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Abstract

In this study, we determine how far a Linear Dynamic System is from the nearest uncontrollable

system. We will call this quantity "The Distance to Uncontrollability". Estimating this distance,

not only do we know if a given linear dynamical system is controllable or uncontrollable, but in the

case of a controllable system, we also know how far it is from being uncontrollable. This could be

found useful by a control engineer for example, in making a decision to insert additional controls

to the system design.

As it turns out, the estimation of the "distance to uncontrollability" is equivalent to determining

the global minimum of a certain function. In this work, we will examine some already existing

algorithms and will present a Two-Phase Algorithm that will combine a novel search algorithm,

termed the Density Search Algorithm and the Tunneling Algorithm [21] for the computation of

this global minimum.
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1 Introduction

1.1 Basic Definitions

Definition 1 (Vector Norm) Given x ∈ Cn, the Euclidean norm of x is

‖x‖2 =
(
xHx

) 1
2

where xH is the complex conjugate transpose of x.

Definition 2 (Matrix Norm) Given A ∈ Cm×n, then

‖A‖2 = max
‖x‖2 6=0

‖Ax‖2
‖x‖2

= max
‖y‖2=1

‖Ay‖2

where x, y ∈ Cn.

Definition 3 (Spectrum of a Matrix) The set of eigenvalues of the matrix A, denoted by λ(A),

is known as its spectrum.

Definition 4 (Span) The span of vectors ui ∈ Cn, with i = 1 : m is defined as the set of all

linear combination of these vectors. That is

span {u1, u2, . . . , um} = {x : x = η1u1 + η2u2 + · · ·+ ηmum for some ηi ∈ C}

Definition 5 (Linear Independence) The vectors ui ∈ Cn, i = 1 : m are linearly independent,

if and only if for ∀ηi ∈ Cn, i = 1 : m we have,

m∑
i=1

ηiui = 0 ⇒ η1 = η2 = · · · = ηm = 0

Otherwise, the vectors are linearly dependent.

Definition 6 (Null Space) Given a matrix A ∈ Cm×n, the null space of A is

N (A) = {x : x ∈ Cn ∧ Ax = 0}

The dimension of N (A) is called the nullity of A and is denoted by null (A) (null (A) = dim (A)).
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Definition 7 (Rank) Given a matrix A ∈ Cm×n, the column space of A, written R (A), is a

subspace of Cn spanned by the columns of A. The row space of A is R
(
AT
)
⊆ Cm. The rank

of A, written rank (A), is the dimension of R (A) or R
(
AT
)
, that is rank (A) = dimR (A) =

dimR
(
AT
)
.

Definition 8 (Orthogonality) Two vectors u, v ∈ Cn, are orthogonal if and only if uHv = 0. If

in addition ‖u‖2 = ‖v‖2 = 1 then, u and v are called orthonormal.

Definition 9 (Orthogonal Matrices) A matrix U ∈ Cm×n, with m ≥ n is called orthonormal

if UHU = In, where In is the identity matrix of size n. If m = n then U is called unitary. If U is

real, it will be called orthogonal.

Theorem 10 [30][p.318] Given a matrix A ∈ Cm×n, with m ≥ n and rank (A) = r ≤ n, we can

compute unitary matrices U , V such that

UHAV =

 Σ 0

0 0


with Σ = diag (σ1, σ2, . . . , σr) with σ1 ≥ σ2 ≥ . . . ≥ σr > 0 and σi, i = 1 : r are the singular values

of A, while the columns of U and V are the left and right singular vectors of A respectively.

1.2 Preliminaries

We live in a four dimensional world of the space-time continua. We have all developed an awareness

of the fact, that as we travel through space and/or time, things change. When something changes

with respect to time then we say it is dynamic.

Science often attempts to represent complex phenomena which results in the derivation of a mathe-

matical model that consists of interrelating equations. For example, a model of population growth

would likely be dependent on such variables as food supply, population density, migration, etc.

This set of equations is referred to as a system.
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1.2.1 Continuous Time Systems

If one needs to represent a natural phenomenon that changes continuously with respect to time t,

one may use a differential equation. An example of a continuous time dynamic phenomenon is the

heating of a building.

A mathematical model that may describe the above phenomenon is

ẋ(t) = Ax(t)

where A ∈ Rn×n, depends on the characteristics of the phenomenon, x(t) ∈ Rn is the state of the

phenomenon at the time t, and ẋ(t) the derivative of x(t).

1.2.2 Discrete Time Systems

Some natural phenomena may need not be described by a continuous time system. Consider a

simple digital circuit. The state of the system only changes when we reach the end of a step, usually

indicated by a clock pulse. So for this phenomenon we may need to use a difference equation of

the form

xk+1 = Axk, (1.1)

where xk, xk+1 are the states of the above phenomenon at steps k and k + 1 respectively. System

(1.1) is known as discrete time system. Since the system is either in step k or k + 1, it is not

constantly changing like the continuous case.

1.2.3 Controllability of Dynamic Systems

Consider the continuous and discrete time systems respectively

ẋ(t) = Ax(t) + Bu(t) (1.2)

xk+1 = Axk +Buk (1.3)

3



where A ∈ Rn×n, B ∈ Rm×n. The matrix A is known as the system matrix and B as the input

matrix (other outside influences - for example readings from outside device or switches). In this

system we say there are n states and m inputs. Also x ∈ Rn, and u ∈ Rm are the state vector,

and the control input of the system respectively at time t or at instance k. Often the two systems

above will be referred to as (B,A), in which case any results will hold for both systems.

A fundamental concept of systems (1.2) and (1.3) is the concept of controllability which intuitively

can be given by the following definitions.

Definition 11 (Controllability) A continuous time system (1.2) is said to be controllable if

for any pair of vectors (xi, xf ) ∈ Rn×Rn there exists finite time t > 0, control u(t) defined on the

interval [0, t], such that (1.2) with initial condition x(0) = xi, produces solution x(t) = xf .

Definition 12 (Controllability) A discrete time system (1.3) is said to be controllable if for

any pair of vectors (xi, xf ) ∈ Rn × Rn there exists a finite number of steps k > 0, controls

u1, u2, . . . , uk, such that (1.3) with initial condition x0 = xi, produces solution xk = xf .

Paige in [27] describe several tests to verify the controllability of systems (1.2) and (1.3) in the

theorem below.

Theorem 13 It can be shown, see [27] for example, that the system (B,A) is controllable if and

only if one of the three conditions holds:

1. rank (B,AB,A2B, . . . , An−1B) = n

2. rank (B,A− λI) = n, ∀λ ∈ λ (A)

3. ∃F ∈ Rm×n : λ (A) ∩ λ (A+BF ) = ∅

From Theorem 13 above, it can be seen that the controllability definition is either a YES or

NO answer; i.e, a system is either controllable or not. In practical applications where there are

many uncertainties in the system model such as those resulting from modeling, linearization,
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discretization, and other numerical and/or approximation errors, a controllable system may in

fact be "almost" uncontrollable when these uncertainties are accounted for. So a measure of the

"distance" to the nearest uncontrollable system would be more informative and desirable than the

traditional "yes/no".

1.2.4 Computational Problems of Controllability

Each of the above methods in Theorem (13) has its own challenges when executed using finite

precision arithmetic. Numerical errors can play a role in determining the rank of a matrix ( as

in the first two conditions) and in determining the equality of two eigenvalues ( as in the last

condition). For example, the approach in conditions (2) and (3) depends on finding eigenvalues,

and so it is important to consider the sensitivity of eigenvalues in general, see Paige [27].

1.3 The Distance From an Uncontrollable System

Having the distance of a controllable system from the nearest uncontrollable is of far greater use

than knowing that a system is simply controllable. Earlier theories such as theorem (13) above

only provided us with a “yes” or “no” answer to whether the system is controllable or not. However,

we would like to be able to determine if the system is “poorly controllable ”. Hence the following

definition, is more suitable for "measuring" controllability.

Definition 14 Let U represent the set of uncontrollable systems and consider the system (B,A).

We define

µ = min
(δB,δA)∈Cn×(m+n)

{‖(δB, δA)‖2 : (B + δB,A+ δA) ∈ U}

to be the distance of (B,A) from the nearest uncontrollable system. Clearly when µ = 0 the system

is uncontrollable.

We present a theorem that will give us the minimum needed perturbation to a matrix in order to

decrease its rank making reference to the work in [24] . But before we present the theorem, we
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first need the following two lemmas.

Lemma 15 [26][p.237] Assume A ∈ Cm×n with r = rank (A). Then the null space of A is a

subspace of Cn of dimension n− r .

Corollary 16 Assume A ∈ Cm×n with r = rank (A), then

null (A) + rank (A) = n

Lemma 17 If y ∈ span {u1, u2, . . . , un}, where the vectors ui, i ∈ {1 : n} are orthonormal to each

other and ‖y‖2 = 1, then
n∑
i=1

(
uHi y

)2
= 1

Proof. Set U = (u1, u2, . . . , un) then

n∑
i=1

(
uHi y

)2
=
∥∥UHy

∥∥2
2

= ‖y‖22 = 1

Theorem 18 [13][p.19] Assume that A ∈ Cm×n and A = UΣV H be the Singular Value Decompo-

sition of A with rank (A) = r ≤ n ≤ m. Assume also thatM = {B : B ∈ Cm×n and rank (B) = k < r}

and Ak =
∑k

i=1 σiuiv
H
i ,with σi, ui, vi the singular values, left and right singular vectors of A, then

min
B∈M

‖A− B‖2 = ‖A− Ak‖2 = σk+1

Conclude also that the minimum 2-norm perturbation δA ∈ Cm×n such that rank (A+ δA) = k < r

is δA = −
∑r

i=k+1 σiuiv
H
i .

