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Abstract

Parameter estimation and signal identification play an important role in modern wire-

less communication systems. In this thesis, we address different parameter estimation

and signal identification problems in conjunction with the Internet of Things (IoT),

cognitive radio systems, and high speed mobile communications.

The focus of Chapter 2 of this thesis is to develop a new uplink multiple access

(MA) scheme for the IoT in order to support ubiquitous massive uplink connectivity

for devices with sporadic traffic pattern and short packet size. The proposed uplink

MA scheme removes the Media Access Control (MAC) address through the signal

identification algorithms which are employed at the gateway.

The focus of Chapter 3 of this thesis is to develop different maximum Doppler

spread (MDS) estimators in multiple-input multiple-output (MIMO) frequency-selective

fading channel. The main idea behind the proposed estimators is to reduce the com-

putational complexity while increasing system capacity.

The focus of Chapter 4 and Chapter 5 of this thesis is to develop different antenna

enumeration algorithms and signal-to-noise ratio (SNR) estimators in MIMO time-

varying fading channels, respectively. The main idea is to develop low-complexity

algorithms and estimators which are robust to channel impairments.

The focus of Chapter 6 of this thesis is to develop a low-complexity space-time

block codes (STBC)s identification algorithms for cognitive radio systems. The goal

is to design an algorithm that is robust to time-frequency transmission impairments.
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x; a random vector and its realization are denoted by x and x; a random matrix and its

realization are denoted by X and X, respectively. Sets and random sets are denoted

by upright sans serif and calligraphic font, respectively. For example, a random set

and its realization are denoted by X and X , respectively. The matrix In is the identity

matrix of size n, and 0q , [0 0 . . . 0]†q×1. The indicator function is defined as

I
{
x
}
,


1, if x is true

0, otherwise.

The sign operator is

(
x
)

+
,


x, if x > 0

0, otherwise.

The `0 quasi-norm of vector aj , [a0,j a1,j · · · am−1,j]† and the `0 − `0 quasi-norm of

matrix A , [a0 a1 · · · an−1] are respectively defined as

∥∥∥aj∥∥∥0
, card

({
i ∈

{
0, 1, · · · ,m

}∣∣∣ai,j 6= 0
})

,
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and

∥∥∥A∥∥∥
0
, card

({
i ∈

{
0, 1, · · · ,m

}∣∣∣∣∃j, j = 0, 1, · · · , n− 1, ai,j 6= 0
})

.

The Frobenius and `q norm of vector a, q > 0 are defined as

∥∥∥a∥∥∥
F
,
√∑

i

|ai|2,

and

∥∥∥a∥∥∥
q
,

(∑
i

|ai|q
)1/q

,

respectively, The Frobenius and `p − `q mixed-norm of matrix A are defined as

∥∥∥A∥∥∥
F
,
√∑

i

∑
j

|ai,j|2,

Jp,q(A) ,
∑
i

∑
j

|ai,j|q


p
q

,

respectively. The trace of an n-by-n square matrix A is tr(A) , ∑n−1
i=0 aii, where aii is

the ith element in the ith column of A. The inverse and determinant of matrix A are

denoted by A−1 and det(A), respectively. For a square matrix A, diag(A) denotes

the vector of the diagonal elements of matrix A.

Complex Gaussian distribution with mean vector µ and covariance matrix Σ is

denoted by Nc
(
µ,Σ

)
.

Throughout the thesis, (·)∗ is used for the complex conjugate, (·)† is used for

transpose, (·)H is used for Hermitian, | · | represents the absolute value operator, b·c
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For simplicity of notation, we define
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f1:fi

∆=
F∑

f1=1

F∑
f2=1
f2 6=f1
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F∑
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Chapter 1

Introduction

Parameter estimation [10] and signal identification [11] play critical roles in accurately

describing behavior of a communication system. Regarding parameter estimation, the

goal is to estimate a vector of real- or complex-valued from the observation samples.

In general, it is categorized as non-parametric and parametric approaches [10, 12].

With the parametric approaches, not only a vector of real- or complex-valued is es-

timated, but also estimation of one or several integer-valued parameters is required.

For instance, estimating the number of sinusoids in white noise, the number of signal

sources impinging on a sensor array, the number of multipath components of fading

channel, and the orders of an autoregressive moving average model [13–15]. On the

other hand, signal identification aims to determine the type of the transmitted signal,

such as modulation format and type of the transmitting code [11, 16].

In this thesis, I address different parameter estimation and signal identification

problems related to modern wireless communication systems, such as the Internet of

Things (IoT), cognitive radio, and high speed mobile communications [17–19].

Firstly, a new multiple access (MA) scheme based on joint parametric parameter

estimation and signal identification is proposed. The proposed MA scheme is devel-
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oped to support massive uplink connectivity in the IoT applications with sporadic

and short packet transmission. The proposed MA scheme is designed to reduce con-

trol signaling associated with the Physical (PHY) and Media Access Control (MAC)

layers to increase capacity and spectral efficiency of the system. Hence, the preambles

and pilots associated with the MAC address and exploited for parameter estimation

are removed. Since the IoT devices do not use MAC address to identify themselves

to the gateway, the proposed alternative approach to the MAC address requires IoT

identification algorithm at the gateway to determine the active IoT devices before

data detection. Because the number of active IoT devices and their identity are not

known at the gateway, we have a joint parametric parameter estimation and signal

identification problem.

Regarding parametric parameter estimation, the problem of antenna enumeration

in time-varying fading channel is also investigated . Challenged by antenna enumer-

ation in time-varying fading channel, different algorithms for counting the number of

transmit antennas, applicable to mobile cognitive radio and adaptive wireless com-

munication systems are proposed. In order to determine the number of transmit

antennas, which has discrete values, the antenna enumeration problem is formulated

as a multiple-hypothesis testing problem and a thresholds setting mechanism is de-

veloped. As performance measure in parametric parameter estimation problem, the

probability of correct number of transmit antennas detection is also derived.

In conjunction with non-parametric parameter estimation, the problem of maximum

Doppler spread (MDS) estimation in multiple-input multiple-output (MIMO) frequency-

selective fading channel is studied. Estimation of MDS is of importance since it rep-

resents a key parameter in determining the rate of change in wireless communication

channels [20, 21]; thus, its knowledge is required in adaptive transceivers and in cel-

lular communications [22, 23]. As a bench-mark for performance comparison in non-
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parametric parameter estimation, the data-aided (DA) and non-data-aided (NDA)

Cramer-Rao lower bounds (CRLB)s for MDS estimation in MIMO frequency-selective

fading channel are derived. Also, a new low-complexly NDA MDS estimator for fast-

varying fading channel is proposed. Regarding non-parametric parameter estimation,

I also study the problem of NDA signal-to-noise ratio (SNR) and noise variance esti-

mation in MIMO time-varying channel as non-parametric parameter estimation prob-

lems. Challenged by SNR estimation in time-varying channel, different low-complexity

algorithms are developed through the statistical moment-based approach.

Regarding signal identification, the process of identifying the type of the trans-

mitted space-time block code (STBC) from a pool of candidates [11, 16], called STBC

identification, finds applications to modern wireless communication systems, such as

cognitive radio and adaptive communications [24, 25]. Challenged by the imper-

fect time-frequency synchronization and non-Gaussian noise, the STBC identification

problem is investigated, and a new algorithm through the Kolmogrov-Smirnov (K-S)

test and binary decision tree is proposed. As a performance measure in signal identifi-

cation problems, the probability of correct identification is provided for the proposed

algorithm.

It should be mentioned that the five mentioned problems will be addressed in

independent chapters, and introduction and literature review for each problem will

be independently provided.

1.1 Proposal Outline

Chapter 2 deals with uplink MA for IoT. Chapter 3 studies the problem of MDS

estimation in MIMO frequency-selective fading channel. Chapter 4 investigates the

problem of antenna enumeration in time-varying fading channel. Chapter 5 deals with
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SNR estimation in MIMO time-varying fading channel. Chapter 6 investigates the

problem of STBC identification. Finally, in Chapter 7, overall conclusions are drawn.
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Chapter 2

Massive Uncoordinated Multiple

Access (MA) for the Internet of

Things

2.1 Introduction

Massive uplink connectivity is the key factor in the realization of the Internet of

Things (IoT), as part of 5G wireless communication systems [17, 26, 27]. IoT is a

recent communication paradigm that enables the objects of everyday life to efficiently

communicate with one another and with the users through wireless networks con-

nected to the Internet. In general, IoT networks comprise a collection of connected

objects, embedding electronics, software, sensors, and wireless connectivity protocols

that collect and exchange information through wireless networks. Through interac-

tion of a wide variety of physical devices or things, such as home appliances, sensors,

surveillance cameras, and actuators, IoT fosters the development of applications in

many different domains, such as smart cities, health care, transportation and auto-
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motive environment, as well as utilities [28–30].

The development of IoT is an extremely challenging task, as several issues con-

cerning the layers of the protocol stack, from the physical layer transmission to data

representation, need to be addressed [31–33]. In conjunction with the Physical (PHY)

and Media Access Control (MAC) layers, the massive connection of IoT devices is an

important challenge. Typically, the number of IoT devices allocated to a single gate-

way is in orders of magnitude above what current communication networks are capable

to support.

Furthermore, in the majority of the IoT applications, IoT devices do not transmit

continuously. Such transmissions are characterized as sporadic, in which updates are

infrequently transmitted to the gateway, whenever a measured value changes. Hence,

small packets are expected to carry critical payload in IoT [34, 35]. For example,

Sigfox as one of the most adopted solutions for IoT can support a maximum packet

payload of 12 bytes [36].

The design of the current wireless communication systems relies on the assump-

tion that the control signaling related to PHY and MAC layers is of negligible size

compared to the payload. Thus, transmission of control signaling does not affect the

overall system performance. However, in IoT applications with short packet transmis-

sion, the control signaling may be of the same size as the payload. Hence, excessive

control signaling, e.g., the preambles and pilots associated with the MAC address1

and exploited for parameter estimation, significantly reduce capacity and spectral

efficiency of the system [36–38].

Moreover, channel estimation is another challenge for sporadic communication,

especially for an enormous number of connections in IoT. The standard channel

estimation approaches are often based on the assumption that devices are active
1This represents the hardware identification address.
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over long periods. However, if an IoT device only transmits every so often, such

assumptions cannot longer be valid. Instead, channel estimation has to rely on a

single transmission that may be very short, which constrains the number of pilots

available to keep the overhead low [39].

In the context of IoT, the existing MAC protocols based on random access (RA),

either ALOHA or carrier sensing multiple access (CSMA), suffer from congestion since

the traffic load and the number of IoT devices is significantly large [40]. One solution

to this problem is to employ smaller and denser cells. This, a lower number of IoT

devices can be dedicated to each gateway/access point, and, the congestion problem

is solved at the expense of higher cost due to the deployed infrastructure. In some

cases this approach may not constitute a cost-effective solution given the capacity

requirements of the majority of IoT applications. On the other hand, both RA and

fixed assignment (FA) protocols employ excessive control signaling.

2.1.1 Literature Review

Different wireless technologies are currently under investigation for the realization

of the IoT vision. These technologies are mainly categorized as: i) short-range, ii)

cellular, and iii) low-power wide area (LPWA) as shown in Table 2.1. The existing

MAC layer protocols associated with these technologies rely on hybrid schemes that

employ contention- and schedule-based access mechanisms to support short packet

transmission and massive uplink connectivity [41, 42].

IEEE 802.15.4, Bluetooth low energy (BLE), radio frequency identification (RFID),

and Wi-Fi are short-range wireless technologies developed to support a potentially

large number of IoT devices. Based on the topology of the network, the IEEE 802.15.4

standard employs a slotted CSMA with collision avoidance (CA) for single-hop and
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Table 2.1: MAC Protocols for IoT.

MAC Protocol

Short-range Cellular LPWA

BL
E

Zi
gB

ee

R
FI

D

W
iF
i

LT
E-

M

N
B-

Io
T

Si
gf
ox

IN
G
EN

U

Lo
R
ax

W
ei
gh

tle
ss

Fixed assignment

TDMA × ×
FDMA × × ×
CDMA × ×

Time slotted reservation × × ×

Random access

Pure ALOHA × × ×
Slotted ALOHA × × ×

Slotted CSMA-CS ×
Non-slotted CSMA-CS × ×

Spread spectrum
FH-SS × ×
DS-SS × × ×
Chirp-SS × ×

a contention-based MAC employing a simple non-slotted CSMA/CA mechanism for

multi-hop topologies [43–45]. The BLE or smart Bluetooth is a modified version of

the classic Bluetooth intended to provide considerable reduced power consumption

and cost while maintaining a similar communication range. The MAC protocol in

BLE is based on a time slotted access mechanism with a time division multiplexing

technique applied to coordinate the medium access [46].

The ability to uniquely identify a large number of devices is critical for the success

of IoT. This ability is provided by RFID through a contention-based MAC protocol

which relies on uncoordinated frame slotted ALOHA (FSA) [47, 48].

The WiFi alliance supports the IEEE 802.11 family of standards. The recent

standard proposed by WiFi, i.e, the IEEE 802.11ah, relies on a CSMA/CA scheme

with a slotted binary exponential backoff mechanism for retransmissions in case of

collision. The developed MAC protocol in the IEEE 802.11ah leads to an increased

number of IoT devices supported by a single access point [49–51].

Ubiquitous infrastructure, large coverage, and mobility capability enable existing

wireless cellular networks to support massive connectivity in IoT [26, 52, 53]. Among
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the existing cellular networks, the Long-Term Evolution (LTE) provides a suitable

connectivity for the IoT applications [54]. Recently, the 3rd Generation Partnership

Project (3GPP) introduced Long Term Evolution for Machines (LTE-M) and narrow

band (NB)-IoT as cellular solutions for IoT. The multiple access (MA) protocols

in LTE-M can be either RA or FA. In the delay-constrained IoT applications, MA

is performed based on the FA protocol in which the base station (BS) allocates a

channel to the request with higher probability of success. The RA protocol in LTE

relies on FSA [55–58]. NB-IoT is a new NB radio channel access which employs the

guard bands between channels in the LTE to increase the transmission coverage and

support a huge number of IoT devices. NB-IoT utilizes pure ALOHA and frequency

division multiple access (FDMA) depending on the coverage. Moreover, collision on

the random access channel in NB-IoT is handled by use of overlaid code division

multiple access (CDMA) [59–62].

A promising wireless technology for IoT applications, standing between short-

range and cellular technologies, is the LPWA. This offers an unique set of features

including wide-area connectivity for low-power and low-cost IoT devices. Its perfor-

mance is optimized for maximum coverage and battery efficiency while supporting

a huge numbers of IoT devices with a single gateway. Sigfox, INGENU, LoRa, and

Weightless are some of the widely-deployed LPWA solutions for IoT [63–66]. Sig-

fox utilizes ultra NB technique to enable long-range communication for IoT appli-

cations with very low data rates. It relies on random frequency-time division mul-

tiplexing (R-FTDM) as a pure ALOHA MAC protocol, in which each IoT device

asynchronously transmits at a frequency chosen randomly in the continuous avail-

able frequency band [67]. INGENU proposes a proprietary LPWA technology based

on a patented MA scheme named random phase multiple access (RPMA). This is

a variation of CDMA, in which the traditional CDMA is randomly delayed before
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transmission [68]. The LoRa Alliance promotes the use of LoRa and LoRaWAN tech-

nologies for the IoT applications [69]. The PHY layer of LoRa is based on chirp spread

spectrum (CSS) techniques and its MAC protocol varies for three different developed

classes: class-A devices employ pure ALOHA along with the listen-before-talk (LBT)

mechanism; class-B devices are also developed based on the LBT mechanism along

with a beacon-enabled time-slotted communication scheme; class-C devices are al-

ways available for reception, except when transmitting [69, 70]. Weightless employs

a master-slave architectural model and each MAC frame consists of a downlink part

followed by an uplink one. The BS (master) allocates uplink transmission opportu-

nities to the IoT devices (slaves). This allocation is transmitted in downlink slots,

while transmissions occur in the uplink slots. The MAC protocol in Weightless is

a combination of FDMA and time-division multiple access (TDMA) schemes. More-

over, Weightless specification employs various mechanisms based on pure ALOHA and

direct-sequence spread spectrum (DS-SS) to reduce the increased number of collisions.

2.1.2 Motivation

After reviewing the existing MAC protocols for IoT in the literature, the following

observations can be made:

The existing wireless communication systems have been mainly designed with the

objective of providing substantial gain in terms of data rates. However, 5G will depart

from this scheme, and its objective will not only be to provide services with higher data

rates. One of the main goals of 5G is to support machine-type communications (MTC)

to enable pervasive connections of the entire world in order to realize the IoT. One of

the main challenges in the realization of IoT is the capability to support ubiquitous

massive uplink connectivity for devices with sporadic traffic pattern and short packet

size. In the long packet transmission, the payload contained in a packet is much larger
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than the control signaling associated with the PHY and MAC layers. However, in

the short packet transmission, the control signaling are is negligible in size compared

to payload. Hence, transmitting control information significantly affects the overall

system performance. Moreover, channel estimation is a challenging issue for sporadic

communication, especially for enormous number of connections. The standard channel

estimation approaches are often based on the assumption that devices are active over

long periods. However, IoT devices only transmit every so often in a large number of

applications. Thus, channel estimation has to rely on a single transmission that may

be very short, which constrains the number of pilots available to keep the overhead

low.

2.1.3 Problem Statement

The specific research problems which are studied in Chapter 2 of this thesis are pre-

sented as follows:

• A new uplink MA scheme for IoT applications with sporadic traffic pattern

and short packet transmission is proposed. The main idea behind the proposed

MA scheme is to reduce the control signaling while simultaneously supporting

a massive number of IoT devices with a single gateway. The proposed MA

scheme is designed based on the DS-SS technique with non-orthogonal spreading

codebook capable of supporting undetermined systems;

• To reduce the control signaling associated with the MAC address, a unique

spreading code is dedicated to each IoT device which is simultaneously used for

spreading purpose and MAC address. In other words, instead of allocating a

fragment of the IoT packet to the signaling associated with the MAC address,

the unique spreading code is used as the IoT device identifier. Moreover, the
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MA scheme relies on some statistics of the fading channel coefficient (FCC) to

remove the need of preambles and pilots which are employed for channel and

carrier phase (CP) estimation. The lack of preambles and pilots further reduces

the control signaling;

• The proposed alternative approach to the MAC address requires IoT identifi-

cation at the gateway to determine active IoT devices before data detection.

Based on the sporadic traffic pattern of the IoT devices, and lack of knowledge

about FCC and CP of the IoT devices, the device sparsity-aware (DSA) and

packet-device sparsity-aware (PDSA) identification algorithms are developed;

• A new non-linear multiuser detection (MUD) algorithm for short packet trans-

mission is designed. The designed MUD is employed in the proposed MA scheme

in order to detect data of the active IoT devices identified through the IoT iden-

tification algorithms.

2.1.4 Methodology

Due to the sporadic traffic pattern of the IoT devices, the problem of the IoT identifi-

cation in the proposed MA scheme is formulated as sparse signal reconstruction (SSR)

and simultaneous sparse signal reconstruction (SSSR) problems. Moreover, I design

the 2-mean clustering (2MC)-MUD algorithm based on differential coding and binary

phase-shift keying (BPSK) modulation at IoT devices, and 2MC unsupervised ma-

chine learning algorithm along with differential decoding at the gateway.
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Fig. 2.1: Single-hop IoT network with sporadic traffic pattern.

2.2 Uplink MA for IoT

2.2.1 System Model

Consider Ku IoT devices communicating with a single IoT gateway in a single-hop

communication, as shown in Fig. 2.1.

It is considered that IoT devices transmit data in short packets, where each packet

carries only payload bits. The probability of packet transmission for each IoT device

is assumed to be Pa � 1. Let us consider that Xu , {0, 1, · · · , Ku−1} and Xa denote

the total and active IoT devices, respectively. As illustrated in Fig. 2.2, in each IoT

device, the payload bits dk, k ∈ Xa, are encoded by the channel encoder to increase

the reliability of packet transmission. Then, the encoded data is passed through the

differential encoding block. Differential encoding is employed to remove the need of

channel estimation in the MUD at the IoT gateway. After differential encoding, the

data is multiplied by a unique spreading waveform. It is considered that the spreading

waveforms of the IoT devices do not change over time. Finally, the DS-SS signal is

BPSK modulated and then transmitted.
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Fig. 2.2: Block diagram that illustrates packet transmission at IoT devices.

Let us consider that the maximum delay of the single-hop IoT network is τmax,

i.e., τk ∈ [0, τmax], k ∈ Xu, where τk is delay of the kth IoT device. We consider that

the IoT devices transmit their packet after receiving a beacon signal transmitted by

the IoT gateway. This signal is periodically transmitted with period Tt ≥ NsTs +τmax,

where Ns is the number of symbols per IoT packet, and Ts is the symbol duration. Fig.

2.3 illustrates the received IoT packets at the gateway. The received continuous-time

baseband signal over frequency-flat fading channel in each period with respect to the

timing reference of the gateway is modeled as

r(t) =
Ku−1∑
k=0

Ns−1∑
n=0

ğk
√
pke

jφkbk,nsk(t− nTs − τk) + w(t) (2.1)

=
Ku−1∑
k=0

Ns−1∑
n=0

gkbk,nsk(t− nTs − τk) + w(t) [0, Tt],

where ğk, φk, and {bk,n, n = 0, 1, . . . , Ns − 1} respectively denote the FCC, CP, and

symbol stream of the kth IoT device, which are unknown at the gateway. It is con-

sidered that the envelope of the FCC, i.e., |ğk| has a Rayleigh distribution. Without

loss of generality, it is assumed that ğk ∼ Nc
(
0, 1

)
. The transmit power of the kth

IoT devices is denoted by pk which is known at the gateway, and the random vari-

able gk , ğk
√
pke

jφk . The symbol stream for the inactive IoT devices is modeled as

transmitting zeros during the packet, i.e, bk,n = 0, i = 0, 1, . . . , Ns − 1 while active
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Fig. 2.3: Received packets at the gateway. Active IoT devices are shown with different
colors.

IoT devices employ BPSK modulation. The DS-SS signaling waveform of the kth IoT

device, sk (t), is given by

sk(t) =
Nc−1∑
m=0

c
(m)
k ψ(t−mTc) t ∈ [0, Ts] , (2.2)

where Tc is the chip duration, ck =
[
c

(0)
k c

(1)
k . . . c

(Nc−1)
k

]†
is the spreading sequence

of {+1,−1} assigned to the kth IoT device, and ψ(t) is the chip waveform with unit

power. It is assumed that sk(t), k ∈ Xu, and ψ(t) are rectangular pulses confined

within [0, Ts] and [0, Tc], respectively. The baseband additive complex Gaussian noise

at the output of the receive filter with bandwidth 1/Tc is denoted by w(t).

Fig. 2.4 shows the block diagram of the proposed receiver at the IoT gateway.

As seen, the received baseband signal is passed through chip matched filter (MF) and

sampled at the chip rate. The output of the sampled chip MF for the ith chip at the

jth observation symbol is obtained as

r
(i)
j ,

∫ jTs+(i+1)Tc

jTs+iTc
r(t)ψ (t− jTs − iTc) dt (2.3)

=
Ku−1∑
k=0

gku
(i)
k,j + w

(i)
j i = 0, 1, . . . , Nc − 1,
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Fig. 2.4: Block diagram of the proposed receiver at the gateway.

where

w
(i)
j ,

∫ jTs+(i+1)Tc

jTs+iTc
w(t)ψ (t− jTs − iTc) dt, (2.4)

and

u
(i)
k,j ,

∫ jTs+(i+1)Tc

jTs+iTc

Ns−1∑
n=0

bk,nsk(t− nTs − τk)ψ(t− jTs − iTc)dt. (2.5)

By employing (2.4), one can easily show that the joint probability density function

(PDF) of the corresponding noise vector associated with the jth observation vector,

i.e., wj ,
[
w

(0)
j w

(1)
j . . . w

(Nc−1)
j

]†
is characterized by wj ∼ Nc (0Nc , σ

2
wI) with σ2

w ,

N0/Tc, where N0/2 is the noise power spectral density of the white noise. The integral

in (2.5) represents the area under the received signal waveform of the kth IoT device

during the ith chip-matched filtering duration at the jth observation symbol. Let us

define the delay of the kth IoT as

τk , αkTs + βkTc + ξk, (2.6)

with αk , bτk/Tsc, βk , bτk/Tcc − αkNc, and ξk ∈ [0, Tc). Based on the values of αk,
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βk, and ξk, u(i)
k,j in (2.5) is expressed as a function of bk,j−αk , and bk,j−αk−1 as [71–73]

u
(i)
k,j ,

Ns−1∑
n=0

Nc−1∑
m=0

gkc
(m)
k bk,n (2.7)

∫ jTs+(i+1)Tc

jTs+iTc
ψ(t− nTs −mTc − τk)ψ(t− jTs − iTc)dt

= gkbk,j−αk−1x
(i)
k (1− ξk) + gkbk,j−αkx

(i)
k (ξk),

where

x
(i)
k (ν) ,

Nc−1∑
m=0

c
(m)
k

∫ (i+1)Tc

iTc
ψ(t−mTc − νTc)ψ(t− iTc)dt, (2.8)

where ν ∈ [0, Tc). Equation (2.7) can be written in vector form as

uk,j = gkbk,j−αk−1xk,0 + gkbk,j−αkxk,1 (2.9)

where bk,j = 0, j /∈ [0, Ns − 1], and

uk,j ,
[
u

(0)
k,j u

(1)
k,j . . . u

(Nc−1)
k,j

]†
(2.10a)

xk,1 ,
[
x

(0)
k (ξk) x

(1)
k (ξk) . . . x

(Nc−1)
k (ξk)

]†
(2.10b)

xk,0 ,
[
x

(0)
k (1− ξk) x

(1)
k (1− ξk) . . . x

(Nc−1)
k (1− ξk)

]†
. (2.10c)

For the rectangular chip waveform pulse-shaping ψ(t), one can easily obtain


xk,1

xk,0

 = (1− ξk)


0βk

ck

0Nc−βk

+ ξk


0βk+1

ck

0Nc−βk−1

 . (2.11)

Let us defineXk ,
[
xk,0 xk,1

]
. By employing (2.3) and (2.9), the jth observation
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vector, i.e., rj ,
[
r
(0)
j r

(1)
j . . . r

(Nc−1)
j

]†
, is obtained as

rj = XGbj +wj = Xhj +wj, (2.12)

where

X ,
[
X0 X1 . . . XKu−1

]
, (2.13)

G ,



g0

g1

. . .

gKu−1


⊗ I2, (2.14)

bj ,
[
b0,j−α0−1 b0,j−α0 b1,j−α1−1 b1,j−α1 . . . (2.15)

bKu−1,j−αKu−1−1 bKu−1,j−αKu−1

]†
,

hj ,
[
h0,j,0 h0,j,1 h1,j,0 h1,j,1 . . . hKu−1,j,0 hKu−1,j,1

]†
, (2.16)

with

hk,j,f , gkbk,j−αk−1+f , f ∈ {0, 1}. (2.17)

Finally, by staking the Nt observation vectors, the observation matrix is written

as

R̄ = XGB̄+ W̄ = XH̄+ W̄, (2.18)
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where

R̄ ,
[
r0 r1 . . . rNt−1

]
(2.19a)

B̄ ,
[
b0 b1 . . . bNt−1

]
(2.19b)

W̄ ,
[
w0 w1 . . . wNt−1

]
(2.19c)

H̄ ,
[
h0 h1 . . . hNt−1

]
. (2.19d)

In (2.18), X is referred to as dictionary.

As seen in Fig. 2.4, after chip-matched filtering and sampling, the IoT identifica-

tion algorithm is applied to the measurement matrix R̄ to detect active IoT devices.

The outcome of the IoT identification algorithm is a set of active IoT devices X̂a.

Then, the MUD algorithm is employed to detect the transmitted symbols of the IoT

devices in X̂a. Finally, after MUD, the bit streams related to the active IoT devices

pass through differential and channel decoders, respectively.

2.3 IoT Identification

Node identification is the first step in the MA schemes where nodes do not use control

signaling in order to identify themeless to the gateway. In this case, the gateway needs

to determine the packet transmission state (PTS) of the nodes and detect data only for

the active nodes. In this section, different IoT identification algorithms are developed.

2.3.1 IoT Identification Formulation

Let us write the observation model in (2.18) for an observation window with length l

as

R = XGB+W = XH+W, (2.20)
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Fig. 2.5: Underdetermined systems of linear equations for with Ku = 7, Ka = 2, Nt = 8,
and Ns = 6.

where

R ,
[
rᾱ rᾱ+1 . . . rᾱ+l−1

]
(2.21a)

B ,
[
bᾱ bᾱ+1 . . . bᾱ+l−1

]
(2.21b)

W ,
[
wᾱ wᾱ+1 . . . wᾱ+l−1

]
(2.21c)

H ,
[
hᾱ hᾱ+1 . . . hᾱ+l−1

]
, (2.21d)

where 1 ≤ l ≤ Ns + αmin − αmax − 1, ᾱ is an arbitrary positive integer as ᾱ >

αmax , max{α0, α1, · · · , αKu−1}, and αmin , min{α0, α1, · · · , αKu−1}. Fig. 2.5 shows

the underdetermined system of linear equations in (2.18), and Fig. 2.6 illustrates

different observation windows for IoT identification in (2.20).

The activity of an IoT device is defined for an entire packet, i.e, the rows of H

corresponding to the active and inactive IoT devices are non-zero and zero, respec-

tively. Thus, the problem of IoT identification for the kth IoT device, k ∈ Xu, can be

expressed as the following binary hypothesis testing problem

H1k : hk,ᾱ,l 6= 0 (2.22)

H0k : hk,ᾱ,l = 0,
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H(ᾱ = 3) H(ᾱ = 4)H̄

α0 = 0
α1 = 2
α2 = 1
α3 = 0
α4 = 1
α5 = 0
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−−−−l = 4

−−−
l = 3

Fig. 2.6: Different observation windows for IoT identification (Ku = 7, Ns = 7, αmax = 2,
αmin = 0, 1 ≤ l ≤ 4). Purple color is employed to show the packet of IoT devices which is
zero for inactive and non-zero for active IoT devices.

where

hk,ᾱ,l ,
[
h
†
k,ᾱ h

†
k,ᾱ+1 · · · h

†
k,ᾱ+l−1

]†
, (2.23a)

hk,j ,
[
hk,j,0 hk,j,1

]†
, (2.23b)

and H0k and H1k are the null and alternative hypothesis denoting that the kth IoT

device is active and inactive, respectively.

As seen in (2.22), the IoT identification problem is formulated as Ku parallel

binary hypothesis testing problems.

The first step in IoT identification is to reconstruct hk,ᾱ,l, k ∈ Xu, from the

observation matrix in (2.20). However, (2.20) represents an underdetermined system

of linear equations since Nc < Ku. Hence, it is not uniquely solvable.

Let us denote the number of active IoT devices by the random variable ka. The
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distribution of ka is binomial, and

P
{
ka = Ka

}
=
(
Ku

Ka

)
PKa

a

(
1− Pa

)(Ku−Ka)
. (2.24)

For Pa � 1, P{ka � Ku} = 1, and thus, B and H in (2.20) are sparse matrices.

Moreover, the columns of H(B) share the same sparsity profiles. This sparse structure

is referred to as block-sparse. The block-sparse structure of H can be observed in Fig.

2.6. Fig. 2.7 shows the probability mass function of the number of active IoT devices

for low values of Pa. As seen, this is condensed between a lower bound Kal and an

upper bound Kau which are defined as P{ka > Kal} < ε and P{ka < Kau} < ε, where

ε is an arbitrary small value.

The sparse structure of H can be employed to reconstruct columns of H from

the underdetermined linear observation model in (2.20). When each column of H is

individually reconstructed from its corresponding column in R, it is referred to as

SSR. The SSR of the columns of H, i.e., hj, ᾱ ≤ j ≤ ᾱ + l − 1, is formulated as

[74, 75]
minimize

hj

∥∥∥rj −Xhj

∥∥∥2

F

subject to
∥∥∥hj∥∥∥0

≤ 2Kau,

(2.25)

where ‖ · ‖F and ‖hj‖0 are the Frobenius and `0 quasi-norm, respectively. From

duality and the Karush Kuhn Tucker (KKT) optimality conditions [76, 77], (2.25)

can be written as

ĥj = arg min
hj

1
2
∥∥∥rj −Xhj

∥∥∥2

F
+ λ`0

∥∥∥hj∥∥∥0
, (2.26)

where λ`0 is the tuning parameter which balances both approximation error and spar-

sity level of the solution. In Appendix 2.A, the value of λ`0 based on maximum a
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Fig. 2.7: The probability mass function of ka for different probability of packet transmis-
sion, Pa, when Ku = 1024. The dashed lines show Kal and Kau for Pa = 0.05.

posteriori probability (MAP) criterion is obtained as

λ`0 = σ2
w
2 ln

4(1− Pa)
Pa

. (2.27)

The SSR is based on the principle that, through optimization, the sparsity of a sig-

nal can be exploited to reconstruct it from far fewer samples than required by the

Shannon-Nyquist sampling theorem.

The `0-minimization in (2.26) is both numerically unstable and NP-hard since the

`0 quasi-norm is a discrete-value function. One approach to the SSR is to replace the `0

quasi-norm by a convex function with common sparsity profile that leads to a solution

very close to the one of the original problem. This method is called convex relaxation

and converts the combinatorial problem in (2.26) into a convex optimization problem

which can be solved in polynomial time. Different convex functions can be employed

to relax ‖hj‖0 in (2.26). A common family of convex functions is the `q norm, given

23



as

∥∥∥hj∥∥∥
q

=
Ku−1∑

k=0

1∑
f=0

∣∣∣∣hk,j,f ∣∣∣∣q
 1

q

. (2.28)

The recovered vectors by the `q norm minimization can be employed to infer the

active IoT set Xa through the parallel binary hypothesis testing problems in (2.22).

We refer to the identification based on SSR as DSA IoT identification.

On the other hand, the block-sparse structure of H can be employed to improve

the reconstruction ofH in (2.25). This method of signal reconstruction is referred to as

SSSR. Opposite to SSR, the SSSR simultaneously exploits the column sparsity along

with the block-sparse structure in the optimization problem in order to reconstruct

matrix H. The SSSR of H, given the received signal matrix R and the dictionary X

is expressed as [78]
minimize

H

∥∥∥R−XH
∥∥∥2

F

subject to
∥∥∥H̄∥∥∥

0
≤ 2Kau.

(2.29)

From duality and the KKT optimality conditions, (2.29) can be rewritten as

Ĥ = arg min
H

1
2
∥∥∥R−XH

∥∥∥2

F
+ λ`0`0

∥∥∥H∥∥∥
0
, (2.30)

where λ`0`0 ≥ 0 is the tuning parameter, and
∥∥∥H∥∥∥

0
is the `0 − `0 quasi-norm of H. In

Appendix 2.B, the value of λ`0`0 based on MAP criterion is obtained as

λ`0`0 = σ2
w

2l ln
2l+1

(
1− Pa

)
Pa

. (2.31)

Similar to the `0-minimization in (2.25), the `0 − `0-minimization in (2.29) is

unstable and NP-hard. Therefore, the quasi-norm
∥∥∥H∥∥∥

0
is replaced with the `p − `q

24



(p, q ≥ 1) mixed-norm as

Jp,q(H) =
Ku−1∑
k=0

∥∥∥hk,ᾱ,l∥∥∥p
q

(2.32)

to convert the combinatorial problem in (2.30) into a convex optimization problem.

