
An Algorithm for Full Waveform Inversion of
Vector Acoustic Data

by
c©Seyed Mostafa Akrami

A thesis submitted to the School of Graduate Studies in partial fulfillment of the
requirements for the degree of

Master of science (Geophysics).

Department of Earth Sciences
Memorial University of Newfoundland

Memorial University of Newfoundland
May 2017

ST. JOHN’S NEWFOUNDLAND

Table of Contents

Table of Contents iii

List of Tables iv

List of Figures viii

Acknowledgments 1

Abstract 3

1 Introduction 4
1.1 Motivation and Challenges . 4
1.2 Literature Review . 5
1.3 RTM versus FWI . 14
1.4 Thesis Outline . 17

2 Methodology 18
2.1 Problem description and forward model 19
2.2 Objective function . 21
2.3 Adjoint problem and gradient: theoretical framework 23

2.3.1 Adjoint problem . 27
2.4 Sources and Data . 30

2.4.1 Monopole Pressure and Dipole Point Force Sources 31
2.5 Optimization and Algorithm . 38
2.6 Implementations . 40
2.7 Smoothing Operator . 42
2.8 Regularization . 42

3 Results and discussions 44
3.1 Two Isolated Perturbations . 45
3.2 Horizontal Reflector . 50
3.3 Marmousi . 55
3.4 BP . 62

ii

4 Conclusions and future work 74
Bibliography . 77

A Some derivations 84
A.1 Derivation of equation 2.15 . 84

B Coding Description 86
B.1 Forward Problem and Discretization 86
B.2 Forward Modelling Python Code for Horizontal Reflector 89
B.3 Inverse Problem and Optimization 129
B.4 Inversion Python Code for Horizontal Reflector 129
B.5 Discretization of Regularization . 142

iii

List of Tables

3.1 RMS velocities of different source types using FWI and VFWI algo-
rithms for Marmousi model. 56

3.2 RMS velocities of different source types using VFWI algorithm for the
BP model. 73

iv

List of Figures

1.1 Inversion workflow: The whole diagram shows an inversion problem
workflow. In this process one tries to minimize the misfit (‖dobs−dcal‖2).
The left hand side of diagram shows the measurement of the observed
data whereas the right hand side explains obtaining synthetic data by
applying forward modeling to the velocity model. The velocity model
estimation is achieved through an inversion process. The question mark
on the left hand side represents the inverse problem we want to solve. 10

1.2 Standard FWI algorithm process: The whole diagram explains the it-
erative process of standard FWI algorithm. We start with initial model
(m0) and by using forward modeling operator solve the wave equation
and generate synthetic data. The next step is computing the differ-
ence between observed and synthetic data, calculate the gradient and
estimate the Hessian and finally obtaining the updated velocity. By
repeating this process several times one can achieve the estimated up-
dated model. 11

1.3 This diagram illustrates cycle-skipping phenomenon in FWI. The solid
black line is a recorded seismogram trace of period T as a function of
time. The upper dashed line indicates the modeled seismogram trace
which has a time delay larger than T/2. The FWI algorithm tries to
update the model in such a way that the n+ 1st cycle of the modeled
seismogram trace matches the nth cycle of the observed data. In the
bottom there is another model in which the modeled and recorded
nth cycle have time delay less than T/2. In this case, FWI is able to
correctly update the model. (This figure is taken from [16]) 13

v

2.1 This diagram represent sources and receivers’ positions. Symbols and
ray paths in red indicate fields associated to physical pressure sources
sq, whereas blue symbols and lines are associated with the point-force
sources sf . uq and uf are the wavefields generated by point and dipole
sources respectively. Triangles represent receivers at the surface which
record the observed data from either pressure dq or point-force-dipole
sources df . Adjoint wavefields u†q and u†f are shown by the right side
red and blue paths, respectively. Having the source wavefields and
the receiver wavefields from either source type which are composed of
scalar pressure and vector displacement data in the subsurface we can
construct the image.(Modified after [31]). 22

2.2 Acoustic staggered calculation grid for a fourth-order scheme in space.
The grid points needed to update the Vx and Vz (left) and P (right)
wavefields. The wavefields all have a unique grid position. This means
that the grids of the Vx and Vz wavefields are positioned in between
the P grid. (The figure is taken from [27].) 33