Proof. First, we prove

‖A− Ak‖2 = σk+1

Since

UHAkV = diag (σ1, . . . , σk, 0, . . . , 0)
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and

UHAV = diag (σ1, . . . , σk, . . . , σr, 0, . . . , 0)

we have

‖A− Ak‖2 = ‖UH(A− Ak)V ‖2

= ‖diag (0, . . . , 0, σk+1, . . . , σr, 0, . . . , 0)‖2

= σk+1

Clearly there exists B ∈ M, namely Ak, such that minB∈M ‖A− B‖2 = σk+1. It remains now to

prove that ‖A− B‖2 ≥ σk+1, ∀B ∈ M. Since k = rank (B) from lemma 15 we have null (B) =

n− k. If we now choose k + 1 of the n linearly independent columns of V , a dimension argument

shows N (B) ∩ span {v1, v2, . . . , vk+1} 6= ∅. Consider now all the vectors y, with ‖y2‖ = 1 that

belong to the above intersection, then

‖A− B‖22 = max
‖y‖2=1

‖(A− B) y‖22 ≥ ‖(A− B) y‖22 = ‖Ay‖22

=
k+1∑
i=1

σ2
i

(
vHi y

)2 ‖ui‖22 =
k+1∑
i=1

σ2
i

(
vHi y

)2
≥ σ2

k+1

k+1∑
i=1

(
vHi y

)2 (from lemma 17)
= σ2

k+1

Suppose now that δA = B − A, with B ∈ M. The following two optimization problems are

equivalent{
min

δA∈Cm×n
‖δA‖2 : rank (A+ δA) = k < r

}
⇔
{

min
δA∈Cm×n

‖B − A‖2 : rank (B) = k < r

}
Clearly the B ∈M that satisfies the above is Ak =

∑k
i=1 σiuiv

H
i , therefore

δA =
k∑
i=1

σiuiv
H
i −

r∑
i=1

σiuiv
H
i = −

r∑
i=k+1

σiuiv
H
i

The above model would give us the minimum perturbation to a matrix to cause a rank deficiency.

We will now state the major theorem which suggests a way to compute µ, in terms of the singular

values.
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Theorem 19 Let (B,A) ∈ Rn×(m+n) be controllable and (δB, δA) ∈ Cn×(m+n) the minimum per-

turbation such that (B + δB,A+ δA) is uncontrollable. Then

µ = ‖(δB, δA)‖2 = min
λ∈C

σn (B,A− λI)

where σn (B,A− λI) is the smallest singular value of (B,A− λI).

Proof. This was first proven in [24] and then idependently in [10]. Other proofs have also

apppeared, with the most appealing, in our view, in [17] and it is given here.

Since (B + δB,A+ δA) is uncontrollable, from condition (2) of theorem (13), we get

rank (B + δB, (A+ δA)− λI) < n, for some λ ∈ C

From theorem (18), the smallest perturbation that can make (B,A− λI) have rank less than n is

σn (B,A− λI). Hence

σn (B,A− λI) ≤ ‖(δB, δA)‖2 (1.4)

Clearly equality in (1.4) can be attained, by setting

(δB, δA) = −σnunvHn

where σn, un, vn are the smallest singular value and the corresponding left and right singular

vectors of (B,A− λI) for some λ ∈ C. Taking the minimum over all λ ∈ C we get

µ = min
(δB,δA)∈Cn×(m+n)

‖(δB, δA)‖2 = min
λ∈C

σn (B,A− λI) (1.5)

which clearly represent the minimum perturbation we are looking for. For future reference we will

denote σ (λ) ≡ σn (B,A− λI) : C 7→ R.

This is a global optimization problem with respect to λ. Most approaches in literature consider

a real system (A,B), but they allow complex perturbations (δA, δB) such that (A + δA,B +

δB) is uncontrollable. The nice property of this minimum complex disturbances coincide with

rank one matrices i.e both δA and δB are rank one matrices. The more realistic case where the

perturbations (δA, δB) are real, have been considered in [32], [10] and [24] . Solution strategies
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for real perturbations considered in [10] resulted into an objective function which is discontinuous

due to the formulation of the original problem. However the formulation considered in [32] turns

to help avoid this discontinuity problem. A new version of Miminis’ algorithm [24] called Density

search algorithm [25], was also extended to real perturbations where a search is performed only on

the real axis, which results into a real, λ, minimizing the objective function. The latter however,

may not always compute the global minimum.

In this work, we will be implementing an algorithm that will minimize this function with respect

to λ ∈ C as well as λ ∈ R.

1.4 Organizational structure of Thesis

This thesis is organized as follows. In chapter (2) we review some papers on the subject. Specif-

ically, we review the algorithm by Elsner and He [20], DeCarlo [32], Gu [14] and Burke, Lewis

and Overton, [7]. In Chapter (3), we will Introduce the Density search algorithm [25] and the

Tunneling algorithm [21] which we will be using for our algorithm implementation. Chapter (4) is

devoted to the computation of the distance to uncontrollability (1.5) by combining Density search

method and Tunneling method. In chapter (5), we will illustrate the performance of the algorithm

in practice with some numerical examples. Performance of the algorithm will also be looked at

when we consider λ ∈ R. In chapter (6), we will give concluding remarks.
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2 Review Of Existing Algorithms

2.1 Computing the Distance to Uncontrollability

The formulation (1.5) is a difficult problem to solve. It is a non-smooth global optimization

problem in two variables, α and β, where λ = α + iβ. In the past, a number of algorithms have

been designed to compute, µ both for λ ∈ C and λ ∈ R. The algorithms designed to search for a

local minimum cannot guarantee that they will compute the global minimum and the algorithms

designed to search for the global minimum require computing time that is inversely proportional

to µ2(A,B) [4]. The cost is even excessively expensive in the case when the system is nearly

uncontrollable. In this section, we briefly present two algorithms that compute the local minimum

of the function (1.5) and also the two algorithms that compute the global minimum.

2.1.1 The Distance to Uncontrollability by Elsner and He

Since the problem of computing the distance to uncontrollability of, (1.5) is an optimization prob-

lem of minimizing, σ(λ) over the complete complex plane, we present an algorithm by, Elsner and

He’s in [20] that compute the local minimum of this function. They turn to solve this by finding

the zero points of the gradient of σ(λ) using Newton’s and the Bisection method.

Considering the case, λ ∈ C, i.e., λ = α + iβ, this function σ(α + iβ), becomes a real-valued

function with a complex variable. This property makes the function, not analytic with respect to

λ, however, the partial derivatives with respect to the real parameters α and β exist. This makes

their method possible since the partial derivatives of σ(α, β) , can be computed using the singular

value decomposition of (A− λI,B).
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Theory.

Let’s consider the complex parameter, λ = α + iβ.

and let

(A− (α + iβ)I, B) = U(α, β) ΣV H(α, β)

be the singular value decomposition of, (A− (α+ iβ)I, B) where Σ is the n× (m+ n) rectangular

matrix with non-negative real elements σ1 > σ2 >, ...,> σn > 0 at the diagonal, with σn(α, β) =

σ(α, β) being simple, U(α, β) is an n× n complex unitary matrix which is a function of α and β,

whose columns are the left-singular vectors of (A−(α+iβ)I, B) and V (α, β) is an (m+n)×(m+n)

complex unitary matrix which is also a function of α and β, whose columns are the right-singular

vectors of (A− (α + iβ)I, B).

Also let’s define a certain function, s(α, β) = s(λ) as,

s(λ) = vHn (λ)

 un(λ)

0

 (2.1)

where un and vn are the left and right singular vectors, with respect to the least singular value

in the singular value decompositon of (A− (α + iβ)I, B). Elsner and He in [20] showed that, the

partial derivatives with respect to the real α and β can be defined and computed as

∂σ(α + iβ)

∂α
= −Re s(α + iβ) (2.2)

∂σ(α + iβ)

∂β
= −Im s(α + iβ) (2.3)

Where "Re" and "Im" represent the real and imaginary components of the function s(λ). Knowing

the first derivatives, the second derivatives were easily calculated. The above equations (2.2) and

(2.3) imply a relationship between the zero points of the function s(λ) as defined in (2.1) and the

critical points of σ(α, β), where a critical point of σ(α, β) is a point where the partial derivatives

with respect to α and β are zero. From this nice relation it was shown in the theorem below in

[20], that,
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Theorem 20 λ∗ = α∗ + iβ∗ is a zero of s(λ) defined in (2.1), iff (α∗, β∗) is a critical point of

σ(α, β) = σn(A− (α + iβ)I, B).

Hence the computation of the distance to uncontrollability, µ is equivalent to finding the zero

points of function (2.1), in which the real and imaginary parts (Re s(α, β), Im s(α, β)) will be the

critical points of σ(α, β). Thus, some well-established root-finding methods, such as Newton’s

iterative algorithm or the Bisection method can be used to compute these critical points.

An interesting observation about the critical points is, they satisfy λ∗ = u∗Hn Au∗n, which means

they lie in the field of values of A. Hence to decide which critical points are local minima, one can

use the following well-known criterion. See for example [31][p.961] a critical point λ∗ = α∗ + iβ∗

of σ(λ) is a local minimum of σ(α, β) if

(
∂2σ

∂α2
)(
∂2σ

∂β2
)− (

∂2σ

∂α∂β
) > 0

∂2σ

∂α2
> 0

where ( ∂
2σ
∂α2 ) and (∂

2σ
∂β2 ) represent the second derivatives with respect to the real and imaginary

components, α and β. Newton’s method needs a starting approximation. Since all critical points

of λ satisfy λ∗ = u∗Hn Au∗n, all minimum points λ will lie in the field of values of A, hence according

to Elsner and He in [20],

λmin(
A+ AT

2
) 6 α∗ 6 λmax(

A+ AT

2
), λmin(

A− AT

2i
) 6 β∗ 6 λmax(

A− AT

2i
) (2.4)

Here λmin(A) and λmax(A) denote the minimal and the maximal eigenvalue of A. The function

σ(λ) is symmetric about the real axis ( The proof of this symmetry is provided in chapter (3)),

hence since σn(A− λ∗I, B) = σn(A− λ̄∗I, B), the search for minimum points can be restricted to

0 6 β∗ 6 λmax(
A− AT

2i
)

Based on the above discussion, Newton’s and Bisection methods presented in [20] can be used to

to find µ for the cases of λ ∈ C and λ ∈ R.

