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Abstract	
 
 
Frequent advection fog exerts a significant impact on the Grand Banks of Newfoundland 

and poses a significant hazard to marine and aviation activities. Improved understanding 

of regional fog processes, climatology, and predictability could offer significant economic 

and safety benefits. Although this regional fog issue has been recognized for generations, 

efforts to fully assess the scope of the issue and reduce its impacts have been limited by a 

lack of long-term, reliable observations of the ocean environment. The advent of offshore 

oil platforms can help us address this data gap. These platforms provide stationary 

offshore observations, as they are required to collect visibility data in support of the 

marine and air traffic that service them. Currently, platform records provide cover 1998 to 

present. These reports form the primary source of data for our research, and have been 

used to establish a baseline climatology of fog within the Grand Banks, including 

descriptions of seasonality and diurnal variability. By treating low visibility events as a 

point process, the climatology of fog event characteristics including event duration, 

persistence of fog cover, and coincident weather conditions is further examined. These 

considerations help identify and classify distinct fog event types and inform preliminary 

analyses of synoptic climatology. Results are currently being used to guide parallel efforts 

to develop fog identification and prediction tools for the Grand Banks region. 
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	Chapter	1	
1.1 Overview/	background:	
 
Frequent and severe advection fog events on the Grand Banks of Newfoundland present a 

health and safety hazard to marine operations in the region. The severity of the fog 

problem in Atlantic Canada is evident in maps such as Figure 1, produced by Phillips in 

1990, showing the average annual number of days with fog (including mist) over Canada 

for a 30-year period (1951 – 1980). The highest values (more than 90 days/year) are 

found along the coast of Nova Scotia and Newfoundland in Atlantic Canada, and regions 

of the Canadian Arctic Archipelago. Southeastern Newfoundland, located very near the 

Grand Banks, experiences even higher rates of 150 fog days per year.  

 

Figure	1	:	Annual	number	of	days	with	some	fog	(1951-	1980)	from	Philips	(1990) 
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The advection fog problem on the Grand Banks has been recognized for generations, but 

an in-depth study of the problem has been limited by data availability. While long-term 

observations at climate stations have facilitated fog research on land, comparable 

observations have not been available for the marine environment. Direct fog observations 

in offshore environments have traditionally been limited to opportunistic observations 

(rough estimates) of opportunity from vessels that were either outfitted with visibility 

sensors or had personnel on board that could report weather conditions (Koracin and 

Dorman, 2001); these are sometimes supplemented by brief field campaigns (e.g. Taylor, 

1915; Taylor 1917).  

 

 However, this is now changing. The growth of the offshore oil industry provides a new 

opportunity: offshore oil platforms are required to collect visibility data in support of 

marine and air traffic moving between Newfoundland and the platforms. These reports 

will form the primary source of data for this research, as they have been archived for most 

of the last decade and half.  

 

Observational data from oil platforms have been used to establish and explore the fog 

climatology in the vicinity of the Grand Banks, giving us an opportunity to quantify the 

frequency, duration, and severity of fog events and lay the groundwork for prediction 

efforts. For the first time, a detailed description of the fog problem on the Grand Banks 

has been produced.  
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Although the study of fog is complicated, improving the knowledge of fog processes, 

climatology, and predictability offers significant economic and health/safety advantages. 

Previous studies on fog suggest that climatological data can help in developing a better 

understanding of fog formation and forecasting methods (Avotniece et al., 2015; 

Sugimoto et al., 2013; Kim and Yum, 2010). Studies by Tardif and Rasmussen (2007) 

and Hansen et al., (2007) suggest that an improved understanding of fog formation 

requires an exploration of fog climatology; this understanding is itself a necessary first 

step in improving visibility predictions (Gultepe, Tardif et al., 2007). This research 

contributes to this effort at the Grand Banks of NL.  

 

The following chapter provides an overview of fog physics and prior research into 

typology, geography, and climatology.  

 

1.2 Physics	of	fog	and	formation	processes:	
 
Fog is a collection of suspended water droplets or ice crystals in the atmosphere near the 

earth surface; it reduces visibility and, in the right conditions, can contribute to icing on 

manmade structures (aircraft, marine vessels etc). Operationally, fog is normally only 

reported when it reduces horizontal visibility to less than one kilometer (Van Schalkwyk 

and Dyson, 2013). However, researchers have often used different definitions based on 

their study area and goals (Westcott, 2004; Meyer and Lala, 1980). Fog is formed when 

water vapor condenses near the earth’s surface; there are many different processes that 

can produce this condensation, as well as different processes that can cause its dissipation 
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(i.e. re-evaporation).  Fog is typically classified on the basis of the formation mechanism, 

and the most common ‘types’ of fog observed can vary considerably from one region to 

another. In general, fog is most likely to form if i) there is a strong temperature difference 

between the ground and the air, ii) the humidity is high and/or there is source of 

atmospheric moisture nearby, and/or iii) air is experiencing strong cooling. Similarly, fog 

can be dissipated by i) reducing land/air temperature contrasts, ii) removing moisture 

from the atmosphere (e.g. through precipitation), or iii) warming air.  It may also be 

formed or dissipated by mixing air with different temperatures and humidity; for 

example, vertical mixing of dry air aloft with saturated surface air by strong winds is a 

common fog dissipation/prevention mechanism.  A brief overview of fog formation types 

and dissipation mechanisms follows.   

 

1.2.1 Condensation:	
 
Condensation is the process of converting water vapor to a liquid state. The water vapor 

amount in the air is extremely variable, as is the air’s maximum capacity to hold water. 

This moisture holding capacity is a function of air temperature, rising as air warms and 

reducing as it cools. If air is cooled to the point that it cannot retain the moisture it is 

currently holding, condensation will occur. The air is then warmed through latent heat 

release, potentially limiting further cooling (and condensation).  Therefore, the interaction 

of temperature and water vapor cannot be ignored in consideration of fog and cloud 

formation. 
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1.2.2 Saturation/	Vapor	pressure:	
 
Air is a mix of individual gases, with each contributing to the overall gas pressure. The 

respective individual pressures for each gas are called partial pressure. Water in the form 

of vapor is a gas, and its partial pressure is called vapor pressure (e). 

 

Air at a given temperature has a maximum proportion of water vapor that it can contain, 

referred to as the saturation vapor pressure (es).  If at any point e reaches or exceeds es, 

the air has become ‘saturated’ and any excess water vapor will be converted to liquid 

water. In general, the water vapor   condenses into liquid faster rather than it could 

evaporate again. This condensation process leads the humidity toward the equilibrium 

(saturation) value (Wallace and Hobbs, 2006). This process happens quickly enough that 

vapor pressure will rarely exceed saturation for long, and relative humidity (e/es x 100%) 

rarely exceeds 101%. That is, air is commonly ‘unsaturated’ (e < es), reaches saturation 

under the right conditions (e = es), and is rarely and only briefly ‘supersaturated’ (e > es).  

 

1.2.3 Claussius-Clapeyron	equation:	
	
The relationship between temperature and saturation vapor pressure has been quantified 

by the Claussius-Clapeyron equation. Separate calculations are necessary for saturation 

relative to water and ice, but the form most commonly found in introductory texts focuses 

on saturation relative to liquid water (Wallace and Hobbs, 2006):  

𝑒# = 	 𝑒& exp
L
R,
	.		

1
T&
−	
1
T  
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In the Claussius-Clapeyron equation,		𝑒& = 0.611 kPa, T0 = 273 K,	R, = 461 J 

k23	kg23, and	L	is	specific	latent	heat;	 

L	ABCDE	 = 2500.8 − 2.36	T + 0.0016	TM − 0.00006	TN	 	J/g  

respectively, these are saturation relative to 0 oC water, the freezing point of water, the 

gas constant for water vapor, and latent heat of vaporization. Other mathematical 

formulas have been developed; however, all present es as an exponential function of air 

temperature T.  The resulting es vs. T curve is shown in Figure 2, and emphasizes that a 

one-degree temperature change results in much higher vapor capacity change at higher 

temperatures.  

 
 

 
Figure	2:	Graph	of	Clausius-Clapeyron	Equation	

 
When the capacity of air to hold water in the form of vapor decreases, in other words 

when air temperature decreases, condensation will eventual occur. The temperature at 

which a given air parcel will experience condensation is referred to as the dew point 
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temperature (Td). Under real atmospheric conditions, water vapor needs solid materials 

and particles for condensation to occur. Therefore, solid particles are necessary elements 

in the condensation and beginning of fog droplet formation. In practice, there are always 

sufficient aerosols in the real atmosphere to provide the necessary condensation surface.  

 

In summary, all air contains water vapor of varying quantities. The lower the air 

temperature, the less maximum capacity for vapor it holds. When air is cooled, relative 

humidity increases until at a particular temperature (dew point) the air becomes saturated. 

Any extra water vapor will condense with the temperature dropping below the dew point. 

As a result of this cooling process occurring close to the ground, fog is formed. 

 

1.3 Types	of	fog:	
 
A fog classification scheme was introduced by Willett (1928), based on the cooling 

mechanism that drives saturation. Not all types of fog can occur everywhere. Generally, 

in addition to classifying fog based on formation processes, the location where the fog has 

formed is also an important classification factor (Koracin et al., 2001). 

For our current purposes, the initial formation mechanisms are used to separate fog types. 

The main five types are described below.  
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1.3.1 Radiation	fog:	
 
The most common type of fog addressed in scientific literature is radiation fog, which 

usually forms when an air mass or the land surface cools through radiative processes. In 

some regions, it is largely a seasonal phenomenon; e.g., at Cape Town International 

Airport, radiation fog usually happens during winter nights with a clear sky (Van 

Schalkwyk, 2011).  The exact timing of this seasonality can vary considerably from site 

to site, however. As a general rule, radiation fog forms overnight under clear skies with 

weak surface winds, when strong radiative cooling of the land surface leads to sensible 

heat loss from the overlying atmosphere. It often dissipates shortly after sunrise, when 

radiative surface heating begins, or with the onset of winds, which pull dry air from above 

into the fog layer (Tardiff and Rasmussen, 2007). Areas dominated by radiation fog will 

often show a strong diurnal cycle in their fog climatology, with fog forming overnight 

and disappearing sometime after sunrise. 

 

1.3.2 Advection	fog:		
 
This type of fog forms through the horizontal transport of heat (advection), most often 

when moist and warm air moves across a cold surface (Tardiff and Rasmussen, 2007). 

For example, advection fog could form when moist tropical air passes over a cold water 

in a marine environment or an area covered with snow. It is a common occurrence along 

sea-surface temperature (SST) boundaries between cold and warm water currents, but 

may form anywhere a surface temperature boundary is present. Winds can push advection 

fog well beyond these boundaries; e.g. marine advection fog is often pushed towards 
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nearby coastal communities. Advection fog can be very persistent, and may last for hours, 

days or even weeks. For advection fog to disperse, one of the factors that causes its 

formation needs to change; e.g.  heating up the cool surface, changing wind direction, or 

adjusting the amount of moisture in the air (Koracin et al., 2014). 

 

1.3.3 Evaporation	fog:	

Evaporation fog forms when cold, dry air passes over warmer water; it can be considered 

a type of advection fog (cold advection), and is sometimes referred to as smoke or steam 

fog. It is often seen on lakes or near coastlines.  In most affected locations evaporation 

fog is most common in the early morning during fall or winter, when the humidity is high, 

winds are light, and the temperature difference between air and water is great. 

Evaporation fog will often dissipate with an increase in wind speed or when the 

temperature difference between air and water decreases due to sunlight or warm wind. In 

the winter, evaporation fog often occurs over waters near the coastline or openings in the 

Arctic sea ice (Souders and Renard, 1984). 

