
FACTORS INFLUENCING STARCH CHAIN REALIGNMENT AND 
INTERACTIONS WITHIN THE AMORPHOUS AND CRYSTALLINE DOMAINS 

OF PULSE AND HIGH AMYLOSE MAIZE STARCHES ON ANNEALING 

 

By  

©Maaran Suntharamoorthy 

 

A dissertation submitted to the 

School of Graduate Studies 

in partial fulfillment of the requirements for the degree of 

 

Doctor of Philosophy 

Department of Biochemistry 

Memorial University of Newfoundland 

 

 

October 2017 

 

St. John’s    Newfoundland  and Labrador    Canada



 

 

 

 

 

This thesis work is dedicated to my former supervisor, Dr. R. Hoover, 

who, although no longer with us, continues to inspire by his 

perseverance and hardwork to the students he guided during his tenure 

  



ii 
 

Abstract 

The composition, morphology, structure and physicochemical properties of 

starches extracted from lablab bean, navy bean, rice bean, tepary bean and velvet bean 

were examined. Imaging techniques revealed the presence of cracks on granule surfaces 

and disorganized starch chains near the vicinity of the hilum in some starches. The 

starches exhibited wide variations with respect to granular size and specific surface area. 

Molecular order, molecular orientation (birefringence), double helical content, 

crystallinity, crystalline perfection and crystalline stability differed among the pulse 

starches. However, they exhibited similar amylopectin chain length distribution. The 

results showed that interplay among differences in molecular order, double helical 

content, relative crystallinity, amylose content, granule morphology and the extent of 

interactions between starch chains within the amorphous and crystalline domains, 

influenced thermal, rheological and digestibility properties. The factors underlying the 

susceptibility of pulse (including wrinkled pea) and Hylon®VII starches toward in vitro 

hydrolysis were studied. The rate and extent of hydrolysis were influenced by the 

structure of the native starches at different levels (molecular, supramolecular, granular) of 

granule organization, and by the extent of interaction among hydrolysed starch chains. 

Starches were modified by annealing treatment. Annealing increased the relative 

crystallinity and the onset (To) and melting (Tp) temperatures and decreased the 

gelatinization temperature range (Tc-To). The increase in Tp and decrease in Tc-To 

suggest that annealing improved double helix arrangement by decreasing heterogeneity 

within the crystalline lamellae. This study showed that the organization of starch chains 
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within the amorphous and crystalline domains of native starches influenced 

reorganization of starch chains on annealing. The extent of these changes differed 

between normal and high amylose starches due to the structural differences that exist in 

both amorphous and crystalline regions. The role of amorphous regions on annealing was 

studied using the approaches of partial acid hydrolysis and cross-linking with sodium 

trimetaphosphate and sodium tripolyphosphate. The results suggest that the amorphous 

regions contributed to the molecular mechanism of annealing by influencing the 

realignment of glucan chains in the crystalline regions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

Acknowledgements 

It is with immense gratitude that I acknowledge the help and guidance of the late 

Dr. R Hoover throughout my program at MUN. During my period of study, he remained 

very supportive by encouraging my research, sharing his knowledge and experience, and 

preparing me to grow as a researcher. I also would like to express my special appreciation 

and thanks to Dr. R. Brown who took the role of my supervisor after the unfortunate 

passing of Dr. Hoover last year. Without his vital support and assistance, this thesis 

would not have been possible. Additionally, I would like to thank my committee 

members, Dr. V. Booth and Dr. D. Dave, for providing me extensive guidance and 

invaluable suggestions. I gratefully acknowledge the Department of Biochemistry, School 

of Graduate Studies and NSERC for the financial support to undertake my doctoral 

research.  

I also am indebted to Dr. Q. Liu, Dr. E. Donner, Dr. V. Vamadevan, Dr. R. 

Waduge, Dr. M. Shaffer, Dr. C. Schnider, Dr. D. Davidson, Dr. D. Grant, Dr. W. 

Aylward and Mrs. S. Strowbridge, for their support in some of the analytical techniques 

during my research. I am particularly grateful for the assistance given by Dr. A. Yethiraj 

in using confocal and polarized microscopy. I specially thank Craig and Marie Codner for 

their technical assistance. I also would like to thank my lab mates, colleagues, and all the 

faculty and staff members of the Department of Biochemistry for their help and 

encouragement. Finally, I would like to thank my family and friends who have always 

stood by me in hard times. I owe my deepest gratitude to them for providing 

unconditional support and constant encouragement which helped me to realize my dream. 



v 
 

Table of contents 

Abstract……………………………………………………………………………………ii 

Acknowledgements……………………………………………………………………….iv 

Table of contents…………………………………………………………………………..v 

List of figures……………………………………………………………………………xiii 

List of tables……………………………………………………………………………..xvi 

List of abbreviations……………………………………………………………………xviii 

Chapter 1. Introduction ----------------------------------------------------------------------------- 1 

1.1 Introduction and overview --------------------------------------------------------------- 1 

1.2 Starch - Introduction ---------------------------------------------------------------------- 4 

1.3 Starch biosynthesis ------------------------------------------------------------------------ 6 

1.3.1 ADP-Glc generation by ADP-glucose pyrophosphorylase ----------------------- 9 

1.3.2 The role of starch synthases on the elongation of glucan chain ------------------ 9 

1.3.3 Biosynthesis of amylose -------------------------------------------------------------- 10 

1.3.4 Biosynthesis of amylopectin --------------------------------------------------------- 10 

1.3.5 The action of starch branching enzymes on the branching of glucan chains -- 11 

1.3.6 The action of debranching enzymes (DBEs) on starch synthesis --------------- 13 

1.3.7 Starch phosphorylase ----------------------------------------------------------------- 14 

1.4 Molecular architecture of starch -------------------------------------------------------- 15 



vi 
 

1.5 Granule morphology, size and distribution ------------------------------------------- 18 

1.6 Molecular components of starch ------------------------------------------------------- 20 

1.6.1 Fine structure of amylose ------------------------------------------------------------- 21 

1.6.1.1 Location of amylose ------------------------------------------------------------- 22 

1.6.1.2 Amylose-inclusion complex ---------------------------------------------------- 24 

1.6.2 Amylopectin --------------------------------------------------------------------------- 26 

1.6.2.1 Cluster model of amylopectin -------------------------------------------------- 26 

1.6.2.2 Building block backbone model ------------------------------------------------ 29 

1.6.2.3 Starch crystallinity and polymorphism ---------------------------------------- 29 

1.7 Minor components ----------------------------------------------------------------------- 36 

1.7.1 Starch lipids ---------------------------------------------------------------------------- 36 

1.7.2 Protein ---------------------------------------------------------------------------------- 37 

1.7.3 Phosphorous ---------------------------------------------------------------------------- 37 

1.8 Starch properties -------------------------------------------------------------------------- 38 

1.8.1 Granular swelling and amylose leaching ------------------------------------------- 38 

1.8.2 Gelatinization -------------------------------------------------------------------------- 40 

1.8.3 Pasting characteristics ---------------------------------------------------------------- 44 

1.8.4 Retrogradation ------------------------------------------------------------------------- 46 

1.8.5 Acid hydrolysis ------------------------------------------------------------------------ 47 

1.8.6 Enzyme hydrolysis -------------------------------------------------------------------- 50 

1.8.7 Starch nutritional fractions ----------------------------------------------------------- 54 

1.9 Annealing --------------------------------------------------------------------------------- 58 



vii 
 

1.9.1 Effect of annealing on granule morphology --------------------------------------- 61 

1.9.2 Effect of annealing on starch structure --------------------------------------------- 61 

1.9.3 Effect of annealing on granular swelling and amylose leaching ---------------- 64 

1.9.4 Effect of annealing on starch gelatinization ---------------------------------------- 65 

1.9.5 Effect of annealing on pasting properties ------------------------------------------ 67 

1.9.6 Effect of annealing on acid hydrolysis ---------------------------------------------- 68 

1.9.7 Effect of annealing on in vitro digestibility ---------------------------------------- 69 

1.10 Problem statement ---------------------------------------------------------------------- 71 

1.11 Hypothesis and objectives ------------------------------------------------------------- 76 

1.12 Research outline ------------------------------------------------------------------------ 78 

Chapter 2. Materials and methods --------------------------------------------------------------- 80 

2.1 Materials ----------------------------------------------------------------------------------- 80 

2.2 Methods ----------------------------------------------------------------------------------- 81 

2.2.1 Starch isolation and purification ----------------------------------------------------- 81 

2.2.2 Chemical composition ---------------------------------------------------------------- 82 

2.2.2.1 Moisture content ----------------------------------------------------------------- 82 

2.2.2.2 Determination of ash content --------------------------------------------------- 82 

2.2.2.3 Determination of nitrogen content --------------------------------------------- 83 

2.2.2.4 Determination of apparent amylose content ---------------------------------- 84 

2.2.2.5 Determination of lipid content -------------------------------------------------- 85 

2.2.2.5.1 Surface lipid ----------------------------------------------------------------- 85 



viii 
 

2.2.2.5.2 Bound lipid ------------------------------------------------------------------ 85 

2.2.2.5.3 Crude lipid purification ---------------------------------------------------- 86 

2.2.2.6 Estimation of starch damage ---------------------------------------------------- 86 

2.2.2.6.1 Determination of reducing value ------------------------------------------ 87 

2.2.3 Granule morphology and particle size distribution ------------------------------- 88 

2.2.3.1 Starch granule size distribution ------------------------------------------------- 88 

2.2.3.2 Light microscopy ----------------------------------------------------------------- 89 

2.2.3.3 Scanning electron microscopy (SEM) ----------------------------------------- 89 

2.2.3.4 Confocal laser scanning microscopy (CLSM) -------------------------------- 89 

2.2.4 Starch structure ------------------------------------------------------------------------ 90 

2.2.4.1 Determination of amylopectin chain length distribution -------------------- 90 

2.2.4.2 Determination of short range molecular order by attenuated total 

reflectance Fourier transform infrared spectroscopy (ATR-FTIR) -------- 91 

2.2.4.3 Wide angle X-ray diffraction (WAXS) ---------------------------------------- 92 

2.2.4.3.1 Determination of B-polymorphic composition -------------------------- 93 

2.2.4.4 13C Cross polarization magic angle spinning nuclear magnetic resonance 

spectroscopy (13C CP/MAS NMR) --------------------------------------------- 93 

2.2.5 Starch properties ----------------------------------------------------------------------- 94 

2.2.5.1 Swelling factor (SF) ------------------------------------------------------------- 94 

2.2.5.2 Amylose leaching (AML) ------------------------------------------------------- 95 

2.2.5.3 Differential scanning calorimetry (DSC) ------------------------------------- 96 

2.2.5.4 Pasting properties ---------------------------------------------------------------- 97 

2.2.5.5 Turbidity Measurements -------------------------------------------------------- 97 



ix 
 

2.2.5.6 Acid hydrolysis ------------------------------------------------------------------- 98 

2.2.5.6.1 Preparation of acid thinned starches -------------------------------------- 98 

2.2.6 Starch digestibility -------------------------------------------------------------------- 99 

2.2.6.1 Enzymatic hydrolysis by porcine pancreatic α-amylase -------------------- 99 

2.2.6.2 In vitro starch digestibility and expected glycemic index (eGI) ----------100 

2.2.7 Starch modification ------------------------------------------------------------------102 

2.2.7.1 Annealing ------------------------------------------------------------------------102 

2.2.7.2 Cross-linking ---------------------------------------------------------------------103 

2.2.7.2.1 Determination of degree of substitution and reaction efficiency ----103 

2.2.8 Statistical analysis --------------------------------------------------------------------104 

Chapter 3. Results and discussion --------------------------------------------------------------106 

3.1 Composition, structure, morphology and physicochemical properties of lablab 

bean, navy bean, rice bean, tepary bean and velvet bean starches ---------------106 

3.1.1 Composition ---------------------------------------------------------------------------106 

3.1.2 Granule characteristics ---------------------------------------------------------------106 

3.1.3 Particle size analysis -----------------------------------------------------------------113 

3.1.4 Amylopectin chain length distribution (APCLD) --------------------------------113 

3.1.5 Attenuated total reflectance Fourier transform infrared spectroscopy           

(ATR-FTIR) ---------------------------------------------------------------------------116 

3.1.6 Wide angle X-ray diffraction (WAXS) --------------------------------------------119 

3.1.7 13C cross polarization magic angle spinning nuclear magnetic resonance 

spectroscopy (13C CP/MAS NMR) -------------------------------------------------120 



x 
 

3.1.8 Differential scanning calorimetry (DSC) ------------------------------------------120 

3.1.9 Swelling factor (SF) ------------------------------------------------------------------123 

3.1.10 Amylose leaching (AML)----------------------------------------------------------125 

3.1.11 Acid hydrolysis ----------------------------------------------------------------------126 

3.1.12 In vitro digestibility by porcine pancreatic α-amylase (PPA) -----------------129 

3.1.13 Pasting properties -------------------------------------------------------------------132 

3.1.14 Retrogradation characteristics -----------------------------------------------------135 

3.1.14.1 Turbidity ------------------------------------------------------------------------135 

3.1.14.2 Differential scanning calorimetry of retrograded starches (DSC) -------139 

3.2 In vitro amylolysis of pulse and Hylon®VII starches explained in terms of their  

composition, morphology, granule architecture and interaction between 

hydrolysed starch chains ---------------------------------------------------------------142 

3.2.1 Chemical composition ---------------------------------------------------------------142 

3.2.2 Hydrolysis kinetics -------------------------------------------------------------------143 

3.2.3 Morphology of control and hydrolysed starch granules -------------------------145 

3.2.4 HPAEC- PAD of control and hydrolysed starches -------------------------------151 

3.2.5 Apparent amylose content (AAC) of hydrolysed starches ----------------------153 

3.2.6 Wide angle X-ray diffraction (WAXS) pattern and relative crystallinities (RC) 

of control and hydrolysed starches -------------------------------------------------153 

3.2.7 13C CP/MAS NMR of control and hydrolysed starches -------------------------160 

3.2.8 ATR-FTIR of control and hydrolysed starches -----------------------------------164 

3.2.9 DSC of control and hydrolysed starches ------------------------------------------169 



xi 
 

3.2.10 Amylose leaching (AML) at 80°C and 90°C ------------------------------------171 

3.3 Impact of annealing treatment on the molecular structure and properties of pulse 

and high amylose maize starches -----------------------------------------------------174 

 3.3.1 Granule morphology -----------------------------------------------------------------174 

3.3.2 Impact of annealing on the molecular order at the granule surface ------------174 

3.3.3 Impact of annealing on X-ray diffraction pattern and crystallinity ------------178 

3.3.4 Impact of annealing on gelatinization parameters --------------------------------181 

3.3.5 Impact of annealing on starch swelling factor ------------------------------------185 

3.3.6 Impact of annealing on amylose leaching (AML) -------------------------------188 

3.3.7 Impact of annealing on pasting characteristics -----------------------------------190 

3.3.8 Impact of annealing on acid hydrolysis --------------------------------------------194 

3.3.9 Impact of annealing on starch nutritional fractions ------------------------------199 

3.4 The contribution of amorphous regions to structural changes within the 

crystalline lamellae on annealing -----------------------------------------------------207 

3.4.1 Partial acid hydrolysis and annealing treatment ----------------------------------207 

3.4.1.1 13C CP/MAS NMR of native and lintnerised starches ----------------------207 

3.4.1.2 Gelatinization properties of lintnerised starches ----------------------------211 

3.4.1.3 Annealing of lintnerized starches ---------------------------------------------219 

3.4.2 Cross-linking with sodium trimetaphosphate and sodium tripolyphosphate -223 

3.4.2.1 The impact of annealing on the extent of cross-linking --------------------223 

3.4.2.2 Gelatinization parameters of control and cross-linked starches -----------229 

3.5 Summary and conclusions -------------------------------------------------------------233 



xii 
 

3.6 Directions for further research ---------------------------------------------------------238 

3.7 Novelty and significance ---------------------------------------------------------------240 

References -----------------------------------------------------------------------------------------243 

Appendix I -----------------------------------------------------------------------------------------302 

Appendix II ----------------------------------------------------------------------------------------303 

Appendix III ---------------------------------------------------------------------------------------304 

Appendix IV ---------------------------------------------------------------------------------------305 

Appendix V ----------------------------------------------------------------------------------------306 

Appendix VI ---------------------------------------------------------------------------------------307 

Appendix VII --------------------------------------------------------------------------------------308 

Appendix VIII -------------------------------------------------------------------------------------309 

 

 

 

 

 

 

 

 

 



 

xiii 
 

List of Figures 

Figure 1.1: A diagram illustrating the starch biosynthesis in the amyloplasts of seed                       

storage tissue ..................................................................................................... 8 

Figure 1.2: Schematic representation of six levels of organization of the rice grain ......... 16 

Figure 1.3: Schematic representation of  localization of amylose chains within the 

amylopectin clusters ........................................................................................ 23 

Figure 1.4: A Cluster model of amylopectin ..................................................................... 28 

Figure 1.5: Characteristic X-ray diffraction patterns of A-, B- and C-type starches with 

their specific d-spacings .................................................................................. 30 

Figure 1.6: Double helices arrangement of A-type (monoclinic unit cell) and B-type 

(hexagonal unit cell) crystallites in starch ....................................................... 32 

Figure 1.7: Proposed models for branching patterns of A-and B-type starches.................35 

Figure 1.8: Liquid crystalline model of starch gelatinization ............................................ 42 

Figure 1.9: Mechanism of acid hydrolysis of starch .......................................................... 49 

Figure 1.10: Diagram illustrating the impact of hydration and subsequent annealing on 

semi-crystalline lamellae .............................................................................. 60 

Figure 3.1: Granule morphology of pulse starches .........................................................  108 

Figure 3.2: Cracking pattern in rice bean and tepary bean starches visualized by bright 

field microscopy ............................................................................................ 110 

Figure 3.3: X-ray diffraction patterns of pulse starches .................................................. 118 

Figure 3.4: Swelling factor (a) and amylose leaching (b) of native pulse starches over the 

temperature range of 60-85°C ....................................................................... 124 

Figure 3.5: Acid hydrolysis (2.2 M hydrochloric acid) profiles of pulse starches. ......... 127 

Figure 3.6: In vitro digestibility profile of native pulse starches subjected to hydrolysis 

porcine pancreatic α-amylase treated starches .............................................. 130 



 

xiv 
 

Figure 3.7: Turbidity profile of pulse starches stored at 4ᴼC for one day and then kept at 

25ᴼC for 20 days ........................................................................................... 136 

Figure 3.8: SEM images of freshly gelatinized and stored (24 h at 4°C) starch pastes with       

low and higher magnifications ...................................................................... 137 

Figure 3.9:  Hydrolysis kinetics (37°C) of pulse and Hylon®VII starches by porcine 

pancreatin and amyloglucosidase .................................................................. 144 

Figure 3.10: Scanning electron micrographs of control and hydrolysed (30 min, 24 h) 

starches ....................................................................................................... 146 

Figure 3.11: Bright field microscopy images of lablab bean, navy bean, rice bean, tepary 

bean, velvet bean, wrinkled pea and Hylon®VII starches ......................... 147 

Figure 3.12: Polarized microscopy images of control and hydrolysed (30 min, 24 h) 

starches. ...................................................................................................... 148 

Figure 3.13: X-ray diffraction patterns of control and hydrolysed (30 min, 2 h and 24 h) 

pulse and Hylon®VII starches. ................................................................... 155 

Figure 3.14: 13C CP/MAS NMR spectra of control and hydrolysed pulse and Hylon®VII 

starches ....................................................................................................... 161 

Figure 3.15: FTIR spectra of control and enzyme-treated wrinkled pea and Hylon®VII 

starches ....................................................................................................... 167 

Figure 3.16: Amylose leaching of control starches of pulse and Hylon®VII at 80 and       

90ᵒC............................................................................................................. 173 

Figure 3.17: Scanning electron micrographs of native and annealed Hylon®VII 

starches…....................................................................................................175 

Figure 3.18: X-ray diffraction patterns and relative crystallinity of native (N) and 

annealed (ANN) pulse and Hylon®VII starches. ....................................... 179 

Figure 3.19: Swelling factor of native (N) and annealed (ANN) starches in the range of 

70-90ᵒC. ...................................................................................................... 186 



 

xv 
 

Figure 3.20: Amylose leaching of native (N) and annealed (ANN) starches in the range of 

70-90ᴼC ....................................................................................................... 189 

Figure 3.21: Pasting profiles of native annealed (ANN) starches determined by rapid 

visco analyser. ............................................................................................. 191 

Figure 3.22: Acid hydrolysis (2.2 M hydrochloric acid) profiles of native (N) and 

annealed (ANN) starches ............................................................................ 195 

Figure 3.23: 13C CP/MAS NMR spectra of native and acid hydrolysed (AH) pulse and 

Hylon®VIIstarches……………………………………………………….209 

Figure 3.24: Gelatinization parameters of partially acid hydrolysed (lintnerized) starches 

before and after annealing .......................................................................... 212 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xvi 
 

List of Tables 

Table 1.1: Food and industrial (non-food) applications of native and modified starches ... 5 

Table 3.1: Chemical composition (%) of pulse starches .................................................. 107 

Table 3.2: Particle size analysis of pulse starches ........................................................... 114 

Table 3.3: Amylopectin chain length distribution of pulse starches determined by high 

performance anion exchange chromatography with pulsed amperometric 

detection (HPEAC-PAD) ................................................................................ 115 

Table 3.4: FTIR intensity ratio (1048 cm-1/1016 cm-1), relative crystallinity, double 

helical content and B-polymorphic content of pulse starches ......................... 117 

Table 3.5: Gelatinization parameters of pulse starches as determined by differential 

scanning calorimetry ....................................................................................... 121 

Table 3.6: Pasting properties of pulse starches ................................................................ 133 

Table 3.7: Retrogradation transition parameters of pulse starches .................................. 140 

Table 3.8: Amylopectin chain length distribution of control and hydrolysed pulse and 

Hylon®VII starches determined by high performance anion exchange 

chromatography with pulsed amperometric detection .................................... 152 

Table 3.9: Apparent amylose content of control and hydrolysed pulse and Hylon®VII 

starches ............................................................................................................ 154 

Table 3.10: Relative proportions of double helical and amorphous contents and relative 

crystallinity of control and hydrolysed pulse and Hylon®VII starches ........ 156 

Table 3.11: Molecular order at the granule surface of control and hydrolysed pulse and 

Hylon®VII starches .................................................................................... 166 

Table 3.12: Gelatinization parameters of control and hydrolysed pulse starches ............ 170 

Table 3.13: Short range molecular orders of native and annealed starches determined by 

attenuated total reflectance –Fourier transform infrared spectroscopy (ATR-

FTIR) ............................................................................................................. 176 



 

xvii 
 

Table 3.14: Gelatinization parameters of native annealed pulse and Hylon®VII starches

 .......................................................................................................................................... 182 

Table 3.15: Nutritional fractions, hydrolysis index and expected glycemic index of native 

and annealed (ANN) starches determined by in vitro hydrolysis ................. 200 

Table 3.16: Phosphorous content, degree of substitution (DS) and reaction efficiency 

(RE) of cross-linked starches ........................................................................ 225 

Table 3.17: Gelatinization parameters of control and cross-linked starches ................... 230   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xviii 
 

List of abbreviations 

AAC    - Apparent amylose content 

AACC    - American Association of Cereal Chemists  

ADP    - Adenosine diphosphate 

ADP-Glc   -  Adenosine 5’-diphosphate-glucose 

ae    - Amylose extender  

AGPase   - ADP glucose pyrophosphorylase 

AML    - Amylose leaching 

ANN    - Annealing 

ANOVA   - Analysis of variance  

APCLD   - Amylopectin chain length distribution 

APTS    - 8-amino-1, 3, 6-pyrenetrisulfonic acid 

ATP    - Adenosine triphosphate 

ATR-FTIR   - Attenuated total reflectance Fourier transform  
     infrared spectroscopy 

AUC    - Area under the curve 

BL    - Bound lipid                                                                              

13C CP/MAS NMR  - 13C cross-polarization magic angle spinning nuclear  
     magnetic resonance  CLതതതത    - Average chain length 

CL    - Cross-linked  

CLD    -  Chain length distribution 

CL-ANN                                 -           Cross-linked and annealed  

CLSM     - Confocal laser scanning microscopy 



 

xix 
 

dwb    - Dry weight basis 

DBE    - Debranching enzyme 

DHC    - Double helical content 

DMSO    - Dimethyl sulfoxide 

dp    - Degree of polymerization 

dpn    - Degree of polymerization by number 

DS    - Degree of substitution 

DSC    - Differential scanning calorimetry 

DTGS    - Deuterated triglycine sulfate 

Dwb    - Dry weight basis 

EC    - Enzyme Commission 

eGI    - Expected glycemic index 

ELC    - Extra-long unit chains 

FFA    - Free fatty acids 

G-1-P    -  Glucose-1-phosphate 

GBBS    - Granule-bound starch synthase 

GH    - Glycoside hydrolase 

GI    - Glycemic index 

GOPOD   - Glucose oxidase/peroxidase 

HPAEC-PAD   - High performance anion exchange chromatography  
     with pulsed amperometric detection 

∆H    -  Enthalpy of gelatinization 

∆HR    - Enthalpy of gelatinization (retrogradation) 

HYVII    - Hylon®VII 



 

xx 
 

ICP-OES   - Inductively coupled plasma-optical emission  
     spectrometry 

ISA    - Isoamylase 

LB    - Lablab bean 

LysoPL   - Lysophospholipid 

MG    - Monoacylglycerol 

Mw    - Molecular weight 

MSMP    - Monostarch monophosphate 

NB    - Navy bean 

NMR    - Nuclear magnetic resonance 

P-enzyme   - Plastidal starch phosphorylase 

3-PGA    - 3-phosphoglycerate 

PLM    - Polarized light microscopy 

PPA    - Porcine pancreatic α-amylase 

PPi    - Pyrophosphate 

RB    - Rice bean 

RDS    - Rapidly digestible starch 

RE    -  Reaction efficiency 

RS    - Resistant starch 

RVA    - Rapid visco analyser 

SANS    - Small angle X-ray scattering 

SAXS    - Small angle nuclear scattering 

sb                                            - Starch weight basis 

SBE    - Starch branching enzyme 



 

xxi 
 

SCFA    - Short chain fatty acids 

SD    - Starch damage 

SDS    - Slowly digestible starch 

SEM    - Scanning electron microscopy 

SF    - Swelling factor 

SL    - Surface lipid 

SP    - Swelling power 

SS    - Starch synthase 

SSA    - Specific surface area 

STMP    - Sodium trimetaphosphate 

STPP    - Sodium tripolyphosphate  

SuSy    - Sucrose synthase 

%T    -  Percentage light transmission 

TB    - Tepary bean 

Tc    - Conclusion temperature of gelatinization 

Tc-To    - Gelatinization temperature range 

Tg    - Glass transition temperature 

Tm    - Peak minimum/melting temperature of   
     gelatinization 

TMS    - Tetramethylsilane 

To    - Onset temperature of gelatinization 

Tp    - Peak temperature of gelatinization 

TS    - Total starch 

UDP-glucose   - Uridine diphosphate glucose 



 

xxii 
 

VB    - Velvet bean 

v/v    - Volume/volume 

WAXS    - Wide angle X-ray diffraction 

WP    - Wrinkled pea 

w/v    - Weight/volume 

w/w    - Weight/weight 

wx    - Waxy 

XRD    - X-ray diffraction 

 

 

 



 

1 
 

Chapter 1 

Introduction 

1.1 Introduction and overview 
Pulses, a subgroup of legumes, are the edible seeds of plants belonging to the 

Fabaceae (Leguminoseae) family which has 16,000–19,000 species in approximately 750 

genera (Allen & Allen, 1981; Hoover et al., 2010). Nutritionally, pulses are considered an 

important part of the human diet in many regions of the world since they are an 

inexpensive and rich source of protein, carbohydrate, dietary fiber, vitamins, minerals and 

phytochemicals (Jood et al., 1988). Starch (22 % to 45 %, dry weight basis [dwb]) is the 

main storage carbohydrate in pulse seeds (Hoover et al., 2010). In contrast to most other 

starch sources, pulse starches exhibit a relatively low glycemic index due to their higher 

amylose content and strong interactions between the amylose chains. These factors 

contribute to the higher resistant starch content in addition to the dietary fiber and 

provides a high nutritional value (Tiwari & Singh, 2012). Resistant starch (RS) refers to 

the sum of starch and products of starch degradation that resist digestion as they pass 

through the gastrointestinal tract (stomach and small intestine) and are fermented in large 

intestine (Nugent, 2005). Thus, the potential health benefits of resistant starch are linked 

to prevention of colon cancer (Morita et al., 1999; Bingham et al., 2003), hypoglycemic 

effects (Raben et al., 1994; Reader et al., 1997), promoting beneficial microflora and 

colonic health (Brown et al., 1996; Topping & Clifton 2001), reduction of gallstone 

formation (Malhotra 1968; Birkett et al., 2000), hypocholesterolemic effects (Han et al., 

2003; Martinez et al., 2004), inhibition of fat accumulation (Higgins et al., 2004) and 

increased absorption of minerals (Morais et al., 1996).  
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In terms of processing, pulse starches have been given lesser importance in starch 

based food products due to the emphasis placed on pulses as a protein source rather than a 

carbohydrate source. Structural and functional properties of cereal and tuber starches have 

been studied extensively and they are used in a wide range of applications in food and 

non-food industries.  Pulse starches have not benefited from the kind of value-added 

research required for competitiveness on an international scale. Consequently, their use in 

both food and non-food sectors is limited. As a result, cereal and tuber starches continue 

to dominate world markets in food and non-food industries. A survey of the literature 

(Hoover et al., 2010) has shown that with the exception of a few starches, there is a dearth 

of information on the structure, physicochemical properties and nutritional fractions of 

pulse starches. Presently, the food industry is increasingly concerned with the potential to 

incorporate pulse starches into food products due to their high amylose content (35-80 , 

sb), resistance to shear thinning, rapid retrogradation and high resistant starch content 

(Singh, 2011). Based on current studies on the structure-property relationships among 

pulse starches, it was considered worthwhile to investigate the molecular structure and 

properties of under-utilized pulse starches, which have not been characterized with 

respect to composition, molecular structure, polymorphic composition, physicochemical 

properties and digestibility characteristics.  

Starch is extensively used as an additive in many food applications, such as 

thickening, stabilizing, texturizing, gelling, encapsulation, moisture retention and shelflife 

extension. Most starches cannot be utilized in their native form for food and industrial 

applications due to their poor thermal stability, susceptibility to acid, low resistance to 
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shear stress and high tendency toward retrogradation (Singh et al., 2007). Consequently, 

starches must be modified to improve their positive attributes and/or to diminish their 

defects. Recognition of variation in structure and properties among these pulse starches 

would form the basis for further investigations to modify starch structure (Hoover et al., 

2010). This could be achieved by altering the structural arrangement of the starch chains 

within the amorphous and crystalline domains by different modification techniques and 

could lead to a wider application for pulse starches that are currently not used in the food 

industry. 

 Starch modification techniques can be classified into four categories: physical, 

chemical, enzymatic and genetic modifications (Bemiller, 1997). Beyond genetic and 

agronomic variations in starches, the physicochemical properties of starches can be 

modified by means of physical and chemical modification techniques. Currently, there is 

great deal of interest in the use of physical modification techniques, such as annealing, 

which modifies the properties of starches without destroying their granular structure. 

Annealing refers to the treatment of starch granules in excess or at intermediate moisture 

contents and held at a temperature somewhat lower than its melting temperature for a 

specific period of time. Annealing improves starch functionality by inducing a structural 

reorganization of starch chains within the amorphous and crystalline domains (Tester & 

Debon, 2000), thereby increasing their stability– a desirable feature for thermally 

processed foods containing starch as an ingredient. Thus, a comparative study of native 

and annealed pulse starches may provide a deep insight into how the structural organi-

zation of starch chains influences the functionality of these starches in food applications.  
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1.2 Starch - Introduction 
Starch is produced by green plants for energy storage, and it is a major component 

of the human diet. Starch can be readily found in most plant tissues and storage organs, 

including leaves, grains, roots, tubers, shoots, fruits and pollen (Ballicora et al., 2004). 

The major sources of starch are cereal grains (maize, wheat, barley, sorghum, and oats), 

tubers and roots (potato, sweet potato, yam, cassava and taro), pulse seeds (beans, peas 

and lentils), and some immature fruits (mango and banana). Generally, starches from 

various botanical origins exhibit fundamental structural similarities, but they differ in the 

specific details of their microstructure and ultrastructure (Huber & BeMiller 2001). 

Globally, maize is the primary source of starch (over 77 %), followed by cassava (12 %), 

wheat (7 %), potato (4 %) and a lesser contribution by pulse and other starch sources 

(Waterschoot et al., 2015). Worldwide, the production of starch in 2000 was 48.5 million 

tons and was projected to increase to about 85 million tons by 2015 (LMC International, 

2002; Waterschoot et al., 2015). The United States of America (USA) and the European 

Union (EU) are the largest producers and consumers of starch. The EU mainly produces 

wheat and potato starch, whereas the USA almost entirely produces maize starch (Mitchel 

& Bemiller, 2009; International Starch Institute, 2017). Outside these regions, a 

significant amount of cassava starch is produced, mainly in Southeast Asia, while pulse 

starch is produced mainly in Canada. Starch is utilized in a wide range of food and 

industrial applications due to its universal abundance, comparatively low cost and 

desirable functional properties in food and non-food products (Wurzburg, 1986; Jane, 

1995). Food and non-food applications of starches are summarized in Table 1.1. 
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Table 1.1: Food and industrial (non-food) applications of native and modified starches. 

Adapted from (Galliard & Bowler 1987; Satin, 1998; Burrell, 2003; Davis et al., 2003) 

Application area Uses of native and modified starches 

Food 

Bakery products, batters and breading, beverages, 
confectionery, gravy and creams, syrups, fat mimetic, 
yoghurt, cheese and imitation cheese, meat binder, 
cereals and snacks, instant meals, dressings 

Functional foods Ingredient (e.g. slowly digestible starch [SDS], 
resistant starch [RS]), encapsulation

Pharmaceutical Diluent, binder, drug delivery, dusting agent, 
encapsulant

Medical 
Plasma extender/replacement (Hydroxyethyl starch 
plasma), Organ preservation, absorbent sanitary 
products, plasters and dressings

Biotechnology Substrate for growing microorganisms 
Fuel Bioethanol 

Adhesives Hot-melt glues, stamps, book binding, envelopes, 
labels, wood adhesives, lamination, paper bags 

Agrochemicals Mulches, pesticide delivery, seed coatings 

Cosmetics Dusting powder, makeup, soap filler/extender, face 
cream, tooth paste

Detergents Bio-surfactants, builders, bleaching agents, bleach 
activators

Paper Binding, sizing, filler retention, paper coating, 
carbonless paper stilt material, disposable diapers 

Plastics Biodegradable filler 
Biologically-
degradable materials 

Biodegradable plastic film (e.g. food packaging 
materials)

Textiles Warp sizing, fabric finishing and printing, fire 
resistance

Ceramics Filler

Metals Foundry core binder, sintered metal additive, sand 
casting binder

Construction 
Concrete block binder, paint filler, plywood/chipboard 
adhesive, asbestos, clay/lime stone binder, fire resistant 
wallboard, gypsum board binder

Purification Flocculent for wastewater treatment

Mining Viscosity modifier (oil), ore flotation, ore 
sedimentation, oil well drilling muds

Miscellaneous Dry cell batteries, printed circuit boards, leather 
finishing
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 1.3 Starch biosynthesis 
The biosynthesis of starch involves not only the formation of complex glucan 

polymers, but also their arrangement into ordered three-dimensional polysaccharide 

structures within the granule (Martin & Smith, 1995). All higher plant starches are 

synthesized inside plastids (specialized subcellular organelles), and their functions depend 

on the plastid type and the plant tissue origin (Tetlow, 2011). Based on temporal and 

spatial differences in biosynthesis, starch can be categorized into two different types: 

transitory starches (leaf starch) and reserve starches (storage starch) (Radchuk et al., 

2009; Li & Gilbert, 2016). In higher plants, transitory starch synthesis occurs in the 

chloroplasts of photosynthetic tissues during daytime photosynthesis, and then is 

degraded and transported to the amyloplasts of storage organs at night, where it is 

incorporated into reserve starch (Zeeman et al., 2007). Transitory starch significantly 

influences crop yield, but there is no direct effect on the fine structure of the reserve 

starch (Wu et al., 2014). Storage starch is produced in amyloplasts, a heterotrophic tissue 

that is located inside a specialized plastid.  

Starch synthesis is a complex process involving many enzymes. Various isoforms 

of many starch metabolic enzymes can be found in both chloroplasts and amyloplasts, and 

their activity differs among plant species and botanical organs, contributing to the 

variation in starch structure (Li & Gilbert, 2016). The initial part of the pathway is 

confined to the cytosol area, and the latter part (final steps) is localized in the amyloplast 

(Keeling & Myers, 2010). The major enzymes involved in the synthesis of starch in the 

amyloplast are ADP glucose pyrophosphorylase (AGPase), starch synthases (SS, Enzyme 
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Commission (E.C) 2.1.1.21) starch-branching enzymes (SBEs, 1,4-α-glucan:1,4-α-glucan 

6-glucosyl transferase; E.C. 2.4.1.18), starch debranching enzymes (DBEs, E.C. 3.2.1.41, 

and E.C. 3.2.1.68) and plastidal starch phosphorylase (P-enzyme, E.C. 2.4.1.1) (Jeon et 

al., 2010; Tetlow, 2011).  

Sucrose (derived from photosynthesis) is the main form of carbohydrate 

transported and serves as an initial point of α-glucan deposition (Emes et al., 2003). In the 

cell cytosol, sucrose synthase (SuSy, EC 2.4.1.13), an enzyme, is responsible for the 

conversion of sucrose into uridine diphosphate glucose (UDP-glucose) and fructose. The 

resulting UDP-glucose is then converted to glucose -1-phosphate (G-1-P) by the enzyme, 

UDP-glucose pyrophosphorylase (EC 2.7.7.9) in the presence of pyrophosphate (PPi). G-

1-P is then converted to G-6-P by phosphoglucomutase (EC 5.4.2.2). The G-6-P is 

translocated across the amyloplast membrane and is then converted to G-1-P by 

phosphoglucomutase. Adenosine 5’-diphosphate-glucose (ADP-Glc), the precursor of 

starch synthesis, is made in the amyloplast via AGPase.  However, it is also reported that 

in cereals, ADP-Glc is made in the cytosol via a cytosolic form of AGPase (Beckles et 

al., 2001). ADP-Glc transporter translocates cytosolic ADP-Glc into the amyloplasts for 

starch synthesis (Comparot-Moss & Denyer, 2009). Figure 1.1 illustrates the starch 

biosynthesis pathway that describes the conversion of ADP-Glc into starch using 

enzymes that are encoded by nuclear genes. 
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Figure 1.1: A diagram illustrating starch biosynthesis in the amyloplasts of seed storage 
tissue. A and B represent the starch biosynthesis pathways in the storage 
tissue of dicots and the endosperm of monocots, respectively. (Tetlow, 2011, 
Copyright Cambridge University Press, reproduced with permission). 
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1.3.1 ADP-Glc generation by ADP-glucose pyrophosphorylase 
AGPase is the enzyme responsible for the production of ADP-Glc from sucrose, 

the soluble precursor and substrate for SSs. The AGPase reaction is the starting and rate 

controlling step in the biosynthesis of both transient starch in chloroplasts and storage 

starch in amyloplasts (Ball & Morell, 2003; Tetlow et al., 2004; Tetlow & Emes, 2014). 

The reaction scheme of AGPase is given below: 

Glucose-1-phosphate + ATP ↔ ADP-Glc + PPi 

In many species, AGPase is a key enzyme in the regulatory pathway and is 

sensitive to allosteric regulation by both phosphoglyceric acid/3-phosphoglycerate (3-

PGA, an activator) and inorganic orthophosphate (Pi, inhibitor) (Ghosh & Preiss, 1966). 

The plant tissue, plastid type and subcellular location of enzymes (mainly in cereal 

endosperms) are the main factors influencing the relative sensitivity of the AGPases to 

these allosteric effects (Tetlow, 2011).  Furthermore, AGPase plays an important role in 

crop yield, whereas the modification of this enzyme in different ways could result in 

increased/decreased content of starch (Wang et al., 1998).  

1.3.2 The role of starch synthases on the elongation of glucan chain  
Starch synthases are involved in the elongation of linear glucan chains during 

starch biosynthesis. SSs catalyse the transfer of a glucosyl unit of ADP-Glc (soluble 

precursor) to the non-reducing ends of pre-existing glucan chains forming new α(1→4) 

glycosidic bonds with the release of ADP (Tetlow, 2011). Generally, SSs can be 

categorized into two major groups: granule-bound SS (GBBS) and soluble SS. There are 

multiple isoforms of SS found in higher plants, some of which show differences in organ 



 

10 
 

specificity and temporal regulation, but their impact on overall activity in various tissues 

is still not fully understood (Wang et al., 1998). Mukerjea et al. (2009) suggested that SS 

adds the monomer to the end of glucan chains by a two-site insertion mechanism. GBSSI, 

GBSSII, SSI, SSII, SSIII and SSIV are the main isoforms of SS that are much conserved 

in higher plants (Tetlow, 2011). GBSS is involved in the elongation of 

maltooligosaccharides to form amylose molecules, whereas unit chains of amylopectin 

are synthesized by SS (Denyer et al., 1999; Jane, 2006).  

1.3.3 Biosynthesis of amylose 
The major isoform GBSSI is encoded by the Waxy (wx) locus in cereals and is 

responsible for the synthesis of amylose molecules (Shure et al., 1983). GBSSI is found 

in storage tissues completely within the granule matrix and its elimination in a number of 

mutants (maize, barley, pea, and wheat) results in an amylose-free or reduced amylose 

content in their endosperm starch (Jeon et al., 2010; Tetlow, 2011). Furthermore, GBSSI 

is also responsible for the elongation of extra-long unit chains (ELC) of amylopectin. 

Another form of GBSS, GBSSII, accounts for the synthesis of amylose in leaves and 

other non-storage tissues containing transient starch (Fujita & Taira, 1998; Vrinten & 

Nakamura, 2000).   

1.3.4 Biosynthesis of amylopectin 
The multiple isoforms of SS play a distinct role in amylopectin biosynthesis and 

their distribution in the plastid between the stroma and starch granules is influenced 

mainly by species, tissue and the developmental stage (Ball & Morell, 2003). It has been 

reported that SSI is principally responsible for the elongation of the shortest glucan chains 
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(degree of polymerization [dp]<10), whereas SSII and SSIII are responsible for the 

further extension of longer glucan chains (Commuri & Keeling, 2001; James et al., 2003). 

Two classes of SSII genes are identified in monocots: SSIIa and SSIIb. Several authors 

have reported that SSIIa plays an important role in the synthesis of intermediate side 

chains (dp 12-24) from pre-existing short chains, and its down regulation critically affects 

the amount and composition of starch in cereal endosperms (Nakamura, 2002; Morell et 

al., 2003). The inhibition of SSIIa (in monocots) and SSII (in dicots) activities results in 

decreased starch content, reduced amylopectin chain length and crystallinity, and 

alteration in the size and shape of starch granules (Morell, et al., 2003; Kosar-Hashemi et 

al., 2007). Furthermore, SSIII and SSIV have also been discovered and are believed to 

participate in starch granule initiation (Szydlowski et al., 2009). It has been proposed that 

SSIII is involved in the elongation of relatively long chains of amylopectin (dp >37), 

including the B2, B3 and B4 chains (see section 1.6.2.1) which interconnect the 

amylopectin clusters (James et al., 2003; Jeon et al., 2010). Maize SSIII mutants (dull) 

produce a subtle phenotype with a glassy and tarnished endosperm (Gao et al., 1998).  

1.3.5 The action of starch branching enzymes on the branching of glucan chains  
Starch branching enzymes form the α(1→6) branches by hydrolysing α(1→4) 

linkages within a chain and then transfering the released reducing ends to C6 hydroxyls to 

form new α(1→6) linkages (branched structure) between the reducing end of the ‘cut’ 

glucan chain and another glucose residue from the hydrolysed chain (Emes et al., 2003).  

Hernández et al. (2008) reported that the possible mechanisms in the action of SBEs 

include intra-chain transfer, inter-chain transfer and intra-chain cyclization. An inter-
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chain reaction occurs via a glucan chain transfer to a different chain, whereas an intra-

chain reaction takes place in a chain where the donor and the acceptor are in the same 

glucan chain. Intra-chain cyclization is also considered a specific intra-chain reaction, 

where the formation of cyclic glucan originates with a sequence of steps involving the 

splitting of an α(1→4) glycosidic linkage, and the subsequent transfer to the OH group at 

position 6 of a glucosyl unit of the same chain (Takata et al., 1996; Li & Gilbert, 2016). 

Existing branched chains can be extended by SS, and additional branches can be formed 

by branching enzymes (Burton et al., 1995). During the branching process, branches are 

not formed randomly; there is a minimum chain length required for the size of the 

transformed branch. The remaining branches are referred to as Xmin (7 residues) and Xo 

(6 residues), respectively (Nielsen et al., 2002; Wu et al., 2014).  

Two major forms of SBE are identified based on their primary amino acid 

sequence in higher plants: SBE I (SBE B) and SBE II (SBE A). These isoforms differ in 

terms of the length of the glucan chain transferred, catalytic capacity and their substrate 

preference (Tetlow et al., 2004). The individual isoenzymes of SBE involve a distinctive 

role in amylopectin biosynthesis.  SBE I has been shown to be associated with higher 

rates of branching of amylose chains, whereas SBE II transfers shorter glucan chains 

during branch formation and shows a higher affinity toward amylopectin compared to 

SBE I (Guan & Preiss, 1993; Takeda et al., 1993). The two SBE isoforms exhibit unique 

developmental time of their expression (peak activity) and a different length of amylose 

chain that is transferred (Smith et al., 1995). Burton et al. (1995) reported that in peas, the 

SBE II is highly active in early stages of embryo development, whereas the activity of 
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SBE I is observed later in embryo development. The activity of these enzymes greatly 

influences the synthesis of amylopectin at different stages of granule formation, and it 

changes from shorter to longer branch length.   