2.3 Monopole source orientation and a snapshot of its wavefields. Also
scalar data generated by usual seismic (bottom left) and monopole
pressure (bottom right) sources are shown (generated data should be
similar). The data is generated for a single layered model where sources
and receivers are equally spaced and spread over the entire top surface
of computational domain. The pressure component of data is shown in
the bottom left and right. The polarities of generated data by the usual
seismic and monopole pressure sources are roughly the identical. The
polarities are denoted clearly by the direct wave (first arrival events)
and the other events are reflections. 34

2.4 Vertical Dipole source orientation and a snapshot of its wavefields. Vec-
tor data generated by vertical dipole source is plotted. The data is gen-
erated for a single layered model where sources and receivers are equally
spaced and spread over the entire top surface of computational domain.
The pressure component of data is shown in the bottom. Direction of
generated wavefields indicates downward force direction along vertical
axis. 35

2.5 Horizontal Dipole source orientation, a snapshot of its wavefields and
associated vector data generated are represented. Again the data is
generated for a single layered model where sources and receivers are
equally spaced and spread over the entire top surface of computational
domain. The pressure component of data is shown in the bottom.
In this case, the polarity of data is similar to the angle dipole source
(figure 2.6). 36

vi

2.6 Angle Dipole source orientation and a snapshot of its wavefields. Also
The pressure component of data generated by this source is shown
which clearly represent the vector data recorded by the receivers. The
data is generated for a single layered model where sources and receivers
are equally spaced and spread over the entire top surface of computa-
tional domain. 37

3.1 Initial (top) and true velocity models (bottom) of two isolated pertur-
bations model. 10 equally-spaced sources and receivers are placed at
the top surface of the computational domain. They are indicated by
red explosion signs (sources) and black triangles (receivers). As can be
seen from true model, there are two isolated perturbations like islands
which violate the uniform background model. 46

3.2 Estimated velocities for the two isolated perturbations model by using
monopole pressure (top) and angle dipole sources (bottom). Black
arrows show the artifacts caused by the edge effect. In the case of
monopole pressure source, the artifacts are more clear at both sides of
the perturbations, whereas for angle source we only have artifacts at
the left side of the perturbation. In both cases (monopole pressure and
angle dipole sources), the orange arrows indicate the areas which have
been best illuminated by the radiation patters of the sources. 47

3.3 Estimated velocities for the two isolated perturbations model by using
horizontal (top) and vertical dipole sources (bottom). In the case of
horizontal source, the artifacts appear a bit higher compared to the
other cases, which is shown by the black arrow. In both cases (horizon-
tal and vertical dipole sources), the orange arrows indicate the areas
which have been best illuminated by the radiation patters of the sources. 48

3.4 Velocity slices for all the sources at the same plot shows the difference
between true and estimated velocities. 49

3.5 Initial (top) and true velocity (bottom) of the horizontal reflector model.
1 source and 10 receivers are placed at the top surface of the compu-
tational domain. They are indicated by red explosion sign (source)
and black triangles (receivers). As can be seen from the bottom figure,
there are two layers located at 30 and 45 kilometer depth in the true
model. 51

3.6 Estimated velocities for the horizontal reflector model by using monopole
pressure (top) and angle dipole sources (bottom). In the bottom figure
the reconstructed model by using angle dipole source is lopsided which
comes from the angle orientation. 52

3.7 Estimated velocities for the horizontal reflector model using horizontal
(top) and vertical dipole sources (bottom). The top figure clearly shows
the radiation pattern of horizontal source in the recovered image. . . 53

vii

3.8 Velocity slices for all the sources at the same plot shows the difference
between true and estimated velocities. 54

3.9 Initial and true Marmousi velocity model. 10 equally-spaced sources
and receivers are placed at the top surface of the computational domain.
They are indicated by red explosion signs (sources) and black triangles
(receivers). 57

3.10 Reconstruction of velocity and corresponding misfit values by using
monopole pressure source (The result is similar to ordinary seismic
source, i.e. monopole pressure source using FWI algorithm). 58

3.11 Reconstruction of velocity and corresponding misfit values by using
vertical dipole source (directionality information). 59