12



Complete proofs for these algorithms and convergence and also for the first and second derivatives

can be found in [20].

Numerical Examples

Below we choose as an example, a system where we know that a complex λ gives its minimum.

A =


0.1419 0.7922 0.0357

0.4218 0.9595 0.8491

0.9157 0.6557 0.9340

 , B =


0.9572

0.4854

0.8003


In using Newton’s method to compute µ, we run the algorithm by [20] for λ ∈ C on the above

system and compared its results with the Density search algorithm [25] and a Trisection method

in [23]. It gave a minimum of 0.3728 with a minimizer of 0.1260 + 0.3421i whiles Density search

algorithm and the Trisection method [23] gave as minimums, 0.3710 and 0.3734 with minimizers

as 0.1170 + 0.2814i and 0.1160 + 0.3471i respectively.

We also choose below, a system where we know a real λ gives its minimum.

A =


0.6787 0.3922 0.7060

0.7577 0.6555 0.0318

0.7431 0.1712 0.2769

 , B =


0.0462

0.0971

0.8235


Again in using Bisection method to compute µ, we run the algorithm by [20] for λ ∈ R on the

above system and compared its results with the Density search algorithm for λ ∈ R. It gave us a

minimum 0.4176 with a minimizer of 0.2660 whiles Density search algorithm gave as a minimum,

0.3959 with a minimizer of 0.2460.

From the above numerical examples, it can be seen that, there is a general agreement in the

minima attained by the three algorithms.The algorithm by [20] was able to locate a minimum

which is almost close to the minimum identified by the Trisection method [23] and Density search

method [25] for λ ∈ C and λ ∈ R respectively. Density search algorithm records the least function

13



value as compared to the other two. It was also observed that, the algorithm is able to converge

quadratically when θk = 1 is used in algorithm.

2.1.2 Distance to an Uncontrollable System by DeCarlo and Wicks

Newton’s method used in [20] above, is based on the minimization of σn(A−λI,B) over all complex

numbers λ. It requires a singular value decompositon computation at each iteration.

In this section, we state an algorithm due to Wicks and DeCarlo. The algorithm is iterative in

nature without the need for searching or using a general minimization algorithm.

Mark Wick’s and Decarlo’s work in [32] suggest a new interpretation of the problem.

µ = min
λ∈C

σn (A− λI,B) (2.5)

as

µ = min
q∈Cn

∥∥[qHA(I − qqH) , B]
∥∥
2

(2.6)

Based on this interpretation, they developed three algorithms for computing µR and µc, where µR

and µc are the computed distances for λ ∈ R and λ ∈ C respectively.

Equation (2.6) is based on the observation that the pair (A,B) is uncontrollable if and only if there

is a partitioning and a unitary coordinate transformation for which the equivalent transformed

pair

Ã =

 A11 A12

A21 A22

 , B̃ =

 B1

B2

 (2.7)

has the submatrices A21 and B2 equal to zero.

From this, they seek a sequence of orthonormal bases which successively decrease ||A12, B2|| where

A21 and B2 are as in equation (2.7). Hence the definition below will help in formalizing the problem.

Definition 21 The distance measure, µ was then defined in [32] as;

µ2 =
∥∥eHn [A(I − eneHn ), B]

∥∥2
2

=
n−1∑
j=1

|αnj|2 +
m∑
j=1

|βnj|2 (2.8)
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Using the above definition, four algorithms were presented in [32], three of which are used when

complex perturbations are allowed, λ ∈ C. The fourth algorithm is used to compute λ in R.

Algorithm (1) presented below compute λ ∈ C. All four complete algorithms and their proof of

convergence can be found in [32].

Algorithm 1.

We also present a numerical example to demonstrate the working of algorithm (1). We are pre-

senting a version of algorithm (1) in [32] which computes λ ∈ C.

Algorithm 1 Case λ ∈ C
Require: Given A and B

λnew = A(n, n)

U S V H = svd(A− λnewI, B)

µnew = S(n, n)

repeat

λold = λnew

µold = µnew

A = UHAU

B = UHB

λnew = A(n, n)

U S V H = svd(A− λnewI, B)

µnew = S(n, n)

until µold < µnew

λmin = λold

µ = µold

Upon termination, λmin represent a critical point and µ represent the computed distance to un-
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controllability for the given system.

Numerical Example

Consider the system below, where we know that a complex λ gives it’s minimum;

A =



0.2259 0.9234 0.4389 0.2622 0.2967

0.1707 0.4302 0.1111 0.6028 0.3188

0.2277 0.1848 0.2581 0.7112 0.4242

0.4357 0.9049 0.4087 0.2217 0.5079

0.3111 0.9797 0.5949 0.1174 0.0855


, B =



0.2625

0.8010

0.0292

0.9289

0.7303


Comparing the distance measure of the above system, using algorithm (1) in [32] above with

the Density search algorithm [25], Algorithm (1) above converged to the minimum 0.1350 with

a complex minimizer of −0.2932 + 0.1052i, whiles Density search algorithm gave as a minimum

0.1228, with a minimizer of −0.3768 + 0.2260i. Density search algorithm providing us with the

smallest minimum.

The methods in [20] and [32] are the few methods that compute the local minimum. So in this

work, we choose to present them briefly and test them on some numerical examples. Next we look

at the other two methods which estimates the global minimum below.

2.1.3 Bisection And Trisection Algorithms

2.1.3.1 Gu’s Verification Scheme

Ming Gu proposed the first algorithm scheme that accurately estimates the distance to uncon-

trollability in polynomial time, see [14]. This algorithm compares eigenvalues of matrix pencils

involving kronecker products that depend on matrices A and B. Taking the computation of singu-

lar values and eigenvalues as atomic operations that can be performed in time cubic in the matrix

dimension, Gu’s test requires O(n6) operations.
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Gu’s test scheme is as follows, given two real numbers δ1 and δ2 with δ1 > δ2 > 0, the test returns

either the information that

µ 6 δ1 (2.9)

or

µ > δ2 (2.10)

where, µ is the distance to uncontrollability measure of A and B. At least one of these statements

must be true, even if both are true, only one of the two statements is verified.

Bisection Algorithm.

Based on this test, Gu used a bisection method to keep only an upper bound on the distance

to uncontrollability. It refines the upper bound until condition (2.10) is satisfied. Complete

verification scheme of equation (2.9) and (2.10) can be found in [14].

Sometimes it could be tempting to try to evaluate µ to higher precision by the bisection method.

However, in order to make this work, one needs to set δ1 and δ2 sufficiently close to each other.

Unfortunately, this lead to numerical difficulties, i.e., the necessary comparison of imaginary eigen-

values of the relevant pencils cannot be carried out with any confidence in the presence of rounding

errors. Hence the Trisection variant algorithm below has the capability to improve upon that dif-

ficulty.

Trisection Method

The first improvement on [14] bisection method, was done by Burke, Lewis, and Overton in [7]. To

obtain the distance to uncontrollability with better accuracy, Burke, Lewis and Overton, proposed

a trisection variant step which replaces Gu’s bisection step. The trisection algorithm bounds µ by

an interval [L,U ] and reduces the length of this interval by a factor of 2
3
at each iteration.
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2.1.3.2 Gu’s improved verification scheme by Mengi

Mengi, in his doctoral dissertation [23], presented an improvement to Gu’s scheme that reduces the

complexity from O(n6) to O(n4) on average and O(n5) in the worst case. In his modified scheme,

A 2n2 × 2n2 generalized eigenvalue problem whose real eigenvalues are sought for in Gu’s scheme

are replaced by standard eigenvalue problem. With this improved verification scheme, Mengi used

the trisection variant algorithm to compute the distance to uncontrollability. Refer to [23][14][7]

for the complete form of this verification scheme and proofs.

Table (5.5) below compare numerical results between the Trisection algorithm in [23] and that of

the Density search algorithm [25] which we will introduce in the next chapter. Specifically, we

compare the global minimum, µ and the minimizers, λ attained by both algorithms for various

matrices of different dimensions. For convenience we are representing the matrices by their "seed

(Seeding the random number generator means initializing it to a certain status)", we first generate

A and then B.
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size(n,m)(seed)
Trisection Density Search

µ λ µ λ

(5,1). (1423). 0.1113 -0.5812 + 0.0161i 0.1088 -0.5683

(10,1). (1423). 0.0077 0.2976 + 0.0093i 0.0059 0.3004

(10,3). (1423). 0.0522 -0.0973 + 0.0445i 0.0483 -0.0650

(15,1). (1423). 0.0098 -0.1453 + 0.0033i 0.0083 -0.1366

(15,4). (1423). 0.0694 -0.1044 + 0.0199i 0.0672 -0.0848

(17,1). (1423). 0.0119 -0.0909 + 0.0106i 0.0108 -0.0754

(17,2). (1423). 0.0231 -0.0518 + 0.0104i 0.0215 -0.0379

(19,1). (1423). 0.0001 0 0.0000 -0.0002

(15,5). (1423). 0.0696 -0.1064 + 0.0200i 0.0672 -0.0858

(21,1). (1423). 0.0120 0.5515 + 0.7080i 0.0105 0.5531 + 0.7005i

(25,1). (1423). 0.0083 -1.1041 + 0.0138i 0.0029 -1.0916

(25,3). (1423). 0.0880 0.6450 + 0.0737i 0.0841 0.6990

(27,1). (1423). 0.0075 -0.3395 + 0.0057i 0.0070 -0.3352

Table 2.1: Numerical results

From the above table, we notice the general agreement in the computed distance to uncontrolla-

bility between these algorithms even though, Density search algorithm gives the least function as

the global minimum.
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3 Density Search and Tunneling Algorithm

3.1 Density Search Algorithm

3.1.1 Theory

In this chapter we present the necessary theory for the development of the Density search algorithm.

3.1.1.1 Transformation

In matrix computations, it is at times advantageous to simplify the original problem by introducing

zeros in the given matrices. The following two well known lemmas [25], and theorem will aid in

this transformation.