Generally, a crystalline polymorphism of starch is determined by the chain length 

and the arrangement of amylopectin side chains. During the early stages of embryo 

development, SBE I is highly active and produces short side chains with a large number 

of branches leading to the formation of A-type starches.  Eventually, the activity of SBE I 

decreases and SBE II activity increases at a later stage of embryo development; thus, it 

produces long side chains and initiates the B-type polymorph. Therefore, pea starches 

exhibit a mixed polymorphism: the central part of the granules is rich in B-type, while 

peripheral regions are mainly made up of A-type polymorphs (Wang et al., 2012). 

1.3.6 The action of debranching enzymes (DBEs) on starch synthesis 
There are two types of DBEs involved in starch synthesis: isoamylase-type (ISA, 

EC 3.2.1.68) and pullulanase-type (PUL, EC 3.2.1.41). Kubo et al. (1999) reported that 

ISA plays a predominant role in cereal endospores and PUL also can perform that same 

role. DBE efficiently catalyses the hydrolysis (debranching) of α(1→6) glycosidic bonds 

in amylopectin and releases the linear polymer chains. In starch biosynthesis, the exact 

role of SDE is not fully understood (Tetlow, 2011). Two different models have been 

proposed to describe the role of DBEs in starch synthesis and phytoglycogen 

accumulation. The ‘glucan trimming’ (pre-amylopectin) model proposes that glucan 

trimming is necessary for the assembling of amylopectin in an insoluble confined 

granular structure (Ball et al., 1996; Myers et al., 2000).  It has been postulated that the 
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activity of DBE is responsible for the removal of pre-amylopectin branches (or 

improperly positioned branches) formed at the surface of immature starch granules to 

facilitate crystallization (Tetlow, 2011). Furthermore, the debranching action is necessary 

for the formation of double helices, which could facilitate glucan chain aggregation. 

Nielson et al. (2002) reported that numerous short chains are located on the surface of the 

immature granules and these observations further validate this model.  

An alternative model for the role of DBE in starch synthesis holds that DBEs limit 

the availability (clearing) of soluble glucans which are not attached to the granule from 

the stroma. The removal of the substrates for the amylopectin synthesizing enzymes (SS 

and SBE) prevents the random/futile synthesis of glucan chains. Otherwise, these starch 

synthesizing enzymes produce phytoglycogen, which in turn reduces the rate of starch 

synthesis. A substantial accumulation of phytoglycogens is observed in DBE mutants at 

the expense of amylopectin and could be evidence for the model that explains the role of 

DBE in starch synthesis (Zeeman et al., 1998).  

1.3.7 Starch phosphorylase 
Two types of starch phosphorylases are found in plants: Pho1 and Pho2. The 

catalytic activity of these starch phosphorylases involves the reversible transfer of 

glucosyl units from glucose-1-phosphate (Glc-1-p) to the non-reducing end of α(1→4)-

linked glucan polymers. Pho1 and Pho2 are found in the plastid and cytosol, respectively. 

Pho1 exhibits a higher affinity toward amylopectin and is inhibited by ADP-Glc 

(Dauvillée et al., 2000). Pho 1 plays an important role in storage starch biosynthesis by 

providing suitable substrates to other enzymes involved in starch biosynthesis. 
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Consequently, released Glc-1-p is reintroduced into the biosynthetic pathway of starch 

(Jeon et al., 2010).   

1.4 Molecular architecture of starch 
Starch has a complex structure with multiple levels of hierarchical organization made 

up of glucose polymers (Wu et al., 2014). Figure 1.2 illustrates the structure of starch in a 

rice grain with six levels of structural organization: 

- Level 1, individual chains (0.1-1 nm): The lowest molecular level represents the 

distribution of individual linear chains that form the branches of macromolecules 

in starch. Each chain has a certain dp and their distribution is often termed as the 

chain-length distribution (CLD) (Dona et al., 2010). The amylopectin branches 

have an average dp of ~17-25, whereas amylose has a dp of ~200-700 (Wu et al., 

2014). 

- Level 2, whole starch molecules: This level represents all branched 

macromolecules, including amylose and amylopectin, which form the starch 

granule. The individual molecules can be characterized by molecular weight, size 

distribution and z-average radius of gyration. Compared to amylose, amylopectin 

is a highly branched structure and the branch chains are categorized into three 

distinct groups based on their branching pattern. The detailed structure of 

amylopectin is described in section 1.6.3. 

- Level 3, lamellar structure: During starch biosynthesis, inter- and intra-molecular 

aggregations of polymer chains in the native state form the lamellar structure.  
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Figure 1.2: Schematic representation of six levels of organization of the rice starch 

granule/grain, (Dona et al., 2010, Copyright Elsevier, reproduced with 

permission) 
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The dense packing of starch chains enables them to intertwine and form double 

helices. The double helices aggregate together and form crystallites. The parallel 

arrangement of double helices made up of exterior shorter chains of amylopectin 

form crystalline lamella. The branching points of amylopectin are mainly located 

in the amorphous lamellae (Dona et al., 2010). Generally, amylose molecules are 

present in either amorphous layers or complexed with lipids in native granules. 

Depending on the botanical origin, the thickness of crystalline lamella is 5-7 nm 

(Putaux et al., 2003).  

- Level 4, starch granule with concentric cell architecture: The internal architecture 

of a starch granule is made up of concentric layers of growth rings (concentric 

shells) extending from the hilum toward the peripheral (surface) region. These 

concentric growth rings contain semi-crystalline radial regions of 100-400 nm in 

thickness and separated by amorphous regions. The alternative radial arrangement 

of crystalline and amorphous lamellae (lamellar structure) creates the semi-

crystalline growth rings. Compared to crystalline regions, amorphous regions are 

loosely packed and contain the branching points of amylopectin and the 

disordered conformation of amylose and amylopectin molecules (Donald, 2004; 

Copeland et al., 2009; Wang & Copeland, 2015).   

- Level 5, endosperm: The endosperm is the largest part of the seed where starch is 

stored as an energy reserve (James et al., 2003). In this level, starch granules are 

associated with proteins and lipids. These minor components are incorporated into 



 

18 
 

the granule during the synthesis of starch and have a significant impact on starch 

properties (Pérez & Bertoft, 2010).  

- Level 6, whole grain: This level is comprised of all outer layers of the grain and 

the highest levels of structures including the hull (Dona et al., 2010). 

1.5 Granule morphology, size and distribution 
Starch granules exhibit a characteristic granule morphology depending on the 

botanical origin (Jane et al., 1994). The diameter of starch granules generally ranges from 

submicron to 200 µm, and shapes can be regular (oval, ellipsoidal, spherical, polyhedral, 

lenticular, kidney shape, etc.) or irregular (Buléon et al., 1998; Hoover, 2001; Singh et 

al., 2003; Alcázar-Alay & Meireles, 2015). Starch granules from cereals are usually 

relatively small, and spherical or polygonal in shape with a concentric hilum (Tester et 

al., 2004). High amylose maize starches have a larger population of rod-shaped 

filamentous granules (Perez & Bertoft, 2010). The majority of pulse starch granules are 

medium sized, and they are kidney-like or oval in shape with an elongated or starred 

hilum. However, spherical, round, elliptical and irregularly shaped granules also are 

common in pulse starches (Hoover & Ratnayake 2002; Zhou et al., 2004; Sandu & Lim, 

2008; Hoover et al., 2010). In general, starch granules from tubers are large, ellipsoid or 

spherical in shape with an eccentric hilum (Hoover, 2001; Zhang et al., 2017).  

The size distribution of native granules from different botanical sources can be 

uni-, bi- or polymodal. Most of the legumes, some cultivars of barley (waxy, normal) and 

potato (normal) have shown a tri-modal distribution, whereas maize (waxy, normal and 

high amylose), rice millet and potato (waxy) exhibit a unimodal distribution (Jane et al., 
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1994; Singh et al., 2004; Tester et al., 2004; Hoover et al., 2010). Some cereal starch 

granules, including those of wheat, barley, oat and rye, exhibit two different size 

distributions (bimodal) and shapes. In these starches, the A-type is larger in size with a 

lenticular shape, whereas smaller B-type granules have a spherical shape (Tester et al., 

2006). 

Synthesis of starch granules is localized and granulses are usually produced 

individually in the amyloplast. In certain plants, more than one granule is initiated 

simultaneously in a single amyloplast and produces compound granules. Compound 

granules are mostly polyhedral and found in rice, waxy rice, oat and smooth pea starches 

(Pérez & Bertoft, 2010). However, the wrinkled pea has two or more fused sub-granules, 

generally referred to as semi-compound granules. The larger granules of wrinked pea 

starch exhibit extensive damage resulting in splitting and the exposure of the internal 

layering (Bertoft et al., 1993; Zhou et al., 2004). 

Surface and internal cracks have been reported in corn, sorghum, potato, kidney 

bean, mung bean and faba bean starches (Hoover & Sosulski, 1985; van de Velde et al., 

2002; Glaring et al., 2006; Ambigaipalan et al., 2011). The cracks could reflect the low 

granule integrity and/or the sub-optimal packing of glucan chains within the granule 

(Glaring et al., 2006). Surface pores, cavities and channels are topographical 

characteristics of some starch granules. Granular surfaces of pulse, tuber and root starches 

are generally smooth with no evidence of pores (pin holes), cracks or fissures (Jane et al., 

1994; Hoover, 2001; Singh et al., 2004). Granules of corn, sorghum, rice, barley, tapioca 
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and millet starches have pores on their granular surface (Fannon et al., 1992; Bemiller, 

1997; Jayakody & Hoover, 2002).  

1.6 Molecular components of starch 
Starch is a major polysaccharide reserve in plants and the second largest biomass 

on earth. It is deposited in the form of semi-crystalline granules in plant storage tissues.    

In the vast majority of native starches, amylose and amylopectin represent 98-99 % of the 

dry weight of the granules, with the remainder comprised of non-starch components 

(Copeland et al., 2009). The moisture content of native granules varies from 10-17% 

(w/w), depending on the botanical origin and extraction method (Wang & Copeland, 

2015). The ratio of the two macromolecular components varies with the botanical origin 

of the starch, and the amylopectin component predominates in about 70-80 % of normal 

starches. In ‘waxy’ starches, amylopectin is the sole component or varies between 0-10 % 

(Buléon et al., 1998; Pérez & Bertoft, 2010). The amylose content of normal starches 

varies from 20-30 % of their dry weight. However, high amylose starches contain more 

than 40 % amylose and some mutant genotypes (ae[amylose extender] mutant) of maize, 

barley, rice and wrinkled pea starches contain up to 80 % amylose (Tester et al., 2004). A 

third component has been identified in high amylose maize and wrinkled pea starches, 

and referred to as intermediate material (Pérez & Bertoft, 2010). Apart from major 

molecular components, starch contains small quantities of other ‘minor components’, 

such as surface and integral proteins and lipids and a trace amount of minerals (calcium, 

magnesium, phosphorous, potassium and sodium) (Tester et al., 2004).  
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1.6.1 Fine structure of amylose 
Amylose is essentially a linear polymer consisting almost entirely (99 %) of 

α(1→4) linked glucopyranose units with a few long chain α(1→6) linked branches (~1 

%), and it differs in size and structure depending on the botanical origin (Buléon et al., 

1998; Pérez & Bertoft, 2010). Amylose has a broad distribution of molecular weight 

(Mw) that varies from 1x105 to 1x106 (Buléon et al., 1998), with an average dp by 

number (dpn) of 324-4920 (Yoshimoto et al., 2000; Tester et al., 2004). The majority of 

starches are comprised of a mixture of linear and branched amyloses with around 9-20 

branch points per amylose molecule. In general, the amylose contains 3-11 chains per 

molecule and each chain carries approximately 200-700 glucose units, equivalent to a 

Mw of 32400-113400 (Morison & Karkales, 1990; Tester & Karkalas, 2002). Perez and 

Bertoft (2010) reported that, the molecular weight of branched amylose is higher 

compared to that of linear amylose, and the molar fraction of branched amylose varies 

from 0.1 to 0.7 in different starches.  

Incomplete hydrolysis by β-amylase indicates that amylose molecules have 

branches (Hizukuri et al., 1981; Takeda et al., 1987). The enzyme, β-amylase, hydrolyses 

only α(1→4) linkages from the non-reducing ends, producing β-maltosyl units; its 

reaction pattern is restricted by α(1→6) linkages, whereas the linear molecules are 

completely converted into maltose units. However, β-amylolysis of amylose molecules 

produces maltose and β-limit dextrins (low Mw polymers with a certain degree of 

branching) (Banks & Greenwood, 1975; Buléon et al., 1998). Generally, the limit of β-

amylolysis of amylose molecules is in the range of 72-95 %, while the limit for highly 
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branched amylopectin is in the range of 55-61 % (Takeda et al., 1986; Hizukuri et al., 

1988).  

1.6.1.1 Location of amylose 
The location of amylose and its contribution to granular architecture is not entirely 

known. Initially, it was hypothesized that amylose is located in bundles among 

amylopectin clusters (Nikuni, 1978), based on the different properties exhibited by starch 

granules (such as dimethyl sulfoxide (DMSO) solubility, amylose leaching, iodine 

binding and formation of lipid complex (Immel & Lichtenthaler, 2000: Nuessli et al., 

2003). Zobel (1988a) suggested that amylose is separated from the amylopectin fraction 

in normal maize starches, but interspersed with amylopectin in potato starches. However, 

a series of cross-linking studies on potato and corn starches demonstrated that amylose 

molecules exist as individual molecules. They are randomly interspersed among the 

amylopectin molecules and adjacent to or intertwined with amylopectin rather than 

grouped together in both the crystalline and amorphous regions (Jane et al., 1992). 

Jenkins and Donald (1995) investigated the effect of varying amylose content on the 

internal structure of maize, barley and pea starches using small angle x-ray diffraction 

techniques. These authors suggested that the co-crystallization of amylose with 

amylopectin chains and the penetration of amylose tie chains into the amorphous lamellae 

disrupt the packing of amylopectin chains within the crystalline lamellae (Figure 1.3 b & 

c). 
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Figure 1.3: Schematic representation of the localization of amylose chains within the 

amylopectin clusters. a, b (Jenkins and Donald, 1995, Copyright Elsevier 

reproduced with permission) & c (adapted from Yuryev et al., 2007). 
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Based on chemical surface gelatinization studies, potato and normal maize 

starches exhibit an enrichment of amylose in the peripheral regions compared to the 

central (core) regions of the granules (Jane & Shen, 1993). In contrast, Tatge et al. (1999) 

proposed that amylose is largely confined to a central region of transgenic potato granules 

and synthesized within the matrix formed by amylopectin chains. Based on the acid 

degradation of pea starches, Wang et al. (2012) proposed a model in which amylose is 

mainly concentrated in the central region of the granule, whereas amylopectin 

predominantly exists in the outer regions of the granules interspersed with some amylose 

molecules. 

The location of amylose was visualized by enzyme gold labelling, combined with 

iodine staining of potato and maize starches, and 8-amino-1,3,6-pyrenetrisulfonic acid 

(APTS) staining of potato starches, indicated that amylose is confined to the amorphous 

regions around the hilum (Atkin et al., 1999; Blennow et al., 2003; Glaring et al., 2006). 

On the basis of iodine binding and X-ray diffraction (XRD) analysis, Saiban and 

Seetharaman (2010) reported that amylose in maize starches is localized mainly within 

the amorphous regions independent of the amylopectin crystallites, while in potato starch, 

amylose chains are co-crystallized with the external chains of amylopectin. The presence 

of amylose in the amorphous and/or crystalline region is dependent on the botanical 

origin (Oates, 1997).  

1.6.1.2 Amylose-inclusion complex 
Amylose has the characteristic features to form inclusion complexes with a variety 

of inorganic and organic complexing agents. In the helical conformation, the inner surface 
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is built up by methylene groups (-CH2- groups) and glycosidic oxygen atoms, forming a 

hydrophobic cavity, while all of the polar glycosyl hydroxyl groups are positioned at the 

outer surface of the helix (Whittam et al., 1989; Cui & Oates 1999). Amylose undergoes a 

coil to helical transformation in the presence of suitable complexing agents, such as 

DMSO, potassium hydroxide, polyiodide ions, lipids and alcohols (Buléon et al., 1998). 

The size of the complexing agent residing within the amylose helix determines the inner 

diameter of the helix and the number (typically six, seven or eight) of glucose residues 

per-turn (Biliaderis & Galloway, 1989; Helbert & Chanzy, 1994). 

The amylose-complex formation is mainly driven by hydrophobic interactions, 

whereby the hydrophobic ligand is transferred to the helical cavity of an amylose chain 

from the polar (water) to the non-polar environment (Whittam, et al., 1989; Fanta et al., 

1999). Intramolecular bonds (such as van der Waals forces and hydrogen bonds) occur 

between the consecutive turns of the helices and the intermolecular forces between 

amylose and the ligands stabilize the amylose-ligand complex (Godet et al., 1993). In the 

amylose-lipid complex, the aliphatic part (hydrocarbon chain) of the lipid is included 

inside the lipophilic core of the amylose helix, while the polar group of the lipid molecule 

lies outside of the helical cavity (Carlson et al., 1979; Godet et al., 1995). It has been 

shown that amylose-lipid complex formation is influenced by amylose chain length, pH 

of the medium, ligand concentration and solubility, chain length and unsaturation, lipid 

type (mono-/di-acylglycerols of fatty acids), and complexation temperature (Hahn & 

Hood, 1987; Morrison 1988; Godet et al., 1995; Ozcan & Jackson, 2002; Tufvesson et 

al., 2003; Tang & Copeland, 2007).                   
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1.6.2 Amylopectin 
Compared to amylose, amylopectin is a much larger and extensively branched 

molecule with an average Mw of 1×107 - 1×109. It is composed of linear chains of 

α(1→4) linked D-glucopyranose units interconnected at the branching points through 

α(1→6) linkages (Buléon et al., 1998). The dpn varies in the range of 9,600-15,900, but 

typically it comprises three major groups, with dpn values of 13,400-26,500, 4,400-8,400 

and 700-2,100 (Takeda et al., 2003). The molecular size, structure and poly-dispersity of 

the molecule is largely influenced by the botanical origin of the starch.  

Several models/depictions have been proposed to explain the structure and the 

organization of the unit chains in amylopectin. Currently, two major structural models are 

widely accepted; 1) the cluster model (French, 1972; Nikuni, 1978) with polymodal chain 

length distribution (Hizukuri, 1986), which is referred to as the traditional model; and 2) 

the building block backbone model (Pérez & Bertoft, 2010). The major difference 

between these models is the different visualization of chain organization within an 

amylopectin molecule (Chauhan & Seetharaman, 2013).  

1.6.2.1 Cluster model of amylopectin 
The cluster model of amylopectin describes the clusters that are packed together, 

forming alternating amorphous and crystalline layers in starch (Robin, 1974).  The short 

chains (less than 36 glucosyl units) are organized into clusters and the clusters are 

interconnected by long chains.  Based on the chain length and their pattern of substitution, 

the amylopectin unit chains are classified as A, B and C chains (Hizukuri, 1986) (Figure 

1.4).  



 

27 
 

The A-chains are the shortest (dp 6-12), unsubstituted and linked through a single 

α(1→6) linkage to the rest of the amylopectin molecule. B chains carry one or several 

other chains (A- and/or B-chains) and are connected via α(1→6) linkages. B chains are 

further classified into B1, B2, B3 and B4 (one to four clusters) based on the chain length 

and the number of clusters they span (Hizukuri, 1986). Each amylopectin molecule 

carries a C-chain, which contains the sole reducing group at the end, with a size ranging 

from 10 to 130 glucose units (Hizukuri, 1986; Hanashiro et al., 1996). According to the 

cluster model some ‘B’ chains are long enough to traverse both crystalline and 

amorphous segments.  

Amylopectin exhibits an average chain length (CLതതതത) of 18-27 glucose units (Takeda et al., 

2003). A chains and B chains build a single cluster and their external segments form the 

double helices that crystalize into crystalline lamellae. Their branching points are located 

in the amorphous lamellae (Pérez & Bertoft, 2010). The B chains that are located within a 

single cluster are referred as B1 chains, where clusters are interconnected through long, 

amylopectin branch chains (B2 – B4). The B2 chains are involved in the interconnection 

of two clusters, whereas B3 and B4 chains participate in the inter linkage of three and 

four clusters, respectively (Hizukuri, 1986; Bertoft et al., 2008). According to the cluster 

model, some B chains are long enough to traverse both crystalline and amorphous 

segments. 

 

 



 

28 
 

 

 

 

 

 

 

 

 

 

 

Figure 1.4: A cluster model of amylopectin; CL- chain length (dp) (Hizukuri, 1986, 

Copyright Elsevier, used with permission and adapted). 
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1.6.2.2 Building block backbone model  
The building block backbone model proposes that clusters are formed by smaller 

structural units referred to as building blocks (Vamadevan & Bertoft, 2015). These units 

are made up of 10 or more chains with an average internal chain length (segments 

between branches) of 1-3 glucose residues. A backbone (longer chain containing more 

than 35 glucose units) together with the branched building blocks, that are smaller than 

clusters, splayed (helices not arranged in a crystalline array) along the backbone chain 

build up the basic structural unit of amylopectin (Pérez & Bertoft, 2010).  

1.6.2.3 Starch crystallinity and polymorphism 
Starch is a semi-crystalline polymer comprised of different polymorphic types 

with varying degrees of crystallinity. The crystalline structure of a starch granule is 

mainly influenced by the structural elements of amylopectin (Jane et al., 2006). The 

crystalline lamellae are mainly formed by the double helices of amylopectin side chains 

that are packed into different polymorphic forms identified by characteristic XRD 

patterns (Figure 1.5). Three types of polymorphic forms are identified in starches from 

different botanical origins, known as types A, B and C. These polymorphic types are 

characterized by the specific diffraction angles resulting from the degree of order of 

amylopectin double helices and the CL of amylopectin (Hizukuri et al., 1983). 

The A- and B-type polymorphic forms are identical with respect to helical 

structure. Nevertheless, the packing of these double helices within the A-type is relatively 

compact with a low proportion of water (4 water molecules per 12 glucose residues), 

whereas the double helices are loosely packed in the B-type, creating a more open 
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Figure 1.5: Characteristic X-ray diffraction patterns of A-, B- and C-type starches with 
their specific d-spacings. (Zobel, 1988b, Copyright John Wiley and Sons, 
used with permission and adapted). 
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structure containing a hydrated helical core (36 water molecules per 12 glucose residues) 

(Jane et al., 1997). The starch crystals exhibit differences in the geometry of the unit 

cells; A-type polymorphic starch has a monoclinic unit cell and B-type polymorphic 

starch has a hexagonal unit cell (Imberty & Perez, 1988) as shown in Figure 1.6. The C-

type polymorphic starch is a mixture of A- and B forms (Gernat et al., 1990). It is 

considered to be an intermediate between A- and B-type polymorphic forms in packing 

density and structure (Hoover et al., 2010). Another polymorph found is the V-type (often 

associated with A-, B- or C- types), which is formed by the single left-handed amylose 

helices complexed with lipids, other organic solvents and polyiodide (Gallant et al., 1997; 

Lopez‐Rubio et al., 2008). 

The A-type polymorphs are found in cereal starches and some legume starches, 

while B-type polymorphs are found in tuber, root, high amylose and retrograded starches 

(Biliaderis, 1998; Buléon et al., 1998). The C-type polymorph is a characteristic feature 

of most pulse starches and is also found in some root and tuber starches with a different 

proportion of A- and B- type polymorphs (Wang et al., 1998; Jane, 2006).  A-type 

polymorphic starch is mainly comprised of a larger proportion of short amylopectin 

branch chains (CL<19.7), but B-type polymorphic starch contains more long branch 

chains, including B2, B3 and other long chains (CL≥ 21.6). 

C- type polymorphic starches contain different proportions of short and long 

chains (CL ≥ 20.3, ≤ 21.3) (Hizukuri et al., 1983; Jane et al., 2006). Yashinoto et al. 

(2000) reported that high amylose starches contain a relatively higher proportion of long 

chains of amylopectin. 
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Figure 1.6: Double helices arrangement of A-type (monoclinic unit cell) and B-type 
(hexagonal unit cell) crystallites in starch (dots indicate water molecules). 
(Wu & Sarko, 1978, Copyright Elsevier, reproduced with permission). 
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The ratio of the long to short chain branches has a significant impact on the shape of the 

amylopectin molecule (conical vs cylindrical shape), which influences the packing 

arrangement of the granular interior and in turn affects the morphology and size of the 

granule (Jane, 2007). 

Jane et al. (1997) proposed that the α(1→6) branch points of A-type polymorphic 

starches are scattered in both amorphous and crystalline regions, whereas in B-type 

starches most branch points are located in the amorphous regions, as shown in Figure 1.7. 

Studies on native maize starches with different amylose contents have revealed that 

crystal type is largely influenced by the amylose content. A change in polymorphic form 

from A through C to B was observed to be associated with a decrease in crystallinity, but 

an increase in apparent amylose content (Cheetham & Tao, 1998).  Bogracheva et al. 

(1998) reported that pea starches contain both A- & B-type polymorphs. The B-type 

polymorphs are arranged centrally, while the A-type polymorphs are located in the 

peripheral regions of the granule. 

The crystallinity of native starch ranges between 15-45 % depending on the 

botanical origin, hydration level and characterization technique (Zobel, 1988a; Buléon et 

al., 1998; Lopez‐Rubio et al., 2008). In pulse starches, the crystallinity ranges from 17-34 

% and the proportion of the B-polymorphic content varies from 22.1-92.2 % (Zhou et al., 

2004; Jayakody., 2007; Sandu & Lim, 2008). The degree of crystallinity is often 

calculated as the percentage of the crystalline regions with respect to the total area 

including both the amorphous and crystalline regions of the starch.  
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Solid state nuclear magnetic resonance (NMR) can be useful in the 

characterization of starch and it provides information about molecular organization at 

shorter distant scales (individual helices) than those probed by XRD, which detects only 

those double helices that are packed in crystalline arrays (Gilbert et al., 2012). 

Furthermore, the existence of helical structures within granular starch has been 

extensively studied using 13C NMR. These methods reveal the existence of single and 

double helical amylose and amylopectin structures, co-complexes of amylose and 

amylopectin, and V-amylose-lipid complexes (Tamaki et al., 1998; Paris et al., 1999; 

Bogracheva et al., 2001; Yusuph et al., 2003). Starches belong to different botanical 

origins, and within a given species, may exhibit differences in double helical content 

(DHC). These differences may be due to the fact that not all of the exterior chains of 

amylopectin participate in the formation of double helices and non-helical forming 

regions also exist within amylopectin (Tester et al., 2004). Tester and Morrison (1990b) 

suggested that amylopectin is the major crystalline component in starch granules, where 

amylose acts as a diluent to amylopectin. In some cases, amylose molecules also form 

double helices, particularly in high amylose starches, and are organized in the crystalline 

arrays (Shi et al., 1998; Tester & Debon, 2000). 
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Figure 1.7: Proposed models for branching patterns of A- and B-type starches (Jane et 
al., 1997, Copyright Elsevier, reproduced with permission). 
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1.7 Minor components 

1.7.1 Starch lipids 
The endogenous lipid composition and lipid contentvary with starch botanical 

origin (Morrison, 1988). In native granules, lipids can be found on the surface of granules 

and thus they are called surface lipids, whereas those found within the starch granules are 

so-called internal or bound lipids (Morrison, 1981). The surface lipids mainly include 

triacylglycerols, followed by glycolipids, phospholipids and free fatty acids, while bound 

lipids are largely monoacylglycerols with a major fraction of lysophospholipids (lysoPL) 

and free fatty acids (FFA) (Morrison, 1981; Vasanthan & Hoover, 1992a). The lipids 

(surface and internal) are present in the form of free components as well as those bound to 

the starch macromolecular components, either attached via ionic or hydrogen bonding 

with the hydroxyl groups of the glucan chains or in the form of amylose-lipid complexes 

(Morrison, 1988; Vasanthan & Hoover, 1992b; Morrison, 1995). Surface and bound 

lipids differ in terms of their extractability from the starch granules using common lipid 

solvents. Free lipids are easily extractable with cold solvents (chloroform and methanol) 

at ambient temperatures, and bound lipids can be extracted using hot aqueous alcohol (n-

propanol-water) (Vasanthan & Hoover, 1992b).  

The total lipid (surface and bound) content of starches has been reported to range 

from 0.7-1.2 % (by weight) in cereals, 0.01-1.4 % in pulses and 0.08-0.2 % in tuber and 

root starches (Takahashi & Seib, 1988; Haase & Shi, 1991; Vasanthan & Hoover, 1992a; 

Huang et al., 2007). In contrast to tubers and pulse starches, cereal starches contain a 

substantial amount of FFA and lysoPL with the level positively correlated with the 
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amylose content, and the lysoPL may contribute up to ~2 % of starch weight in high 

amylose starches (Tester et al., 2004). Lysophosphatidylcholine is predominantly found 

in cereal starches (maize and wheat), along with palmitic and linolenic acids (Buléon et 

al., 1998). Morrison (1995) reported that the amount of lipid-complexed amylose incereal 

starches varied from ~15-55 % of the amylose fraction. 

1.7.2 Protein  
Starch purity is often stated as protein content. The protein content of purified 

starches varies from trace amounts (<0.1) to 0.7 % by weight (Biliaderis et al., 1981). In 

common with starch lipids, proteins are present on the granule surfaces and within the 

interior matrix (integral protein) of the granule (Baldwin, 2001). Surface proteins can be 

readily extracted at temperatures below the gelatinization temperature, whereas integral 

proteins require a temperature near or above the gelatinization temperature (Ellis et al., 

1998). The starch granule associated proteins may be present together with lipids on the 

granule surface (Skerritt et al., 1990; Baldwin, 2001; Han & Hamaker, 2002). The 

presence and nature of the protein associated with the starch granule influence 

physicochemical properties and have the potential to moderate the starch functionality 

(Han et al., 2002; Israkarn et al., 2007) 

1.7.3 Phosphorous 
Phosphorous is one of the non-carbohydrate constituents found in most starches. 

Phosphorous is present in the form of internal phospholipids, phosphate monoesters and 

inorganic phosphates in various starches. Phosphorous in cereal starches exists mainly 

within phospholipids, whereas in root, tuber and pulse starches, it is found primarily as 
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phosphate monoesters (Hizukuri et al., 1970; Lim et al., 1994; McPherson & Jane, 1999). 

The phosphate monoesters are formed during starch biosynthesis and the level of 

phosphorylation varies with the botanical origin of starch (Blennow et al., 2002). Tuber 

starches contain predominantly starch mono phosphate esters (0.2-0.4 %), whereas cereal 

starches contain a minute amount of phosphate monoesters compared to their 

phospholipid content (0.02-0.06 %) (Blennow et al., 2002; Singh et al., 2003). The 

phosphorous content of legume starches has been reported to range from 0.004 to 0.01 % 

(Kasemsuwan & Jane, 1996; Ambigaipalan, et al., 2011). In native starches, phosphate 

monoesters are confined primarily to the amylopectin fraction and are found at the C-2, 

C-3 and C-6 positions of the glycosyl units (Lim et al., 1994; Kasemsuwan & Jane, 

1996). 

Surface gelatinization studies have shown that phosphorous in potato starch is 

more concentrated in the granule core than in peripheral regions and smaller granules 

contain a greater phosphate content than large granules (Jane & Shen, 1993; Nielsen et 

al., 1994). The nature of the phosphorous present in starch granules produces different 

effects on pasting properties. Starches with a high phosphate monoester content increase 

paste clarity and paste viscosity in potato starches, whereas higher phospholipid contents 

produce pastes with low paste clarity and viscosity (Singh et al., 2003; Jane, 2009).  

1.8 Starch properties 

1.8.1 Granular swelling and amylose leaching 
Native starch granules are generally insoluble in cold water. When starch granules 

are heated in the presence of excess water, the crystalline structure is disrupted by 
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increased hydrogen bonding between water molecules and the hydroxyl groups exposed 

on the amylose and amylopectin molecules (Srichuwong et al., 2005b). These changes 

facilitate granular swelling and an increase in granule size. The hydration and swelling of 

starch contribute to amylopectin-amylose phase separation and loss of crystallinity 

(Conde-Petit et al., 2001), which is accompanied by leaching of glucan components from 

the granules. Amylose, with a lower molecular weight diffuses out at a lower temperature, 

while higher molecular weight fractions leach at a higher temperature (Gomand et al., 

2010). Leaching of amylose molecules from the swollen starch granules is denoted as 

amylose leaching (Whistler & BeMiller, 1997). Granular swelling is associated primarily 

with amylopectin content and amylose acts as a diluent and restricts the swelling (Singh 

et al., 2003). 

The granular swelling and amylose leaching of starch illustrate the extent of 

glucan chain interactions (amylose-amylose, amylose-amylopectin, amylopectin-

amylopectin) within the amorphous and crystalline regions and the packing arrangement 

of the glucan chain within the crystalline lamella (Ratnayake et al., 2002; Gomand, 

2010). The extent of this interaction is influenced by the amylose to amylopectin ratio and 

the characteristics of each molecule, including the degree of polymerization, length and 

degree of branching of amylopectin, molecular weight, and molecular conformation 

(Sasaki & Matsuki, 1998; Hoover, 2001; Ratnayake et al., 2002; Gomand, 2010). 

Furthermore, granule size, non-carbohydrate constituents such as proteins, phospholipids, 

monoacylglycerol and phosphate monoesters, starch modifications imposed by chemical 

and physical methods and heating temperature all have been shown to influence granular 
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swelling and amylose leaching from starch granules (Tester & Morrison, 1990a; Hoover 

& Vasanthan, 1994a; Hoover & Vasanthan, 1994b; Roach & Hoseney, 1995; Wang & 

Seib, 1996; Lindeboom et al., 2004; Srichuwong et al., 2005b). 

The degree of granular swelling has been studied using two different methods:  

swelling power (SP), which represents the ratio of wet weight of the sediment gel 

(volume of swollen granules) to its dry weight, and swelling factor (SF), which measures 

the ratio of the volume of sediment gel to the volume of dry starch granules (Vamadevan 

& Bertoft, 2015). The SP measures both the intra-granular and inter-granular water, 

whereas SF represents only the water that enters the granule and thus contributes to the 

increase in volume upon heating (mainly intra-granular water) (Tester & Morrison 1990a; 

Tester & Morrison 1990b). Starches from pulses, roots and tubers generally display 

single-stage swelling, whereas normal cereal starches exhibit two-stage swelling (Hoover, 

2001; Hoover & Sosulski, 1986; Langton & Hermansson, 1989). In general, granular 

swelling increases with an increase in temperature up to a certain limit, and the extent of 

granular swelling decreases with an increase in amylose content (waxy > normal > high 

amylose). Restricted swelling was observed in high amylose maize, potato and pulse 

starches (Debet & Gidley, 2006; Hoover et al., 2010; Srichuwong et al., 2005b). 

1.8.2 Gelatinization 
When starch is heated in the presence of excess water, it undergoes an order to 

disorder irreversible phase transition referred as gelatinization (Wang & Copeland, 2013). 

It is generally accepted that the following processestake place during gelatinization: water 

initially enters the amorphous growth rings of starch granules, hydrates and initiates a 
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certain degree of swelling, crystallite melting, loss of optical birefringence, uptake of heat 

and thermal motion. The solvation causes disruption of molecular order (rupture of 

crystalline regions), unravelling, dissociation of double helices and leaching of amylose 

followed by leaching of amylopectin (Atwell et al., 1988; Cooke & Gidley, 1992; Jenkins 

& Donald, 1998). According to Colonna and Buleon (2009), four different steps are 

involved in the process of gelatinization: 1) cleavage of bonds between starch chains 

(endothermic); 2) formation of new hydrogen bonds between starch and the solvent 

(exothermic); 3) unravelling (helix to coil transition) of amylopectin double helices 

(endothermic); and 4) the development of amylose lipid complexes. 

Waigh et al. (2000) have suggested that gelatinization is due to the interplay 

between self-assembly and the disruption of starch structure during heating. The lamellae 

in starch consist of a backbone, side chain and double helices.  The distinctive property of 

a given starch is governed by the degree of mobility of lamellar components coupled with 

the helix to coil transformation. Starch gelatinization has been described with a liquid-

crystalline model (Figure 1.8), where the amylopectin molecules may have the structure 

of a side-chain liquid crystalline polymer (Waigh et al., 2000). In this model, depending 

on the water content and heating rate, gelatinization occurs as a result of helix to coil 

transition and the transformation of amylopectin helices from a rigid (glass) nematic 

phase to a plasticized smectic phase. In the nematic state, amylopectin helices are not 

organized into lamellae, whereas in the smectic state, the double helices are aligned into 

lamellae with a 9 nm inter-lamellar spacing. 
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Figure 1.8: Liquid crystalline model of starch gelatinization (Waigh et al., 2000, 

Copyright Elsevier, reproduced with permission). 
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At low water content (< 5 %, w/w), the amylopectin helices are in a glassy 

nematic state. Upon heating, the single peak of a differential scanning calorimetry (DSC) 

endotherm corresponds to the helix to coil transition. Intermediate water contents (from 5 

to 40 %, w/w) consist of two steps in their breakdown and possess two endothermic peaks 

(biphasic peak). The first peak is due to the rearrangement and dislocation between 

amylopectin double helices, which leads to a phase transition of a smectic to nematic 

phase. The nematic phase is the helix to coil transition, where the amylopectin double 

helices unravel irreversibly. In excess water (>40 %, w/w), the lamellar break-up and 

disentanglement of double helices occur at the same point as a result of the unstable 

nature of free unassociated helices (Waigh et al., 2000). 

The phase transition and structural changes occurring during starch gelatinization 

have been investigated extensively using a variety of techniques, including DSC, SAXS 

(small angle X-ray scattering), WAXS (wide angle X-ray scattering), NMR, FTIR 

(Fourier transform infrared spectroscopy), SANS (small angle neutron scattering), small 

angle light scattering and microscopy (electron microscopy, light microscopy) (Jane et 

al., 1992; Jenkins & Donald, 1998; Biliaderis, 2009; Wang & Copeland, 2013). DSC has 

proven to be a most valuable and sensitive tool to elucidate starch gelatinization (Wang & 

Copeland, 2013). DSC measures energy changes (heat released or absorbed) in a material 

during phase transitions or reactions. In the gelatinization process, DSC is used to 

determine the gelatinization transition temperatures (onset, To; midpoint, Tp; conclusion, 

Tc) and the energy absorbed (enthalpy of gelatinization, ∆H) by the starch-water system. 

The gelatinization and swelling properties of starches have been shown to be influenced 
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by the molecular structure of amylopectin (chain length distribution, molecular weight, 

degree of phosphorylation, branching frequency and polydispersity), starch composition 

(ratio of amylose to amylopectin, amylose lipid complex), internal granule structure 

(crystalline to amorphous ratio) and starch damage (Donovan, 1979; Tester & Morrison, 

1990a;  Tester et al., 1993; Eliasson & Gudmundsson, 1996; Sasaki et al., 2000; Hoover 

& Ratnayake, 2002; Vamadevan et al., 2013). 

In addition to these endodenous traits, the presence of solvents and solutes 

(sugars, salts, alcohols and lipids), physical and chemical modifications (annealing, heat 

moisture treatment, acid hydrolysis, hydroxypropylation and acetylation), defatting, 

growth conditions, extraction procedures, water content and heating rate also affect the 

gelatinization properties of starches (Evans & Haisman, 1982; Eliasson & Kim, 1992; 

Tester & Debon, 2000; Waigh et al., 2000; Atichokudomchai et al., 2002a,b; Jayakody & 

Hoover, 2008; Hoover, 2010). 

1.8.3 Pasting characteristics 
Pasting is the process that takes place after gelatinization, which includes the 

following steps: granular swelling, exudation of molecular components (primarily 

amylose) from the granule and eventual disintegration of the starch granules (Atwell et 

al., 1988). The plasticization effect of water and heating destabilizes the hydrogen bonds 

holding the crystalline structure of amylopectin and forms new hydrogen bonds between 

water molecules and amylopectin chains which lead to hydration and granular swelling. 

Consequently, the swollen granules become more susceptible to shear disintegration and 

amylose starts to leach out from the granules, which increases the viscosity of the starch 
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paste (Joshi et al., 2013). Starch paste consists of a continuous phase of solubilized 

amylose and amylopectin network, and a discontinuous phase of granule ghosts and 

fragments (granule remnants) (Whistler & Bemiller, 1997). 

The pasting profiles of starch-water mixtures are monitored continuously under 

constant stirring with a programmed heating and cooling cycle using a rapid visco 

analyser (RVA), which measures the change in viscosity consistently as a function of 

temperature and time (Mariotti et al., 2005). A typical RVA profile of starch describes the 

pasting behaviour in three phases: 1) a controlled heating phase, increasing the 

suspension temperature to 95°C; 2) an isothermal phase – holding the suspension at 95°C; 

and 3) a controlled cooling phase, decreasing the suspended temperature to 50°C. 

Starch suspensions typically show a viscosity increase to a maximum level (peak 

viscosity) due to gelatinization and swelling of granules, followed by a decrease to a 

minimum value caused by shear-induced disintegration of swollen granules. The 

difference between the peak and minimum viscosity at 95°C is referred to as 

‘breakdown’. As the starch paste cools, leached amylose molecules form a three-

dimensional gel network, which increases the viscosity from the minimum to a final value 

referred to as cold paste viscosity. A ‘setback’ is defined by the difference between cold 

paste viscosity and the minimum viscosity at 95°C (Deffenbaugh et al., 1989; Copeland 

et al., 2009). The peak time and peak viscosity values indicate the water binding capacity 

and susceptibility to disintegration of starch granules. The extent of setback is mainly 

influenced by the amylose content (Varavinit et al., 2003; Copeland et al., 2009). Pasting 

properties are influenced by the starch source, granule size, amylose content, amylose 
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content, extent of granular swelling and amylose leaching, presence of phosphate 

monoesters and lipids, friction between swollen granules, structure of amylopectin, and 

presence of solutes (Ziegler et al., 1993; Hoover & Vasanthan, 1994a; Jacobs et al., 1996; 

Hermansson & Svegmark, 1996; Jane, et al., 1999; Ao & Jane, 2007).  

1.8.4 Retrogradation 
Starch retrogradation is a process that occurs upon cooling of the gelatinized 

starch paste, where the starch chains begin to reassociate and lead to the formation of an 

ordered structure through hydrogen bonding (Hoover, 2010). During retrogradation, 

linear amylose molecules reassociate and form double helices of 40-70 glucose units 

(Jane & Robyt, 1989), while amylopectin molecules re-crystallize through the association 

of their outermost branches (Singh et al., 2003). 

Starch retrogradation is considered a non-equilibrium, thermo-reversible 

recrystallization process which occurs in three successive steps: nucleation (formation of 

crystal nuclei), propagation (crystal growth from the nuclei formed during nucleation) and 

maturation (Silverio et al., 2000; Ambigaipalan et al., 2013). It has been shown that the 

rates of both nucleation and propagation steps are influenced by storage temperature 

(Silverio et al., 2000; Vandeputte et al., 2003). The nucleation rate increases with a 

decrease in temperature (below Tg), whereas the extent of propagation increases with an 

increase in temperature (up to To) (Eerlingen et al., 1993; Silverio et al., 2000). 

During retrogradation, the gelation of solubilized amylose chains proceeds at a 

faster rate than the recrystallization of highly branched amylopectin molecules (Miles et 

al., 1985). Starches with higher amylose or intermediate material content exhibit a greater 
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tendency toward retrogradation.  However, starches with longer amylopectin chains 

(tuber and pulse starches) retrograde faster compared to those with a shorter average 

chain length of amylopectin (cereal starch) (Fredriksson et al., 1998; Silverio et al., 2000; 

Vamadevan & Bertoft, 2015). 

Retrogradation involves an increase in the crystallinity, gel strength, exudation of 

water (syneresis) and gel network formation changing molecular turbidity and appearance 

of the ‘B’ type polymorphic forms (Hoover, 1995; Mua & Jackson, 1998). Pulse starches 

retrograde to a high extent in comparison with cereal and tuber starches, due to the higher 

amylose content and/or differences in molecular structure (Hoover, 2010). Generally, 

retrogradation is not desirable in foods containing starch, because it affects the quality, 

acceptability and shelflife during storage (Biliaderis, 1991). 

1.8.5 Acid hydrolysis 
Acid hydrolysis has been used to modify the starch granule structure and produce 

thin-boiling starches for food and industrial uses (Hoover, 2000). Acid-modified starches 

are prepared by treating a starch slurry (~30-40 %) with dilute mineral acid (suphuric acid 

or hydrochloric acid) at a temperature below the gelatinization temperature (25-60°C) for 

a certain period of time (Wurzburg, 1986). The remaining starch residue after prolonged 

acid hydrolysis at room temperature is known as Naegeli dextrin (treatment with 15 % 

H2SO4) or lintnerized starch (treatment with 7.5 % w/v HCl). Lintnerized starches possess 

a high-molecular weight fraction, whereas Nageli dextrins are composed mainly of a 

mixture of linear and branched low-molecular-weight fractions of dextrins (Hoover, 

2000; Robin, 1974). During acid hydrolysis, the hydronium ion (H3O+) carries out an 
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electrophilic attack on the glycosidic oxygen atom and the electrons in one of the carbon-

oxygen bonds transfer to the oxygen atom to form a carbocation. The high energy, 

unstable carbocation intermediate then quickly reacts with water, leading to regeneration 

of a hydroxyl group (Hoover, 2000). The mechanism of acid hydrolysis is outlined in 

Figure 1.9. 

All starches exhibit two distinct phases of hydrolysis. A relatively rapid hydrolysis 

rate is observed during the first eight days, followed by a slower rate after 9-12 days. 

During acid hydrolysis, the bulky amorphous and inter-crystalline regions of the granule 

are hydrolysed initially, followed by a slower rate of hydrolysis of the crystalline regions 

(Biliaderis et al., 1981; Hoover, 2000; Genkina et al., 2009; Kim et al., 2012). 

