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Abstract

Parameter estimation and signal identification play an important role in modern wire-
less communication systems. In this thesis, we address different parameter estimation
and signal identification problems in conjunction with the Internet of Things (IoT),
cognitive radio systems, and high speed mobile communications.

The focus of Chapter 2 of this thesis is to develop a new uplink multiple access
(MA) scheme for the IoT in order to support ubiquitous massive uplink connectivity
for devices with sporadic traffic pattern and short packet size. The proposed uplink
MA scheme removes the Media Access Control (MAC) address through the signal
identification algorithms which are employed at the gateway.

The focus of Chapter 3 of this thesis is to develop different maximum Doppler
spread (MDS) estimators in multiple-input multiple-output (MIMO) frequency-selective
fading channel. The main idea behind the proposed estimators is to reduce the com-
putational complexity while increasing system capacity.

The focus of Chapter 4 and Chapter 5 of this thesis is to develop different antenna
enumeration algorithms and signal-to-noise ratio (SNR) estimators in MIMO time-
varying fading channels, respectively. The main idea is to develop low-complexity
algorithms and estimators which are robust to channel impairments.

The focus of Chapter 6 of this thesis is to develop a low-complexity space-time
block codes (STBC)s identification algorithms for cognitive radio systems. The goal

is to design an algorithm that is robust to time-frequency transmission impairments.
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Notations and Symbols

Random variables are displayed in sans serif, upright fonts; their realizations in serif,
italic fonts. Vectors and matrices are denoted by bold lowercase and uppercase letters,
respectively. For example, a random variable and its realization are denoted by x and
x; arandom vector and its realization are denoted by x and @; a random matrix and its
realization are denoted by X and X, respectively. Sets and random sets are denoted
by upright sans serif and calligraphic font, respectively. For example, a random set
and its realization are denoted by X and X', respectively. The matrix I,, is the identity

matrix of size n, and 0, 2[00 ... O]le. The indicator function is defined as

1, if x is true

0, otherwise.

The sign operator is
x, ifz>0
0, otherwise.

The ¢y quasi-norm of vector a; = lag; a1 - am,lyj]T and the £y — o quasi-norm of

matrix A 2 [ag @, --- a,_;] are respectively defined as

Q5 7& 0}>,

HajHo = card({i € {O, 1,--- ,m}
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The Frobenius and ¢, norm of vector @, ¢ > 0 are defined as

fof, &[S 1e

and

o, 2 (Sie)

respectively, The Frobenius and ¢, — ¢, mixed-norm of matrix A are defined as

4l 2 [T

]

q
)

i

Jp.qa(A) = Z (Z ’ai,j‘q>

respectively. The trace of an n-by-n square matrix A is tr(A) = Z?’;Ol a;;, where a;; is
the ith element in the ith column of A. The inverse and determinant of matrix A are
denoted by A~" and det(A), respectively. For a square matrix A, diag(A) denotes
the vector of the diagonal elements of matrix A.

Complex Gaussian distribution with mean vector g and covariance matrix ¥ is
denoted by N, (u, E).

Throughout the thesis, (-)* is used for the complex conjugate, (-) is used for

transpose, (-)! is used for Hermitian, | - | represents the absolute value operator, |- |
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is the floor function, J;; denotes the Kronecker delta function, ® is the Kronecker
product, E{-} is the statistical expectation, and Z is an estimate of .

For simplicity of notation, we define
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Chapter 1

Introduction

Parameter estimation [10] and signal identification [1 1] play critical roles in accurately
describing behavior of a communication system. Regarding parameter estimation, the
goal is to estimate a vector of real- or complex-valued from the observation samples.
In general, it is categorized as non-parametric and parametric approaches [10, 12].
With the parametric approaches, not only a vector of real- or complex-valued is es-
timated, but also estimation of one or several integer-valued parameters is required.
For instance, estimating the number of sinusoids in white noise, the number of signal
sources impinging on a sensor array, the number of multipath components of fading
channel, and the orders of an autoregressive moving average model [13-15]. On the
other hand, signal identification aims to determine the type of the transmitted signal,
such as modulation format and type of the transmitting code [11, 16].

In this thesis, I address different parameter estimation and signal identification
problems related to modern wireless communication systems, such as the Internet of
Things (IoT), cognitive radio, and high speed mobile communications [17-19].

Firstly, a new multiple access (MA) scheme based on joint parametric parameter

estimation and signal identification is proposed. The proposed MA scheme is devel-



oped to support massive uplink connectivity in the [oT applications with sporadic
and short packet transmission. The proposed MA scheme is designed to reduce con-
trol signaling associated with the Physical (PHY) and Media Access Control (MAC)
layers to increase capacity and spectral efficiency of the system. Hence, the preambles
and pilots associated with the MAC address and exploited for parameter estimation
are removed. Since the IoT devices do not use MAC address to identify themselves
to the gateway, the proposed alternative approach to the MAC address requires IoT
identification algorithm at the gateway to determine the active IoT devices before
data detection. Because the number of active [oT devices and their identity are not
known at the gateway, we have a joint parametric parameter estimation and signal
identification problem.

Regarding parametric parameter estimation, the problem of antenna enumeration
in time-varying fading channel is also investigated . Challenged by antenna enumer-
ation in time-varying fading channel, different algorithms for counting the number of
transmit antennas, applicable to mobile cognitive radio and adaptive wireless com-
munication systems are proposed. In order to determine the number of transmit
antennas, which has discrete values, the antenna enumeration problem is formulated
as a multiple-hypothesis testing problem and a thresholds setting mechanism is de-
veloped. As performance measure in parametric parameter estimation problem, the
probability of correct number of transmit antennas detection is also derived.

In conjunction with non-parametric parameter estimation, the problem of maximum
Doppler spread (MDS) estimation in multiple-input multiple-output (MIMO) frequency-
selective fading channel is studied. Estimation of MDS is of importance since it rep-
resents a key parameter in determining the rate of change in wireless communication
channels [20, 21]; thus, its knowledge is required in adaptive transceivers and in cel-

lular communications [22, 23]. As a bench-mark for performance comparison in non-



parametric parameter estimation, the data-aided (DA) and non-data-aided (NDA)
Cramer-Rao lower bounds (CRLB)s for MDS estimation in MIMO frequency-selective
fading channel are derived. Also, a new low-complexly NDA MDS estimator for fast-
varying fading channel is proposed. Regarding non-parametric parameter estimation,
[ also study the problem of NDA signal-to-noise ratio (SNR) and noise variance esti-
mation in MIMO time-varying channel as non-parametric parameter estimation prob-
lems. Challenged by SNR estimation in time-varying channel, different low-complexity
algorithms are developed through the statistical moment-based approach.

Regarding signal identification, the process of identifying the type of the trans-
mitted space-time block code (STBC) from a pool of candidates [1 1, 16], called STBC
identification, finds applications to modern wireless communication systems, such as
cognitive radio and adaptive communications [24, 25]. Challenged by the imper-
fect time-frequency synchronization and non-Gaussian noise, the STBC identification
problem is investigated, and a new algorithm through the Kolmogrov-Smirnov (K-S)
test and binary decision tree is proposed. As a performance measure in signal identifi-
cation problems, the probability of correct identification is provided for the proposed
algorithm.

It should be mentioned that the five mentioned problems will be addressed in
independent chapters, and introduction and literature review for each problem will

be independently provided.

1.1 Proposal Outline

Chapter 2 deals with uplink MA for IoT. Chapter 3 studies the problem of MDS
estimation in MIMO frequency-selective fading channel. Chapter 4 investigates the

problem of antenna enumeration in time-varying fading channel. Chapter 5 deals with



SNR estimation in MIMO time-varying fading channel. Chapter 6 investigates the

problem of STBC identification. Finally, in Chapter 7, overall conclusions are drawn.



Chapter 2

Massive Uncoordinated Multiple
Access (MA) for the Internet of

Things

2.1 Introduction

Massive uplink connectivity is the key factor in the realization of the Internet of
Things (IoT), as part of 5G wireless communication systems [17, 26, 27]. IoT is a
recent communication paradigm that enables the objects of everyday life to efficiently
communicate with one another and with the users through wireless networks con-
nected to the Internet. In general, IoT networks comprise a collection of connected
objects, embedding electronics, software, sensors, and wireless connectivity protocols
that collect and exchange information through wireless networks. Through interac-
tion of a wide variety of physical devices or things, such as home appliances, sensors,
surveillance cameras, and actuators, IoT fosters the development of applications in

many different domains, such as smart cities, health care, transportation and auto-



motive environment, as well as utilities [28-30].

The development of IoT is an extremely challenging task, as several issues con-
cerning the layers of the protocol stack, from the physical layer transmission to data
representation, need to be addressed [31-33]. In conjunction with the Physical (PHY)
and Media Access Control (MAC) layers, the massive connection of IoT devices is an
important challenge. Typically, the number of IoT devices allocated to a single gate-
way is in orders of magnitude above what current communication networks are capable
to support.

Furthermore, in the majority of the IoT applications, IoT devices do not transmit
continuously. Such transmissions are characterized as sporadic, in which updates are
infrequently transmitted to the gateway, whenever a measured value changes. Hence,
small packets are expected to carry critical payload in IoT [34, 35]. For example,
Sigfox as one of the most adopted solutions for IoT can support a maximum packet
payload of 12 bytes [30].

The design of the current wireless communication systems relies on the assump-
tion that the control signaling related to PHY and MAC layers is of negligible size
compared to the payload. Thus, transmission of control signaling does not affect the
overall system performance. However, in [oT applications with short packet transmis-
sion, the control signaling may be of the same size as the payload. Hence, excessive
control signaling, e.g., the preambles and pilots associated with the MAC address’
and exploited for parameter estimation, significantly reduce capacity and spectral
efficiency of the system [36-35].

Moreover, channel estimation is another challenge for sporadic communication,
especially for an enormous number of connections in IoT. The standard channel

estimation approaches are often based on the assumption that devices are active

IThis represents the hardware identification address.



over long periods. However, if an IoT device only transmits every so often, such
assumptions cannot longer be valid. Instead, channel estimation has to rely on a
single transmission that may be very short, which constrains the number of pilots
available to keep the overhead low [39].

In the context of 10T, the existing MAC protocols based on random access (RA),
either ALOHA or carrier sensing multiple access (CSMA), suffer from congestion since
the traffic load and the number of ToT devices is significantly large [10]. One solution
to this problem is to employ smaller and denser cells. This, a lower number of IoT
devices can be dedicated to each gateway/access point, and, the congestion problem
is solved at the expense of higher cost due to the deployed infrastructure. In some
cases this approach may not constitute a cost-effective solution given the capacity
requirements of the majority of IoT applications. On the other hand, both RA and

fixed assignment (FA) protocols employ excessive control signaling.

2.1.1 Literature Review

Different wireless technologies are currently under investigation for the realization
of the IoT vision. These technologies are mainly categorized as: i) short-range, ii)
cellular, and iii) low-power wide area (LPWA) as shown in Table 2.1. The existing
MAC layer protocols associated with these technologies rely on hybrid schemes that
employ contention- and schedule-based access mechanisms to support short packet
transmission and massive uplink connectivity [11, 12].

IEEE 802.15.4, Bluetooth low energy (BLE), radio frequency identification (RFID),
and Wi-Fi are short-range wireless technologies developed to support a potentially
large number of IoT devices. Based on the topology of the network, the IEEE 802.15.4

standard employs a slotted CSMA with collision avoidance (CA) for single-hop and



Table 2.1: MAC Protocols for IoT.

Short-range | Cellular LPWA
MAC Protocol alglals =15 % E % é
B2 R|IT (9E =5
SIS EIEREA I
TDMA X X
. . FDMA X | X | x
Fixed assignment CDMA » »
Time slotted reservation X | X X
Pure ALOHA X X | %
Random access Slotted ALOHA X X | %
Slotted CSMA-CS X
Non-slotted CSMA-CS X X
FH-SS X X
Spread spectrum DS-SS X X X
Chirp-SS X X

a contention-based MAC employing a simple non-slotted CSMA /CA mechanism for
multi-hop topologies [13-45]. The BLE or smart Bluetooth is a modified version of
the classic Bluetooth intended to provide considerable reduced power consumption
and cost while maintaining a similar communication range. The MAC protocol in
BLE is based on a time slotted access mechanism with a time division multiplexing
technique applied to coordinate the medium access [10].

The ability to uniquely identify a large number of devices is critical for the success
of IoT. This ability is provided by RFID through a contention-based MAC protocol
which relies on uncoordinated frame slotted ALOHA (FSA) [17, 48].

The WiFi alliance supports the IEEE 802.11 family of standards. The recent
standard proposed by WiFi, i.e, the IEEE 802.11ah, relies on a CSMA/CA scheme
with a slotted binary exponential backoff mechanism for retransmissions in case of
collision. The developed MAC protocol in the IEEE 802.11ah leads to an increased
number of IoT devices supported by a single access point [19-51].

Ubiquitous infrastructure, large coverage, and mobility capability enable existing

wireless cellular networks to support massive connectivity in IoT [26, 52, 53]. Among



the existing cellular networks, the Long-Term Evolution (LTE) provides a suitable
connectivity for the IoT applications [51]. Recently, the 3rd Generation Partnership
Project (3GPP) introduced Long Term Evolution for Machines (LTE-M) and narrow
band (NB)-IoT as cellular solutions for IoT. The multiple access (MA) protocols
in LTE-M can be either RA or FA. In the delay-constrained IoT applications, MA
is performed based on the FA protocol in which the base station (BS) allocates a
channel to the request with higher probability of success. The RA protocol in LTE
relies on FSA [55-58]. NB-IoT is a new NB radio channel access which employs the
guard bands between channels in the LTE to increase the transmission coverage and
support a huge number of IoT devices. NB-IoT utilizes pure ALOHA and frequency
division multiple access (FDMA) depending on the coverage. Moreover, collision on
the random access channel in NB-IoT is handled by use of overlaid code division
multiple access (CDMA) [59-62].

A promising wireless technology for IoT applications, standing between short-
range and cellular technologies, is the LPWA. This offers an unique set of features
including wide-area connectivity for low-power and low-cost IoT devices. Its perfor-
mance is optimized for maximum coverage and battery efficiency while supporting
a huge numbers of IoT devices with a single gateway. Sigfox, INGENU, LoRa, and
Weightless are some of the widely-deployed LPWA solutions for IoT [63-66]. Sig-
fox utilizes ultra NB technique to enable long-range communication for IoT appli-
cations with very low data rates. It relies on random frequency-time division mul-
tiplexing (R-FTDM) as a pure ALOHA MAC protocol, in which each IoT device
asynchronously transmits at a frequency chosen randomly in the continuous avail-
able frequency band [67]. INGENU proposes a proprietary LPWA technology based
on a patented MA scheme named random phase multiple access (RPMA). This is

a variation of CDMA, in which the traditional CDMA is randomly delayed before



transmission [08]. The LoRa Alliance promotes the use of LoRa and LoRaWAN tech-
nologies for the IoT applications [69]. The PHY layer of LoRa is based on chirp spread
spectrum (CSS) techniques and its MAC protocol varies for three different developed
classes: class-A devices employ pure ALOHA along with the listen-before-talk (LBT)
mechanism; class-B devices are also developed based on the LBT mechanism along
with a beacon-enabled time-slotted communication scheme; class-C devices are al-
ways available for reception, except when transmitting [69, 70]. Weightless employs
a master-slave architectural model and each MAC frame consists of a downlink part
followed by an uplink one. The BS (master) allocates uplink transmission opportu-
nities to the IoT devices (slaves). This allocation is transmitted in downlink slots,
while transmissions occur in the uplink slots. The MAC protocol in Weightless is
a combination of FDMA and time-division multiple access (TDMA) schemes. More-
over, Weightless specification employs various mechanisms based on pure ALOHA and

direct-sequence spread spectrum (DS-SS) to reduce the increased number of collisions.

