<0.0001 p<0.0001 
            

PFPeA 
R2= 0.160 R2= 0.009 R2= 0.308 

           p= 0.0142 p= 0.5737 p= 0.0004 
           

PFHxA 
R2= 0.424 R2= 0.271 R2= 0.705 R2= 0.668 

          p<0.0001 p= 0.0010 p<0.0001 p<0.0001 
          

PFHpA 
R2= 0.538 R2= 0.379 R2= 0.789 R2= 0.505 R2= 0.889 

         p<0.0001 p<0.0001 p<0.0001 p<0.0001 p<0.0001 
         

PFOA 
R2= 0.285 R2= 0.080 R2= 0.332 R2= 0.298 R2= 0.437 R2= 0.527 

        p= 0.0007 p= 0.0889 p= 0.0002 p= 0.0005 p<0.0001 p<0.0001 
        

PFNA 
R2= 0.389 R2= 0.067 R2= 0.284 R2= 0.095 R2= 0.186 R2= 0.334 R2= 0.708 

       p<0.0001 p= 0.1207 p= 0.0007 p= 0.0633 p= 0.0077 p= 0.0002 p<0.0001 
       

PFDA 
R2= 0.368 R2= 0.032 R2= 0.215 R2= 0.129 R2= 0.134 R2= 0.246 R2= 0.592 R2= 0.865 

      p<0.0001 p= 0.2927 p= 0.0039 p= 0.0289 p= 0.0261 p= 0.0018 p<0.0001 p<0.0001 
      

PFUnDA 
R2= 0.362 R2= 0.009 R2= 0.186 R2= 0.119 R2= 0.103 R2= 0.203 R2= 0.509 R2= 0.839 R2= 0.830 

     p<0.0001 p= 0.5759 p= 0.0077 p= 0.0363 p= 0.0527 p= 0.0051 p<0.0001 p<0.0001 p<0.0001 
     

PFDoDA 
R2= 0.157 R2= 0.0001 R2= 0.071 R2= 0.130 R2= 0.064 R2= 0.114 R2= 0.208 R2= 0.477 R2= 0.511 R2= 0.554 

    p= 0.0153 p= 0.9649 p= 0.1118 p= 0.0283 p= 0.1306 p= 0.0406 p= 0.0046 p<0.0001 p<0.0001 p<0.0001 
    

PFTrDA 
R2= 0.114 R2= 0.001 R2= 0.025 R2= 0.022 R2= 0.009 R2= 0.040 R2= 0.108 R2= 0.324 R2= 0.294 R2= 0.475 R2= 0.279 

   p= 0.0414 p= 0.8269 p= 0.3462 p= 0.3844 p= 0.5782 p= 0.2376 p= 0.0474 p= 0.0002 p= 0.0005 p<0.0001 p= 0.0008 
   

PFBS 
R2= 0.005 R2= 0.020 R2=0.0004 R2= 0.092 R2= 0.015 R2= 0.015 R2= 0.012 R2= 0.0008 R2= 1.0e-06 R2= 0.017 R2= 0.015 R2= 0.005 

  p= 0.6714 p= 0.3991 p= 0.9102 p= 0.0687 p= 0.4742 p= 0.4728 p= 0.5185 p= 0.8711 p= 0.9532 p= 0.4397 p= 0.4651 p= 0.6737 
  

PFHpS 
R2= 0.049 R2= 0.054 R2= 0.003 R2= 0.080 R2= 0.003 R2= 0.0001 R2= 0.0002 R2= 0.018 R2= 0.042 R2= 8.2e-06 R2= 0.013 R2= 0.004 R2= 0.229 

 p= 0.1857 p= 0.1646 p= 0.7445 p= 0.0897 p= 0.7328 p= 0.9664 p= 0.9269 p= 0.4289 p= 0.2216 p= 0.9866 p= 0.4947 p= 0.6937 p= 0.0027 
 

PFOS 
R2= 0.104 R2= 0.086 R2= 0.069 R2= 0.008 R2= 0.043 R2= 0.072 R2= 0.042 R2= 0.055 R2= 0.070 R2= 0.007 R2= 0.003 R2= 0.001 R2= 0.312 R2= 0.594 
p= 0.0513 p= 0.0781 p= 0.1151 p= 0.6042 p= 0.2173 p= 0.1095 p= 0.2251 p= 0.1637 p= 0.1132 p= 0.6339 p= 0.7302 p= 0.8563 p= 0.0003 p<0.0001 

FOSA 
R2= 0.240 R2= 0.160 R2= 0.179 R2= 0.0007 R2= 0.025 R2= 0.066 R2= 0.011 R2= 0.014 R2= 0.027 R2= 0.014 R2= 0.016 R2= 0.041 R2= 0.049 R2= 0.043 
p= 0.0021 p= 0.0143 p= 0.0091 p= 0.8773 p= 0.3468 p= 0.1245 p= 0.5286 p= 0.4779 p= 0.3344 p= 0.4883 p= 0.4572 p= 0.2323 p= 0.1888 p= 0.2198 
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From 2000 – 2002, 3M, one of the major global producers of perfluoroalkyl 

substances phased out the production of the synthetic precursor to FOSA and PFOS, 

perfluorooctane sulfonyl fluoride (POSF), as well as related products based on C6, C8, 

and C10 chemistry.52,54 These were replaced with C4-based chemistry, where products 

were derived from perfluorobutane sulfonyl fluoride (PBSF). These compounds are 

believed to have lower bioaccumulative and toxicological effects.55 Reported production 

of PBSF in the United States has almost doubled from 2002 to 2006, while that of POSF 

has decreased by more than two orders of magnitude between 1998 and 2002, with no 

known production after 2006.50 Before 2003, 3M was responsible for the majority of 

global PFOS production.56 By 2006, PFOS and related substances derived from POSF 

were regulated under the European Union (EU) Directive 2006/122/EC and by 2009, 

were listed under Annex B (restriction of production and use) of the Stockholm 

Convention on Persistent Organic Pollutants coordinated by the United Nations 

Environment Programme (UNEP).49 These production changes in PFOS in the early 

2000s were used to explain temporal trends in the Canadian Arctic.57 The decline in 

production of the precursor FOSA by 3M is consistent with FOSA trends observed on the 

Devon Ice Cap, in which the majority of FOSA is <LOD after 2000, suggesting an 

effective phase out of this compound (Figure 3.8b). This was similarly observed in 

samples collected from Devon Ice Cap in 2008,19 in North Atlantic pilot whales harvested 

between 1986 and 2013,59 and in Arctic air at Alert.60  

Temporal trends of PFOS deposition to the Devon Ice Cap do not reflect the 

production phase out of PFOS by 3M in the early 2000s (Figure 3.8A). Rather, PFOS 



 

 109 

production and manufacturing, along with replacements (e.g. PFBS), have increased 

dramatically in Asia since 2001, and China is now the dominant producer of these 

compounds.61–63 PFOS production in China began increasing rapidly around 2000 and is 

currently steady at 100 – 200 t yr−1.51 China was reported to be the main producer and 

user of POSF between 2003 – 2008 with less than 50 t in 2003 and up to 250 t of POSF-

based products produced in 2008.56 During this time, over 100 t of PFOS was also used 

annually in China to produce aqueous film forming foams (AFFFs),64 used for 

extinguishing fuel-based fires. According to available 2006 inventories, 15 Chinese 

enterprises were producing over 200 t of POSF, of which 100 t were for export.65 This 

suggests the annual volume of PFOS production in China in the mid-2000s was similar to 

the annual production by 3M in the late 1990s.64 Although it is known that the production 

of perfluoroalkane sulfonyl fluorides has increased in China, global emission data for 

individual compounds is currently unavailable and cannot be correlated with the temporal 

trends observed on the Devon Ice Cap.66 However, the continuous detection of PFOS 

after the early 2000s on the Devon Ice Cap may be related to the ongoing production and 

use of PFOS substances by manufacturers in Asia.53 Production of other PFOS-related 

perfluorinated chemicals is ongoing in China, as well as in Russia and India67 which is 

supported by higher levels of PFOS after 2011 in the Devon Ice Cap. An anomalously 

high PFOS flux was observed in 2013. This flux was between five and eight times greater 

than both previous and following years. There was no signal enhancement for other PFAS 

in 2013 and the air mass transport model showed no transport anomaly for this year. 

Therefore, the large 2013 PFOS flux in Devon Ice Cap is unlikely attributed to 

contamination during method collection or analysis, or due to air mass movements. The 
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reason for the high 2013 PFOS flux is unknown but may suggest other sources. Arctic air 

samples collected at Alert also showed the highest levels of PFOS in 2013,68 and 

anomalously high PFOS levels were observed in landlocked Arctic Char from Cape 

Bounty, Melville Island in Nunavut, Canada, collected between 2011 – 2015.69 This 

increasing PFOS trend warrants further consideration in order to determine the efficacy of 

current POSF restrictions. 

3.3.5 PFCA Homologues and Volatile Precursors 

Indirect sources of PFAAs are contributors to the global presence of these 

compounds, but contamination is more important for certain homologues in some 

locations, for example the Canadian Archipelago.70 This has been demonstrated in 

multiple studies that detected the presence of volatile precursors (e.g. FTOHs, NAFSAs, 

NAFSEs), and FTOH-precursor degradation products (e.g. fluorotelomer unsaturated 

carboxylic acids (FTUCAs)), in the Canadian Arctic.2,71–73 Volatile precursor compounds 

will oxidize in the atmosphere to produce PFCAs. Patterns of PFCA homologues are 

useful in examining the role that fluorotelomer-derived compounds play in gas-phase 

atmospheric oxidation.12 If these compounds are coming from the same source, then 

sequential pair concentrations are expected to vary through time together. There will be 

some variability in the ratios depending on the relative atmospheric levels of NOx (NO + 

NO2) and peroxy radicals.6 In this study, comparisons were made between observed 

concentrations of 66 pairs of PFCA homologues ranging from TFA to PFTrDA (Table 

3.1). Most sequential pairs of PFCA homologues were deposited in similar amounts on 

the ice cap. Pairs of PFCA homologues <PFPeA had weaker correlations (p ≤ 0.0004; 
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0.308 ≤ R2 ≤ 0.517), but given the strong contribution of heat transfer fluid degradation to 

the fluxes of these compounds, lower correlations are expected (see Chapter 4). 