Amorphous regions within starch granules are more susceptible to acid attack due to the 

loose packing of starch chains compared to crystalline regions. Two different hypotheses 

have been proposed to explain the slower rate of the crystalline region: 1) the dense 

packing of starch chains within the starch crystallites restricts the rapid penetration of 

H3O+ into these regions; and 2) the conformational changes of D-glucopyranosyl units 

(chair to half-chair) required for the electrophilic attack of H3O+ on the glycosidic oxygen 

are restricted due to immobilization of starch chains within the crystallites. The majority 

of the glucosidic oxygens are buried inside the double helical arrangement and thus their 

accessibility to H3O+ ions is restricted (Kainuma & French, 1971; Jayakody & Hoover, 

2002).   
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a 

b c 

d e 

Figure 1.9: Mechanism of acid hydrolysis of starch (Adapted from Hoover 2000).  

       a. Electrophilic attack of H+ on the oxygen atom of the α(1→4) glycosidic linkage  

       b. Electrons in one of the C=O bonds moves to the oxygen atom  

       c. Formation of unstable, high-energy carbocation intermediate  

       d. Reaction with water  
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Factors which influence the rate and extent of hydrolysis among starches 

include: 1) granular size; 2) extent of glucan chain interactions (within the amorphous 

and crystalline domains of the granule); 3) starch composition (amylose content and 

amylose-lipid complexes); 4) presence of pores and cracks on the granule surface; 5) 

distribution of α(1→6) branch points between the amorphous and crystalline regions; 

and 6) degree of packing of the double helices within crystallites (Morrison et al., 

1993a; Jane et al., 1997; Hoover, 2000; Jayakody & Hoover, 2002). Acid hydrolysis 

of starch proceeds randomly, cleaving both α(1→4) and α(1→6) bonds and shortening 

the chain length with the progress of hydrolysis. Acid modification increases the 

gelatinization temperature, gelatinization temperature range, solubility of starch, gel 

strength and retrogradation rate and decreases the viscosity of starch (Shi & Seib, 

1992; Kim & Ahn, 1996; Atichokudomchai et al., 2002a,b; Singh et al., 2009). 

1.8.6 Enzyme hydrolysis  
Enzyme-catalysed hydrolysis has been used as an investigative tool to study 

the ultrastructure of starch granules (Oates, 1997). Amylases are the most industrially 

applied starch degrading enzymes used to produce modified starches and hydrolysed 

products such as sweeteners and syrups.  Amylolytic enzymes are generally referred 

to as glycoside hydrolases (GHs), a group of enzymes that catalyses the hydrolysis of 

α(1→4) and/or α(1→6) glycosidic bonds in starch and related oligo- or 

polysaccharides. The apha-amylase (EC 3.2.1.1) is an endo-acting enzyme that 

randomly internally hydrolyses α(1→4) glycosidic bonds and bypasses α(1→6) 

branch points of the glucan chains, producing linear and branched oligosaccharides of 

various chain lengths and α-limit dextrins containing α(1→6) bonds. Glucoamylase or 

amyloglucosidase (EC 3.2.1.3) is an exo-acting enzyme that depolymerizes both 
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α(1→4) and α(1→6) glycosidic bonds from the non-reducing ends of the starch 

polymer chains, yielding the complete conversion of starch into glucose units (Sujka 

& Jamroz, 2007). Pullulanase and isoamylase, referred to as debranching enzymes, 

hydrolyse only α(1→6) bonds, thus removing the branch chains of the glucan chains. 

Beta-amylase is also an exo-acting enzyme that hydrolyses only (1-4) linkages from 

the non-reducing ends of the glucan chains and produces β-maltose and β-limit 

dextrins (Goesaert et al., 2009). Alpha-amylases have been produced from various 

sources, including plants, bacteria, fungi, animals and humans. The α-amylases from 

different sources differ in their action patterns and size of binding site (Robyt & 

French, 1963; Robyt & French, 1967; Robyt & French, 1970; Klein & Foreman, 1980; 

Ryan et al., 2006).  

The enzymatic hydrolysis of starch granules involves several steps, which 

include the diffusion of enzymes to the solid surface area and then inside the granules, 

followed by adsorption of the enzyme onto the substrate and subsequent catalytic 

reaction (Gallant et al., 1992; Sujka & Jamroz, 2007). In general, the initial hydrolysis 

takes place on the surface of the granule, depending on the starch source. The 

hydrolysis of starch by α-amylase involves an enzyme in solution reacting on a solid 

substrate, whereas the critical kinetic parameters are the accessibility of the enzyme to 

the surface area of the substrate and the extent of enzyme adsorption onto the surface 

(Bertoft & Manelius, 1992). 

Based on microscopic observations, different forms of enzymatic attack on 

starch granular surfaces have been reported (Zhang et al., 2006a,b; Apinan et al., 

2007). Depending on the enzyme and type of starch, an enzyme can either erode the 

entire granule surface or the susceptible zones become pitted during the hydrolysis, a 
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process called exo-corrosion. Expansion of pits and the formation of digest channels 

at specific points on the surface toward the hilum (center) regions of the granules are 

referred to as endo-corrosion (Gallant et al., 1992; Zhang et al., 2006a; Copeland et 

al., 2009; Dona et al., 2010). Smaller granules have a large surface area per unit mass 

that facilitates diffusion and adsorption of enzymes which in turn increase the catalytic 

reaction; they hydrolyse faster compared to larger granules (Dhital et al., 2010).  

Native granules are hydrolysed to a lesser extent than those of gelatinized 

(processed) starch. The gelatinization process disrupts the crystalline structure and 

causes a decrease or loss of polymer chain interactions, such as double helices or 

amylose-lipid complexes, which in turn facilitates the accessibility of enzyme toward 

substrates to a large extent (Blazek & Gilbert, 2010). Starch chains with limited 

mobility (either complexed or crystallized) are less susceptible to enzymatic 

hydrolysis because their constituent glucose units are more firmly organized into a 

specific configuration. This restricts the accessibility of amylases to unwind the 

double helices of the starch chains (Oates, 1997). 

Crystalline polymorphic forms are an important factor in determining the rate 

and extent of enzymatic hydrolysis, but the susceptibility of a different polymorphism 

toward hydrolysis is still in dispute. Copeland et al. (2009) reported that A-type 

polymorphs are more resistant to enzymatic hydrolysis compared to B-type 

polymorphs. However, several authors have suggested that A-type crystals are more 

susceptible to amylolysis (Jane et al., 1997; Planchot et al., 1997; Srichuwong et al., 

2005a). Jane et al. (1997) have shown that in the interior crystalline structures of A-

type starches, the α(1→6) branch points are dispersed in both crystalline and 

amorphous regions. Furthermore, a larger proportion of short A chains (smaller 
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double helices) in the crystalline regions led them to be more susceptible to 

amylolysis. In contrast, B-type starches contain more α(1→6) branch points in the 

amorphous regions and fewer short branch chains, which results in a superior 

crystalline structure that resists amylolysis (Zhou et al., 2004). Studies on field pea 

starches have shown that the increase in the B-polymorphic content reduces the extent 

of amylolysis (Ratnayake et al., 2001). Gerard et al. (2001) have suggested that the 

arrangement and the orientation of B-type crystallites within the granule could be a 

factor that makes them less susceptible to α-amylolysis.  

The presence of pores and channels in A-type starches (Fannon et al., 1992; 

Huber & BeMiller, 2000; Jane, 2006) facilitates the diffusion of enzymes to the 

granular interior with an enlargement of the surface pores. The enzymes hydrolyse 

these starch granules using an ‘inside-out’ pathway, where the concurrent hydrolysis 

takes place from the less organized hilum region toward the peripheral regions with a 

preferential hydrolysis of amorphous regions prior to ordered crystalline regions 

(Gallant et al., 1992; Blazek & Gilbert, 2010). Starches with B- and C-type 

polymorphs are less favorable to the ‘inside-out’ digestion pattern since they do not 

possess surface pores and channels. Thus, the digestion takes place from the outer 

resistant surface of those granules and the hydrolysis pattern is referred as ‘exo-

pitting’ (Gallant et al., 1992; Planchot et al., 1995). However, Zhang et al. (2006a) 

have proposed that irrespective of the crystalline type, both the amorphous and 

crystalline regions are evenly digested through a mechanism called the ‘side by side’ 

mechanism. Furthermore, the glucan chains that do not participate in the crystalline 

formation may not be free and mobile; also, the tight packing of those chains adjacent 

to the crystalline regions inhibit hydrolysis (Zhang et al., 2006a,b; Dhital et al., 2010).  
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Tester et al. (2006) have shown that the extent of hydrolysis by α-amylase is 

inversely related to the amylose content of the native starch. For instance, waxy maize 

is hydrolysed faster compared to normal and high amylose maize starches. The rate 

and extent of amylolysis of native starch granules is influenced by many factors, 

including the starch botanical origin, granule structure and morphology, 

supramolecular structure, molecular structure (amylose to amylopectin ratio, fine 

structure of amylose and amylopectin), chemical composition, enzyme specificity and 

hydrolysed products (malto oligosaccharides) (Colonna et al., 1988; Hoover & Zhou, 

2003; Copeland et al., 2009; Dhital et al., 2010; Blazek & Copeland, 2010). 

The in vitro digestion pattern of different starches has been investigated using 

α-amylase (porcine pancreatic α-amylase) and amyloglucosidase (Englyst et al., 

1996). The rate of hydrolysis is predominantly influenced by α-amylase, while 

amyloglucosidase mainly converts the hydrolysed products (maltose, maltotriose) of 

α-amylase into glucose units to prevent product inhibition of α-amylase activity.  

Therefore, the digestibilities of native starches are mainly controlled by α-amylase, 

and the direct influence of amyloglucosidase on hydrolysing starch chains is limited 

(Kimura & Robyt, 1995; Zhang et al., 2006a).  

1.8.7 Starch nutritional fractions 
Starch is an important part of the human diet and it serves as a major source of 

glucose. Depending on the rate and extent of digestion of starches in the 

gastrointestinal tract, the postprandial blood glucose levels and corresponding insulin 

response can be varied (Dhital et al., 2017). The concept of glycemic index (GI) was 

introduced to categorize foods based on their effect on postprandial blood glucose 

response. The GI is defined as the area under the glycemic response curve (AUC) 
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after the ingestion of the test product, expressed as the percentage of the 

corresponding area after ingestion of an equicarbohydrate portion of a reference food 

(Jenkins et al., 1981). Based on GI values, foods are categorized into three groups: 

high GI (GI>70), intermediate/medium GI (56-69) and low GI (GI<55) (Brand et al., 

1991).  

For nutritional purposes, Englyst et al. (1992) designed a study to classify 

starches based on the kinetics of in vitro digestion. In this study, porcine pancreatic α-

amylase and fungal amyloglucosidase were used instead of human α-amylase and 

mucosal α-glucosidase for simulating gastrointestinal conditions, and glucose release 

was measured at different time intervals. Based on this study, starch nutritional 

fractions are identified. Starch that is digested into glucose within 20 min and is 

correlated to a high glycemic index is referred to as rapidly digestible starch (RDS). 

As an energy source, RDS is rapidly digested and absorbed in the duodenum and 

proximal part of the small intestine, leading to a rapid increase of plasma glucose and 

insulin levels (Englyst et al., 1992; Zhang & Hamaker, 2009; Lee et al., 2013). 

In general, the RDS content of cereal starch (2.5-90.0 %) is greater compared 

to legume (3.0-21.0 %) and tuber (0.1-21 %) starches. Zhang et al. (2006b) have 

reported that starches with a higher proportion of short A chains are more susceptible 

to enzyme-catalysed hydrolysis, leading to higher levels of RDS. The A chains with a 

dp of 5-10 are too short to form double helices and disrupt the crystalline structure, 

which causes the crystalline defects (Zhang et al., 2006b). Consumption of foods that 

are rich in RDS leads to a substantial fluctuation of plasma glucose levels and causes 

high stress on the regulatory system of glucose homeostasis.  Consequently, high 

levels of RDS have been shown to increase the risk of diabetes, cardiovascular disease 
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and obesity (Wolever & Bolognesi, 1996; Ludwig et al., 1999; Ludwig, 2002; Zhang 

et al., 2006b).  

In contrast, slowly digestible starch (SDS) is fully digested into glucose during 

a prolonged digestion period (20-120 min) at a slower rate compared to RDS (Wolf et 

al., 1999; Zhang et al., 2008). However, both RDS and SDS are nutritionally 

considered as glycemic starches (Englyst et al., 1992). SDS is digested slowly through 

the small intestine with a moderate glycemic and insulinemic response and prolonged 

release of glucose (Zhang & Hamaker, 2009). The portion of starch that is not 

digested after 120 min is termed resistant starch (RS) (Englyst et al., 1992). In 

contrast to RDS and SDS, RS is not digested in the upper gastrointestinal tract, and is 

fermented by microorganisms in the colon to produce short chain fatty acids (SCFA) 

including acetic, propionic and butyric acids (Barry et al., 1995; Cummings et al., 

1996; Perera et al., 2010). 

In addition to potential health benefits, RS is considered a functional 

ingredient. As a source of dietary fiber, RS has a lower impact on the sensory 

properties of foods compared to traditional sources of fibers such as whole grains, 

fruits or bran (Fuentes-Zaragoza et al., 2010; Perera et al., 2010). Furthermore, the 

desirable properties of RS, including swelling capacity, formation of gel, increase in 

viscosity and water binding capacity, make it a useful functional ingredient in a 

variety of food products (Nugent, 2005; Sajilata et al., 2006; Augustin et al., 2008). 

The RS content of cereal and pulse starches differ with the molecular composition 

(amylose and amylopectin) and their chain lengths (Zhang & Hamaker, 2009). 
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Resistant starch is divided into four major types based on the nature of their 

enzyme resistance and starch structure: RS type 1 (RS1), RS type 2 (RS2), RS type 3 

(RS3) and RS type 4 (RS4) (Englyst et al., 1992; Eerlingen & Delcour, 1995). RS1 

represents the physically inaccessible starch trapped within whole plant cells with 

undamaged cell walls or within food matrices (e.g. partially milled grains, legume 

seeds and pasta) (Brown 2004; Sajilata et al., 2006). This type of RS is unavailable to 

digestive enzymes, since gastrointestinal tract enzymes are incapable of degrading the 

cell wall components (cellulose, hemicellulose, lignin and other constituents) 

(Leszczyñski, 2004). The presence of intact cell walls contributes to the RS content of 

legumes. The physical or chemical treatments (e.g. grinding and proteolysis) that can 

destroy the physical barriers of foods affect the RS1 content (Fardet et al., 1998).    

Resistant starch type 2 represents raw starch granules that are resistant to 

enzymatic digestion due to the structural organization (compact structure) in their 

native state. RS2 is found in starches with B- or C-type polymorphic structures such 

as raw potato starch, green banana and high amylose maize starches (Jane et al., 2003; 

Brown, 2004). Some food applications, such as thermal processing methods, 

significantly reduce the RS2 content, while hydrothermal treatments (annealing and 

heat moisture treatment) can be used to increase the RS levels, particularly in high 

amylose starches (Kishida et al. 2001; Liu et al., 2007). 

Resistant starch type 3 comprises the retrograded starch formed during the 

cooling of gelatinized starch resulting from food processing operations. The starch 

granule is completely hydrated during the formation of RS3. The presence of lipids 

affects the double helical association of amylose molecules during retrogradation, 

where lipid molecules form an inclusive complex with amylose and reduce the 
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interaction between amylose chains. Therefore, the formation of a crystalline structure 

will be disrupted, which in turn lowers the resistant starch content (RS3) resulting 

from retrogradation (Leszczyñski, 2004). Partial acid hydrolysis, multiple freeze-thaw 

cycles and selected debranching of starches increase the rate and extent of 

retrogradation of thermally processed foods, which in turn increases the RS3 content 

(Brumovsky & Thompson, 2001; Lehmann et al., 2002; Chung et al., 2003; Hasjim & 

Jane, 2009). 

Resistant starch type 4 represents the starches that are chemically modified to 

improve the functional characteristics of starches. Various types of chemical 

modification techniques, including etherification, esterification and cross-linking, are 

used to introduce new functional groups into the starch chains; these functional groups 

can prevent enzymatic digestion by hindering the accessibility of enzymes to 

glycosidic bonds. Furthermore, new additional bonds other than α(1→4) and α(1→6) 

are formed during chemical modification (Leszczyñski, 2004; Sajilata et al., 2006). 

 In addition to these four types of RS, amylose-lipid complexes are also 

considered an additional type of resistant starch as they are resistant to amylolysis. 

Amylose-lipid complexes are categorized as RS5 (Hasjim et al., 2010; Ai et al., 

2013).  

1.9 Annealing  
Annealing (ANN) is a physical modification technique that involves treating 

starch granules in the presence of heat and water. During the process of ANN, starch 

granules treated in excess (>60 %, w/w) or intermediate (40 %, w/w) water content are 

subjected to a temperature exceeding the glass transition temperature (Tg) but below 
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the onset temperature (To) of gelatinization for a certain period of time (Jacobs & 

Delcour, 1998; Tester & Debon 2000; Jayakody & Hoover 2008). Tg is defined as the 

temperature at which the amorphous domains of the starch granules are modified from 

a rigid glassy to a mobile rubbery state when treated with heat in the presence of 

solvents like water/glycerol (Tester & Debon, 2000). 

Starch is a semi-crystalline polymer, where the double helices are intact and do 

not have an optimal side by side arrangement in their unhydrated native state. This is 

because of the varying lengths of radial and tangential branches, and this state is 

referred to as a nematic state (Figure 1.10 a) (Waigh et al., 1996; Perry & Donald, 

2000). During annealing, the amorphous portion of the starch granule has the ability to 

imbibe water which results in plasticization. The amorphous region is glassy and 

immobile prior to hydration; the mobility of the amorphous region increases and 

causes the vibrational movement of tangential and radial chains in amorphous and 

crystalline domains. Increasing the ANN temperature and excess water are two 

important factors that can drive the rate of hydration and increase the glucan chain 

mobility. This restricts the side by side movement of double helices and forms the 

smectic type structure (Figure 1.10 b) (Jayakody & Hoover, 2008; Perry & Donald, 

2000).   
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Figure 1.10: (a) Diagram illustrating the impact of hydration and subsequent ANN on semi-crystalline lamellae (the 

rectangles represent the amylopectin double helices): a) dry starch with glassy amorphous regions; (b) 

hydrated annealed starch with rubbery amorphous regions. (Tester et al. 2000, reproduced with 

permission from Elsevier). 
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As ANN progresses, the organization of starch chains and double helices of 

amylopectin become more organized and arranged in an ordered structure (Gomes et 

al., 2005; Zavareze & Dias, 2011).  

1.9.1 Effect of annealing on granule morphology 
The majority of studies have shown that there is a general lack of significant 

visible changes to the granule morphology (size or shape) or the birefringence pattern 

between native and annealed starches. However, a few studies have reported a 

decreased birefringence at granule centers, agglomeration/fusion of the granules, 

increased or decreased size of the granule, increased roughness, indentation or fissures 

at granule surfaces, and/or increased pore size after ANN (Nakazawa & Wang, 2003; 

Kiseleva et al., 2005; Waduge et al., 2006; Liu et al., 2009; Dias et al., 2010; Singh et 

al., 2011; Rocha et al., 2012; Wang et al., 2013). 

1.9.2 Effect of annealing on starch structure 
On a supra-molecular level, annealed starches retain their native crystalline 

packing arrangement, since sub-gelatinization temperatures are commonly employed 

in ANN treatments. In most studies, the crystalline polymorphic patterns of different 

starches remained unchanged upon ANN (Hoover & Vasanthan, 1994a; Ozcan & 

Jackson, 2003; Vermeylen et al., 2006). However, a few studies have reported that a 

partial polymorphic transformation (B-/C-type to A-type) occurred during an extended 

period of ANN treatment (Genkina et al., 2004; Waduge et al., 2006). This 

transformation is energetically favorable for a more stable crystalline structure (type-

A). In contrast to A-type starches, the impact of ANN on the crystalline structure is 

more pronounced in B-type starches (Muhrbeck & Wischmann, 1998).   
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The intensity of X-ray diffraction and/or relative crystallinity of starches from 

different botanical origins either remain unchanged (Chung et al., 2009a; Rocha et al., 

2011; Wang et al., 2013), increased (Hoover & Vasanthan, 1994a; Jacobs et al., 1998; 

Vermeylen et al., 2006; Waduge et al., 2006; Rocha et al., 2012) or decreased 

(Jayakody et al., 2009; Dias et al., 2010) on ANN. The observed changes in starch 

crystallinity are mainly influenced by starch source and the treatment conditions 

during the ANN process. The extent of these changes reflects the balance between 

crystallite disruption, reorientation and subsequent recrystallization (Vermeylen et al., 

2006).  The increase in crystallinity may arise from the interplay of several factors, 

such as increased crystallite size and perfection of crystallites, formation of new 

crystallites between glucan chains, crystallite reorientation and amylopectin content 

(Vermeylen et al., 2006; Waduge et al., 2006; Lan et al., 2008; Rocha et al., 2011; 

Rocha et al., 2012). Gomes et al. (2004) observed a reduced intensity of the 

crystallinity peak in annealed starches. They suggested that the formation of new 

amylose-lipid complexes does not take part in the increase in helical order, which is 

mainly associated with interactions between amylose and amylopectin chains. 

Furthermore, the ordered and compact packing of the double helices is indicated by a 

reduced inter-crystalline spacing upon ANN.  

On a molecular level, ANN increases the mobility of the glucan chains within 

amorphous lamella regions and the amylopectin double helical chain-segments in 

crystalline lamella regions. It facilitates the double helices to align into a more ordered 

structure within the crystalline lamella and leads to the crystallite perfection of 

existing crystallites (Kiseleva et al., 2004; Vermeylen et al., 2006; Gomand et al., 

2012; BeMiller & Huber, 2015). Native starch possesses crystallites of different 
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stabilities. ANN disrupts the weak crystallites and facilitates the subsequent 

recrystallization and realignment of new or existing crystallites, which in turn 

increases molecular interactions between starch chains and results in more 

homogenous crystallites within the granule (Tester et al., 1998; Tester & Debon, 

2000; Rocha et al., 2011; Rocha et al., 2012; Vamadevan et al., 2013).  

Several authors have suggested that ANN does not increase the number of 

double helices in normal and waxy starches, whereas it facilitates lengthening of the 

double helices by twisting ends of the chains (Tester & Debon, 2000; Genkina et al., 

2004; Kiseleva et al., 2005; Vamadevan et al., 2014). In high amylose starches, ANN 

induces the formation of new double helices and various chain interactions between 

the glucan chains (amylose-amylose, amylose-amylopecin, amylopectin-amylopectin) 

(Tester & Debon, 2000; Lin et al., 2009; Gomand et al., 2012). Based on small-angle 

X-ray scattering studies, Gomand et al. (2012) reported that ANN increases crystalline 

stability via crystal thickening, which is associated with the increased co-

crystallization of amylose and amylopectin chains in high amylose potato starch. In 

waxy starches, crystal stability is increased by a reduction in crystal surface energy 

(γ). The reduction in crystal surface energy on ANN may be involved with the 

relaxation of conformationally constrained chains at the crystal border. Furthermore, 

the movement of amylopectin chains and/or their branch points, moving away from 

the amorphous-crystalline interface toward the granular amorphous regions (Gomand 

et al., 2002), lead to a very disordered nanomorphology (compartmentalization-like 

structures) on ANN (Knutson, 1990; Tester et al., 2000; Gomand et al., 2012). 

In the amorphous regions, ANN-induced changes include the preferential 

hydration of amorphous regions, mobility of starch chains and the conversion of 
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amorphous amylose into structured helical forms. The structural changes occurring 

during the ANN treatment in both amorphous and crystalline regions lead to a 

decrease in mobility with restricted plasticisation and destabilization effects on starch 

crystallites, which, in turn, increases the Tg of the annealed starch (increase in the 

glassy nature) (Seow & Teo, 1993; Tester & Debon, 2000). Therefore, ANN induced 

changes within both crystalline and amorphous regions greatly influence the 

physicochemical properties of starch (BeMiller & Huber, 2015).  

1.9.3 Effect of annealing on granular swelling and amylose leaching 
Many researchers have shown that ANN reduces granular swelling in cereal, 

tuber and pulse starches (Jayakody et al., 2009; Chung et al., 2009a; Chung et al., 

2010; Dias et al., 2010; Liu et al., 2009; Jyothi et al., 2011; Olu-Owolabi et al., 2011; 

Singh et al., 2011; Simsek et al., 2012; Yadav et al., 2013; Song et al., 2014). The 

extent of swelling reduction for these starches has been attributed to the interplay of 

the following factors: 1) amylose content; 2) increased crystalline perfection and 

decreased dehydration of amorphous regions; 3) extent of interaction between 

amylose-amylose and/or amylopectin-amylopectin interactions; 4) fine structure of 

amylopectin; 5) extended intra-granular binding forces and strengthening of the 

granule; and 6) presence of amylose lipid complexes (Hoover & Vasanthan, 1994a; 

Jacobs et al., 1995; Jacobs et al., 1998; Tester et al., 1998; Tester et al., 2000; 

Waduge et al., 2006).  

Annealing has been shown to reduce amylose leaching at all temperatures 

below 100oC in cereal, tuber and pulse starches compared to their native counterparts 

(Jacobs et al., 1995; Jayakody et al., 2009; Chung et al., 2010; Song et al., 2014). The 

extent of this reduction is influenced by the following factors: 1) restricted granular 
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swelling; 2) strong interactions between amylose-amylose and/or amylose-

amylopectin; 3) formation of new amylose lipid complexes; and 4) the molecular size 

of amylose molecules (Hoover & Vasanthan, 1994a; Tester & Debon, 2000; Waduge 

et al., 2006). However, a few cereal starches (wheat, certain cultivars of barley) 

exhibit increased amylose leaching on ANN (Jacobs et al., 1995; Waduge et al., 

2006).  

1.9.4 Effect of annealing on starch gelatinization 
It has been well recognized that ANN increases the onset temperature of 

gelatinization (To), peak temperature (Tp), and conclusion temperature (Tc), and 

narrows the gelatinization temperature range (Tc-To), irrespective of the starch source 

(Chung et al., 2009a; Chung et al., 2010; Rocha et al., 2012; Simsek et al., 2012; 

Wang et al., 2013; Vamadevan et al., 2013). Following ANN, the enthalpy of 

gelatinization (∆H) has been reported to either increase (Nakazawa & Wang, 2003; 

Genkina et al., 2004; Kiseleva et al., 2004; Kiseleva et al., 2005; Waduge et al., 2006; 

Chung et al., 2010) or remain unchanged (Wang et al., 1997; Muhrbeck & 

Wischmann, 1998; Vermeylen et al., 2006; Wang et al., 2014). However, a few 

authors have reported that ∆H decreased on ANN (Chung et al., 2009b; Siswoyo & 

Morita, 2010; Gomand et al., 2012; Song et al., 2014). 

The extent of the increase in gelatinization temperatures has been shown to be 

more pronounced for To and less for Tc, since the weakest crystallites melt at To 

(Wang et al., 1997; Nakazawa & Wang, 2003). The increase in gelatinization 

temperatures is associated with the extent of crystallite perfection of a native starch. 

The weakest crystallites are more susceptible to crystallite perfection upon ANN in 

comparison to crystals having higher stability (often Tc) (Jacobs et al., 1998). 
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Furthermore, it is also related to an increase in crystal size and the presence of fewer 

crystal defects (Gomand et al., 2012; Vamadevan et al., 2013). Gomand et al. (2012) 

reported that in a three-step ANN of high amylose mutant potato starch, the greatest 

stepwise increase in To was observed in the third ANN step. Whereas a greatest 

increase in To was observed in the first ANN step of waxy potatato starch and the 

lowest impact on subsequent steps. High amylose starches generally exhibit a high 

degree of stacking order with lower crystallinity due to higher amylose content 

whereas, waxy starches possess a higher degree of native crystalline order and thus the 

least changes were observed in the subsequent steps (Gomand et al., 2012). Post ANN 

polymer chain interactions and crystallite perfection lead to an increase in Tg, which 

in turn raises the gelatinization temperatures (To, Tp and Tc) of annealed starches 

(Jayakody & Hoover, 2008). Generally, starch crystallite perfection is represented by 

Tp values (Tester, 1997). The increase in Tp and decrease in Tc-To indicate that ANN 

improves the double helical arrangement by decreasing the heterogeneity and 

cooperative melting of crystallites within the crystalline lamellae (Jacobs & Delcour, 

1998).  

  The marginal differences in ∆H pre- and post-ANN suggest that either the 

absence of crystallite melting and subsequent (re)formation or the crystallite melting 

is compensated by the recrystallization (Gomand et al., 2012),  Where ∆H represents 

the disruption of H-bonds within and between the double helices displayed by the 

amylopectin endotherm.  The increase in ∆H mainly observed in high amylose 

starches on post ANN could be attributed to the lengthening of amylopectin double 

helices by twisting of chain ends, enhanced double helix register, co-crystallization of 

amylose tie chains with the amylopectin exterior chains and the formation of new 
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double helices between amylose chains (Genkina et al., 2007; Jayakody & Hoover, 

2008; Gomand et al., 2012; Vamadevan et al., 2013). Whereas the decrease in ∆H 

indicates that a partial melting of amylopectin crystallites with a lack of influence 

from recrystallization and the disruption of crystalline order is likely to occur at higher 

temperatures (Siswoyo & Morita, 2010). ANN temperature, which is set close to the 

To of native starch, has a more profound effect on starch structure and thus increases 

the gelatinization temperatures of annealed starches compared to their native 

counterparts (Knutson, 1990; Tester & Debon, 2000).  

1.9.5 Effect of annealing on pasting properties 
Regarding pasting properties, several authors have reported that annealed 

starches generally exhibit an increased pasting temperature, pasting time and thermal 

stability (Adebowale et al., 2009; Dias et al., 2010; Simsek et al., 2012; Yadav et al., 

2013; Song, et al., 2014; Chen et al., 2014). It is also reported that ANN reduces the 

peak viscosity and final viscosity (viscosity at the end of a cooling cycle) (Stute, 1992; 

Adebowale et al., 2009; Simsek et al., 2012; Yadav et al., 2013; Chen et al., 2014; 

Song, et al., 2014). Reduced granular swelling and amylose leaching is reflected in the 

decrease in peak viscosity and greater shear resistance on ANN (Hoover & Vasanthan, 

1994a; Jacobs et al., 1995). However, Jacobs et al. (1996) reported that the increase in 

peak and final viscosity of wheat starch on ANN was attributed to an increase in 

granule rigidity and resistance to shear. Several authors have demonstrated that the 

increase in pasting temperature can be attributed to an increase in crystalline stability 

as a result of reorganization of polymer chains and strengthening of intra granular 

bonds in starch granules which require more thermal energy for structural 

disintegration (Adebowale et al., 2005; Zavareze & Dias, 2011). Based on previous 
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studies, the effect of ANN on starch pasting properties is largely influenced by the 

structural characteristics of starch granules and analytical conditions such as paddle 

speed, starch to water ratio, heating and cooling rates, etc. (Zavareze & Dias, 2011).     

1.9.6 Effect of annealing on acid hydrolysis 
The susceptibility of annealed starches to acid hydrolysis has been shown to be 

influenced by the starch source, ANN conditions, method (single, double or multi 

step), type of acid, temperature and concentration of acid (Jacobs et al., 1998; 

Nakazawa & Wang, 2003; Jayakody & Hoover, 2008). Hoover and Vasanthan 

(1994a) reported that single step ANN decreased the acid susceptibility of wheat, 

potato and lentil starches, but increased it in oat starch. Jayakody et al. (2009) also 

showed that annealed yam starches are hydrolysed to a lesser extent than their native 

counterpart. However, Waduge et al. (2006) reported that the difference in acid 

hydrolysis between native and annealed barley starch was marginal. Various theories 

have been put forward to explain the susceptibility of annealed starches to acid 

hydrolysis. It has been reported that the extent of the decrease in acid hydrolysis on 

ANN has been attributed to the interplay of the following factors: 1) perfection of 

starch crystallites; 2) formation of amylose double helices and increased interactions 

between starch chains; 3) formation of amylose lipid complexes; and 4) reduced 

accessibility to the α(1→6) branch points (embedded within the crystallites) (Hoover 

& Vasanthan, 1994a; Jacobs et al., 1998; Nakazawa & Wang, 2003; Waduge et al., 

2006). 

Several studies have reported that the increase in acid hydrolysis on ANN is a 

reflection of the following factors: 1) starch chains in the amorphous regions become 

more concentrated as a result of crystalline perfection; 2) void areas form in the 
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crystalline regions which facilitates the penetration of H3O+; and 3) branch linkages of 

the imperfect double helices become more perfect as a consequence of enhanced 

crystalline structure (Nakazawa & Wang, 2003; Tester & Debon, 2000; Jayakody et 

al., 2009). A marginal difference in the second phase of hydrolysis is linked with an 

unchanged double helical content (DHC) and the limited ordering of crystallites in the 

crystalline regions (Tester & Debon, 2000; Nakazawa & Wang, 2003). These studies 

suggested that the impact of ANN on the rapid and slow phases of acid hydrolysis is 

influenced to a larger extent by the changes occurring within the crystalline lamellae 

(Waduge et al., 2006) 

1.9.7 Effect of annealing on in vitro digestibility 
Although the impact of ANN on enzyme-catalysed hydrolysis has been 

investigated by several researchers, the findings are conflicting, which makes it 

difficult to interpret the exact outcomes (BeMiller & Huber, 2015). Jayakody and 

Hoover (2008) suggested that the variations in susceptibility of starches toward 

enzyme-catalysed hydrolysis is mainly due the differences in starch source (botanical 

origin and varietal differences), ANN treatment conditions (temperature, duration, 

moisture condition and number of ANN steps), enzymes (source, purity and 

concentration) and the duration of hydrolysis. Alpha-amylase from various sources, 

including bacterial α-amylase, fungal α-amylase, fungal amyloglucosidase, porcine 

pancreatic α-amylase, and porcine pancreatin (mixture of α-amylase, lipase and 

protease), have been used in many studies to compare the effect of ANN on in vitro 

digestibility. Several studies have shown that ANN increases the susceptibility toward 

porcine pancreatic α-amylase pancreatin in pulse starches (pinto bean, black bean, 

lentil, field pea and navy bean), cereal starches (normal, waxy and high amylose corn, 
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waxy, normal and high amylose rice, waxy wheat, oat), tuber and root starches 

(cassava, Peruvian carrot, potato)  and sago starch (Hoover & Vasanthan, 1994a; 

Wang et al., 1997; Jacobs et al., 1997; Lan et al., 2008; Dias et al., 2010; Rocha et al., 

2011; Rocha et al., 2012; Zeng et al., 2015). However, ANN decreased the extent of 

hydrolysis in wheat, cassava, sweet potato, arrowroot, breadfruit and potato starches 

(Hoover & Vasanthan, 1994a; Jacobs et al., 1997;  Siswoyo & Morita, 2010; Jyothi et 

al., 2011).   

The impact of ANN on starch nutritional fractions (RDS, SDS and RS) has 

been studied with the combined action of α-amylase and amyloglucosidase. The 

extent of changes in each fraction on ANN compared to their native counterparts 

differs with starch source, treatment conditions and the method used to determine the 

nutritional fractions. The structural changes occurring during ANN are considered to 

increase the SDS and RS fractions while reducing the RDS content, where the 

crystallite perfection and the enhanced interactions between glucan chains restrict the 

enzyme accessibility upon ANN. However, the increase in RDS levels with a 

substantial reduction in SDS and RS levels is associated with the formation of more 

porous structures (mainly in cereal starches) on granular surfaces, which could negate 

the effect of other structural barriers and thereby facilitate the accessibility of enzymes 

to the granular interior (Wang et al., 1997; Jayakody & Hoover, 2008; Chung et al., 

2009b). Wang et al. (2014) reported that the increase in the SDS content was 

attributed to the slight disruption of crystalline lamellae and/or conformational 

changes, i.e. a slight dissociation of double helices. Pulse starches exhibited an 

increase in RS content upon ANN (Chung et al., 2009b).  
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1.10 Problem statement   
A survey of the literature shows that there is limited information available on 

pulse starch structure at various levels of structural organization (granular, 

supramolecular and molecular). Consequently, the interpretation of variation in 

properties among pulse starches and factors influencing the susceptibility of pulse 

starches toward acid and enzyme-catalysed hydrolysis, rate and extent of 

retrogradation, polymorphic composition and starch nutritional fractions becomes 

difficult. It is therefore crucial to study and investigate the structure-property 

relationships of pulse starches.  

Amylolysis of pulse starches has been shown to be lower compared to cereal 

starches in both in vitro and in vivo studies (Faki et al., 1983; Socorro et al., 1989; 

Schweizer et al., 1990; Tovar et al., 1991; Frias et al., 1998). Pulse starches exhibit a 

wide variation in amylose content, crystallinity, polymorphic composition, and 

organization of starch chains and their association within the granule interior. In 

comparison with cereal and tuber starches, pulse starches are better substrates for α-

amylolysis due to the following reasons: 1) an absence of fissures or pores on the 

granule surface; 2) the absence or trace quantities of phosphate monoesters; 3) a low 

amount of associated lipid; and 4) similarity in granule size (Hoover & Sosulski, 

1991; Davydova et al., 1995; Hoover & Zhou, 2003). Thus, a comparative study of 

the susceptibility toward enzymatic hydrolysis would provide a better understanding 

about the factors that control the accessibility of amylolytic enzymes into the granule 

interior of pulse starches.  

 However, factors influencing differences in amylolysis have not yet been 

explained satisfactorily. Furthermore, the susceptibilities of pulse starches toward in 



 

72 

 

vitro amylolysis reported in the literature cannot be compared due to differences in 

enzyme source (bacterial, fungal, pancreatic), enzyme concentration and hydrolysis 

time. Pulse starch digestibility has been investigated using: 1) porcine pancreatic α-

amylase (PPA), which is an endo-acting enzyme that cleaves mainly α-(1→4) 

linkages producing maltose and maltotriose; 2) pancreatin, which has an α-amylase 

activity; and 3) amyloglucosidase, which is an exo-acting enzyme that cleaves both α-

(1→4) and α-(1→6) linkages and converts the products of α-amylase digestion into 

glucose (Weill et al., 1954; Robyt & French, 1967; Robyt, 1984; Woolnough et al., 

2010). Zhang, et al. (2013) have reported that there is an apparent synergism in the 

action of α-amylase and amyloglucosidase, particularly when hydrolysing starches in 

their native state. A survey of the literature has shown that differences in hydrolysis 

patterns among pulse starches have been explained mainly in terms of differences in 

their morphology, composition and structure (Singh, 2011). However, there is limited 

information on changes to granule morphology, crystallinity, molecular order, DHC, 

polymorphic content, X-ray pattern and apparent amylose content during the progress 

of hydrolysis. Consequently, it is difficult to interpret differences in the rate and extent 

of amylolysis among pulse starches. Understanding these factors is essential for 

explaining the rate and extent of digestibility, which would enable food processors to 

optimize reaction conditions for modifying pulse starch structure to a level that could 

improve the health-related quality of pulse-starch-based foods.   

In order to extend the range of applications in the food sector, pulse starches 

have to be modified to enhance their thermal stability, resistance to shear thinning and 

repeated freeze-thaw stability. Presently, there is considerable interest in pulse 

starches that are physically modified to improve their functionality and suitability for 
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use in food applications. Annealing is a hydrothermal treatment that results in the 

molecular reorganization of glucan chains due, to the increase in amylose and 

amylopectin mobility in the presence of water (or other plasticizers) (Jacobs et al., 

1998). The molecular reorganization leads to an increase in gelatinization temperature, 

narrowing of the gelatinization temperature range and increase in granular stability 

(Jacobs & Delcour, 1998). However, the type and extent of change has been shown to 

vary with botanical origin, starch composition and annealing treatment conditions 

(Hoover & Jayakody, 2008; BeMiller & Huber, 2015). The impact of annealing on the 

physicochemical properties of normal and high amylose starches have been compared 

without first ensuring that these starches had reached their optimum level of 

crystalline perfection under the given experimental conditions. For instance, in 

comparison to normal starches, high amylose starches may require a longer treatment 

time to achieve crystalline perfection.  This is because of the slower uptake of water 

into the amorphous lamellae and improper alignment of a large proportion of double 

helices in the crystalline lamellae.   

Several studies on starch annealing were carried out earlier and most of the 

work is focused on starch characterization prior to and after annealing treatment. 

Although many studies were performed on elucidating the nature of granular 

organization on the basis of structural changes occurring during annealing treatment, 

efforts at attempting to unravel the factors that govern the molecular mechanisms of 

annealing were not very successful and information in that area is still extremely 

limited (Tester et al., 1998;  Kiseleva et al., 2004;  Kiseleva et al., 2005; Alvani et al., 

2012; Vamadevan et al., 2014). Furthermore, post-annealing structural changes have 

been explained based on the increased crystallinity and perfection of starch crystallites 
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due to an optimal packing of double helices and/or lengthening of the double helices 

of amylopectin chains inside the starch granule (Tester & Debon, 2000; Genkina et 

al., 2004).  A few studies have reported that annealing promotes new interactions 

between starch chains (amylose/amylose, amylose/amylopectin and/or 

amylopectin/amylopectin) (Hoover & Vasanthan, 1994a; Lin et al., 2009; Gomand et 

al., 2012). The extent of crystalline perfection and starch chain interactions that occurs 

during annealing varies depending on the starch botanical origin and prevailing 

annealing conditions. Although the structural changes occurring as a result of 

annealing have been described earlier, the mechanism of annealing is still in 

contention.  

Annealing can be used as an investigative tool to understand the organization 

and segmental flexibility of glucan chains in pulse starches varying in of amylose 

content. In addition, it also is important to determine normal and high amylose (40-80 

%) starches from different botanical origins (particularly pulse and cereal starches) 

exhibit similar types of structural changes upon annealing.  It also would be 

worthwhile to analyse whether increases in crystalline stability on annealing are 

influenced by the changes within the amorphous regions.  

The amorphous regions are mainly occupied with amylose chains, branch 

points of amylopectin molecules and amylose-lipid complexes, especially in high 

amylose starches. In high amylose starches, part of the amylose fraction is 

interspersed (co-crystallized) with amylopectin chains.  In addition, the amylose 

chains that pass through both the amorphous and crystalline lamellae (amylose tie 

chains), the long B chains that are interspersed into the crystalline lamellae and the 

higher proportion of intermediate chains also contribute to crystalline defects in the 
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starch granules (Yuryev et al., 2004; Koroteeva et al., 2007; Genkina et al., 2007).  

Therefore, the presence of the above crystalline defects influence the structural 

rearrangement and the perfection of crystallites within the crystalline lamellae during 

the annealing process.  Thus, it is necessary to investigate the crystalline defects 

present in high amylose starches.  Limited information is available on the 

contributions made by amorphous regions of normal and high amylose starches to the 

structural changes. Detailed studies have not been conducted to investigate the 

contributions made by amorphous regions to the structural changes within the 

crystalline lamellae in normal and high amylose starches during the annealing 

treatment. Furthermore, the proportion of the amorphous region varies with the starch 

source, and the packing arrangement of amylose chains would be different for starches 

with the same amylose content. Some authors have suggested that amorphous regions 

become rigid after annealing treatment (Tester & Debon, 2000, Vamadevan et al., 

2013). However, no experimental evidence is available to substantiate this claim. 

Therefore, emphasis must also be placed on the following to understand the 

mechanism of annealing in normal and high amylose starches: 1) investigation of the 

relationship between the native starch structure and annealing induced structural 

changes; 2) understanding how crystalline defects (mainly prevalent in high amylose 

starches) impact the extent of realignment and perfection of double helices within the 

crystalline lamella; and 3) the role of amorphous regions on annealing.           
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1.11 Hypothesis and objectives   
The hypotheses and objectives of my thesis research are outlined below:  

Hypothesis 1: The variation in granule morphology, composition and structure 

of pulse starches impacts their thermal, rheological and digestibility properties. 

Objective 1: To determine the morphology, composition and structure 

(granular, supramolecular, and molecular levels) of pulse starches and their 

impact on thermal, rheological and digestibility properties (Chapter 3.1). 

Hypothesis 2: The starches from the different pulse species used in this study 

differ widely with respect to morphology, amylose content and structural 

organization within the amorphous and crystalline regions in their native state.  

Consequently, the above differences will influence the rate and extent of 

hydrolysis and the molecular rearrangement of the starch chains that occur 

during in vitro digestion (Chapter 3.2). 

Objective 2: a) To compare in vitro digestion behavior of granular pulse and 

high amylose maize starches varying in polymorphic composition (A and B 

polymorphic forms), granule morphology and composition; b) to understand 

whether amylose content per se and/or the packing density of amylose chains 

within the granule interior play a role in influencing the rate and extent of 

hydrolysis; and c) to monitor changes to granule morphology, structure and 

thermal properties of residues obtained at different time intervals of hydrolysis 

(Chapter 3.2). 

Hypothesis 3: Structural changes which occur within the amorphous and 

crystalline domains upon annealing will be influenced by the structural 
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differences that exist among the starches in their native state. These structural 

changes will exert an influence on the physicochemical properties of starches.  

Objective 3: To elucidate the structural changes (at molecular and 

supramolecular levels) that occur within the amorphous and crystalline 

domains in pulse and high amylose maize starches on annealing and their 

effect on physicochemical properties (Chapter 3.3). 

Hypothesis 4: Amorphous regions contribute to the structural changes (double 

helical alignment) within the crystalline lamellae on annealing. The partial 

removal of amorphous regions will decrease the extent of crystalline perfection 

on annealing. 

Objective 4: To determine the effect of partial erosion of the amorphous 

regions on the extent of crystalline perfection upon annealing and to 

understand the extent to which amorphous regions in the above starches 

contribute to annealing-induced structural changes within the crystalline 

lamella (Chapter 3.4.1). 

Hypothesis 5: Cross-linked starches will not respond to annealing to the same 

extent as their native counterparts with respect to the extent of crystalline 

perfection. 

Objective 5: To study the impact of cross-linking on the extent of crystalline 

perfection before and after annealing (Chapter 3.4.2). 
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1.12 Research outline 
This section provides an overview of the study design using a flow diagram to address 
the specific of objectives (section 1.11) of this study.  