2.1.2 Motivation

After reviewing the existing MAC protocols for IoT in the literature, the following
observations can be made:

The existing wireless communication systems have been mainly designed with the
objective of providing substantial gain in terms of data rates. However, 5G will depart
from this scheme, and its objective will not only be to provide services with higher data
rates. One of the main goals of 5G is to support machine-type communications (MTC)
to enable pervasive connections of the entire world in order to realize the IoT. One of
the main challenges in the realization of IoT is the capability to support ubiquitous
massive uplink connectivity for devices with sporadic traffic pattern and short packet

size. In the long packet transmission, the payload contained in a packet is much larger
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than the control signaling associated with the PHY and MAC layers. However, in
the short packet transmission, the control signaling are is negligible in size compared
to payload. Hence, transmitting control information significantly affects the overall
system performance. Moreover, channel estimation is a challenging issue for sporadic
communication, especially for enormous number of connections. The standard channel
estimation approaches are often based on the assumption that devices are active over
long periods. However, IoT devices only transmit every so often in a large number of
applications. Thus, channel estimation has to rely on a single transmission that may
be very short, which constrains the number of pilots available to keep the overhead

low.

2.1.3 Problem Statement

The specific research problems which are studied in Chapter 2 of this thesis are pre-

sented as follows:

e A new uplink MA scheme for IoT applications with sporadic traffic pattern
and short packet transmission is proposed. The main idea behind the proposed
MA scheme is to reduce the control signaling while simultaneously supporting
a massive number of IoT devices with a single gateway. The proposed MA
scheme is designed based on the DS-SS technique with non-orthogonal spreading

codebook capable of supporting undetermined systems;

e To reduce the control signaling associated with the MAC address, a unique
spreading code is dedicated to each IoT device which is simultaneously used for
spreading purpose and MAC address. In other words, instead of allocating a
fragment of the IoT packet to the signaling associated with the MAC address,

the unique spreading code is used as the [oT device identifier. Moreover, the
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MA scheme relies on some statistics of the fading channel coefficient (FCC) to
remove the need of preambles and pilots which are employed for channel and
carrier phase (CP) estimation. The lack of preambles and pilots further reduces

the control signaling;

o The proposed alternative approach to the MAC address requires IoT identifi-
cation at the gateway to determine active IoT devices before data detection.
Based on the sporadic traffic pattern of the [oT devices, and lack of knowledge
about FCC and CP of the IoT devices, the device sparsity-aware (DSA) and

packet-device sparsity-aware (PDSA) identification algorithms are developed;

e A new non-linear multiuser detection (MUD) algorithm for short packet trans-
mission is designed. The designed MUD is employed in the proposed MA scheme
in order to detect data of the active IoT devices identified through the IoT iden-

tification algorithms.

2.1.4 Methodology

Due to the sporadic traffic pattern of the IoT devices, the problem of the IoT identifi-
cation in the proposed MA scheme is formulated as sparse signal reconstruction (SSR)
and simultaneous sparse signal reconstruction (SSSR) problems. Moreover, I design
the 2-mean clustering (2MC)-MUD algorithm based on differential coding and binary
phase-shift keying (BPSK) modulation at IoT devices, and 2MC unsupervised ma-

chine learning algorithm along with differential decoding at the gateway.
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Fig. 2.1: Single-hop IoT network with sporadic traffic pattern.

2.2 Uplink MA for IoT

2.2.1 System Model

Consider K, IoT devices communicating with a single IoT gateway in a single-hop
communication, as shown in Fig. 2.1.

It is considered that IoT devices transmit data in short packets, where each packet
carries only payload bits. The probability of packet transmission for each IoT device
is assumed to be P, < 1. Let us consider that X, = {0,1,---, K, — 1} and X, denote
the total and active IoT devices, respectively. As illustrated in Fig. 2.2, in each IoT
device, the payload bits di, & € X,, are encoded by the channel encoder to increase
the reliability of packet transmission. Then, the encoded data is passed through the
differential encoding block. Differential encoding is employed to remove the need of
channel estimation in the MUD at the IoT gateway. After differential encoding, the
data is multiplied by a unique spreading waveform. It is considered that the spreading
waveforms of the IoT devices do not change over time. Finally, the DS-SS signal is

BPSK modulated and then transmitted.

13



dk: : d";
Channel coding

| Differential coding BPSK modulation

DS-SS sequence

Fig. 2.2: Block diagram that illustrates packet transmission at IoT devices.

Let us consider that the maximum delay of the single-hop IoT network is Tax,
ie,, 7 € [0, Tmax), k € Xy, where 7, is delay of the kth IoT device. We consider that
the IoT devices transmit their packet after receiving a beacon signal transmitted by
the IoT gateway. This signal is periodically transmitted with period Ty > NT} + Timax,
where Nj is the number of symbols per [oT packet, and T is the symbol duration. Fig.
2.3 illustrates the received IoT packets at the gateway. The received continuous-time
baseband signal over frequency-flat fading channel in each period with respect to the

timing reference of the gateway is modeled as

Ky,—1 Ng—1
r(t) = Z Z gk\/p_kejdjkbk,nsk(t - nTs - Tk) + W<t) (21)
k=0 n=0
Ky—1 Ng—1
= > > gibpask(t —nTy— 1) +w(t) [0,T3],
k=0 n=0

where §;., &y, and {by,,,n =0,1,..., Ny — 1} respectively denote the FCC, CP, and
symbol stream of the kth IoT device, which are unknown at the gateway. It is con-
sidered that the envelope of the FCC, i.e., |gx| has a Rayleigh distribution. Without
loss of generality, it is assumed that g ~ M(O, 1). The transmit power of the kth
[oT devices is denoted by pi which is known at the gateway, and the random vari-
able g, = gjk\/ﬁej‘bk. The symbol stream for the inactive loT devices is modeled as

transmitting zeros during the packet, i.e, by, = 0, ¢ = 0,1,..., Ny — 1 while active
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1 Ti

Fig. 2.3: Received packets at the gateway. Active IoT devices are shown with different
colors.

[oT devices employ BPSK modulation. The DS-SS signaling waveform of the kth IoT

device, si (1), is given by

Nc—1

se(t) = S &Myt — mTy) tel0,1i, (2.2)

where T is the chip duration, ¢; = {c,(go) c,(cl) c,(CNC_l)F

is the spreading sequence
of {+1,—1} assigned to the kth IoT device, and (t) is the chip waveform with unit
power. It is assumed that si(t), k € X, and () are rectangular pulses confined
within [0, 73] and [0, T¢], respectively. The baseband additive complex Gaussian noise
at the output of the receive filter with bandwidth 1/7 is denoted by w(t).

Fig. 2.4 shows the block diagram of the proposed receiver at the IoT gateway.
As seen, the received baseband signal is passed through chip matched filter (MF') and
sampled at the chip rate. The output of the sampled chip MF for the ¢th chip at the

jth observation symbol is obtained as

@) & JTs+(i+1)Te ) .
e (1) (t — §T, — iT,) dt (2.3)
JTs+iTe
Ku_l . .
=Y g +wl =01, N1,
k=0
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Fig. 2.4: Block diagram of the proposed receiver at the gateway.

where

() o [ITHEDT. , 4
w2 [ g g - i 24
JTs+iTe

and

Upj = Z bk,nsk(t —nTy — Tk)w(t - jTS - iTc)dt. (25)

(i) a /st+(i+1)Tc Ns—1
JTs+iTe =0

By employing (2.4), one can easily show that the joint probability density function
(PDF) of the corresponding noise vector associated with the jth observation vector,
ie., w; £ [W](O) Wj(~1) WJ(N“*UF is characterized by w; ~ N, (Oy,,02I) with o2 £
No/T., where Ny/2 is the noise power spectral density of the white noise. The integral
in (2.5) represents the area under the received signal waveform of the kth IoT device
during the ith chip-matched filtering duration at the jth observation symbol. Let us

define the delay of the kth IoT as
T = Ty + BiTe + &, (2.6)

with ay £ |7/Ts), Be = |7/T.] — axNe, and &, € [0,T,). Based on the values of ay,
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Bk, and &, u,(;)] in (2.5) is expressed as a function of by ;_q,, and by j_,, 1 as [71-73]

Ng—1 Nc—1

Uy & 0 Y 9ke b (2.7)
n=0 m=0
JTs+(i4+1)Te
/ Wt — Ty — mT, — 1)t — 5T, — iT.)dt
ST +iTs

= kb 17 (1 = &) + Grbrj a2y (&),

where

i o a NS Gy DT .
(V)& Y o U(t —mT. — v )Y(t — iTe)dt, (2.8)

m=0 ile

where v € [0,T;). Equation (2.7) can be written in vector form as
Upj = 9Dk j—a,—1%k0 + Ikbkj—a, T (2.9)

where by ; =0, j ¢ [0, N5 — 1], and

]
uy,; = u,(coj) u,(fj) u,g.cl)} (2.10a)
r T
21 2 10g) o) ... o) (2.10D)
I i
Ty £ x}go)(l — &) x}(cl)(l —&) ... x,(CNC_l)(l _ &g)} . (2.10c)

For the rectangular chip waveform pulse-shaping ¢ (t), one can easily obtain

T Oﬁk O/Bk+1
=(1-&)| e |+&| e |- (2.11)
T
w0 ONc*/Bk ON«:f/J’kfl

Let us define X, = [mk,O a:kﬂ. By employing (2.3) and (2.9), the jth observation
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vector, i.e., r; = [rj(o) rg-l) : r](-chl)F, is obtained as
where
X2 1X, X1 ... Xx.1| (2.13)
Yo
g
G2 ' ® I, (2.14)
I9K,.—1
b] é bO,j—O&O—l bo,j—ao bl,]—al—l bl,j—Otl .« e (2.15)
i
bKu—l,j—aKu,l—l bKu—l,j—aKul} )
A T
h; = [hojo hoji1 hijo hiji - hrk—150 hKul,j,l} ; (2.16)
with
hk,j,f é gkbk,j—ak—l—i-fa f - {0, 1} (217)

Finally, by staking the Ny observation vectors, the observation matrix is written

as

R=XGB+W=XH+W, (2.18)

18



where

Ré:ro rooL rNt—1:| (2.19a)
Bé:bo b, ... bNt_l} (2.19D)
(S W, wp thl} (2.19¢)
H: :ho h, ... hNt_l]- (2.19d)

In (2.18), X is referred to as dictionary.

As seen in Fig. 2.4, after chip-matched filtering and sampling, the IoT identifica-
tion algorithm is applied to the measurement matrix R to detect active IoT devices.
The outcome of the IoT identification algorithm is a set of active IoT devices X,.
Then, the MUD algorithm is employed to detect the transmitted symbols of the IoT
devices in X,. Finally, after MUD, the bit streams related to the active IoT devices

pass through differential and channel decoders, respectively.

2.3 IoT Identification

Node identification is the first step in the MA schemes where nodes do not use control
signaling in order to identify themeless to the gateway. In this case, the gateway needs
to determine the packet transmission state (PTS) of the nodes and detect data only for

the active nodes. In this section, different loT identification algorithms are developed.

2.3.1 10T Identification Formulation

Let us write the observation model in (2.18) for an observation window with length {
as

R=XGB+W=XH+W, (2.20)
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Fig. 2.5: Underdetermined systems of linear equations for with K, =7, K, = 2, N; = 8,
and Ng = 6.

where

R fta Ya+1 .. Fapi—1 (2.21a)
B = :ba basi - baii (2.21D)
w = _Wa Watr1 ... Wa+11} (2.21c)
H = :ha hayr -0 hapa) (2.21d)

where 1 < | < Ny + Quin — Qmax — 1, & is an arbitrary positive integer as a >
Omax = max{ag, a1, -+, ag, 1}, and oy = min{ag, ay, - ,ak,_1 . Fig. 2.5 shows
the underdetermined system of linear equations in (2.18), and Fig. 2.6 illustrates
different observation windows for IoT identification in (2.20).

The activity of an IoT device is defined for an entire packet, i.e, the rows of H
corresponding to the active and inactive IoT devices are non-zero and zero, respec-
tively. Thus, the problem of IoT identification for the kth IoT device, k € &, can be

expressed as the following binary hypothesis testing problem

Hy: hya #0 (2.22)

Hop: hia; =0,
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H(a = 3) H(a = 4)

Fig. 2.6: Different observation windows for IoT identification (K, =7, Ny = 7, ttpax = 2,
amin = 0, 1 <1 < 4). Purple color is employed to show the packet of IoT devices which is
zero for inactive and non-zero for active IoT devices.

where

T
hk,&,l = [hz,a hL,aH hL,o‘H—l—l ) (2-233)

A T
hi; = {hk,j,o hk,j,l} ; (2.23b)

and Hy, and Hy, are the null and alternative hypothesis denoting that the kth IoT
device is active and inactive, respectively.

As seen in (2.22), the IoT identification problem is formulated as K, parallel
binary hypothesis testing problems.

The first step in IoT identification is to reconstruct hys,;, & € &,, from the
observation matrix in (2.20). However, (2.20) represents an underdetermined system
of linear equations since N, < K. Hence, it is not uniquely solvable.

Let us denote the number of active IoT devices by the random variable k,. The
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distribution of k, is binomial, and

P@%zl@}z(?ﬁfﬁ%l—RQm“Kq (2.24)

For P, < 1, P{k, < K,} = 1, and thus, B and H in (2.20) are sparse matrices.
Moreover, the columns of H(B) share the same sparsity profiles. This sparse structure
is referred to as block-sparse. The block-sparse structure of H can be observed in Fig.
2.6. Fig. 2.7 shows the probability mass function of the number of active IoT devices
for low values of P,. As seen, this is condensed between a lower bound K, and an
upper bound K,, which are defined as P{k, > K, } < ¢ and P{k, < K,,} < ¢, where
€ is an arbitrary small value.

The sparse structure of H can be employed to reconstruct columns of H from
the underdetermined linear observation model in (2.20). When each column of H is
individually reconstructed from its corresponding column in R, it is referred to as

SSR. The SSR of the columns of H, ie., h;, a < j < a+ 1 -1, is formulated as

[74, 79]
min[ilgnize Hrj — thHi (2.25)
subject to thHo < 2Ky,

where || - || and ||h;|lo are the Frobenius and ¢, quasi-norm, respectively. From
duality and the Karush Kuhn Tucker (KKT) optimality conditions [76, 77], (2.25)

can be written as

~ 1 2
h; = arg min 1 — Xhy||_+ A |y (2.26)
J

3|

07

where )\, is the tuning parameter which balances both approximation error and spar-

sity level of the solution. In Appendix 2.A, the value of )y, based on maximum a
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Fig. 2.7: The probability mass function of k, for different probability of packet transmis-
sion, P,, when K, = 1024. The dashed lines show K, and K,, for P, = 0.05.

posteriori probability (MAP) criterion is obtained as

/\g0 = ﬁ In (Zl(lgapa)). (227)

The SSR is based on the principle that, through optimization, the sparsity of a sig-
nal can be exploited to reconstruct it from far fewer samples than required by the
Shannon-Nyquist sampling theorem.