Similar to the DSA IoT identification, we refer to the identification based on SSSR,

as to PDSA IoT identification. With the PDSA approach, the recovered matrix is

employed to infer the active IoT set.

2.3.2 Squared `2 norm DSA IoT Identification

The proposed squared `2 norm DSA IoT identification algorithm replaces the `0 quasi-

norm in (2.26) with the squared `2 norm as

ĥj = arg min
hj

1
2
∥∥∥rj −Xhj

∥∥∥2

2
+ λ`2

∥∥∥hj∥∥∥2

2
, (2.33)

The squared `2 norm convex relaxation formulates the IoT identification problem as a

ridge regression (RD) estimation problem as in (2.33) followed by Ku parallel binary

hypothesis testing problems.

The optimal solution of (2.33) is obtained as [79]

ĥj =
(
X†X + 2λ`2I

)−1
X†rj, (2.34)

which is a simple linear estimator of rj that shrinks ordinary least-squares (LS) esti-

mates towards zero.

As mentioned above, λ`2 in (2.33) balances both approximation error and sparsity

level of the solution. The optimal value of tuning parameter, λ`2 , can be obtained

through cross validation and generalized cross validation [80–84]. The latter is a
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method of model selection that is intuitively simple and widely employed; in this

case, the optimal value of λ`2 is obtained as [82]

λop
`2 = arg min

λ`2

2
∥∥∥rj −Qrj∥∥∥2

2[
tr
(
I −Q

)]2 , (2.35)

where Q , X
(
X†X + 2λjI

)−1
X†. As seen, λop

`2 is obtained at the expense of high

computational complexity to solve the minimization problem in (2.35). However,

according to Appendix 2.C, a conservative choice of the tuning parameter λ`2 in

terms of minimum mean square error (MMSE) can be approximated as

λop
`2 ≈

σ2
wtr
[
Σ̄−1
X

]
Pa(p† ⊗ 1†)Λ̄X + 3tr

[
Σ̄−2
X

] , (2.36)

where p ,
[
p0 p1 · · · pKu−1

]†
, Σ̄X , X†X, and Λ̄X , diag(Σ̄−1

X ). As seen in

(2.36), λop
`2 is inversely proportional to Pa.

By substituting rj = Xhj +wj in (2.12) into (2.34), ĥj can be written as a linear

function of hj as

ĥj = Ωhj +w′j, (2.37)

where

Ω ,



Ω0,0 Ω0,1 · · · Ω0,2Ku−1

Ω1,0 Ω1,1 · · · Ω1,2Ku−1

... ... . . . ...

Ω2Ku−1,0 Ω2Ku−1,1 · · · Ω2Ku−1,2Ku−1


= I − 2λ`2

(
Σ̄X + 2λ`2I

)−1
, (2.38)
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and

w′j ,



w′0,j,0

w′0,j,1
...

w′Ku−1,j,0

w′Ku−1,j,1


=
(
Σ̄X + 2λ`2I

)−1
X†wj. (2.39)

In (2.39), w′j is zero-mean complex Gaussian colored noise vector with covariance

matrix given by

Σw′ ,



Σw′
0,0 Σw′

0,1 · · · Σw′
0,2Ku−1

Σw′
1,0 Σw′

1,1 · · · Σw′
1,2Ku−1

... ... . . . ...

Σw′
2Ku−1,0 Σw′

2Ku−1,1 · · · Σw′
2Ku−1,2Ku−1


= E

{
w′j

(
w′j

)H
}

= σ2
w

(
Σ̄X + 2λ`2I)−2Σ̄X ,

(2.40)

where E
{
w′k1,j2,f1(w′k2,j2,f2)∗

}
= Σw′

2k1+f1,2k2+f2 .

The elements of ĥj in (2.37) associated with the kth IoT device, i.e., ĥk,j,0 and

ĥk,j,1 can be written in a summation form as

ĥk,j,f = Ω2k+f,2k+fhk,j,f + Ω2k+f,2k+f̄hk,j,f̄ (2.41)

+
∑
n6=k

{
Ω2k+f,2n+fhn,j,f + Ω2k+f,2n+f̄hn,j,f̄

}
+ w′k,j,f ,

where f, f̄ ∈ {0, 1} and f̄ , f + (−1)f . The second term on the right-hand side of

(2.41) represents the effect of interference caused by the existing active IoT devices
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in the network. Let us define

ĥk,ᾱ,l ,
[
ĥ
†
k,ᾱ ĥ

†
k,ᾱ+1 · · · ĥ

†
k,ᾱ+l−1

]†
, (2.42a)

ĥk,j ,
[
ĥk,j,0 ĥk,j,1

]†
. (2.42b)

In order to identify the transmission state of the kth IoT device based on the recon-

structed signal ĥk,ᾱ,l in (2.42), the joint PDF of the random vector ĥk,ᾱ,l is needed.

In Lemma. (2.3.1), the joint PDF of ĥk,ᾱ,l is derived.

Lemma 2.3.1. The distribution of the random vector ĥk,ᾱ,l in (2.42) under hypothesis

H1k and H0k can be approximated by joint complex Gaussian distribution as

p
(
ĥk,ᾱ,l

∣∣∣Htk

)
∼ Nc

(
0,Σtk

)
t ∈ {0, 1}, (2.43)

where

Σtk ,



Σtk
0,0 Σtk

0,1 · · · Σtk
0,2l−1

Σtk
1,0 Σtk

1,1 · · · Σtk
1,2l−1

... ... . . . ...

Σtk
2l−1,0 Σtk

2l−1,1 · · · Σtk
2l−,2l−1


, (2.44)

and

Σtk
2j′+f,2j′+f , Var

{
ĥk,j,f

∣∣∣Htk

}
= tpk

(
Ω2

2k+f,2k+f + Ω2
2k+f,2k+f̄

)
+ Σw′

2k+f,2k+f (2.45)

+ Pa
∑
n6=k

pn

(
Ω2

2k+f,2n+f + Ω2
2k+f,2n+f̄

)
,
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with

j′ = j − ᾱ (2.46)

ᾱ ≤ j ≤ ᾱ + l − 1,

and the off-diagonal elements of the covariance matrixes Σtk, i.e., Σtk
2j′1+f1,2j′2+f2

,

Cov
{
ĥk,j1,f1 , ĥk,j2,f2

∣∣∣Htk

}
, 2j′1 + f1 6= 2j′2 + f2, are given in (2.47).

Σtk
2j′1+f1,2j′2+f2 =

(
Σtk

2j′2+f2,2j′1+f1

)∗
= Cov

{
ĥk,j1,f1 , ĥk,j2,f2

∣∣∣Htk

}
2j′1 + f1 < 2j′2 + f2

= δj1,j2δf1,0δf2,1

tpkσ2
gk

(
Ω2k,2kΩ2k+1,2k + Ω2k+1,2k+1Ω2k,2k+1

)

+ Pa
∑
n 6=k

pn

(
Ω2k,2n+1Ω2k+1,2n + Ω2k+1,2n+1Ω2k,2n+1

)
+ Σw′

2k,2k+1


+ δj2−j1,1δf1,0δf2,0

tpk(Ω2k,2kΩ2k,2k+1

)
+ Pa

∑
n6=k

pn

(
Ω2k,2nΩ2k,2n+1

)
+ δj2−j1,1δf1,1δf2,1

tpk(Ω2k+1,2k+1Ω2k+1,2k

)
+ Pa

∑
n6=k

pn

(
Ω2k+1,2n+1Ω2k+1,2n

)
+ δj2−j1,1δf1,0δf2,1

tpk(Ω2k,2k+1Ω2k+1,2k

)
+ Pa

∑
n6=k

pn

(
Ω2k,2n+1Ω2k+1,2n

)
+ δj2−j1,1δf1,1δf2,0

tpk(Ω2k,2kΩ2k+1,2k+1

)
+ Pa

∑
n6=k

pn

(
Ω2k,2nΩ2k+1,2n+1

) (2.47)

Proof in Appendix 2.D.

Let us define

dk =


H1k, if φ

(
ĥk,ᾱ,l

)
≥ θk

H0k, if φ
(
ĥk,ᾱ,l

)
< θk

, (2.48)

where φ(·, ·) is an arbitrary continuous function and θk is a threshold for the kth IoT

device.
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Algorithm 1 Bayesian Squared `2 norm DSA IoT Identification Algorithm
Input: X, R, λ`2 ,Σ0k,Σ1k, and θk for k ∈ Xu
Output: Active IoT set X̂a
Initialization: X̂a = ∅

1: for k = 0, 1, · · · , Ku − 1 do
2: Obtain ĥk,ᾱ,l in (2.42) by employing (2.34)
3: Compute φ

(
ĥk,ᾱ,l

)
in (2.49)

4: Identify the transmission state of the kth IoT device
through (2.48)

5: if dk = H1k then
6: X̂a ← {X̂a, k}
7: end if
8: end for

2.3.2.1 Bayesian Squared `2 norm DSA IoT Identification Algorithm

By applying the optimum Bayesian’s decision rule to the reconstructed vector ĥk,ᾱ,l,

k ∈ Xu, in (2.42), the Bayesian squared `2 norm DSA IoT identification algorithm is

derived as in (2.48) for

φ
(
ĥk,ᾱ,l

)
= ĥH

k,ᾱ,l

((
Σ0k

)−1
−
(
Σ1k

)−1
)
ĥk,ᾱ,l, (2.49)

and

θk = ln
(1− Pa)det

(
Σ1k

)
Padet

(
Σ0k

)
. (2.50)

Proof in Appendix 2.E.

The optimum Bayesian’s decision rule in (2.49) minimizes the Bayesian risk, i.e.,

P
{
dk = H1k|H0k

}
(1 − Pa) + P

{
dk = H0k|H1k

}
Pa. A formal description of the pro-

posed Bayesian squared `2 norm DSA IoT identification algorithm is summarized in

Algorithm 1.
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2.3.2.2 ML Squared `2 norm DSA IoT Identification Algorithm

As seen in (2.47), each four successive elements of the reconstructed vector h̄k,ᾱ,l,

i.e., ĥk,j,0, ĥk,j,1, ĥk,j+1,0, and ĥk,j+1,1, ᾱ ≤ j ≤ ᾱ + l − 2, are correlated random

variables. Hence, they provide correlated information about the transmission state of

the kth IoT device. Through downsampling of h̄k,ᾱ,2l, an independent and identically

distributed (i.i.d.) random vector can be obtain which can be used to develop a low-

complexity IoT identification algorithm.

Let us consider the i.i.d. random vector h̆k,l, defined as

h̆k,l ,
[
h̆k,0 h̆k,2 · · · h̆k,2(l−1)

]†
, (2.51)

where

h̆k,j′ , ĥk,j,1I
{
βk <

Nc

2

}
+ ĥk,j,0I

{
βk ≥

Nc

2

}
, (2.52)

where βk is the chip-delay of the kth IoT device given in (2.6) and j′ = j − ᾱ,

j ∈
{
ᾱ, ᾱ + 2 · · · ᾱ + 2(l − 1)

}
. In order to identify the transmission state of the kth

IoT device, k ∈ Xu, through the reconstructed vector h̆k,l, the maximum likelihood

ratio (MLR) test can be employed. The MLR test maximizes the correct identification

rate of the kth IoT devices, i.e., P (c)
k , P

{
dk = H1k|H1k

}
subject to a constraint on

the maximum allowable false alarm rate, i.e., P (f)
k , P

{
dk = H1k|H0k

}
[85–87].

By employing Lemma (2.3.1), the decision rule in (2.48) for the MLR test of the

reconstructed vector h̆k,l, k ∈ Xu, is obtained as (Proof in Appendix 2.F)

φ
(
h̆k,l

)
=

√
2√

Σ0k
2k+f,2k+f

l−1∑
i=0

∣∣∣h̆k,2i∣∣∣2 (2.53)
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Fig. 2.8: The decision statistics of the ML squared `2 norm DSA IoT identification
algorithm, i.e, φ

(
h̆k,l

)
versus k, for l = 10, Ku = 2048, Pa = 0.01, P (f)

k = 0.01,
k = 0, 1, · · · ,Ku − 1, and at 10 dB SNR.

for θk = θ′k, where θ′k is set based on a predefined false alarm rate as

θ′k = 2Γ−1
(
l,
(
1− P (f)

k

)
Γ(l)

)
, (2.54)

where f = 1 for βk < Nc
2 , and f = 0 for βk ≥ Nc

2 , and Γ(l) =
∫∞

0 exp(−t)t(l−1)dt and

Γ−1(a, b) are complete gamma function and inverse lower incomplete gamma function,

respectively (Proof in Appendix 2.G).

Fig. 2.8 shows the decision statistics of the squared `2 norm DSA IoT identifica-

tion algorithm, i.e, φ
(
h̆k,l

)
versus k, for l = 10 and at 10 dB SNR. As seen, φ

(
h̆k,l

)
exceeds the threshold for the active IoT devices.

By using (2.54), one can obtain the correct identification rate for the kth IoT
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Algorithm 2 ML Squared `2 norm DSA IoT Identification Algorithm

Input: X, R, P (f)
k , k ∈ Xu

Output: Active IoT set X̂a
Initialization: X̂a = ∅

1: for k = 0, 1, · · · , Ku − 1 do
2: Obtain θ′k by employing (2.54)
3: Obtain h̆k,l in (2.51) by employing (2.34) and (2.52)
4: Compute φ

(
h̆k,l

)
in (2.53)

5: Identify the transmission state of the kth IoT device
by employing (2.48) for φ

(
h̆k,l

)
and θ′k in (2.54)

6: if dk = H1k then
7: X̂a ← {X̂a, k}
8: end if
9: end for

device as

P
(c)
k = P

{
dk = H1k

∣∣∣H1k
}

= 1−
Γ
(
l,

√
Σ0k

2k+f,2k+f
4Σ1k

2k+f,2k+f
θ′k

)
Γ(l) , (2.55)

where Γ(a, b) =
∫∞
b exp(−t)t(a−1)dt is the lower incomplete gamma function, and θ′k

is given in (2.54) (Proof in Appendix 2.G).

A formal description of the proposed ML squared `2 norm DSA IoT identification

algorithm is summarized in Algorithm 2. Also, the block diagram of the proposed

squared `2 norm DSA IoT identification algorithm for both Bayesian and ML rule is

shown in Fig. 2.9.

2.3.3 `1 norm DSA IoT Identification

The `1 norm DSA IoT identification algorithm formulates the SSR as

ĥj = arg min
hj

1
2
∥∥∥rj −Xhj

∥∥∥2

F
+ λ`1

∥∥∥hj∥∥∥1
, (2.56)
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Fig. 2.9: Block diagram of the proposed squared `2 norm DSA IoT identification algo-
rithms. For Algorithm 1 and Algorithm 2, φ

(
ĥk,ᾱ,l

)
is given by (2.49) and (2.53), respec-

tively.

where j = ᾱ, ᾱ + 1, · · · , ᾱ + l − 1 and λ`1 is the tuning parameter.

Let us define

Ẍ ,XP
1
2 (2.57a)

ḧj , P
−1
2 hj, (2.57b)

ḧk,j ,
hk,j√
pk
, (2.57c)
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where

P ,



p0

p1

. . .

pKu−1


⊗ I2. (2.58)

In Appendix 2.I, the SSR problem in (2.56) for IoT identification is reformulated

as

ˆ̈
hj = arg min

ḧj

1
2
∥∥∥rj − Ẍḧj

∥∥∥2

F
+ λ̈`1

∥∥∥ḧj∥∥∥1
, (2.59)

where

λ̈`1 = 2λ`0√
π

= σ2
w√
π

ln
4(1− Pa)

Pa

, (2.60)

with

While there is no closed-form solution for (2.56) when the dictionary Ẍ is not an

orthogonal matrix, it can be solved through quadratic programming.

By using the Landweber iterative algorithm [88], ḧj is reconstructed in such a

way that the elements of the reconstructed vector corresponding to the inactive IoT

devices are zero without using the binary hypothesis testing in (2.48). The Landweber

algorithm involves a gradient descent method with fixed step followed by a threshold

setting based on the KKT optimality conditions as

−ẍ†k,f
(
rj − Ẍḧj

)
+ λ̈`1

ḧk,j,f∣∣∣ḧk,j,f ∣∣∣ = 0 if k ∈ Xa (2.61a)

∣∣∣∣ẍ†k,f(rj − Ẍḧj
)∣∣∣∣ ≤ λ̈`1 if k /∈ Xa, (2.61b)

where f ∈ {0, 1}, ẍk,f = pkxk,f , and xk,1 and xk,0 are given in (2.11).
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Let us assume that the convergence of the Landweber algorithm for the jth ob-

servation symbol occurs at the tjth iteration. The average energy of the reconstructed

signal for the kth IoT device is given as

ek = 1
2l

ᾱ+l−1∑
j=ᾱ

1∑
f=0

∣∣∣ḧ[tj+1]
k,j,f

∣∣∣2. (2.62)

In order to maximize the correct identification rate of the IoT devices, by em-

ploying a priori knowledge of Pa, the active IoT set can be identified as

X̂a = {eki0 , eki1 , · · · , ekKup
}, (2.63)

where

eki0 ≥ eki1 ≥ · · · ≥ ekKup
≥ · · · ≥ ekKu−1 (2.64a)

eki0 ≥ eki1 ≥ · · · ≥ ekKup
> 0, (2.64b)

and

P
{
ka ≤ Kup

}
=

Kup∑
i=0

(
Ku

i

)
P i

a

(
1− Pa

)(Ku−i) = 0.999. (2.65)

A formal description of the proposed `1 norm DSA IoT identification algorithm

based of the Landweber iterative algorithm for SSR is provided in Algorithm 3.
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Algorithm 3 `1 norm DSA IoT Identification
Input: X, R, δ, Pa
Output: Active IoT set X̂a
Initialization: Ḧ = 0, loop = 1, t = 0

1: for j = ᾱ, ᾱ + 1, · · · , ᾱ + l − 1 do
2: while loop do
3: ḧ

[t+ 1
2 ]

j ← ḧ
[t]
j + Ẍ†

(
rj − Ẍḧ

[t]
j

)
4: for k = 0, 1, · · · , Ku − 1 do

5: ḧ
[t+1]
k,j,0 =

1− λ̈`1∣∣∣ḧ[t+ 1
2 ]

k,j,0

∣∣∣


+

ḧ
[t+ 1

2 ]
k,j,0

6: ḧ
[t+1]
k,j,1 =

1− λ̈`1∣∣∣ḧ[t+ 1
2 ]

k,j,1

∣∣∣


+

ḧ
[t+ 1

2 ]
k,j,1

7: end for
8: t← t+ 1
9: if

∥∥∥ḧ[t+1]
j − ḧ[t]

j

∥∥∥
2
≤ δ then

10: loop = 0
11: end if
12: end while
13: end for
14: Compute ek for k = 0, 1, · · · , Ku−1 by employing (2.62)
15: Obtain X̂a through (2.63), (2.64), and (2.65)

2.3.4 `1− `2 Mixed-norm PDSA IoT Identification Algorithm

The proposed `1− `2 mixed-norm PDSA IoT identification algorithm replaces `0− `0

quasi-norm in (2.30) with the `1 − `2 mixed-norm as

Ĥ = argmin
H

1
2
∥∥∥R−XH

∥∥∥2

F
+ λ`1`2

Ku−1∑
k=0

∥∥∥hk,ᾱ,1∥∥∥2
, (2.66)

where λ`2`1 is the tuning parameter. To find the optimal value of λ`2`1 , the K-fold cross

validation (CV) is a popular method; however, this suffers from high computational

complexity. Another method is the cross-validated partial likelihood, an adaptation

of the CV [89, 90]; however, it still suffers from the high computational cost.

For the block-sparse matrix H in (2.20), since FCC is fixed over a packet, we can
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write

λ`0`0

∥∥∥H∥∥∥
0

=
λ`0`0
l

Ku−1∑
k=0

∥∥∥hk,ᾱ,l∥∥∥0
=
λ`0`0
l

Ku−1∑
k=0

√
2
∥∥∥hk,ᾱ,l∥∥∥2√
l
∣∣∣gk∣∣∣ , (2.67)

where hk,ᾱ,l is given in (2.23). In order to have the solution of (2.66) the same as the

one of the original SSSR problem in (2.30), we need to have

λ`0`0

∥∥∥H∥∥∥
0

= λ`1`2

Ku−1∑
k=0

∥∥∥hk,ᾱ,l∥∥∥2
. (2.68)

Let us define

ḧk,ᾱ,l ,
hk,ᾱ,l√
pk
, (2.69a)

Ḧ , P
−1
2 H. (2.69b)

Since gk ∼ Nc
(
0, pk

)
, k ∈ Xu, |gk| follows the Rayleigh distribution. By replacing

|gk| with E
{
|gk|

}
=
√
πpk/4 in (2.67), and then, by substituting (2.69a) into the result,

(2.68) can be approximated as

λ`0`0

∥∥∥H∥∥∥
0

= λ`1`2

Ku−1∑
k=0

∥∥∥hk,ᾱ,l∥∥∥2
≈

2λ`0`0√
lπ

Ku−1∑
k=0

∥∥∥hk,ᾱ,l∥∥∥2√
pk

=
2λ`0`0√
lπ

Ku−1∑
k=0

∥∥∥ḧk,ᾱ,l∥∥∥2
. (2.70)

Furthermore, we have

∥∥∥R−XH
∥∥∥2

F
=
∥∥∥R− ẌḦ

∥∥∥2

F
, (2.71)

where Ẍ and Ḧ are given in (2.57a) and (2.69b), respectively.

By substituting (2.70) and (2.140) into (2.66), the SSSR problem is reformulated
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as
ˆ̈
H = argmin

Ḧ

1
2
∥∥∥R− ẌḦ

∥∥∥2

F
+ λ̈

`1
`2

Ku−1∑
k=0

∥∥∥ḧk,ᾱ,l∥∥∥2
, (2.72)

where λ̈`1`2 is the tuning parameter given as

λ̈
`1
`2 =

2λ`0`0√
lπ

= σ2
w

l
√
lπ

ln
2l+1

(
1− Pa

)
Pa

. (2.73)

The optimal solution of (2.72) is obtained with the gradient of the objective

function equal to zero as

−Ẍ†(R− ẌḦ) + λ̈`1`2F
−2Ḧ = 0, (2.74)

where

F ,



∥∥∥ḧk,ᾱ,l∥∥∥ 1
2

2
. . . ∥∥∥ḧKu−1,ᾱ,l

∥∥∥ 1
2

2

⊗ I2 (2.75)

After simple mathematical manipulations, (2.74) can be written as

[
(ẌF)H(ẌF) + λ̈

`2
`2I
]
F−1H = (ẌF)HR. (2.76)

From (2.76), the optimal solution of (2.74) can be expressed as

Ḧ = F

[
(ẌF)H(ẌF) + λ̈

`1
`2I
]−1

(ẌF)HR. (2.77)

Since F depends on H as in (2.75), (2.77) suggests to obtain the optimal solution
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through an iterative way as

Ḧ
[t+1] = F[t]

[(
ẌF[t]

)H(
ẌF[t]

)
+ λ̈

`1
`2I
]−1(

ẌF[t]
)H
R

= F[t]
[(
V[t]

)H
V[t] + λ̈

`1
`2I
]−1(

V[t]
)H
R (2.78)

until the convergence criterion is satisfied as

∥∥∥Ḧ[t+1] − Ḧ[t]∥∥∥
2
< δ, (2.79)

where δ is an arbitrary small value. Appendix 2.K demonstrates that the `1−`2 mixed-

norm algorithm in (2.78) can be considered as an iterative reweighted LS estimator.

Similar to the Landweber iterative algorithm utilized in the `1 norm DSA IoT

identification algorithm, the designed `1 − `2 mixed-norm PDSA IoT identification

algorithm employs the gradient descent algorithm and reconstructs the matrix Ḧ such

that the two consecutive rows corresponding to the inactive IoT devices are zero when

Ḧ is initialized with an appropriate value. Since the gradient descent algorithm does

not guarantee convergence to the global minimum, some elements of the reconstructed

ḧk,ᾱ,l may not be zero when kth IoT device is inactive, and vice versa. Accordingly,

the l1 out of 2l combing rules can be employed to make decision on the transmission

state of the IoT devices as

dk =


H1k, if

l+ᾱ−1∑
j=ᾱ

1∑
f=0

I
{

ˆ̈
hk,j,f 6= 0

}
> l1

H0k, if
l+ᾱ−1∑
j=ᾱ

1∑
f=0

I
{

ˆ̈
hk,j,f 6= 0

}
< l1

, (2.80)

A formal description of the proposed `1− `2 mixed-norm PDSA IoT identification

algorithm is summarized in Algorithm 4.
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Algorithm 4 `1 − `2 Mixed-norm PDSA IoT Identification Algorithm
Input: X, R, λ̈`1`2 , `1, δ
Output: Active IoT set X̂a
Initialization: X̂a = ∅, Ḧ[0] = 0

1: while
∥∥∥Ḧ[t] − Ḧ[t−1]∥∥∥

F
> δ do

2: Update F[t] by Ḧ[t−1] as in (2.75)
3: Obtain V[t] = ẌF[t]

4: Ḧ
[t+1] ← Ḧ

[t] by employing (2.78)
5: end while
6: for k = 0, 1, · · · , Ku − 1 do
7: Obtain dk through (2.80)
8: if dk = H1k then
9: X̂a ← {X̂a, k}
10: end if
11: end for

2.3.5 Adaptive `1 − `2 Mixed-norm PDSA IoT Identification

Algorithm

By employing (2.67), the SSSR problem in (2.30) can be written as

Ĥ = arg min
H

1
2
∥∥∥R−XH

∥∥∥2

F
+ λ`0`0

Ku−1∑
k=0

√
2
∥∥∥hk,ᾱ,1∥∥∥2√
l
∣∣∣gk∣∣∣ , (2.81)

where λ`0`0 is given in (2.31).

By using E
{
|gk|

}
=
√
πpk/4, an approximation for the penalty term in (2.81) is

given as

λ`0`0

Ku−1∑
k=0

∥∥∥hk,ᾱ,1∥∥∥2√
l
∣∣∣gk∣∣∣ ≈

Ku−1∑
k=0

2λ`0`0√
πlpk

∥∥∥hk,ᾱ,1∥∥∥2
(2.82)
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By substituting (2.82) into (2.81), one can write

Ĥ = arg min
H

L(H, λ0, λ1, · · · , λKu−1)

= arg min
H

1
2
∥∥∥R−XH

∥∥∥2

F
+

Ku−1∑
k=0

λk
∥∥∥hk,ᾱ,1∥∥∥2

,

(2.83)

where

λk ,
2λ`0`0√
πlpk

= σ2
w

l
√
lπpk

ln
2l+1

(
1− Pa

)
Pa

. (2.84)

Similar as in Appendix 2.J, the KKT optimality conditions of the optimization

problem in (2.83) are expressed as

−Ψk + λk
hk,ᾱ,l∥∥∥hk,ᾱ,l∥∥∥2

= 0 if k ∈ Xa (2.85a)

∥∥∥Ψk∥∥∥2
< λk if k /∈ Xa, (2.85b)

where

Ψk ,
[
Ψk,0,0 Ψk,0,1 · · · Ψk,l−1,0 Ψk,l−1,1

]†
(2.86a)

[
Ψk,0,f Ψk,1,f · · · Ψk,l−1,f

]
, x

†
k,f

(
R−XH

)
. (2.86b)

Let us write Ψk as

Ψk , ∇hk,ᾱ,l

1
2
∥∥∥R−XH

∥∥∥2

F
= ϕk −Λkhk,ᾱ,l (2.87)

42



where

ϕk =
[
ϕk,0,0 ϕk,0,1 · · · ϕk,0,l−1 ϕk,0,l−1

]†
, (2.88)

[
ϕk,0,f ϕk,1,f · · · ϕk,l−1,f

]
, x

†
k,f

(
R−XH−k

)
, (2.89)

and

Λk ,



x
†
k,0xk,0

x
†
k,1xk,1

. . .

x
†
k,0xk,0

x
†
k,1xk,1


2l×2l

(2.90)

where H−k is the matrix H with (2k − 1)th and 2kth rows being set to 0.

From (2.85a) and (2.87), one notices that
(
λkI+Λk

)
hk,ᾱ,l = ϕk when the kth IoT

device is active. On the other hand, when the kth IoT device is inactive, Ψk = ϕk.

Hence, one can write

hk,ᾱ,l = I
{
‖ϕk‖2 > λk

}
ϕk

 λk∥∥∥hk,ᾱ,l∥∥∥2

I + Λk

−1

(2.91)

Since ϕk depends on hk,ᾱ,l, an iterative algorithm can be developed to obtain the

optimal solution of the convex optimization problem in (2.83). The main idea behind

the iterative algorithm is that by starting from a sparse solution like H = 0, the

optimality of hk,ᾱ,l, k ∈ Xa is checked in each iteration based on the KKT optimality

conditions in (2.85). If the KKT optimality conditions are not satisfied, then hk,ᾱ,l is

updated according to (2.91).
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Algorithm 5 : Adaptive `1 − `2 Mixed-norm PDSA IoT Identification Algorithm
Input: X, R, λk, k = 0, 1, · · · , Ku − 1, Λk

Output: Active IoT set X̂a
Initialization: X̂a = ∅, H[0] = 0, t = 1

1: while loop = 1 do
2: for k = 0, 1, · · · , Ku − 1 do
3: if the KKT optimality conditions in (2.85) are not

satisfied then
4: Compute ϕ[t−1]

k for H[t−1]
−k through (2.88) and (2.89)

5: ϕ
[t]
k ← ϕ

[t−1]
k

6: h
[t]
k,ᾱ,l ← h

[t−1]
k,ᾱ,l through (2.91)

end if
7: t← t+ 1
8: end for
9: if

∥∥∥h[t]
k,ᾱ,l − h

[t−1]
k,ᾱ,l

∥∥∥
2
≤ δ then

10: loop = 0
11: end if
12: end while
13: X̂a =

{
k|h[t]

k,ᾱ,l 6= 0, k = 0, 1, · · · , Ku − 1
}

A formal description of the proposed adaptive `1 − `2 mixed-norm PDSA IoT

identification algorithm is summarized in Algorithm 5.

2.4 Data Detection

While the LS estimator is the unbiased estimator with the smallest variance, the de-

veloped penalized-LS (P-LS) estimators in the IoT identification section trade off bias

for variance. In other words, they employ a penalty term to balance both approxi-

mation error and sparsity level of the solution. Hence, the mean square error (MSE)

of the estimated signal may be high so that it results in high bit error rate (BER)

if they are used for data detection. Thus, the proposed biased P-LS estimators ex-

hibit a good performance for the IoT identification as an inference problem; however,

the estimated signals by the biased P-LS estimators result in higher BER in data
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detection.

To detect the data stream of the active IoT devices, conventional suboptimal lin-

ear or non-linear MUD algorithms, such as decorrelating detector, MMSE detector,

successive interference cancellation, and parallel interference cancellation can be ap-

plied to the identified active IoT set when FCC and CP are known at the gateway.

However, in the defined short packet transmission scheme, the IoT devices do not use

any pilot or preamble for the estimate of the FCC and CP. Hence, a new MUD blind

to the FCC and CP is required.

In this section, we propose a new non-linear MUD algorithm which does not

require estimates of the FCC and CP of the IoT devices. The proposed MUD al-

gorithm is developed based on the differential coding used at the IoT devices and

an unsupervised machine learning technique followed by differential decoding at the

gateway.

2.4.1 2MC-MUD Algorithm

Fig. 2.10 illustrates the block diagram of the proposed 2MC-MUD algorithm. The

output of the IoT identification algorithms in the previous section is a set of active

IoT devices X̂a. Without loss of generality, we assume that X̂a , {k0, k1, . . . , kK̂a−1},

where K̂a , card(X̂a) is the cardinality of X̂a.

Let us consider a bank of K̂a single-user MFs for the identified active IoT devices

in X̂a as shown in Fig. 2.10. The output of the MF after synchronized sampling for
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Fig. 2.10: Block diagram of the proposed 2MC-MUD algorithm
.

the knth IoT device is expressed as [91–93]

ykn [i] , 1
2

∫ τkn+(i+1)Ts

τkn+iTs
r(t)skn(t− iTs − τkn)dt (2.92)

= gkjbkj [i] +
∑
kj<kn

gkjbkj [i+ 1]ρknkj +
∑
kj<kn

gkjbkj [i]ρkjkn +
∑
kj>kn

gkjbkj [i]ρknkj

+
∑
kj>kn

gkjbkj [i− 1]ρkjkn + wkn [i], i = {1, . . . , Ns}

where

ρknkj ,
1
Ts

∫ Ts

0
skn(t)skj(t)dt (2.93)

and

wkn [i] , 1
2

∫ τkn+(i+1)Ts

τkn+iTs
w(t)skn(t− iTs − τkn)dt. (2.94)

The output of the synchronized single-user MF in (2.92) for the knth IoT device
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can be written as

ykn [i] = gknbkn [i] + vkn [i], i = 0, 1, · · · , Ns − 1, (2.95)

where vkn [i] represents the effect of noise and interference. The effects of FCC and

CP are captured by the random variable gkn , kn ∈ X̂a, in (2.95) which is unknown at

the gateway.

For data detection without any sign ambiguity, the phase of gkn , kn ∈ X̂a is

leastwise required to be known at the gateway. However, by employing differential

coding at IoT devices, a MUD algorithm can be developed which removes the need

for such a priori knowledge. Differential coding is a technique used to provide unam-

biguous signal reception in phase-shift-keying and quadrature amplitude modulation.

Instead of encoding a bit sequence directly, the differential coding technique encodes

the difference between the bit sequence as [94]

bkn [i] = bkn [i− 1]⊕ bc
kn [i], kn ∈ Xa, (2.96)

where ⊕ is the modulo-2 addition and bc
kn [i] is the ith bit at the output of the channel

encoder of the knth IoT device.

Since gkn , kn ∈ Xa, remains unchanged during an IoT packet, the received noisy

BPSK symbols of the active IoT device kn in (2.95) form two clusters corresponding to

the transmitted bits 1 and 0. The main idea behind the proposed MUD is to extract

the two clusters regardless of which cluster is labeled 1 or 0. By extraction of the two

clusters and differential decoding at the gateways, the data stream of the active IoT

device kn is obtained without any prior knowledge about the FCC and CP.

By applying the 2MC algorithm to ykn [i], i = 0, 1, · · · , Ns − 1, in (2.95), the two

clusters are separated based on the nearest mean criterion disregard to the label. The
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2MC minimizes the least within-cluster sum of squares (WCSS), i.e, then sum of the

squared Euclidean distance.

Let us define U , {0, 1, · · · , Ns − 1}. The 2MC algorithms partitions U into two

sets Ukn,0 and Ukn,1 for the active IoT device kn by minimizing the WCSS as

arg min
U

∑
i∈Ukn,0

∥∥∥∥ykn [i]− µkn,0
∥∥∥∥2

+
∑

i∈Ukn,1

∥∥∥∥ykn [i]− µkn,1
∥∥∥∥2
,

subject to µkn,0 = 1
card(Ukn,0)

∑
i∈Ukn,0

ykn [i],

µkn,1 = 1
card(Ukn,1)

∑
i∈Ukn,1

ykn [i]. (2.97)

The minimization problem in (2.97) can be solved by different methods. One of

the most common algorithm is th Lloyd’s algorithm which uses an iterative refinement

technique. Given an initial mean values µ[0]
kn,0 and µ

[1]
kn,1, the Lloyd’s algorithm proceeds

by alternating between the assignment and updating steps as

Assignment step: The element of U [t] is assigned to U [t]
kn,1 when

U [t]
kn,1 =

{
i :
∥∥∥∥ykn [i]− µ[t]

kn,0

∥∥∥∥2
≤
∥∥∥∥ykn [i]− µ[t]

kn,1

∥∥∥∥2}
. (2.98)

Otherwise, it is assigned to U [t]
kn,0.