1.3.4 Cloud-base	lowering	fog	(CBL):	

In general, CBL fog forms when the atmosphere is very stable and air near the surface is 

cold. So, in most locations CBL fog happens during the night. This type of fog forms 

when the top of a cloud cools, usually through radiative processes. As the cloud cools, 

some of the moisture in the cloud condenses into droplets which cause the base of the 

cloud to extend downward, until it reaches the surface. CBL fog typically dissipates when 

air temperatures near the surface increase (Kyle et al., 2003). 
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1.3.5 Precipitation	Fog:	

Precipitation fog happens when precipitation encounters air that is close to saturation. 

When the precipitation near the surface evaporates, the air becomes saturated. This type 

of fog may dissipate when wind speeds increase, or alternatively, when the temperatures 

increase in the lower layers (Tardiff and Rasmussen, 2007). 

Of these types, advection fog is the most common type affecting the Grand Banks. One of 

the reasons for high fog occurrences in Newfoundland is the suitable neighboring marine 

environment, with a nearby convergence of warm and cold ocean currents (Koracin et al., 

2014).  

1.4 Implication	&	Impacts	of	Fog	
 
Decreased visibility due to fog is a hazard to all types of traffic. Its impact has 

significantly increased during the last few decades due to increasing air, marine and road 

traffic (Croft, 2003 and Valdez, 2000). The cumulative financial and human losses related 

to fog and low visibility are now comparable to the losses associated with a single 

extreme weather event such as a tornado (Allan et al., 2001).  

 

While ships and commercial boats can navigate in low visibility by relying on radar and 

GPS to reduce marine collisions and avoid groundings, technology cannot solve all 

problems associated with low visibility on moving vessels. Moreover, radar is not 

available for terrestrial traffic such as cars and fog remains a major safety concern on the 

roads, capable of causing multivehicle accidents in urban environments (Whiffen et al., 
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2003).  

Fog has a significant impact on air traffic. During heavy fog events, flights are often 

delayed or cancelled. Some forms of fog (e.g. advection fog) can develop relatively 

quickly, preventing aircraft from landing with little notice and requiring costly re-routing.  

For these reasons, the timely prediction of visibility at airports has a huge potential 

economic value (Veljovic et al., 2015). It has been suggested that accurate forecasting for 

the JFK airport in New York City (NYC) could save up to $500,000 per fog event 

(Tardiff and Rasmussen, 2007).  

Fog also poses a significant hazard to marine activities. Worldwide, 32% of accidents at 

sea occur during dense fog events (Tremant, 1987). Another recent study suggests that 

70% of marine incidents in Atlantic Canada occur during fog (Wu et al., 2009); this is 

likely an overestimate, but even half this value would be significant.  

 

1.5 Geography	of	Fog:	
 
Fog is a very local phenomenon, with topography, surface conditions, and meteorological 

conditions combining to influence the spatial extent, duration, and severity of fog events, 

as well the fog types that occur. Many locations are dominated by a specific fog type; 

however, multiple types occur at most study locations.  Because the physical processes 

and required meteorological conditions vary considerably between fog types, it is often 

necessary to carefully differentiate between types when studying fog physics or 

forecasting techniques. This does much to explain the frequent reinterpretation and 

extensions of fog-typing schemes presented in academic literature, as researchers modify 
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definitions to reflect the needs of specific geographic locations or user needs.  For 

example, Tardif and Rasmussen (2007) refined a classification algorithm of fog and 

organized it into 5 types (Precipitation, Radiation, Advection, Cloud-base lowering, and 

Morning evaporation) that reflect the mechanisms of formation in the NYC region. By 

contrast, only three of types (radiation, advection and cloud-base-lowering fog) were 

investigated by Van Schalwyk and Dyson (2013) at the Cape Town International Airport. 

Similarly, fog events in South Korea were classified using Tardif and Rasmussen’s 

(2007) algorithm with an added advection-radiation type (Belorid et al., 2015).	

 

Variations in land surface and coastal characteristics can also affect the dynamic behavior 

of fog (Koracin et al., 2005). For this reason, Leipper (1994) and Kim and Yum (2010) 

suggested additional categories distinguishing between sea fog and coastal fog. They 

consider coastal fog to form over coastal inland areas, while sea fog forms over marine 

areas and sometimes extends onto land. It has been further suggested that fog at sea 

should be divided into cold and warm fog types (Saunders, 1964).  

 

Some researchers have employed typing schemes based on the underlying synoptic 

conditions driving fog, rather than the specific cooling processes involved. For example, 

on the west coast of Korea (Incheon International Airport), Kim and Yum (2010) 

organized fog events into four patterns based on the synoptic condition at the time of fog 

formation: migratory high pressure, low pressure, North Pacific high pressure and 

Siberian high pressure. This reflects a move away from a consideration of thermodynamic 

drivers of fog to an emphasis on the realities of operational forecasting, which typically 
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focuses first on synoptic scale conditions. Unfortunately, these sorts of synoptic 

classifications are regionally specific, and need dedicated research to apply in new areas. 

 

The formation and duration of fog is not easy to predict, as many factors are involved in 

generating and dissipating fog on land and sea. To be able to better forecast fog, 

establishing long-term fog variability is an important step (Tanimoto et al., 2009). This is 

often a first step in analyses of fog impacts on various stakeholders (e.g. the agricultural 

sector; Bendix,2002; Uyeda and Yagi, 1982), with such studies providing helpful 

information on long-term variability of low-level clouds and fog. Sugimoto et. al., (2013) 

used 80 years of visibility data to investigate monthly fog frequency and study long-term 

variation in fog frequency on Hokkaido Island, Japan. A long term variation in local 

meteorological variables such as air temperature, humidity and wind speed is controlling 

fog generation in the region of study.  

 

As the work cited above demonstrates, research approaches often vary to reflect the 

geographic situation of specific study areas.  Fog research on the Grand Banks is no 

exception. Research in the area began in earnest with Taylor’s detailed study of marine 

weather in the Grand Banks (Taylor, 1917). While the primary purpose of Taylor’s field 

campaign was to track iceberg movement, he took the opportunity to collect a range of 

weather observations which were later applied to fog analysis. This included upper air 

observation using kites, records of observed fog occurrence, and estimates of warm and 

cold air advection (Taylor, 1917; Koracin et al., 2014). Taylor’s early research illustrates 

the value of new, detailed observations to improve the understanding of physical fog 
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processes.  His work drew from a set of newly available marine weather observations to 

gain a sense of overall climatology, and eventually led to a physical model of Grand 

Banks fog formation. According to him, fog forms due to air blowing from warm water 

into the cold water of the Grand Banks in all observed cases: that is, advection fog.  

 

1.6 Frequency	and	Variability	in	Fog:		
 
A variety of statistical analyses have been applied in the study of fog frequency, 

likelihood, and variability. Often researchers have restricted analysis to data specific to a 

small geographic location; therefore, results are geographically specific and should not be 

used to create a generalized picture of fog in all areas. However, comparing the frequency 

and timing of fog at a variety of locations provides a useful comparison point for the 

Grand Banks. A brief summary of relevant studies is presented below.  

 

Many quantitative measures have been used to describe the climatology of fog. One 

simple, common metric is the average annual and/or monthly number of days with 

observed fog (‘fog days’) over any location (Phillips, 1990). For example, the mean 

annual and monthly number of fog days over 14 stations was studied by Avotniece et. al., 

(2015) in Latvia. The problem with focusing on a mean annual monthly number of days 

with fog is that if a day has only one hour of low visibility, it is treated the same way as a 

day with multiple fog observations (see Chapter 2). For this reason, a more detailed 

climatology, featuring annual and diurnal variations, is often used. Figure 3 shows a 

description of the frequency of fog as a function of month and time of day for Shearwater, 
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Nova Scotia (Gultepe, Pagowski & Reid, 2007). Fog climatology can be a useful 

operational planning tool for stakeholders affected by low visibility (Hansen et al., 2007), 

particularly in areas impacted by radiation fog (which demonstrates a strong diurnal 

cycle), or advection fog driven by diurnal variations in surface winds. Given that the 

operational concern is whether fog is more or less likely to occur, a strong diurnal cycle 

can help stakeholders identify the best times to operate while avoiding the hazard. It is 

important to note that fog normally only happens for a fraction of the time during any 

given fog event, and the criteria for defining a fog event vary between researchers 

(Gultepe, Pagowski & Reid, 2007). 

 

 

 

 

 

 

 

 

 

 

 

 

Some researchers further analyse frequencies of specific fog types. For example, Van 

Figure	3:	Shearwater,	Nova	Scotia.	The	time	period	covers	from	1970	to	2004	with	Vis<	1	km.	The	y	
axis	shows	the	day	and	month	of	 the	year	and	x	axis	shows	the	time	of	day.	The	color	bar	shows	
the	probability	of	fog	occurrence	(Gultepe	et	al,	2007b) 
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Schalkwyk (2013) investigated the characteristics of three types of fog, further including 

consideration of minimum visibility and event duration at the Cape Town International 

Airport. The results showed that radiative processes are the most common cause of fog 

formation, and further that radiation fog mostly happens in the winter, while CBL fog and 

advection fog are more likely between March and August.  All fog types formed at night 

and dissipated during the day; however, advection tended to start close to sunrise and 

showed larger variation in onset times. Similarly, winter fog in the Sacramento area was 

tested by Suckling and Mitchell (1988) at four sites. They studied the mean number of 

moderate to dense fog hours, the mean number of fog hours (include light fogs), and the 

average seasonal minima and maxima. Results showed that the urban sites experienced 

more fog than other sites; however, urban sites do not necessarily experience greater fog 

densities (severity). In the NYC region, Tardif and Rasmussen (2007) demonstrated the 

regional influence of land surface characteristics, with rural areas experiencing more fog 

events. In NYC, it seems precipitation fog has the longest duration; however, the density 

precipitation events were less compared to other types of fog. By contrast, radiation fog 

was marked as the highest density of all types. 

 

Statistical analysis also shows that fog frequency is related to atmospheric circulation and 

local geographical elements (Cereceda et al., 2002). Climate characteristics of fog 

formation within 14 major observation stations in Latvia were investigated by Avotniece 

et al., (2015). The results showed a significant difference in the spatial and temporal 

distribution of the annual number of days between those observation stations. They 

investigated associations between fog and other weather variables, such as precipitation 
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and air temperature at each site. The results showed fog occurring with precipitation, and 

the trend analysis of fog and air temperature indicated that the decreasing fog frequency 

in Latvia is associated with an increase in air temperature.  

 

In addition, studies conducted by Veljovic et al., (2015) identify a linear trend in the 

number of fog events moisture at the Belgrade Airport, along with an increase in the 

overall number of days with fog during the winter. The temporal distribution of the 

number of events in the winter time was six times higher than during summer time. 

Lower visibility at this site mostly happens at night and in the early morning, which 

suggests radiation fog dominates the area.  

 

Since long term, accurate fog forecasting is not yet available, short-term forecasting of 

fog events (informed by climatological analysis) remains the focus of most operational 

forecasting efforts. Hilliker and Fritsche (1999) used climatology for the short-term 

prediction of ceiling and visibility at the San Francisco International Airport, using 

surface variables as predictors in the development of a multiple linear regression model. 

The results showed that the inclusion of upper-air data, which describes the amount of 

moisture in the boundary layer, may be as important as surface predictors. 

 

1.7 Synoptic	Climatology:		
 
Synoptic climatology links atmospheric circulation to different local climates, and studies 

the relationships between them (Sheridan and Lee, 2011). Furthermore, synoptic 
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climatology offers approaches to studying and classifying large-scale atmospheric 

circulation variables into smaller categories of synoptic patterns (Barry and Perry, 2001). 