The fyp-minimization in (2.26) is both numerically unstable and NP-hard since the
{y quasi-norm is a discrete-value function. One approach to the SSR is to replace the ¢
quasi-norm by a convex function with common sparsity profile that leads to a solution
very close to the one of the original problem. This method is called convex relaxation
and converts the combinatorial problem in (2.26) into a convex optimization problem
which can be solved in polynomial time. Different convex functions can be employed

to relax ||h;[[p in (2.26). A common family of convex functions is the ¢, norm, given
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as

hej.r

q) E . (2.28)

The recovered vectors by the ¢, norm minimization can be employed to infer the

K,—1 1
- (£3
=0 f=0

active IoT set X, through the parallel binary hypothesis testing problems in (2.22).
We refer to the identification based on SSR as DSA IToT identification.

On the other hand, the block-sparse structure of H can be employed to improve
the reconstruction of H in (2.25). This method of signal reconstruction is referred to as
SSSR. Opposite to SSR, the SSSR simultaneously exploits the column sparsity along
with the block-sparse structure in the optimization problem in order to reconstruct
matrix H. The SSSR of H, given the received signal matrix R and the dictionary X

is expressed as [78]

minimize HR — XHH2
H F

(2.29)
subject to HI:IH0 < 2K,..
From duality and the KKT optimality conditions, (2.29) can be rewritten as
A= arg min R — XH[" + 2|1 2.30
= arg min §H — HF—i- o ’0, (2.30)

where Aﬁg > 0 is the tuning parameter, and HHHO is the £y — ¢y quasi-norm of H. In

Appendix 2.B; the value of )\fg based on MAP criterion is obtained as

2 2[+1 (1 — P )
0 Oy a
A = o In (Pa ) (2.31)

Similar to the ¢y-minimization in (2.25), the ¢y — {p-minimization in (2.29) is

unstable and NP-hard. Therefore, the quasi-norm HHHO is replaced with the ¢, — ¢,
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(p,q > 1) mixed-norm as

Ky—1

Jp,q(H) = ;;) Hhk,a,lH

: (2.32)

q

to convert the combinatorial problem in (2.30) into a convex optimization problem.
Similar to the DSA IoT identification, we refer to the identification based on SSSR,
as to PDSA IoT identification. With the PDSA approach, the recovered matrix is

employed to infer the active IoT set.

2.3.2 Squared /5 norm DSA IoT Identification

The proposed squared ¢, norm DSA IoT identification algorithm replaces the ¢y quasi-

norm in (2.26) with the squared ¢, norm as

2

A

o1 2
h; = arg rﬁljm §Hrj — thHz + Ao,

h;

. (2.33)
The squared ¢ norm convex relaxation formulates the IoT identification problem as a
ridge regression (RD) estimation problem as in (2.33) followed by K, parallel binary
hypothesis testing problems.

The optimal solution of (2.33) is obtained as [79]
. -1
h, = (XTX - 2@1) X'y, (2.34)

which is a simple linear estimator of r; that shrinks ordinary least-squares (LS) esti-
mates towards zero.

As mentioned above, Ay, in (2.33) balances both approximation error and sparsity
level of the solution. The optimal value of tuning parameter, A\, can be obtained

through cross validation and generalized cross validation [30-34]. The latter is a
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method of model selection that is intuitively simple and widely employed; in this
case, the optimal value of A, is obtained as [32]

: 2|, - @ni

Mgy = arg min 2

2 (2.35)
2 )

-1
where Q £ X<XTX + 2)\jI) XT. As seen, Mgy is obtained at the expense of high
computational complexity to solve the minimization problem in (2.35). However,
according to Appendix 2.C, a conservative choice of the tuning parameter )y, in

terms of minimum mean square error (MMSE) can be approximated as

2 _—1
\oP o tr [EX} (2.36)
42 ~ T 2 ——27° :
Py(p' @ 11)Ax + 3tr[Sy |
T _ _
where p £ |p, py - pKu_l] , ¥x 2 XTX, and Ax £ diag(Xy). As seen in

(2.36), ;Y is inversely proportional to P,.
By substituting r; = Xh; +w; in (2.12) into (2.34), h; can be written as a linear

function of h; as

h; = Qh; +w/, (2.37)
where
- Q0,0 Qo,l ce QO,QKu—l _
ga| o e Wy (Sx +20a1), (2:38)

Dore—10 Qore—11 - Qoku—12K.-1

26



and

W0,4,0

!
Wo,j,1

lI>

= (Sx +22I) X'w,. (2.39)

i

!
Wk,-1,5,0

!
WEK,—1,4,1

In (2.39), w) is zero-mean complex Gaussian colored noise vector with covariance

matrix given by

w’ w’ w’
E0,0 Z0,1 T 0,2K,—1
EWI EW/ L. EWI q
w A 1,0 1,1 1,2K,—1 . ’ ' NS 2
by = ‘ ' ‘ =FE Wj Wj =0y Ex+2)\g2I> Ex,
Wl W/ Wl
| “2Ku—1,0 2K,—1,1 77 2Ku—1,2Ky—1 |

(2.40)

/

/ / * | yw
where E{Wkl,jz,ﬁ (WkQ,jQ,h) } - 22k1+f1,2kz+f2‘

The elements of h; in (2.37) associated with the kth ToT device, i.e., hy ;o and

hy ;1 can be written in a summation form as

hijr = Qoktp2rt ks + Qogspors s 7 (2.41)

+ Z {Q2k+f,2n+fhn,j,f + Qopi g2 Mg 7 } + W;c,j,fv
n#k

where f,f € {0,1} and f £ f + (=1)/. The second term on the right-hand side of

(2.41) represents the effect of interference caused by the existing active IoT devices
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in the network. Let us define

ﬁk,a,l (2.42a)

(1>
| —
=
=
2
-
=
2
J’_
=
=
\.??‘——l_
o
p
L

N N N T
hi; = |hijo hk,j,l] . (2.42b)

[ —

In order to identify the transmission state of the kth IoT device based on the recon-
structed signal ﬁk’a’l in (2.42), the joint PDF of the random vector ﬁk,&,l is needed.

In Lemma. (2.3.1), the joint PDF of ﬁk@,l is derived.

Lemma 2.3.1. The distribution of the random vector I:\lk;7557[ in (2.42) under hypothesis

Hy, and Hy, can be approximated by joint complex Gaussian distribution as

p<ﬁk,a,l’Htk> ~ M(Q Ztk) t € 40,1}, (2.43)
where
26170 26’?1 T 26%21—1
Stk & Etfo Eﬁ’ﬁ 23?21—1 (2.44)
_257—1,0 Zg’;—l,l T Z5}?—,21—1_
and

k 0 W
Egi’+f’2j’+f = Var{hk»j»f’Ht’f} = tpk <ng+f,2k+f + Q§k+f,2k+f> + Xkt ponss (2:4D)

2 2
+ P, Z Pn (ng+f,2n+f + sz+f,2n+f)’
n#k
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with

~

j=j—a (2.46)

a<j<a+l-1,

tk N

. . . th - A
and the off-diagonal elements of the covariance matrixes X', i.e., Y f 2 e

COV{ hk,j17f1 ) hk7j2,f2

Htk}, 271 + f1 # 255 + fa, are given in (2.47).

*
tk tk N N . .
Yojt 4 f1 204 fr = <E2j§+f2,2ji+f1> = COV{hk,jl,fn Wk jo 1o Htk} 271 + f1 < 2j5+ fo

= 5j17j25f1705f271

2
tpk0y, <Q2k72k92k+172k + 92k+172k+192k72k+1>

+ P, Z Pn (sz,2n+192k+1,2n + 92k+1,2n+192k72n+1> + 2;;,%—&-1]
n#k
+0jy—1,107,00 15,0 | Pk <Q2k,2k92k,2k+1) + P pa <Q2k,2nQ2k,2n+l>
n#k

+ (5J'2*j1715f171(5f2,1

Ik Q2k+1,2k+192k+1,2k) + P, Z Pn <92k+1,2n+192k+1,2n)]
n#k

+ 5j2*j1715f170(5f2,1
n#k

Ik (QQk,2k+1Q2k+l,Qk> + P Y pa (sz,2n+1 sz+1,2n)
+ 051,104,100 (

Ik Q2k,2k92k+1,2k+1> + P pa <Q2k,2nQ2k+1,2n+1> (2.47)
n#k

Proof in Appendix 2.D.

Let us define

Hyy, if Qb(ﬁk,a,z) > 0O
dy = , (2.48)

Hoy, if ¢(ﬁk,a,z) < O

where ¢(+, ) is an arbitrary continuous function and 6y, is a threshold for the kth IoT

device.
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Algorithm 1 Bayesian Squared /5 norm DSA IoT Identification Algorithm

Input: X, R, \,, X% 2% and 6, for k € X,
Output: Active IoT set &,
Initialization: X, = (

1: fork=0,1,--- ,K,—1do

2: Obtain hy, 4, in (2.42) by employing (2.34)

3: Compute gb(ﬁk,d,l) in (2.49)

4: Identify the transmission state of the kth IoT device
through (2.48)

5: if d, = Hy;, then

6: /%a — {/%a, k}

7: end if

8: end for

2.3.2.1 Bayesian Squared /; norm DSA IoT Identification Algorithm

By applying the optimum Bayesian’s decision rule to the reconstructed vector ﬁk,a,h
k € X,, in (2.42), the Bayesian squared ¢, norm DSA IoT identification algorithm is

derived as in (2.48) for
¢(ﬁk,a,z) = ﬁﬁa,z«EOk)_l — (211@)_1)%@71’ (2.49)

and

6, 1n((l — P,)det(S'¥) ) | 2.50)
P,det (EOk)

Proof in Appendix 2.E.

The optimum Bayesian’s decision rule in (2.49) minimizes the Bayesian risk, i.e.,
]P’{dk = Hlk]HOk}(l — P+ ]P’{dk = HOk]HM}Pa. A formal description of the pro-
posed Bayesian squared ¢, norm DSA IoT identification algorithm is summarized in

Algorithm 1.
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2.3.2.2 ML Squared ¢, norm DSA IoT Identification Algorithm

As seen in (2.47), each four successive elements of the reconstructed vector I_lk@,l,
ie., Hk,j,o, F];w-J, Hk’j+1’0, and ﬁk’j+1’1, a < j < a+l—2, are correlated random
variables. Hence, they provide correlated information about the transmission state of
the kth IoT device. Through downsampling of FI].C@QZ, an independent and identically
distributed (i.i.d.) random vector can be obtain which can be used to develop a low-
complexity [oT identification algorithm.

Let us consider the i.i.d. random vector Iulk,l, defined as

o o o o i
hy, £ [hk,o hpo -+ hk,2(ll)} : (2.51)
where
o ~ NC N Nc
hkﬂ'/ é hk,j,lﬂ{ﬂk < 2} + thp]I{ﬂk Z 2}, (252)

where [, is the chip-delay of the kth IoT device given in (2.6) and j' = j — @,
J € {d, a+2---a+2(l— 1)} In order to identify the transmission state of the kth
[oT device, k € X,, through the reconstructed vector ﬁk’l’ the maximum likelihood
ratio (MLR) test can be employed. The MLR test maximizes the correct identification
rate of the kth IoT devices, i.e., P,§°) £ P{dk = H1k|H1k} subject to a constraint on
the maximum allowable false alarm rate, i.e., Pk(f) = ]P{dk = H1k|H0k} [85-87].

By employing Lemma (2.3.1), the decision rule in (2.48) for the MLR test of the

reconstructed vector F'kJ, k € X,, is obtained as (Proof in Appendix 2.F)

o \/5 -1 o 2
¢<hk,l> = ———) | (2.53)
S0k -
\ “2k4f,2k+f =0
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Fig. 2.8: The decision statistics of the ML squared ¢2 norm DSA IToT identification
algorithm, i.e, qﬁ(lvlkJ) versus k, for I = 10, K, = 2048, P, = 0.01, P,gf) = 0.01,
k=0,1,--- Ky — 1, and at 10 dB SNR.

for 6), = 0, where 6 is set based on a predefined false alarm rate as
0, = 20! (l, (1- P,gf))r(z)), (2.54)

where f =1 for f, < &=, and f =0 for 8, > &, and ['(l) = [5° exp(—t)t!"Ddt and
['~!(a,b) are complete gamma function and inverse lower incomplete gamma function,
respectively (Proof in Appendix 2.G).

Fig. 2.8 shows the decision statistics of the squared ¢, norm DSA IoT identifica-
tion algorithm, i.e, gb(lulk,l) versus k, for [ = 10 and at 10 dB SNR. As seen, d)(lulkJ)
exceeds the threshold for the active [oT devices.

By using (2.54), one can obtain the correct identification rate for the kth IoT
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Algorithm 2 ML Squared ¢, norm DSA IoT Identification Algorithm

Input: X, R, PV ke X,
Output: Active IoT set X,
Initialization: X, = ()

1: for k=0,1,--- ,K,—1do

2: Obtain ), by employing (2.54)
3: Obtain hy, in (2.51) by employing (2.34) and (2.52)
4: Compute qﬁ(ﬁkl) in (2.53)
5: Identify the transmission state of the kth IoT device
by employing (2.48) for gb(lvlk,l) and 6, in (2.54)
6: if d, = Hy;, then
7 ./%a — {/%a, k‘}
8 end if
9: end for
device as

Ok
oy )
P = P{dy = Hy|Hyp =1 - :

X0 , (2.55)

where T'(a,b) = [° exp(—t)t(@~Ydt is the lower incomplete gamma function, and 6},
is given in (2.54) (Proof in Appendix 2.G).

A formal description of the proposed ML squared ¢, norm DSA IoT identification
algorithm is summarized in Algorithm 2. Also, the block diagram of the proposed
squared ¢ norm DSA ToT identification algorithm for both Bayesian and ML rule is

shown in Fig. 2.9.

2.3.3 /1 norm DSA IoT Identification

The ¢; norm DSA IoT identification algorithm formulates the SSR as

A

o1 2
h, = arg I{lljln §Hrj — thHF + Ay

h;

(2.56)

1’
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where j = a,a + 1,

Let us define

gram of the proposed squared ¢3 norm DSA ToT identification algo-
m 1 and Algorithm 2, ¢(hy 4,;) is given by (2.49) and (2.53), respec-

-,a+1—1and )y, is the tuning parameter.

X2 Xp: (2.57a)
h; 2 P7h, (2.57b)
. h

h; & =2, (2.57¢)
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where

Do

P
pa ! ® I,

PK.—1

(2.58)

In Appendix 2.1, the SSR problem in (2.56) for IoT identification is reformulated

asS
hy — arg min = [je; — X[+ 3, [
= e~ X0+ 3
where
2 2 (41— P,
Sy = 20 - Oy (HZB))
N P,
with

(2.59)

(2.60)

While there is no closed-form solution for (2.56) when the dictionary X is not an

orthogonal matrix, it can be solved through quadratic programming.