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 PLM- polarized light microscopy; SEM- scanning electron microscopy; CLSM- confocal laser 
scaning microscopy; HPEAC- high performance anion exchange chromatography with pulse 
amperometric detection; ATR-FTIR- attenuated total reflectance Fourier transform infrared 
spectroscopy; WAXS- wide angle X-ray diffraction; 13C CPMAS/NMR- 13C cross polarization 
magic angle spinning nuclear magnetic resonance spectroscopy; DSC- differential scanning 
calorimetry; RVA- rapid visco analyser; PPA- porcine pancreatic α-amylase

Pulse seeds

Starch 

Composition 

Moisture 
Ash 
Nitrogen 
Amylose content 
Lipid (surface, bound) 

Morphology 

Particle size 
PLM 
SEM 
CLSM 

Structure 

HPAEC-PAD 
ATR-FTIR 
WAXS 
13C CPMAS/NMR 

Properties 

Amylose leaching 
Swelling Factor 
Gelatinization (DSC) 
Pasting (RVA) 
Acid hydrolysis 
In-vitro digestibility (PPA) 
Retrogradation Turbidity 

DSC

Yield                   
Starch damage 

1) Objective I 

Lablab bean (LB) 
Navy bean   (NB) 
Rice bean     (RB) 
Tepary bean (TB) 
Velvet bean (VB)

30 min 2 h 24 h 

LB, NB, RB, TB, VB                   
Wrinkled pea (WP), Hylon®VII (HYVII) 

Morphology Structure Properties 

PLM 
SEM 

HPAEC-PAD 
ATR-FTIR 
WAXS 
13C CPMAS/NMR 

Gelatinization (DSC) 

In vitro hydrolysis                 
(pancreatin + amyloglucosidase) 

Composition 

Moisture 
Amylose content 

2) Objective II 

Hydrolysis profile 

Hydrolysed residues
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Native starch                             
(LB, NB, RB, TB, VB, WP, HYVII) 

Morphology Structure Properties

PLM 
SEM 

ATR-FTIR 
WAXS 
13C CPMAS/NMR* 

Amylose leaching 
Swelling Factor 
Gelatinization (DSC) 
Pasting (RVA) 
Acid hydrolysis 
In vitro digestibility 

Hydrolysis profile* 
Nutritional fractions 
(RDS, SDS, RS, eGI) 

3) Objective III 

Annealing          

24 h 48 h 72 h 

Gelatinization (DSC)

4) Objective IV  5) Objective V 

Annealing     

Native starch                   
(LB, NB, TB, VB, WP, HYVII) 

Cross-linking    

13C CPMAS/NMR 

Gelatinization (DSC) 

Partial            
acid hydrolysis Cross-linking   

Annealing            

Native starch                       
(LB, NB, RB, TB, VB, WP, HYVII) 

Phosphorous content 
Gelatinization (DSC)    
Pasting (RVA)* 

DS      
RE 

Annealing     

*Not included in this thesis 

RDS- rapidly digestible starch; SDS- slowly digestible starch; RS- resistant starch, eGI- 
expected glycemic index; DS- degree of substitution; RE- reaction efficiency 



 

80 

 

Chapter 2 

Material and methods 

2.1 Materials 
Starch sources: Seed of lablab bean (Lablab purpureus L.), rice bean (Vigna 

umbellate (Thunb.)), tepary bean (Phaseolus acutifolius (Jacq.)) and velvet bean 

(Mucana deeringiana (Bort) Merr.) was obtained from Shivalik Seeds Corporation 

(Dehradun, Uttarakhand, India). Navy bean (Phaseolus vulgaris L.) was obtained 

from the Harrow Research and Development Centre – Agriculture and Agri-Food 

Canada (Harrow, ON, Canada). Wrinkled pea (Pisum sativum L.) seed was provided 

by the Crop Development Centre at the University of Saskatchewan (Saskatoon, SK, 

Canada). High amylose maize starch (Hylon®VII) was purchased from National 

Starch & Chemical Company (Bridgewater, NJ, USA).  

Enzymes and reagents: Pancreatin from porcine pancreas (cat. no. P-1625, 

activity ≥3× USP/g), crystalline porcine pancreatic α-amylase (type 1A, 1,333 U/mg 

protein), amyloglucosidase (300 U/mL) from Aspergillus niger, and α-amylase (157 

U/mg protein) from Aspergillus oryzae were purchased from Sigma-Aldrich (St. 

Louis, MO, USA). A glucose oxidase–peroxidase assay kit (K-GLUC), total starch 

assay kit (K-TSTA) and isoamylase from Pseudomonas sp. (500 U/mL) were 

purchased from Megazyme International Ireland Ltd. (Bray, Wicklow, Ireland). APTS 

and sodium cyanoborohydride were obtained from Molecular Probes (Eugene, OR, 

USA). All chemicals and solvents were of ACS certified grade. 
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2.2 Methods 

2.2.1 Starch isolation and purification 
Pulse starches were extracted from the pulse seeds using the wet milling 

procedure described by Hoover and Sosulski (1985), with a few modifications. A 

sample of pulse seed (50 g) was steeped in 250 mL of 0.01 % (w/v) sodium 

metabisulfite for 36 h at 35ᵒC. The swollen seeds were dehulled and the cotyledons 

were thoroughly rinsed with deionized water. The softened cotyledons were blended 

with sufficient deionized water (cotyledon/water 1:3, v/v) using a waring commercial 

blender (Dynamics Corporation of America, Greenwich, CT, USA) at low speed for 3 

min, and the slurry was washed with an additional water rinse through cheese cloth. 

The cheese cloth containing the coarse fibrous material was re-blended with sufficient 

deionized water (~150 mL) and then re-screened with cheese cloth. This step was 

repeated twice and the filtrates were combined. The filtrate was then passed through a 

210 μm polypropylene sieve, followed by a 70 μm nylon sieve, and then allowed to 

sediment at room temperature for 18 h. The liquid was decanted, and the sediment was 

re-suspended in excess 0.2 % (pH-12.7) sodium hydroxide solution (sediment/sodium 

hydroxide 1:2, v/v) and allowed to sediment at room temperature for 3 h. The brown 

layer of the supernatant was removed and this step was repeated multiple times until 

white sediment of starch was obtained. The resulting starch was rinsed with deionized 

water (~400 mL) and filtered through a 70 μm nylon screen to remove the larger 

particles. The starch slurry was then neutralized to pH 7.0 with 0.2 % hydrochloric 

acid. The neutralized starch slurry was filtered through Whatman No.4 filter paper on 

a Buchner funnel and thoroughly washed on the filter with deionized water (~200 

mL). The resulting filter cake was oven dried at 30ᵒC for 2 days. The dried starch was 
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gently ground using a mortar and pestle and passed through a 60-mesh (250 μm) 

screen. 

2.2.2 Chemical composition  
2.2.2.1 Moisture content 

The moisture contents of starch samples were determined using AACC method 

44-15A (American Association of Cereal Chemists, 2000). Empty aluminum moisture 

pans with lids were placed in a preheated forced air oven (Isotemp® 615G, Fisher 

Scientific, Pittsburgh, PA, USA) at 130 ± 1°C for 1 h and then cooled in a desiccator 

containing active silica gel desiccant for 1 h prior to analysis. Samples of 2 g were 

weighed into the pre-weighed moisture pans, and then samples were placed in the 

oven and dried at 130 ± 1ᵒC for 1 h with the lids placed under the respective pans. The 

samples were then removed, covered with lids and transferred to the desiccator. The 

weight of the samples was measured after they reached room temperature. Three 

replicates were used for each determination and the moisture content was calculated as 

the percentage of weight loss of the initial sample using the following equation: 

Moisture (percent) = ௐଵିௐଶௐଵିௐ X 100       (2.1) 

where, Wo is the weight of the moisture pan and lid (g), W1 is the weight of sample, 

moisture pan and lid before drying (g), and W2 is the weight of sample in the pan and 

lid after drying (g). 

 2.2.2.2 Determination of ash content 
The ash contents of native starches were determined using AACC method 08-

17 (American Association of Cereal Chemists, 2000). The crucibles were placed in a 

pre-heated (550ᵒC) muffle furnace (Lab Heat, Blue Island, IL, USA) for 2 h, cooled in 
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a desiccator containing active silica gel desiccant for 45 min and then weighed. Starch 

samples (5 g) were transferred into pre-weighed dry crucibles, charred using a flame 

until the samples were carbonised and then placed in the muffle furnace (550ᵒC) for  

16 h until a light grey ash was obtained. The crucibles were cooled to room 

temperature in a desiccator and weighed. The ash content was calculated as the 

percentage weight of remaining material as follows: 

Ash (percent) = ௐమିௐబௐభିௐబ ×100              (2.2) 

where, W0 is the weight of the empty crucible and lid (g), W1 is the weight of sample, 

crucible and lid (g), and W2 is the weight of ash, crucible and lid (g). 

2.2.2.3 Determination of nitrogen content  
  The nitrogen content of native starches was quantitatively analysed using the 

Micro Kjeldahl method, the 46-13 AACC method (American Association of Cereal 

Chemists, 2000) with a few modifications. Samples (300 mg, dry weight basis (dwb)) 

were weighed on nitrogen-free papers and placed in digestion tubes of a Büchi 430 

(Büchi Laboratoriums-Technik AG, Flawill, Switzerland) digestion unit. Catalyst (2 

Kjeltabs M pellets (Fisher Scientific, Fair Lawn, NJ, USA)) and concentrated H2SO4 

(98 %, 20 mL) were added. The samples were digested until a clear yellow solution 

was obtained. After digestion, the samples were cooled, diluted with 50 mL of 

deionized water and then 40 % (w/w) sodium hydroxide (100 mL) was added. The 

released ammonia was steam distilled using a Büchi 321 distillation unit and collected 

into 4 % (w/v) boric acid (50 mL) containing 12 drops (~0.6 mL) of end point 

indicator (N-point indicator, Sigma-Aldrich, St. Louis, MO, USA). The distillation 

process was carried out until 150 mL of distillate were collected.  By titrating against 
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0.05 N sulphuric acid, the amount of ammonia in the distillate was determined. The 

percentage of nitrogen was calculated using the following equation: 

Nitrogen (percent) = (భିమ)×ே ×ଵସ.ௐ ×100       (2.3) 

where V1 is the volume (mL) of sulphuric acid to titrate sample, V2 is the volume 

(mL) of sulphuric acid to titrate blank, N is the normality of sulphuric acid, and W is 

the sample weight (g, dwb). 

2.2.2.4 Determination of apparent amylose content 
The amylose content of starches was determined according to the procedure 

outlined by Hoover and Ratnayake (2004). Starch (20 mg, dwb) was weighed into a 

round bottom screw cap tube and solubilized in 90 % dimethylsulfoxide/water (8 mL). 

The contents were vigorously vortexed and the tubes were left for 15 min at 85ᵒC with 

intermittent mixing at 5 min intervals in a water bath. After cooling to room 

temperature (~45 min), the contents were diluted to 25 mL in a volumetric flask with 

deionized water. An aliquot (1 mL) of the diluted solution was added to 40 mL of 

deionized water and 5 mL of I2/KI solution (2.5 mM I2 and 6.5 mM KI) and vortexed. 

The final volume was made up to 50 mL with deionized water in a volumetric flask. 

The mixture was kept in the dark for 15 min at room temperature. The absorbance was 

read at 600 nm using a UV-visible spectrophotometer (LKB Novaspec-4049 

spectrophotometer, LKB Biochrom Ltd., Cambridge, England). In order to avoid 

over-estimation of amylose content, a calibration curve was established using 

mixtures of pure amylose and amylopectin, fractioned from normal potato starch, over 

the range 0 to 100 % (Appendix I). 
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2.2.2.5 Determination of lipid content 
Surface and bound lipid content of the native starch samples were determined 

by the procedure outlined by Vasanthan and Hoover (1992a) and the amount of 

extracted lipid was expressed as a percentage of the initial sample weight. 

2.2.2.5.1 Surface lipid 
Surface lipids were extracted at ambient temperature (25-27ᵒC) by the addition 

of 100 mL of chloroform/methanol (2:1, v/v) to the starch sample (5 g, dwb). The 

contents were mixed under vigorous agitation using a magnetic stirrer for 1 h. The 

solution was filtered through Whatman No.4 filter paper into a 250 mL round 

bottomed flask. The residue was washed out thoroughly with small portions of 

chloroform/methanol solution and then retained for bound lipid extraction. The 

solvent mixture containing lipid was then evaporated to dryness using a rotary 

evaporator (Rotovapor-R110, Buሷ chi Laboratorimus-Technik AG, Flawill, 

Switzerland). The Bligh and Dyer (1959) method was used to purify crude lipid 

extracts before quantification.  

2.2.2.5.2 Bound lipid 
 Bound lipids were extracted using the residue from the chloroform/methanol 

extraction. The residue was transferred into a cellulose extraction thimble and refluxed 

with n-propanol/water (3:1, v/v) in a Soxhlet apparatus at 85ᵒC for 7 h. The extracted 

lipid with solvent was then evaporated to dryness using a rotary evaporator. The 

method of Bligh and Dyer (1959) was used to purify the crude lipid extracts before 

quantification. 
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2.2.2.5.3 Crude lipid purification (Bligh and Dyer method, 1959) 
The crude lipid extracts from surface and bound lipid extractions were washed 

using chloroform/methanol/water (1:2:0.8, v/v/v), thoroughly mixed and then 

transferred to a separatory funnel. Chloroform and water were then added to form a 

biphasic layer at room temperature. The chloroform layer containing the purified lipid 

was withdrawn into a pre-weighed round bottomed flask. Then evaporated to dryness 

in the rotary evaporator. The round bottomed flask with the purified lipid was then 

placed into forced-air oven and dried at 60ᵒC for 1 h, then cooled in a desiccator 

containing active silica gel desiccant for 45 min and then weighed. Lipid content was 

calculated using the formula given below: 

Lipid (percent) =ௐమିௐభௐబ  ×100       (2.4) 

where, Wo is the sample weight (g, dwb), W1 is the weight of the round bottomed 

flask (g), and W2 is the weight of the round bottomed flask and lipid after drying (g). 

2.2.2.6 Estimation of starch damage 
Starch damage was estimated using an enzyme digestion procedure, following 

the AACC standard method 76-30A (American Association of Cereal Chemists, 

2000). Starch samples (1 g, dwb) were measured into a 125 mL Erlenmeyer flask and 

then 50 mg of fungal amylase from Aspergillus oryzae (157 units/mg protein) was 

added. Acetate buffer (pH 4.6, 45 mL) at 30ᵒC was added to the Erylenmeyer flask 

and the contents were mixed with a glass rod to obtain a uniform suspension. The 

acetate buffer was prepared by diluting 4.1 g of anhydrous sodium acetate and 3 mL 

of glacial acetic acid in 1 L of deionized water. The pH was adjusted to the range of 

4.6 to 4.8. The contents were incubated at 30ᵒC in a water bath for 15 min. At the end 
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of incubation, the enzyme reaction was terminated by adding 3 mL of 3.68 N 

sulphuric acid and 2 mL of 12 % sodium tungstate solution, respectively. The contents 

were mixed thoroughly and allowed to stand for 2 min and then filtered through 

Whatman No. 4 filter paper. The initial few drops of filtrate were discarded and the 

amount of reducing sugar was determined using the method outlined by Bruner 

(1964). A calibration curve was derived from standard maltose solutions. The reagent 

blank was prepared using the same procedure without starch. Starch damage was 

estimated using the following equation: 

Starch damage (percent) =  ெ × ଵ.ସௐ × ଵ.ହ × 100       (2.5) 

where, M is the mg of maltose equivalents in the digest, W is the mg starch (dwb), 

1.05 is the molecular weight conversion of starch to maltose, and 1.64 is the reciprocal 

of the mean percentage maltose yield from gelatinized starch. The latter is an 

empirical factor which assumes that under the conditions of the experiment, 61 % of 

starch is converted to maltose. 

2.2.2.6.1 Determination of reducing value 
The soluble carbohydrate content was determined according to the method of 

Bruner (1964). A 3, 5-dinitrosalicylic acid (DNS) solution was prepared by dissolving 

2 g of DNS in warm (~70°C) 1 N sodium hydroxide. The contents were dissolved by 

rapid stirring for 3 min and the final volume was made to 100 mL with deionized 

water. Then, the solution was filtered through a medium porosity fritted glass filter 

and stored in an amber bottle at room temperature. For the determination of soluble 

sugar content, an aliquot of the sample (1 mL) was pipetted into a screw cap tube 

containing 2 mL of chilled DNS solution kept in an ice-water bath for 2-3 min. The 
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reaction mixture was then diluted to 4 mL with deionized water. The contents were 

vortexed and the tubes were kept in an ice-water bath until thoroughly chilled. The 

tubes were then heated in a boiling water bath for exactly 5 min for colour 

development with intermittent mixing. Tubes were returned to an ice-water bath until 

thoroughly chilled. Prior to color measurement, the final volume was adjusted to 12 

mL with deionized water and the contents were mixed by rapid swirling. Depending 

on the reducing sugar content, the absorbance was read using a UV-visible 

spectrophotometer (Novaspec-4049 spectrophotometer, LKB Biochrom Ltd., 

Cambridge, England) against a reagent blank. The relative absorbance corresponding 

to maltose concentrations ranging from 0.58 to 14.0 µM and 4.2 to 92.5 µM were 

measured at 540 and 590 nm, respectively. A calibration curve was generated from 

standard maltose solutions (5 mg/mL for 540 nm and 36 mg/mL for 590 nm) 

(Appendix II). The apparent sugar content was estimated from the appropriate 

regression equation of the standard curves. 

2.2.3 Granule morphology and particle size distribution 
2.2.3.1 Starch granule size distribution 

For measurements of granule size, a laser particle size analyser (Fritsch 

NanoTec “analysette 22”, Idar-Oberstein, Germany) supplied with Fritch MaS 

software was employed. The starch samples were suspended in water at ~7 % (w/w). 

Refractive indices of starch and water (as the dispersant) were 1.52 and 1.31, 

respectively. The laser obscuration in all the measurements was maintained between 

from 7-10 %. Particle size distribution was expressed in terms of 10th percentile 

[d(0.1)], median [d(0.5)], 90th percentile [d(0.9)] and surface weighted mean [D(3,2)]. 

The average size of a granule was expressed in terms of surface weighted mean value, 
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referring to the diameter of a sphere that has the same volume/surface area ratio. This 

was used to calculate the specific surface area (m2/g) with the assumption of spherical 

granules having a uniform density (1,500 kg/m3). Specific surface area (SSA) was 

calculated from median using the equation shown below: 

Specific surface area (m2/g) = ଵ.ହ × ௦௨ ௪௧ௗ         (2.6) 

2.2.3.2 Light microscopy 
Starch suspensions (in 1:1 v/v water:glycerol) were observed under bright field 

and cross-polarized light using a binocular microscope (Eclipse 80i microscope, 

Nikon INC, Melville, NY, USA) equipped with real time viewing software (Q-capture 

PROT, Surrey, BC, Canada). For the image capture, a QImaging digital camera 

(QICAM fast 1394, BC, Canada) was used. 

2.2.3.3 Scanning electron microscopy (SEM) 
Granular morphologies of starch samples were examined using a scanning 

electron microscope (FEI MLA 650 FEG, Brisbane, Australia) at an accelerating 

potential of 20 kV. The dried starch samples were thinly spread onto circular 

aluminum stubs with double-sided carbon adhesive tape and then carbon coated in a 

vacuum chamber. 

2.2.3.4 Confocal laser scanning microscopy (CLSM) 
In order to visualize the distribution of amylose and amylopectin, starch 

granules were stained with 8-Amino-1,3,6-pyrenetrisulfonic acid (APTS) according to 

the procedure outlined by Blennow et al. (2003). Starch samples (10-15 mg) were 

stained in 10 μL of freshly made APTS solution (20 mM APTS in 15 % acetic acid) 

and 10 µL of 1M sodium cyanoborohydride at 30°C for 15 h (Appendix III). The 

APTS-stained starch granules were thoroughly washed five times with deionized 
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water to remove the excess dye. The stained granules were finally suspended in 0.5 

mL of 50 % glycerol and then observed under a confocal laser scanning microscope 

(ECLIPSE 80i microscope, Nikon INC, Melville, NY, USA) equipped with a 40x/1.3 

oil objective lens. The excitation wavelength obtained with the diode laser was 488 

nm.  Laser power capacity and master gain were adjusted to maximum saturation. 

Images of optical sections of starch granules were taken and processed using the EZ-

C1 3.8 software (Nikon INC, Melville, NY, USA).   

2.2.4 Starch structure 
2.2.4.1 Determination of amylopectin chain length distribution 

Amylopectin chain length distribution of starches was determined by high 

performance anion exchange chromatography with pulsed amperometric detection 

(HPAEC-PAD), as described by Liu et al., 2007. The dispersion of starch (5 mg/mL) 

was carried out using 2 mL of 90 % dimethyl sulfoxide/water by stirring in a boiling 

water bath for 20 min and then cooling to room temperature. The contents were mixed 

with 6 mL of methanol, vortexed and placed in an ice water bath for 30 min. The 

resulting pellet was recovered by centrifugation (1,000 ×g for 12 min), and then 

dispersed in 2 mL of 50 mM sodium acetate buffer (pH 3.5) by stirring in a boiling 

water bath for 20 min. The contents were equilibrated at 37°C and then 5 μL of 

isoamylase (500 U/mL) was added. The sample was incubated at 37°C with gentle 

stirring for 22 h and the reaction was inactivated by placing the tube in a boiling water 

bath for 10 min.  Aliquots (200 μL) containing debranched amylopectin chains were 

cooled and then diluted with 150 mM NaOH (2 mL).  The content of the tube was 

filtered through a nylon syringe filter (0.45 μm) and injected into the HPAEC-PAD 

system using a 50 μL sample loop. The anion-exchange chromatography was carried 
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out in a system consisting of a Dionex DX 600 equipped with an ED50 

electrochemical detector with a gold working electrode, GP50 gradient pump, LC30 

chromatography oven and AS40 automated sampler (Dionex Corporation, Sunnyvale, 

CA, USA).   

A standard triple potential waveform was applied, with the following periods 

and pulse potentials: T1 = 0.40 s, with 0.20 s sampling time, E1 = 0.05 V; T2 = 0.20 s, 

E2 = 0.75 V; T3 = 0.40 s, E3 = -0.15 V. Data were collected and analysed using 

Chromeleon software, version 6.50 (Dionex). The weight fractions of dp 6-12, 13-24, 

25-36 and 37-58 were measured based on the area of peaks. The average chain length 

also was calculated.  Eluents A and B were prepared in deionized water with helium 

sparging; eluent A was 500 mM sodium acetate in 150 mM sodium hydroxide, and 

eluent B was 150 mM sodium hydroxide. The separation of linear components was 

performed on a Dionex CarboPacTM PA1 column (Dionex) with gradient elution: 0 

min, 40 % eluent A; 5 min, 60 % eluent A; 45 min, 80 % eluent A at a column 

temperature of 26°C and the flow rate was set to 1 mL/min.  A guard column 

(CarboPacTM PA1) was installed in front of the analytical column.   

2.2.4.2 Determination of short range molecular order by attenuated total 
reflectance Fourier transform infrared spectroscopy (ATR-FTIR) 
Short range molecular order was determined using a Digilab FTS 7000 

spectrometer (Digilab USA, Randolph, MA, USA) equipped with a thermoelectrically 

cooled deuterated triglycine sulfate (DTGS) detector using an attenuated total 

reflectance (ATR) accessory. For each measurement, 128 scans with a 4 cm-1 spectral 

resolution were co-added, before Fourier transform. An empty cell was used to obtain 

the background spectrum. Starch samples were mounted on the crystal in the sample 
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compartment. Original spectra were baseline corrected by subtracting a two-point 

linear function touching 1,200 and 800 cm-1 and then deconvoluted by using Win-IR 

Pro software (Bio-Rad, Mississauga, ON, Canada). A half-band width of 15 cm-1 and 

a resolution enhancement factor of 1.5 with Bessel apodization were employed.  

Intensity measurements at selective wavelengths (1,016, 1,022 and 1,047 cm-1) were 

performed on the deconvoluted spectra by recording the peak heights of the 

absorbance bands from the base line. IR absorbance values for each spectrum at 1,016, 

1,022 and 1,047 cm-1 were calculated per sample after baseline correction and 

deconvolution to estimate the degree of order of starch granules near the granule 

surface.  

2.2.4.3 Wide angle X-ray diffraction (WAXS)  
Relative crystallinity (RC) and polymorphic composition (proportion of A- 

and B-type unit cells) were determined using a Rigaku Ultima IV X-ray diffractometer 

(Rigaku Americas, The Woodlands, TX, USA) with operating conditions of target 

voltage at 40 kV, current at 44 mA, scanning range of 3–35° 2θ, scan speed of 

1.00°/min, step time of 0.95, divergence slit width of 0.5°, scatter slit width of 0.5°, 

sampling width of 0.03°, and receiving slit width of 0.3 mm. The moisture content of 

the starches was adjusted to ~21-23 % by storing in a desiccator over saturated K2SO4 

solutions (aw=0.97) at room temperature for 14-21 days prior to X-ray diffraction 

measurements. The IGOR pro 6.1 software (WaveMetrics Inc., Lake Oswego, OR, 

USA) was used to calculate the relative crystallinity (%) by a curve fitting procedure 

as described by Lopez-Rubio et al. (2008). A Gaussian function was used for curve 

fitting (Appendix IV).  
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2.2.4.3.1 Determination of B-polymorphic composition 
The proportion of B-polymorphic compositions of the samples was estimated 

by the method of Davydova et al. (1995). A series of starch mixtures was prepared 

with different proportions of pure potato starch (B-type, 0-100 %) and pure waxy corn 

starch (A-type, 100-0 %). Moisture content was adjusted to ~20 %.  The diffractogram 

of each mixture was obtained and the ratio of peak area at 5.54° 2θ to the total 

crystalline area was calculated. A calibration curve was derived by plotting the B-

polymorphic content versus the corresponding ratio of peak area at 5.54° 2θ to the 

total crystalline area. 

2.2.4.4 13C Cross polarization magic angle spinning nuclear magnetic resonance 
spectroscopy (13C CP/MAS NMR)  
The solid state 13C CP/MAS NMR spectra were recorded using a Bruker 

AVANCE II 14.1T (600 MHz) NMR spectrometer (Billerica, MA, USA) operating at 

frequencies of 600.33 MHz for 1H and 150.96 MHz for 13C.The data interpretation 

was performed with Bruker Topspin 2.0 and MestRe Nova (Mestrelab research SL, 

Santiago De Compostela, Spain). Experiments were performed using a Bruker 3.2 mm 

MAS probe (triple-tuned probe HCN (D) or 1H/19F/13C). The samples were stored in a 

desiccator over saturated K2SO4 solutions (aw=0.98) at room temperature (25°C) for 

14-21 days and the moisture content was adjusted to 21-23 %. The samples were spun 

at 20 kHz and the temperature was maintained constant at 25°C. The cross-

polarization contact time was 2 ms for all experiments and the Hartmann-Hahn 

condition was 62.5 kHz. Scans (1,024) were collected with a 3 s recycling delay at the 

magic angle (54.7°). 13C chemical shifts were referenced to tetramethylsilane (TMS) 

with adamantane as an external secondary reference. The 13C CP/MAS NMR spectra 

were peak fitted by using DMfit #20110512 software available on the 
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NMR@CEMHTI website (http://nmr.cemhti.cnrs-orleans.fr/dmfit/). The spectral 

analysis involved the decomposition of the native starch spectrum into its respective 

amorphous (single chain components) and ordered sub spectra (double helical 

components, DHC). The percentage of DHC was calculated as described by Tan et al. 

(2007). The ordered sub-spectrum was acquired by subtracting the sub-spectrum of 

the amorphous portion from the native starch spectrum (Appendix V). Within a starch 

sample, the relative proportions of amorphous, single helical and double helical 

components were estimated by comparing the area of the C1 signal in the ordered sub-

spectrum relative to the area of the C1 signal. DHC of starch was calculated using the 

equation shown below:  

(ݐ݊݁ܿݎ݁) ݔℎ݈݁݅ ݈ܾ݁ݑܦ =   ௧ ଵ ௦௦  ௧ ௗௗ ௦௨௦௧௨   ௧ ଵ ௦௦  ௧ ௧௩ ௦௧௨ ×100  (2.7) 

2.2.5 Starch properties 
2.2.5.1 Swelling factor (SF) 

The SFs of starches were determined by the method of Tester and Morrison 

(1990). This method accounts only for the intragranular water and therefore 

corresponds to the true swelling factor at a given temperature. Starch samples (50 mg, 

dwb) were weighed into screw cap tubes, 5 mL of deionized water was added to each 

and tubes were vortexed. SF was determined in the temperature range of 60-90°C. The 

tubes were placed in a shaking water bath at a particular temperature for 30 min, 

intermittently inverted several times and then cooled rapidly to 20°C in an ice water 

bath. After cooling, 0.5 mL of blue dextran (Pharmacia Mw 2 × 106, 5 mg/mL) was 

added, and the contents were mixed by inverting the tubes multiple times. The tubes 

were then centrifuged at 1,500 ×g for 10 min and the absorbance value of the 

supernatant was measured at 620 nm. A reference sample was prepared using the 
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same procedure without starch. The SF value represents the ratio of the volume of the 

swollen starch granules to the volume of the dry starch. Calculation of SF was based 

on starch weight corrected for moisture content, assuming a density of 1.4 g/mL.  

Free or interstitial-plus-supernatant water (FW) is given by:    

FW (mL) = 5.5(AR/ AS) - 0.5        (2.8) 

Ar and As represent the absorbance values of the reference and sample, respectively. 

The initial volume of the starch (VO) of weight W (mg) is 

V0 (mL) = W/1400        (2.9) 

and the volume of absorbed intragranular water (V1) is thus 

V1 = 5.0 – FW      (2.10) 

Hence, the volume of the swollen starch granules (V2) is 

V2 = V0 + V1    and      (2.11) 

SF = V2/V0      (2.12) 

Therefore, SF can be expressed by the single equation shown below: 

SF = 1 + ሼ(7700 ⁄ݓ )×ሾ(ܣ௦ −  ௦ሿሽ      (2.13)ܣ/(ܣ

2.2.5.2 Amylose leaching (AML)  
Starch samples (20 mg, dwb) in water (10 mL) were heated at a temperature 

range of 60-90°C in volume-calibrated sealed tubes for 30 min; the contents were 

mixed every 5 min to re-suspend the starch slurry. The tubes then were cooled to 

ambient temperature (25-27°C) and centrifuged at 2,000 ×g for 10 min. The 
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supernatant liquid (1 mL) was taken and its amylose content was determined 

according to the procedure outlined by Hoover and Ratnayake (2004). Amylose 

leaching was reported as the percentage of amylose leached per 100 g of dry starch. 

The reference sample was prepared using the same procedure without starch. 

2.2.5.3 Differential scanning calorimetry (DSC) 
DSC measurements of starch samples were carried out using a Mettler Toledo 

differential scanning calorimeter (DSC1/700/630/GC200; Greifensee, Switzerland) 

equipped with a thermal analysis data station and data recording software (STAR@ 

SW 9.20). Starch (3 mg, dwb) was weighed accurately into an aluminum DSC pan, 

and then deionized water (11 μL) was added directly to the starch using a 

microsyringe. The pans were hermetically sealed, reweighed and kept overnight at 

room temperature to attain an even distribution of water prior to DSC analysis. The 

scanning temperature range was 30-120 or 20-110 at a heating rate of 10°C/min. The 

instrument was calibrated using indium as a standard. In all measurements, an empty 

aluminum pan was used as a reference. During the scans, the space surrounding the 

sample chamber was flushed with dry nitrogen to avoid condensation. The DSC 

endotherm of gelatinization was characterized by To, Tp, Tc, melting interval (Tc-To) 

and ΔH. The enthalpy of gelatinization (ΔH) was determined by numerical integration 

of the area between the thermogram and a base line under the peak and was expressed 

in terms of Joules per gram (J/g) of dry starch. Three replicates per sample were 

analysed. 

 To study the retrogradation characteristics, starch (3 mg) and deionized water 

(11 µL) were added in the DSC pans, which were then sealed, reweighed and left 

overnight at room temperature. DSC runs were performed from 20 to 110°C at a 
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heating rate of 10°C/min. The heated pans were then cooled to room temperature and 

stored at 4°C for 1 day and then at 25°C for 2 to 25 days. After this time period, the 

pans were left to equilibrate for 1 h at room temperature and then rescanned under the 

operating conditions described above. An empty pan was used as reference. The 

transition temperatures (To, Tp, Tc) and enthalpy of retrogradation (ΔHr) were 

determined from the retrogradation endotherm. 

2.2.5.4 Pasting properties  
Pasting properties of starch samples were analysed using a rapid visco 

analyzer (Model RVA-4, Newport Scientific Pty. Ltd., Warriewood, NSW, Australia) 

according to method 76-21 of the AACC (American Association of Cereal Chemists, 

2000). Each starch sample (3 or 2.5 g, corrected to 14 % moisture content) was added 

with 25 mL of deionized water to prepare the starch suspension. The starch suspension 

was stirred at 960 rpm for the first 10 s, then 160 rpm for the remainder of the 

experiment. Starch suspensions were kept at 50°C for 1 min, heated to 95°C at 

6°C/min, held at 95°C for 5 min, cooled to 50°C at 6°C/min, and then held at 50°C for 

2 min. The peak viscosity (PV), viscosity at trough (minimum viscosity, MV), and 

final viscosity (FV) were determined. The breakdown (BV, refers to PV minus MV) 

and setback (SB, refers to FV minus MV) were calculated. 

2.2.5.5 Turbidity Measurements  
A 2 % aqueous suspension (200 mL) of starch near neutral pH was prepared 

and immersed in a boiling water bath for 1 h with continuous gentle stirring, and then 

cooled for 50 min at 25°C. The turbidity of the suspension was determined by 

measuring transmittance at 640 nm using a UV-visible spectrophotometer (Spectronic 

601, Milton Roy Company, Rochester, NY, USA) against a water blank. The turbidity 

development was followed by storing the remaining starch pastes for 1 day in a 
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refrigerator at 4°C followed by 2-20 days at 25°C. Freshly gelatinized (day 0) and 

stored (24 h at 4°C) starch pastes of tepary bean and lablab bean were freeze-dried and 

their morphology was examined by scanning electron microscopy under the 

conditions described for native starches. 

2.2.5.6 Acid hydrolysis 
Starch samples were suspended in 2.2 M hydrochloric acid (1 g, dwb, 40 mL) 

at 35°C in a shaking water bath (G76D, New Brunswick Scientific, Edison, NJ, USA) 

for a period ranging from 0-25 days.  The contents were gently vortexed every day in 

order to resuspend the deposited starch granules. Aliquots (1 mL) taken at specific 

time intervals were then neutralized with 2.2 M sodium hydroxide and centrifuged 

(2,000 ×g) for 10 min. An aliquot of the supernatant was analyzed for the solubilized 

carbohydrates by Bruner’s method (1964). The relative absorbances corresponding to 

D-glucose concentrations ranging from 0.55 to 13.88 µM and 4 to 88 µM were 

measured at 540 and 590 nm, respectively. A calibration curve was generated from 

standard glucose solutions (2.5 mg/mL for 540 nm and 18 mg/mL for 590 nm) 

(Appendix VI). The degree of hydrolysis was reported by expressing the solubilized 

carbohydrates (Jane & Robyt, 1984) as a percentage of the initial dry starch. 

2.2.5.6.1 Preparation of acid thinned starches 
The native starches (1g, dwb) were lintnerised by suspending in 2.2 N 

hydrochloric acid (40 mL) at 35 °C for 1.5, 3, 6, 12, 24, and 72 h in a shaking water 

bath (G76D, New Brunswick Scientific, Edison, NJ, USA). After hydrolysis, 

undissolved residues were recovered by centrifugation (2,000 ×g, 12 min) and then 

washed three times with deionized water. Suspensions were neutralized with 0.1 M 

sodium hydroxide, centrifuged and washed twice with deionized water to remove 
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sodium chloride. The resultant pellet was resuspended in acetone. The mixture was 

then centrifuged (2,000 ×g, 12 min) and the pellet was air-dried at room temperature. 

The dried samples were grounded using a mortar and sieved through a 60-mesh (250 

µm) screen. The control for each starch source was prepared without acid, but 

subjected to the above experimental conditions; control samples were run 

concurrently. 

2.2.6 Starch digestibility  
2.2.6.1 Enzymatic hydrolysis by porcine pancreatic α-amylase 

A crystalline suspension of porcine pancreatic α-amylase (PPA) in 2.9 M 

saturated sodium chloride containing 3 mM calcium chloride was used for enzymatic 

digestibility studies on native starches. Pulse starches (20 mg) were suspended in 

deionized water (5 mL) and then 4 mL of phosphate buffer (100 mM, pH 6.9) 

containing sodium chloride (6 mM) was added. The slurry was then gently vortexed 

and pre-warmed for 30 min at 37°C before the addition of PPA suspension (12 

units/mg of starch). The samples were analysed after 3, 6, 9, 12, 24, 48 and 72 h of 

incubation at a constant temperature (37°C) in a shaking water bath (New Brunswick 

Scientific, G76D, Edison, NJ, USA). Aliquots (1 mL) were taken at specific time 

intervals and the digestion reaction was stopped by adding 2 mL of 95 % ethanol and 

centrifuged (2,000 ×g) for 5 min. Aliquots of the supernatant were analysed for 

reducing sugar content according to the Bruner’s method (1964). A calibration curve 

was derived from standard maltose solutions (5 mg/mL for 540 nm and 36 mg/mL for 

590 nm). The controls for each starch source were prepared without enzyme, but 

subjected to the above experimental conditions; control samples were run 

concurrently. The degree of hydrolysis was calculated to determine the amount of 
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reducing sugars released in the supernatant, expressed as mg maltose equivalents 

released per 100 mg of dry starch (Bruner, 1964). The degree of hydrolysis was 

calculated using the equation shown below: 

(ݐ݊݁ܿݎ݁) ݏ݅ݏݕ݈ݎ݀ݕℎ ݂ ݁݁ݎ݃݁ܦ = ோ௦ௗ ௗ௨ ௦௨ ௦ ௧௦ () ×.ଽହூ௧ ௦௧ ௪௧ ()  ×100 

          (2.14)    

2.2.6.2 In vitro starch digestibility and expected glycemic index (eGI) 
The in vitro digestibility of starches was determined following method 32–40 

of the AACC (American Association of Cereal Chemists, 2000). Granular starches 

(100 mg) were incubated with pancreatin (10 mg) from porcine pancreas and 

amyloglucosidase (12 U) in 4 mL of sodium maleate buffer (100 mM, pH 6.0) at 37°C 

with continuous shaking (200 strokes/min) for 30 min to 30 h. Enzyme solutions were 

freshly prepared prior to each digestion. After incubation, aliquots (0.1 mL) were 

withdrawn at specific time intervals, and mixed with 4 mL of aqueous ethanol (80 %) 

to stop the enzyme activity. Then, the contents were centrifuged at 2,000 ×g for 10 

min. Aliquots of the supernatant were analysed for glucose content using a glucose 

oxidase–peroxidase assay kit (K-GLUC) and data were converted to starch content by 

multiplying by 0.9 (the stoichiometric constant for starch from glucose contents). 

Starch hydrolysed was expressed as a percentage of the initial dry starch weight.  

Starch fractions were classified based on the rate of hydrolysis: rapidly 

digestible starch (RDS, digested within 30 min), slowly digestible starch (SDS, 

digested between 30 min and 16 h) and resistant starch (RS, undigested after 16 h) 

(Chung et al., 2008). Resistant starch was calculated by subtracting both RDS and 

SDS fractions from the total starch (TS) content.  The total starch content of each 
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starch was determined by the total starch assay kit (K-TSTA). Total starch was 

reported as a percentage on a dry weight basis. 

The hydrolysis index (HI) was reported as the total glucose released from the 

starch compared to that amount of glucose released from a standard material (white 

bread) (Granfeldt et al., 1992). It was calculated as the relation between the area under 

the hydrolysis curve (AUC, 0 - 16 h) of each starch sample and the corresponding area 

obtained from white bread, expressed as a percentage.  The expected glycemic index 

(eGI) was estimated using the equation as described by Granfeldt et al. (1992). eGI 

was determined from HI using the equation shown below: 

eGI = 8.198 + 0.862 HI      (2.15) 

The residues (of undigested starch) obtained at various time intervals of 

hydrolysis (30 min, 2 h, and 24 h) were washed three times with deionized water and 

then centrifuged (2,000 ×g) for 12 min; the resultant pellet was resuspended in 

acetone. The mixture was then centrifuged (2,000 ×g) for 12 min and the pellet air-

dried at room temperature. The controls for each starch source were prepared without 

enzyme, but subjected to the above experimental conditions; control samples were run 

concurrently.   

2.2.6.2.1 Determination of glucose content (glucose oxidase–peroxidase assay) 

A concentrated glucose oxidase-peroxidase (GOPOD) reagent buffer [1.0 M, 

pH 7.4, p-hydroxybenzoic acid and sodium azide (0.4 %, w/v)] was diluted to 1 L 

with deionized water.  Then, the GOPOD reagent enzymes (>12000 U, glucose 

oxidase plus peroxidase) were dissolved in 20 mL of freshly prepared GOPOD buffer 

and transferred to the bottle containing the remainder of the GOPOD buffer solution.  
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Aliquots (100 μL) of the supernatant containing glucose plus GOPOD reagent (3 mL) 

were incubated at 50°C for 20 min. Finally, the absorbance (∆A) of sample was 

measured at 510 nm against a reagent blank. Glucose content was determined using 

the following formula: 

Glucose (μg /0.1 mL) = ∆ ௦∆ ௨௦ ௦௧ௗௗ (ଵ ఓ) ×100     (2.16) 

2.2.7 Starch modification 
 2.2.7.1 Annealing 

Starch slurries (1:4, w/w, starch (dwb): water) were incubated in sealed glass 

containers in an incubator for 24, 48 or 72 h at 10°C below the onset gelatinization 

temperature of their native counterparts. At the chosen annealing temperature, 

excessive melting of the crystallite is avoided.  After the incubation period, the 

annealed samples were centrifuged (2,000 ×g) for 10 min at room temperature and 

supernatant was decanted (no amylose or soluble carbohydrates were detected in the 

supernatant). The annealed starches were washed twice with deionized water and 

acetone, and recovered by centrifugation (2,000 ×g) for 10 min. The samples were 

then air dried for 30 h. In the text, 24H_ANN, 48H_ANN and 72H_ANN represents 

the time of incubation at 10°C below the onset gelatinization temperature for each 

sample subjected to annealing treatment. Native starch samples subjected to 72 h of 

annealing treatment were used to determine the structure and properties of annealed 

starches.  

Acid thinned and cross-linked starches were annealed by incubating starch 

suspensions (1:4, w/w, starch (dwb): water) for 72 h at 6°C below the onset 

gelatinization temperature. After the incubation period, samples were centrifuged, 



 

103 

 

washed twice with deionized water and acetone, and recovered by centrifugation. The 

samples were then air dried, ground and screened through a 60- mesh (250 µm) sieve.   

2.2.7.2 Cross-linking 
  Starches cross-linked with sodium trimetaphosphate (STMP) and sodium 

tripolyphosphate (STPP) were prepared according to the procedure outlined by Woo 

and Seib (2002), with a few modifications. Starch samples (50 g, dwb) were mixed in 

deionized water (70 mL) containing STMP [5.9 g, 11.9 %, starch weight basis (sb)], 

STPP (0.06 g, 0.12 %, sb) and sodium sulfate (5.0g, 10 %, sb) at room temperature. 

The pH of the slurry was adjusted to 11.5 with 0.5 M sodium hydroxide and the 

contents were stirred continuously to avoid gelatinization of the starch. The slurry was 

then warmed to 45°C and kept at this temperature for 3 h in a shaking water bath; the 

contents were stirred at 10 min intervals during the 3 h reaction period. After the 

reaction period, the slurry was neutralized to pH 6.5 with 0.5 M hydrochloric acid. 

The cross-linked starch was recovered by centrifugation, washed with deionized water 

multiple times (7X, 125 mL) and dried at 30°C in forced-air oven. The dried samples 

were ground using a mortar and pestle and sieved through a 60-mesh (250 µm) screen. 

The controls for each starch source were prepared without STMP/STPP, but subjected 

to the cross-linking conditions; control samples were run concurrently. 

2.2.7.2.1 Determination of degree of substitution and reaction efficiency  
The phosphorus contents of control and cross-linked starches were determined 

using inductively coupled plasma-optical emission spectrometry (ICP-OES, Optima 

5300 DV, Perkin Elmer, Waltham, MA, USA). The starch samples were prepared 

according to modified methods of Anderson (1996) and Hong et al. (2015). Starch 

samples (50 mg, dwb) were weighed into hard glass screw-cap tubes (calibrated at the 
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10 mL level) and 1.0 mL of 70 % (v/v) nitric acid was added. The tubes were then 

heated for 3 h at 140°C in an oil water bath. The contents were cooled to room 

temperature and diluted with MilliQ water to a final volume of 10 mL. All 

measurements were performed in triplicate. The degree of substitution (DS) was 

estimated on the basis of the amount (in g) of incorporated phosphorus in 100 g of 

starch. The incorporated phosphorus (in g) results in a difference in the level of 

phosphorous (ΔP) in cross-linked and control samples. The DS of cross-linked 

starches were calculated using the following equation described by Paschall, (1964): ܵܦ =  ଵଶ × ଵିଵଶ ×  =  ଵଶ × ∆ଷଵ ିଵଶ × ∆     (2.17) 

Where, nP is the moles of incorporated phosphorus in 100 g starch (np = ΔP/31), 162 

is the molecular weight of anhydroglucose, 100 is the dry starch sample weight (in g), 

and 102 is the molecular weight of NaPO32−. 

The reaction efficiency (RE) was calculated by the ratio of the actual DS to the 

theoretical DS. The theoretical DS was calculated with the assumption that all STMP 

reagents added would have reacted with starch. The RE was calculated as follows 

(Kweon et al., 1996): ܴܧ =  ௧௨ ௗ  ௦௨௦௧௧௨௧  ௦௨௦  ௌ்ெ ೌೝೞೌೝ௪௧ () ×100    (2.18) 

2.2.8 Statistical analysis 
Analytical determinations for the samples were done in triplicate using 

samples from a single biological lot. Mean values and standard deviations were 

reported for all data. An independent sample test was used to determine the 

differences between two groups. A one-way analysis of variance (ANOVA) was 

performed to determine differences between more than pairs of groups and the mean 
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separation was analysed using Turkey’s HSD test (p < 0.05). Analyses were 

performed using SPSS 16.0 for Windows (SPSS Inc., Chicago, IL, USA). 
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Chapter 3 

Results and Discussion 

3.1 Composition, structure, morphology and physicochemical properties of 
lablab bean, navy bean, rice bean, tepary bean and velvet bean starches 

3.1.1 Composition  
 Data on the yield and composition of pulse starches are presented in Table 3.1. 

The purity of the starches was judged on the basis of composition [low nitrogen (0.02 

to 0.13 %) and low ash (0.06 to 0.58 %)] and microscopic observation (absence of any 

adhering protein) (Figures 3.1k-o). The yield on a whole seed basis of pure starch was 

20.6 to 29.9 % (Table 3.1); this was in the range reported for other pulse starches, 

being 12.3 to 49.3 % (Hoover et al., 2010). The nitrogen content was from 0.02 to 

0.13 % (Table 3.1). The low nitrogen content indicated the absence of proteins or 

lipids associated with endosperm proteins. The free and bound lipids ranged from 0.03 

to 1.2 %, and 0.40 to 0.52 %, respectively (Table 3.1). The apparent amylose content 

was 22.1 to 32.1 % (Table 3.1); this was within the range reported for other pulse 

starches, being 11.6 to 65.0 % (Hoover et al., 2010). Minimal damage was observed 

for all starches.    

