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Abstract

As offshore exploration and production is moving into deepwaters, the prediction of

the Vortex-Induced Vibration (VIV) of marine risers becomes a critical issue in the

design process. VIV can lead to a reduced fatigue life and even the structural failure of

the riser. Currently, frequency-domain models are widely used in the offshore industry

to predict riser VIV. However, the nonlinearities encountered in complex deepwater

environments make linear approaches unreliable. In contrast, time-domain models

can capture the nonlinearities in a straightforward manner.

In this thesis, a time-domain model was further developed to predict the VIV

of both rigid and flexible risers. Through a zero up-crossing analysis of the cross-

flow displacement, the two state variables, amplitude-to-diameter ratio and reduced

velocity, were determined to interpolate the database of hydrodynamic coefficients

obtained from forced oscillation tests at high Reynolds numbers. The hydrodynamic

forces were then calculated and incorporated into an enhanced global-coordinate-

based finite element method program, MAPS-Mooring, to investigate riser behaviours

in the time domain.

The enhanced program, MAPS-Mooring, comprises a two-stage computation: the

riser profile under static equilibrium is first obtained based on a Newton iterative

method, and the dynamic profile and tension of the riser are then solved by the

second-order semi-implicit Adams method in the time domain.
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The enhanced program was first validated by using experimental results of moor-

ing line tests in the literature to prove its reliability and robustness. Validation studies

were then carried out to the enhanced time-domain VIV model for a rigid riser in a

uniform flow and a flexible riser in a step current. Good agreement was observed

between the numerical results and the experimental measurements.
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ẍ In-line acceleration

z Cross-flow displacement
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Chapter 1

Introduction

1.1 Background

Offshore exploration and production activities are expanding into deepwater and ultra-

deepwater regions. It is important to design marine risers for safe and reliable opera-

tions in these complex ocean environments.

Marine risers connect the sea surface structures and the sea bottom wellheads.

Subjected to an ocean current, a riser undergoes vibration caused by vortex shedding

from both sides of its cylindrical surface. This nonlinear, near-periodic vibration,

termed as vortex-induced vibration (VIV), leads to an increased drag load on and a

reduced fatigue life of the riser. If the vortex-shedding frequency is in the proximity

of the riser’s natural frequencies, the riser will vibrate at an amplitude comparable

to the riser diameter. This phenomenon is known as lock-in, and it will become

even more difficult to be predicted when the riser is operating in the deepwater and

ultra-deepwater environments, where the incoming current varies both spatially and

temporally along the riser span. If multiple risers are operating in sufficient vicin-

ity, VIV interaction and wake-induced oscillations (WIO) would occur, resulting in

1
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clashing and even structural failure of adjacent risers.

A background introduction to the VIV of marine risers is presented in the following

sections.

1.1.1 Marine Risers

Following the classification of Chakrabarti (2005), marine risers can be categorized

into four groups pertaining to functionality: drilling riser, production riser, import

riser, and export riser. They are used for drilling or producing individual wells or for

importing and exporting well stream products.

Based on whether they are dominated by tension or bending, risers can also be

distinguished into rigid risers and flexible risers. The most common rigid risers are

top-tensioned risers (TTRs), which are employed in moderate water depths. TTRs

stand vertically in water columns with initial tensions applied at their connection

joints to the surface vessel. The top end of a TTR is subject to the horizontal motion

of the vessel. Therefore, the vessel connected with TTRs requires good station keeping

ability. In addition, buoyancy modules can be installed along a TTR to reduce its

self-weight.

On the other hand, flexible risers possess curved geometries and are dominated by

bending. Steel catenary risers (SCRs) and free-hanging risers are two typical types of

flexible risers. The riser curvature sustained by the self-weight, buoyancy, and environ-

mental loads enables SCRs to withstand moderate vessel planar motions. However, as

the water depth increases, the length and the associated cost of SCRs increase tremen-

dously, and the increased self-weight of SCRs leads to a risk of structural failure. To

tackle this issue, free-hanging risers are introduced with buoyancy modules or buoys

attached at the intermediate spans. The wave-shaped configurations can compensate

large vessel motions as well as the frequent soil-structure contact near the touch-down
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point (TDP). Though requiring less material, free-hanging risers require higher costs

for fabrication and installation. A schematic of different free-hanging riser types is

illustrated in Figure 1.1.

Figure 1.1: Configurations of free-hanging risers (from Shu et al. (2010))



4

1.1.2 Flow Regimes for A Stationary Cylinder in Steady Cur-

rent

One of the most important dimensionless parameters in describing flow behaviour is

the Reynolds number, which measures the ratio of inertia forces to friction forces in a

flow. The Reynolds number (Re) is defined as:

Re = UD

ν
(1.1)

where U is the velocity of the incoming flow, D is the characteristic length of the bluff

body, and ν is the kinematic viscosity.

Figure 1.2 illustrates different patterns of a steady and uniform flow around a

fixed, smooth, and circular cylinder as the Re increases. The flow regimes are classified

with respect to Re according to the work of Sumer and Fredsøe (1997).

The flow around the cylinder is symmetric and no separation occurs near the aft

body when Re / 5 (Figure 1.2a).

As Re increases, the streamlines begin to separate from the body surface and

the separation points approach the fore stagnation point from its aft counterpart.

Meanwhile, two still eddies are formed symmetrically in the near wake (Figure 1.2b).

The span of the pair of vortices grows linearly with Re, until reaching a maximum

length of approximately three cylinder diameters (Blevins, 1990).

In the regime, 40 / Re / 200, the two laminar eddies no longer remain still and

start to travel alternately downstream to the far wake (Figure 1.2c). This asymmetric,

repeating vortical structure is called von Kármán vortex street. No correlation along

the cylinder axis is observed in this Re regime.

As Re further increases, the transition of laminar vortices to turbulence advances

towards the cylinder from the far wake until the vortex street becomes completely
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Figure 1.2: Regimes of flow around a smooth, circular cylinder in steady current (from
Sumer and Fredsøe (1997))
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turbulent, when Re ≈ 300 (Figure 1.2d).

The vortex shedding of the fully-developed turbulent wake remains stable over a

large range of 300 / Re / 3× 105. Meanwhile, no turbulence is observed before the

separation point on the cylinder surface (Figure 1.2e). This regime is known as the

subcritical Re regime, marked by a strong and periodic vortex shedding.

The laminar shear layer starts transiting to turbulence at one side of the cylinder

surface at approximately 3 × 105 < Re < 3.5 × 105 (Figure 1.2f). This Re regime is

named the critical flow regime. In this regime, the wake reduces in width, accompa-

nied by a disorganized vortex street. The asymmetric flow about the cylinder results

in a non-zero mean force exerting in the cross-flow direction.

As the flow enters the supercritical regime where 3.5 × 105 / Re / 1.5 × 106,

vortex shedding resumes in an organized manner. The shear layer becomes turbulent

after it is first shed from the body, and then re-attaches to the cylinder surface before

finally being shed downstream. The boundary layer becomes a mixture of lamina and

turbulence on both sides of the cylinder (Figure 1.2g).

With a further growth in Re from approximately 1.5×106 to 4×106, the transition

of laminar boundary layer into turbulence is only completed on one side of the cylinder

surface (Figure 1.2h). This regime is called the upper-transition flow regime.

Finally, as Re enters the transcritical Re regime where Re ' 4 × 106, the whole

cylinder is covered by turbulence and the flow separation points move towards the

fore stagnation point (Figure 1.2i). The wake exhibits a more organized pattern with

a near-periodic vortex shedding.

1.1.3 Vortex Shedding

The vortices are shed alternately from the surface of a stationary cylinder subject

to an incoming flow at Re ' 40. This is termed the vortex-shedding phenomenon.
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The phenomenon can be observed in multiple engineering applications, such as heat

exchangers, bridges, tall buildings, marine cables, and offshore structures. For more

than a century, tremendous research efforts have been made in unveiling its funda-

mental mechanisms as well as in predicting it.

An object subjected to a flow can be categorized as a bluff body or a streamlined

body based on the flow separation on its surface. If the flow separation is profound

on the aft body, the object is defined as a bluff body, for example, a circular cylinder;

otherwise if the flow separation is marginal, then the body is said to have a streamlined

shape, such as a hydrofoil. The following discussion focuses on vortices shed from a

bluff body in a uniform fluid flow.

In a real fluid flow, the effect of viscosity is significant in the boundary layer, where

the flow velocity increases from zero on a stationary body to the free stream velocity.

Due to the dissipation of kinetic energy by the internal friction, the fluid particles

cannot reach the aft stagnation point and therefore separate from both sides of the

cylinder surface, forming two free shear layers before the aft stagnation point. The

two points where the fluid particles detach from the body are named the separation

points.

After separating from one side of the cylinder surface, the eddy increases its

strength by absorbing vortices in the free shear layer. When the eddy grows strong

enough, it draws the free shear layer of the other side to cross the wake centerline.

According to Gerrard (1966), the fluid particles in the shear layer attracted across the

wake centerline can be trapped by the growing eddy, transported upstream along the

opposite shear layer, or fed into the vortex formation region. The latter vortices will

interrupt the circulation in the shear layer from being fed into the growing vortex,

which is then shed and carried downstream by the flow.

Once the vortex detaches from the free shear layer, a new vortex will be sprouted
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on the same side of the cylinder. Meanwhile, the vortices, transited upstream from

the opposite side in the previous shedding process, will grow in size and strength

to attract the newly germinated vortex to pass the wake centerline, resulting in the

shedding of a vortex at the other side. This process will be repeated once a vortex

departs from the free shear layer at one side of the cylinder, leading to an alternate

and near-periodic vortex shedding phenomenon.

1.1.3.1 Vortex-Shedding Frequency

Vortex-shedding frequency is a measure of how fast the wake repeats its pattern in

a vortex-shedding phenomenon. Strouhal (1878) first descried the linear proportion-

ality between the vortex-shedding frequency fvs and U/D, where U is the incoming

flow velocity and D is the characteristic length of the bluff body, when he studied a

vibrating string in a wind tunnel test. The nondimensional vortex-shedding frequency

named after him, the Strouhal number (St), is defined as:

St = fvsD

U
(1.2)

St can be affected by many aspects of the body and the flow, such as the surface

roughness and the cross-sectional shape, the turbulence and shear in the incoming

flow, and Re. For a given bluff body subject to a known flow, the St is exclusively

a function of Re. Figure 1.3 illustrates the St for a fixed smooth circular cylinder in

a low-turbulent uniform flow at different Re regimes, while Figure 1.4 presents the

power spectra corresponding to the dotted data (Schewe, 1983) plotted in Figure 1.3.

The vortex shedding first occurs at Re ≈ 40, where St ≈ 0.1. St reaches to

around 0.2 as Re increases from approximately 40 to 300. Over the entire subcritical

regime, 300 / Re / 3 × 105, St is roughly constant with an approximate value of
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0.18 with a steady vortex street, which is evidenced by the narrow-band spectrum in

Figure 1.4a.

Figure 1.3: Strouhal number for a smooth circular cylinder at different Reynolds
regimes (from Sumer and Fredsøe (1997))

When the flow enters the critical regime, 3×105 / Re / 3.5×105, St jumps from

0.18 to about 0.46 and then gradually reduces to around 0.4 through the supercritical

regime, 3.5 × 105 / Re / 1.5 × 106. At the critical and supercritical regimes, the

reattachment of the flow takes place beyond the turbulent boundary layer separation

at either one or both sides of the cylinder surface, respectively. This results in a

smaller distance between the two separation points and therefore a faster interaction

between two boundary layers than those at subcritical regime, accounting for the rise

of St at such flow regimes.

The power spectrum at the supercritical flow regime (Figure 1.4b) is dominated

at a preponderant climax in a narrow band, implying a structured vortex street.
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Another distinctive feature of the power spectrum at this regime is the considerable

abatement in the lift fluctuations, suggesting a weaker eddy strength than that in

subcritical regime.

As Re steps into the upper transition regime, 1.5 × 106 / Re / 4 × 106, the

boundary layer becomes fully turbulent on one side and with a combination of lamina

and turbulence on the other side of the cylinder surface, generating the lee-wake

vortices. As a consequence, the two boundary layers are suppressed from interacting

with each other and lead to a chaotic vortex street, which can be inferred from the

broad-band power spectra at this regime (Figure 1.4c-d).

The repeating vortex street recurs with an approximate St of 0.25 ∼ 0.30 as Re

is further increased into the transcritical regime, Re ' 4× 106, as evidenced from the

peak values in the power spectra (Figure 1.4e-f).
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Figure 1.4: Power spectra of the lift oscillations corresponding to the dots in Figure 1.3
(from Sumer and Fredsøe (1997))
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1.1.4 Vortex-Induced Vibration

If the cylinder subject to a steady current is either elastically supported or flexible, it

may be excited by the oscillating force imposed by the periodic vortex shedding. The

resultant force can be decomposed into one component in-line with the flow direction

and the other one transverse to the flow direction, namely the drag and lift forces,

respectively. The lift force oscillates around zero at the vortex-shedding frequency,

while the drag force oscillates around a non-zero mean value at a frequency twice the

lift force frequency.