By using the Landweber iterative algorithm [35], h] is reconstructed in such a

way that the elements of the reconstructed vector corresponding to the inactive loT

devices are zero without using the binary hypothesis testing in (2.48). The Landweber

algorithm involves a gradient descent method with fixed step followed by a threshold

setting based on the KK'T optimality conditions as

_¢bﬁf—X&)+&l%ﬁ‘zo if ke X,
5T

C.I.'}Lf (rj — th)

<N, ifké¢ X,

where f € {0,1}, &% r = pry s, and xy, and xy are given in (2.11).
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Let us assume that the convergence of the Landweber algorithm for the jth ob-
servation symbol occurs at the ¢;th iteration. The average energy of the reconstructed

signal for the kth IoT device is given as
Lo [t;+1]|2
> (2.62)

In order to maximize the correct identification rate of the IoT devices, by em-

ploying a priori knowledge of P,, the active IoT set can be identified as

A?a = {ekio ) ekila e 7ekKup}7 (263)
where
€y > Ok, > > hye, > > €k, 1 (2.64a)
ekio > ekil > > ekKup > 0, (264b)
and
Kup Ku ; (Kufi)
Plka < K} = (") P(1-P) = 0.999. (2.65)
=0 \ ¢

A formal description of the proposed ¢; norm DSA IoT identification algorithm

based of the Landweber iterative algorithm for SSR is provided in Algorithm 3.
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Algorithm 3 ¢; norm DSA IoT Identification
Input: X, R, 9, P,
Output: Active IoT set X,
Initialization: H=0, loop =1, t =0
1: forj=a,a+1,--- ,a+1—1do
2: while loop do

3 5 b X (- xR
4 for k=0,1,--- ,K,—1do
AN A [t 3]
5: hgc,j,o} =(1- ~~[tj—1%] ) hie,s.0
hk,j,o +
1 A [t 3]
6: hgq,j,l} = (1 - ..[tf—lé] ) hk,j,%
hk,j,l +
: end for
8: t %"tt—i-ll i
0 if ;" — b}’ < then
10: loop =0
11: end if
12: end while
13: end for

14: Compute ey for £ =0,1,--+, Ky_1 by employing (2.62)
15: Obtain A&, through (2.63), (2.64), and (2.65)

2.3.4 (1 — /{5, Mixed-norm PDSA IoT Identification Algorithm

The proposed ¢; — {5 mixed-norm PDSA IoT identification algorithm replaces ¢y — ¢

quasi-norm in (2.30) with the ¢; — ¢ mixed-norm as

A

H = aromi 1 R_— XH 2 elKu_l )
- 1 Y ];) (LY (2.66)

27

where )\ﬁf is the tuning parameter. To find the optimal value of )\ﬁf, the K-fold cross
validation (CV) is a popular method; however, this suffers from high computational
complexity. Another method is the cross-validated partial likelihood, an adaptation
of the CV [89, 90]; however, it still suffers from the high computational cost.

For the block-sparse matrix H in (2.20), since FCC is fixed over a packet, we can
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write

)\Eo Ky—1 0 Ky—1 \/_ h &
=28 o = 2 e,

Lo
e

(2.67)

where hy 5, is given in (2.23). In order to have the solution of (2.66) the same as the

one of the original SSSR, problem in (2.30), we need to have

L= Z [, (2.68)

Let us define

) h.
hy.a, = \Z)_:, (2.69a)
H2PTH. (2.69D)

Since g, ~ /\/C(O, pk), k € Xy, |gk| follows the Rayleigh distribution. By replacing
|9k| with E{|gk|} = /™% /4 in (2.67), and then, by substituting (2.69a) into the result,

(2.68) can be approximated as

20,0 hi.a 20,0 Ku !
A HH():)\ Z HhkalH - eo H \’f/p_]iH D> Hh’mlH (2.70)
Furthermore, we have
R x| = R - XA )

where X and H are given in (2.57a) and (2.69b), respectively.

By substituting (2.70) and (2.140) into (2.66), the SSSR problem is reformulated
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as

H= argmin 1HR — XHH2 + Xy Kil Hh 5
i 2 F lo = k,a,l

(2.72)

2’

vl . .
where ), is the tuning parameter given as

+1
fa_ 2% _ ov ) (2 (-~) . (2.73)
T Vi Wi P,

The optimal solution of (2.72) is obtained with the gradient of the objective

function equal to zero as
~X"(R—XH) +\F*H =0, (2.74)

where L
[,
F2 ® I, (2.75)

1
2
2

(LYY

After simple mathematical manipulations, (2.74) can be written as

[(XF)H(XF) + xﬁjr} F-'H = (XF)'R. (2.76)
From (2.76), the optimal solution of (2.74) can be expressed as

H— F[(XF)H(XF) + }\ZI]_l(XF)HR. (2.77)

Since F depends on H as in (2.75), (2.77) suggests to obtain the optimal solution
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through an iterative way as

HHHL:Fm[CXFM>HCYFM>+X21}4(XFM>HR

. 71
_ Fl [(v[ﬂ)HvW + AZI] (vi)'R (2.78)
until the convergence criterion is satisfied as
AR <o (2.79)

where § is an arbitrary small value. Appendix 2.K demonstrates that the ¢; —fs mixed-
norm algorithm in (2.78) can be considered as an iterative reweighted LS estimator.

Similar to the Landweber iterative algorithm utilized in the ¢; norm DSA IoT
identification algorithm, the designed ¢; — {5 mixed-norm PDSA IToT identification
algorithm employs the gradient descent algorithm and reconstructs the matrix H such
that the two consecutive rows corresponding to the inactive [oT devices are zero when
H is initialized with an appropriate value. Since the gradient descent algorithm does
not guarantee convergence to the global minimum, some elements of the reconstructed
ﬁk,&,l may not be zero when kth IoT device is inactive, and vice versa. Accordingly,
the [; out of 2/ combing rules can be employed to make decision on the transmission

state of the IoT devices as

+a—1 1 o
Hy if % f;oﬂ{hk,j,f #o} >
6~ B | 20
H()k, if 'Z_ fzo]l{hk7j7f 7é 0} < ll
j=a f=

A formal description of the proposed ¢; — ¢5 mixed-norm PDSA IoT identification

algorithm is summarized in Algorithm 4.
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Algorithm 4 ¢, — ¢, Mixed-norm PDSA IoT Identification Algorithm
Input: X, R,Xﬁ;, ly, 0
Output: Active [oT set "j(a
Initialization: X, =0, H” =0
while HI:IM — I:I[lt_l]HF > 0 do

Update F by .I.:I[t_l} as in (2.75)

Obtain VI = XFl
- i1 - [t] :

< H" by employing (2.78)

—_

H
end while
for k=0,1,--- K, —1do
Obtain dj through (2.80)
if dk = Hlk then
X, — { X, k}
end if
: end for

_
—= O

2.3.5 Adaptive /1 — /5, Mixed-norm PDSA IoT Identification

Algorithm

By employing (2.67), the SSSR problem in (2.30) can be written as

. Ku1 /2[5
H = arg min ;HR—XHHi—i—/\Eg lgjw (2.81)

where /\Eg is given in (2.31).
By using E{|gk|} = \/™=k/4, an approximation for the penalty term in (2.81) is

given as

5t s

Mo L 72 N
o k;z::o \/Z‘gk‘ =0 Vlp

(2.82)
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By substituting (2.82) into (2.81), one can write

A

H = arg min L(H, X\, A\, , Ak,—1)
H

| , Kot (2.83)
= arg min §HR - )(HHF + kz::() )\thk,a,l 5
where
t 2 2i+1(1 — p,
A M O ( ) . (2.84)

Similar as in Appendix 2.J, the KKT optimality conditions of the optimization

problem in (2.83) are expressed as

hia
W N — 0 ifke X, (2.85a)
[P
Wi, < M ifk ¢ X, (2.85b)
where
A T
Y, = {Wk,o,o Wion -+ Wricio Wk,l1,1] (2.86a)
|:\yk,07f qjhl,f s Wk,l—l,f:| £ Xz,f<R — XH) (286b)
Let us write ¥}, as
1 2
‘yk £ vhk"i*liHR — XHHF = Qi — Akhk,a'z,l (287)
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where

T
P = {(Pk,o,o Qro1 ° Proi-1 (Pk,o,lJ ) (2-88)
[(Pk,o,f Oriyp (Pk,l—l,f} = X};f(R - XH—k); (2.89)
and
X}, 0X1.0
X}, X1
v (2.90)
X}, %10
L XL’lxk’l- %21

where H_, is the matrix H with (2k — 1)th and 2kth rows being set to 0.
From (2.85a) and (2.87), one notices that ()\kI—i—Ak) h s, = @ when the kth IoT
device is active. On the other hand, when the kth IoT device is inactive, W, = @y.

Hence, one can write

-1
hiar = H{Hml\z > )\k}(Pk (MI + Ak) (2.91)
k,a,l 9

Since @ depends on hy 5, an iterative algorithm can be developed to obtain the
optimal solution of the convex optimization problem in (2.83). The main idea behind
the iterative algorithm is that by starting from a sparse solution like H = 0, the
optimality of hy 5, k € X, is checked in each iteration based on the KKT optimality
conditions in (2.85). If the KKT optimality conditions are not satisfied, then hy 5 is

updated according to (2.91).

43



Algorithm 5 : Adaptive ¢; — {5 Mixed-norm PDSA ToT Identification Algorithm
Input: X, R, N\, k=0,1,--- K, — 1, Ay
Output: Active IoT set X,
Initialization: X, =0, HY =0, ¢ =1
1: while loop =1 do
2: for k=0,1,--- K, —1do

3: if the KKT optimality conditions in (2.85) are not
satisfied then
4: Compute (pg_” for H[_t;” through (2.88) and (2.89)
: o) — @ "
6: hil,, < h.} through (2.91)
end if
t«t+1
: end for
o if [hy, —hiLl||, <0 then
10: loop =0
11: end if

12: end while
13 Xy = {klhs, #0, k=01, K, —1}

A formal description of the proposed adaptive ¢; — {5 mixed-norm PDSA IoT

identification algorithm is summarized in Algorithm 5.

2.4 Data Detection

While the LS estimator is the unbiased estimator with the smallest variance, the de-
veloped penalized-LS (P-LS) estimators in the IoT identification section trade off bias
for variance. In other words, they employ a penalty term to balance both approxi-
mation error and sparsity level of the solution. Hence, the mean square error (MSE)
of the estimated signal may be high so that it results in high bit error rate (BER)
if they are used for data detection. Thus, the proposed biased P-LS estimators ex-
hibit a good performance for the IoT identification as an inference problem; however,

the estimated signals by the biased P-LS estimators result in higher BER in data
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detection.

To detect the data stream of the active IoT devices, conventional suboptimal lin-
ear or non-linear MUD algorithms, such as decorrelating detector, MMSE detector,
successive interference cancellation, and parallel interference cancellation can be ap-
plied to the identified active IoT set when FCC and CP are known at the gateway.
However, in the defined short packet transmission scheme, the IoT devices do not use
any pilot or preamble for the estimate of the FCC and CP. Hence, a new MUD blind
to the FCC and CP is required.

In this section, we propose a new non-linear MUD algorithm which does not
require estimates of the FCC and CP of the IoT devices. The proposed MUD al-
gorithm is developed based on the differential coding used at the IoT devices and
an unsupervised machine learning technique followed by differential decoding at the

gateway.

2.4.1 2MC-MUD Algorithm

Fig. 2.10 illustrates the block diagram of the proposed 2MC-MUD algorithm. The
output of the IoT identification algorithms in the previous section is a set of active
IoT devices X,. Without loss of generality, we assume that X, 2 {ko, k1, . .. 7k1”<a—1}7
where K, 2 card(/f’a) is the cardinality of X, .

Let us consider a bank of K, single-user MF's for the identified active IoT devices

in X, as shown in Fig. 2.10. The output of the MF after synchronized sampling for
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Fig. 2.10: Block diagram of the proposed 2MC-MUD algorithm

the k,th ToT device is expressed as [91-93]

1 Thop, +(14+1)Ts

Vi, [i] = = r(t)sg, (t —iT, — 73, )dt (2.92)
2 Jry,, +iTs
= i,bi i)+ D 9k, be [t + Uprary, + DO 9k, bk, [t o + D Ik, bk, (1] ok,
k:j<kn k}j<kn kj>k‘n
+ Z gk]bk][l — 1]1016]1% —f-Wkn[l], 1= {1, . ,NS}
kj>k:n
where
a1t
phuk, 2 o | s ®s ()t (2.93)
and
N 1 Tkn-i-(i-i-].)Ts )
Wk, [Z] = = W(t)skn (t — ZTS — Tkn)dt. (294)
2 Tkn+iTS

The output of the synchronized single-user MF in (2.92) for the k,th IoT device
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can be written as

ykn[z] = gknbkn [Z] + an[?;], 1= 0, 1, s ,NS — 1, (295)

where vy, [i] represents the effect of noise and interference. The effects of FCC and
CP are captured by the random variable gy, , k, € X,, in (2.95) which is unknown at
the gateway.

For data detection without any sign ambiguity, the phase of gy, , k, € X, is
leastwise required to be known at the gateway. However, by employing differential
coding at IoT devices, a MUD algorithm can be developed which removes the need
for such a priori knowledge. Differential coding is a technique used to provide unam-
biguous signal reception in phase-shift-keying and quadrature amplitude modulation.
Instead of encoding a bit sequence directly, the differential coding technique encodes

the difference between the bit sequence as [9]

b [i] = bi [i — @ b5 [i], € A, (2.96)

where @ is the modulo-2 addition and bf, [i] is the ith bit at the output of the channel
encoder of the k,th IoT device.

Since gx, , k, € X,, remains unchanged during an IoT packet, the received noisy
BPSK symbols of the active IoT device k,, in (2.95) form two clusters corresponding to
the transmitted bits 1 and 0. The main idea behind the proposed MUD is to extract
the two clusters regardless of which cluster is labeled 1 or 0. By extraction of the two
clusters and differential decoding at the gateways, the data stream of the active IoT
device k,, is obtained without any prior knowledge about the FCC and CP.

By applying the 2MC algorithm to vy, [i], ¢ = 0,1,--- , Ny — 1, in (2.95), the two

clusters are separated based on the nearest mean criterion disregard to the label. The
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2MC minimizes the least within-cluster sum of squares (WCSS), i.e, then sum of the
squared Euclidean distance.
Let us define &/ £ {0,1,---, N, — 1}. The 2MC algorithms partitions ¢/ into two

sets Uy, o and Uy, 1 for the active IoT device k,, by minimizing the WCSS as

2

argmin > ||Yk,[1] — Hino0 + > Yk li] = teal]
u 1€UL,, 0 1€UL,, 1
1
bject t =
subject to Uz, .0 Card(ukn,g ZE% Yiea [0
1
_ 2.97
Hen 1 card (U, 1 )16%: 1ykn ( )

The minimization problem in (2.97) can be solved by different methods. One of
the most common algorithm is th Lloyd’s algorithm which uses an iterative refinement
technique. Given an initial mean values Ug,o and FLLI,,]L,U the Lloyd’s algorithm proceeds

by alternating between the assignment and updating steps as

Assignment step: The element of U is assigned to U,Ltj“l when

Z/{,Ety]hl = {Z :

Otherwise, it is assigned to U,Lio

[t]

Vi [1] — i 0 o

Yo [1] = Wiy 1

2}. (2.98)

Updating step: The mean of the the clusters Z/{[ ] .o and Z/{H 1 are updated as

e S 2.99
Hin1 card (Z/lkn ) 16%; i ( 2)
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Fig. 2.11: 2M classifier for short IoT packet.

[t+1]

Hi,0 = W Z Vi, [0

(2.99b)

zelxl[t

The 2MC algorithm converges when the assignment step does not change. Fig. 2.11
shows the output of the 2MC algorithm for two active IoT devices. As seen, by
employing the 2MC algorithm, the sequence at the output of the MF is partitioned
into two clusters disregarding the label.