3.12 Reconstruction of velocity and corresponding misfit values by using
horizontal dipole source (directionality information). 60

3.13 Reconstruction of velocity and corresponding misfit values by using
angle dipole source (directionality information). 61

3.14 A sub-sampled initial and true BP velocity model (with 12% of samples
remaining). 65

3.15 Reconstruction of a sub-sampled BP velocity model by using monopole
pressure and horizontal dipole sources. 66

3.16 Reconstruction of a sub-sampled BP velocity model by using vertical
dipole source without regularization (top) and with regularization for
µ = 6 (bottom). 67

3.17 Reconstruction of a sub-sampled BP velocity model by using vertical
dipole source with regularization (µ = 10). 68

3.18 Reconstruction of a sub-sampled BP velocity model by using angle
dipole source without regularization (top) and with regularization for
µ = 6 (bottom). 69

3.19 Reconstruction of a sub-sampled BP velocity model by using one angle
dipole source with regularization (µ = 10). 70

3.20 The velocity difference between true and estimated velocities of monopole
pressure source. 71

3.21 The velocity difference between true and estimated velocities of angle
dipole source. 71

3.22 The velocity difference between true and estimated velocities of vertical
dipole source. 72

3.23 The velocity difference between true and estimated velocities of hori-
zontal dipole source. 72

B.1 Model discretization in a 2D staggered grid, explaining finite difference
method by letting J1 = mx and J2 = my. 142

viii

Acknowledgements

I am truly grateful to my supervisor Dr. Alison Malcolm for my Masters program

in Geophysics and my thesis. Her scientific vision, kindness and brilliance have been

exemplary model for my life. As a student with condensed matter Physics and En-

gineering background, studying Geophysics was a journey for me and during this

journey, the greatest help was from Alison. Alison taught me an interdisciplinary

area of science which is a combination of Mathematics, Physics and Computer sci-

ences and I really enjoyed this field. I wholeheartedly thank her for her help and

guidance during my study and endeavour.

I also deeply appreciate Dr. Charles Hurich for being in my committee and his

help and teaching some Seismology courses which opened my eyes to Earth sciences.

I wish to express my gratitude to Dr. Colin Farquharson for his help and in-

version course during my study.

The other scientists who helped me and inspired me wereDr. Laurent Demanet

(MIT), Dr. Russell Hewett (Total S. A.), Dr. Felix Herrmann

(SLIM group, UBC). The especial thanks go to Laurent and Russell for PySIT

package.

1

During my study, I met a lot of people and I found good friends. I wish to thank

all of them for scientific and non-scientific stuffs, especially some of our group mem-

bers: Dr. Polina Zheglova (MUN) and Bram Willemsen (MIT) and the other

friends at UBC: Felix Oghenekohwo, Ragiv Kumar and Ben Bougher.

Last but not by any means least, I humbly thank my immediate family especially

my parents for their support and love. Although they are physically thousands of

miles away from me, but they are deeply in my heart. I am also truly blessed to have

my beloved Ghazal in my life and words cannot describe how much I love, admire

and thank her.

2

Abstract

In exploration seismology, constructing an accurate velocity model is imperative. One

of the algorithms which can lead to an accurate velocity model is Full Waveform In-

version (FWI). FWI takes advantage of full wave information that is, direct, reflection

and refraction waveforms and tries to construct the model parameters that best fit

the data and obtain the best-fit images of the Earth’s subsurface. Depending on the

environment, these parameters could be compressional or shear wave velocities, den-

sity, Lame parameters, etc. Acoustic FWI uses only scalar data such as pressure to

construct a velocity model and does not provide any directivity information about

the wavefields. Mimicking the recent experiments in seismic acquisition, which allow

for recording different types of data (scalar and vector data) in terms of FWI scheme

is crucial for complex imaging problem. This is because, extending FWI to vector

data allows us to use both pressure and velocity components at the same time, giv-

ing directivity information about the wavefields. By extending FWI to vector data

and thus improving the input data to FWI, we obtain both improved resolution and

directivity information. This can be done by employing monopole as well as dipole

sources and regularized joint objective functions. I demonstrate my algorithm with

four models.