Lemma 22 Let U ∈ Cn×n be a unitary matrix and x ∈ Cn. Then

‖Ux‖2 = ‖x‖2

Proof. By the definition of the 2-norm we know

‖Ux‖22 = (Ux)H (Ux) = xHUHUx = xHx = ‖x‖22

Lemma 23 Let U ∈ Cm×m be a unitary matrix and A ∈ Cm×n. Then

‖UA‖2 = ‖A‖2

Proof. By the definition of the matrix norm we know

‖UA‖22 = max
‖y‖2=1

‖(UA) y‖22 = max
‖y‖2=1

yHAHUHUAy = max
‖y‖2=1

yHAHAy

= max
‖y‖2=1

‖Ay‖22 = ‖A‖22
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In a similar manner it can be shown, for the unitary matrix V ∈ Cn×n, ‖AV ‖22 = ‖A‖22.

Theorem 24 Orthogonal transformations of (B,A) preserve µ.

Proof. Let µ be the distance of (B,A) from the nearest uncontrollable system, then we have the

following :

µ = min {‖δB, δA‖2 : (B + δB,A+ δA) ∈ U}

= min


∥∥∥∥∥∥∥UT (δB, δA)

 V 0

0 U


∥∥∥∥∥∥∥
2

: UT [(B + δB) , (A+ δA)]

 V 0

0 U

 ∈ U


This proves that µ is also the distance of the system
(
UTBV,UTAU

)
from the nearest uncontrol-

lable system.

There are various techniques that introduce zeros to a matrix, so that the matrix is easier to

manipulate. Here we will choose Householder transformations [30][p.235] since they use orthogonal

matrices that effectively change our original system (B,A) to (B,A) ≡ (UTBV,UTAU). We will

choose U and V so that the new (B,A) is in the following Controllability Canonical Form:

A =



A11 A12 · · · A1,k−1 A1k

A21 A22 · · · A2,k−1 A2k

A32 · · · A3,k−1 A3k

. . . ...
...

Ak,k−1 Akk


, B =



A10

0

0

...

0


(3.1)

see for example, [24]. Since from Theorem 24 we know that orthogonal transformations have no

effect on µ, clearly the transformed system has the same µ as the original. So we can compute

the distance to uncontrollability of (3.1) instead. The number k ≤ n is called the controllability

index of (B,A). Using the form (3.1) we develop another theorem that will give us a numerically

reliable algorithm to determine if the system is uncontrollable or not.

Theorem 25 If Ai,i−1 = 0 for some i ∈ {2 : k} then (B,A) is uncontrollable.
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Proof. Assume (B,A) is controllable. Then theorem 3 implies that ∃F = (F1, F2, . . . , Fk) such

that

λ (A) ∩ λ (A+BF ) = ∅

Algebraically

A+BF =



A11 A12 · · · A1,k−1 A1k

A21 A22 · · · A2,k−1 A2k

A32 · · · A3,k−1 A3k

. . . ...
...

Ak,k−1 Akk


+



A10

0

0

...

0


(F1, F2, . . . , Fk)

=



A11 + A10F1 A12 + A10F2 · · · A1,k−1 + A10Fk−1 A1k + A10Fk

A21 A22 · · · A2,k−1 A2k

A32 · · · A3,k−1 A3k

. . . ...
...

Ak,k−1 Akk


Given Ai,i−1 = 0, for some i ∈ {2 : k} we may have the following partition:

=



A11 + A10F1 · · · A1,k−1 + A10Fk−1 A1k + A10Fk

A21 · · · A2,k−1 A2k

...
...

Ai,i−1 = 0

...
...

Ak,k−1 Akk


≡

 C1 C2

0 C3



Since this is a block upper triangular matrix we have

λ (A) ∩ λ (A+BF ) ⊇ λ (C3) 6= ∅

which is a contradiction.

In the next two sections, 3.1.1.2 and 3.1.1.3, we investigate some of the properties of the function

(1.5) that will pave the way towards its efficient computation.
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3.1.1.2 The Derivative of σ (λ)

We begin with a well know theorem (see for example [6][p.65]) on conditions sufficient for differ-

entiability of a complex function at a point z0 = x0 + iy0, with (x0, y0) ∈ R×R.

Theorem 26 Consider the complex function

f (z) = u (x, y) + iv (x, y)

defined on a neighborhood @z0 of z0 = x0 + iy0, with (x0, y0) ∈ R×R. Suppose also that

1. The partial derivatives ux (x, y), uy (x, y), vx (x, y), vy (x, y) exist everywhere in @z0;

2. The partial derivatives are continuous at (x0, y0) and satisfy the Cauchy-Riemann equations

ux (x0, y0) = vy (x0, y0) , uy (x0, y0) = −vx (x0, y0) (3.2)

Then f ′ (z0) exists and satisfies

f ′ (z0) = ux (x0, y0) + ivx (x0, y0) (3.3)

Corollary 27 A real valued complex function f (z) : C 7→ R,

f (z) = u (x, y) + iv (x, y)︸ ︷︷ ︸
=0

that satisfies the Caushy-Riemann equations at every point of a region D is constant on D, formally

∀z ∈ D ⇒f (z) = c ∈ R. This implies that any not constant function f (z) : C 7→ R is not

differentiable.

Proof. With x0 + iy0 ∈ D we have

vx (x0, y0) = vy (x0, y0) = 0

from the Caushy-Riemann equations (3.2) we also have

ux (x0, y0) = uy (x0, y0) = 0
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Therefore from ( 3.3) we have

f ′ (z) = 0, ∀z ∈ D

meaning that f (z) is constant on D.

Remark 28 Function σ (λ) : C 7→ R is clearly a real valued complex function

σ (λ) = u (α, β) + i (0) , λ = α + iβ

Since σ(λ) is not constant on C, it is not differentiable on the complex plane, according to the last

corollary. This means that some well known optimization techniques that find local optima cannot

be used for the minimization of σ (λ), on C.

Turning now to linear algebra tools; from the singular value decomposition of (B,A− λI), with λ ∈

C we have

Σ (λ) ≡


σ1

. . . 0

σn

 = UH (λ) (B,A− λI)V (λ) =⇒


σi (λ) = uHi (λ) (B,A− λI) vi (λ)

ui (λ) σi (λ) = (B,A− λI) vi (λ)

σi (λ) vHi (λ) = ui (λ) (B,A− λI)


, i = 1 : n (3.4)

The above and the following lemma will provide what is needed to prove theorem 32 below,

regarding the derivative of σ̇i (λ).

Lemma 29 Given x (t) = [ξi (t)] ∈ Cn and y (t) = [ψi (t)] ∈ Cn with t ∈ C we have

[
yH (t) x (t)

]′
= ẏH (t) x (t) + yH (t) ẋ (t)

If also W (t) =


wH1 (t)

...

wHm (t)

 ∈ Cm×n is partitioned by rows, we have

[W (t) x (t)]′ = Ẇ (t) x (t) +W (t) ẋ (t)
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Proof.

[
yH (t) x (t)

]′
=

[
n∑
i=1

ψ̄i (t) ξi (t)

]′
=

n∑
i=1

[
ψ̄i (t) ξi (t)

]′
=

n∑
i=1

ψ̄′i (t) ξi (t) +
n∑
i=1

ψ̄i (t) ξ
′
i (t)

= ẏH (t) x (t) + yH (t) ẋ (t) (3.5)

Also

W (t) x (t) =


wH1 (t) x (t)

...

wHm (t) x (t)

 =⇒

[W (t) x (t)]′ =


ẇH1 (t) x (t)

...

ẇHm (t) x (t)

+


wH1 (t) ẋ (t)

...

wHm (t) ẋ (t)


= Ẇ (t) x (t) +W (t) ẋ (t)

Corollary 30 If y (t) = x (t) the derivative
[
x (t)H x (t)

]′
exists only at x = 0. In the real case

however, x (t) ∈ Rn with t ∈ R the derivative does exist and satisfies

[
xT (t) x (t)

]′
= 2ẋT (t) x (t)

Proof. When y (t) = x (t) we have

[
xH (t) x (t)

]′
=

[
n∑
i=1

ξ̄i (t) ξi (t)

]′
=

n∑
i=1

[
ξ̄i (t) ξi (t)

]′ (3.6)

In general, assume ξ = α+ iβ and set ζ = ξ̄ξ = (α2 − β2) + i (0). Then from the Cauchy-Riemann

equations for ζ we have

u (α, β) = α2 − β2 and v (α, β) = 0

which gives uα = 2α, uβ = −2β and vα = vβ = 0. That is, the Cauchy-Riemann equations (3.2)

hold only when ξ = 0. Therefore, from (3.6)
[
x (t)H x (t)

]′
exists only when x = 0.
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When x is real however, we have from (3.5)

[
xT (t) x (t)

]′
= ẋT (t) x (t) + xT (t) ẋ (t)

= 2ẋT (t) x (t) (3.7)

Remark 31 If xT (t) x (t) is constant, from (3.7) clearly ẋT (t) x (t) = 0.

Theorem 32 The function σi (λ) = σi (B,A− λI), with λ ∈ R satisfies

σ̇i (λ) = −uTi (λ) (0, I) vi (λ) , i = 1 : n

Proof. Using lemma 29 we may differentiate the first of (3.4) and get

σ̇i (λ) = u̇i
T (λ) (B,A− λI) vi (λ) + uTi (λ) (B,A− λI)′ vi (λ) + uTi (λ) (B,A− λI) v̇i (λ)

Using the second and third of (3.4) and that (B,A− λI)′ = (0,−I) we get

σ̇i (λ) = u̇i
T (λ) ui (λ) σi (λ)− uTi (λ) (0, I) vi (λ) + σi (λ) vTi (λ) v̇i (λ) (3.8)

Since uTi (λ) ui (λ) = vTi (λ) vi (λ) = 1, from remark 31 we have that

u̇i
T (λ) ui (λ) = vTi (λ) v̇i (λ) = 0

and (3.8) becomes

σ̇i (λ) = −uTi (λ) (0, I) vi (λ) , i = 1 : n, with λ ∈ R

Of course we will concentrate on the derivative of the smallest singular value of (B,A− λI), namely

σ̇ (λ) = −uTn (λ) (0, I) vn (λ) (3.9)
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3.1.1.3 Bounds of σ (λ)

In this section we find bounds on the value of λ that minimizes σ (λ). We will use the following

lemma from [30][p.321]:

Lemma 33 Assume σ1 ≥ σ2 ≥ · · · ≥ σn > 0 are the singular values of A ∈ Cm×n and let

σ̃1 ≥ σ̃2 ≥ · · · ≥ σ̃n > 0 be the singular values of B ∈ Cm×n. Then

|σi − σ̃i| ≤ ‖A− B‖2 , with i = 1 : n

The following theorem uses the above lemma in order to find bounds for the value of λ ∈ C that

minimizes σ (λ).