A number of previous studies have applied this perspective to the study of fog, tracing 

synoptic-scale influences back to local scale fog.  These efforts recognize that predicting 

fog formation and dissipation often is not possible using only information on local surface 

conditions (Lewis et al., 2003). Instead, a broader sense of factors influencing advection, 

boundary layer depth, or vertical motion are necessary. Again, these synoptic influences 

are often regionally specific, reflecting local topography and surface conditions, and 

cannot be easily generalized to other locations. Still, considering the synoptic conditions 

associated with fog may be critical to better understanding the mechanisms of fog 

formation in a specific study region.  

 

In a synoptic climatology analyses, sea level pressure (SLP) is the most consistently used 

climate variable because it represents large-scale atmospheric circulation characteristics. 

For example, the relationship between large scale atmospheric circulation patterns and 

precipitation using SLP in Victoria (Australia) was investigated by Pook et al., (2006). 

However, adding more relevant climate variables in marine fog studies such as skin 

temperature, which shows the strength and position of ocean currents, could represent the 

large-scale fog forcing more accurately. In fact, variables that describe surface 

temperature distributions are often employed in synoptic fog analyses. At sea, 

relationships between sea surface temperatures (SST) or ocean skin temperatures and dew 

point temperature (Td) can be among the most useful fog indicators.  Typically, these are 

combined with some analysis of circulation, such as sea level pressure (SLP) fields. Over 
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the U.S. West coast, strong SST gradients in the presence of northwesterly flow combined 

with synoptic-scale subsidence associated with an anticyclone are important elements in 

generating fog (Koracin et al., 2001). Koracin et al., (2005) indicated in their simulation 

that radiative cooling related to warm, dry air or moist, cool air at the marine layer could 

be another important mechanism in fog formation.  Other studies emphasize the role of 

temperature differences between the sea surface and overlying boundary layer air, and the 

influence of strong tidal mixing in coastal fog (Choi et al., 2000). Weather patterns 

favorable for dissipation are also often examined. For example, Choi et al., (2000) 

connect the formation and dispersal of advection marine fog in the Yellow Sea to the 

passage of low pressure systems. 

  

Recent studies have either employed Kohonen’s self-organizing map (SOM) to perform a 

detailed synoptic climatology of atmospheric circulation and fog (Van Schalkwyk et al., 

2013), or addressed the possibilities of this technique for regional fog analyses (Tymvios 

et. al., 2008).  The SOM approach in terms of synoptic climatology allows a large number 

of synoptic patterns to be compared and connected to specific phenomena to to better 

visualization of synoptic events. In this way each synoptic pattern could be referred to 

one of the nodes in SOM map, which can be helpful in investigating those phenomena 

(Cavazos, 2000; Hewitson and Crane, 2002; Reusch et al., 2005). In recent years several 

studies have been done based on SOM in synoptic climatology to validate the general 

circulation models (Brown et al., 2010; Finnis et al., 2009; Higgins and Cassano, 2010). 

Beside application SOM in climate models, some other SOM based studies have focused 

on precipitation and atmospheric circulation (Cavazos, 2000). In other study the 
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variability of growing season has been identified in southern Africa by applying SOM on 

precipitation data (Tadross et al., 2005).  

In the context of fog, Van Schalkwyk et al., (2013) used SOMs to examine synoptic 

circulation patterns related to foggy days at the Cape Town International Airport. They 

have identified that radiation fog is most frequent fog in the region due to radiative and 

advective processes. Moreover, the fog at that study area could form due to influence of a 

low on the southwest coast and high over the South Africa (Van Schalkwyk et al., 2013).  

 

The current study will build on previous synoptic climatological analyses, employing 

SOMs and canonical correlation analysis to explore synoptic-scale fog influences. These 

approaches were used to categorize daily synoptic sea-level pressure and skin temperature 

patterns for the Grand Banks. Further analysis focuses on fog events by using SOMs to 

identify synoptic situations associated with high fog frequency for the month of April to 

August (the typical Grand Banks fog season). 

 

1.8 Summary:		
 
 Frequent fog events pose significant hazard and safety issues to industries and residents 

in effected areas. Fog forms and develops due to multiple local microphysical, dynamic, 

and radiative processes; these are in turn influenced by boundary layer and synoptic-scale 

meteorological conditions (Gultepe, Tardif et al., 2007a).  The ways these various 

influences work in combination and opposition varies considerably between locations, 

and consequently understanding fog and improving predictability typically requires 



	 21	

detailed research on specific locations of interest. The current study focuses on improving 

our understanding of fog in the region of the Grand Banks of Newfoundland; it represents 

a first step towards the goal of improving operational fog prediction, which may be used 

for planning purposes and operational decision-making (e.g. planning offshore helicopter 

flights).  

 

The broad features of Grand Banks fog are reasonably well understood. It occurs year 

round, but is particularly common in summer, when prevailing winds over an ideally 

situated front between the warm Gulf Stream and cold Labrador Current promote 

advection fog. However, a detailed study of the problem has been limited by data 

availability. Previous studies on fog forecasting suggest that collection and climatological 

analysis of observational data is a key step starting point in efforts to improve prediction, 

and can inform understanding of fog formation (Hyvärinen et al., 2007). Our goal is to 

pursue this work using observational data from the Hibernia platform, giving us an 

opportunity to quantify the frequency, duration, and severity of fog events in the vicinity 

of the Grand Banks. For the first time, a detailed description of the Grand Banks fog 

problem based on long-term, in-situ observation has been produced. We further examine 

the synoptic climatology of Grand Banks fog, by applying the method of self-organizing 

maps and canonical correlation analysis to connect Hibernia fog events to broader 

weather conditions.  
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A detailed description of methods and data is provided in Chapter 2.  This is followed by 

a detailed description of fog climatology as observed at the Hibernia platform (Chapter 3) 

and synoptic-scale analyses (Chapter 4).  
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Chapter	2	

Data	and	Methods	
 
This chapter contains a description of all the data sets used in this research, which include 

climate station observations and atmospheric reanalysis.  This is followed by a 

description of the methodology that was used to investigate i) fog climatology and ii) the 

broader synoptic-scale climatology of fog on the Grand Banks of Newfoundland. 

 

2.1 Study	Area:	
 
The focus of the current project is the Grand Banks of Newfoundland, a collection of 

merged subsea banks located south-southeast of Newfoundland. Ocean depths are 

relatively shallow in the area, typically within the 50-100m depth range. Point source data 

for the region has been taken from the Hibernia platform, an offshore oil platform located 

approximately 315 kilometers east-southeast of St. John’s, Newfoundland and Labrador 

(Figure 4), with the coordinates 46°45.026′N 48°46.976′W. Hibernia is required to collect 

meteorological data in support of marine and air traffic moving between Newfoundland 

and the platform. These reports will form the primary resource of data, as they have been 

archived for most of Hibernia’s 1.5 decades of operation; this is a considerably longer 

record than it is available from several neighboring platforms (e.g. West Aquarius), and 

therefore better suited to the exploratory, data-driven methods employed in the current 

study.   
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Figure	4	:	Hibernia	location	map	(Blag	Nosey	Parker,	2017).		

 

2.2 Data	Sets:	
2.2.1 Observational	Data:	
 
Hibernia observations come from a weather station and sea surface monitoring equipment 

located on the platform. Archives have been maintained by AMEC Foster Wheeler, a 

consulting firm that has provided tailored weather forecasts for Hibernia through most of 

the platform’s operation.  While AMEC has used several formats for archiving this data, 

Marine Meteorological (MANMAR) reports have been used primarily in this study. 

MANMAR reports are standardized alpha-numeric codes used for reporting weather 

observations from ocean vessels, ports, and stationary platforms (like Hibernia).  They 

may be prepared by hand, but may also be reported in partial from by automated 

equipment. MANMAR contains observations on conditions such as weather, cloud cover, 

temperature, humidity, wind, visibility, and air pressure. These are one of several 
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meteorological/oceanographic report codes used by the World Meteorological 

Organization and similar agencies to archive and distribute information efficiently:  

“Coded	 messages	 are	 used	 for	 the	 international	 exchange	 of	
meteorological	information	comprising	observational	data	provided	by	
the	WWW	Global	 Observing	 System	 and	 processed	 data	 provided	 by	
the	 WWW	 Global	 Data-processing	 and	 Forecasting	 system.	 Coded	
messages	are	also	used	for	the	international	exchange	of	observed	and	
processed	 data	 required	 in	 specific	 applications	 of	 meteorology	 to	
various	 human	activities	 and	 for	 exchanges	 of	 information	 related	 to	
meteorology	(MANOBS,	2006)”.		

 

Observations for the Grand Banks marine environment over 14 years (1998 to 2014), at 

3-hourly intervals (0000, 0300, 0600, 0900, 1200, 1500, 1800 and 2100 UTC) have been 

used in this study. Specific information extracted from the MANMAR reports include 

visibility, temperature, dew-point temperature, wind speed, present weather conditions, 

and weather conditions observed between reports (ie. Conditions 1- and 2- hours prior to 

the current report). Some of this information is reported directly from measurement 

instruments (e.g. temperature, winds), but other information is based on the subjective 

interpretation of a human observer submitting the report.  For example, ‘weather 

conditions’ can be one of many prescribed categories (e.g. clear, foggy, mixed 

precipitation etc) noted by the observer at the time of report. While this subjective data 

can be difficult to interpret, it does contain explicit references to fog and related 

phenomena (e.g. drizzle) valuable to our analyses. 
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2.2.1.1 Data	Quality:		
 
Due to the mixed objective/subjective nature of MANMAR codes, several corroboration 

checks and adjustments were performed prior to quantifying Hibernia fog. First, 

individual observations were checked for consistency across different variables; for 

example, entries in which fog was reported with low relative humidity (below 95%). 

Physically inconsistent entries were removed and flagged as ‘missing’. In the overall 

database, 11.51% of entries were removed, and a further 17.26% of entries were missing 

from the raw data. The years 2003-2005 were also removed from consideration, as these 

data entries were missing some information required for our analyses. The final quality 

controlled data set used in the current study covers the fourteen years between 1998-2002 

and 2006-2014, with 38.44% missing data.   

 
2.2.2 NCEP/NCAR	Reanalysis:	
 
In addition to observational data extracted from MANMAR reports, reanalysis data 

covering a domain surrounding the study area has been employed. The first NCEP/NCAR 

Reanalysis, a research-oriented product resulting from the collaboration of the U.S. 

National Center for Environmental Prediction (NCEP), the U.S. National Center for 

Atmospheric Research (NCAR), and research partners at many international institutes 

was selected. This product was selected for its ease of implementation, coincidence with 

MANMAR observations (4x daily), and because it is as widely used product with a 

significant history in climate research. The product consists of a continuously updated 

gridded dataset (Kalnay et al., 1996), providing a wide range of atmospheric variables (air 

temperature, humidity, pressure, wind velocity, etc.).  The data is physically consistent 
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with available observations and a numerical weather prediction (NWP) model used in the 

reanalysis process.  The data set is effectively a ‘best guess’ of the atmosphere at a given 

time, based on prior NWP output and a wide range of available observations. It is 

available as frequently as 6 hour intervals (from 1948 to present); here, data with 

latitude/longitude resolution of 2.5° have been used. The data set provides information 

through the depth of the atmosphere (17 vertical levels), although only surface data has 

been used here. The reanalysis originally contained two data types; the first type (called 

an ‘analysis’ variable) incorporates direct observations, while the second is exclusively a 

product of a numerical weather model.  

Analysis variables used here include the following: 

• Air Temperature at 2m above the surface   

• Sea Level Pressure 

• U/V winds at 10m above the surface  

• Skin Temperature 

• Specific humidity at 2m	

2.3 Methods:	
 
The fog climatology at Hibernia was examined using a combination of simple statistics 

and a ‘declustering’ of the data to highlight individual events. Canonical correlation 

analysis (CCA) and self-organizing maps (SOMs) have been used to study synoptic scale 

weather patterns in our analyses. The relative likelihood and severity of fog associated 

with each pattern provide insight into conditions that promote (or prevent) fog in the area, 

and give guidance for fog forecasting. 
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In this section, a formal definition of these methods is provided; their application results 

are described in Chapters 3 and 4.  