3

Chapter 1

Introduction

1.1 Motivation and Challenges

In Full Waveform Inversion (FWI) the goal is to reconstruct the unknown model

parameters, namely properties of the subsurface of the Earth, from the waveforms

recorded at the surface of the Earth. In the simplest formulation, it is assumed that

the wave propagation inside the Earth is governed by the acoustic constant density

wave equation, and the recorded data are pressure waves. Recently, in marine acqui-

sition, there has been interest in recording different types of data including velocity

and acceleration. In Vector acoustic Full Waveform Inversion (VFWI) we record

the multi-component pressure and velocity data using usual and point-force sources.

Since point-force source components (e. g. velocity components) are proportional to

the spatial gradient of pressure, wavefields in the VFWI scheme can take advantage

of directivity information contained in point-force source components. In addition,

the contribution of pressure and velocity components (vector data) rather than only

pressure data (scalar data) can improve the images’ resolution.

4

1.2 Literature Review

Generally in inverse problems, we consider the process of obtaining a model of some

sort, for example a geophysical image of the earth, a medical image of the body, etc [2].

The process starts with some measuring device that measures the data. Depending

on the measuring device and the underlying physics, the data can have many differ-

ent forms. For example it can be projections of an object, electromagnetic or seismic

waves that went through the object that are recorded at some point, and more. Usu-

ally, such data are noisy because any measurement process introduces some random

or systematic noise. In the next step a code that implements some algorithm takes

the data, processes it and transforms it into an image that represents the object under

investigation. This algorithm can be composed of multiple parts, for example, it may

include preprocessing of the data. After the initial image is obtained we may want to

extract certain features from the image or perform comparison of images. Segmenta-

tion, interpolation and registration are often used to achieve these goals.

My specific inverse problem in this thesis is inversion of seismic waves. In seismic

inversion several types of algorithms have been used, all of which require an estimate

of the background wave velocity. The book by Yilmaz and Doherty [1], gives an

overview of standard seismic data processing.

Wave velocity can be estimated using Normal Moveout (NMO) analysis as well

as iterative prestack migration velocity analysis. Both of these methods suffer from

some disadvantages. Normal moveout analysis may not be suitable for complicated

media, particularly, when we are faced with strong lateral variations in the velocity [1].

A model of wave velocity can be estimated using Migration Velocity Analysis

5

(MVA) [47] and Wave Equation based Migration Velocity Analysis (WEMVA) [48]

which extract additional information from the reflections by extending the migrated

image or angle domains. Although the evolution of these reflection-based methods

resulted in velocity models with increased resolution, they use only a subset of the

recorded seismic data. Moreover, these methods may not be able to very accurately

propagate waves in the presence of laterally heterogeneous media, so they may not be

the best methods for complex areas. Biondi et al. [51] proposed a method which com-

bines the MVA and FWI algorithms to overcome the mentioned challenges associated

with WEMVA as well as the shortcoming of FWI in estimating low velocity changes.

They have also integrated FWI and WEMVA into Tomographic Full Waveform In-

version (TFWI) workflow to gain a robust convergence to high-resolution models.

Also, by extending the velocity model along the time-lag axis in TFWI, they achieved

strong convergence properties when both reflected and refracted waves are present.

In addition to that, they reduced the FWI sensitivity to the starting model [51].

Recently, there have been some advances in marine data acquisition. Multicom-

ponent seismic data has become more interesting due to introduction of dual sensors

and new marine seismic acquisition techniques [40–42]. Instead of recording only

conventional seismic data (scalar data), one can record both scalar and vector data

(pressure and particle velocity components) at the same time [40]. Several authors

have proposed new advances in data-domain processing of vector data for the pur-

poses of noise attenuation improvement [43], signal reconstruction [44], 3D deghosting

and multiple attenuation [45,46] and wavefield separation and ghost removal [38].

To better exploit these data, [31] propose a method for multicomponent Reverse-

Time Migration (RTM) which is based on an adjoint-state formulation using the

6

vector acoustic wave equations for pressure and the corresponding displacement field.

This approach is more computationally expensive than other migration methods since

there are different source types, but gives additional information about directionality

allowing for directionally targeted imaging. Also, in the case of 4-component data

only on the receiver side, the increase in cost comes in the form of additional mem-

ory requirements and additional terms in the imaging condition, which are negligible

increases compared to the cost of extrapolation, which remains unchanged. In this

thesis, we extend this algorithm to Full-Waveform Inversion (FWI).