Correlations between sequential pairs from PFPeA and PFDoDA were all statistically 

significant (two-tailed t-test) with strong correlations (all p-values ≤ 0.0001; 0.527 ≤ R2 ≤ 

0.889; Table 3.1). Similar correlations were observed for a number of PFCA homologues 

in previous ice core samples from the Devon Ice Cap19 and the Longyearbreen glacier in 

Svalbard.24 The correlations are consistent with expected PFCA homologue production 

via gas phase atmospheric oxidation of fluorotelomer-derived compounds.10 Smog 

chamber studies show that degradation of an x:2 fluorotelomer compound (i.e. containing 

a perfluoroalkyl moiety corresponding to F(CF2)x), will lead to comparable yields of two 

PFCAs with x and x+1 carbons.10 Flux measurement ratios were calculated for six pairs 

of PFCA homologues from PFPeA to PFUnDA over the time series (Figure A.2). The 

three major even-odd pairs expected to be formed from 6:2, 8:2, and 10:2 fluorotelomer 

compounds are PFHxA:PFHpA, PFOA:PFNA, and PFDA:PFUnDA, respectively. The 

majority (82%) of the flux ratio measurements were within a factor of two, supporting the 

hypothesis that these sequential, even-odd homologues are likely coming from 

fluorotelomer-derived sources (Figure 3.9a).10,74 Fluorotelomer compounds of different 

chain lengths were industrially produced and applied to different extents. I can compare 

these using odd-odd PFCA homologue ratios, comparing PFNA to PFPeA, PFHpA, and 

PFUnDA, as products of 8:2, 4:2 and 6:2, and 10:2 fluorotelomer compounds, 

respectively (Figure 3.9b). The dominant homologues are PFNA and PFHpA, followed 

by PFPeA, then PFUnDA. This suggests that 8:2 and 6:2 fluorotelomer compounds 

dominate as precursors, followed by the 4:2 and 10:2 fluorotelomer compounds. This 
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trend is consistent with our knowledge of commercial product formulations and 

atmospheric measurements.6,76,77 Despite producers moving from 8:2 to shorter-chain 

formulations, recent FTOH atmospheric measurements have found that the 8:2 FTOH is 

the dominant compound in the High European Alps.78 Therefore, it is likely that PFCAs 

from PFPeA to PFUnDA on the Devon Ice Cap are derived from common emission 

sources due to prominent quantities of residual volatile precursors in fluoropolymer 

products.  

 
Figure 3.9. Molar flux ratios for a) three even-odd pairs of PFCAs and b) three odd 

pairs of PFNA with PFPeA, PFHpA, and PFUnDA homologues, as a function of 
depth and year.  
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The atmospheric oxidation of perfluoroalkane sulfonamido substances may 

provide an additional source of PFCAs to the Devon Ice Cap. The oxidation of FOSA 

could contribute to the observed flux of PFOA and short-chain PFCAs in the High Arctic. 

However, since there were no observed correlations between FOSA and PFOA or FOSA 

and any of the other PFCAs (p ≥	
 0.0021; R2 ≤0.24; Table 3.1), it is likely that PFOA 

deposition to the Devon Ice Cap is driven by other sources.  

3.3.6 Elucidating the Role of Marine-Driven Transport of PFAAs to the Arctic 

Thus far, evidence was provided for indirect formation of PFAAs in the 

atmosphere from volatile precursor compounds, indicating that direct transport is an 

unlikely source of PFAAs to the ice cap. Atmospherically formed PFAAs can deposit to 

any terrestrial or oceanic system, and to the atmosphere into the ocean before reaching the 

Arctic, and then re-enter the atmosphere from oceanic currents and marine aerosols. It is 

therefore important to understand the extent to which the oceans contribute to PFAA ice 

cap deposition. Other sources, such as dust or biomass burning, must also be considered 

as possible contributors of PFAAs to the ice cap. Gas-phase PFAAs will deposit through 

wet or dry deposition and may also be transported on aerosols.79 Major ions are useful 

source markers for atmospheric aerosols, and were measured in the ice core to further 

understand these transport mechanisms (Tables A.7 – A.8; Figures 3.10 – 3.11).   
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Figure 3.10. Vertical profile of anion concentrations (ng mL−1) on a log scale, per 

depth in the ice core and by year. Anions detected include F−, Cl−, NO2
−, NO3

−, PO4
3− 

and SO4
2−. 

 
Figure 3.11. Vertical profile of cation concentrations (ng mL−1) on a log scale, per 
depth in the ice core and by year. Cations detected include Na+, K+, Ca2+, Mg2+, 

Mn2+, Al3+ and Fe3+. 
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The non-sea salt component of the ice core samples was calculated to understand 

the atmospheric origin in the samples.24 All sodium (Na+) in the ice core samples was 

assumed to come from sea salt. Most other ions were attributed to the non-sea salt 

component, suggesting very few oceanic sources depositing on Devon Ice Cap (Table 

3.2). The non-sea salt contribution was calculated from the average molar concentration 

of the ions in the ice core from 1977-2015, and the average non-sea salt concentrations, 

which were determined by subtracting the individual ion molar concentrations from the 

sodium molar concentration multiplied by the expected ion to sodium ratio.80 Further, no 

correlations were observed between Na+ flux and any of the PFAAs (p ≥ 0.0093; R2 ≤ 

0.218; Table A.9).  

Table 3.2. Non-sea salt and sea salt component concentrations (conc.) (µmol L−1) of 
select ions in the ice core.  

 Na+ K+ Mg2+ Ca2+ Cl− SO4
2− F− 

Average molar conc. in ice core (µmol/L) 1.94 0.68 0.74 9.45 10.73 1.54 0.0103 
Non-sea salt conc. (µmol/L)  0.64 0.52 9.41 8.39 1.42 0.0100 
Sea salt conc. (µmol/L)  0.04 0.22 0.04 2.33 0.12 0.0003 
Contribution of non-sea salt (%)  93.8 70.3 99.5 78.2 92.4 97.2 
 

Another technique used to assess the influence of marine aerosol deposition of 

PFAAs to the Devon Ice Cap is a comparison between ocean and ice cap homologue 

patterns. If marine aerosols were/are a major source of PFAA contamination on Devon 

Ice Cap, then one would expect the homologue profiles to be similar between the ocean 

and the ice cap. Figure 3.12 illustrates the proportional analysis of the molar 

concentration (pmol L−1) fraction between PFAAs on the Devon Ice Cap and ocean levels 

in the Canadian Artic Archipelago,5 Arctic Ocean,5,81 North Atlantic Ocean,82 and North 

Pacific Ocean81 for the years 2005 and 2010. Molar concentrations of PFAAs on the ice 
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cap differed from ocean PFAA concentrations, with higher molar concentrations of PFBA 

and PFNA, and lower molar concentrations of PFSAs found on Devon Ice Cap. PFHxS 

was not detected on the ice cap, but was measured in most ocean samples, suggesting that 

indirect sources are of importance for Arctic deposition, due to the absence of PFHxS on 

the ice cap.19 The differences in homologue profiles between the ice cap and the ocean 

can also not be accounted for by different surfactant properties,19 suggesting the two may 

have different sources of PFAA contamination. The discrepancies between the Na+/PFAA 

flux ratios and the ice cap/ocean proportional analysis provide further evidence to imply 

that marine aerosols are not a significant source of PFAAs to the Devon Ice Cap. 

 
Figure 3.12. Molar concentration fraction of sum of PFAAs on the Devon Ice Cap 

compared to levels in the Canadian Artic Archipelago,5 Arctic Ocean,5,81 North 
Atlantic Ocean,82 and North Pacific Ocean81 in 2005 and 2010. Ocean concentrations 

are compared to ice cap concentrations for two years to show a better overall 
comparison with different ocean samples that were collected in multiple field 

campaigns. 
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3.3.7 Understanding Atmospheric Inputs of PFAAs Using Ion Tracers 

Weak correlations were observed between short-chain PFCAs and nss-F− (p ≤ 

0.0015; 0.306 ≤ R2 ≤ 0.455). A small percentage of the F− being detected in the ice core 

samples may be derived from the atmospheric formation of PFCAs. The degradation of 

many PFCA precursors, including heat transfer fluids, forms both PFCA and HF. For 

example, the hydrolysis of perfluoroacyl fluorides forms the corresponding PFCAs along 

with the loss of HF83: 

CF3(CF2)xCOF + H2O à CF3(CF2)xCOOH + HF 

By this mechanism, PFCAs could account for between 0.80 – 14% of the F− present on 

the ice cap, depending on the year. These numbers are upper limits as PFCAs can also be 

formed by mechanisms that do not form HF.6 It is difficult to assess the exact contribution 

of this anthropogenic source to the overall burden of F−, due to the lack of available data 

on F− sources. This is further confounded by the high mobility of F− in both firn and ice 

layers, which makes it difficult to study temporal trends in F− deposition.84 Both natural 

and anthropogenic sources contribute to the overall budget of F− in the troposphere, 

including primary sea-salt, soil dust aerosols, volcanic emissions, coal burning, and 

industrial processing.84 I am currently unable to assess the exact contributions of each 

source of F−, but the correlations observed here suggest that short-chain PFCA precursor 

degradation could account for up to 14% of the observed F−. Furthermore, these 

correlations lend further support to indirect formation as a major pathway to PFCA 

contamination on the Devon Ice Cap. 
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There were weak to moderate correlations between several PFAAs and nss-Ca2+ 

and nss-Mg2+ (0.300 ≤ R2 ≤ 0.531; Table A.9), both of which are indicators of mineral 

dust.85 Mineral dust aerosols can accumulate acidic atmospheric contaminants, such as 

nitric and hydrochloric acids, and undergo LRT during dust storms, where they can travel 

long distances from Asian and African dust sources to the remote Arctic.86,87 Dust 

entrainment in deserts is one of the most important sources of mineral dust in the global 

atmosphere and North African (e.g. Sahara) and Central Asian (e.g. Gobi desert) dust 

sources contribute the most global dust to the Northern Hemisphere.88 Several studies 

have found dust particles associated with LRT in snow and ice samples from the 

Canadian Arctic.89–91 Dust deposition to the Arctic shows a seasonal effect, with dust 

storms in major deserts occurring more frequently in the spring, leading to higher 

concentrations of mineral dust tracers in the spring and autumn.92 I detected high 

concentrations (199 – 786 µg L−1) of Ca2+ on Devon Ice Cap, and calculated that the 

majority (99.5%) of Ca2+ contributed to the nss component. Substantial concentrations 

(<2.00 – 78.3 µg L−1) of other mineral dust (Al3+, Fe3+, Si4+) tracers were also detected. 

Correlations between nss-Ca2+ and PFAAs suggest there is a relationship between the 

transport of mineral dust and PFAAs to the Devon Ice Cap. This could be caused by both 

mineral dust and PFAAs originating from the same regions. Alternatively, it could 

indicate a mechanistic relationship. Atmospheric acids are known to interact with mineral 

dust through reactive uptake.87 It is possible that PFAAs, as strong atmospheric acids, 

could behave in the same way and be taken up onto mineral dust aerosols and 

subsequently transported to the Arctic. I cannot distinguish between these mechanisms at 
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this time, and suggest that further studies explore this relationship between mineral dust 

and PFAA LRT. 