After partitioning U into two clusters Uy, o and Uy, 1, Yk, [i], i = 0,1,--- Ny — 1

is mapped into a binary sequence b} £ [bm [0] b2 [1] --- bR [Ng — 1]} with elements

as

by [i] = 1{i € Uy, 1} (2.100)
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Then, by applying differential decoding to the mapped binary sequence by’ , the chan-

nel coded data stream for the active IoT device k,, is obtained as
b, [i] = byl [i] @ by [i — 1]. (2.101)

Finally, IA)ZTL = {Bin [0] Bin[l] e B;n [N, — 2]} is decoded by the channel decoder and
the data stream of the active IoT device k,, is obtained. The proposed 2MC-MUD

algorithm is summarized in Algorithm 6.

Algorithm 6 : 2MC-MUD
Input: r(t), X, K, = card(é\?a)

Output: Bkn, k, € X,
1: forn=20,1,--- ,f(a—l do
2: Set initial value for u,ﬁﬂl and U,ﬁ],o

3: Obtain yy, [i], i =0,1,--- , Ny — 1, by employing (2.92)
4 whilet" ' £ U | do

5: obtain U,Ltj“l and L{,Lio by employing (2.98)
6: ugﬁ} — Z/{,LQJ by employing (2.99a)
7: },Lg:é} +— M,Ei}o by employing (2.99b)

8: end while
9: Obtain the binary mapped sequence by’ through (2.100)
10: Apply differential decoding to b} to obtain an as
in (2.101)
11: Apply channel decoding to Bin to obtain Bkn

12: end for
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2.4.2 Downlink Transmission

After packet transmission, the active IoT devices change their transmission mode
into receive mode in the next observation slot in order to receive the acknowledgment
packet transmitted by the gateway over the downlink channel. If the acknowledgment
packet is not received by the active IoT device, the packet is retransmitted. This
procedure continues until the reception of the acknowledgment packet by the IoT
device. Based on this mechanism, the IoT devices are shortly active, either in the
transmission mode or reception mode. Hence, the designed MA scheme is significantly

power-efficient and capable of supporting low power IoT devices.

2.5 Simulation Results

In this section, we examine the performance of the designed IoT identification algo-

rithms and 2MC-MUD algorithm through several simulation experiments.

2.5.1 Simulation Setup

Unless otherwise specified, an IoT network with K, = 2048 and P, = 0.01 was
considered. It is assumed that the spreading sequence of the IoT devices is pseudo-
random number codes with spreading factor N. = 512 being known at the gateway.
Each IoT packet is 15 bytes, and the delay of the [oT devices was generated through
uniform distributions as ay ~ U[0, 5], B ~ U[0,511], and €, ~ U[0,1).

For channel coding, the BCH encoder with codeword length 15 is applied to 10
messages each with 7 bits. The window size for IoT identification was considered
[ = 16 for &« = 7. The effect of FCC and CP for each IoT device was modeled
as independent circular complex Gaussian random variables with variance agk =1,

k € X,. The additive white noise was modeled as circular complex Gaussian random
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2

w)

variables with variance o2, and the average system signal-to-noise ratio (SNR) was

defined as

The designed MA scheme was examined for equal power IoT devices.
The performance of the proposed DSA and PDSA IoT identification algorithms

was evaluated in terms of system correct identification and system false alarm rates

defined as
1
P(C) _ = § : Pk(C)
K, kEX,
1
f) _ Z ()
Pl = K,— K, F

kEXy—X,

respectively. P and P® as performance measures, were obtained based on 1000
Monte Carlo trials. The performance of the designed 2MC-MUD algorithm was eval-

uated in terms of average packet error rate (PER).

2.5.2 Simulation Results

Fig. 2.12 depicts the correct identification rate, P(°), and false alarm rate, P of the
designed ML squared /3 norm DSA IoT identification algorithm (Algorithm 2) versus
SNR for Pk(f) = 0.01 and P,gf) = 0.02. As seen, P > 0.93 over a wide range of SNR.
Also, as expected, P®) increases when SNR and/or false alarm rate increases.

In Fig. 2.13, the empirical correct identification rate of the proposed ML squared

¢y norm IoT identification algorithm (Algorithm 2) versus time is illustrated. As
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Fig. 2.12: The correct identification rate, P(%), and false alarm rate, P(®, of the designed
ML squared ¢ norm DSA ToT identification algorithm (Algorithm 2) versus SNR for K, =

2048, P, = 0.01, and [ = 16. The solid and dashed lines represent the results for P,Ef) = 0.01
and Plgf) = 0.02, respectively.

seen, the proposed algorithm accurately tracks the activity of the IoT devices in the
network.

In Fig. 2.14, the correct identification, P®, and false alarm, P, rates of the
proposed ¢; norm DSA IToT identification algorithm (Algorithm 3) versus SNR are
illustrated. As seen, the proposed algorithm exhibits high P and low P® over a
wide range of SNRs.

Fig. 2.15 compares the performance of the proposed ¢; — ¢5 mixed-norm (Algo-
rithm 4) and adaptive ¢; — ¢5 mixed-norm (Algorithm 5) PDSA IoT identification
algorithms when p; = ps = - -+ = p1g24a = 0.6 and pigas = Pio2e = -+ = Paous = 1.4. As
seen, the adaptive ¢; — {5 mixed-norm PDSA IoT identification algorithm outperforms

the ¢; — /5 mixed-norm algorithm. This behaviour can be explained, as the tuning
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Fig. 2.13: The empirical correct identification rate, P(9), of the designed ML squared 5
norm DSA ToT identification algorithm (Algorithm 2) versus time for K,, = 2048, P, = 0.01,
[ =16, and at 10 dB SNR.
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Fig. 2.14: The correct identification rate, P(©), and false alarm rate, P!, of the designed ¢,
norm DSA IoT identification algorithm (Algorithm 3) versus SNR for K, = 2048, P, = 0.01,
and [ = 16.
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Fig. 2.15: Performance comparison of the proposed ¢; — ¢3 mixed-norm (Algorithm 4) and
adaptive ¢; — ¢ mixed-norm (Algorithm 5) PDSA IoT identification algorithms.

parameter for each IoT devices is set based on its transmit power for the proposed
adaptive algorithm while this is not the case in the ¢; — 5 mixed-norm algorithm.
Fig. 2.16 shows the PER of the proposed 2MC-MUD algorithm versus SNR when
the proposed ¢; — ¢5 mixed-norm PDSA IoT identification algorithm (Algorithm 5)
is employed at the gateway. As seen, the proposed 2MC-MUD algorithm exhibits a

good performance over a wide range of SNRs without FCC and CP estimation.

2.6 Conclusions and Directions for Future Research

In Chapter 2 of this thesis, uplink MA in [oT was studied. In this section, a summary
of the main results in Chapter 2 is provided, and possible directions for future research

are pointed out.
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Fig. 2.16: PER of the proposed 2MC-MUD algorithm versus SNR when the proposed
0y — ¢y mixed-norm PDSA ToT identification algorithm (Algorithm 5) is employed at the

gateway.

2.6.1

o A new MA scheme for the uplink transmission of IoT was designed. The pro-
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posed MA scheme exhibits the following advantages:

— It supports thousandths of uncoordinated IoT devices;

— It supports sporadic traffic pattern and short packet transmission in IoT

applications;

— It was designed for underdetermined DS-SS. Thus, packet time on-air

significantly reduces;

— It removes the need of control signaling associated with the MAC address

to reduce uplink packet overhead;

— It removes preambles and pilot employed for parameter and channel esti-

mation to reduce uplink overhead;
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— It increases the spectral efficiency of the system by decreasing uplink over-

head;
— It is power-efficient and capable of supporting low-power IoT devices since
the IoT devices are shortly active, either in transmission or reception mode;
— It exhibits high scalability in terms of adding new I[oT devices without
negatively affecting the quality of existing services;

— improves the protection against interfering and jamming signals. It also

provides security of transmission if the codes are not known to the public.

A new mechanism instead of the MAC address for IoT identification at the

gateway was developed;

Since IoT devices do not use MAC address in order to identify themselves to the
gateway, different IoT identification algorithms were designed to detect active

IoT devices based on SSR and SSSR techniques;

The statistical performance analysis of the identification algorithms was pre-
sented, and closed-form expressions for the correct identification and false alarm

rates were derived;

Approximate closed-form expressions for the tuning parameter employed in the
non-linear optimization problems of the SSR and SSSR were derived based on

the statistics of the FCC.

A new non-linear MUD algorithm, i.e, 2MC-MUD, was designed for short packet
transmission over flat fading channel. The proposed 2MC-MUD algorithm ex-

hibits the following advantages:

— It supports both synchronous and asynchronous users irrespective to the

traffic pattern.
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— It does not require FCC and CP estimation;

2.6.2 Future research

The results in Chapter 2 of this thesis open interesting directions for a number of

future research topics, as follows:

o An extension to the proposed uplink MA in order to support a large number of

IoT devices in frequency-selective fading channel;

o An extension to the proposed massive uplink MA to support different traffic

patterns;

o Developing a downlink MA scheme for the proposed uplink MA.
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Appendix

2.A  Proof of the Tuning Parameter for the ¢/, Quasi-
norm

Let us write the MAP estimate of h;, @ < j <a+1[1—1in (2.12) as

h; = arg max p(hj‘rj)
" (2.102)
= arg mlIl —In p(rj’hj) —In p(h])

h;

Since w; in (2.12) is white Gaussian vector, one can write

2
p(r;hy) = ;Ncexp ( - HU_XhJHF) . (2.103)

For p(hj) in (2.102), by employing (2.12), gp ~ N(;(O,pk), k € X, E{g,.er.} =
Dk Ok kins |[Mejllo = [|bk jllo, and the fact that G and b; in (2.12) are independent,

one obtains

Tp Dk

Ku-1 meglo (P 2 1 2
p(h) =TT =Py <4> k@XP(-’gkl ) (2.104)

59



where hy, ; = [hk,j,o hk’j’lr' By substituting (2.103) and (2.104) into (2.102), and after

some mathematical manipulations, (2.26) and (2.27) are derived.

2.B Proof of the Tuning Parameter for the ¢, — {;
Quasi-norm

Let us write MAP estimate of H in (2.20) as

A

H= argsnax p(H’R)

(2.105)
= argHmin —1In p(R’H) —In p(H)
Since W is zero-mean i.i.d. Gaussian matrix, one can write
1 |R - xH|
p(R|H) = Wexp( - <7V2vF) . (2.106)

For p(H) in (2.105), by employing (2.20), g5 ~ M(O,pk), ke X, E{g. g} =
PkOkm kins IPr.cillo = |[Nk.allo, and the fact that G and B in (2.20) are matrixes with

independent elements, one obtains

llhg,a,1llo

(1) <@)o(e) < Tl -5 (1) o<1 oaor

TPk Dk

By substituting (2.106) and (2.107) into (2.105), and after some mathematical ma-

nipulations, (2.30) and (2.31) are derived.
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2.C Proof of the Tuning Parameter for the Squared
/5 Norm

In [95], it is shown that the optimal tuning parameter of the RD estimator for r; =

Xh,; +w; in terms of MMSE is obtained as

o2tr[Ey ]

— , (2.108)
hi'S 3 h; + 3t[S ]

op o
DEES

where ¥x £ XTX. As observed, A" depends on h; which is unknown and needs
to be estimated by the RD estimator. In this case, a reasonable approximation of
(2.108) can be obtained by replacing h?i; h; with its expected value.

Since the elements of h; are uncorrelated, by employing E{ | hk7j70\2} = E{ |hy.j1 \2} =

P.pi, k € X, one can easily write
— 1 _
E{h?E:X h]} — Pu(pt @ 1N Ax, (2.109)

where p 2 [po p1 ... pr,-1]!, and Ax £ diag(X%'). Finally, by substituting (2.109)

into (2.108), (2.36) is obtained.

2.D Distribution of the RD Estimator

Based on the central limit theorem for dependent random variables in [90], one can
show that the distribution of IAlk@,l given in (2.42) and (2.41) can be approximated by
a joint complex Gaussian distribution under hypothesis Hy, and Hyy.

By applying the statistical expectation to (2.41), and employing E{h koj, f]Htk} =0
and ]E{hk,jﬂHtk} = 0, one easily obtain E{ﬁk@l]Htk} =0.

To obtain the diagonal elements of the covariance matrix 3% i.e., Zg’} S f 25
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t € {0,1}, let us consider the general rule in (2.110) for computing the variance of

multiple complex random variables zq, z5, ..., Z,_1.
n n—1
Var{ Zaizl} = Z a; 2Var{zi} (2.110)
i=1 i=0
n—1
+> > aiajCov{zi, zj}.
i=0 j#i

Since hy, ;r and hy, 7 and wy ;¢ ki, by € Ay, in (2.41), are zero-mean and uncorre-

lated random variables, by applying (2.110) to (2.41), one can write

k . NI 2

2 2
+ tQ2k+f,2k+fvar{ hk,j,f‘ Htk} +> sz+f,2n+fVa1"{ hn,j,f‘Htk}
n#k

+3 Qgﬂmwvar{hn,j,fthk} + Var{wg,j,f}. (2.111)
n#n

Further, by employing the law of total variance [97] and (2.17), Var{hk7j7f‘H1k}, fe

{0,1} in (2.111) can be written as

Var{hk,j,f’Htk} = Var{gkbk,jalirf)Htk} = E{Var{gkbk,jaklﬂ‘gk, Htk}}

—l—Var{]E{gkbk,j_ak_Hf‘gk,Htk}} (2112)

Fora+ <j<a+1-1, Var{bkyjaka‘Htk} =t, f € {0,1}, and one obtains

2
E{Var{gkbk,j—ak—l—i-f‘gka Htk}} = E{‘gk‘ }Var{bw_ak_Hf’Htk} = tpk. (2113)

By substituting (2.113) and ]E{gkbk’j_ak_1+f’gk,ﬂtk} =0, f € {0,1}, into (2.112),
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one obtains

2
Var{th’f’Htk} = ]E{‘hkﬁ"f‘ ‘Htk} = tpk. (2114)

Similar to (2.112), for n # k and f € {0,1}, we can write

Var{hn,j,f‘Htk} = Var{gnbn,j—an—l—i-f)Htk} = E{Var{gnbn,j—an—1+f’gna Htk}}

+Var{1[~«:{gnbn,j_an_1+f\gn, Htk}} (2.115)

Fora+ <j<a+1-1, Var{bwanlﬂ‘}[tk} = P,, f €{0,1}, and one can write

2
E{Var{gnbk,j—an—l-i-f‘gna Htk}} = E{‘gn‘ }Var{bn,j—an—l+f‘Htk} - Papn' (2116)

By substituting (2.116) and E{gnbkvj_an_Hf‘gn,Htk} =0, f € {0,1}, into (2.115),

one obtains

Var{hn,j,f(ﬂtk} - E{\hn,j,fﬁﬂtk} = Ppn, n#k (2.117)

Finally, by substituting (2.114), (2.117), and Var{wkj’f} = E‘Q’,LHQHJC, into (2.111),
(2.45) is obtained.