The main difference between the Vector-Acoustic (VA) and acoustic data (we will

formulate acoustic FWI in the second chapter) is that VA data contains the pressure

and displacement or particle velocity at the same time whereas for acoustic data we

record only pressure. In addition, by employing a dipole point-force source and dual

receivers, which are necessary to generate and record VA data, we can suppress imag-

ing artefacts arising from ambiguities in the direction of wavefield propagation [31].

Fleury and Vasconcelos [31] presented an adjoint state VA method in which multi-

component seismic source and receiver data are used in a finite-frequency formulation

of reverse time migration. However in our case, we present a VFWI algorithm in

which 4-component seismic source and receiver data are used to obtain velocity mod-

els.

In FWI, the optimization process requires the minimization of the difference be-

tween modeled synthetic waveforms (u) and the observed data (d). Where

u = Fm,

7

and F is a forward modelling operator. u, m and d are in general continuous functions

of space (in case of m) and space-time (in case of u, d), but they are discretized in

numerical implementations of FWI. The recorded data d ∈ Rn is always finite dimen-

sional and we assume that it belongs to a vector space D. The model, m is some

attribute of the object we want to image. Generally it is assumed to be a function on

Rd, d = 1, ..., 4 (space and possibly time), and also it belongs to a functional space M.

Forward operator F can be linear or nonlinear function that maps elements in M into

D. From these descriptions we can say that there is no unique model for given the

data. The reason is that we try to recover a function from a discrete set of data, i. e.

the data, d, is finite dimensional while the model is infinite dimensional. Thus unless

more information is given, the problem does not have a unique solution. Moreover,

even if we restrict m, the problem of recovering m from d is ill-posed, i.e., a very small

perturbation in d can result in a very large perturbation in m. Nevertheless, we could

compute a solution to the problem given some assumptions on the space M. If our

assumptions are correct we may obtain an approximation to the solution.

Generally, the squared difference between u and d is called the misfit function J

and depends on the model parameter (m),

J (m) = 1/2‖u− d‖2.

By this definition the misfit function is expressed in l2 norm. However it can be calcu-

lated in l1 or l2 norm depending on the specific problem. For example, in compressive

sensing problems [7], it is usually computed in l1 norm whereas in FWI problems it

is calculated in l2 norm.

One of the pioneers in formulating a full wave inversion method was Tarantola [35],

who realized that the model could be improved iteratively by back-propagating the

8

data residuals and correlating the result with forward-propagated wave in the time

domain. This is called adjoint-state method [20].

Full waveform inversion also can be done in the frequency domain by using an

implicit frequency domain numerical forward modeling algorithm [10, 12, 19]. The

whole workflow of FWI consists of four main steps [35]; (i) Obtaining the modeled

data by solving the wave equations for all the sources, (ii) Calculation of misfit func-

tion, (iii) calculation of the gradient by back propagating the data residuals and cross-

correlating the back-propagated wavefields with the modelled wavefields (adjoint state

method) to obtain the model update. (iv) Regularization/conditioning. Figures 1.1

and 1.2 illustrate the inversion workflow and FWI process. Figure 1.1 shows the gen-

eral inversion process in which on the left hand side, we have an unknown medium

that we measure data from and on the right hand side, we have modeled data com-

puted from the guessed model, that is the forward problem, and we use computed

data and misfit from the real measured data on the left to update the guessed model

to obtain a final model which when residuals are small, will resemble the true model.

Although FWI is a promising method to obtain subsurface parameters, it is also

accompanied by challenges. The first challenge is to the computational cost of the

algorithm. Computational operations in the frequency domain cost less than in the

time domain as one can perform computational operations for a few frequencies and

the convolution operation is replaced by multiplication [10,11]. This is generally only

true in 2D, since solving 3D wave-equations in the frequency-domain, for highly het-

erogeneous media, can require very sophisticated approaches to pre-conditioning very

large, sparse linear systems that ultimately can compete in cost to 3D computations

in the time-domain. When enough memory is available, high-efficiency computational

9

Figure 1.1: Inversion workflow: The whole diagram shows an inversion problem work-
flow. In this process one tries to minimize the misfit (‖dobs − dcal‖2). The left hand
side of diagram shows the measurement of the observed data whereas the right hand
side explains obtaining synthetic data by applying forward modeling to the velocity
model. The velocity model estimation is achieved through an inversion process. The
question mark on the left hand side represents the inverse problem we want to solve.

