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Abstract

Land-based high frequency surface wave radar (HFSWR) is an established sensor for

ocean remote sensing. Placing an HFSWR on a floating platform has the advantage of

mobility. However, antenna motion will distort the Doppler spectrum, which is used to

extract ocean information and to detect the signatures of targets. In this thesis, significant

effort has been expended on establishing radar cross section (RCS) models for a fixed

receiver and a transmitter on a floating platform, analyzing the effect of the antenna

motion, and developing a motion compensation method to eliminate the effect of the

platform motion.

The first- and second-order monostatic RCSs of the ocean surface for the case of a

pulsed dipole source on a floating platform have been previously derived in the literature,

with the assumption that the platform motion is a single-frequency sinusoid. Following

that work, the research in this thesis is extended to the bistatic case. The effect of platform

motion on simulated Doppler spectra is considered for a variety of sea states. It is shown

that the resulting motion-induced peaks are symmetrically distributed in the Doppler

spectrum.

Following this work, the corresponding bistatic RCS models for a frequency modu-

lated continuous waveform (FMCW) source are derived. Results show that the sidelobe

level for an FMCW source is reduced with increasing extent of range bin.

To mimic real world scenarios, platform motion is next modelled as a combination of

two cosine functions, based on existing research of realistic horizontal motions of moored

floating platforms. RCSs incorporating a dual-frequency platform motion model are then

developed. These can be extended to a general form incorporating a multi-frequency

platform motion. It is found that the platform motion can be viewed as a modulator of the

radar frequencies, with the modulation indices related to the amplitudes of the platform

motion.
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Finally, to mitigate the effect of platform motion on the Doppler spectra, a motion

compensation method is proposed. This motion compensation method can be achieved

by a deconvolution process. Calculations involving a RCS model, incorporating external

noise, for an antenna on a floating platform are conducted in order to simulate field data

and to examine this motion compensation method. The external noise is characterized as

a white Gaussian zero-mean process. By using this newly-developed RCS model with

external noise, motion compensation results under different sea states and signal-to-noise

ratios (SNRs) are examined. The outcomes indicate that an iterative Tikhonov regularized

deconvolution technique is superior to other compensation methods implemented in this

study.
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Chapter 1

Introduction

1.1 Research Rationale

Over the last four decades, techniques for remote sensing of the ocean surface using

high frequency surface wave radar (HFSWR) [1] have matured considerably. HFSWR

transmits a vertically polarized electromagnetic wave (from 3 to 30 MHz in frequency)

that follows the curvature of the earth along the air-water interface. Due to low propaga-

tion loss of the high frequency (HF) signal along the ocean surface, these radar systems

have the potential for ocean surface sensing over thousands of square kilometers [2],

with typical radial resolutions of between a few hundred meters and a few kilometers [3].

Unlike conventional oceanic instruments, such as wave buoys, wave staffs and current

meters, HFSWR can provide wide-area, all-weather and near-real-time surveillance. It is

well known that HFSWR received signals contain a variety of oceanographic information,

such as wind speed, wind direction, surface current fields, and significant wave height.

Thus, an understanding and utilization of the received signals is crucial in estimating

these parameters.

Based on the geometry of HFSWR, these systems can be divided into two types:

monostatic radar (the transmitter and the receiver are collocated) and bistatic radar (the

transmitter and the receiver are separated by a distance that is comparable to the expected
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target distance). More recently, ocean remote sensing using bistatic configurations has

gained increasing interest. For example, Gill et al. [4] developed an HFSWR bistatic

radar cross section for scatter from a patch of ocean. An ocean wave spectrum inversion

technique for bistatic HFSWR appears in [5]. Later, a method for extracting signatures

of ship targets from broadened Bragg peaks of bistatic shipborne surface wave radar was

proposed in [6]. Huang et al. [7] presented a technique to extract wind direction from

bistatic HFSWR data. Although bistatic radar systems are typically more complex to

implement than their monostatic counterparts, they have a number of advantages that

make them well-suited for specific applications. Firstly, bistatic radar systems are flexible

with respect to the deployment of the transmitter and the receiver, and the receiver is

potentially simple and mobile. Secondly, the receiver requires little protection from the

transmitter pulse, and the dynamic range requirement for a bistatic radar is less because

there are no large-amplitude, close-range echoes. Thirdly, they are relatively immune to

physical and electronic attack due to their inherent passivity and distributed property [8].

In recent years, combinations of monostatic radar with bistatic radar or multistatic radar

(containing multiple spatially diverse monostatic radar or bistatic radar components)

have been widely used to enlarge the radar coverage region [8].

Depending on the platform location(s) of an HFSWR, these systems can be classified

as onshore (land-based) or offshore. Compared to offshore HFSWR, land-based HFSWR

has an unavoidable disadvantage in that it has a more limited detection area. The

method of mounting an antenna on a floating platform can be employed to enlarge the

region of coverage for both oceanic observations and target detection. In order to obtain

ocean information further from shore, platform-mounted remote sensing systems have

been widely studied and used. For example, Lipa et al. [9] mounted an HFSWR on a

semisubmersible oil exploration platform and showed the effect of the platform motion

on the radar Doppler spectra. Later, Gurgel [10] analyzed and illustrated difficulties

in operating a shipborne HFSWR. The effect of ship movement on target detection

was also analyzed by using a shipborne HFSWR in [11]. Relevant experimentation
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with a floating antenna appears in [12]. All of these studies indicate that if an HFSWR

system is installed on a ship or a large floating platform with a mooring system, such as

an oil exploration platform, motion effects cannot be ignored in interpreting the radar

cross sections and extracting wave information. The platform motion will contaminate

the Doppler spectrum, resulting in the obscuration of target and ocean information.

Therefore, to properly understand the mechanism of the platform motion on the Doppler

spectrum, it is necessary to develop radar cross section models for an antenna on a

floating platform. In addition, in order to determine the feasibility of using an HFSWR

on a floating platform, it is worth investigating a platform motion compensation method,

i.e., a method of mitigating motion-induced sea clutter from the Doppler spectra.

1.2 Literature Review

This section contains a discussion of previous work related to HFSWR when the antenna

is mounted on a floating platform. The literature review is divided into three parts:

(1) radar cross section models of the ocean surface when the antenna is on a floating

platform; (2) analysis of the effect of the platform motion and the corresponding platform

motion compensation method; (3) Walsh’s scattering theory and more detail on his radar

cross section models.

1.2.1 Radar Cross Section Models for an Antenna on a Floating

Platform

In order to accurately extract the oceanographic information from the Doppler spectra

collected by a radar on a floating platform, it is necessary to develop the corresponding

radar cross section models. A number of such models has been established under a

variety of conditions.
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Spillane et al. [13] first mounted an HFSWR system on a semisubmersible oil

exploration platform. By using such a radar system, Lipa et al. [9] compared the

extracted significant waveheight results with and without platform motion compensation.

In both studies, the floating oil rig was restrained by a mooring system and assumed

to move in response to long-period ocean waves. An accelerometer system was used

to obtain real-time series data of the platform motion. In order to mitigate the effect

of the platform motion on the Doppler spectrum, a relationship between the Fourier

angular coefficients (used to express the radar cross section) in the presence of platform

motion and the desired uncontaminated coefficients was derived in [9] based on the

established HFSWR ocean surface scatter cross section models in [14] and [15]. Through

this relation, significant waveheight results were then calculated and compared with and

without the platform motion compensation. It was shown in [9] that platform motion

causes sidebands of the first-order radar cross section to be superimposed on the second-

order radar cross section. Therefore, unless compensated, the significant waveheight

results, extracted by inverting the second-order radar cross section, will be overestimated.

In [16], Walsh presented a fundamental scattering theory for HFSWR with an antenna

on a floating platform. Following this research, Walsh et al. [17] developed the first-order

monostatic radar cross section where both the transmitter and the receiver were on a

floating platform, and then extended this analysis to the second-order patch scatter cross

section [18] and second-order foot scatter cross section [19]. Patch scatter indicates a

double scatter at a surface patch, while foot scatter means one scatter occurs near the

transmitter and another on a remote surface patch, or one scatter occurs on a remote

patch of the ocean surface and another near the receiver. These models were established

for an extremely narrow antenna beam and were found to consist of Bessel functions

that occurred due to the assumed sinusoidal antenna motion model. In all studies, it was

assumed that the platform motion was caused by the dominant ocean wave so that the

amplitude and frequency of the sinusoidal motion were determined by the wind speed

(sea state). Also, the direction of the platform motion was taken to be the same as the
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wind direction. Simulation results, based on these derived models, were presented in [17–

19] and showed that the antenna motion causes additional, symmetrically distributed

peaks to appear in the Doppler spectrum. These motion-induced peaks contain less

energy in the second-order radar cross section than those in the first-order radar cross

section.

Following the research mentioned aboved, a general form of the first-order floating

HFSWR model, without specifying a particular platform motion, was derived in [20]

and [21]. This model was tested under a variety of platform motions and compared with

the published results appearing in [11] and [17]. In addition, simulations were made

with real platform motion data and compared with field data. Comparisons showed the

simulation results were consistent with the experimental results.

Xie et al. [22] developed a first-order ocean surface RCS model for an HFSWR

located on a ship having a constant forward speed. Experimental and simulation results

showed that the first-order Bragg lines are spread in the spectrum because of the ship

motion and the broad antenna beam. Later, a corresponding second-order shipborne

HFSWR cross section with uniform linear ship motion was derived in [23]. Based on the

derived shipborne RCSs and the spreading mechanism of the Bragg lines, a method for

extracting ocean surface wind direction from shipborne HFSWR data was proposed and

demonstrated in [24]. By using a single receiving sensor rather than a receiving array,

wind directions of a large sea area covered by the broad beam antenna were obtained

with an error of around 2◦ when signal to noise ratio (SNR) was above 15 dB. The

ambiguity problem was resolved using the method proposed in [25]. Compared with the

conventional method based on a land-based receiving array, this method was stated to be

more easily realized with less system cost. Similarly, methods for ocean surface current

extraction and ocean clutter spectrum estimation for shipborne HFSWR were developed

in [26–28].

In order to make the RCS simulations reflect reality more closely, the characteristics

of ship oscillation (including roll, pitch and yaw) were analyzed, and a model of the ship
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oscillation was developed [29]. It was assumed that the ship oscillation in each dimension

was independent and approximated a simple harmonic motion, whose frequency and

amplitude are determined by the type of ship and the sea state. Then, a synthetic velocity

model considering both ship velocity and ship oscillation was established. Based on

this model, simulations were made to compare sea clutter spectra with and without ship

oscillation. Comparisons showed that the oscillating movement of a ship has a significant

influence on the sea clutter spectrum broadening, but that this effect can be ignored in

the case of low sea states, for example, sea state 3 and less, when the HFSWR operating

frequency was 15 MHz.

1.2.2 Analysis of the Effect of the Platform Motion and Platform

Motion Compensation Methods

From 1985 to 1992, a team at the University of Hamburg modified a Coastal Ocean

Dynamic Applications Radar (CODAR) system [30] for shipborne operation. A com-

bination of a land-based and a shipborne CODAR was used during the NORCSEX’ 88

experiment to measure the surface current fields along the Norwegian coast [31]. Based

on the data from these experiments, considerable research was published, for example,

in [31–33].

Gurgel analyzed and highlighted difficulties in operating a shipborne HFSWR in [10]

and [32]. Firstly, it is very difficult to handle the ship to keep the speed and direction

constant and to measure the ship’s movement accurately. Secondly, there may be a severe

interaction between the ship’s body and the receiving array. Thus, the arrangement

of the receiving array is critical for minimizing the distortion of the antenna pattern.

In addition, Gurgel suggested that it is crucial to develop a method to compensate for

this distortion. Finally, it was found that the ship’s pitch and roll movements cause

amplitude and phase modulation of the sea echoes. Amplitude modulation is due to

the deformation of the vertical polarization and the resulting change of the signal’s
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coupling to the sea. In addition, phase modulation is caused by the changing distance

from the antenna to the scattering ocean patch, which turns out to be the major effect

(the target signal was obscured by the extra peaks in the Doppler spectra). Therefore,

a method to filter out the amplitude and phase modulation of the sea echoes due to the

pitch and roll movements was found to be important. Some suggestions for operating a

shipborne HFSWR in order to reduce the influence of the ship movement and improve

the radar’s working performance were also given in [10] and [32]. For example, it was

suggested that an HFSWR system should be installed above the sea, as low as possible,

to reduce the phase modulation caused by the pitch and roll movements. Following this

research, Gurgel and Essen [33] discussed and evaluated the performance of a shipborne

current mapping HFSWR. It was found that, with the ship navigation data provided by

the satellite-supported Global Positioning System (GPS), the shipborne HFSWR could

measure surface current velocities with an accuracy of 5 cm/s.

Howell and Walsh [34] described an inversion algorithm for nondirectional wave

spectra using an omnidirectional antenna and presented measurements of ocean wave

spectra from a ship-mounted HFSWR. Firstly, the omni-directional first- and second-

order RCS models were developed based on the narrow-beam RCS models. Then, the

effect of the ship motion, surface currents, and antenna pattern distortion due to the

interatction of the antenna with nearby metal objects were discussed in [34]. For a sea

state with 3.5 m significant wave height, the root mean square pitch and roll angles of

the ship were recorded in [34] to be about 1.5◦, which corresponded to a relatively small

lateral displacement of around 7.5% of the Bragg wavelength for a monopole antenna

operating at 25.4 MHz and situated 17 m above the sea surface. In this case, the ship

motion was assumed to have little impact on the experimental data and could be ignored.

Finally, the inversion algorithm was tested using the experimental data and showed a

positive preliminary performance.

The effect of the movement of the radar platform on target detection was analyzed

by using a shipborne HFSWR [35]. Following this research, field data collected by a

7



shipborne HFSWR system over the Yellow Sea of China was presented in [11]. The

spreading regions of the first-order Bragg lines were illustrated, and this effect was seen

to be closely related to the ship’s velocity. Additionally, when the ship velocity is low,

the spreading spectrum will appear as a bandpass spectrum; otherwise, it will be lowpass.

Space-time adaptive processing (STAP) for a shipborne radar was introduced to suppress

the spreading clutter and to improve the performance of target signal detection. The

experimental data showed good agreement with the theoretical analysis. By using this

experimental data, STAP was shown to work efficiently for sea clutter suppression.

Ji et al. [36] extended the research presented in [11] by developing a model with both

the six degrees of freedom (DOF) motion of the ship and uniform forward motion. By

analyzing the data derived from the model, it was concluded that the roll, pitch and yaw

motions of the ship are dominant and account for the main impact on the HFSWR data.

It was shown that the STAP technique successfully compensated for ship movement.

The STAP technique to compensate for the ship movement for shipborne HFSWR

was demonstrated in [37]. The STAP technique is based on the radar wavelength, pulse

repetition period and the velocity of the platform. A weight matrix or optimal filter was

built, and then was multiplied with the radar received data. By using to advantage the

notches or nulls of the filter response, the shifted Bragg peaks (i.e., only two shifted

Bragg peaks in the spectra instead of a broad region of Bragg peaks) were removed

from the Doppler spectra, so that the target signal would be more readily detected. In

addition, STAP can be used to suppress the Bragg peaks (commonly called sea clutter),

while not used to suppress the second-order peaks. This is because the magnitudes of the

second-order peaks are relatively low and usually have little effect on the target signal.

Although STAP has been widely used to suppress sea clutter and improve the perfor-

mance of target detection, it has some obvious disadvantages, one being that it requires a

large amount of computation. Additionally, STAP is highly dependent on the ship motion

model. The established ship motion model is usually developed from an empirical model

with ideal assumptions, resulting in a reduced accuracy of the estimated spectrum.
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Other compensation methods have also been proposed and used to mitigate the effect

of the platform motion. For example, Wang et al. [38] derived a time-varying model for

the steering vector of a phased array pulsed Doppler radar system with the antenna array

on a floating platform. Six DOF oscillating motions of the platform were considered

in the model as well as the forward motion of the platform. Through this model, a

maximum likelihood motion compensation technique was applied to the received sensor

array data, and then the expression for the beamformed outputs was obtained. These

studies concluded that the motion compensation was robust to the yaw measurement error

and the error of the six DOF motion in the beamformed output could be considered to be

negligible when 10% measurement error was tolerable. The simulation results indicated

that six oscillating motions caused no significant changes in the targets’ responses under

calm sea states (up to 3, gentle breeze), while the forward motion could cause spreading

in the spectra.

Bourges et al. [39] put each element of the antenna array on a buoy, resulting in each

element having a different movement. Only vertical displacement of the buoy motion

was considered and the radiation pattern was studied in the azimuth plane. A sinusoidal

function was used to model the swell motion (the buoys’ dominant movement). The

buoys’ movements caused the changing of the nulls of the radiation pattern. Schelkunoff’s

zero placement method was introduced and applied to correct the disturbances caused in

the radiation pattern by the buoys’ movements. Then, two methods for correcting vertical

deformations of the receiving array radiation pattern with the receiving array mounted

on buoys were presented in [40]. Following this research, further analysis of the effect

of the buoys’ movements were conducted in [41] and [42]. The model of the buoys’

movements was re-established and calculated from a realistic modeling of a sea surface.

Both vertical and horizontal deformations of the receiving array were considered and

analyzed. In a vertical displacement, the main disturbances come from the modification

of the coupling in the array. For the horizontal displacement, the modification of the

9



inter-element spacing in the array resulted in the main disturbance. A real-time motion

compensation method was provided to optimize the radiation pattern of the antenna array.

The majority of motion compensation methods have been proposed to correct for

only the motion effect on the radiation pattern of the antenna array (see, for exam-

ple, [39], [41] and [42]). However, the platform motion also has a significant effect on

the Doppler spectra, for example, causing both spread Bragg peaks and the generation of

motion-induced peaks. STAP is widely used to compensate for the effect of the motion

on the Doppler spectra. The aim of STAP is to suppress the sea clutter information

(mainly referring to the spread Bragg peaks) in the Doppler spectra and to improve ship

detection performance. It achieves this by eliminating the clutter rather than by correcting.

However, this approach is not appropriate for ocean remote sensing applications where it

is required to compensate in order to retain the integrity of the first- and second-order

ocean spectra. The motion compensation method proposed in this thesis aims to recover

the motion-compensated Doppler spectra (i.e., to remove the motion-induced peaks

in the Doppler spectra, and to recover the energy and the bandwidth of the first- and

second-order peaks) for the purpose of extracting ocean information from the Doppler

spectra. Additionally, while STAP is especially applied to compensate for linear motion

effects, the motion compensation method in this study are applied to platform motions

represented as a sum of sinusoidal functions.

1.2.3 Walsh’s Scattering Theory and Monostatic Radar Cross Sec-

tion Models

In order to provide insight into the effect of platform motion on Doppler spectra, a radar

cross section model incorporating platform motion is derived. The HFSWR cross section

models of the ocean surface in this thesis are developed based on the Walsh’s scattering

theory and radar cross section models. Thus, it is necessary to review the HFSWR cross

section models developed based on Walsh’s scattering method.
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In 1987, Walsh and Donnelly [43] derived the general expressions for the electro-

magnetic field for a surface with an arbitrary profile, including plane earth propagation,

layered media propagation, mixed-path propagation and rough surface scattering. By

considering the operation of a pulsed HF vertical dipole source and invoking the good

conducting surface, small height and small slope assumptions [44], the first two orders

of the backscatter radar cross sections were obtained. By adding a small displacement in

the source term of the electric field equation to represent the antenna motion, the first-

and second-order monostatic HFSWR cross sections of the ocean surface for a pulsed

source with an antenna on a floating platform have since been developed [17–19]. In

these later works, a sinusoidal function with a single frequency was used to describe the

platform motion, or barge motion in the horizontal plane.

The general process of the monostatic radar cross section (RCS) model derivation

used in [17–19] is summarized in Fig. 1.1. Firstly, the electric field equation is written

as an asymptotic integral. Then, the time-invariant surface expression is specified

and substituted into the electric field equation. In order to solve the complex integral,

a stationary phase method is adopted [45]. The stationary phase method is mainly

accomplished by a polar or elliptic coordinate transformation, depending on whether

the scattering geometry is monostatic or bistatic, respectively. Next, the electric field

equation is inversed Fourier transformed into the time domain, and a pulsed dipole is

designated to be the exciting source. From pulse to pulse, the ocean surface is time

varying, and consequently the rough surface function must be modified to account for

this effect. Finally, taking the Fourier transform of the autocorrelations of the electric

fields to calculate the power spectral density, the expression for the radar cross section

can be obtained by comparing the power density with the standard radar range equation.

The second-order radar foot-scatter cross section model is not addressed in this thesis

due to its lesser contribution to the total radar cross section [19]. Additionally, the

peaks introduced by the second-order radar foot-scatter cross section are at 0 Hz and

twice the Bragg peak frequencies in the Doppler spectra [46]. These peaks appear out
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Fig. 1.1 The RCS derivation process block diagram.

of the Doppler region of interest for the purpose of ocean remote sensing. Thus, only

the first-order [17] and second-order radar patch scatter [18] cross section models are

reviewed below.

1.2.3.1 The First-Order Radar Cross Section Model

Under the assumption of a good conducting surface and imposing the usual small height

and small slope constraints for the ocean waves, the HFSWR scattered field En for a

floating transmitter can be written as [17], [18]

En −
{(

∇ξ ·∇En

) xy
∗
(

F(ρ)
e− jkρ

2πρ

)}
=C0F(ρ)

e− jkρ ′

2πρ
(1.1)

where ρ is the planar distance from the transmitter to the receiver (x,y) on the rough

surface ξ , shown in Fig. 1.2, while ρ ′ is the distance from the transmitter to the receiver,
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Fig. 1.2 General first-order bistatic scatter geometry including antenna motion.

incorporating the transmitter displacement vector δ ρ⃗0, and is given by

ρ
′ ≈ ρ − ρ̂ ·δ ρ⃗0

where the hat indicates a unit vector. The dipole constant, C0, is expressed as

C0 =
I∆lk2

jωε0

where the source is assumed to be a vertical dipole of length ∆l carrying a current I whose

radian frequency and wavenumber are ω and k, respectively, in a space with permittivity

ε0.
xy
∗ indicates two-dimensional spatial convolution and F(ρ) represents the Sommerfeld

attenuation function [47]. ∇ = x̂ ∂

∂x + ŷ ∂

∂y + ẑ ∂

∂ z with the hatted vectors being the unit

vectors along the coordinate axes and j =
√
−1. A Neumann series solution of (1.1)

gives the first-order received electric field for a fixed receiver and a floating transmitter

as [17]

(En)1 ≈
kC0

(2π)2 ∑
K⃗

P⃗KK
∫

x1

∫
y1

cos(θ1 −θK)
F(ρ1)F(ρ2)

ρ1ρ2

· e jkδρ0 cos(θ1−θ0)e jρ1K cos(θ1−θK)e− jk(ρ1+ρ2)dy1dx1

(1.2)

where ρ1, ρ2 and θ1 are depicted in Fig. 1.2. δρ0 and θ0, respectively, represent the

magnitude and the direction of δ ρ⃗0, and ∑ is the usual summation symbol. The time-
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invariant rough surface ξ , which is represented by a Fourier series, may be expressed

as

ξ (x,y) = ∑
K⃗

P⃗K e j⃗ρ·K⃗, (1.3)

with P⃗K being the Fourier coefficient for a surface component whose wave vector is K⃗, K

and θK being, respectively, the magnitude and the direction of K⃗.

For a monostatic geometry, it may be shown, as in [17], that ρ2 ≈ ρ1 −δ ρ⃗0 · ρ̂1. By

using this approximation and taking an inverse Fourier transform of (En)1, after including

a pulsed sinusoid dipole excitation, it may be shown that the time-domain version of (1.2)

is

(En)1m f (ρ0)≈− jη0∆l∆ρI0k2
0

F2(ρ0,ω0)

(2πρ0)3/2 e− j π

4 e jk0∆ρ

·∑
K⃗

P⃗K

√
Ke jKρ0e jKδρ0 cos(θK−θ0)Sa

[
∆ρ

2
(K −2k0)

] (1.4)

where I0, ω0 and k0 are the peak current, the radian frequency and the wavenumber,

respectively, of the pulsed dipole excitation. η0 represents the intrinsic impedance of free

space. ρ0 =
c(t− τ0

2 )
2 and the patch width ∆ρ = cτ0

2 depend on the radar pulse duration τ0.

c is the free space speed of light and Sa(x) = sinx
x represents the sampling function.

Next, to introduce surface time variation into the analysis, the rough ocean surface

is represented as a zero-mean, stationary Gaussian process of arbitrary variance. The

time-varying surface ξ is expressed as

ξ (x,y, t) = ∑
K⃗,ω

P⃗K,ω e jK⃗ ·⃗ρe jωt . (1.5)

After introducing the time-varying ocean surface variation (1.5) into the received electric

field (1.4), an autocorrelation of the time-domain electric field, R(τ), can be carried out

as

R(τ) =
Ar

2η0
< (En)1(t + τ)(En)

∗
1(t)> (1.6)
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where Ar = (λ 2
0
/

4π)Gr, with λ0 being the free space wavelength of the transmitted

signal and Gr being the gain of the receiving array. τ represents the interval between

samples. ∗ and <> represent the operations of complex conjugation and ensemble

averaging, respectively.