Updating step: The mean of the the clusters U [t]
kn,0 and U [t]

kn,1 are updated as

µ
[t+1]
kn,1 = 1

card
(
U [t]
kn,1

) ∑
i∈U [t]

kn,1

ykn [i], (2.99a)
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Fig. 2.11: 2M classifier for short IoT packet.

µ
[t+1]
kn,0 = 1

card
(
U [t]
kn,0

) ∑
i∈U [t]

kn,0

ykn [i]. (2.99b)

The 2MC algorithm converges when the assignment step does not change. Fig. 2.11

shows the output of the 2MC algorithm for two active IoT devices. As seen, by

employing the 2MC algorithm, the sequence at the output of the MF is partitioned

into two clusters disregarding the label.

After partitioning U into two clusters Ukn,0 and Ukn,1, ykn [i], i = 0, 1, · · · , Ns − 1

is mapped into a binary sequence bm
kn ,

[
bm
kn [0] bm

kn [1] · · · bm
kn [Ns − 1]

]
with elements

as

bm
kn [i] = I

{
i ∈ Ukn,1

}
. (2.100)
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Then, by applying differential decoding to the mapped binary sequence bm
kn , the chan-

nel coded data stream for the active IoT device kn is obtained as

b̂c
kn [i] = bm

kn [i]⊕ bm
kn [i− 1]. (2.101)

Finally, b̂c
kn ,

[
b̂c
kn [0] b̂c

kn [1] · · · b̂c
kn [Nc − 2]

]
is decoded by the channel decoder and

the data stream of the active IoT device kn is obtained. The proposed 2MC-MUD

algorithm is summarized in Algorithm 6.

Algorithm 6 : 2MC-MUD
Input: r(t), X̂a, K̂a = card(X̂a)

Output: b̂kn , kn ∈ X̂a

1: for n = 0, 1, · · · , K̂a − 1 do

2: Set initial value for U [0]
kn,1 and U [0]

kn,0

3: Obtain ykn [i], i = 0, 1, · · · , Ns − 1, by employing (2.92)

4: while U [t+1]
kn,1 6= U

[t]
kn,1 do

5: obtain U [t]
kn,1 and U [t]

kn,0 by employing (2.98)

6: µ
[t+1]
kn,1 ← U

[t]
kn,1 by employing (2.99a)

7: µ
[t+1]
kn,0 ← U

[t]
kn,0 by employing (2.99b)

8: end while

9: Obtain the binary mapped sequence bm
kn through (2.100)

10: Apply differential decoding to bm
kn to obtain b̂c

kn as

in (2.101)

11: Apply channel decoding to b̂c
kn to obtain b̂kn

12: end for
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2.4.2 Downlink Transmission

After packet transmission, the active IoT devices change their transmission mode

into receive mode in the next observation slot in order to receive the acknowledgment

packet transmitted by the gateway over the downlink channel. If the acknowledgment

packet is not received by the active IoT device, the packet is retransmitted. This

procedure continues until the reception of the acknowledgment packet by the IoT

device. Based on this mechanism, the IoT devices are shortly active, either in the

transmission mode or reception mode. Hence, the designed MA scheme is significantly

power-efficient and capable of supporting low power IoT devices.

2.5 Simulation Results

In this section, we examine the performance of the designed IoT identification algo-

rithms and 2MC-MUD algorithm through several simulation experiments.

2.5.1 Simulation Setup

Unless otherwise specified, an IoT network with Ku = 2048 and Pa = 0.01 was

considered. It is assumed that the spreading sequence of the IoT devices is pseudo-

random number codes with spreading factor Nc = 512 being known at the gateway.

Each IoT packet is 15 bytes, and the delay of the IoT devices was generated through

uniform distributions as αk ∼ U [0, 5], βk ∼ U [0, 511], and εk ∼ U [0, 1).

For channel coding, the BCH encoder with codeword length 15 is applied to 10

messages each with 7 bits. The window size for IoT identification was considered

l = 16 for ᾱ = 7. The effect of FCC and CP for each IoT device was modeled

as independent circular complex Gaussian random variables with variance σ2
gk = 1,

k ∈ Xu. The additive white noise was modeled as circular complex Gaussian random
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variables with variance σ2
w, and the average system signal-to-noise ratio (SNR) was

defined as

γ =
Pa

Ku−1∑
k=0

pk

σ2
w

.

The designed MA scheme was examined for equal power IoT devices.

The performance of the proposed DSA and PDSA IoT identification algorithms

was evaluated in terms of system correct identification and system false alarm rates

defined as

P (c) = 1
Ka

∑
k∈Xa

P
(c)
k

P (f) = 1
Ku −Ka

∑
k∈Xu−Xa

P
(f)
k

respectively. P (c) and P (f), as performance measures, were obtained based on 1000

Monte Carlo trials. The performance of the designed 2MC-MUD algorithm was eval-

uated in terms of average packet error rate (PER).

2.5.2 Simulation Results

Fig. 2.12 depicts the correct identification rate, P (c), and false alarm rate, P (f), of the

designed ML squared `2 norm DSA IoT identification algorithm (Algorithm 2) versus

SNR for P (f)
k = 0.01 and P (f)

k = 0.02. As seen, P (c) > 0.93 over a wide range of SNR.

Also, as expected, P (c) increases when SNR and/or false alarm rate increases.

In Fig. 2.13, the empirical correct identification rate of the proposed ML squared

`2 norm IoT identification algorithm (Algorithm 2) versus time is illustrated. As
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Fig. 2.12: The correct identification rate, P (c), and false alarm rate, P (f), of the designed
ML squared `2 norm DSA IoT identification algorithm (Algorithm 2) versus SNR for Ku =
2048, Pa = 0.01, and l = 16. The solid and dashed lines represent the results for P (f)

k = 0.01
and P (f)

k = 0.02, respectively.

seen, the proposed algorithm accurately tracks the activity of the IoT devices in the

network.

In Fig. 2.14, the correct identification, P (c), and false alarm, P (f), rates of the

proposed `1 norm DSA IoT identification algorithm (Algorithm 3) versus SNR are

illustrated. As seen, the proposed algorithm exhibits high P (c) and low P (f) over a

wide range of SNRs.

Fig. 2.15 compares the performance of the proposed `1 − `2 mixed-norm (Algo-

rithm 4) and adaptive `1 − `2 mixed-norm (Algorithm 5) PDSA IoT identification

algorithms when p1 = p2 = · · · = p1024 = 0.6 and p1025 = p1026 = · · · = p2048 = 1.4. As

seen, the adaptive `1−`2 mixed-norm PDSA IoT identification algorithm outperforms

the `1 − `2 mixed-norm algorithm. This behaviour can be explained, as the tuning

53



1 10 20 30 40 50
0.7

0.75

0.8

0.85

0.9

0.95

1

Fig. 2.13: The empirical correct identification rate, P (c), of the designed ML squared `2
norm DSA IoT identification algorithm (Algorithm 2) versus time for Ku = 2048, Pa = 0.01,
l = 16, and at 10 dB SNR.
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Fig. 2.14: The correct identification rate, P (c), and false alarm rate, P (f), of the designed `1
norm DSA IoT identification algorithm (Algorithm 3) versus SNR forKu = 2048, Pa = 0.01,
and l = 16.
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Fig. 2.15: Performance comparison of the proposed `1− `2 mixed-norm (Algorithm 4) and
adaptive `1 − `2 mixed-norm (Algorithm 5) PDSA IoT identification algorithms.

parameter for each IoT devices is set based on its transmit power for the proposed

adaptive algorithm while this is not the case in the `1 − `2 mixed-norm algorithm.

Fig. 2.16 shows the PER of the proposed 2MC-MUD algorithm versus SNR when

the proposed `1 − `2 mixed-norm PDSA IoT identification algorithm (Algorithm 5)

is employed at the gateway. As seen, the proposed 2MC-MUD algorithm exhibits a

good performance over a wide range of SNRs without FCC and CP estimation.

2.6 Conclusions and Directions for Future Research

In Chapter 2 of this thesis, uplink MA in IoT was studied. In this section, a summary

of the main results in Chapter 2 is provided, and possible directions for future research

are pointed out.
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Fig. 2.16: PER of the proposed 2MC-MUD algorithm versus SNR when the proposed
`1 − `2 mixed-norm PDSA IoT identification algorithm (Algorithm 5) is employed at the
gateway.

2.6.1 Summary

• A new MA scheme for the uplink transmission of IoT was designed. The pro-

posed MA scheme exhibits the following advantages:

– It supports thousandths of uncoordinated IoT devices;

– It supports sporadic traffic pattern and short packet transmission in IoT

applications;

– It was designed for underdetermined DS-SS. Thus, packet time on-air

significantly reduces;

– It removes the need of control signaling associated with the MAC address

to reduce uplink packet overhead;

– It removes preambles and pilot employed for parameter and channel esti-

mation to reduce uplink overhead;
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– It increases the spectral efficiency of the system by decreasing uplink over-

head;

– It is power-efficient and capable of supporting low-power IoT devices since

the IoT devices are shortly active, either in transmission or reception mode;

– It exhibits high scalability in terms of adding new IoT devices without

negatively affecting the quality of existing services;

– improves the protection against interfering and jamming signals. It also

provides security of transmission if the codes are not known to the public.

• A new mechanism instead of the MAC address for IoT identification at the

gateway was developed;

• Since IoT devices do not use MAC address in order to identify themselves to the

gateway, different IoT identification algorithms were designed to detect active

IoT devices based on SSR and SSSR techniques;

• The statistical performance analysis of the identification algorithms was pre-

sented, and closed-form expressions for the correct identification and false alarm

rates were derived;

• Approximate closed-form expressions for the tuning parameter employed in the

non-linear optimization problems of the SSR and SSSR were derived based on

the statistics of the FCC.

• A new non-linear MUD algorithm, i.e, 2MC-MUD, was designed for short packet

transmission over flat fading channel. The proposed 2MC-MUD algorithm ex-

hibits the following advantages:

– It supports both synchronous and asynchronous users irrespective to the

traffic pattern.
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– It does not require FCC and CP estimation;

2.6.2 Future research

The results in Chapter 2 of this thesis open interesting directions for a number of

future research topics, as follows:

• An extension to the proposed uplink MA in order to support a large number of

IoT devices in frequency-selective fading channel;

• An extension to the proposed massive uplink MA to support different traffic

patterns;

• Developing a downlink MA scheme for the proposed uplink MA.
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Appendix

2.A Proof of the Tuning Parameter for the `0 Quasi-

norm

Let us write the MAP estimate of hj, ᾱ ≤ j ≤ ᾱ + l − 1 in (2.12) as

ĥj = arg max
hj

p
(
hj

∣∣∣rj)
= arg min

hj

− ln p
(
rj

∣∣∣hj)− ln p
(
hj
) (2.102)

Since wj in (2.12) is white Gaussian vector, one can write

p
(
rj|hj

)
= 1(

πσ2
w

)Nc
exp

−
∥∥∥rj −Xhj

∥∥∥2

F
σ2

w

. (2.103)

For p
(
hj
)
in (2.102), by employing (2.12), gk ∼ Nc

(
0, pk

)
, k ∈ Xu, E{gkmg∗kn} =

pkmδkm,kn , ‖hk,j‖0 = ‖bk,j‖0, and the fact that G and bj in (2.12) are independent,

one obtains

p
(
hj
)

=
Ku−1∏
k=0

(1− Pa)1−
‖hk,j‖0

2

(
Pa

4

) ‖hk,j‖0
2 1

πpk
exp

−|gk|2
pk

, (2.104)
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where hk,j =
[
hk,j,0 hk,j,1

]†
. By substituting (2.103) and (2.104) into (2.102), and after

some mathematical manipulations, (2.26) and (2.27) are derived.

2.B Proof of the Tuning Parameter for the `0 − `0

Quasi-norm

Let us write MAP estimate of H in (2.20) as

Ĥ = arg max
H

p
(
H
∣∣∣R)

= arg min
H

− ln p
(
R
∣∣∣H)− ln p

(
H
) (2.105)

Since W is zero-mean i.i.d. Gaussian matrix, one can write

p
(
R|H

)
= 1(

πσ2
w

)Ncl
exp

−
∥∥∥R−XH

∥∥∥2

F
σ2

w

. (2.106)

For p
(
H
)
in (2.105), by employing (2.20), gk ∼ Nc

(
0, pk

)
, k ∈ Xu, E{gkmg∗kn} =

pkδkm,kn , ‖bk,ᾱ,l‖0 = ‖hk,ᾱ,l‖0, and the fact that G and B in (2.20) are matrixes with

independent elements, one obtains

p
(
H
)

= p
(
B
)
p
(
G
)

=
K∏
k=1

(1− Pa)1−
‖hk,ᾱ,l‖0

2l

 Pa

2l+1


‖hk,ᾱ,l‖0

2l 1
πpk

exp
−|gk|2

pk

. (2.107)

By substituting (2.106) and (2.107) into (2.105), and after some mathematical ma-

nipulations, (2.30) and (2.31) are derived.
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2.C Proof of the Tuning Parameter for the Squared

`2 Norm

In [95], it is shown that the optimal tuning parameter of the RD estimator for rj =

Xhj +wj in terms of MMSE is obtained as

λop
j ≈

σ2
wtr[Σ̄

−1
X ]

hH
j Σ̄−1

X hj + 3tr[Σ̄−2
X ]

, (2.108)

where Σ̄X , X†X. As observed, λop
j depends on hj which is unknown and needs

to be estimated by the RD estimator. In this case, a reasonable approximation of

(2.108) can be obtained by replacing hH
j Σ̄−1

X hj with its expected value.

Since the elements of hj are uncorrelated, by employing E
{
|hk,j,0|2

}
= E

{
|hk,j,1|2

}
=

Papk, k ∈ Xu, one can easily write

E
{
hH
j Σ̄−1

X hj

}
= Pa(p† ⊗ 1†)Λ̄X , (2.109)

where p , [p0 p1 . . . pKu−1]†, and Λ̄X , diag(Σ̄−1
X ). Finally, by substituting (2.109)

into (2.108), (2.36) is obtained.

2.D Distribution of the RD Estimator

Based on the central limit theorem for dependent random variables in [96], one can

show that the distribution of ĥk,ᾱ,l given in (2.42) and (2.41) can be approximated by

a joint complex Gaussian distribution under hypothesis H0k and H1k.

By applying the statistical expectation to (2.41), and employing E
{
hk,j,f |Htk

}
= 0

and E
{
hk,j,f̄ |Htk

}
= 0, one easily obtain E

{
ĥk,ᾱ,l|Htk

}
= 0.

To obtain the diagonal elements of the covariance matrix Σtk, i.e., Σtk
2j′+f,2j′+f ,
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t ∈ {0, 1}, let us consider the general rule in (2.110) for computing the variance of

multiple complex random variables z0, z2, . . . , zn−1.

Var
{

n∑
i=1

aizi

}
=

n−1∑
i=0

∣∣∣ai∣∣∣2Var{zi} (2.110)

+
n−1∑
i=0

∑
j 6=i

aia
∗
jCov

{
zi, zj

}
.

Since hk1,j,f and hk2,j,f̄ , and w′k,j,f k1, k2 ∈ Xu, in (2.41), are zero-mean and uncorre-

lated random variables, by applying (2.110) to (2.41), one can write

Σtk
2j′+f,2j′+f = Var

{
ĥk,j,f

∣∣∣Htk

}
= E

{∣∣∣ĥk,j,f ∣∣∣2∣∣∣Htk

}
= tΩ2

2k+f,2k+fVar
{
hk,j,f

∣∣∣Htk

}
+ tΩ2

2k+f,2k+f̄Var
{
hk,j,f̄

∣∣∣Htk

}
+
∑
n6=k

Ω2
2k+f,2n+fVar

{
hn,j,f

∣∣∣Htk

}

+
∑
n6=n

Ω2
2k+f,2n+f̄Var

{
hn,j,f̄

∣∣∣Htk

}
+ Var

{
w′k,j,f

}
. (2.111)

Further, by employing the law of total variance [97] and (2.17), Var
{
hk,j,f

∣∣∣H1k
}
, f ∈

{0, 1} in (2.111) can be written as

Var
{
hk,j,f

∣∣∣Htk

}
= Var

{
gkbk,j−αk−1+f

∣∣∣Htk

}
= E

{
Var

{
gkbk,j−αk−1+f

∣∣∣gk, Htk

}}

+ Var
{
E
{
gkbk,j−αk−1+f

∣∣∣gk, Htk

}}
(2.112)

For ᾱ+ ≤ j ≤ ᾱ + l − 1, Var
{
bk,j−αk−1+f

∣∣∣Htk

}
= t, f ∈ {0, 1}, and one obtains

E
{
Var

{
gkbk,j−αk−1+f

∣∣∣gk, Htk

}}
= E

{∣∣∣gk∣∣∣2}Var{bk,j−αk−1+f

∣∣∣Htk

}
= tpk. (2.113)

By substituting (2.113) and E
{
gkbk,j−αk−1+f

∣∣∣gk, Htk

}
= 0, f ∈ {0, 1}, into (2.112),
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one obtains

Var
{
hk,j,f

∣∣∣Htk

}
= E

{∣∣∣hk,j,f ∣∣∣2∣∣∣Htk

}
= tpk. (2.114)

Similar to (2.112), for n 6= k and f ∈ {0, 1}, we can write

Var
{
hn,j,f

∣∣∣Htk

}
= Var

{
gnbn,j−αn−1+f

∣∣∣Htk

}
= E

{
Var

{
gnbn,j−αn−1+f

∣∣∣gn, Htk

}}

+ Var
{
E
{
gnbn,j−αn−1+f

∣∣∣gn, Htk

}}
(2.115)

For ᾱ+ ≤ j ≤ ᾱ + l − 1, Var
{
bn,j−αn−1+f

∣∣∣Htk

}
= Pa, f ∈ {0, 1}, and one can write

E
{
Var

{
gnbk,j−αn−1+f

∣∣∣gn, Htk

}}
= E

{∣∣∣gn∣∣∣2}Var{bn,j−αn−1+f

∣∣∣Htk

}
= Papn. (2.116)

By substituting (2.116) and E
{
gnbk,j−αn−1+f

∣∣∣gn, Htk

}
= 0, f ∈ {0, 1}, into (2.115),

one obtains

Var
{
hn,j,f

∣∣∣Htk

}
= E

{∣∣∣hn,j,f ∣∣∣2∣∣∣Htk

}
= Papn, n 6= k (2.117)

Finally, by substituting (2.114), (2.117), and Var
{
w′k,j,f

}
= Σw′

2k+f,2k+f , into (2.111),

(2.45) is obtained.

For the off-diagonal elements of the covariance Σtk, t ∈ {0, 1}, by using (2.41) and

E
{
ĥk1,j1,f1

}
= E

{
ĥk2,j2,f2

}
= 0, k1, k2 ∈ Xu one can write (2.118). Based on the value

of j1(j′1), j2(j′2), f1, and f2, six cases for the upper triangular off-diagonal elements of

Σtk. i.e., 2j′1 + f1 < 2j′2 + f2, can be considered. It is obvious that the lower upper

triangular off-diagonal elements of Σtk, t ∈ {0, 1} are easily obtain by applying the

Hermitian operand to the upper triangular off-diagonal elements.
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Σtk
2j′1+f1,2j′2+f2

= Cov
{
ĥk,j1,f1 , ĥ

∗
k,j2,f2

∣∣Htk

}
= E

{
ĥk,j1,f1 ĥ

∗
k,j2,f2 |Htk

}
(2.118)

= E
{(

t
(
Ω2k+f1,2k+f1hk,j1,f1 + Ω2k+f1,2k+f̄1

hk,j1,f̄1

)
+
∑
n6=k

{
Ω2k+f1,2n+f1hn,j2,f1 + Ω2k+f1,2n+f̄1

hn,j1,f̄1

}
+ w′k,j1,f1

)
(
t
(
Ω2k+f2,2k+f2h

∗
k,j2,f2 + Ω2k+f2,2k+f̄2

h∗
k,j2,f̄2

)
+
∑
n 6=k

{
Ω2k+f2,2n+f2h

∗
n,j2,f2 + Ω2k+f̄2,2n+f̄2

h∗
n,j2,f̄2

}
+ w′k,j2,f2

)∣∣∣∣Htk

}

By replacing hk2,j2,0 with hk1,j1,1, k1 = k2, j2 = j1 + 1, and employing

E
{
hk1,j1,f1h

∗
k2,j2,f2

∣∣∣Htk

}
= 0,

∣∣∣j2 − j1

∣∣∣ > 1, (2.119a)

E
{
hk1,j1,f1h

∗
k2,j2,f2

∣∣∣Htk

}
= 0, j2 = j1 + 1, f1 = 0, (2.119b)

E
{
hk1,j1,f1h

∗
k2,j2,f2

∣∣∣Htk

}
= 0, j2 = j1 + 1, f1 = f2 = 1, (2.119c)

E
{
hk1,j1,f1h

∗
k2,j2,f2

∣∣∣Htk

}
= 0, j2 = j1, f1 6= f2, (2.119d)

E
{
w′k1,j1,f1h

∗
k2,f2,j2

∣∣∣Htk

}
= 0, (2.119e)

E
{
w′k1,j1,f1(w′k2,j2,f2)∗

∣∣∣Htk

}
= 0 j1 6= j2, (2.119f)

one can write

• Case 1: j2 > j1 + 1

Σtk
2j′1+f1,2j′2+f2 = Cov

{
ĥk,j1,f1 , ĥk,j2,f2

∣∣∣Htk

}
= 0. (2.120)

• Case 2: j1 = j2 = j, f1 = 0 and f2 = 1
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Σ1k
2j′,2j′+1 = Cov

{
ĥk,j,0, ĥk,j,1

∣∣∣Htk

}
= t

(
Ω2k,2kΩ2k+1,2k

)
E
{∣∣∣hk,j,0∣∣∣2∣∣∣Htk

}
(2.121)

+ t
(
Ω2k+1,2k+1Ω2k,2k+1

)
E
{∣∣∣hk,j,1∣∣∣2∣∣∣Htk

}
+
∑
n6=k

Ω2k,2nΩ2k+1,2nE
{∣∣∣hn,j,0∣∣∣2∣∣∣Htk

}

+
∑
n6=k

Ω2k+1,2n+1Ω2k,2n+1E
{∣∣∣hn,j,1∣∣∣2∣∣∣Htk

}
+ E

{
w′k,j,0

(
w′k,j,1

)∗}

• Case 3: j1 = j, j2 = j + 1, and f1 = f2 = 0,

Σtk
2j′,2j′+2 = Cov

{
ĥk,j,0, ĥk,j+1,0

∣∣∣H1k

}
= t

(
Ω2k,2kΩ2k,2k+1

)
E
{∣∣∣hk,j,1∣∣∣2∣∣∣Htk

}
(2.122)

+
∑
n 6=k

Ω2k,2nΩ2k,2n+1E
{∣∣∣hn,j,1∣∣∣2∣∣∣Htk

}

• Case 4: j1 = j, j2 = j + 1, and f1 = f2 = 1,

Σtk
2j′+1,2j′+3 = Cov

{
ĥk,j,1, ĥk,j+1,1

∣∣∣Htk

}
= t

(
Ω2k+1,2k+1Ω2k+1,2k

)
E
{∣∣∣hk,j,1∣∣∣2∣∣∣Htk

}
+
∑
n 6=k

Ω2k+1,2n+1Ω2k+1,2nE
{∣∣∣hn,j,1∣∣∣2∣∣∣Htk

}
(2.123)

• Case 5: j1 = j, j2 = j + 1, f1 = 0, and f2 = 1

Σtk
2j′,2j′+3 = Cov

{
ĥk,j,0, ĥk,j+1,1

∣∣∣Htk

}
= t

(
Ω2k,2k+1Ω2k+1,2k

)
E
{∣∣∣hk,j,1∣∣∣2∣∣∣Htk

}
(2.124)

+
∑
n6=k

Ω2k,2n+1Ω2k+1,2nE
{∣∣∣hn,j,1∣∣∣2∣∣∣Htk

}

• Case 6: j1 = j, j2 = j + 1, f1 = 1, and f2 = 0
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Σ1k
2j′+1,2j′+2 = Cov

{
ĥk,j,1, ĥk,j+1,0

∣∣∣Htk

}
= Ω2k,2kΩ2k+1,2k+1E

{∣∣∣hk,j,1∣∣∣2∣∣∣Htk

}
(2.125)

+
∑
n6=k

Ω2k,2nΩ2k+1,2n+1E
{∣∣∣hn,j,1∣∣∣2∣∣∣Htk

}

By substituting (2.114) and (2.117) into (2.121)-(2.125) and using E
{
w′k1,j1,f1(w′k2,j2,f2)∗|Htk

}
= Σw′

2k1+f1,2k2+f2δj1,j2 , (2.47) is obtained.

2.E Proof of the Optimum Bayesian’s Decision Rule

Based on the Bayesian hypothesis testing, transmission state of the kth IoT device is

identified as active, i.e., H1k, if

p
(
ĥk,ᾱ,l

∣∣∣H1k

)
p
(
ĥk,ᾱ,l

∣∣∣H0k

) ≥ 1− Pa

Pa
. (2.126)

By using Lemma 2.3.1, the term on the left-hand side of (2.126) is written as

det(πΣ0k) exp
(
− ĥH

k,ᾱ,l

(
Σ1k

)−1
ĥk,ᾱ,l

)
det(πΣ1k) exp

(
− ĥH

k,ᾱ,l

(
Σ0k

)−1
ĥk,ᾱ,l

) . (2.127)

By substituting (2.127) into (2.126), taking the natural logarithms of the both sides

of the inequality, and after some simplification, one obtains (2.49) and (2.50).

2.F Proof of the MLR decision rule

Since the elements of the reconstructed vector h̆k,l ,
[
h̆k,0 h̆k,2 · · · h̆k,2(l−1)

]†
under

hypothesis Htk, t ∈ {0, 1} are i.i.d. zero-mean complex Gaussian random variables
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with variance Σtk
2k+f,2k+f , where f = 1 for βk < Nc

2 , and f = 0 for βk ≥ Nc
2 , by

employing the MLR test, the transmission state of the kth IoT device is identified as

active, i.e., dk = H1k, if

p
(
h̆k,l|H1k

)
p
(
h̆k,l|H0k

) =

l−1∏
i=0

p
(
h̆k,2i

∣∣∣H1k

)
l−1∏
i=0

p
(
h̆k,2i

∣∣∣H0k

) ≥ γk (2.128)

=

(
πΣ0k

2k+f,2k+f

)l
exp

−
l−1∑
i=0

∣∣∣h̆k,i∣∣∣2
Σ1k

2k+f,2k+f


(
πΣ1k

2k+f,2k+f

)l
exp

−
l−1∑
i=0

∣∣∣h̆k,i∣∣∣2
Σ0k

2k+f,2k+f


≥ γk,

where γk is a threshold. By taking the natural logarithms of the both sides of the

inequality in (2.128), and after some mathematical manipulations, one obtains (2.53)

for

θ′k , l
√

2 ln
γ 1

l
k Σ1k

2k+f,2k+f

Σ0k
2k+f,2k+f

 Σ1k
2k+f,2k+f − Σ0k

2k+f,2k+f

Σ1k
2k+f,2k+f

(
Σ0k

2k+f,2k+f

) 3
2

, (2.129)

where f = 1 for βk < Nc
2 , and f = 0 for βk ≥ Nc

2 .

2.G Proof of the Correct Identification and False

Alarm Rates for the ML Squared `2 norm

According to Lemma 2.3.1, the elements of h̆k,l =
[
h̆k,0 h̆k,2 · · · h̆k,2(l−1)

]†
in (2.51) un-

der hypothesis Htk, t ∈ {0, 1} are i.i.d. zero-mean complex Gaussian random variables

with variance Σtk
2k+f,2k+f , where f = 1 for βk < Nc

2 , and f = 0 for βk ≥ Nc
2 . Hence,

yk , φ
(
h̆k,l

)
in (2.53) follows central Chi-squared (χ2) distribution with 2l degrees of
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freedom as

fyk|Htk

(
y|Htk

)
=
yl−1exp

(
−y
2

)
2lΓ

(
l
) , (2.130)

where t ∈ {0, 1}, f = 1 for βk < Nc
2 , and f = 0 for βk ≥ Nc

2 .

By employing (2.53), the false alarm rate of the kth IoT device is derived as

P
(f)
k = P

{
dk = H1k

∣∣∣H0k

}

= P
{ √

2√
Σ0k

2k+f,2k+f

l−1∑
l=0

∣∣∣h̆k,l∣∣∣2 ≥ θ′k
∣∣∣H0k

}

=
∫ +∞

θ′
k

yl−1exp
(
−y
2

)
2lΓ

(
l
) dy = 1−

Γ
(
l,
θ′k
2

)
Γ(l) , (2.131)

where Γ(l) =
∫∞

0 exp(−t)t(l−1)dt and Γ(a, b) =
∫ b

0 exp(−t)t(a−1)dt are complete and

lower incomplete gamma functions, respectively. By applying the inverse upper in-

complete gamma function to (2.131), (2.54) is obtained.

Similar to the false alarm rate in (2.131), by using (2.130) for t = 1, the correct

identification rate of the kth IoT device is obtained as

P
(d)
k = P

{
dk = H1k

∣∣∣H1k

}

= P


√

2√
Σ0k

2k+f,2k+f

l−1∑
l=0

∣∣∣h̆k,l∣∣∣2 ≥ θ′k
∣∣∣H1k


= P


√

2√
Σ1k

2k+f,2k+f

≥

√√√√Σ0k
2k+f,2k+f

Σ1k
2k+f,2k+f

θ′k
∣∣∣H1k



=
∫ +∞

θ′′
k

yl−1exp
(
−y
2

)
2lΓ

(
l
) dy = 1−

Γ
(
l,

√
Σ0k

2k+f,2k+f
4Σ1k

2k+f,2k+f
θ′k

)
Γ(l) . (2.132)
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2.H Approximation of the Tuning Parameter λ`1

for the `1 norm DSA IoT Identification Algo-

rithm

By replacing ‖hk,j‖0 with
∥∥hk,j∥∥1/|gk|, one can write

λ`0
∥∥∥hj∥∥∥0

= λ`0

Ku−1∑
k=0

∥∥∥hk,j∥∥∥0
= λ`0

Ku−1∑
k=0

∥∥∥hk,j∥∥∥1
|gk|

(2.133)

In order to have the solution of (2.56) the same as the one of the original SSR problem

in (2.26), we need to have

λ`1
∥∥∥hj∥∥∥1

= λ`0
∥∥∥hj∥∥∥0

= λ`0

Ku−1∑
k=0

∥∥∥hk,j∥∥∥1
|gk|

. (2.134)

Since gk ∼ Nc
(
0, pk

)
, k ∈ Xu, |gk| follows Rayleigh distribution. By replacing |gk|

with E
{
|gk|

}
=
√
πpk/4 in (2.137), one can write

λ`1
∥∥∥hj∥∥∥1

≈ 2λ`0√
π

Ku−1∑
k=0

∥∥∥hk,j∥∥∥1√
pk

. (2.135)

Further, we have

∥∥∥rj −Xhj

∥∥∥
F

=
∥∥∥rj − Ẍḧj

∥∥∥
F

(2.136)

where Ẍ and ḧj are given in (2.57a) and (2.57b). By substituting (2.139) and (2.140)

into (2.56), one obtains (2.59) and (2.60).
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2.I Approximation of the Tuning Parameter λ`1 for

the `1 norm DSA IoT Identification algorithm

By replacing ‖hk,j‖0 with
∥∥hk,j∥∥1/|gk|, one can write

λ`0
∥∥∥hj∥∥∥0

= λ`0

Ku−1∑
k=0

∥∥∥hk,j∥∥∥0
= λ`0

Ku−1∑
k=0

∥∥∥hk,j∥∥∥1
|gk|

(2.137)

In order to have the solution of (2.56) the same as the one of the original SSR problem

in (2.26), we need to have

λ`1
∥∥∥hj∥∥∥1

= λ`0
∥∥∥hj∥∥∥0

= λ`0

Ku−1∑
k=0

∥∥∥hk,j∥∥∥1
|gk|

. (2.138)

Since gk ∼ Nc
(
0, pk

)
, k ∈ Xu, |gk| follows Rayleigh distribution. By replacing |gk|

with E
{
|gk|

}
=
√
πpk/4 in (2.137), one can write

λ`1
∥∥∥hj∥∥∥1

≈ 2λ`0√
π

Ku−1∑
k=0

∥∥∥hk,j∥∥∥1√
pk

. (2.139)

Further, we have

∥∥∥rj −Xhj

∥∥∥
F

=
∥∥∥rj − Ẍḧj

∥∥∥
F

(2.140)

where Ẍ and ḧj are given in (2.57a) and (2.57b). By substituting (2.139) and (2.140)

into (2.56), one obtains (2.59) and (2.60).
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2.J Proof of the KKT Optimality Conditions for

the `1 − `2 Mixed-norm PDSA IoT Identifica-

tion Algorithms

For a convex function f from a complex matrix space M to R, the subdiffrential of f

at matrix A is defined as [98, 99]

∂f(A) ,
{
G ∈M : f(Z) ≥ f(A) (2.141)

+ Re
{
< Z −A,G >

}
∀G ∈M

}
.

The elements of ∂f(A) are called subgradients of the function f at A. In [99], it is

shown that for a convex and differentiable function f , ∂f(A) = ∇f(A). If f is a

convex function, then A is the maximizer of f if and only if 0 ∈ ∂f(A).

By employing (2.141), the KKT optimality conditions of the optimization problem

of PDSA IoT identification are obtained as

0 ∈ 1
2∂ḧk,ᾱ,l

∥∥∥R− ẌḦ
∥∥∥2

F
+ ∂

ḧk,ᾱ,l

Ku−1∑
k=0

∥∥∥ḧk,ᾱ,1∥∥∥2
. (2.142)

Because
∥∥∥R− ẌḦ

∥∥∥2

F
is convex and differentiable, one can write

1
2∂ḧk,ᾱ,l

∥∥∥R− ẌḦ
∥∥∥2

F
= 1

2∇ḧk,ᾱ,l

∥∥∥R̄− ẌH̆
∥∥∥2

F
= Ψ̈k, (2.143)

where Ψ̈k ,
[
Ψ̈k,0,0 Ψ̈k,0,1 · · · Ψ̈k,l−1,0 Ψ̈k,l−1,1

]†
,
[
Ψ̈k,0,f Ψ̈k,1,f · · · Ψ̈k,l−1,f

]
, ẍ†k,f

(
R−

ẌḦ
)
, with f ∈ {0, 1}, ẍk,f = p

− 1/2
k xk,f , and xk,1 and xk,0 are given in (2.11). Similar

to (2.143), by using ∂
ḧk,ᾱ,l

∥∥∥ḧk,ᾱ,1∥∥∥2
= ∇

ḧk,ᾱ,l

∥∥∥ḧk,ᾱ,1∥∥∥2
for ḧk,ᾱ,l 6= 0 and by employing
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the definition of the subdifferential in (2.141) for ḧk,ᾱ,l = 0, one obtains

∂
ḧk,ᾱ,l

∥∥∥ḧk,ᾱ,1∥∥∥2
=


ḧk,ᾱ,l

‖ḧk,ᾱ,l‖2
for ḧk,ᾱ,l 6= 0

{α ∈ C2l
∣∣∣‖α‖2 ≤ 1} for ḧk,ᾱ,l = 0

, (2.144)

Finally, by employing (2.143) and (2.144), and then (2.142), the KKT optimality

conditions are obtained as

−Ψ̈k + λ
ḧk,ᾱ,l∥∥∥ḧk,ᾱ,l∥∥∥2

= 0 if k ∈ Xa (2.145a)

∥∥∥Ψ̈k∥∥∥2
< λ if k /∈∈ Xa. (2.145b)

2.K Equivalence of `1 − `2 Mixed-norm Algorithm

with Iterative Reweighed LS Estimator

Let us consider a random matrix A with the same size as H. It can be easily show

that Ĥ[t+1] in (2.78) can be written as Ĥ[t+1] = F[t]Â[t+1] where Â[t+1] is obtained by

Â[t+1] = arg min
A

1
2
∥∥∥R̄−XF[t]A

∥∥∥2

F
+ λ`1`2

Ku−1∑
k=0

∥∥∥ak,ᾱ,l∥∥∥2

2
. (2.146)

Since Â[t+1] =
(
F[t]
)−1

Ĥ
[t+1], one can write

Ĥ
[t+1] = argmin

H̄

1
2
∥∥∥R−XF[t]

(
F[t]
)−1

H
∥∥∥2

F

+ λ`1`2

Ku−1∑
k=0

∥∥∥(F[t]
)−1

hk,ᾱ,l

∥∥∥2

2
. (2.147)

As seen, equation (2.147) represents iterative reweighed LS estimator.
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Chapter 3

Doppler Spread Estimation in

MIMO Frequency-selective Fading

Channels

3.1 Introduction

One of the main challenges in high-speed mobile communications is the presence of

large Doppler spreads. Thus, accurate estimation of maximum Doppler spread (MDS)

plays an important role in such systems.