The reduced velocity describes the ratio of the wave length per cycle to the cylinder

width, as defined by:

Vr = U

foscD
(1.3)

where U is the incoming current speed, fosc is the cylinder oscillation frequency, and

D is the diameter.

Figure 1.5 illustrates typical responses of a circular cylinder vibrating under a

steady current in the cross-flow direction.

The focus of the review as follows is on the cross-flow VIV. It starts at Vr ≈ 3

and is governed by the vortex-shedding frequency. Within a range of 6 / Vr / 8, the

vortex-shedding frequency is synchronized to the cylinder vibration frequency, which

approximates the natural frequency in still water. This phenomenon is named lock-in,

also referred to as synchronization, resonance, or wake capture in the literature. When

lock-in occurs, the VIV amplitude reaches its maximum value, which is usually one

diameter. As the reduced velocity is further increased, the vortex-shedding frequency

resumes the Strouhal linear relationship and more hydrodynamic damping is intro-

duced into the system, accounting for the self-limited nature of VIV. Furthermore, the

cylinder unlocks the still water natural frequency and vibrates at the vortex-shedding
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Figure 1.5: Cross-flow response of an elastically-supported circular cylinder subject
to steady current in water, (m/ρf D2) = 5.3. (from Anand (1985))
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frequency at Vr ' 14.

In VIV, continuous interaction between cylinder oscillation and vortex shedding

occurs, resulting in a self-excited-self-limited process. As sketched in Figure 1.6, the

vortices start to form when the cylinder travels upwards across the wake centerline

for both 2S and 2P wake modes following the terminology introduced in Williamson

and Roshko (1988). Therefore, it is reasonable to signal the start of a new VIV cycle

when the cylinder crosses up its static equilibrium position. This is later reflected in

the formulation of the present VIV prediction model in Chapter 3.

Figure 1.6: Positions of vortex “D” and other near-wake vortices when the cylinder
is travelling upwards, and is just crossing the wake centerline; “2S” represents two
single vortex are formed in one vortex-shedding cycle, while “2P” stands for two pairs
of vortices are shed in one cycle (from Williamson and Roshko (1988))
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1.1.5 Vortex-Induced Vibration Suppression

Based on its mechanisms, VIV may be suppressed in a number of ways. The most

straightforward approach is to increase the reduced damping. The reduced damping

SG, also known as the response parameter, stability parameter, or Scruton number in

the literature, is defined as:

SG = 2 (m+m′)(2π ζs)
ρf D2 (1.4)

where m is the structural mass per unit length, m′ is the added mass per unit length,

ζs is the structural damping factor, D is the diameter, and ρf is the fluid density.

An increased reduced damping can be achieved by increasing structural damping

or structural mass. According to Blevins (1990), a reduced damping above 64 will

minimize the peak VIV amplitude to less than 1% of the diameter. However, it is

unlikely to achieve a reduced damping greater than 64 in deepwater and ultradeepwa-

ter applications. In addition, an increased structural mass may decrease the natural

frequency, thus leading to a lower reduced velocity for the onset of lock-in.

VIV can also be mitigated by changing the structural stiffness or mass so that

the natural frequencies are sufficiently away from the vortex-shedding frequency. In

practice, this approach is usually employed on smaller structures where the highest

vortex-shedding frequency is adjusted to be far less than the fundamental natural

frequency. Therefore, the synchronization is avoided.

A third solution to subduing VIV is to fit additional devices to the cylinder.

Figure 1.7 illustrates some devices currently adopted by the offshore industry for VIV

suppression. These add-on devices can be grouped into two categories by suppression

mechanism: one is to destroy the boundary layer on the structure surface (Figure 1.7a,

b, c, f, h), and the other is to obstruct the interaction between the two shear layers
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(Figure 1.7d, e, g).

Figure 1.7: VIV suppression devices. (a) helical strakes, (b) perforated shroud, (c)
axial slats, (d) streamlined fairing, (e) splitter plate, (f) ribbons, (g) guiding vane, (h)
spoiler plates. (from Blevins (1990))

1.2 Thesis Outline

The objective of this thesis is the further development of a time-domain VIV prediction

model for deepwater marine risers. A time-domain finite element program has been

enhanced and validated by simulating the statics and dynamics of slender marine

structures. The time-domain VIV prediction model has then been applied to predict

the one-degree-of-freedom (1-DOF) VIV of a rigid cylinder and the VIV of a flexible

riser model.
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Chapter 2 presents a selective review of VIV prediction models as well as the

forced and free vibration tests available in the literature.

Chapter 3 describes the enhanced time-domain VIV prediction model in detail.

A description of the high-Re hydrodynamic coefficient database, the rationale of the

model, and the numerical scheme are discussed.

Chapter 4 and Chapter 5 present the validation results of the enhanced time-

domain finite element program. The finite element scheme for mooring line analysis

was first validated in Chapter 4, followed by the validation of the improved VIV

prediction model in Chapter 5.

Chapter 6 draws the conclusions and some recommendations for future work.

Appendix A gives the detailed mathematical formulation and numerical procedure

for the enhanced finite element program.

Bilinear surface interpolation scheme is presented in Appendix B.



Chapter 2

Literature Review

2.1 General

Numerical simulations and experimental approaches are the two dominant methods

in predicting the VIV of marine risers. Experimental methods can reveal the flow and

structure behaviours and provide benchmark data for numerical programs. However,

experimental approaches are not widely used due to the facility limitations in lab-scale

experiments and the intractable environmental factors in field tests.

The computational fluid dynamics (CFD) methods can solve the Navier-Stokes

equation at different spatial scales, and could unveil the underlining physics of vor-

tex shedding. However, due to its tremendous computational demand, CFD lacks

applicability to industrial practice.

On the contrary, a reliable and robust semi-empirical model can effectively predict

VIV under different scenarios by simply changing the input parameters. Currently,

the numerical tools widely used by the offshore community for the VIV prediction

of marine risers are semi-empirical frequency-domain models, such as SHEAR7 (Van-

diver and Li, 1994), VIVA (Triantafyllou et al., 1999), and VIVANA (Larsen, 2000).

18
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Modal analysis was employed in these models to determine the modes likely subject to

VIV and the corresponding natural frequencies. For each mode, the reduced velocity

is computed based on frequency and flow information. An excitation or damping force

is then applied depending on the reduced velocity. Figure 2.1 presents a typical damp-

ing model used in SHEAR7 (Venugopal, 1996) where the damping is only defined for

reduced velocities lower than 5 and greater than 8. For reduced velocities between 5

and 8, excitation was assumed to occur and a separate model was implemented.

Figure 2.1: Damping model at low and high reduced velocities used in SHEAR7 (from
Venugopal (1996))

There are however limitations in the frequency-domain models. They are inade-

quate to deal with nonlinearities such as temporally and spatially varying currents,

dynamic boundary conditions and the coupled in-line and cross-flow VIV. Further-

more, positive and negative lift coefficients coexist in the lock-in region, as shown

in the work of Gopalkrishnan (1993) and Oakley and Spencer (2004). This indicates
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that hydrodynamic excitation and damping may not be independently considered. Be-

ing able to address the aforementioned weaknesses imposed by the frequency-domain

methods, time-domain formulations are gaining more popularity in research and de-

velopment.

Figure 2.2 categorizes the VIV numerical prediction models currently used by

industry and researchers. A selective literature review of different semi-empirical VIV

prediction approaches is given in the next section.

Figure 2.2: Classification of VIV prediction models (from Larsen (2000))
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2.2 Semi-Empirical VIV Prediction Models

2.2.1 Frequency-Domain Models

SHEAR7 (Vandiver and Li, 1994) is a modal superposition frequency-domain program

that is currently widely used in the offshore industry for the VIV prediction of marine

risers. The lock-in condition is identified by exciting the modes within a predefined

power-in region given the flow and structure information. A uniform distribution

of the lift force coefficient along the span is employed in the power-in region. Two

independent models were assumed for the in-line and cross-flow VIV (Venugopal,

1996).

VIVA models a riser as a tensioned beam and adopts a two-dimensional (2-D)

analysis procedure in the frequency domain (Triantafyllou, 1998). The structure mo-

tion was linearized based on the assumption that the cross-flow VIV motion is small

compared to the total length, while the oscillation frequency and the mode shape

remain nonlinear throughout the solution phase of the eigenvalue problem in the fre-

quency domain (Triantafyllou et al., 1999). The forced oscillation tests conducted

by Gopalkrishnan (1993) and Dahl (2008) provided the hydrodynamic coefficient

databases used in VIVA.

VIVANA (Larsen, 2000) analyzes the statics and dynamics of risers based on a

frequency-domain forcing model incorporated with a three-dimensional (3-D) finite el-

ement program, RIFLEX (Fylling et al., 1995). The initial eigenfrequencies of the riser

in still water were first calculated, and the excitation regions were then determined

by comparing the modal frequencies to a predefined lock-in frequency range. The

computation was completed by an iterative procedure based on a spanwise-varying

added mass coefficient, which is a function of the nondimensional vibration frequency.
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2.2.2 Time-Domain Numerical Schemes

Lie (1995) developed a finite element model in the time domain to simulate the trans-

verse VIV of a flexible cylinder in a shear flow. The lift forces were approximated

by two components, one at the cylinder motion frequency and one at the Strouhal

frequency for a stationary cylinder. The cylinder frequency force was obtained from

the experimental results of a cylinder with forced harmonic motions. The latter com-

ponent was assumed to be less important than the cylinder frequency component and

was modeled as a sinusoidal lift force by using the lift coefficient from the experimental

data for a stationary cylinder.

Finn et al. (1999) developed a time-domain forcing algorithm to model both in-

line and cross-flow VIV. The model decomposed the hydrodynamic force on a riser

into one in-line component and one cross-flow component. The former component

was further decomposed into one drag force and one inertia force, while the latter

component was further decomposed into one drag force, one inertia force, and one lift

force. The cross-flow lift force, giving rise to VIV, was approximated by a sinusoidal

function with time-varying frequency, phase, and amplitude. The onsets of lock-

in were determined by three nondimensional parameters, i.e., the ratio of the VIV

amplitude to the riser diameter, the ratio of the natural frequency of a particular

mode to the shedding frequency, and the ratio of transverse vibration frequency to

the shedding frequency. The riser responses were computed with a finite element

program, ABAQUS, and a user subroutine in ABAQUS was developed to calculate

hydrodynamic forces using riser displacements, velocities and accelerations.

In the work of Finn et al. (1999), the in-line hydrodynamic force was formulated in

an expression similar to Morison’s equation (Morison et al., 1950). The dependence

of the in-line drag on its frequency and the influence of varying reduced velocity

were neglected. By adopting the algorithm of Finn et al. (1999) for cross-flow VIV
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prediction, Sidarta et al. (2010) proposed a new in-line VIV forcing function and

incorporated it into ABAQUS. The enhanced program was named SimVIV, which

predicted in-line VIV in three regions: the first instability region, the second instability

region, and the coupled in-line and cross-flow VIV region. In the third region, the in-

line drag frequency was assumed to be twice the Strouhal frequency. The in-line drag

coefficients were obtained from the forced oscillation tests in pure in-line direction

and varied in term of amplitude ratio and reduced velocity. These two variables

were determined by Prony’s method, an exponential modelling technique. A constant

added mass coefficient of 1.0 and no in-line mean drag due to current effect were

assumed in both the work of Finn et al. (1999) and SimVIV.

Thorsen et al. (2014) proposed a phase synchronization model to predict the the

cross-flow VIV in the time domain. The total hydrodynamic force acting on a cylinder

was decomposed into three components: lift, damping, and added mass. The exper-

imental excitation coefficient, incorporating both lift and damping, was smoothed to

allow only one local maximum value. It was assumed that the excitation coefficient

peaked when the phases of lift force and cross-flow velocity synchronized. The initial

value and the rate of change of the lift force were used to calculate the instantaneous

lift phase. The phase portrait of the time series for the past five Strouhal periods

was used to compute the instantaneous phase of the cross-flow velocity. The damp-

ing model (Venugopal, 1996) was rewritten to avoid the dependence of the damping

coefficient on the oscillation frequency. The revised damping model dissipated approx-

imately the same amount of energy in each cycle to that dissipated by the original

model. The phases of lift force and cross-flow velocity at each time step always tended

to be synchronized.