 
2.3.1 Data	Declustering	and	Point	Process	Analysis	
 
Some pre-processing of the data was required prior to analysis. In particular, much of our 

climatological analysis required the data be ‘declustered’, moving from individual 3-

hourly station data to a sequence of fog events with variable length, separated by fog-free 

periods.  In order to do this, we took inspiration from Point Process statistical models 

(Brown et al., 2010).  These arise from extreme value theory, and provide a means of 

assessing the expected frequency, duration, and intensity of many extreme weather 

events. The core ideas are presented below, along with some background on extreme 

value analysis.  

 

Extreme value theory encompasses a set of statistical tools, useful for analyzing the 

likelihood, frequency, and/or character of rare, high impact events (Katz et al., 2002; 

Brown et al., 2010). The most common of these tools are two statistical distributions: i) 

the Generalized Extreme Value (GEV) distribution, used in the analysis of block maxima 

(i.e. the largest events recorded in a sequence of time ‘blocks’, such as annual maxima) 

and ii) the Generalized Pareto (GP) distribution, used in the analysis of all events 

exceeding some pre-determined threshold (so called ‘peaks-over-threshold’, or POT).  

The two approaches have their respective strengths and limitations.  The block 
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maxima/GEV approach is easy to implement and reduces concerns around 

autocorrelation, but limits the number of data points used in analysis.  The POT/GP 

approach provides a larger number of events and therefore reduced uncertainty, but may 

require careful pre-processing of data before use. This may include a semi-objective 

threshold selection (for ‘peaks’ identification) and a ‘declustering’ of data (i.e. grouping 

consecutive over-threshold observations into longer ‘events’). The choice between GEV 

or GP depends on the data being examined and the questions being asked, but in most 

cases both will provide some useful information on extremes (Coles et al., 2001; Rauthe 

et al., 2010).  

 

Another approach to analyzing extremes builds on data declustering and is referred to as a 

Point Process (PP) model. It builds on the GP/POT to include the analysis of event 

characteristics, rather than simply the likelihood that an extreme event will occur. Once 

declustered events are identified, appropriate statistical distributions can be determined 

for the number of events per year, event duration, peak event intensity, and many other 

event characteristics a user might be interested in (Coles et al., 2001).  

 

Declustering is a semi-objective process, and requires some careful testing and 

interpretation (Furrer et al., 2010). Considerations include which thresholds to use to 

mark the start of an event, what conditions must be met to declare an event over, and how 

much time is needed to separate two events.  For example, a user might need to consider 

whether a two-hour break in a rainstorm is enough to treat this as two rain events, or if it 

should be treated as a single (less persistent) event. Setting different declustering 
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parameters can give very different statistical results, but often additional information can 

be explored to address some of these differences. In our rain example, a user might widen 

the length of a ‘break’ needed to separate events, but add a statistical analysis of event 

persistence (32 % of the event with no rain).  

 

2.3.2 Canonical	Correlation	Analysis:	
 
Canonical correlation analysis (CCA) is a tool for exploring statistical relationships 

between two sets of multivariate data.  It has been used in this research to identify 

possible relationships between synoptic-scale conditions and fog frequency in the vicinity 

of the Grand Banks, and quantify the relative strength of these relationships. A brief 

synopsis of CCA follows; readers can refer to Wilks (2001) for more detail. 

CCA is a method that has been used widely in climate and atmospheric research (e.g. 

Xoplaki et al., 2000 and Tippett & Barnston, 2008). As a well-established tool for 

identifying the statistical relationships between two sets of variables through a joint 

covariance matrix, CCA has proven useful in forecasting applications (Van den dool, 

1994) and diagnosing large-scale atmospheric phenomena (Ward, 1998). In these 

applications, time series of two or more spatial fields (e.g. sea level pressure and surface 

temperature) are used to identify maximally correlated spatial patterns; that is, CCA will 

find the sea level pressure and surface temperature patterns, the strength of which are 

maximally correlated in time (Rencher, 1992). The procedure can be repeated to extract 

additional paired patterns, but it needs to be noted that the subsequent pairs must i) be 

independent of previous patterns (giving a correlation of zero), and ii) the correlation 
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between paired patterns will decrease with each iteration (Lebart et al., 1984). According 

to Sirabella et al., (2001), the process can continue until the number of joint pairs equals 

the dimension of the smaller of the original input fields (Sirabella et al., 2001). 

Mathematically, CCA can be described as follows: Consider two physical fields Y = (y1, 

y2, …, ym)’ and X = (x1, x2, …, xn)’; in the atmospheric sciences, Y is a typically vector of 

observations collected from n locations, while X is a vector of a second variable, observed 

at m locations. Given t observations of these fields, CCA looks for vectors a and b that 

maximize the following: r = correlation (a’X, b’Y).  Formally, U = a’X and V = b’Y, 

which are referred to as a pair of canonical variables (Bretherton et al., 1992), where a 

and b have the same dimensions as X and Y, respectively, and can be considered joint 

patterns of variability in the two original fields. Computationally, a and b can be found 

through a singular vector decomposition of the correlation matrix between X and Y. 

According to Repelli and Nobre, (2004) CCA is the most powerful method to compare 

fields in geophysical data. CCA can be a suitable statistical test in diagnosing aspects of 

the coupled variability of fields.  

In this study, CCA was used to identify variables with a strong synoptic-scale association 

with estimated fog probability, based on MANMAR data as predictors. That is, X was set 

to the likelihood of fog at Hibernia, and Y was set to a field suspected to influence fog 

likelihood (Figure 5). Fog probability was used instead of a binary absence/presence, as a 

continuous variable is better suited to CCA than categorical data. This value was 

estimated using cross-validated logistic regression; each year was predicted using a 

logistic regression fit using all other years of data. Trained against Hibernia fog 
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presence/absence data with Hibernia’s air temperature, dew point temperature, and wind 

speed as predictors, the regressions demonstrated statistically significant ability in 

estimating fog likelihood (see section 4.1.1 for details). For the purposes of this study, 

they represent a sufficiently accurate and continuous indicator of fog.   

CCA was applied to a number of geophysical fields covering the Grand Banks and 

surrounding areas, including air temperature, skin temperature of the ocean, sea level 

pressure, specific humidity, and wind fields ([zonal winds, meridional winds], or [u, v]). 

Greater correlation between resulting canonical variables implies a stronger link between 

fog likelihood (X) and one of these fields (Y); a stronger link implies the field has greater 

predictive power and may provide insight into physical drivers responsible for advection 

fog events. It should be noted that CCA is best suited to identifying linear relationships; 

another method (self-organizing maps) used in this study is suited to identifying nonlinear 

relationships, should these exist. Results are presented in Table 1 in Chapter.4. A diagram 

illustrating the relationships between variables is shown in Figure 5. 
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Figure	5	:	CCA	analysis.	A	diagram	illustrating	the	relationships	between	variables.	Using	logistic	regression,	Probability	
of	 fog	at	Hibernia	=	 f(Ta,	Td,	u,	v,	date,	 time),	where	Ta	=	Air	 temperature,	SLP	=	Sea	 level	pressure	and	SKT	=	skin	
temperature.	

	

 
 
2.3.3 Self-Organizing	Maps	(SOMs):	
 
The Self-Organizing Map is essentially an unsupervised artificial neural network (ANN) 

analogue to traditional cluster analysis, based on an algorithm originally introduced by 

Kohonen (1982). In the SOM process, the whole data set is used to train a simplified 

version of the original data (a ‘map’), consisting of a predetermined number of archetypal 

data points (‘nodes’) arranged in a two dimensional lattice.  During training, neighboring 

nodes are adjusted together, encouraging the lattice to adopt an easy-to-interpret order. 

The SOM algorithm is an unsupervised ANN, in that it doesn’t require a target value 

during training. Because no desired outcome is given, no comparisons are made to 

predetermine an ideal response. This can be contrasted to supervised ANNs, which 

attempt to optimize results relative to a predetermined target value; e.g. ANN-based 
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regression, which will attempt to optimize the estimate of a target (e.g. fog probability) 

relative to input predictors (e.g. air temperature and dew point). SOMs serve to reduce the 

dimensionality of data and ease of interpretation, and are often used to explore and 

interpret large data sets in geophysical sciences (Kohonen, 2001; Alhoniemi, 1997, 1998; 

Obu-Cann, 2001; Astel et al., 2007). 

 

One of the most attractive aspects of the SOM algorithm is its ability to convert a 

complex data set into a two-dimensional structure, while preserving the topology of the 

original data (Back et al., 1998).  The SOM process converts high dimensional data to a 

lower dimensional set, while emphasizing nonlinear statistical relationships and key 

clusters (Kangas, 1995; Kohonen et al., 1996; Zhang, 2009). In other words, key 

statistical information is retained and presented in an approachable manner. 

 
2.3.3.1 The	SOM	Algorithm	
 

A SOM consists of two interconnected layers: a multi-dimensional input layer and an 

output layer which results from a competitive learning process. The output layer 

represents a grid of M nodes in a two-dimensional space. The nodes have been defined as 

i = 1, 2, …, M. These nodes are vectors, with the same length as the input training data. 

Assume this length is n; then each node i can be represented by an n-dimensional weight 

vector Mi= [mi₁  …., min]. The weight vectors of the SOM form a codebook: over the 

course of training, the M nodes can be re-ordered such that neighbouring nodes become 
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similar, while separated nodes are likely to become increasingly dissimilar (Rustum, 

2009). 

 

This idea of neighbouring nodes results from the fact that the output nodes are connected 

to each other in a two dimensional lattice (topology), the shape of which is selected by the 

user. This lattice can be either rectangular or hexagonal, depending on the nature of the 

data and the user’s needs. Figure 6 gives some sample lattices, with nodes represented by 

red circles and connections between neighbours represented by black lines. For the 

simpler rectangular topology, individual nodes are connected to up to four neighbours, 

while the more complex hexagonal map connects up to six neighbors. It should be noted 

that nodes at the edge of the map are exceptional, since they have fewer immediate 

neighbors (Back et al., 1998; Vesanto et al., 2000).  

 

The number of nodes (M) and the topology (dimensions) of the lattice are subjective, and 

must be set by a user before training; however, some general guidelines for these choices 

have been proposed (Alhoniemi, 1997; 1998). One often used rule of thumb suggests that 

M should be proportional to the number of entries in the training data set (N) (Vesanto et 

al., 2000; Garcia and Conzalis, 2004): 

M = 5 N	 

Once M is determined, the relative number of rows to columns in the final SOM output 

map can be calculated as follows: 
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l1
l2 =

e1
e2 

 

Where l3 is the number of rows and lM is the number of columns in the final map, e3  is 

the biggest eigenvalue of the training data set, whereas the second biggest eigenvalue was 

identified as eM. In the above formulas, the logical mathematics and formal theories of 

determining a SOM’s map size have been explained. The map size and quality of the map 

after training could be also calculated based on quantization error value,  which is defined 

later in chapter 4. Another approach to evaluating the trained map is the Sammon map 

(Sammon, 1969). This provides a visual representation of the map’s ‘order’. In this study, 

the quantization error value has been used in combination with Sammon maps to select 

map size. The approach is explained in detail in Chapter 4. 
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Figure	6:	Examples	of	map	topologies	in	the	SOM	

 
 
2.3.3.2 Training	of	SOM	
 
In order to train the SOM map, the initial values of the elements of the weight vectors in 

the grids are randomly assigned. Then the weight vectors are updated through either a 

sequential (one observation at a time) or batch (multiple observations at a time) training 

algorithm. Regardless of the approach, both follow the same basic procedure (Rustum, 

2009). 