In [17] and [18], it is assumed that the platform sway is caused by the dominant

ocean wave so that

δ ρ⃗0 = asin(ωpt)ρ̂p (1.7)

where a and ωp represent the motion amplitude and frequency, respectively. ρ̂p, set as

the angle θKp , represents the direction of δ ρ⃗0.

After Fourier transforming the autocorrelation and comparing the power spectral

density directly with the standard radar range equation, the first-order monostatic radar

cross section, σ1m f (ωd), for an antenna on a floating platform may be written as [17]

σ1m f (ωd) = 23
πk2

0∆ρ ∑
m=±1

∫
K

K2S1(mK⃗)Sa2
[

∆ρ

2
(K −2k0)

]
· {J2

0 [aK cos(θK −θKp)]δ (ωd +m
√

gK)+
∞

∑
n=1

J2
n [aK cos(θK −θKp)]

· [δ (ωd +m
√

gK −nωp)+δ (ωd +m
√

gK +nωp) ]}dK

(1.8)

where ωd represents the radian Doppler frequency. The first-order ocean surface spectral

power density is expressed by S1(mK⃗) with m being -1 for approaching ocean waves and

1 for receding waves. Jn represents a Bessel function of the first kind of order n, and δ is

the Dirac delta function.

1.2.3.2 The Second-Order Radar Cross Section Model

The second-order radar cross section contains both hydrodynamic and electromagnetic

contributions. The second-order hydrodynamic contribution is caused by the signal

from the transmitter being scattered once by second-order ocean waves before being

received. The second-order electromagnetic contribution arises from double scattering
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from first-order ocean waves. Equation (1.8) is the first-order radar cross section model

and contains the first-order ocean wave spectrum S1(K⃗,ω). The second-order ocean

wave spectrum can be expressed as

S2(K⃗,ω) = 2
∫ ∫

K⃗1+K⃗2=K⃗,
ω1+ω2=ω

S1(K⃗1,ω1)S1(K⃗2,ω2)|HΓ|2dK⃗1dω1 (1.9)

where HΓ is the hydrodynamic coupling coefficient [48] accounting for the coupling of

two first-order ocean waves, whose wave vectors and radian frequencies are K⃗1, K⃗2, ω1

and ω2, respectively. By replacing S1(K⃗,ω) with S2(K⃗,ω), (1.8) becomes the expression

for the second-order hydrodynamic portion of the radar cross section of the ocean for the

case of an antenna on a floating platform and may be written as

σ2m f (ωd) = 26
π

2k4
0 ∑

m1=±1
∑

m2=±1

∫
∞

0

∫
π

−π

|HΓ|2S1(m1K⃗1)S1(m2K⃗2)K1

·
∞

∑
n=−∞

J2
n [aK cos(θK −θKp)]

·δ (ωd +m1
√

gK1 +m2
√

gK2 +nωp)dθK⃗1
dK1.

(1.10)

Following a similar procedure to that for the first-order case, the second-order received

electric field, (En)2, for a fixed receiver and a floating transmitter can also be simplified

using a Neumann series to give [18]

(En)2 ≈
k2C0

(2π)3 ∑
K⃗1

∑
K⃗2

P⃗K1
P⃗K2

∫
A2

∫
A1

(K⃗1 · ρ̂1)(K⃗2 · ρ̂12)e jK⃗1 ·⃗ρ1e jK⃗2 ·⃗ρ2

· e jkρ̂1·δ ρ⃗0F(ρ1)F(ρ12)F(ρ20)
e− jk(ρ1+ρ12+ρ20)

ρ1ρ12ρ20
dA1dA2

(1.11)

where P⃗K1
and P⃗K2

represent the Fourier coefficients of the first-order waves, which

are associated with S1(m1K⃗1) and S1(m2K⃗2), respectively. The geometric parameters

ρ1, ρ12 and ρ20 are depicted in Fig. 1.3. In Cartesian coordinates, dA1 = dx1dy1 and

dA2 = dx2dy2. By applying the monostatic geometry, for which ρ20 ≈ ρ2 − δ ρ⃗0 · ρ̂2,

and the patch scatter assumption, ρ12 << ρ1,ρ2, the double integral in (1.11) can be
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simplified. Following a similar analysis as was used to derive the first-order electric field

for a pulsed dipole, the time domain result for the second-order electric field is

Transmitter

(T)

Receiver

(R)

y

x

0


1 2 

1


2


12


20





2 2( , )x y

1 1( , )x y

( , )x y

Fig. 1.3 General second-order bistatic scatter geometry with antenna motion.

(En)2m f (ρ0)≈− jη0∆l∆ρI0k2
0

F2(ρ0,ω0)

(2πρ0)3/2 e jk0∆ρe− j π

4

·∑
K⃗1

∑
K⃗2

EΓPP⃗K1
P⃗K2

√
Ke jKρ0e jKδρ0 cos(θK−θ0)Sa

[
∆ρ

2
(K −2k0)

] (1.12)

where the electromagnetic coupling coefficient can be expressed as

EΓP(K⃗1, K⃗2) =
jk0

2K2
|K⃗1 × K⃗2|2

k2
0 − K⃗1 · K⃗2

{
1− j

k0(1+∆)√
−K⃗1 · K⃗2 + jk0∆

}
(1.13)

with ∆ being the intrinsic impedance of the surface. From (1.12), a similar process to

the first-order case is conducted to calculate the second-order electromagnetic portion of

the radar cross section. Adding this electromagnetic contribution and the hydrodynamic

result (1.10), the total second-order monostatic radar cross section of the ocean when the
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antenna is on a floating platform may be written as [18]

σ2m f (ωd) = 26
π

2k4
0 ∑

m1=±1
∑

m2=±1

∫
∞

0

∫
π

−π

|ΓPm |2S1(m1K⃗1)S1(m2K⃗2)K1

·
∞

∑
n=−∞

J2
n [aK cos(θK −θKp)]

·δ (ωd +m1
√

gK1 +m2
√

gK2 +nωp)dθK⃗1
dK1

(1.14)

where ΓPm=EΓP+HΓ.

1.3 The Scope of the Thesis

In this thesis, HFSWR cross section models of the ocean surface for the case of an antenna

on a floating platform are investigated further based on the theoretical foundations

developed by Walsh [16]. The outline of this thesis is as follows.

In Chapter 2, based on the general form of the received electric field [17, 18], the

first- and second-order bistatic radar cross section models for a pulsed source with a

fixed receiver and a transmitter on a floating platform are developed. Comparisons of

these new bistatic models with earlier radar cross section models are then made. In order

to investigate how antenna motion impacts the RCS, the corresponding Doppler spectra

are simulated under a variety of sea states.

In Chapter 3, the first- and second-order bistatic radar cross section models with a

fixed receiver and a transmitter on a floating platform are extended to a frequency modu-

lated continuous waveform (FMCW) source. Based on established models, simulations

are made to compare the Doppler spectra for an FMCW waveform with those for a pulsed

waveform.

In Chapter 4, a more realistic platform motion model is proposed. In order to simplify

the study, the platform motion model is considered to be a combination of two cosine

functions in a single motion direction. Based on this newly-derived platform motion

model, the corresponding monostatic and bistatic radar cross sections are developed. Fol-
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lowing this research, radar cross sections are extended for a more complicated platform

motion model by considering multiple frequencies and directions. The corresponding

models are simulated and the impact of the antenna motion on the Doppler spectra is

discussed.

In Chapter 5, a compensation method to mitigate the effect of the platform motion on

the Doppler spectra is proposed. To simulate radar field data and examine this motion

compensation method, radar cross section models with external white Gaussian noise are

developed. Based on experimental platform motion data, radar cross sections are simu-

lated under a variety of sea states and SNRs. The corresponding motion compensation

results are obtained and evaluated.

In Chapter 6, a summary of the fundamental conclusions obtained from the research

in this thesis is given. Additionally, several suggestions for future work are proposed.

The research presented in this thesis has been published or submitted for review in

six refereed journal papers as listed below:

1. Y. Ma, E. W. Gill, and W. Huang, “First-order bistatic high-frequency radar ocean

surface cross-section for an antenna on a floating platform,” IET Radar Sonar Navig.,

vol. 10, no. 6, pp. 1136-1144, 2016.

This paper provides the development of the first-order radar cross section model for a

pulsed source with an antenna on a floating platform (Section 2.2).

2. Y. Ma, W. Huang, and E. W. Gill, “The second-order bistatic high frequency radar

ocean surface cross section for an antenna on a floating platform,” Can. J. Remote

Sens., vol. 42, no. 4, pp. 332-343, 2016.

This paper provides the development of the second-order radar cross section model

for a pulsed source with an antenna on a floating platform (Section 2.3).
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3. Y. Ma, W. Huang, and E. W. Gill, “Bistatic high frequency radar ocean surface cross

section for an FMCW source with an antenna on a floating platform,” Int. J. Antennas

Propag., vol. 2016, p. ID 8675964, 2016.

This paper provides the development of the radar cross section models for an FMCW

source with an antenna on a floating platform (Chapter 3).

4. Y. Ma, W. Huang, and E. W. Gill, “High frequency radar ocean surface cross section

incorporating a dual-frequency platform motion model,” IEEE J. Oceanic Eng., 2017.

(in press)

This paper provides the development of the monostatic radar cross section models

with a more realistic platform motion model (Section 4.3 and Section 4.5).

5. Y. Ma, E. W. Gill, and W. Huang, “Bistatic high frequency radar ocean surface cross

section incorporating a dual-frequency platform motion model,” IEEE J. Oceanic

Eng., 2017. (in press)

This paper provides the development of the bistatic radar cross section models with a

more realistic platform motion model (Section 4.4).

6. E. W. Gill, Y. Ma, and W. Huang, “Motion compensation for high frequency surface

wave radar on a floating platform,” IET Radar Sonar Navig., 2017. (in press)

This paper provides the development of the motion compensation method for HFSWR

on a floating platform (Chapter 5).
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Chapter 2

Bistatic Radar Cross Section for a

Pulsed Source with an Antenna on a

Floating Platform

2.1 Introduction

The first- and second-order HFSWR bistatic cross sections of the ocean surface for

a pulsed source with a fixed receiver and a distant transmitter on a floating platform

are developed in this chapter. Previously presented equations (1.2) and (1.11) are the

expressions for the bistatically received first- and second-order electric fields. By speci-

fying a pulsed dipole as the source and using a three-dimensional Fourier series, whose

coefficients are random variables, to represent a time-varying ocean surface, the electric

field equation in the time domain can be deduced. From this, the power spectral density

may be readily determined and the corresponding radar cross section can be derived by

invoking the standard radar range equation.

In this chapter, the first- and second-order bistatic radar cross sections for a pulsed

source with an antenna on a floating platform are presented. Using these newly-derived

RCS models, corresponding simulations are conducted to investigate how the antenna
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motion affects the bistatic HFSWR Doppler spectra. In Section 2.2, the derivation

process of the first-order bistatic radar cross section for the case of a fixed receiver and

a transmitter being mounted on a floating platform is outlined. The derivation of the

second-order bistatic radar patch scatter cross section is presented in Section 2.3. It

should be mentioned that only scattering from a portion of the ocean surface which is

remote from both the transmitter and receiver – the patch scatter case – is addressed in

this thesis. This means that, for the double scatter case, the two scattering points are very

close to each other compared to the distances between them and the antennas. Section

2.4 contains a comparison of the radar cross section models developed in Section 2.2

and 2.3 with earlier models. Section 2.5 presents a number of simulations based on

these newly-derived models and discusses their significance. A summary of the chapter

appears in Section 2.6.

A simple diagram of bistatic scatter for an antenna on a floating platform is depicted

in Fig. 2.1. In our study, the transmitter is an omnidirectional dipole on a floating

platform. The receiver is an onshore phased antenna array.



















Fig. 2.1 A diagram of bistatic scatter for a fixed receiver and a transmitter on a floating
platform.
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2.2 The First-Order Radar Cross Section Model

A. First-Order Field Equation

Bistatic HFSWR cross section for a stationary antenna has been previously derived

in [49], and the electric field of form similar to (1.2) is solved by a stationary phase

process. The detailed stationary phase process is provided in Appendix A. Using this

approach, the double integral in (1.2) can be solved, and the bistatic received electric

field reduces to [50]

(En)1b f ≈
±kC0

(2π)3/2 ∑
K⃗

P⃗K

√
Ke j ρK

2 cos(θK−θ)
∫

∞

ρ/2
F(ρ1)F(ρ2)√

ρs[ρ2
s − (ρ

/
2)2

]
e∓ j π

4

·
√

cosφe jkδρ0[cosφ cos(θK−θ0)+sinφ sin(θK−θ0)] e jρs[±K cosφ−2k]dρs

(2.1)

where ρs =
ρ1+ρ2

2 and φ is the bistatic angle (see Fig. A.1).

B. Time Domain Analysis Incorporating a Pulsed Dipole

An inverse Fourier transform (F−1) of (2.1) yields the time domain result for the first-

order electric field. It is known that ω is the transformed frequency variable and kC0 is

a function of ω . Thus, the frequency domain expression corresponding to (2.1) can be

written as

(En)1b f (t)≈
±1

(2π)3/2 F−1(kC0)
t∗F−1 {

·∑
K⃗

P⃗K

√
Ke j ρK

2 cos(θK−θ)e∓ j π

4

∫
∞

ρ/2
F(ρ1,ω0)F(ρ2,ω0)√

ρs[ρ2
s − (ρ

/
2)2

]

√
cosφ

· e jkδρ0[cosφ cos(θK−θ0)+sinφ sin(θK−θ0)] e jρs[±K cosφ−2k] dρs} .

(2.2)

For a pulsed dipole source [51], it is shown that

F−1(kC0)≈− jη0∆lI0k2
0e jω0t [h(t)−h(t − τ0)] (2.3)
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where h represents the Heaviside function. Moreover,

F−1{e j ω

c {δρ0[cosφ cos(θK−θ0)+sinφ sin(θK−θ0)]−2ρs}}

= δ{t − 2ρs

c
+

δρ0[cosφ cos(θK −θ0)+ sinφ sin(θK −θ0)]

c
}.

(2.4)

Next, it is helpful to define

δρs0 =δρ0[cosφ cos(θK −θ0)+ sinφ sin(θK −θ0)]

=cos(φ −θK +θ0)

(2.5)

so that the convolution portion of (2.2) can be simplified as

− jη0∆lI0k2
0e jω0t [h(t)−h(t − τ0)]

t∗δ [t − 2ρs −δρs0

c
]

=− jη0∆lI0k2
0e jω0(t−

2ρs−δρs0
c ) · [h(t − 2ρs −δρs0

c
)−h(t − 2ρs −δρs0

c
− τ0)].

(2.6)

From the property of the Heaviside function, it is known that

h
(

t − 2ρs −δρs0

c

)
−h

(
t − 2ρs −δρs0

c
− τ0

)
=

 1, c(t−τ0)+δρs0
2 < ρs <

ct+δρs0
2 ;

0, otherwise.
(2.7)

As in [52], in order to simplify the integral in (2.2), at this point it is useful to define

ρ0s =
ct
2 + c(t−τ0)

2
2

=
c(t − τ0

2 )

2
(2.8)

and

ρs
′ = ρs −ρ0s (2.9)

Then,
−cτ0

/
2+δρs0

2
< ρs

′ <
cτ0

/
2+δρs0

2
. (2.10)
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Gill [3] also notes that ρs ≈ ρ0s and ρ0s ≫ |ρs
′|, so that the phase term ρs(±K cosφ)

in (2.2) may be expanded as

ρs(±K cosφ)≈±K(ρ0s cosφ0 +ρs
′/cosφ0) (2.11)

where φ0 is a representative value of the bistatic angle, associated with ρ0s. Since ρ1 and

ρ2 exist in the magnitude term and vary only slightly over the patch, they may be denoted

by representative values, ρ01 and ρ02, and may be removed from the integral. Similarly,

ρ0s =
ρ01+ρ02

2 indicates the representative value of ρs. In addition, ρ0s is a constant in

the integral, so that dρs = dρs
′. By changing the integration variable accordingly, (2.2)

becomes

(En)1b f (t)≈
− jη0∆lI0k2

0

(2π)3/2 ∑
K⃗

P⃗K

√
Ke∓ j π

4 e j ρK
2 cos(θK−θ)e jω0t(±

√
cosφ0)

· F(ρ01,ω0)F(ρ02,ω0)√
ρ0s[ρ

2
0s − (ρ

/
2)2

]
e j±Kρ0s cosφ0

·
∫

ρs′
e j±Kρs

′/cosφ0e− jk0(2ρs−δρs0)dρs
′,

(2.12)

and the integral in (2.12) can be written as

I(ρs) =
∫

ρs′
e± jKρs

′/cosφ0e− jk0(2ρs−δρs0)dρs
′

= e− jk02ρ0se jk0δρs0

∫ cτ0/2+δρs0
2

−cτ0/2+δρs0
2

e jρs
′(±K/cosφ0−2k0)dρs

′.

(2.13)
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Defining ρs
′′ = ρs

′− δρs0
2 , (2.13) reduces to

I(ρs) = e− jk02ρ0se jk0δρs0

∫ cτ0
4

−cτ0
4

e j(ρs
′′+

δρs0
2 )(±K/cosφ0−2k0)dρs

′′

= e− jk02ρ0se± j Kδρs0
2cosφ0

∫ cτ0
4

−cτ0
4

e jρs
′′(±K/cosφ0−2k0)dρs

′′

= e− jk02ρ0s∆ρ

·
{

e j Kδρs0
2cosφ0 Sa

[
∆ρ

2
( K

cosφ0
−2k0

)]
+ e− j Kδρs0

2cosφ0 Sa
[

∆ρ

2
( K

cosφ0
+2k0

)]}
.

(2.14)

Since the surface wavenumber K cannot be negative, Sa[∆ρ

2 ( K
cosφ0

+2k0)] is much smaller

than Sa[∆ρ

2 ( K
cosφ0

− 2k0)] for any bistatic radar parameters and K of interest, the con-

tribution of the Sa[∆ρ

2 ( K
cosφ0

+ 2k0)] term in (2.14) is negligible relative to that of the

Sa[∆ρ

2 ( K
cosφ0

−2k0)] term. Substituting (2.14) into (2.12) and using

e jω0te− jk02ρ0s = e jω0(t−
2ρ0s

c ) = e j ω0
c (ct−2(

c(t− τ0
2 )

2 )) = e jk0∆ρ , (2.15)

the final received field may thus be obtained as [50], [53]

(En)1b f (t)≈
− jη0∆lI0k2

0

(2π)3/2 ∑
K⃗

P⃗K

√
K cosφ0e jk0∆ρ F(ρ01,ω0)F(ρ02,ω0)√

ρ0s[ρ
2
0s − (ρ

/
2)2

]

· e− j π

4 e jKρ0s cosφ0e
jKδρ0

2cosφ0
[cosφ0 cos(θK−θ0)+sinφ0 sin(θK−θ0)]

· e j ρK
2 cos(θK−θ)

∆ρSa
[

∆ρ

2
( K

cosφ0
−2k0

)]
.

(2.16)

C. First-Order Radar Cross Section

In keeping with the analysis presented in [51], the time-varying ocean surface ξ (x,y, t)

is expressed as in (1.5). Instead of using P⃗K as for the time-invariant case, P⃗K,ω is

used for the Fourier coefficient for the time-varying rough surface. It is assumed that

different Fourier coefficients P⃗K,ω are uncorrelated. Thus, the ensemble average of the
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time-varying Fourier coefficient can be derived as

< P⃗K,ωP∗
K⃗′,ω ′ >=

 S1(K⃗,ω)dK⃗dω, K⃗ = K⃗′,ω = ω ′;

0, otherwise.
(2.17)

Introducing the time-varying ocean surface variation (1.5) into the received electric

field (2.16), and using (1.6) to calculate the autocorrelation of the time-domain electric

field gives

R(τ) =
λ 2

0 Grη0∆l2I2
0 k4

0
8π

∆ρ2

(2π)3
ρ0s[ρ

2
0s − (ρ

/
2)2

]

∫
K⃗

∫
ω

K cosφ0S(K⃗,ω)e jωτ

· |F(ρ01,ω0)F(ρ02,ω0)|2 Sa2[
∆ρ

2
(

K
cosφ0

−2k0)]

·
〈

e
− jK

2cosφ0
δρ0(t)cosφ0 cos(θK−θ0(t)) e

jK
2cosφ0

δρ0(t+τ)cosφ0 cos(θK−θ0(t+τ))

· e
− jK

2cosφ0
δρ0(t)sinφ0 sin(θK−θ0(t)) e

jK
2cosφ0

δρ0(t+τ)sinφ0 sin(θK−θ0(t+τ))
〉

dωdK⃗.

(2.18)

Taking the Fourier transform of (2.18), with respect to τ , results in the Doppler power

spectral density being

P(ωd) =
λ 2

0 Grη0∆l2I2
0 k4

0
8π

∆ρ2

(2π)3
ρ0s[ρ

2
0s − (ρ

/
2)2

]

∫
K⃗

∫
ω

K cosφ0

· |F(ρ01,ω0)F(ρ02,ω0)|2S(K⃗,ω)Sa2[
∆ρ

2
(

K
cosφ0

−2k0)]

·
∫

τ

e jτ(ω−ωd) < M(K, θK, τ, t)> dτdωdK⃗

(2.19)

where ωd , the Doppler radian frequency, is the transform variable in the frequency

domain and

M(K, θK, τ, t) = e
− jK

2cosφ0
δρ0(t)cosφ0 cos(θK−θ0(t)) · e

jK
2cosφ0

δρ0(t+τ)cosφ0 cos(θK−θ0(t+τ))

· e
− jK

2cosφ0
δρ0(t)sinφ0 sin(θK−θ0(t)) · e

jK
2cosφ0

δρ0(t+τ)sinφ0 sin(θK−θ0(t+τ))
.

(2.20)
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Since dθN = dθK , (2.19) can be normalized in a per unit area sense as

P(ωd)

dA
= P(ωd)

ρ0s[ρ
2
0s − (ρ

2 )
2
]

∆ρdθN(ρ01ρ02)
2

=
λ 2

0 Grη0∆l2I2
0 k4

0
8π

∆ρ

(2π)3(ρ01ρ02)
2

∫
K

∫
ω

K2 cosφ0|F(ρ01,ω0)F(ρ02,ω0)|2

·S(K⃗,ω)Sa2
[

∆ρ

2
( K

cosφ0
−2k0

)] ∫
τ

e jτ(ω−ωd) < M(K, θK, τ, t)> dτdωdK,

(2.21)

which may be compared with the radar range equation to obtain the radar cross section

σ1b f (ωd) = 23k2
0∆ρ

∫
K

∫
ω

K2 cosφ0S(K⃗,ω) Sa2
[

∆ρ

2
( K

cosφ0
−2k0

)]
·
∫

τ

e jτ(ω−ωd) < M(K, θK, τ, t)> dτdωdK.

(2.22)

Next, it is noted that the power spectral density for first-order gravity waves can be

expressed as [54]

S1(K⃗,ω) =
1
2 ∑

m=±1
S1(mK⃗)δ (ω +m

√
gK). (2.23)

Substituting (2.23) into (2.22) gives

σ1b f (ωd) = 22k2
0∆ρ ∑

m=±1

∫
K

∫
ω

K2 cosφ0S1(mK⃗) δ (ω +m
√

gK)

·Sa2
[

∆ρ

2
( K

cosφ0
−2k0

)] ∫
τ

e jτ(ω−ωd) < M(K, θK, τ, t)> dτdωdK.

(2.24)

The presence of the Dirac delta function δ () allows the ω integration to be completed

immediately and (2.24) reduces to

σ1b f (ωd) = 22k2
0∆ρ ∑

m=±1

∫
K

K2 cosφ0S1(mK⃗) Sa2
[

∆ρ

2
( K

cosφ0
−2k0

)]
·
∫

τ

e− jτ(m
√

gK+ωd) < M(K, θK, τ, t)> dτdK.

(2.25)
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Here, < M(K, θK, τ, t) > should be more closely investigated. In keeping with [17],

it is assumed that the platform sway is caused by the dominant ocean wave. Then,

< M(K, θK, τ, t) > can be written in terms of Bessel functions of the first kind (see

Appendix B) as

⟨M(K, θK, τ, t)⟩=

J2
0{

aK
2
[cos(θK −θKp)+ tanφ0 sin(θK −θKp)]}

+2
∞

∑
n=1

J2
n{

aK
2
[cos(θK −θKp)+ tanφ0 sin(θK −θKp)]} · cos(nωpτ).

(2.26)

Setting 2cos(nωpτ) = e jnωpτ + e− jnωpτ , the τ integral in (2.25) may be completed to

give [50], [53]

σ1b f (ωd)

= 23
πk2

0∆ρ ∑
m=±1

∫
K

K2 cosφ0S1(mK⃗) Sa2[
∆ρ

2
(

K
cosφ0

−2k0)]

· {J2
0{

aK
2
|cos(θ1 −θKp)

/
cosφ0|} ·δ (ωd +m

√
gK)

+
∞

∑
n=1

J2
n{

aK
2
|cos(θ1 −θKp)

/
cosφ0|}

· [δ (ωd +m
√

gK −nωp)+δ (ωd +m
√

gK +nωp) ]}dK.