3.4 Conclusions  

Monitoring of temporal trends in persistent organic pollutant deposition in remote 

areas is an important initiative to determine the impact of regulation on contamination of 

pristine environments. This study demonstrates the value of ice cores to understanding 

contaminant LRT and this chapter discusses the first multi-decadal record of long-chain 

PFAA deposition in the Canadian Arctic. Continuous and increasing deposition of many 

PFAAs on Devon Ice Cap was observed, suggesting on-going emission and use of these 

compounds, their precursors and likely new unidentified compounds. These results 

indicate that Devon Ice Cap is likely impacted by global pollutants from both North 

American and Eurasian Sources, with Continental Asia becoming a greater contributor in 

recent years. Use of major ion tracers provided new information regarding the transport of 

PFAAs, confirming that marine aerosol inputs are unimportant and suggesting a 

relationship with mineral dust. I also observed that a small percentage of fluoride detected 

in the Arctic could be coming from the reactive mechanisms forming the PFAAs. Further 

efforts are necessary to continue monitoring the long-range transport of PFAAs and their 

deposition to the remote Canadian Arctic. It is important to understand these LRT 

mechanisms and determine the geographical sources of PFAAs and their precursors. Ice 

cores can aid in elucidating these mechanisms and further collection and analysis of ice 

cores is recommended. 
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4 Persistent Fluorinated Compounds Increasing in the Arctic as a Result of the 

Montreal Protocol  

4.1 Introduction 

Perfluoroalkyl carboxylic acids (PFCAs) are characterized by resistance to 

environmental degradation and potential adverse impacts on human and environmental 

health,1 each a hallmark of persistent organic pollutants. Widely used in surfactant and 

polymer products since the 1960s, PFCAs are accumulating in the global environment, 

including remote regions such as the Arctic.2 Short-chain PFCAs with four or fewer 

carbons (scPFCAs, CF3(CF2)xCOOH, x≤2) are a concern because of their toxicity to 

plants, and potential for accumulation in aquatic ecosystems.3,4 Atmospheric 

transformation and subsequent deposition of fluoropolymer-related precursors represents 

a minor environmental source of scPFCAs.5 However, an additional source from 

atmospheric degradation of chlorofluorocarbon (CFC)-replacement compounds is 

possible from known chemistry. Here, I provide the first multi-decadal temporal record of 

scPFCA deposition, derived from an Arctic ice core. These results bring to the forefront a 

need for a holistic approach to environmental risk assessment that considers impacts of 

replacement substances and degradation products.  

4.2 Methods 

The extraction and analysis of scPFCAs are based on earlier studies [5] with 

further details on sample collection, preparation, extraction and analysis in Chapter 2 – 

Methodology. For the scPFCA analysis, isotopically labeled (13C) PFBA was used as a 
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surrogate standard to correct for recovery (M4PFBA) and matrix effects (M3PFBA). Due 

to lack of available isotopically labeled TFA and PFPrA, the closest chain length 

surrogate, M4PFBA was used to quantify TFA and PFPrA based on relative response 

using a calibration curve comprised of 15 levels of analyte (state range) and a constant 

level of M4PFBA. Method recoveries for the scPFCAs corresponded to 22% ± 1 for TFA, 

32% ± 5 for PFPrA, and 107% ± 16 for PFBA based on comparing the peak area in the 

pre-extraction spike to the post-extraction spike, n=3. Though these recoveries are lower 

than 50% for TFA and PFPrA, they are consistent and the recovered TFA and PFPrA in 

actual samples were well above the limits of quantification. Slight matrix suppression was 

noted for scPFCAs by comparing the post-extraction sample spike to a solvent spike. 

Matrix effects corresponded to −17% ± 1 for TFA, −19% ± 3 for PFPrA and −25% ± 6 

for PFBA. Sample concentrations were recovery and matrix effect corrected by using 

relative responses to M3PFBA. LC-MS/MS chromatograms for the standards, method 

blanks and ice core samples are provided in Appendix B. 

4.3 Results and Discussion 

Fluoropolymer and related precursors, such as fluorotelomer alcohols  

(F(CF2CF2)nCH2CH2OH) produce PFCAs as minor products, whereas CFC-replacement 

compounds produce scPFCAs as both major (molar yield > 0.1) and minor (molar yield < 

0.1) products.6 The fractional molar yield (i.e. percent yield) corresponds to how much of 

the scPFCAs (e.g. ~1 or ~100%) can be produced from the degradation of the 

corresponding precursors. Three scPFCAs can be formed: trifluoroacetic acid (TFA), 

perfluoropropionic acid (PFPrA), and perfluorobutanoic acid (PFBA). Major and minor 
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precursor sources (Table 4.1) include hydrochlorofluorocarbons (HCFCs), 

hydrofluorocarbons (HFCs), other halogenated ethanes and ethers, hydrofluoroethers 

(HFEs), hydrofluoroolefins (HFOs), and perfluoroolefins (PFOs). 

Table 4.1. Major and minor precursor sources for short-chain PFCAs. 
 

Commercial 
compound 

 
Chemical formula 

Atmospheric 
lifetime 
(years)a 

Fractional Molar Yieldb 

TFA PFPrA PFBA 

M
aj

or
 P

re
cu

rs
or

s 

Halothane 
(Halon-2311) 

CF3CHClBr 1.0 ~17   

HCFC-123 CF3CHCl2 1.3 0.988   
HCFC-124 CF3CHFCl 5.9 ~18   
HCFC-133a CF3ClCH2 4.0 >0.59   
HCFC-225ca CF3CF2CHCl2 1.9  ~110  
HFC-134a CF3CH2F 14 ~0.1711   
HFC-227ea CF3CHFCF3 38.9 0.94 ± 0.0612   
HFC-245eb CF3CHFCH2F 3.2 Unknown   
HFC-236ea CF3CHFCHF2 11.0 Unknown   
HFC-43-10mee CF3CHFCHFCF2CF3 16.1 Unknown Unknown  
HFO-1234yf CF3CF=CH2 10.5 days ~113   
HFO-1225ye (E) CF3CF=CHF-(E) 4.9 days ~114   
HFO-1225ye (Z) CF3CF=CHF-(Z) 8.5 days ~114   
PFO-1216 CF3CF=CF2 4.9 days ~115   
HFE-236ea2 
(Desflurane) 

CHF2OCHFCF3 10.8 Unknown   

 HCFE-235da2 
(Isoflurane) 

CF3CHClOCHF2 3.5 0.95 ± 0.0316   

M
in

or
 P

re
cu

rs
or

sc 

HFC-125 CF3CHF2 31.0 <0.1   
HFC-143a CF3CH3 51.0  <0.1   
HFC-329p CF3CF2CF2CHF2 33.0 <0.1 <0.1 <0.1 
HFC-236cb CF3CF2CH2F 13.0  <0.1  
HFE-143a CF3OCH3 4.8 <0.1   
HFE-245cb2 CF3CF2OCH3 5.0 <0.1 <0.1  
HFE-7100 CF3(CF2)3OCH3 4.7 <0.1 <0.1 <0.1 
HFE-7200 CF3(CF2)3OCH2CH3 0.80 <0.1 <0.1 <0.1 
Polymer Precursors ~1-170 days <0.1 <0.1 <0.1 

aAll major precursor lifetimes are from [17] and references therein.  
bYields are based on either experimental data or recommended data. Major precursors 
have fractional molar yields > 0.1 and minor precursor yields are < 0.1.  
cAll minor precursor yields are from [6] and references therein.  
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Measurements of PFCAs in high-elevation Arctic ice caps indicate that long-range 

atmospheric transport is occurring.5 As strong organic acids6 PFCAs are removed from 

the atmosphere to the surface via dry deposition or cloud droplet scavenging and wet 

deposition, resulting in lifetimes of hours to days after atmospheric formation.18,19 

Atmosphere-surface flux measurements of scPFCAs that could elucidate sources and 

transport pathways are rare.20–22 In this study, a 15.5-m ice core was collected from the 

summit of Devon Ice Cap, Nunavut (75.2°N, 82.7°W, 2175 m above sea level) in May 

2015, representing 37 prior years of deposition. An age-depth scale was created using 

oxygen stable isotopes and ion chemistry measured in a co-located core. The ice core was 

sectioned and analyzed for PFCAs, and a long-term atmospheric deposition record was 

generated. 

Observed scPFCA fluxes in the Devon Ice Cap range from <5.3 to 44,420 ng m-2 

yr-1. Similar fluxes of TFA, PFPrA, and PFBA were measured in precipitation samples 

collected in North America and Japan between 1998-200220 and 2006-2008,21 

respectively. These studies do not provide continuous temporal data and represent semi-

quantitative estimates of total deposition flux. Modelling studies conducted in the 1990s 

examined the potential impact of HCFC and HFC introduction on TFA deposition. 

Cumulative northern hemisphere TFA deposition was predicted over the periods 1985-

201018 and 1990-202019 to be 500 µg m-2 and 342 µg m-2, respectively. These are 

comparable to our observations of cumulative TFA deposition during the same time 

frames (1985-2010: 276 µg m-2; 1990-2014: 349 µg m-2), suggesting that such 

replacements represent major sources of global scPFCA contamination. 
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CFCs are known stratospheric ozone-depleting substances (ODSs) that are 

regulated by the Montreal Protocol. This international agreement entered into force in 

1989 and mandated replacement of ozone-depleting CFCs with HCFCs, HFCs, and other 

substances with lower ozone depleting potentials by 2010.23 From 1990-1999, several 

amendments were made to the Montreal Protocol to regulate HCFCs, with complete 

phase out by 2020 or 2030 for developed and developing countries, respectively.24 The 

2016 Kigali Amendment proposed a phase-down of HFCs with a production freeze in 

2024 and an 80% reduction by 2043 in developed countries, with a similar strategy in 

developing countries.23 The Montreal Protocol has unequivocally reduced the impact of 

ODSs on the stratospheric ozone layer.17 Many ODSs are also long-lived greenhouse 

gases and thus the Montreal Protocol concurrently decreased anthropogenic radiative 

forcing.17 Despite these clear benefits, increased production and consumption of CFC-

replacement compounds increases the environmental burden of scPFCAs. Current 

environmental scPFCA levels are not sufficient to cause known ecotoxicological effects;4 

however, scPFCAs are environmentally persistent and will continue to accumulate so 

long as precursors are in use. 

Temporal trend analysis using an ice core can elucidate various source and 

precursor contributions to long-range transport of scPFCAs. From ~1977 to ~1989 

scPFCAs were consistently detected at low levels (Figure 4.1A) in the Devon Ice Cap 

record. I represent ice core temporal trends as 5-year moving averages of annual data to 

reduce the influence of dating errors (±1 year) and possible melting effects (± 1 year).5 

Starting in ~1990 fluxes of TFA, PFPrA, and PFBA increase coincidentally with the 
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known introduction and emissions of CFC-replacement compounds. In contrast, no 

increase is observed for perfluorohexanoic acid (PFHxA), which cannot be formed from 

the degradation of CFC-replacement compounds. Atmospheric lifetimes of CFC-

replacement precursors are sufficiently long (Table 4.1) that they are well mixed in the 

northern hemispheric troposphere. Therefore, long-term temporal trends in deposition 

should reflect historic changes in global production and emissions 
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Figure 4.1. A) Annual scPFCA deposition fluxes and 5-year moving averages. B) 

HCFC atmospheric measurements (HCFC-124: measured mean mixing ratios from 
Mace Head, Ireland (MH) and Cape Grim, Tasmania (CG);25 HCFC-123: measured 
mean mixing ratios from CG;25 HCFC-225ca: mixing ratios from CG; HCFC-133a: 

mixing ratios from CG, Jungfraujoch, Switzerland (JF), and MH26) and global 
modelled emissions.27–29 (C) HFC atmospheric measurements (HFC-134a and HFC-

227 global mixing ratios;30 HFC-43-10mee averaged mixing ratios for Northern 
Hemisphere sites: Trinidad Head, California; Zeppelinfjellet, Svalbard; JF; and 

MH31) and global modelled emissions.25 
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Use of CFC-replacement compounds was minimal prior to enactment of the 

Montreal Protocol (~1990) when the primary atmospheric anthropogenic source of 

scPFCAs was degradation of fluoropolymers and related precursors.3,32 Rapid growth in 

production—and release through use—of HCFCs, came with global adoption of Montreal 

Protocol regulations. There are four known HCFCs that produce TFA and PFPrA as 

major products (Table 4.1). Large-scale use of these HCFC precursors began ~1990, 

coincident with observed increases of TFA and PFPrA on the ice cap (Figure 4.1B).25,27–29 

Production of HFCs has been increasing steadily since 1995 in developed countries. 