Xue et al. (2015) predicted the coupled in-line and cross-flow VIV of marine risers

in the time domain. The excitation forces in both directions comprised one compo-
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nent in phase with velocity and one in phase with acceleration, respectively. The

in-line drag was assumed to be excited at two different regions: the drag fluctuated

in a frequency triple that of the Strouhal frequency in the first region, and in a fre-

quency twice that of the Strouhal frequency in the second region. The transverse

oscillation frequency was assumed to dominate the cross-flow lift, while the in-line

drag frequencies were assumed to be dominated by either natural frequencies or oscil-

lation frequencies. The experimental hydrodynamic coefficients collected from forced

vibration tests in pure in-line and pure cross-flow directions were utilized to calculate

the excitation forces. The coupling between the two-degrees-of-freedom (2-DOF) VIV

was achieved by multiplying the in-line force with a factor, which depended on the

transverse amplitude ratio. The mean drag coefficient was excluded in the calculation

of the total in-line drag force. The damping model (Venugopal, 1996) was used to

approximate the hydrodynamic regions not covered by the experimental data.

Most of the semi-empirical VIV prediction tools formulate VIV loads in a form

similar to the Morison’s equation and identify hydrodynamic coefficients in terms of

dimensionless amplitude and reduced velocity. Mainçon (2011), however, predicted

VIV in the time domain by a Wiener-Laguerre model based on strip theory. In

this model, the cylinder diameter, fluid density, and kinematic viscosity were chosen

as the baseline parameters to scale all the physical quantities. The recent histories

of the relative velocity between the cylinder and the undisturbed fluid, defined as

“tachogram”, were thus scaled into a classic Re expression but distinguished by an

instant, local, and relative feature. The fundamental hypothesis of this model was

that the “tachogram” alone determined the fluid force. The scaled “tachogram” was

estimated by Laguerre polynomials, the coefficients of which were interpolated into

a neural network to obtain the hydrodynamic forces on each Gauss point at each

time step. These forces were then scaled back to real dimensions and implemented
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into a time-domain finite element analysis, where the Newmark-β method and Gauss

quadrature were employed. The influence of varying the recent time history of velocity

on the present force calculation required further investigations.

2.3 Forced and Free Cross-Flow VIV Tests

The current industry practice of predicting riser VIV is to make use of the hydro-

dynamic coefficients obtained from forced vibration tests along with different forcing

models. Some experimental results are available at the online MIT VIV Data Repos-

itory (MIT, 2007). These databases contain lift coefficients, in-line drag coefficients,

and added-mass coefficients obtained at different amplitude ratio and reduced veloc-

ity. A question remains on how to utilize the hydrodynamic information obtained

from forced vibration tests to predict the free vibrations. In addition, most databases

available in the literature were conducted at subcritical Re regimes. The question

is whether these coefficients can be effectively used to predict VIV at critical and

supercritical Re.

VIV is highly sensitive to the changes on the Re, surface roughness, mass ratio,

aspect ratio, correlation length, and other governing parameters. Due to the complex

nature of VIV phenomena, it is almost impossible to reconstruct a universal database

for use under different scenarios. The findings from some representative forced and

free VIV tests in the literature are summarized below.

Gopalkrishnan (1993) carried out an extensive forced vibration campaign on a

one-inch diameter cylinder under a constant towing speed 0.4 m/s (with Re ≈ 104).

The lift coefficients in terms of amplitude ratio and nondimensional oscillation fre-

quency are given in Figure 2.3a. Mukundan (2008) proposed a parametric approach

to reconstruct the force and motion behaviours of a riser subject to VIV from exper-
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imentally obtained hydrodynamic coefficient database (Gopalkrishnan, 1993).

Hover et al. (1998) compared free and forced vibration test results of a uniform

cylinder and a tapered cylinder at MIT using the apparatus based on that of Gopalkr-

ishnan (1993). The uniform rigid cylinder had a diameter of 3.17 cm and a length of

62 cm. The forced oscillation tests were carried out at a Re = 3800. No significant

deviations in lift coefficient were observed between the current experiments and those

of Gopalkrishnan (1993). They also found that forced VIV tests have a much greater

spanwise correlation than free VIV tests in a nominal reduced velocity range of ap-

proximately 5.0-6.25. The lift coefficients obtained from the free tests together with

the contours from forced tests are presented in Figure 2.3b.

In 2003, ExxonMobil conducted both forced and free vibration tests of a 0.22-m

diameter, 3.96-m long rigid cylinder with different surface roughnesses at the David

Taylor Model Basin. The lift coefficient contour of the large-roughness cylinder

(ks/D = 0.002) is shown in Figure 2.3c. The spring configurations, and thus the

Reynolds number ranges (spanning the critical Re region), were the same in all cases.

Oakley and Spencer (2004) carried out free and forced oscillation tests on a 0.325-

m diameter, 6.02-m long rigid cylinder under both 1-DOF and 2-DOF scenarios as

part of the DeepStar Joint Industry Project. The lift coefficient contour obtained

from forced vibration tests are given in Figure 2.3d. Also depicted are the data points

obtained from the forced vibration tests when the lift coefficient was found to be zero.

Figure 2.3d also distinguishes the difference between the shape of zero-lift contour

interpolated bilinearly from the database and that from forced oscillation tests. It

indicates that the bilinear interpolation of the database can reasonably capture the

shape of lift contours.

In 2003, 2H Offshore conducted forced oscillation tests on a riser-scale roughened

cylinder with a diameter of 0.2 m and a length of 3.4 m at a constant towing speed of
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0.22 m/s (Re = 3.96 × 104) at MARIN. The nondimensional lift coefficient in phase

with velocity is shown in Figure 2.3e with respect to reduced velocity and amplitude

ratio. Bridge et al. (2005) made use of parabolic curve fit to reconstruct the lift and

added mass coefficients as functions of amplitude ratio based on the model tests at

a given reduced velocity. Each lift curve consists of two parabolas defined by three

points: the lift coefficient at zero amplitude, the amplitude ratio at the maximum

lift coefficient, and the zero crossing point (the amplitude at which the lift coefficient

equals zero).

Note that different parameters were used as x-axes in Figures 2.3a to 2.3e: in

Figure 2.3a, the x-axis represents the nondimensional oscillation frequency f̂ ; in Fig-

ure 2.3c, the x-axis stands for the nominal reduced velocity U∗ based on the natural

frequency in still water, fnw; in Figures 2.3b, 2.3d, and 2.3e, by contrast, the x-axis is

the reduced velocity Vr based on forced vibration frequency, and is thus the reciprocal

of that in Figure 2.3a.

From Figure 2.3, it can be observed that the lift coefficient contours vary under

different test conditions. In subcritical Reynolds regimes, positive lift coefficients

comprise two zones, see Figures 2.3a and 2.3b; while in riser-scale Re regimes (critical

and supercritical Re regimes), lift coefficients are positive in a single region, and

the abscissas of zero-valued contour are shifted from approximately Vr = 3.2-8.3 to

Vr = 5.3-9.0 comparing those in Figures 2.3a and 2.3d. In spite of the different x-axes

used in Figures 2.3c and 2.3d, these two contours are quantitatively in reasonable

agreement, while Figure 2.3c has a broader Vr range for positive lift coefficient due to

the use of the calm water natural frequency in the calculation of reduced velocity.

Figure 2.4 shows the added mass coefficient contour obtained from forced vibra-

tion tests in the literature. Also presented in Figures 2.4b and 2.4d are the super-

impositions of the free vibration data and the zero-lift contour from forced tests,



28

(a) Gopalkrishnan (1993) (b) Hover et al. (1998)

(c) Ding et al. (2004)
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Figure 2.3: Lift coefficient contour obtained from forced vibration tests in the litera-
ture
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respectively.

The added mass coefficient contours become zero at Vr ≈ 6.0, while a sudden

phase shift was observed under the same reduced velocity in the experiment. At high

Reynolds numbers (Oakley and Spencer, 2004), added mass coefficients generally have

smaller absolute values than those at low Reynolds numbers under the same amplitude

ratios and reduced velocities (Gopalkrishnan, 1993; Hover et al., 1998).

(a) Gopalkrishnan (1993) (b) Hover et al. (1998)

(c) Bridge et al. (2005)
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Figure 2.4: Added mass coefficient contour obtained from forced vibration tests in
the literature
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Figure 2.5 presents the added mass coefficient with respect to the nominal reduced

velocity for free vibration tests (Oakley and Spencer, 2004). Comparing Figure 2.5

with Figure 2.4d, it can be seen that significant differences exist in the magnitudes

of added mass coefficients at low Vr and U∗. Added mass coefficients greater than

4.14 were never observed in forced vibration tests; however, as large as Cm ≈ 13 was

obtained in free oscillation tests, indicating again that fundamental difference exists

between forced and free vibration tests. In free VIV tests, added mass coefficient Cm

was around -1.0 when the nominal reduced velocity U∗ ' 8.

Figure 2.5: Added mass coefficient Cm vs. Vrn, free VIV, k/D = 0.0025 (from Oakley
and Spencer (2004))

It is desirable to make full use of the hydrodynamic coefficients database obtained

from forced oscillation tests for VIV predictions.



Chapter 3

Time-Domain VIV Prediction

Model

In this study, a semi-empirical time-domain model was further developed and vali-

dated to predict VIV by using the hydrodynamic coefficients collected from forced

oscillation tests (Oakley and Spencer, 2004) in the DeepStar Joint Industry Project

(JIP). In the DeepStar-JIP, a rigid cylinder was towed at high Re (up to 1.8 × 106)

subject to controlled oscillations in the cross-flow direction. This chapter describes in

detail the improvement of the time-domain VIV model based on the work of Spencer

et al. (2007) and Ma et al. (2014).

3.1 DeepStar High Re VIV Tests

Both forced and free vibration tests were conducted on the same rigid cylinder, with

a diameter of 0.325 m and a length of 6.02 m, in the DeepStar JIP (Oakley and

Spencer, 2004). In the forced VIV test mode, the cylinder was towed horizontally

through water with forced oscillations in the transverse direction. End plates were

31
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fitted at both ends to eliminate the 3-D flow effect. The experiment apparatus is

illustrated in Figure 3.1.

Figure 3.1: DeepStar-JIP VIV test apparatus (from Oakley and Spencer (2004))

In the DeepStar database, the nondimensional hydrodynamic coefficients are pre-

sented in terms of two state variables: amplitude-to-diameter ratio, A∗, and reduced

velocity, Vr, which are defined as:

A∗ = A

D

Vr = Vtow
foscD

(3.1)

where fosc is the forced vibration frequency, A is the motion amplitude, D is the
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diameter of the cylinder, and Vtow is the carriage towing speed.

The measured hydrodynamic forces exerting on the cylinder were decomposed

into two orthogonal components with respect to the flow direction, namely, an in-line

drag component and a cross-flow lift component. The lift force was further decom-

posed into one component in phase with velocity and one in phase with acceleration.

The nondimensional hydrodynamic coefficients, including the lift coefficient Clv, the

added mass coefficient Cm, and the in-line drag coefficient Cd, were deduced from the

integrations and normalizations of the two lift components and the drag force over an

integer number of full cycles through (Oakley and Spencer, 2004):

Clv = Fz · ż
1
2ρfDLV

2
tow · 1√

2σż

Cm = −Fz · z̈
π
4ρfD

2L · σ2
z̈

Cd = Fx · ż
1
2ρfDLV

2
tow · 1√

2σż

(3.2)

where D is the diameter, L is the segment length, ρf is the fluid density, Vtow is

the carriage towing speed, z is the cross-flow displacement, the overdots denote the

differentiation with respect to time, Fz is the total cross-flow lift force, ż is the cross-

flow velocity, z̈ is the cross-flow acceleration, Fx is the total in-line drag force, and σ

represents the root-mean-square (RMS) operation of the subscripted quantities.

Figures 3.2 to 3.7 illustrate the 2-D and 3-D contour plots of Clv, Cm, and Cd,

respectively, (Oakley and Spencer, 2004).

In the cross-flow direction, Clv alone determines the energy exchange between the

structure and the ambient fluid field. When Clv is positive, energy is input into the

structure and therefore the VIV motion is excited, while when Clv is negative, energy

is extracted from the structure and hence the VIV motion is dampened. It should be

noted that positive and negative values of Clv coexist in the range of 5 < Vr < 8.
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On the other hand, Cm can also be either positive or negative. This indicates

changes in the apparent mass and therefore the natural frequency of the system.

When the apparent mass decreases, the natural frequency of the system will increase.

The in-line drag force oscillates around a non-zero mean value at a frequency

twice that of the lift force, which oscillates around zero. Therefore, Cd includes one

mean part and an oscillating component.
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3.2 Time-Domain VIV Prediction Model

Spencer et al. (2007) and Ma et al. (2014) predicted the hydrodynamic forces on a

cylinder in the current VIV cycle by utilizing the state variables, A∗ and Vr, calculated

from the last cycle. The underlining assumption was that the cylinder experiences neg-

ligible motion variations from cycle to cycle. In their models, the state variables were

determined in a progressive manner by a zero up-crossing analysis of the transverse

velocity. Once the last state variables had been calculated, hydrodynamic coefficients

Clv, Cm, Cd were determined from the database by interpolations. These coefficients

were further used to calculate the forces on the cylinder at the current cycle.