(2.27)

It is worth noting that the argument of the Bessel function J(ν) must be nonnegative. In

the Bessel function argument, cos(θK−θKp)+ tanφ0 sin(θK−θKp)= cos(θ1 −θKp)
/

cosφ0,

whose value may be determined by the angle between the sway motion direction and

the direction of ρ⃗1, if the bistatic angle is known. Since the antenna motion is described

by a sinusoidal function, it is known that the sway motion for the direction of θKp and

θKp +180◦ should be the same. Therefore, the absolute value may be used for the term

in the argument of the Bessel functions.

Equation (2.27) is the final result for the first-order bistatic ocean surface radar cross

section with a floating transmitter and a fixed receiver. Clearly, (2.27) contains an infinite
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sum of Bessel functions. However, the third-order and higher-order Bessel functions

affect the total cross section very little. For this reason, when simulating the cross section,

only the Bessel functions up to the second-order (i.e., n = 0, 1, 2) are used.

2.3 The Second-Order Radar Cross Section Model

2.3.1 The Second-Order Hydrodynamic Contribution

The first-order bistatic electric field for scatter from a time-invariant rough surface ξ (⃗ρ)

for the case of a floating transmitter and a fixed receiver was previously derived in (2.16).

The Fourier coefficient for the second-order ocean waves can be expressed as [51]

P⃗K,ω = ∑
K⃗=K⃗1+K⃗2
ω=ω1+ω2

HΓP⃗K1,ω1
P⃗K2,ω2

(2.28)

Introducing the time-varying ocean surface displacement ξ (x,y, t) in (1.5) with the

Fourier coefficient P⃗K,ω in (2.28) to replace the time-invariant case ξ (x,y) in (1.3),

(2.16) becomes the expression for the second-order bistatic field for scatter from the

ocean surface for the case of a floating transmitter and a fixed receiver

(En)2b f (t) =
− jη0∆lI0k2

0

(2π)3/2 ∑
K⃗1,ω1

∑
K⃗2,ω2

HΓP⃗K1,ω1
P⃗K2,ω2

e j(ω1+ω2)t∆ρ
√

K cosφ0

· e j ρK
2 cos(θK−θ)e jk0∆ρ F(ρ02,ω0)F(ρ020,ω0)√

ρ0s[ρ
2
0s − (ρ

/
2)2

]
e− j π

4 e jKρ0s cosφ0

· e jKδρ0[cosφ0 cos(θK−θ0)+sinφ0 sin(θK−θ0)]/(2cosφ0)

·Sa[
∆ρ

2
(

K
cosφ0

−2k0)].

(2.29)
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2.3.2 The Second-Order Electromagnetic Contribution

A. General Second-Order Field Equation

The general second-order HFSWR scattered field for an antenna on a floating platform

(see equation (1.11)) is derived in [18]. Based on Fig. 1.3, the double integral in (1.11) is

defined as

I =
∫

A2

F(ρ20)e jK⃗2 ·⃗ρ2
e− jkρ20

ρ20

·
∫

A1

(K⃗1 · ρ̂1)(K⃗2 · ρ̂12)e jK⃗1 ·⃗ρ1e jkρ̂1·δ⃗ ρ0 F(ρ1)F(ρ12)
e− jk(ρ1+ρ12)

ρ1ρ12
dA1dA2,

(2.30)

and the A1 integral in (2.30) can be expressed as

I1 =
∫

A1

(K⃗1 · ρ̂1)(K⃗2 · ρ̂12)e jK⃗1 ·⃗ρ1e jkρ̂1·δ⃗ ρ0 F(ρ1)F(ρ12)
e− jk(ρ1+ρ12)

ρ1ρ12
dA1. (2.31)

B. Patch Scatter Field Equation

Following the analyses in [44] and [49], for patch scatter, it is clear that ρ12 ≪ ρ1, ρ2.

With the relationship ρ⃗1 = ρ⃗2 − ρ⃗12, it can be shown that

ρ1 ≈ ρ2 − ρ̂2 · ρ⃗12. (2.32)

By using the approximations ρ1 ≈ ρ2 and θ1 ≈ θ2 in the magnitude factor in the

integral I1, (2.31) may be written as

I1 = K1K2 cos(θ2 −θK⃗1
)F(ρ2)

e− jkρ2

ρ2
e jkρ̂2·δ⃗ ρ0e jK⃗1 ·⃗ρ2

·
∫

ρ12

∫
θ12

F(ρ12)cos(θ12 −θK⃗2
) e− jkρ12e j⃗ρ12·[kρ̂2−K⃗1]dθ12dρ12

(2.33)
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where dA1 = ρ12dθ12dρ12 has been applied. By defining K⃗s(Ks, θs) = kρ̂2 − K⃗1, the

integral in (2.33) may be written as

I11 =
∫

ρ12

∫
θ12

F(ρ12)cos(θ12 −θK⃗2
)e− jkρ12e jρ12Ks cos(θ12−θs)dθ12dρ12. (2.34)

Since

cos(θ12 −θK⃗2
) = cos(θ12 −θs)cos(θs −θK⃗2

)− sin(θ12 −θs)sin(θs −θK⃗2
) (2.35)

and the term sin(θ12 − θs)sin(θs − θK⃗2
) is an odd function that will vanish in the θ12

integral, (2.34) becomes

I11 =
∫

ρ12

F(ρ12)cos(θs −θK⃗2
)e− jkρ12

·
∫

θ12

cos(θ12 −θs)e jρ12Ks cos(θ12−θs)dθ12dρ12.

(2.36)

By using the definition of the Bessel function of the first kind, the θ12 integral in (2.36)

may be written as ∫ 2π

0
cos(θ12 −θs)e jρ12Ks cos(θ12−θs)dθ12

=
∫ 2π

0
cos(θ)e jρ12Ks cos(θ)dθ

=2π jJ1(ρ12Ks).

(2.37)

Substituting this result into (2.36) gives

I11 = 2π j cos(θs −θK⃗2
)
∫

ρ12

F(ρ12)e− jkρ12J1(ρ12Ks)dρ12

= 2π j cos(θs −θK⃗2
)G(Ks)

= 2π jK̂s · K̂2G(Ks)

(2.38)
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where G(Ks)=
∫

ρ12
F(ρ12)e− jkρ12J1(ρ12Ks)dρ12. Further substitution of (2.38) into (2.33)

yields

I1 = K1K2 cos(θ2 −θK⃗1
)F(ρ2)

e− jkρ2

ρ2
e jK⃗1 ·⃗ρ2e jkρ̂2·δ⃗ ρ0 [2π jK̂s · K̂2G(Ks)]. (2.39)

Introducing this form of I1 into (2.30) results in

I = 2π j
∫

A2

F(ρ2)F(ρ20)
e− jk(ρ2+ρ20)

ρ2ρ20
e j(K⃗1+K⃗2)·⃗ρ2

· e jkρ̂2·δ⃗ ρ0(K⃗1 · ρ̂2)(K̂s · K⃗2)G[Ks(ρ̂2, K⃗1)]dA2,

(2.40)

so that (1.11) may be cast as

(En)2b f ≈
−kC0

(2π)2 ∑
K⃗1

∑
K⃗2

P⃗K1
P⃗K2

·
∫

y2

∫
x2

(−kχ)
F(ρ2)F(ρ20)

ρ2ρ20
e jkρ̂2·δ⃗ ρ0e− jk(ρ2+ρ20)e jKρ2 cos(θK−θ2)dx2dy2

(2.41)

where χ = j(K⃗1 · ρ̂2)(K̂s · K⃗2) ·G[Ks(ρ̂2, K⃗1)] and K⃗ = K⃗1 + K⃗2.

By transforming from Cartesian to elliptic coordinates and applying a stationary

phase method (see Appendix C), the bistatic electric field expression for scatter from a

time-invariant rough surface becomes

(En)2b f =
−kC0

(2π)
3
2
∑
K⃗1

∑
K⃗2

P⃗K1
P⃗K2√
K

e
j ρ

2 K cos(θK−θ)

e∓ j π

4

·
∫

∞

ρ

2

(−kχ)F(ρ2)F(ρ20)√
cosφ

e jρs(±K cosφ−2k)√
ρs(ρ2

s − (ρ

2 )
2
)

· e jkδρ0[cosφ cos(θK−θ0)+sinφ sin(θK−θ0)]dρs.

(2.42)

C. Pulsed Radar Field Equation

Following the analysis given for a pulsed dipole source in [50] and [51], and taking the

inverse Fourier transform of (2.42), the time domain result for the second-order electric
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field is

(En)2b f (t) =
− jη0∆lI0k2

0

(2π)3/2 ∑
K⃗1

∑
K⃗2

P⃗K1
P⃗K2√

K cosφ0
e jk0∆ρ

· F(ρ02,ω0)F(ρ020,ω0)e− j π

4√
ρ0s(ρ

2
0s − (ρ

2 )
2
)

(k0χ)e jKρ0s cosφ0

· e jKδρ0[cosφ0 cos(θK−θ0)+sinφ0 sin(θK−θ0)]/(2cosφ0)

· e j ρK
2 cos(θK−θ)

∆ρSa
[

∆ρ

2
( K

cosφ0
−2k0

)]
.

(2.43)

Defining BEΓP = k0χ

K cosφ0
as the electromagnetic coupling coefficient reduces (2.43) to

(En)2b f (t) =
− jη0∆lI0k2

0

(2π)3/2 ∑
K⃗1

∑
K⃗2

BEΓPP⃗K1
P⃗K2

e j ρK
2 cos(θK−θ)e jk0∆ρ

·
√

K cosφ0
F(ρ02,ω0)F(ρ020,ω0)e− j π

4√
ρ0s(ρ

2
0s − (ρ

2 )
2
)

e jKρ0s cosφ0

· e jKδρ0[cosφ0 cos(θK−θ0)+sinφ0 sin(θK−θ0)]/(2cosφ0)

·∆ρSa
[

∆ρ

2
( K

cosφ0
−2k0

)]
.

(2.44)

Replacing the time-invariant rough surface by the time-varying ocean surface, (2.44) can

be written as

(En)2b f (t) =
− jη0∆lI0k2

0

(2π)3/2 ∑
K⃗1,ω1

∑
K⃗2,ω2

BEΓPP⃗K1,ω1
P⃗K2,ω2

e j ρK
2 cos(θK−θ)e j(ω1+ω2)t

·
√

K cosφ0e jk0∆ρ F(ρ02,ω0)F(ρ020,ω0)√
ρ0s[ρ

2
0s − (ρ

/
2)2

]
e− j π

4 e jKρ0s cosφ0

· e jKδρ0[cosφ0 cos(θK−θ0)+sinφ0 sin(θK−θ0)]/(2cosφ0)

·∆ρSa
[

∆ρ

2
( K

cosφ0
−2k0

)]
.

(2.45)

Replacing the electromagnetic coupling coefficient BEΓP with its symmetrical counterpart

SEΓP, which is derived in Appendix D, gives the final second-order electromagnetic
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electric field

(En)2b f (t) =
− jη0∆lI0k2

0

(2π)3/2 ∑
K⃗1,ω1

∑
K⃗2,ω2

SEΓPP⃗K1,ω1
P⃗K2,ω2

e j(ω1+ω2)t
√

K cosφ0

· F(ρ02,ω0)F(ρ020,ω0)√
ρ0s[ρ

2
0s − (ρ

/
2)2

]
e j ρK

2 cos(θK−θ)e jk0∆ρe− j π

4 e jKρ0s cosφ0

· e jKδρ0[cosφ0 cos(θK−θ0)+sinφ0 sin(θK−θ0)]/(2cosφ0)

·∆ρSa
[

∆ρ

2
( K

cosφ0
−2k0

)]
.

(2.46)

2.3.3 Second-Order Radar Cross Section For Patch Scatter

From (2.29) and (2.46), the total second-order scattering field, including both the electro-

magnetic portion and the hydrodynamic portion, can be expressed as [55] and [56]

(En)2b f (t) =
− jη0∆lI0k2

0

(2π)3/2 ∑
K⃗1,ω1

∑
K⃗2,ω2

ΓPbP⃗K1,ω1
P⃗K2,ω2

e j(ω1+ω2)t
√

K cosφ0

· F(ρ02,ω0)F(ρ020,ω0)√
ρ0s[ρ

2
0s − (ρ

/
2)2

]
e− j π

4 e jKρ0s cosφ0e j ρK
2 cos(θK−θ)e jk0∆ρ

· e jKδρ0[cosφ0 cos(θK−θ0)+sinφ0 sin(θK−θ0)]/(2cosφ0)

·∆ρSa
[

∆ρ

2
( K

cosφ0
−2k0

)]
(2.47)

where ΓPb=SEΓP+HΓ. A similar process, as was used in [50] and [51], is used to obtain

the radar cross section from the electric field equation. The initial step of the approach is

to write the autocorrelation, R(τ), as

R(τ) =
Ar

2η0
< (En)2b f (t0, t + τ)(En)

∗
2b f (t0, t)>

=
Ar

2η0

{
η2

0 k4
0|∆lI0|2(∆ρ)2

2(2π)3
ρ0s[ρ

2
0s − (ρ

/
2)2

]

}
∑

m1=±1
∑

m2=±1

∫
π

−π

∫
∞

0

∫
π

−π

∫
∞

0

· {S1(m1K⃗1)S1(m2K⃗2)e jωτ |ΓPb |
2K2 cosφ0|F(ρ02,ω0)F(ρ020,ω0)|2

·< M(K, θK, τ, t)> Sa2
[

∆ρ

2
( K

cosφ0
−2k0

)]
K1}dK1dθK⃗1

dKdθK⃗

(2.48)
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where M(K, θK, τ, t) is defined in (2.20).

A Fourier transform of (2.48) with respect to τ gives the received power spectral

density spectrum

P(ωd) =
Arη0k4

0|∆lI0|2(∆ρ)2

4(2π)3
ρ0s[ρ

2
0s − (ρ

/
2)2

]
∑

m1=±1
∑

m2=±1

∫
π

−π

∫
∞

0

∫
π

−π

∫
∞

0

·{S1(m1K⃗1)S1(m2K⃗2)|ΓPb |
2K2 cosφ0

· |F(ρ02,ω0)F(ρ020,ω0)|2Sa2
[

∆ρ

2
( K

cosφ0
−2k0

)]
K1}

·
∫

τ

e jτ(ω−ωd) < M(K, θK, τ, t)> dτdK1dθK⃗1
dKdθK⃗.

(2.49)

The result in (2.49) may be normalized in a per unit area sense as

P(ωd)

dA
= P(ωd)

ρ0s[ρ
2
0s − (ρ

2 )
2
]

∆ρdθN(ρ02ρ020)
2

= P(ωd)
ρ0s[ρ

2
0s − (ρ

2 )
2
]

∆ρdθK(ρ02ρ020)
2

=
Arη0k4

0|∆lI0|2∆ρ

4(2π)3(ρ02ρ020)
2 ∑

m1=±1
∑

m2=±1

∫
∞

0

∫
π

−π

∫
∞

0
{S1(m1K⃗1)S1(m2K⃗2)

· |ΓPb |
2K2 cosφ0|F(ρ02,ω0)F(ρ020,ω0)|2Sa2

[
∆ρ

2
( K

cosφ0
−2k0

)]
K1∫

τ

e jτ(ω−ωd) < M(K, θK, τ, t)> dτdK1dθK⃗1
dK},

(2.50)

and this may be compared directly with the radar range equation to obtain the cross

section

σ2b f (ωd) = 22k2
0∆ρ ∑

m1=±1
∑

m2=±1

∫
∞

0

∫
π

−π

∫
∞

0

· {S1(m1K⃗1)S1(m2K⃗2)|ΓPb |
2K2K1 cosφ0 Sa2

[
∆ρ

2
( K

cosφ0
−2k0

)]
·
∫

τ

e− jτ(m1
√

gK1+m2
√

gK2+ωd) < M(K, θK, τ, t)> dτdK1dθK⃗1
dK}

(2.51)
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where <M(K, θK, τ, t)> is addressed in Appendix B. Substituting (B.5) into (2.51) and

setting 2cos(nωpτ)= e jnωpτ +e− jnωpτ , the τ integral may be completed to give [55], [56]

σ2b f (ωd) = 23
πk2

0∆ρ ∑
m1=±1

∑
m2=±1

∫
∞

0

∫
π

−π

∫
∞

0

·S1(m1K⃗1)S1(m2K⃗2)|ΓPb |
2K2K1 cosφ0 Sa2

[
∆ρ

2
( K

cosφ0
−2k0

)]
· {J2

0{
aK
2
|cos(θK −θKp)+ tanφ0 sin(θK −θKp)|}

·δ (ωd +m1
√

gK1 +m2
√

gK2)

+
∞

∑
n=1

J2
n{

aK
2
|cos(θK −θKp)+ tanφ0 sin(θK −θKp)|}

· [δ (ωd +m1
√

gK1 +m2
√

gK2 −nωp)

+δ (ωd +m1
√

gK1 +m2
√

gK2 +nωp)]}dK1dθK⃗1
dK.

(2.52)

Equation (2.52) is the final result for the second-order bistatic ocean surface radar

cross section with a floating transmitter and a fixed receiver.

2.4 Comparisons of Antenna-Motion Incorporated Bistatic

Radar Cross Sections with Earlier Models

A. Comparison with a Monostatic Model

For monostatic cases, φ0 = 0, i.e. cosφ0 = 1 and tanφ0 = 0. Then, (2.27) becomes

σ1(ωd) = 23
πk2

0∆ρ ∑
m=±1

∫
K

K2S1(mK⃗)Sa2
[

∆ρ

2
(K −2k0)

]
· {J2

0{|
aK
2

cos(θK −θKp)|}δ (ωd +m
√

gK)

+
∞

∑
n=1

J2
n{|

aK
2

cos(θK −θKp)|}

· [δ (ωd +m
√

gK −nωp)+δ (ωd +m
√

gK +nωp) ]}dK,

(2.53)
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which is the same as the monostatic model with a floating transmitter and a fixed receiver

given in [74]. It is worth noting that (2.53) differs from its counterpart (1.8), where both

transmitter and receiver are assumed to be floating, by having a aK
2 cos(θK −θKp) factor

in the Bessel functions instead of a aK cos(θK −θKp) factor.

For the second-order radar cross section, (2.52) reduces to

σ2(ωd) = 23
πk2

0∆ρ ∑
m1=±1

∑
m2=±1

∫
∞

0

∫
π

−π

∫
∞

0

·S1(m1K⃗1)S1(m2K⃗2)|ΓPb |
2K2K1Sa2

[
∆ρ

2
(K −2k0)

]
·
{

J2
0

{1
2

aK|cos(θK −θKp)|
}

δ (ωd +m1
√

gK1 +m2
√

gK2)

+
∞

∑
n=1

J2
n

{1
2

aK|cos(θK −θKp)|
}
[δ (ωd +m1

√
gK1 +m2

√
gK2 −nωp)

+δ (ωd +m1
√

gK1 +m2
√

gK2 +nωp)]

}
dK1dθK⃗1

dK.

(2.54)

Considering the Bessel function property, J2
n = J2

−n, (2.54) can be written as

σ2(ωd) = 23
πk2

0∆ρ ∑
m1=±1

∑
m2=±1

∫
∞

0

∫
π

−π

∫
∞

0
S1(m1K⃗1)S1(m2K⃗2)|ΓPb |

2K2K1

·Sa2
[

∆ρ

2
(K −2k0)

] ∞

∑
n=−∞

J2
n{

1
2

aK|cos(θK −θKp)|}

·δ (ωd +m1
√

gK1 +m2
√

gK2 +nωp)dK1dθK⃗1
dK.

(2.55)

For a large patch width ∆ρ , lim
M→∞

MSa2[Mx] = πδ (x). It is straightforward to show that

in this case

∆ρSa2
[

∆ρ

2
(K −2k0)

]
= 2πδ (K −2k0). (2.56)
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Carrying out the K integration, (2.55) reduces to

σ2(ωd) = 26
π

2k4
0 ∑

m1=±1
∑

m2=±1

∫
∞

0

∫
π

−π

|ΓPb |
2S1(m1K⃗1)S1(m2K⃗2)K1

·
∞

∑
n=−∞

J2
n{ak0|cos(θK −θKp)|}

·δ (ωd +m1
√

gK1 +m2
√

gK2 +nωp)dθK⃗1
dK1.

(2.57)

Except for the term in the Bessel functions, equation (2.57) is of the same form

as (1.14). It has been explained that (1.14) is the model for the monostatic radar cross

section when both the transmitter and receiver are floating. If the term 2k0a|cos(θK −

θKp)| appearing in the argument of the Bessel functions of the first kind is replaced by

the term k0a|cos(θK −θKp)|, then the model is reduced to the monostatic radar cross

section involving a floating transmitter and a fixed receiver. Next, it will be illustrated

that the coefficient ΓPb in (2.57) has the same value as the coefficient ΓPm in (1.14), when

the bistatic geometry is reduced to the monostatic case. The hydrodynamic coefficients

HΓ in both coefficients remain unchanged, so only the electromagnetic coefficients need

to be addressed. For the monostatic case, φ0 = 0 and ρ̂2 = N̂ = K̂. Also, it can be shown

that
K⃗ = K⃗1 + K⃗2 = 2k0K̂

K⃗s(ρ̂2, K⃗1) = k0ρ̂2 − K⃗1 =
K⃗2 − K⃗1

2
=−K⃗s(ρ̂2, K⃗2),

K2
s (ρ̂2, K⃗1) = k2

0 − K⃗1 · K⃗2 = K2
s (ρ̂2, K⃗2),

and

G[Ks(ρ̂2, K⃗1)] = G[Ks(ρ̂2, K⃗2)].
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Thus, SEΓP in (D.9) reduces to

SEΓP(K⃗1, K⃗2) =
jk0

2K2Ks
G[Ks(ρ̂2, K⃗2)]

· {[K⃗1 · (K⃗1 + K⃗2)][
K⃗2 − K⃗1

2
· K⃗2]− [K⃗2 · (K⃗1 + K⃗2)][

K⃗2 − K⃗1

2
· K⃗1]}

=
jk0

2K2Ks
G[Ks(ρ̂2, K⃗2)][(K1K2)

2 − (K⃗1 · K⃗2)
2]

=
jk0

2K2Ks
G[Ks(ρ̂2, K⃗2)]|K⃗1 × K⃗2|2

=
jk0

2K2
|K⃗1 × K⃗2|2

k2
0 − K⃗1 · K⃗2

{1− j
k0(1+∆)√

−K⃗1 · K⃗2 + jk0∆

}

(2.58)

which is exactly the same as the monostatic electromagnetic coupling coefficient (1.13).

B. Comparison with a Stationary Model

For a model involving a stationary antenna platform, δ ρ⃗0 = 0 and a = 0, ωp = 0. In

addition, it is known that J0(0) = 1, Jn(0) = 0. Under these conditions, (2.27) becomes

σ1(ωd) = 23
πk2

0∆ρ ∑
m=±1

∫
K

K2 cosφ0S1(mK⃗)

·Sa2
[

∆ρ

2
( K

cosφ0
−2k0

)]
δ (ωd +m

√
gK) dK.

(2.59)

Due to the Dirac delta function, K =
ω2

d
g , so that dK = 2ωddωd

g = 2
√

K√
g dωd . Thus, (2.59)

may be written as

σ1(ωd) =
24πk2

0∆ρ
√

g ∑
m=±1

K
5
2 cosφ0S1(mK⃗) Sa2

[
∆ρ

2
( K

cosφ0
−2k0

)]
(2.60)

which is identical to the stationary bistatic model in [51].
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Similarly, for the second-order radar cross section, (2.52) reduces to

σ2(ωd) = 23
πk2

0∆ρ ∑
m1=±1

∑
m2=±1

∫
∞

0

∫
π

−π

∫
∞

0
{S1(m1K⃗1)S1(m2K⃗2)

· |ΓP|2K2K1 cosφ0Sa2[
∆ρ

2
(

K
cosφ0

−2k0)]

·δ (ωd +m1
√

gK1 +m2
√

gK2)dK1dθK⃗1
dK}

(2.61)

which is the same as the bistatic model for the stationary antenna case shown in [51].

It is worth noting that the coefficient ΓPb has been modified compared to Gill’s [51].

Here, it is not assumed that F(ρ12) ≈ 1, when ρ12 is a very small value compared to

ρ1 and ρ2. Instead, the properties of the Sommerfeld function are used, producing the

surface impedance ∆ in the final result. The modified coefficient avoids a non-physical

singularity in the radar cross section. ∆ is a very small value. For example, at an operating

frequency of 15 MHz, it is approximately 0.0103+ j0.01. Setting ∆ = 0, the modified

coefficient will reduce to the coefficient shown in [51].