Theorem 34 Let σ1 ≥ σ2 ≥ · · · ≥ σn > 0 be the singular values of (B,A) and λ̃ the value of

λ ∈ C that minimizes minλ∈C σn (B,A− λI), that is

σ
(
λ̃
)
≡ µ = min

λ∈C
σn (B,A− λI)

Then

σn − µ̃ ≤
∣∣∣λ̃∣∣∣ ≤ σ1 + µ̃

where µ̃ = mini ‖Ai,i−1‖2, and Ai,i−1, with i = 2 : k being defined in (3.1).

Proof. Let σ1(λ) ≥ σ2(λ) ≥ · · · ≥ σn(λ) > 0 be the singular values of (B,A− λI). By lemma 33

we have

|σ (λ)− σn| ≤ ‖(B,A− λI)− (B,A)‖2 = ‖(0,−λI)‖2 = |λ|

from which we get

|σ (λ)− σn| ≤ |λ| ⇔

σn − |λ| ≤ σ (λ) ≤ σn + |λ|

and for λ = λ̃

σn −
∣∣∣λ̃∣∣∣ ≤ µ ≤ σn +

∣∣∣λ̃∣∣∣ (3.10)
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Also

|σ (λ)− |λ|| ≤ ‖(B,A− λI)− (0,−λI)‖2 = ‖(B,A)‖2 = σ1

from which we get

|σ (λ)− |λ|| ≤ σ1 ⇔

|λ| − σ1 ≤ σ (λ) ≤ |λ|+ σ1

and for λ = λ̃ ∣∣∣λ̃∣∣∣− σ1 ≤ µ ≤
∣∣∣λ̃∣∣∣+ σ1 (3.11)

We know also that a perturbation of the magnitude

µ̃ ≡ min
1≤i≤k

‖Ai,i−1‖2

at position (i, i− 1) of equation (3.1) will result into an uncontrollable system. Clearly though µ̃

may not necessarily be the smallest such perturbation, therefore

µ ≤ µ̃

From the left part of (3.11) now we get for
∣∣∣λ̃∣∣∣

∣∣∣λ̃∣∣∣− σ1 ≤ µ ≤ µ̃⇒
∣∣∣λ̃∣∣∣ ≤ σ1 + µ̃

Similarly, from the left part of (3.10) we get for
∣∣∣λ̃∣∣∣

σn −
∣∣∣λ̃∣∣∣ ≤ µ ≤ µ̃⇒ σn − µ̃ ≤

∣∣∣λ̃∣∣∣
Eventually

σn − µ̃ ≤
∣∣∣λ̃∣∣∣ ≤ σ1 + µ̃

Graphically, λ̃ is within the following ring
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Figure 3.1 : The ring containing the minimum.

However, in the algorithms we are about to develop we will not make any use of the lower bound

σn − µ̃, since it can be negative. Furthermore even if it is not negative, the benefit from using it

may not justify the effort of implementing it. Thus the above ring becomes a disc of radius σ1 + µ̃.

There is also another convenient factor in the optimization of σ (λ); the fact that it is symmetric

about the real axis. Therefore we need only search one half of the disc defined by
∣∣∣λ̃∣∣∣ ≤ σ1 + µ̃.

The proof of this symmetricity follows, [24].

Theorem 35 The function σ (λ) is symmetric about the real axis.

Proof. It is adequate to prove

σn (B,A− λI) = σn
(
B,A− λ̄I

)
, for ∀λ ∈ C

From [30][p.267] we know that λ (M) = λ
(
MT

)
, for M ∈ Rn×n. Since the squares of the sin-

gular values of the matrices (B,A− λI) and
(
B,A− λ̄I

)
are the eigenvalues of the matrices
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(B,A− λI)H (B,A− λI) and
(
B,A− λ̄I

)H (
B,A− λ̄I

)
respectively, and that:

[
(B,A− λI)H (B,A− λI)

]T
= (B,A− λI)T

[
(B,A− λI)H

]T
= (B,A− λI)T

(
B,A− λ̄I

)
=
(
B,A− λ̄I

)H (
B,A− λ̄I

)
since A and B are real, then

σi (B,A− λI) = σi
(
B,A− λ̄I

)
, i = 1 : n

QED.

3.1.1.4 Relative distance µr

In the way µ has been defined, it gives the absolute distance of a given system from the near-

est uncontrollable system. However this may not be useful if one, for example, needs to com-

pare the controllability of two systems. For instance, if µ1 and µ2 are the distances of (B1, A1)

and (B2, A2) form their nearest uncontrollable systems respectively and µ1 < µ2 then (B1, A1)

is not necessarily less controllable that (B2, A2). Actually, it may very well be the opposite if

‖(B1, A1)‖2 � ‖(B2, A2)‖2. So what we need, is to introduce the concept of the relative distance

of a system from the nearest uncontrollable one.

Definition 36 We define the relative distance of (B,A) from the nearest uncontrollable system

(B + δB,A+ δA) as

µr = ‖(B,A)‖−12 min
(δB,δA)∈Cn×(m+n)

{‖(δB, δA)‖2 : (B + δB,A+ δA) ∈ U}

Clearly µr = µ/ ‖(B,A)‖2.

In order to see how this definition will alter our computations note that if D = USV H is the

singular value decomposition of a matrix D and α is a scalar then αD = U (αS)V H . If we set
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α = ‖(B,A)‖−12 we get

µr = α µ = α min
λ∈C

σn (B,A− λI)

= min
λ∈C

σn (αB, αA− αλI)

= min
λ̂∈C

σn

(
αB, αA− λ̂I

)
, where λ̂ = αλ

Furthermore,

σ1 (αB, αA) = ασ1 (B,A) = 1

and since form (3.1) of (αB, αA) we have

α (B,A) = α (Aij)

define

µ̃r = αµ̃

In the sequel, we will work with the scaled system (αB, αA) and we will compute µr instead. For

economy of notation we will use

(λ, µ, µ̃) ≡
(
λ̂, µr, µ̃r

)
, (B,A) ≡ (αB, αA)

Note also that the relation
∣∣∣λ̃∣∣∣ ≤ σ1 + µ̃ for the unscaled system, becomes 1 + µ̃ for the scaled

system and we will denote it by η. We will also denote by C (0, η) the top half of the disc, with

center at the origin and radius η. Below we introduce this algorithm for both instances of λ in R

and C.

3.1.2 Optimization in the interval [−η, η]

In this section we will solve the following optimization problem

min
λ∈[−η,η]

σ (λ) = min
λ∈[−η,η]

σn (B,A− λI) (3.12)

In general σ (λ) will have more than one minima on the interval [−η, η]. Hence the above is a
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global optimization problem. Consequently standard techniques like Newton’s optimization

cannot be applied unless the global minimum has been located with some certainty. The density

search algorithm is an algorithm developed for computing the global minimum of a function (see

[25]) and we will apply it on (3.12). Starting at λ1 = −η we will use

λk+1 = λk + wk

to locate the global minimum. The step, wk will be computed so that the following two criteria

are satisfied:

• The closer we get to a local minimum the denser the search becomes.

• The search should be complete in s steps, assuming σ (λ) = σ for ∀λ ∈ [−η, η], where σ is

the expected value of σ (λ) on [−η, η].

The first property is clearly handled by

wk = σ (λk)

that is, as the function becomes smaller the step size decreases. The second property will be met

when

wk =
2η

s
(3.13)

Combining the effects of both into wk we get

wk = σ (λk)
2η

x
(3.14)

where x is such that, the number of steps needed for locating the global minimum is s when

σ (λ) = σ for ∀λ ∈ [−η, η], where σ is the expected value of σ (λ) in [−η, η]. In this case

wk = σ
2η

x
(3.15)

Equating (3.13) and (3.15) we get

x = σs
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Eventually from (3.14) we get

wk =
σ (λk)

σ

2η

s
(3.16)

The above model will have as a result a denser search when local minima are encountered, as well

as a total number of steps approximating s when σ (λ) is close to its expected value σ on [−η, η].

We are ready now to make the following remarks:

Remark 37 Clearly the greater the value of s is, the better our estimation of the global minimum

will be. We would prefer however an algorithm based on (3.16) to be as fast as possible. In view

of this, we may first give s a "reasonable" value so that the computed (λ, µ) is a good approxima-

tions of the correct (λ, µ). Then using the approximation of (λ, µ) and any standard optimization

technique compute the correct value of (λ, µ) to machine precision. The latter is possible because

the derivatives of σ (λ) exist on R and we have already found a way to compute them.

Remark 38 In the extreme, but realistic cases, where the ratio σ (λk) /σ is very large or very

small we will encounter problems.

1. In the case where the ratio σ (λk) /σ is very large, wk will be very large as well and the danger

of skipping some useful local minimum is very real. Very large values of σ (λk) /σ are not

useful for our computation so we will choose to ignore values that exceed some safe tolerance

tolmax by setting them equal to tolmax.

2. In the case where the ratio σ (λk) /σ is very small, wk will be very small as well and the

danger of iterating endlessly is real. Consider for example the case of an uncontrollable

system where µ = 0. Here too we should not allow σ (λk) /σ to become smaller than a specific

tolerance tol. If it does, we stop the computation declaring the system uncontrollable to

machine precision.