10

Figure 1.2: Standard FWI algorithm process: The whole diagram explains the it-
erative process of standard FWI algorithm. We start with initial model (m0) and
by using forward modeling operator solve the wave equation and generate synthetic
data. The next step is computing the difference between observed and synthetic data,
calculate the gradient and estimate the Hessian and finally obtaining the updated ve-
locity. By repeating this process several times one can achieve the estimated updated
model.

11

methods such as direct solvers [24,26] or iterative solvers [25] can be implemented for

this problem. However, when the problem size becomes too large such as in elastic

FWI [21] and 3D FWI [22], these methods fail.

Another issue associated with FWI comes from the non-linearity of the inverse

problem. The existence of local minima is simply a result of the physics of the prob-

lem combined with the choice of the objective function. Cycle-skipping is only a

problem because we use gradient-based, iterative methods and if we were able to use

global, statistical sampling inverse methods (which we cannot afford), local minima

and cycle-skipping would not be a problem. Cycle-skipping is illustrated in Figure1.3.

The solid black line is a monochromatic seismogram of period T plotted as a function

of time which represents the recorded data and the upper dashed line represents the

modeled monochromatic seismograms with a time delay greater than T/2. When the

time delay between the two waves is more that T/2, FWI tries to update the model

in such a way that the n+1st cycle of the modeled seismogram matches the nth cycle

of the observed seismogram, which leads to an erroneous model update. This cycle

skipping problem is mitigated by following a multiscale approach. Bunks et al. [18]

suggested successive inversion of data sets of increasing frequency content in the time

domain, since low frequencies are less sensitive to cycle-skipping. The long wavelength

parts of the data are fit first, which gives a starting model for higher frequency data

that is closer than T/2 to the true model, allowing for successive improvements to the

velocity model [13].

There are several approaches toward FWI which combine it with migration ve-

locity analysis and they can circumvent conventional cycle-skipping by providing a

better initial model for FWI [15]. An appropriate initial model provides matching of

12

Figure 1.3: This diagram illustrates cycle-skipping phenomenon in FWI. The solid
black line is a recorded seismogram trace of period T as a function of time. The upper
dashed line indicates the modeled seismogram trace which has a time delay larger than
T/2. The FWI algorithm tries to update the model in such a way that the n + 1st
cycle of the modeled seismogram trace matches the nth cycle of the observed data. In
the bottom there is another model in which the modeled and recorded nth cycle have
time delay less than T/2. In this case, FWI is able to correctly update the model.
(This figure is taken from [16])

the observed seismogram with an error less than half of the period. Otherwise, cy-

cle skipping issue will lead to convergence toward a local minimum as discussed above.

In spite of the fact that the standard FWI algorithm takes advantage of the large

amount of scalar data contained in the seismic traces, it fails to extract explicit di-

rectivity information from the wavefields. In this study, we present an extension of

the algorithm proposed by [31] to FWI of vector acoustic data. Thus we are able to

gain more complete information from the wavefields, namely, directionality and there-

fore, better lateral resolution in estimating velocities. In this approach, we use dipole

sources as well as monopole sources in different orientations and our wave solver for

a complete acoustic wave equation to generate vector acoustic data. We then derive

and test an FWI algorithm with synthetic data.

13

It is worth mentioning that due to free surface in the FWI model the gradient

of the misfit function is strongly affected by ghost arrivals in the data [38]. To mit-

igate this, in this study the model is padded with a PML on all sides, eliminating

free surface multiples in the true and the synthetic data so that ghost contamination

phenomena are removed.

1.3 RTM versus FWI

In this section we briefly review the basic ingredients of RTM and FWI and then we

compare them to each other.

Reverse-time migration is established as a famous technique in seismic imaging

due to its capability to tackle large dips of reflectors and strong velocity contrasts [8].