2.5 Simulation and Analysis

The RCS models here are computed using a Pierson-Moskowitz model [57] with a

cardioid directional distribution for the directional ocean wave height spectrum of a fully

developed wind driven sea. For the simulations considered here, the operating frequency

is chosen to be 25 MHz, the bistatic angle is 30◦, the patch width is 3000 m, and the

ellipse normal θN (illustrated Fig. A.1 in Appendix A of this thesis) is 90◦. The direction

of the barge motion is taken to be the same as the wind direction, which is at 90◦ with

respect to the ellipse normal. In keeping with [17], the platform sway is assumed to be

due to the dominant ocean wave. The sway amplitude and frequency depend on the wind

velocity and are given in Table 2.1 (also in [17]). In addition, a Hamming window is

used to smooth the curve and reduce oscillatory features caused by the Sa2 function.
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Table 2.1 Barge motion parameters [17]

Wind Speed Sea State Sway Amplitude Sway frequency
(knots*) (m) (Hz)

10 2 0.177 0.261
15 3 to 4 0.581 0.174
20 5 1.228 0.127

*1 knot = 0.5148 m/s

Fig. 2.2 presents a comparison of the first-order bistatic radar cross section for a fixed

transmitter and receiver with that of a floating transmitter and a fixed receiver. From

this figure, additional peaks due to platform motion are observed. The Bragg peaks

for both cases are located at their usual positions of ± fB = ±
√

2gk0 cosφ0/2π . The

motion-induced peaks are symmetrically distributed at ± fB ± fp and ± fB ±2 fp, where

fp = ωp/2π .
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Fig. 2.2 Comparison of the first-order bistatic radar cross section for both transmitter and
receiver fixed with that for a floating transmitter and a fixed receiver.

Fig. 2.3 illustrates the effect of radial patch width on the RCS. From the RCS models

derived in Section 2.2, the magnitude of both Bragg peaks and antenna-motion-induced

peaks are expected to increase with the increasing patch width. The radar cross sections
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in Fig. 2.3 are normalized in order to clearly observe the magnitude difference. The

energies of the motion-induced peaks are seen to increase with the increasing patch

width. However, the relative differences between each peak are essentially unchanged

with patch width.
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Fig. 2.3 The effect of radial patch width on the first-order cross section. The patch width
is (a) 2000 m, (b) 1000 m, (c) 500 m, (d) 250 m.

Fig. 2.4(a) and Fig. 2.4(b) show the second-order hydrodynamic results without and

with antenna motion, respectively. h1 represents the hydrodynamic peak at ±
√

2 fB,

where fB represents the Doppler frequency of the Bragg peak. The physical meaning of

this peak is a single scatter from a second-order ocean surface component of wave length

λB, where λB = c/ fB. From Fig. 2.4(b), extra hydrodynamic peaks h2 at ±
√

2 fB± fp due

to the platform motion are observed. Fig. 2.4(c) and Fig. 2.4(d) depict the second-order

electromagnetic results without and with antenna motion, respectively. Electromagnetic
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peaks e1 and e2 occur for [49]

K1 = K2

and

fd =±2
3
4

√
[1± sinφ0]

1
2

cosφ0
fB.

For monostatic operation, (i.e. φ0 = 0), the four peaks are reduced to two peaks at

fd = ±2
3
4 fB, which is the well known ‘corner reflector’ condition. By comparing

Fig. 2.4(c) and Fig. 2.4(d), it may be observed that e1 and e2 are shifted in the spectrum

at fd ± fp, labelled as e3 and e4. In Figs. 2.4(b) and (d), the gaps around ±0.4 Hz in the

second-order Doppler spectra are seen to be raised by these h2, e3 and e4 peaks. In these

figures, motion effects need be considered only up to second-order for the first-order

radar cross section and up to first-order for the second-order radar cross section. This

is because the energies of the motion-induced peaks in the second-order radar cross

section are significantly lower than that of the first-order result. In total, the second-order

hydrodynamic contribution is greater than that of the electromagnetic contribution.

Discussion regarding the first-order bistatic result for the case with a floating trans-

mitter and a fixed receiver can be found in [50]. The total bistatic radar patch scatter

cross sections to second-order for stationary antennas and floating antennas are shown

in Figs. 2.4(e) and (f), respectively. It should be noted that, unlike the field observation

results in [11], no motion-induced spreading is seen in the first-order peaks in the sea

echo Doppler spectra presented here because a simple sinusoidal motion model with a

single frequency is used and an extreme narrow antenna beam is assumed. In reality, it is

anticipated that the region of the first-order peaks will be broadened due to various wave

component contributions.

Fig. 2.5 illustrates the total bistatic radar cross section (including the first- and second-

order) for a floating transmitter and a fixed receiver. Motion effects need be considered

only up to second-order for the first-order radar cross section and up to first-order for the

second-order radar cross section. The latter is true because the energies of the motion-
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Fig. 2.4 (a) The second-order bistatic hydrodynamic contribution without antenna mo-
tion. (b) The second-order hydrodynamic contribution with antenna motion. (c) The
second-order electromagnetic contribution without antenna motion. (d) The second-order
electromagnetic contribution with antenna motion. (e) The total bistatic radar cross
section without antenna motion. (f) The total bistatic radar cross section with antenna
motion.

45



induced peaks in the second-order radar cross section are significantly lower than that of

the first-order result. The case presented demonstrates that in general, the second-order

hydrodynamic contribution is greater than that of the electromagnetic contribution.
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Fig. 2.5 Comparison of the total bistatic radar cross section for both transmitter and
receiver fixed with that for a floating transmitter and a fixed receiver.

The difference between the bistatic and monostatic radar cross sections with antenna

motion is depicted in Fig. 2.6. Maintaining the location of the transmitter and the wind

direction fixed, a comparison is made by varying the antenna operating geometry (bistatic

or monostatic). It may be observed that, for the bistatic case, the frequencies of the

first-order and the second-order peaks are closer to zero Doppler frequency. This is also

true for peaks induced by the platform motion. It may be observed that in the monostatic

case, the peaks (including the Bragg peaks and the motion-induced peaks) in the negative

Doppler frequency region have less energy, while the peaks in the positive Doppler

frequency region have more energy than those of the bistatic case. This is because, for

the example presented here, the angle between the wind direction with the look direction

θL in the monostatic case is larger than the angle between the wind direction with the

ellipse normal θN in the bistatic case.
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Fig. 2.6 Comparison of the radar cross sections with floating platform for the monostatic
case and for the bistatic case with bistatic angle of 30◦. Wind direction is 180◦, ellipse
normal θN = 90◦ for bistatic geometry and look direction θL = 60◦ for monostatic
geometry.

Fig. 2.7 illustrates the effect of wind speed on the bistatic radar cross section with

antenna motion. From Fig. 2.7, it can be seen that the motion-induced peaks are highly

sensitive to the wind speed. The peaks caused by antenna motion increase in amplitude

and decrease in Doppler frequency as the wind speed increases. This is because, as

mentioned before, the sway amplitude and frequency are determined by the wind speed.

When the wind speed increases, the sway amplitude will increase and the sway frequency

will decrease. At low wind speeds, the effect of the antenna-motion-induced peaks on

the Doppler spectrum is not significant. It should be noted that magnitude differences

between the Bragg peaks and the motion-induced peaks for the bistatic case presented

here are larger than in the monostatic results appearing in [17], even when the wind

speeds are identical. This is due to the fact that the bistatic geometry affects the values

of K and φ0, and the fixed receiver introduces a factor of “1/2” in the argument of the
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Fig. 2.7 The effect of wind speed on bistatic radar cross section with floating transmitter
and fixed receiver. The wind speed is (a) 20 knots, (b) 15 knots, (c) 10 knots.

Bessel functions of the models. By comparison, the Bragg peaks, the second-order

hydrodynamic peaks and electromagnetic peaks are not significantly affected by wind

speed provide that the sea is fully developed at the radar operating frequency.

The effect of wind direction on bistatic radar cross section with antenna motion

is shown in Fig. 2.8. From this figure, it is clearly seen that all the peaks including

the Bragg peaks, the second-order hydrodynamic peaks, electromagnetic peaks and the

motion-induced peaks show the same reaction to the change in the wind direction. As

is to be expected, the ratio of the intensities of the positive and negative peaks is highly

sensitive to wind direction. If the wind is perpendicular to the ellipse normal, the positive

and negative peaks will carry the same amount of energy, and the spectrum will be
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Fig. 2.8 The effect of wind direction on bistatic radar cross section with floating transmit-
ter and fixed receiver. The wind direction is (a) 45◦, (b) 90◦, (c) 135◦, (d) 180◦, (e) 225◦,
(f) 270◦ with respect to the positive x axis. The ellipse normal is 90◦ with respect to the
positive x axis.
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symmetrical. When the wind direction is parallel/anti-parallel to the ellipse normal (i.e.

the angle between these two directions is 0◦/180◦), the negative/positive Bragg peaks will

reach their maximum. It is worth noting that, for monostatic operation from a floating

platform, when the wind direction is perpendicular to the radar look direction, the sway

motion does not produce additional peaks, while for the bistatic operation, this is not the

case.

Fig. 2.9 illustrates how radar frequency affects the bistatic radar cross sections

associated with antenna motion. From Fig. 2.9, it may be observed that the energy of the

antenna-motion-induced peaks decreases as the radar operating frequency drops. When

the radar frequency is lower than 7 MHz, the effect of these peaks caused by antenna

motion under moderate sea state may be ignored due to its insignificant influence [17].

2.6 Chapter Summary

The development of the first- and second-order bistatic radar patch scatter cross sections

of the ocean surface have been presented for the case of a fixed receiver and a transmitter

mounted on a floating platform. Beginning with the bistatic electric fields for scattering

from a time-invariant rough ocean surface derived in [17] and [18], a small displacement

has been added into the source term. Then, the electric field equations are transformed to

the time domain and adjusted to incorporate a time-varying ocean surface. Finally, the

radar cross sections are deduced following procedures similar to those found in [17], [18].

The developed models are verified by imposing the appropriate conditions on the new

models, to reduce them to the stationary bistatic models in [51] or the monostatic models

with antenna motion in [17], [18]. Based on the new models, the effect of antenna

motion on the radar cross section is simulated and discussed under different wind speeds,

wind directions and radar frequencies. The simulation shows that the platform motion

introduces additional peaks that contaminate the Doppler spectrum. This is consistent

with the experimental results in [9]. The phenomenon will potentially result in the
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Fig. 2.9 The effect of radar frequency on bistatic radar cross section with floating
transmitter and fixed receiver. The radar frequency is (a) 25 MHz, (b) 15 MHz, (c) 7
MHz.

overestimation of wave height determined by the inversion of such contaminated second-

order echo. It is found that sway-motion-induced peaks appear symmetrically with

respect to the zero Doppler frequency in the Doppler spectra and are more significant

in the first-order radar cross section than in the second-order case. Simulations are

also made to compare the bistatic model with the monostatic case. It is clear that these

motion-induced peaks are closer to zero Doppler frequency in the bistatic case than in

the monostatic case.

In this chapter, a simple sinusoidal model is used to describe the antenna motion as

presented in [17], [18]. This simple model serves to establish the proof of concept. Of

course, incorporating a model that better fits a particular experiment is worthy of con-
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sideration. However, the conclusion of this chapter is that this would not fundamentally

alter the analysis. Such models are discussed in Chapter 4 of this thesis.
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Chapter 3

Bistatic Radar Cross Section for an

FMCW Source with an Antenna on a

Floating Platform

3.1 Introduction

All of the models mentioned previously were developed specifically for a simple pulsed

radar that are generally used in monostatic configurations where the receiver must be

protected from the transmitter. However, there are inherent disadvantages to using pulsed

radar systems. For example, the detectable range capability is determined by the average

transmitted power. In a pulsed radar system, both the range resolution and the average

transmitted power are dependent on the pulse width. Narrower pulses, bringing better

range resolution, require large peak powers to be useful at long range. Compared to this,

FMCW radar systems are able to achieve satisfactory range resolution and long range

with moderate power due to a 100% duty cycle provide that the receiver and transmitter

system are sufficiently separated. FMCW system are generally preferred if the transmitter

and receiver systems can be separated such that there is sufficient attenuation of the direct
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waveform. Thus, in recent years, FMCW radars have been widely used in ocean remote

sensing applications.

A good summary of the digital processing of an FMCW signal for radar systems has

been reported by Barrick [58]. Then, techniques for range and unambiguous velocity

measurement for an FMCW radar were outlined in [59]. More recently, Walsh et al. [60]

developed the first- and second-order monostatic radar ocean surface cross sections for

an FMCW waveform.

In this chapter, the first- and second-order bistatic radar ocean surface cross sections

for an antenna on a floating platform, and incorporating an FMCW source, are presented.

Through these newly-developed RCS models, the differences in RCS for different sources

are compared and the platform motion effect on the Doppler spectra for an FMCW source

is illustrated. Based on previous work, the derivation begins with the general bistatic

electric field in the frequency domain for the case of a floating antenna. Demodulation and

range transformation are used to obtain the range information, distinguishing the process

from that used for a pulsed radar. After Fourier transforming the auto-correlation and

comparing the result with the radar range equation, the radar cross sections are derived.

In Section 3.2, the derivation process for the first- and second-order received electric

field is reviewed. Then, a method similar to that in [51] is used to obtain the first- and

second-order radar cross sections in Section 3.3. Section 3.4 contains model simulations

and comparisons with the pulsed waveform. Section 3.5 provides conclusions.

3.2 Radar Received Field Equations – FMCW source

3.2.1 General First- and Second-Order Electric Field Equation

In Chapter 2, it was noted that, without specifying the dipole source, (2.1) and (2.42)

are, respectively, the first- and second-order bistatic scattered fields for an antenna on a
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floating platform. Based on these two scattered field expressions, the derivation of the

radar cross section models for an FMCW source is carried out below.

3.2.2 Applications to an FMCW Radar

Following a similar analysis as in [50] and [51], (2.1) may be inversely Fourier trans-

formed to give the received electric field in the time domain as

F−1[(En)1](t) =
1

(2π)3/2 F−1[− j
η0∆l

c2 ω
2I(ω)]

t∗F−1{∑
K⃗

P⃗K

√
Ke j ρK

2 cos(θK−θ)
∫

∞

ρ/2
F(ρ1)F(ρ2)√

ρs[ρ2
s − (ρ

/
2)2

]
e− j π

4

·
√

cosφe jkδρ0[cosφ cos(θK−θ0)+sinφ sin(θK−θ0)]e jρs[K cosφ−2k]dρs}.

(3.1)

The current waveform of an FMCW radar may be written as [58], [60]

i(t) = I0e j(ω0t+απt2)
{

h[t +
Tr

2
]−h[t − Tr

2
]
}

(3.2)

where I0 is the peak current and ω0 = 2π f0 is the center radian frequency of the sweep

waveform. Tr represents the sweep interval and the sweep rate may be expressed as

α = B
/

Tr where B is the sweep bandwidth.

It is known from [60] that for an FMCW waveform,

F−1[− j
η0∆l

c2 ω
2I(ω)] =− jI0

η0∆lω2
0

c2 e j(ω0t+απt2)
{

h[t +
Tr

2
]−h[t − Tr

2
]
}
. (3.3)

From this, by direct comparison with the corresponding first-order case for a pulsed

dipole found in equation (2.2), the first-order time domain electric field for an FMCW
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source may be written as

(En)1b f f (tr) =
− jI0η0∆lk2

0

(2π)3/2 ∑
K⃗

P⃗K

√
Ke j ρK

2 cos(θK−θ)e− j π

4

·
∫

∞

ρ/2
F(ρ1,ω0)F(ρ2,ω0)√

ρs[ρ2
s − (ρ

/
2)2

]

√
cosφe jρsK cosφ e j(ω0tr+απt2

r )

· e− jk0(2ρs−δρs0)e− j 2πα(2ρs−δρs0)
c tre j πα(2ρs−δρs0)

2

c2

·
{

h
[
tr +

Tr

2
− 2ρs −δρs0

c

]
−h

[
tr −

Tr

2
− 2ρs −δρs0

c

]}
dρs

(3.4)

where t is renamed as tr to indicate that the time is within a sweep repetition interval

(2ρs−δρs0
c − Tr

2 ,
2ρs−δρs0

c + Tr
2 ). As stated in [58] and [60], the frequency difference be-

tween the transmitted waveform and the received waveform may be Fourier transformed

within this interval to obtain the range information. This is the so-called “range trans-

form”. Because the received signals in the given time interval reflect the information

for an extremely large region of the ocean surface, here range transformation is taken

to specify a patch of ocean surface to analyse. The frequency difference of waveforms

may be obtained by the demodulation process, in which the transmitted signals and the

received signals are mixed and then lowpass filtered.

After the demodulation preprocess, the exponential factor e j(ω0tr+απt2
r ) in (3.4) will

be eliminated. Then, Fourier transforming with respect to tr gives

(En)1b f f (ωr) =
− jI0η0∆lk2

0Tr

(2π)3/2 ∑
K⃗

P⃗K

√
Ke j ρK

2 cos(θK−θ)e− j π

4

·
∫

∞

ρ/2
F(ρ1,ω0)F(ρ2,ω0)√

ρs[ρ2
s − (ρ

/
2)2

]

√
cosφe jρsK cosφ e− jk0(2ρs−δρs0)

· e jωr(2ρs−δρs0)/ce− j πα(2ρs−δρs0)
2

c2 Sa
[Tr

2
(
ωr −

2πα(2ρs −δρs0)

c

)]
dρs

(3.5)

where ωr is the transform variable in the frequency domain. Similarly, using the definition

ρ ′
s = ρs −δρs0

/
2 and changing the integration variable from ρs to ρ ′

s and ignoring the
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δρs0
/

2 factor in the magnitude terms give

(En)1b f f (ωr) =
− jI0η0∆lk2

0Tr

(2π)3/2 ∑
K⃗

P⃗K

√
Ke j ρK

2 cos(θK−θ)e− j π

4

·
∫

∞

ρ/2
F(ρ1,ω0)F(ρ2,ω0)√

ρs[ρ2
s − (ρ

/
2)2

]

√
cosφe j(K cosφ−2k0+2ωr/c)ρ ′

se− j 4πα(ρ ′s)
2

c2

· e jδρs0Kcosφ /2Sa
[Tr

2
(
ωr −

4πα

c
ρ
′
s
)]

dρ
′
s.

(3.6)

Since the maximum of the sampling function Sa(x) occurs at x = 0, a representative

range ρr may be defined as

ρr =
cωr

4πα
. (3.7)

Based on the representative range, defining the corresponding range variable

ρ
′′
s = ρ

′
s −ρr (3.8)

and changing the integration variable from ρ ′
s to ρ ′′

s , (3.6) becomes

(En)1b f f (ωr) =
− jI0η0∆lk2

0Tr

(2π)3/2 ∑
K⃗

P⃗K

√
Ke j ρK

2 cos(θK−θ)e− j π

4

·
∫

ρ ′′
smax

ρ ′′
smin

F(ρ1,ω0)F(ρ2,ω0)√
ρs[ρ2

s − (ρ
/

2)2
]

√
cosφe j(−2k0+kr)ρre j(−2k0)ρ

′′
s

· e jρsK cosφ e− j(kr/ρr)(ρ
′′
s )

2
Sa[kBρ

′′
s ]dρ

′′
s

(3.9)

where kB = 2πB
c and kr =

ωr
c . A process similar to that in [50] is used to simplify the

terms in the integral. Then, (3.9) reduces to

(En)1b f f (ωr) =
− jI0η0∆lk2

0Tr

(2π)3/2 ∑
K⃗

P⃗K

√
Ke j ρK

2 cos(θK−θ)e− j π

4
√

cosφ0

· F(ρ01,ω0)F(ρ02,ω0)√
ρr[ρ2

r − (ρ
/

2)2
]

e j δρs0
2

K
cosφ0 e j(K cosφ0−2k0+kr)ρr

·
∫

ρ ′′
smax

ρ ′′
smin

e j( K
cosφ0

−2k0)ρ
′′
s e− j(kr/ρr)(ρ

′′
s )

2
Sa[kBρ

′′
s ]dρ

′′
s .

(3.10)
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By directly comparing (3.10) with (24) in [60], the first-order bistatic received electric

field for an FMCW waveform with an antenna on a floating platform may be expressed

as [61]

(En)1b f f (ωr) =
− jI0η0∆lk2

0

(2π)3/2 ∑
K⃗

P⃗K

√
Ke j ρK

2 cos(θK−θ)e− j π

4

·
√

cosφ0 e j(K cosφ0−2k0+kr)ρr
F(ρ01,ω0)F(ρ02,ω0)√

ρr[ρ2
r − (ρ

/
2)2

]

· e j δρs0
2

K
cosφ0 (Tr∆ρ)Sm(K,cosφ0,kB,∆r).

(3.11)

±∆r are the symmetrical limits of the integral in (3.10), where a sampling function

dominates this integral. If only the values of ρ ′′
s within the main lobe of the sampling

function are considered in the integral, i.e., −π

2 < kBρ ′′
s < π

2 , it can be deduced as in [60]

that ∆r = ∆ρ

2 = c
4B . Also, as in [60],

Sm(K,cosφ0,kB,∆r) =
1
π

{
Si
[( K

cosφ0
−2k0 + kB

)
∆r

]
−Si

[( K
cosφ0

−2k0 − kB
)
∆r

]}
(3.12)

where Si(x) =
∫ x

0
sin(t)

t dt.

Following a similar procedure to the first-order case, the second-order bistatic re-

ceived electric field with a transmitter on a floating platform for an FMCW waveform

may be written as

(En)2b f f (ωr) =
− jI0η0∆lk2

0

(2π)3/2 ∑
K⃗1

∑
K⃗2

P⃗K1
P⃗K2

√
Ke− j π

4 e j ρK
2 cos(θK−θ)

√
cosφ0

· e j(K cosφ0−2k0+kr)ρr SEΓPF(ρ02,ω0)F(ρ020,ω0)√
ρr[ρ2

r − (ρ
/

2)2
]

e j δρs0
2

K
cosφ0

· (Tr∆ρ) Sm(K,cosφ0,kB,∆r).

(3.13)
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3.3 Radar Cross Sections for an FMCW Source

3.3.1 First-Order Radar Cross Section

In developing the ocean radar cross section, a time-varying ocean surface (1.5) is used to

replace the time-invariant case (1.3). This gives the time-varying received electric field

corresponding to (3.11) as

(En)1b f f (ωr, t) =
− jI0η0∆lk2

0

(2π)3/2 ∑
K⃗,ω

P⃗K,ω

√
Ke j ρK

2 cos(θK−θ)e j(K cosφ0−2k0+kr)ρr

· e− j π

4
√

cosφ0 e jωt F(ρ01,ω0)F(ρ02,ω0)√
ρr[ρ2

r − (ρ
/

2)2
]

· e j δρs0
2

K
cosφ0 (Tr∆ρ) Sm(K,cosφ0,kB,∆r).

(3.14)

A technique similar to that in [50] and [60] is used to obtain the radar cross section

from the received electric field equation. After Fourier transforming the auto-correlation

and comparing directly with the radar range equation, the radar cross section, σ1b f f (ωd),

may be written as [61]

σ1b f f (ωd) = 23
πk2

0∆ρ ∑
m=±1

∫
K

S1(mK⃗)K2 cosφ0 Sm2(K,cosφ0,kB,∆r)

· {J2
0 [

aK
2
|cos(θK −θKp)+ tanφ0 sin(θK −θKp)|] ·δ (ωd +m

√
gK)

+
∞

∑
n=1

J2
n [

aK
2
|cos(θK −θKp)+ tanφ0 sin(θK −θKp)|]

· [δ (ωd +m
√

gK −nωp)+δ (ωd +m
√

gK +nωp)]}dK

(3.15)

For simulation purposes (see Section 3.4) and in keeping with [17] and [50], it will be

assumed that the antenna motion is caused by the dominant ocean waves.
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3.3.2 Second-Order Radar Cross Section

From Chapter 1, it is known that the second-order radar cross section contains two

portions: an hydrodynamic contribution and an electromagnetic contribution. Using

the Fourier coefficient for the second-order ocean waves ∑

K⃗1

∑

K⃗2

HΓP⃗K1
P⃗K2

to replace the

first-order case ∑

K⃗
P⃗K in (3.11), the hydrodynamic second-order electric field may be

written as

(En)2b f f (ωr) =
− jI0η0∆lk2

0

(2π)3/2 ∑
K⃗1

∑
K⃗2

P⃗K1
P⃗K2

√
Ke− j π

4 e j ρK
2 cos(θK−θ)

√
cosφ0

· e j(K cosφ0−2k0+kr)ρr HΓF(ρ01,ω0)F(ρ02,ω0)√
ρr[ρ2

r − (ρ
/

2)2
]

e j δρs0
2

K
cosφ0

· (Tr∆ρ) Sm(K,cosφ0,kB,∆r).