We are left now with the computation of σ. To compute this, let Λ be a random variable uniformly
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distributed in [−η, η]. Then its density function f (λ) satisfies

f(λ) =


1
2η

, if λ ∈ [−η, η]

0, otherwise

Thus

σ =

∫ η

−η
σ (λ) f (λ) dλ =

1

2η

∫ η

−η
σ (λ) dλ

Using Simpson’s rule (obviously there are many other choices here)

σ =
1

2η

(η
3

[σ (−η) + 4σ (0) + σ (η)]
)

=
1

6
[σ (−η) + 4σ (0) + σ (η)]

Finally,

wk =
σ (λk)

[σ (−η) + 4σ (0) + σ (η)]

12η

s

Starting at −η, and using wk as a step size, the algorithm first estimates the global minimum

by performing a systematic density search in [−η, η]. Then this minimum is used as an initial

approximation to the root of the equation σ′(λ).

In finding the root of this function σ′(λ) with respect to the real λ, density search uses the secant

method below.

Secant Method

This method is a root finding algorithm that uses a succession of roots of secant lines to better

approximate a root of a function σ′(λ). This method can be thought of as a finite difference

approximation of Newton’s method. It requires two initial values, λ0 and λ1, which should ideally

be chosen to lie close to the root. Starting with initial values λ0 and λ1, we construct a line through

the points (λ0, σ(λ0)) and (λ1, σ(λ1)) where σ(λ0) and σ(λ1), are the function values at points λ0

and λ1. We then find the root of this line and name it λ2, etc, until convergence. This process can

be modeled by the following iterative scheme:

λn = λn−1 − σ(λn−1)
λn−1 − λn−2

σ(λn−1)− σ(λn−2)
(3.17)
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for n = 2, 3, ... When this λ finally converges, the algorithm then computes the global minimum

with respect to the minimizer.

Convergence of Secant Method

The iterate, λn, of the secant method converge to a root of σ′, if the initial values λ0 and λ1 are

sufficiently close to the root. The order of convergence is α, where α = 1+
√
5

2
≈ 1.618

3.1.3 Optimization in the semi-disc, C (0, η)

We have found that the minimum is inside a disc of radius η centered at the origin. Furthermore,

the function is symmetric about the real axis and as such, reduces the search area to one half of

the disc.

Let λrc be given by λrc = αr + iβrc. We will perform a two dimensional density search following

the same criteria as in the real case, where αr will vary in the interval [−η, η] with step wk, while

βrc will vary along an axis parallel to the imaginary axis initiating at αr (we term this the αr axis)

in the interval
[
0,
√
η2 − α2

r

]
with step qk.

We start with λ00 = α0 + iβ00 where α0 = −η and β00 = 0. Next we calculate σ (λ00) and

w0 = σ (λ00)
2η
sσ
, the step in the interval [−η, η], where σ is the expected value of σ (λ) in the upper

half of the disc (0, η) and s the number of steps in [−η, η] if σ (λ) = σ for ∀λ ∈ [−η, η]. Then

compute λ10 = α1 + iβ10, where α1 = α0 + w0 and β10 = 0. Now begins the search along the α1

axis. First compute σ(λ10) then let q0 = σ (λ10)

√
η2−α2

1

s1σ
be the step along the α1 axis, where s1 is

the number of steps we wish to have along the α1 axis in the interval
[
0,
√
η2 − α2

1

]
if σ (λ) = σ for

∀λ ∈
[
0,
√
η2 − α2

1

]
. Then compute λ11 = α1 + i (β10 + q0) and continue this line of search until

|λ1m| > η for some m. Once the search on the α1 axis is complete we are ready to move along the

real axis once more. To do so we choose as step

w1 = min
j
σ (λ1j)

2η

sσ

where minj σ (λ1j) is the minimum value of σ(λ) encountered during the search along the α1 axis.
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Set λ20 = α2 + iβ20 with α2 = α1 + w1 and β20 = 0. Continue until αn > η for some n.

We will now compute sr for r = 1 : n − 1, so that we have a search along the αr axis that will

work along the exact same principles as the search on the real axis. To do this we need to find a

relation between sr and αr. First we observe that sr = 0 when αr = −η or αr = η, then we require

that sr = s
2
when αr = 0 and that sr has the same value for αr as for −αr, that is, the graph of sr

is symmetric about the sr axis. The latter two requirements are meaningful under the assumption

σ (λ) = σ for ∀λ ∈ C (0, η).

..........
...........
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............
............
.............
..............
...............
.................
....................
........................
................................

....................................................................................................................................................................................................................................................................................................................

sr

s
2

αr-η η

Figure 4.1 : A graphical representation of the step value

dependent on the current real axis location.

According to our requirements the most suitable function of sr in relation to αr is quadratic, higher

degree functions would introduce parameters that will give freedom that is not required. So we

have

sr = εα2
r + δαr + γ

along with the following conclusions: αr = 0 ⇒ sr = s
2
gives γ = s

2
; sr (αr) = sr (−αr) ⇒ δ = 0;

finally αr = η ⇒ sr = 0 gives ε = − s
2η2

. Therefore

sr =
s

2

(
1− α2

r

η2

)
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Finally, we need to compute the expected value of σ (λ) in C(0, η). Let Λ be a random variable

equally distributed in C(0, η), and let λ = α+ iβ be a value of Λ, then the density function of Λ is

f (α, β) =


2
πη2

, if α ∈ [−η, η] and β ∈
[
0,
√
η2 − α2

]
0 otherwise

with expected value

σ =

∫ √η2−α2

0

∫ η

−η
σ (α, β) f (α, β) dα dβ, where σ (α, β) ≡ σ (λ)

Converting to polar coordinates we get

α = ρ cos θ and β = ρ sin θ, where ρ ∈ [0, η] and θ ∈ [0, π]

The density function becomes

f (ρ, θ) =


2
πη2

, if ρ ∈ [0, η] and θ ∈ [0, π]

0 otherwise

and the expected value is

σ =

∫ η

0

∫ π

0

σ (ρ, θ) f (ρ, θ)

∣∣∣∣ϑ (α, β)

ϑ (ρ, θ)

∣∣∣∣ dθdρ
where

ϑ (α, β)

ϑ (ρ, θ)
=

∣∣∣∣∣∣∣
 −ρ sin θ cos θ

ρ cos θ sin θ


∣∣∣∣∣∣∣ = −ρ sin2 θ − ρ cos2 θ = −ρ

Therefore

σ =

∫ η

0

∫ π

0

σ (ρ, θ) f (ρ, θ) ρdθdρ

=
2

πη2

∫ η

0

ρ

∫ π

0

σ (ρ, θ) dθdρ

Using Simpson’s rule (there are many choices here too) we get

σ =
2

πη2

∫ η

0

ρ
[π

6

[
σ (ρ, 0) + 4σ

(
ρ,
π

2

)
+ σ (ρ, π)

]]
dρ

=
1

3η2

∫ η

0

ρσ (ρ, 0) dρ+
4

3η2

∫ η

0

ρσ
(
ρ,
π

2

)
dρ+

1

3η2

∫ η

0

ρσ (ρ, π) dρ
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Once again, using Simpson’s rule for each of the above three integrals we get

σ =
1

3η2

[
η

6

[
0σ (0, 0) +

4η

2
σ
(η

2
, 0
)

+ ησ (η, 0)

]]
+

4

3η2

[
η

6

[
0σ
(

0,
π

2

)
+

4η

2
σ
(η

2
,
π

2

)
+ ησ

(
η,
π

2

)]]
+

1

3η2

[
η

6

[
0σ (0, π) +

4η

2
σ
(η

2
, π
)

+ ησ (η, π)

]]
=⇒

σ =
1

9

[
σ
(η

2
, 0
)

+
1

2
σ (η, 0)

]
+

4

9

[
σ
(η

2
,
π

2

)
+

1

2
σ
(
η,
π

2

)]
+

1

9

[
σ
(η

2
, π
)

+
1

2
σ (η, π)

]
=

1

9

[
σ
(η

2
, 0
)

+ 4σ
(η

2
,
π

2

)
+ σ

(η
2
, π
)]

+
1

18

[
σ (η, 0) + 4σ

(
η,
π

2

)
+ σ (η, π)

]
Converting back to Cartesian coordinates we get

σ =
1

9

[
σ
(η

2
, 0
)

+ 4σ
(

0,
η

2

)
+ σ

(
−η

2
, 0
)]

+
1

18
[σ (η, 0) + 4σ (0, η) + σ (−η, 0)] (3.18)

Remark 39 As with the search in [−η, η], here too we can only get an approximation of the λ ∈ C

that minimizes σ (λ). This approximation becomes better as s increases. However, it is obvious

that we would like to keep s as low as possible and still get a good approximation of λ ∈ C that

minimizes σ (λ). Since the derivatives of σ (λ) do not exist anywhere in the complex plane, except

at the origin, standard optimization methods can not be used to compute the optimum. There is

however a method in [1] that successfully computes a local optimum of σ (λ), converging linearly to

the solution. This method has been implemented as part of the Density search method. It is worth

pointing out that remark 38 holds here too.

3.2 Tunneling Algorithm

In the move along the imaginary axis of the complex plane, and with an initial starting point from

the step point on the real axis αr, we will use the Tunneling algorithm technique to perform local

searches to approach any local minimum.
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The Tunnneling method attempts to solve the global optimization problem by performing local

searches such that, at each time, a different local minimum is reached [21].

3.2.1 Basic structure of the Tunneling algorithm

The Tunneling algorithm is composed of sequence of cycles, each cycle consist of two phases, a

minimization phase and a tunneling phase [21].

In the minimization phase, given a starting point, λ̂, we use any minimization algorithm to find a

local minimizer of σ(λ), say λ∗. Any optimization algorithm with a descent property on σ(λ) can

be used to find the local minimum [9].

The second phase is called tunneling phase and the purpose is to obtain a good starting point,

λ̂, different from, λ∗, but with the same function value as, λ∗, for the next minimization phase.