In time domain, the image is formed by cross-correlating the source and receiver

wavefields, at zero time shift and summing over all time steps and shots. Unlike FWI,

RTM does not do inversion for the full model m. However, it separates the scales as

m ≈ m0 + δm.

where m0 is the smooth background velocity model that is assumed known and kine-

matically correct, and delta m is the model perturbation, containing reflectors. Thus,

in RTM the forward modelling operator is linearized as we now describe. Starting

from forward modelling operator (F), we can use a Taylor expansion to expand the

operator with respect to the background model m0

F(m) = F(m0) + ∂F(m0)
∂m

δm+O(δm2).

14

The left hand side of this equation is the observed field data and the first term on the

right hand side represents modelled data in the background model. We can rewrite

this equation as

F(m)−F(m0) ≈
∂F(m0)
∂m

δm.

The left hand side is now the data residual (δd) and ∂F(m0)
∂m

is called the Jacobian (J).

So it leads to

δd ≈ Jδm. (1.1)

RTM finds image by applying the adjoint Jacobian operator on date residual, i. e.

δm ≈ J>δd. (1.2)

Least-Squares Reverse-Time Migration (LSRTM) is another migration algorithm in

which instead of using the adjoint of the Jacobian, equation (1.1) is solved in the least

squares sense.

minimize
δm

‖Ĵ(m0) δm− δd‖2, (1.3)

where m0 is fixed and does not change during the iteration, delta m is optimized in

this problem. Ĵ is linearized modelling operator.

In FWI for a single source q, time-domain inversion using the adjoint-state method

(that we will describe in more detail in the next chapter) [20] solves the following

PDE-constrained optimization problem

minimize
m,u

1
2‖u− d‖

2

subject to A(m)u = q.

(1.4)

Here A denotes the Helmholtz operator. The difference between A (defined here) and

15

the forward modelling operator F (defined earlier) is that the Helmholtz operator (A)

takes the field u and maps it into the source q, whereas the forward modelling operator

(F) takes the model m and maps it into data. The adjoint-sate method solves the

above problem by eliminating the PDE constraint, so we can rewrite the FWI least

squares objective function J (m) as

minimize
m

J (m) = 1
2‖A

−1(m)q − d‖2. (1.5)

The gradient of the above objective function is given by the action of the adjoint of

the Jacobian on the data residual δd = (u− d),

∇J (m) = −
nt∑
t=1

{
(Du)> diag(v)

}
= J>δd, (1.6)

where D is a second time derivative operator and diag is a diagonal operator [39]. u

is the forward wavefield computed forward in time via

A(m)u = q, (1.7)

and v is the adjoint wavefield computed backwards in time via [20]

A∗(m)v = δd. (1.8)

By comparing RTM and LSRTM with FWI we can conclude that RTM is a linear

inverse problem, it gets a structural image and deals with the high frequency contri-

bution to the model (δm). On the contrary, FWI is a non-linear problem, it solves

for the full model and tries to update both low and high frequencies in the model m.

For an extensive overview of of FWI, one can refer to [3].

16

1.4 Thesis Outline

Here we briefly describe the structure of the thesis.

In Chapter 1, I describe the problem which I want to solve (i. e . extending FWI to

vector data) by introducing vector-acoustic data, the method (VFWI) and the limi-

tations and challenges toward estimating velocity. In Chapter 2, I reformulate FWI

and then explain the methodology of VFWI. In Chapter 3, I present results from

four numerical examples of VFWI to demonstrate our algorithm. A discussion and

conclusions are included in the last chapter (Chapter 4).

17

Chapter 2

Methodology

In this chapter we formulate the full waveform inversion problem using vector acoustic

data and monopole pressure and dipole point force sources. In our method we depart

from the conventional formulation of FWI in two ways:

• The data to be used in the inversion method consists of 3 or 4 components in 2D

and 3D respectively, namely, acoustic pressure and particle velocity, in contrast

to the conventional FWI, in which only pressure data is used.

• We use two types of sources: monopole pressure source and dipole point force

sources.