3.1.2 Granule characteristics 
 The birefringence patterns of the pulse starches are presented in Figure 3.1. 

The birefringence patterns (interference cross known as “maltese cross”) under 

polarized light reflects the radial arrangement of amylopectin crystallites within the 

granule at right angles to the surface with their single reducing end group toward the 

hilum. The hilum at the center of the maltese cross is the original growing point of the 

granule. Birefringence implies that there is a high degree of molecular orientation,                       
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Table 3.1: Chemical composition (%) of pulse starches1 

Starch source 
  

Yield  
  

Ash  
  

Nitrogen  
  

Apparent 
 amylose content 2 
  

Starch damage  
  

Lipid  

Surface 3 Bound 4 

Lablab bean 29.9±0.5a 0.14±0.00a 0.04±0.01a 32.1±0.3a 0.004±0.001a 0.10±0.02ab 0.44±0.03ab 

Navy bean 24.3±0.3b 0.35±0.07b 0.06±0.01ac 26.5±0.2b 0.007±0.001b 0.05±0.01a 0.51±0.01a 

Rice bean 20.6±0.6c 0.58±0.00c 0.13±0.01b 22.1±0.3c 0.011±0.001c 0.03±0.02a 0.52±0.03a 

Tepary bean 27.9±0.4a 0.11±0.04a 0.02±0.02a 30.0±0.2d 0.005±0.001ab 0.12±0.02b 0.50±0.01a 

Velvet bean 25.2±0.4b 0.06±0.10a 0.05±0.01a 27.9±0.4e 0.007±0.000ab 0.08±0.01ab 0.40±0.01b 
1All data represent the mean of triplicates. Values followed by different superscripts in each column for each starch source are significantly different (P 
< 0.05) by Tukey’s HSD test.                                                                                                                                                                                              
2Determined by iodine binding without removal of free and bound lipids.                                                                                                                   
3Lipid extracted from the starch by chloroform–methanol (CM) 2:1(v/v) at 25°C (mainly free lipids). 
4Lipid extracted by hot 1-propanol:water (PW) 3:1(v/v) from the residue left after CM extraction (mainly bound lipids).
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Figure 3.1: Granule morphology of pulse starches. (a-e): Polarized light microscopy (× 200) of lablab bean (a), navy bean (b), rice bean 

(c), tepary bean (d), and velvet bean (e). Arrows 1, 2, and 3 represent maltese cross (intensities and patterns), voids, and 

quadrants, respectively. (f-j): Bright field microscopy (× 400) of lablab bean (f), navy bean (g), rice bean (h), tepary bean (i), 

and velvet bean (j). Arrow 4 indicates different types of surface cracks. (k-o): Scanning electron microscopy (× 10,000) of 

lablab bean (k), navy bean (l), rice bean (m), tepary bean (n), and velvet bean (o). (p-t): Confocal laser scaning microscopy 

(× 600) of lablab bean (p), navy bean (q), rice bean (r), tepary bean (s), and velvet bean (t). Arrows 5 and 6 represent the 

intensity of APTS flouresence in the hilum and peripheral regions, respectively. The dark central cracked region of tepary 

bean is indicated by arrow 7 (in panel s). 
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Figure 3.2: (a-b): Cracking pattern in rice bean (a) and tepary bean (b) starches visualized by bright field microscopy (× 600).                                                  

         (c-d): Cracking pattern in rice bean (c) and tepary bean (d) starches visualized by confocal laser scanning microscopy (× 600).                               

 a 
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without reference to the three-dimensional crystalline order. All granules of velvet 

bean (VB) (Figure 3.1e) exhibited strong birefringence (reflected in compactly packed 

quadrants [depicted by arrow 1]). This is indicative that amylopectin crystallites in all 

VB granules exhibit a similar molecular orientation. However, in navy bean (NB, 

Figure 3.1b), rice bean (RB, Figure 3.1c) and tepary bean (TB, Figure 3.1d), some 

granules exhibited strong birefringence, whereas others exhibited weak birefringence 

with large voids (arrow 2) at the granule center and less compactly packed quadrants 

(arrow 3). Voids and disorganized quadrants were more pronounced in RB (Figure 

3.1c). However, in lablab bean (LB), weak birefringence intensity was observed in 

many of its granules (Figure 3.1a). This could be attributed to lower amylopectin 

content (Table 3.1) and/or disordered AP chains in LB.  

 Bright field microscopy showed the presence of cracks on granules of RB 

(Figure 3.1h), NB (Figure 3.1g), TB (Figure 3.1i) and LB (Figure 3.1f). The extent of 

cracking among granules of each starch source followed the order: RB>TB>NB>LB. 

A larger magnification of the cracking pattern in RB and TB is illustrated in Figure 

3.2. Cracks were not seen among VB granules (Figure 3.1j). Cracks have also been 

reported in other pulses (Ambigaipalan et al., 2011) and transgenically modified 

potato starches (Blennow et al., 2003). Cracks have been attributed to low granule 

integrity resulting from sub-optimal packing of amylopectin double helices (Blennow 

et al., 2003). Bright field microscopy showed wide variations in granule shape (oval, 

round, elongated, elliptical and multilobed) and size among starches (Figure 3.1k-o). 

Growth rings were clearly visible among granules of RB (Figure 3.1m) and NB 

(Figure 3.1l), but were hardly discernible in granules of VB (Figure 3.1o), LB (Figure 

3.1k) and TB (Figure 3.1n). Scanning electron microscopy which provides 
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topographical data on the exposed surfaces of the starch granules showed smooth 

surfaces on VB, and some indentations on NB, RB, LB and TB (Figure 3.1k-o). These 

features were more pronounced in RB (Figure 3.1m). 

CLSM images of LB (Figure 3.1p), NB (Figure 3.1q) and RB (Figure 3.1r) 

showed that the region surrounding the elongated hilum was intensely stained, and in 

RB, staining occurred in different locations near the vicinity of the hilum (Figure 

3.1r). This suggests that cracks in RB granules (Figures 3.1r and 3.2a) may have 

disorganized the arrangement of starch chains surrounding the hilum region. However, 

in LB, NB and RB, the peripheral regions (arrow 6) were moderately stained 

compared to their hilum regions (Figures 3. 1p,1q,1r). Growth rings were not visible 

in LB (Figure 3.1p) and NB (Figure 3.1q) but were clearly visualized in RB (Figure 

3.1r). In TB (Figure 3.1s), some granules exhibited intense staining in both the 

vicinity of the elongated hilum (arrow 5) and peripheral regions (arrow 6), whereas in 

other granules, the hilum region was stain free (arrow 7) with the peripheral regions 

moderately stained. VB differed from the above starches, with respect to the shape of 

the hilum (which appeared as an intensely stained small dot) (Figure 3.1t). VB 

exhibited moderately stained peripheral regions and growth rings compared to its 

hilum regions (Figure 3.1t). Bright fluorescence near the vicinity of the hilum region 

is indicative of a high concentration of amylose, since amylose is more heavily 

labelled with APTS than in amylopectin because it contains a higher molar ratio of 

reducing ends per glucose residue than does amylopectin (Blennow et al., 2003). The 

bright fluorescence in the hilum region could also reflect the presence of a higher 

concentration of amylopectin reducing ends (Blennow et al., 2003). The CLSM 
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images suggest that in all the starches, there is a high concentration of reducing ends 

near the hilum region. 

3.1.3 Particle size analysis  
 Particle size analysis of the pulse starches are presented in Table 3.2. The 

arithmetic mean diameter and specific surface area followed the order: 

RB>NB>VB>LB~TB and TB~LB>VB>NB>RB, respectively. RB starch granules 

showed the highest mean granule diameter (42.9 µm) and widest granule size 

distribution, while LB and TB had the smallest mean granule diameter (21.9 µm) and 

the smallest granule size distribution. No comparison is possible with the granule 

dimensions of pulse starches reported in the literature (Hoover et al., 2010) due to the 

following reasons: 1) the width and length of starch granules have been solely 

obtained from scanning electron micrographs, 2) in many cases, the dimensions 

reported do not specify whether the width or length was measured; and 3) lack of data 

on surface area. 

3.1.4 Amylopectin chain length distribution (APCLD)  
 The amylopectin chain length distribution of pulse starches are presented in 

Table 3.3. The normalized APCLD and the average chain length (CLതതതത) of the 

debranched AP of the pulse starches showed marginal differences among the starches. 

The proportion of chains with dp 6-12 (18.0-21.3), dp 13-24 (50.9-55.0), dp 25-36 

(15.6-18.5), dp 37-50 (9.3-10.8) and CLതതതത  (20.6-21.3) were in the range reported for 

grass pea, smooth pea, mung bean and lentil starches (Hoover et al., 2010).
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Table 3.2: Particle size analysis of pulse starches1 

1All data represent the mean of triplicates. Values followed by different superscripts in each column for each starch source are significantly different (P 
< 0.05) by Turkey’s HSD test.                                                                                                                                                                                                     
3,4Particle size is defined in terms of 10th percentile [d(0.1)], median [d(0.5)], 90th percentile [d(0.9)] and surface weighted mean [D(3,2)]. Surface 
weighted mean is an average of particle size.                                                                                                                                                                        
5Specific surface area (SSA) was calculated from the median (Riley et al., 2006) using the equation shown below (where 6 is a constant for spherical 
particles).  Specific surface area (m2/g) = ଵ.ହ × ୱ୳୰ୟୡୣ ୵ୣ୧୦୲ୣୢ ୫ୣୟ୬  .                                                                                                                                              
6Represents average length to breadth of a particle.

Starch source 

Arithmetic 
mean 

diameter (μm) d(0.1) (μm)3 d(0.5) (μm)3 d(0.9) (μm)3 

Surface 
weighted    

mean D(3,2)4 

Specific 
surface area 

(m2/g)5 Elongation6

Lablab bean 21.9±0.1ad 4.6±0.0a 22.4±0.0a 33.8±0.4a 10.4±0.0a 0.38±0.00a 1.5±0.00ab 

Navy bean 30.8±0.1b 10.1±0.3b 30.1±0.1b 46.9±0.1b 13.4±0.1b 0.30±0.00b 1.3±0.00a 

Rice bean 42.9±3.0c 19.0±0.0c 41.1±0.1c 59.8±0.4c 17.4±0.1c 0.23±0.00c 1.4±0.00ab 

Tepary bean 21.9±1.0d 6.2±0.1d 21.6±0.1d 32.5±0.0d 10.3±0.1a 0.39±0.00a 1.6±0.16ab 

Velvet bean 28.4±1.0b 7.8±0.5e 27.9±0.1e 42.6±0.5e 12.3±0.0d 0.33±0.00d 1.4±0.00ab 
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 Table 3.3: Amylopectin chain length distribution of pulse starches determined by high performance anion exchange chromatography 
with pulsed amperometric detection (HPAEC-PAD)1 

1All data represent the mean of triplicates. Values followed by different superscripts in each column for each starch source are significantly different   
(P < 0.05) by Turkey’s HSD test.                                                                                                                                                                                               
2dpn: indicates degree of polymerization. Total relative area was used to calculate the percent distribution.                                                                
3Average chain length (CLതതതത) was calculated using Σ (dpn × peak area)/Σ (peak arean).

Starch source 

  

Degree of polymerization2 (dp) % 

 തതതത 3ۺ۱ 37-50 25-36 13-24 6-12
Lablab bean 18.8±1.1a 55.0±0.5a 15.6±0.4a 10.6±0.2a 20.8±0.2ab 

Navy bean 19.2±0.6a 52.9±1.3ab 17.1±0.5ab 10.8±0.2a 21.1±0.1ab 

Rice bean 21.3±1.0a 51.4±0.9b 17.3±0.4b 10.0±0.3ab 20.7±0.0a 

Tepary bean 21.2±1.3a 50.9±1.1b 18.5±0.1b 9.3±0.1b 20.6±0.1a 

Velvet bean 18.0±1.0a 53.0±0.2ab 18.4±0.5b 10.7±0.3a 21.3±0.2b 
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3.1.5 Attenuated total reflectance Fourier transform infrared spectroscopy           
(ATR-FTIR)  

The ATR-FTIR spectral data is presented in Table 3.4. The ATR-FTIR 

spectrum of starch has been shown to be sensitive to changes in structure on a 

molecular level (based on short range order) (van Soest, et al., 1995; Sevenou, et al., 

2002). Short range order reflects double helical order as opposed to long range order, 

which is related to the packing of double helices (detected by X-ray diffraction). The 

penetration depth of the IR beam is about 2 µm. Thus, molecular organization 

investigated by ATR-FTIR is limited to regions near the granular surface (Sevenou, et 

al., 2002). The ATR-FTIR absorbance at 1048 cm-1 is related to crystallinity because 

this band increases with crystallinity, whereas the band at 1016 cm-1 has been 

attributed to vibrational modes (van Soest, et al., 1995) within the amorphous domains 

of starch granules; this band has been observed to decrease with an increase with 

crystallinity. Thus, the ratio 1048 cm-1/1016 cm-1 has been used to express the amount 

of ordered crystalline domains to amorphous domains in starches. The 1048 cm-1/1016 

cm-1 ratio of the assessed bean starches followed the order VB>TB~RB~NB>LB 

(Table 3.4). This is indicative of double helices near the vicinity of the granule surface 

are better aligned in VB compared to LB. The ratios obtained were within the 

previously reported range of 0.886 to 0.938 for faba bean, black bean and pinto bean 

starches (Ambigaipalan et al., 2011), but it was much higher than that reported for pea 

starch (0.751) and lentil starch (0.765) (Chung et al., 2010). 

 



 

117 

 

    Table 3.4: FTIR intensity ratio (1048 cm-1/1016 cm-1), relative crystallinity, double helical content and B-polymorphic content of 

pulse starches. 

The maximum standard deviations for double helical content (NMR measurements) and relative crystallinity calculations were ±0.6 % and 
±0.9 %, respectively.                                                                                                                                                                                                                                
Values followed by different superscripts in each column for each starch source are significantly different (P < 0.05) by Tukey’s HSD test.  

 

 

Starch source FTIR ratio  
1048/1016 cm-1 

Relative  
         crystallinity (%)   Double helical content (%)     B-polymorphic 

content (%) 

Lablab bean 0.813±0.000a 19.9a 34.1b 9.3 

Navy bean 0.860±0.005b 20.7a 25.8a 0 

Rice bean 0.867±0.001b 23.8b 31.1c 0 

Tepary bean 0.860±0.001b 21.4a 37.8d 0 

Velvet bean 0.901±0.005c 26.5c 37.2d 0 
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Figure 3.3: X-ray diffraction patterns of pulse starches. The arrow in the lablab bean panel shows the peak characteristic of B-type 

crystallites.
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3.1.6 Wide angle X-ray diffraction (WAXS)  
Pulse starches generally exhibit a ‘C’ type X-ray pattern, characterized by a 

weak peak at 2θ = 5.4 and strong peaks at 17.5 and 23° 2θ. Gernat et al. (1990) have 

shown that the C-type polymorph is a mixture of ‘A’ and ‘B’ unit cells, and that pulse 

starches contain pure ‘A’ and ‘B’ polymorphs in varying proportions. The WAXS 

patterns of the pulse starches are presented in Figure 3.3. LB starch exhibited a mixed 

A+B type pattern [due to the presence of ‘B’ type unit cells (9.3 %, Table 3.4)] with a 

peak centred at 5.5° 2θ, which is typical of pure B-type starches, whereas all other 

starches exhibited a pure A-type pattern (Figure 3.3). The relative crystallinity (RC) of 

the starches ranged from 19.9-26.5 % (VB>RB>TB~NB~LB, Table 3.4). These 

values were within the previously reported range of 17.0-34.0 % for other pulse 

starches (Hoover et al., 2010). Differences in RC among starches could reflect 

differences in: 1) amylopectin content, 2) APCLD, 3) crystallite size; and 4) different 

orientations of double helices within the crystalline domains (Ambigaipalan, et al., 

2011). Difference in RC among the starches (Table 3.4) cannot be attributed to 

differences in the amylopectin content and the crystallite size for the following 

reasons: 1) higher amylopectin content (Table 3.1) was not associated with higher RC 

(Table 3.4); 2) APCLD and CL തതതത did not differ significantly (p<0.05) among the 

starches; and 3) nearly similar crystal size, indicated by very marginal differences in 

the sharpness of the X-ray spectrum (Figure 3.3). Thus, the higher RC of VB is 

probably due to stronger interaction between double helices within the crystalline 

lamella and/or better orientation of the crystallites to the X-ray beam. It was 

interesting to observe that molecular order (VB>RB>TB~NB~LB) closely paralleled 

the crystalline order (VB>RB>TB~NB~LB). 
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3.1.7 13C cross polarization magic angle spinning nuclear magnetic resonance 
spectroscopy (13C CP/MAS NMR) 

The DHC of the pulse starches (TP>VB>LB>RB>NB), determined by 13C 

CP/MAS NMR, is presented in Table 3.4. DHC ranged from 25.8 to 37.8 %. A DHC 

of 39.7 % has been reported for pea starch (Bogracheva et al., 2001). The DHC could 

represent double helices formed between outer branches (A and B1 chains) of 

amylopectin, amylose-amylopectin and/or amylose-amylose. Double helices in starch 

granules have been shown to be present in a crystalline and/or non-crystalline array 

(Morrison et al., 1993a; Morrison et al., 1993b). In the pulse starches, the DHC (25.8-

37.8 %, Table 3.4) was much higher than their RC (19.9-26.5 %, Table 3.4), 

suggesting that not all helical conformations are involved in starch crystallites. 

3.1.8 Differential scanning calorimetry (DSC) 
The gelatinization temperatures (To, Tp and Tc), gelatinization temperature 

range (Tc-To) and ∆H are presented in Table 3.5. To, Tp and Tc represent crystalline 

stability, whereas ΔH represents melting of amylopectin based crystals with potential 

contributions from both crystal packing and helix melting enthalpies (Lopez‐Rubio, et 

al., 2008). The starches differed significantly (p<0.05) with respect to To (in the order 

of VB>TB>NB>RB~LB) and Tp (in the order of VB>NB>TB>RB>LB). Differences 

in Tc among the starches (except RB and VB) were not significant. Tc-To followed 

the order LB~RB~NB>TB>VB. The higher To of VB is indicative that its crystallites 

have a higher degree of stability (reflects closer packing of amylopectin crystallites 

within the crystalline lamella) and/or a lesser amount of structural defects. Structural 

defects in crystallites have been shown to occur if amylose chains pass through both 

the crystalline and the amorphous layer (Genkina, et al., 2007), and if long chains of 

amylopectin are interspersed into the crystalline lamella (Koroteeva et al., 2007).  
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Table 3.5: Gelatinization parameters of pulse starches as determined by differential scanning calorimetry1 

Starch source 
Gelatinization transition parameters (oC) 

To2 Tp2 Tc2 (Tc-To)3 Enthalpy4 

(J/g) 

Lablab bean 62.6±0.2a 67.9±0.1a 81.9±0.0ab 19.3±0.2a 10.5±0.2ab 

Navy bean 65.8±0.4b 73.6±0.1b 81.9±0.0ab 16.1±0.4bc 9.6±0.3a 

Rice bean 62.7±0.2a 68.8±0.1c 81.0±0.9a 18.3±0.8ab 11.3±0.3b 

Tepary bean 66.9±0.0c 71.4±0.1d 82.5±0.6ab 15.6±0.6c 10.1±0.2ab 

Velvet bean 72.4±0.0d 77.2±0.3e 83.7±0.7b 11.2±0.7d 10.6±0.2ab 

   1All data represent the mean of triplicates. Values followed by different superscripts in each column for each starch source are significantly different      
(P <  0.05) by Tukey’s HSD test. Starch: water ratio (1:3 w/w, dwb) 

  2To, Tp, Tc represents the onset, peak, and end temperatures, respectively. 
  3(Tc-To) represents the gelatinization temperature range. 
  4Gelatinization enthalpy expressed in J/g of dry starch (amylopectin basis). 
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The lower Tc-To of VB suggests that VB crystallites have a higher degree of 

crystalline perfection (which reflects better alignment of double helices within the 

crystalline lamella) than those of the other starches. The higher degree of crystalline 

perfection also may partly explain the higher RC of VB. The order of crystalline 

perfection (VB>TB>NB~RB~LB) did not exactly parallel the RC order 

(VB>RB>TB~NB~LB, Table 3.4).   This was not surprising, since RC differences 

among starches are influenced not only by crystallite perfection, but also by how well 

the crystallites are oriented towards the incoming X-ray beam. There was no 

significant difference (p<0.05) in ΔH among the starches of LB, TB and VB (Table 

3.5). However, NB and RB starches showed a significant difference in their ΔH. This 

suggests that crystalline perfection has no influence on ΔH. For instance, VB, with a 

higher degree of crystalline perfection, exhibited a ΔH value similar to that of the 

other starches. This indicates that the extent of hydrogen bonding within and among 

double helices is the same in all of the starches. Consequently, no differences can be 

expected with respect to the magnitude of the thermal energy (ΔH) required to 

separate amylopectin double helices from their lamellar crystallites during 

gelatinization. Differences in gelatinization parameters among the starches cannot be 

attributed to amylopectin chain length or to amylopectin content, since there was 

marginal difference in APCLD. Furthermore, differences in amylopectin content 

(RB>NB>VB>TB>LB, Table 3.1) did not parallel differences in gelatinization 

parameters. The gelatinization parameters were within the range reported for other 

pulse starches (Hoover et al., 2010). 
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3.1.9 Swelling factor (SF) 
 The SFs of the pulse starches in the temperature range of 60 to 85°C is 

presented in Figure 3.4a. Swelling factor differences among starches have been shown 

to be influenced by bound lipid content (Sasaki & Matsuki, 1998), amylose content 

(Sasaki & Matsuki, 1998), amylopectin structure (Sasaki & Matsuki, 1998), extent of 

interaction between starch chains in the native granule (Ambigaipalan, et al., 2011), 

and granule crystallinity (Ambigaipalan, et al., 2011). Comparative studies on non-

waxy and waxy cereal starches have shown that swelling is primarily a property of 

amylopectin and that amylose is a diluent (Tester & Morrison, 1990b; Morrison, et al., 

1993b). 

 Swelling factor differences (Figure 3.4a) among the starches were significant 

only between 60-80°C, in the order of TB>LB>RB>NB>VB. However, at 85°C, 

differences in SF among the starches were marginal. SF differences cannot be 

explained in terms of APCLD or bound lipid content (Table 3.1), since differences 

among the starches with regard to the above two factors were not significant (p<0.05). 

The differences in SF between LB and TB starches (TB>LB) in the temperature range 

60-80°C may reflect higher granule integrity in TB due to higher DHC (Table 3.4). 

This seems plausible, since differences between TB and LB with respect to 

amylopectin content (Table 3.1) and RC (Table 3.4) were marginal. SF differences in 

the range 60-80°C between RB and NB (RB>NB) starches reflect the higher 

amylopectin content (Table 3.1), higher DHC (Table 3.4), larger granule size (Table 

3.2) and the presence of a larger number of cracked (Figure 3.1h, arrow 4) granules. 

Cracking would facilitate rapid diffusion of water into the amorphous regions in RB.  
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Figure 3.4: Swelling factor (a) and amylose leaching (b) of native pulse starches over 

the temperature range of 60-85°C. 
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 The SF of VB is much lower than that of the other starches due to its higher RC and 

molecular order (Table 3.4). The above data suggest that differences in SF among the 

starches reflect the interplay among amylopectin content, RC, DHC, granule size and 

surface characteristics. The SF (22.1-25.5) of the pulsee starches at 85°C was similar 

to that for black bean (25.0) (Ambigaipalan, et al., 2011) and pinto bean (21.0) 

(Ambigaipalan, et al., 2011), but much higher than that for pea (17.9), lentil (16.8), 

navy bean (11.8) and chick pea (18.0) starches (Hoover et al., 2010). 

3.1.10 Amylose leaching (AML) 
 Data for AML are presented in Figure 3.4b. AML in the temperature range of 

70 to 85°C followed the order TB>LB~VB~NB>RB. AML has been shown to be 

influenced by the interplay between amylose content and the extent to which amylose-

amylopectin and amylose-amylose chains are associated within the granule interior 

(Ambigaipalan, et al., 2011). Differences in AML between TB and LB (TB>LB) are 

indicative of weaker interactions between amylose-amylose and amylose-amylopectin 

chains within native granules of TB. This seems plausible, since the differences in 

amylose content (Table 3.1) between TB (30 % amylose) and LB (32.9 % amylose) 

was too small to account for the large difference in AML between these starches. 

Weaker interactions between amylose-amylose and amylose-amylopectin chains in 

TB also may have influenced SF differences (TB>LB) between these starches (Figure 

3.4a). Marginal differences in AML among LB, VB and NB reflect the interplay 

between variations in amylose content (LB, 32.9 %; VB, 27.9 %; and NB, 26.1 %) 

and the extent of interactions between amylose-amylose and amylose-amylopectin 

chains. It is likely that the relatively low extent of AML (Figure 3.4b) in RB can be 

attributed to the amylose content of RB being much lower (22 %, Table 3.1) than that 
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of other starches (26.0-32.9 %, Table 3.1). AML at 80°C in TB, LB, VB, NB and RB 

was within the range reported for other pulse starches, being 4.5-28.5 % 

(Ambigaipalan, et al., 2011). 

3.1.11 Acid hydrolysis 
The susceptibility of starches toward hydrolysis by 2.2 M hydrochloric acid is 

presented in Figure 3.5. Acid hydrolysis consists of two stages: an initial fast step (due 

to hydrolysis of the amorphous regions) which generally occurs during the first 9-12 

days of hydrolysis, followed by a second slower rate (due to hydrolysis of the 

cryatalline regions) (Hoover, 2000). Differences in the extent of acid hydrolysis 

among starches have been attributed to differences in granule size, amount of bound 

lipids, APCLD, proportion of B-type unit cells and double helical order within the 

crystalline lamella (Gerard et al., 2002; Ambigaipalan et al., 2011). Differences in 

hydrolysis among the starches during the first 9 days of hydrolysis (Figure 3.5) were 

marginal. This suggests that the arrangement of starch chains (packing density) within 

the bulk amorphous and intercrystalline amorphous regions were similar in all 

starches. Beyond the 9th day, the hydrolysis curve was continued to increase in all 

starches and indicating that the starch chains in the crystalline region were also 

susceptible to acid hydrolysis. The faster rate of hydrolysis between the 9th and 15th 

day observed with LB and RB starches can be attributed to rapid penetration of H3O+ 

via the cracks on the granule surface (Figure 3.1f,h) and/or the presence of 

disorganized double helical arrangement (Table 3.4) within the crystalline lamella. 

This would facilitate the accesibilty of H3O+ on α(1→4) and α (1→6) linkages located 

within the crystalline lamella of LB and RB starches.  
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      Figure 3.5: Acid hydrolysis (2.2 M hydrochloric acid, 35°C) profiles of pulse starches. 
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In contrast to RB starch, the susceptibility of LB starch toward acid hydrolysis could 

be attributed to the molecular order of LB at the granular surface, the RC (Table 3.4) 

being lower than that of the other starches and the presence of B-type unit cells. The 

lower molecular order on the granule surface facilitates faster diffusion of H3O+ into 

the crystalline domains and leads to a greater extent of hydrolysis. In starches 

containing B-type unit cells, the α(1→6) linkages are solely occupied within the 

amorphous domains, whereas in A-type starches, the α(1→6) linkages are located 

within both the amorphous and crystalline domains (Jane et al., 1997). Consequently, 

α (1→6) linkages of LB will be more susceptible to acid hydrolysis, since in the other 

starches that contain only ‘A’ type unit cells, α (1→6) linkages are embedded in the 

crystallites, and hence will be less susceptible to acid hydrolysis. The higher resistance 

of VB and TB starches toward acid hydrolysis (Figure 3.5) could be attributed to their 

molecular order (double helical content, Table 3.4) being higher than those of the 

other starches. The above data suggest that differences in hydrolysis among RB and 

NB reflect the interplay among differences with respect to 1) molecular order [RB 

(0.867)>NB (0.860)]; 2) RC [RB (23.8 %)>NB (20.7 %)]; and 3) the presence of 

surface cracks on granule surfaces (RB>NB). APCLD, surface area and bound lipid 

content cannot be considered as factors influencing the extent of acid hydrolysis 

among these starches for the following reasons: 1) similarity in APCLD (Table 3.3); 

2) the difference in surface area (Table 3.2) between RB (0.23 m2/g) and NB (0.30 

m2/g) did not translate into NB being hydrolysed to a greater extent than RB; and 3) 

the absence of any significant difference (p<0.05) in bound lipid content (Table 3.1) 

among the starches. Differences in acid hydrolysis among pulse starches mainly 
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reflect the interplay between differences in granule surface characteristics and extent 

of double helical order within the crystalline lamellae.  

3.1.12 In vitro digestibility by porcine pancreatic α-amylase (PPA) 
Differences in digestibility among and within species of native starches have 

been attributed to the interplay of several factors such as granule size, extent of 

molecular association between starch chains, amylose content, branch chain length 

distribution of amylopectin, degree of crystallinity, polymorphic composition, 

granular pores, cracks on the granule surface, channels within the granules, and 

surface area (Hoover & Zhou, 2003; Zhang et al., 2006a,b). The in vitro enzyme-

catalysed hydrolysis of pulse starches, monitored by measuring the release of maltose 

from starch by the action of PPA at specific intervals during hydrolysis, is presented 

in Figure 3.6. The amount of starch hydrolysed from the granules after 72 h of 

digestion ranged between 20.7 % and 67.9 % (Figure 3.6). The most readily 

hydrolysed starches were TB (60.7 %) and RB (67.9 %), whereas the most resistant 

starch was VB (20.7 %). LB and NB were hydrolysed to the extent of 35.4 % and 31.7 

%, respectively. The hydrolysis curves (Figure 3.6) showed that in both RB and TB, 

the first 48 h of hydrolysis was characterized by a steeply increasing concentration of 

maltose, after which the rate of hydrolysis transitioned to a slower rate in TB, but 

continued to rise steeply in RB. The hydrolysis rates were lower for NB, LB and VB. 

The extent and rate of hydrolysis followed the order of LB>NB>VB. The rate of 

hydrolysis did not exhibit a plateau, even after 72 h of hydrolysis for LB, NB and VB 

starhes.                                                                                                                                   

The higher extent of hydrolysis (Figure 3.6) seen with RB and TB (with RB>TB) 

could be attributed to the presence of cracks (with RB having more than TB) 
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Figure 3.6: In vitro digestibility profile of native pulse starches subjected to enzyme-catalysed hydrolysis by porcine pancreatic 

α-amylase at 37°C.
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on their granular surfaces (Figures 3.1h and 3.1i), which may have facilitated rapid 

penetration of PPA into the amorphous growth rings, and then into the amorphous and 

crystalline regions of the semi-crystalline growth rings, resulting in destruction of the 

lamellar structure. The double helical conformation has been shown to hinder enzyme-

catalysed hydrolysis (Lopez-Rubio et al., 2008), since in this form only a maximum 

linear portion of three glucose units is available; this is insufficient for complete 

substrate binding. This suggests that the difference in the extent of hydrolysis between 

RB and TB (with RB>TB) also could be attributed to differences in their DHC (TB, 

37.8 %; RB, 31.1 %, Table 3.4). The above explanations seem plausible, since on the 

basis of surface area (RB, 0.23 m2/g; TB, 0.39 m2/g, Table 3.2), amylose content (RB, 

22.1 %; TB, 30.0 %, Table 3.1), and RC (RB, 23.8 %; TB, 21.4 %, Table 3.4), TB 

should have been hydrolysed to a greater extent than RB. This suggests that in RB and 

TB starches, cracks on the granule surface and DHC may have reduced the influence 

of surface area, composition and crystallinity on hydrolysis. The difference in 

hydrolysis between LB and NB (with LB>NB) was due to surface area (LB, 0.38 

m2/g; NB, 0.30 m2/g, Table 3.2) and amylose content (LB, 32.1 %; NB, 26.5 %, Table 

3.1) being higher, and molecular order (LB, 0.813; NB, 0.860, Table 3.4) and RC (LB, 

19.9 %; NB, 20.7 %, Table 3.4) being lower in LB. The combined effect of the above 

parameters may have reduced the influence of higher DHC and B-type unit cells 

(present only in LB) on LB hydrolysis. The presence of B-type unit cells has been 

shown to resist PPA hydrolysis compared to A-type unit cells (Gérard et al., 2002). 

The higher resistance of VB towards amylolysis could be attributed to RC, molecular 

order, and DHC being higher than that of the other starches. 
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3.1.13 Pasting properties 
  Pasting occurs after gelatinization in the process of dissolution of starch. The 

granules become very susceptible to shear, resulting in disintegration. The paste that is 

obtained on gelatinization is a viscous mass consisting of a continuous phase of 

solubilized amylose and/or amylopectin, and granule remnants embedded in the 

leached amylose network (BeMiller, 2011). The pasting properties are presented in 

Table 3.6. The pasting temperature, peak viscosity (PV), viscosity breakdown (during 

the holding cycle at 95˚C) and set-back (during the cooling cycle) followed the order 

of VB>NB>LB>TB~RB, TB>NB>RB>LB>VB, TB~NB>RB>LB~VB and 

RB~LB>VB~NB>TB, respectively. PV is influenced by the interplay of friction 

between swollen granules, the extent of AML and RC (Chung et al., 2009a). The 

higher PV (5311 cP) of TB (Table 3.6) is mainly due to its higher extent of AML 

(Figure 3.4B). This seems plausible, since the RC (21.4 %, Table 3.4) and granule size 

(21.9 µm, Table 3.2) of TB were comparable and lower, respectively, than those of 

RB, LB, and NB. The higher RC (26.5 %, Table 3.4) of VB may have been the main 

causative factor (restricts granular swelling during heating) responsible for its peak 

viscosity (3283 cP) being lower than that of other starches. Among RB, LB and NB, 

the PV of NB (Table 3.6) was higher than that of RB due to its higher tendency to 

leach amylose (Figure 3.4b) and lower RC (Table 3.4). The PV of LB was lower than 

that of RB and NB, due to its smaller granule size (21.94 µm, Table 3.2). The lower 

PV of LB (3612 cP) and VB (3283 cP) may have been responsible for the extent of 

viscosity breakdown (during the holding cycle at 95°C) in LB (1131 cP) and VB 

(1175 cP), being much lower than those of the other starches (Table 3.6). The 

breakdown viscosity among the starches was most pronounced in TB (3036 cP) due to 

its higher PV (Table 3.6).  



 

133 

 

Table 3.6: Pasting properties of pulse starches1 

Starch source 
Pasting temp. Peak time Peak 

viscosity 
Trough 
viscosity 

Breakdown 
viscosity 

Final 
viscosity 

Set-back 
viscosity 

(°C) (min) (cP) (cP) (cP) (cP) (cP) 

Lablab bean 75.7±0.3a 7.1±0.0a 3612±35a 2301±42a 1311±77a 5056±26a 2755±016a 

Navy bean 78.3±0.0b 7.2±0.0b 4831±09b 1922±09b 2909±18b 3780±13b 1858±023b 

Rice bean 72.3±0.0c 6.8±0.0c 4583±03c 2820±61c 1763±58c 5750±27c 2930±034a 

Tepary bean 72.5±0.4c 7.0±0.0d 5311±19d 2275±10a 3036±09b 3883±49b 1608±039c 

Velvet bean 79.8±0.0d 7.7±0.0e 3283±76e 2108±23d 1175±53a 4029±13b 1921±114b 
1All data represent the mean of triplicates. Values followed by different superscripts in each column for each starch source are significantly different   
(P < 0.05) by Tukey’s HSD test. 
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Among the starches, viscosity breakdown during the holding cycle at 95°C, 

which reflects granule disintegration due to shear, was less pronounced in RB, due to 

stronger interactions that minimize granule breakdown between amylose-amylose 

and/or amylose-amylopectin chains (Figure 3.4b) within native granules. The set-back 

(SB) viscosity reflects interactions between leached amylose chains (resulting in 

amylose network formation) during the cooling cycle, and the presence of intact 

and/or fragmented granules embedded in the amylose net-work (Ambigaipalan et al., 

2011). The SB viscosities of RB (2930 cP) and LB (2755 cP) were not significantly 

different (Table 3.6), and they were much higher compared to those of the other 

starches. This could be attributed to a higher extent of AML (Figure 3.4b) in LB and 

to the presence of larger granules (intact and/or fragmented) embedded in the amylose 

network in RB. Among the starches, the lower SB viscosity of TB (Table 3.6) reflects 

extensive granule disruption during the heating cycle; this is reflected in the high 

extent of viscosity breakdown (3036 cP). Consequently, the resistance to the stirring 

action of the paddles during the cooling cycle would be minimal in TB as evidenced 

by the absence of granule fragments or to the presence of only very small granule 

fragments. As seen in Table 3.6, both VB and NB exhibited comparable SB viscosity 

values in spite of large differences in viscosity breakdown [NB (2909 cP) and VB 

(1175 cP)] during the holding cycle at 95°C. Theoretically, the SB viscosity of NB 

should have been much lower than that of VB due to higher extent of granule 

disintegration in the NB starch (Table 3.6). This suggests that the higher AML of NB 

(Figure 3.4b) may have reduced the influence of viscosity breakdown on SB viscosity. 

This seems plausible, since VB and NB did not differ significantly in granule size 

(Table 3.2). 
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3.1.14 Retrogradation characteristics  
3.1.14.1 Turbidity 
  Turbidity effects have their origin in refractive index fluctuations over a 

distance scale comparable to the wavelength of observation (Craig et al., 1989). In a 

polymer-solvent system, this is caused by density fluctuations over the same distance 

scale and is mostly due to aggregation between polymer chains. Craig et al. (1989) 

have shown that turbidity associated with a starch paste is influenced by the size and 

number of interactions between and among starch chains that reflect or scatter incident 

light, and the nature and number of swollen and fragmented granules that refract 

incident light. The first stage of retrogradation (completed during the first few hours 

of storage) has been shown to involve mainly interactions between amylose chains 

leading to the formation of junction zones (Ambigaipalan et al., 2013). These junction 

zones, being larger compared to the wavelength of illumination, reduce light 

transmittance by scattering and/or reflecting the incident light (Craig et al., 1989). 

Jacobson et al. (1997) have shown, by studies on starches from various botanical 

origins by monitoring changes in absorbance and the rapid initial rate of turbidity 

development in stored starch pastes is related to the loss of networked amylose, the 

development of amylose aggregates, and binding of granule remnants into assemblies 

by amylose and amylose aggregates.  

In this study, the rate of retrogradation was monitored by changes in 

transmission. As shown in Figure 3.7, the percentage transmission (%T), measured 

after heating 2 % aqueous suspensions of pulse starches at 100°C for 60 min, followed 

by cooling to 25°C for 50 min (indicated as day 0 in Figure 3.7), followed the order 

TB>VB>NB>LB>RB. 
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Figure 3.7: Turbidity profile of pulse starches stored at 4ºC for one day and then kept at 25ºC for 20 days.
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e f g h
Figure 3.8: SEM images of freshly gelatinized and stored (24 h at 4°C) starch pastes at lower and higher magnifications: 

freshly gelatinized lablab bean starch (a,e), stored lablab bean starch (b,f), freshly gelatinized tepary bean starch 
(c,g) and stored tepary bean starch (d,h). 
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This suggests that at the end of the heating period (100°C for 60 min), 

swollen and fragmented granules were present in lesser amount in TB than in the 

other starches. SF (Figure 3.4a) and viscosity measurements (Table 3.6) showed the 

granules of TB to be more prone to disintegration than granules of VB, NB, LB and 

RB. This would explain the %T being more pronounced in TB. The rapid reduction 

in light transmittance during the first 24 h after gelatinization reflects network 

formation as a result of the extensive interaction between leached amylose chains 

(amylose-amylose) during the gelatinization process (Lewen et al., 2003). The SEM 

micrographs (Figure 3.8) of LB and TB starches show the polymer network 

formation between leached amylose chains during retrogradation.   

The extent of decrease in %T during storage the period (at 25°C) from day 2-

20 (TB>RB~NB~VB~LB) reflects reduced the transmission of light due to 

interaction between and among leached amylose and amylopectin chains. These 

interactions would be stronger and occur more rapidly in TB, due to higher amount 

of leached amylose (Figure 3.4b) and to a lower viscosity of the reaction medium 

(due to reduced amounts of fragmented and swollen granules). This seems plausible, 

since studies have shown that the presence of large amounts of fragmented and 

swollen granules embedded in the network formed by leached amylose chains hinder 

amylose chain aggregation (Ambigaipalan et al., 2013). This would then explain the 

extent of the decrease in %T of TB from day 1-20 (11.80 %) being higher than the % 

T in LB (5.30 %), NB (5.80 %), RB (4.57 %) and VB (6.43 %). The results indicate 

that differences in the rate at which pulse starches retrograde during the storage 

period is mainly influenced by the sequence of process that occured during 

gelatinization. 
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3.1.14.2 Differential scanning calorimetry of retrograded starches (DSC)  
 The DSC parameters of the starch gels stored at 4°C for 24 h and then at 

25°C for 2-25 days are presented in Table 3.7. In all pulse starches, the 

retrogradation endotherm displayed a broader endothermic peak (increased Tc-To) 

after 2 days. Marginal differences were observed in gelatinization parameters among 

the pulse starches. In all pulse starches, the retrogradation enthalpy (∆HR) at the end 

of the storage period (25th day) was marginally increased. The gelatinization 

parameters of retrograded starches were much lower than those of their native 

counterparts (Table 3.5) due to the improper alignment of starch chains during 

retrogradation. The differences in Tc-To between the native and retrograded starches 

could be attributed to variation in the size, stability and extent of crystallite 

perfection (Ambigaipalan et al., 2014). However, the DSC data indicate that the 

crystallites formed in LB, NB, RB, TB and VB starches were similar in size, 

perfection and crystallite stability. This seems plausible since the amylopectin chain 

length distribution of these starches was similar. 
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Table 3.7: Retrogradation transition parameters of pulse starches1 

1All data represent the mean of triplicates. Values followed by different superscripts in each 
column for each starch source are significantly different (P < 0.05) by Tukey’s HSD test.  
2 To, Tp, Tc represents the onset, peak and end temperature, respectively.  
3(Tc-To) represents the gelatinization temperature range.  
4Enthalpy of retrogradation expressed in J/g of dry starch. 
 