In the present model, the zero up-crossing analysis is applied to the cross-flow

displacement. Within the previous cycle, the maximum and minimum displacements,

Zmax and Zmin, as well as the apparent period, Tapp, are identified and used to calculate

the current state variables, A∗ and Vr, as below:

A∗ = Zmax − Zmin
2D

Vr = V Tapp
D

(3.3)

where V is the relative normal velocity between the incoming current and the struc-

ture, and Zmax, Zmin, and Tapp are illustrated in Figure 3.8.

The equation of motion for a typical 1-DOF mass-spring-damper system is:

mz̈ + cż + kz = Fz(t) (3.4)

where m is the mass, c is the structural damping coefficient, k is the spring stiffness,

and Fz(t) is the external force varied with time t.

Based on the zero up-crossing analysis of displacement, z (t) = Az sin(ωt) is
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2AZ

Tapp
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Zmin

Figure 3.8: Zero up-crossing analysis of transverse displacement

assumed to be a steady-state solution to Equation 3.4. Hence, velocity is ż =

ωAz cos(ωt) and acceleration is z̈ = −ω2Az sin(ωt), where Az and ω are the am-

plitude and angular frequency of the cross-flow motion, respectively. The overdots

denote the differentiation with respect to time.

In an 1-DOF VIV, assuming that the angular frequency of the transverse lift

force, Fz(t), equals that of the transverse motion. According to the data reduction

procedure in Equation 3.2, Fz(t) can be decomposed into one component in phase

with velocity, Fż(t), and one in phase with acceleration, Fz̈(t) within each motion

cycle:

Fz(t) = Fż(t) + Fz̈(t) (3.5)

where
Fż(t) = Clv ·

1
2ρfDLV

2 · [cos(ωt)]

Fz̈(t) = Cm ·
π

4ρfD
2L ·

[
−ω2Az sin(ωt)

] (3.6)
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in which V is again the relative normal velocity between the incoming current and

the oscillating riser.

To avoid assuming the acceleration, Fz̈(t) is moved to the left-hand-side (LHS) of

Equation 3.4 and combined with the term mz̈, leading to:

(m+m′)z̈ + cż + kz = Fż(t) (3.7)

where m′ = Cm · π4ρfD
2L is the added mass.

Assuming that the structural damping is small in comparison with the hydrody-

namic damping, the structural damping term, cż, in Equation 3.4 was neglected in the

current model. Note that the hydrodynamic excitation and damping are considered

based on the sign of Clv interpolated from the database.

By substituting Equation 3.6 into 3.7 and neglecting the structural damping term,

cż, the equation of motion in the cross-flow direction is given as:

[m+m′(A∗, Vr)]z̈ + kzz = FL(A∗, Vr) cos[ω (t− t0)] (3.8)

where z is the cross-flow displacement, z̈ is the cross-flow acceleration, m is the struc-

tural mass, m′(A∗, Vr) is the added mass in the cross-flow direction in terms of A∗

and Vr, kz is the structural stiffness in the cross-flow direction, FL is the lift force

amplitude, t0 is the time instant when the last VIV cycle ends, and

ω = 2 π
Tapp

FL(A∗, Vr) = Clv(A∗, Vr) ·
1
2ρfDLV

2

m′(A∗, Vr) = Cm(A∗, Vr) ·
π

4ρfD
2L

(3.9)

By assuming that the added mass coefficient in the in-line direction equals that
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in the cross-flow direction, the equation of motion in the in-line direction is described

as:

[m+m′(A∗, Vr)]ẍ+ kxx = FD0 + [FD(A∗, Vr)− FD0] cos[2ω (t− t0)] (3.10)

where x is the in-line displacement, ẍ is the in-line acceleration, kx is the structural

stiffness in the in-line direction, FD0 is the mean drag force, FD is the drag force

amplitude, and
FD0 = Cd0 ·

1
2ρfDLV

2

FD(A∗, Vr) = Cd(A∗, Vr) ·
1
2ρfDLV

2
(3.11)

in which Cd0 = 1.0 is the mean drag coefficient used in this study. Note that the

in-line drag force oscillates at a frequency twice that of the cross-flow lift force.

Note that both the lift component in phase with velocity and the added mass were

put on the right-hand-side (RHS) of the equation of motion in the work of Spencer

et al. (2007) and Ma et al. (2014).

The proposed forcing model does not explicitly consider the correlation along

the span. Instead, the correlation is considered by automatically sharing the motion

and forcing information at the common node of adjacent elements in a finite element

method. In other words, the zero up-crossing analysis and the progressive calculation

in the time domain at both end nodes determine the lock-in or out of lock-in for each

element.

As for the initial conditions, the initial hydrodynamic coefficients were set as

Cm0 = 1.0 and Clv0 = 1.0, in the first cycle. Since the nondimensional vortex-shedding

frequency is approximately 0.18 over a large range of the subcritical Re regime, the

initial forcing frequency was set according to ωf = 2π · V
5.5·D , where an initial reduced

velocity of Vr = 5.5, or equivalently an initial Strouhal number of St = 0.18, was
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chosen. The initial displacement and velocity in the VIV simulations were set as their

static equilibrium values.

3.2.1 Surface Reconstruction of The DeepStar Database

The hydrodynamic coefficients used in the time-domain simulations were interpolated

from the scattered data points in the DeepStar database. In order to achieve this, the

SURF routine from the IMSL Numerical Library was utilized by Spencer et al. (2007).

The SURF routine is based on Akima (1978), which interpolates a 2-D scattered data

by locally quintic polynomials. However, this fifth-order approach would invalidate

near the edges or the steep slopes of a surface.

To overcome the drawbacks of the high-order interpolation method, a bilinear

scheme was developed by Ma et al. (2014) to interpolate the hydrodynamic coeffi-

cients. The effect of the surface reconstruction on the time-domain VIV prediction

model was further investigated in this work. The hydrodynamic coefficient surfaces

were modelled using bilinear interpolation, bicubic interpolation, and Non-Uniform

Rational B-Spline (NURBS) surface. It turned out no significant differences when

using higher-order methods compared to that of using bilinear interpolation. In ad-

dition, higher-order descriptions of the experimental data would distort the accuracy

and fidelity of the interpolated values. Therefore, a bilinear interpolation approach

equivalent to that by Ma et al. (2014) is adopted in this study. The detailed surface

interpolation scheme is given in Appendix B.

3.3 Finite Element Numerical Scheme

The finite element method (FEM) is a numerical tool widely used in almost all

branches of engineering. It approximates a continuum by an assemblage of discrete
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elements, therefore turning the governing differential equations into a system of alge-

braic equations. The adjacent elements are interrelated by the common nodes, with

each element satisfying its essential and natural boundary conditions.

In deepwater applications, slender marine structures, such as mooring lines and

risers, have large length-to-diameter ratios and are hence modelled by Euler-Bernoulli

beam elements, which neglect shear deformation and rotary inertia. Following the

work of Garrett (1982) and Ran (2000), an in-house finite element program, MAPS-

Mooring, was developed (Yin, 2007). MAPS-Mooring was employed in the present

studies for the structural analysis of risers. The FEM was formulated in the 3-D

global coordinate system. The riser was assumed stretchable in a small and linear

manner.

Two-stage computation is performed in MAPS-Mooring: the riser profile under

static equilibrium is first obtained based on a Newton iterative method, and the

dynamic response and tension of the riser are then integrated by a second-order semi-

implicit Adams method in the time domain. The detailed mathematical derivation

and numerical procedure of MAPS-Mooring are given in Appendix A.

The present time-domain VIV model was incorporated into MAPS-Mooring to

predict the statics and dynamics of slender marine structures. In the present studies,

different time integration schemes, other than the second-order semi-implicit Adams

method, were investigated. It was indicated that other numerical schemes did not

lead to significant improvements in the predictions. Therefore, the original numerical

structure in the work of Yin (2007) was adopted.

In the work of Ma et al. (2014), uniform hydrodynamic coefficients were applied

on each element which were determined from the state variables by using the velocity

of the second node of a finite element. In the present computations, the state variables

at the two end nodes of each element were utilized in the zero up-crossing analysis
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of the nodal displacements. This resulted in a more continuous hydrodynamic force

distribution along the riser span. In addition, the global maximum and minimum

nodal displacements were used by Ma et al. (2014) to compute state variables for all

elements, while the local motion characteristics were analyzed for each element during

the present simulations.



Chapter 4

Further Validations of

MAPS-Mooring

This chapter presents the validation results of the enhanced MAPS-Mooring, an in-

house finite element program originally developed by Yin (2007) that predicts the

statics and dynamics of mooring lines. To validate MAPS-Mooring, both static and

dynamic simulations were carried out for mooring lines.

A list of cases in the validation studies is given below:

• Static Responses

– Riser Model Tests at the USNA (Santillan and Virgin, 2011)

∗ Catenary Riser

∗ Lazy-S and Steep-S Risers

– Mooring Line of A Wave Energy Converter (Johanning et al., 2007)

• Dynamic Results

– ISSC Full-Scale Mooring Line Benchmark Case (ISSC, 1997)

45
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– Light-Weighted Mooring Line Tests at the OTRC (Chen, 2002)

– Mooring Line Tests at the TU Delft (Raaijmakers and Battjes, 1997)

4.1 Static Results

4.1.1 Riser Model Tests at the USNA

The statics of riser models were experimentally investigated by Santillan and Virgin

(2011) at the United States Naval Academy (USNA). Three types of risers were tested,

including catenary riser, lazy-S riser, and steep-S riser. The model test particulars

are given in Table 4.1.

Table 4.1: Parameters in the USNA experiments (Santillan and Virgin, 2011)

Parameter Value
Water depth (m) 1.53
Diameter (m) 0.014
Total length (m) 4.57
Mass per unit length (kg/m) 63.74
Wet weight per unit length (N/m) 334.5
EA (kN) 12.87
EI (kN-m2) 0.268
Boundary conditions both ends hinged

The results presented below include the comparisons of the static profiles between

the experimental data and the MAPS-Mooring simulations for different types of riser

models. The horizontal offsets and the vertical distances were normalized by the water

depth.



47

4.1.1.1 Catenary Riser

The model riser was hinged at both ends and displaced in still water with a segment

laid on the tank bottom. The measured riser profile was compared with numerical

results using different numbers of elements in Figure 4.1.
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Figure 4.1: Catenary riser static profile

It can be observed that the numerical results are in good agreement with the

experimental data, and that the numerical solutions are not very sensitive to the

number of elements.

4.1.1.2 Lazy-S and Steep-S Risers

In the model test, a buoy was attached at a point along the model riser and led to dif-

ferent lazy-S and steep-S shapes. The numerical static equilibrium profiles compared

to the experimental data are presented in Figures 4.2 to 4.5.

It can be seen from Figures 4.2 to 4.5 that the numerical results are in good
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Figure 4.2: Lazy-S riser: configuration A
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Figure 4.3: Lazy-S riser: configuration B
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Figure 4.4: Steep-S riser: configuration A
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Figure 4.5: Steep-S riser: configuration B
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agreement with the experimental measurements, and the numerical result converges

as the number of elements increases.

4.1.2 Mooring Line of A Wave Energy Converter

A model of shallow-water wave energy converter (WEC) was experimentally examined

by Johanning et al. (2007) at Heriot-Watt University. The schematic of the experiment

set-up is illustrated in Figure 4.6, and the model test parameters are listed in Table 4.2.

Figure 4.6: Schematic of the experimental set-up (from Johanning et al. (2007))

Table 4.2: Parameters in the moored WEC experiments (Johanning et al., 2007)

Parameter Value
Water depth (m) 2.8
Diameter (mm) 2.5
Total length (m) 6.98
Wet weight per unit length (N/m) 1.036
EA (kN) 560
Boundary conditions both ends hinged

The predicted top end pre-tensions under static equilibrium for different fairlead

horizontal offsets are compared with the experimental data in Figure 4.7.
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Figure 4.7: Top end static pre-tensions versus different fairlead horizontal offsets

Note that the fourth-to-last data point in Figure 4.7 represents the critical con-

dition under which the mooring line was tangent to the bottom at the anchor point.

From Figure 4.7, it can be observed that both numerical results agree quite well with

the experimental measurements right before the mooring was immediately lifted up

at the anchor point. After the mooring line lost the contact with the bottom and

became tauter as the fairlead was moved further away from the anchor, discrepancies

in pre-tensions between the model test and numerical simulations start to increase.

This may be explained by the fact that the mooring was significantly stretched during

the static test, while the axial elongation of the mooring line was assumed linear and

small in the mathematical formulation of MAPS-Mooring.



52

4.2 Dynamic Results

4.2.1 ISSC Full-Scale Mooring Line Benchmark Case

The 13th International Ship and Offshore Structure Congress Committee (ISSC) ini-

tiated a comparative study on the mooring line damping with 15 participants involved

(ISSC, 1997). The model parameters in this study are given in Table 4.3.