For the off-diagonal elements of the covariance £, ¢ € {0,1}, by using (2.41) and
E{ﬁkl,jl,fl} = ]E{ﬁk%j%ﬁ,} =0, ki, ks € X, one can write (2.118). Based on the value
of j1(71), j2(4%), f1, and fo, six cases for the upper triangular off-diagonal elements of
2% ie., 250 + fi < 2jb 4 fo, can be considered. It is obvious that the lower upper
triangular off-diagonal elements of 3 ¢ € {0,1} are easily obtain by applying the

Hermitian operand to the upper triangular off-diagonal elements.
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tk " i N I~
S paig o = COV{ Mguns 0 gy o [ B} = E{Pusi R, g, | Hn |

= E{ (t (92k+f172k+f1 Wi, f + Dokt fy 264 hiw‘l,fl)

* * * /
<75 (92k+f2,2k+fz Njorfo T QQk+f2,2k+f2hk,j2,f2> +> {Q2k+fz,2n+fzhn,jz,fz + Q2k+f2,2n+f2hn,j2,f2} + Wk,jz,fz)

n#k

n#k

(2.118)

By replacing hy, j, 0 with hy, j 1, k1 = ko, jo = j1 + 1, and employing

]E{hkl,jl,fthQ,jz,fg
E{hk‘l,jlyflhz%j%fé
E{hkl,j17f1h22,j27f2
E{hkl,jl,flhzz,jg,fz
E{W;cl,jhflhz?vf?’j?

*

E{W;ﬁ,ﬁ,ﬁ (W;€2,j27f2)

one can write

e Casel: jo>j1+1

" B ~ -
22ji+f1,2j§+f2 - Cov{h’wl»flv hk»]2,f2

=

—— e e Y~ —(— ——

=

=

=

=

0, ‘12—j1‘>1;

0, 2=5n+1,=0,

0, p=n+1fi=f=1,
0, J2=Ju,f1# [

0,

0 J1# J,

e Case2: j1=Jo=J, fi=0and fo =1
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Htk} - 0

(2.119a)
(2.119b)
(2.119¢)
(2.119d)
(2.119€)

(2.119f)

(2.120)

+) {Q2k+f1,2n+f1hn7jz,f1 + Q2k+f1,2n+f1hn,j1,f1} + WZ,ﬁ,ﬁ)

‘Htk}



Z%§/7zj/+1 = (COV{F]k,j,O, Flk,j,l‘Htk} = t(Q2kv2kQ2k+172k‘)E{‘hk,j,0‘2‘Htk} (2.121)

+ t(92k+1,2k+192k,2k+1)E{‘hk,j,lﬂf[tk} + Z Q2k,2n92k+1,2nE{’hn,j,O‘Q‘Htk}
n#k

+ %;k QQk+1,2n+IQQk,2n+1]E{‘hn,j,lf‘Htk} + E{W;c,j,O (W;c,j,l)*}

e Case 3: j1=7,520=J7+1,and f; = fo =0,

Zg;/,zjfm = COV{ﬁk,j,o, ﬁk,j-ﬁ-l,o‘Hlk} = t(sz,szQk,zkH)E{’hk,j,l‘Q‘Htk} (2.122)

+3 ng,2n92k,2n+1E{ ‘ hnji1 ‘Q’Htk}
n#k

e Cased: j1=7,50=J7+1,and f; = fo =1,

Zg’;/+17gj/+3 = COV{ﬁk,j,la Hk,j—i—l,l)Htk} = t(92k+1’2k+192k+1’2k>E{‘hk7j,1’2‘Htk}
+3 sz+1,2n+192k+1,2nE{‘hn,j,lﬁHtk} (2.123)
n#k

e Cased: j1=7,50=7+1, fi=0,and fo =1

A A~ 2
S8 ajras = (Cov{h,wp, hk7j+1,1‘Htk} = t(QQk,2k+1QQk+1,2kz>E{’hkz,j,1’ ’Htk} (2.124)

+ Z QZk,2n+IQQk+1,2nE{ }hn,j,l ‘2’Htk}
n#k

e Case6: j1=j,jo=J+1, fi=1,and fo =0
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. . 2
2%?/+172j/+2 = COV{hk,j,b hk,j+1,0‘Htk} = QZk,QkQ2k+1,2k+lE{’hk,j,l‘ ’Htk} (2.125)

+ Z sz,2n92k+1,2n+1E{ ’ hnj1 ‘2 ’Htk}
n#k

By substituting (2.114) and (2.117) into (2.121)-(2.125) and using E{w}, . (W, 5, 7,)*| Hur}

= Dt 1 2kat f2 04 2> (2:47) is obtained.

2.E Proof of the Optimum Bayesian’s Decision Rule

Based on the Bayesian hypothesis testing, transmission state of the kth IoT device is

identified as active, i.e., Hyy, if

p<ﬁk,a,z‘Hlk) 1_p
> 2.

- > (2.126)
p<hk7a,l‘H0k:) Fa

By using Lemma 2.3.1, the term on the left-hand side of (2.126) is written as

A -1 A
det(73%) exp < — hl,iw <Elk) hk,a,l)

A -1 A )
det(7X%) exp ( — hl,i@’l (20k> hk,d,l)

(2.127)

By substituting (2.127) into (2.126), taking the natural logarithms of the both sides

of the inequality, and after some simplification, one obtains (2.49) and (2.50).

2.F Proof of the MLR decision rule

. N vy ’ t
Since the elements of the reconstructed vector hy S [hk,O hro -+ hgog—1)| under

hypothesis Hy,, t € {0,1} are i.i.d. zero-mean complex Gaussian random variables
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with variance Eg’fﬁf,sz, where f = 1 for 8, < %7 and f = 0 for B, > J\éc7 by

employing the MLR test, the transmission state of the kth IoT device is identified as

active, i.e., dp = Hyy, if

N I—
p<hk,l|H1k> 1:1 (hk 2 Hlk)
= 20 > (2.128)
P(hk,l|H0k> H (hk 2% H%)

Ok ! ZZ P
(W22k+f,2k+f) exp 72%% .y

= -1 |2 Z V>
1k ! ; e
(W22k+ f.2k+ f) exXp| — S s

where ~, is a threshold. By taking the natural logarithms of the both sides of the
inequality in (2.128), and after some mathematical manipulations, one obtains (2.53)

for

Zlk _ ZOk
0/ A l\/_l 2k+f2k+f 2k+f,2k+f 2k+f72k+/; , (2129)

Z 3
kA1 2k+f Sokt f 2kt f (Z%Jrf,?ﬂf) 2

where f =1 for 8, < &, and f =0 for g, > Ze.

2.G  Proof of the Correct Identification and False

Alarm Rates for the ML Squared /; norm

According to Lemma 2.3.1, the elements of ﬁkJ = {F}m F‘M e F]kyg(l_l)]T in (2.51) un-
der hypothesis Hy, t € {0, 1} are i.i.d. zero-mean complex Gaussian random variables
with variance EQIZHQHJI, where f = 1 for £, < %, and f = 0 for gy > N7 Hence,

Ve = gzﬁ(ﬁk’l) in (2.53) follows central Chi-squared (x?) distribution with 2/ degrees of
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freedom as

()
where ¢ € {0,1}, f =1 for B, < &, and f =0 for 3, > &e.

By employing (2.53), the false alarm rate of the kth IoT device is derived as

P = P{dk = Hlk‘HOk}

h l‘2>0’

\/5 -1
{W | = Ol Hon
2k+f,2k+f 1=0

~+o00 yl_lexp<2y> F(l7 02;€>
— N gy=1- 7 2.131
2 27(1) ’ I(l) (2.131)

where T'(1) = [¢° exp(—t)t=Ddt and T(a,b) = [Lexp(—t)t®Vdt are complete and
lower incomplete gamma functions, respectively. By applying the inverse upper in-
complete gamma function to (2.131), (2.54) is obtained.

Similar to the false alarm rate in (2.131), by using (2.130) for ¢ = 1, the correct

identification rate of the kth IoT device is obtained as

Plgd) :P{dk lk‘Hlk}

’>0k

k

{ V2 Shrf2htf S3kr f okt s }

oy [ =2 | S5 pones 9/
:/+°°y <2) _ ( Zéi*“’“” (2.132)

"
k
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2.H Approximation of the Tuning Parameter )\,
for the /1 norm DSA IoT Identification Algo-
rithm

By replacing ||hg j|lo with ||hx;]|,/lgxl, one can write

i = S T = S 1Pl (2.133)
"o “ k=0 #7lo “ iz 9] .

In order to have the solution of (2.56) the same as the one of the original SSR problem

n (2.26), we need to have

-1 .
ot

K
Mo hlly =2 3 T

(2.134)

thl = Ao

Since g ~ M(O,pk), k € X, |9x| follows Rayleigh distribution. By replacing |gx|

with E{]gkl} = /™ /4 in (2.137), one can write

2)‘fo Hhk]H

Z

(2.135)
Further, we have
e = x| = e — Xy (2.136)

where X and h; are given in (2.57a) and (2.57b). By substituting (2.139) and (2.140)

into (2.56), one obtains (2.59) and (2.60).
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2.1 Approximation of the Tuning Parameter )/, for

the /1 norm DSA IoT Identification algorithm

By replacing ||y j|lo with |[hx;]|,/lox], one can write

YA

T W S 2157
J 0 0 = 5] 0 0 Pt |gk| .

In order to have the solution of (2.56) the same as the one of the original SSR problem

n (2.26), we need to have

< |

Ky
tho = Ay Z

k=0 |gk’

Ao, Ly (2.138)

th1 = Ay

Since g ~ M(O,pk), k € X, |gx| follows Rayleigh distribution. By replacing |gy|

with E{]gkl} = /™ /4 in (2.137), one can write

-2 %mH

(2.139)

Z‘

Further, we have

e~ xh)|_= [, — 5| (2,140

F

where X and h; are given in (2.57a) and (2.57b). By substituting (2.139) and (2.140)

into (2.56), one obtains (2.59) and (2.60).
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2.J Proof of the KKT Optimality Conditions for
the ¢/ — /, Mixed-norm PDSA IoT Identifica-
tion Algorithms

For a convex function f from a complex matrix space M to R, the subdiffrential of f

at matrix A is defined as [95, 99]

Df(A) & {G eM: f(Z) > f(A) (2.141)

+Re{<Z—A,G>}VGeI\\/JI}.

The elements of 0f(A) are called subgradients of the function f at A. In [99], it is
shown that for a convex and differentiable function f, 0f(A) = Vf(A). If f is a
convex function, then A is the maximizer of f if and only if 0 € 9f(A).

By employing (2.141), the KKT optimality conditions of the optimization problem

of PDSA IoT identification are obtained as

1 .2 Kuzl
0€ 0, R~ XH|| + 0, ., ;0 [, (2.142)
Because HR - X HH; is convex and differentiable, one can write
;aﬁw R-XH| = ;VHW R-XH| =¥, (2.143)

where W, £ [Wk,o,o ‘yk,o,l s 1yk,lq,o Wk,zfm} ) [‘yk,o,f Wk,l,f T \yk,lfl,f} = wl’f(R -
XH), with f € {0,1}, Xkt = py, l/zm;wz, and xy; and xy o are given in (2.11). Similar

to (2.143), by using O ﬁ’f@JHQ = Vi

ﬁk,a,le for I.ik,o—“l # 0 and by employing
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the definition of the subdifferential in (2.141) for I'ik@l = 0, one obtains

hy.a,0 -
2 fOI‘hk@l#O
. h & Xy
hk75‘71H2 = { Meale , (2.144)

{a € CZZ‘H(XHQ < 1} for I.:Ik@J =0

%

k,al

Finally, by employing (2.143) and (2.144), and then (2.142), the KKT optimality

conditions are obtained as

—y, + AM =0 ifked, (2.145a)
e,
H‘I’kHz <\ ifk e X, (2.145b)

2.K Equivalence of /1 — {, Mixed-norm Algorithm

with Iterative Reweighed LS Estimator

Let us consider a random matrix A with the same size as H. It can be easily show

that A" in (2.78) can be written as A — FIAY where AU s obtained by
Al — arg min EHR — XF[t]AH2 + A0 Kil Ha 5 H2 (2.146)
= gA 5 F 05 < kol .
A _1 A
Since A+ = (F[t]> H[Hl}, one can write
. 1 1
A = argmin R - XFY (F[ﬂ) H|
H 2 F
‘ Ky—-1 —1 2
+A S H(FW) hea (2.147)
k=0

As seen, equation (2.147) represents iterative reweighed LS estimator.
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Chapter 3

Doppler Spread Estimation in
MIMO Frequency-selective Fading

Channels

3.1 Introduction

One of the main challenges in high-speed mobile communications is the presence of
large Doppler spreads. Thus, accurate estimation of maximum Doppler spread (MDS)
plays an important role in such systems.

Maximum Doppler spread measures the coherence time, related to the rate of
change, of wireless communication channels. Its knowledge is important to design
efficient wireless communication systems for high-speed vehicles [20, 21, |. In
particular, accurate estimation of the MDS is required for the design of adaptive
transceivers, as well as in cellular and smart antenna systems [22, 23, —107]. For
example, in the context of adaptive transceivers, system parameters such as coding,

modulation, and power are adapted to the changes in the channel [101-104]. In cellular
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systems, handoff is dictated by the velocity of the mobile station, which is also directly
obtained from the Doppler information. Knowledge of the rate of the channel change
is also employed to reduce unnecessary handoff; the handoff is initiated based on
the received power at the mobile station, and the optimum window size for power
estimation depends on the MDS [22, 23 , |. In the context of smart antenna
systems, the MDS is used in the design of the maximum likelihood (ML) space-
time transceivers [106, 107]. In addition, knowledge of MDS is required for channel
tracking and equalization, as well as for the selection of the optimal interleaving length

in wireless communication systems [103].

3.1.1 Literature Review

In general, parameter estimators can be categorized as: i) data-aided (DA), where
the estimation relies on a pilot or preamble sequence [109-113] and ii) non-data-
aided (NDA), where the estimation is performed with no a priori knowledge about
the transmitted symbols [114-117].

With regard to the MDS estimation, the DA approach often provides accurate
estimates for slowly-varying channels by employing a reduced number of pilot symbols,
whereas this does not hold for fast-varying channels. In the latter case, the details of
the channel variations cannot be captured accurately, and more pilots are required,
which results in increased overhead and reduced system capacity.

There are five major classes of MDS estimators: ML-based, power spectral density
(PSD)-based, level-crossing-rate (LCR)-based, covariance-based, and cyclostationarity-
based estimators. The ML-based estimator maximizes the likelihood function, and, in
general, is asymptotically unbiased, achieving the Cramer-Rao lower bound (CRLB)
[118, 119]. However, maximum likelihood estimator (MLE) for MDS suffers from sig-

nificant computational complexity. Hence, different modified low-complexity MLEs
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for MDS in single-input single-output (SISO) flat-fading channel developed [, 2].
With the PSD-based estimators, some unique features from the Doppler spectrum are
obtained through the sample periodogram of the received signal [120]. Covariance-
based estimators extract the Doppler information which exists in the sample auto-
covariance of the received signal [3, , ]. LCR-based estimators rely on the
number of level crossings of the received signal statistics, which is proportional to
the MDS [123]. The cyclostationarity-based estimators exploit the cyclostationarity
of the received signal [1]. Comparing with other MDS estimators, the advantage
of the cyclostationarity-based estimators is the robustness to stationary noise and
interference.

While the problem of MDS estimation in SISO flat-fading channel has been exten-
sively investigated in the literature [1—1, —124], the MDS estimation in multiple-
input multiple-output (MIMO) frequency-selective or in MIMO flat-fading channel
has not been considerably explored. Furthermore, DA-MDS estimation has mainly
been studied in the literature. To the best of our knowledge, only a few works have
addressed MDS etimation in conjunction with multiple antenna systems. In [119],
the authors derived an asymptotic DA-MLE and DA-CRLB for joint MDS and noise
variance estimation in MIMO flat-fading channel. In [1], the cyclic correlation (CC)
of linearly modulated signals is exploited for the MDS estimation for single trans-
mit antenna scenarios. While both DA and NDA estimators are studied in [1], only

frequency-flat fading and single transmit antenna are considered.