Starting from the point, λ∗, obtained in the previous minimization phase, we find the zero of a

function called, the tunneling function;

T (λ) = σ(λ)− σ(λ∗). (3.19)

Where σ(λ∗) is the function value obtained during the previous minimization phase. Once the

solution of equation (3.19) is obtained for a λ 6= λ∗ , this point is taken as the starting point,

λ̂ = λ, for the next minimization phase. If a zero of equation (3.19) cannot be found after a

suffiecient computer time is used by some zero finding algorithm, then the whole algorithm is

terminated. To decide when the algorithm is terminated is a subjective decision of the user. In

our case, it is when λ > η [9].

A Geometric interpretation of the Tunneling algorithm.

The alternate use of minimizations and tunneling phases in the Tunneling algorithm are illustrated

geometrically in the figure (3.1) below.

Starting from an arbitrary point λ01, a minimzation phase is performed, ending at the local minimum
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at the λ∗1 with a function value of σ(λ∗1). In this phase, the function value decreases since

σ(λ∗1) < σ(λ01) (3.20)

With the known values of λ∗1 and σ(λ∗1), a tunneling phase is started, ending at λ02, which is the zero

of the tunneling function, equation (3.19). This point λ02, has the function value σ(λ02) = σ(λ∗1). In

this phase, the function value is not necessarily lowered but instead, an excellent starting point is

obtained for the next minimization phase since there is a guarantee that, the next local minimum

we find λ∗2, will have a function value

Figure 3.1: "Tunneling" of irrelevant minima.

σ(λ∗2) 6 σ(λ02) (3.21)
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and consequently from (3.20) and (3.21)

σ(λ∗2) 6 σ(λ∗1) (3.22)

Once we have λ∗2, we start a new tunneling phase, looking for a λ03, the zero of equation (3.19) at

the level of the last local minimum σ(λ∗2). At λ03, the tunneling phase is ended, and a minimization

phase, will take us from λ03 to the "local" minimum at λ∗4. The algorithm will start now the next

tunneling phase looking for a zero of the tunneling function at the level σ(λ∗4). After a certain

computer time, tmax, is spent without finding a zero of the tunneling function, the user can assume

that "probably" λG = λ∗4 is the global minimum [9].

Tunneling function additional parameters

The tunneling function, as given in equation (3.19), could be used with some zero finding algorithm

during the tunneling phase, except for the fact that at the point λ∗, previous minimization phase

found a local minimum that has become now also a zero of equation (3.19).

Since we want a zero of equation (3.19), say λ̂, with λ̂ 6= λ∗, it is better to cancel or "deflate" the

zero of equation (3.19) at λ∗, introducing a pole at λ∗, with a pole strength τ , obtaining a more

suitable definition for the tunneling function given by

T (λ) =
σ(λ)− σ(λ∗)

(
∏l

i=1(λ− λ∗i )τi)(λ− λm)x
(3.23)

The term (σ(λ)−σ(λ∗)) eliminates as possible solutions, all those points λ satisfying σ(λ) > σ(λ∗).

To prevent the algorithm from locating as solutions previous minimizers found at λ∗i , i = 1, 2, ..., l,

with function value σ(λ∗1) = σ(λ∗2) = ... = σ(λ∗i ) = σ(λ∗), we place a pole, (λ − λ∗)τ with pole

strength τ at position λ∗. The term (λ − λm)x called, mobile pole is also added to smooth out,

any irrelevant local minimizer that might attract any particular minimization algorithm during

the search for λ̂ and x is its strength [21].

At the begining of each tunneling phase, these parameters are updated automatically by the

method. To compute x, starting from a value of x = 0, small increments, say τ = 1.0, are added
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Figure 3.2: Poles placed at λ∗

Figure 3.3: Transformed function after

poles were placed at λ∗ to deflate the

zero of the tunneling function.

to τ until the pole is strong enough to cancel T (λ∗). The geometric interpretation of what this

parameter does is shown in figure (3.2) and figure (3.3) above.
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General stopping conditions of the Tunneling algorithm

1. In the minimization phase, a convergence condition is set with tolerance, ε = 10−7.

2. In the Tunneling phase, the algorithm is stopped whenever the condition |T (λ)| < ε is

satisfied.

3. This option occurs when for a given ε, in a given number of iterations, the zero finding

algorithm fails to locate λ̂. If this is the case, we are in the position of selecting a bigger

ε, until the satisfaction of the inequality is achieved; this procedure could be repeated a

specified number of times.

3.2.2 Algorithms used in both the Minimization and Tunneling Phases

Obviously there are many choices of optimization algorithms out there that can be used in both

the minimization and tunneling phases. We will be using the gradient descent method in the

minimization phase and the Newton’s method in the tunneling phase in this algorithm.

3.2.2.1 Gradient descent method used in Minimization Phase

Gradient descent is a first-order iterative optimization algorithm. To find a local minimum of

a function using gradient descent, one takes steps proportional to the negative of the gradient

(or of the approximate gradient) of the function at the current point. If instead one takes steps

proportional to the positive of the gradient, one approaches a local maximum of that function; the

procedure is then known as gradient ascent.

Description

Gradient descent is based on the observation that if the function σ(λ) is defined, and differentiable

in a neighborhood of a point a, then σ(λ) decreases fastest if one goes from a in the direction of
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the negative gradient of σ at a, −σ′(a). It follows that if,

b = a− γσ′(a)

where γ is the scaling factor and σ′(a) is the derivative of the function, σ at point, a. For, γ

small enough, then, σ(a) > σ(b). In other words, the term γσ′(a) is subtracted from a because we

want to move against the gradient, namely down towards the minimum. With this observation in

mind, one starts with an initial guess of λ∗0 for a local minimum of function, σ, and considers the

sequence λ∗0, λ∗1, λ∗2, ... such that

λ∗k+1 = λ∗k − γσ′(λ∗k),

for k = 1, 2, ..., n we have;

σ(λ∗1) > σ(λ∗2) > σ(λ∗3) >, ..., σ(λ∗n)

So hopefully the sequence (λ∗n) converges to the desired local minimum. The value of the scaling

factor γ is allowed to change at every iteration. With certain assumptions on the function σ(λ∗)

and particular choices of γ, convergence to a local minimum can be guaranteed.

3.2.2.2 Newton’s Method in The Tunneling Phase

As described in the previous section, the tunneling phase requires a zero finding algorithm to obtain

the solution of the tunneling function given by equation (3.19). Newton’s method is a method for

finding successively better approximations to the roots of this function. It is known that Newton’s

method will converge to these zero points if the starting point is within a neighborhood δ , of the

solution.

λ : T (λ) = 0

With an initial guess point λ0 for a root of the function T , the method uses the following iteration

to converge to the solution;

λn+1 = λn −
T (λn)

T ′(λn)
(3.24)

for n = 0, 1, 2, ... until a sufficiently accurate value is reached.
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4 The Two-Phase Algorithm

4.1 Algorithm Implementation

This algorithm would compute the distance of a linear dynamic system from the nearest uncon-

trollable system. The problem of computing this distance is equivalent to the global optimization

problem;

µ = min
λ∈C

σ (B,A− λI)

Before we proceed to introduce the Two-phase algorithm, it is worth pointing out that, we will

initialize the system by reducing it into a simpler form. We will transform the original given

system A and B into its Controllability Canonical Form (3.1). We will also compute the partial

derivatives of σ(α + iβ) with respect to β, using equation (2.3).

The Two-Phase Algorithm works like the Density Search Algorithm except that the search along

the αr axis is performed using the Tunneling Algorithm.

In the minimization phase of the Tunneling algorithm, we use the gradient descent method to

locate a local minimum as in:

βk+1 = βk − γ(Im s(βk))

for k = 1, 2, ..., with β1 = δ. We continue with the iteration until the given convergent condition,

|βk+1 − βk| 6 ε in this phase is met. In our examples, we set the tolerance to be ε 6 10−7, the

scaling factor γ to be 0.1 and δ = 0.01.

Next we switch to the Tunneling phase. The minimization-tunneling iteration is repeated until

βk for some k exceeds
√
η2 − α2

r . We then set

αr+1 = αr + wr for r = 1, 2, ..., until αr > η
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using;

wr = min
j
σ (λ1j)

2η

sσ

as the step, where minj σ (λ1j) is the minimum value of σ(λ) encountered during the search along

the αr axis.

The above algorithm was implemented in MATLAB and was used to test some chosen systems.

Numerical results are shown in the next chapter.
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5 Numerical Results

5.1 Numerical Examples

We run the Two-phase algorithm on systems with random coefficients of various sizes. The results

of the Trisection method [23] and Density search algorithm [25] are considered to be accurate,

hence we compared the results of this new method with these two algorithms.

Example (1). Consider the A ∈ R5×5 and B ∈ R5×1 system with a "seed" of [1338]

A =



0.6083 0.4087 0.1122 0.0055 0.6650

0.9759 0.2867 0.0417 0.4811 0.0768

0.0398 0.7915 0.7535 0.8346 0.4322

0.7477 0.7409 0.0994 0.1307 0.1439

0.3844 0.5452 0.0276 0.5774 0.0607


, B =



0.6083

0.9759

0.0398

0.7477

0.3844



Method
Results

Global Min λ

Trisection 0.0366 -0.4693 + 0.0085i

Density search 0.0347 -0.46319

Two-phase 0.0354 -0.4499

Table 5.1: Results for system 1

It can be seen that with respect to Density search and Two-phase algorithms, the minima are

attained at the point of a Real λ, even though the search was done allowing λ ∈ C. This shows

that, it is possible to allow only complex perturbations, yet it is a real value of λ that would

minimize the system. Also from observation, Density search algorithm records the least function
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value as the global minimum. Below is a 3-D and a contour plot of the system. From the contour

plots below, three local minima were encountered.
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Figure 5.1: System 1 plots.