(3.16)

Adding the electromagnetic contribution (3.13) and the hydrodynamic contribution (3.16)

together and using the time-varying ocean wave surface (1.5) to replace the time-invariant

case (1.3), the total second-order bistatic electric field for an FMCW source with an

antenna on a floating platform may be expressed as

(En)2b f f (ωr, t) =
− jI0η0∆lk2

0

(2π)3/2 ∑
K⃗1,ω1

∑
K⃗2,ω2

P⃗K1,ω1
P⃗K2,ω2

ΓPb

√
Ke j ρK

2 cos(θK−θ)e− j π

4

·
√

cosφ0e j(K cosφ0−2k0+kr)ρre jωt F(ρ01,ω0)F(ρ02,ω0)√
ρr[ρ2

r − (ρ
/

2)2
]

e j δρs0
2

K
cosφ0

· (Tr∆ρ)Sm(K,cosφ0,kB,∆r).
(3.17)

Following the same procedure as for the first-order case, based on the total second-

order time-varying received electric field (3.17), the corresponding second-order radar
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cross section, σ2b f f (ωd), may be obtained as [61]

σ2b f f (ωd) = 23
πk2

0∆ρ ∑
m1=±1

∑
m2=±1

∫
∞

0

∫
π

−π

∫
∞

0

·S1(m1K⃗1)S1(m2K⃗2)|ΓPb |
2K2 cosφ0K1 Sm2(K,cosφ0,kB,∆r)

·
{

J2
0{

aK
2
|cos(θK −θKp)+ tanφ0 sin(θK −θKp)|}

·δ (ωd +m1
√

gK1 +m2
√

gK2)

+
∞

∑
n=1

J2
n{

aK
2
|cos(θK −θKp)+ tanφ0 sin(θK −θKp)|}

· [δ (ωd +m1
√

gK1 +m2
√

gK2 −nωp)

+δ (ωd +m1
√

gK1 +m2
√

gK2 +nωp)]
}

dK1dθK⃗1
dK.

(3.18)

3.4 Simulation and Analysis

Based on a Pierson-Moskowitz (PM) ocean spectral model for a fully developed sea [57],

the newly derived radar cross sections, accounting for antenna sway, can be simulated to

illustrate the differences in the FMCW and pulsed waveform cases. The sweep bandwidth

of the FMCW waveform is chosen as 50 kHz. The operating frequency, defined as the

central frequency of the FMCW waveform, is taken to be 25 MHz. The bistatic angle is

30◦ and the wind speed is 20 knots. The scattering ellipse normal and the wind direction

are 90◦ and 180◦, respectively, as measured from the positive x axis (the line connecting

the transmitter with the receiver). The sway amplitude and frequency depend on the wind

velocity and are taken from Table 2.1. The sway direction is chosen to be the same as the

wind direction.

3.4.1 First-Order Radar Cross Section

Fig. 3.1 shows a comparison of the first-order radar cross section for a pulsed source

and that for an FMCW source. In order to keep the same bandwidth for both waveforms,

for the FMCW waveform, ∆r is chosen to be 1500 m, which equals half the width of
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the scattering patch (∆ρ = 3000 m) for the pulsed waveform. A Hamming window is

used to smooth the curve and reduce the oscillations. From this figure, it can be observed

that additional peaks caused by the antenna motion appear symmetrically in the Doppler

spectrum with respect to the Bragg peaks. A detailed description of these motion-induced

peaks has been provided in Chapter 2. It can also be seen that the magnitudes of the radar

cross sections for the FMCW waveform are a little lower than those for the corresponding

pulsed waveform. This may be caused by the value of ∆r. ∆r is the limit value of

the integral, in which a sampling function is a dominant factor. ∆r is usually taken to

be ∆r = ∆ρ/2, which means only the contributions in the main lobe of the sampling

function are considered and no interaction between the range bins is assumed in the ideal

case.
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Fig. 3.1 Comparison of the first-order radar cross sections for the FMCW waveform with
that for the pulsed waveform.

It is clear that the first-order radar cross section has a certain relationship with the

integral limit ∆r. In Section 3.2, it may be observed that there is no mathematical limit for

the parameter ∆r. By varying ∆r, the effect on the radar cross section can be examined.
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Keeping the value of ∆ρ = 3000 m, ∆r = 0.5∆ρ and ∆r = 10∆ρ are simulated in Figs. 3.2

(a) and (b), respectively. It should be mentioned that the Hamming window smoothing

process is not used in Fig. 3.2 in order to clearly show the sidelobe levels of the first-order

radar cross sections. The sidelobe structure appears in the radar Doppler spectra due

to the sidelobes of the Sm function for the FMCW waveform. By comparing Figs. 3.2

(a) and (b), the magnitude of the sidelobes for FMCW source is found to decrease with

increasing ∆r and the main lobe level is a little raised with increasing ∆r due to the

properties of the Sm function. This seems to indicate an advantage of an FMCW system.

When the value of ∆r is taken to be larger than ∆ρ/2, the interactions between the range

bins (the contributions in the sidelobe of the sampling function) are considered and

appear in the received electric field at a fixed distance. Increasing ∆r means the received

signal is scattered from a larger ocean surface region. When ∆r approaches infinity, the

radar cross section for the FMCW waveform becomes a rectangular function, whose

width is determined by B/(2 f0ωB). However, when the patch width ∆ρ approaches

infinity, the sampling functions in the first-order pulse radar ocean cross section reduce

to delta functions.

By varying the radar bandwidth, and keeping the relationships ∆ρ = c/2B and

∆r = ∆ρ/2, the effect of the bandwidth on the radar cross sections is illustrated in

Fig. 3.3. From this figure, it can be seen that with increased bandwidth, the magnitudes

of the Bragg peaks and the motion-induced peaks are found to be reduced, while the

rest of the radar cross section increases. In addition, the width of the Bragg peaks and

the motion-induced peaks is also broadened. Therefore, if a large radar bandwidth is

used for ocean remote sensing, the Bragg peaks may be significantly contaminated by

the motion-induced peaks.
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Fig. 3.2 Comparison of the sidelobe levels of the first-order radar cross sections for the
pulsed and FMCW waveform. (a) ∆r = 0.5∆ρ and (b) ∆r = 10∆ρ .

3.4.2 Second-Order Radar Cross Section

A similar technique is used to simplify and simulate the second-order radar ocean cross

section for the FMCW waveform as that for the pulsed waveform in [55] and [62]. For

the case of large ∆r, it can be shown that

lim
∆r→∞

[∆ρSm2(K,cosφ0,kB,∆r)]

≈ ∆ρ cosφ0{h[K − cosφ0(2k0 − kB)]−h[K − cosφ0(2k0 + kB)]}.
(3.19)
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Fig. 3.3 The effect of the bandwidth on the first-order radar cross sections.

Assuming that the other terms in (3.18) are slowly varying within the interval

cosφ0(2k0 − kB)< K < cosφ0(2k0 + kB) (3.20)

and carrying out the K integration, (3.18) reduces to

σ2b f f (ωd) = 26
π

2k4
0cos4

φ0 ∑
m1=±1

∑
m2=±1

∫
∞

0

∫
π

−π

·S1(m1K⃗1)S1(m2K⃗2)|ΓPb |
2K1

·
{

J2
0{

aK
2
|cos(θK −θKp)+ tanφ0 sin(θK −θKp)|}

·δ (ωd +m1
√

gK1 +m2
√

gK2)

+
∞

∑
n=1

J2
n{

aK
2
|cos(θK −θKp)+ tanφ0 sin(θK −θKp)|}

· [δ (ωd +m1
√

gK1 +m2
√

gK2 −nωp)

+δ (ωd +m1
√

gK1 +m2
√

gK2 +nωp)]
}

dθK⃗1
dK1.

(3.21)
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Equation (3.21) is the same as the corresponding model for the pulsed waveform when

the scattering patch ∆ρ approaches infinity. Therefore, the second-order cross section

model for the FMCW waveform shows the same features in the Doppler spectra as the

model for the pulsed waveform in [55], for a given sea state, radar operating parameters

and platform motion. An example of the second-order bistatic radar cross section with a

transmitter on a floating platform and a fixed receiver is shown in Fig. 3.4, for a scattering

patch assumed to be infinite in extent. Details of the second-order radar cross section are

illustrated in Fig. 2.4 previously presented in Section 2.5.
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Fig. 3.4 Second-order bistatic radar cross section with a transmitter on a floating platform.

3.5 Chapter Summary

The first- and second-order bistatic radar ocean cross sections for an antenna on a floating

platform have been presented for the case of an FMCW waveform. The derivations of the

first- and second-order models begin with the bistatically-received electric field equations

derived in [50] and [55]. Subsequently, the derivation is carried out for an FMCW radar,
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which is different from [50] and [55] where a pulsed radar is considered. In particular,

the distinguishing feature in the RCS derivation process is that demodulation and range

transformation must be used to obtain the range information. Based on the new models,

simulations are made to compare the radar cross sections for the FMCW waveform with

those for the pulsed waveform. The effect of the platform motion on the Doppler spectra

for an FMCW waveform is observed to be similar to that for a pulsed waveform. It is

found that the first-order radar cross section for the FMCW waveform is a little lower

than that for a pulsed source with the same simulation parameters. With increased radar

operating bandwidth, the magnitude and width of Bragg peaks and motion-induced peaks

are found to be reduced and broadened, respectively. For an FMCW waveform, there is

no definite mathematical limit for a patch width, which is different from that for a pulsed

waveform. Therefore, the magnitude of the range bin is varied to examine the effect

on the radar cross section. The sidelobe level is found to be reduced with increasing

magnitude of the range bin. When the range bin approaches infinity, the first-order

radar cross section for an FMCW waveform approaches a rectangular function and the

second-order radar cross section model for the FMCW waveform is reduced to that of

the pulsed waveform.
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Chapter 4

Generalized Radar Cross Section

Models with a More Realistic Platform

Motion Model

4.1 Introduction

The studies conducted in Chapters 2 and 3 simplified the platform motion to a sinusoidal

model with a single frequency. This is potentially problematic as the actual platform

motion is unlikely to be perfectly sinusoidal. Thus, based on the work for the monos-

tatic case with an antenna on a floating platform in [17] and [18], newly derived first-

and second-order HFSWR ocean surface cross sections incorporating a more realistic

platform motion model are presented in this chapter. In Section 4.2, a floating platform

motion model is proposed. Then, a method similar to that described in [17] and [18] is

used to obtain the new first- and second-order monostatic radar cross sections (Section

4.3) and bistatic radar cross sections (Section 4.4). The platform motion model is then

extended to the case of multiple frequencies and a single motion direction as well as

for surge and sway directions, and the corresponding radar cross section models are

developed in Section 4.5. Section 4.6 contains model simulations and discussions on how
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the new platform motion affects the radar cross sections. Finally, Section 4.7 presents

conclusions and suggestions for future research.

4.2 A More Realistic Platform Motion Model

If an HFSWR system is installed on a floating platform with a mooring system, such as

an oil exploration platform, motion effects cannot be ignored in interpreting the radar

cross sections and extracting wave information [9]. A large and heavy platform has the

advantage of weak pitch and roll movements [32]. For example, for the large moored

platform considered in [9], the angles of the pitch and roll were less than 5◦. Unlike [39]

and [42], the receiving antenna array is installed onshore in this study. Thus, the radiation

pattern distortion caused by the platform motion in the vertical plane is not addressed.

Because the platform motions in the vertical plane do not cause the Doppler shift.

Therefore, the effects of horizontal motions (surge and sway) are especially important to

consider. Fortunately, significant effort has been expended in describing the horizontal

motions of moored floating platforms. For example, the dynamic coupling effects

between a spar buoy and its mooring lines were analyzed and surge energy spectra were

simulated for different water depths [63]. Low and Robin [64] compared the response

prediction methods of a spread moored floating production storage and offloading (FPSO)

platform and gave the spectral density figures for surge and sway. From [63] and [64],

it was concluded that a slackly moored, large floating platform usually has a very low

natural frequency due to its large mass and relatively small restoring stiffness. The

responses of the floating platform are small in the wave frequency range [63]. However,

the wave drift forces vary slowly, and these may excite the moored floating platform at

its natural frequency, resulting in large low frequency motions. Thus, in these cases, the

horizontal response is dominated by low frequency motion [65]. From [63–65], it is also

seen that the shape and properties of the sway spectral density are similar to those for

surge. The motion spectral density figures contained in these works show that there are
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two dominant regions, representing contributions of the low frequency motion and wave

frequency motion, respectively. By discretizing the spectra into N points, the surge and

sway motions can be decomposed into N cosine functions, whose amplitudes and radian

frequencies can be obtained from the spectral densities. Therefore, the platform motion

model δ ρ⃗0 can be expressed as

δ ρ⃗0(t) = ρ̂px

N

∑
i=1

axi cos(ωxit +φxi)+ ρ̂py

M

∑
l=1

ayl cos(ωyl t +φyl) (4.1)

where ρ̂px and ρ̂py represent the surge and sway directions, respectively, while axi, ωxi

and φxi are, respectively, the amplitudes, radian frequencies and initial phases for the

surge motion. Similarly, ayl , ωyl and φyl are corresponding parameters of the sway

motion.

4.3 Monostatic Radar Cross Sections for a Platform Mo-

tion Model Incorporating Dual-Frequency and Sin-

gle Direction

To simplify the model used in this study, just one motion direction is initially considered,

and the floating platform motion model is reduced to the combination of two cosine

functions that represent the main components in the low frequency motion and the

wave frequency motion region, respectively. Thus, the displacement of the floating

platform (4.1) can be reduced to [66]

δ ρ⃗0(t) = [ax1 cos(ωx1t +φx1)+ax2 cos(ωx2t +φx2)]ρ̂px . (4.2)

Based on this simplified floating platform motion model, the first- and second-order

RCSs with an antenna on a floating platform are derived below.
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4.3.1 The First-Order Radar Cross Section Model

In [17], the first-order HFSWR cross section of the ocean surface with a single-frequency

platform motion model was derived. Although different platform motion models are

established and used to develop the radar cross sections, the general forms of the electric

field equations and RCS models in [17] remain similar. Here, to avoid repetition, only the

differences introduced by the new platform motion model are considered. The derivation

of the first-order RCS in this chapter begins directly with (31) in [17] since at that point

in the analysis the particular platform motion model is not yet specified. Thus,

σ1(ωd) =22k2
0∆ρ ∑

m=±1

∫
K

∫
ω

K2S1(mK⃗)δ (ω +m
√

gK) Sa2[
∆ρ

2
(K −2k0)]

·
{∫

τ

e jτ(ω−ωd) < M(K,θK,τ, t)> dτ

}
dωdK.

(4.3)

By substituting the newly proposed floating platform motion model given in (4.2), the

corresponding displacement term < M(K,θK,τ, t)> may be expressed as

M(K,θK,τ, t) = e jχK cos(θK−θpx) (4.4)

where θpx represents the surge direction of the platform motion and

χ =−ax1 cos(ωx1t +φx1)+ax1 cos(ωx1t +ωx1τ +φx1)

−ax2 cos(ωx2t +φx2)+ax2 cos(ωx2t +ωx2τ +φx2).

(4.5)

Now, χ can be rearranged and expressed as

χ =−2ax1 sin(ωx1t +φx1 +
ωx1τ

2
)sin(

ωx1τ

2
)

−2ax2 sin(ωx2t +φx2 +
ωx2τ

2
)sin(

ωx2τ

2
).

(4.6)
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Thus, the ensemble average of M(K,θK,τ, t) may be written as

< M >=< e j[ν1 sin(ωx1t+ϕ1)+ν2 sin(ωx2t+ϕ2)] > (4.7)

where
ν1 =−2ax1K sin(

ωx1τ

2
)cos(θK −θpx)

ν2 =−2ax2K sin(
ωx2τ

2
)cos(θK −θpx)

ϕ1 = φx1 +
ωx1τ

2

and

ϕ2 = φx2 +
ωx2τ

2
.

Also, from Euler’s identity,

e j[ν1 sin(ωx1t+ϕ1)+ν2 sin(ωx2t+ϕ2)]

= {cos[ν1 sin(ωx1t +ϕ1)]+ j sin[ν1 sin(ωx1t +ϕ1)]}

· {cos[ν2 sin(ωx2t +ϕ2)]+ j sin[ν2 sin(ωx2t +ϕ2)]}.

(4.8)

Using the Bessel function relationships (as given, for example, in [67]),

cos(xsin(φ)) = J0(x)+2
∞

∑
n=1

J2n(x)cos(2nφ) (4.9)

and

sin(xsin(φ)) = 2
∞

∑
n=0

J2n+1(x)sin[(2n+1)φ ]. (4.10)
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Then, the expression in (4.8) can be expanded as

e j[ν1 sin(ωx1t+ϕ1)+ν2 sin(ωx2t+ϕ2)]

= {J0(ν1)+2
∞

∑
n1=1

J2n1(ν1)cos(2n1ϕ11)+2 j
∞

∑
n1=0

J2n1+1(ν1)sin[(2n1 +1)ϕ11]}

· {J0(ν2)+2
∞

∑
n2=1

J2n2(ν2)cos(2n2ϕ22)+2 j
∞

∑
n2=0

J2n2+1(ν2)sin[(2n2 +1)ϕ22]}

(4.11)

where ϕ11 = ωx1t +ϕ1 and ϕ22 = ωx2t +ϕ2. From (4.11), the ensemble average of

M(K,θK,τ, t) can be obtained by the summation of 9 separate ensemble average terms

including

< J0(ν1)J0(ν2)>= J0(ν1)J0(ν2), (4.12)

< J0(ν1)·2
∞

∑
n2=1

J2n2(ν2)cos(2n2ϕ22)>

=
1
T

∫ T

0
J0(ν1) ·2

∞

∑
n2=1

J2n2(ν2)cos(2n2ϕ22) dt

=
2
T

J0(ν1) ·
∞

∑
n2=1

J2n2(ν2)
∫ T

0
cos(2n2ϕ22) dt

= 0,

(4.13)

and

< 2
∞

∑
n1=1

J2n1(ν1)cos(2n1ϕ11) ·2
∞

∑
n2=1

J2n2(ν2)cos(2n2ϕ22)>

=
1
T

∫ T

0
2

∞

∑
n1=1

J2n1(ν1)cos(2n1ϕ11) ·2
∞

∑
n2=1

J2n2(ν2)cos(2n2ϕ22) dt

=
4
T

∞

∑
n1=1

J2n1(ν1) ·
∞

∑
n2=1

J2n2(ν2) ·
∫ T

0
cos(2n1ϕ11)cos(2n2ϕ22) dt

= 0.

(4.14)
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The ensemble averages of the other 6 terms in (4.11) evaluate to zero. Thus, (4.7) reduces

to
< M >=J0(ν1)J0(ν2)

=J0[−2ax1K cos(θK −θpx)sin(
ωx1τ

2
)]

· J0[−2ax2K cos(θK −θpx)sin(
ωx2τ

2
)].

(4.15)

By using the relationship

J0

(
2xsin

(φ

2
))

=
∞

∑
n=−∞

J2
n(x)cos(nφ) (4.16)

and

Jn(−x) = (−1)nJn(x), (4.17)

(4.15) reduces

< M >=
∞

∑
n1=−∞

J2
n1
(x1)cos(n1ωx1τ)

∞

∑
n2=−∞

J2
n2
(x2)cos(n2ωx2τ) (4.18)

where x1 = ax1K cos(θK −θpx) and x2 = ax2K cos(θK −θpx).

Substituting the expression for < M(K,θK,τ, t) > into the first-order RCS found

in (4.3) gives

σ1b f d(ωd) = 22k2
0∆ρ ∑

m=±1

∫
K

K2S1(mK⃗) Sa2[
∆ρ

2
(K −2k0)]{

∫
τ

e− jτ(m
√

gK+ωd)

·
∞

∑
n1=−∞

J2
n1
(x1)

∞

∑
n2=−∞

J2
n2
(x2) cos(n1ωx1τ)cos(n2ωx2τ)dτ}dK

(4.19)

By using the relationship 2cos(nωτ) = e jnωτ + e− jnωτ , and completing the τ integral,

the first-order RCS for the case of an antenna on a floating platform, whose displacement
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is given in (4.2), may then be expressed as [68]

σ1b f d(ωd) =23
πk2

0∆ρ ∑
m=±1

∫
K

K2S1(mK⃗) Sa2[
∆ρ

2
(K −2k0)]

·
∞

∑
n1=−∞

J2
n1
(x1)

∞

∑
n2=−∞

J2
n2
(x2)δ (ωd +m

√
gK +n1ωx1 +n2ωx2)dK.

(4.20)

4.3.2 The Second-Order Radar Cross Section Model

A general form of the received electric field for an antenna on a floating platform has

been previously developed and appears as Equation (21) of [18]. Substituting the new

platform motion model (4.2) into this electric field equation and following a similar

analysis as used in [55], the second-order RCS may be written as [68]

σ2m f d(ωd) = 26
π

2k4
0 ∑

m1=±1
∑

m2=±1

∞∫
0

π∫
−π

S1(m1K⃗1)S1(m2K⃗2) |ΓPm |2 K1

·
∞

∑
n1=−∞

J2
n1
(x1)

∞

∑
n2=−∞

J2
n2
(x2)

·δ (ωd +m1
√

gK1 +m2
√

gK2 +n1ωx1 +n2ωx2)dθK⃗1
dK1.

(4.21)

4.4 Bistatic Radar Cross Sections for a Platform Mo-

tion Model Incorporating Dual-Frequency and Sin-

gle Direction

Based on the floating platform proposed in (4.2), the first- and second-order bistatic

radar cross sections for a platform motion model incorporating dual-frequency and single

direction are developed.

75



4.4.1 The First-Order Radar Cross Section Model

In [50], the first-order HFSWR bistatic cross section of the ocean surface incorporating

a simple single-frequency platform motion model was derived. Here, the case for

a platform motion model having a more realistic dual-frequency is investigated. By

substituting the floating platform motion model (4.2) into M(K,θK,τ, t) in (2.20), the

latter may be reduced to

M(K,θK,τ, t) = e j χK cos(θK−θpx )
2 e j χK tanφ0 sin(θK−θpx )

2 (4.22)

where
χ =−ax1 cos(ωp1t +φp1)+ax1 cos(ωp1t +ωp1τ +φp1)

−ax2 cos(ωp2t +φp2)+ax2 cos(ωp2t +ωp2τ +φp2).

(4.23)

Now, χ can be rearranged and expressed as

χ =−2ax1 sin(ωp1t +φp1 +
ωp1τ

2
)sin(

ωp1τ

2
)

−2ax2 sin(ωp2t +φp2 +
ωp2τ

2
)sin(

ωp2τ

2
).

(4.24)

Thus, the ensemble average of M(K,θK,τ, t) may be written as

< M >=< e j[ν1 sin(ωp1t+ϕ1)+ν2 sin(ωp2t+ϕ2)] > (4.25)

where
ν1 =−ax1K sin(

ωp1τ

2
)[cos(θK −θpx)+ tanφ0 sin(θK −θpx)]

ν2 =−ax2K sin(
ωp2τ

2
)[cos(θK −θpx)+ tanφ0 sin(θK −θpx)]

ϕ1 = φp1 +
ωp1τ

2

and

ϕ2 = φp2 +
ωp2τ

2
.
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Based on analysis similar to that in [66], it is possible to show that (4.25) may be

reduced to

< M >=
∞

∑
n1=−∞

J2
n1
(x1)cos(n1ωp1τ)

∞

∑
n2=−∞

J2
n2
(x2)cos(n2ωp2τ) (4.26)

where

x1 =
1
2

ax1K[cos(θK −θpx)+ tanφ0 sin(θK −θpx)] (4.27)

and

x2 =
1
2

ax2K[cos(θK −θpx)+ tanφ0 sin(θK −θpx)]. (4.28)

Also, it is easy to show that

cos(θK −θpx)+ tanφ0 sin(θK −θpx) =
cos(θ1 −θpx)

cosφ0
. (4.29)

Thus, (4.27) and (4.28), respectively, become

x1 =
ax1K

2
cos(θ1 −θpx)/cosφ0 (4.30)

and

x2 =
ax2K

2
cos(θ1 −θpx)/cosφ0. (4.31)

Substituting the expression for < M(K,θK,τ, t)> in (4.26) into (2.25) and completing

the τ integral, the first-order bistatic radar cross section σ1b f d for the case of an antenna

on a floating platform, whose displacement is given in (4.2), may then be expressed

as [69]

σ1b f d(ωd) =23
πk2

0∆ρ ∑
m=±1

∫
K

K2 cosφ0S1(mK⃗) Sa2
[

∆ρ

2
( K

cosφ0
−2k0

)]
·

∞

∑
n1=−∞

J2
n1
(x1)

∞

∑
n2=−∞

J2
n2
(x2)

·δ (ωd +m
√

gK +n1ωp1 +n2ωp2)dK.

(4.32)
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From (4.30) and (4.31), it may be demonstrated that the modulation indices, x1 and

x2, are maximum when θ1 = θpx and are minimum when θpx is perpendicular to θ1. It can

also been observed from (4.27) and (4.28) that when sin(θK −θpx)> 0, the modulation

indices x1 and x2 increase with bistatic angle φ0, resulting in a greater modulation effect

on the Doppler spectra. An opposite conclusion is reached when sin(θK −θpx)< 0. In

addition, when θpx = θK , the modulation effect is unrelated to the bistatic angle.