3.1.2 Motivation

After reviewing the current MDS estimators in the literature, the followings were

made:
o While the problem of DA-CRLB for MDS estimation in MIMO flat-fading
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channel has been studied in the literature, the DA-CRLB in MIMO frequency-

selective fading channel has not been investigated;

o The problem of NDA-CRLB for MDS estimation has not been investigated in

the literature (neither in MIMO flat-fading nor frequency-selective channel);

e The DA-MLE for MDS in MIMO frequency-selective channel has not been in-

vestigated either;

o The NDA-MLESs for MDS in MIMO flat-fading and frequency-selective channel

have not been explored;

o The existing DA and NDA MDS estimators suffer from huge computational

complexity;

o The current MDS estimators require joint parameter estimation, such as carrier
frequency offset (CFO), signal power, noise power, and channel delay profile

estimation.

3.1.3 Problem Statement

The specific research problems which are studied in Chapter 3 of this thesis are pre-

sented as follows:

e The DA- and NDA-CRLBs for MDS estimation in MIMO frequency-selective

fading channel are derived;

o The DA- and NDA-MLEs for MDS in MIMO frequency-selective fading channel

are derived;

A new low-complexity NDA-moment-based estimator (MBE) for MDS in MIMO

frequency-selective channel is proposed;
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o The optimal combining method for the proposed NDA-MBE in case of multiple

receive antennas is derived through the bootstrap technique.

3.1.4 Methodology

The proposed DA-CRLB for MDS estimation and DA-MLE in MIMO frequency-
selective channel are derived through the conditional probability density function
(PDF) of the received vector given the known transmitted symbols. In this case, the
Fisher information and the conditional log-likelihood function is obtained from the
conditional PDF for the DA-CRLB and DA-MLE, respectively.

For the NDA-CRLB and NDA-MLE;, it is assumed that the transmitted sym-
bols are unknown, but the alphabet from which they are drawn is known. In this
case, through applying the marginal PDF to the joint PDF of the received vector
and constellation vector, the Fisher information and the log-likelihood function are
obtained.

The proposed NDA-MBE relies on the statistical moment-based approach to es-
timate the normalized squared autocorrelation function of the fading channel. Then,
the problem of MDS estimation is formulated as a non-linear regression problem,
and the least-squares curve-fitting optimization technique is applied to determine the

estimate of the MDS.

3.2 Maximum Doppler Spread (MDS) Estimation

3.2.1 System Model

Let us consider a MIMO wireless communication system with n; transmit anten-
nas and n, receive antennas, where the received signals are affected by time-varying

frequency-selective Rayleigh fading and are corrupted by additive white Gaussian
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noise. The discrete-time complex-valued baseband signal at the nth receive antenna

is expressed as [125]

n):ZZ Sk Z+Wl(€) k=1,.., N, (31)

where N is the number of observation symbols, L is the length of the channel impulse
response, s,(cm) is the symbol transmitted from the mth antenna at time k, satisfying
]E{Sgnl)(sé?ﬂ)*} = 02 OmymyOky k» With o2 being the transmit power of the m;th

antenna, W,E:n) is the complex-valued additive white Gaussian noise at the nth receive

antenna at time k, whose variance is UVQVn,

and h,(:lm) denotes the zero-mean complex-
valued Gaussian fading process between the mth transmit and nth receive antennas
for the [th tap of the fading channel and at time k. It is considered that the channels
for different antennas are independent, with the cross-correlation of the /; and Iy taps

given by!

E {hi"?f) (hk’fili)zz) } = Uﬁ(mn)’ll Jo(27 foTiu)d, 1, (3.2)

where Jy(+) is the zero-order Bessel function of the first kind, 0121( . is the variance
mn),ly

of the [1th tap between the mth transmit and nth receive antennas, T, denotes the

symbol period, and fp = v/A = f.w/c represents the MDS in Hz, with v as the

relative speed between the transmitter and receiver, A as the wavelength, f. as the

carrier frequency, and c as the speed of light.

3.2.2 CRLB for MDS Estimation

In this section, the DA- and NDA-CRLB for MDS estimation in MIMO frequency-

selective fading channel are derived.

!Here we consider the Jakes channel; it is worth noting that different parametric channel models
can be also considered.
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3.2.2.1 DA-CRLB

Let us consider S,&m) = s,&m), m=1,2,---,n, k=1,2---,N—L+ 1, as employed

pilots for DA-MDS estimation. The received signal at nth receive antenna in (3.1)

can be written as

ng L
0 =T g = S0 S R = R
m=1[=1
G () (), (mm) () o ()
+J Zzhk,l ék—l‘{'hk,l Sp_; +wi |, (3.3)
m=1 =1

where 7" £ Re{r{”}, K" 2 Im{r{"}, h7}” £ Re{n}”}, A" 2 Im{n{7™},
simn) & Re{s,ﬁ?)}, and 5™ £ Im{s,(ﬁ?)}.

Let us define

T
2 B0 A A ) (3.4)
and
s |, (@1 oulk
rz[r r r”] (3.5)
The elements of the vector r'™, n = 1,2, --- ,n,, are linear combinations of the

correlated Gaussian random variables as in (3.3). Thus, r, is a Gaussian random

vector with PDF given by

exp < — (s, 9)r>
(2m)Vn det> (5(s,6))

p(r|s; 0) = (3.6)

where X(s,0) =2 E{rr'}, s [s(l)Jr s ... s("‘)Tr, sm £ [§§m) sy g A

gm o §§<;W)L+1P, and 0 = [€ 9 fp]! is the parameter vector, as
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202 .02 (3.7a)

W1 Wny
A
929 9 - 9l (3.7b)
L |52 cee g2 2 .
V= |, Thinea Then (3.7¢)
1
2 2 2
Thian) i Thing1), Ohmnr),z}

Since r™) and r"?) | n; # n,, are uncorrelated random vectors, i.e. E{r(”l)r(mﬁ} =

0, the covariance matrix of r, X(s, 6), is block diagonal as

B
»(©@)
3(s,0) 2 E{rr'} = : (3.8)

()

where 3™ E{ )r(m) } By employing (3.2), (3.3), and (3.4), using the fact the
real and imaginary part of the fading tap are independent random variables with

E{|H,(:?")|2} = {|F1,(€"lm)|2} = of..../2, and after some algebra, the elements of the

covariance matrix £, n € {1,2,--- ,n,}, are obtained as
B{r{"n, } =B {if" r;&"ﬁu} (3.93)

1 it m) o(m oy,
5 Z Z hmn)l<3 Sl(c+L l+81(c %Sl(chu l)JO(QWfDTU) 2 u,0
m=1[=1

(i} - —{rory,) (39)
]‘ ot vlm)—-—m
5 Z Uﬁmm) . ( §€+?u l S](f—gsgf-i-zL—l) Jo (27 foTsu).
m=1[=1

80



The Fisher information matrix of the parameter vector 8, I(8), for the zero-mean

Gaussian observation vector in (3.6) is obtained as

0%(s,0)

¥ 1(s,0) 20.

¥ 1(s,0)

0*In p(r|s; 9)} 1
2

[1(0));; £ —E{ 96,00, = —tr

0%(s,0)
20; |

(3.10)

For the MDS, fp, I(fpb) = [1(0)]ss, v = nyn. L + n, + 1, and one obtains

82(8’9)>2 (3.11)

B 9*Inp(r|s; 0) 1

T

(2—1(3, 0)

where 82815%9) is obtained by replacing Jo(27 fpTyu) with —27uT,J; (27 fpTiu) in (s, 0),
where J;(+) is the Bessel function of the first kind.
Finally, by employing (3.11), the DA-CRLB for MDS estimation in MIMO frequency-

selective fading channel is obtained as

1
-
(2%8,0)3’3&39)) ]

Var(fp) > I (fp) = (3.12)

1
2tr

3.2.2.2 NDA-CRLB

Let us consider that the symbols transmitted by each antenna are selected from a
constellation with elements {c; ¢z --- c¢ja}, where \Tlﬂ Zy\:/[ll lc;|> = 1. The PDF of

the received vector r for NDA-MDS estimation is expressed as

p(rie) =Y p(r,c ), (3.13)

where c is the constellation vector as ¢ = {c(m c@ ... C("t)qT, c(m 2 [Eﬁ”f)L Eé”f)L e 55@1
(m

1} T, C,E:m) = E,(cm) +jC, ) is the constellation point of the mth transmit

coelm)
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antenna at time k, and ¢ £ |87 €7 9" fp]f with B8 £ [02 02 .- 02 T, and € and 9

are given in (3.7).
By employing the chain rule of probability and using p(c = cg)) = |[M|™N'™,

N'2 N+ L — 1, one can write (3.13) as

= > p(r,c;p) = > plc = e)p(rlc = c; )
1 | M| N

= > Dbrle=cuie), (3.14)
|M N =~

where c(; represents the sth possible constellation vector at the transmit-side.

Similar to the DA-CRLB, p(r|c = c;); ) is Gaussian and

( | ) exp ( — %rTEfl(cm, go)r) (3.15)
p\riC=cu;p) = 1 ) .
U v detd (S, 0)

where 3(cgy, @) £ E{r@r%} is the covariance matrix of the received vector r;
given the constellation vector is € = ¢y, @ = 1,2,--- [M|N™ . The 2Nn, x 2Nn,

covariance matrix (¢, ¢) is block diagonal as in (3.8), where its diagonal elements,

ie., Egg) { 0 m ,n€{1,2,--- n.}, are obtained as
=(n) =(n) _ 2(n) w(n)
E{rk,(i>rk+u7<i) = E{rk,@') rk,(i)} (3.16a)
SR 2 (am) o(m) S(m)  m) oy
=3 mZZI 2 Thmy. 1 Tom <Ck—l,<i)ck+u—l,<i> + Chl, () Chru l(z>)J0(27TfDT u) + —5 0u0
=(n) w(n) _ w(n) —(n)
E{rk,<i>rk+u,<z‘>} = _E{rk,<i)rk,(i>} (3.16Db)
Lt § m) () (m)  (m
=5 > Zalzumn)l o (Ck L0y Chru—t, (i) — Che z<>0k+u I >J0(27TfDTU)
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By substituting (3.15) into (3.14), one obtains

1 'MZ']?” exXp ( =512 (e, <P)r>
T MV & (27 )N det? (E<C(i>,<p)) :

p(r; ¢) (3.17)

Finally, by employing (3.17), the NDA-CRLB for MDS estimation in MIMO

frequency-selective fading channel is expressed as

1

92 Inp(rip) |
_E{ﬁp}

where I(fp) is given in (3.19), and [, £ [, [, -

Var(fp) > I (fp) = (3.18)

I8 . As seen, there is no an
(2Nnr)

explicit expression for (3.19), and thus, for the CRLB in (3.18). Therefore, numerical

methods are used to solve (3.19) and (3.18).

N'ng _1lyte—1 ]
I(fo) = -E Flprip) | 1 P (1, |M|Z exXp ( X' B (e, w)X)
8]% ‘MlN/nt X af]% i=1 det% (2(0@)7 30))

|MN'™ exp ( — %XTE*I(C@, go)x)

= oM det? (B(e), )

dx.

(3.19)

3.2.3 MLE for MDS

In this section, we derive the DA- and NDA-MLEs for MDS in MIMO frequency-

selective fading channel.
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3.2.3.1 DA-MLE for MDS

The DA-MLE for fp is obtained as

fp = arg max p(r|s; 9), (3.20)
fo
where p(r|s; @) is given in (3.6). Since p(r|s; @) is a differentiable function, the DA-
MLE for fp is obtained from

dlnp(r|s;0)
—on =0 (3.21)

By substituting (3.6) into (3.21) and after some mathematical manipulations, one

obtains

| ;0 1
Onp(rls:0) 1

1
o 5 > (s,0)r.

0% (s,0) 1 0%(s,0)
9o

(3.22)

As seen in (3.22), there is no closed-form solution for (3.21). Thus, numerical methods
need to be used to obtain solution. By employing the scoring method [126],% the

solution of (3.22) can be iteratively obtained as

Jdlnp(r|s; 0)

a R )
Jp fo=7l1

it = A+ 17 (fo) (3.23)

where I(fp) and W are given in (3.11) and (3.22), respectively.

2The scoring method replaces the Hessian matrix in the Newtown-Raphson method with the
negative of the Fisher information matrix.
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3.2.3.2 NDA-MLE for MDS

Similar to the DA-MLE, the NDA-MLE for MDS is obtained from

fp = arg max p(r; @), (3.24)
/o

where p(r; ) is given in (3.17). Since p(r; ) is a linear combination of differentiable

functions, the NDA-MLE for fp is obtained from

dInp(r; o)

o =0 (3.25)

By substituting (3.17) into (3.25) and after some algebra, one obtains

'n 1 4 O (ciy ) 1l ) 2E @ P)
M (BT (e, @) TS e, o)r TP (CwnP) o 0
1 1 -
i1 det2X(c, @) det2X(c, @)

(3.26)

Similar to the DA-MLE, there is no closed-form solution for (3.26); thus, numerical

methods are used to solve (3.26).

3.2.4 NDA-MB Estimation of MDS

In this section, we propose an NDA-moment-based (MB) MDS estimator for multiple-
input single-output (MISO) systems under frequency-selective Rayleigh fading chan-
nel by employing the fourth-order moment of the received signal. Then, an extension

of the proposed estimator to the MIMO systems is provided.
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3.2.4.1 NDA-MBE for MDS in MISO Systems

Let us assume that the parameter vector ¢ = [BT gty fp]" is unknown at the receive-
side. The statistical MB approach enables us to propose an NDA-MBE to estimate
fp without any priori knowledge of B, &, and 9. Let us consider the fourth-order

two-conjugate moment of the received signal at the nth receive antenna, defined as

kM éE{’rk ’ ‘rkﬂ 2}. (3.27)

With the transmitted symbols, s,ﬁm), m = 1,...,ny being independent, drawn from
symmetric complex-valued constellation points,® and with u > L, x(™ is expressed as
(see Appendix 3.A for proof).

o) = B {0,

u

2} (3.29)
= 325w { i} o+ > 3 S Bz o2 o2,

m=1 [=1 1 mo#m; =1

ng L L
+ XY S E{| Lot +202 ZZE{W N2 ol

m=111=1la#£l;

ng Nt L L 9
U5 D D D 98- iy [eew'

’ hk+u lo

2
}02 o2 u > L.

Sml Sm2 )

By employing the first-order autoregressive model of the Rayleigh fading channel,

one can write [128, 129]
hy™ = @ hT, v, (3.29)

where U, = Jy(27 fpTiu) and v,(cnlm) is a zero-mean complex-valued Gaussian white

process with variance IE{|V \ b=01-|T, )ah( ., Which is independent of h,(ﬁ") :

SE{( s,(fm )2} = 0 for M-ary phase-shift-keying (PSK) and quadrature amplitude modulation
(QAM), M > 2 [127].
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By using (3.29) and exploiting the property of a complex-valued Gaussian random

variable z ~ N, (0, 02) that E{|z|*"} = nlo2" [130], one obtains
o iz
= J2(2n faTu) {]hw

+E{‘Vkl ’ |h;§"lﬁ)l

= 2J5 (27 faTyu) o,

}:E{‘(JO(QWdesU) R ‘ ’hk—&-ul

} (3.30)
el o

k+u,l
2 mn E
(Vl(c,l )) }

1 s namar { )

N+ mennmwE {n)

(mn)
hk-‘ru l

s T (1 — Jg(wadﬂu))aﬁ(mn)’l

= (1 + J§(27rdesu))oﬁ(mw m=1,..ng, l=1,..., L.