 

In the training process every variable has to be of equal importance. Therefore, it is 

important to give the same value to each entry point in our original data set and 

standardize the main data set (input data). In order to do this, the mean has been deducted 

from each variable in the multi-dimensional data and then divided the result by the 

standard deviation (following Alhoniemi, 1998).  
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In each training step, instances from the training data are compared to all of the SOM 

nodes. The Euclidian distance between the input training vector and node weights is 

calculated, and the node with the minimum distance (best match) is identified as the 

‘winner’. Mathematically, the Euclidean distance comparison can be expressed as:  

 

Di    =      xj − mij M	U
VW3 	  i= 1,2,…M 

 
In above equation, Di is the Euclidian distance between the input vector and the weight 

(or code) vector i, each with j elements; xj is the current input vector and mij is the weight 

vector i, and M is the number of neurons in the final SOM (or the size of the map). After 

determining the best matching unit, nodes within a training ‘neighborhood’ are identified.  

These are nodes connected to the winning node by >= r connections in our SOM lattice, 

where r is the current neighborhood size. For example, if r = 1 in a rectangular SOM, the 

four nodes surrounding the winner would be included in the neighborhood.  The winning 

and neighborhood nodes are ‘activated’, and adjusted to better match the input training 

vector xj:  

W t + 1 = 	W t + L t c t [V	 t − 	W	 t ] 

In this equation, t stands for time, L is a learning rate, V is the input vector, W is the 

neighborhood function centered in the winning unit at time t (weight), the c(t) defines the 

region of the influence in that input sample.  
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Figure	7	Tthe	training	procedures	of	the	SOM.	Node	13	is	the	winning	node	(or	Best	Matching	Unit;	BMU);		it	can	be	
seen	how	the	neighborhood	of	the	BMU	(node	13)	moves	toward	the	BMU	with	each	iteration.		Here,	N	(2)	is	a	bigger	

neighbourhood	(r	=	2),	while	N(1)	is	smaller	(r	=	1).	(After	Rustum,	2009) 

 

The process of random selection from the data, the competition for the winning node, and 

updating the winner and its neighborhood is repeated many times; typical trainings will 

include hundreds of thousands of iterations. As training proceeds, the neighbourhood size 

and learning rate decrease, gradually approaching one and zero respectively. As a result, 
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early stages of training will produce large adjustments in the overall SOM, while later 

iterations result in smaller refinements.  By the end of training, nodes in the map will 

have adopted key characteristics of the input data, and be strongly identified with the 

input data distribution. This ability of the nodes to adapt as group is labelled as “Self-

Organization”, since no external force or extension is used to cluster and organize the 

individual nodes (Penn, 2005). 

 

 

Figure	8:	Prototype	vector	mi	(t)	of	the	neuron	is	updated	close	to	data	vector	x(t)	to	be	mi(t+1)	(After	Rustum	(2009)).	

 
In this study, SOM analysis was used to explore synoptic scale weather patterns that 

promote fog and contribute to fog likelihood on the Grand Banks. Further details on our 

application of the algorithm are provided in Chapter 4.  

All statistical and climatological analysis was performed with R version 3.1.1, with the 

exception of SOM training which was been with SOM-PAK 

(http://www.cis.hut.fi/research/som-research/).  
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Chapter	3	
3.1 Fog	Climatology	
 
Climatological analyses provide a means of quantifying and communicating the scope of 

Grand Banks fog, both as a weather phenomenon and a hazard for marine workers. By 

matching scientific questions or stakeholder needs to suitable analysis tools, a foundation 

for informed operational decision-making and guidance for further research can be built. 

The following chapter begins this work through several detailed analyses of the Hibernia 

platform meteorological record.  Beginning with the construction of an annual cycle of 

fog likelihood, the chapter proceeds to establish a Grand Banks ‘fog season’, explore 

trends and interannual variability, and examine the climatology of fog events.  This 

represents an important first step towards understanding fog in this unique region, and 

applies both established and novel approaches to analyzing visibility.  All work is based 

on three hourly MANMAR codes, collected from 1998 through 2014.  

 

3.1.1 Identifying	Fog	in	the	Observational	Record	
 
Before exploring climatology, first it is necessary to identify fog instances in the Hibernia 

weather record. This not as simple as it may first sound.  Although MANMAR reports 

include a code describing current weather, it can be difficult to determine what the 

weather reporter meant when they indicated the presence of fog.  Similarly, fog may be 

superseded by another weather condition (e.g. rain, flurries etc) also present at the time of 

the report. Fortunately, related variables (e.g. visibility, dew point, and air temperature) 
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and neighboring entries in a time series can guide interpretation. By testing and selecting 

appropriate decision rules on the basis of all these factors, the process of identifying fog 

events can be automated and efficiently applied to long data sets.  

After a good deal of testing, the following criteria for identifying a fog event were applied 

to the data set:  

a) Visibility below 4km.  

b) Relative humidity above 90%.  

c)  Fog was reported as a weather condition within a three-hour interval.   

The first requirement ensures that any fog is sufficiently severe to require attention.  

While 4km visibility is not an operational concern, a higher (less severe) threshold has 

been chosen that would be more useful when exploring physical mechanisms driving fog 

formation.  While other atmospheric characteristics (local warming/cooling, aerosol 

content, cloud droplet size distribution, and more) can influence the severity of an event, 

the underlying cause of the fog remains consistent. For this reason, including more fog 

instances is potentially beneficial to understanding fog phenomenology. The second 

criterion helps limit our consideration to low visibility during favorable conditions for fog 

formation. In theory, fog indicates 100% humidity; however, in practice observed 

humidity might be somewhat lower or higher than this when fog is reported. In some 

cases, we noticed that fog was reported when humidity was considerably less than 80%. 

This may occur when fog is visible from the platform, but not present near the climate 

station. The final criterion provides further evidence that fog is a factor, even if rain, 

drizzle, or even snow are also factors over the course of an event.  The relative 
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contributions of these factors can vary quickly, with fog present continually but of 

shifting importance.  

 
Applying these criteria proved successful in removing key problems, including reports of 

fog during low relative humidity and/or high visibility.  A total of 840 entries were found 

where this was the case, and may have resulted from i) visible fog below or above the 

platform level, ii) instrument error (e.g. malfunctioning moisture sensors), or iii) reporter 

error.  

 

3.1.2 	Annual	&	Diurnal	Cycles	
 
An estimate of fog likelihood as a function of time of year (annual cycle) and time of day 

(diurnal cycle) can be made by calculating the fraction of observations (for a given day-

of-year and time of day) showing fog. Given the relatively short length of our record, this 

estimate will be relatively rough and is likely to be sensitive to outliers (e.g. a few very 

foggy years). Figure 9 shows this rough climatology as gray dots (one per 3 hourly step), 

using the fog definition outlined in 3.1.1. This was subsequently smoothed using a 

Fourier filter; the rough results were mapped to the frequency domain using a fast Fourier 

transform (FFT), and only significantly large frequencies (with sufficient ‘power’) were 

kept. In this case, these frequencies included the annual (one-year cycle), the half year (2 

per year), the third year (3 per year) cycles and daily fluctuation. Although the impact of 

daily fluctuation remains small compare to annual, semi- annual and third annual, it was 

kept to ensure we resolve influences related to solar burn-off of fog.  

All other frequencies were removed (set to an amplitude of zero), and the results were 
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returned to the time domain with a reverse FFT.  Results are shown as the black line in 

Figure 9. A similarly smoothed estimate of error is given by the red lines, based on the 

standard error over a 5-day moving window of fog frequency; effectively, this gives an 

estimate of variability over the five-day moving window in our record.  Figure 10 shows 

the same smoothed climatology in another form, to further emphasize the relative size of 

the annual (vertical axis) and diurnal (horizontal axis) cycles.  Results emphasize that 

choosing any time of day and looking through all dates gives a large shift, while choosing 

any date and moving through all times of day gives little variation.  

 

 

Figure	9	:	:		Annual	Fog	climatology,	with	fog	frequency	given	as	a	fraction	of	observations	with	expected	fog	
(Nfog/Nobservations).	Results	are	shown	for	3-hourly	intervals,	over	the	course	of	the	year.	Raw	estimates	
(unsmoothed)	are	given	as	grey	dots,	and	FFT	filtered	estimate	is	given	as	a	solid	black	line.		Red	lines	show	one	
standard	error	about	the	FFT	mean.		

 

Results show a very strong annual cycle and weak diurnal cycle (Figure 10), with the 
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annual likelihood passing from less than 10% (< 0.1) to more than 40% (>0.4). Diurnal 

variations about the annual cycle are relatively small, amounting to a few percentage 

points of difference. The annual peak falls in June, preceded by a gradual increase from a 

mid-January minimum.  This increase sees a slight plateau in March (~0.2), perhaps 

related to shifting seasonal influences on fog formation. The reduction in fog likelihood 

after the peak is more abrupt, reaching a local minimum in September before rising to a 

small secondary peak in October. The diurnal cycle becomes a little more pronounced in 

fall, which could point to shifting fog types, and perhaps an increase in the likelihood of 

radiation or cloud-base lowering fog, which are strongly connected to solar forcing. 

However, overall the strong annual and weak diurnal cycles suggest Hibernia is 

dominated by advection fog events.   

	
3.1.3 	Fog	Season	&	Interannual	Variability	
 
Using this annual cycle, a semi-objective definition of a ‘fog season’ for the region has 

been proposed, which can be applied to an individual year’s data (Figure 11). Based on 

the small plateau in the annual cycle graph (early April; beginning of the steep rise to 

peak season) we chose a threshold marking the beginning of the fog season: an observed 

fog frequency of 25% over the subsequent 21 days. This corresponds with April 8 in the 

longterm climatology. The definition is applied by calculating the observed fog frequency 

for each date/time over the subsequent 21 days; the first day to hit 25% is marked as the 

beginning of the season. Similarly, the fog season is considered to end on the last date to 

drop below this threshold.  This allowed us to focus on the period after the mid-spring 

plateau (likely associated with changing fog drivers or surrounding environmental 
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conditions), and before the mid-Fall secondary peak (October).  Figure 11 adds this 

threshold to Figure 9, highlighting the mean ‘season’ that runs from April 8 through 

August 21, giving an average length of 136 days. 

 

 

 

Figure	10	:	A	different	representation	of	the	annual	and	diurnal	cycles	captured	in	Figure	9.	Results	show	strong	
seasonal	(vertical	axis)	variation	but	only	a	weak	diurnal	cycle	in	fog	frequency	at	the	Grand	Banks,	NL.	

 
 



	 47	

 
Figure	11	:	Adjusts	Figure	9	to	highlight	the	climatological	starting	date	of	our	defined	fog	season	(yellow	circle)	and	

show	the	threshold	used	in	this	definition	(frequency	=	0.25).	

 
 
Figure 12 gives the results of applying this definition to all available years in the Hibernia 

data set.  Each year is shown as a vertical column, covering that year’s season.  Start dates 

show a standard deviation of 22.44 days, end dates have a standard deviation of 20.41, 

and the total season length has a standard deviation of 22.13 days.  
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Figure	12	:	Fog	seasons	for	individual	years	(1998	to	2014),	based	on	our	chosen	fog	likelihood	threshold.	Gray	columns	
mark	the	portion	of	the	year	associated	with	this	season.	