Table 4.3: Parameters of the ISSC full-scale mooring line (ISSC, 1997)

Parameter Value
Water depth (m) 82.5
Diameter (m) 0.14
Total length (m) 711.3
Line weight in air (N/m) 3586.5
Line weight in water (N/m) 3202.0
EA (kN) 1.69× 106

Line top tension at equilibrium position (kN) 549.9
Boundary conditions both ends hinged

The motion amplitude was normalized by the water depth. In the convergence

investigations of the number of elements and the time step, a nondimensional fairlead

oscillation amplitude of 0.05 was used. In the convergence study, the number of

elements, 20, 40, 80 and 160 elements were employed with a fixed time step of 0.05

sec. In the convergence study of the time step, 0.2 sec, 0.1 sec, 0.05 sec, and 0.025

sec were examined using 80 elements. As shown in Figures 4.8 to 4.9, the numerical

results converge as the number of elements increases or the time step decreases.
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4.2.2 Light-Weighted Mooring Line Tests at the OTRC

Tests of a uniform light-weighted chain model were performed by Chen (2002) at

the Offshore Technology Research Center (OTRC) in College Station, Texas. The

particulars and results given herein are in prototype scale following the Froude scaling

law. The model test set-up is illustrated in Figure 4.10, and the characteristics of the

uniform light-weighted chain in full-scale is listed in Table 4.4.

Figure 4.10: Model test set-up at the OTRC (from Chen (2002))

Table 4.4: Parameters in the OTRC model tests (Chen, 2002)

Parameter Value
Water depth (m) 223.5
Diameter (m) 0.14
Total length (m) 762.0
Mass per unit length (kg/m) 235.2
Wet weight per unit length (N/m) 2013.4
EA (kN) 2.21×106

Normal drag coefficient 3.2
Tangential drag coefficient 0.6
Line top tension at equilibrium position (kN) 1558.8
Boundary conditions both ends hinged

The time series of the top tension are compared between the numerical simulations
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and the experimental measurements under different fairlead oscillation periods in

Figures 4.11, 4.12, and 4.13.

Good agreements between the MAPS-Mooring simulations and the measurements

can be observed from Figures 4.11, 4.12, and 4.13.
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Figure 4.11: Time series of the top-end tension, with a fairlead oscillation period of 4
sec and an amplitude of 0.4572 m
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Figure 4.12: Time series of the top-end tension, with a fairlead oscillation period of 5
sec and an amplitude of 0.4572 m
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Figure 4.13: Time series of the top-end tension, with a fairlead oscillation period of 6
sec and an amplitude of 0.4572 m
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4.2.3 Mooring Line Tests at the TU Delft

A large number of mooring line model tests were carried out by Raaijmakers and

Battjes (1997) at the Delft University of Technology (TU Delft). The mooring line

configurations in the model tests are referred to by the fairlead position number

and the line (e.g. “position 5, line-A”). The experimental set-up is schematized in

Figure 4.14, and the characteristics of the experiment are listed in Table 4.5.

Figure 4.14: Schematic set-up of the Delft mooring tests (from Raaijmakers and
Battjes (1997))

Table 4.5: Parameters in the Delft mooring tests (Raaijmakers and Battjes, 1997)

Parameter Value
Water depth (m) 1.37
Diameter (mm) 6.0
Total length (m) 7.0
Mooring chain density (ton/m3) 7.9
Wet weight per unit length (N/m) 6.446
EA (kN) 3230
Boundary conditions both ends hinged

One experimental time series of horizontal tension at the fairlead was compared

against MAPS-Mooring simulation results. The top end was oscillated at a period

of 1.6 sec with a 0.1-m amplitude. The experimental time series was obtained at a
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sampling time interval of 0.032 sec. The convergences to the number of elements and

the time step in dynamic analysis are investigated and presented in Figure 4.15. The

predicted time series of the horizontal tension at the fairlead are in good agreement

with the measured ones.



Chapter 5

Validations for the VIV Prediction

Model

The proposed time-domain VIV prediction model was incorporated with MAPS-

Mooring and was used to predict the VIV of rigid and flexible risers. In this chapter,

the present model was first examined by simulating the 1-DOF free VIV of a rigid

cylinder in a uniform flow on which the hydrodynamic coefficients were collected. The

proposed model was then validated by carrying out VIV analysis for a flexible riser

model subject to a step current. The numerical results and the discussions on the

results are given in the following sections.

5.1 Rigid Cylinder Single-Mode VIV

In the free VIV tests of the DeepStar-JIP, the same rigid cylinder was elastically

supported on a spring frame while being towed at a constant speed in water (Oakley

and Spencer, 2004). External damping was introduced by connecting the cylinder-

frame system to a servomotor, which exerted a force proportional to the cylinder VIV

62
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velocity. The particulars of the test segment are given in Table 5.1.

Table 5.1: Parameters in the DeepStar-JIP free VIV tests (Oakley and Spencer, 2004)

Input Value
Water depth (m) 7
Diameter (m) 0.325
Total length (m) 6.02
Total mass (kg) 800
Mass ratio 1.56
Support stiffness (kN/m) 40
Boundary conditions both ends spring-supported

All the numerical results given hereafter started from static equilibrium and were

based on one element simulation, with a time step of 0.005 sec. The time series of

the nondimensional transverse motion under different nominal reduced velocities are

presented in Figures 5.1 to 5.6, where the nominal reduced velocity is defined as:

U∗ = U

fnwD
(5.1)

in which U is the incoming current speed, fnw is the natural frequency in still water,

and D is the diameter of the cylinder.

Figures 5.1, 5.2, and 5.3 illustrate the time series of the nondimensional cross-

flow motion at the fairlead under uniform current speeds of 0.8, 1.2, and 1.6 m/s,

respectively. The figures demonstrate that the steady-state response magnitude of

the transverse VIV increases as the current speed starts from zero. Those sinusoidal

motions correspond to the initial and the upper branches, at which the wake roughly

possesses a 2S vortex pattern (Williamson and Roshko, 1988).

As the nominal reduced velocity further increases, the time series of motion exhibit

a “beat”-like pattern, as can be observed in Figures 5.4, 5.5, and 5.6. This indicates
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Figure 5.1: Rigid riser 1-DOF VIV under current speed of 0.8 m/s

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  50  100  150

N
o
n
d
im

e
n
s
io

n
a
l 
 D

is
p
la

c
e
m

e
n
t

Time  (sec)

U* = 4.23

Figure 5.2: Rigid riser 1-DOF VIV under current speed of 1.2 m/s
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Figure 5.3: Rigid riser 1-DOF VIV under current speed of 1.6 m/s

the competition between the still water natural frequency and the vortex shedding

frequency. The nominal reduced velocities in Figures 5.4, 5.5, and 5.6 correspond to

2P vortex mode (Williamson and Roshko, 1988).

Figure 5.7 presents the RMS motion amplitude ratios in terms of the nominal

reduced velocity and their comparison with the experimental data as well as those

predicted in the work of Ma et al. (2014). The RMS amplitude ratio for each nominal

reduced velocity was obtained using the displacement amplitudes in a duration of

150 sec. It can be observed in Figure 5.7 that the present method improved the

predictions, especially at the low nominal reduced velocities.
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Figure 5.4: Rigid riser 1-DOF VIV under current speed of 2.0 m/s
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Figure 5.5: Rigid riser 1-DOF VIV under current speed of 2.4 m/s
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Figure 5.6: Rigid riser 1-DOF VIV under current speed of 2.8 m/s
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5.2 Flexible Cylinder Multi-Mode VIV

Tests of a top-tensioned riser model under VIV were conducted by Chaplin et al.

(2005b) at the Delft Hydraulics Laboratory. In the test campaign, the riser model,

with the upper 55% submerged in a vacuum tank filled with water, was installed on

the carriage and was towed through the water. The test apparatus hence simulated a

step current, with a uniform flow past the lower part of the riser and no flow elsewhere.

The particulars of the riser model and the experimental set-up are given in Table 5.2

and Figure 5.8, respectively.

Table 5.2: Particulars in the Delft VIV tests (Chaplin et al., 2005b)

Parameter Value
Diameter (mm) 28
Total length (m) 13.12
Dry weight per unit length (kg/m) 1.47
Wet weight per unit length (N/m) 12.1
Mass ratio 3
EI (N-m2) 29.88
Re range 2,500 – 25,000
Boundary conditions both ends hinged

In the model tests, the riser was hinged by universal joints at both ends. Ad-

ditionally, a tensioning system was connected to the top end to change the initial

tension in order to achieve different still water fundamental nature frequencies. In

the present simulation, the pre-tension was attained by stretching the riser into the

bottom before applying an incoming flow in the static analysis. The numerical model

and the global coordinate system are schematized in Figure 5.9. z is defined as the

vertical coordinate with positive values above the calm water surface in the global

Cartesian system, and L is the overall length of the riser. Nondimensional vertical

distance was obtained by dividing z with the water depth.
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Figure 5.8: Set-up of the Delft VIV tests (from Chaplin et al. (2005a))

U

13.12 m

z

y

x

Figure 5.9: Numerical model set-up for the Delft VIV tests (Chaplin et al., 2005a)
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Four cases were examined, which are corresponding to four current speeds and

four initial top tensions as given in Table 5.3. All the simulations given by the present

model started from the static equilibrium positions with zero initial velocities.

Table 5.3: Simulation scenarios for the Delft VIV tests (Chaplin et al., 2005a)

Case no. Current speed (m/s) Initial top tension (N)
1 0.16 405
3 0.31 457
6 0.60 670
9 0.95 1002

For each case, time series of the transverse motions at z = −0.25L, z = −0.5L

and z = −0.75L (z = 0 is at the calm water surface), the riser profiles at different time

instants, and the cross-flow vibration envelope are presented. The vibration envelopes

were obtained by using the maximum and minimum displacements at each node over

the simulation duration (300 sec). Note that all the presented displacements were

nondimensionalized with respect to the diameter of the riser.

The predicted envelopes were compared to the experimental results (Chaplin

et al., 2005b) and the numerical solutions by SHEAR7, Norsk Hydro, and Ma et al.

(2014). Note that Norsk Hydro predicts VIV by coupling the computation of the

hydrodynamic forces on 2-D planes using CFD with a finite element structural code

(Herfjord et al., 1999). In the work of Ma et al. (2014), all the results were obtained

using 200 elements and a time step of 0.0025 sec. The results by SHEAR7 and Norsk

Hydro were taken from the work by Chaplin et al. (2005a).

5.2.1 Results for Case 1

Convergence studies have been carried out for Case 1 by using various numbers of

elements, 12, 24, 48, 60 and 72 and a number of time steps (0.0002 sec, 0.0001 sec
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and 0.00005 sec). Figure 5.10 presents the convergence of predicted envelope to the

number of elements using the time step of 0.0001 sec for a current velocity of 0.16

m/s. It can be observed that the solutions converge as the number of elements was

increased. Figure 5.11 presents the convergence of the predicted envelope for the same

current velocity with respect to the time step using 24 elements. It can be seen that

the numerical prediction is insensitive to the time step. In the following figures, the

results were based on 72 elements and the time step of 0.0001 sec.
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Figure 5.10: Case 1 – Convergence of predicted riser envelope to the number of
elements

Figures 5.12, 5.13, and 5.14 present the time series of the transverse displacements

at the midpoint, z = −0.25L, and z = −0.75L, respectively. From these figures, it can

be seen that the motions include different frequency components. The steady state

was reached after a transient period. The corresponding riser profiles at different time

instants are presented in Figure 5.15.



72

-1

-0.8

-0.6

-0.4

-0.2

 0

-1.5 -1 -0.5  0  0.5  1  1.5  2  2.5

N
o
n
d
im

e
n
s
io

n
a
l 
 V

e
rt

ic
a
l 
 D

is
ta

n
c
e

Nondimensional  Motion  Amplitude

Δt = 2.e-4 sec

Δt = 1.e-4 sec

Δt = 5.e-5 sec

Figure 5.11: Case 1 – Convergence of predicted riser envelope to the time step

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 20  60  100  140  180  220

C
ro

s
s
-F

lo
w

  
D

is
p
la

c
e
m

e
n
t 
 (

m
)

Time  (sec)

Figure 5.12: Case 1 – Time series of cross-flow motion at the midpoint
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Figure 5.13: Case 1 – Time series of cross-flow motion at z = −0.25L
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Figure 5.14: Case 1 – Time series of cross-flow motion at z = −0.75L
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Figure 5.15: Case 1 – Riser profiles at different time instants

The comparison of the envelope predicted by the present model, the experimental

measurement, and those by SHEAR7, Norsk Hydro, and by Ma et al. (2014) is given in

Figure 5.16. The modal shapes were not captured in the work by Ma et al. (2014) and

by Norsk Hydro. The prediction by the present model is in a reasonable agreement

with the experimental measurement.