With the channel taps [y and [y being uncorrelated for each transmit antenna,

ie. E{h,& I )(hgr;:))*} = Uﬁ(mn),zldlhb and employing

min man
{‘hkll ‘ ‘hk+u lo

} = Uﬁ(mln),zlaﬁ(mw)h {(1 - 511712)(1 - 5m17m2) + 5l1,lz(1 - 6m1,m2)

+ (1 - 5l1,l2)5m1,m2} + Oﬁ(mw)h (1 + Jg(Qﬂ—deSu))(smhm25h,l27

(3.31)
one can write (3.28) as
Nt L Nt Nt L
(n) _ 4 4 2 2 2 2 2
K;u - Uh('mn),l Usm 1 + JO (27deTSU/) + Z Z Z O-h(mln),lo'h(mgn),lasml asm2
m=1[=1 m1*1 mg;éml =1
nt L L
2 4 2 2
+ Z Z Uh(mn) h(mn)l Osm + Z Z Z Z h(m n) h(m2n) Iy Usml USmQ
m=1 l1=1 lz#ll mi1= 1Tn275m1 ll 1[2#[1
ny L
2 2 2 4
+ 20y, > Thimamys T + Tt (3.32)
m=1 =1

Further, let us consider the second-order moment of the received signal, i.e., pgn) 2

E{|r | }. By using (3.1), it can be easily shown that
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Nt L
M;n) = Zaﬁ(mnwasm +ol . (3.33)
m=1[=1

By employing (3.32) and (3.33), one obtains the normalized squared autocorrelation

function (AF) of the fading channel as (see Appendix 3.B for proof)

>

2
v, = J52n faTw) = n'™ <m£") — (;zg”)> >, (3.34)

Nt L
where n™ =1/ S of ot

m=11=1 (mn),l  Sm’

For non-constant modulus constellations, 7™ is expressed in terms of ufln) 2

E{|r,(§n)|4} and pén) as (see Appendix 3.C for proof)

20, — 1
O— ) - (3.35)
ug” =2 (Mé”) >
where Qg = ﬁ z‘fjl' |c;|* is a constant, and 1 < Qg < 2.4
Finally, substituting (3.35) into (3.34) yields
2
A kY — (ué"))
U, 22(Q, — 1) (3.36)

-
MT)—2<M¥U

As seen, the normalized squared AF of the fading channel is expressed as a non-linear
function of the ugn), ﬁbin), and (™. In practice, statistical moments are estimated
by time averages of the received signal. For (3.36), the following estimators of the

moments are employed

4For 16-QAM, 64-QAM, and complex-valued zero-mean Gaussian signals, €2, is 1.32, 1.38, and
2, respectively [127].
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A = L) (3.37)

Nk::l
N
NONER: (n)[*
Hy :*ZM
Nk:l ‘
1 2

Y

e = LT e,
N —u —

where u > L > 0.
By substituting the corresponding estimators in (3.36), the estimate of the nor-

malized squared AF is given as

o A )~ (ns”)
Y 290, — 1) : (3.38)
i~ 2(ps”)

Now, based on (3.34) and (3.38), the problem of MDS estimation can be formu-
lated as a non-linear regression problem. Given the estimated normalized squared
AF, ‘1’&"), the non-linear regression model assumes that the relationship between ‘1’1(7)

and U, is modeled through a disturbance term or error variable €{™ as [131, ]
Yo — w4+ e = 2rfoTi) + €™, u= U, .-, Unax: (3.39)

where Ui, and Uy are the maximum and minimum delay lags, respectively.

To solve the non-linear regression problem in (3.39), the LS curve-fitting optimiza-
tion technique is employed. Based on the LS curve-fitting optimization, the estimate
of fp,i.e., ?D, is obtained through minimizing the sum of the squared residuals (SSR)

as [137]

89



UmaX
minimize > (W " — J3(2n foT, u))
o 4=Urmin (3.40)

subject to  fi < fp < fu,
where f; and f;, are the minimum and maximum possible MDSs, respectively. To
obtain ?D, we consider the derivative of the SSR with respect to fp and set it equal

to zero as follows

f‘%}fx 8rTyu ( — J(2r foT, u)) (3.41)

u= Umln

Jo(QWfDTS’LL) Jl (QWfDTSU) = 0.

As seen, for the non-linear regression, the derivative in (3.41) is a function of fp.
Thus, an explicit solution for fp cannot be obtained. However, numerical methods
[133] can be employed to solve the LS curve-fitting optimization problem in (3.40).
By employing the Newton-Raphson method, fp can be iteratively obtained as in
(3.42). The main problem with the Newton-Raphson method is that it suffers from the

Mma

3 87rTu(‘1’ JO(wat]Tu))JO(QWf[Tu)Jl(wa IT,u)

ﬂ[;-‘rl] _ %][jt] _ u=Unin o o 5 (342)
2 max Tr(n
gﬁuzng & = J3(2m foTu) | o=l
2 Umax Mmax
aéjf? 2 (Y- K DTSu>>2\f DY {327r2T3u2J§ (278 T2w) 73 (27 Tou)
D u=Umnin D='p u=Umnin

[t] [t]
+ 87TTSU (QWTSU (Jg (27Tf][§]TSU,> . J12 (27Tf][§]Tsu)> _ J (27TfD T. U) J1 (27TfD T, u) )

i
<\Ifff”) - J§(27rf][§]Tsu)> }
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Algorithm 7 : NDA-MBE for MDS in MISO systems
1: Set fi, fu, A, and
N
Acquire the measurements {r,(g")}ki
Estimate the statistics i{™, @{"”, and R by employing (3.37)
Compute ‘1’2”), Yu € {Umin, e Umax} by using (3.38)
Obtain ﬂ()r ) by solving the minimization problem in (3.40) through the grid search
method with grid step size A
6: Obtain f](js ) by solving the minimization problem in (3.40) through the grid search

method over [ﬂ(;) — A, ﬂ()r) + A] with grid step size §
IO
7. fp =1

N

convergence problem [134]. Since the parameter space for the MDS estimation is one-
dimensional, the grid search method can be employed, which ensures the convergence.
With the grid search method, the parameter space, i.e., [fi, fu] is discretized as a grid
with step size 9, and the value which minimizes SSR is considered as the estimated
fp. This procedure can be performed in two steps, including a rough estimate of the
MDS, ﬂ(;) , by choosing a larger step size A followed by a fine estimate, ﬂ(; ), through
small grid step size § around the rough estimate, i.e., F]()r) — A,ﬂ(;) + Al. A formal
description of the proposed NDA-MBE for MDS in MISO frequency-selective channel
is presented in Algorithm 7.

It is worth noting that fp can be estimated by using a downsampled version of

‘I’Ln). For the case of uniform downsampling, i.e., u = fus, the SSR is given as
g 2
> <\yUmin+£us - ‘I’Umm+eus> ; (3.43)
=0

where ug is the downsampling period expressed in delay lags, NV}, is the number of
delay lag,
Voo, = T3 (27 0T Ui + (), (3.44)
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and )

= 2% -1 (n) m)°
i —2(a")

Wi (3.45)

The downsampled version of ‘I’in) is usually employed for the rough MDS estimation,

where A is a large value.

3.2.4.2 NDA-MBE for MDS in MIMO Systems

The performance of the proposed NDA-MBE for MDS in MISO system can be im-
proved when employing multiple receive antennas due to the spatial diversity, by

combining the estimated normalized squared AFs, ‘1’1(]‘), n=1,..,n, as

Y, = > Ay, (3.46)

n=1
where A, £ [)\Etl) A2 /\Q(L”r)r, with ™, A(® = 1, is the weighting vector. Let us
define ¥, £ {‘I’S) ye) ‘P&"r)r. The mean square error (MSE) of the combined

normalized squared AF in (3.46) is expressed as

. 2
IE{ = \yu)z} — AIC A, + (AL,JJU - qfu> , (3.47)

A

where C,, £ ]E{ (‘i’u - [,l,u) (‘l’u — uu)T} and p,, =S ]E{‘i’u}
By employing the method of Lagrange multipliers, the optimal weighting vector

AP in (3.47) in terms of minimum MSE is obtained as

1

AP = (1y,) v, (3.48)

-1
where y,, £ (C’u—i-(uu—\llul)(uu—\llul)T) land1=[11 --- 1] is an n,-dimensional
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Algorithm 8 : Bootstrap Algorithm for Optimal Combining

1: Set Ny
2: fort=1,2,---,Ng do
3: Draw a random sample of size N, with replacement, from X £ {1,2,--- , N}
and name it X~
4: forn=1,2,--- ,n, do
2 2 2\ 2
v o P - (8 5 0T
Ylmxpy] = — ke R
1 m|* o1 (n)|?
N2|rk’ 2(]\/2"'1{’)
5: end for ke kex*
6 Wi 22— 1)[F0r §Er . Gl
7: end for
8 T, = {@;[1] Y] - @;[NB]}

NeJ

.
L ]

Dy, =
10: Cy = 75 (M — 2,17 (T — 2, 17)"

vector of ones.

As seen, the optimal weighting vector, A", in (3.48) depends on the true value
of MDS, i.e., fp, through the true normalized squared AF, ¥,, in y,. To obtain
the optimal weighting vector, the mean vector p, and covariance matrix C,, are
required to be estimated from the received symbols. One approach is bootstrapping
[135-137]. The bootstrap method suggests to re-sample the empirical joint cumulative
distribution function (CDF) of ¥, to estimate g, and C, as summarized in Algorithm
8.5

As seen in Algorithm 8, the optimal weighting vector for each delay lag w is

derived at the expense of higher computational complexity. In order to avoid this

computational complexity, the suboptimal equal weight combining method can be

5Since ‘1’%"), n =1, ...,n; are uncorrelated random variables, C, is a diagonal matrix. Thus, only
the diagonal elements of C', are employed to obtain the optimal weighting vector.
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-o-U, (fpTy = 0.005)
----- W, (foTy = 0.005)
U, (fpTs = 0.002)
----- @, (foT, = 0.002)|

Normalized squared AF

Fig. 3.1: Illustration of the non-linear LS regression for the uniformly sampled normalized
squared AF for fpTy = 0.02 and fpTs = 0.005, with ny =1, n, =2, L =1, us = 2, and at
v =10 dB.

employed as

Yy, = 1 i Y, (3.49)
Nr 21
Fig. 3.1 shows how W, fits ¥, through the equal weight combining in (3.49) for
fals =0.02 and fqTs = 0.005 withng =1, n, =2, L =1, ug = 2, and at v = 10 dB.
Finally, similar to the MISO scenario, the problem of MDS estimation for multiple
receive antennas is formulated as non-linear regression problem in (3.39) for ¥,. A
formal description of the proposed NDA-MBE for MDS in MIMO frquency-selective

channel is presented in Algorithm 9.
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Algorithm 9 : NDA-MBE for MDS in MIMO systems

1: Set fi, fu, A, and
2: Acquire the measurements {r,in)}szl, Vn € {1, o ,nr}
3: Estimate the statistics 5", a{"”, and &™), by employing (3.37) for {r!"}

Vn € {1,...,nr}
4: Compute ‘1’57), Yu € {Umin, . Umax}, Vn € {1, . ,nr}, by using (3.38)
5: Compute q’u, Yu € {Umm, e Umax}, by using (3.49)

6: Obtain ﬂ()r ) by solving the minimization problem in (3.40) for Y, through the grid
search method with step size A

7: Obtain ﬂ(js) by solving the minimization problem in (3.40) for Y, via the grid
search method over Fl()r YN ﬂ()r ) A] with step size §

8: fD = 'F](;)

3.2.4.3 Semi-blind NDA-MBE

The proposed NDA-MBE for MISO and MIMO systems do not require knowledge of
the parameter vector ¢ = [ &'9" fp]f. In other words, the proposed NDA-MBE
in section 3.2.4.1 and 3.2.4.2 are blind. For the scenarios in which the variance of the
additive noise can be accurately estimated at the receive antennas, i.e., & is known, a
semi-blind NDA-MBE for the case of SISO transmission and flat-fading channel, i.e.,
ny = 1 and L = 1, can be proposed. In this case, for the nth receive antennas, one

can easily obtain®

W) = ot o 4o, (3.50)

and

1

.
(ué") - Uv%n)

6The index of transmit antenna, i.e., m = 1 and the index of channel tap, i.e., I = 1 is dropped.

-

n™ = (op o (3.51)
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By using (3.34), (3.50) and (3.51), and by replacing the statistical moments and the

noise variance with their corresponding estimates, one obtains

(n) )
N <“2 )
- (3.52)

where 62 is the estimate of the noise variance, and k(" and " are given in (3.37).
Clearly, similar to the SISO transmission, the optimal and suboptimal combining

methods for the multiple receive antennas can be employed, as well.

3.3 Complexity Analysis

By employing the two steps grid search method to solve the optimization problem
in (3.40), the number of real additions and multiplications employed in the proposed
NDA-MBE is shown in Table 3.1, where Ny, is the number of delay lag, N, = (Ng, +
Ng,), and N, and N,, are the number of grid points used for the rough and fine
estimation, respectively. As seen, the proposed NDA-MBE exhibits a complexity
order of O(N). It should be mentioned that the complexity order of the derived

DA-MLE and NDA-MLE are O(N?) and O(|M|N'™), respectively.

Table 3.1: Number of real additions, real multiplications, and complexity order of the
proposed NDA-MBE.

Algorithm Real additions Real multiplications Order
MISO (\ 42N, - “f”m))Nl +3N - N, -1 (1\ + Ny — UnoxtUnn) 2) Niu+3N +4 O(N)
MIMO n,((N — Wt Unin) | N, 43N — 1) + (2N, — DN, n,.((N — W tUon) 4 9) Ny, 4 3N + 4) + NN+ 1| O(N)

Fig. 3.2 compares the total number of operations used by the proposed NDA-
MBE with the low-complexity DA-MLE in [I, 2] and the DA-COMAT estimator
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Fig. 3.2: Computational complexity comparison of the proposed NDA-MBE, the low-
complexity DA-MLE in [1, 2], and the DA-COMAT estimator in [3].

in [3]. As seen, the proposed NDA-MBE exhibits significantly lower computational
complexity compared to the DA-COMAT [3] and the low-complexity DA-MLE in
[1, 2]. This substantial reduced-complexity enables the proposed MBE to exhibit good
performance in the NDA scenarios, where the observation window can be selected large

enough.

3.4 Simulations

In this section, we examine the performance of the proposed NDA-MBE, as well as
the derived DA-MLE and DA-CRLB for MDS in MIMO frequency-selective fading

channel through several simulation experiments.
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3.4.1 Simulation Setup

We consider a MIMO system employing spatial multiplexing, with carrier frequency
fo = 2.4 GHz. Unless otherwise mentioned, ny = 2, n, = 2, Ty = 10us, N = 10°,
and the modulation is 64-QAM. The delay profile of the Rayleigh fading channel is
Ui(mn),z = Bexp (—tmsl/L), where /3 is a normalization factor, i.e., 85, (—lmsl /L) = 1,
with L = 5 and s = L/4 as the maximum and RMS delay spread of the channel,
respectively. The parameters for the downsampled LS curve-fitting optimization are
Unin = L, Upax = L%j, and us = 10. The additive white noise was modeled as a
complex-valued Gaussian random variable with zero-mean and variance o2 for each
receive antennas. Without loss of g