Example (2). Consider the A ∈ R5×5 and B ∈ R5×1 system with a "seed" of [1248]

A =



0.2963 0.7112 0.8771 0.9134 0.3004

0.5010 0.9892 0.0170 0.4260 0.9938

0.2073 0.5890 0.1159 0.9368 0.4511

0.2073 0.4238 0.6096 0.2610 0.0129

0.7714 0.1449 0.0508 0.0884 0.5913


, B =



0.2963

0.5010

0.5788

0.2073

0.7714



Method
Results

Global Min λ

Trisection 0.0452 -0.5486 + 0.0087i

Density search 0.0445 -0.5638

Two-phase 0.0460 -0.5719

Table 5.2: Results for system 2

Trisection method records a complex minimizer whiles Density search and Two-phase records a
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real minimizer. In this example also, the least function value was attained by the Density search

method. Below is a 3-D and a contour plot of the system. Three local minima were encountered.
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Figure 5.2: System 2 plots.

Example (3). Consider the A ∈ R5×5 and B ∈ R5×3 system with a "seed" of [1423]

A =



0.1387 0.0925 0.0926 0.4407 0.2900

0.3731 0.0193 0.9164 0.3564 0.3151

0.8792 0.8490 0.3542 0.4613 0.3271

0.4859 0.5388 0.1122 0.3825 0.9888

0.2255 0.7597 0.4938 0.8477 0.6068


, B =



0.1387 0.0925 0.0926

0.3731 0.0193 0.9164

0.8792 0.8490 0.3542

0.4859 0.5388 0.1122

0.2255 0.7597 0.4938



Method
Results

Global Min λ

Trisection 0.2249 -0.4671 + 0.0196i

Density search 0.2240 -0.4318

Two-phase 0.2271 -0.4016

Table 5.3: Results for system 3

In this example also, the least function value was attained by the Density search method. Below
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is a 3-D and a contour plot of the system. Two local minima were encountered.
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Figure 5.3: System 3 plots.
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Example (4). Consider the A ∈ R6×6 and B ∈ R6×2 system with a "seed" of [1328]

A =



0.3602 0.8162 0.7422 0.8789 0.7530 0.9041

0.5107 0.8441 0.4996 0.6493 0.0981 0.2794

0.5049 0.0636 0.6720 0.6223 0.5953 0.7410

0.7333 0.1252 0.3899 0.6210 0.3009 0.9809

0.5986 0.7888 0.7413 0.5001 0.0285 0.6748

0.7821 0.6927 0.8684 0.1102 0.0641 0.5343


, B =



0.3602 0.8162

0.5107 0.8441

0.5049 0.0636

0.7333 0.1252

0.5986 0.7888

0.7821 0.6927



Method
Results

Global Min λ

Trisection 0.0632 -0.2299 + 0.0017i

Density search 0.0633 -0.2409

Two-phase 0.0633 -0.2277

Table 5.4: Results for system 4
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Figure 5.4: System 4 plots.

We also test the Two-phase algorithm on the numerical examples given in table (5.5)
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size(n,m)(seed)
Trisection Density Search Two-phase

µ λ µ λ µ λ

(5,1). (1423). 0.1113 -0.5812 + 0.0161i 0.1088 -0.5683 0.1138 -0.5087

(10,1). (1423). 0.0077 0.2976 + 0.0093i 0.0059 0.3004 0.0067 0.3012 + 0.0061i

(10,3). (1423). 0.0522 -0.0973 + 0.0445i 0.0483 -0.0650 0.0483 -0.0696 + 0.0067i

(15,1). (1423). 0.0098 -0.1453 + 0.0033i 0.0083 -0.1366 0.0085 -0.1382 + 0.0027i

(15,4). (1423). 0.0694 -0.1044 + 0.0199i 0.0672 -0.0848 0.0677 -0.0920 + 0.0105i

(17,1). (1423). 0.0119 -0.0909 + 0.0106i 0.0108 -0.0754 0.0109 -0.0737 + 0.0026i

(17,2). (1423). 0.0231 -0.0518 + 0.0104i 0.0215 -0.0379 0.0216 -0.0364 + 0.0018i

(19,1). (1423). 0.0001 0 0.0000 -0.0002 0.0000 -0.0002

(15,5). (1423). 0.0696 -0.1064 + 0.0200i 0.0672 -0.0858 0.0682 -0.0684 + 0.0060i

(21,1). (1423). 0.0120 0.5515 + 0.7080i 0.0105 0.5531 + 0.7005i 0.0326 0.6021 + 0.6915i

(25,1). (1423). 0.0083 -1.1041 + 0.0138i 0.0029 -1.0916 0.0030 -1.0907

(25,3). (1423). 0.0880 0.6450 + 0.0737i 0.0841 0.6990 0.0880 0.6729 + 0.1070i

(27,1). (1423). 0.0075 -0.3395 + 0.0057i 0.0070 -0.3352 0.0070 -0.3349

Table 5.5: Algorithm comparison for the various systems

General observation of the Two-phase algorithm is that, it converges faster when there is a good

starting value for the tunneling phase. When a good starting point is used, then the tunneling

phase takes lesser time to converge to a point λ̂, for the minimization phase to begin. This in turn

reduces the number of singular value decomposition evaluation.

The table below shows the average number of times the minimum singular value and its respective

singular vectors were evaluated for some chosen numerical problems.
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size(n,m)
Density Search Two-phase

Aveg. σn Eval Aveg. un,vn Eval Aveg. σn Eval. Aveg.un,vn Eval.

(5,1). 507 8 10536 20103

(10,1). 978 14 17656 25374

(15,1). 4342 53 24533 32746

(20,1). 5423 84 34316 44316

( 25,1). 10232 94 41325 59325

(30,1). 6243 337 59649 73164

Table 5.6: Average singular value decomposition evaluation counts

5.1.1 Average Algorithm timings

In this section, we evaluate the execution timings for the three algorithms. We compare the CPU

time taken by each algorithm to execute a particular problem depending on the size of the systems.

size(n,m) tcpu (Trisection) tcpu (Density Search) tcpu (Two-phase Time)

(5,1) 1.9799 0.6499 2.7782

(10,1) 3.8513 0.7435 9.3893

(15,1) 9.0586 0.9370 18.9598

(20,1) 15.6234 1.3078 29.2957

(25,1) 30.5623 3.6767 60.0142

(30,1) 56.453 4.3342 76.4925

(35,1) 65.452 5.0324 90.3945

Table 5.7: Average Time with respect to order of the System
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Figure 5.5: Graph of execution time vs n.

In this category, the Two-phase algorithm average time is not satisfactory as compared to the

rest. The fastest algorithm seems to be the Density search method. Trisection method is not

performing badly also at least when compared to Two-phase. Much of the computational time

in the Two-phase algorithm is spent in choosing appropriate pole strength in the Newton’s phase

which computes the zero point of the tunneling function. Also finding an initial value which brings

Newton’s method to convergence is another problem which we encountered during the execution

processes.
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5.1.2 Performance of Tunneling algorithm used for Real search

Here, it is notable to mention the performance of the Tunneling algorithm implemented on the

case for λ ∈ R. Implementing this algorithm was rather simple since the derivative of the function

(1.5) can easily be computed using equation (3.9) which in turn makes it easier to use optimization

algorithms in both the minimization phase and the tunneling phase. We used the gradient descent

method in the minimization phase and the Newton’s method in the tunneling phase. Numerical

examples confirm that, the algorithm reaches the same or close to the global minimum when we

compared with Density search algorithm for λ ∈ R. Below we present some numerical examples

for matrices A ∈ Rn×n and B ∈ Rn×1. These computed results represent the "scaled" system.

size(n,m) (seed)
Density Search Two - Phase

Global Min λ Global Min λ

(5,1). (1430). 0.0033 0.0100 0.0033 0.0100

(10,1). (1430) 0.0023 0.0456 0.0041 0.0653

(15,1). (1430) 0.0039 0.1139 0.00483 0.1249

(20,1). (1430) 2.2498e-04 0.0106 7.7232e-04 -0.0392

(25,1).(1430) 2.1305e-05 0.0932 4.6209e-04 0.0964

(30,1). (1430) 7.0468e-05 -0.0252 6.3876e-05 -0.0076

Table 5.8: Results obtained when λ ∈ [−η, η]

In [16] it is shown that there can be a complex λ that can give the smallest 2-norm real perturbation

so that the perturbed system is uncontrollable. In this method, unlike ours, perturbations of rank

higher than one are considered.
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6 Conclusions

The purpose of this thesis was to study an algorithm that uses both Density search algorithm

[25] and Tunneling method [21] to determine the distance of a linear system from the nearest

uncontrollable system. And as it turned out the problem of computing this distance was equivalent

to the global optimization problem

µ = min
λ∈C

σ (B,A− λI)

We also considered the global optimization problem

µ = min
λ∈R

σ (B,A− λI)

We call this algorithm Two-phase algorithm. Results were compared with Density search algorithm

[25] and Trisection algorithm by [23] which uses the test scheme by [14]. In this algorithm, no new

theories were formulated or discovered, but the idea was to combine these two existing algorithms

to implement a new algorithm that compute the global minimum. Interestingly from observations

based on numerical results, this algorithm gives a good estimation to the global minimum when

compared with other algorithms. However this method turned out to be an expensive method

based on the number of singular value decomposition evaluations involved. For the purpose of

research, the algorithm achieves its goal by giving a good estimation of the global minimum.
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7 Basic Notations

µ : Distance to uncontrolllability of the system A and B.

µr : Distance to uncontrolllability of the system A and B in R.

µc : Distance to uncontrolllability of the system A and B in C.

σ(λ) : Minimum singular value of the system A and B.

R : Field of Real numbers.

C : Field of Complex numbers.

Rn : Vectors of real number of size n. z : Integers.

Cn : vectors of complex numbers of size of n.

Rn×m : real n×m matrices.

Cn×m : complex n×m matrices.

||A|| : 2-norm of the matrix A.

||A||F : Frobenius norm of the matrix A.

λmin(A) : smallest eigenvalue of the Hermitian matrix A.

λmax(A) : largest eigenvalue of the Hermitian matrix A.

σ(A) : Set of singular values of the matrix A.

σn(A) : minimum singular value of the n×m matrix A.

un : Left singular vector corresponding to the minimum singular value σn.

vn : Right singular vector corresponding to the minimum singular value σn.
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αnn : N-th element of matrix A.

Re c : Real part of the complex number c.

Im c : Imaginary part of the complex number c.
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