Maximum Doppler spread measures the coherence time, related to the rate of

change, of wireless communication channels. Its knowledge is important to design

efficient wireless communication systems for high-speed vehicles [20, 21, 100]. In

particular, accurate estimation of the MDS is required for the design of adaptive

transceivers, as well as in cellular and smart antenna systems [22, 23, 100–107]. For

example, in the context of adaptive transceivers, system parameters such as coding,

modulation, and power are adapted to the changes in the channel [101–104]. In cellular
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systems, handoff is dictated by the velocity of the mobile station, which is also directly

obtained from the Doppler information. Knowledge of the rate of the channel change

is also employed to reduce unnecessary handoff; the handoff is initiated based on

the received power at the mobile station, and the optimum window size for power

estimation depends on the MDS [22, 23, 104, 105]. In the context of smart antenna

systems, the MDS is used in the design of the maximum likelihood (ML) space-

time transceivers [106, 107]. In addition, knowledge of MDS is required for channel

tracking and equalization, as well as for the selection of the optimal interleaving length

in wireless communication systems [108].

3.1.1 Literature Review

In general, parameter estimators can be categorized as: i) data-aided (DA), where

the estimation relies on a pilot or preamble sequence [109–113] and ii) non-data-

aided (NDA), where the estimation is performed with no a priori knowledge about

the transmitted symbols [114–117].

With regard to the MDS estimation, the DA approach often provides accurate

estimates for slowly-varying channels by employing a reduced number of pilot symbols,

whereas this does not hold for fast-varying channels. In the latter case, the details of

the channel variations cannot be captured accurately, and more pilots are required,

which results in increased overhead and reduced system capacity.

There are five major classes of MDS estimators: ML-based, power spectral density

(PSD)-based, level-crossing-rate (LCR)-based, covariance-based, and cyclostationarity-

based estimators. The ML-based estimator maximizes the likelihood function, and, in

general, is asymptotically unbiased, achieving the Cramer-Rao lower bound (CRLB)

[118, 119]. However, maximum likelihood estimator (MLE) for MDS suffers from sig-

nificant computational complexity. Hence, different modified low-complexity MLEs
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for MDS in single-input single-output (SISO) flat-fading channel developed [1, 2].

With the PSD-based estimators, some unique features from the Doppler spectrum are

obtained through the sample periodogram of the received signal [120]. Covariance-

based estimators extract the Doppler information which exists in the sample auto-

covariance of the received signal [3, 121, 122]. LCR-based estimators rely on the

number of level crossings of the received signal statistics, which is proportional to

the MDS [123]. The cyclostationarity-based estimators exploit the cyclostationarity

of the received signal [4]. Comparing with other MDS estimators, the advantage

of the cyclostationarity-based estimators is the robustness to stationary noise and

interference.

While the problem of MDS estimation in SISO flat-fading channel has been exten-

sively investigated in the literature [1–4, 118–124], the MDS estimation in multiple-

input multiple-output (MIMO) frequency-selective or in MIMO flat-fading channel

has not been considerably explored. Furthermore, DA-MDS estimation has mainly

been studied in the literature. To the best of our knowledge, only a few works have

addressed MDS etimation in conjunction with multiple antenna systems. In [119],

the authors derived an asymptotic DA-MLE and DA-CRLB for joint MDS and noise

variance estimation in MIMO flat-fading channel. In [4], the cyclic correlation (CC)

of linearly modulated signals is exploited for the MDS estimation for single trans-

mit antenna scenarios. While both DA and NDA estimators are studied in [4], only

frequency-flat fading and single transmit antenna are considered.

3.1.2 Motivation

After reviewing the current MDS estimators in the literature, the followings were

made:

• While the problem of DA-CRLB for MDS estimation in MIMO flat-fading
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channel has been studied in the literature, the DA-CRLB in MIMO frequency-

selective fading channel has not been investigated;

• The problem of NDA-CRLB for MDS estimation has not been investigated in

the literature (neither in MIMO flat-fading nor frequency-selective channel);

• The DA-MLE for MDS in MIMO frequency-selective channel has not been in-

vestigated either;

• The NDA-MLEs for MDS in MIMO flat-fading and frequency-selective channel

have not been explored;

• The existing DA and NDA MDS estimators suffer from huge computational

complexity;

• The current MDS estimators require joint parameter estimation, such as carrier

frequency offset (CFO), signal power, noise power, and channel delay profile

estimation.

3.1.3 Problem Statement

The specific research problems which are studied in Chapter 3 of this thesis are pre-

sented as follows:

• The DA- and NDA-CRLBs for MDS estimation in MIMO frequency-selective

fading channel are derived;

• The DA- and NDA-MLEs for MDS in MIMO frequency-selective fading channel

are derived;

• A new low-complexity NDA-moment-based estimator (MBE) for MDS in MIMO

frequency-selective channel is proposed;
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• The optimal combining method for the proposed NDA-MBE in case of multiple

receive antennas is derived through the bootstrap technique.

3.1.4 Methodology

The proposed DA-CRLB for MDS estimation and DA-MLE in MIMO frequency-

selective channel are derived through the conditional probability density function

(PDF) of the received vector given the known transmitted symbols. In this case, the

Fisher information and the conditional log-likelihood function is obtained from the

conditional PDF for the DA-CRLB and DA-MLE, respectively.

For the NDA-CRLB and NDA-MLE, it is assumed that the transmitted sym-

bols are unknown, but the alphabet from which they are drawn is known. In this

case, through applying the marginal PDF to the joint PDF of the received vector

and constellation vector, the Fisher information and the log-likelihood function are

obtained.

The proposed NDA-MBE relies on the statistical moment-based approach to es-

timate the normalized squared autocorrelation function of the fading channel. Then,

the problem of MDS estimation is formulated as a non-linear regression problem,

and the least-squares curve-fitting optimization technique is applied to determine the

estimate of the MDS.

3.2 Maximum Doppler Spread (MDS) Estimation

3.2.1 System Model

Let us consider a MIMO wireless communication system with nt transmit anten-

nas and nr receive antennas, where the received signals are affected by time-varying

frequency-selective Rayleigh fading and are corrupted by additive white Gaussian
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noise. The discrete-time complex-valued baseband signal at the nth receive antenna

is expressed as [125]

r
(n)
k =

nt∑
m=1

L∑
l=1

h
(mn)
k,l s

(m)
k−l + w

(n)
k k = 1, ..., N, (3.1)

where N is the number of observation symbols, L is the length of the channel impulse

response, s(m)
k is the symbol transmitted from the mth antenna at time k, satisfying

E
{
s

(m1)
k1 (s(m2)

k2 )∗
}

= σ2
sm1
δm1,m2δk1,k2 , with σ2

sm1
being the transmit power of the m1th

antenna, w(n)
k is the complex-valued additive white Gaussian noise at the nth receive

antenna at time k, whose variance is σ2
wn , and h

(mn)
k,l denotes the zero-mean complex-

valued Gaussian fading process between the mth transmit and nth receive antennas

for the lth tap of the fading channel and at time k. It is considered that the channels

for different antennas are independent, with the cross-correlation of the l1 and l2 taps

given by1

E
{
h

(mn)
k,l1

(
h

(mn)
k+u,l2

)∗}
= σ2

h(mn),l1
J0(2πfDTsu)δl1,l2 , (3.2)

where J0(·) is the zero-order Bessel function of the first kind, σ2
h(mn),l1

is the variance

of the l1th tap between the mth transmit and nth receive antennas, Ts denotes the

symbol period, and fD = v/λ = fcv/c represents the MDS in Hz, with v as the

relative speed between the transmitter and receiver, λ as the wavelength, fc as the

carrier frequency, and c as the speed of light.

3.2.2 CRLB for MDS Estimation

In this section, the DA- and NDA-CRLB for MDS estimation in MIMO frequency-

selective fading channel are derived.
1Here we consider the Jakes channel; it is worth noting that different parametric channel models

can be also considered.
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3.2.2.1 DA-CRLB

Let us consider s(m)
k = s

(m)
k , m = 1, 2, · · · , nt, k = 1, 2, · · · , N − L + 1, as employed

pilots for DA-MDS estimation. The received signal at nth receive antenna in (3.1)

can be written as

r
(n)
k = r̄

(n)
k + j r̆

(n)
k =

nt∑
m=1

L∑
l=1

h̄
(mn)
k,l s̄

(m)
k−l − h̆

(mn)
k,l s̆

(m)
k−l + w̄

(n)
k

+ j

 nt∑
m=1

L∑
l=1

h̄
(mn)
k,l s̆

(m)
k−l + h̆

(mn)
k,l s̄

(m)
k−l + w̆

(n)
k

, (3.3)

where r̄
(n)
k , Re

{
r
(n)
k

}
, r̆

(n)
k , Im

{
r
(n)
k

}
, h̄

(mn)
k,l , Re

{
h

(mn)
k,l

}
, h̆

(m,n)
k,l , Im

{
h

(mn)
k,l

}
,

s̄
(mn)
k−l , Re

{
s

(mn)
k−l

}
, and s̆(mn)

k−l , Im
{
s

(mn)
k−l

}
.

Let us define

r(n) ,
[
r̄
(n)
1 r̄

(n)
2 · · · r̄(n)

N r̆
(n)
1 r̆

(n)
2 · · · r̆(n)

N

]†
(3.4)

and

r ,
[
r(1)† r(2)† · · · r(nr)†

]†
. (3.5)

The elements of the vector r(n), n = 1, 2, · · · , nt, are linear combinations of the

correlated Gaussian random variables as in (3.3). Thus, r, is a Gaussian random

vector with PDF given by

p(r|s;θ) =
exp

(
− 1

2r
†Σ−1(s,θ)r

)
(2π)Nnr det

1
2
(
Σ(s,θ)

) , (3.6)

where Σ(s,θ) , E{rr†}, s ,
[
s(1)† s(2)† · · · s(nt)†

]†
, s(m) ,

[
s̄

(m)
1 s̄

(m)
2 · · · s̄(m)

N−L+1 s̆
(m)
1

s̆
(m)
2 · · · s̆(m)

N−L+1

]†
, and θ , [ξ ϑ fD]† is the parameter vector, as
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ξ , [σ2
w1 · · · σ

2
wnr

]† (3.7a)

ϑ , [ϑ†1 ϑ†2 · · · ϑ†L]† (3.7b)

ϑl ,
[
σ2

h(11),l
· · · σ2

h(1nr),l
σ2

h(21),l
· · · (3.7c)

σ2
h(2nr),l

· · · σ2
h(nt1),l

· · · σ2
h(ntnr),l

]†
.

Since r(n1) and r(n2), n1 6= n2, are uncorrelated random vectors, i.e. E
{
r(n1)r(n2)†

}
=

0, the covariance matrix of r, Σ(s,θ), is block diagonal as

Σ(s,θ) , E{rr†} =



Σ(1)

Σ(2)

. . .

Σ(nr)


, (3.8)

where Σ(n) , E
{
r(n)r(n)†

}
. By employing (3.2), (3.3), and (3.4), using the fact the

real and imaginary part of the fading tap are independent random variables with

E
{
|h̄(mn)
k,l |2

}
=
{
|h̆(mn)
k,l |2

}
= σ2

h(mn),l/2, and after some algebra, the elements of the

covariance matrix Σ(n), n ∈ {1, 2, · · · , nr}, are obtained as

E
{
r̄
(n)
k r̄

(n)
k+u

}
= E

{
r̆
(n)
k r̆

(n)
k+u

}
(3.9a)

= 1
2

nt∑
m=1

L∑
l=1

σ2
h(mn),l

(
s̄

(m)
k−l s̄

(m)
k+u−l + s̆

(m)
k−l s̆

(m)
k+u−l

)
J0(2πfDTsu) + σ2

wn
2 δu,0

E
{
r̄
(n)
k r̆

(n)
k+u

}
= −E

{
r̆
(n)
k r̄

(n)
k+u

}
(3.9b)

= 1
2

nt∑
m=1

L∑
l=1

σ2
h(mn),l

(
s̄

(m)
k−l s̆

(m)
k+u−l − s̆

(m)
k−l s̄

(m)
k+u−l

)
J0(2πfDTsu).

80



The Fisher information matrix of the parameter vector θ, I(θ), for the zero-mean

Gaussian observation vector in (3.6) is obtained as

[I(θ)]ij , −E

∂2 ln p(r|s;θ)
∂θi∂θj

 = 1
2tr

Σ−1(s,θ)∂Σ(s,θ)
∂θi

Σ−1(s,θ)∂Σ(s,θ)
∂θj

.
(3.10)

For the MDS, fD, I(fD) , [I(θ)]xx, x = ntnrL+ nr + 1, and one obtains

I(fD) = −E

∂2 ln p(r|s;θ)
∂f 2

D

 = 1
2tr

(Σ−1(s,θ)∂Σ(s,θ)
∂fD

)2
, (3.11)

where ∂Σ(s,θ)
∂fD

is obtained by replacing J0(2πfDTsu) with−2πuTsJ1(2πfDTsu) in Σ(s,θ),

where J1(·) is the Bessel function of the first kind.

Finally, by employing (3.11), the DA-CRLB for MDS estimation in MIMO frequency-

selective fading channel is obtained as

Var(f̂D) ≥ I−1(fD) = 1

1
2tr
(Σ−1(s,θ)∂Σ(s,θ)

∂fD

)2
 . (3.12)

3.2.2.2 NDA-CRLB

Let us consider that the symbols transmitted by each antenna are selected from a

constellation with elements {c1 c2 · · · c|M |}, where 1
|M |

∑|M |
i=1 |ci|2 = 1. The PDF of

the received vector r for NDA-MDS estimation is expressed as

p(r;ϕ) =
∑
c

p(r, c;ϕ), (3.13)

where c is the constellation vector as c ,
[
c(1)† c(2)† · · · c(nt)†

]†
, c(m) ,

[
c̄

(m)
1−L c̄

(m)
2−L · · · c̄

(m)
N−1

c̆
(m)
1−L c̆

(m)
2−L · · · c̆

(m)
N−1

]†
, c(m)

k = c̄
(m)
k +jc̆(m)

k is the constellation point of the mth transmit
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antenna at time k, and ϕ , [β† ξ† ϑ† fD]† with β , [σ2
s1 σ

2
s2 · · ·σ

2
snt

]†, and ξ and ϑ

are given in (3.7).

By employing the chain rule of probability and using p(c = c〈i〉) = |M |−N ′nt ,

N ′ , N + L− 1, one can write (3.13) as

p(r;ϕ) =
∑
c

p(r, c;ϕ) =
∑
c

p(c = c)p(r|c = c;ϕ)

= 1
|M |N ′nt

|M |N′nt∑
i=1

p(r|c = c〈i〉;ϕ), (3.14)

where c〈i〉 represents the ith possible constellation vector at the transmit-side.

Similar to the DA-CRLB, p(r|c = c〈i〉;ϕ) is Gaussian and

p
(
r|c = c〈i〉;ϕ

)
=

exp
(
− 1

2r
†Σ−1(c〈i〉,ϕ)r

)
(2π)Nnr det

1
2
(
Σ(c〈i〉,ϕ)

) , (3.15)

where Σ(c〈i〉,ϕ) , E
{
r〈i〉r

†
〈i〉

}
is the covariance matrix of the received vector r〈i〉

given the constellation vector is c = c〈i〉, i = 1, 2, · · · , |M |N ′nt . The 2Nnr × 2Nnr

covariance matrix Σ(c〈i〉,ϕ) is block diagonal as in (3.8), where its diagonal elements,

i.e., Σ(n)
〈i〉 , E

{
r
(n)
〈i〉 r

(n)
〈i〉
†
}
, n ∈ {1, 2, · · · , nr}, are obtained as

E
{
r̄
(n)
k,〈i〉r̄

(n)
k+u,〈i〉

}
= E

{
r̆
(n)
k,〈i〉r̆

(n)
k,〈i〉

}
(3.16a)

=1
2

nt∑
m=1

L∑
l=1

σ2
h(mn),l

σ2
sm

(
c̄

(m)
k−l,〈i〉c̄

(m)
k+u−l,〈i〉 + c̆

(m)
k−l,〈i〉c̆

(m)
k+u−l,〈i〉

)
J0(2πfDTsu) + σ2

wn
2 δu,0

E
{
r̄
(n)
k,〈i〉r̆

(n)
k+u,〈i〉

}
= −E

{
r̆
(n)
k,〈i〉r̄

(n)
k,〈i〉

}
(3.16b)

= 1
2

nt∑
m=1

L∑
l=1

σ2
h(mn),l

σ2
sm

(
c̄

(m)
k−l,〈i〉c̆

(m)
k+u−l,〈i〉 − c̆

(m)
k−l,〈i〉c̄

(m)
k+u−l,〈i〉

)
J0(2πfDTsu).

82



By substituting (3.15) into (3.14), one obtains

p(r;ϕ) = 1
|M |N ′nt

|M |N′nt∑
i=1

exp
(
− 1

2r
†Σ−1(c〈i〉,ϕ)r

)
(2π)Nnr det

1
2
(
Σ(c〈i〉,ϕ)

) . (3.17)

Finally, by employing (3.17), the NDA-CRLB for MDS estimation in MIMO

frequency-selective fading channel is expressed as

Var(f̂D) ≥ I−1(fD) = 1

−E
{
∂2 ln p(r;ϕ)

∂f2
D

} , (3.18)

where I(fD) is given in (3.19), and
∫
x
,
∫
x1

∫
x2
· · ·

∫
x(2Nnr)

. As seen, there is no an

explicit expression for (3.19), and thus, for the CRLB in (3.18). Therefore, numerical

methods are used to solve (3.19) and (3.18).

I(fD) = −E

∂2 ln p(r;ϕ)
∂f 2

D

 = − 1
|M |N ′nt

∫
x

∂2

∂f 2
D

 ln
|M |N′nt∑
i=1

exp
(
− 1

2x
†Σ−1(c〈i〉,ϕ)x

)
det

1
2
(
Σ(c〈i〉,ϕ)

)


|M |N′nt∑
q=1

exp
(
− 1

2x
†Σ−1(c〈q〉,ϕ)x

)
(2π)Nnr det

1
2
(
Σ(c〈q〉,ϕ)

) dx.
(3.19)

3.2.3 MLE for MDS

In this section, we derive the DA- and NDA-MLEs for MDS in MIMO frequency-

selective fading channel.
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3.2.3.1 DA-MLE for MDS

The DA-MLE for fD is obtained as

f̂D = arg max
fD

p(r|s;θ), (3.20)

where p(r|s;θ) is given in (3.6). Since p(r|s;θ) is a differentiable function, the DA-

MLE for fD is obtained from

∂ ln p(r|s;θ)
∂fD

= 0. (3.21)

By substituting (3.6) into (3.21) and after some mathematical manipulations, one

obtains

∂ ln p(r|s;θ)
∂fD

= −1
2tr

Σ−1(s,θ)∂Σ(s,θ)
∂fD

+ 1
2r
†Σ−1(s,θ)∂Σ(s,θ)

∂fD
Σ−1(s,θ)r.

(3.22)

As seen in (3.22), there is no closed-form solution for (3.21). Thus, numerical methods

need to be used to obtain solution. By employing the scoring method [126],2 the

solution of (3.22) can be iteratively obtained as

f̂
[t+1]
D = f̂

[t]
D + I−1(fD)∂ ln p(r|s;θ)

∂fD

∣∣∣∣∣∣
fD=f̂ [t]

D

, (3.23)

where I(fD) and ∂ ln p(r|s;θ)
∂fD

are given in (3.11) and (3.22), respectively.

2The scoring method replaces the Hessian matrix in the Newtown-Raphson method with the
negative of the Fisher information matrix.
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3.2.3.2 NDA-MLE for MDS

Similar to the DA-MLE, the NDA-MLE for MDS is obtained from

f̂D = arg max
fD

p(r;ϕ), (3.24)

where p(r;ϕ) is given in (3.17). Since p(r;ϕ) is a linear combination of differentiable

functions, the NDA-MLE for fD is obtained from

∂ ln p(r;ϕ)
∂fD

= 0. (3.25)

By substituting (3.17) into (3.25) and after some algebra, one obtains

|M |N′nt∑
i=1

r
†Σ−1(c〈i〉,ϕ)∂Σ(c〈i〉,ϕ)

∂fD
Σ−1(c〈i〉,ϕ)r

det
1
2 Σ(c〈i〉,ϕ)

−
tr
[
Σ−1(c〈i〉,ϕ)∂Σ(c〈i〉,ϕ)

∂fD

]
det

1
2 Σ(c〈i〉,ϕ)

 = 0

(3.26)

Similar to the DA-MLE, there is no closed-form solution for (3.26); thus, numerical

methods are used to solve (3.26).

3.2.4 NDA-MB Estimation of MDS

In this section, we propose an NDA-moment-based (MB) MDS estimator for multiple-

input single-output (MISO) systems under frequency-selective Rayleigh fading chan-

nel by employing the fourth-order moment of the received signal. Then, an extension

of the proposed estimator to the MIMO systems is provided.
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3.2.4.1 NDA-MBE for MDS in MISO Systems

Let us assume that the parameter vector ϕ = [β† ξ† ϑ† fD]† is unknown at the receive-

side. The statistical MB approach enables us to propose an NDA-MBE to estimate

fD without any priori knowledge of β, ξ, and ϑ. Let us consider the fourth-order

two-conjugate moment of the received signal at the nth receive antenna, defined as

κ(n)
u

∆= E
{∣∣∣r(n)

k

∣∣∣2∣∣∣r(n)
k+u

∣∣∣2} . (3.27)

With the transmitted symbols, s(m)
k , m = 1, ..., nt being independent, drawn from

symmetric complex-valued constellation points,3 and with u ≥ L, κ(n)
u is expressed as

(see Appendix 3.A for proof).

κ(n)
u = E

{∣∣∣r(n)
k

∣∣∣2|r(n)
k+u

∣∣∣2} (3.28)

=
nt∑
m=1

L∑
l=1

E
{∣∣∣h(mn)

k,l

∣∣∣2∣∣∣h(mn)
k+u,l

∣∣∣2} σ4
sm +

nt∑
m1=1

nt∑
m2 6=m1

L∑
l=1

E
{∣∣∣h(m1n)

k,l

∣∣∣2∣∣∣h(m2n)
k+u,l

∣∣∣2} σ2
sm1
σ2

sm2

+
nt∑
m=1

L∑
l1=1

L∑
l2 6=l1

E
{∣∣∣h(mn)

k,l1

∣∣∣2∣∣∣h(mn)
k+u,l2

∣∣∣2}σ4
sm + 2σ2

wn

nt∑
m=1

L∑
l=1

E
{∣∣∣h(mn)

k,l

∣∣∣2}σ2
sm + σ4

wn

+
nt∑

m1=1

nt∑
m2 6=m1

L∑
l1=1

L∑
l2 6=l1

E
{∣∣∣h(m1n)

k,l1

∣∣∣2∣∣∣h(m2n)
k+u,l2

∣∣∣2} σ2
sm1
σ2

sm2
, u ≥ L.

By employing the first-order autoregressive model of the Rayleigh fading channel,

one can write [128, 129]

h
(mn)
k,l = Ψuh

(mn)
k+u,l + v

(mn)
k,l , (3.29)

where Ψu , J0(2πfDTsu) and v
(mn)
k,l is a zero-mean complex-valued Gaussian white

process with variance E{|v(mn)
k,l |2} = (1− |Ψu|2)σ2

h(mn),l
, which is independent of h(mn)

k,l .

3E
{

(s(m)
k )2} = 0 for M -ary phase-shift-keying (PSK) and quadrature amplitude modulation

(QAM), M > 2 [127].
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By using (3.29) and exploiting the property of a complex-valued Gaussian random

variable z ∼ Nc (0, σ2
z ) that E{|z|2n} = n!σ2n

z [130], one obtains

E
{∣∣∣h(mn)

k,l

∣∣∣2|h(mn)
k+u,l

∣∣∣2} = E
{∣∣∣∣(J0(2πfdTsu)h(mn)

k+u,l + v
(mn)
k,l )

∣∣∣∣2∣∣∣h(mn)
k+u,l

∣∣∣2} (3.30)

= J2
0 (2πfdTsu)E

{∣∣∣h(mn)
k+u,l

∣∣∣4}+ J0(2πfdTsu)E
{

(h(mn)
k+u,l)∗

∣∣∣h(mn)
k+u,l

∣∣∣2(v(mn)
k,l )

}
+ E

{∣∣∣v(mn)
k,l

∣∣∣2|h(mn)
k+u,l

∣∣∣2}+ J0(2πfdTsu)E
{
h

(mn)
k+u,l

∣∣∣h(mn)
k+u,l

∣∣∣2(v(mn)
k,l )∗

}
= 2J2

0 (2πfdTsu)σ4
h(mn),l

+
(
1− J2

0 (2πfdTsu)
)
σ4

h(mn),l

=
(
1 + J2

0 (2πfdTsu)
)
σ4

h(mn),l
m = 1, ...nt, l = 1, ..., L.

With the channel taps l1 and l2 being uncorrelated for each transmit antenna,

i.e., E
{
h

(mn)
k,l1 (h(mn)

k,l2 )∗
}

= σ2
h(mn),l1

δl1,l2 and employing

E
{∣∣∣h(m1n)

k,l1

∣∣∣2∣∣∣h(m2n)
k+u,l2

∣∣∣2} = σ2
h(m1n),l1

σ2
h(m2n),l2

[
(1− δl1,l2)(1− δm1,m2) + δl1,l2(1− δm1,m2)

+ (1− δl1,l2)δm1,m2

]
+ σ4

h(m1n),l1

(
1 + J2

0 (2πfdTsu)
)
δm1,m2δl1,l2 ,

(3.31)

one can write (3.28) as

κ(n)
u =

nt∑
m=1

L∑
l=1

σ4
h(mn),l

σ4
sm

(
1 + J2

0 (2πfdTsu)
)

+
nt∑

m1=1

nt∑
m2 6=m1

L∑
l=1

σ2
h(m1n),l

σ2
h(m2n),l

σ2
sm1
σ2

sm2

+
nt∑
m=1

L∑
l1=1

L∑
l2 6=l1

σ2
h(mn),l1

σ2
h(mn),l2

σ4
sm +

nt∑
m1=1

nt∑
m2 6=m1

L∑
l1=1

L∑
l2 6=l1

σ2
h(m1n),l1

σ2
h(m2n),l2

σ2
sm1
σ2

sm2

+ 2σ2
wn

nt∑
m=1

L∑
l=1

σ2
h(mn),l

σ2
sm + σ4

wn . (3.32)

Further, let us consider the second-order moment of the received signal, i.e., µ(n)
2

∆=

E{|r(n)
k |2}. By using (3.1), it can be easily shown that
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µ
(n)
2 =

nt∑
m=1

L∑
l=1

σ2
h(mn),l

σ2
sm + σ2

wn . (3.33)

By employing (3.32) and (3.33), one obtains the normalized squared autocorrelation

function (AF) of the fading channel as (see Appendix 3.B for proof)

Ψu
∆= J2

0 (2πfdTsu) = η(n)
(
κ(n)
u −

(
µ

(n)
2

)2
)
, (3.34)

where η(n) = 1/
nt∑
m=1

L∑
l=1

σ4
h(mn),l

σ4
sm .

For non-constant modulus constellations, η(n) is expressed in terms of µ(n)
4

∆=

E
{
|r(n)
k |4

}
and µ(n)

2 as (see Appendix 3.C for proof)

η(n) = 2(Ωs − 1)

µ
(n)
4 − 2

(
µ

(n)
2

)2 , (3.35)

where Ωs = 1
|M |

∑|M |
i=1 |ci|4 is a constant, and 1 < Ωs ≤ 2.4

Finally, substituting (3.35) into (3.34) yields

Ψu
∆= 2(Ωs − 1)

κ(n)
u −

(
µ

(n)
2

)2

µ
(n)
4 − 2

(
µ

(n)
2

)2 . (3.36)

As seen, the normalized squared AF of the fading channel is expressed as a non-linear

function of the µ(n)
2 , µ(n)

4 , and κ(n)
u . In practice, statistical moments are estimated

by time averages of the received signal. For (3.36), the following estimators of the

moments are employed
4For 16-QAM, 64-QAM, and complex-valued zero-mean Gaussian signals, Ωs is 1.32, 1.38, and

2, respectively [127].
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µ̂
(n)
2 = 1

N

N∑
k=1

∣∣∣r(n)
k

∣∣∣2 (3.37)

µ̂
(n)
4 = 1

N

N∑
k=1
|r(n)
k

∣∣∣4
κ̂(n)
u = 1

N − u

N−u∑
k=1

∣∣∣r(n)
k

∣∣∣2∣∣∣r(n)
k+u

∣∣∣2,
where u ≥ L > 0.

By substituting the corresponding estimators in (3.36), the estimate of the nor-

malized squared AF is given as

Ψ̂(n)
u

∆= 2(Ωs − 1)
κ̂(n)
u −

(
µ̂

(n)
2

)2

µ̂
(n)
4 − 2

(
µ̂

(n)
2

)2 . (3.38)

Now, based on (3.34) and (3.38), the problem of MDS estimation can be formu-

lated as a non-linear regression problem. Given the estimated normalized squared

AF, Ψ̂(n)
u , the non-linear regression model assumes that the relationship between Ψ̂(n)

u

and Ψu is modeled through a disturbance term or error variable ε(n)
u as [131, 132]

Ψ̂(n)
u = Ψu + ε(n)

u = J2
0 (2πfDTsu) + ε(n)

u , u = Umin, . . . , Umax, (3.39)

where Umin and Umax are the maximum and minimum delay lags, respectively.

To solve the non-linear regression problem in (3.39), the LS curve-fitting optimiza-

tion technique is employed. Based on the LS curve-fitting optimization, the estimate

of fD, i.e., f̂D, is obtained through minimizing the sum of the squared residuals (SSR)

as [132]
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minimize
fD

Umax∑
u=Umin

(
Ψ̂(n)
u − J2

0 (2πfDTsu)
)2

subject to fl ≤ fD ≤ fh,

(3.40)

where fl and fh are the minimum and maximum possible MDSs, respectively. To

obtain f̂D, we consider the derivative of the SSR with respect to fD and set it equal

to zero as follows

Mmax∑
u=Umin

8πTsu
(
Ψ̂

(n)
u − J2

0 (2πfDTsu)
)

(3.41)

J0(2πfDTsu)J1(2πfDTsu) = 0.

As seen, for the non-linear regression, the derivative in (3.41) is a function of fD.

Thus, an explicit solution for f̂D cannot be obtained. However, numerical methods

[133] can be employed to solve the LS curve-fitting optimization problem in (3.40).

By employing the Newton-Raphson method, f̂D can be iteratively obtained as in

(3.42). The main problem with the Newton-Raphson method is that it suffers from the

f̂
[t+1]
D = f̂

[t]
D −

Mmax∑
u=Umin

8πTsu
(
Ψ̂

(n)
u − J2

0 (2πf [t]
D Tsu)

)
J0
(
2πf [t]

D Tsu
)
J1
(
2πf [t]

D Tsu
)

∂2

∂f2
D

Umax∑
u=Umin

(
Ψ̂

(n)
u − J2

0 (2πfDTsu)
)2∣∣∣fD=f

[t]
D

(3.42)

∂2

∂f 2
D

Umax∑
u=Umin

(
Ψ̂u − J2

0 (2πfDTsu)
)2∣∣∣fD=f

[t]
D

=
Mmax∑
u=Umin

32π2T 2
s u

2J2
0

(
2πf [t]

D Tsu
)
J2

1

(
2πf [t]

D Tsu
)

+ 8πTsu

2πTsu

(
J2

0

(
2πf [t]

D Tsu
)
− J2

1

(
2πf [t]

D Tsu
))
−
J0
(
2πf [t]

D Tsu
)
J1
(
2πf [t]

D Tsu
)

f
[t]
D


(
Ψ̂

(n)
u − J2

0 (2πf [t]
D Tsu)

).
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Algorithm 7 : NDA-MBE for MDS in MISO systems
1: Set fl, fh, ∆, and δ
2: Acquire the measurements

{
r
(n)
k

}N
k=1

3: Estimate the statistics µ̂(n)
2 , µ̂(n)

4 , and κ̂(n)
u , by employing (3.37)

4: Compute Ψ̂(n)
u , ∀u ∈

{
Umin, . . . , Umax

}
by using (3.38)

5: Obtain f̂
(r)
D by solving the minimization problem in (3.40) through the grid search

method with grid step size ∆
6: Obtain f̂

(s)
D by solving the minimization problem in (3.40) through the grid search

method over
[
f̂

(r)
D −∆, f̂(r)

D + ∆
]
with grid step size δ

7: f̂D = f̂
(s)
D

convergence problem [134]. Since the parameter space for the MDS estimation is one-

dimensional, the grid search method can be employed, which ensures the convergence.

With the grid search method, the parameter space, i.e., [fl, fh] is discretized as a grid

with step size δ, and the value which minimizes SSR is considered as the estimated

fD. This procedure can be performed in two steps, including a rough estimate of the

MDS, f̂(r)
D , by choosing a larger step size ∆ followed by a fine estimate, f̂(s)

D , through

small grid step size δ around the rough estimate, i.e.,
[
f̂

(r)
D − ∆, f̂(r)

D + ∆
]
. A formal

description of the proposed NDA-MBE for MDS in MISO frequency-selective channel

is presented in Algorithm 7.

It is worth noting that fD can be estimated by using a downsampled version of

Ψ̂
(n)
u . For the case of uniform downsampling, i.e., u = `us, the SSR is given as

Nla−1∑
`=0

(
Ψ̂

(n)
Umin+`us −ΨUmin+`us

)2
, (3.43)

where us is the downsampling period expressed in delay lags, Nla is the number of

delay lag,

Ψ`us = J2
0

(
2πfDTs(Umin + `us)

)
, (3.44)
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and

Ψ̂Umin+`us

(n) = 2(Ωs − 1)
κ̂

(n)
Umin+`us −

(
µ̂

(n)
2

)2

µ̂
(n)
4 − 2

(
µ̂

(n)
2

)2 . (3.45)

The downsampled version of Ψ̂(n)
u is usually employed for the rough MDS estimation,

where ∆ is a large value.