75

-1

-0.8

-0.6

-0.4

-0.2

 0

-1.5 -1 -0.5  0  0.5  1  1.5  2  2.5

N
o
n
d
im

e
n
s
io

n
a
l 
 V

e
rt

ic
a
l 
 D

is
ta

n
c
e

Nondimensional  Motion  Amplitude

Experimental

Present model

Ma et al. (2014)

SHEAR7

Norsk Hydro

Figure 5.16: Case 1 – Comparison of cross-flow vibration envelope

5.2.2 Results for Case 3

Convergence studies have been carried out for Case 3 by using various numbers of

elements, 12, 24, 48, 60 and 72 and a number of time steps (0.0002 sec, 0.0001 sec

and 0.00005 sec). Figure 5.17 presents the convergence of predicted envelope to the

number of elements using the time step of 0.0001 sec for a current velocity of 0.31

m/s. It can be observed that the solutions converge as the number of elements was

increased. Figure 5.18 presents the convergence of the predicted envelope for the same

current velocity with respect to the time step using 24 elements. It can be seen that

the numerical prediction is insensitive to the time step. In the following figures, the

results were based on 72 elements and the time step of 0.0001 sec.

Figures 5.19, 5.20, and 5.21 present the time series of the transverse displacements

at the midpoint, z = −0.25L, and z = −0.75L, respectively. The riser profiles at
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Figure 5.17: Case 3 – Convergence of predicted riser envelope to the number of
elements
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different time instants are presented in Figure 5.22.
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Figure 5.19: Case 3 – Time series of cross-flow motion at the midpoint

The comparison of the predicted and experimental envelopes is given in Fig-

ure 5.23. The present model overpredicted the responses. It is likely due to the fact

that the hydrodynamic coefficient database used in the computations corresponds to

the high Reynolds number, while the riser was subjected to a low Reynolds number

in the tests. As discussed in Chapter 2, the hydrodynamic coefficients differ in many

characteristics across different Re regimes.
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Figure 5.20: Case 3 – Time series of cross-flow motion at z = −0.25L
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Figure 5.21: Case 3 – Time series of cross-flow motion at z = −0.75L
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Figure 5.22: Case 3 – Riser profiles at different time instants
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Figure 5.23: Case 3 – Comparison of cross-flow vibration envelope
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5.2.3 Results for Case 6

Convergence studies have been carried out for Case 6 by using various numbers of

elements, 12, 24, 48, 60 and 72 and a number of time steps (0.0002 sec, 0.0001 sec

and 0.00005 sec). Figure 5.24 presents the convergence of predicted envelope to the

number of elements using the time step of 0.0001 sec for a current velocity of 0.6

m/s. It can be observed that the solutions converge as the number of elements was

increased. Figure 5.25 presents the convergence of the predicted envelope for the same

current velocity with respect to the time step using 24 elements. It can be seen that

the numerical prediction is insensitive to the time step. In the following figures, the

results were based on 72 elements and the time step of 0.0001 sec.
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Figure 5.24: Case 6 – Convergence of predicted riser envelope to the number of
elements

Figures 5.26, 5.27, and 5.28 present the time series of the transverse displacements

at the midpoint, z = −0.25L, and z = −0.75L, respectively. Different frequency com-
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Figure 5.25: Case 6 – Convergence of predicted riser envelope to the time step

ponents can be observed in the time series. A steady state was reached after a transient

period. The riser profiles at different time instants are presented in Figure 5.29.

The comparison of the envelopes with other results is given in Figure 5.30. Similar

observation can be obtained to that in Case 3.
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Figure 5.26: Case 6 – Time series of cross-flow motion at the midpoint
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Figure 5.27: Case 6 – Time series of cross-flow motion at z = −0.25L
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Figure 5.28: Case 6 – Time series of cross-flow motion at z = −0.75L
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Figure 5.29: Case 6 – Riser profiles at different time instants
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Figure 5.30: Case 6 – Comparison of cross-flow vibration envelope

5.2.4 Results for Case 9

Convergence studies have been carried out for Case 9 by using various numbers of

elements, 12, 24, 48, 60 and 72 and a number of time steps (0.0002 sec, 0.0001 sec

and 0.00005 sec). Figure 5.31 presents the convergence of predicted envelope to the

number of elements using the time step of 0.0001 sec for a current velocity of 0.95

m/s. It can be observed that the solutions converge as the number of elements was

increased. Figure 5.32 presents the convergence of the predicted envelope for the same

current velocity with respect to the time step using 24 elements. It can be seen that

the numerical prediction is insensitive to the time step. In the following figures, the

results were based on 72 elements and the time step of 0.0001 sec.

Time series of the transverse displacements at the midpoint, z = −0.25L, and

z = −0.75L are presented in Figures 5.33, 5.34, and 5.35, respectively. The riser
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Figure 5.31: Case 9 – Convergence of predicted riser envelope to the number of
elements
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Figure 5.32: Case 9 – Convergence of predicted riser envelope to the time step
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profiles at different time instants are presented in Figure 5.36.
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Figure 5.33: Case 9 – Time series of cross-flow motion at the midpoint

Figure 5.37 presents the comparison of the experimental envelope and those by

the present method, SHEAR7, Norsk Hydro, and Ma et al. (2014). The previous

method by Ma et al. (2014) was not able to capture the modal shapes. The present

model can capture the lower modes compared to the experimental measurement but

with an underprediction. This may be due to the issue associated with different Re.

It should be also noted that a loose ball joint at the top or bottom of the riser resulted

in decreased stiffness of the system (Chaplin et al., 2005b). This stiffness decrease

could lead to higher vibration amplitudes.
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Figure 5.34: Case 9 – Time series of cross-flow motion at z = −0.25L
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Figure 5.35: Case 9 – Time series of cross-flow motion at z = −0.75L
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Figure 5.36: Case 9 – Riser profiles at different time instants
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Figure 5.37: Case 9 – Comparison of cross-flow vibration envelope



Chapter 6

Conclusions and Recommendations

for Future Work

In this thesis, a time-domain model was further developed to predict the vortex-

induced vibration (VIV) of marine risers. The structural motion was identified by

two nondimensional state variables: amplitude ratio and reduced velocity. Through

a zero up-crossing analysis of the cross-flow displacement, the two state variables

were obtained to interpolate the hydrodynamic coefficients from a database, which

is based on forced oscillation tests of a full-scale riser segment at high Reynolds

numbers. Different interpolation methods were investigated, and the study indicated

that other higher-order interpolation methods did not lead to better results than

those by bilinear interpolation. The interpolated coefficients were then employed to

calculate the hydrodynamic forces exerted on the riser.

The VIV correlation along the riser span was assumed by the adjacent elements

sharing the motion and forcing characteristics at the common node. For each ele-

ment, the characteristics at both end nodes were obtained from the progressive zero

up-crossing analysis and used in the time-domain computation. The hydrodynamic

89
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excitation and damping were considered inclusively in the lift coefficient in phase with

velocity.

The VIV prediction of marine risers were performed by incorporating the time-

domain model with MAPS-Mooring, a global-coordinate-based finite element method

(FEM) program. The FEM analysis consists of two parts: the riser profile under static

equilibrium is first obtained based on a Newton iterative method, and the dynamic

response and the tension of the riser are then integrated in the time domain. In the

present studies, different time integration schemes were examined for the dynamic

analysis of MAPS-Mooring. No improvement was found by using other integration

schemes when compared to the original one: a second-order semi-implicit Adams

method.

The FEM program was first validated by the mooring line experiments identified

in the literature. It was proven to be reliable and robust. Validation studies were

then carried out to the FEM scheme with the present VIV model integrated. The

current model was applied to predict a rigid riser vibrating transversely to a uniform

flow and a top-tensioned flexible riser under VIV in a step current. For the single-

mode VIV case, good agreement in nondimensional motion amplitude was observed

between the numerical results and the experimental measurements. For the multi-

mode VIV case, the lower mode shapes can be captured by the present model and

the predicted cross-flow motions were in reasonable agreement with the experimental

measurements.

Recommendations for Future Work

The present model should be further validated by additional benchmark cases. The

model may also be utilized to predict the behaviours of risers with VIV suppression

devices by interpolating hydrodynamic coefficients collected from tests in which riser
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models are fitted with VIV suppression devices.

A combined frequency-time-domain approach based on the current model may

capture the higher harmonics. The present model predicts VIV from one cycle to the

next in the time domain; however, the motion cycles further backwards might contain

more information on the hydrodynamic forces. Hence, a progressive Fast-Fourier-

Transformation analysis of the past multiple cycles could reveal higher frequency

components of the external forces, which may be included into the equation of motion.

The present model couples the in-line and cross-flow motions based on force co-

efficients obtained from pure transverse forced oscillation tests. Allowing the second

degree-of-freedom (DOF) would lead to force coefficients different from those obtained

from single-mode vibration. In order to better predict 2-DOF VIV, a more sophisti-

cated model needs to be developed. In addition, it is desirable to conduct pure-in-line

and coupled-in-line-cross-flow forced oscillation tests to deduce respective hydrody-

namic coefficient databases.

Furthermore, the proposed model may be combined with a wake model to predict

the VIV interaction and wake-induced oscillation (WIO) between multiple risers. Such

wake models empirically describe the wake velocity field of a cylinder. Therefore, the

motions of the downstream risers may be simulated based on the current VIV model

along with the approximate incoming current velocities at the trajectories of the

risers.
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Appendix A

Mathematical Formulation

This Appendix provides the mathematical modelling of the time-domain finite element

program to predict the statics and dynamics of slender marine structures. The global-

coordinate-based, nonlinear finite element method was employed based on the Euler-

Bernoulli beam model. More details can be found in the work of Yin (2007).

A.1 Governing Equations

Figure A.1 illustrates the 3-D coordinate system employed in this study. The xoy

plane overlaps with the calm free surface with the z-axis pointing upwards. The

centerline, representing a slender rod, is defined by a position vector r(s, t), where s

is arc length and t is time.

The unit tangent vector, the principal normal vector, and the bi-normal vector

can be described as r′, r′′, and r′ × r′′, respectively, where the primes denote the

partial derivative with respect to s. Therefore based on the momentum conservation,

the equations of motion for a unit arc length segment of a slender rod can be expressed

as:

F′ + q = ρr̈ (A.1)

A-1
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Figure A.1: A slender rod in the global coordinate system

M′ + r′ × F + m = 0 (A.2)

where F is the resultant force, M is the resultant moment acting along the centerline,

q is the applied force per unit length, ρ is the mass per unit length of the rod, m

is the applied moment per unit length, and the overdots indicate the differentiation

with respect to time.

According to the Bernoulli-Euler beam theory, the bending moment is propor-

tional to the curvature and acts along the bi-normal direction for an elastic rod with

equal principal stiffness. Thus the resultant moment can be expressed as:

M = r′ × EIr′′ +Hr′ (A.3)

where EI is the bending stiffness and H is the torque. By substituting Equation A.3
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into Equation A.2 we obtain:

(r′ × EIr′′ +Hr′)′ + r′ × F + m = 0 (A.4)

r′ × (EIr′′)′ + r′′ × EIr′′ +H ′r′ +Hr′′ + r′ × F + m = 0 (A.5)

By using the cross-product distributive law over addition and by applying r′′ ×

EIr′′ = 0 we have:

r′ × [(EIr′′)′ + F] +H ′r′ +Hr′′ + m = 0 (A.6)

Taking the scalar product of Equation A.6 and r′ yields:

r′ · r′ × [(EIr′′)′ + F] + r′ ·H ′r′ + r′ ·Hr′′ + r′ ·m = 0 (A.7)

Note that r′ ·r′× [(EIr′′)′ +F] = 0, r′ ·Hr′′+0, and r′ ·r′ = 1, hence Equation A.7

can be simplified as:

H ′ + r′ ·m = 0 (A.8)

Since most slender marine structures have circular cross sections, we may assume

that there would be no distributed torsional moment r′ ·m caused by hydrodynamic

loads. Thus, according to Equation A.8, H is independent of arc length s. In addi-

tion, the torques along the lines are generally so small that they may be neglected,

indicating that both H and m are zero. Hence, Equation A.6 can be further reduced

to:

r′ × [(EIr′′)′ + F] = 0 (A.9)

Equation A.9 indicates that the vector (EIr′′)′ +F is tangent to the centerline of
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the rod. By introducing a scalar function λ(s, t), Equation A.9 can be rewritten as:

(EIr′′)′ + F = λr′ (A.10)

The scalar product of Equation A.10 and r′ is:

λ = (EIr′′)′ · r′ + F · r′ (A.11)

Assuming the bending stiffness EI does not vary with arc length, and by applying

r′′′ · r′ = (r′′ · r′)′ − r′′ · r′′ = 0− κ2 = −κ2, we can reduce Equation A.11 to:

λ = T − EIκ2 (A.12)

where T is the tension in the rod segment and κ is the curvature of the centerline.