4.4.2 The Second-Order Radar Cross Section Model

Substituting the dual-frequency platform motion model (4.2) into (2.51) and following a

similar analysis as that appearing in the first-order case in Section 4.4.1, the second-order

bistatic radar cross section σ2b f d for this new floating platform motion model may be

expressed as [69]

σ2b f d(ωd) = 26
π

2k4
0 cos4

φ0 ∑
m1=±1

∑
m2=±1

∞∫
0

π∫
−π

S1(m1K⃗1)S1(m2K⃗2)|ΓPb |
2 K1

·
∞

∑
n1=−∞

J2
n1
(x1)

∞

∑
n2=−∞

J2
n2
(x2)

·δ (ωd +m1
√

gK1 +m2
√

gK2 +n1ωp1 +n2ωp2)dθK⃗1
dK1.

(4.33)

4.5 Radar Cross Sections for a More Complicated Plat-

form Motion Model

4.5.1 Platform Motion Model Having Multiple Frequencies

If all the frequency components in one direction in the spectrum of the floating platform

are considered, the platform displacement (4.1) can be reduced to

δ ρ⃗0(t) = ρ̂px

N

∑
i=1

axi cos(ωxit +φxi), (4.34)
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in which case the first-order RCS incorporating a multi-frequency platform motion model

may be written as

σ1 f m(ωd) = 23
πk2

0∆ρ ∑
m=±1

∫
K

K2S1(mK⃗) Sa2
[

∆ρ

2
(K −2k0)

]
·

∞

∑
n1=−∞

J2
n1
(x1)

∞

∑
n2=−∞

J2
n2
(x2) · · ·

∞

∑
nN=−∞

J2
nN
(xN)

·δ (ωd +m
√

gK +n1ωx1 +n2ωx2 + · · ·+nNωxN)dK.

(4.35)

The corresponding second-order RCS may be expressed as

σ2 f m(ωd) = 26
π

2k4
0 ∑

m1=±1
∑

m2=±1

∞∫
0

π∫
−π

S1(m1K⃗1)S1(m2K⃗2) |ΓP|2 K1

·
∞

∑
n1=−∞

J2
n1
(x1)

∞

∑
n2=−∞

J2
n2
(x2) · · ·

∞

∑
nN=−∞

J2
nN
(xN)

·δ (ωd +m1
√

gK1 +m2
√

gK2 +n1ωx1 +n2ωx2 + · · ·+nNωxN)dθK⃗1
dK1.

(4.36)

It is worth noting that (4.35) and (4.36) are suitable for both monostatic and bistatic

geometries. For a monostatic geometry, xi = axiK cos(θK − θpx) and ΓP = ΓPm . For

bistatic geometry, xi =
axiK

2 cos(θ1 −θpx)/cosφ0 and ΓP = ΓPb . From (4.35) and (4.36),

it may be observed that the radar cross sections contain a product of infinite sums of a

various orders of Bessel functions with each sum being the contribution of a platform

motion frequency component.

4.5.2 Platform Motion Model Incorporating Surge and Sway Direc-

tions

In this section, the general platform motion model given in (4.1) is considered. Deriva-

tions similar to those used in Section 4.3 can be conducted to obtain the corresponding

RCS models. These models also consist of products of infinite sums of Bessel functions,

whose parameters depend on the platform motion amplitudes, ocean wavenumbers and
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the angles between the radar look direction and the motion directions. The first-order

RCS for the floating platform model shown in (4.1) can be expressed as

σ1 f a(ωd) = 23
πk2

0∆ρ ∑
m=±1

∫
K

K2S1(mK⃗) Sa2
[

∆ρ

2
(K −2k0)

]
·

∞

∑
n1=−∞

J2
n1
(x1)

∞

∑
n2=−∞

J2
n2
(x2) · · ·

∞

∑
nN=−∞

J2
nN
(xN)

·
∞

∑
q1=−∞

J2
q1
(y1)

∞

∑
q2=−∞

J2
q2
(y2) · · ·

∞

∑
qM=−∞

J2
qM
(yM)

·δ (ωd +m
√

gK +n1ωx1 +n2ωx2 + · · ·+nNωxN

+q1ωy1 +q2ωy2 + · · ·+qMωyM)dK

(4.37)

where θpy is the direction of the sway motion. The corresponding second-order RCS

may be written as

σ2 f a(ωd) = 26
π

2k4
0 ∑

m1=±1
∑

m2=±1

∞∫
0

π∫
−π

S1(m1K⃗1)S1(m2K⃗2) |ΓP|2 K1

·
∞

∑
n1=−∞

J2
n1
(x1)

∞

∑
n2=−∞

J2
n2
(x2) · · ·

∞

∑
nN=−∞

J2
nN
(xN)

·
∞

∑
q1=−∞

J2
q1
(y1)

∞

∑
q2=−∞

J2
q2
(y2) · · ·

∞

∑
qM=−∞

J2
qM
(yM)

·δ (ωd +m1
√

gK1 +m2
√

gK2 +n1ωx1 +n2ωx2 + · · ·+nNωxN

+q1ωy1 +q2ωy2 + · · ·+qMωyM)dθK⃗1
dK1.

(4.38)

It is worth noting that (4.37) and (4.38) are also suitable for both monostatic and bistatic

geometries. As before, for a monostatic geometry, xi = axiK cos(θK −θpx) and ΓP = ΓPm ,

while, for a bistatic geometry, xi =
axiK

2 cos(θ1 −θpx)/cosφ0 and ΓP = ΓPb .

4.6 Simulation and Analysis

Using a Pierson-Moskowitz ocean spectral model for a fully developed wind sea, simula-

tions to illustrate the effects of antenna motion for the newly derived RCSs are conducted.
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The radar operating frequency, wind speed, and patch width are taken to be 15 MHz, 15

m/s and 3000 m, respectively. The wind direction is 90◦ with respect to the radar look

direction. It should be noted that the minimum distance between the floating platform

and the patch of the ocean the HFSWR observes will be, in general, tens of kilometers [9].

Thus, sea states at the platform and the patch do not have to be the same. The parameters

for the platform motion are obtained from [70], where the horizontal motions of a moored

FPSO platform in bi-directional swell and wind-sea with a significant wave height Hs=

2.06 m, offshore of West Africa, were analysed. From this work, ax1 = 5 m, ax2 = 0.35 m,

ωx1 = 0.02 rad/s and ωx2 = 0.35 rad/s are used. A Hamming window is used to smooth

the curve and reduce oscillatory features caused by the Sa2 function in the presented

models (see Section 4.3 and 4.4).

Using these values results in the Doppler spectra shown in Fig. 4.1 and Fig. 4.2. As

depicted in Fig. 4.1, the motion-induced peaks appear symmetrically in the Doppler spec-

trum at frequencies given by ωd = ωB+n1ωx1+n2ωx2, where ωB represents the Doppler

frequency of the Bragg peaks. When there is no platform motion, the typical Bragg

peaks are seen. Comparing with the case of the fixed antenna, both the low frequency

platform motion and the wave frequency platform motion cause motion-induced peaks

in the Doppler spectra and broaden the region of the Bragg peaks. Compared to previous

studies that considered only single-frequency platform motion [17–19], the Bragg peaks

and the peaks caused by the wave frequency motion, shown in Fig. 4.2, are broadened by

the low frequency motion.

From the RCS model derived in Section 4.3, it may be seen that the initial phases

of the platform motions have no effect on the radar cross sections. Rather, the radian

frequencies of the platform motions determine the frequency locations of the motion-

induced peaks. In addition, the amplitudes of these motion-induced peaks are determined

by the amplitudes of the platform motions. The radian frequencies and relative amplitudes

of the Bragg peaks and motion-induced peaks are shown in Table 4.1. The relative

amplitude in Table 4.1 refers to the ratio of the actual peak amplitude to the amplitude
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Fig. 4.1 Comparison of the first-order radar cross sections under a moderate sea state of
Hs = 2.06 m (see text for other model parameters) for a fixed antenna with those for a
floating antenna, respectively, incorporating a dual-frequency platform motion and (a) a
single wave frequency platform motion; (b) a single low frequency platform motion.
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Fig. 4.2 Zoomed-in view of the positive Doppler spectrum (a) in Fig. 4.1(a); (b) in
Fig. 4.1(b).
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of the Bragg peak for the case of a fixed antenna. From both Table 4.1 and Fig. 4.1, it

can be seen that the magnitudes of the Bragg peaks for the case of a floating antenna are

lower than those for the case of a fixed antenna due to |Jn(x)| ≤ 1 for any n and x, but

the total spectral powers are the same in both cases.

Table 4.1 The radian frequencies and relative amplitudes of Bragg peaks and motion-
induced peaks

Type of peaks Doppler frequency Relative amplitude
Bragg peaks ±ωB J2

0(x1)J2
0(x2)

Low frequency motion-induced peaks ±ωB ±n1ωx1 J2
n1
(x1)J2

0(x2)

Wave frequency motion-induced peaks ±ωB ±n2ωx2 J2
0(x1)J2

n2
(x2)

Combined motion-induced peaks ±ωB ±n1ωx1 ±n2ωx2 J2
n1
(x1)J2

n2
(x2)

In [71], for example, it is noted that if a sinusoidal signal is frequency modulated by

a signal involving two sinusoidal waves, the frequency modulated wave can be expressed

as e = E0 sin(ωt + l1 sin p1t + l2 sin p2t), where E0 represents the amplitude of the wave,

ω is the radian frequency of the carrier, and l1 and l2 are the modulation indices with

corresponding modulating radian frequencies p1 and p2. As also noted in [71], the

frequencies of the sideband components appear at ω +n1 p1+n2 p2, where n1 and n2 can

be any integer. In addition, the amplitudes of the carrier and sideband components equal

the products of Bessel’s functions with the arguments being the modulation indices. This

conclusion agrees well with the derived RCS models (see Section 4.3). Therefore, the

floating platform motion may be viewed as modulating the radar signals. The modulation

indices are related to the amplitudes of the platform motions and the angles between

the motion directions with the radar look direction. The value of the modulation index

determines how much energy is transferred from the carrier to the sideband components.

In this context, the Bragg peaks can be treated as the carrier and the motion-induced peaks

may be viewed as sideband components. It is worth noting that the relative amplitudes

shown in Table 4.1 equal the products of the square of Bessel’s functions instead of the

products of Bessel’s functions. This is because the radar cross sections represent the

power spectral density, resulting in a square operation in the amplitude.
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Fig. 4.3 Comparison of the first-order positive Doppler spectra under an extremely high
sea state of Hs = 15.7 m for a fixed antenna with that for a floating antenna.

Fig. 4.3 describes the first-order radar cross section incorporating a dual-frequency

platform motion model under storm conditions associated with sea state 11 with a

significant wave height Hs= 15.7 m. It is shown in [72] that the saturation limit on

the significant wave height is defined approximately by Hsat = 2/k0. Thus, the highest

applicable radar operating frequency is around 6 MHz and this is used in the simulation

shown in Fig. 4.3. For a high sea state, the amplitudes of both the low frequency

platform motion and the wave frequency platform motion increase with increasing wind

speed. With increasing amplitude of the platform motion, the energy of the Bragg

peaks decreases, the bandwidth of the Bragg peaks widens, more energy is transferred

from Bragg peaks to sideband components, and more sideband components need to be

considered. In Fig. 4.2, only the Bessel functions up to the second-order are used, while

Bessel functions up to the sixth-order are considered in Fig. 4.3. For an extremely high

sea state, the Bragg peak tends to be flatter and smoother instead of being a single sharp

peak.
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Fig. 4.4 Comparison of the total (including the first- and second-order) radar cross
sections under a moderate sea state of Hs = 2.06 m for a fixed antenna with that for a
floating antenna.

Fig. 4.4 shows the comparison of the total radar cross section (including the first- and

second-order radar cross sections) with an antenna on a floating platform with that for a

fixed antenna. The third- and higher-order radar cross sections are ignored in this study

due to their little contribution to the total radar cross section. The simulation parameters

used to generate Fig. 4.4 are the same as those used in Figs. 4.1 and 4.2. Four obvious

motion-induced peaks, around ± 0.35 Hz and ± 0.45 Hz, can be observed in Fig. 4.4.

These four motion-induced peaks are the first-order motion-induced peaks, which can

also be found in Figs. 4.1 and 4.2. Due to their small magnitudes, the second-order

motion-induced peaks cannot be seen in Fig. 4.4. As explained in [18] and [55], this

is because the motion-induced peaks have less energy in the second-order than in the

first-order radar cross section.

A total radar cross section under an extremely high sea state with an antenna on a

floating platform is depicted in Fig. 4.5. The simulation parameters are the same as those

used in generating Fig. 4.3. From Fig. 4.4 and Fig. 4.5, it can be seen that, as expected,
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Fig. 4.5 Comparison of the total radar cross sections under an extremely high sea state of
Hs = 15.7 m for a fixed antenna with that for a floating antenna.

the modulation effect on the radar cross section is significant when the amplitudes of the

platform motions are large. From these figures, it can be seen that a fraction of the energy

is transferred from the Bragg peaks to the motion-induced peaks. In the process of the

energy transfer, wave frequency platform motions rather than low frequency motions

play a dominant role. In Fig. 4.5, some of the first-order motion-induced peaks are

located in the region of the second-order radar cross section. If the effect of the platform

motion is ignored in interpreting the Doppler spectra, this will cause an overestimation

of the significant wave height. This effect has also been observed in experimental

data [9] in which it was reported that during North Sea winter storm conditions, using

an HFSWR system operated aboard a semisubmersible oil platform, the wave height

was overestimated by 40%. By comparison, for the conditions associated with Fig. 4.4,

little energy is transferred from the first-order radar cross section to the second-order,

and, in this case, the effect of the platform motion may be ignored in the second-order

inversion process. Thus, it can be concluded that the estimation of significant wave
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height will be affected by many factors, such as the amplitudes and radian frequencies

of the platform motion. Meanwhile, this estimated value is also affected by wind speed

and radar operating frequency. As shown in [50] and [55], the amplitudes and radian

frequencies of the platform motion are seen to increase and decrease, respectively, with

increasing wind speed. Additionally, in [50] and [55], the energies of the motion-induced

peaks, for a given sea state, are found to decrease as the radar operating frequency is

reduced.
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Fig. 4.6 Comparison of the total radar cross sections incorporating a multi-frequency
platform motion model under a moderate sea state 3 of Hs = 2.06 m for a fixed antenna
with that for a floating antenna.

Spectra obtained using the multi-frequency platform motion model that incorporates

both surge and sway directions are generated using the same parameters as used for

Fig. 4.1. Results are presented in Fig. 4.6 and Fig. 4.7. Keeping the two frequency

components used in Fig. 4.4 unchanged, the results using a platform motion model

incorporating four frequency components are shown in Fig. 4.6. Little difference is
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Fig. 4.7 Comparison of the total radar cross sections considering both surge and sway
directions under a moderate sea state 3 of Hs = 2.06 m for a fixed antenna with that for a
floating antenna.

observed in Fig. 4.6 between the radar cross section incorporating a four-frequency

platform motion model and that having dual-frequency. This is because the amplitudes

for the third and fourth frequency components are much smaller compared to those for

the first two frequency components. Similarly, keeping the two frequency components

in the surge direction used in Fig. 4.4 unchanged, the results using a platform motion

model considering both surge and sway directions are shown in Fig. 4.7. It can be seen

from Fig 4.7 that the modulation effect on the radar cross section, considering both

surge and sway directions, is greater than that when considering only the surge direction.

This is because for this floating, moored platform, the amplitudes of the two frequency

components in the sway direction are much greater than those in the surge direction.

Simulations are also undertaken to investigate the effects of bistatic angle on the new

radar cross sections. The radar operating frequency, wind speed and patch width are
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Fig. 4.8 Comparison of bistatic radar cross sections under a high sea state of Hs = 8 m
for a fixed antenna with that for a floating antenna.

taken to be 10 MHz, 25 m/s and 3000 m, respectively. The wind direction and ellipse

normal are 175◦ and 85◦, respectively, as measured from the positive x axis (the line

connecting the transmitter to the receiver). The parameters for the platform motion

are obtained from [88], where the time series of the surge motion were given under

a significant wave height of Hs = 8 m (strong gale, sea state 9). From that work, the

dual-frequency platform motion model of (4.2) is used in the simulation, with ax1, ωx1,

ax2, and ωx2 being 2 m, 0.05 rad/s, 0.9 m and 0.63 rad/s, respectively.

Comparisons of the radar cross sections for an antenna on a floating platform with

that for a fixed antenna are shown in Figs. 4.8 and 4.9. The bistatic angle φ0 in Figs. 4.8

and 4.9 is taken to be 30◦. From these two figures, it is observed that the analysis of how

antenna motion affects the bistatic Doppler spectrum, and the difference between bistatic

radar cross sections for a dual-frequency platform motion model with those for a single

frequency motion model, are similar to the monostatic case. The effects of different sea

states and radar parameters have been previously shown in this section for the monostatic
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Fig. 4.9 Zoomed-in view of the negative Doppler spectrum in Fig. 4.8.

radar cross section model. Similar effects are observed for the bistatic case and are not

further addressed here.

In order to clearly show how the bistatic angle affects the modulation extent of

the radar cross sections, the parameters for the platform motion are obtained under

an extreme sea state. In [89], the time series of the surge motion was recorded under

environmental conditions associated with a 100 year storm with which was associated

a significant wave height of 14 m and wave period of 15.8 s. Based on this work, the

platform motion data involving two main frequency components is taken: ax1 = 10 m,

ωx1 = 0.08 rad/s, ax2 = 5 m, and ωx2 = 0.63 rad/s. Through the saturation limit on the

significant wave height, the radar operating frequency is taken to be 5 MHz.

Fig. 4.10 and Fig. 4.11 show radar cross sections with an antenna on a floating plat-

form for different bistatic angles. The directions of the platform motion in Fig. 4.10 and

Fig. 4.11 are 0◦ and 90◦, for which sin(θK −θpx) corresponds to a positive number and a

negative number, respectively. It may be observed from Fig. 4.10 and Fig. 4.11 that the

frequencies of the Bragg peaks and the second-order hydrodynamic and electromagnetic
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pl atf or m m oti o n dir e cti o n of 0 ◦ u n d er e n vir o n m e nt al c o n diti o ns ass o ci at e d wit h s e a st at e
1 1.

p e a ks ar e cl os er t o z er o D o p pl er fr e q u e n c y f or a l ar g er bist ati c a n gl e. I n a d diti o n, t h e

e n er gi es of b ot h t h e s e c o n d- or d er h y dr o d y n a mi c a n d el e ctr o m a g n eti c p e a ks ar e f o u n d

t o d e cr e as e wit h i n cr e asi n g bist ati c a n gl e. T his h as b e e n e x a mi n e d i n d et ail i n [7 3 ]. I n

Fi g. 4. 1 0, t h e m o d ul ati o n eff e ct is s e e n t o i n cr e as e wit h i n cr e asi n g bist ati c a n gl e, w hil e

i n Fi g. 4. 1 1 a d e cr e as e is o bs er v e d. T his c o n cl usi o n a gr e es w ell wit h t h e cr oss s e cti o n

m o d els d eri v e d i n S e cti o n 4. 4. I n a d diti o n, t h e a m plit u d es of t h e Br a g g p e a ks i n Fi g. 4. 1 0

a n d Fi g. 4. 1 1 ar e m ai nl y d et er mi n e d b y t h e a m plit u d e of t h e m o d ul ati o n i n d e x. W h e n

t h e m o d ul ati o n i n d e x is l ar g e, t h e m o d ul ati o n eff e ct is o b vi o us, r es ulti n g i n m or e e n er g y

b ei n g tr a nsf err e d fr o m t h e Br a g g p e a ks t o t h e m oti o n-i n d u c e d p e a ks [ 6 6].
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4. 7 C h a pt e r S u m m a r y

T h e d e v el o p m e nt of H F S W R irst- a n d s e c o n d- or d er o c e a n s urf a c e cr oss s e cti o n m o d els

wit h a m or e r e alisti c pl atf or m m oti o n m o d el t h a n a p p e ars i n [ 5 0 ] a n d [5 5 ] h as b e e n

pr es e nt e d. First, a pl atf or m m oti o n m o d el c o nt ai ni n g t w o c osi n e w a v es i n o n e dir e cti o n,

r e pr es e nti n g t h e l o w fr e q u e n c y m oti o n a n d t h e w a v e fr e q u e n c y m oti o n h as b e e n c o nsi d-

er e d. T h e n, t h e pl atf or m m oti o n m o d el is e xt e n d e d t o i n cl u d e m ulti pl e fr e q u e n ci es a n d

b ot h s ur g e a n d s w a y dir e cti o ns.

It h as b e e n s h o w n t h at t h e pl atf or m m oti o n c a n b e vi e w e d as m o d ul ati n g t h e r a d ar

fr e q u e n ci es a n d t h e m o d ul ati o n i n di c es ar e r el at e d t o t h e a m plit u d es of t h e m oti o n. It

h as als o b e e n s h o w n t h at t his fr e q u e n c y m o d ul ati o n h as a m u c h gr e at er eff e ct o n t h e

irst- or d er R C S t h a n it d o es o n t h e s e c o n d- or d er. Si m ul ati o n r es ults s h o w t h at a fr a cti o n
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of the energy is transferred from the Bragg peaks to the motion-induced peaks, which

may be located in the region of the second-order radar cross section.

If the effect of the platform motion is ignored in interpreting the Doppler spectra,

these motion-induced peaks may raise the second-order radar cross section. This would

result in an overestimation of the significant wave height, an effect which has been

observed in experimental data [9]. In addition, the regions of the Bragg peaks have been

shown to be broadened by the sideband components, a fact which agrees with the field

data presented in [74]. It is worth noting that in [35–37] the platform motion is linear

since a shipborne HFSWR was used. For such a case, the Bragg frequencies drift due to

the platform motion. Here, the platform motion is represented using a sinusoidal function.

In this situation, the frequencies of the Bragg peaks are not shifted, but a fraction of

the energy is transferred from the Bragg peaks to the motion-induced peaks due to the

frequency modulation effect as explained, for example, in [71].

Simulations have been conducted to demonstrate the effect of the bistatic angle on

the radar cross sections. The bistatic angle affects both the power of the second-order

received Doppler spectra and the modulation level of the platform motion on the radar

cross sections. In addition, it has been shown that the size of the modulation level has a

dramatic effect on the energy of the Bragg peaks in the radar cross sections. The results

are expected to provide a good theoretical basis for determining suitable geometries for

the deployment of platform-mounted bistatic HFSWR.

The RCS models developed have been analysed using simulated data. The analysis

will assist in the design of future field experimentation needed to further validate these

models. From (4.37) and (4.38), it is seen that although pitch and roll movements

have not been considered here, a similar method to that used in [9] can be adopted by

transferring pitch and roll movements to the horizontal and vertical planes, extracting the

horizontal components, and adding these extracted components to the surge and sway

movements into the platform motion model.
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Chapter 5

Motion Compensation for High

Frequency Surface Wave Radar on a

Floating Platform

5.1 Introduction

Based on radar cross section models for an antenna on a floating platform found in

Chapter 4, a new compensation method for mitigating the platform motion effect is

proposed in this chapter. In Section 5.2, the first- and second-order radar cross section

models for a fixed antenna are reviewed. The relationship between the radar cross

sections for a fixed antenna and for an antenna on a floating platform is established in

Section 5.3. Through this relationship, a motion compensation method, which involves

deconvolving the radar cross section data with the derived transfer function, is proposed.

Four different deconvolution techniques are illustrated in Section 5.4. Then, in Section

5.5, the radar cross section model for an antenna on a floating platform with external

white Gaussian noise is developed. Application of the proposed compensation method,

along with results obtained under different sea states and SNRs, appears in Section 5.6.

Section 5.7 contains conclusions and suggestions for future investigations.
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5.2 Radar Cross Sections

The first-order monostatic HFSWR cross section of the ocean surface σ1 f ixed for the case

of a fixed antenna may be written as [75]

σ1 f ixed(ωd) = 23
πk2

0∆ρ ∑
m=±1

∫
K

K2S1(mK⃗) Sa2
[

∆ρ

2
(K −2k0)

]
δ (ωd +m

√
gK)dK.

(5.1)

The corresponding second-order radar cross section σ2 f ixed for this case was also

derived in [75] as

σ2 f ixed(ωd) = 26
π

2k4
0 ∑

m1=±1
∑

m2=±1

∞∫
0

π∫
−π

S1(m1K⃗1)S1(m2K⃗2) |ΓPm |2 K1

·δ (ωd +m1
√

gK1 +m2
√

gK2)dθK⃗1
dK1.