3.2.4.2 NDA-MBE for MDS in MIMO Systems

The performance of the proposed NDA-MBE for MDS in MISO system can be im-

proved when employing multiple receive antennas due to the spatial diversity, by

combining the estimated normalized squared AFs, Ψ̂(n)
u , n = 1, ..., nr as

Ψ̃u =
nr∑
n=1

λ(n)
u Ψ̂

(n)
u , (3.46)

where Λu ,
[
λ(1)
u λ(2)

u · · · λ(nr)
u

]†
, with ∑nr

n=1 λ
(n)
u = 1, is the weighting vector. Let us

define Ψ̂u ,
[
Ψ̂(1)
u Ψ̂(2)

u · · · Ψ̂(nr)
u

]†
. The mean square error (MSE) of the combined

normalized squared AF in (3.46) is expressed as

E
{(
Ψ̃u −Ψu

)2
}

= Λ†uCuΛu +
(
Λ†uµu −Ψu

)2
, (3.47)

where Cu , E
{(
Ψ̂u − µu

)(
Ψ̂u − µu

)†}
and µu , E

{
Ψ̂u
}
.

By employing the method of Lagrange multipliers, the optimal weighting vector

Λop
u in (3.47) in terms of minimum MSE is obtained as

Λop
u =

(
1†yu

)−1
yu, (3.48)

where yu ,
(
Cu+(µu−Ψu1)(µu−Ψu1)†

)−1
1 and 1 , [1 1 · · · 1]† is an nr-dimensional
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Algorithm 8 : Bootstrap Algorithm for Optimal Combining
1: Set NB
2: for t = 1, 2, · · · , NB do
3: Draw a random sample of size N , with replacement, from X , {1, 2, · · · , N}

and name it X ?

4: for n = 1, 2, · · · , nr do

Ψ̂(n)?
u [t] =

1
N−u

∑
k∈X ?

∣∣∣r(n)
k

∣∣∣2∣∣∣r(n)
k+u

∣∣∣2 − ( 1
N

∑
k∈X ?
|r(n)
k

∣∣∣2)2

1
N

∑
k∈X ?
|r(n)
k

∣∣∣4 − 2
(

1
N

∑
k∈X ?
|r(n)
k

∣∣∣2)2

5: end for
6: Ψ̂?u[t] , 2(Ωs − 1)

[
Ψ̂(1)?
u Ψ̂(2)?

u · · · Ψ̂(nr)?
u

]†
7: end for
8: Γu =

[
Ψ̂?u[1] Ψ̂?u[2] · · · Ψ̂?u[NB]

]
9: µ̂u = 1

NB

∑NB
t=1 Ψ̂

?
u[t]

10: Ĉu = 1
NB−1(Γu − µ̂u1†)(Γu − µ̂u1†)†

vector of ones.

As seen, the optimal weighting vector, Λop
u , in (3.48) depends on the true value

of MDS, i.e., fD, through the true normalized squared AF, Ψu, in yu. To obtain

the optimal weighting vector, the mean vector µu and covariance matrix Cu are

required to be estimated from the received symbols. One approach is bootstrapping

[135–137]. The bootstrap method suggests to re-sample the empirical joint cumulative

distribution function (CDF) of Ψ̂u to estimate µu andCu as summarized in Algorithm

8.5

As seen in Algorithm 8, the optimal weighting vector for each delay lag u is

derived at the expense of higher computational complexity. In order to avoid this

computational complexity, the suboptimal equal weight combining method can be
5Since Ψ̂(n)

u , n = 1, ..., nr are uncorrelated random variables, Cu is a diagonal matrix. Thus, only
the diagonal elements of Ĉu are employed to obtain the optimal weighting vector.
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Fig. 3.1: Illustration of the non-linear LS regression for the uniformly sampled normalized
squared AF for fDTs = 0.02 and fDTs = 0.005, with nt = 1, nr = 2, L = 1, us = 2, and at
γ = 10 dB.

employed as

Ψ̃u = 1
nr

nr∑
n=1
Ψ̂(n)
u . (3.49)

Fig. 3.1 shows how Ψ̃u fits Ψu through the equal weight combining in (3.49) for

fdTs = 0.02 and fdTs = 0.005 with nt = 1, nr = 2, L = 1, us = 2, and at γ = 10 dB.

Finally, similar to the MISO scenario, the problem of MDS estimation for multiple

receive antennas is formulated as non-linear regression problem in (3.39) for Ψ̃u. A

formal description of the proposed NDA-MBE for MDS in MIMO frquency-selective

channel is presented in Algorithm 9.
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Algorithm 9 : NDA-MBE for MDS in MIMO systems
1: Set fl, fh, ∆, and δ
2: Acquire the measurements {r(n)

k }Nk=1, ∀n ∈
{

1, . . . , nr
}

3: Estimate the statistics µ̂(n)
2 , µ̂(n)

4 , and κ̂(n)
u , by employing (3.37) for {r(n)

k }Nk=1,
∀n ∈

{
1, . . . , nr

}
4: Compute Ψ̂(n)

u , ∀u ∈
{
Umin, . . . , Umax

}
, ∀n ∈

{
1, . . . , nr

}
, by using (3.38)

5: Compute Ψ̃u, ∀u ∈
{
Umin, . . . , Umax

}
, by using (3.49)

6: Obtain f̂
(r)
D by solving the minimization problem in (3.40) for Ψ̃u through the grid

search method with step size ∆
7: Obtain f̂

(s)
D by solving the minimization problem in (3.40) for Ψ̃u via the grid

search method over
[
f̂

(r)
D −∆, f̂(r)

D + ∆
]
with step size δ

8: f̂D = f̂
(s)
D

3.2.4.3 Semi-blind NDA-MBE

The proposed NDA-MBE for MISO and MIMO systems do not require knowledge of

the parameter vector ϕ = [β† ξ†ϑ† fD]†. In other words, the proposed NDA-MBE

in section 3.2.4.1 and 3.2.4.2 are blind. For the scenarios in which the variance of the

additive noise can be accurately estimated at the receive antennas, i.e., ξ is known, a

semi-blind NDA-MBE for the case of SISO transmission and flat-fading channel, i.e.,

nt = 1 and L = 1, can be proposed. In this case, for the nth receive antennas, one

can easily obtain6

µ
(n)
2 = σ2

hnσ
2
s + σ2

wn (3.50)

and

η(n) = (σ4
hnσ

4
s )−1 = 1(

µ
(n)
2 − σ2

wn

)2 . (3.51)

6The index of transmit antenna, i.e., m = 1 and the index of channel tap, i.e., l = 1 is dropped.
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By using (3.34), (3.50) and (3.51), and by replacing the statistical moments and the

noise variance with their corresponding estimates, one obtains

Ψ̂
(n)
u =

κ̂(n)
u −

(
µ̂

(n)
2

)2

(
µ̂

(n)
2 − σ̂2

w

)2 , (3.52)

where σ̂2
wn is the estimate of the noise variance, and κ̂(n)

u and µ̂(n)
2 are given in (3.37).

Clearly, similar to the SISO transmission, the optimal and suboptimal combining

methods for the multiple receive antennas can be employed, as well.

3.3 Complexity Analysis

By employing the two steps grid search method to solve the optimization problem

in (3.40), the number of real additions and multiplications employed in the proposed

NDA-MBE is shown in Table 3.1, where Nla is the number of delay lag, Ng , (Ng1 +

Ng2), and Ng1 and Ng2 are the number of grid points used for the rough and fine

estimation, respectively. As seen, the proposed NDA-MBE exhibits a complexity

order of O(N). It should be mentioned that the complexity order of the derived

DA-MLE and NDA-MLE are O(N3) and O(|M |N ′nt), respectively.

Table 3.1: Number of real additions, real multiplications, and complexity order of the
proposed NDA-MBE.

Algorithm Real additions Real multiplications Order
MISO

(
N + 2Ng − (Umax+Umin)

2

)
Nla + 3N −Ng − 1

(
N +Ng − (Umax+Umin)

2 + 2
)
Nla + 3N + 4 O(N)

MIMO nr

((
N − (Umax+Umin)

2

)
Nla + 3N − 1

)
+ (2Nla − 1)Ng nr

((
N − (Umax+Umin)

2 + 2
)
Nla + 3N + 4

)
+NgNla + 1 O(N)

Fig. 3.2 compares the total number of operations used by the proposed NDA-

MBE with the low-complexity DA-MLE in [1, 2] and the DA-COMAT estimator
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Fig. 3.2: Computational complexity comparison of the proposed NDA-MBE, the low-
complexity DA-MLE in [1, 2], and the DA-COMAT estimator in [3].

in [3]. As seen, the proposed NDA-MBE exhibits significantly lower computational

complexity compared to the DA-COMAT [3] and the low-complexity DA-MLE in

[1, 2]. This substantial reduced-complexity enables the proposed MBE to exhibit good

performance in the NDA scenarios, where the observation window can be selected large

enough.

3.4 Simulations

In this section, we examine the performance of the proposed NDA-MBE, as well as

the derived DA-MLE and DA-CRLB for MDS in MIMO frequency-selective fading

channel through several simulation experiments.
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3.4.1 Simulation Setup

We consider a MIMO system employing spatial multiplexing, with carrier frequency

fc = 2.4 GHz. Unless otherwise mentioned, nt = 2, nr = 2, Ts = 10µs, N = 105,

and the modulation is 64-QAM. The delay profile of the Rayleigh fading channel is

σ2
h(mn),l

= β exp (−łrmsl/L), where β is a normalization factor, i.e., β∑l (−lrmsl/L) = 1,

with L = 5 and łrms = L/4 as the maximum and RMS delay spread of the channel,

respectively. The parameters for the downsampled LS curve-fitting optimization are

Umin = L, Umax = bN4 c, and us = 10. The additive white noise was modeled as a

complex-valued Gaussian random variable with zero-mean and variance σ2
w for each

receive antennas. Without loss of generality, it was assumed that σ2
sm = 1/(ntnr),

m = 1, 2, .., nt, and thus, the average SNR was defined as γ = 10 log(1/nrσ
2
w). The

performance of the MDS estimators was presented in terms of normalized root-mean-

square error (NRMSE), i.e., E{(f̂DTs − fDTs)2}1/2/fDTs, obtained from 1000 Monte

Carlo trials for each fDTs ∈ [10−3, 18× 10−3] with the search step size ∆ = 10 Hz and

δ = 0.5 Hz, respectively.

(a) fD = 1000 Hz (b) fD = 100 Hz

Fig. 3.3: Distribution of the estimated f̂D for the proposed NDA-MBE for nt = 2, nr = 2,
and at γ = 10 dB.
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3.4.2 Simulation Results

Fig. 3.3 shows the distributions of the estimated f̂D by the proposed NDA-MBE for

different MDSs, fD = 1000 Hz and fD = 100 Hz, with nt = 2, nr = 2, and at γ = 10

dB. As seen, the distributions are not symmetric around their mean values; hence,

this leads to bias in MDS estimation. Furthermore, Fig. 3.4 illustrates E{f̂D/fD}

versus fD for γ = 10 dB and γ = 20 dB. As seen, the proposed NDA-MBE is nearly

unbiased, i.e., E{f̂D} ≈ fD over a wide range of MDS. This can be explained, as

while the distribution of the estimated fD is not symmetric, the estimated values are

accumulated around their mean value. It should be mentioned that by increasing the

length of the observation window, N , the bias of the proposed estimator approaches

zero.

In Fig. 3.5, the NRMSE of the NDA-MBE versus fdTs is illustrated for γ = 0

dB, γ = 10 dB, and γ = 20 dB. As seen, the proposed estimator exhibits a good

performance over a wide range of Doppler rates, fDTs. As observed, the NRMSE

decreases as fDTs increases. This performance improvement can be explained, as for

lower Doppler rates, a larger observation window is required to capture the variation

of the fading channel. Also, as expected, the NRMSE decreases as γ increases. This

can be easily explained, as an increase in γ leads to more accurate estimates of the

statistics in (3.38).

Fig. 3.6 presents the NRMSE of the proposed NDA-MBE versus fDTs for different

numbers of transmit antennas, nt, for nr = 2 and at γ = 10 dB. As expected, the

NRMSE increases as the number of transmit antennas increases. This increase can

be explained, as the variance of the statistics employed in (3.38) increases with the

number of transmit antennas, thus, leading to higher estimation error in curve-fitting.
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Fig. 3.4: The mean value of the estimated MDS by NDA-MBE for various SNR values for
nt = 2 and nr = 2.
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Fig. 3.5: The NRMSE of the proposed NDA-MBE versus fDTs for different SNR values.
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Fig. 3.6: The effect of nt on the performance of the proposed NDA-MBE for nr = 2 and
at γ = 10 dB.

In Fig. 3.7, the NRMSE of the proposed NDA-MBE is shown versus fDTs for

different numbers of receive antennas, nr, for nt = 2, and at γ = 10 dB. It can be

seen that an increment in nr leads to a reduced NRMSE. This decrease can be easily

explained, as averaging at the receive-side yields more accurate estimation of Ψu, thus,

leading to a more accurate result in the LS curve-fitting.

In Fig. 3.8, the effect of the parameter Umin on the performance of the proposed

NDA-MBE is illustrated for L = 5 and us = 10. As observed, the proposed estimator

exhibits a low sensitivity to the value of Umin. This can be explained, as a large

number of lags, Umin ≤ u ≤ Umax, are employed for fitting Ψ̃u to J2
0 (2πfDTsu) in

the LS estimation; thus, the estimator is nearly robust to a few missing delay lags,

L ≤ u < Umin, or nuisance delay lags, 1 ≤ u < L. As such, basically the estimator
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Fig. 3.7: The effect of nr on the performance of the proposed NDA-MBE for nt = 2 and
at γ = 10 dB.
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Fig. 3.8: The effect of the parameter Umin on the performance of the proposed NDA-MBE
for different values of fdTs and at γ = 10 dB.
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does not require an accurate estimate of L.

Fig. 3.9 shows the effect of the observation window size, N , on the performance

of the proposed NDA-MBE. As expected, the performance of the proposed estimator

improves as the length of the observation window increases. This performance im-

provement can be explained, as the variance of the estimated statistics employed in

(3.38) decreases when N increases.

In Fig. 3.10, the NRMSE is plotted versus fDTs for the proposed NDA-MBE,

the low-complexity DA-MLE in [1, 2], the NDA-CC estimator (CCE) in [4], and the

DA-CRLB for MDS estimation in SISO frequency-flat fading channel for N = 1000

and at γ = 10 dB. As seen, the proposed NDA-MBE outperforms the NDA-CCE, and

provides a similar performance as the DA-MLE for fDTs ≥ 0.012.

2 3 4 5 6 7 8 9 10

10-3

10-3

10-2

10-1

100

101

Fig. 3.9: The effect of the observation window size, N , on the performance of the proposed
NDA-MBE for nt = 2 and nr = 2 in frequency-selective channel, and at γ = 10 dB.

Fig. 3.11 illustrates the NRMSE versus fDTs for the proposed NDA-MBE, the
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Fig. 3.10: Performance comparison of the proposed NDA-MBE, DA-CRLB [1, 2], the low-
complexity DA-MLE in [1, 2], and the NDA-CCE in [4] in SISO frequency-flat Rayleigh
fading channel for N = 103 at γ = 10 dB.

derived DA-MLE, and the derived DA-CRLB in MIMO frequency-selective fading

channel for N = 1000 at γ = 10 dB, As seen, the performance of the derived DA-

MLE is close to the DA-CRLB. This high performance is obtained at the expense of

significant computational complexity in the order of O(N3). On the other hand, the

proposed NDA-MBE cannot reach the DA-CRLB. This behaviour can be explained,

as the NDA-MBE requires a larger number of observation symbols to accurately es-

timate the second- and fourth-order statistics in time-varying channel.

In Fig. 3.12, the NRMSE is shown versus fDTs for the proposed NDA-MBE,

the derived NDA-MLE, and the derived NDA-CRLB in SISO flat-fading channel for

BPSK signal, N = 10, and at γ = 20 dB.7 As expected, the NDA-MBE does not
7The complexity order of the derived NDA-MLE and NDA-CRLB are in the order of O(|M |N ′nt);

for large values of N ′ (N ′ = N + L − 1) and nt > 1, the corresponding curves are not obtainable.
Hence, N = 10 and SISO flat-fading channel considered.
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Fig. 3.11: Performance comparison of the NDA-MBE, the derived DA-CRLB, and the
derived DA-MLE in MIMO frequency-selective Rayleigh fading channel for nt = 2, nr = 2,
L = 5, N = 103, and at γ = 10 dB.

exhibit good performance for a short observation window size because the second-

and fourth-order statistics employed in (3.38) are not accurately estimated. On the

other hand, the derived NDA-MLE exhibits low NRMSE even for a short observation

window. Moreover, there is no significant performance gap between the derived NDA-

MLE and NDA-CRLB.

3.5 Conclusions and Directions for Future Research

In Chapter 3 of this thesis, MDS estimation in MIMO frequency-selective fading

channel was studied. In this section, a summary of the main results in Chapter 3 is

provided, and possible directions for future research are pointed out.

105



0.01 0.02 0.03 0.04 0.05
10-1

100

101

102

Fig. 3.12: Performance comparison of the proposed NDA-MBE, derived NDA-MLE, de-
rived NDA-CRLB, and DA-CRLB in SISO flat-fading channel for N = 10 and at γ = 20
dB.

3.5.1 Summary

In Chapter 3, the DA and NDA CRLBs and MLEs for the MDS in MIMO frequency-

selective fading channel were derived. Moreover, a low-complexity NDA-MBE was

proposed. The NDA-MBE employs the statistical moment-based approach and re-

lies on the second- and fourth-order statistics of the received signal, as well as the

LS curve-fitting optimization technique to estimate the normalized squared AF and

MDS of the fading channel. Compared to the existing DA estimators, the proposed

NDA-MBE provides higher system capacity due to the absence of pilots. Also, the

substantial reduced-complexity enables the proposed MBE to exhibit good perfor-

mance in the NDA scenarios, where the observation window can be selected large

enough. Simulation results show that there is no significant performance gap between

the derived NDA-MLE and NDA-CRLB when the observation window is relatively
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small. Furthermore, the significant reduced-complexity in the NDA-MBE leads to low

NRMSE over a wide range of MDSs when the observation window is selected large

enough. The proposed NDA-MBE exhibits the following advantages:

• It exhibits lower computational complexity compared to the MLEs;

• It does not require time synchronization;

• It is robust to the CFO;

• It increases system capacity;

• It does not require a priori knowledge of noise power, signal power, and channel

delay profile;

• It does not require a priori knowledge of the number of transmit antennas;

• It removes the need of joint parameter estimation, such as CFO, signal power,

noise power, and channel delay profile estimation.

3.5.2 Future research

The results in Chapter 3 of this thesis open interesting directions for a number of

future research topics. Next, we outline two of them, as follows:

• The first one is an extension of the proposed NDA-MBE for MDS to an NDA

joint channel delay profile and MDS estimator in MIMO frequency-selective

channel;

• The second one pertains to developing an NDA-MDS estimator for multiple

users.

107



Appendix

3.A Proof of (3.28)

To obtain an explicit closed-form expression for κ(n)
u

∆= E
{
|r(n)
k |2|r

(n)
k+u|2

}
, we first write∣∣∣r(n)

k

∣∣∣2 = r
(n)
k

(
r
(n)
k

)∗
by employing (3.1) as

∣∣∣r(n)
k

∣∣∣2 =
nt∑
m=1

L∑
l=1

∣∣∣h(mn)
k,l

∣∣∣2∣∣∣s(m)
k−l

∣∣∣2 +
nt∑

m1=1

nt∑
m2 6=m1

L∑
l=1

h
(m1n)
k,l

(
h

(m2n)
k,l

)∗
s

(m1)
k−l

(
s

(m2)
k−l

)∗
(3.53)

+
nt∑
m=1

L∑
l1=1

L∑
l2 6=l1

h
(mn)
k,l1

(
h

(mn)
k,l2

)∗
s

(m)
k−l1

(
s

(m)
k−l2

)∗

+
nt∑

m1=1

nt∑
m2 6=m1

L∑
l1=1

L∑
l2 6=l1

h
(m1n)
k,l1

(
h

(m2n)
k,l2

)∗
s

(m1)
k−l1

(
s

(m2)
k−l2

)∗

+
(
w

(n)
k

)∗ nt∑
m=1

L∑
l=1

h
(mn)
k,l s

(m)
k−l +

(
w

(n)
k

) nt∑
m=1

L∑
l=1

(
h

(mn)
k,l

)∗(
s

(m)
k−l

)∗
+
∣∣∣w(n)

k

∣∣∣2.

Then,
∣∣∣r(n)
k+u

∣∣∣2 is straightforwardly calculated by replacing k with k + u in (3.53), and∣∣∣r(n)
k

∣∣∣2∣∣∣r(n)
k+u

∣∣∣2 can be easily expressed in a summation form, which is omitted due to

space constraints.

As fading is independent of the signal and noise, the statistical expectation in κ(n)
u

can be decomposed into statistical expectations over the signal, fading, and noise dis-

tributions, respectively. With independent and identically distributed (i.i.d.) symbols,

s
(m)
k , k = 1, . . . , N , and u ≥ L, the symbols from the mth antenna contributed in r

(n)
k ,
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i.e., {s(m)
k−l}Ll=1, are different from those contributed in r

(n)
k+u, i.e., {s

(m)
k+u−l}Ll=1; further-

more, by using that E
{

(s(m)
k )2

}
= 0, E

{
s

(m)
k

}
= 0, and the linearity property of the

statistical expectation, one obtains κ(n)
u as in (3.54). Finally, with E

{
|s(m)
k |2

}
= σ2

sm

and E
{
|w(n)

k |2
}

= σ2
wn , (3.28) is obtained.

κ(n)
u =

nt∑
m=1

L∑
l=1

E
{∣∣∣h(mn)

k,l

∣∣∣2|h(mn)
k+u,l

∣∣∣2}E{∣∣∣s(m)
k−l

∣∣∣2∣∣∣s(m)
k+u−l

∣∣∣2} (3.54)

+
nt∑

m1=1

nt∑
m2 6=m1

L∑
l=1

E
{∣∣∣h(m1n)

k,l

∣∣∣2|h(m2n)
k+u,l

∣∣∣2}E{∣∣∣s(m1)
k−l

∣∣∣2∣∣∣s(m2)
k+u−l

∣∣∣2}

+
nt∑
m=1

L∑
l1=1

L∑
l2 6=l1

E
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k,l1
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k+u,l2
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+
nt∑
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E
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+ E
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E
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k,l
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+ E
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k
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E
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{∣∣∣w(n)

k

∣∣∣2}E
{∣∣∣w(n)

k+u

∣∣∣2} .

3.B Proof of (3.34)

By employing (3.33), one can write

(
µ

(n)
2

)2
=
 nt∑
m=1

L∑
l=1

σ2
h(mn),l

σ2
sm + σ2

wn

2

=
nt∑
m=1

L∑
l=1

σ4
h(mn),l

σ4
sm (3.55)

+
nt∑

m1=1

nt∑
m2 6=m1

L∑
l=1

σ2
h(m1n),l

σ2
h(m2n),l

σ2
sm1
σ2

sm2
+

nt∑
m=1

L∑
l1=1

L∑
l2 6=l1

σ2
h(mn),l1

σ2
h(mn),l2

σ4
sm

+
nt∑
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nt∑
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L∑
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σ2
h(m1n),l1

σ2
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σ2
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Then, by subtracting
(
µ

(n)
2

)2
in (3.55) from κ(n)

u in (3.32), one obtains

κ(n)
u −

(
µ

(n)
2

)2
= J2

0 (2πfDTsu)
η(n) , (3.56)

where η(n) = 1/
nt∑
m=1

L∑
l=1

σ4
h(mn),l

σ4
sm .

3.C Proof of (3.35)

With independent fading, noise, and signal processes, by using (3.53) and then (3.31)

and that E{(s(m)
k )2} = E{s(m)

k } = E
{(

h
(mn)
k,l

)2}
= E

{
w

(n)
k

}
= 0, similar to Appendix

3.A, one obtains

µ
(n)
4 = E

{
|r(n)
k |4

}
= 2

nt∑
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L∑
l=1

σ4
h(mn),l

σ4
sm + 2

nt∑
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σ4
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(Ωs − 1)σ4
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+ 2
nt∑

m1=1

nt∑
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L∑
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L∑
l1=1

L∑
l2 6=l1
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h(mn),l1

σ2
h(mn),l2
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+ 2
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sm1

σ2
sm2

+ 4σ2
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σ2
sm + 2σ4

wn ,

where Ωs is the fourth-order two-conjugate statistic for unit variance signal, which

represents the effect of the modulation format. Finally, by employing (3.33) and

(3.57), (3.35) is easily obtained.
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Chapter 4

Antenna Enumeration in

Time-varying Fading Channels

4.1 Introduction

In many signal processing problems, the vector of observations can be modeled as the

superposition of a finite number of signals embedded in noise, such as in multiuser de-

tection [138, 139], blind source separation [140], smart antenna [141], massive MIMO

5G [142, 143], radar and sonar systems, flowing sensor networks [144], sensor array

processing [13, 15, 145, 146], seismology and tomography. In these problems, de-

termining the number of signal sources might be a critical first step. For example,

the performance of the high-resolution methods such as estimation of signal param-

eters via rotational invariance techniques (ESPRIT) [147] and multiple signal classi-

fier (MUSIC)[148] in conjunction with direction-of-arrival (DOA) estimation in array

signal processing essentially relies on the prior knowledge of the number of signals.

Multiuser detectors require the knowledge about the number of signals to exhibit an

acceptable performance in terms of bit-error-rate (BER) [139]. A key and primary

111



issue in blind source separation is the estimation of the number of unknown sources

from the mixed signals before an effective source separation.

The process of determining the number of signal sources is called source enumer-

ation [145, 146, 149]. In the context of multiple-antenna systems, in which synchro-

nized transmission is considered, it is referred to the process of counting the number of

transmit antennas, and it is called antenna enumeration/number of transmit antennas

detection in the literature [6, 150]. Antenna enumeration has important applications

in adaptive wireless systems employing multiple antennas, such as cognitive radio,

software-defined radio, and smart antennas [6, 150–156]. In the context of cognitive

radio systems, the knowledge of the secondary users (SUs) about the number of pri-

mary users’ (PUs) transmit antennas permits them to adjust their transmit power

and beamforming techniques to avoid interference to the PUs; thus, this knowledge

ameliorates the coexistence of the SUs and PUs equipped with multiple antennas

[152]. Moreover, since multiple radio frequency (RF) chains associated with multi-

ple antennas are costly, antenna selection techniques have recently been considered

as a low-cost low-complexity practical alternative [157–160]. Accordingly, detecting

the number of transmit antennas is of interest for receivers to eliminate the need for

additional signaling, which introduces overhead and transmission latency [154–156].

4.1.1 Literature Review

The problem of detecting the number of transmit antennas employing multiple re-

ceive antennas has been explored in the literature [6, 150–156]. Two commonly used

approaches are information-theoretic [6, 150, 151] and feature-based (FB) [152–156].

With the former approach, the problem of the number of transmit antennas detection

is formulated as the rank estimation of the received signal correlation matrix. In [6],

the minimum description length (MDL) and Akaike information criterion (AIC) algo-
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rithms are employed. While MDL provides an asymptotically consistent estimate, it

underestimates the number of transmit antennas for small sample sizes. On the other

hand, AIC does not provide an asymptotically consistent estimate and overestimates

the number of transmit antennas for large sample sizes. Both algorithms require the

eigen-decomposition of the sample covariance matrix. Additionally, they are sensitive

to both timing offset (TO) and carrier frequency offset (CFO) [6]. In [150], the authors

consider the number of transmit antennas detection as an adaptive rank estimation

problem, employing the Schur complement test. The algorithm detects the number of

transmit antennas without tracking the eigenvalues of the covariance matrix and thus

has a lower computational complexity. It is to be noted that the information-theoretic

approaches require a number of receive antennas larger than the number of transmit

antennas, which is not always the case in practice.

On the other hand, the FB approach relies on features extracted from the received

signal, based on which a decision is made. Hence, the FB approach requires a priori

information about the transmitted signals. In [152] and [153], the orthogonality of

the LTE pilot patterns is exploited as a feature, whereas the orthogonality of the LTE

preamble sequences related to each antenna is used in [154] and [155]. The algorithms

in [154] and [155] require a priori knowledge about the pilot patterns and preamble

sequences, respectively. It is worth noting that the algorithms in [152] and [153] are

sensitive to both TO and CFO, the one in [154] is robust to CFO and sensitive to

TO, and the one in [155] is robust to both transmission impairments. When compared

with the information-theoretic algorithms, the FB algorithms are usually simpler to

implement, and they may detect the number of transmit antennas by employing a

reduced number of receive antennas when compared with the number of transmit

antennas.
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4.1.2 Motivation

As mentioned in the previous section, antenna enumeration has been addressed by

employing both ICT and FB approaches in the literature. After reviewing the current

antenna enumeration algorithms, the following were made:

• Antenna enumeration for time-varying fading channel has not been investigated;

• New FB algorithms should be developed to fill in the gap between ICT and

FB approaches, which does not depend on the signal type and can detect the

number of transmit antennas with reduced number of receive antennas, as well

as reduced complexity;

• There is no analytical performance analysis for the ICT and FB approaches;

• The existing antenna enumeration algorithms are severely affected by transmis-

sion imperfections, such as TO and CFO;

• Both ICT and FB approaches require knowledge of the maximum number of

transmit antennas.

4.1.3 Problem Statement

The specific research problems which are studied in Chapter 4 of this thesis are pre-

sented as follows:

• The problem of antenna enumeration in time-varying fading channel is inves-

tigated, and two low-complexity blind and semi-blind antenna enumeration al-

gorithms are proposed. The proposed blind algorithm does not depend on the

signal type, pilot and preamble patterns, and can detect the number of trans-

mit antennas with a single receive antennas. However, the semi-blind algorithm

requires the modulation format for antenna enumeration.
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• The analytical performance analysis of the proposed blind algorithm, i.e., a

closed-form expression for the probability of correct detection is derived;

• Finally, the performance of the proposed algorithms is studied under various

transceiver and channel impairments.

4.1.4 Methodology

The statistical moment-based (MB) approach is employed in Chapter 4 of this thesis.

The proposed algorithms rely on the second- and fourth-order statistics of the received

signal and use the time-varying nature of the fading channel to detect the number of

transmit antennas.

4.2 Antenna Enumeration

4.2.1 System model

We consider a multiple-input single-output (MISO) block fading channel [161, 162]

with nt transmit antennas, where nt is unknown at the receive side. It is assumed

that Nb observation blocks, b = 1, 2..., Nb, each with length Nc symbols, are affected

by independent and identically distributed (i.i.d.) fading characterized by the (nt×1)

vector hb and corrupted by additive white Gaussian noise. A typical value for the block

length, Nc, in the case of the Clarke-Jakes Doppler spectrum is Nc = b9/16πfdTsc

[163], where fd and Ts are the maximum Doppler frequency and the symbol period,

respectively. Thus, the received complex-valued signal can be expressed as

rk,b = h
†
bsk,b + wk,b, k = 1, 2, ..., Nc, b = 1, 2, ..., Nb (4.1)
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where rk,b is the kth received symbol in the bth observation block; sk,b = [s(1)
k,b, s

(2)
k,b, ...,

s
(nt)
k,b ]† represents the zero-mean uncorrelated transmitted signals from the nt transmit

antennas; whose variance E{|s(m)
k,b |2} = σ2

s , m = 1, 2, · · · , nt is unknown at the receive

side; wk,b is circular complex additive white Gaussian noise with variance σ2
w, which

is assumed to be known at the receive side1; and hb = [h(1)
b , h

(2)
b , ..., h

(nt)
b ]† denotes

the channel coefficients, with h
(m)
b , m = 1, 2, ..., nt as the channel coefficient between

the mth transmit antenna and the receive antenna for the bth observation block.

It is assumed that the channel coefficients in each block are uncorrelated circular

complex Gaussian random variables with E{h(m1)
b (h(m2)

b )∗} = σ2
hδ(m1 − m2), where

σ2
h is unknown at the receive side.

4.2.2 Blind Antenna Enumeration Algorithm

Let us first consider the second-order moment of the received signal in an observation

block, which is easily obtained as

µb
∆= E

{∣∣∣rk,b∣∣∣2∣∣∣hb} = σ2
s

nt∑
m=1

∣∣∣h(m)
b

∣∣∣2 + σ2
w. (4.2)

Further, let us define

µ(d) ∆= E
{

(µb)
d
}

= E
{(

E
{∣∣∣rk,b∣∣∣2∣∣∣hb})d

}
(4.3)

where d is a positive integer. With the channel coefficients corresponding to different

transmit antennas being independent circular complex Gaussian random variables

with variance σ2
h, i.e., E{hbhH

b } = σ2
hI, and by using (4.2), when d = 1 (second-order

1Note that estimators of the noise variance which exist in the literature, e.g., [5] can be employed.
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statistics), one can easily write (4.3) as

µ(1) ∆= E {µb} = σ2
s

nt∑
m=1

E
{∣∣∣h(m)

b

∣∣∣2}+ σ2
w = ntσ

2
sσ

2
h + σ2

w. (4.4)

Furthermore, following the proof in Appendix 4.A, we obtain

µ(2) ∆= E
{

(µb)
2
}

= (nt
2 + nt)σ4

sσ
4
h + 2ntσ

2
sσ

2
hσ

2
w + σ4

w. (4.5)

By substituting (4.4) into (4.5), nt can be expressed as

nt = (µ(1) − σ2
w)2

µ(2) − (µ(1))2 . (4.6)

It should be noted that unbiased estimates of the statistics µ(1), ζ ∆= (µ(1))2, and

µ(2), are used in practice to obtain nt from (4.6). To estimate these statistics, the

following unbiased estimators are employed2

µ̂(1) = 1
NbNc

Nb∑
b

Nc∑
k

∣∣∣rk,b∣∣∣2 (4.7)

ζ̂ = 1
Nb(Nb − 1)Nc(Nc − 1)

Nb∑
b1:b2

Nc∑
k1:k2

∣∣∣rk1,b1

∣∣∣2∣∣∣rk2,b2

∣∣∣2 (4.8)

and

µ̂(2) = 1
NbNc (Nc − 1)

Nb∑
b

Nc∑
k1:k2

∣∣∣rk1,b

∣∣∣2∣∣∣rk2,b

∣∣∣2, (4.9)

where
F∑

f1:fi

∆=
F∑

f1=1

F∑
f2=1
f2 6=f1

. . .
F∑

fi=1
fi 6={f1,··· ,fi−1}

. (4.10)

By using the linearity property of the statistical expectation, one can easily show
2It is worth noting that (µ̂(1))2 cannot be employed for the estimation of ζ, as it results in a

biased estimator.
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that the employed estimators are unbiased, i.e., E{µ̂(1)} = µ(1), E{ζ̂} = (µ(1))2, and

E{µ̂(2)} = µ(2) (see Appendix 4.B for proof).

Substituting (4.7), (4.8), and (4.9) in (4.6) yields the following decision statistics

for the number of transmit antennas,

Υ = ζ̂− 2µ̂(1)σ2
w + σ4

w

µ̂(2) − ζ̂
. (4.11)

Although Υ can be seen as providing an estimate of nt, it is actually a continuous-

valued random variable. In order to determine the number of transmit antennas,

which has discrete values, we formulate the problem as a multiple-hypothesis testing

problem, i.e., under hypothesis Hi the number of transmit antenna equals i = 1, 2, · · · ,

and compare the test statistic Υ against thresholds to make a decision.