Starch 
source 

Days 
of 
storage 

    Retrogradation transition parameters (°C) 

To2 Tp2 Tc2 Tc-To3 Enthalpy4 
(J/g)4 

Lablab bean 2 51.0±0.1a 60.1±0.1a 75.4±0.3a 24.4±0.2a 5.3±0.0a 

Navy bean 50.7±0.5ab 60.0±0.4a 73.2±0.9ab 22.4±0.5ab 4.0±0.1b 

Rice bean 49.2±0.5b 59.2±0.7a 70.0±1.4b 20.8±0.9b 4.3±0.2b 

Tepary bean 50.4±0.1ab 59.7±0.2a 70.3±0.9b 19.8±0.9b 4.2±0.0b 

Velvet bean 51.1±0.7a 62.4±0.0b 75.6±0.4a 24.5±0.2a 5.0±0.3a 

Lablab bean 10 52.7±0.4a 62.0±0.1ab 76.5±0.5a 23.8±0.8a 7.2±0.0a 

Navy bean 52.5±0.0a 61.8±0.1ab 75.9±0.2a 23.2±0.2a 6.5±0.2ab 

Rice bean 52.5±0.1a 61.1±0.1a 75.3±0.4a 22.7±0.4a 6.5±0.0ab 

Tepary bean 52.7±0.1a 61.5±0.5ab 76.2±0.4a 23.5±0.3a 6.5±0.2ab 

Velvet bean 52.9±0.0a 62.2±0.2b 76.2±0.4a 23.3±0.4a 6.2±0.5b 

Lablab bean 17 52.3±0.1a 62.2±0.2a 76.6±0.6a 24.3±0.7a 8.4±0.0a 

Navy bean 53.0±0.6a 62.2±0.0a 76.6±0.3a 23.6±0.3a 7.1±0.4ab 

Rice bean 53.3±0.2a 62.2±0.0a 76.4±0.1a 23.2±0.3a 6.3±0.7b 

Tepary bean 53.4±0.2a 62.6±0.0a 76.2±0.1a 22.8±0.1a 6.6±0.1b 

Velvet bean 54.8±0.1b 63.6±0.2b 78.2±0.4b 23.4±0.3a 6.1±0.1b 

Lablab bean 25 52.8±0.6a 62.4±0.1ab 76.1±0.0a 23.4±0.6a 7.6±0.8a 

Navy bean 53.9±0.1a 62.9±0.4ac 76.1±0.4a 22.2±0.3a 6.6±0.4a 

Rice bean 52.9±0.1a 62.1±0.1b 76.0±0.3a 23.2±0.4a 7.6±0.0a 

Tepary bean 52.7±0.7a 62.5±0.0ab 75.9±0.5a 23.3±0.2a 7.0±0.1a 

Velvet bean 54.2±0.1a 63.4±0.0c 78.2±0.7b 24.0±0.8a 7.5±0.2a 
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The work presented in chapter 3.1 (excluding sections 3.1.11 and 3.1.14) have been 
published in Food Chemistry, 2014 (152): 491-499. Co-authors (Q. Liu and E. 
Donner) contributed to the analysis of HPEAC-PAD, RVA and ATR-FTIR.  
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3.2 In vitro amylolysis of pulse and Hylon®VII starches explained in terms of 
their composition, morphology, granule architecture and interaction between 
hydrolysed starch chains 

3.2.1 Chemical composition  
 The chemical composition of native LB, NB, RB, TB and VB starches was 

discussed in section 3.1.1. Therefore, in this study, only the compositional ranges are 

listed. The nitrogen content (N), surface lipid (SL), bound lipid (BL), apparent 

amylose content (AAC), starch damage (SD) and specific surface area (SSA) ranged 

from 0.02-0.13 % (with the order being RB>LB~NB~TB~VB), 0.03-0.12 % (with 

the order being TB>LB~VB~NB~RB), 0.40-0.85 % (with the order being 

RB~NB~TB>LB >VB), 22.1-32.1 % (with the order being LB>TB>NB~VB> RB), 

0.00-0.01 % (with all starches being similar) and 0.23-0.39 m2/g (with the order 

being LB~TB>VB>NB>RB), respectively. The N, SL, BL, AAC, SD and SSA of 

wrinkled pea (WP) starch were 0.06 %, 0.08 %, 0.85 %, 79.6 %, 1.21 % and 0.66 

m2/g, respectively. The corresponding values for Hylon®VII (HYVII) were 0.05 %, 

0.08 %, 0.59 %, 67.4 %, 0.87 % and 0.77 m2/g, respectively. Control refers to 

starches kept in the digestion medium for 24 h without enzyme. High amylose 

starches such as WP and HYVII were used in this study to better understand whether 

amylose content per se and/or the packing density of amylose chains within the 

granule interior (HYVII > WP) play a role in influencing the rate and extent of 

hydrolysis. 
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3.2.2 Hydrolysis kinetics 
 The hydolysis profiles of the pulse and HYVII starches by pancreatin and 

amyloglucosidase are presented in Figure 3.9. The time taken to reach an equivalent 

level of hydrolysis (50 %) varied significantly among the starches (WP, 3 h; RB and 

TB, 8 h; NB, 16 h; LB, 18 h). However, this level of hydrolysis was not reached by 

either VB or HYVII throughout the progress of hydrolysis. At the end of 30 h, the 

extents of hydrolysis for the starches were WP, 85.0 %; TB, 83.9 %; RB, 79.0 %; 

NB, 68.0 %; LB, 60.5 %; HYVII, 50.9 %; and VB, 45.9 %. The difference in the 

extent of hydrolysis between NB and LB starches (with NB>LB) reflects the 

interplay among differences in molecular order (with NB>LB), crystallinity (with 

NB>LB), DHC (with LB>NB), proportion of amorphous material (with NB>LB, see 

section 3.2.7, Table 3.10), and surface area (LB, 0.38 m2/g; NB, 0.30 m2/g). It is 

likely that differences in DHC (see section 3.2.7, Table 3.10) between NB (36.9 %) 

and LB (40.7 %) starches may have reduced the impact of differences in molecular 

order, crystallinity and surface area on hydrolysis. This seems plausible, since 

double helices are not only too wide to enter the catalytic site of amylolytic enzymes 

(André et al., 1999), but they also need to be disrupted and disentangled before the 

glycosidic linkages become accessible to enzymatic attack. The marginal difference 

in hydrolysis between RB and TB starches (Figure 3.9) was surprising, since the 

surface area of TB (0.39 m2/g) was higher than that of RB (0.23 m2/g) and its 

molecular order (see section 3.2.8, Table 3.11), crystallinity (see section 3.2.7, Table 

3.10), and the extent of cracks on the granular surfaces were lower than that of RB 

(see section 3.2.3, Figure 3.11). Consequently, TB should have been hydrolysed to a 

greater extent than RB. This suggests that the large difference in DHC between TB 

(40.2 %) and RB (31.0 %) may have reduced the impact of molecular order, RC, and
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                  Figure 3.9: Hydrolysis kinetics (37°C) of pulse and Hylon®VII starches by porcine pancreatin and amyloglucosidase. 
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surface area differences on hydrolysis. The lower susceptibility of VB toward 

amylolysis could be attributed to its molecular order (see section 3.2.8, Table 3.11), 

RC and DHC (see section 3.2.6 and 3.2.7, Table 3.10) being higher than that of LB, 

NB, RB and TB. Between the two high amylose starches (WP and HYVII), the much 

higher resistance of HYVII toward hydrolysis (Figure 3.9) could be attributed to its 

molecular order (see section 3.2.8, Table 3.11), RC, DHC (see section 3.2.6 and 3.2.7, 

Table 3.10), the association between amylose chains (within the amorphous regions) 

being higher (see section 3.2.10, Figure 3.16) and the granule damage being lower 

than in WP. Furthermore, intermediate materials are present mainly in high amylose 

starches, with chain lengths longer than normal amylopectin and a molecular weight 

intermediate between amylose and amylopectin (Bertoft et al., 1993a; Vamadevan et 

al., 2014). It also is likely that structural differences between HYVII and WP in the 

branching density (with HYVII >WP) and glucan chain length (with HYVII >WP) of 

the intermediate material may also have contributed to the lower susceptibility of 

HYVII towards amylolysis. Thus, all of the above factors may have reduced the effect 

of surface area differences (HYVII >WP) between these two starches on the rate and 

extent of hydrolysis. 

3.2.3 Morphology of control and hydrolysed starch granules  
 Scanning electron microscopy, which provides topographical data on exposed 

surfaces of starch granules, showed that control starch granules of LB (Figure 3.10a), 

NB (Figure 3.10b), RB (Figure 3.10c), TB (Figure 3.10d) and VB (Figure 3.10e) 

ranged from oval to round to irregular in shape. WP (Figure 3.10f) exhibited simple 

(small and large) and compound granules (composed of two or more fused sub 

granules). 
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Figure 3.10: Scanning electron micrographs of control (a-g) and hydrolysed (30 min [h-n], 24 h [o-u]) starches. 
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Figure 3.11: Bright field microscopy images of lablab bean (a), navy bean (b), rice bean (c), tepary bean (d) velvet 
bean (e), wrinkled pea (f) and HylonHylon®VII (g) starches. Arrow 1 indicates cracks on the granule 
surface. 
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 Figure 3.12: Polarized microscopy images of control (a-g) and hydrolysed (30 min [h-n], 24 h [o-u]) starches. Arrows 1, 2 & 3                 
indicate quadrants, voids and shape of the quadrants, respectively. Arrow 4 (in panel f and m) represents the distorted 
quadrants of wrinkled pea.     
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Some compound granules of WP were separated (Figure 3.10f). LB (Figure 3.10a), 

NB (Figure 3.10b), RB (Figure 3.10c) and TB (Figure 3.10d) exhibited indentations, 

whereas no indentations were present on VB (Figure 3.10e) and HYVII (Figure 3.10g) 

[Appendix VIII shows a larger number of granules]. The morphology of the residues 

obtained after 30 min and 24 h of enzyme-catalysed hydrolysis are presented in Figure 

3.10(h–n) and Figure 3.10(o–u), respectively. After 30 min of hydrolysis, the surfaces 

of LB, NB, RB, TB and VB (Figure 3.10h-l) were eroded with disc like depressions. 

The extent of these changes varied from granule to granule (within and among the 

starch sources). WP (Figure 3.10m) and HYVII (Figure 3.10n) exhibited only mild 

surface erosion. WP differed from all other starches in exhibiting extensive granule 

fragmentation (Figure 3.10m). At the end of hydrolysis (24 h), an increase in surface 

erosion was evident for all starches (Figure 3.10o-u). Fragmented granules at different 

stages of fragmentation were seen only with RB (Figure 3.10q), TB (Figure 3.10r) and 

WP (Figure 3.10t), the extent of fragmentation being more pronounced in WP (Figure 

3.10t). 

 Bright field microscopy (Figure 3.11) of the control starches showed the 

presence of cracks on the surfaces of some granules of LB (Figure 3.11a), NB (Figure 

3.11b), RB (Figure 3.11c) and HYVII (Figure 3.11d). The extent of cracking was 

more pronounced in RB than in LB. Particle size analysis (Table 3.2) showed that 

granule size ranged from 4.6-33.8 μm (LB), 10.1-46.9 μm (NB), 19.0-59.8 μm (RB), 

6.2-32.5 μm (TB), 7.8-42.6 μm (VB), 2.5-15.3 μm (WP), and 2.1-10.4 μm (HYVII).  

The birefringence patterns of the control starches are presented in Figure 3.12. 

Birefringence patterns under polarized light reflect that the average orientation of 

polymer chains is radial. The intensity of the pattern is influenced by granule shape 
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and on the orientation of the granules with respect to the light beam. The quadrants 

(Figure 3.12, arrow 1) that form the maltese cross were more closely packed in VB 

(Figure 3.12e) and HYVII (Figure 3.12g) (with VB>HYVII) than in LB (Figure 

3.12a), NB (Figure 3.12b), RB (Figure 3.12c) and TB (Figure 3.12d). Large voids 

(arrow 2) were present between the quadrants in LB, NB, RB and TB. This suggests 

that polymer chains of VB and HYVII are better radially oriented than those of NB, 

TB, LB and RB. The shapes of the quadrants varied among and within each starch 

source (arrow 3). The birefringence pattern and intensity of WP (Figure 3.12f) were 

different from those of the other starches, and the quadrants appeared distorted (arrow 

4). This distortion may not necessarily reflect disrupted crystallites and/or improperly 

oriented amylose and amylopectin chains. As shown in Figure 3.10f, the size, shape 

and arrangement of WP granules (clusters containing overlapped granules) were 

different from those of the other starches. In addition, many compound granules of 

WP were separated. Consequently, the interactions of polarized light with WP 

granules may have caused the distorted birefringence pattern (Figure 3.12f). 

 Birefringence patterns of residues obtained after 30 min and 24 h of hydrolysis 

are presented in Figure 3.12(h-n) and Figure 3.12(o-u), respectively. During the 

progress of hydrolysis, birefringence decreased in all starches, as reflected by 

disorganized quadrants (Figure 3.12 arrow 1) and appearance of voids (Figure 3.12, 

arrow 2) in the hilum region. The extent of the above changes at 24 h hydrolysis 

(Figure 3.12 (o-u) was less pronounced in VB (Figure 3.12s) than in the other 

starches. This suggests greater resistance of VB granules towards amylolysis (Figure 

3.9).  
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3.2.4 HPAEC- PAD of control and hydrolysed starches 
 The chain length distribution of isoamylase-debranched amylopectin of control 

pulse and HYVII starches and their enzyme digested (24 h) residues are presented in 

Table 3.8. The debranched chains were categorized into four groups of different 

degrees of polymerization (dp): 6-12, 13-24, 25-36 and >37. Among control starches, 

the proportion of amylopectin chain lengths with the dp in the range 6-12, 13-24, 25-

36, and >37 followed the order of RB~TB>NB~HYVII~LB~VB>WP, 

LB~RB>VB>NB~TB>HYVII>WP, WP>TB~RB~VB~HYVII>NB>LB, and WP~ 

HYVII>NB~TB~RB>LB, respectively. The average chain length (CLതതതത) followed the 

order of WP~HYVII>VB~LB~NB~TB>RB (Table 3.8). 

 There was no significant difference in the proportion of dp 6-12 between 

control and digested starches of LB, NB, RB, TB and VB (Table 3.8). Hydrolysis 

decreased the proportion of amylopectin chains with dp in the range 6-12 and 13-24, 

and increased the proportion of long amylopectin chains with dp 25-36 and dp >37 in 

WP and HYVII starches (with WP>HYVII). However, in RB and TB, significant 

differences were observed only with respect to dp 13-24 and dp 13-24 and dp >37, 

respectively. A similar observation was reported by Zhang et al. (2006b) for maize 

starches. The dp of all other starches in the above ranges showed no significant 

differences. This suggests that crystallites of WP, HYVII, and TB are not well 

organized within the crystalline lamella. The appearance of a plateau (Figure 3.9) at 

different time periods of hydrolysis in WP (6 h) and HYVII (12 h) can be attributed to 

amylose chains within the amorphous domains of HYVII being more densely packed 

than in WP (AML data, Figure 3.16). This may have restricted the diffusion of the 

enzymes toward the disorganized crystallites within the crystalline lamella of HYVII.  
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Table 3.8: Amylopectin chain length distribution of control and hydrolysed pulse and Hylon®VII starches as determined by high 
performance anion exchange chromatography with pulsed amperometric detection1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1Values followed by different superscripts in each column for each starch source are significantly different (P < 0.05) by independent two sample 
t-test. 2dpn: indicates degree of polymerization. Total relative area was used to calculate the percent distribution. 3Average chain length (CLതതതത) 
calculated by Σ (dpn × peak area)/Σ (peak arean). 4Control refers to starches kept in the digestion medium for 24 h without enzyme.

Starch source 
Hydrolysis 
time 
  

Degree of polymerization2 (dp) % 

6-12 13-24 25-36 >37 CLതതതത 3 

Lablab bean control4 18.9±0.8a 58.0±0.0a 14.8±0.5a 7.9±0.5a 16.5±0.3a 
24 h 18.8±1.4 a 55.5±1.4a 16.3±0.9a 9.9±0.6a 16.6±0.5a 

Navy bean control4 19.2±1.2a 52.9±1.5a 16.1±0.3a 11.4±2.2a 16.7±0.4a 
24 h 18.1±0.7a 53.1±0.5a 17.6±1.1a 10.8±0.6a 17.1±0.4a 

Rice bean control4 22.7±0.7a 57.4±0.8a 17.6±0.2a 8.6±0.7a 15.2±0.1a 
24 h  21.6±0.8a 53.1±0.4b 16.7±1.0a 8.0±0.4a 16.2±0.2b 

Tepary bean control4 21.1±1.0a 51.5±0.2a 17.9±1.0a 9.2±0.1a 16.6±0.3a 
24 h 20.7±0.6a 50.6±0.2b 18.5±0.4a 10.0±0.1b 16.8±0.2a 

Velvet bean control4 17.7±0.3a 54.1±0.5a 17.5±0.1a 10.3±0.2a 17.0±0.1a 
24 h 16.8±0.9a 53.7±0.2a 18.1±0.2a 10.8±1.1a 17.3±0.3a 

Wrinkled pea control4 15.6±0.3a 46.9±0.9a 23.1±0.2a 14.0±0.8a 18.1±0.1a 
24 h 5.2±0.3b 37.1±0.5b 35.4±1.4b 21.9±0.6b 23.0±0.3b 

Hylon®VII control4 19.0±1.0a 50.5±0.3a 17.1±0.3a 13.3±0.6a 18.3±0.3a 
      24 h 10.2±0.4b 46.6±1.9a 24.6±1.3b 18.3±0.1b 20.4±0.0b 
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3.2.5 Apparent amylose content (AAC) of hydrolysed starches 
 The AAC of all starches decreased on hydrolysis (Table 3.9). This could be 

attributed to depolymerisation of amylose chains (factor 1), and the formation of 

double helices by hydrolysed amylose chains (factor 2). Since AAC was determined 

by iodine binding, factor 1 may have rendered the degree of polymerization (dp) of 

hydrolysed amylose chains less than optimal for complexing iodine. However, factor 

2 may have restricted the ability of iodine to enter the hydrophobic core of amylose. 

The extent of decrease in AAC was not significant (p > 0.05) in LB, TB and VB 

starches during the first 2 h. However, during this time period, AAC decreased by 

4.2%, 3.9%, 10.5% and 28.4% in NB, RB, Hylon VII and WP. At the end of 24 h, the 

extent of decrease in AAC followed the order: WP (47.5 %) > Hylon VII (17.9 %) > 

LB (11.8 %) > NB (8.9 %), VB (8.6 %) > RB (7.1 %) and TB (6.4 %). The variation 

in AAC decrease among starches could reflect the interplay among the following: (1) 

rate and extent of depolymerisation of amylose chains, (2) the amount and length of 

double helices formed between hydrolysed amylose chains and (3) state of 

aggregation of the formed double helices.  

3.2.6 Wide angle X-ray diffraction (WAXS) pattern and relative crystallinities 
(RC) of control and hydrolysed starches 

 The WAXS patterns and RC of control and hydrolysed starches are presented 

in Figure 3.13 and Table 3.10, respectively. NB, RB, TB, and VB exhibited a pure A-

type diffraction pattern characterized by strong intensity peaks at 15°, 17°, 18°, 23° 

2θ, respectively (Figure 3.13). LB exhibited an A+B pattern; the peak at 5.5° 2θ 

(arrow 1) is characteristic of B-type crystals.  
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Table 3.9: Apparent amylose content of control and hydrolysed pulse and Hylon®VII    
starches 

Values followed by different superscripts in each column for each starch source are 
significantly different (P < 0.05) by Tukey’s HSD test.                                                   
1Determined by iodine binding and reflects the content of true amylose chains + intermediate 
chains + longer glucan chains of amylopectin.                                                                                                       

Starch source Hydrolysis time 
 

Apparent amylose      
content (%)1 

 
 

Lablab bean Control 34.8±0.8a 
30 min 31.8±1.2a 
2 h 33.1±1.0a 
24 h 23.0±1.2b 

Navy bean Control 28.1±0.6a 
30 min 23.9±0.4b 
2 h 27.7±0.4a 
24 h 19.2±0.8c 

Rice bean Control 24.5±0.4a 
30 min 20.6±0.8b 
2 h  22.6±0.3ab 
24 h 17.4±1.2c 

Tepary bean Control 34.0±0.2a 
30 min 32.7±1.1a 
2 h  31.4±1.0ab 
24 h 27.6±1.5b 

Velvet bean Control 32.6±1.5a 
30 min  29.9±0.6ab 
2 h  27.0±0.2bc 
24 h 24.0±1.0c 

Wrinkled pea Control 79.6±0.2a 
30 min 51.2±1.2b 
2 h 60.4±0.4c 
24 h 32.1±0.7d 

Hylon®VII Control 67.4±0.8a 
30 min 56.9±1.0b 
2 h 60.5±0.3c 

  24 h 49.5±0.8d  
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 Figure 3.13: X-ray diffraction patterns of control (a) and ezyme hydrolysed (30 min (b), 2 h (c) and 24 h (d)) pulse and 
HylonHylon®VII starches. Arrow 1 and 2 shows the characteristic peak (2θ∼5.5°) of B-type crystallites and V-
type peak (2θ∼20°), respectively.
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Table 3.10: Relative proportions of double helical and amorphous contents and relative 
crystallinity of control and hydrolysed pulse and Hylon®VII starches 

 

Starch 
source 

Hydrolysis 
time 

 

 WAXS  13C CP/MAS NMR  

 Crystallinity 
(%)1  Double 

helix (%)2 
Amorphous 

(%)3   

Lablab bean 
 Control4 25.4 40.7 59.3 

30 min 26.5 39.4 60.6 
2 h 31.2 42.3 57.7 
24 h 45.0 28.9 71.1 

Navy bean Control4 25.6 36.9 63.1 
30 min 26.5 37.8 62.2 
2 h 30.0 50.9 49.1 
24 h 45.9 35.4 64.6 

Rice bean Control4 27.3 31.0 69.0 
30 min 28.6 39.3 60.7 
2 h 32.5 52.7 47.3 
24 h 28.3 40.5 59.5 

Tepary bean Control4 26.4 40.2 59.8 
30 min 27.9 44.8 55.2 
2 h 42.9 49.0 51.0 
24 h 38.3 24.0 76.0 

Velvet bean Control4 30.2 42.0 58.0 
30 min 38.7 41.6 58.4 
2 h 47.0 54.8 45.2 
24 h 45.3 40.7 59.3 

Wrinkled pea Control4 15.1 14.3 85.7 
30 min 25.3 67.6 32.4 
2 h 38.7 45.4 54.6 
24 h 50.4 70.3 29.7 

Hylon®VII Control4 19.2 18.2 81.8 
30 min 20.1 38.1 61.9 
2 h 22.6 29.4 70.6 

  24 h  34.5  37.7 62.3  
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1Reflects double helices arranged in a crystalline array.                                                                  
2Reflects double helices arranged in both crystalline and non-crystalline arrays.                
3Regions devoid of organized structures.                                                                                         
4Control refers to starches kept in the digestion medium for 24h without enzyme. Control 
starches differed marginally from their native counterparts with respect to molecular order, 
relative crystallinity, double helical content and gelatinization parameters. There was no 
significant difference (P < 0.05) in the above parameters among control starches at 30 min, 2 
h and 24 h.                                                                                                                                 
The maximum standard deviation for NMR measurements and crystallinity calculations were 
±1.2 % and ±1.4 %, respectively. 
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Both WP and HYVII exhibited a B+V type pattern; the V-type peak (arrow 2) 

centered at 20° 2θ is characteristic of single helices packed in a crystalline array 

and/or amylose-lipid complexes. The intensity of the V-type peak was higher in 

HYVII (Figure 3.13). This was rather surprising, since the amount of bound lipid 

(complexed with amylose) in WP (0.85 %) was higher than that in HYVII (0.59 %). 

This suggests that in WP, the V-amylose lipid complex helical chain segments have 

poorly developed long range order. The absence of the V-type peak in the other pulse 

starches (Figure 3.13) may be a reflection of their lower bound lipid content (0.40-

0.52 %) and/or to single helices being arranged in a non-crystalline array. It is likely, 

that the 20° 2θ peak in WP and HYVII mainly reflects lipid-amylose complexes, since 

this peak disappeared when HYVII was defatted with n-propanol/water 3:1(Appendix 

VII). The RC of control starches (Table 3.10) ranged from 15.1-30.2 % (with the order 

being VB>RB>TB>NB>LB>HYVII>WP). RC differences among the starches could 

reflect the interplay of differences in 1) amylopectin content (with RB (75.5 %)>NB 

(71.9 %)~VB (67.4 %)>TB (66.0 %)> LB (65.2 %)> HYVII (32.6 %)> WP (20.4 %)), 

crystallite size, orientation of crystallites to the X-ray beam, and the ratio of splayed 

double helices (that are not in parallel alignment but within the crystalline register) to 

organized double helices within the crystalline register. 

The intensity of the peak centered at 5.5° 2θ (which represents B-type crystals) 

decreased progressively in LB, NB, WP and HYVII during the first 2 h but then 

increased by 24 h. The above peak was prominent in VB at 24 h (Figure 3.13). The V-

type peak in WP and HYVII, centred at 20° 2θ, progressively increased in intensity 

during the first 2 h but then decreased by 24 h. The intensity reduction of the above 

peak is indicative that B-type crystals of LB, NB, WP and HYVII are susceptible to 
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amylolysis. The reappearance of this peak at 24 h can be attributed to retrogradation 

resulting from interactions between hydrolysed amylose chains (Zobel, 1988b). The 

increase in the V-type peak in WP and HYVII during the first 2 h suggests that free 

lipid present in the control starches may have complexed with hydrolysed amylose 

chains to form ordered crystalline V-amylose-lipid complexes. The slight decrease in 

intensity of this peak at 24 h is indicative of a change in alignment of the V-helix to 

the X-ray beam and/or to hydrolysis of the amylose-lipid complex. It must be 

emphasized, that although amylose-lipid complexes hinder interaction between 

amylose chains and the active site of an enzyme, it does not confer complete 

resistance to hydrolysis, and they are fully degraded after prolonged hydrolysis 

(Seneviratne & Biliaderis, 1991). In both WP and HYVII starches, the peaks centred 

at 22-23° 2θ became well resolved after 24 h. The RC of hydrolysed starches at 2 h 

was higher than that of control starches by 23.6, 16.8, 16.5, 5.8, 5.2, 4.4, and 3.4 % in 

WP, VB, TB, LB, RB, NB, and HYVII starches, respectively. This suggests that 

double helices arranged in a crystalline array within crystalline domains of control 

starches were not disrupted during this time period. Therefore, the increase in RC on 

hydrolysis reflects degradation of amorphous regions and formation of double helical 

structures (resulting from aggregation of hydrolysed amylose chains) arranged into 

crystalline arrays. The decrease in RC, which reflects a disruption of ordered double 

helices, that is exhibited by both RB and TB (Table 3.10) beyond 2 h of hydrolysis 

may have been due to entry of amylolytic enzymes into crystalline regions via cracks 

on the granule surfaces of these starches (Figure 3.11). 
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3.2.7 13C CP/MAS NMR of control and hydrolysed starches  
 13C CP/MAS NMR measures the structural organization of starch at a shorter 

distance scale than X-ray diffraction and it gives characteristic spectra for ordered 

helices and non-ordered chains (Gidley & Bociek, 1988). The multiplicity of the C-1 

position of the glucose unit gives information on starch crystallinity and double helical 

symmetry (Primo-Martin et al., 2007). A-type crystals exhibit three peaks at 100, 101 

and 102 ppm, whereas in a B-type crystal, the C-1 resonance exhibits two peaks at 

100 and 101 ppm (Primo-Martin, et al., 2007). Amylose-lipid complexes (V-amylose 

helices) have been shown to exhibit a broad resonance at 31 ppm (corresponding to 

the mid-chain methylene carbon of monoacyl lipids) and a C1 signal (103-104 ppm) 

attributed to V-conformation (Morrison et al., 1993a; Morrison et al., 1993c). The 

intensity of the C4 resonance, which occurs at ~84 ppm, has been attributed solely to 

the amorphous contributions of the particular starch (Tan et al., 2007). Peaks in the 

region 68-77 ppm represent chemical shifts for C2, C3 and C5; those in the region 59-

62 ppm are representative of C6 (Gidley & Bociek, 1985). The 13C CP/MAS NMR of 

control and enzyme-hydrolysed starches are shown in Figure 3.14.   

The double helical and amorphous contents obtained from the spectra are 

shown in Table 3.10. It was difficult to ascertain the type of crystalline polymorph 

from the nature of C1 splitting (doublet or triplet) in control, LB, RB, NB, TB and VB 

starches (Figure 3.14). However, both control WP and HYVII exhibited doublets at 

100 and 101 ppm at C1, and peaks characteristic of V-amylose-lipid complexes at 103 

and 32 ppm (Figure 3.14). Peaks at 103 and 32 ppm were not present in the other 

starches. 
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 Figure 3.14 13C CP/MAS NMR spectra of control (a) and hydrolysed (30 min (b); 2 h (c); and 24 h (d)) pulse and Hylon®VII 

starches. Arrows 1 and 2 indicate the V-amylose–lipid complex at 103 and 32 ppm, respectively. 
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The resonance at C4, which reflects amorphous contributions, was of a lower order of 

intensity in LB, RB, NB, TB and VB (Figure 3.14), but was higher in intensity in WP 

and HYVII (with WP>HYVII) (Figure 3.14). This was not surprising, since the 

apparent amylose content (Table 3.9) of WP (79.6 %) and HYVII (67.4 %) were higher 

that of the other starches (24.5-34.8 %). It was interesting to observe that although the 

bound lipid content of HYVII (0.60 %) was lower than that of WP (0.89 %), the peak 

intensity at 32 ppm was much stronger in the former (Figure 3.14, arrow 2). These data 

also suggest that the level of organization and/or state of aggregation of V-amylose-

lipid helices is higher in HYVII. The DHC of control starches (Table 3.10), which 

reflects double helices organized in both crystalline and non-crystalline arrays, followed 

the order VB~TB~LB>NB>RB>HYVII>WP. The low DHC of WP (14.3 %) and that 

of HYVII (18.2 %) may reflect their low amylopectin contents (WP, 20.4 %; HYVII, 

32.6 %) and/or to disrupted double helices resulting from co-crystallization of amylose 

with amylopectin A-chains (Yuryev et al., 2004).  

 In WP, the C1 peak after 2 h hydrolysis differed significantly from that of the 

control with respect to higher intensity (represented by peak height), disappearance of 

the signal at 103 ppm and narrower peak width. The C1 signal of HYVII after 2 h was 

similar to that of the control (Figure 3.14). Furthermore, the peak at 32 ppm for WP 

disappeared completely after 2 h hydrolysis (Figure 3.14), whereas for HYVII, the peak 

was prominent even after 24 h hydrolysis. In all other starches, the intensity, shape and 

splitting pattern of the C1 signal did not change significantly throughout the time course 

of hydrolysis. The above data suggest that in spite of the bound lipid content being 

higher in WP, the amylose–lipid complex of WP is less stable, due to a lower degree of 

organization and perfection of ordered domains of aggregated chains [Seneviratne, et 
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al., 1991], and hence more susceptible to hydrolysis by amylolytic enzymes. The 

disappearance of the V-conformation (103 ppm) after 2 h hydrolysis for WP (Figure 

3.14) may have decreased segmental mobility, resulting in a more efficient cross 

polarization between 1H and 13C (reflected in increased peak height and decreased peak 

width). 

 During the first 30 min of hydrolysis, there was no significant change in DHC 

for LB and VB (Table 3.10). However, DHC increased in all other starches (in the order 

of WP>RB>HYVII>NB). This increase reflects double helices formed mainly between 

hydrolysed amylose chains. The data indicate that variations in the extent of change in 

DHC among the starches are influenced by the interplay between the amount and length 

of amylose chains participating in double helical formation, and by the rate of amylose 

chain crystallization and aggregation. The larger DHC (Table 3.10) increase for WP 

during the above time period is a reflection of more extensive amylose chain 

hydrolysis, a higher rate of crystallization and aggregation of hydrolysed amylose 

chains. It is likely that many of the double helices formed in WP and HYVII during the 

first 30 min may have been arranged in a non-crystalline array, since the extent of 

increase in DHC did not parallel a similar type of increase in RC (Table 3.10). At the 

end of 2 h, DHC decreased in WP and HYVII (with WP>HYVII), but increased in all 

other starches (with VB~RB>NB>TB>LB). In WP and HYVII starches, the increase in 

amorphous content, RC and apparent amylose content (Table 3.9) at 2 h and the 

concomitant decrease in DHC (Table 3.10) suggest that double helices formed during 

the first 30 min may not have had the required stability to resist amylolysis. This 

suggests that the degree of polymerization (dp) of the hydrolysed chains may have been 

below the optimum (dp10) for formation of stable helices. In the other starches, the 
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increase in DHC at 2 h, when considered along with the concomitant decrease in 

amorphous content, increase in RC and marginal changes in apparent amylose content 

(Tables 3.9 and 3.10), is indicative that hydrolysed amylose chains involved in double 

helical formation had the optimum dp, and hence were able to resist amylolysis. As 

shown in Table 3.10, the increase in DHC at the end of 24 h was more pronounced in 

WP and HYVII (with WP>HYVII) than in the other starches. This is indicative that the 

long intermediate chains responsible for the high apparent amylose content of the above 

starches (Vamadevan et al., 2014) may have been partially hydrolysed, resulting in 

chain lengths capable of forming double helices resistant to amylolysis. This seems 

plausible, since the decrease in apparent amylose content in WP and HYVII at the end 

of 24 h (with WP>HYVII) was more pronounced than in the other starches (Table 3.9). 

In LB and NB, the decrease in DHC at 24 h, when considered along with the 

concomitant increase in RC (Table 3.10), is indicative that only double helices present 

in non-crystalline arrays may have been hydrolysed. In RB, TB, and VB, the decrease 

in DHC at 24 h, when considered along with the concomitant decrease in RC (Table 

3.10), is indicative of hydrolysis of double helices present in both non-crystalline and 

crystalline arrays.  

3.2.8 ATR-FTIR of control and hydrolysed starches 
 The ATR-FTIR spectrum of starch is sensitive to the so-called short range order, 

defined as the double helical order, as opposed to long range order related to the 

packing of double helices. The IR spectum has been shown to be representative of the 

external part of the starch granule (Sevenou et al., 2002). In the IR spectrum, the 

absorbance bands at 1022 cm-1 and 1047 cm-1 are characteristic of amorphous and 

ordered structures, respectively (van Soest et al., 1995). Thus, molecular order at or 
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near the granule surface (expressed as the ratio of 1047/1022 cm-1) reflects the amount 

of ordered domains (amylopectin double helices and single helices) to amorphous 

domains (linear chains). The molecular order at the granule surface of control and 

hydrolysed starches is presented in Table 3.11.  The FTIR 1047/1022 cm-1 ratio (Table 

3.11) followed the order of VB>RB~NB~TB>LB~HYVII>WP. The low degree of 

molecular order seen with HYVII (0.877) and WP (0.778) may be due to their low 

amylopectin contents (WP, 20.4 %; HYVII, 32.6 %) and/or to the presence of amylose 

defects located in the crystalline region of the lamellae which may have hindered 

double helical alignment. The difference in molecular order among the other starches 

reflects the interplay between differences in amylopectin content (being in order of 

RB>NB>VB>TB>LB), and/or to differences in double helical alignment. 

 As shown in Table 3.11 (FTIR data), after 30 min hydrolysis, molecular order 

increased in WP and HYVII (with HYVII>WP), but decreased in the other starches 

(with the order being TB~VB>LB~NB>RB). Since FTIR data reflect short range order 

at the level of individual double and single helices, the decrease in DHC reflects 

disorganization of helices present at or near the granule surface. The increase in 

molecular order seen with WP and HYVII reflects the formation of double helices 

resulting from interaction between hydrolysed amylose chains. Beyond 30 min, 

molecular order continued to decrease in TB, VB, LB, NB and RB. However, in WP 

and HYVII, changes in molecular order beyond 30 min (for WP) and 2 h (for HYVII) 

were not measurable, since the peak at 1022 cm−1 characteristic of amorphous starch 

was not well defined (Figure 3.15). In the other starches, the peak at 1022 cm−1 was 

reduced in intensity, but well defined, at 24 h.  
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            Table 3.11: Molecular order at the granule surface of control and hydrolysed 
pulse and Hylon®VII starches 

 

 

 

 

 

 

 

 

 

 

 

 

 

           
Values followed by different superscripts in each column for each starch source are 
significantly different (P < 0.05) by Tukey’s HSD test.                                                                                                                          

1The ratio of band intensities (1048/1022 cm-1) measures the relative proportions of 
crystalline to amorphous regions at or near the granule surface.                                                                                                       

2Control refers to starches kept in the digestion medium for 24h without enzyme. 

 

 

Starch source  Hydrolysis time 
  

   ATR-FTIR ratio 
  1048/1022 cm-1 1 

Lablab bean Control2 0.893±0.004a

30 min  0.882±0.007ab 
2 h 0.892±0.005a 
24 h 0.864±0.002b 

Navy bean Control2 0.932±0.002a 
30 min 0.946±0.000b 
2 h 0.944±0.000b 
24 h 0.903±0.000c 

Rice bean Control2 0.944±0.003a 
30 min 0.912±0.000b 
2 h 0.933±0.000c 
24 h 0.923±0.004c 

Tepary bean Control2 0.918±0.005a 
30 min 0.867±0.004b 
2 h 0.875±0.000b 
24 h 0.852±0.000c 

Velvet bean Control2 0.982±0.002a 
30 min 0.947±0.000b 
2 h 0.965±0.000c 
24 h 0.917±0.000d 

Wrinkled pea Control2 0.778±0.001 
30 min 0.881±0.008 
2 h N/A 
24 h N/A 

Hylon®VII Control2 0.877±0.003a 
30 min 0.992±0.011b 
2 h 1.000±0.000b 

  24 h   N/A 
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Figure 3.15: FTIR spectra of control (a) and enzyme-treated (30 min (b); 2 h (c); and 
24 h (d)) wrinkled pea and Hylon®VII starches.  
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3.2.9 DSC of control and hydrolysed starches 
 The gelatinization transition temperatures (To, Tp and Tc) and ∆Hs of the 

control and hydrolysed starches are presented in Table 3.12. To and Tc represent the 

melting of the weakest and most stable crystallites, respectively (Nakazawa & Wang, 

2004). ∆H reflects the thermal energy associated with crystallite melting and 

dissociation and unravelling of double helices present in both crystalline and non-

crystalline arrays. Tc-To represents variation in crystalline organization amongst 

granules. The data showed that amongst the starches, To, Tc-To, and ∆H followed the 

order of VB>TB>NB>RB>LB, LB>NB>RB>TB>VB, and LB>VB>TB>NB>RB, 

respectively. The To values suggest that the highest proportion of weak and strong 

crystallites are present in LB (To, 61.8°C) and VB (To, 72.2°C), respectively. The 

difference in Tc-To is indicative that crystalline heterogeneity is more pronounced in 

LB (Tc-To, 17.5°C) than in VB (Tc-To, 11.1°C). It was interesting to observe that the 

∆H of LB (10.4 J/g) was significantly higher than that of VB (9.9 J/g), in spite of its 

lower crystallinity (LB, 25.4 %; VB, 30.2 %), weaker crystallites (LB, To = 61.8°C; 

VB, To = 72.2°C) and lower DHC (LB, 40.7 %; VB, 42.0 %). This suggests that the 

double helices of LB are probably longer than those of VB, and thus require more 

thermal energy for disruption of hydrogen bonds within and between double helices. 

The endotherms of both WP and HYVII were too wide to obtain an accurate value for 

the gelatinization parameters. The gelatinization parameters of starches hydrolysed for 

24 h are presented in Table 3.12. For all starches, To increased (with the order being 

LB>RB>TB>NB>VB), and Tc-To decreased upon hydrolysis. Changes to Tp and Tc 

were marginal for all starches. ∆H increased in LB and RB, but remained unchanged in 

TB, NB and VB.  
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Table 3.12: Gelatinization parameters of control and hydrolysed pulse starches1  

1 All data represent the mean of triplicates. Values followed by different superscripts in each 
column for each starch source are significantly different (p < 0.05) by Tukey’s HSD test.         
Starch: water ratio (1:3 w/w. dry basis).                                                                                                
2To, Tp and Tc indicate the onset, peak, and conclusion temperatures, respectively.                                                
3(Tc-To) represents the gelatinization temperature range.                                                                         
4 Enthalpy of gelatinization expressed in J/g of dry starch.                                                                                  
5 Refer to starches kept in the digestion medium for 24 h without enzyme. 

Starch 
source 

Hydrolysis 
time 

Gelatinization transition parameters (oC) 

To2 Tp2 Tc2 Tc-To3 
∆H4 
(J/g) 

Lablab bean Control5 61.8±0.0a 67.0±0.0a 79.3±0.3a 17.5±0.2a 10.4±0.2a

30 min 62.6±0.1b 68.2±0.0ab 78.2±0.0b 15.6±0.1b 8.3±0.1b 

2 h 63.7±0.1c 68.7±0.0b 78.2±0.0b 14.5±0.1c 10.4±0.1a 

24 h 66.4±0.3d 71.0±0.7c 78.2±0.4b 11.9±0.1d 11.5±0.3c

Navy bean Control5 65.5±0.0a 72.1±0.1a 79.3±0.5a 13.8±0.6a 8.9±0.0a 

30 min 67.2±0.1bc 72.7±0.2a 79.4±0.1a 12.2±0.0ab 8.7±0.0a 

2 h 67.2±0.3b 72.3±0.3a 79.8±0.1a 12.6±0.2ab 8.5±0.5a 

24 h 67.8±0.0c 72.3±0.5a 79.3±0.5a 11.6±0.5b 8.7±0.6a 

Rice bean Control5 63.4±0.1a 68.6±0.4a 76.4±0.2a 13.0±0.3a 7.7±0.0a 

30 min 64.8±0.0b 69.6±0.1ab 77.0±0.4a 12.2±0.4ab 7.4±0.4a 

2 h 65.7±0.3c 69.9±0.5bc 77.2±0.4ab 11.5±0.1bc 8.1±0.0ab 

24 h 67.5±0.1d 71.2±0.2c 78.5±0.4b 11.0±0.3c 8.5±0.1b 

Tepary bean Control5 66.9±0.0a 72.0±0.2a 78.6±0.0a 11.7±0.0a 9.3±0.0a 

30 min 68.3±0.2b 72.9±0.1b 79.2±0.0b 10.9±0.2a 7.9±0.1b 

2 h 68.7±0.3bc 73.1±0.0b 79.5±0.2bc 10.9±0.5a 8.5±0.1c 

24 h 69.4±0.0c 73.7±0.0c 80.0±0.0c 10.6±0.0b 9.4±0.2a 

Velvet bean Control5 72.2±0.3a 77.8±0.1a 83.2±0.4a 11.1±0.1a 9.9±0.0a 

30 min 73.1±0.1ab 77.6±0.0a 83.3±0.4a 10.3±0.5ab 9.0±0.0b 

2 h 73.9±0.3bc 78.2±0.4a 84.0±0.1a 10.1±0.2ab 9.7±0.1a 

  24 h 74.1±0.1c 78.3±0.5a 83.4±0.2a 9.3±0.3b 10.2±0.4a



 

171 

 

The increase in ∆H for LB and RB cannot be explained in terms of changes to 

crystallinity or DHC during hydrolysis (Table 3.10) for the following reasons: 1) in NB, 

∆H remained unchanged upon hydrolysis, although the increase in crystallinity (25.6-

45.9 %) was similar to that for LB (25.4-45.0 %); 2) the large crystallinity increase in 

TB (26.4-38.3 %) and VB (30.2-45.3 %) on hydrolysis did not influence ∆H; 3) in RB, 

∆H increased by 0.8 J/g, in spite of the crystallinity increase (27.3-28.3 %) being much 

smaller than for TB and VB; and 4) ∆H increased in LB (10.4-11.5 J/g) in spite of a 

decrease in DHC (40.7-28.9 %, Table 3.10). This leads me to conclude that the increase 

in ∆H on hydrolysis exhibited by LB and RB reflects an increase in crystalline 

perfection. This seems plausible, since the extent of increase in To (melting of weakest 

crystallites) and decrease in Tc-To (crystalline heterogeneity) were much higher in LB 

and RB (with LB>RB) than in other starches (Table 3.12). The increased crystallite 

perfection on hydrolysis suggests that double helices of control LB and RB may have 

been less perfectly aligned (within the crystalline domains) than in the other starches. 

Consequently, upon hydrolysis, these imperfectly aligned double helices may have 

become better aligned due to an increase in helical mobility (resulting from hydrolysis 

of the α-(1→6) linkages present within the inter-crystalline amorphous regions). The 

above data also suggest that crystalline regions were not attacked during the time course 

of hydrolysis. 

3.2.10 Amylose leaching (AML) at 80°C and 90°C  
AML data reflect the state of organization (compact or loosely packed) of 

amylose chains within the granule interior. The extent of AML is influenced by the 

extent of interplay among the following factors: 1) amylose content; 2) the extent of 

interaction between amylose chains; 3) amount of amylose chains that are co-
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crystallized or intermingled with the repeating lamellae in amylopectin; and 4) 

amylose-lipid complexes. AML (at 80°C) among control starches (Figure 3.16) 

followed the order of TB>WP>LB>NB∼VB>RB>HYVII. This suggests that AML 

among the above starches was not influenced by differences in their amylose content 

(Table 1). This is concluded based on the observation that HYVII, with a high amylose 

content of 67.4 %, versus LB, NB, RB, TB and VB (with an amylose content of 24.5-

34.8 %), exhibited no AML. Also, TB, with a low amylose content (34.0%) versus LB 

(34.8 %), exhibited a higher amount of AML or by the amount of lipid complexed 

amylose chains. Whereas, VB with a lower bound lipid content than TB [VB (0.40 %) 

< TB (0.52 %), Table 3.1) exhibited less AML (Figure 3.16). This indicates that 

differences in AML among control starches are influenced by the extent of interaction 

between amylose chains and/or by the presence of amylose tie chains – amylose chains 

that are associated with amylopectin chains and/or with the loosely branched 

intermediate chains that are mainly present in WP and HYVII starches (Vamadevan et 

al., 2014). 
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Figure 3.16: Amylose leaching of control starches of pulse and HYVII at 80 and 90°C. 
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3.3 Impact of annealing treatment on the molecular structure and properties of 
pulse and high amylose maize starches  

3.3.1 Granule morphology 
 The granule morphology of native pulse starches has been described in section 

3.1.2. The majority of studies have reported that annealing did not cause any major 

changes to granule morphology of cereal, tuber and root starches (Jayakody & 

Hoover, 2008; Zavareze & Dias, 2011). In this study, no significant differences were 

observed between native and annealed starches with respect to their shape or their 

surface characteristics. However, in HYVII starch, agglomeration of starch granules 

increased after annealing (Figure 3.17). A similar observation (granule aggregates) 

was reported for pea starches upon annealing where the granules appeared to adhere to 

each other (Wang et al., 2013).   

3.3.2 Impact of annealing on the molecular order at the granule surface 
 Attenuated total reflectance –Fourier transform infrared spectroscopy spectral 

data for native and annealed starches are presented in Table 3.13. The ratio of the 

heights of the bands at 1047 and 1022 cm−1 represents the amount of ordered starch 

versus amorphous starch. Among the native starches, the ratio of the bands at 

1047 cm−1/1022 cm−1 followed the order of VB~RB>NB>TB>LB>HYVII>WP. 

These results suggest that the exterior regions of VB and RB starch granules are better 

organized than in the other pulse starches used in this study. In contrast to normal 

pulse starches, high amylose starches exhibited a lower ratio, as the double helical 

arrangement is less compactly organized on the surface of the granule. Sevenou et al. 

(2002) reported that the peripheral regions of B-type starches were more ordered than 

those of A-type starches, whereas the band representing amorphous structures at 1022 

cm-1 was more prominent in A-type starches compared to B-type starches.
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         Figure 3.17: Scanning electron micrographs of native (a) and annealed (b) Hylon®VII starches. 
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Table 3.13: Short range molecular orders of native and annealed starches determined 
by attenuated total reflectance –Fourier transform infrared spectroscopy 
(ATR-FTIR)1 

Starch Source                 Treatment Ratio (1047/1022 cm-1)2 

Lablab bean Native 0.879±0.000a 
Annealed 0.933±0.003b 

Navy bean Native 0.944±0.003a 
Annealed 0.974±0.003b 

Rice bean Native 0.960±0.004a 
Annealed 0.967±0.002a 

Tepary bean Native 0.916±0.004a 
Annealed 0.922±0.005a 

Velvet bean Native 0.963±0.001a 
Annealed 0.968±0.007a 

Wrinkled pea Native 0.782±0.001a 
Annealed 0.816±0.007b 

Hylon®VII Native 0.856±0.004a 
Annealed 0.898±0.002b 

1All data represent the mean of triplicates.                                                                             
2Ratio of the ordered crystalline (1047 cm-1) to amorphous domains (1022 cm-1). Values 
followed by different superscripts in each column for each starch source are significantly 
different (P < 0.05). 
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However, WP and HYVII starches had a higher B polymorphic content than the other 

pulse starches and exhibited a lower ratio. In spite of theirhigher B-polymorphic 

content, the lower ratio of 1047 cm−1/1022 cm−1 in high amylose starches suggest that 

the crystallite organization at the granular surface was loosely organized. This may be 

due to their lower amylopectin content, larger surface area and/or to the presence of 

amylose tie chains causing crystalline defects which may have hindered the double 

helical alignment. 