China emerged as a major HFC producer and consumer in the early 2000s.33 Several 

HFCs produce TFA and PFPrA as major and minor products and a few will additionally 

produce PFBA as a minor product. Atmospheric measurements and modelled global 

emission data are available for three major HFC precursors to scPFCAs (Figure 

4.1C),25,31,30 which increased in the early 1990s. Temporal trends in the measured Arctic 

ice core scPFCA fluxes are consistent with production and emissions of CFC-replacement 

precursors (Figure 4.2). Based on production volume, the dominant precursor for TFA is 

HFC-134a, which is the CFC-12 substitute used in mobile air conditioning.30 Summed 

emissions of precursors increased in the early 1990s, including HFC-134a, HCFCs, and 

volatile anaesthetics. The observed flux of TFA in the ice core record began increasing 2-

3 years earlier (~1990) and continues to increase in the core to present day (Figure 4.2A). 

Mixing ratios of TFA precursors correlate strongly and significantly with increasing TFA 

deposition on Devon Ice Cap (r2 = 0.758, p < 0.0001). 
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Figure 4.2. Temporal trends of CFC-replacement precursor emissions and TFA and 

PFPrA deposition fluxes. (A) HFC-134a,25 sum of HCFC (HCFC-123, -124, -
133a)28,29 and sum of anaesthetic emissions (halothane and desflurane),34 compared 

to 5-year average TFA flux on Devon Ice Cap over time. (B) HCFC-225ca27 and 
HFC-43-10mee25 emissions, compared to 5-year average PFPrA flux on Devon Ice 

Cap over time. 

Two compounds that produce PFPrA as a major product have emission data 

available: HCFC-225ca and HFC-43-10mee. HCFC-225ca was introduced in the early 

1990s, with peak modelled emissions (1.51 kt yr-1) in 1999, followed by a decline in 

accordance with the Copenhagen (1992) and Vienna (1995) Amendments to the Montreal 
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Protocol.27 HFC-43-10mee was introduced in the mid-1990s, with increasing emissions 

until 2012 (1.13 ± 0.31 kt yr-1).31 These PFPrA precursor emissions match well with the 

increase in its deposition flux around 2000, coincident with the peak emissions of HCFC-

225ca (Figure 4.2B). Another increase in PFPrA flux is observed after 2005, 

corresponding with increasing emissions of HFC-43-10mee. Mixing ratios of PFPrA 

precursors show moderate and significant correlation with increasing PFPrA deposition 

(r2 = 0.678, p < 0.0001). Temporal trends of TFA and PFPrA fluxes coinciding with 

modelled emissions of these major precursors implicates known atmospheric degradation 

of CFC-replacement precursors regulated and released by amendments to the Montreal 

Protocol as the source of this contamination. 

With continued regulation of CFC-replacement compounds—most recently the 

2016 Kigali Amendment—there will be further impacts on the regional environmental 

burden of scPFCAs near emission sources. A major replacement class for HFCs is HFOs, 

which have shorter atmospheric lifetimes (<1 month), and thus will not become well 

mixed in the troposphere. Production of scPFCAs from HFOs occurs in yields close to 

100%35 (Table 4.1), which will result in downwind environmental contamination. HFO-

1234yf is being positioned as the next-generation mobile air conditioning refrigerant to 

replace HFC-134a,36 with North American production estimates of 50-100 kt yr-1 for the 

next 50-100 years.4 HFO-1234yf produces TFA in 100% molar yield.35,37 Implementation 

of HFO-1234yf as the major replacement for HFC-134a has been estimated to result in 

annual TFA wet deposition of 160-240 µg m-2 in continental North America,38 

comparable to the cumulative ice core deposition during the decade from 2005 to 2014 
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(208 µg m-2). The short atmospheric lifetimes of HFOs means their impact on scPFCA 

deposition will be spatially variable, resulting in higher regional contamination downwind 

of source regions, followed by global dissemination of the persistent products. HFO-

1234yf has recently been detected at low levels in a populated area,36 but the magnitude 

of its presence in the High Arctic has not yet been reported. By shifting from HFC-134a 

to HFO-1234yf production, the environmental TFA burden will likely increase. Because 

of the persistence and high environmental mobility of TFA, this will result in further TFA 

contamination of aquatic systems including wetlands39 and oceans.3 

4.4 Conclusions 

These ice core measurements provide evidence that elevated scPFCA depositional 

fluxes to the High Arctic are driven primarily by increased emissions of volatile CFC-

replacement compounds introduced because of the Montreal Protocol. Prior to the 

Montreal Protocol, total northern hemisphere deposition of scPFCAs was less than 450 kt 

annually. In recent years, this has increased ten-fold to almost 4500 kt per year. These 

scPFCAs have no known environmental degradation pathway and therefore will 

accumulate in the environment while precursors continue to be emitted. The Montreal 

Protocol will undoubtedly continue to positively impact stratospheric ozone and climate 

and represents an unparalleled achievement in global environmental stewardship. 

However, this study emphasizes that even the most successful regulations can result in 

unintended environmental impacts. Replacement of one class of performance chemicals 

with another can lead to different, often unanticipated, environmental effects that persist 

for the foreseeable future. These findings exemplify the continued need for holistic 
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consideration of replacement substances – for example, identification of environmental 

degradation products before use – in assessing regulatory efficacy.  
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5 Conclusions and Future Directions 

 This work has demonstrated three major points: the unique and valuable use of ice 

cores in understanding long-range transport (LRT) of perfluoroalkyl acids (PFAAs); the 

continuous and increased deposition of PFAAs to the remote Canadian Arctic; and the 

elevated fluxes of short-chain perfluoroalkyl carboxylic acids (scPFCAs) as a result of 

regulations implemented by The Montreal Protocol.  

 The 15.5 m ice core collected from Devon Ice Cap in the Canadian Arctic has 

provided an invaluable record of past atmospheric pollution. Not only did I detect a wide 

range of PFAA analytes in the ice core, but I was able to create the first multi-decadal 

temporal ice record in PFAA deposition. This long-term archive provided me with useful 

data that allowed me to determine production changes, pollutant sources and transport 

pathways of these PFAA contaminants over time.  

 In this work I observed ongoing and in some cases, increased deposition of 

PFAAs on Devon Ice Cap. This suggests that there is ongoing emissions and use of these 

compounds, their precursors and likely new unidentified compounds. I correlated PFAA 

homologues in further understanding the role that precursor compounds play in LRT. I 

determined that the majority of the PFCAs are likely derived from common emission 

sources due to prominent quantities of residual volatile precursors in fluoropolymer 

products, which are then degrading in the atmosphere and depositing to the Arctic. 

Additionally, I compared these ice core measurements to all other studies, regulations, 

and voluntary reductions, to further understand these emission sources. I found that 
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regulations including the US EPA PFOA Stewardship Program, and the Canadian 

Environmental Performance Agreement, in addition to the 3M phase-out, have in turn led 

to new manufacturers, largely in Continental Asia, beginning to produce these PFAAs 

and their precursors. This was similarly observed for the scPFCAs, which were detected 

at elevated fluxes due The Montreal Protocol and its Amendments, which have regulated 

the phase-out of CFC-compounds with replacements including the HCFCs, HFCs, HFEs, 

and HFOs, that degrade to scPFCAs in the atmosphere. My work demonstrates that even 

successful regulations can lead to effects of environmental concern, and highlights a need 

to consider the holistic nature of environmental processes and impacts. 

In this work I performed air mass transport modelling to determine the source 

regions of these global pollutants, and found that Devon Ice Cap is indeed impacted by air 

masses from both North America and Eurasia. This further confirmed my proposal that 

new manufacturers in Continental Asia are contributors to PFAAs deposited on Devon 

Ice Cap. Furthermore, I conducted major ion analyses to determine if major ion tracers 

could provide me with any new information regarding PFAA transport. Based on 

correlations with the Na+ tracer and the proportional analysis between ice cap and ocean 

PFAA concentrations, I discovered that marine aerosol transport does not play a 

significant role in PFAA deposition. Mineral dust is likely an important contributor, based 

on mineral dust tracers, including Ca2+. This is also one of the first studies to provide 

evidence to suggest that a small percentage of the F− detected in the Arctic could be 

coming from the PFAAs themselves, based on atmospheric precursor degradation 

mechanisms.  
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Overall, assessments of deposition, homologue profiles, ion tracers, transport 

models, and production and regulation trends have improved current understandings of 

LRT of PFAAs to Devon Ice Cap. Further efforts are necessary to continue monitoring 

the LRT of these contaminants, their precursors, and replacement compounds, that will 

continue to lead to elevated levels of these persistent pollutants in the remote Canadian 

Arctic. Due to the invaluable information that ice core records can provide, and with 

increased analytical capabilities today, future work needs to involve analyzing more 

contaminants, at lower detection limits, in single ice cores.   
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Appendix A – Supporting Information for Chapter 3 

Table A.1. Depth profile (cm) of PFCA concentrations (pg L−1) on the Devon Ice 
Cap. Values <LOD are in red and values <LOQ are in blue. All samples are <LOQ 
for PFTeDA, PFHxDA and PFOcDA and are not shown here. 