 

By calculating the number of observations that were associated with fog (ie. how 

common fog was during our fog seasons), the severity or intensity of a fog season can be 

quantified (Figure 13).  This number varies from 30% of observations in the season 

associated with fog (2009, 2011) to as much as 43% (2010), with a mean of 34% and a 

standard deviation of 3.9%.  Piecing this together, the Grand Banks fog season covers 

over one third of the year (36%), with over 34% of this season affected by significant fog 

(visibility < 4km). Fog conditions improve considerably into early fall, before rising again 

in mid-spring.   
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Figure	13	:	Frequency	of	human	reported	fog	in	the	MANMAR	record	(severity	of	fog	season)	

 

3.1.4 Event-Scale	Climatology	
 
Although seasonally focused fog analyses are of scientific interest and relevant for long 

term planning on the Grand Banks, they do not address operational concerns that typically 

focus on shorter time frames (a few hours to a week). Rather than asking what time of 

year fog is most likely to occur, many stakeholders are instead interested in whether fog 

will arrive or recede shortly. To begin answering these questions, it is helpful to first 

explore the climatology of individual fog events.  For this purpose, the season was viewed 

as a sum of individual events that build towards our seasonal climatology. Event-level 

analysis allows the investigation of event duration, persistence, and frequency within the 

study region.  
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Identification of individual events was based on a declustering of visibility data, grouping 

fog instances into longer continuous events. Grouping began with a simple definition of 

‘low visibility’, using the first criteria provided in section 6.1.1: visibility below 4km. 

Then rules were applied for grouping instances together; parameters considered included 

the minimum required time steps to separate events (‘lull’), and an alternative minimum 

threshold that must be crossed before an event is considered over (which may be different 

than the threshold needed to initiate an event).  These parameters can be adjusted to 

recognize that fog can change rapidly, dissipating and returning repeatedly during a single 

event (‘patchy’ fog). There is no ideal choice for these parameters, which must be set 

after testing and while considering possible user needs. For the purposes of this study, the 

event initiation and termination threshold was set to 4km visibility. The time steps 

requirement to consider two events separate was chosen as 9 hours (three time steps).  

This decision was made to avoid any unnecessary cuts in longer events due to temporary 

increases in visibility (fog ‘lifting’).  

 

Results of the fog climatology are sensitive to criteria used to define ‘fog’ in MANMAR 

data, as well as those used to define and separate fog ‘events’. For example, 

lowering/raising the visibility criteria influences the number of identified fog events 

greatly. Respectively, if the “lull” decrease to two time steps the number of events could 

increase or vice versa. Climatology results showed similar patterns in inter- and intra-

annual variability however, suggesting that core findings are robust. 
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 Using these parameters, 1757 low visibility ‘events’ were identified in the 14 years of 

data analyzed. Of these, 1163 could be considered ‘fog’ events; that is, at least part of the 

event met all requirements for ‘fog’ laid out in section 3.1.1. All low visibility events 

were categorized accordingly: 

Minimal fog: less than 33% of the event was associated with fog.  

Mixed fog: between 33% and 66% of the event was associated with fog. 

Dominant fog: more than 66% of the event coincided with fog.  

No Fog: a low visibility event with no reports of fog (may be caused by rain, drizzle, 

snow, mixed precipitation).  

 

Figure 14 illustrates the number of each of these categories; of the 1757, 1163 were 

related to fog, with 530 categorized as ‘fog dominant’. Minimal fog made up the second 

largest category (420), emphasizing that transient fog as part of more complex events is 

common.  

 

 

	

	

	

	

	

	

	

	

Figure	14	:	Event-Scale	climatology;	categorizing	low	visibility	events.	
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Having categorized visibility events, their key characteristics can be compared.  Figures 

15 and 16 compare event duration and severity as a set of boxplots, highlighting 

differences in mean values and outliers. Differences in duration (Fig. 15) are particularly 

notable; while visibility events have an average duration of two time steps (6 hrs), 

extreme events may last for up to two weeks (360 hours, or 120 time steps).  The longest 

events are consistently associated with the ‘Fog Dominant’ category, have a mean 

duration of average of 24 hours and a third quartile of eighty-one hours. By comparison, 

minimal fog has a mean duration of one hundred and fourteen hours and third quartile of 

forty-two hours.  As illustrated in the boxplots, these represent significant differences, 

with the median (black band inside the boxes) for minimum fog outside the first to third 

quartile in the fog dominant category.  

 

Figure 16 shows another boxplot related to severity of the fog events, showing the 

fraction of each event with visibility less than one kilometer.  This therefore captures the 

portion of the events with very severe fog. Unlike duration, our categories do not show 

much difference in terms of severity, with all showing a severe fog fraction of 0.5 to 0.6.  
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Figure	16	:	Boxplots	comparing	event	severity	(fraction	with	visibility	<	1km)	of	different	low	visibility	event	categories.	

 

Figure	15	:	Boxplots	comparing	event	duration	of	different	low	
visibility	event	categories.	
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While categories do not appear to be distinct with respect to severity, they seem to be 

with respect to duration. Wilcoxon rank sum tests has been performed (Ng and 

Balakrishnan, 2004) to quantify the statistical significance of these duration differences. 

The rank sum test was chosen because it compares groups without preconceptions about 

statistical distributions. Sixteen between-category tests have been run, and results are 

given in Table 1. Results show a very clear difference in duration between Dominant Fog 

and most other categories, with the exception of No Fog; still, there is an 88% chance that 

these categories are distinct. Minimal Fog and No Fog durations are also effectively the 

same, but there is significant separation between Minimal and Mixed Fog.  These results 

suggest that our categorization of visibility events on the basis of fog fraction is justified, 

providing sufficiently distinct differences in expected duration. 

 
 
 
Table	1:	P-values	for		Rank/sum	result	from	different	fog	categories.	

 
 
 
 
 
3.2 Point	Process	
 
 
Poisson distributions are often used to model the number of independent events expected 

to occur in a particular time window or given interval. For example, from time t3to tM, the 

		 No	Fog	 Minimal	Fog	 Mixed	Fog	 Dominant	Fog	

No	Fog	 1	 0.48	 0.003	 	
0.011	

Minimal	Fog	 0.48	
	 1	 0.014	 0.0006	

Mixed	Fog	 0.003	 0.014	 1	 5.007e-07	
Dominant	Fog	 0.01	 0.0006	 5.007e-07	 1	
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event count can be modelled following a Poisson distribution as λ	×	(tM −	 t3	), where λ is 

the event frequency (events/time) and sole parameter in the Poisson distribution. 

Similarly,  the count over a subsequent interval  tM	to	tN , can be expected to be  λ	×	(tN −

	tM	). It then follows that from t3 to tN the expected count is λ	×	(tN −	 t3	) = λ	×	(tM −

	t3	) + λ	×	(tN −	 tM	).  

 

In the current context, the number of expected fog events per year can be modeled using a 

Poisson distribution; the duration of these events might similarly be modeled using the 

geometric distribution.  This is similar to the point process approach to modelling extreme 

events (Coles et al., 2001), and can be useful in determining how unusual a given fog 

event or season actually is.  We have applied this here, beginning with annual event count 

data summarized in Table 2 & 3, followed by treatment of event duration.   

 

The results show the mean event occurrence rate each year is ~83 fog events; this 

includes our minimal fog, mixed fog, and fog dominant event categories.   The observed 

minimum is 68 (2008), while the maximum is 101 (1999).  Fitting a Poisson distribution 

to these counts gives a λ of 83.07 with a standard error of 2.44; the 100-year event 

frequency is estimated at 105 events (+/- 5, based on two standard error deviance from the 

maximum likelihood estimates).  

 

Mean event duration (again, using minimum fog through fog dominant categories) is 12.3 

time steps, or over 36 hours. Respectively, the average number of time steps expected 
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with fog (total) in each year is 1021 time steps; this accounts for 35% of the total year.  A 

geometric distribution was fit to durations of all fog category events; the maximum 

likelihood estimate of the sole distribution parameter (probability) was p = 0.075). 

Combining this with the expected 83 events per gives the 100-year event duration as 115 

time steps (>14 days). This is apparently contradicted by the frequent occurrence of 

observed events with duration greater than 115 time steps in the Hibernia record (Table 3; 

twice in 14 years). The inference is that a geometric distribution is a poor fit to all fog 

events, and splitting events on the basis of physical processes or time of year may be 

necessary to properly assess extreme durations.  This is left to later research.  

  

Table	2:	Number	of			fog	event	in	each	year	

Year 1998 1999 2000 2001 2002 2006 2007 2008 2009 2010 2011 2012 2013 2014 

Number 
of 

events 

79 101 88 91 91 71 70 68 86 84 70 91 85 88 

 

 

Table	3	:Event	with		Maximum	duration(time	steps)	in	each	year	

Year 1998	 1999	 2000	 2001	 2002	 2006	 2007	 2008	 2009	 2010	 2011	 2012	 2013	 2014	

Event with 

maximum 

duration in 

each year 

63	 39	 94	 101	 116	 81	 97	 74	 39	 74	 49	 95	 47	 128	
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Table	4	:	Total	fog	events	duration	(time	steps)	in	each	year	

Year 1998 1999 2000 2001 2002 2006 2007 2008 2009 2010 2011 2012 2013 2014 

Fag 
duration 
in each 

year 

991 935 1156 1158 1030 914 2271 970 929 1267 899 966 1019 1094 

 
 
Table	5	:	Poisson	distribution	and	𝜆	value	results	

Poisson 
distribution 
rate parameter 

Number of 
events 

Event with maximum 
duration in each year 

Fog duration in each 
year 

𝜆 83.07 78.35 1116.35 
 
 
 
 
3.3 Summary:	
 
 
The results given in this chapter clearly outline the scope of fog as a hazard at and around 

the Hibernia platform.  Fog is frequent, particularly from spring through summer when it 

is expected in 25-40% of observations.  It often persists for stretches of several days, and 

may last for two full weeks. While visibility can vary during these events, over half of an 

event is expected to feature visibility below 1km. Seasonal analyses and event-scale 

climatology’s highlight the variability of both individual fog events and fog seasons 

viewed as whole.   

 

Our climatological analyses suggest that fog at the Hibernia platform is primarily 

advection fog, as indicated by the lack of a prominent diurnal cycle that would be 
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expected many other forms of fog (e.g. radiation).  This would also explain the strong 

seasonality identified in fog likelihood, as seasonal variation in key synoptic scale fields 

could explain much of this cycle.  We expect that fog at this location has a strong 

connection to surface winds and sea surface temperatures; when i) sea surface 

temperature boundaries are strong and situated near Hibernia and ii) winds blow across 

this front, fog can be expected to occur. This suggests fog events are strongly connected 

to synoptic forcing as opposed to small scale local forces. Therefore, it is reasonable to 

move from viewing Hibernia fog as a local phenomenon to looking at it as an aspect of 

broader synoptic scale meteorology. This is the focus of next chapter.  
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Chapter	4	
 
Chapter three explored the fog climatology of a single Grand Banks location in detail, 

focusing on information available from instruments on board the stationary Hibernia oil 

platform.  The current chapter expands our scope to the synoptic scale (~1000 km), to 

identify broader environmental conditions that show a strong influence on Grand Banks 

fog.  The following analyses are intended to highlight factors specific to this geographic 

location, inform efforts to improve fog prediction, and explore the potential for applying 

lessons learned in chapter three to other areas in the Grand Banks and global ocean.  

In this chapter meteorological/oceanographic (metocean) patterns that could increase fog 

likelihood in the region are explored.  We approach this in two separate ways. First, by 

estimating fog probability with data from the Hibernia climate station (logistic 

regression), then identifying spatial patterns that explain this probability using Canonical 

Correlation Analysis (CCA).   This approach has been used to efficiently compare the 

relative usefulness of different synoptic patterns, and identify the best candidate variables 

for improving regional predictability. The second approach was to identify key metocean 

patterns, then explore the fog frequency associated with each.  This was done through a 

synoptic classification using the method of self-organizing maps (SOM).  Results deliver 

greater insight into large-scale factors influencing Hibernia fog and serve as secondary 

confirmation of the potential for synoptic scale analyses to increase fog predictability.  
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4.1 Identifying	Relevant	Synoptic	Forcing:	
	

4.1.1 Logistic	Regression	
 
In statistical analyses, regression is a process used to quantify relationships between 

variables. One form of regression suitable for binary variables is logistic regression (Cox, 

1958), which returns the probability that the variable will take one of its two possible 

states. The approach is also sometimes referred to as logit regression or a logit model. 