(5.2)

5.3 Platform Motion Compensation Method

For the first-order radar cross section model (4.20), where the sampling function dom-

inates the integral in (4.20), the range of K in the main lobe of the squared sampling

function is extremely small. For such a narrow range of K, the squared values of the

Bessel functions vary only slightly (see Fig. 5.1). Thus, it is assumed here that K in the

arguments of the Bessel functions is constant and is set to a representative value of 2k0,

the wavenumber of the first-order Bragg wave. Then, the Bessel function summation can

be removed from the integral and (4.20) may be written as

σ1 f loating(ωd) =
∞

∑
n1=−∞

J2
n1
(z1)

∞

∑
n2=−∞

J2
n2
(z2)

·23
πk2

0∆ρ ∑
m=±1

∫
K

K2S1(mK⃗) Sa2
[

∆ρ

2
(K −2k0)

]
·δ (ωd +m

√
gK +n1ωp1 +n2ωp2)dK

(5.3)
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Fig. 5.1 The squared values of sampling function and the Bessel functions with respect
to K. The radar operating frequency is 10 MHz, the platform motion amplitude is 5 m,
and the motion direction is the same with the radar look direction.

where z1 = 2ax1k0 cos(θK −θpx) and z2 = 2ax2k0 cos(θK −θpx). At this stage, it is helpful

to define the total radar cross section including the first- and second-order radar cross

sections as

σ f ixed(t) = σ1 f ixed(t)+σ2 f ixed(t) (5.4)

and

σ f loating(t) = σ1 f loating(t)+σ2 f loating(t). (5.5)

By comparing (5.3) and (4.21) with (5.1) and (5.2), respectively, it may be readily

determined that the relationship between the radar ocean surface cross section involving

a fixed antenna and that for an antenna on a floating platform may be expressed as

σ f loating(ωd) =
∞

∑
n1=−∞

J2
n1
(z1)

∞

∑
n2=−∞

J2
n2
(z2)σ f ixed(ωd +n1ωp1 +n2ωp2). (5.6)
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Taking an inverse Fourier transform of (5.6), the relationship may be written in the time

domain as

σ f loating(t) =σ f ixed(t) ·
∞

∑
n1=−∞

J2
n1
(z1)

∞

∑
n2=−∞

J2
n2
(z2) e− j(n1ωp1+n2ωp2)t . (5.7)

Since J2
n(z) = J2

−n(z), (5.7) reduces to

σ f loating(t) =σ f ixed(t) ·
∞

∑
n1=−∞

J2
n1
(z1)

∞

∑
n2=−∞

J2
n2
(z2) cos(n1ωp1 +n2ωp2)t. (5.8)

Also, the relationship can be extended to the case of a multi-frequency platform motion

model. At this point, the transfer function in the time domain h(t) is defined as

h(t) =
∞

∑
n1=−∞

J2
n1
(z1)

∞

∑
n2=−∞

J2
n2
(z2) · cos(n1ωp1 +n2ωp2)t. (5.9)

Based on the convolution theorem, (5.8) may then be written in the frequency domain

as [76], [77]

σ f loating(ωd) = σ f ixed(ωd)⊗H(ωd) (5.10)

where ⊗ is the linear convolution operation, and H(ωd) represents the Fourier transform

of h(t). H(ωd) is an array of n elements, expressed as H(ωd) = [h0,h1, · · · ,hn−1], which

depends on the floating platform parameters. Thus, if the parameters of the floating

platform motion are known, the radar cross section σ f ixed(ωd) can be recovered through

deconvolving the radar cross section σ f loating(ωd) with H(ωd).

It is should be noted that the models shown above are developed for the monos-

tatic geometry (both the transmitter and the receiver are on the same platform). The

relationship (5.10) can also be applied to bistatic radar by modifying the modulation

indices in (5.9). For the bistatic case of a fixed receiver and an transmitter on a floating

platform, the modulation indices z1 = ax1k0[cos(θK − θpx)+ tanφ0 sin(θK − θpx)] and

z2 = ax2k0[cos(θK −θpx)+ tanφ0 sin(θK −θpx)]. In addition, (5.10) can also be easily
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extended for a multi-frequency platform motion model by extending the two frequency

components in (5.9) to multiple frequency components.

5.4 Deconvolution Techniques

A variety of deconvolution techniques have been developed for different applications.

For the problem at hand, four deconvolution techniques are described.

5.4.1 Division in the Time Domain

Based on the convolution theorem, deconvolution in the frequency domain can be

converted to division in the time domain. Therefore, the radar cross section with platform

motion compensation may be calculated through the relation

σ f ixed(ωd) = F{F−1{σ f loating(ωd)}/h(t)}. (5.11)

For the ideal case of no noise or error in both σ f ixed and σ f loating, (5.11) is stable, and

the method can work successfully. However, for practical systems where there are both

noise and error in the data, it is possible that for a certain t, h(t) could approach zero, but

σ f loating is not relatively small due to the presence of the noise and error. This may cause

σ f ixed to be an irregularly large number and thereby cause instability in the computation

of σ f ixed . This represents an ill-posed problem in deconvolution [78].

5.4.2 Transformation Matrix

A method of performing a deconvolution by matrix multiplication is introduced. Through

the relationship in (5.10), σ f loating(ωd) and σ f ixed(ωd) can also be cast in terms of a

transformation matrix Hmatrix [79] as

σ f loating(ωd) = HHHmatrixσ f ixed(ωd) (5.12)

99



with

HHHmatrix =



h0 0 0 · · · 0 0

h1 h0 0 0 · · · 0

· · · h1 h0 0 · · · 0

hn−1 · · · h1 h0 0
...

0 hn−1 · · · h1 h0
. . .

... . . . . . . . . . . . . . . .


. (5.13)

Thus, the deconvolution procedure can be achieved by calculating the inverse matrix

HHH−1
matrix and multiplying it with the convolved data. The procedure may be written as

σ f ixed(ωd) = HHH−1
matrixσ f loating(ωd), (5.14)

and the deconvolution problem is simplified to a matrix inversion problem. However,

the ill-posedness still exists in the inversion process, and, therefore, small changes in the

σ f loating(ωd) may cause severe distortion in the σ f ixed(ωd) because the matrix HHHmatrix

has a number of small eigenvalues. Here, Von Neumann and Goldstine’s P condition

number (see, for example, [80]) is introduced as

P(HHHmatrix) =
∣∣∣λmax

λmin

∣∣∣ (5.15)

where λmax and λmin, respectively represent the eigenvalues of HHHmatrix of maximum and

minimum magnitude. The condition number is an indicator of the “health condition”

of a matrix. When P(HHHmatrix)∼ 1, HHHmatrix is well-conditioned. When P(HHHmatrix)≫ 1,

HHHmatrix has at least one small eigenvalue λmin causing the P condition number to be large,

and HHHmatrix to be ill-conditioned. The worse the condition number of the matrix, the

greater the value of P. In our study, an ill-conditioned HHHmatrix usually appears when the

amplitude of the platform motion is large or the radar operating frequency is high, which

results in an increase in the modulation indices.
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5.4.3 Tikhonov Regularization

Tikhonov regularization (see, for example, [81]), which is widely used to solve ill-posed

inverse problems, is introduced by using a transformation matrix as discussed below.

In this study, an assumption of K = 2k0 in the argument of Bessel functions is made at

the beginning of Section 5.3. This assumption may cause errors in the inversion process.

If the errors and noise are represented as a matrix EEE, (5.12) may be written as

σ f loating(ωd) = HHHmatrixσ f ixed(ωd)+EEE. (5.16)

In order to obtain the vector σ f ixed(ωd), an error minimization criterion is formulated as

min
σ f ixed

{||HHHmatrixσ f ixed −σ f loating||2 + γ
2||σ f ixed||2} (5.17)

where || · || indicates the 2-norm of a vector. γ is a regularization parameter determined

by the noise and errors, which may be estimated by [82]

γ =
||HHHmatrixσ f ixed −σ f loating||2

||IIIσ f ixed||2
. (5.18)

Then, the estimate for σ f ixed is given by

σ f ixed = (HHHT
matrixHHHmatrix + γIII)−1HHHT

matrix σ f loating. (5.19)

A higher level of noise or errors will require a larger value of γ . The matrix III is an

identity matrix. If a second-order differential matrix is used to replace the matrix III, (5.19)

reduces to the least-squares solution. The main idea of Tikhonov regularization is to add

a small positive number to the diagonal elements of the transformation matrix to stabilize

the system in the inversion process. It is shown in [83] that compared to the matrix

HHHT
matrixHHHmatrix, the magnitude of the smallest eigenvalues of the new transformation

matrix HHHT
matrixHHHmatrix + γIII in (5.19) is increased by finite values of γ . This results in a
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decrease in P, an improvement in the “health condition” of the transformation matrix

and the stabilization of the solution.

5.4.4 Iterative Tikhonov Regularization

It is also shown in [83] that the Tikhonov regularization or least-squares method is based

on the smoothness of the solution. If the Doppler spectrum σ f loating has a sharp low

frequency cutoff, this method has limitations. Finally, as in [81], an iterative method is

proposed for slow solution convergence by

σ
(i+1)
f ixed = (HHHT

matrixHHHmatrix + γIII)−1 · (HHHT
matrix σ f loating + γσ

(i)
f ixed) (5.20)

where σ
(1)
f ixed is calculated from (5.19). Usually, the larger the number of iterations,

the better the solution will be. Typically, 4 or 5 iterations are used in our study. The

performance improvement is negligible after 10 iterations.

5.5 Radar Cross Sections with External Noise

To date, there is little appropriate existing field data dedicated to the case of an antenna on

a floating platform. In order to better mimic experimental data collected from the ocean

surface, a combined sea clutter and external noise radar cross section model developed

by Gill and Walsh [84] was used to undertake a simulation for a fully developed wind

sea and to examine these motion compensation methods.

In the HF band, the external noise may be characterized as a white Gaussian zero-

mean process [85]. For HFSWR, it is shown in [86] that the first-order sea echo is a

Gaussian process, consisting of linear operations on the presumed stationary Gaussian

ocean surface. Additionally, by the central limit theorem, the second-order ocean wave

scattered signal may also be treated as a Gaussian process [86]. For such a stationary
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Gaussian process, the time-domain form of the signal may be written as [87], [84]

f (t) =
∫

B
e jωte jε(ω)

√
Fs(ω)

dω

2π
(5.21)

where B represents the limited bandwidth of the system, i.e. −ω

2 ≤ B ≤ ω

2 . Fs(ω) is

the power spectral density of f (t) and ε(ω) is a random phase variable whose values

lie between 0 and 2π . However, in our study, the radar received signal is frequency-

modulated by the platform motion [68]. Frequency modulation is a nonlinear process.

Thus, (5.21) is no longer suitable for addressing the radar cross sections for this case.

Combining (5.8) with frequency modulation results found in Chapter 7 of [71], it

may be deduced that

f f loating(t) = f f ixed(t) · e j(z1 cosωp1t+z2 cosωp2t) (5.22)

where f f loating(t) and f f ixed(t) represent the received radar signals in the case of an

antenna on a floating platform and on a fixed platform, respectively. Thus, if the signal

f (t) is frequency-modulated, the signal after modulation in the time domain may be

expressed as

g(t) = e jX f (t) = e jX
∫

B
e jωte jε(ω)

√
Fs(ω)

dω

2π
(5.23)

where X = z1 cosωp1t + z2 cosωp2t.

It is worth noting here that the external white noise will also be modulated by the

platform motion due to the limited system bandwidth. Substituting the clutter and noise

power spectral densities into model (5.23), obtaining the frequency-modulated clutter

signal c(t) and noise signal n(t), respectively, and adding them together, the combined

signal may be expressed as

s(t) = c(t)+n(t). (5.24)
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Following the analysis in [84], the Doppler spectrum may be estimated by

P(ω) =
1
∆t

∣∣∣∫ t2

t1
s(t)e− jωtdt

∣∣∣2 (5.25)

where the time series length from t1 to t2 is specified as ∆t.

Fig. 5.2 shows an example of a combined sea clutter and external noise Doppler

spectrum for an antenna on a floating platform. The detailed radar system simulation

parameters used here are also found in [84] and given in Table 5.1. The SNR in this

chapter refers to the ratio of the sea clutter power spectral density for the largest Bragg

peak to the noise power spectral density. The platform motion simulation parameters are

taken from Table 2.1 for a wind speed of 10.3 m/s. From Fig. 5.2, it is clearly seen that

the noise floor is approximately -160 dB, which means the Doppler spectra information

below -160 dB is contaminated and covered by the white external noise.

Table 5.1 Radar system parameters [84]

Operating frequency 10 MHz
Bistatic angle 30◦

Pulse width 13.3 µs
Pulse repetition period 333 µs

Peak power 16 kW
Transmitter gain 1.585

Half-power beam width 0.07029 rad
Receive array gain 65.76

Distance from patch to transmitter 50 km
Distance from patch to receiver 50 km

Rough spherical earth attenuation 0.312
SNR 60 dB

5.6 Examples of Motion Compensation Results

Examples of motion compensation results under different sea states, developed using

the deconvolution techniques found in Section 5.4, are shown in Figs. 5.3–5.8. The

Doppler spectra for an antenna on a floating platform, and incorporating external white
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Fig. 5.2 A combined sea clutter and external noise Doppler spectrum. The radar operating
frequency is 10 MHz with SNR = 60 dB.

noise, are simulated using the technique illustrated in Section 5.5. Spectra obtained in

this manner are referred to as ‘before compensation’ in the following figures. Then, the

platform motion compensation method is used on the simulated spectra to eliminate the

effect of the platform motion and to obtain the compensation result, labeled as ‘after

compensation’. Finally, the corresponding Doppler spectrum for a fixed antenna with

external white noise (under the same simulation environment as for the floating platform

case) is simulated and labeled as ‘fixed’ in these figures. By comparing the ‘fixed’ with

the ‘after compensation’, the performance of the platform motion compensation method

can be evaluated.

Fig. 5.3 shows an example of platform motion compensation results for the cases of a

single-frequency platform motion model. The amplitude and radian frequency data of the

platform motion in Fig. 5.3 are taken from Table 2.1, and these parameters are given for

a sea state of 5 on the Beaufort scale with a wind speed of 10.3 m/s. The radar operating

frequency is taken to be 15 MHz, and the SNR is about 65 dB. In this case, the condition
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number P is 1.12, which means that the transformation matrix is well conditioned. For

such a well-conditioned transformation matrix, it is mentioned in Section 5.4 that all four

deconvolution techniques can be used to obtain the same compensation results. Here in

Fig. 5.3, deconvolution method B of Section 5.4 is used.

As previously noted, the platform motion may cause additional peaks symmetrically

distributed in the Doppler spectrum [50]. In Fig. 5.3 (a), some of the first-order motion-

induced peaks are located in the region of the second-order Doppler spectrum. If the

effect of the platform motion is ignored in interpreting the Doppler spectra, this will

cause an overestimation of the significant wave height. This effect has also been observed

in experimental data [9]. In addition, it may be clearly observed from Fig. 5.3 (b) that,

due to the floating platform motion, a fraction of the energy is transferred from the Bragg

peaks to the motion-induced peaks. This phenomenon has also been discussed in [66]. It

may be observed from Fig. 5.3 that through platform motion compensation, the motion-

induced peaks are completely removed from the radar Doppler spectra. Additionally, the

energies of the Bragg peaks are simultaneously recovered, though this phenomenon is

not obvious in Fig. 5.3 due to the small magnitude of the modulation index (which is

related to the amplitude of platform motion in this study).

In [88], a floating platform with a mooring system was modeled and simulated. The

time series of the surge motion were given for significant wave heights of 4 m and 8 m.

Based on the surge motion curve (see [88]) for the Hs = 8 m case, the platform motion

parameters of the two main frequency components can be obtained as a1 = 2 m, ωp1 =

0.05 rad/s, a2 = 0.9 m and ωp2 = 0.63 rad/s. Taking into account the saturation limit on

the significant wave height (Hsat = 2/k0) given in [72], the radar operating frequency

is taken as 10 MHz. Based on the parameters shown above, the condition number P is

calculated to be 1.03, which means the transformation matrix is well-conditioned. Fig. 5.4

shows the platform motion compensation results using these simulation parameters and

deconvolution method B, resulting in an SNR of around 56 dB.
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Fig. 5.3 An example of the platform motion compensation results for a single-frequency
motion model having an amplitude of 1.228 m and a radian frequency of 0.127 Hz. (a)
Comparison of the Doppler spectrum before compensation with that after compensation
(b) A zoomed-in view of (a).
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Fig. 5.4 An example of the platform motion compensation results for a dual-frequency
motion model having amplitudes of 2 m and 0.9 m, and radian frequencies of 0.05
rad/s and 0.63 rad/s, respectively. (a) Comparison of the Doppler spectrum before
compensation with that after compensation (b) A zoomed-in view of (a).
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Through a number of simulated data tests, it is found that when P is less than 5, the

matrix can be assumed to be well-conditioned. In this case, the deconvolution operation

can be achieved by division in the time domain (method A) or the direct inversion of a

transformation matrix (method B). When P is greater than 5, the compensation results

may be acceptable, but are not ideal as compared to those when P is less than 5. From the

experience in this study, the compensation results should be discarded for P > 10. In the

case of P> 5, Tikhonov regularization (method C) or an iterative Tikhonov regularization

(method D) is adopted to solve the ill-posed deconvolution problem.
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Fig. 5.5 An example of the platform motion compensation results for a dual-frequency
motion model having amplitudes of 5.5 m and 0.4 m, and radian frequencies of 0.02
rad/s and 0.38 rad/s, respectively. This result is for an ill-conditioned transformation
matrix by using the deconvolution technique A or B in Section 5.4.

The motion model of another floating platform with a mooring system was estab-

lished and tested in [70]. The time series of the surge motion were recorded under a

combined swell and wind sea condition. The significant wave height was 2.05 m and

its peak wave period was 6.7 s. From [70], the platform motion data of the two main
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Fig. 5.6 An example of the platform motion compensation results for a dual-frequency
motion model having amplitudes of 5.5 m and 0.4 m, and radian frequencies of 0.02 rad/s
and 0.38 rad/s, respectively. This result is for an ill-conditioned transformation matrix by
using the deconvolution technique of Tikhonov regularization. (a) Comparison of the
Doppler spectrum before compensation with that after compensation (b) A zoomed-in
view of (a).
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frequency components were obtained as a1 = 5.5 m, ωp1 = 0.02 rad/s, a2 = 0.4 m and

ωp2 = 0.38 rad/s. The radar operating frequency is taken as 20 MHz. In this case, P is

calculated to be 3116, indicating that the transformation matrix is ill conditioned. By

using these simulation parameters as an example, comparisons using different deconvo-

lution techniques are made and shown in Figs. 5.5 to 5.7. The SNR in these figures is

taken to be approximately 70 dB. It should be noted that it is meaningless to compare the

amplitudes and radian frequencies of the platform motion for different floating platforms,

even though they may be subject to the same environmental conditions. This is because

the amplitudes and radian frequencies of the platform motion are determined by many

factors, such as environmental conditions, and the size, weight and structure of the

floating platform and its mooring system. It may be clearly observed from Figs. 5.5 to 5.7

that, due to the floating platform motion, a fraction of the energy is transferred from the

Bragg peaks to the motion-induced peaks. This phenomenon has also been discussed in

Chapter 4.

Fig. 5.5 shows the compensation results obtained by directly using “division in the

time domain” (method A) or direct inversion of the transformation matrix (method

B). It can be seen from the figure that the compensation results are poor for the case

of an ill conditioned transformation matrix. The compensation results obtained using

Tikhonov regularization or least-squares deconvolution techniques are shown in Fig. 5.6.

The ill posed problem is partially solved, and a better compensation result is obtained.

However, the compensation results in the region of the Bragg peak are unsatisfactory.

The magnitude of the Bragg peak is not completely recovered and the region of the

Bragg peak is still broadened. This is because there is a sharp low frequency cutoff

at the boundaries of the Bragg peaks region where it meets the second-order region.

As mentioned before, a smooth solution provided by Tikhonov regularization is not

realistic for the case of a sharp cutoff, although the compensation results in the rest of

the Doppler regions show a good performance. Considering these issues, Fig. 5.7 gives

the motion compensation result obtained using iterative Tikhonov regularization. It may
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be observed from Fig. 5.7 that the Doppler spectrum with antenna motion has been well

compensated and recovered as compared to the corresponding simulated fixed Doppler

spectrum. It can be observed that the platform motion compensation has completely

removed motion-induced peaks from the radar Doppler spectra and the energies of the

Bragg peaks have been recovered.

The motion compensation technique derived in Section 5.3 is for both the first-order

and the second-order radar cross sections. The technique has the same impact on the

second-order radar cross section as it does on the first-order. For example, there are

additional second-order motion-induced peaks appearing in the Doppler spectrum, and a

fraction of the energy is transferred from the second-order peaks to these motion-induced

peaks. However, as discussed in [18] and [55], the motion-induced second-order peaks

appearing in the spectrum are seen to have significantly less energy than those in the

first-order case. Thus, the second-order motion-induced peaks are not obvious in the

spectrum (see the peaks near -0.67 Hz labeled by the blue solid line in Fig. 5.7 (a)). From

Fig. 5.7 (a), it is clear that the energies of the second-order peaks are also recovered

through this compensation method.

The model of a floating platform with a mooring system was next considered for

a storm condition associated with sea state 11 [89]. Time series of the surge motion

were recorded under environmental conditions associated with a 100 year storm. For

this extreme sea state, the significant wave height was 14 m and its peak wave period

was 15.8 s. Based on the surge motion curve shown in [89], the platform motion data

involving the two main frequency components are taken to be a1 = 10 m, ωp1 = 0.08

rad/s, a2 = 5 m and ωp2 = 0.63 rad/s. The radar operating frequency is taken to be 5

MHz and the SNR decreases to 40 dB. In this case, P is calculated to be 36876, which

shows the transformation matrix defines a greatly ill-posed problem. Based on these

simulation data, Fig. 5.8 shows the platform motion compensation results using the

iterative Tikhonov regularization deconvolution method. In this extreme case, the trend

of the compensation result is generally acceptable, and the curve in the Bragg peak
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Fig. 5.7 An example of the platform motion compensation results for a dual-frequency
motion model having amplitudes of 5.5 m and 0.4 m, and radian frequencies of 0.02
rad/s and 0.38 rad/s, respectively. This result is for an ill-conditioned transformation
matrix by using the deconvolution technique D in Section 5.4. (a) Comparison of the
Doppler spectrum before compensation with that after compensation (b) A zoomed-in
view of (a).
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Fig. 5.8 An example of the platform motion compensation results for a dual-frequency
motion model having amplitudes of 10 m and 5 m, and radian frequencies of 0.08
rad/s and 0.63 rad/s, respectively. (a) Comparison of the Doppler spectrum before
compensation with that after compensation; (b) A zoomed-in view of (a); (c) Comparison
of the compensation result with the Doppler spectrum for a fixed antenna.

region is well-compensated. However, for the low-energy peaks, like the second-order

electromagnetic peaks, the compensation performance is not ideal.

To quantitatively show the performance of the motion compensation method, Ta-

ble 5.2 illustrates the root-mean-square differences between the “after compensation”

and “fixed” cases in Figs. 5.3- 5.8. As observed in the table, the worst performance

is seen in Fig. 5.5, where an ill-posed problem occurs. By comparing the values of

root-mean-square difference for Fig. 5.6 with that for Fig. 5.7, the performance of the

motion compensation method is found to be improved by using an iterative Tikhonov

regularization deconvolution technique. Through these motion compensation results,

the motion compensation method proposed in this thesis is well examined and shows a

satisfactory performance.
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Table 5.2 Root-mean-square differences between the “after compensation” and “fixed”
cases in Figs. 5.3- 5.8

Figures Root-mean-square differences (dB)
Fig. 5.3 0.4163
Fig. 5.4 0.8402
Fig. 5.5 22.8646
Fig. 5.6 4.4696
Fig. 5.7 2.2171
Fig. 5.8 5.0757

It is worth noting that when calculating H(ωd) based on the information of h(t), an

integer number of periods should be used in the Fourier transform in order to avoid the

spectral leakage problem and improve the performance of the deconvolution.

5.7 Chapter Summary

A compensation method has been proposed for the purpose of mitigating the platform

motion effects on HFSWR Doppler spectra. The relationship between the HFSWR cross

sections of the ocean surface for a fixed antenna and an antenna on a floating platform

has been established. Through this relationship, motion compensation can be achieved

by deconvolution procedures. The radar cross section incorporating external Gaussian

white noise is developed and used to examine the compensation method. In this study,

an iterative Tikhonov regularization deconvolution method is suggested for solving the

ill-posed deconvolution problem. The compensation results under different sea states

and SNRs obtained by using this deconvolution method show a satisfactory performance.

This motion compensation method can also be extended for shipborne HFSWR.

Tikhonov regularization and iterative Tikhonov regularization are introduced to solve

the problem caused by the ill-conditioned transformation matrix. Of course, in the

case of a well-conditioned matrix, Tikhonov regularization and the iterative Tikhonov

regularization can still be used. However, in order to minimize numerical uncertainties

introduced by the computation software and to reduce the computation time, a simple
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deconvolution method (method A or method B discussed in Section 5.4) can be used

when the transformation matrix is well-conditioned.
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Chapter 6

Conclusion

6.1 Summary

The objectives of this thesis have been: 1) to establish comprehensive HFSWR cross

section models of the ocean surface in order to investigate the effect of antenna motion

on the radar Doppler spectrum; and 2) to develop a compensation method to mitigate the

platform motion effects that distort the Doppler spectrum such that ocean remote sensing

parameters can be accurately extracted.