Substituting Equation A.10 into Equation A.1 gives the governing equation of

motion of the rod segment:

− (EIr′′)′′ + (λr′)′ + q = ρr̈ (A.13)

Meanwhile, r must satisfy the inextensibility condition:

r′ · r′ = 1 (A.14)

If the rod is considered stretchable and the stretch is linear and small, Equa-

tion A.14 can be approximated by:

r′ · r′ = (1 + ε)2 ≈ 1 + 2ε = 1 + 2 T

EA
(A.15)
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1
2(r′ · r′ − 1) = T

EA
≈ λ

EA
(A.16)

where the scalar function λ is the Lagrangian multiplier constrained by the small

elongation condition, the strain ε must be small in order to validate Equation A.12

and Equation A.15, and EA is the axial stiffness.

The distributed load q on the rod consists of the self weight, as well as the

hydrostatic and hydrodynamic loads from the ambient fluid, therefore

q = w + Fs + Fd (A.17)

where w is the rod weight per unit length, Fs is the hydrostatic load per unit length,

and , Fd is the hydrodynamic load per unit length.

The hydrostatic load can be expressed as:

Fs = B + (PsAr′)′ (A.18)

where B is the buoyancy force per unit length of the rod, Ps is the hydrostatic pressure

at rod position r, and the term (PsAr′)′ invokes the pressure gradient between the

two ends.

Morrison’s equation is employed in approximating the hydrodynamic loads on the

slender rod:
Fd = −CAr̈n + CMV̇n + CD|Vn

rel|Vn
rel

= −CAr̈n + F̃n

(A.19)

where CA is the added mass per unit length, CM is the inertia force per unit length

per unit normal acceleration, and CD is the drag force per unit length per unit normal

velocity, V̇n is the fluid acceleration and velocity normal to the centerline of the rod,

and Vn
rel is the relative fluid velocity normal to the centerline of the rod. Assuming
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that the presence of the rod does not perturb the fluid domain, we can compute V̇n

and Vn
rel by:

V̇n = V̇− (V̇ · r′) r′ (A.20)

Vn
rel = (V− ṙ)− [(V− ṙ) · r′] r′ (A.21)

where V and V̇ are the absolute velocity and acceleration of the water particles,

respectively.

The normal velocity and acceleration of the rod, ṙn and r̈n, can be obtained by

deducting the tangent components from the total vectors:

ṙn = ṙ− (ṙ · r′) · r′ (A.22)

r̈n = r̈− (r̈ · r′) · r′ (A.23)

The rod equation of motion in vector form can be obtained by combining Equa-

tion A.13, Equation A.17, Equation A.18, and Equation A.19:

ρr̈ + CAr̈n + (EIr′′)′′ − (λ̃r′)′ = w̃ + F̃d (A.24)

where

w̃ = w + B (A.25)

λ̃ = λ+ PsA (A.26)

Substituting λ = T − EIκ2 into Equation A.26 yields:

λ̃ = (T + PsA)− EIκ2 = T̃ − EIκ2 (A.27)
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A.2 Finite Element Formulation

The dependent variables, r(s, t) and λ(s, t), can be determined by solving Equa-

tion A.13 and Equation A.16 in combination with initial and boundary conditions.

By rewriting Equation A.24 and Equation A.16 in Einstein notation, we can obtain:

− ρr̈i − CAr̈in − (EIr′′i )′′ + (λ̃r′i)′ + ω̃i + F̃ d
i = 0 (A.28)

1
2(r′nr′n − 1)− λ

EA
= 1

2(r′nr′n − 1)− λ̃− PsA
EA

= 0 (A.29)

where the subscripts range from 1 to 3 for the 3-D problem. This results in a set of

12 second-order partial differential equations and 3 algebraic equations. In order to

solve the system of equations numerically, a finite element scheme has been employed,

which is given below.

The variables, ri(s, t) and λ̃(s, t), along an element length of L may be approxi-

mated by:

ri(s, t) = Ak(s)Uik(t) i = 1, 2, 3, k = 1, 2, 3, 4 (A.30)

λ̃(s, t) = Pm(s)λ̃m(t) m = 1, 2, 3 (A.31)

where Ak and Pm are the shape functions, Uik and λ̃m are the coefficients to be

determined, and 0 ≤ s ≤ L.

By applying Galerkin’s method to obtain the weak form of Equation A.28 over

the element length, we have:

∫ L

0
δri[−ρr̈i − CAr̈ni − (EIr′′i )′′ + (λ̃r′i)′ + w̃i + F̃ d

i ]ds = 0 (A.32)
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Since δri and δUil(t) are arbitrary, Equation A.32 becomes:

δUil(t)
∫ L

0
Al[−ρr̈i − CAr̈ni − (EIr′′i )′′ + (λ̃r′i)′ + w̃i + F̃ d

i ]ds = 0 (A.33)

∫ L

0
Al[−ρr̈i − CAr̈ni − (EIr′′i )′′ + (λ̃r′i)′ + w̃i + F̃ d

i ]ds = 0 (A.34)

Integrating the terms in Equation A.34 by parts yields:

∫ L

0
[Al(ρr̈i + CAr̈

n
i ) + A′′lEIr

′′
i + A′lλ̃r

′
i − Al(w̃i + F̃ d

i )]ds

= EIr′′iA
′
l|L0 + [λ̃r′i − (EIr′′i )′]Al|L0

(A.35)

The two terms on the RHS of Equation A.35 represent the natural boundary con-

ditions of an element. After assembling the elemental equations, all internal moments

and forces will cancel out with those of the adjacent elements except the two at both

ends of the global line. These two boundary conditions will be dictated by the global

boundary conditions applied at the anchor and the fairlead.

Since the highest order of the derivative on r is third in Equation A.35, the

interpolating function should be thrice differentiable. In addition, the highest order

of the derivatives is second inside the integral. Hence, the overall approximation of

r should be C1-continuous. Based on these requirements, the Hermite cubic shape

functions have been used in interpolating r. Meanwhile, the C0-continuous quadratic

Lagrangian shape functions have been selected in λ̃ interpolation.

The coefficients, Uik and λ̃m, and the shape functions, Ak and Pm, are defined as:

Ui1 = ri(0, t) Ui2 = Lr′i(0, t)

Ui3 = ri(L, t) Ui4 = Lr′i(L, t) (A.36)

λ̃1 = λ̃(0, t) λ̃2 = λ̃(L2 , t) λ̃3 = λ̃(L, t)
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A1 = 1− 3ξ2 + 2ξ3

A2 = ξ − 2ξ2 + ξ3

A3 = 3ξ2 − 2ξ3

A4 = −ξ2 + ξ3

P1 = 1− 3ξ + 2ξ2

P2 = 4ξ(1− ξ)

P3 = ξ(2ξ − 1)

(A.37)

where ξ = s/L.

Equation A.36 denotes the physical meanings of the elemental quantities to be

determined, i.e. the deflections, the slopes, and the effective line tensions at both ends

and the effective line tension at the midpoint of an element.

By substituting Equation A.30 and Equation A.31 into Equation A.35 and inte-

grating the equation term by term, we can obtain the following discretized form of

the elemental equation of motion:

(Mijlk +Ma
ijlk)Üjk + (K1

ijlk + λ̃nK
2
nijlk)Ujk − Fil = 0 (A.38)

where

Mijlk =
∫ L

0
ρAlAkδijds (A.39)

Ma
ijlk = CA

[ ∫ L

0
AlAkδijds−

( ∫ L

0
AlAkA

′
sA
′
tds
)
UitUjs

]
(A.40)

K1
ijlk =

∫ L

0
EIA′′lA

′′
kδijds (A.41)

K2
nijlk =

∫ L

0
PnA

′
lA
′
kδijds (A.42)

Fil =
∫ L

0
Al(w̃i + F̃ d

i )ds (A.43)
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where δij is the Kronecker delta function, and the subscripts i, j = 1, 2, 3, and

l, k, s, t = 1, 2, 3, 4. Note that the elemental natural boundary conditions (the RHS of

Equation A.35) are not included in Equation A.38.

Similarly, applying Galerkin’s method to the stretch condition Equation A.16

yields: ∫ L

0
Pm[12(r′nr′n − 1)− λ̃− PsA

EA
]ds = 0 (A.44)

where hydrostatic pressure, Ps, can be approximated by interpolating pressures at

both ends and the midpoint of the element using shape functions that are the same

to Pm in Equation A.37:

Ps = PtPst, t = 1, 2, 3 (A.45)

Combining approximating relations Equation A.30, Equation A.31, and Equa-

tion A.45 with Equation A.44 leads to:

Gm = AmilUklUki −Bm − Cmtλ̃t + CmtAPst = 0 (A.46)

where

Amil = 1
2

∫ L

0
PmA

′
iA
′
lds (A.47)

Bm = 1
2

∫ L

0
Pmds (A.48)

Cmt = 1
EA

∫ L

0
PmPtds (A.49)

where the subscripts k,m, t = 1, 2, 3, and i, l = 1, 2, 3, 4.
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A.3 Static Analysis Procedure

The inertia term in Equation A.38 is neglected in static analysis. Therefore, the

governing equations of rod become:

Ril = (K1
ijlk + λ̃nK

2
nijlk)Ujk − Fil = 0 (A.50)

Gm = AmilUklUki −Bm − Cmtλ̃t + CmtAPst = 0 (A.51)

where Fil includes all static forces such as gravity, the drag load due to the steady

current, and other applied static forces on the line.

The iterative Newton’s method is employed to solve the nonlinear equations.

By expanding Equation A.50 and Equation A.51 about an assumed solution or the

solution from the current nth iteration into Taylor series and neglecting the higher

order terms, we get:

R
(n+1)
il = R

(n)
il + ∂Ril

∂Ujk
(∆Ujk) + ∂Ril

∂λ̃n
(∆λ̃n) = 0 (A.52)

G(n+1)
m = G(n)

m + ∂Gm

∂Ujk
(∆Ujk) + ∂Gm

∂λ̃n
(∆λ̃n) = 0 (A.53)

which can be expressed in a matrix form as:

 K
t0(n)
ijlk K

t1(n)
iln

D
t0(n)
mjk +D

t0(n)
mt Dt1(n)

mn




∆Ujk

∆λ̃n

 =


−R(n)

il

−G(n)
m

 (A.54)

where
∂Ril

∂Ujk
= K

t0(n)
ijlk = K1

ijlk + λ̃(n)
n K2

nijlk (A.55)

∂Ril

∂λ̃n
= K

t1(n)
iln = K2

nijlkU
(n)
jk (A.56)
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D
t0(n)
mjk =

∫ L

0
PmA

′
kA
′
qdsU

(n)
jq (A.57)

D
t0(n)
mt = ∂

∂Ujk
(CmtAP (n)

st ) (A.58)

Dt1(n)
mn =

∫ L

0
(− 1
EA

PmPn)ds (A.59)

R
(n)
il = (K1

ijlk + λ̃(n)
n K2

nijlk)U
(n)
jk − Fil (A.60)

G(n)
m = AmilU

(n)
kl U

(n)
ki −Bm − Cmtλ̃(n)

t + CmtAP
(n)
st (A.61)

where the ranges of the subscripts are:

i, j,m, n, r, t = 1, 2, 3, l, k, p, q = 1, 2, 3, 4

There are 15 linear algebraic equations for each element at each iteration; however,

the subscript arrangement in the above equations is inconvenient for a numerical

solution. In order to overcome this, the order of the state variables Uil and λ̃m is

rearranged as:

DOF of Uil =


1 2 9 10

3 4 11 12

5 6 13 14

 for i = 1, 2, 3 l = 1, 2, 3, 4

DOF of λ̃m =
[
7 8 15

]
for m = 1, 2, 3 (A.62)

Equation A.54 at the nth iteration can be expressed as:

[K(n)]{∆y} = {F (n)} (A.63)
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where K(n) is the stiffness matrix, {y} contains the degrees-of-freedom of an element:

{y} = [U11, U12, U21, U22, U31, U32, λ̃1, λ̃2, U13, U14, U23, U24, U33, U34, λ̃3]T (A.64)

and the symbol ∆ refers to taking the difference between two consecutive iterations.

F (n) is the force vector:

{F (n)} = [−R(n)
11 ,−R

(n)
12 ,−R

(n)
21 ,−R

(n)
22 ,−R

(n)
31 ,−R

(n)
32 ,−G

(n)
1 ,−G(n)

2 ,−R(n)
13 ,−R

(n)
14 ,

−R(n)
23 ,−R

(n)
24 ,−R

(n)
33 ,−R

(n)
34 ,−G

(n)
3 ]T

(A.65)

The locations of the stiffness coefficients in matrix K(n) can be determined based

on the aforementioned rearrangements. For example, the term Kt0
1234 in Equation A.54

(i = 1, l = 3, j = 2, k = 4) is located at row 9 and column 12 in K(n), and Kt1
231

(i = 2, l = 3, n = 1) is located at row 11 and column 7 in K(n).