While the target output of logit models is based on binary data, the input variables can be 

discrete, continuous or both; although not used here, the method can also be extended to 

predict categorical data (more than two discrete states). As with other forms of linear 

regression, logistic regression takes one or more independent variables as inputs and 

returns one or more dependent variables. In meteorology, dependent variables in this 

analysis are known as the predictand or response, and the independent variables are 

known as predictors. Applying logistic regression often starts by categorizing continuous 

data to give a binary predictand; a linear combination of the predictors (x) is then found 

that optimally predicts the probability the predictand will be a ‘success’ (category 1), such 

that:  

 

𝑦 = 𝑓 𝑥 = 1, 	𝛽& + 𝜷 ∙ 𝒙 + 𝜀 > 0
0, else  

 

where βo and β are model parameters and ε is random noise following a logistic 

regression. Parameters are optimized through an iterative process, aiming to maximize the 
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likelihood y is assigned the correct state. The cumulative probability of a success (y = 1; 

F(x)) is then given by the following logistic function  

F 𝑥 = 	
1

1 + 𝑒2(	klm𝜷∙𝒙)
 

There are limitations to this approach, most notably due to linearity. While the cumulative 

probability is nonlinear (a logistic function), it is assumed that probability will increase 

unidirectional as predictors increase.  This is less likely to be a suitable assumption when 

looking at atmospheric phenomena, but may still return useful results. It can also be a 

useful way to reinterpret categorical data as a continuous variable (bounded between 0 

and 1).   

 

In order to apply CCA to fog probability, logistic regression has been used to estimate the 

probability of fog at Hibernia as a function of air temperature, dew point depression (air 

temperature minus dew point), and wind speed as measured at the platform.  These were 

selected following tests of all possible combinations of variables in Table 6, evaluated 

with 5-fold cross-validation to prevent overfitting.  The final model shows good 

agreement with observations, as measured with Brier scores and Relative Operating 

Characteristic (ROC) curves.  Brier scores (Wilks & Hamill, 2007) vary from 0 (perfect) 

to 1 (worst case); performance here was 0.106, a 33% improvement relative to 

climatology.  ROC performance was summarized as the area under an ROC curve 

(Marzban, 2004), which indicate poor performance with values below 0.5 and perfect 

performance with a score of 1; the current model returns 0.895. These results confirm that 
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logistic regression is a reasonable means of summarizing fog likelihood for the Hibernia 

platform.   

4.1.2 CCA	&	Synoptic	Forcing	
 
Canonical correlation analysis (CCA) and self-organizing maps (SOMs) have been used 

to study synoptic scale weather patterns that promote fog on the Grand Banks. In order to 

do this, a 1000km (North/South) by 1000km (East/West) study domain centered over the 

Hibernia platform’s location was examined. CCA was used to identify variables with a 

strong synoptic-scale association with an estimated fog likelihood (based on logistic 

regression, as described above).  The goal here was to both i) identify spatial patterns that 

promote fog formation, and ii) quantify their relative value to fog prediction.  A number 

of field variables were selected for analysis, based on their likely influence on advection 

fog. These include near surface air temperature (Ta), skin temperature of the ocean 

surface (SKT), and sea level pressure (SLP).  The first two candidate variables are related 

to heat distribution, while the third is related to near surface winds (moving 

counterclockwise around low pressures and clockwise around high pressure). As a group, 

all are therefore strongly related to surface heat advection. These were used singly and in 

combination as one side of the CCA equation (X), while fog likelihood was used as the 

single variable on the other side (y). Results of CCA then provide a single pattern (in 

either one or more fields) that explain the greatest variation in fog likelihood, along with a 

correlation between the strength of that pattern and fog likelihood. In all cases, variables 

were first converted to spatial anomalies, removing the mean value for a given field and 
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date; this emphasizes the relative differences in the fields and removes influences from 

annual cycles.  

 

Results are summarized as CCA correlations in Table 6, and confirm that the fields 

examined show a reasonable connection to fog.  Notably, the synoptic-scale Ta field is 

the single best predictor of fog (r = 0.702), followed by SLP (r = 0.65). It is interesting 

that combining Ta and SKT weakens results relative to Ta alone, but combining SKT 

with SLP gives the best overall result (r = 0.708).  Over the full year, the value of this 

combination is only slightly better than Ta alone (or Ta with SLP); however, during the 

fog season it marks a more significant improvement. The SLP & SKT combination could 

expect to be effective because both the heat distribution and wind field are included, 

capturing the primary features needed to calculate temperature advection (and therefore 

advection fog). In the Grand banks, fog could occur when the temperature is getting 

warmer than the sea surface temperature (Bullock et al. 2016). The resulting CCA pattern 

supports this, showing strong warm advection across an ocean temperature gradient near 

the Grand Banks, driven by counterclockwise wind flow around a low pressure system to 

the south of Newfoundland (Figure 18).  The skin temperature field captured in this 

pattern resembles the long-term climatological mean, with a sharp boundary delineated 

between a cold Labrador Current to the north and a warm Gulf Stream to the south.  The 

climatology of this pattern has shown in Figure 17.  The pattern increases in strength from 

April through mid-July, then quickly weakens into August. The pattern is inverted 

(strength is negative) through fall and winter.  This cycle closely follows our annual fog 
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climatology (Chapter 3, Figure 9), suggesting influences on Hibernia fog climatology are 

captured by the pattern.  

 

 

 

Table	6	:	Correlation	of	CCA-identified	patterns	with	Hibernia	station	fog	likelihood	(Pr),	for	a	range	of	weather	
variables	(Ta	=	Air	Temperature,	SKT=	Skin	Temperature,	SLP=	Sea	level	pressure,	U	=	zonal	winds,	V	=	meridional	
winds).	

CCA Correlation over the full 
year 

Correlation within fog 
season 

Cor (Ta, Pr) 0.702 0.500 

Cor (SKT, Pr) 0.453 0.405 

Cor (SLP, Pr) 0.650 0.464 

Cor (SKT + Ta, Pr) 0.585 0.433 

Cor (SKT + SLP , Pr) 0.708 0.588 

Cor (Ta + SLP, Pr) 0.701 0.389 

Cor (Ta + SLP + SKT) 0.440 0.401 

Cor (Td, Pr) 0.650 0.409 

Cor (UV wind , Pr ) 0.464 0.386 
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																																Figure	17	:	Climatology	(Annual	Cycle)	of	CCA	pattern’s	strength.	Average	value	per	day/time	of	year.	

 

 

Figure	18	:	CCA	results	show	strong	advection	across	a	SST	gradient,	with	low	pressure	system	to	the	south	of	
Newfoundland	(Black	lines=	sea	level	pressure	contour	,	Color	=	skin	temperature).		An	arrow	was	added	showing	

geostrophic	surfaces	winds	expected	near	Hibernia.		
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4.1.3 Self-Organizing	map	
 
CCA provides insight into a single pattern maximally connected to fog occurrence, but 

little information on either the specific weather events that contribute to the pattern or 

what precedes/follows these events. To better explore connections between fog and 

SLP/SKT, self-organizing maps (SOM) were used to codify daily synoptic sea level 

pressure and skin temperature data for the Grand Banks. This approach constructs a joint 

synoptic climatology of the two fields, summarizing available daily data as a small set of 

key archetypal patterns (e.g. Hewitson and Crane 2002). The number of these key 

patterns (SOM nodes) must be considered carefully, as a compromise between detail 

(more patterns) and interpretability (fewer patterns); a small number may give results that 

are too general, while more patterns will capture more detail but may become difficult to 

interpret. SOM users also must test a wide range of training parameters, including 

training rate, neighborhood size, and the number of training steps.   

 

For the current study, a 6 by 8 SOM has been selected after testing with a range of sizes, 

each trained multiple times with different training parameters. Results were compared 

quantitatively using quantization error (Cottrell & Fort, 1986), which is simply a measure 

of the mean difference between observations used in training and the best matching SOM 

node.  A lower quantization error implies a specific SOM is a better fit to the original 

data.  It cannot be used to compare SOMs of different sizes, as the value inevitably drops 

as SOM size increases.  It is, however, useful in comparing SOMs with comparable node 
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numbers. SOMs of all sizes were also qualitatively compared using Sammon mapping 

(Sammon 1969).  A Sammon map gives a two dimensional representation of 

multidimensional points that preserves the relative Euclidean distance between the points.   

It is useful in choosing a SOM because it gives a sense of whether or not a SOM is well 

ordered.  Poorly ordered (and difficult to interpret) SOMs will give a Sammon map that 

appears to twist or fold, putting nodes that are far apart on the SOM lattice close to one 

another on the Sammon map. A well-ordered, easy to interpret SOM will appear ‘flat’.  

Results of the selected SOM are shown in Figure 19; a Sammon map for this SOM is 

shown in Figure 20. Each node in the SOM shows SLP patterns as black contour lines 

and SKT patterns as colour contours. The organization in the SOM is apparent as a 

tendency for neighbouring nodes to resemble one another. This allows us to refer to 

neighbouring nodes on the basis of the features they share.  A brief summary of the broad 

patterns found in the nodes follows.  

 

The upper right of the SOM most closely resembles CCA results (rows 0 and 1, columns 

5 through 7; or [0:1, 5:7]), with a low pressure system south/southeast of Newfoundland 

and a strong skin temperature gradient. Most of these would promote southerly winds and 

warm advection near the Grand Banks. Very different patterns in the lower left of the 

SOM ([4:5, 6:7]) would likely promote similar winds and advection, with a paired high 

pressure system to the west of our domain and low pressure system in the northwest 

(Labrador Sea).  Winds on the left side of the SOM would blow in the opposite direction, 

promoting northerly winds and cold advection near the Grand Banks. These are 
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dominated by higher pressures in the southwest (lower left) or northwest (upper left), 

usually with low pressure near Greenland. Skin temperature and SLP gradients in these 

nodes are both weaker, potentially limiting their potential to produce cold advection fog 

events. The middle columns of the SOM show transitions between these left-side and 

right-side patterns, with the lower middle ([3:5, 2:5]) moving southwesterly highs toward 

the western end of the domain and the upper middle ([0:2, 2:5]) show the west/northwest 

track of southwesterly lows or the displacement of Greenland lows with highs.  

 

In contrast with SLP, skin temperatures in the SOM nodes vary little in spatial 

distribution.  Nodes are instead distinguished mostly by the strength of temperature 

gradients in what appears as a fairly consistent spatial pattern.  There may be some small, 

regionally important differences in the position of the front between warm water to the 

south/southeast and cold water to the north/northwest, but these are difficult to identify in 

this large, multivariate SOM. 
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Figure	 19	 :	 A	 6*8	 SOM	of	 Sea	 Level	 Pressure	 and	 Skin	 Temperature	 for	 the	 Grand	 Banks	 (1998-2014).	 Each	 image	
represents	a	single	SOM	node.	Contour	lines	represent	SLP	and	contour	colors	represent	SKT.	 
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Figure	20	:	Sammon	map	for	the	final	trained	SOM	with	lowest	the	Quantization	error.	