  
Concentration (pg L−1) 

Depth 
(cm) Year TFA PFPrA PFBA PFPeA PFHxA PFHpA PFOA PFNA PFDA PFUnDA PFDoDA PFTrDA 
19 2015 38194 12977 245 <10.4 43.0 55.0 102 140 17.0 <15.7 <3.61 <3.21 

78 2014 87558 19993 215 <10.4 42.8 94.4 129 284 54.0 41.1 <3.61 <3.21 

134 2013 126723 23788 429 <10.4 95.2 235 207 440 72.3 66.8 <3.61 <3.21 

177 2012 168508 27472 844 <10.4 193 438 275 596 84.2 145 <12.0 <3.21 

193 2011 159006 47679 1339 <10.4 280 578 278 382 47.6 53.8 <3.61 <3.21 

235 2010 208497 70572 984 <10.4 130 317 195 427 43.0 62.4 <3.61 <3.21 

280 2009 96011 43576 409 <10.4 63.7 173 173 262 43.3 53.8 <3.61 <3.21 

331 2008 104351 3460 536 73.8 104 144 181 319 49.8 75.2 <3.61 <3.21 

363 2007 40983 <514 202 <10.4 38.7 135 156 274 29.0 70.1 <3.61 <3.21 

390 2006 122894 1862 335 51.3 73.4 196 258 755 113 218 <12.0 4.96 
429 2005 198378 3534 646 108 122 231 180 403 65.6 128 <5.12 <3.21 
454 2004 81858 2845 575 88.8 94.9 198 226 443 69.2 75.4 <3.61 <3.21 
487 2003 99102 3923 356 74.0 73.5 183 144 274 41.7 68.6 <3.61 <3.25 
547 2002 150890 13667 581 126 120 241 185 302 70.8 88.6 5.71 <3.21 

606 2001 38736 22990 <39.8 54.2 48.9 93.1 116 159 31.0 29.3 <3.61 <3.21 

648 2000 46958 5081 222 92.9 68.3 155 142 306 72.5 102 <3.61 <3.21 

684 1999 37737 2679 245 54.5 80.8 178 195 555 72.6 98.1 6.84 <3.21 

730 1998 14273 1396 145 <10.4 29.2 80.1 166 385 56.0 88.7 <3.61 <3.21 

776 1997 20590 801 <133 <34.7 42.7 91.9 181 299 38.8 74.4 <3.61 <3.21 

825 1996 38902 2119 174 62.9 101 243 333 584 81.8 106 <3.61 <3.21 

857 1995 37254 2841 165 95.0 122 180 186 225 24.2 52.6 <3.61 <3.21 

902 1994 41004 2176 141 81.0 90.8 140 221 241 37.1 45.2 <3.61 <3.21 

964 1993 33936 2681 187 79.9 107 162 159 173 24.9 30.2 <3.61 <3.21 

1006 1992 26591 9017 165 87.1 112 145 129 147 18.1 <15.7 <3.61 <3.21 

1047 1991 13202 595 177 79.4 82.0 145 178 213 37.8 41.9 <3.61 <3.21 

1088 1990 14420 591 186 81.4 67.5 124 145 163 28.5 25.7 <3.61 <3.21 

1144 1989 12599 <514 <133 <34.7 49.7 95.1 105 162 18.7 35.2 <3.61 <3.21 

1187 1988 9962 <514 <133 87.1 87.1 174 209 262 39.4 41.2 <3.61 <3.21 

1216 1987 11457 <514 <133 35.4 50.0 86.5 122 138 25.8 18.9 <3.61 <3.21 

1251 1986 7819 570 <133 46.1 65.2 124 122 125 35.0 <15.7 <3.61 <3.21 

1294 1985 11652 <514 <133 39.2 44.2 98.3 93.8 101 <12.5 17.9 <3.61 <3.21 

1317 1984 12999 2015 133 <34.7 67.1 115 112 117 16.4 16.4 <3.61 <3.21 

1358 1983 9687 1521 <133 <34.7 34.6 68.1 82.2 81.0 <12.5 <4.72 <3.61 <3.21 

1394 1982 7716 1682 <133 <34.7 56.2 113 107 133 19.9 <15.7 <3.61 <3.21 

1420 1981             
1458 1980             
1473 1979 8383 3069 <133 <34.7 40.4 85.5 82.5 70.4 <12.5 <4.72 <3.61 <3.21 

1514 1978 13339 735 <133 <34.7 54.8 130 96.6 137 16.5 <15.7 <3.61 <3.21 

1542 1977 6555 1462 <133 <34.7 47.2 86.7 107 110 12.6 <4.72 <3.61 <3.21 
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Table A.2. Depth profile (cm) of PFSA concentrations (pg L−1) on the Devon Ice 
Cap. Values <LOD are identified in red. All samples are <LOD for PFHxS, PFDS 
and PFECHS and are therefore not shown here. No values are provided for the 

years 1980 – 1981, as there were no ice core samples available for those two years. 

  
Concentration (pg L−1) 

Depth (cm) Year PFBS PFHpS PFOS FOSA 
19 2015 6.80 <1.43 52.2 <0.18 

78 2014 <3.62 9.28 94.8 <0.18 

134 2013 4.19 8.77 391 <0.18 

177 2012 <3.62 <1.43 50.8 1.50 
193 2011 <3.62 <1.43 103 <0.18 

235 2010 <3.62 <1.43 32.0 <0.18 

280 2009 <3.62 <1.43 27.8 <0.18 

331 2008 <3.62 <1.43 30.5 <0.18 

363 2007 <3.62 <1.43 21.9 <0.18 

390 2006 <3.62 <1.43 29.8 <0.18 

429 2005 <3.62 <1.43 29.0 1.69 
454 2004 <3.62 <1.43 32.7 <0.18 
487 2003 <3.62 <1.43 24.8 7.00 
547 2002 <3.62 <1.43 32.5 <0.18 

606 2001 <3.62 <1.43 11.9 <0.18 

648 2000 <3.62 <1.43 24.6 1.48 
684 1999 <3.62 <1.43 21.5 13.2 
730 1998 <3.62 <1.43 37.5 71.9 
776 1997 <3.62 <1.43 17.8 43.6 
825 1996 <3.62 <1.43 19.7 41.9 
857 1995 <3.62 <1.43 29.5 41.2 
902 1994 <3.62 <1.43 35.7 76.8 
964 1993 <3.62 <1.43 20.2 29.7 

1006 1992 <3.62 <1.43 26.6 24.5 
1047 1991 <3.62 <1.43 26.6 37.5 
1088 1990 <3.62 <1.43 13.7 26.6 
1144 1989 <3.62 <1.43 21.7 33.1 
1187 1988 <3.62 <1.43 15.9 30.2 
1216 1987 <3.62 <1.43 22.8 22.2 
1251 1986 <3.62 <1.43 19.8 25.0 
1294 1985 <3.62 <1.43 16.9 27.9 
1317 1984 <3.62 <1.43 50.3 13.6 
1358 1983 <3.62 <1.43 18.7 3.72 
1394 1982 <3.62 <1.43 22.6 14.8 
1420 1981     
1458 1980     
1473 1979 <3.62 <1.43 15.8 <0.18 
1514 1978 <3.62 <1.43 14.8 13.7 
1542 1977 <3.62 <1.43 13.8 10.2 
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Table A.3. Depth profile (cm) of PFCA fluxes (ng m−2 yr−1) on the Devon Ice Cap. 
Values <LOD are identified in red and values <LOQ are identified in blue. 

  
Flux (ng m−2 yr−1) 

Depth 
(cm) Year TFA PFPrA PFBA PFPeA PFHxA PFHpA PFOA PFNA PFDA PFUnDA PFDoDA PFTrDA 
19 2015 4073 1384 26.1 <LOD 4.58 5.86 10.9 15.0 1.81 0.84 <LOD <LOD 

78 2014 14121 3224 34.7 <LOD 6.91 15.2 20.8 45.8 8.70 6.63 <LOD <LOD 

134 2013 26055 4891 88.1 <LOD 19.6 48.4 42.6 90.5 14.9 13.7 <LOD <LOD 

177 2012 33356 5438 167 33.9 38.2 86.7 54.5 118 16.7 28.6 1.19 <LOD 
193 2011 10655 3195 89.7 13.7 18.8 38.7 18.6 25.6 3.19 3.60 <LOD <LOD 

235 2010 31528 10672 149 <LOD 19.6 48.0 29.4 64.6 6.50 9.43 <LOD <LOD 

280 2009 15782 7163 67.2 <LOD 10.5 28.5 28.4 43.1 7.11 8.85 <LOD <LOD 

331 2008 23604 783 121 16.7 23.6 32.6 40.9 72.1 11.3 17.0 <LOD <LOD 

363 2007 5825 36.5 28.7 <LOD 5.50 19.2 22.1 38.9 4.12 10.0 <LOD <LOD 

390 2006 14695 223 40.0 6.13 8.78 23.5 30.8 90.3 13.6 26.0 0.718 0.593 
429 2005 32477 579 106 17.7 19.9 37.8 29.4 66.0 10.7 20.9 0.419 <LOD 
454 2004 8472 294 59.5 9.19 9.82 20.5 23.4 45.9 7.16 7.81 <LOD <LOD 
487 2003 10733 425 38.6 8.01 7.96 19.8 15.6 29.7 4.52 7.43 <LOD 0.176 
547 2002 44420 4023 171 37.0 35.4 71.0 54.5 88.9 20.8 26.1 1.68 <LOD 

606 2001 9850 5846 <LOD 13.8 12.4 23.7 29.6 40.5 7.87 7.44 <LOD <LOD 

648 2000 8450 914 39.9 16.7 12.3 27.9 25.5 55.1 13.1 18.3 <LOD <LOD 

684 1999 8325 591 54.1 12.0 17.8 39.2 43.0 122 16.0 21.6 1.51 <LOD 

730 1998 1953 191 19.8 <LOD 4.00 11.0 22.7 52.7 7.65 12.1 <LOD <LOD 

776 1997 3745 46.7 12.1 3.15 7.76 16.7 32.9 54.4 7.06 13.5 <LOD <LOD 

825 1996 9399 512 42.0 15.2 24.3 58.7 80.5 141 19.8 25.7 <LOD <LOD 

857 1995 5572 425 24.7 14.2 18.3 27.0 27.8 33.7 3.62 7.86 <LOD <LOD 

902 1994 8666 460 29.7 17.1 19.2 29.6 46.7 50.9 7.83 9.55 <LOD <LOD 

964 1993 10242 809 56.4 24.1 32.2 48.8 48.1 52.3 7.53 9.10 <LOD <LOD 

1006 1992 5158 1749 32.0 16.9 21.6 28.2 25.1 28.6 3.51 1.53 <LOD <LOD 

1047 1991 2640 119 35.3 15.9 16.4 28.9 35.6 42.6 7.57 8.38 <LOD <LOD 

1088 1990 2902 119 37.4 16.4 13.6 25.0 29.2 32.8 5.73 5.16 <LOD <LOD 

1144 1989 3488 71.1 18.4 4.80 13.8 26.3 29.0 44.9 5.17 9.73 <LOD <LOD 

1187 1988 2251 58.1 15.0 19.7 19.7 39.4 47.3 59.2 8.90 9.32 <LOD <LOD 

1216 1987 1759 39.4 10.2 5.44 7.67 13.3 18.7 21.2 3.96 2.89 <LOD <LOD 

1251 1986 1566 114 13.3 9.23 13.1 24.8 24.5 25.1 7.02 1.58 <LOD <LOD 

1294 1985 2479 54.7 14.1 8.33 9.41 20.9 20.0 21.4 1.33 3.81 <LOD <LOD 

1317 1984 1660 257 17.0 2.21 8.57 14.7 14.3 14.9 2.09 2.09 <LOD <LOD 

1358 1983 2117 332 14.5 3.79 7.56 14.9 18.0 17.7 1.37 <LOD <LOD <LOD 

1394 1982 1586 346 13.6 3.56 11.6 23.3 22.0 27.4 4.08 1.62 <LOD <LOD 

1420 1981             
1458 1980             
1473 1979 666.2 244 5.3 1.38 3.21 6.79 6.56 5.59 0.50 <LOD <LOD <LOD 

1514 1978 3103 171 15.4 4.03 12.7 30.2 22.5 31.9 3.83 1.83 <LOD <LOD 
1542 1977 1002 224 10.1 2.65 7.22 13.3 16.3 16.9 1.93 <LOD <LOD <LOD 
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Table A.4. Depth profile (cm) of PFSA fluxes (ng m−2 yr−1) on the Devon Ice Cap. 
Values <LOD are identified in red. 