By employing first-order Taylor expansion of Υ, the mean of Υ can be expressed

according to Appendix 4.C as

E {Υ} ≈ E{ζ̂− 2µ̂(1)σ2
w + σ4

w}
E{µ̂(2) − ζ̂}

= (µ(1) − σ2
w)2

µ(2) − (µ(1))2 = nt. (4.12)

Hence, to detect the number of transmit antennas, decision regions for the hypothesis

testing can be set as

n̂t = i when Γi−1 < Υ ≤ Γi, i = 1, 2, ... (4.13)

with Γ0 = −∞ and Γi ∈ (i, i + 1), i = 1, 2, .... Details on the thresholds setting

are provided in Section 4.3.2. A formal description of the proposed blind antenna

enumeration algorithm is presented in Algorithm 10.
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Algorithm 10 Blind Antenna Enumeration
Input: rk,b, k = 1, 2, · · · , Nc, b = 1, 2, · · · , Nb, σ2

w, Γ0 = −∞, Γi ∈ (i, i + 1),
i = 1, 2, ...
Output: Number of transmit antennas n̂t
Initialization: i = 1

1: Obtain µ̂(1), ζ̂, and µ̂(2) by employing (4.7), (4.8), and (4.9)
2: Compute the decision statistic Υ according to (4.11)
3: Set the threshold value Γi
4: if Γi−1 < Υ ≤ Γi then
5: n̂t = i
6: else
7: Increment i = i+ 1 and go to step 3
8: end if

4.2.3 Semi-blind Antenna Enumeration Algorithm

Let us consider

φb , ϕb − 2µ2
b , (4.14)

where

ϕb , E
{∣∣∣rk,b∣∣∣4∣∣∣hb} , (4.15)

and µb is given in (4.2). Analogous to the proposed blind antenna enumeration algo-

rithm, one can easily obtain

φb = Ωsσ
4
s

nt∑
m=1

∣∣∣h(m)
b

∣∣∣4, (4.16)

and

φ(1) , E
{
φb
}

= Ωsσ
4
s

nt∑
m=1

E
{∣∣∣h(m)

b

∣∣∣4} = 2Ωsσ
4
sσ

4
hnt, (4.17)
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where 1 ≤ Ωs ≤ 2 denotes the fourth-order/ two conjugate statistic for unit variance

constellations.3

With the assumption that Ωs, i.e., modulation format is known at the receive-side,

by employing (4.4) and (4.17), nt can be straightforwardly expressed as

nt =
2Ωs

(
µ(1) − σ2

w

)2

φ(1) = 2Ωs
ζ + σ4

w − 2µ(1)σ2
w

φ(1) . (4.18)

By replacing ζ and µ(1) in (4.18) with ζ̂ and µ̂(1) in (4.7) and (4.8), and φ(1) with

φ̂(1) = 1
NbNc

Nb∑
b

Nc∑
k

∣∣∣rk,b∣∣∣4 − 2
NbNc (Nc − 1)

Nb∑
b1

Nc∑
k1:k2

∣∣∣rk1,b1

∣∣∣2∣∣∣rk2,b1

∣∣∣2, (4.19)

the following decision metric for the number of transmit antennas is obtained.

Θ = 2Ωs
ζ̂+ σ4

w − 2µ̂(1)σ2
w

φ̂(1)
. (4.20)

Similar to the blind algorithm, we formulate the antenna enumeration problem as

a multiple-hypothesis testing problem, and compare the decision statistics Θ against

thresholds to determine the number of transmit antennas.

By employing first-order Taylor expansion, similar to that in Appendix 4.C, the

mean of Θ is expressed as

E
{
Θ
}
≈ 2Ωs

E
{
ζ̂+ σ4

w − 2µ̂(1)σ2
w

}
E
{
φ̂(1)

} = nt. (4.21)

Based on (4.21), decision regions for the hypothesis testing problem can be set as

n̂t = i when Γ′i−1 < Θ ≤ Γ′i, i = 1, 2, ..., (4.22)
3For 16-QAM, 64-QAM, and complex-valued zero-mean Gaussian signals, Ωs is 1.32, 1.38, and

2, respectively [127].
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with Γ′0 = −∞ and Γ′i ∈ (i, i + 1), i = 1, 2, .... A formal description of the proposed

semi-blind antenna enumeration algorithm is presented in Algorithm 11.

Algorithm 11 Semi-blind Antenna Enumeration
Input: rk,b, k = 1, 2, · · · , Nc, b = 1, 2, · · · , Nb, σ2

w, Ωs, Γ′0 = −∞, Γ′i ∈ (i, i + 1),
i = 1, 2, ...
Output: Number of transmit antennas n̂t
Initialization: i = 1

1: Obtain µ̂(1), ζ̂, and φ̂(1) by employing (4.7), (4.8), and (4.19)
2: Compute the decision statistic Θ according to (4.20)
3: Set the threshold value Γ′i
4: if Γ′i−1 < Θ ≤ Γ′i then
5: n̂t = i
6: else
7: Increment i = i+ 1 and go to step 3
8: end if

4.3 Performance Analysis and Threshold setting

This section derives a closed-form expression for the conditional probability of

correctly detecting the number of transmit antennas, P {n̂t = nt|Hnt}, nt = 1, 2, ... for

the proposed blind antenna enumeration algorithm in 10. Also, the optimal thresholds

that maximize the probability of correct detection are obtained.

4.3.1 Performance Analysis

From (4.11), the conditional probability of correct detection can be expressed as

P{n̂t = nt|Hnt} = P{Γnt−1 < Υ ≤ Γnt |Hnt} = FΥ|Hnt
(Γnt)− FΥ|Hnt

(Γnt−1) (4.23)

where FΥ|Hnt
(.) is the cumulative distribution function (CDF) of the random variable

Υ when the number of transmit antennas is nt. As can be seen in (4.11), the numerator
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and denominator of Υ are correlated, and the probability density function (PDF) of Υ

cannot be expressed straightforwardly; thus, obtaining the conditional probability of

correct detection via the CDF of Υ is difficult. However, the denominator in the right-

hand side of (4.11), i.e., µ̂(2)− ζ̂, is positive since it represents the sample variance of

µ̂b, and hence one can write (4.13) as an equivalent two-dimensional test, i.e.,

n̂t = nt when (xnt−1 < 0 ∩ xnt ≥ 0) , nt = 1, 2, . . . (4.24)

where ∩ is the intersection operator and

x` = Γ`µ̂(2) − (Γ` + 1) ζ̂+ 2σ2
wµ̂

(1) − σ4
w, ` = nt, nt − 1. (4.25)

As an example, the decision regions of the equivalent two-dimensional test for x2 and

x3 under hypothesis H3 and its corresponding correct and incorrect decisions at SNR

per transmit antenna γ ∆= σ2
hσ

2
s /σ2

w = −10 dB are shown in Fig. 4.1. As can be seen,

x2 and x3 are highly correlated and exhibit positive correlation such that their values

increase or decrease together. The conditional probability of correct detection is thus

given as

P{n̂t = nt|Hnt} = P{xnt−1 < 0 ∩ xnt ≥ 0|Hnt}, nt = 1, 2, . . . (4.26)

For hypothesis H1, since Γ0 = −∞, (4.26) yields

P {n̂t = 1|H1} = P {x1 ≥ 0|H1} . (4.27)
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Fig. 4.1: The equivalent two-dimensional test under hypothesis H3 for Γ2 = 2.5 and
Γ3 = 3.5 at SNR γ = −10 dB.

Let us consider y` ∆= x`
σ4

s σ
4
h
, ` = nt, nt − 14 and re-write (4.26) as

P{n̂t = nt|Hnt} = P{ynt−1 < 0 ∩ ynt ≥ 0|Hnt}, nt = 1, 2, . . . (4.28)

With the assumption that Nc � 1 and Nb � 1, from the central limit theorem

[164],5 the joint distribution of the random variables ynt (xnt) and ynt−1 (xnt−1) under

hypothesis Hnt can be approximated as a joint Gaussian distribution (see Fig. 4.2)

[ynt , ynt−1|Hnt ] ∼ N
(
ωnt,nt−1,Cnt,nt−1

)
(4.29)

4
y` is used instead of x` in order to obtain expressions of the variance and covariance as a function

of the SNR.
5Note that simulation results show that this assumption is valid even for relatively small Nc and

Nb values, e.g., Nc = 10 and Nb = 20.
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Fig. 4.2: Illustration of the estimated joint PDF of y2 and y3 under hypothesis H3,
f(y2, y3|H3).

with the mean vector,ωnt,nt−1
∆=
[
ωynt

, ωynt−1

]T
given by (see Appendix 4.D for proof)

ωy` = Γ`nt − n2
t , ` = nt, nt − 1 (4.30)

and the covariance matrix Cnt,nt−1 as

Cnt,nt−1=

 σ2
ynt

ρyntynt−1σynt
σynt−1

ρyntynt−1σynt
σynt−1 σ2

ynt−1

 , (4.31)

where

ρyntynt−1 = Cov{ynt , ynt−1}
σynt

σynt−1

(4.32)

and σ2
y`
, ` = nt, nt− 1 and Cov{ynt , ynt−1} are given in (4.33) and (4.34), respectively
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(see Appendix 4.E for proof).

σ2
y`

= Γ2
`

[
β1

20[2α2
22ϑ̄

(2) + 4α3
22κ̄

(3) + α4
22µ̄

(4)] + [β2
20

(
2α2

22 + 4α3
22 + α4

22

)
− 1](µ̄(2))2

]
+ (Γ` + 1)2

[
β2

22[2α2
22((ϑ̄(1))2 + (µ̄(2))2) + 4α3

22ϑ̄
(1)
µ̄(2) + (4α3

22 + 2α4
22)(µ̄(2))2]

+ 4β3
22[α2

22(ϑ̄(1) + µ̄(2)) + α3
22ϑ̄

(1) + (3α3
22 + α4

22)µ̄(2)](µ̄(1))2

+ [β4
22

(
2α2

22 + 4α3
22 +α4

22

)
− 1] (µ̄(1))4

]
+ 4γ−2

[
β1

20[α1
20ϑ̄

(1) + α2
20µ̄

(2)] + [β2
20(α1

20 + α2
20)− 1](µ̄(1))2

]
− 2Γ` (Γ` + 1)

[
β2

21[4
(
α2

22 + α3
22

)
κ̄(2) +

(
4α3

22 + 2α4
22

)
µ̄(3)]µ̄(1) + [β3

21

(
2α2

22 + 4α3
22 +α4

22

)
− 1]µ̄(2) (µ̄(1))2

]
+ 4Γ`γ−1

[
β1

20(2α2
21κ̄

(2) + α3
21µ̄

(3)) + [β2
20(2α2

21 + α3
21)− 1] µ̄(2)µ̄(1)

]
− 4 (Γ` + 1) γ−1

[
2β2

21[(α2
21(ϑ̄(1) + µ̄(2)) + α3

21µ̄
(2))µ̄(1)] + [β3

21

(
2α2

21 +α3
21

)
− 1](µ̄(1))3

]
` = nt, nt − 1

(4.33)

Cov
{
ynt , ynt−1

}
= (4.34)

ΓntΓnt−1
[
β1

20[2α2
22ϑ̄

(2) + 4α3
22κ̄

(3) + α4
22µ̄

(4)] + [β2
20

(
2α2

22 + 4α3
22 + α4

22

)
− 1](µ̄(2))2

]
+ (ΓntΓnt−1 + Γnt + Γnt−1 + 1)

[
β2

22[2α2
22((ϑ̄(1))2 + (µ̄(2))2) + 4α3

22ϑ̄
(1)
µ̄(2) + (4α3

22 + 2α4
22) (µ̄(2))2]

+ 4β3
22[α2

22(ϑ̄(1) + µ̄(2)) + α3
22ϑ̄

(1) +
(
3α3

22 + α4
22

)
µ̄(2)](µ̄(1))2 + [β4

22(2α2
22 + 4α3

22 + α4
22)− 1] (µ̄(1))4

]
+ 4γ−2

[
β1

20[α1
20ϑ̄

(1) + α2
20µ̄

(2)] + [β2
20(α1

20 + α2
20)− 1](µ̄(1))2

]
− (2ΓntΓnt−1 + Γnt + Γnt−1)

[
β2

21[4(α2
22 + α3

22)κ̄(2) + (4α3
22 + 2α4

22)µ̄(3)]µ̄(1) + [β3
21(2α2

22 + 4α3
22 + α4

22)− 1]

µ̄(2)(µ̄(1))2
]

+ 2(Γnt + Γnt−1)γ−1
[
β1

20[2α2
21κ̄

(2) + α3
21µ̄

(3)] + [β2
20(2α2

21 + α3
21)− 1]µ̄(2)µ̄(1)

]
− 2(Γnt + Γnt−1 + 2)γ−1

[
2β2

21[α2
21(ϑ̄(2) + µ̄(2)) + α3

21µ̄
(2)]µ̄(1) + [β3

21(2α2
21 + α3

21)− 1](µ̄(1))3
]
.

In (4.33) and (4.34), αLij
∆=

L∏
l=1

(Nc−l+1)

N i
c(Nc−1)j , βLij

∆=

L∏
l=1

(Nb−l+1)

N i
b(Nb−1)j , L = 1, 2, 3, 4, and Ωs

is the fourth-order/ two-conjugate moment of the unit variance constellations; the
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expressions for other symbols are provided in (4.35).

µ̄(1) = nt + γ−1

µ̄(2) = (n2
t + nt) + 2ntγ

−1 + γ−2

µ̄(3) = (n3
t + 3n2

t + 2nt) + 3(n2
t + nt)γ−1 + 3ntγ

−2 + γ−3

µ̄(4) = (n4
t + 6n3

t + 11n2
t + 6nt) + 4(n3

t + 3n2
t + 2nt)γ−1

+ 6(n2
t + nt)γ−2 + 4ntγ

−3 + γ−4

ϑ̄
(1) = 2(n2

t + (Ωs − 1)nt) + 4ntγ
−1 + 2γ−2

ϑ̄
(2) = 4n4

t + 8(Ωs + 1)n3
t + (4Ω2

s + 24Ωs − 20)n2
t

+ (20Ω2
s − 32Ωs + 8)nt + [16n3

t + 16(Ωs + 1)n2
t

+ 32(Ωs − 1)nt]γ−1 + [24n2
t + 8(Ωs + 1)nt]γ−2

+ 16ntγ
−3 + 4γ−4

κ̄(2) = 2n3
t + 2(Ωs + 1)n2

t + (4Ωs − 4)nt

+ [6n2
t + 2(Ωs + 1)nt]γ−1 + 6ntγ

−2 + 2γ−3

κ̄(3) = 2n4
t + (8 + 2Ωs)n3

t + (2 + 10Ωs)n2
t + 12(Ωs − 1)nt

+ [8n3
t + 4(4 + Ωs)n2

t + 8Ωsnt]γ−1

+ [12n2
t + (8 + 2Ωs)nt]γ−2 + 8ntγ

−3 + 2γ−4. (4.35)

Using (4.29)–(4.35), the conditional probability of correct detection in (4.28) is

obtained as

P {n̂t = nt|Hnt}=Q
ωynt−1

σynt−1

,
−ωynt

σynt

,−ρyntynt−1

 , (4.36)

where

Q (x, y, ρ)= 1
2π
√

1− ρ2

∞∫
x

∞∫
y

exp
(
−x

2
1 + y2

1 − 2ρx1y1
2 (1− ρ2)

)
dx1dy1 (4.37)

represents the two-dimensional GaussianQ-function [165]. Under H1, the two-dimensional
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Gaussian Q-function is replaced with the one-dimensional Q-function, yielding

P {n̂t = 1|H1} = Q

(
−ωy1

σy1

)
(4.38)

where Q (x) = 1√
2π

∞∫
x

exp
(
− z2

2

)
dz is the one-dimensional Gaussian Q-function.

4.3.2 Threshold setting

In this subsection, the optimal thresholds, in the sense of maximizing the probability

of correct detection, are obtained as follows.

With the assumption that the maximum number of transmit antennas is Nt,6 the

probability of correct detection is defined as

PD =
Nt∑
nt=1

P(nt)P {n̂t = nt|Hnt} (4.39)

where P(nt) is the probability of transmission with nt antennas, and P {n̂t = nt|Hnt}

is the conditional probability of correct detection under hypothesis Hnt , which is given

in (4.36) and (4.38) for 1 < nt < Nt and nt = 1, respectively. Since the maximum

number of transmit antennas is Nt, ΓNt = +∞ for HNt , which results in

P {n̂t = Nt|HNt} = P {yNt−1 < 0 |HNt } = Q

(
ωyNt−1

σyNt−1

)
. (4.40)

Given (4.4), the average SNR, γ̄, at the receive antenna is expressed as

γ̄ = µ(1) − σ2
w

σ2
w

= ntσ
2
hσ

2
s

σ2
w

= ntγ. (4.41)

After substitution of γ = γ̄/nt into (4.33), (4.34), and (4.35), and with use of (4.36),
6Note that while Nt is required to obtain the optimal threshold values in the sense of maximizing

the probability of correct detection, the proposed algorithm detects the number of transmit antennas
without knowledge of Nt by employing in-the-middle thresholds.
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(4.38), and (4.40), the conditional probability of correct detection and the probabil-

ity of correct detection are straightforwardly expressed in terms of γ̄. The optimal

thresholds are obtained by maximizing the probability of correct detection, i.e.,

maximize
Γ1,Γ2,...,ΓNt−1

PD

subject to γ̄ = ˆ̄γ,
(4.42)

where ˆ̄γ is the estimated average SNR at the receive antenna. Note that PD is a

function of the threshold values through the mean, variance, and covariance given in

(4.30), (4.33), and (4.34), respectively.

The optimization problem in (4.42) can be numerically solved to compute the

optimal thresholds. These thresholds are obtained at the expense of a very large

computational complexity to numerically solve the multi-dimensional optimization

problem in (4.42) given the estimated average received SNR, ˆ̄γ, and a priori knowledge

about the maximum number of transmit antennas Nt.

For Nc � 1, Nb � 1, and over a wide range of SNRs, numerical results shows

that the optimization problem yields the thresholds Γnt ≈ nt + 1/2, nt = 1, ..., Nt− 1

(see results in Fig. 4.5). These are used with the proposed algorithm for simplicity,

as they avoid solving the optimization problem and are referred to as suboptimal.

Furthermore, the assumption on Nt is dropped with the proposed algorithm, by em-

ploying Γ0 = −∞ and Γnt = nt + 1/2 for nt = 1, 2, ... and sequentially checking if

the decision statistic belongs to the interval (Γnt−1,Γnt ]; if it does, the decision that

n̂t = nt is made (see Algorithm 10).
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4.4 Simulations

In this section, we examine the performance of the proposed antenna enumeration

algorithms through several simulation results.

4.4.1 Simulation Setup

Unless otherwise mentioned, the modulation was quadrature phase-shift-keying (QPSK)

with spatial multiplexing transmission scheme, and Nc = 100 and Nb = 1000.7 The

channel coefficients were modeled as independent circular complex Gaussian random

variables with variance σ2
h. The additive white noise was modeled as circular com-

plex Gaussian random variables with variance σ2
w, and the average SNR per transmit

antennas in dB was defined as γ = 10 log (σ2
hσ

2
s /σ2

w) dB. Without loss of generality,

it was assumed that σ2
hσ

2
s = 1. P {n̂t = nt|Hnt} and PD = 1

4

4∑
nt=1

P{n̂t =nt|Hnt} were

used as performance measures and were obtained based on 1000 Monte Carlo trials

for each hypothesis. Different threshold settings were considered:

1) Optimal thresholds Γ1,Γ2,Γ3, Γ0 = −∞, Γ4 = +∞ (Scenario 1).

2) Γnt = nt + 1/2, nt = 1, 2, 3, Γ0 = −∞, Γ4 = +∞ (Scenario 2).

3) Γnt = nt + 1/2, nt = 1, 2, 3, 4, ..., Γ0 = −∞ (Scenario 3).8

The next section presents results for the proposed antenna enumeration algo-

rithms under scenario 3, unless otherwise mentioned. Furthermore, the algorithm

performance was evaluated under various transceiver and channel impairments, with
7Note that Nc = b9/16πfdTsc [163] and Nb = bN/Ncc, where N represents the number of

observed symbols.
8For Scenarios 1 and 2, PD represents the probability of correct detection in Bayesian framework.

On the other hand, Scenario 3 corresponds to the proposed algorithm that requires no knowledge
of Nt = 4, and in this case PD does not represent the probability of correct detection in Bayesian
framework. We use it as an evaluation metric in simulation results for the comparison reason and
because showing separate curves for P {n̂t = nt|Hnt}, nt = 1, 2, 3, 4, generates crowded figures.
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the received signal expressed as

rk,b =
Nb∑
m=1

Nc∑
n=1

[h̃msn,mej(2π((b−1)Nc+k)�f) (4.43)

p((k − n+ (b−m)Nc + τ)Ts)] + wk,b

where �f is the CFO normalized by data rate, p(t) is the equivalent impulse response

of the transmit and receive filters, τ is the normalized TO with τ ∈ [0, 1/2], and h̃b is

the Kronecker spatially correlated fading given by [166]

h̃b = R
1/2
T hb. (4.44)

Here hb is a vector with independent and identically distributed (i.i.d.) elements,

drawn from the circular complex Gaussian distribution with unit variance, and RT is

the transmitter correlation matrix,

RT(ij) =


ρj−ih , i ≤ j

R∗T(ij), i > j
, |ρh| < 1, (4.45)

with ρh as the correlation coefficient for the adjacent antennas. The effect of the TO

was studied when a root-raised-cosine filter with roll-off factor β = 0.35 was used at

the transmitter, while either a root-raised-cosine filter with β = 0.35 or a low-pass

10th-order Butterworth filter with cutoff frequency wc = 0.2π was employed at the

receiver to remove the out-of-band noise. Unless otherwise mentioned, the former

case was considered, along with no TO. Also unless otherwise mentioned, ∆f = 0

and ρj−ih = 1 if i = j and 0 otherwise.
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4.4.2 Simulation Results

Fig. 4.3 shows the conditional probability of correct detection, P {n̂t = nt|Hnt}, of

the proposed blind antenna enumeration algorithm versus SNR for different numbers

of transmit antennas. As expected, the conditional probability of correct detection

increases as SNR increases. This increase can be explained, as an increase in the SNR

leads to a decrease in σ2
ynt

and σ2
ynt−1 in (4.33), which in turn yields an improvement

in the conditional probability of correct detection. Also, as can be seen, the condi-

tional probability of correct detection decreases as the number of transmit antennas

increases. This decrease can be also explained, as ωynt−1/σynt−1 and ωynt
/σynt

in (4.36)

and (4.38) decrease as the number of transmit antennas increases. It is worth noting

that there is a very close agreement between the theoretical results given by (4.36)

and (4.38) and simulation results.
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Fig. 4.3: The conditional probability of correct detection, P {n̂t = nt|Hnt} versus SNR (γ)
for different numbers of transmit antennas, nt. Results are presented for the proposed blind
antenna enumeration algorithm.

131



−5 0 5 10 15 20
0.5

0.6

0.7

0.8

0.9

1

SNR (dB)

P
(n̂

t
=

m
|n

t
=

m
)

 

 

nt = 1
nt = 2
nt = 3
nt = 4

Nb=1000

Nb=100

P
{n̂

t
=
n

t|H
n

t}

Fig. 4.4: The conditional probability of correct detection, P {n̂t = nt|Hnt}, of the proposed
semi-blind antenna enumeration algorithm versus SNR for different nt and Nb values.

Fig. 4.4 shows the conditional probability of correct detection, P {n̂t = nt|Hnt},

of the proposed semi-blind antenna enumeration algorithm versus SNR for different

number of transmit antennas, nt, nt = 1, ..., 4, and different Nb values. As seen,

the proposed algorithm exhibits a good performance over a wide range of SNRs for

Nb = 100 and 1000, and the conditional probability of correct detection goes to one

even at negative SNRs for Nb = 1000. The performance improves as either Nb or SNR

increases. Additionally, the conditional probability of correct detection decreases as

the number of transmit antenna increases; this is because the variance of the decision

statistic Θ in (4.20) increases with nt, as confirmed by simulation experiments.

In Fig. 4.5, PD for the proposed blind antenna enumeration algorithm is shown

versus SNR for Scenarios 1, 2, and 3. As expected, PD is higher under Scenario 1

when compared with Scenarios 2 and 3. Results for Scenario 2 almost coincide with

132



-20 -15 -10 -5 0 5 10
SNR (dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
D

Scenario 1
Scenario 2
Scenario 3

Nb = 500
Nc = 50

Nb = 1000
Nc = 100

P D

Fig. 4.5: PD versus SNR (γ) for different threshold settings. Scenario 1: optimal thresholds
Γ1,Γ2,Γ3, Γ0 = −∞ and Γ4 = +∞; Scenario 2: Γnt = nt + 1/2, nt = 1, 2, 3, Γ0 = −∞,
Γ4 = +∞; and Scenario 3: Γnt = nt + 1/2, nt = 1, 2, 3, 4, ..., Γ0 = −∞. Results are
presented for the proposed blind antenna enumeration algorithm.

those for Scenario 1 for a wide range of SNRs; additionally, results for Scenario 3

follow closely as the SNR increases.

Fig. 4.6 illustrates the effect of an incorrect Nt value for Scenario 1, i,e., when

the blind antenna enumeration algorithm employs the optimal thresholds. The con-

ditional probability of correct detection, P {n̂t = nt|Hnt}, nt = 1, 2, 3 is shown versus

SNR when it is incorrectly assumed that Nt = 5 and the true value is Nt = 3. As can

be seen, the performance is not significantly affected under H1 and H2. On the other

hand, under H3, knowledge of the true value of the maximum number of transmit

antennas (Nt = 3) leads to a significant performance improvement when compared

with the overestimated value (Nt = 5). This improvement can be easily explained, as

Γ3 = +∞ with the true value, whereas 3 < Γ3 < 4 with the overestimated value.
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Fig. 4.6: The effect of an incorrectNt value (Nt=5) on the conditional probability of correct
detection of the proposed blind antenna enumeration algorithm with optimal threshold
setting (Scenario 1), P {n̂t = nt|Hnt}, nt = 1, 2, 3, when the true value of Nt is 3.

In Fig. 4.7, PD is presented over the CFO normalized to the data rate, ∆f . As

seen, the proposed blind antenna enumeration algorithm is basically insensitive to the

CFO; this occurs because of the absolute value operator of the second-order moment

in (4.2), which eliminates the effect of CFO.

Fig. 4.8 illustrates the effect of the modulation type on PD. As observed, the

modulation type does not affect the performance of the proposed blind antenna enu-

meration algorithm. This phenomenon can be explained, as different values of Ωs in

(4.35), representing different modulation types, cause minor changes in σ2
ynt

and σ2
ynt−1

in (4.36) and (4.38). It is worth noting that for all PSK modulations Ωs = 1, and for

16-QAM and 64-QAM, Ωs is equal to 1.32 and 1.38, respectively [127].

Fig. 4.9 shows the effect of the spatially correlated fading on PD versus SNR for a
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Fig. 4.7: The effect of the CFO on the performance of the proposed blind antenna enu-
meration algorithm.

correlation coefficient ρh = 0, 0.1, and 0.2. As can be observed, the performance of the

proposed blind antenna enumeration algorithm is robust to the spatial correlation for

ρh < 0.1. This phenomenon can be explained, as while both ωy` and σy` , ` = nt, nt−1

decrease, ωy`
/
σy` remains almost constant for ρh < 0.1.

Fig. 4.10 demonstrates the performance of the proposed blind antenna enumera-

tion algorithm in the presence of the TO for the root-raised-cosine and Butterworth

filter at the receive side, respectively. As expected, the proposed algorithm exhibits

a better performance for the former, as it is the matched filter. A normalized TO,

τ = 0, 0.2, 0.4, is considered; as can be seen, the proposed algorithm is robust to TO.

Fig. 4.11 shows the effect of the Doppler frequency on the performance of the
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Fig. 4.8: The effect of the modulation type on the performance of the proposed blind
antenna enumeration algorithm.
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Fig. 4.9: The effect of the spatially correlated fading on the performance of the proposed
blind antenna enumeration algorithm.
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Fig. 4.10: The effect of TO for root-raised-cosine (RRC) filter with β = 0.35 and low-pass
10th-order Butterworth filter with cutoff frequency wc = 0.2π at receive side. Results are
presented for the proposed blind antenna enumeration algorithm.

proposed blind antenna enumeration algorithm for the block length Nc = b9/16πfdTsc

and NTs = 1 sec at SNR = 0. As can be seen, the conditional probability of correct

detection increases with fd. The reason is that for lower fd values, while Nc is large,

Nb is small, which results in a large estimation error of the expectation over the

channel distribution. As fd increases, both Nc and Nb are reasonably large, and

the estimation error of the expectations is small. It is worth noting that for very

high values of fd,9 the conditional probability of correct detection decreases, as Nc

significantly decreases, and thus, there is a large estimation error of the expectation

over the signal and noise distributions.

In Fig. 4.12, PD for the proposed blind antenna enumeration algorithm is pre-

sented versus SNR when the estimate of σ2
w [5] is employed in (4.11). As expected,

9This decrease is not shown in Fig. 10, as it appears out of the practical fd range.

137



1 50 100 150 200 250 300
fd (Hz)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
{
n̂
t
=

n
t|
H

n
t
}

nt = 1
nt = 2
nt = 3
nt = 4

P
{n̂

t
=
n

t|H
n

t}

Fig. 4.11: The effect of the Doppler frequency, fd, on the conditional probability of correct
detection, P {n̂t = nt|Hnt}, for Nc = b9/16πfdTsc, NTs = 1 sec at SNR=0 dB. Results are
presented for the proposed blind antenna enumeration algorithm.

PD reduces when the estimate of σ2
w is used. Also, as shown, the performance of the

proposed algorithm improves with a more accurate estimate of σ2
w.

Fig. 4.13 shows the conditional probability of correct detection of the number of

transmit antennas under hypothesis H2, P {n̂t = 2|H2}, versus SNR for the proposed

blind antenna enumeration algorithm with (nr = 1), and the soft MDL and AIC

approaches with (nr = 5). As can be seen, even under the unfair comparison condition,

the proposed algorithm outperforms the soft AIC and MDL approaches at low SNR

values. In contrast, the soft AIC and MDL exhibit better performance at high SNR

values for a reduced number of observation blocks. This can be explained, as the

proposed algorithm relies on the variability of the channel and requires a larger number

of blocks. It should be mentioned that increasing the number of blocks leads to

performance improvement in the soft MDL and AIC only for Nb below 100 and SNRs
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Fig. 4.12: The performance of the proposed blind antenna enumeration algorithm with
noise power estimate (NPE) [5].

above -4 dB and -8 dB, respectively.

4.5 Conclusions and Directions for Future Research

Chapter 4 of this thesis dealt with antenna enumeration in time-varying fading chan-

nels. In this section, a summary of the main results in Chapter 4 are provided, and

possible directions of future research are point out.

4.5.1 Summary

Motivated by the need for and importance of antenna enumeration in adaptive multi-

antenna wireless communication systems, two new antenna enumeration algorithms

for time-varying fading channel were developed in Chapter 4 of this thesis. The pro-
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Fig. 4.13: Performance comparison of the proposed blind antenna enumeration algorithm
with nr = 1 and the soft MDL and AIC approaches in [6] with nr = 5, for nt = 2.

posed blind and semi-blind antenna enumeration algorithms exploit the second- and

fourth-order statistics of the received signal and the time-varying nature of the fading

channel, while the receiver is equipped with a single receive antenna. For both al-

gorithms, the antenna enumeration problem was formulated as a multiple hypothesis

testing problem, and a one-dimensional decision statistic was proposed. The pro-

posed blind algorithm does not depend on the signal type. However, the semi-blind

algorithm requires the modulation format for antenna enumeration. Furthermore,

unlike the existing algorithms, the proposed algorithms can detect a large number of

transmit antennas.

In order to evaluate the performance of the proposed blind algorithm analytically,

an equivalent two-dimensional decision statistic was employed, and an a closed-form

expression for the probability of correct detection was derived.

The effectiveness of the proposed algorithms was confirmed through simulations,
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and it was shown that they are robust to the CFO and TO. Moreover, simulation

results show that the proposed blind antenna enumeration algorithm outperforms the

MDL and AIC algorithms for low SNRs while it employs only a single receive antenna.

4.5.2 Future research

The results in Chapter 4 of this thesis open interesting directions for a number of

future research topics. Here, we outline two of them, as follows

• The proposed antenna enumeration algorithms can be extended to multiple

receive antennas;

• The optimal combining method for the multiple receive antennas can be derived

through the bootstrap technique.
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Appendix

4.A Proof of the Second-order Statistics

With the channel coefficients corresponding to different transmit antennas being inde-

pendent circular complex Gaussian random variables with variance σ2
h, i.e., E{hbhH

b } =

σ2
hI, and by employing the property of a circular complex Gaussian random variable

x ∼ Nc (0, σ2
x) from[167] that proposes

E{|x|2n} = n!σ2n
x (4.46)

where n is a positive integer value and n! is the factorial of n, (4.3) for d = 2 is

expressed as

µ(2) = E


(
σ2

s

nt∑
m1

∣∣∣h(m1)
b

∣∣∣2 + σ2
w

)2
 = σ4

s

nt∑
m1

E
{∣∣∣h(m1)

b

∣∣∣4}+ 2σ2
sσ

2
w

nt∑
m1

E
{∣∣∣h(m1)

b

∣∣∣2}

+ σ4
s

nt∑
m1:m2

E
{∣∣∣h(m1)

b

∣∣∣2}E
{∣∣∣h(m2)

b

∣∣∣2}+ σ4
w

= (n2
t + nt)σ4

sσ
4
h + 2ntσ

2
sσ

2
hσ

2
w + σ4

w. (4.47)

142



4.B Proof of the Unbiased Estimators in (4.8)-(4.9)

As is known, θ̂ is an unbiased estimate of a parameter θ if E{θ̂} = θ [168]. Accordingly,

we show that E{ζ̂} = (µ(1))2 and E{µ̂(2)} = µ(2).

By applying the statistical expectation operator on both sides of (4.8), utilizing

the linearity property of the expectation, and employing a property of the conditional

expectation,10 one obtains

E{ζ̂} = 1
N1

Nb∑
b1:b2

Nc∑
k1:k2

E
{
E
{∣∣∣rk1,b1

∣∣∣2∣∣∣rk2,b2

∣∣∣2∣∣∣hb1 ,hb2}} (4.48)

where N1
∆= Nb(Nb − 1)Nc(Nc − 1). Since the signal, noise and channel are indepen-

dent, and as b2 6= b1 and k2 6= k1, rk1,b1 and rk2,b2 are independent; hence, (4.48) can

be written as

E{ζ̂} = 1
N1

Nb∑
b1:b2

Nc∑
k1:k2

E
{
E
{∣∣∣rk1,b1

∣∣∣2∣∣∣hb1}}E{E{∣∣∣rk2,b2

∣∣∣2∣∣∣hb2}} (4.49)

By substituting E{E{|rk1,b1|2|hb1}} and E{E{|rk2,b2|2|hb2}} with µ(1), one easily obtains

that E{ζ̂} = (µ(1))2.