The global stiffness matrix is assembled from the anchor node to the fairlead node

in an ascending order. This assembling process leads to a system of 8× (N + 1)− 1

equations, where N is the number of total elements in the line. By reducing the

global stiffness matrix to a banded matrix with a bandwidth of 29, the system of

equations Equation A.63 can be efficiently solved by Gaussian elimination with back

substitution. The state variables are then updated by y(n+1) = y(n) + ∆y and are

used to re-evaluate K(n+1) and F (n+1) for solving ∆y again. This iterative procedure

continues until ∆y is smaller than a user-defined tolerance.
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A.4 Dynamic Analysis Procedure

In dynamic analysis, the governing equations, Equation A.38 and Equation A.46, are

integrated in time-domain. Equation A.38 can be rewritten in the following form:

M̂ijlkÜjk = −(K1
ijlk + λ̃nK

2
nijlk)Ujk + Fil (A.66)

= −F 1
il − F 2

il +−Fil = F̂il

where

M̂ijlk = Mijlk +Ma
ijlk (A.67)

The second-order differential equation, Equation A.66, can be converted to a

system of two first-order differential equations:

U̇jk = Vjk (A.68)

M̂ijlkV̇jk = F̂il (A.69)

In order to integrate Equation A.68 from (n)th to (n+1)th time step, a combined

second-order explicit-implicit integration scheme is employed. The mass term, M̂ijlk,

and the applied external load term, Fil, are integrated based on the second-order

Adams-Bashforth method, while the terms Ujk, F 1
il, and F 2

il are integrated by the

second-order Adams-Moulton scheme.

The term G(n+1)
m in the small stretch condition, Equation A.46, can be approxi-

mated by the first-order Taylor series expansion at nth time step:

0 = 2G(n+1)
m ≈ 2G(n)

m + 2∂G
(n)
m

∂Ujk
∆Ujk + 2∂G

(n)
m

∂λ̃n
∆λ̃n

= 2G(n)
m + 2K2

mijlkUil∆Ujk + 2Dt1(n)
mn ∆λ̃n (A.70)
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Consequently, Equation A.38 and Equation A.70 can be expressed in a matrix

form similar to that formulated in static analysis:

K̂
t0(n)
ijlk K̂

t1(n)
iln

D̂
t0(n)
mjk D̂t1(n)

mn




∆Ujk

∆λ̃n

 =


R̂

(n)
il

Ĝ(n)
m

 (A.71)

where

∆Ujk = U
(n+1)
jk − U (n)

jk (A.72)

∆λ̃n = λ̃
(n+ 1

2 )
n − λ̃(n− 1

2 )
n (A.73)

λ̃
(n− 1

2 )
n = 1

2(λ̃(n)
n + λ̃(n−1)

n ) (A.74)

K̂
t0(n)
ijlk = 2

∆t2 (3M̂ (n)
ijlk − M̂

(n−1)
ijlk ) +K1

ijlk + λ̃
(n− 1

2 )
n K2

nijlk (A.75)

K̂
t1(n)
iln = 2K2

nijlkU
(n)
jk (A.76)

D̂
t0(n)
mjk = 2K2

mijlkUil (A.77)

D̂t1(n)
mn = 2Dt1(n)

mn (A.78)

R̂
(n)
il = 2

∆t(3M̂
(n)
ijlk−M̂

(n−1)
ijlk )+(3F (n)

il −F
(n−1)
il )−2K1

ijlkU
(n)
jk −2λ̃(n− 1

2 )
n K2

nijlkU
(n)
jk (A.79)

Ĝ(n)
m = −2G(n)

m (A.80)

where the superscripts refer to time steps and the ranges of the subscripts are:

i, j,m, n = 1, 2, 3, l, k = 1, 2, 3, 4

The degrees-of-freedom of the state variables of an element are rearranged and

solved based on the same rules as those employed in static analysis, namely Equa-
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tion A.62 and Equation A.64, together with Equation A.81 and Equation A.82 below:

[K̂(n)]{∆y} = {F̂ (n)} (A.81)

where K̂(n) is the global stiffness matrix in dynamic analysis, and the global force

vector in dynamic analysis F̂ (n) is:

{F̂ (n)} = [R̂(n)
11 , R̂

(n)
12 , R̂

(n)
21 , R̂

(n)
22 , R̂

(n)
31 , R̂

(n)
32 , Ĝ

(n)
1 , Ĝ

(n)
2 , R̂

(n)
13 , R̂

(n)
14 ,

R̂
(n)
23 , R̂

(n)
24 , R̂

(n)
33 , R̂

(n)
34 , Ĝ

(n)
3 ]T

(A.82)

A.5 Boundary Conditions

Note that so far the RHS of Equation A.35, the elemental natural boundary condi-

tions, in the static and dynamic formulations has not been dealt with. During the

assemblage of all elements, the internal natural boundary conditions vanish except

the two end nodes of the global line, which will be determined from global bound-

ary conditions. Under different scenarios, both ends of the line in each of the three

dimensions can be clamped, free, elastically supported, or applied with concentrated

loads. These boundary conditions can be modelled as the connections to linear trans-

lational and rotational springs with different stiffness to be included in the static and

dynamic analyses. The generalized global stiffness matrix, K(n), the vector of degrees-

of-freedom, ∆y, and the generalized vector of forces, F (n), in Equation A.63 may have

to be modified according to different global boundary conditions at both ends of the

line.

Clamped End

For an end clamped in a certain direction, the essential boundary conditions, namely

the deflection and the slope in that direction, are both zero.
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In the program, the anchor node is numbered as the first node of the first element

in the line. Therefore, the anchor point fixed in x-direction indicates that ∆y(1)

and ∆y(2) are zero. This can be achieved by resetting all the stiffness coefficients

in the first and second row and column of K(n) to zero and by resetting F (n)(1) and

F (n)(2) to zero. Then the stiffness coefficients K(n)(1, 15) and K(n)(2, 15) (banded

global stiffness matrix) in static analysis and the stiffness coefficients K(n)(1, 1) and

K(n)(2, 2) (full square global stiffness matrix) in dynamic analysis are reset to one,

respectively.

Free End

If an end node is free along one axis, then the nodal natural boundary conditions in

that direction are prescribed as zero. Since the elemental natural boundary conditions

are excluded from the static and dynamic formulations, no modification is required

on K(n), ∆y, or F (n) in Equation A.63 for both analyses.

Hinged End

For an end hinged in one direction, the deflection and the moment at that end in the

same direction will be zero.

Compare a hinged end to its fixed counterpart. If the anchor point becomes

hinged along the x-axis, then the stiffness coefficients in the first row and the first

column of K(n) are prescribed as zero, and F (n)(1) is constrained to zero as well. In

addition, K(n)(1, 15) in static analysis and K(n)(1, 1) in dynamic analysis are reset to

one.

Elastically-Supported End

If the end is supported on linear springs, translational and/or rotational, in certain

directions, then K(n), ∆y, F (n) in Equation A.63 will be modified by the spring
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restoring forces and/or moments, which are functions of the corresponding degrees-

of-freedom.

For instance, if the anchor node is attached to a linear translational spring with a

stiffness of Kspring along the x-direction. Therefore in static analysis, Equation A.52,

establishing the relationship between the difference of the degree-of-freedom U11 and

the reaction force −R11, will be rewritten as:

∂Ř11

∂Ujk
(∆U11) + ∂Ř11

∂λ̃n
(∆λ̃n) = −Ř(n)

11 (A.83)

where
∂Ř11

∂Ujk
= K

t0(n)
1111 +Kspring (A.84)

Ř
(n)
11 = R

(n)
11 −Kspring · [U11 −Refanchor(1)] (A.85)

and the vector Refanchor(3) stores the x, y, and z coordinates of the anchor position

where the spring is at its original length.

In dynamic analysis, since the spring forces and/or moments are considered as

external forces and/or moments, they are integrated from nth to (n+ 1)th time step

by the second-order Adams-Bashforth scheme:

∫ t(n+1)

t(n)
Fspringdt =

∫ t(n+1)

t(n)
Kspring · [U11 −Refanchor(1)]dt

≈ ∆t
2 Kspring · 3[U (n)

11 −Refanchor(1)]− [U (n−1)
11 −Refanchor(1)]

= ∆t
2 Kspring · [∆U (n)

11 + 2U (n)
11 − 2Refanchor(1)] (A.86)

where ∆U (n)
11 is the known difference of the degree-of-freedom between the nth and

(n− 1)th time steps. The last two terms in the brackets of Equation A.86 remain on

the RHS to modify −R(n)
11 . ∆t

2 will be cancelled out during arithmetic manipulation,
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and the superscripts refer to time step.

End Node Under Concentrated Loads

For an end node under a known concentrated force or moment (may vary with time

but not with the state variables), the load is incorporated into −R(n)
il in Equation A.60

at the nth iteration in static analysis. It is then integrated by the second-order Adams-

Moulton method and added to R̂(n)
il in Equation A.79 at the nth time step in dynamic

analysis.

End Element Under Distributed Loads

A distributed force or moment applied along the end elements can be dealt with

similarly to the wet weight w̃i and the hydrodynamic force F̃ d
i in the term Fil in

Equation A.38. This implies that the distributed loads are multiplied by the shape

functions Al and integrated over the element length L. Sequentially, the loads are

integrated by the second-order Adams-Moulton scheme since the loads are known at

all time steps.

Sea Bottom

The sea bottom was assumed to be flat, elastic, and impenetrable in the program. The

sea floor was modelled as a linear spring carpet in static analysis and as a distributed

linear spring-damper system in dynamic analysis. The distributed spring support

force in the vertical direction can be described as:

qspring =


w

R
{R− (r3 − Zbtm)}, if R− (r3 − Zbtm) > 0

0, if R− (r3 − Zbtm) 6 0
(A.87)

where w is the wet weight per unit length of the line, R is the outer diameter, r3

represents the z-coordinates of all nodes, and Zbtm is the z-coordinate of the sea
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bottom.

The sea floor support force was included in the line equation of motion in a way

similar to that of an end element under distributed loads, namely:

∫ L

0
qspringAl(s)ds = µlm{

w

R
(R + Zbtm)}|m − γlkmU3k{

w

R
}|m (A.88)

where

µlm = L
∫ ξ2

ξ1
AlPmds (A.89)

γlkm = L
∫ ξ2

ξ1
AlAkPmds (A.90)

and the integration bounds of nondimensional arc length, 0 6 ξ1 < ξ2 6 1, represent

the portion of the line element that contacts the sea floor.

In dynamic analysis, the sea floor friction was modelled as a distributed linear

damper system:

qdamper =


Cfµf

r′

|r′|
, if R− (r3 − Zbtm) > 0

0, if R− (r3 − Zbtm) 6 0
(A.91)

where

Cf =



−1, if Vt > CV

− Vt
CV

, if Vt 6 CV

1, if Vt < CV

(A.92)

where Vt is the tangent velocity of the line, CV is the tolerance of the tangent velocity,

and µf is the dynamic friction coefficient of the sea bottom.

Therefore in dynamic analysis, the term resulted from the dynamic friction of the
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sea floor was added to the RHS of Equation A.66

∫ L

0
qspringAl(s)ds = µlmCfµf{w

r′

|r′|
}|m (A.93)

The coefficients, µlm and γlkm, for elements around the touch down point vary with

time because of the sea floor boundary condition. Thus, µlm and γlkm were evaluated

at every time step for the portion of the element that lies on the sea bottom.



Appendix B

Bilinear Interpolation of The

DeepStar Database

Figure B.1 illustrates one interpolation grid, ABCD, on a 2-D Cartesian plane. Given

four known function values, f(x1, y1), f(x2, y1), f(x2, y2), and f(x1, y2), at four tabu-

lated data points, A, B, C, and D, the objective is to find the bilinearly-interpolated

function value, f(x, y), at the point P .

The function values, f(x, y1) and f(x, y2), at the intermediate points, Q1 and Q2,

are first approximated by:

f(x, y1) ≈ x2 − x
x2 − x1

f(x1, y1) + x− x1

x2 − x1
f(x2, y1)

f(x, y1) ≈ x2 − x
x2 − x1

f(x1, y2) + x− x1

x2 − x1
f(x2, y2)

(B.1)

The value f(x, y) at the point P is then interpolated by:

f(x, y) ≈ y2 − y
y2 − y1

f(x, y1) + y − y1

y2 − y1
f(x, y2) (B.2)

where f(x, y1) and f(x, y2) are plugged in from Equation B.1.

B-1
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Figure B.1: Bilinear interpolation grid

In the case of interpolating the DeepStar database, the OX-axis represents the

state variable, Vr, while the OY -direction stands for the state variable, A∗. After the

state variables are obtained from the zero up-crossing analysis of the last VIV cycle,

a searching algorithm will determine the grid on which the point (A∗, Vr) is located.

The hydrodynamic coefficients for the current VIV cycle are then approximated by

calling the bilinear interpolation subroutine.
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