  
Flux (ng m−2 yr−1) 

Depth (cm) Year PFBS PFHpS PFOS FOSA 
19 2015 0.725 <LOD 5.57 <LOD 

78 2014 <LOD 1.50 15.3 <LOD 

134 2013 0.861 1.80 80.3 <LOD 

177 2012 <LOD <LOD 10.1 0.297 
193 2011 <LOD <LOD 6.88 <LOD 

235 2010 <LOD <LOD 4.84 <LOD 

280 2009 <LOD <LOD 4.56 <LOD 

331 2008 <LOD <LOD 6.91 <LOD 

363 2007 <LOD <LOD 3.11 <LOD 

390 2006 <LOD <LOD 3.56 <LOD 

429 2005 <LOD <LOD 4.75 0.277 
454 2004 <LOD <LOD 3.39 <LOD 
487 2003 <LOD <LOD 2.69 0.758 
547 2002 <LOD <LOD 9.57 <LOD 

606 2001 <LOD <LOD 3.03 <LOD 

648 2000 <LOD <LOD 4.43 0.266 
684 1999 <LOD <LOD 4.74 2.91 
730 1998 <LOD <LOD 5.13 9.83 
776 1997 <LOD <LOD 3.23 7.93 
825 1996 <LOD <LOD 4.76 10.1 
857 1995 <LOD <LOD 4.42 6.16 
902 1994 <LOD <LOD 7.54 16.2 
964 1993 <LOD <LOD 6.10 8.95 

1006 1992 <LOD <LOD 5.15 4.75 
1047 1991 <LOD <LOD 5.33 7.49 
1088 1990 <LOD <LOD 2.75 5.36 
1144 1989 <LOD <LOD 6.02 9.17 
1187 1988 <LOD <LOD 3.59 6.81 
1216 1987 <LOD <LOD 3.50 3.40 
1251 1986 <LOD <LOD 3.97 5.01 
1294 1985 <LOD <LOD 3.59 5.93 
1317 1984 <LOD <LOD 6.42 1.73 
1358 1983 <LOD <LOD 4.08 0.81 
1394 1982 <LOD <LOD 4.65 3.03 
1420 1981     
1458 1980     
1473 1979 <LOD <LOD 1.26 <LOD 
1514 1978 <LOD <LOD 3.44 3.18 
1542 1977 <LOD <LOD 2.11 1.56 
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Figure A.1. Temporal flux trends for a) PFBA, b) PFPeA, c) PFHxA, d) PFHpA, e) 
PFOA, f) PFNA, g) PFDA, h) PFUnDA, and i) PFDoDA calculated from samples 

collected in 2008 (green) and 2015 (blue), along with three year moving averages for 
the 2015 study.  
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Table A.5. Reproduced EPA’s 2014 Report on Percent Reductions in Emissions and 
Product Content of PFOA, Precursors, and Higher Homologues from U.S. 

Operations (cumulative percent reduction from baseline year through end of 2013).1 
Percentages in brackets refer to Canadian Percent Reductions.2 

 % Reduction in 
Emissions % Reduction in Product Content 

Company Reduction 
Year 

Chemical 
Category 

% Reductions in 
total quantity of 

chemical(s) 
released from 
baseline year 

Fluoropolymer 
Dispersions 

Other 
Fluoropolymers 

Telomer based 
products 

Arkema 2013 

PFOA, PFOA 
salts and Higher 

Homologues 
91% 100% 96%  (100%) N/A 

Precursors N/A 

Asahi 2013 

PFOA, PFOA 
salts and Higher 

Homologues 
100% 100%  (100%) 100% N/A  (100%) 

Precursors N/A 

Ciba/BASF 2012 

PFOA 

N/A Higher 
Homologues 
Precursors 

Clariant 2013 

PFOA and 
PFOA salts N/A 

Direct 
Precursors 

Daikin 2013 

PFOA 100% 100% 100% 100% 

Precursor and 
Higher 

Homologues 
100% N/A N/A 100% 

DuPont 2013 

PFOA and 
PFOA salts 99.8% 99.9%  

(99.5%) 99.9%  (99.5%) 99.9%1  
(99%) Higher 

Homologues None Reported 

Precursors CBI None 
Reported None Reported 98%1 

3M/ 
Dyneon 2013 

PFOA, PFOA 
salts and 
Higher 

Homologues 

100% 100% N/A No Telomer 
Production 

Precursors No Precursor Production 

Solvay 
Solexis 2013 

PFOA, PFOA 
salts and 
Higher 

Homologues 

>99.999% >99.999% >99.999% N/A 

Precursors N/A 
1Global number – regional data are CBI (confidential business information). 
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Table A.6. Reproduced EPA’s 2014 Report on Percent Reductions in Emissions and 
Product Content of PFOA, Precursors, and Higher Homologues from Non-U.S. 

Operations (cumulative percent reduction from baseline year through end of 2013).1 

 % Reduction in 
Emissions % Reduction in Product Content 

Company Reduction 
Year 

Chemical 
Category 

% Reductions in 
total quantity of 

chemical(s) 
released from 
baseline year 

Fluoropolymer 
Dispersions 

Other 
Fluoropolymers 

Telomer based 
products 

Arkema 2013 

PFOA, PFOA 
salts and Higher 

Homologues 
CBI N/A CBI N/A 

Precursors N/A 

Asahi 2013 

PFOA, PFOA 
salts and Higher 

Homologues 
99.8% 100% 99.9% 

Negligible as 
compared to 
precursors 

Precursors 100% N/A N/A 100% 

Ciba/BASF 2012 

PFOA 

N/A Higher 
Homologues 
Precursors 

Clariant 2013 

PFOA and 
PFOA salts >80% None 

Reported None Reported 90% 

Direct 
Precursors >85% None 

Reported None Reported 94% 

Daikin 2013 

PFOA 

Not Reported Precursor and 
Higher 

Homologues 

DuPont 2013 

PFOA and 
PFOA salts 99.8% 

99.9% 100% 99.9%2 
Higher 

Homologues None Reported 

Precursors CBI None 
Reported None Reported 98%2 

3M/ 
Dyneon 2013 

PFOA, PFOA 
salts and 
Higher 

Homologues 

100% 100% 100% No Telomer 
Production 

Precursors No Precursor Production 

Solvay 
Solexis 2013 

PFOA, PFOA 
salts and 
Higher 

Homologues 

N/A 

Precursors N/A 
2Global number reported. 
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Figure A.2. Molar flux ratios for six pairs of PFCA homologues ranging from 

PFPeA to PFUnDA, as a function of depth and year. These pairs of PFCAs are most 
significant for PFHxA:PFHpA, PFHpA:PFOA, PFOA:PFNA, and PFDA:PFUnDA. 
These pairs of homologues have a correlation close to one suggesting that they are 

likely coming from similar precursor sources.  
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Table A.7. Depth profile (cm) of anion concentrations (µg L−1) on the Devon Ice Cap. 
Values <LOD are identified in red and years without values were not measured due 

to lack of sample available. 

  
Concentration (µg L−1) 

Depth Year Fluoride Chloride Nitrite Nitrate Sulfate Phosphate Acetate Propionate Formate Butyrate 
19 2015 

          78 2014 0.322 57.2 1.20 867 182 8.75 29.8 <4.06 30.4 <1.48 
134 2013 0.467 51.0 1.30 616 181 9.56 <27.2 <4.06 3.68 2.69 
177 2012 0.243 31.9 0.800 249 97.0 7.27 <27.2 <4.06 3.32 2.23 
193 2011 

          235 2010 0.341 50.2 1.40 717 229 12.0 58.8 4.65 40.9 1.90 
280 2009 0.327 37.4 1.10 333 139 9.90 <27.2 <4.06 5.97 2.10 
331 2008 

          363 2007 0.285 21.7 0.700 156 47.9 7.88 <27.2 <4.06 2.70 <1.48 
390 2006 

          429 2005 
          454 2004 
          487 2003 0.122 26.3 0.800 288 74.4 8.75 101 4.92 50.2 3.67 

547 2002 0.308 39.4 0.800 504 114 6.53 165 4.86 59.9 5.04 
606 2001 0.271 39.6 0.500 414 78.8 6.53 57.0 <4.06 11.3 3.60 
648 2000 0.154 29.2 0.600 320 95.5 <2.86 179 <4.06 3.07 3.67 
684 1999 0.103 51.2 0.900 597 153 <2.86 418 <4.06 29.7 <1.48 
730 1998 <0.079 60.3 0.600 522 96.0 8.55 <27.2 <4.06 3.15 1.57 
776 1997 0.112 28.4 0.400 224 63.3 7.74 68.0 <4.06 13.4 <1.48 
825 1996 0.201 36.2 0.400 336 107 6.40 70.8 <4.06 20.7 2.23 
857 1995 0.210 42.8 0.800 399 117 7.20 <27.2 <4.06 2.87 4.19 
902 1994 0.210 30.7 0.700 413 131 8.28 <27.2 <4.06 3.07 2.75 
964 1993 0.229 42.5 0.400 530 233 9.42 89.6 4.13 37.7 5.04 

1006 1992 0.243 32.7 0.700 483 218 7.67 63.2 <4.06 66.5 3.41 
1047 1991 0.187 34.7 2.60 335 124 5.52 43.1 <4.06 7.33 3.21 
1088 1990 0.248 36.9 0.600 171 330 7.74 <27.2 <4.06 4.07 2.55 
1144 1989 0.131 32.9 0.700 381 146 6.53 76.3 <4.06 3.57 3.01 
1187 1988 0.182 55.8 0.400 308 163 <2.86 <27.2 <4.06 3.26 2.29 
1216 1987 0.136 25.1 0.500 408 159 6.33 149 <4.06 6.39 2.29 
1251 1986 0.154 50.2 0.400 380 147 7.00 66.2 <4.06 3.43 3.21 
1294 1985 0.164 17.4 0.400 165 106 8.68 <27.2 <4.06 3.12 4.45 
1317 1984 <0.079 61.3 0.400 420 192 9.09 51.2 <4.06 8.87 4.52 
1358 1983 0.103 41.6 0.400 277 169 9.29 46.0 <4.06 10.7 3.01 
1394 1982 0.187 35.3 0.400 269 176 8.75 <27.2 <4.06 3.88 2.75 
1420 1981 

          1458 1980 
          1473 1979 
          1514 1978 0.107 42.7 0.300 410 198 7.81 <27.2 <4.06 4.94 2.88 

1542 1977 <0.079 42.0 0.400 220 172 8.89 67.1 <4.06 16.2 2.23 
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Table A.8. Depth profile (cm) of cation concentrations (µg L−1) on the Devon Ice 
Cap. Values <LOD are identified in red and years without values were not measured 

due to lack of sample available. 