Similarly, for µ̂(2) in (4.9), we can write

E{µ̂(2)} = 1
N2

Nb∑
b

Nc∑
k1:k2

E
{
E
{∣∣∣rk1,b

∣∣∣2∣∣∣rk2,b

∣∣∣2∣∣∣hb}} (4.50)

whereN2
∆= NbNc(Nc−1). Because the signal, noise and channel are independent, and

as k2 6= k1, rk1,b and rk2,b are independent in terms of the signal and noise distribution,

and one can easily write
10For two random variables, w and z, E{z} = E{E{z|w}} [169].
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E{µ̂(2)} = 1
N2

Nb∑
b

Nc∑
k1:k2

E
{
E
{∣∣∣rk1,b

∣∣∣2∣∣∣hb}E
{∣∣∣rk2,b

∣∣∣2∣∣∣hb}} (4.51)

By substituting E{|rk1,b|2|hb} and E{|rk2,b|2|hb} with µb, we can write

E{µ̂(2)} = 1
N2

Nb∑
b

Nc∑
k1:k2

E{(µb)2}. (4.52)

Finally, by replacing E{(µb)2} with µ(2) in (4.52), one easily obtains that E{µ̂(2)} =

µ(2).

4.C First-order Taylor Expansion of the Decision

Statistics in (4.11)

Let us define

z = z1

z2
, (4.53)

where z1 and z2 are two correlated random variables. One can write

z1

z2
=
µz1 + u1

µz2 + u2
, (4.54)

with µz1

∆= E{z1} and µz2

∆= E{z2}, and u1 and u2 as two zero-mean correlated random

variables. With the assumption that

Var
{
u2
}

µ2
z2

� 1 (4.55)

with probability almost one, |u2
/
µz2 | < 1, and thus, by employing the first-order

Taylor expansion, one can write
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z =
(
µz1

µz2

+ u1

µz2

)(
1 + u2

µz2

)−1

=
(
µz1

µz2

+ u1

µz2

)(
1− u2

µz2

)
+O(u2

2). (4.56)

By applying the statistical expectation, one can further write

E {z} = E
{
z1

z2

}
≈
µz1

µz2

− E{u1u2}
µ2
z2

. (4.57)

With the assumption that

µz1

µz2

� E{u1u2}
µ2
z2

(4.58)

one obtains

E
{
z1

z2

}
≈
µz1

µz2

. (4.59)

Consequently, the expectation of the ratio of two correlated random variables can be

approximated by the ratio of their expectations when the conditions in (4.55) and

(4.58) are fulfilled. For the proposed algorithm, we have

z1 = ζ̂− 2µ̂(1)σ2
w + σ4

w (4.60)

z2 = µ̂(2) − ζ̂

with

µz1 = (µ(1) − σ2
w)2 = n2

tσ
4
hσ

4
s (4.61)

µz2 = µ(2) − (µ(1))2 = ntσ
4
hσ

4
s
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and

u1 = ζ̂− (µ(1))2 + 2(µ(1) − µ̂(1))σ2
w (4.62)

u2 = µ̂(2) − µ(2) − ζ̂+ (µ(1))2.

To check the conditions in (4.55) and (4.58), Var{u2} and E{u1u2} are required

to be computed. After several calculation, one obtains

Var{u2}
/
µ2
z2 (4.63)

= n−2
t

[
β1

20[2α2
22ϑ̄

(2) + 4α3
22κ̄

(3) + α4
22µ̄

(4)] + [β2
20(2α2

22 + 4α3
22 + α4

22)− 1](µ̄(2))2

+ β2
22[2α2

22((ϑ̄(1))2 + (µ̄(2))2) + 4α3
22ϑ̄

(1)
µ̄(2) + (4α3

22 + 2α4
22)(µ̄(2))2]

+ 4β3
22[α2

22(ϑ̄(1) + µ̄(2)) + α3
22ϑ̄

(1) + (3α3
22 + α4

22)µ̄(2)](µ̄(1))2 + [β4
22(2α2

22 + 4α3
22+α4

22)− 1](µ̄(1))4

− 2[β2
21[4(α2

22 + α3
22)κ̄(2) + (4α3

22 + 2α4
22)µ̄(3)]µ̄(1) + [β3

21(2α2
22 + 4α3

22 + α4
22)− 1]µ̄(2) (µ̄(1))2]

]

E{u1u2}
/
µ2
z2 (4.64)

= n−2
t

[
−β2

22[2α2
22((ϑ̄(1))2 + (µ̄(2))2) + 4α3

22ϑ̄
(1)
µ̄(2) + (4α3

22 + 2α4
22)(µ̄(2))2]

− 4β3
22[α2

22(ϑ̄(1) + µ̄(2)) + α3
22ϑ̄

(1) + (3α3
22 + α4

22)µ̄(2)](µ̄(1))2 − [β4
22(2α2

22 + 4α3
22 + α4

22)− 1](µ̄(1))4

+ β2
21[4[(α2

22 + α3
22)κ̄(2) + (4α3

22 + 2α4
22)µ̄(3)]µ̄(1)] + [β3

21(2α2
22 + 4α3

22 + α4
22)− 1]µ̄(2)(µ̄(1))2

− 2γ−1[β1
20(2α2

21κ̄
(2) + α3

21µ̄
(2)) + (β2

20(2α2
21 + α3

21)− 1)]µ̄(1)µ̄(2)]

+ 2γ−1 [2β2
21[α2

21(ϑ̄(1) + µ̄(2)) + α3
21µ̄

(2)]µ̄(1) + [β3
21(2α2

21 + α3
21)− 1](µ̄(1))3]

]
.

The theoretical results for Var{u2}
/
µ2
z2 and E{u1u2}

/
µ2
z2 for different values of Nb,

Nc, and nt at γ = −10 dB, as a worst SNR case, are shown in Fig. 4.C.1 and Fig.

4.C.2, respectively. As can be seen, for Nc ≥ 50 and Nb ≥ 200, Var(u2)
/
µ2
z2 � 1

and nt = µz1

/
µz2 � E{u1u2}

/
µ2
z2 ; thus, the approximation (4.12) is accurate. This

is also confirmed with the simulation results for E{Υ} in Fig. 4.C.3. It is clear that
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Fig. 4.C.1: Var{u2}/µ2
z2 for different values of Nc and Nb at SNR=-10 dB.

the approximation (4.11) is more accurate for high SNR values.

4.D Proof of the Mean Vector

By substituting (4.7), (4.8), and (4.9) in (4.25), one obtains

x` = Γ`
NbNc (Nc − 1)

Nb∑
b

Nc∑
k1:k2

|rk1,b|
2|rk2,b|

2 − Γ` + 1
Nb (Nb − 1)Nc (Nc − 1)

Nb∑
b1:b2

Nc∑
k1:k2

|rk1,b1|
2|rk2,b2 |

2

+ 2σ2
w

NbNc

Nb∑
b

Nc∑
k

|rk,b|2−σ4
w, ` = nt, nt − 1. (4.65)

Let us first define

µ
kd:kn+d−1
b

∆= E{|rkd,b|
2|rkd+1,b

|2...|rkn+d−1,b
|2|hb}, (4.66)
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Fig. 4.C.2: E{u1u2}/µ2
z2 for different values of Nc and Nb at SNR=-10 dB.

where d and n are positive integers. For simplicity of notation, let us consider µkd:kd
b =

µkdb . By employing the linearity property of the statistical expectation and using

(4.66), it can be easily shown that

E{x`} = Γ`
NbNc (Nc − 1)

Nb∑
b

Nc∑
k1:k2

E{µk1:k2
b } − Γ` + 1

Nb (Nb − 1)Nc (Nc − 1)

Nb∑
b1:b2

Nc∑
k1:k2

E{µk1
b1}E{µ

k2
b2}

+ 2σ2
w

NbNc

Nb∑
b

Nc∑
k

E{µkb} − σ4
w. (4.67)

With the received symbols in each block being independent, it is obtained that

µ
kd:kn+d−1
b = (µb)n, and from (4.3) we have

E{µkd:kn+d−1
b } = E{(µb)n} = µ(n). (4.68)
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Fig. 4.C.3: E{Υ} for different values of Nc and Nb at SNR=-10 dB.

By using (4.68) for n = 2, (4.67) can be re-written as

E {x`} = Γ`µ(2) − (Γ` + 1) (µ(1))2 + 2σ2
wµ

(1) − σ4
w. (4.69)

Finally, by substituting (4.4) and (4.5) in (4.69), and using that E {y`} = E {x`}/σ4
sσ

4
h,

(4.30) is obtained.

4.E Proof of the Covariance Matrix

For the variance of y`, ` = nt, nt − 1, we have

Var{y`} = Var{x`}
σ8

sσ
8
h
, (4.70)
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where

Var{x`} = E{x2
`} − E2{x`}. (4.71)

Let us define

ϑkdb = E{|rkd,b|4|hb} (4.72)

and

ϑ
kd:kd+1
b = E{|rkd,b|4|rkd+1,b|4| |hb}. (4.73)

By using (4.65), (4.66), (4.72), (4.73), and after several calculations, E{x2
`} can

be written as in (4.74).

E
{
x2
`

}
= Γ2

`

N2
bN

2
c (Nc − 1)2A1 + (Γ` + 1)2

N2
b(Nb − 1)2N2

c (Nc − 1)2A2 +
(

2σ2
w

NbNc

)2

A3 + σ8
w

− 2Γ` (Γ` + 1)
N2

bN
2
c (Nc − 1)2(Nb − 1)

A4 + 4Γ`σ2
w

N2
bN

2
c (Nc − 1)A5 −

4 (Γ` + 1)σ2
w

N2
b (Nb − 1)N2

c (Nc − 1)A6

− 2Γ`σ4
w

NbNc (Nc − 1)A7 −
4σ6

w
NbNc

A8 + 2 (Γ` + 1)σ4
w

Nb (Nb − 1)Nc (Nc − 1)A9, (4.74)

where

A1 = 2
Nb∑
b1

Nc∑
k1:k2

E{ϑk1:k2
b1
}+ 4

Nb∑
b1

Nc∑
k1:k3

E{ϑk1
b1
µk2:k3
b1
}+

Nb∑
b1

Nc∑
k1:k4

E{µk1:k4
b1
}+ 2

Nb∑
b1:b2

Nc∑
k1:k2

E{µk1:k2
b1

µk1:k2
b2
}

+ 4
Nb∑
b1:b2

Nc∑
k1:k3

E{µk1:k2
b1

µk2:k3
b2
}+

Nb∑
b1:b2

Nc∑
k1:k4

E{µk1:k2
b1

µk3:k4
b2
},
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A2 = 2
Nb∑
b1:b2

Nc∑
k1:k2

E{ϑk1
b1
ϑk2
b2
}+ 2

Nb∑
b1:b2

Nc∑
k1:k2

E{µk1:k2
b1

µk1:k2
b2
}+ 4

Nb∑
b1:b2

Nc∑
k1:k3

E{ϑk1
b1
µk2:k3
b2
}

+ 4
Nb∑
b1:b2

Nc∑
k1:k3

E{µk1:k2
b1

µk2:k3
b2
}+ 2

Nb∑
b1:b2

Nc∑
k1:k4

E{µk1:k2
b1

µk3:k4
b2
}+ 4

Nb∑
b1:b3

Nc∑
k1:k2

E{ϑk1
b1
µk2
b2
µk2
b3
}

+ 4
Nb∑
b1:b3

Nc∑
k1:k2

E{µk1:k2
b1

µk1
b2
µk2
b3
}+ 4

Nb∑
b1:b3

Nc∑
k1:k3

E{ϑk1
b1
µk2
b2
µk3
b3
}+ 8

Nb∑
b1:b3

Nc∑
k1:k3

E{µk1:k2
b1

µk2
b2
µk3
b3
}

+ 4
Nb∑
b1:b3

Nc∑
k1:k3

E{µk1:k2
b1

µk3
b2
µk3
b3
}+ 4

Nb∑
b1:b3

Nc∑
k1:k4

E{µk1
b1
µk2:k3
b2

µk4
b3
}+ 2

Nb∑
b1:b4

Nc∑
k1:k2

E{µk1
b1
µk2
b2
µk1
b3
µk2
b4
}

+ 4
Nb∑
b1:b4

Nb∑
k1:k3

E{µk1
b1
µk2
b2
µk2
b3
µk3
b4
}+

Nb∑
b1:b4

Nb∑
k1:k4

E{µk1
b1
µk2
b2
µk3
b3
µk4
b4
}

,

A3 =
Nb∑
b1

Nc∑
k1

E{ϑk1
b1
}+

Nb∑
b1

Nc∑
k1:k2

E{µk1:k2
b1
}+

Nb∑
b1:b2

Nc∑
k1

E{µk1
b1
µk1
b2
}+

Nb∑
b1:b2

Nc∑
k1:k2

E{µk1
b1
µk2
b2
},

A4 = 4
Nb∑
b1:b2

Nc∑
k1:k2

E{ϑk1
b1
µk2
b1
µk2
b2
}+ 4

Nb∑
b1:b2

Nc∑
k1:k3

E{ϑk1
b1
µk2
b1
µk3
b2
}+ 4

Nb∑
b1:b2

Nc∑
k1:k3

E{µk1:k3
b1

µk1
b2
}

+ 2
Nb∑
b1:b2

Nc∑
k1:k4

E{µk1:k3
b1

µk4
b2
}+ 2

Nb∑
b1:b3

Nc∑
k1:k2

E{µk1:k2
b1

µk1
b2
µk2
b3
}+ 4

Nb∑
b1:b3

Nc∑
k1:k3

E{µk1:k2
b1

µk1
b2
µk3
b3
}

+
Nb∑
b1:b3

Nc∑
k1:k4

E{µk1:k2
b1

µk3
b2
µk4
b3
}

,

A5 = 2
Nb∑
b1

Nc∑
k1:k2

E{ϑk1
b1
µk2
b1
}+

Nb∑
b1

Nc∑
k1:k3

E{µk1:k3
b1
}+ 2

Nb∑
b1:b2

Nc∑
k1:k2

E{µk1:k2
b1

µk1
b2
}+

Nb∑
b1:b2

Nc∑
k1:k3

E{µk1:k2
b1

µk3
b2
},
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A6 = 2
Nb∑
b1:b2

Nc∑
k1:k2

E{ϑk1
b1
µk2
b2
}+ 2

Nb∑
b1:b2

Nc∑
k1:k2

E{µk1:k2
b1

µk2
b2
}+ 2

Nb∑
b1:b2

Nc∑
k1:k3

E{µk1:k2
b1

µk3
b2
}

+ 2
Nb∑
b1:b3

Nc∑
k1:k2

E{µk1
b1
µk2
b2
µk1
b3
}+

Nb∑
b1:b3

Nc∑
k1:k3

E{µk1
b1
µk2
b2
µk3
b3
}

, A7 =
Nb∑
b1

Nc∑
k1:k2

E{µk1:k2
b1
} , A8 =

Nb∑
b1

Nc∑
k1

E{µk1
b1
}, and A9 =

Nb∑
b1:b2

Nc∑
k1:k2

E{µk1
b1
µk2
b2
}.

Further, with the same justification as in Appendix 4.D with the received symbols

in each block being independent, it can be seen that ϑkd:kd+1
b = (ϑkdb )2 and ϑkdb = ϑb,

where ϑb is obtained by expanding |rk,b|4 and taking the statistical expectation over

the signal and noise distributions, as

ϑb = E
{
|rkd,b|

4
∣∣∣hb} = Ωsσ

4
s

nt∑
m1

∣∣∣h(m1)
b

∣∣∣4 + 2σ4
s

nt∑
m1:m2

∣∣∣h(m1)
b

∣∣∣2∣∣∣h(m2)
b

∣∣∣2+4σ2
sσ

2
w

nt∑
m1

∣∣∣h(m1)
b

∣∣∣2+2σ4
w,

(4.75)

Moreover, by employing (4.2), (4.46), (4.66), (4.68), and (4.75), analogous to

Appendix 4.A, it can easily be shown that

µ(3) = E{µkd:kd+2
b } = E{(µb)3} = (n3

t + 3n2
t + 2nt)σ6

sσ
6
h + σ6

w

+ 3(n2
t + nt)σ4

sσ
4
hσ

2
w + 3ntσ

2
sσ

2
hσ

4
w (4.76)

µ(4) ∆= E{µkd:kd+3
b } = E{(µb)4} = (n4

t + 6n3
t + 11n2

t + 6nt)σ8
sσ

8
h + σ8

w (4.77)

+ 4(n3
t + 3n2

t + 2nt)σ6
sσ

6
hσ

2
w + 6(n2

t + nt)σ4
sσ

4
hσ

4
w + 4ntσ

2
sσ

2
hσ

6
w
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ϑ(1) ∆= E{ϑkdb } = E{ϑb} = 2(n2
t + (Ωs − 1)nt)σ4

sσ
4
h + 4ntσ

2
sσ

2
hσ

2
w + 2σ4

w (4.78)

ϑ(2) ∆= E{ϑkd:kd+1
b } = E{(ϑb)2} = (4n4

t + 8(Ωs + 1)n3
t + (4Ω2

s + 24Ωs − 20)n2
t

+ (20Ω2
s − 32Ωs + 8)nt)σ8

sσ
8
h + 4σ8

w + (16n3
t + 16(Ωs + 1)n2

t + 32(Ωs − 1)nt)σ6
sσ

6
hσ

2
w

+ (24n2
t + 8(Ωs + 1)nt)σ4

sσ
4
hσ

4
w + 16ntσ

2
sσ

2
hσ

6
w (4.79)

κ(2) ∆= E{ϑkdb µ
kd′
b } = E{ϑbµb} = (2n3

t + 2(Ωs + 1)n2
t + (4Ωs − 4)nt)σ6

sσ
6
h + 2σ6

w

+ (6n2
s + 2(Ωs + 1)nt)σ4

sσ
4
hσ

2
w + 6ntσ

2
sσ

2
hσ

4
w (4.80)

and

κ(3) ∆= E{ϑkd′b µ
kd:kd+1
b } = E{ϑb(µb)2} = (2n4

t + (8 + 2Ωs)n3
t + (2 + 10Ωs)n2

t (4.81)

+ 12(Ωs − 1)nt)σ8
sσ

8
h + 2σ8

w + (8n3
t + 4(4 + Ωs)n2

t + 8Ωsnt)σ6
sσ

6
hσ

2
w

+ (12n2
t + (8 + 2Ωs)nt)σ4

sσ
4
hσ

4
w + 8ntσ

2
sσ

2
hσ

6
w.

Finally, by using the assumption that the channel coefficients are independent

for different blocks, substituting (4.4), (4.5), (4.76), (4.77), (4.78), (4.79), (4.80), and

(4.81) into (4.74), and employing the corresponding result and (4.69) with (4.71) and

then (4.70), (4.33) is easily obtained.

For the the covariance

Cov{ynt , ynt−1} = Cov{xnt , xnt−1}
σ8

sσ
8
h

= E {xntxnt−1} − E {xnt}E {xnt−1}
σ8

sσ
8
h

, (4.82)

by following similar steps as for the variance, (4.34) is obtained.
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Chapter 5

SNR and Noise Variance

Estimation in MIMO Time-varying

Channels

5.1 Introduction

Wireless communication systems often require knowledge of the signal-to-noise ratio

(SNR). The SNR is considered a key parameter whose a priori knowledge can be

exploited at both receiver and transmitter (through feedback) in order to achieve

the optimal performance in adaptive systems. Estimation of the SNR is typically

employed in cognitive radio, power control, mobile assisted handoff, and adaptive

modulation schemes, as well as soft decoding procedures [110, 170–174].

In general, SNR estimation can be divided into two major categories, depending

on whether they base the estimation process on the knowledge of the transmitted

symbols or not. Methods that base the estimation only on the received signal and do

not need the a priori knowledge of the transmitted symbols are called non-data-aided
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(NDA) methods, while data-aided (DA) methods assume perfect knowledge of some

transmitted symbols (for example, training sequences provided for synchronization

and equalization), to facilitate the estimation process. The DA methods have the

drawback of limiting the system throughput due to the transmission of known data.

Also, in many applications, such as cognitive radio systems, where the primary users’

pilot symbol locations might not be known to the secondary users, DA methods cannot

be employed [171]

Accurate SNR and noise variance estimation are extremely important tasks in

the design of multiple-input multiple-output (MIMO) systems [125]. Typically, these

parameters in MIMO systems are estimated through complex algorithms. Hence,

the development of the MIMO systems has led to intense research on accurate and

low-complexity SNR estimation [170].

5.1.1 Literature Review

Different types of DA and NDA SNR estimators exist in the literature. Those es-

timators are in general categorized as maximum likelihood (ML)-based, expectation

maximization (EM)-based, Kolomogrov-Smirnov (K-S)-based, moments-based (MB),

and decision-directed (DD)-based estimators [175–179].

The DA SNR estimators are mainly ML-based estimators and its variations. How-

ever, the NDA ML-based SNR estimators have also been developed. The NDA EM-

based SNR estimators are employed to iteratively attain the ML estimate. This is

achieved by averaging the likelihood function, at each iteration, over all the possible

values of the unknown transmitted symbols [177].

The mainly employed NDA SNR estimators are the moment-based (MB) esti-

mators. The second- and fourth-order moments of the received signal are mostly

employed in the MB SNR estimators. However, for multilevel constellations, the es-
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timation variance considerably increases as the SNR increases [179, 180]. Recently,

NDA SNR estimators through higher-order moments have been proposed. They ex-

hibit significant performance improvement for multilevel constellations at intermedi-

ate and high SNRs [178]. The NDA Kolmogrov-Smirnov (K-S)-based SNR estimators

extract the empirical cumulative distribution function (ECDF) of a certain decision

statistic from the received signal and compare it with pre-stored cumulative distri-

bution function (CDF)s or ECDFs of the reference signals with known SNRs. Then,

the specific SNR, with which the pre-stored CDFs or ECDFs is the most closest to

the ECDF of the received signal, is selected as the estimate [175, 176]. It should be

mentioned that the MB and K-S-based estimators do not attain the NDA-Cramer-

Rao lower bound (CRLB) over a wide range of SNRs. The DD-based estimators base

the estimation process on the detected transmitted symbols. Hence, these estima-

tors require the transmission of fewer known data symbols, but they may suffer from

erroneous detections [181, 182].

While SNR estimation for single-input single-output (SISO) systems has been ex-

tensively studied for both DA and NDA cases, a few number of estimators have been

developed for MIMO systems. Moreover, to the best of our knowledge, most of the

current SNR estimators for both SISO and MIMO systems, have been developed for

time-invariant frequency-flat fading channels [183, 184], as well as for time-invariant,

frequency-selective fading channels [170, 182]. However, in many applications requir-

ing SNR estimation (e.g., mobile communications), this assumption is not valid.

In conjunction with single-input multiple-output (SIMO) and MIMO systems,

the DA and NDA ML-based SNR estimators in time-invariant frequency-flat fading

channel have been investigated in [170, 185, 186]. The ML-based SNR estimation

in SISO time-varying channel was investigated in [171, 172, 187] for the DA and

NDA scenarios. Moreover, in [110, 188], ML-based DA SNR estimation in SIMO and
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MIMO time-varying channel was studied. Furthermore, the CRLBs of the NDA SNR

estimation and efficient estimators in SISO time-invariant frequency-selective channel

have been evaluated in [189]. These have been extended to SIMO systems in [173] for

both DA as well as NDA models

The problem of the NDA SNR estimation through moments of the received signal

in SISO time-invariant and frequency-flat fading channel has been investigated in

[190–194], and M1M4, M2M4, and M1M4M6 MB estimators have been developed.

The classic M1M4 estimator performs well with respect to constant modulus schemes

like M -PSK, whereas a severe degradation is observed for multilevel constellations in

the medium-to-high SNR range. Recently, a new MB approach has been proposed,

which exploits a linear combination of ratios for certain even-order moments (up to the

eight-order moment) to improve on previous estimators of this class [178]. However,

the weights of the linear combination should be tuned according to the constellation

and the specific SNR operation range. The problem of MB SNR estimation in SIMO

and MIMO time-invariant and frequency-flat fading channel has been explored in

[179, 192]. To the best of our knowledge, the problem of MB SNR estimation in

time-varying frequency-flat fading channel was investigared in [195].

5.1.2 Motivation

After reviewing the current SNR estimators in the literature, the following observa-

tions can be made:

• The problem of NDA SNR estimation in MIMO time-varying channel has not

been extensively investigated;

• The current MB SNR estimators exhibit high estimation variance for multilevel

constellations;
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• The existing DA SNR estimators in MIMO time-varying fading channel suffer

from huge computational complexity. Moreover, the periodic pilot transmission

in DA estimators results in reduced system capacity;

• The performance of the DA SNR estimators in MIMO time-varying channels

are severely affected by channel impairments, such as lack of time-frequency

synchronization;

• The current DA and NDA SNR estimators for MIMO systems require a pri-

ori knowledge about the transmitted signals, such as the number of transmit

antennas and modulation format.

5.1.3 Problem Statement

The specific research problems which are studied in Chapter 5 of this thesis are as

follows:

• Two low-complexity MB-SNR estimators for MIMO time-varying frequency-flat

fading channel are proposed;

• The proposed estimators are developed based on the coherence time of the

fading channel which can be estimated through the proposed maximum Doppler

spread (MDS) estimators in Chapter 3 of this thesis.

5.1.4 Methodology

The statistical moment-based approach is employed in Chapter 5 of this thesis. While

the proposed NDA M2M4 SNR estimator relies on the second- and fourth-order statis-

tics of the received signal, the proposed NDA M2M4M6 SNR estimator additionally

158



employs the sixth-order statistics of the received signal, as well. By using the sixth-

order statistics, the NDA M2M4M6 SNR estimator removes the need for a priori

knowledge about the number of transmit antennas.

5.2 Moment-based SNR Estimation

In this section, we derive the M2M4 and M2M4M6 NDA SNR estimators for MISO

systems by employing higher-order moments of the received signal. Moreover, an

extension to the MIMO systems is provided.

5.2.1 Sysyem Model

We consider a multiple-input single-output (MISO) block fading channel [161, 162]

with nt transmit antennas. It is assumed that Nb observation blocks, b = 1, 2..., Nb,

each with length Nc symbols, are affected by independent and identically distributed

(i.i.d.) fading characterized by the (nt×1) vector hb, and corrupted by additive white

Gaussian noise. A typical value for the block length, Nc, in the case of the Clarke-

Jakes Doppler spectrum is Nc = b9/16πfdTsc [163], where fd and Ts are the maximum

Doppler frequency and the symbol period, respectively. The received complex-valued

signal, rk,b, is expressed as

rk,b = h
†
bsk,b + wk,b, k = 1, 2, ..., Nc, b = 1, 2, ..., Nb, (5.1)

where rk,b is the kth received symbol in the bth observation block, sk,b = [s(1)
k,b, s

(2)
k,b, ..., s

(nt)
k,b ]†

represents the zero-mean transmitted symbols from the nt transmit antennas, whose

variance E{|s(m)
k,b |2} = σ2

s , m = 1, 2, ..., nt is unknown at the receive-side, wk,b is com-

plex additive white Gaussian noise with variance σ2
w, which is unknown, and hb =
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[h(1)
b , h

(2)
b , ..., h

(nt)
b ]† denotes the channel coefficients, with h

(m)
b , m = 1, 2, ..., nt as the

channel coefficient between the mth transmit antenna and the receive antenna for the

bth observation block. It is assumed that the channel coefficients in each block are un-

correlated complex Gaussian random variables with E{h(m1)
b (h(m2)

b )∗} = σ2
hδ(m1−m2),

where σ2
h is unknown. The average SNR is defined as γ ∆= ntσ

2
hσ

2
s /σ

2
w at the received-

side.

5.2.2 M2M4 SNR Estimator

The proposed M2M4 SNR estimator exploits the second- and fourth-order moments

of the received signal, as follows:

Let us consider the second-order moment of the received signal in the bth obser-

vation block, which can be expressed as

µb
∆= E

{∣∣∣rk,b∣∣∣2∣∣∣hb} = σ2
s

nt∑
m=1

∣∣∣h(m)
b

∣∣∣2 + σ2
w. (5.2)

Further, let us define

Md
∆= E

{
(µb)

d/2
}

= E
{(

E
{∣∣∣rk,b∣∣∣2∣∣∣hb})d/2

}
(5.3)

where d is a positive integer. With the channel coefficients corresponding to different

transmit antennas being independent complex Gaussian random variables with vari-

ance σ2
h, i.e., E

{
hbhH

b

}
= σ2

hI, and by using (5.2), when d = 2 (second-order statistic),

one can easily show that (5.3) can be expressed as

M2
∆= E {µb} = σ2

s

nt∑
m=1

E
{∣∣∣h(m)

b

∣∣∣2}+ σ2
w = ntσ

2
sσ

2
h + σ2

w. (5.4)
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Furthermore, when d = 4 (fourth-order statistic), one can show that (5.3) becomes

M4 = E


(
σ2

s

nt∑
m1

∣∣∣h(m1)
b

∣∣∣2 + σ2
w

)2
 = σ4

s

nt∑
m1

E
{∣∣∣h(m1)

b

∣∣∣4}+ 2σ2
sσ

2
w

nt∑
m1

E
{∣∣∣h(m1)

b

∣∣∣2}

+ σ4
s

nt∑
m1:m2

E
{∣∣∣h(m1)

b

∣∣∣2}E
{∣∣∣h(m2)

b

∣∣∣2}+ σ4
w = (n2

t + nt)σ4
sσ

4
h + 2ntσ

2
sσ

2
hσ

2
w + σ4

w.

(5.5)

Equation (5.5) along with (5.4) lead to the following systems of equations

M2 = ntσ
2
sσ

2
h + σ2

w (5.6)

M4 = (nt
2 + nt)σ4

sσ
4
h + 2ntσ

2
sσ

2
hσ

2
w + σ4

w,

with σ2
sσ

2
h and σ2

w as unknowns. By solving these equations, one obtains

σ2
hσ

2
s =

√
M4 −M2

2
nt

, (5.7)

and

σ2
w = M2 − nt

√
M4 −M2

2
nt

. (5.8)

Hence, one easily obtains the average SNR, γ, as

γ
∆= ntσ

2
hσ

2
s

σ2
w

=
nt

√
M4−M2

2
nt

M2 − nt

√
M4−M2

2
nt

. (5.9)

It should be noted that the term inside the square root in the right hand-side of (5.9)

is a positive value asM4−M2
2 represents the variance of µb. In practice, the moments
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in (5.9), i.e., M2 and M4 are replaced by their time-averages as,

m̂2 = 1
NbNc

Nb∑
b1

Nc∑
k1=1

∣∣∣rk1,b1

∣∣∣2 (5.10)

and

m̂4 = 1
NbNc (Nc − 1)

Nb∑
b1

Nc∑
k1:k2

∣∣∣rk1,b1

∣∣∣2∣∣∣rk2,b1

∣∣∣2. (5.11)

By substituting (5.10) and (5.11) in (5.9), one easily obtains the estimated average

SNR, γ̂, as

γ̂ =
nt

√
m̂4−m̂2

2
nt

m̂2 − nt

√
m̂4−m̂2

2
nt

. (5.12)

It should be mentioned that m̂4 − m̂2
2 represents a positive value as it is the sample

variance of µ̂b.

5.2.3 M2M4M6 SNR Estimator

To remove the need for a priori knowledge about the number of transmit antennas in

the proposed M2M4 estimator, the sixth-order moment of the received signal can be

used along with the second- and fourth-order moments to derive the M2M4M6 SNR

estimator.

By replacing (5.2) in the definition of M6, it is straightforward to write that

M6
∆= E


(
σ2

s

nt∑
m=1

∣∣∣h(m)
b

∣∣∣2 + σ2
w

)3
 . (5.13)

Furthermore, by employing (a+ b)3 = a3 + b3 + 3a2b+ 3b2a and applying the linearity
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property of statistical expectation, one can easily express (5.13) as

M6 = σ6
s

[
nt∑
m1

E
{∣∣∣h(m1)

b

∣∣∣6}+ 3
nt∑

m1:m2

E
{∣∣∣h(m1)

b

∣∣∣4}E
{∣∣∣h(m2)

b

∣∣∣2}

+
nt∑

m1:m3

E
{∣∣∣h(m1)

b

∣∣∣2}E
{∣∣∣h(m2)

b

∣∣∣2}E
{∣∣∣h(m3)

b

∣∣∣2}]

+ 3σ2
sσ

4
w

nt∑
m1

E
{∣∣∣h(m1)

b

∣∣∣2}+ 3σ4
sσ

2
w

[
nt∑
m1

E
{∣∣∣h(m1)

b

∣∣∣4}

+
nt∑

m1:m2

E
{∣∣∣h(m1)

b

∣∣∣2}E
{∣∣∣h(m2)

b

∣∣∣2}]+ σ6
w. (5.14)

With the channel coefficients corresponding to different antennas being indepen-

dent circular complex Gaussian random variables with variance σ2
h, and employ-

ing the property of circular complex Gaussian random variable x ∼ Nc(0, σ2
x) that

E{|x|2n} = n!σ2n
x , one can obtain

M6 = σ6
sσ

6
h(6nt + 6nt(nt − 1) + nt(nt − 1)(nt − 2))

+ 3σ4
sσ

4
hσ

2
w(2nt + nt(nt − 1)) + 3ntσ

2
sσ

2
hσ

4
w + σ6

w

= (n3
t + 3n2

t + 2nt)σ6
sσ

6
h + 3(n2

t + nt)σ4
sσ

4
hσ

2
w

+ 3ntσ
2
sσ

2
hσ

4
w + σ6

w. (5.15)

Equation (5.15) along with (5.6) lead to the following system of equations

M6 =
(
n3

t + 3nt
2 + 2nt

)
σ6

sσ
6
h + 3

(
n2

t + nt
)
σ4

sσ
4
hσ

2
w + 3ntσ

2
sσ

2
hσ

4
w + σ6

w

M4 = (n2
t + nt)σ4

sσ
4
h + 2ntσ

2
sσ

2
hσ

2
w + σ4

w

M2 = ntσ
2
sσ

2
h + σ2

w (5.16)

with nt, σ2
w, and σ2

hσ
2
s as unknowns. By solving these equations, it is straightforward
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to obtain

nt = 4(M4 −M2
2 )3

(M6 + 2M3
2 − 3M2M4)2 (5.17)

σ2
hσ

2
s = 2M3

2 − 3M4M2 +M6

2(M4 −M2
2 ) . (5.18)

σ2
w = M2

2M4 +M6M2 − 2M2
4

2M3
2 − 3M4M2 +M6

. (5.19)

Hence, by employing (5.17)-(5.19), one easily obtain the average SNR, γ, for the

M2M4M6 estimator as

γ
∆= ntσ

2
hσ

2
s

σ2
w

= 2(M4 −M2
2 )2

M2
2M4 +M6M2 − 2M2

4
. (5.20)

In practice, analogous to the M2M4 estimator, M2 and M4 are replaced by their

corresponding estimates given in (5.10) and (5.11), respectively. Also, for M6, the

following estimator is employed

m̂6 = 1
Nbc

Nb∑
b

Nc∑
k1:k3

∣∣∣rk1,b

∣∣∣2∣∣∣rk2,b

∣∣∣2∣∣∣rk3,b

∣∣∣2 (5.21)

where Nbc
∆= NbNc(Nc − 1)(Nc − 2). By substituting (5.10), (5.11), and (5.21) into

(5.20), one easily obtains

γ̂ = 2(m̂4 − m̂2
2)2

m̂2
2m̂4 + m̂6m̂2 − 2m̂2

4
. (5.22)

5.2.4 Extension to MIMO Systems

Multiple receive antennas can improve the SNR estimation through space-diversity.