Based on the work of monostatic radar cross sections for a pulsed source involving

an antenna on a floating platform [17] and [18], corresponding bistatic models are

firstly developed by using elliptic coordinate transformation and the stationary phase

method. The ocean surface is described by a Fourier series with the coefficients being

random variables. The second-order radar cross section contains both hydrodynamic and

electromagnetic contributions. A new bistatic electromagnetic coupling coefficient is

derived, which unlike some earlier versions produces no non-physical singularities in the

Doppler spectrum. The effect of the platform motion is found to result in a sum of Bessel

functions of the first kind in the final cross section result, varying in order from zero to

infinity. It is verified that by imposing the appropriate conditions, the new RCS models
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reduce to the stationary bistatic models in [51] or to the monostatic models involving

antenna motion in [17], [18].

Assuming a simple model in which the platform motion is caused by the dominant

ocean wave, simulations are made to illustrate the motion-induced peaks under different

sea states and to compare the bistatic model with the monostatic case. Simulation results

show that the locations of the motion-induced peaks are symmetrically distributed in

the spectrum and the magnitude decreases with increasing order of the Bessel functions.

These motion-induced peaks have less energy in the second-order radar cross section

than those in the first-order. In addition, the frequencies of the first-order, second-order

and their corresponding motion-induced peaks are closer to zero Doppler frequency in

the bistatic case than those in the monostatic case.

Following this work, the first- and second-order bistatic radar cross sections are

then extended to investigate the impact of using an FMCW source which is subject

to platform motion. Based on previous work in [50] and [55], the derivation begins

with the general bistatic electric field in the frequency domain for the case of a floating

antenna. Demodulation and range transformation are used to obtain the range information,

distinguishing the process from that used for a pulsed radar. After Fourier transforming

the autocorrelation function and comparing the result with the radar range equation, the

radar cross sections are derived. The newly derived bistatic RCS models for an FMCW

source are modulated with a sinusoidal platform motion model and compared with those

for a pulsed source. It can be found that for the same radar operating parameters, the

first-order radar cross section for the FMCW waveform is slightly lower than that for a

pulsed source. The second-order radar cross section for the FMCW waveform reduces

to that of the pulsed waveform when the scattering patch width approaches infinity. As

expected, the sidelobe level is found to be reduced with increasing magnitude of the

range bin. When the range bin approaches infinity, the first-order radar cross section

for an FMCW waveform approaches a rectangular function and the second-order radar

cross section model for the FMCW waveform reduces to that of the pulsed waveform.
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The effect of platform motion on the radar cross sections for an FMCW waveform is

investigated for a variety of sea states and operating frequencies, and, in general, is found

to be similar to that for a pulsed waveform.

Next, a more complicated platform motion model, rather than the single-frequency

sinusoidal function motion model as appears in earlier work, is established based on the

investigations of the horizontal motion of a platform with a mooring system. In order to

simplify the study, the platform motion model is reduced to a combination of two cosine

functions in one direction, respectively representing low frequency motion and wave

frequency motion. Monostatic and bistatic radar cross section models incorporating a

dual-frequency platform motion model are derived. Then, the platform motion model

is extended to include multiple frequencies and both surge and sway directions, and

the corresponding radar cross sections are also developed. By comparing the signal

modulation theory, such as appears in [71], it is found that the platform motion can be

viewed as a modulator of the radar frequencies and the modulation indices are related to

the amplitudes of the platform motions. This frequency modulation has a much greater

effect on the first-order RCS than it does on the second-order. Simulation results show

that a fraction of the energy is transferred from the Bragg peaks to the motion-induced

peaks, which may be located in the region of the second-order radar cross section. If

the effect of the platform motion is ignored in interpreting the Doppler spectra, these

motion-induced peaks may raise the second-order radar cross section. This would result

in an overestimation of the significant wave height, an effect which has been observed

in experimental data [9]. With a larger amplitude of platform motion, more energy is

transferred from the Bragg peaks to the motion-induced peaks, and more motion-induced

peaks need to be considered. Simulations also find that the bistatic angle affects both

the power of the second-order received Doppler spectra and the modulation level of the

platform motion on the radar cross sections.

Finally, a method for mitigating antenna motion effects in HFSWR Doppler spectra

developed from ocean backscatter is proposed. Based on the established radar cross sec-
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tion models for a fixed antenna and for an antenna on a floating platform, the relationship

between these models is developed. Through this relationship, motion compensation can

be achieved by deconvolving the radar cross section data with the derived transfer func-

tion. Four different deconvolution methods (division in the time domain, transformation

matrix, Tikhonov regularization and iterative Tikhonov regularization) are investigated

and discussed in this thesis. The ill-posed problem occurs with different platform motion

parameters, and the P condition number is used to evaluate the “health condition” of the

system. Usually, ill-posedness appears when the amplitude of the platform motion is

large or the radar operating frequency is high, both of which would result in an increase

in the modulation indices. Tikhonov regularization is widely used to solve ill-posed

problems by assuming a solution to be smooth. Iterative Tikhonov regularization is an

improved method of Tikhonov regularization. To better mimic experimental data for

use in the motion compensation method, the radar cross section model with external

noise for an antenna on a floating platform model is developed. The external noise is

characterized as a white Gaussian zero-mean process of finite variance. By using the

four deconvolution techniques, the compensation results under different sea states and

SNRs are shown. Through these compensation results, the compensation method using

iterative Tikhonov regularization is seen to provide better performance. It is shown that

this process significantly removes the motion-induced peaks and simultaneously recovers

the energy of the first- and second-order peaks.

The main contribution of this work is the development of the various bistatic HFSWR

cross section models of the ocean surface for the case of an antenna on a floating platform.

Firstly, these radar cross section models can provide a theoretical foundation for a better

understanding and utilization of HFSWR experimental data to extract accurate oceanic

information. Secondly, the analysis of the motion effects on the Doppler spectrum

brings valuable insights for future practical investigations to determine the feasibility of

using HFSWR on a floating platform and suitable geometries for the deployment of a

platform-mounted HFSWR. Finally, the compensation method proposed in this thesis
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gives a technique to mitigate the motion effects and recover the Doppler spectrum. While

the techniques suggested here show promise for improving ocean parameter estimation

from platform-mounted HFSWR, the extent of their utility will only be determined by

their future application to field data.

6.2 Suggestions for Future Work

Based on the work presented in this thesis, several remaining problems are briefly

discussed here with suggestions for future theoretical and experimental research work.

Firstly, it may be noted that the radar cross section models developed in this thesis

are based on several assumptions, for example, a good conducting ocean surface, and

small height and small slope of the ocean surface waves. These assumptions considerably

simplify the analysis and development of the RCS models. However, in the real world,

ocean surface waves may be far more complex. Thus, these assumptions restrict the class

of ocean surfaces which HFSWR may be used to observe with the methods of this thesis.

In the future, it would be worthwhile to investigate the effect of these assumptions on the

RCS models and to develop new models by relaxing these assumptions.

Secondly, to date, there is no existing field data dedicated to the problem of HFSWR

operating from a floating platform. It will be important, therefore, to evaluate the RCS

models for data obtained under conditions of the motion discussed in this thesis.

Thirdly, it is known that radar experimental data is more complex to analyze because

it contains a variety of other information, which are not considered in the RCS models

derived in this thesis. For example, currents, swell, internal system noise, non-Gaussian

external noise and so on will potentially impact the data and derived results. Thus,

the motion compensation method proposed in this thesis may still encounter various

problems when applied to experimental data. Simultaneously, this compensation method

needs to be examined using field data and further improved so that the method could

work effectively under a variety of sea states.
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Finally, it is worth noting that the compensation method presented in this thesis is

especially proposed for a large floating platform with a mooring system, in which case

the horizontal motion of the platform motion is dominant. This motion compensation

method can also be extended for shipborne HFSWR. However, for shipborne HFSWR

operating under a high sea state, the pitch and roll angles of the ship would also need to

be considered in the compensation method. It is expected that, in the future, the pitch and

roll angles of the ship will be analyzed and incorporated in the compensation method.

The work presented in this thesis provides a solid theoretical basis for these and other

extensions of the analysis of platform-mounted HFSWR. With this work, it is hoped that

HF radar, as an ocean remote sensor, will become increasingly mature and successful.
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Appendix A

A Stationary Phase Process for the

First-Order Electric Field
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Fig. A.1 Depiction of the bistatic geometry associated with stationary phase condition.

In order to apply the stationary phase integration, an elliptic coordinate transformation

should be performed. Firstly, the Cartesian (x,y) coordinate system is rotated anti-

clockwise by θ and then the origin is shifted to the center of the line segment defined

by the transmitting and receiving points. The resultant Cartesian coordinate system is

denoted by (x′,y′), shown in A.1, where

x = (x′+
ρ

2
)cosθ − y′ sinθ ,

y = (x′+
ρ

2
)sinθ + y′ cosθ .

(A.1)

135



Then, the elliptic coordinate (µ,ν) can be defined in terms of (x′,y′) by using x′ =

ρ

2 cosh µ cosν and y′ = ρ

2 sinh µ sinν . Thus,

x1 =
ρ

2
[(1+ cosh µ cosν)cosθ − sinh µ sinν sinθ ]

y1 =
ρ

2
[(1+ cosh µ cosν)sinθ + sinh µ sinν cosθ ]

ρ1 =
ρ

2
(cosh µ + cosν)

ρ2 =
ρ

2
(cosh µ − cosν)

θ1 = tan−1
(y1

x1

)
= tan−1

[(1+ cosh µ cosν)sinθ + sinh µ sinν cosθ

(1+ cosh µ cosν)cosθ − sinh µ sinν sinθ

]
dx1dy1 = ρ1ρ2dµdν .

(A.2)

Since x1 = ρ1 cosθ1 and y1 = ρ1 sinθ1, cos(θ1−θK) in the exponential term of (1.2)

can be expanded as

e jρ1K cos(θ1−θK) = e j ρ

2 K[(1+cosh µ cosν)cos(θK−θ)+sinh µ sinν sin(θK−θ)]. (A.3)

In view of these transformations, (1.2) reduces to

(En)1 ≈
kC0

(2π)2 ∑
K⃗

P⃗KK
∫ 2π

0

∫
∞

0
cos(θ1 −θK)F(ρ1)F(ρ2)e jkδρ0 cos(θ1−θ0)

· e j ρK
2 [(1+cosh µ cosν)cos(θK−θ)+sinh µ sinν sin(θK−θ)] e− jk(ρ1+ρ2)dµdν .

(A.4)

From (A.2), it may be observed that ρ1 +ρ2 = ρ cosh µ , which means the scattering

ellipse is determined by the value of µ , if ρ , the distance between the transmitter and the

receiver, is fixed. Then, (A.4) can be written as

(En)1 ≈
kC0

(2π)2 ∑
K⃗

P⃗KKe j ρK
2 cos(θK−θ)

∫
∞

0
e− jkρ cosh µ

∫ 2π

0
cos(θ1 −θK)F(ρ1)F(ρ2)

· e j ρ

2 K[cosh µ cosν cos(θK−θ)+sinh µ sinν sin(θK−θ)] e jkδρ0 cos(θ1−θ0)dνdµ.

(A.5)
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Next, the ν integral in (A.5) may be defined as

I(µ) =
∫ 2π

0
cos(θ1 −θK)F(ρ1)F(ρ2)

· e j ρ

2 K[cosh µ cosν cos(θK−θ)+sinh µ sinν sin(θK−θ)] e jkδρ0 cos(θ1−θ0)dν .

(A.6)

For bistatic operation, ρ is usually several tens of kilometers. Then, ρ

2 K in the

phase term will be a large value for an wide range of K. Also, it is known that for

highly conductive surfaces, the values of F(ρ1) and F(ρ2) are slowly varying. Moreover,

δρ0 is a very small quantity compared to the other distance parameters. Under these

conditions, (A.6) can be solved by the stationary phase method [90]. After applying the

stationary phase integration, (A.6) reduces to

I(µ)≈
√

2π cos(θ1 −θK)F(ρ1)F(ρ2)e jkδρ0 cos(θ1−θ0)

· e j ρ

2 K[cosh µ cosν cos(θK−θ)+sinh µ sinν sin(θK−θ)]

· { j
ρ

2
K[cosh µ cosν cos(θK −θ)+ sinh µ sinν sin(θK −θ)]}−

1
2

(A.7)

with the stationary phase points given by

tanνs = tanh µ tan(θK −θ). (A.8)

A final asymptotic form for I(µ) may be written as

I(µ)≈
√

2π(±
√

cosφ)
F(ρ1)F(ρ2)√

Kρs
e jkδρ0 cos(θ1−θ0)e± jKρs cosφ e∓ j π

4 (A.9)

where ρs =
ρ1+ρ2

2 = ρ

2 cosh µ . Gill [49] shows that the surface wavenumber, K⃗, is normal

to the scattering ellipse (i.e. θN = θK) and the ellipse normal bisects the angle between

the transmitter and receiver, as viewed from the scattering point. φ is the bistatic angle,
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defined as each portion of this bisection, shown in Fig. A.1. Furthermore,

cos(θ1 −θ0) = cos(θK −φ −θ0)

= cosφ cos(θK −θ0)+ sinφ sin(θK −θ0).

(A.10)

Then, (A.9) may be written as

I(µ)≈
√

2π(±
√

cosφ)
F(ρ1)F(ρ2)√

Kρs
e± jKρs cosφ

· e∓ j π

4 e jkδρ0[cosφ ·cos(θK−θ0)+sinφ ·sin(θK−θ0)].

(A.11)

Substituting (A.11) into (A.5) gives

(En)1 ≈
kC0

(2π)3/2 ∑
K⃗

P⃗K

√
Ke j ρK

2 cos(θK−θ)

·
∫

∞

0
e− jkρ cosh µe∓ j π

4 (±
√

cosφ)
F(ρ1)F(ρ2)√

ρs

· e jkδρ0[cosφ cos(θK−θ0)+sinφ sin(θK−θ0)] e± jKρs cosφ dµ.

(A.12)

From the definition of ρs, it can be readily deduced that dµ = 1√
ρ2

s −(ρ/2)2 dρs. Chang-

ing the µ integration to a ρs integration gives

(En)1 ≈
kC0

(2π)3/2 ∑
K⃗

P⃗K

√
Ke j ρK

2 cos(θK−θ)
∫

∞

ρ/2
F(ρ1)F(ρ2)√

ρs[ρ2
s − (ρ

/
2)2

]
e∓ j π

4 (±
√

cosφ)

· e jkδρ0[cosφ cos(θK−θ0)+sinφ sin(θK−θ0)] e jρs[±K cosφ−2k]dρs.

(A.13)
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Appendix B

⟨M(K, θK, τ, t)⟩ for a Sinusoidal

Antenna Motion Model

It is assumed that the sway motion δ⃗ ρ0 = asin(ωpt)ρ̂p is caused by the dominant ocean

wave. The sway frequency can be expressed as ωp =
√

gKp, where Kp is the dominant

ocean wavenumber, and a is the sway amplitude depending on the sea state. In addition,

ωp and a are assumed to be constant during the sets of observations. Thus,

M(K, θK, τ, t)

= e j
aK cos(θK−θKp )

2 [−sin(ωpt)+sin(ωpt+ωpτ)]

· e j
aK tanφ0 sin(θK−θKp )

2 [−sin(ωpt)+sin(ωpt+ωpτ)]

= e jν cos(φp+φ1)

(B.1)

where
ν = aK[cos(θK −θKp)+ tanφ0 sin(θK −θKp)] sin(

1
2

ωpτ)

φp = ωpt

φ1 =
1
2

ωpτ.

(B.2)

139



Here, the Bessel function Jn of the first kind of order n is introduced and may be expressed

as

Jn(z) =
j−n

2π

∫ 2π

0
e jzcosθ cos(nθ)dθ (B.3)

where n can be any integer. The graphs of Bessel functions look roughly like oscillating

sine or cosine functions that decay proportionally as 1/
√

z. Again, using the definition

of the zero-order Bessel function of the first kind, (B.1) reduces to

⟨M(K, θK, τ, t)⟩

=
1

2π

∫ 2π

0
e jν cos(φp+φ1)dφp

=
1

2π

∫ 2π

0
e jν cos µdµ

= J0(ν)

= J0{aK[cos(θK −θKp)+ tanφ0 sin(θK −θKp)] sin(
1
2

ωpτ)}.

(B.4)

Considering the properties of the Bessel function, it can be shown that [17]

J0[2xsin(
φ

2
)] = J2

0(x)+2
∞

∑
n=1

J2
n(x)cos(nφ)

For the problem here, it can be observed that x = 1
2aK[cos(θK −θKp)+ tanφ0 sin(θK −

θKp)] and φ = ωpτ . Thus,

⟨M(K, θK, τ, t)⟩=

J2
0{

aK
2
[cos(θK −θKp)+ tanφ0 sin(θK −θKp)]}

+2
∞

∑
n=1

J2
n{

aK
2
[cos(θK −θKp)+ tanφ0 sin(θK −θKp)]} · cos(nωpτ).

(B.5)
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Appendix C

A Stationary Phase Process for the

Second-Order Electric Field

For the present analysis, it is useful to write (2.41) in elliptic coordinates (µ,δ ) and to

this end we note

ρ2 =
ρ

2
(cosh µ + cosδ )

ρ20 =
ρ

2
(cosh µ − cosδ )

ρ2 +ρ20 = ρ cosh µ

x2 = ρ2 cosθ2 =
ρ

2
[(1+ cosh µ cosδ )cosθ − sinh µ sinδ sinθ ]

y2 = ρ2 sinθ2 =
ρ

2
[(1+ cosh µ cosδ )sinθ + sinh µ sinδ cosθ ]

θ2 = tan−1(
y2

x2
) = tan−1[

(1+ cosh µ cosδ )sinθ + sinh µ sinδ cosθ

(1+ cosh µ cosδ )cosθ − sinh µ sinδ sinθ
]

dx2dy2 = ρ2ρ20dµdδ .

(C.1)

With these transformations, it is straightforward to show that

Kρ2 cos(θK −θ2)

=
ρ

2
K[cos(θK −θ)+ cosh µ cosδ cos(θK −θ)+ sinh µ sinδ sin(θK −θ)]

(C.2)
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so that (2.41) may be written as

(En)2b f ≈− kC0

(2π)2 ∑
K⃗1

∑
K⃗2

P⃗K1
P⃗K2

e j ρ

2 K cos(θK−θ)
∫

∞

0
e− jkρ cosh µ

·
∫ 2π

0
(−kχ)e jkδ ρ⃗0·ρ̂2e j ρ

2 K[cosh µ cosδ cos(θK−θ)+sinh µ sinδ sin(θK−θ)]

·F(ρ2)F(ρ20)dδdµ.

(C.3)

Then, a stationary phase approach may be used to reduce (C.3) to a single integration.

Setting

Z =
ρ

2
K

and noting

F(δ ) = (−kχ)e jkδ ρ⃗0·ρ̂2F(ρ2)F(ρ20)

f (δ ) = cosh µ cosδ cos(θK −θ)+ sinh µ sinδ sin(θK −θ),

the stationary phase points may be shown to be given by

tanδs = tanh µ tan(θK −θ). (C.4)

Thus, the inner integral in (C.3) may be written as

Iδ ≈
√

2π(−kχ)F(ρ2)F(ρ20)e jkδ ρ⃗0·ρ̂2

· e j ρ

2 K[cosh µ cosδ cos(θK−θ)+sinh µ sinδ sin(θK−θ)]√
j ρ

2 K[cosh µ cosδ cos(θK −θ)+ sinh µ sinδ sin(θK −θ)]
.

(C.5)

Following the same analysis as in [49], (C.5) may be reduced to

Iδ ≈
√

2π
(−kχ)F(ρ2)F(ρ20)√

Kρs cosφ
e jkδ ρ⃗0·ρ̂2e± jKρs cosφ e∓ j π

4 (C.6)
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where ρs =
ρ2+ρ20

2 . Since

ˆδρ0 · ρ̂2 = cos(θ2 −θ0)

= cos(θK −φ −θ0)

= cosφ cos(θK −θ0)+ sinφ sin(θK −θ0)

(C.7)

(C.3) may be written as

(En)2b f ≈
−kC0

(2π)
3
2
∑
K⃗1

∑
K⃗2

P⃗K1
P⃗K2

e j ρ

2 K cos(θK−θ)
∫

∞

0
e− jkρ cosh µ (−kχ)F(ρ2)F(ρ20)√

Kρs cosφ

· e jkδρ0[cosφ cos(θK−θ0)+sinφ sin(θK−θ0)] e± jKρs cosφ e∓ j π

4 dµ.

(C.8)

Also, because ρs =
ρ2+ρ20

2 = ρ

2 cosh µ and dρs =
ρ

2 sinh µ dµ =

√
ρ2

s − (ρ

2 )
2dµ , (C.8)

becomes

(En)2b f =
−kC0

(2π)
3
2
∑
K⃗1

∑
K⃗2

P⃗K1
P⃗K2√
K

e
j ρ

2 K cos(θK−θ)

e∓ j π

4

·
∫

∞

ρ

2

(−kχ)F(ρ2)F(ρ20)√
cosφ

e jρs(±K cosφ−2k)√
ρs(ρ2

s − (ρ

2 )
2
)

· e jkδρ0[cosφ cos(θK−θ0)+sinφ sin(θK−θ0)]dρs.

(C.9)
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Appendix D

Symmetrical Coupling Coefficient

In order to derive a symmetrical electromagnetic coupling coefficient for (2.45), it is

worthwhile to consider G[Ks(ρ̂2, K⃗1)], appearing in the χ of (2.41), in more detail. Since

F(ρ12) varies slowly with ρ12, d
dρ12

[F(ρ12)] may be assumed to be negligible. Thus,

G[Ks(ρ̂2, K⃗1)] =
∫

ρ12

F(ρ12)e− jkρ12J1(ρ12Ks)dρ12

=− 1
Ks

∫
ρ12

F(ρ12)e− jkρ12
d

dρ12
[J0(ρ12Ks)]dρ12

=− 1
Ks

{F(ρ12)e− jkρ12J0(ρ12Ks)|∞0 −
∫

∞

0

d
dρ12

[F(ρ12)e− jkρ12 ]J0(ρ12Ks)dρ12}

=
1
Ks

{1− jk
∫

∞

0
F(ρ12)e− jkρ12J0(ρ12Ks)dρ12}.

(D.1)

In [91], it is shown that F [F(ρ) e− jkρ

2πρ
] = 1

u0+
u1
n2
0

, where F represents Fourier transforma-

tion, u0 =
√

K2 − k2, u1 =
√

K2 −n2
0k2, n2

0 = εr − j σ

ωε0
, and n0 and εr are the refractive

index and the relative permittivity, respectively. For a good conducting surface (see [92]),

u1 =
√

K2 −n2
0k2 ∼ jkn0. (D.2)

144



Defining a parameter ∆ = 1
n0

as the intrinsic impedance of the surface gives

F [F(ρ)
e− jkρ

2πρ
]≈ 1

u0 + jk∆
. (D.3)

Recalling that the zero-order Bessel function of the first kind may be defined as

J0(z) =
1

2π

∫ 2π

0
e jzcosαdα, (D.4)

(D.3) becomes

F [F(ρ)
e− jkρ

2πρ
] =

∫
x

∫
y
F(ρ)

e− jkρ

2πρ
e− jkxx− jkyydxdy

=
1

2π

∫
∞

0
F(ρ)e− jkρ

∫ 2π

0
e− jKρ cos(φρ−θK)dφρdρ

=
∫

∞

0
F(ρ)e− jkρJ0(ρK)dρ

(D.5)

where φρ and θK are directions of ρ⃗ = (x,y) and K⃗ = (kx,ky), respectively. By apply-

ing (D.3), (D.5) to the integral in (D.1),

∫
∞

0
F(ρ12)e− jkρ12J0(ρ12Ks)dρ12 =

1
u0 + jk∆

=
1√

K2
s − k2 + jk∆

. (D.6)

Inserting (D.6) into (D.1) gives

G[Ks(ρ̂2, K⃗1)] =
1
Ks

{1− jk√
K2

s − k2 + jk∆
}. (D.7)

G[Ks(ρ̂2, K⃗1)] should be zero when Ks approaches zero. In keeping with the same

argument as for the time-varying electric field with a pulsed dipole source in [17], (D.7)

can be modified as

G[Ks(ρ̂2, K⃗1)] =
1
Ks

{1− j
k0(1+∆)√

K2
s − k2

0 + jk0∆

} (D.8)
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Seeking a symmetrical form of the electromagnetic coupling coefficient EΓP with

respect to K⃗1 and K⃗2, an expression for the symmetrical electromagnetic coupling coeffi-

cient can be written as

SEΓP(K⃗1, K⃗2)

=
1
2
[EΓP(K⃗1, K⃗2)+E ΓP(K⃗2, K⃗1)]

=
jk0

2K cosφ0
{(K⃗1 · ρ̂2)

· [K̂s(ρ̂2, K⃗1) · K⃗2]G[Ks(ρ̂2, K⃗1)]+(K⃗2 · ρ̂2)[K̂s(ρ̂2, K⃗2) · K⃗1]G[Ks(ρ̂2, K⃗2)]}

(D.9)

where K⃗s(ρ̂2, K⃗2) = kρ̂2 − K⃗2, with K̂s(ρ̂2, K⃗2) and Ks(ρ̂2, K⃗2), respectively, being the

direction and magnitude of K⃗s(ρ̂2, K⃗2).
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