  
Concentration (µg L−1) 

Depth Year Sodium Potassium Calcium Magnesium Manganese Aluminum Iron Silicon 
19 2015 

        78 2014 65.6 35.9 702 25.3 0.984 <2.00 78.3 31.9 
134 2013 60.6 22.6 786 39.7 0.775 14.6 8.34 41.2 
177 2012 49.2 <20.0 742 41.8 1.15 18.4 18.5 25.0 
193 2011 

        235 2010 55.4 36.4 772 42.8 1.19 20.1 14.3 25.9 
280 2009 40.3 30.7 592 35.1 1.09 19.9 7.91 26.8 
331 2008 

        363 2007 27.1 25.2 380 22.7 0.578 14.0 24.1 24.9 
390 2006 

        429 2005 
        454 2004 
        487 2003 29.9 27.3 294 10.2 0.417 9.32 6.68 27.9 

547 2002 41.2 38.4 344 13.7 <0.400 14.6 5.40 27.9 
606 2001 40.4 33.4 283 12.5 <0.400 9.05 3.25 23.6 
648 2000 32.6 22.5 291 9.78 0.934 9.54 3.04 27.0 
684 1999 69.2 31.2 478 23.1 <0.400 11.2 3.31 20.0 
730 1998 64.4 63.4 363 14.7 <0.400 17.4 3.60 20.6 
776 1997 24.5 <20.0 229 8.98 <0.400 9.03 3.16 21.1 
825 1996 33.4 <20.0 266 12.8 <0.400 8.52 2.85 14.3 
857 1995 43.3 32.4 300 13.8 <0.400 4.93 2.70 15.3 
902 1994 37.2 21.1 310 15.2 <0.400 17.2 3.76 31.6 
964 1993 45.7 26.3 409 13.4 <0.400 12.0 6.15 19.4 

1006 1992 46.8 42.5 354 14.4 2.30 11.1 3.07 17.7 
1047 1991 53.3 39.3 362 14.3 <0.400 9.89 19.2 31.4 
1088 1990 81.2 <20.0 199 15.8 <0.400 14.1 2.65 26.0 
1144 1989 24.3 22.5 324 11.2 <0.400 13.4 13.1 27.8 
1187 1988 47.2 30.2 261 15.1 <0.400 11.3 <2.00 21.7 
1216 1987 26.3 20.4 330 12.7 <0.400 16.2 3.23 18.0 
1251 1986 47.7 <20.0 316 10.8 <0.400 8.88 5.96 17.4 
1294 1985 13.5 <20.0 207 9.21 <0.400 7.49 2.26 21.1 
1317 1984 67.7 39.6 370 21.8 0.569 26.2 8.24 21.7 
1358 1983 40.8 33.3 290 13.1 <0.400 11.0 4.14 23.0 
1394 1982 37.1 35.7 251 16.5 0.922 13.0 2.80 35.4 
1420 1981 

        1458 1980 
        1473 1979 
        1514 1978 51.1 23.9 326 13.8 <0.400 7.38 4.45 22.9 

1542 1977 39.6 <20.0 228 13.6 <0.400 14.7 21.7 29.4 
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Table A.9. Coefficients of determination (R2) and statistical significance (p) of PFAA 
homologues, cations and metals (n=25). Weak correlations (R2 = 0.3 – 0.5) are shown 
in green and moderate correlations (R2 = 0.5 – 0.7) in blue. Statistically significant p-

values (p<0.0001) in bold. 

 
Sodium Potassium Calcium Magnesium Manganese Aluminum Iron Silicon 

TFA 
R2= 0.055 R2= 0.045 R2= 0.508 R2= 0.497 R2= 0.091 R2= 0.179 R2= 0.040 R2= 0.138 
p= 0.2126 p= 0.2607 p<0.0001 p<0.0001 p= 0.1060 p= 0.0198 p= 0.2885 p= 0.0436 

PFPrA 
R2= 0.020 R2= 0.029 R2= 0.410 R2= 0.515 R2= 0.191 R2= 0.085 R2= 0.037 R2= 0.034 
p= 0.4585 p= 0.3657 p= 0.0001 p<0.0001 p= 0.0158 p= 0.1176 p= 0.3064 p= 0.3316 

PFBA 
R2= 0.079 R2= 0.024 R2= 0.481 R2= 0.531 R2= 0.109 R2= 0.243 R2= 0.018 R2= 0.079 
p= 0.1335 p= 0.4155 p<0.0001 p<0.0001 p= 0.0749 p= 0.0056 p= 0.4740 p= 0.1328 

PFPeA 
R2= 0.132 R2= 0.053 R2= 0.045 R2= 0.019 R2= 0.005 R2= 0.133 R2= 0.022 R2= 0.064 
p= 0.0485 p= 0.2228 p= 0.2595 p= 0.4639 p= 0.6973 p= 0.0477 p= 0.4295 p= 0.1763 

PFHxA 
R2= 0.218 R2= 0.061 R2= 0.372 R2= 0.297 R2= 0.069 R2= 0.276 R2= 0.003 R2= 0.133 
p= 0.0093 p= 0.1872 p= 0.0003 p= 0.0018 p= 0.1598 p= 0.0028 p= 0.7582 p= 0.0477 

PFHpA 
R2= 0.161 R2= 0.015 R2= 0.465 R2= 0.471 R2= 0.058 R2= 0.251 R2= 2.6e-04 R2= 0.125 
p= 0.0282 p= 0.5194 p<0.0001 p<0.0001 p= 0.2006 p= 0.0048 p= 0.9331 p= 0.0548 

PFOA 
R2= 0.147 R2= 0.009 R2= 0.204 R2= 0.180 R2= 3.8e-04 R2= 0.152 R2= 0.007 R2= 0.092 
p= 0.0367 p= 0.6272 p= 0.0123 p= 0.0196 p= 0.9183 p= 0.0330 p= 0.6504 p= 0.1041 

PFNA 
R2= 0.130 R2= 0.002 R2= 0.332 R2= 0.333 R2= 0.006 R2= 0.073 R2= 9.0e-04 R2= 0.040 
p= 0.0508 p= 0.8080 p= 0.0009 p= 0.0008 p= 0.6734 p= 0.1477 p= 0.8746 p= 0.2900 

PFDA 
R2= 0.166 R2= 0.024 R2= 0.302 R2= 0.241 R2= 0.005 R2= 0.086 R2= 0.004 R2= 0.112 
p= 0.0253 p= 0.4149 p= 0.0016 p= 0.0058 p= 0.7170 p= 0.1148 p= 0.7503 p= 0.0703 

PFUnDA 
R2= 0.037 R2= 0.003 R2= 0.210 R2= 0.193 R2= 9.8e-04 R2= 0.086 R2= 2.2e-04 R2= 0.034 
p= 0.3079 p= 0.7756 p= 0.0108 p= 0.0151 p= 0.8695 p= 0.1152 p= 0.9380 p= 0.3299 

PFDoDA 
R2= 0.123 R2= 0.061 R2= 0.143 R2= 0.128 R2= 3.4e-04 R2= 0.136 R2= 6.3e-04 R2= 0.041 
p= 0.0570 p= 0.1874 p= 0.0396 p= 0.0526 p= 0.9233 p= 0.0448 p= 0.8950 p= 0.2846 

PFTrDA 
R2= 0.010 R2= 0.086 R2= 0.064 R2= 0.114 R2= 0.043 R2= 0.007 R2= 0.010 R2= 0.008 
p= 0.6057 p= 0.1159 p= 0.1786 p= 0.0675 p= 0.2713 p= 0.6708 p= 0.6073 p= 0.6295 

PFBS 
R2= 0.054 R2= 5.8e-04 R2= 0.301 R2= 0.259 R2= 0.034 R2= 0.001 R2= 0.081 R2= 0.167 
p= 0.2152 p= 0.8995 p= 0.0017 p= 0.0041 p= 0.3295 p= 0.8526 p= 0.1276 p= 0.0248 

PFHpS 
R2= 0.053 R2= 2.0e-06 R2= 0.300 R2= 0.211 R2= 0.046 R2= 0.039 R2= 0.329 R2= 0.118 
p= 0.2212 p= 0.9940 p= 0.0017 p= 0.0107 p= 0.2545 p= 0.2937 p= 0.0009 p= 0.0628 

PFOS 
R2= 0.064 R2= 1.5e-04 R2= 0.353 R2= 0.329 R2= 0.038 R2= 0.018 R2= 0.019 R2= 0.214 
p= 0.1758 p= 0.9495 p= 0.0005 p= 0.0009 p= 0.3010 p= 0.4797 p= 0.4676 p= 0.0100 

FOSA 
R2= 8.3e-05 R2= 5.4e-04 R2= 0.061 R2= 0.112 R2= 0.098 R2= 0.012 R2= 0.056 R2= 4.4e-05 
p= 0.9618 p= 0.9034 p= 0.1879 p= 0.0703 p= 0.0922 p= 0.5677 p= 0.2083 p= 0.9723 
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Table A.10. Coefficients of determination (R2) and statistical significance (p) of PFAA homologues, anions and organic 
acids (n=27). Weak correlations (R2 = 0.3 – 0.5) are shown in green. Statistically significant p-values (p<0.0001) in bold. 

 
Fluoride Chloride Nitrite Nitrate Sulfate Phosphate Acetate Propionate Formate Butyrate 

TFA 
R2= 0.455 R2= 0.041 R2= 0.126 R2= 0.204 R2= 6.1e-06 R2= 0.066 R2= 0.034 R2= 0.320 R2= 0.246 R2= 0.051 
p<0.0001 p= 0.2813 p= 0.0547 p= 0.0122 p= 0.9897 p= 0.1712 p= 0.3283 p= 0.0011 p= 0.0054 p= 0.2317 

PFPrA 
R2= 0.311 R2= 0.015 R2= 0.094 R2= 0.113 R2= 2.7e-04 R2= 0.067 R2= 0.003 R2= 0.055 R2= 0.051 R2= 2.2e-04 
p= 0.0014 p= 0.5167 p= 0.0994 p= 0.0695 p= 0.9319 p= 0.1657 p= 0.7880 p= 0.2166 p= 0.2287 p= 0.9373 

PFBA 
R2= 0.306 R2= 0.026 R2= 0.145 R2= 0.125 R2= 0.007 R2= 0.043 R2= 0.043 R2= 0.286 R2= 0.215 R2= 0.033 
p= 0.0015 p= 0.3905 p= 0.0382 p= 0.0554 p= 0.6690 p= 0.2740 p= 0.2709 p= 0.0023 p= 0.0098 p= 0.3386 

PFPeA 
R2= 0.162 R2= 0.076 R2= 0.040 R2= 0.059 R2= 0.051 R2= 4.6e-04 R2= 0.095 R2= 0.324 R2= 0.226 R2= 0.350 
p= 0.0273 p= 0.1410 p= 0.2891 p= 0.1972 p= 0.2292 p= 0.9108 p= 0.0977 p= 0.0010 p= 0.0079 p= 0.0006 

PFHxA 
R2= 0.383 R2= 0.194 R2= 0.095 R2= 0.244 R2= 0.141 R2= 0.081 R2= 0.071 R2= 0.422 R2= 0.292 R2= 0.297 
p= 0.0003 p= 0.0147 p= 0.0970 p= 0.0056 p= 0.0408 p= 0.1262 p= 0.1558 p= 0.0001 p= 0.0020 p= 0.0018 

PFHpA 
R2= 0.376 R2= 0.142 R2= 0.094 R2= 0.166 R2= 0.047 R2= 0.043 R2= 0.060 R2= 0.308 R2= 0.169 R2= 0.130 
p= 0.0003 p= 0.0400 p= 0.1000 p= 0.0256 p= 0.2515 p= 0.2724 p= 0.1920 p= 0.0014 p= 0.0239 p= 0.0505 

PFOA 
R2= 0.286 R2= 0.191 R2= 0.072 R2= 0.159 R2= 0.034 R2= 0.016 R2= 0.074 R2= 0.189 R2= 0.101 R2= 0.074 
p= 0.0023 p= 0.0158 p= 0.1522 p= 0.0290 p= 0.3289 p= 0.5063 p= 0.1460 p= 0.0163 p= 0.0867 p= 0.1455 