When the noise variance is the same across the antenna elements, the performance of

the M2M4 and M2M4M6 estimators can be improved by estimating the SNR at each
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receive antenna using (5.12) or (5.20), and then averaging over all antenna elements

as

γ̂MIMO = 1
nr

nr∑
i=1
γ̂i, (5.23)

where nr is the number of receive antennas, and γ̂i is the estimated average SNR at

the ith receive antenna.

5.3 Simulations

In this section, we examine the performance of the proposed NDAM2M4 and M2M4M6

SNR estimators, through several simulation experiments.

5.3.1 Simulation Setup

Unless otherwise mentioned, the modulation was quadrature phase-shift-keying (QPSK)

with spatial multiplexing transmission scheme. The channel coefficients were mod-

eled as independent circular complex Gaussian random variables with variance σ2
h.

The additive white noise was modeled as circular complex Gaussian random variables

with variance σ2
w. Without loss of generality, it was assumed that σ2

w = 1, and the

performance of the proposed estimators was evaluated in terms of the NRMSE, i.e.,√
E{(γ̂− γ)2}

/
γ. Also, unless otherwise mentioned, Nc = 100, and Nb = 2000 and

Nb = 5000 for the M2M4 and M2M4M6 estimator, respectively.

5.3.2 Simulation Results

Fig. 5.1 shows the distributions of the estimated SNR, γ̂, for the M2M4 and M2M4M6

estimators for nt = 3 at γ = 0 dB. As can be seen, the distributions can be approxi-
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(a) M2M4 estimator (Nb = 2000) (b) M2M4M6 estimator (Nb = 5000)

Fig. 5.1: Distribution of the estimated SNR, γ̂, for the proposed estimators with nt = 2
and at γ = 0 dB.

mated as Gaussian.

Fig. 5.2 illustrates the normalized bias, E{γ̂−γ}/γ, of the M2M4 estimator versus

SNR, γ, for different numbers of transmit antennas, nt = 1, 2, 3, and 4. As expected,

-10 -5 0 5 10
γ (dB)

0

1

2

E
{
(γ̂

−
γ
)}
/
γ

nt = 1
nt = 2
nt = 3
nt = 4

Fig. 5.2: The normalized bias of the M2M4 estimator versus SNR, γ, for nt = 1, 2, 3, 4.
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Fig. 5.3: NRMSE of the M2M4 estimator versus SNR, γ, for nt = 1, 2, 3, 4.

the bias increases as the number of transmit antennas increases. As can also be seen,

the bias is higher for γ < −4 dB and γ > 8 dB. This can be explained, as for γ < −4

dB and γ > 8 dB either σ2
w or σ2

hσ
2
s is not estimated accurately, which leads to higher

estimation error in their ratio. However, for -4 dB < γ < 8 dB, both σ2
w and σ2

hσ
2
s are

estimated reasonably accurate, which leads to trivial bias. It should be mentioned

that a larger observation time results in a lower bias.

In Fig. 5.3, the NRMSE of the M2M4 estimator for different numbers of transmit

antennas is illustrated. As can be seen, the proposed SNR estimator exhibits good

performance over a wide-range of SNR. It should be mentioned that for γ < −4 dB

and γ > 8 dB, the existence of the larger bias leads to higher NRMSE.

Fig. 5.4 presents the normalized bias, E{γ̂− γ}/γ, of the M2M4M6 estimator for

different numbers of transmit antennas, nt = 1, 2, 3, and 4. As expected, in compar-

ison to the performance of the M2M4 estimator in Fig. 5.2, the M2M4M6 estimator
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Fig. 5.4: The normalized bias of the M2M4M6 estimator versus SNR, γ, for nt = 1, 2, 3, 4.

exhibits a higher bias even for larger observation time at low SNR values. This can

be explained, as the higher-order moment employed in the M2M4M6 estimator results
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Fig. 5.5: NRMSE of the M2M4M6 estimator versus SNR, γ, for nt = 1, 2, 3, 4.
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in larger estimation error.

In Fig. 5.5, the NRMSE of the M2M4M6 estimator for different numbers of

transmit antennas is illustrated. As can be seen, the proposed SNR estimator exhibits

a good performance at -4 dB < γ < 8 dB in terms of NRMSE.

5.4 Conclusions and Directions for Future Research

In Chapter 5 of this thesis, NDA SNR estimation was studied in MIMO time-varying

frequency-flat fading channel. In this section, a summary of the main results in

Chapter 5 is provided, and possible directions for future research are pointed out.

5.4.1 Summary

Motivated by the need for NDA SNR estimation in multiple antenna systems, two

MB estimators, M2M4 and M2M4M6, were developed for MISO systems in Chapter

5 of this thesis. Moreover, an extension of the proposed estimators to MIMO sys-

tems was investigated. The derived estimators rely on higher-order moments of the

received signal and estimate SNR in time-varying frequency-flat fading channel. The

effectiveness of the proposed SNR estimators was confirmed through simulations. It

was shown that they exhibit small bias over a moderate range of SNRs. Furthermore,

while the M2M4 estimator outperforms the M2M4M6 estimator, they exhibit a good

performance in terms of NRMSE. The proposed NDA SNR estimators exhibit the

following advantages:

• They do not require perfect time synchronization;

• They are robust to the carrier frequency offset (CFO);

• They increase system capacity due to lack of pilots or preambles;
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• They do not require a priori knowledge of other transmission parameters.

• The M2M4M6 estimator does not require a priori knowledge of the number of

transmit antennas.

5.4.2 Future research

The results in Chapter 5 of this thesis open interesting directions for a number of

future research topics. Here, a few of them are outlined as follows:

• The optimal combining method for the proposed NDA MB SNR estimators in

case of multiple receive antennas can be derived through the bootstrap tech-

nique;

• The proposed NDA MB SNR estimators can be extended for non–Gaussian

noise;

• The NDA-CRLB for SNR estimation in MIMO time-varying frequency-selective

fading channel can be investigated.
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Chapter 6

Blind STBC Identification

6.1 Introduction

Signal identification is the process of identifying the type of the transmitted signal

from a pool of candidates [11, 16]. It finds applications in radio surveillance, software

defined radio, and spectrum awareness in cognitive radio [24, 25]. In the context of

the adaptive transmission and software defined radio, due to the flexible architecture

of the transmitters, the same hardware can be used for different transmission param-

eters, e.g., modulation format, coding rate, and antenna configuration. Accordingly,

at the receive-side, robust algorithms are required for blind estimation of the signal

parameters, such as modulation format, channel encoders, and transmit-side antenna

configuration in a noisy environment [196]. In fact, signal identification is an interme-

diate step between signal detection and signal decoding/demodulation for adaptive

transmission.
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6.1.1 Literature Review

Signal identification has been extensively explored for single-input systems. These

include identification of the modulation format [197–200], single versus multi-carrier

transmissions [201], the type of multi-carrier technique [202, 203], and channel en-

coders [204], as well as blind parameter estimation [205].

With the advent of multiple-input systems, it has been adopted by different wire-

less standards, such as s IEEE 802.11n, IEEE 802.16e, and 3GPP LTE [206]. Hence,

the problem of signal identification for multiple-input systems, with new technical

challenges, such as estimating the number of transmit antennas and type of transmit-

side antenna configuration has emerged. Signal identification for multiple-input sce-

narios is at a very early stage. Estimation of the number of antennas [150–155],

identification of the space-time block code (STBC) [7–9, 207–210], and modulation

classification [211–213] have been considered in the literature.

Regarding the STBC identification, which is the focus of this chapter, the maxi-

mum likelihood (ML) [7] and feature based (FB)[8, 9, 208–210] approaches have been

investigated. The former provides an optimal performance in the sense of maximizing

the probability of correct identification. However, it requires knowledge of the channel

and noise power, as well as timing and frequency synchronization, and is sensitive to

model mismatches, such as carrier frequency offset (CFO) and timing offset (TO).

With the FB approach, features are extracted from the received signal and a decision

is made based on the observed feature values. Although the FB-based method is not

optimal, it can provide a near optimal performance with reduced complexity.

Identification of STBCs has been studied for a pool of two candidate STBCs

[8, 209, 210] and a larger pool of STBCs [7, 9, 208] in the literature. With the

former, identification of spatial multiplexing (SM) and Alamouti space-time block

code (AL-STBC) has been mainly considered, as these represent the most frequently
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used STBCs in standards [206]. For the latter, the extension to a larger pool of STBCs

is considered.

In [7], the likelihood-based algorithm for the identification of STBCs is investi-

gated. While the proposed algorithm is optimal and capable of performing STBC

identification with a single receive antenna, it requires perfect timing and frequency

synchronization and its performance drops in the presence of model mismatches, such

as TO, CFO and non-Gaussian noise. In [207], the space-time second-order correla-

tion function is used as discriminating feature, and a subjective threshold setting is

employed for decision making. In [214], the minimum distance between the theoretical

and estimated space-time second-order correlation is employed for decision making.

In [9, 215], the inherent cyclostationarity of the STBCs is employed as discriminating

feature, and a cyclostationarity test is used for decision making. While these feature-

based algorithms show lower sensitivity to the model mismatches when compared with

the likelihood-based algorithm, they require multiple receive antennas and still do not

exhibit a good performance under TO, CFO, and non-Gaussian noise. In [8], fourth-

order moments are investigated as features for the identification of AL-STBC and SM.

While the fourth-order moments algorithms can perform STBC identification with a

single receive antenna, they are still sensitive to the CFO and TO. Furthermore, they

do not show a good performance in the presence of non-Gaussian noise. In [208], the

extension of the fourth-order moment algorithm for a larger STBC candidate pool by

employing a decision binary tree is investigated.

6.1.2 Motivation

After reviewing the current algorithms for STBC identification, the following obser-

vations were made:

• New FB algorithm should be developed without requirement of a subjective
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threshold setting for decision making;

• The existing algorithms are sensitive to the CFO and TO;

• STBC identification has not been explored for non-Gaussian noise;

• Due to the limitation in size and power of the intelligent/cognitive radios, signal

identification with a single receive antenna is of practical interest.

6.1.3 Problem Statement

The specific research problems which are studied in Chapter 6 of this thesis are as

follows:

• First, a non-parametric test is adopted to propose a new algorithm for identifi-

cation of SM and AL-STBC, which provides significant advantages, such as:

– It does not require a subjective threshold setting for decision making;

– It does not require knowledge of the channel parameters, noise power, and

modulation type. Also, it is robust to CFO and relatively robust to TO;

– It is capable of performing the STBC identification with a single receive an-

tenna, and it provides a good performance in the presence of non-Gaussian

noise.

• Then, the proposed algorithm is extended for the identification of a larger STBC

candidate pool.

6.1.4 Methodology

The proposed identification algorithm is developed based on the Kolmogrov-Smirnov

(K-S) test, as a non-parametric goodness-of-fit test, along with decision binary tree.

174



6.2 Identification of SM and AL-STBC

6.2.1 Signal Model

Consider a wireless communication system using either SM or AL-STBC. Let nt

denote the number of transmit antennas and P be the number of time periods for the

transmission of the bth block of symbols sb = [s1,b, ..., sns,b]
†. The encoder employs a

transmission matrix C (sb) of size nt × P to map the symbols to be transmitted. For

SM, nt = ns and P = 1, whereas nt = nt = 2 and P = 2 for AL-STBC. The coding

matrix for SM and AL-STBC are given respectively as [8]

CSM (sb) = [s1,b, ..., snt,b]
†, CAL (sb) =

 s1,b −s∗2,b

s2,b s∗1,b

 . (6.1)

Let us consider a receiver equipped with a single antenna. Without loss of gen-

erality, it is assumed that the first received symbol, denoted by r(0), corresponds to

the (k1 + 1)th column of the jth block, denoted by Ck1(sj). Using this assumption,

the kth received sample is given by [207]

rk = h†Xk + wk, k = 0, 1, ..., K − 1, (6.2)

where Xk = Cu (sv), with u = (k + k1) modP , v = j + (k + k1) divP , and zmodP

and z divP represent the reminder and the quotient of the division z/P , respectively,

w (k) is the additive white noise, and h = [h1, ..., hnt ]
† is the fading coefficients vector.
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Fig. 6.1: Illustration of the event AL1. Solid lines are used to delimitate symbols which do
not belong to the same block and dashed lines are employed to delimitate symbols which
belong to the same block.

6.2.2 K-S Based Identification Algorithm

Let us define the random sequences y and z as

y
∆=
{
y0, y1, ..., y(L−1)

}
(6.3)

and

z
∆=
{
z0, z1, ..., z(N−1)

}
(6.4)

where

yk
∆= |r2kr2k+1| (6.5)

and

zk
∆=
∣∣∣r(2k+2bK/4c+1)r(2k+2bK/4c+2)

∣∣∣ (6.6)

with L = bK/4c , N = K/2−bK/4c − 1, and |.| and b.c are the absolute value

operator and the floor function, respectively.

When SM is transmitted, the components of both y and z are independent and

identically distributed (i.i.d.), being drawn from the same distribution, as r is an i.i.d.

sequence. On the other hand, for AL-STBC, the components of y and z are not
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necessary i.i.d. since r is not an i.i.d. sequence. In fact, with the assumption that the

alignment of the STBC block is not known at the blind receiver, two different events

can be considered for AL-STBC: (i) event AL1, for which the first received symbol does

not correspond to the beginning of the AL-STBC block (see Fig. 6.1) and (ii) event

AL2, for which it does. Given (6.3)-(6.6), for the event AL1, yk, k = 0, 1, ..., L − 1,

represents the multiplication of consecutive received symbols from different blocks,

whereas z (k) , k = 0, 1, ..., N − 1, is the multiplication of successive received symbols

from the same blocks. Accordingly, y is not an i.i.d. sequence, whereas z is an i.i.d.

sequence for the event AL1. By following the same reasoning, y is an i.i.d. sequence

and z is not for the event AL2. Thus, it is straightforward that detecting the presence

of the SM transmission becomes equivalent to testing the null hypothesis,

H0 :


The components of both y and z are i.i.d.,

being drawn from the same distribution
(6.7)

against the alternative hypothesis that the components of y or z are not i.i.d., and

therefore, they are not drawn from the same distribution.

Let F̂ y (x) and F̂ z (x) denote the empirical cumulative distribution function (ECDF)s

of the sequences y and z, which are defined as

F̂ y (x) ∆= 1
L

L−1∑
n=0

I
{
yn ≤ x

}
(6.8)

and

F̂ z (x) ∆= 1
N

N−1∑
n=0

I
{
zn ≤ x

}
, (6.9)

where I{·} is the indicator function, which is equal to one if the input is true, and

equal to zero otherwise. Under H0, it follows from the strong law of large numbers
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that for each x, F̂ y (x) and F̂ z (x) converge to the same CDF with probability one as

K → ∞; in other words, if the null hypothesis is valid, F̂ y (x) will be fairly close to

F̂ z (x) when K is large enough. Thus, it is reasonable to reject the null hypothesis H0

in favor of its alternative hypothesis, i.e., the presence of AL-STBC, if a significant

distance is observed between F̂ y (x) and F̂ z (x). Hence, the distance between F̂ y (x)

and F̂ z (x) can be used as a feature for the identification of SM and AL-STBC. To

measure the distance between two ECDFs, we employ the two-sample K-S test [216].

With this test, the distance is defined as

ξ
∆= max

v
|F̂ z (v)− F̂ y (v)|, (6.10)

where v ∈{y (0) , ..., y (L− 1) , z (0) , ..., z (N − 1)} [216]. By comparing the goodness-

of-fit statistic with a threshold, λ, the hypothesis H0 is rejected if

ξ ≥ λ. (6.11)

Moreover, ξ is distribution-free under H0 and the following result holds for all con-

tinuous distributions [216, 217]

P{ξ < λ |H0} = β, (6.12)

where β is the confidence interval, represented as

β=1− Φ
λ
√ NL

N + L
+ 0.12 + 0.11√

NL
N+L

 , (6.13)
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where

Φ (x) = 2
∞∑
m=1

(−1)m−1e−2m2x2
. (6.14)

As such, for a certain β, the threshold, λ, is specified by (6.13). The proposed

K-S-based identification algorithm is formally described as following.

Algorithm 12 : K-S Based STBC Identification Algorithm
1: Input the target confidence interval β
2: Output Type of the transmitted STBC code
3: Acquire the measurement r = [r (0) , r (1) , ..., r (K − 1)].
4: Obtain the sequences y and z from r using (6.5)-(6.6).
5: Obtain the corresponding threshold λ using (6.13).
6: Compute the ECDFs F̂ y and F̂ z using (6.8) and (6.9).
7: Compute the maximum distance between the F̂ y and F̂ z ξ according to (6.10).
8: If ξ < λ
9: SM is present
10: else
11: AL-STBC is present
12: end

6.3 Extension to a Larger Pool of STBCs

By employing a binary decision tree with I − 1 nodes, where I represents the cardi-

nality of the STBC pool, the STBC codes can be distinguished via the two-sample

K-S test at each node. At node i, two independent sequences yi =
{
yi0, y

i
1, ..., y

i
Li−1

}
and zi =

{
zi0, z

i
1, ..., z

i
Ni−1

}
with lengths Li and Ni are derived from the received signal

with length K, such that the presence of the code Ci becomes equivalent to testing

the null hypothesis,

H i
0 :


The components of both yi and zi are i.i.d.,

being drawn from the same distribution
(6.15)
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against the alternative hypothesis, H i
1, i.e., the presence of STBCs other than Ci, in

which the components of yi or zi are not i.i.d., and thus, they are not drawn from the

same distribution.

We denote F̂ yi (x) and F̂ zi (x) as the ECDFs of the sequences yi and zi at the ith

node, which are defined as

F̂ yi (x) ∆= 1
Li

Li−1∑
n=0

I
{
yin ≤ x

}
, (6.16)

F̂ zi (x) ∆= 1
Ni

Ni−1∑
n=0

I
{
zin ≤ x

}
, (6.17)

Under hypothesis H i
0, F̂ yi (x) converges to F̂ zi (x) if Li and Ni are large enough;

accordingly, H i
0 can be rejected in favor of its alternative hypothesis if a large enough

distance exists between F̂ yi (x) and F̂ zi (x). This property is used as a feature at the

binary tree for the STBC identification at the ith node. The two-sample K-S test is

employed to measure the distance; the largest absolute difference between the two

ECDFs is used, which is defined as

ξi
∆= max

vi

∣∣∣F̂ zi (vi)− F̂ yi (vi)
∣∣∣, (6.18)

where vi =
{
yi0, y

i
2, ..., y

i
Li−1, z

i
0, z

i
2, ..., z

i
Ni−1

}
. At the ith node, the hypothesis H i

0 is

decided on if

ξi < λi, (6.19)

where λi is a threshold. It should be noted that ξi does not depend on the distribution

of yi and zi under H i
0 and the following result is valid for all continuous distributions
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(
max
v1

∣∣F̂y1 (v1)− F̂z1 (v1)
∣∣
)

< λ1

(
max
v2

∣∣F̂y2 (v2)− F̂z2 (v2)
∣∣
)

< λ2

SM, AL or STBC3

SM

AL

STBC3

yes

No

yes

No

Fig. 6.2: Flowchart of the proposed binary decision tree for the identification of SM, AL,
and STBC3.

regardless of their type [216]

P
{
ξi < λi|H i

0

}
= βi, (6.20)

where βi is the confidence interval at the ith node, given by

βi=1− Φ
λi

√ NiLi
Ni + Li

+ 0.12 + 0.11√
NiLi
Ni+Li

 , (6.21)

where Φ (x) is given in (6.14).

Fig. 6.2 shows the flowchart of the decision tree-based identification method for

SM, AL-STBC, and STBC3. At the first node, SM is distinguished from AL and

STBC3 by employing the sequences y1 and z1 given as

y1 =
{
y1

0, y
1
1, ..., y

1
L1−1

}
(6.22)
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and

z1 =
{
z1

0, z
1
1, ..., z

1
N1−1

}
, (6.23)

where y1
k

∆= |r2kr2k+1| and z1
k

∆= |r′2kr′2k+1|, with L1 = bK/4c , N1 = K/2−bK/4c − 1,

and r′k = rk+2bK/4c+1. At the first node, SM is declared present if the statistic defined

in (6.18) for the y1 and z1 sequences does not exceed the threshold λ1 corresponding

to the preset confidence interval β1. Otherwise, either AL or STBC3 can be present.

Note that in both cases, the components of y1 and z1 are not necessary i.i.d., and are

not drawn from the same distribution.

At the second node, AL is individualized from STBC3 by using two new sequences

y2 and z2, also obtained from the received sequence. The received sequence is split into

two non-overlapping sequences r′1 = {r0, r1, ..., rM−1} and r′2 = {rM+4, rM+5, ..., rK−1},

where M = 4 b(K + 4)/8c − 2, and the two new sequences y2 and z2 are defined as

y2 =
{
y2

0, y
2
1, ..., y

2
(L2−1)

}
, (6.24)

and

z2 =
{
z2

0, z
2
1, ..., z

2
(N2−1)

}
, (6.25)

where y2
k

∆= |r4kr4k+1|, z2
k

∆= |r4k+M+4r4k+M+5|, L2 =
⌊
M+2

4

⌋
, and N2 =

⌊
K−M−2

4

⌋
.

Under the assumption that the beginning of the STBC3 block is not known at the

receiver, four different events can be considered for STBC3, corresponding to the

four possible starting symbols. For each of these events, one can easily see that the

components of y2 and z2 are drawn from different distributions (Fig. 6.3). On the

other hand, for AL, the components of both y2 and z2 are i.i.d., being drawn from

the same distribution (Fig. 6.4); this can be easily explained, as the components of
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(a) Event 1

r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r14 r15 r16 r17 r18 r19
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(b) Event 2

r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r14 r15 r16 r17 r18 r19

y20 y22 y24

z20 z22

(c) Event 3

r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r14 r15 r16 r17 r18 r19

y20 y22 y24

z20 z22

(d) Event 4

Fig. 6.3: Illustration of the sequences y2 and z2 for the four different STBC3 events,
corresponding to the four possible starting symbols which belong to an STBC block, for
K = 20. Solid lines are used to delimitate symbols which do not belong to the same block
and dashed lines are employed to delimitate symbols which belong to the same block.
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r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r14 r15 r16 r17 r18 r19

y20 y22 y24

z20 z22

(a) Event 1

r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r14 r15 r16 r17 r18 r19

y20 y22 y24

z20 z22

(b) Event 2

Fig. 6.4: Illustration of the sequences y2 and z2 for the two different AL events, corre-
sponding to the two possible starting symbols which belong to an AL block, for K = 20.
Solid lines are used to delimitate symbols which do not belong to the same block and dashed
lines are employed to delimitate symbols which belong to the same block.

both y2 and z2 result either from the multiplication of received symbols belonging to

the same AL block or to different AL blocks. Hence, detecting the presence of the AL

transmission becomes equivalent to testing the null hypothesis in 6.15 for the y2 and

z2 sequences. As such, AL is declared present if the statistic defined in 6.18 for the

y2 and z2 sequences does not exceed the threshold λ2 corresponding to β2; otherwise,

STBC3 is declared present.

6.4 Simulations

In this section, the performance of the proposed STBC identification algorithm is

evaluated through several simulation experiments.
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6.4.1 Simulation Setup

The performance of the proposed K-S-based identification algorithm was examined

using 1000 Monte Carlo trials. Unless otherwise mentioned, for the identification of

the SM and AL-STBC, the modulation was QPSK, K = 2048, β = 0.99, the CFO

normalized to data rate was ∆f = 0.01, Nakagami-m fading channel with m = 2

was considered1, and E{|h2
i |} = 1, i = 0, 1. In addition, for the identification of

the SM, AL-STBC, and STBC3, we considered binary phase-shift keying (BPSK)

modulation, K = 8092 observed symbols, and β1 = β2 = 0.99. The additive noise,

wk in 6.2, was modeled as impulsive noise due to a variety of natural and man-made

sources in most radio channels, being characterized by the probability density function

fw(x) = (1− ε)fN (x) + εfI (x), where 0 ≤ ε < 1 is the mixing parameter, and fN (x)

and fI (x) are zero-mean complex Gaussian distributions with variance σ2
N and σ2

I ,

respectively [127]. We set ε = 0.01 and σ2
I/σ

2
N = 100. Under the assumption of unit

variance constellations, regardless of the number of transmit antennas, the signal-to-

noise ratio (SNR) is defined as 10 log(Ps/σ
2
w), with Ps = (1/p)E{tr[C(sb)CH(sb)]},

where tr denotes the trace of a matrix [7], nt = 2, and σ2
w = (1− ε)σ2

N + εσ2
I .

The average probability of correct identification Pc = 2−1∑
θ∈{SM,AL} P{θ̂ = θ|θ},

Pc = 3−1∑
θ∈{SM,AL,STBC3} P{θ̂ = θ|θ} and the probability of correct identification

P{θ̂ = θ |θ}, θ ∈ {SM,AL, STBC3} were used to evaluate the identification perfor-

mance, with θ̂ as the identified signal type.

6.4.2 Simulation Results

Fig. 6.5 shows the probability of correct identification for SM and AL-STBC over

Nakagami-m fading channel for different values of m. As expected, the probability
1Note that results for the FOLP-C, versus which we compare our algorithm, are given for m = 2

in [8]; FOLP-C does not provide a good performance for m = 1.
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Fig. 6.5: The probability of correct identification, P{θ̂ = θ |θ}, θ ∈ {SM,AL}, versus SNR
for the K-S-based algorithm over different Nakagami-m fading channels in the presence of
impulsive noise, with QPSK modulation, K = 2048, ∆f = 0.01, and β = 0.99.

of correct identification for SM, P{θ̂ = SM |SM}, is equal to the target confidence

interval β = 0.99 and is independent of the SNR and m. On the other hand, the

probability of correct identification for AL-STBC, P{θ̂ = AL |AL}, improves as the

SNR andm increase. This can be easily explained, as the noise and channel coefficients

control the maximum distance between the ECDFs, F̂ y (x) and F̂ z (x); a reduced noise

level and improved channel conditions lead to a larger distance, which in turn yields

a better performance.

The probability of correct identification P{θ̂ = θ |θ}, θ ∈ {SM,AL}, for different

values of the confidence interval, β, is depicted in Fig. 6.6. As β increases, P{θ̂ =

SM |SM} also increases (as equals β), while P{θ̂ = AL |AL} decreases. The latter

can be easily explained, as according to (6.13), for fixed L and N values, a higher β
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Fig. 6.6: The effect of the confidence interval, β, on the probability of correct identification,
P{θ̂ = θ |θ}, θ ∈ {SM,AL}, for the K-S-based algorithm over Nakagami-m fading channel,
m = 2, in the presence of impulsive noise, with QPSK modulation, K = 2048, and ∆f =
0.01.

Table 6.1: The effect of the SNR on the Pc.

SNR (dB) 5 10 15 20
K-S 0.864 0.979 0.994 0.999

FOLP-C 0.588 0.871 0.943 0.977

value yields an increase in the threshold λ.

In Fig. 6.7, the average probability of correct identification, Pc, is presented over

∆f for the ML [7], FOLP-C2 [8], and K-S-based algorithms. As can be seen, the

proposed K-S-based algorithm is basically insensitive to the CFO; this is because

of the absolute value operator in (6.5) and (6.6), which eliminates the CFO effect.

Additionally, it outperforms both FOLP-C and ML, and the latter drastically fails as

∆f increases.
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Fig. 6.7: The effect of the normalized CFO, ∆f , on the average probability of correct
identification, Pc, for the ML [7], FOLP-C [8], and K-S-based algorithms over Nakagami-
m fading channel, m = 2, in the presence of impulsive noise, with QPSK modulation,
K = 2048, β = 0.99, and at SNR=10 dB.

Table 6.2: The effect of the number symbols on the Pc.

K 512 1024 2048 4096
K-S 0.834 0.965 0.979 0.986

FOLP-C 0.516 0.790 0.871 0.911

Table 6.1 compares3 the average probability of correct identification, Pc, for the

FOLP-C and K-S-based algorithms over Nakagami-m fading channel in the presence

of impulsive noise and CFO for different values of SNR. As it is observed, the K-S-

based algorithm exhibits a superior performance, especially at lower SNR, which is of

interest.

In Table 6.2, the effect of the number of received symbols, K, on Pc is presented

for the FOLP-C and K-S-based algorithms at SNR=10 dB. It can be observed that
2Note that FOLP-C was selected for comparison, as it outperforms all other FB algorithms

proposed in the literature under transmission impairments [8].
3Henceforth, results for ML are omitted as its performance is not acceptable (0.5 < Pc < 0.65).
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Table 6.3: The effect of the modulation type on the Pc.

Mod BPSK QPSK 8-PSK 16-PSK 16-QAM 32-QAM
K-S 0.883 0.979 0.978 0.9764 0.736 0.742

FOLP-C 0.502 0.871 0.855 0.8401 0.721 0.711

Table 6.4: The Effect of the TO on the Pc.

∆T/T 0 0.125 0.25 0.375
K-S 0.974 0.964 0.824 0.552

FOLP-C 0.871 0.802 0.691 0.505

increasing the number of symbols results in a performance improvement for the pro-

posed algorithm. The reason is that as L and N increase, the corresponding threshold,

λ, decreases for a given β in (6.13), yielding an increase in P{θ̂ = AL |AL}, while

P{θ̂ = SM |SM} is equal to β. It is worth noting that the K-S-based algorithm

outperforms FOLP-C.

Table 6.3 illustrates the effect of the modulation type on Pc for the FOLP-C and

K-S-based algorithms at SNR=10 dB. As it is observed, the proposed algorithm is

independent of M for the M -PSK modulations (M ≥ 4), and it degrades as M in-

creases for the M -QAM modulations. It is worth noting that while P{θ̂ = SM |SM}

is independent of the modulation type (as equals β), P{θ̂ = AL |AL} has the same

behavior as Pc. Additionally, it should be mentioned that larger K is needed to attain

an identification performance forM -QAM similar to the one forM -PSK modulations

(M ≥ 4). For instance, with K=8192, Pc =0.972 and 0.963 for the proposed algo-

rithm, while Pc =0.861 and 0.852 for FOLP-C when using 16-QAM and 32-QAM, re-

spectively. The proposed algorithm outperforms FOLP-C; furthermore, it can identify

SM and AL-STBC with the binary phase-shift-keying (BPSK)4 modulation, opposite

to FOLP-C.
4Note that there is a small amount of performance degradation for BPSK when compared with

M -PSK (M ≥ 4), as the difference between the two CDFs is reduced for AL-STBC due to the lack
of the imaginary part in the BPSK constellation.
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Table 6.4 illustrates the performance of the FOLP-C and K-S-based algorithms

in the presence of TO for the case of root-raised-cosine pulse shaping with a roll-off

factor of 0.2 at the transmit- and receive-sides. The receive filter output is sampled at

times T + k∆T , where T is the symbol period and ∆T is the deviation from the ideal

sampling time. As can be seen, the proposed algorithm exhibits a lower sensitivity to

TO when compared with FOLP-C, being relatively robust for ∆T/T ≤ 0.25.

The good identification performance of the proposed K-S-based algorithm does

not come at an additional computational cost; both the K-S-based and FOLP-C

algorithms have the complexity order of O(KlogK).

Fig. 6.8 shows the average probability of correct identification for θ ∈ {SM,AL,

STBC3} versus SNR, for different Nakagami-m fading channels, m = 1, 2 and ∞. As

can be seen, Pc improves as the SNR and m increase. This is because the maximum

distance between the ECDFs at each node increases as the noise level decreases or as

the channel conditions improve.

In Fig. 6.9, the effect of the CFO normalized to the data rate, ∆f , on Pc is

illustrated. As can be seen, the performance of the proposed method does not depend

on ∆f . This can be easily explained, as the CFO effect is eliminated through the

absolute value operator in the definition of the derived sequences at each node. Thus,

the proposed method is completely robust to ∆f .

Fig. 6.10 compares the average probability of correct identification, Pc, achieved

by the proposed method, fourth-order lag product (FOLP) method [8], and the second-

order cyclostationarity-based (CS) method [9]. As can be seen, the proposed method

outperforms both the FOLP and the second-order cyclostationarity-based methods.
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Fig. 6.8: Average probability of correct identification, Pc, θ ∈ {SM,AL,STBC3}, versus
SNR for diverse Nakagami-m fading channels.
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Fig. 6.9: Effect of the CFO normalized to the data rate, ∆f , on Pc for θ ∈
{SM,AL, STBC3} in Nakagami-m fading channel, m = 3.
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6.5 Conclusions and Directions for Future Research

In Chapter 6 of this thesis, STBC identification was studied. In this section, a sum-

mary of the main results in Chapter 6 is provided, and possible directions for future

research are pointed out .

6.5.1 Summary

In Chapter 6, a new algorithm was proposed for blind identification of STBCs. A single

receive antenna configuration was considered, with unknown channel coefficients, noise

parameters, and modulation type. The identification problem was formulated as a

goodness-of-fit test and the K-S test was employed for decision making. The obtained

results showed that the proposed K-S-based identification algorithm offers a superior

performance when compared to related works in the literature, particularly in the
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presence of CFO, TO, and non-Gaussian noise. By employing a decision binary tree,

the proposed algorithm was extended for the identification of a larger STBC candidate

pool.

6.5.2 Future research

The results in Chapter 6 of this thesis open interesting directions for a number of

future research topics; two of them are as follows:

• The first one is an extension of the proposed blind STBC identification algorithm

for single receive antenna to multiple receive antennas. In this case, the spa-

tial diversity due to the multiple receive antennas would result in performance

improvement;

• The second one pertains to developing a joint antenna enumeration and STBC

identification algorithm.
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Chapter 7

Overall Conclusions

In this thesis, five signal processing problems in conjunction with parameter estima-

tion and signal identification in modern wireless communication systems were studied.

In Chapter 2, a new uplink MA scheme for IoT was proposed. The proposed MA

scheme develops a new alternative mechanism to the MAC address through parametric

parameter estimation and signal identification in order to identify the number and

identity of the active IoT devices in the gateway. Furthermore, a new non-linear

MUD algorithm, which does not require FCCs and CP estimation was designed.

In Chapter 3, MDS estimation in MIMO frequency-selective fading channel was

studied, and different DA and NDA estimators were proposed. Both DA- and NDA-

MLEs for MDS in MIMO frequency-selective channel were derived. Furthermore, a

new low-complexity NDA-MBE for MDS was proposed. The proposed NDA-MBE

does not require joint parameter estimation, such as CFO, signal power, noise power,

and channel delay profile estimation.

In Chapter 4, the problem of antenna enumeration in time-varying fading channel

was investigated and the semi-blind and blind antenna enumeration algorithms were

proposed. Moreover, a closed-form expression for the probability of correct antenna
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detection of the blind algorithm was derived. On the contrary to the existing antenna

enumeration algorithms, the proposed algorithms can detect a large number of trans-

mit antennas with a single receive antenna. This capability is obtained due to the

variation of the fading channel. Simulation results show that the proposed antenna

enumeration algorithms outperform the AIC and MDL algorithms in time-varying

fading channel and at low SNR values.

In Chapter 5, the problem of SNR and noise variance estimation in MIMO time-

varying fading channel was studied, and M2M4 and M2M4M6 SNR estimators were

proposed through statistical MB approach. The proposed MBEs increase the system

capacity due to lack of pilots and preambles. Moreover, they are categorized as low-

complexity SNR estimators.

In Chapter 6, the problem of STBC identification in Rayleigh fading and non-

Gaussian noise was investigated. First, a new algorithm based on the K-S test was

proposed for the identification of SM versus AL-STBC in the presence of channel

impairments, such as CFO and TO. Then, the proposed algorithm was extended for

the identification of a larger STBC candidate pool through a decision binary tree.
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