 
4.2 Synoptic	Climatology:	
 
Each daily average of the SLP and SKT anomaly fields from the reanalysis data can be 

associated with a single node on the SOM. The occurrence frequency of each node can 

then be calculated as the number of times each node occurs divided by the total number of 

daily input data; alternately, nodes can be compared on the number of occurrences rather 

than a fractional occurrence. This has been done, with results shown in Figure 21 

(occurrences over the full year) and Figure 22 (occurrences over just the climatological 

fog season, or April 8 to August 21). From information like this we can determine which 

nodes (and associated weather patterns) dominate over a full year and which occur more 

often during our fog season. By further matching observed fog events to specific nodes, 

the relative frequency of fog and the frequency of fog occurrence for each node are 

calculated (figure 23).  
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Figure	 21	 :	 Figure	 21a	 	 shows	 the	 study	 region’s	 synoptic	 climatology,	 summarized	 as	 the	 count	 of	 each	 node	
occurrence	 over	 the	 full	 study	 period.	 Figure	 21b	 focuses	 on	 synoptic	 climatology	 of	 fog	 events	 only,	 showing	 the	
number	of	times	fog	was	reported	while	a	given	node	occurred.	

		

 

 
Figure	22	:	Same	as	Figure	21,	but	looking	only	the	climatological	Hibernia	fog	season	(April,	8	to	August,21),	rather	
than	the	full	year.	
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The results show that over the course of a full year all SOM nodes have a high likelihood 

of occurring (Fig. 21a), with total node occurrence counts between 301 [4,1] and 711 

[5,7].  The fog season, however, favors nodes in the middle and bottom of the SOM (Fig. 

5a).  Nodes in the upper left occur rarely during this period, suggesting northerly winds 

are much less common than strong southerly winds.   

 

Results also show strong physical consistency in nodes associated with fog events. Fog 

event counts in Figures 21 and 22 are highest in nodes near one another (right, lower 

right), which share similar features.  Nodes showing high fog counts confirm the 

combination of a strong north/south temperature gradient with a southerly wind direction 

are the strongest factors driving summer advection fog formation. It is also notable from 

Figure 22 that summer fog can coincide with high winds near Hibernia, as the nodes 

favored during fog typically show a very strong pressure gradient. However, it is also 

clear that fog can occur for any node over the full year (Figure 21b); and nearly any node 

during the peak fog season (Figure 22b; the exceptions are [0, 0:1]). This suggests that 

northerly winds drive cold advection fog ([1,1], [2,1]), although these are rarer than warm 

advection events. Weak sea level pressure patterns and/or westerly winds (bottom left 

side of the map) are also connected with lower fog frequencies. As a whole, these results 

support the findings of CCA analysis, pointing to a combination of strong southerly winds 

with a strong temperature gradient as the key factor in occurrence of fog, while also 

highlighting the fact that fog can (and does) occur with other synoptic set-ups.  
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4.3 Summary	
 
Overall, SOM and CCA analyses point to the strength and position of synoptic pressure 

systems (and the resulting winds) as the critical synoptic-scale element influencing 

Hibernia fog. Skin temperature also exerts an influence, but displays less variability in the 

current analyses that could explain fog occurrence.  From these results we can infer that it 

is critical for the prediction of fog to track the specific paths of pressure systems in the 

vicinity of the Grand Banks. SOM analysis suggests that systems tracking from the Gulf 

of St. Lawrence towards Greenland or the open North Atlantic are particularly likely to 

produce fog, which may last for days with slower moving systems. Strong pressure 

gradient force (closely packed isobars) in fog-affected SOM nodes further confirm that 

high surface winds do not significantly deter Hibernia fog, at least during periods when 

skin temperature gradients are strong. Instead, gentle winds (particularly from the north or 

west) appear to reduce fog likelihood, indicating that cold advection fog is much less 

common than warm advection, or more easily dissipated by wind mixing. Ongoing data 

collection at and around the Hibernia platform will facilitate further investigation into 

synoptic forcing of Grand Banks fog, and may help improve global marine fog 

forecasting in the future.  
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Figure	23	:	Right	table	shows	probability	of	fog	occurrence	at	each	node	(%),	left	table	shows	the	relative	frequencies	
of	occurrence	at	each	nodes.		

	

Open questions remain with respect to the influence of factors other than winds & SLP.  

CCA tests with skin and surface air temperature confirm that these factors influence fog, 

if not as strongly as SLP. This should be explored with dedicated CCA and SOM analyses 

over a smaller domain, where slight (but regionally important) fluctuations in 

temperatures are less likely to be hidden by bigger variations between the Labrador Sea 

and Gulf Stream.   

 

With respect to generalizing results to areas outside of the Grand Banks, our results 

suggest that sufficiently strong temperature advection is enough to produce thick Grand 

Banks-type fog. There may be other locally important factors that allow this to happen, 
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such as boundary layer heights, vertical stability, or a favorable range of temperatures 

across the ocean gradient that promote these events.  With further research, it is possible 

that a new fog-typing and automated forecasting system could be developed for ocean 

areas near a strong temperature contrast.  
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Chapter	5	
5.1 Summary	and	Discussion	
 
Frequent and severe fog events pose significant economic, health and operational 

concerns to marine industry activities on the Grand Banks of Newfoundland. Since the 

oil/gas industry and commercial fisheries are expanding in this region, the Grand Banks 

has significant economic importance. Our aim in this research was to provide a necessary 

climatological baseline for improving fog forecasting and predictability, in order to 

reduce economic and health impacts in the area.  

 

In order to provide a solid foundation for our research, a full fog climatology for the 

Hibernia oil platform has been established, the location with the longest meteorological 

observations in the Grand Banks. Analyses included consideration of frequency, severity 

and duration of low visibility events. Results show that fog in the region demonstrates a 

weak diurnal cycle, which means fog frequency is relatively independent of the time of 

the day. This suggests the region is dominated by advection fog, which is less likely to 

show strong diurnal dependency than most other forms forms of fog (e.g. radiation). 

Hibernia fog does however show a significant annual cycle, with strong seasonality and 

notable high fog frequency from spring through the summer months.  These results are 

not confirmed previous finding, and past studies along the Canadian east coast (Gultepe et 

al., 2009) and the Grand Banks (Taylor, 1917) have highlighted the frequent advection 

marine fog, due to converges the Gulf stream and either the Labrador current or cool 

coastal waters.  However, our research shows much less diurnal influence than coastal 

Nova Scotia (Shearwater; Gultepe et al, 2009), possibly due to increased emphasis on 
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advection fog on the Grand Banks, or at least advection fog unconnected to predictable 

diurnal winds (sea breezes; a possible factor in coastal locations).  We also provide a 

more detailed outline of fog’s influence on the Grand Banks than has previously been 

available, including analyses of variability in fog season durations and severity, building 

Taylor’s pioneering research (Tylor, 1917). 

 

While seasonal and annual analyses have some meteorological value, we expect that 

many stakeholders impacted by fog are more concerned with specific events, particularly 

their onset and duration. For this reason, the climatology of fog events was further 

explored. Event-scale concerns were addressed by viewing the fog season as a set of 

discrete fog events, declustering visibility data to identify periods of near-continuous low 

visibility.  This approach allows the investigation of event duration, persistence (i.e. 

consistency of low visibility), and frequency within the study region. These event-scale 

analyses acknowledge that low visibility events in our study area may be associated with 

weather conditions other than (or in combination with) fog (e.g. rain and/or snow). For 

this reason, low visibility events have been categorized according to their quantified 

association with fog (‘no fog’ through ‘fog dominant’ events). Although the criteria for 

these categories was set subjectively, they show some statistically significant differences 

in duration, with mean category duration varying from a few hours (minimal fog) to over 

a day (dominant fog); extreme durations (e.g up to 360 hrs) are disproportionately 

associated with ‘fog dominant’ low visibility conditions.  
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Statistical modeling of event frequency and duration was conducted by treating fog as a 

point process. Results give a mean annual event occurrence rate of ~83; the 100-year 

event frequency is estimated at 105 events.  Mean event duration was found to be 36 

hours which, combined with mean event frequency, gives an average number of fog hours 

in each year as 1020 time steps. Performing an extreme duration analysis proved difficult, 

and will likely require additional analysis beyond the scope of the current project.  

 

Further analyses used to investigate the broader synoptic scale fog events connects 

occurrence with synoptic conditions. A combination of Canonical Correlation Analysis 

(CCA) and Self-Organizing Maps (SOM) was used to identify weather patterns that 

influence fog formation on the Grand Banks. Skin temperature and sea level pressure 

(SLP) combined with fog probability appears to explain fog probability better than other 

fields examined; which makes sense for advection fog, since skin temperature and SLP 

reflect the two key aspects of heat advection (temperature gradients and winds 

respectively). A CCA-identified skin temperature/SLP pattern that best explains fog 

likelihood further shows conditions that would promote strong temperature advection 

across the Grand Banks.  The climatological strength of this pattern closely matches our 

annual cycle of fog likelihood, suggesting it is a true reflection of synoptic patterns 

influencing fog.  

 

It should be noted that the CCA-derived correlations leave much of fog likelihood 

unexplained (r = 0.59 in fog season, or 25% explained variation). This is partly explained 

by uncertainty in the logistic regression used to quantify fog likelihood, but it is important 
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to point out that fog is a microphysical process. With respect to synoptic forcing, the 

relatively low correlation likely reflects this.  Other dynamical considerations are likely 

less important than cloud microphysics and complex boundary layer processes, acting on 

scales much smaller than synoptic. Keeping this in mind, the CCA correlations are likely 

much higher than would be expected in regions where non-advection fog is common. 

 

Also, from SOM results we can point to the strength and position of synoptic pressure 

systems as a critical element affecting Grand Banks fog formation. This implies that it is 

necessary to track paths of these pressure systems through the region to accurately predict 

fog events. SOM results also suggest that systems tracking from the Gulf of St. Lawrence 

towards Greenland or the open North Atlantic are particularly likely to produce fog. 

These trajectories may last for days with slower moving systems, explaining the long 

duration of many fog events. Results further indicate that high surface winds don’t have a 

negative impact on fog formation, as long as skin temperature gradients are sufficiently 

strong in the region. 

 

The synoptic analyses presented here are preliminary work, and could be built on with 

additional work. CCA tests suggest additional variables and alternated spatial domains 

may offer greater predictability than the simple large-domain SLP and skin temperature 

fields used here. In particular, a smaller domain skin temperature may reveal the 

influence of slight fluctuations in temperatures currently hidden by bigger variations 

between the Labrador Current and Gulf Stream. It is also important to note that any future 

CCA analysis would benefit from more accurate estimates of fog likelihood (use here as 
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one of the paired CCA variates). These could benefit from additional station-scale 

observations, from both Hibernia and other offshore platforms in the region.  Local 

factors such as boundary layer heights, vertical stability, and the range of temperature 

across the ocean gradient might improve the accuracy of our fog likelihood estimates, 

improving our ensuing spatial analyses; adding additional platforms could also help 

generalize results across the broader Grand Banks (rather than limiting us to Hibernia).  

 

Future analysis is likely to benefit from both longer records of observation (as Hibernia is 

still operating), more observation sites (with the newly operational Hebron platform and 

others), and more consistent data collection and archiving.  New observing tools 

including ceilometers and updated visibility sensors are being deployed, and platform 

operators are increasing their commitments to meteorological/oceanographic observation 

and archiving. As a result, future fog research may have fewer problems interpreting 

human-reported weather conditions and identifying false reports.  

 

At the moment, research continues on season-specific synoptic fog analyses, and 

developing a better system for classifying low visibility events on the basis of fog ‘types’. 

This is currently being pursued in collaboration with AMEC Foster Wheeler, a consulting 

group that provides meteorological forecasts for the offshore oil industry. Results of the 

current work have also informed on-going development of statistical post-processing 

approaches to improving Numerical Weather Prediction fog forecasts.  The logit models 

used to estimate fog likelihood represent the simplest version of these post-processing 

techniques, and more advanced versions based on various machine learning techniques 
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are currently being tested.  Although the research presented in this thesis represent only 

the first steps towards an improved understanding of (and capacity to predict) Grand 

Banks fog, it has also proven critical to these ongoing efforts.   
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