 No significant differences were observed in the IR ratios 

(1047 cm−1/1022 cm−1) after annealing of VB, RB and TB starches. This suggests that 

the crystallites at the granule surface were better organized in their native state and 

had a less impact on annealing. The 1047/1022 cm-1 ratio increased on annealing and 

the extent of this increase followed the order of LB>HYVII>WP>NB. The increase in 

molecular order indicates that the double helical packing density (compactness) 

increased near the vicinity of the granule surface as a result of improved helical 

alignment upon annealing. The variation in molecular order increase suggests that the 

packing density at the granule surface may have been different among the starches. 

The above increase was primarily observed in B-type (HYVII and WP) and C-type 

(LB) polymorphic starches. The greater increase in molecular order (1047/1022 cm-1) 

observed in LB starch was a reflection of stronger aggregation between helices and/or 

partial conversion of the polymorphic pattern (from A- to B-type) at the peripheral 

regions of the granule. This seems plausible, since Wang et al. (2008) reported that in 

pea starch, the B-type polymorphs are located at the center of the granule, which is 

surrounded by A-type polymorphs peripherally. 
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3.3.3 Impact of annealing on X-ray diffraction pattern and crystallinity 
 The X-ray diffraction patterns and the relative crystallinities (RC) of native 

and annealed starches are presented in Figure 3.18.  The A-type starches exhibited the 

typical diffraction peak intensities centered at 15ᴼ and 23ᴼ 2θ, and an unresolved 

doublet at around 17ᴼ and 18ᴼ 2θ. The B-type starches displayed the strongest 

diffraction peak at around 17ᴼ 2θ, a few small peaks at 15ᴼ, 20ᴼ, 22ᴼ and 24ᴼ 2θ, and a 

characteristic peak at about 5.6ᴼ 2θ. C-type starches typically yield strong diffraction 

peaks at 17ᴼ and 23ᴼ 2θ, and a few small peaks at 5.6ᴼ and 15ᴼ 2θ (Cheetham & Tao, 

1998; Cairns et al., 1997). NB, RB and TB starches exhibited an A-type crystalline 

pattern, whereas WP and HYVII starches exhibited typical B-type crystalline patterns. 

LB starch displayed a C-type crystalline pattern, which was a mixture of A and B-type 

unit cells in varying proportions. The RCs of normal pulse starches ranged from 23.5-

28.4 %; these values were within the range reported for other pulse starches, (being 

17.0-34.0 %) (Hoover et al., 2010). A comparative study on native maize starches 

with varying amylose content showed that a polymorphic transition occurred from 

type A to B via C, with an increase in amylose content. Furthermore, the crystallinity 

of starch decreases with an increase in amylose content and the long chain fraction of 

amylopectin (Cheetham & Tao, 1998). In this study, the high amylose starches (WP 

and HYVII) exhibited a lower value of RC compared to normal pulse starches with 

typical B-type polymorphic patterns.  

The X-ray results indicated that the crystal types and the structures of the pulse 

starches were unaffected by annealing treatment. Similar X-ray diffraction patterns 

were obtained for native and annealed starches, which is in agreement with previous 

studies (Chung et al., 2009a; Gomes et al., 2005; Rocha et al., 2011).  
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Figure 3.18: X-ray diffraction patterns and relative crystallinities of native (N) and annealed (ANN) pulse and Hylon®VII starches. The 

arrow shows the characteristic (~5.5ᴼ 2θ) of B-type crystallites.
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However, a smaller peak centered at 5.5° 2θ was observed in RB starch after 

annealing, which is a characteristic peak for the B-type polymorphic structure. 

Furthermore, the peak height at 5.5ᴼ 2θ of LB, HYVII and WP starches increased 

upon annealing. In general, the increase in B-polymorphic content is characterized by 

the development of peak height and the full width at half maximum (FWHM) at 5.5° 

2θ, and the apparent increase in the peak height of the doublet between 22°-24° 2θ 

(Vamadevan et al., 2014). However, the peak heights of the doublet between 22°-24° 

2θ remained unchanged in high amylose starches. In LB starch, the peak height at 23° 

2θ also remained identical, with a slight shift toward the higher 2θs. It is difficult to 

ascertain whether the annealing treatment had a significant effect on polymorphic 

transformation, or if these changes were associated with differences in moisture 

incorporation among the native and annealed starches. Cheetham and Tao (1998) 

reported that hydration induces an increase in the degree of crystallinity without 

changing the crystal type. The increase in peak height at 5.5ᴼ 2θ of LB and RB 

starches could be due to the partial polymorphic transition from A to B rather than 

disruption of A-type of polymorphs. Wang et al. (2013) also reported a similar 

increase in B-polymorphs in pea starches upon annealing. 

 The relative crystallinity (RC) of pulse and HYVII starches increased as a 

result of annealing treatment (Figure 3.18). A similar observation was reported in high 

amylose barley (Waduge et al., 2006), waxy corn (Rocha et al., 2012), Peruvian carrot 

and potato starches (Rocha et al., 2011). The increase in RC of starches post-

annealing suggests that the crystallites may have become better aligned due to the 

more efficient packing of double helices within the crystalline lamellae and/or an 

increase in crystal size and crystallite reorientation (Tester et al., 1998; Genkina et al., 
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2004; Chung et al., 2010). BeMiller and Huber (2015) suggested that the annealing 

conditions and starch source influence the relative crystallinity of annealed starches, 

and the increase, decrease or no change depends on the balance between crystallite 

disruption and reorientation and recrystallization.  

3.3.4 Impact of annealing on gelatinization parameters 
 The gelatinization parameters of the native and annealed starches are presented 

in Table 3.14. Annealing treatment was performed for various time intervals (24 h, 48 

h and 72 h) and their impact on gelatinizations parameters were determined using 

DSC. The results showed a significant difference between the 24 h annealed and their 

native counterparts. However, only a marginal difference was observed between the 

24 h, 48 h and 72 h annealed samples.  In this discussion, the annealed samples 

subjected to 72 h of incubation time were compared with their native counterparts.  

It was assumed that these starches had reached their optimum level of 

crystalline perfection at the prevailing annealing conditions. To and Tc represents the 

melting of the weakest and most stable crystallites, respectively, and the crystalline 

perfection is represented by Tp (Tester, 1997). The DSC traces of all annealed 

starches produced a single-peaked gelatinization endotherm which was obtained under 

excess water conditions. Under the same conditions, high amylose starches (WP and 

HYVII) exhibited a broader endotherm comprised of two overlapping endothermic 

peaks. In comparison with the pulse starches, HYVII starch exhibited a higher To and 

Tp, which is associated with the amylose-lipid complexes and a higher proportion of 

longer glucan chains.  
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Table 3.14: Gelatinization parameters of native annealed pulse and Hylon®VII 
starches.  

1All data represent the mean of triplicates. Values followed by different superscripts in each 
column for each starch source are significantly different (P < 0.05) by Tukey’s HSD test.         
2To, Tp and Tc indicates the onset, peak, and conclusion temperatures, respectively.          
3(Tc-To) represents the gelatinization temperature range.                                                                
4Enthalpy of gelatinization expressed in J/g of dry starch.

Starch 
source 

      Gelatinization transition parameters (°C)1 
Treatment      To2    Tp2     Tc2 Tc-To3    ∆H4(J/g) 

Lablab bean Native 62.6±0.2a 67.9±0.1a 81.9±0.0a 19.3±0.2a 15.4±0.3a 
24H_ANN 69.0±0.0b 71.3±0.0b 77.7±0.1b 8.8±0.1b 14.5±0.1a 
48H_ANN 70.0±0.2c 72.3±0.3c 78.8±0.1c 8.8±0.1b 14.4±0.6a 
72H_ANN 70.5±0.4c 72.9±0.4c 78.5±0.4c 8.0±0.0c 14.7±0.7a 

Navy bean Native 65.5±0.3a 73.6±0.1a 81.9±0.0a 16.4±0.3a 13.1±0.4a 
24H_ANN 73.3±0.0b 75.4±0.0b 80.6±0.3b 7.3±0.3b 13.3±0.1a 
48H_ANN 73.8±0.1bc 75.8±0.0c 80.7±0.2b 7.0±0.1b 13.6±0.2a 
72H_ANN 74.4±0.1c 76.5±0.0d 81.8±0.0a 7.4±0.1b 13.6±0.3a 

Rice bean Native 62.7±0.2a 68.8±0.1a 81.0±1.0a 18.3±0.8a 14.5±0.8a 
24H_ANN 69.5±0.2b 71.8±0.0b 76.9±0.1b 7.4±0.0b 12.8±0.1ab

48H_ANN 70.8±0.2c 73.2±0.5c 78.3±0.6ab 7.6±0.4b 12.4±0.0b 
72H_ANN 71.2±0.3c 73.4±0.4c 78.9±0.9ab 7.7±0.5b 13.4±0.6ab

Tepary bean Native 66.9±0.0a 71.4±0.1a 82.5±0.6a 15.6±0.6a 14.5±0.3a 
24H_ANN 74.6±0.0b 76.9±0.0b 82.3±0.2a 7.6±0.2b 14.5±0.1a 
48H_ANN 75.8±0.0c 78.1±0.5c 83.3±0.7a 7.4±0.2b 14.6±0.1a 
72H_ANN 76.3±0.0c 78.5±0.1c 83.8±0.4a 7.5±0.5b 15.7±0.2b 

Velvet bean Native 72.2±0.2a 77.2±0.3a 81.3±0.4a 9.1±0.2a 15.0±0.2ab

24H_ANN 80.7±0.1b 82.9±0.0b 88.3±0.2b 7.6±0.1b 15.7±0.6ab

48H_ANN 80.6±0.0b 82.7±0.0b 88.2±0.0b 7.6±0.0b 16.6±0.0bc

72H_ANN 81.5±0.0c 83.7±0.5b 89.1±0.7b 7.6±0.5b 17.8±0.3c 

Wrinkled pea Native 59.4±0.0a 75.1±0.1a 90.7±0.8a 31.2±0.6a 6.9±0.3a 
24H_ANN 72.1±0.0b 77.9±0.2b 89.9±1.2a 17.7±0.8b 6.1±0.4a 
48H_ANN 72.7±0.0bc 78.2±0.0bc 89.5±0.1a 16.8±0.2b 6.6±0.3a 
72H_ANN 73.4±0.3c 78.9±0.3c 89.8±0.6a 16.4±0.3b 6.4±0.1a 

Hylon®VII Native 70.4±0.2a 91.1±0.2a 101.8±0.7a 31.4±0.5a 10.2±0.1a 
24H_ANN 78.1±0.1b 86.2±0.1b 102.7±0.1ab 24.5±0.2b 13.0±0.8b 
48H_ANN 79.2±0.5c 87.7±0.5c 102.7±0.0ab 23.6±0.5b 13.2±0.6b 
72H_ANN 79.9±0.1c 88.1±0.0c 103.2±0.2b 23.3±0.1b 13.6±0.0b 
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Irrespective of the starch source or crystal type, annealing significantly 

increased To and Tp and narrowed the gelatinization temperature range (Tc-To). 

Therefore, the DSC results indicated that all starch crystal types responded to the 

annealing treatment, but the extent of variation differed among the starches. The 

weakest crystallites exhibit the lowest melting temperature and have a greater 

tendency toward crystallite perfection upon annealing (Jacobs et al., 1998; Gomand 

et al., 2012). The increase in gelatinization temperatures indicated that the 

crystallites with the lowest stability improved on annealing. Furthermore, the 

increase in Tp and decrease in gelatinization temperature range suggested that the 

annealing increased the crystalline perfection (improved double helix register) by 

decreasing the heterogeneity within the crystalline lamellae (Vamadevan et al., 

2014).  The lower Tp values of native LB and RB starches could be attributed to the 

loose packing of amylopectin double helices within the crystallites, whereas long B 

chains are interspersed into crystalline lamellae and/or the double helices within the 

crystalline lamella are not in a crystalline register. Tp is primarily determined by the 

internal structure of amylopectin, which dictates the optimal packing of double 

helices within the crystalline lamella. Except HYVII starch, all of the other starches 

exhibited an increase in Tp, which indicates that annealing decreases crystalline 

defects. Several studies have shown that annealing increased the crystalline thickness 

and thereby decreases crystalline defects. The following factors influence the 

increase in crystalline thickness on annealing: 1) improvement in double helical 

registration; 2) lengthening of double helices through the twisting of unordered ends 

in pre-existing double helices; and/or 3) an ordering of unordered ends of double 
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helices (Tester & Debon, 2000; Kiseleva et al., 2004; Vermeylen et al., 2006; 

Gomand et al., 2012; Vamadevan et al., 2014). 

 High amylose starches possess longer internal chains with few branches 

(intermediate chains) and longer external chains of amylopectin, which could cause 

structural defects such as splayed double helices and imperfect double helices with 

untwisted ends within the crystalline lamellae (Klucinec & Thompson, 2002).  

Annealing treatment minimizes the structural defects by increasing glucan chain 

mobility and interactions between the glucan chains.  

The gelatinization enthalpy (∆H) was increased in TB, VB and HYVII 

starches, whereas it remained unchanged in other pulse starches. The increase in ∆H 

of TB, VB and HYVII starches after annealing treatment has been attributed to 

improved double helical register and the lengthening of double helices by twisting of 

the chain ends. In addition to these factors, the co-crystallization of tie chains with 

amylopectin chains could have occurred during annealing, contributing to the higher 

increase in ∆H of HYVII compared to other pulse starches. However, the ∆H of WP 

starch remained unchanged. In contrast to HYVII, WP starch exhibited a lower To 

and ∆H, whereas it possessed a higher amylose content (79.6 %, section 3.2.1). 

However, Vamadevan et al. (2014) suggested that the true amylose content of high 

amylose maize starches (Hylon®V, Hylon®VII and Hylon®VIII) was similar, while 

the amount of intermediate material was different. Therefore, the presence of higher 

amount of intermediate material in WP starch contributed to the increased number of 

tie chains. This caused crystalline defects where it prevented the parallel packing of 

double helices by restricting the mobility of the amylopectin molecules during 

annealing treatment. However, WP showed an increase in Tp, and a larger extent of 
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decrease in Tc-To, suggesting that annealing increased the crystalline perfection and 

decreased the heterogeneity of crystallites to a larger extent. The largest increase in 

To of WP starch could be due to the lengthening of double helices and/or co-

crystallization of tie chains with amylopectin chains.  

3.3.5 Impact of annealing on starch swelling factor  
 The swelling factors (SFs) of pulse and Hylon®VII starches in the 

temperature range from 70-90°C are presented in Figure 3.19. The SFs (at 70-80°C) 

of the native starches followed the order of TB>LB>RB>NB>VB>WP>HYVII. The 

SFs of native normal pulse starches increased rapidly in the temperature range of  

70-85°C, whereas in the native high amylose starches, the increase in SF in the 

temperature range of 70-85°C was gradual. Thereafter, SF decreased marginally at 

90°C in all starches, with the exception of LB and WP starches where the SF remain 

unchanged at 90°C. The SF has been reported to be influenced by amylopectin 

structure (Sasaki & Matsuki, 1998), amylose content (Sasaki & Matsuki, 1998), the 

extent of interaction between starch chains (amylose-amylose and/or amylopectin-

amylopectin chains) (Tester et al., 2000), and V-amylose lipid content (Tester & 

Morrison, 1990a). Swelling factor differences cannot be explained in terms of 

APCLD (Table 3.3) or V-amylose lipid content (Table 3.1), since differences 

amongst the native normal pulse starches with respect to the above two factors were 

not significant. Therefore, the differences in SF among these starches could be 

influenced by the amylose content and the interaction between starch chains, along 

with differences in RC, DHC, granular size and surface characteristics. The 

differences in SF between normal pulse starches and high amylose starches (WP and 

HYVII starches) can be attributed to the lower crystallinity, lower amylopectin 
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Figure 3.19: Swelling factors of native (N) and annealed (ANN) starches in the temperature range of 70-90ᴼC. 
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content with a disrupted crystallite structure and relatively higher content of V-

amylose-lipid complexes in high amylose starches. Furthermore, Singh et al. (2009) 

reported that swelling power was affected by amylopectin and amylose content, and 

amylose could restrict starch granule swelling. At all temperatures, the SF of annealed 

starches was lower than their native counterparts, with the exception of WP starch 

which exhibited either an increase in SF or no change, depending on temperature. The 

extent of this reduction in SF (at 85°C) among the starches followed the order of 

LB~VB>RB>TB>NB>HYVII. The extent of decrease in SF on annealing was 

attributed to the interplay between the extent of crystallite perfection and the 

additional interaction between amylose-amylose and/or amylose-amylopectin chains 

(Jayakody et al., 2009). The swelling of starch granules is known to initiate in the bulk 

amorphous regions and in the restrained amorphous regions, which are adjacent to the 

crystalline regions (Hoover & Manuel, 1996). The perfection of starch crystallites and 

the increased interactions between amylose chains on annealing would reduce the 

extent of hydration of the amorphous regions. Therefore, the movement of water from 

the amorphous regions into the crystalline area would decrease, which in turn reduce 

the granular swelling. The extent of this decrease was more pronounced in normal 

pulse starches than in HYVII starch. In addition to its lower amylopectin content, the 

swelling of HYVII starch was strongly inhibited by V-amylose-complexes and a 

relatively higher proportion of amylose double helices which dissociated at higher 

temperature (Shi et al., 1998). It was surprising that the swelling factor of WP starch 

increased marginally on annealing. This increase may be due to the compound nature 

of the granule and/or the transformation of amorphous amylose into a helical form that 

creates a void space in the bulk amorphous region, which in turn facilitates granular 
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swelling. Decreased granular swelling on annealing also has been reported in lentil, 

pea (Chung et al., 2009b), barley (Waduge et al., 2006), wheat (Lan et al., 2008), 

sweet potato (Song et al., 2014) and potato (Nakazawa & Wang 2004) starches. 

3.3.6 Impact of annealing on amylose leaching (AML) 
 The extent of AML in native and annealed starches in the temperature range of 

70-90°C is shown in Figure 3.20. AML of native and annealed starches increased with 

the increase in temperature. AML at 85°C among the native starches followed the 

order of TB>VB>LB>NB~WP>RB. These data suggest that AML of these starches 

was not influenced by differences in their amylose content. At all temperatures, AML 

of annealed starches was lower than that of their native counterparts. Whereas, no 

AML was observed in either native or annealed HYVII starch. The decrease in AML 

on annealing could be due to additional interactions between amylose-amylose and/or 

amylose-amylopectin chains, reduced hydration and restricted granular swelling, 

and/or enhanced ordering of amylose-lipid complexes (Waduge et al., 2006; Lan et 

al., 2008; Chung et al., 2009b). At higher temperatures (85 and 90°C), a greater 

relative reduction in AML was observed in WP annealed starch compared to the 

normal pulse starches. However, an increased amount of amylose leaching of native 

WP starch at higher temperatures ((85 and 90°C)) could be attributed to the weaker 

interactions between long amylose chains and/or the presence of amylose tie chains 

that are loosely attached with amylopectin chains within the crystalline lamellae. The 

reorganization of starch chains during annealing facilitates additional interactions 

between starch chains, and consequently less AML would occur in annealed starches 

than in their native counterparts. 
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Figure 3.20: Amylose leaching of native (N) and annealed (ANN) starches in the range of 70-90ᴼC.
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3.3.7 Impact of annealing on pasting characteristics 
 The pasting properties of native and annealed starches are presented in Figure 

3.21. Differences in RVA parameters (peak viscosity, pasting temperature, breakdown 

viscosity, final viscosity and set-back) among the native pulse starches were discussed 

in section 3.1.13. In all of the pulse starches, annealing decreased peak viscosity and 

breakdown viscosity, but increased peak temperature and peak time. The trough 

viscosity, final viscosity, and set-back of TB (Figure 3.21b) starch increased, but 

decreased in other pulse starches on annealing. In normal pulse starches, the reduction 

in peak viscosity on annealing reflects decreased SF (Figure 3.19) and AML (Figure 

3.20), as a result of improved interactions between amylose-amylose, amylopectin-

amylopectin and/or amylose-amylopectin chains. The impact of annealing on peak 

viscosity is more pronounced in the NB (Figure 3.21e) starch than in other pulse 

starches. This could be attributed to its lower granular swelling and amylose leaching 

at higher temperatures (>85°C). The increase in pasting temperature of annealed 

starches and the time taken to reach peak viscosity reflect the improved thermal 

stability of annealed starches, which is in agreement with the DSC results (Table 

3.14). The restricted granular swelling and interactions between starch chains also 

were responsible for the increase in pasting temperature upon annealing. The decrease 

in breakdown viscosity of all normal pulse starches indicate that annealed starches 

were stable during continued heating and shearing (Liu et al., 2015).  

It has been reported that the extent of set-back is largely influenced by the 

starch granule size, amylopectin chain length, magnitude of amylose leaching, 

presence of granule remnants and/or the unfragmented rigid granules embedded in the 
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Figure 3.21: Paqsting profiles of native (N) and annealed starches of rice bean (a), tepary bean (b), lablab bean (c), velvet bean 
(d), navy bean (e), wrinkled pea (f) and Hylon®VII (g) as determined by rapid visco analyser.  
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leached amylose complex (Lan et al., 2008; Jacobs et al., 1995; Hoover & Vasanthan, 

1994b). The decrease in set-back cannot be explained in terms of changes in APCLD, 

since the annealing treatment has no influence on chain length distribution (Kohyama 

& Sasaki, 2006; Lan et al., 2008). Annealing has been shown to increase the stability 

of the granule by restricting granule swelling and enhancing starch chain interactions 

inside the granule (BeMiller & Huber, 2015). Therefore, the decrease in set-back on 

annealing is mainly due to the reduced AML and the presence of more intact granules 

that are resistant to shear stress at elevated temperatures compared to their native 

counterparts (Chung et al., 2009a). This seems plausible, since the intact granules may 

have reduced the rapid association of leached amylose chains, which in turn reduced 

the viscosity development at the end of the cooling cycle. Similar findings were 

reported by several groups, such that annealed starches commonly display increase 

pasting temperature or time (Dias et al., 2010; Simsek et al., 2012; Chen et al., 2014) 

and reduced peak viscosity and breakdown viscosity (Simsek et al., 2012; Yadav et 

al., 2013; Song et al., 2014).   

 In contrast to other normal pulse starches, annealed TB (Figure 3.21b) starch 

exhibited a lower pasting temperature with a greater peak viscosity. This could be 

attributed to the amount of leached amylose (Figure 3.20) and granule swelling 

(Figure 3.19) being higher than the other annealed pulse starches. The final viscosity 

of TB starch also increased on annealing; this suggests that the annealed TB starch 

was more prone to shear disintegration with extensive amylose leaching. Furthermore, 

the higher extent of retrogradation during the cooling period is reflected by the 

increase in set-back viscosity after annealing treatment compared to the other starches. 

The above results suggest that the extent of interaction between starch chains as a 
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result of annealing was less in TB starch compared to other starches. Jacobs et al. 

(1996) have reported that annealing increased the peak and final viscosities of pea, 

wheat and rice starches. The native and annealed HYVII and WP (Figure 3.21 f,g) 

starches exhibited low viscosity values in their pasting profiles (Figure 3.21). The 

higher amylose content (>65 %) and lower extent of granular swelling and amylose 

leaching contributed to the lower viscosity of high amylose starches (Polesi et al., 

2011). 

3.3.8 Impact of annealing on acid hydrolysis 
 The acid hydrolysis patterns of native and annealed starches are presented in 

Figure 3.22. Differences in acid hydrolysis among the native normal pulse starches 

were discussed in section 3.1.11. The native high amylose starches (WP and HYVII, 

Figure 3.22e,g) were hydrolysed to a lesser extent than were the native normal pulse 

starches due to their greater amylose content and relatively higher levels of lipid 

complexed amylose chains (section 3.2.1). Furthermore, the retrogradation resulting 

from interactions between hydrolysed amylose chains also restricts the accessibility of 

H3O+ to the glyosidic oxygen, which in turn reduces the extent of hydrolysis during 

the initial stages of hydrolysis.  However, in high amylose starches, the structural 

differences in branching density and glucan chain length and the presence of 

intermediate material may have contributed to the differences between WP and 

HYVII starches toward acid hydrolysis. The annealed starches exhibited similar 

solubilisation patterns to those of their native counterparts. In all starches, with the 

exception of LB and TB (Figure 3.22d,f) starches, the extent of hydrolysis between 

day 1 and day 3 was decreased marginally on annealing. However, beyond day 6, 

differences in hydrolysis between native and annealed starches were more pronounced



  

195 

 

 

 

 

 

 

 

 

 

 

 

 

0 5 10 15 20 25
0

10

20

30

40

50

60 RB_ANN

RB_N

Incubation time  (days)

Hy
dr

ol
ys

is
 (%

)

0 5 10 15 20 25
0

10

20

30

40

50

60
NB_ANN

NB_N

Incubation time  (days)

Hy
dr

ol
ys

is
 (%

)

0 5 10 15 20 25
0

10

20

30

40

50

60 VB_ANN

VB_N

Incubation time  (days)

Hy
dr

ol
ys

is
 (%

)

0 5 10 15 20 25
0

10

20

30

40

50

60 LB_ANN

LB_N

Incubation time  (days)

Hy
dr

ol
ys

is
 (%

)

a 

c 

b 

d 



  

196 

 

 

 

 

 

 

 

 

 

 

Figure 3.22: Acid hydrolysis (2.2 M hydrochloric acid) profiles of native (N) and annealed (ANN) starches of rice bean (a), velvet bean 

(b), navy bean (c), lablab bean (d), wrinkled pea (e), tepary bean (f) and Hylon®VII (g).
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in normal pulse starches than in the high amylose starches (WP and HYVII, Figure 

3.22e,g). At the end of day 15, the differences between the hydrolysis of native and 

annealed starches followed the order of LB>NB>RB>VB>TB>HYVII>WP (Figure 

3.22d,c,a,b,f,g,e). Changes in the extent of acid hydrolysis on annealing have been 

attributed to the interplay of the following factors: 1) perfection and reorientation of 

starch crystallites; 2) formation of double helices between hydrolysed amylose chains; 

3) formation of amylose-lipid complexes; 4) polymorphic changes; and 5) increased 

embedding of α(1→6) branch points (Hoover & Vasanthan, 1994a; Jacobs et al., 

1998; Waduge et al., 2006). 

In this study, the decrease in the extent of hydrolysis of annealed high amylose 

starches during the rapid phase (1-9 days) was due to the strong interaction between 

the amylose chains (formation of amylose double helices) and ordering of amylose 

lipid complexes in the amorphous regions upon annealing. In normal pulse starches, 

the amylose leaching data (Figure 3.20) revealed that additional interactions involving 

amylose chains (amylose-amylose and/or amylose-amylopectin) occurred on 

annealing. The absence of a V-type peak in these starches reflects their lower bound 

lipid content and/or single helices being arranged in a non-crystalline array. The 

variation in the extent of decrease in hydrolysis of normal pulse starches during the 

initial rapid phase of hydrolysis could reflect interplay among the following: 1) 

differences in amylose content; 2) the amount and length of double helices formed 

between hydrolysed amylose chains; 3) the aggregation of formed double helices; and 

4) the additional interaction between amylose-amylose and /amylose-amylopectin 

chains that occurred upon annealing.  At the end of the day 3, annealed LB (Figure 

3.33d) starch was hydrolysed to a greater extent than its native counterpart. However, 



 

198 

 

the marginal difference or increase in hydrolysis after annealing has been attributed to 

the increase in concentration of glucan chains in the amorphous region as a result of 

the enhanced order of crystalline regions (Tester et al., 2000) and the formation of 

void spaces that facilitates the accessibility of H3O+ into the granular interior as a 

consequence of the more perfect crystalline lamellae (Nakazawa & Wang, 2003).  

 The second slower phase mainly reflects the hydrolysis of crystalline regions. 

A marginal decrease/similarity in hydrolysis was observed in annealed high amylose 

starches (WP and HYVII, Figure 3.22e,g) compared to their native counterparts 

during the slower phase of hydrolysis (after 9 days). Waduge et al. (2006) reported 

that the similarity in hydrolysis was mainly due to the limited ordering of amylopectin 

crystallites and the unchanged DHC after annealing. The extent of the decrease in 

hydrolysis on annealing (beyond day 9) mainly reflects differences in the size and/or 

number of crystallites, the extent of crystallite perfection and/or the presence of tie 

chains. Jacobs and Delcour (1998) have suggested that some of the α(1→6) branch 

points in the amorphous regions become more embedded in the crystalline regions as 

a result of the perfection of starch crystallites during annealing treatment. The results 

suggest that the resistance of α(1→6) branch points toward acid hydrolysis was more 

pronounced in VB starch compared to NB and TB starches. The increase in relative 

crystallinity, onset temperature of gelatinization and enthalpy of gelatinization of VB 

and TB (Table 3.14) starches showed that crystallite perfection occurred upon 

annealing. 
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3.3.9 Impact of annealing on starch nutritional fractions 
 The starch nutritional fractions and expected glycemic index (eGI) of native 

and annealed starches, determined by in vitro digestibility with a mixture of 

pancreatin and α-amyloglucosidase, are presented in Table 3.15. In this study, starch 

nutritional fractions RDS, SDS and RS are defined as the amount of starch digested 

within the first 30 min, between 30 min and 16 h, and the residual undigested starch 

after 16 h, respectively (Ambigaipalan et al., 2013). Among the native starches, RDS, 

SDS and RS followed the order of WP>HYVII>TB~RB~NB~LB>VB 

WP~TB>RB>NB>LB>HYVII~VB and VB>HYVII~LB>NB>RB>TB>WP, 

respectively. Among the native pulse starches, WP starch exhibited higher levels of 

RDS, SDS and eGI, and lower RS levels (Table 3.15). VB starch exhibited lower 

levels of RDS, SDS, and eGI, and higher levels of RS. Variations in RDS levels 

among the normal pulse starches were marginal, but were higher in high amylose 

starches (WP and HYVII). The RDS content of pulse starches (8.9-20.9 %) was within 

the range reported for pea (19.2 %), lentil (14.8 %) and chick pea (12.4 %) starches 

(Chung et al., 2008; Hughes et al., 2009), but was much higher than that reported for 

faba bean, black bean, and pinto bean starches (that have a range of 1.6-2.5 %) 

(Ambigaipalan et al., 2011).  The SDS levels of WP and TB starches were lower than 

that reported by Ambigaipalan et al. (2011) for faba bean (76.3 %) starch, but much 

higher than those reported for pea (40.3 %), lentil (41.5 %), chick pea (52.0 %), black 

bean (43.1 %) and pinto bean (45.4 %) starches (Chung et al., 2008; Hughes et al., 

2009). However, SDS levels in VB and HYVII starches were lower than the levels 

that were reported previously for other pulse starches (Chung et al., 2008; Hughes et 

al., 2009). The RS level of WP starch (5.2 %) was much lower than that reported for 
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Table 3.15: Nutritional fractions, hydrolysis index and expected glycemic index of 
native and annealed (ANN) starches determined by in vitro enzyme 
catalysed hydrolysis1 

1 All data represent the mean of triplicates. Values followed by different superscripts in each 
column for each starch source are significantly different (P < 0.05).                                  
2RDS: rapidly digestible starch; SDS: slowly digestible starch; RS: resistant starch; HI: 
hydrolysis index; eGI: expected glycemic index 

 

 

 

Starch source RDS2 SDS2 RS2 HI2 eGI2 

Lablab bean Native  9.4±0.4a 37.3±0.4a 40.7±0.5a 42.8±0.2a 45.1±0.2a 

ANN 2.3±0.1b 44.5±0.7b 40.6±0.7a 47.0±0.3b 48.7±0.3b 

Navy bean Native  10.1±0.3a 42.4±0.9a 28.2±0.8a 48.0±0.4a 49.6±0.3a 

ANN 1.1±0.2b 44.1±0.4a 35.5±0.5b 39.8±0.2b 42.5±0.2b 

Rice bean Native  10.3±0.5a 52.3±0.8a 15.2±0.7a 60.6±0.4a 60.4±0.4a 

ANN 1.4±0.2b 49.9±0.5b 26.5±0.5b 48.5±0.1b 50.0±0.1b 

Tepary bean Native  10.3±0.4a 63.9±0.4a 12.4±0.5a 62.7±0.4a 62.3±0.3a 

ANN 6.7±0.3b 71.9±1.0b 8.0±0.7b 80.5±0.0b 77.6±0.0b 

Velvet bean Native  8.9±0.2a 28.4±0.2a 50.3±0.2a 35.9±0.2a 39.2±0.2a 

ANN 1.5±0.1b 27.1±0.5b 59.1±0.5b 26.6±0.2b 31.1±0.2b 

Wrinkled pea Native  20.9±0.4a 63.1±1.2a 5.2±0.9a 93.6±0.3a 88.8±0.3a 

ANN 4.9±0.2b 51.8±0.4b 32.6±0.3b 66.0±0.1b 65.1±0.1b 

Hylon®VII Native  14.3±0.5a 30.3±0.9a 42.5±0.5a 45.9±0.3a 47.7±0.2a 

  ANN 2.6±0.1b 29.8±0.9a 54.8±0.7b 33.9±0.4b 37.4±0.4b 
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pea, lentil, chickpea, black bean, pinto bean, and faba bean starches (that have a range 

of 11.0-59.4 %). However, RS levels in normal pulse and HYVII starches were 

comparable to values reported for other pulse starches (Chung et al., 2008; Hughes et 

al., 2009; Ambigaipalan et al., 2011). The hydrolysis index (HI) and the expected 

glycemic index (eGI) of native starches followed the order of 

WP>TB>RB>NB>HYVII>LB>VB and WP>TB>RB>NB>HYVII>LB>VB, 

respectively. The HI and eGI values of WP starch were much greater than those 

reported for other pulse starches (with a range of 38.8-70 %) (Ambigaipalan et al., 

2011; Chung et al., 2008). However, HI and GI values of other starches were within 

the range of reported values by the above authors. 

 The RDS fraction of granular starches mainly reflects the susceptibility of the 

starch chains near the vicinity of the granule surface, where the added enzyme initially 

acts on the surface and gradually diffuses into granule interior. The presence of 

granular pores, fissures and channels inside the granules facilitates the rapid 

penetration of enzymes to the granule interior, as obstacles on the surface (such as 

longer blocklets) are limited, and increases the extent of hydrolysis within a certain 

time period (Dhital et al., 2010). Thus, the RDS content of granular starches is mainly 

influenced by the surface characteristics and the molecular order at the granule 

surface. The FTIR data (Table 3.13) of native starches showed that the                     

1047/1022 cm-1 ratio followed the order of VB~RB>NB>TB>LB>HYVII>WP. The 

low degree of molecular order seen with WP and HYVII starches may be due to their 

lower amylopectin content, larger surface area (with WP>HYVII – see section 3.2.1) 

and/or the presence of defective crystallites which may have hindered the double 

helical alignment. Furthermore, the WP granules appeared extensively damaged, and 
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the internal layers were exposed with more splitting on the surface with distorted 

birefringence patterns. Thus, the RDS level of WP was greater than those of HYVII 

and other pulse starches due to its lower level of molecular order and its surface 

characteristics facilitated the hydrolytic activity of the enzymes. The marginal 

differences in RDS levels between TB, RB, NB and LB starches reflects the interplay 

among differences in molecular order at the granule surface (with RB>NB>TB>LB), 

specific surface area (with TB~LB>NB>RB) and the extent of cracking on the 

granular surface (with RB>TB>NB>LB). In contrast to other starches, the lower 

extent of RDS in VB starch during the first 30 min of hydrolysis could be attributed to 

its higher molecular order at the granular surface. 

 The SDS levels in native starches did not follow the same trend as observed in 

RDS and RS levels. The variation in SDS and RS levels among the native starches 

reflects the interplay between the double helical organization within the granule, 

association between the amylose chains within the amorphous regions and the extent 

of interaction between the hydrolysed starch chains during the progress of hydrolysis. 

The lower SDS and higher RS levels of VB starch reflects the lower susceptibility of 

VB toward amylolysis, which was attributed to its relative crystallinity and molecular 

order and the DHC being higher than that of other starches.  

 Jane et al. (1997) have reported that in B-type starches, the α(1→6) branch 

points of amylopectin are clustered in the amorphous regions with fewer short branch 

chains, whereas in A-type starches the branch points are distributed in both 

amorphous and crystalline regions with more short branch chains. In contrast to B-

type starches, the inferior crystalline structure of A-type starch is more susceptible to 

enzyme-catalysed hydrolysis. Gerald et al. (2001) also reported that starches with 
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predominantly B-type unit cells were more resistant to amylolysis than starches with 

more A-type unit cells. Furthermore, the extent of hydrolysis followed the order of A-

type (>70 %)>C-type (60 %)>B-type (35 %). In this study, HYVII and WP starches 

contained more B-type unit cells due to their higher amylose content with longer 

amylopectin branch chains. However, WP starch exhibited a higher level of SDS and 

a low level of RS than did HYVII starch.  The higher resistance of HYVII toward 

amylolysis could be attributed to its molecular order, relative crystallinity, DHC and 

the association between amylose chains, with the amorphous regions being higher 

compared to WP starch. The weaker birefringence patterns and distorted quadrants of 

WP starch suggest that the amylopectin double helices were more accessible to the 

hydrolytic enzymes than in the other starches. Furthermore, the extensive granule 

damage and the fragmentation of compound granules further increased the 

susceptibility to enzyme-catalysed hydrolysis. TB, RB and NB starches exhibited an 

A-type polymorphic pattern, and their SDS levels are higher than that of LB starch, 

which showed a C-type polymorphic pattern (mixture of A- and B-type unit cells). 

With respect to LB and NB starches, the difference in SDS and RS levels reflected the 

interplay among the differences in surface area (with LB>NB), amylose content (with 

LB>NB), molecular order (with LB<NB) and relative crystallinity (with LB<NB). 

Consequently, the SDS content of LB should have been higher than that of NB. This 

suggests that the higher DHC (with LB>NB) and the presence of B-type unit cells in 

LB may reduced the influence of molecular order, relative crystallinity and surface 

area on the susceptibility of hydrolysis. Thus, both of the above factors contributed to 

the decreased SDS and increased RS levels in LB starch than NB starch. Variations in 
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APCLD cannot be considered as a factor influencing the SDS and RS levels, since 

there was no significant difference among TB, RB and NB starches. 

 The higher SDS and lower RS levels of TB starch suggest that the surface area 

of TB (0.39 m2/g) was higher than that of RB (0.23 m2/g) and NB (0.30 m2/g) 

starches, and its relative crystallinity and molecular order lower compared to RB 

starch. The mechanism of amylolysis comprises both the preferential disruption of 

amorphous regions, as well as side-by-side hydrolysis of amorphous and crystalline 

regions. The preferential hydrolysis of the amorphous growth rings is facilitated by 

the presence of pores. Therefore, the enzyme easily gets access to the granular interior 

through surface pores (Blazek & Gilbert, 2010). Thus, the presence of surface cracks 

in TB and RB starches facilitated the preferential disruption of amorphous regions. 

Amylose leaching data showed that the extent of AML was higher in TB starch than 

in the other starches, and this reflected the weaker interactions between amylose-

amylose and amylose-amylopectin chains. This would then explain the differences in 

SDS and RDS levels between TB and RB starches. In my previous study, RB starch 

was hydrolysed to a greater extent than was TB starch during 72 h of amylolysis 

(using α-amylase only). This suggests that the difference in DHC between TB starch 

(37.8 %, Table 3.4) and RB starch (31.1 %, Table 3.4), cracks on the granular surface 

(with RB>TB, Figure 3.1), and the hydrolytic activity of α-amylase may have 

contributed to the variation between these starches.  

 Annealing treatment decreased the RDS levels in all starches compared to their 

native counterparts. The extent of this decrease on annealing followed the order of 

WP>HYVII>NB>RB>VB>LB>TB. The decrease in RDS content on annealing 

reflects the change in molecular (amylose and amylopectin) realignment at the 
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granular surface on annealing. The FTIR data showed that the molecular order at the 

granular surface was increased in LB, NB, WP and HYVII starches upon annealing. 

However, the extent of this increase in these starches (with LB>HYVII>WP>NB) 

should have theoretically decreased the RDS level in the same order. However, the 

observed trend in RDS decrease on annealing was attributed to the interplay between 

the increase in molecular order, extent of interaction between amylose chains, and the 

crystallite realignment near the granular surface.  

 In this study, annealing increased SDS levels in LB, NB and TB starches, 

while it decreased SDS levels in RB, VB, WP and HYVII starches. After annealing, 

the RS level of TB starch was lower than that of the native counterpart, whereas all 

the other starches exhibited an increase in their RS levels. However, there was no 

change in the RS level of LB starch upon annealing. Annealing treatment facilitates 

the interaction between glucan chains and thus, annealed starches would have shown a 

greater resistance to enzymatic hydrolysis. However, in the case of annealed TB 

starch, the amorphous regions were rendered more accessible to amylolytic enzymes 

after annealing treatment. Chung et al. (2010) have reported an increase in RDS and 

SDS levels, and a decrease in RS levels, in field pea and lentil starches upon 

annealing.  Wang et al. (2013) also reported similar results with pea starches upon 

annealing. The above authors also suggested that the increase in in vitro digestibility 

could be attributed to slight irreversible swelling of starch granules, loss of amylose 

molecules and the formation of cracks on the granule surface. However, no detectable 

amylose leaching was observed during the annealing treatment. Thus, irreversible 

swelling and the formation of cracks could have increased the enzyme susceptibility 

of TB starch upon annealing. In high amylose starches, the extent of decrease in SDS 
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and the increase in RS levels were greater in WP than in HYVII starch. Hoover and 

Vasanthan (1994a,b), and Jacobs et al. (1998) have suggested that the mobility of the 

amylose chains increases during annealing and results in the formation of new double 

helices between amylose chains, as well as increased interaction between amylose and 

amylopectin chains. In WP starch, the above interactions were weaker in its native 

state and as a result of annealing, the enhanced interactions between amylose chains in 

the amorphous regions would have reduced the susceptibility to enzyme-catalysed 

hydrolysis. As discussed earlier, the starch chains in HYVII were more densely 

packed than in WP starch, and the annealing treatment further increased the extent of 

interaction between the starch chains. Thus, RS levels in HYVII starch increased 

further upon annealing. 

The difference in the extent of decrease in SDS levels and increase in RS 

levels in RB, VB and LB starches reflects the interplay between increased crystallite 

perfection, increased crystallinity, enhanced interactions between amylose-amylose 

and/or amylose-amylopectin chains and the extent of crack formation at the granule 

surface. Based on the above results, the majority of pulse starches used in this study 

with their lower extent of hydrolysis have the potential to benefit human health 

through sustained glycemic and insulinemic response and as a source of prebiotic 

carbohydrate (Ells et al., 2005; Rodríguez-Cabezas et al., 2010). The data revealed 

that among the pulses, velvet bean, lablab bean, and navy bean may be a good source 

of slowly digestible starch (SDS) and resistant starch (RS). SDS is digested slowly 

with a moderate glycemic and insulinemic response. RS is considered to have high 

nutritional value, not only by promoting beneficial microflora and colonic health, but 

also through reducing energy intake and prolonging satiety.  



 

207 

 

3.4 The contribution of amorphous regions to structural changes within the 
crystalline lamellae on annealing 

The contribution of amorphous regions to the mechanism of annealing was 

explored using the following approaches: 1) partial acid hydrolysis and annealing 

treatment; and 2) cross-linking with sodium trimetaphosphate (STMP) and sodium 

tripolyphosphate (STPP) before and after annealing treatment. 

3.4.1 Partial acid hydrolysis and annealing treatment 
 Acid treatment preferentially hydrolyses the less compact amorphous regions 

first, and then the crystalline regions of starch granules (Robin et al., 1974; Biliaderis 

et al., 1980).  Pulse and high amylose maize starches were exposed to partial acid 

hydrolysis for up to 72 h, during which time the amorphous material was partially 

hydrolysed and the starch granules remained intact. The acid hydrolysed residues 

(lintnerised starch) taken at different time intervals were subjected to annealing for 72 

h at a temperature below their individual onset of gelatinization temperatures. The 

annealing temperatures were chosen as a function of onset gelatinization temperature 

(To) of the lintnerised starches to avoid melting of starch crystallites and to facilitate 

glucan starch chain mobility within the granule. 

3.4.1.1 13C CP/MAS NMR of native and lintnerised starches 
The 13C CP/MAS NMR spectra of native and acid-modified starches after 72 h 

of hydrolysis are presented in Figure 3.23. Signals at 94-105 and 58-65 ppm 

corresponded to the C1 and C6 in hexapyranoses, and the overlapping signal 

occurring around 68-78 ppm is linked to C2, C3, and C5, respectively 

(Atichokudomchai et al., 2004). At 103 and 95 ppm, two broad shoulders could be 

observed; these might arise possibly from the amorphous domains for C1, whereas the 

broad resonance appearing at 82 ppm would have resulted from amorphous domains 



 

208 

 

for C4 (Man et al., 2012). The intensities at C1 and C4 amorphous resonance 

appeared to decrease after 72 h of hydrolysis, and the spectra began to appear sharper. 

However, normal pulse starches showed a slight decrease in the intensities at C1 and 

C4 in comparison with WP and HYVII starches. The dramatic reduction in the 

resonances at 103 and 95 ppm (amorphous shoulders of the C1 peak), and the 82 ppm 

of C4, are due to the faster degradation of the amylose chains that contributed to the 

amorphous component in high amylose starches. Generally, amorphous compounds 

exhibit broad resonances and ordered materials give a narrow resonance. 

13C CP/MAS NMR of C1 resonance provides information on the crystalline 

and non-crystalline chains, and the multiplicity of the C1 resonance refers to the 

packing type of the starch granule. The C1 peak in spectra of A-type starch is a triplet, 

whereas it is a doublet in B-type starch (Bogracheva et al., 2001; Atichokudomchai et 

al., 2004). As C-type starch is a mixture of both A- and B-type crystalline structures, 

the C1 spectra of the C-type starch exhibits a mixed pattern of both A- and B- types. 

The relative proportion of A- and B-type polymorphic forms determines the 

resonances in the spectra of C-type starch. C-type starch exhibits a triplet C1 spectra if 

the A- type crystalline structure remains predominant and a doublet C1 spectra if the 

B-type crystalline structure is predominant (Bogracheva et al., 2001). It was difficult 

to ascertain the type of crystalline polymorph from the nature of C1 splitting (doublet 

or triplet) in native LB, RB, NB, TB and VB starches (Figure 3.14). However, both 

native WP and HYVII starches exhibited doublets at 100 and 101 ppm at C1, and 

peaks characteristic of V-amylose-lipid complexes at 103 and 32 ppm (Table 3.14). 