PFNA 
R2= 0.166 R2= 0.121 R2= 0.077 R2= 0.160 R2= 1.7e-04 R2= 0.008 R2= 0.205 R2= 0.072 R2= 0.069 R2= 9.4e-04 
p= 0.0253 p= 0.0600 p= 0.1364 p= 0.0284 p= 0.9454 p= 0.6431 p= 0.0119 p= 0.1527 p= 0.1612 p= 0.8725 

PFDA 
R2= 0.278 R2= 0.164 R2= 0.115 R2= 0.218 R2= 1.8e-04 R2= 0.011 R2= 0.238 R2= 0.156 R2= 0.127 R2= 0.020 
p= 0.0028 p= 0.0264 p= 0.0674 p= 0.0092 p= 0.9441 p= 0.5795 p= 0.0062 p= 0.0306 p= 0.0532 p= 0.4534 

PFUnDA 
R2= 0.133 R2= 0.030 R2= 0.068 R2= 0.073 R2= 0.037 R2= 0.027 R2= 0.201 R2= 0.111 R2= 0.074 R2= 0.003 
p= 0.0479 p= 0.3591 p= 0.1647 p= 0.1496 p= 0.3061 p= 0.3858 p= 0.0129 p= 0.0720 p= 0.1459 p= 0.7628 

PFDoDA 
R2= 0.049 R2= 0.076 R2= 0.038 R2= 0.114 R2= 0.002 R2= 0.028 R2= 0.492 R2= 0.180 R2= 0.216 R2= 0.026 
p= 0.2388 p= 0.1401 p= 0.3044 p= 0.0687 p= 0.7997 p= 0.3759 p<0.0001 p= 0.0194 p= 0.0096 p= 0.3903 

PFTrDA 
R2= 0.002 R2= 0.067 R2= 0.001 R2= 0.058 R2= 0.066 R2= 0.006 R2= 0.012 R2= 5.9e-04 R2= 0.002 R2= 0.012 
p= 0.8204 p= 0.1684 p= 0.8661 p= 0.1993 p= 0.1704 p= 0.6739 p= 0.5577 p= 0.8989 p= 0.7987 p= 0.5645 

PFBS 
R2= 0.245 R2= 0.048 R2= 0.085 R2= 0.118 R2= 0.009 R2= 0.031 R2= 0.018 R2= 0.005 R2= 0.006 R2= 0.008 
p= 0.0054 p= 0.2469 p= 0.1179 p= 0.0631 p= 0.6197 p= 0.3556 p= 0.4785 p= 0.6987 p= 0.6842 p= 0.6391 

PFHpS 
R2= 0.204 R2= 0.048 R2= 0.086 R2= 0.169 R2= 0.006 R2= 0.022 R2= 0.022 R2= 0.009 R2= 7.0e-04 R2= 0.031 
p= 0.0122 p= 0.2472 p= 0.1161 p= 0.0241 p= 0.6749 p= 0.4392 p= 0.4389 p= 0.6229 p= 0.8896 p= 0.3502 

PFOS 
R2= 0.289 R2= 0.057 R2= 0.101 R2= 0.119 R2= 0.012 R2= 0.045 R2= 0.010 R2= 1.6e-05 R2= 0.002 R2= 5.2e-05 
p= 0.0022 p= 0.2047 p= 0.0868 p= 0.0620 p= 0.5680 p= 0.2580 p= 0.6075 p= 0.9835 p= 0.8009 p= 0.9697 

FOSA 
R2= 0.023 R2= 0.007 R2= 3.0e-04 R2= 9.5e-04 R2= 0.028 R2= 0.013 R2= 0.008 R2= 3.5e-05 R2= 0.012 R2= 0.018 
p= 0.4283 p= 0.3286 p= 0.9276 p= 0.8713 p= 0.3760 p= 0.5445 p= 0.6362 p= 0.9754 p= 0.5658 p= 0.4771 
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Appendix B – Supporting Information for Chapter 4 

 
Figure B.1. LC-MS/MS Chromatogram of standard containing TFA, PFPrA, and 

PFBA at 4 ng/ml and isotopically labeled 13C4-PFBA 13C3-PFBA at 0.8 ng/ml in a 1:1 
ratio of methanol-water. Precursor-product ion transitions in m/z indicated on right 

hand side. Note: stationary phase employed was Shodex JJ-50 RSPak, which 
contains quaternary ammonium groups for ion exchange hence analyte elution 

order. 
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Figure B.2. LC-MS/MS chromatogram of PFBA, PFPrA, and TFA in method blank 
containing 0.8 ng/ml isotopically labeled 13C4-PFBA spiked prior to extraction and 
0.8 ng/ml 13C3-PFBA spiked into the extract. Precursor-product ion transitions in 

m/z are indicated on the right hand side. 

 
Figure B.3. LC-MS/MS chromatogram of TFA, PFPrA and PFBA in Devon Ice Cap 
extract corresponding to the year 2003. Isotopically labeled 13C4-PFBA spiked into 
sample prior to extraction and 13C3-PFBA spiked into extract before instrumental 
analysis. Precursor-product ion transitions in m/z are indicated on the right hand 

side. Note: Due to the higher detection limits for PFBA analysis using this column, a 
reverse phase C18 column was used for analysis and quantification of PFBA.  
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Table B.1. Depth profile (cm) of scPFCA concentrations (ng L−1) and fluxes (ng m−2 
yr−1). Values <LOD are identified in red and values <LOQ are identified in blue. 

  
Concentration (ng L−1) Flux (ng m−2 yr−1) 

Depth (cm) Year  TFA PFPrA PFBA TFA PFPrA PFBA 
19 2015 38.2 13.0 0.245 4073 1384 26.1 
78 2014 87.6 20.0 0.215 14121 3224 34.7 

134 2013 127 23.8 0.429 26055 4891 88.1 
177 2012 169 27.5 0.844 33356 5438 167 
193 2011 159 47.7 1.339 10655 3195 89.7 
235 2010 208 70.6 0.984 31528 10672 149 
280 2009 96.0 43.6 0.409 15782 7163 67.2 
331 2008 104 3.46 0.536 23604 783 121 
363 2007 41.0 <0.514 0.202 5825 36.5 28.7 
390 2006 123 1.86 0.335 14695 223 40.0 
429 2005 198 3.53 0.646 32477 579 106 
454 2004 81.9 2.84 0.575 8472 294 59.5 

486.5 2003 99.1 3.92 0.356 10733 425 38.6 
547 2002 151 13.7 0.581 44420 4023 171 
606 2001 38.7 23.0 <0.0398 9850 5846 <LOD 
648 2000 47.0 5.08 0.222 8450 914 39.9 
684 1999 37.7 2.68 0.245 8325 591 54.1 
730 1998 14.3 1.40 0.145 1953 191 19.8 
776 1997 20.6 0.801 <0.133 3745 46.7 12.1 
825 1996 38.9 2.12 0.174 9399 512 42.0 
857 1995 37.3 2.84 0.165 5572 425 24.7 
902 1994 41.0 2.18 0.141 8666 460 29.7 
964 1993 33.9 2.68 0.187 10242 809 56.4 

1005.5 1992 26.6 9.02 0.165 5158 1749 32.0 
1047 1991 13.2 0.595 0.177 2640 119 35.3 
1088 1990 14.4 0.591 0.186 2902 119 37.4 
1144 1989 12.6 <0.514 <0.133 3488 71.1 18.4 
1187 1988 9.96 <0.514 <0.133 2251 58.1 15.0 

1215.5 1987 11.5 <0.514 <0.133 1759 39.4 10.2 
1251 1986 7.82 0.570 <0.133 1566 114 13.3 
1294 1985 11.7 <0.514 <0.133 2479 54.7 14.1 
1317 1984 13.0 2.02 0.133 1660 257 17.0 
1358 1983 9.69 1.52 <0.133 2117 332 14.5 
1394 1982 7.72 1.68 <0.133 1586 346 13.6 
1420 1981 

      1458 1980 
      1473 1979 8.38 3.07 <0.133 666.2 244 5.3 

1514 1978 13.3 0.735 <0.133 3103 171 15.4 
1542 1977 6.55 1.46 <0.133 1002 224 10.1 
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Table B.2. Concentration (ng L−1) comparisons of TFA, PFPrA and PFBA between 
Devon Ice Cap and selected studies. (NM = not measured) 

Site(Reference) Time Matrix TFA PFPrA PFBA 
Devon Ice Cap, High Arctic 
Canada(This Study) 1977-2015 Ice Core 6.55 – 208 <0.514 – 70.6 <0.040 – 1.34 

Longyearbreen Glacier, 
Longyearbyen, Norway1 2006 Ice Core NM NM 0.080 ± 0.009 

Colle Gnifetti, Swiss/Italian 
Alps2 1996-2008 Firn Core NM NM 0.340 – 1.83 

Mt. Muztagata, 
Northwestern Tibetan 
Plateau3 

1980-1999 Snow Core NM NM <0.013 

Mt. Zuoqiupu, Southeastern 
Tibetan Plateau3 1996-2007 Snow Core NM NM <0.013 – 0.056 

Lake Namco, Southern 
Tibetan Plateau3 2010 Surface Snow NM NM 0.913 – 2.57 

Longyearbreen Glacier, 
Longyearbyen, Norway1 2006 Surface Snow NM NM 0.108 ± 0.045 

Switzerland (Urban to 
Alpine) 4 1996-1997 Rain & Snow <3.00 – 1550 NM NM 

Baikal, Siberia4 1996 Rain & Snow 30.0 – 215 NM NM 
Kejimkujik, Nova Scotia – 
Remote5 2002 Precipitation 4.00 – 100 <0.100 – 59.0 <0.100 – 2.90 

Algoma, Ontario - Remote5 2002 Precipitation 8.00 – 220 1.20 – 36.0 0.500 – 11.0 
Switzerland (Alpine 
Mountain Lakes) 4 1997 Lake Water 46.0 – 360 NM NM 

Baikal, Siberia4 1996 Lake Water 12.0 – 35.0 NM NM 
Canada Basin, Western 
Arctic6 1998 Ocean Water 34.0 – 181 NM NM 

Nares Strait, Eastern Arctic6 1998 Ocean Water 8.00 – 170 NM NM 

Arctic Ocean7 2010 Sea Ice Core & 
Snow NM NM <0.130 – 1.00 

Arctic Ocean7 2010 Marine 
Surface Water NM NM <0.130 – 0.360 

North Atlantic Ocean8 1995 Marine 
Surface Water 70.0 - 250 NM NM 
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Figure B.4. Atmospheric measurements and global emissions of halogenated 

anaesthetics. Desflurane and isoflurane atmospheric measurements are model-
derived for the Northern Polar Hemisphere (solid lines) and are measured (squares) 

for four northern sites (Niwot Ridge, Junfraujoch, Mace Head and La Jolla). 
Halothane atmospheric measurements are model-derived for the Northern Polar 
Hemisphere (solid line) and are measured (squares) for six northern sites (Niwot 

Ridge, Junfraujoch, Mace Head, La Jolla, Dubendorf and Rigi-Seebodenalp). 
Desflurane and halothane global emissions are model-derived.9 
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