Peaks at 103 and 32 ppm were not present in the other starches. After 72 h of 

hydrolysis, the C1 resonance of the acid hydrolysed starches gradually became a 
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       Figure 3.23: 13C CP/MAS NMR spectra of native and acid hydrolysed (AH) pulse and Hylon®VII starches.
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triplet in NB, TB and VB starches, whereas in WP and HYVII starches, the doublet 

became more prominent at 100 and 101 ppm. However, the C1 resonance of acid-

hydrolysed LB starch exhibited an inconspicuous doublet or triplet, which is a 

characteristic feature of C-type starches (Bogracheva et al., 2001; Atichokudomchai et 

al., 2004). The NMR spectra of HYVII and WP starches exhibited a broad resonance 

with a chemical shift at 31.5 ppm, corresponding to mid-chain methylene carbons of 

fatty acids in the V-amylose lipid complex. In the acid-hydrolysed starches, the 

resonance at 31.5 ppm disappeared in WP starch, whereas a weak intensity signal was 

observed in HYVII starch. In contrast to WP starch, the amylose-lipid complexes 

present in HYVII starch appeared to be resistant to acid hydrolysis after 72 h.   

3.4.1.2 Gelatinization properties of lintnerised starches 
The gelatinization transition temperatures (To, Tp and Tc) and ∆Hs of 

gelatinization for the lintnerised starches at different hydrolysis times are presented in 

Figure 3.24. In normal pulse starches, the gelatinization temperatures To and Tp 

increased up to 24 h with hydrolysis. After 72 h of hydrolysis, the endothermic peak 

broadened with a shifting to lower To and Tp values compared to their native 

counterparts (Figure 3.24).  However, Tc and the gelatinization temperature range 

(Tc-To) increased with increasing hydrolysis time. There were only slight differences 

observed in ∆H during the first 12 h of hydrolysis, but ∆H decreased at the end of the 

hydrolysis period (at 72 h). WP starch exhibited an increase in To, Tp and Tc, but Tc-

To and ∆H decreased with the progress of hydrolysis. In contrast to WP starch, HYVII 

showed marginal changes in gelatinization temperature with a greater decrease in ∆H 

after 72 h of hydrolysis.  
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Figure 3.24: Gelatinization parameters of partially acid-hydrolysed (lintnerized) starches before and after annealing. AH: 
acid hydrolysed; AH-ANN: acid hydrolysed and annealed. 
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However, in HYVII starch, a greater extent of decrease in Tp was observed after 

90 min of hydrolysis, whereas Tc, Tc-To and ∆H showed a steep decrease after 6 h of 

hydrolysis.   

Gelatinization is a swelling driven process that involves unravelling and melting 

of the double helices that form from the external chains of amylopectin that are packed 

together in clusters (Coke & Gidley, 1992; Miao et al., 2001). Granular swelling is 

accompanied by water uptake by the amorphous regions, and it exerts stress on the 

amylopectin crystallites which in turn dissociates the double helices within the starch 

crystallites (Denovan, 1979). During the initial stages of hydrolysis, acid preferentially 

attacks the amorphous regions and decreases their destabilizing effect on starch 

crystallites (Jayakody & Hoover, 2002). In this study, the partial destruction of 

amorphous regions restricted the cooperative melting of starch crystallites, which was 

assisted by the water uptake in the amorphous regions of the granule and thus explains the 

increase in To and Tp upon acid hydrolysis. The higher To and Tp values indicate greater 

perfection of crystallites or a larger co-operative unit represented by longer chains in the 

crystallites and/or a larger crystallite size (Miao et al., 2001). Palma-Rodriguez et al. 

(2012) also reported that the subsequent reduction in the amorphous regions and 

rearrangement of shorter chains gave a higher proportion of crystalline material with a 

more ordered and stable structure, which caused an increase in Tp. Morrison et al. 

(1993a) also suggested that the higher transition temperatures observed due to the 

preferential hydrolysis of amorphous regions allows the formation of longer amylopectin 

double helices compared to the unhydrolysed amylopectin molecule, as a result of the 
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removal of branch points. Furthermore, the broader endothermic transition (Tc-To) shift 

to higher temperatures following acid hydrolysis indicated the increase in crystallinity or 

molecular order and greater heterogeneity of the hydrolysed products (Wang & Copeland 

2012). This would then explain the increase in Tc-To in the normal pulse starches as the 

hydrolysis time increased. Jacobs et al. (1998) also reported that as a function of 

hydrolysis time, the endotherm shifted to higher temperatures, together with peak 

broadening and marginal changes in ∆H. 

 Native high amylose starches showed variation in their crystalline stability, where 

the crystallites are made up not only from amylopectin-amylopectin interactions, but also 

from interactions between amylose-amylose and amylose-amylopectin. Consequently, 

these starches produce a broader endotherm at higher temperatures. However, the 

disrupting effect of amylose on crystalline arrangement could be due to co-crystallization 

between amylose and amylopectin, and the presence of amylose tie-chains that traverse 

through the inter-crystalline regions. Furthermore, the presence of intermediate material 

also influences this crystallite disruption. Jane et al. (1997) suggested that the 

amylopectin branching points of A-type starches scattered in both amorphous and 

crystalline regions, whereas in B-type starches, the branching points are mainly located in 

the amorphous regions, making them more susceptible to acid hydrolysis. Therefore, the 

high amylose starches used in this study exhibited a pure B-type polymorphic pattern. It 

seems plausible that the cleavage of amylose tie chains and amylopectin branch points 

located in the amorphous region by acid could lead to a greater realignment and self-

association of starch chains forming more double helical structures (Gunaratne & Corke, 
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2007) and reduce heterogeneity within the crystallites. Thus, Tc-To of WP and HYVII 

starches was reduced with hydrolysis time compared to their native counterparts. 

However, the extensive hydrolysis of amylose chains restricted the re-association of these 

crystallites due to the abundance of the retrograded amylose chains, which in turn 

produced more crystallites with different stabilities. This would explain the increase in 

Tc-To of HYVII starch after 24 h of hydrolysis. 

 Biliaderis et al. (1980) reported an increase in To and Tc-To for smooth pea 

starches, together with a decrease in enthalpy, after acid hydrolysis. Gelatinization 

enthalpy reflects the disruption of double helical order rather than loss of the crystalline 

register of the granule (Cooke & Gidley, 1992). The decrease in ∆H on acid hydrolysis 

has been associated with the loss of some degree of order of amorphous regions and/or 

the hydrolysis of α(1→6) linkages located in the amorphous lamellae, especially in A-

type starches (NB, RB, TB and VB). Scission of α(1→6) branch points of amylopectin 

would contribute to the increased helical mobility with better alignment and the 

perfection between adjacent double helices. As a result of this, the number of double 

helices unravelling and melting during the gelatinization process would decrease after 

acid treatment (owing to stronger interaction between adjacent double helices) (Gao et al., 

2012). In comparison with normal pulse starches, high amylose starches exhibited a 

greater decrease in ∆H. These variations were attributed to a variety of factors, such as 

longer amylopectin branch chain lengths, higher lipid content and lipid-complexed 

amylose chains. DSC measures the net endothermic process and the net energy (∆H) 

required to form this endotherm is influenced by the presence of free lipids in a starch 
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water system (Jayakody & Hoover, 2002). Biliaderis et al. (1985) have reported that the 

melting of the V-amylose-lipid complexes decreases ∆H. In this study, WP and HYVII 

starches contained more free lipids compared to normal pulse starches (section 3.2.1), and 

the greater reduction in ∆H was associated with the amount of lipid-complexed amylose 

chains. During the hydrolysis process, the longer amylose chains were fragmented into 

smaller ones and these chains would have complexed with the available free lipids to 

form more amylose-lipid complexes at the initial stages of hydrolysis. Furthermore, the 

hydrolysed amylose chains may have interacted with the double helices present within the 

crystalline lamella, thereby hindering their dissociation and unravelling during 

gelatinization. Thus, a gradual decrease in ∆H was observed in lintnerized WP and 

HYVII starches. The melting endotherm that occurred as a result of interaction between 

partially hydrolysed amylose chains cannot be detected due to the limitations (using 

standard aluminum pans) in the DSC analysis range beyond 130ᴼC.  

3.4.1.3 Annealing of lintnerized starches 
 In this study, the lintnernied starches were annealed to ascertain whether, and to 

what extent, starches with partially or completely removed amorphous parts could still be 

annealed. It has been reported that the effect of annealing is less pronounced in prolonged 

acid-treated starches (Jacobs et al., 1998; Atichokudumchai et al., 2001). However, the 

complete removal of amorphous regions would affect the granular morphology and the 

starch crystallites in the crystalline lamella to a greater extent. Therefore, we decided to 

perform annealing on partially acid hydrolysed starches with minimal alteration to the 

granular structure. Figure 3.24 summarizes the susceptibility of lintnerized starches to 
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annealing with partial removal of amorphous regions. Partially acid-hydrolysed starches 

exhibited an increase in To and Tp and a decrease in Tc-To upon annealing, whereas Tc 

and ∆H either remained unchanged or increased after annealing treatment. However, in 

both WP and HYVII starches, acid hydrolysis increased To and Tp, but decreased Tc-To 

and ∆H. The Tc values of WP starch increased with the hydrolysis, whereas in HYVII, Tc 

remained unchanged after 72 h of hydrolysis.  

 Similar effects were noticed after the annealing treatment of native pulse starches, 

but the extent of the changes associated with different time intervals of hydrolysis 

differed among the starches used in this study. The extent of changes after annealing 

treatment have been influenced by their granule size, their extent of interaction between 

the starch chains within the amorphous and crystalline regions, the presence of V-

amylose-lipid complexes, crystallite organization and polymorphic composition, 

distribution of α(1→6) branch points between the amorphous, and crystalline regions and 

the presence/proportion of intermediate chains (Hoover & Vasanthan, 1994a; Morrison et 

al., 1993a; Jane et al., 1997; Jayakody & Hoover 2002; Vamadevan et al., 2014). The 

impact of annealing on the lintnerized starches was more pronounced in normal pulse 

starches than in the high amylose starches. However, both normal and high amylose 

starches exhibited marginal differences in their rate and extent of hydrolysis after 72 h 

(Figure 3.22).  

 Furthermore, during the first 72 h, acid preferentially hydrolysed the longer 

amylose chains present in the amorphous growth rings and amorphous lamellae into 

smaller fragments, and the fragmented amylose chains mainly occupied the amorphous 
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regions. Depending on the hydrolytic activity of H3O+, the hydrolysed amylose chains 

having optimum chain lengths (CL<120) retrograde rapidly and form new double helices 

during the initial stages of hydrolysis (Gidley & Bulpin 1987; Morrrison et al., 1993a). In 

addition, the long amylopectin chains (B2, B3 and B4) that span to inter-crystalline regions 

are also susceptible to acid hydrolysis (Morrison et al., 1993a). This would destabilize the 

backbone structure of amylopectin and separate crystallites at the lamellar level. As 

discussed earlier, A-type starches have relatively fewer branch points of amylopectin 

located in the amorphous regions compared to B or C-type starches. NB, RB, TB and VB 

starches exhibited an A-type polymorphic pattern with marginal differences in their 

amylopectin content (Table 3.1). Therefore, we speculate that the amylopectin branch 

points of these starches showed a similar extent of susceptibility to mild acid compared to 

other starches (B or C-type starches). Consequently, the lintnerized starches of NB, RB, 

TB and VB responded to the annealing treatment in a similar way. WP and HYVII 

starches exhibited a pure B-type polymorphic pattern and their branching points are 

mainly located in the amorphous regions. During acid hydrolysis, the branching points of 

these starches would be more vulnerable and would have yielded similar types of 

crystallites with long chain lengths, since the proportion of long amylopectin chains is 

higher in high amylose starches compared to normal pulse starches. Therefore, the extent 

of variation in their Tc-To was lower during the progress of hydrolysis and showed a 

similar response to the annealing treatment.  

The hydrolysis of amylopectin branch points induces the elongation of double 

helices due to their increased mobility (Gao et al., 2012). Furthermore, the preferential 
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hydrolysis in the starch granules eliminates the disruptive effect of amylose on the 

alignment of amylopectin chains within the crystalline lamellae (Gao et al., 2012), and 

this could be more pronounced in high amylose starches. During annealing treatment, the 

plasticizing effect of water increases the glucan chain mobility within the bulk amorphous 

regions and then enters the amorphous lamella regions of the semi-crystalline growth 

rings (Perry & Donald, 2000). Subsequently, the increased mobility in the amorphous 

regions induces movement in the crystalline lamella and enhances the order of the 

amylopectin double helices. The gradual erosion of the amorphous regions by acid 

hydrolysis may reduce the hindrance between double helical chains and facilitate 

crystallite perfection. Therefore, the crystalline regions are closely packed together, 

increasing the intermolecular forces, such as van de Waals forces and H-bonding, 

between the starch chains. In addition, the scission of the α(1→6) amylopectin branch 

points located in the amorphous regions may also allow the amylopectin branch points to 

be more mobile during the annealing process, leading to a better realignment within the 

crystallites and promote the elongation of crystallites. The above changes contributed to 

the further increase in To, Tp and Tc of the lintnerized annealed starches compared to 

their native, non-hydrolysed annealed starches. Therefore, the amorphous regions played 

a significant role in optimising the ordering of double helices in the crystalline regions, 

increasing the homogeneity and the perfection of the crystalline order, resulting in 

reduction of the gelatinization temperature range (Tc-To) in lintnerized starches (Tester et 

al., 1998; Tester & debon 2000).  
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Jacobs et al. (1998) found that the partial removal of the amorphous regions 

within wheat and pea starches decreased their susceptibility to annealing. The structural 

changes that occurred during acid hydrolysis in the amorphous regions influenced the 

changes in the crystalline regions during annealing treatment. The results of this study 

showed that the amorphous regions contributed to the molecular mechanism of annealing 

by influencing the realignment of glucan chains in the crystalline regions, which in turn 

produced starches with higher thermal stability, to a certain extent. 

3.4.2 Cross-linking with sodium trimetaphosphate and sodium tripolyphosphate 
Cross-linking reactions are generally performed using bifunctional or 

multifunctional reagents that are capable of forming both intramolecular and 

intermolecular linkages between the hydroxyl groups of adjacent starch chains (Huber & 

BeMiller, 2009). In this study, normal pulse starches (LB, NB, TB and VB) and high 

amylose starches (WP and HYVII) were subjected to cross-linking with STMP and STPP 

to introduce covalent bonds between glucan chains, primarily within the amorphous 

regions. The cross-linked starches were then annealed at a temperature 6°C below their 

onset temperature of gelatinization. In order to compare the extent of changes in the 

crosslinked starches during the annealing treatment, the annealed starches also were 

cross-linked with the same reagents. 

3.4.2.1 The impact of annealing on the extent of cross-linking 
The total phosphorous content of control, cross-linked native and annealed 

starches were quantified using inductively coupled plasma-optical emission spectrometry 

(ICP-OES), which is sensitive to lower phosphate levels in starch. Table 3.16 shows the 
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phosphorous content, degree of substitution (DS) and reaction efficiency (RE) of native 

and annealed cross-linked starches. The total phosphorous content of control starches 

ranged from 0.001 to 0.027 % (w/w, dwb), which represented the phosphorous content of 

starches before crosslinking (of which the order was TB>LB~HYVII~WP>VB~NB). The 

total phosphorus levels of cross-linked starches were higher than those of control 

starches, indicating that the STMP/STPP reagents reacted with the starch (Table 3.16). In 

normal pulse starches, the annealed cross-linked starches exhibited a higher level of 

phosphorous content compared to their native cross-linked starches. In the high amylose 

starches, an increased level of phosphorous content was observed in native cross-linked 

samples in comparison to their annealed cross-linked samples. However, LB starch 

showed only a marginal difference in phosphorous content between the native and 

annealed cross-linked starches.  

On the basis of the phosphorous content in control and cross-linked starches, the 

degree of substitution (DS) and reaction efficiency (RE) were calculated (Table 3.16). In 

normal pulse starches, the DS and RE of annealed starches were higher than those of their 

native counterparts. However, annealed high amylose starches showed lower DS and RE 

values when cross-linked compared to their native counterparts. In the case of LB starch, 

no differences in DS and RE were observed between the native and annealed cross-linked 

starches. Lim et al. (1994) reported that cereal starches contain phosphorus, mainly in the 

form of phospholipids and phosphate monoesters, whereas legume starches contain 

mainly phosphate monoesters with a trace amount of phospholipids. Therefore, the 

observed levels of phosphorous in control pulse starches were primarily due to the 
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Table 3.16: Phosphorous content, degree of substitution (DS) and reaction efficiency 
(RE) of cross-linked starches  

Starch source Treatment Phosphorous (%) DS 
  

RE (%) 
  

Lablab bean Control1 0.013±0.010a

CL 0.360±0.015b 0.0183±0.0003a 16.0±0.2a

ANN-CL 0.367±0.001b 0.0187±0.0004a 16.4±0.4a

Navy bean Control1 0.002±0.001a

CL 0.210±0.002b 0.0109±0.0001a 9.6±0.1a

ANN-CL 0.353±0.013c 0.0185±0.0007b 16.2±0.6b

Tepary bean Control1 0.027±0.003a

CL 0.187±0.003b 0.0084±0.0000a 7.4±0.0a

ANN-CL 0.323±0.005c 0.0156±0.0004b 13.7±0.4b

Velvet bean Control1 0.001±0.000a

CL 0.300±0.004b 0.0158±0.0002a 13.8±0.2a

ANN-CL 0.338±0.004c 0.0178±0.0002b 15.6±0.2b

Wrinkled pea Control1 0.009±0.006a

CL 0.356±0.007c 0.0184±0.0001b 16.1±0.1b

ANN-CL 0.098±0.010b 0.0047±0.0003a 4.1±0.2a

Hylon®VII Control1 0.010±0.006a
CL 0.292±0.013c 0.0149±0.0004b 13.0±0.3b

  ANN-CL 0.221±0.006b 0.0111±0.0000a 9.7±0.0a

Values followed by different superscripts in each column for each starch source are significantly 

different (P < 0.05).                                                                                                                     
1Refer to starches subjected to all cross-linking conditions without STMP and STPP.               

ANN-CL-Annealed cross-linked; CL-native cross-linked.  
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presence of phosphate monoesters, whereas in HYVII starch, phospholipid formed the 

major component. 

According to the Code of Federal Regulations of the U.S. Food and Drug 

Administration (2016), the residual phosphorous content of starch cross-liked with STMP 

alone and or combination of STMP/STPP should not exceed 0.04 % and 0.4 %, 

respectively. In this study, a mixture of STMP/STPP (99:1, weight basis) used for the 

cross-linking reaction resulted in a residual phosphorous content of 0.098-0.370 %, which 

was within the maximum allowable limit (0.4 %) of residual phosphorous content. The 

cross-linking of starches was carried out at a pH of 11.5 and sodium sulfate (Na2SO4) was 

used as a stabilizing salt to enhance the reaction with STMP (Yangsheng & Seib, 1990; 

Woo & Seib, 1997). The crosslinking reaction using STMP and STPP at pH 11.5 possibly 

would lead mainly to distarch phosphate cross-links, while monoesters are formed as 

monostarch monophosphate (MSMP) (Singh et al., 2007). At pH levels below 6, the latter 

(MSMP) would be expected to predominant (Kasemsuwan & Jane, 1994).  

Despite the differential granular reaction patterns observed for the various cross-

linking reagents, all cross-linking reactions are thought to occur primarily within the 

granule amorphous regions. This conclusion was derived from the similarities in X-ray 

diffraction patterns between cross-linked and unmodified starches (Hoover & Sosulski, 

1986; Zheng et al., 1999). Cross-linking, when performed using STMP and STPP, can 

cause both the reagents to penetrate into the interior of the starch granule and result in 

better distribution (Hirsch & Kokini, 2002). Differences in the extent of cross-linking (DS 

and RE) between native and annealed starches suggest that the changes which occurred 
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mainly in the amorphous regions either increased or reduced the extent of cross-linking. 

The normal pulse starches used in this study (LB, NB, TB and VB) exhibited a marginal 

difference in amylopectin chain length distribution and the amylose content being ranged 

from 26.5 to 32.1 % (Table 3.1). However, these starches differed with respect to the 

extent of packing of amylose chains within the amorphous domains, double helical 

organization within the amylopectin crystallites, extent of interaction between starch 

chains (amylose-amylose, amylose-amylopectin and amylopectin-amylopectin), and the 

distribution of amylopectin branch points. Consequently, cross-linking of native pulse 

starches at the same molar concentration resulted in different levels (DS) of cross-linking.  

Annealing has been shown to induce structural changes within the amorphous and 

crystalline regions, thereby facilitating improved alignment and registration of 

amylopectin double helices within the crystalline domains (Tester & Debon, 2000; 

Kieseleva et al., 2004; Gomand et al., 2012). In addition to this, annealing disrupts the 

weakest crystallites (Tester et al., 1998), allowing for subsequent recrystallization, 

restructuring or both, for enhancement of higher molecular order to provide greater 

homogeneity among crystallites (Tester et al., 2000; Jayakody & Hoover, 2008; Rocha et 

al., 2011, 2012; Vamadevan et al., 2013). Consequently, in normal pulse starches, 

annealing could have increased the availability of the hydroxyl groups in the adjacent 

glucan chains, especially in the amorphous regions which, in turn, would increase the 

extent of cross-linking. 

Tester and Debon (2000) have suggested that annealing treatment enables the 

preferential hydration, chain mobility and structural rearrangement of starch chains within 
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granule amorphous regions. This results in an increased Tg and rigidity of granule 

amorphous regions. The close packing of amylose chains (without forming double 

helices) facilitated the accessibility of cross-linking reagents to the hydroxyl groups of 

anhydroglucose units and promoted intermolecular cross-linking between the starch 

chains. These linkages could possibly occur between C2 and C2/C3, C6 and C6, or C6 and 

C2/C3 of anhydroglucose units (Liu et al., 2014), thus forming a multidimensional space 

network structure. It seems plausible that annealed starches of normal pulses (NB, TB and 

VB) were more highly crosslinked than their native counterparts. However, the annealed 

high amylose starches exhibited a lower degree of substitution in comparison with normal 

annealed pulse starches. In high amylose starches, the increase in amylose content could 

lead to an accumulation of unordered amylose chains in amorphous lamellae, as well as 

an accumulation of amylose tie chains in crystalline lamellae. These amylose tie chains 

act as defects within double-helical crystalline packing and, therefore, weaken the 

crystalline order (Jenkins & Donald, 1995; Tester & Debon, 2000; Genkina et al., 2004). 

Thus, the high amylose starches cross-linked to a greater extent in their native state. 

However, annealing treatment increased the crystal thickening and co-crystallization 

between amylose and amylopectin chains. In addition to this, annealing also diminished 

the crystalline defects by enhancing the mobility of the starch chains in the amorphous 

regions. These changes restricted the reaction sites for cross-linking and thus reduced the 

DS in the annealed starches. The extent of this reduction was more pronounced in WP 

starch than in the HYVII starch. This could be due to the differences in their packing 

arrangement of amylose chains and the presence of intermediate chains. 
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3.4.2.2 Gelatinization parameters of control and cross-linked starches 
Table 3.17 summarizes the gelatinization transition parameters of the control, 

annealed (ANN), cross-linked (CL), cross-linked followed by annealing (CL-ANN) and 

cross-linked after annealing (ANN-CL) samples of normal pulse (LB, NB, TB and VB) 

and high amylose (WP and HYVII) starches. The control starches of LB, NB, TB, VB 

and HYVII, which were subjected to all cross-linking conditions without STMP and 

STPP, exhibited a slightly lower To (within 3°C) and enthalpy of gelatinization (∆H) 

compared to their native counterparts (Tables 3.14). However, Tc and Tc-To increased in 

all of the control starches, whereas in HYVII starch Tc and Tc-To decreased. The extent 

of decrease in ∆H was more pronounced in control starches of HYVII (4.5 J/g) and TB 

(3.7 J/g) compared to their native starches (Table 3.14). In contrast to native cross-linked 

starches (CL), cross-linked and annealed starches (CL-ANN) showed an increase in To 

and Tp, whereas Tc-To decreased. With the exception of TB and HYVII starches, there 

was no significant difference in Tc and ∆H observed after the annealing of cross-linked 

starches. The extent of increase in To and Tp between CL and CL-ANN starches 

followed the order of WP>LB>NB~VB>TB>HYVII and LB>NB>WP>VB>TB>HYVII, 

respectively.  

For normal pulse starches (NB, TB and VB), the extent of increase in To and Tp 

between control and annealed starches (ANN) was more pronounced than was observed 

for CL and CL-ANN starches. Furthermore, the magnitude of decrease in Tc-To was also 

greater between control and ANN starches versus CL and CL-ANN starches. CL-ANN 

starches of WP behaved differently from other starches, as they exhibited higher To and  
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Table 3.17: Gelatinization parameters of control and cross-linked starches1 

1Values followed by different superscripts in each column for each starch source are significantly 
different (P < 0.05). Starch: water ratio (1:3 w/w. dry basis). 
 2To, Tp and Tc indicates the onset, peak, and conclusion temperatures, respectively. 
 3(Tc-To) represents the gelatinization temperature range.  
4 Enthalpy of gelatinization expressed in J/g of dry starch.  
5 Refer to starches subjected to all cross-linking conditions without STMP and STPP. 
 

Starch 
source 

  
Treatment 

Gelatinization transition parameters (ºC) 
To2 Tp2 Tc2 Tc-To3 ∆H4(J/g) 

Lablab bean Control5 60.5±0.2a 66.4±0.4a 83.0±0.4b 22.5±0.7c 13.2±0.5bc

ANN 67.9±0.1b 70.9±0.5b 79.3±0.8a 11.4±0.7a 12.1±0.4ab

CL 60.2±0.4a 66.3±0.1a 87.8±0.3c 27.5±0.0d 14.4±0.3c

CL-ANN 68.7±0.6b 72.0±0.2bc 86.7±0.4c 18.0±0.2b 12.8±0.5ab

ANN-CL 69.1±0.0b 72.7±0.0c 88.2±0.1c 19.1±0.1b 11.5±0.0a

Navy bean Control5 64.0±0.0a 72.0±0.1b 87.0±0.5b 22.9±0.6d 11.5±0.4a

ANN 74.5±0.2c 77.7±0.1d 83.8±0.4a 9.3±0.3a 12.0±0.6ab

CL 62.8±0.5b 70.6±0.4a 88.5±0.8bc 25.6±0.3e 13.9±0.6c

CL-ANN 69.9±0.0d 74.8±0.1c 89.4±0.4cd 19.5±0.4c 13.6±0.0bc

ANN-CL 76.9±0.3e 80.8±0.2e 90.8±0.4d 13.8±0.0b 10.8±0.2a

Tepary bean Control5 65.3±0.9a 70.4±0.0a 84.0±0.1ab 18.7±0.7c 10.8±0.1a

ANN 74.4±0.0c 77.0±0.0d 83.5±0.1a 9.1±0.0a 13.4±0.2c

CL 65.2±0.0a 71.6±0.1b 84.7±0.3b 19.5±0.2c 12.3±0.0bc

CL-ANN 70.4±0.1b 74.5±0.3c 83.2±0.4a 12.8±0.3b 13.0±0.2c

ANN-CL 77.8±0.1e 80.6±0.3e 87.7±0.3c 10.7±0.6a 11.7±0.7ab

Velvet bean Control5 69.5±0.3a 77.1±0.5a 90.1±0.4b 20.6±0.1d 14.2±0.3ab

ANN 79.1±0.0c 81.8±0.1bc 88.2±0.6a 9.0±0.6a 14.1±0.7ab

CL 69.0±0.0a 77.4±0.1a 92.2±0.5c 23.2±0.5e 16.3±0.2c

CL-ANN 75.9±0.2b 80.7±0.5b 92.1±0.2c 16.2±0.3c 15.4±0.1bc

ANN-CL 78.2±0.5c 82.6±0.1c 90.4±0.2b 12.2±0.3b 13.2±0.2a

Wrinkled pea Control5 62.6±0.2a 77.5±1.7a 94.1±0.6b 31.4±0.4d 6.0±1.1a

ANN 72.5±0.4c 78.0±0.3a 90.2±0.2a 17.8±0.1a 5.8±0.2a

CL 66.8±0.3b 80.7±0.8a 97.2±0.1c 30.4±0.2d 7.2±0.4a

CL-ANN 78.1±0.0d 84.7±0.2b 96.2±0.7c 18.1±0.6a 6.6±0.7a

ANN-CL 71.5±0.1c 77.7±0.1a 93.0±0.3b 21.5±0.2c 6.2±0.4a

Hylon®VII Control5 69.6±0.1a 79.7±0.1a 93.7±0.3a 24.1±0.2a 5.7±0.5a

ANN 75.4±0.0c 84.4±0.6ab 102.6±0.7c 27.2±0.7b 11.5±0.1d

CL 71.4±0.2b 83.0±2.8ab 94.8±0.3a 23.4±0.5a 8.2±0.3bc

CL-ANN 76.0±0.3c 83.7±0.0ab 98.2±0.2b 22.2±0.5a 9.6±0.1c

  ANN-CL 78.3±0.2d 85.1±0.5b 102.5±0.4c 24.2±0.5a 7.3±0.7ab
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Tp with respect to their annealed starches, whereas these (To and Tp) parameters 

remained unchanged in LB starch. Tc of CL starches remained unchanged after annealing 

treatment. It is evident from the data that the gelatinization transition parameters (To and 

Tp) of ANN-CL starches of NB, TB and VB were higher than that of their CL-ANN 

samples. This could be attributed to the higher DS in the annealed starches compared to 

their native counterparts. The DS of NB, TB and VB were significantly higher in ANN-

CL starches. It was observed that in LB starch, there was only a marginal difference in the 

DS values between CL-ANN and ANN-CL treatment (Table 3.16). This is reflected in the 

DSC results, which indicate a marginal difference between the To, Tp and Tc values of 

ANN-CL and CL-ANN samples. In the case of high amylose starches, the To, Tp and Tc 

values decreased in ANN-CL starches versus CL-ANN starches. This also can be 

explained by the significant differences in the DS between the CL and ANN-CL starches 

(Table 3.16). 

 The differences observed in the gelatinization parameters between control and 

native starches could be attributed to the partial unwinding of double helices during the 

modification process in the presence of sodium hydroxide at 45ᵒC. It seems plausible that 

the majority of -OH groups in the anhydrous glucose units were ionized at high pH levels 

(>11.5) at an elevated temperature (Suortti et al., 1998). Therefore, the development of 

negative charges in the adjacent anhydrous glucose units induced repulsion between 

glucan chains, which in turn reduced glucan chain interactions within the granular 

starches. Furthermore, the weakest crystallites were more vulnerable to these changes and 

melted at lower temperatures. These changes mainly occurred in the bulk amorphous and 
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intercrystalline amorphous regions where most of the amylose chains were located and 

had direct contact with the solvent. Since the majority of the cross-linking between the 

glucan chains occurred in the amorphous regions of starch granules, the mobility of the 

glucan chains, particularly the amylose chains, was restricted. The results of this study 

suggest that the cross-linking of starches with STMP/STPP decreased the extent of 

interaction between starch chains during the annealing treatment, which in turn reduced 

the perfection of existing crystallites upon annealing. Furthermore, the extent of these 

changes differed between normal pulse starches and high amylose starches due to the 

structural differences that exist in both amorphous and crystalline regions.  
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3.5 Summary and conclusions 
 Composition, morphology, structure, and physicochemical properties of starches 

isolated from lablab bean, navy bean, rice bean, tepary bean and velvet bean were 

determined. The results of this study showed that the starches differed significantly with 

respect to the following factors: 

 The colour intensity decreases with the decending order for each factor: 

  >   >   >   >   
 

However, amylopectin chain length distribution and enthalpy of gelatinization were not 

significantly different among the starches. Differences in physicochemical properties 

were influenced by the interplay among differences in morphology, composition and 

 LB NB RB TB VB 
Amylose content      
Granule size      
Specific surface area      
Cracks on granule surface      
Molecular order at the granule periphery  
Relative crystallinity     
Double helical content      
Onset temperature of gelatinization (To)      
Peak temperature of gelatinization (Tp)      
Gelatinization temperature range (Tc-To)  
Swelling factor  (60-80°C)      
Amylose leaching (60-80°C)      
Susceptibility to α-amylase (PPA)      
Pasting temperature      
Susceptibility to acid hydrolysis (> 9 days)  
Peak viscosity 
Thermal stability      
Setback       
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structure. The results indicated that among the starches, only velvet bean would be 

suitable in its native state for incorporation into thermally processed and frozen foods, 

due to its higher thermal stability, higher resistance to shear and lower extent of set-back. 

All other starches would require physical and/or chemical modification to render them 

suitable as ingredients in food products.  

The in vitro amylolysis study revealed the variations in susceptibility of the pulse 

and high amylose maize (Hylon®VII) starches towards amylolysis by pancreatin and 

amyloglucosidase. The results showed that predominantly amorphous regions of the 

granules were degraded during the progress of hydrolysis after 24 h. Differences in 

hydrolysis among the starches were mainly influenced by differences in molecular order, 

RC, DHC, organization of amylose chains within the amorphous domains and the extent 

of interaction among hydrolysed chains. Amylose content, starch damage, surface area 

and granule size played a secondary role in hydrolysis. Furthermore, the pulse starches 

used in this study (VB, LB and NB) with their lower extent of hydrolysis have potential 

to benefit human health through moderation of the glycemic response and as a source of 

prebiotic carbohydrate. The data obtained in this study will enable food processors to 

optimize reaction conditions for modifying pulse starch structure to a level that could 

improve the digestibility characteristics of pulse-starch-based foods. Starches with 

modified digestibility characteristics can be prepared using physical and/or chemical 

modification techniques which increase the RS and SDS contents with a substantial 

reduction of RDS content.  Therefore, the development of pulse starches with higher 
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levels of RS would allow them to be used in unique apllications such as bakery products, 

noodles and fat replacers.  

Granular pulse and Hylon®VII starches were annealed at 10ºC below the onset 

temperature of gelatinization in excess water (80 %) for 72 h. The effect of annealing on 

morphology, structure and physicochemical properties of pulse and high amylose maize 

starches were investigated. In all starches, granular morphology remained unchanged on 

annealing. The results showed that annealing increased onset (To) and mid-point (Tp) 

temperatures, whereas the gelatinization temperature range (Tc-To) was decreased. The 

increase in Tp and decrease in Tc-To suggest that annealing improved the double helix 

register by decreasing heterogeneity within the crystalline lamellae. However, 

gelatinization enthalpy (∆H) remained unchanged in LB, NB, RB and WP starches but 

increased in others (HVII>VB>TB) upon annealing. Molecular order at the granular 

surface increased in LB, NB and HVII starches upon annealing, but remained unchanged 

in other starches. The X-ray diffraction patterns of pulse starches after annealing 

remained unchanged. However, annealing treatment resulted in more efficient packing of 

amylopectin double helices within the crystalline lamellae in all starches, which increased 

the relative crystallinity of the annealed starches. Swelling factor and amylose leaching of 

annealed starches were lower than their native counterparts in the temperature range of 

70-90°C. Annealing treatment decreased peak, breakdown, final and set back viscosities, 

but increased peak temperature and peak time. However, TB starch showed an increase in 

final and setback viscosities upon annealing. The changes in the viscosity profile of pulse 

starches reflect the increased granular stability through restricted granule swelling and the 
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enhanced glucan chain interactions within the starch granule as a result of annealing. 

Annealing treatment decreased the RDS, SDS and eGI levels, and increased the RS levels 

in granular starches. However, the SDS levels of LB, NB and TB starches, the eGI of LB 

and TB starches, and the RS level of TB starch were increased upon annealing. In 

comparison to native starches, the relative decrease in RDS and SDS levels and increase 

in RS levels suggest that the structural changes occurred within amorphous regions, and 

crystalline regions showed a greater resistance to enzyme-catalysed hydrolysis upon 

annealing. The annealed starches exhibited similar solubilisation patterns to those of their 

native counterparts. The susceptibility to acid hydrolysis decreased upon annealing. The 

results showed that the organization of starch chains within the amorphous and crystalline 

domains of native starches influenced the reorganization of starch chains on annealing.  

 The contribution of amorphous regions to the mechanism of annealing was 

explored using the approaches of partial acid hydrolysis and cross-linking with STMP and 

STPP. Partial acid hydrolysis would preferentially hydrolyse the amorphous regions of 

the granule and facilitate starch chain mobility. Furthermore, it may have increased the 

elongation of the double helices, diminished the disruptive effect of amylose on the 

arrangement of amylopectin within the crystalline lamellae, and facilitated new double 

helical formation through the association of hydrolysed amylose chains. As a result of 

these changes within the granules, annealing treatment further increased the mobility of 

glucan chains and formed a highly-ordered structure. The above changes contributed to 

the further increase in To, Tp and Tc of lintnerized (acid hydrolysed) annealed starches 

versus their native annealed starches. This suggests that the amorphous regions play an 
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important role in optimizing the ordering of double helices in the crystalline regions by 

increasing the homogeneity and the perfection of starch crystallites, thus resulting in a 

reduction in gelatinization temperature range (Tc-To) in lintnerized annealed starches. 

The results suggest that partially acid hydrolysed starches could still be annealed. 

However, the susceptibility of lintnerised starches to annealing treatment decreased with 

increasing hydrolysis time. 

 In normal pulse starches, the DS and RE of cross-linked annealed starches were 

higher than those of their native counterparts. However, annealed high amylose starches 

showed lower DS and RE values in cross-linking versus their native starches. In the case 

of LB starch, no difference in DS and RE was observed between the native and annealed 

cross-linked starches. Differences in DS and RE after cross-linking between native and 

annealed starches suggest that the changes which occurred mainly in the amorphous 

regions either increased or reduced the extent of cross-linking. Since the majority of the 

cross-linking between starches chains occurred in the amorphous regions of starch 

granules, the mobility of the starch chains, particularly the amylose chains, was restricted. 

The cross-linking of starches with STMP/STPP decreased the extent of interaction 

between starch chains during the annealing treatment, which in turn reduced the 

perfection of existing crystallites upon annealing. This study opens up new avenues of 

dual-modified pulse starches with different substitution levels of cross-linking that can be 

used in several food applications such as stabilizers and thickeners of baby foods and 

canned and frozen foods. The data obtained in this study will broden the understanding of 

pulse starch structure and properties that are useful both for product designers and food 
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processors to expand the range of functionality and applications of pulse starches in the 

food industry. 

3.6 Directions for further research 
This research has provided additional information on the mechanism of annealing 

(ANN) with respect to starch chain realignment and their interaction within the 

amorphous and crystalline domains of pulse and high amylose maize starches. 

Modification of these starches by annealing followed by cross-linking (CL) may lead to 

the development of ANN-CL starches that have novel properties required for specific 

food applications. Cross-linking reagents used in this study formed intermolecular 

linkages between hydroxyl groups on starch molecules mainly within the amorphous 

regions. The changes occurred during the annealing treatment either facilitated or 

hindered the accessibility of the cross-linking reagents into the reaction sites. 

Consequently, the cross-linking of native and annealed starches at the same molar 

concentration resulted in different levels of cross-linking in these starches. However, the 

location of cross-links within the amorphous regions and their distribution pattern (with in 

the amylose and amylopectin molecules) is still in contention. Further research is needed 

to understand to what extent amylose and amylopectin contribute to the overall degree of 

substitution in cross-linking. It can be assumed that starches with different amylose and 

amylopectin contents differ in their susceptibility to cross-linking reagents, since the 

amorphous regions are more vulnerable to cross-linking and the reaction occurs with the 

available hydroxyls groups of the glucose moieties of both amylose and amylopectin 

molecules. The isolation and structural analysis of each component (amylose and 
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amylopectin) from cross-linked starches will shed light on the extent of distribution (DS) 

and substitution pattern of cross-linking reagents in the interior of the granule. This will 

provide a better understanding of the structural changes that influence the availability of 

reaction sites for cross-linking within the amorphous regions upon annealing.  

In addition, factors that determine the ratio of mono- and di-ester bonds, due to 

cross-linking reaction mechanisms and available starch hydroxyls, include the type of 

reagents used and the cross-linking conditions (Koch et al., 1982). Therefore, it is 

worthwhile to investigate the ratio of mono- and di-ester (cross-linked) derivatives of the 

starches used in this study. 31P NMR can be used to characterize the starch phosphate 

derivatives and their individual contents (Kasemsuwan and Jane, 1996). This will provide 

new insight how cross-linking is achieved at the macromolecular level of the granule 

structure. Furthermore, it would help to reveal the structure-functional property 

relationship of modified starches.  

The impact of annealing on the amylose-lipid complex formation is still in debate. 

A comprehensive study of the interaction of starches with added fatty acids and/or 

monoacylglycerols (MG) with different chain lengths prior to and post annealing would 

provide an understanding of V-amylose-lipid complex formation during annealing. A 

comparative study of lipid-amylose complexes in native and annealed starches may 

provide additional information about amylose chain rigidity within the amorphous regions 

on annealing. Therefore, it can be hypothesized that interactions among amylose chains 

within the amorphous regions upon annealing will decrease the ability to form amylose-

lipid helical inclusion complexes. In this study, the ability of starches to complex with 
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FFA and/or MG before and after annealing could be monitored by determination of 

FFA/MG content, 13C CP/MAS NMR and DSC.                                                                    

3.7 Novelty and significance 
The results of this study will expand the knowledge base with respect to pulse 

starch structure and its impact on physicochemical properties and nutritional fractions. 

Consequently, researchers will be able to optimize reaction conditions for chemical, 

physical and enzymatic modifications of underutilized pulse starches. This is the first 

comprehensive study that compares the structures of native pulse starches with those of 

their enzyme (α-amylase and amyloglucosidase) digested residues using a multi-

technique approach. This study showed that the rate and extent of hydrolysis was 

influenced by the interplay between the kinetics of enzyme-catalysed hydrolysis and the 

molecular rearrangement between glucan chains during the progress of hydrolysis. 

Furthermore, this study would provide the impetus for research into the structural factors 

that influence resistant starch formation and to modify the rate and extent of starch 

digestibility in real food matrices. This study will also be invaluable for researchers in 

understanding the effects of specific mutations on starch structure, and the link between 

genetically modified characteristics affecting waxiness, high amylose content and 

digestibility.  

Research on annealed starches has involved comparative studies on starches 

having widely different amylopectin chain length distributions. Consequently, due to the 

large influence that amylopectin chains have on changes to starch structure on annealing, 

the role of amylose on structural changes within the amorphous domains has not been 
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properly ascertained. This study was able to show clearly that starch chain interactions 

involving amylose chains significantly influenced starch structure. This was made 

possible due to similar amylopectin chain length distributions among the normal pulse 

starches. Furthermore, this study provides additional information on the role of amylose 

and its packing density within the amorphous regions that influence the structural 

rearrangement of amylopectin crystallites on annealing, especially in high amylose 

starches. This study would enable food processors to better understand the extent to 

which annealing conditions of normal and high amylose starches must be manipulated or 

controlled to achieve the desired properties for food and non-food applications. The data 

obtained in this study will provide an alternative way of modifying pulse starch structure 

without the use of chemical reagents that could improve the health-related quality of 

pulse-starch-based foods.  

A combination of physical and chemical modification (dual modification) 

techniques can be applied to produce starches with wide ranges of functional properties 

that are required for specific food applications. In terms of thermal processing, annealed 

pulse starches would require less chemical modification to achieve the required thermal 

stability that can be used in thermally processed foods. Furthermore, crystalline 

perfection during annealing could decrease the rapidly digestible starch content and/or 

increase the resistant starch content, thereby influencing the postprandial blood glucose 

levels and insulin concentrations. Therefore, pre-treatments like partial acid hydrolysis 

followed by annealing modify starch structure (extent of crystalline perfection and the 
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interactions between starch chains) which in turn produce starches with modified 

digestibility characteristics and higher thermal stability.  

The comparative study of cross-linking in native and annealed starches provided a 

deep insight into how the availability of reaction sites for cross-linking within the 

amorphous and crystalline domains are influenced by the structural arrangement of 

amylose and amylopectin chains of normal and high amylose starches. Furthermore, the 

glucan chain realignment during annealing treatment may open up additional reaction 

sites which may have not been available in the native granules. Additional reaction sites 

may result in achieving desired DS levels using lower concentrations of chemical 

reagents. These additional reaction sites would facilitate the introduction of new chemical 

substituent groups that are used to modify starch structure and generate a wide range of 

functionalities.  
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            Appendix I: Standard curve for the determination of amylose content (Hoover and  
            Ratnayake, 2004). 
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            Appendix II: Standard curve for the determination of reducing sugar as maltose. 

 

y = 0.0004x
R² = 0.9985

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

A
bs

or
ba

nc
e 

at
 5

40
 n

m

Concentration of maltose (μg/mL)



  

304 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Appendix III: The labelling reaction of 8-amino-1,3,6-pyrene trisulfonic acid (APTS) with a glucose molecule.                                 
             (Adapted from O’Shea et al., 1998).
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 Relative crystallinity of a starch will be calculated after subtracting the amorphous 
background from the total area. 

 

% ݕݐ݈݈݅݊݅ܽݐݏݕݎܿ ݁ݒ݅ݐ݈ܴܽ݁ = ܽ݁ݎܽ ݇ܽ݁ ݈ܽݐܶ − ܽ݁ݎܽ ݇ܽ݁ ݈ܽݐܶܽ݁ݎܽ ݇ܽ݁ ݏݑℎݎ݉ܣ  × 100 

 

 Appendix IV: Curve fitting for XRD using Gaussian function. 
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    Double helix % = Area for the C1 signals in the ordered subspectrum Area for the C1 signals in the native spectrum ∗ 100 

   Amorphous % =  100 – (double helix + V type helix) % 

   Appendix V: Decomposition of the 13C NMR spectrum into contributions from the    
               amorphous and ordered phases (a) and (b) (Tan et al., 2007). 
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  Appendix VI: Standard curve for the determination of reducing sugar as glucose. 
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Appendix VII: X-ray diffraction patterns of native (N) and defatted samples of 
Hylon®VII starch.
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Appendix VIII: SEM images (×1250) of native pulse and HHylon®VII starches.  Lablab bean (i), navy bean (ii), rice bean (iii), tepary 
                 bean (iv), velvet bean (v), wrinkled pea (vi) and HHylon®VII (vii) starches. Arrow 1 indicates separated granules of    
      WP. Arrow 2 indicates indentations present on the granule surfaces. 
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