For simplicity, we develop our method in two spatial dimensions, but generalization

to the three-dimensional case is straightforward. Also, to simplify the methodology

and implementation, we consider the constant density acoustic case. In this thesis we

use similar notations as Fleury and Vasconcelos [31] in terms of writing the resulting

equations, however they differ in that we do not apply the receiver weighting in

our implementation. Also, we go far beyond their derivations to derive a full FWI

algorithm whereas they went only so far as RTM. Aside from being different scheme,

18

our VFWI algorithm differs from Vector Acoustic Reverse Time Migration (VARTM)

proposed by Fleury and Vasconcelos [31] in both methodology and results as well as

recovered model parameter. To this end, we start with our problem description and

forward model.

2.1 Problem description and forward model

Our goal is to reconstruct the model parameter m:

m = ρκ = 1
c2 ,

where ρ is density, κ is compressibility and c is the pressure wave velocity of the rocks.

Generally, acoustic wave propagation is governed by the following system of linear

differential equations [33]

pq,f (t, z, x) + 1
κ(z, x)∇ · vq,f (t, z, x) = q(t, z, x),

ρ(z, x) ∂
2

∂t2
vq,f (t, z, x) +∇pq,f (t, z, x) = f(z, x, t),

(2.1)

subject to the initial conditions:

pq,f (t, z, x) = 0, vq,f (t, z, x) = 0 for t < 0. (2.2)

Here

• pq,f (t, z, x) is pressure;

• vq,f (t, z, x) is particle displacement, consisting of two components: vzq,f (t, z, x)

and vxq,f (t, z, x);

19

• q and f are respectively monopole pressure and dipole point-force sources, where

f has two components;

• subscripts q and f for the fields denote that the fields are generated by pressure

and point-force sources respectively, i.e. pq is the pressure field generated by

the pressure source, pf is the pressure field generated by the point-force source,

and analogously for vq and vf .

• (z, x) denote spatial position and t denotes time.

Assuming that density is constant, we can eliminate it from equation (2.3) in the

following way. First, we rewrite (2.3) as:

1
c2(z, x)pq,f (t, z, x) +∇ · (ρ vq,f (t, z, x)) = 1

c2(z, x)q(t, z, x),

∂2

∂t2
(ρ vq,f (t, z, x)) +∇pq,f (t, z, x) = f(z, x, t),

(2.3)

and then replace in the above equation:

ρ vq,f (t, z, x) 7−→ vq,f (t, z, x),
1

c2(z, x)q(t, z, x) 7−→ q(t, z, x),
(2.4)

so that vq,f (t, z, x) and q(t, z, x) are now scaled displacement and scaled monopole

source. For brevity we will in what follows drop the word "scaled" and call these

quantities simply "displacement" and "monopole source". Then we obtain the following

system in the new variables:

m(z, x) pq,f (t, z, x) +∇ · vq,f (t, z, x) = q(t, z, x),
∂2

∂t2
vq,f (t, z, x) +∇pq,f (t, z, x) = f(z, x, t).

(2.5)

We use equations (2.5) as our vector-acoustic forward problem. These equations have

20

Perfectly Matched Layer (PML) absorbing boundary conditions [6] on all sides of

the computational domain to mimic an infinite medium. In matrix form, the set of

equations (2.5) becomes

LV A(m)uq,f = s, (2.6)

where

LV A(m) =

 m ∇·

∇ ∂2

∂t2
I

 , uq,f =

 pq,f

vq,f

 , s =

 q

f

 . (2.7)

Following Eq. 2.7 we can define adjoint source as

s† =

 q†

f †

 . (2.8)

Figure 2.1 shows a configuration of source and receiver positions. It represents

the wave paths for pressure sources in red and for point-force sources in blue. Also,

the generated wavefields, their adjoints and recorded data by receivers are shown in

this figure.

2.2 Objective function

Following Fleury and Vasconcelos, the general form of the objective function for our

problem is as follows:

J (m) = 1
2w

q
s

∑
s,r

∫ T

0
‖Wr[uq(xs,xr, t)− dq(xs,xr, t)]‖2

2 dt+

+ 1
2w

f
s

∑
s,r

∫ T

0
‖Wr[uf (xs,xr, t)− df (xs,xr, t)]‖2

2 dt,

(2.9)

where

21

Figure 2.1: This diagram represent sources and receivers’ positions. Symbols and
ray paths in red indicate fields associated to physical pressure sources sq, whereas
blue symbols and lines are associated with the point-force sources sf . uq and uf are
the wavefields generated by point and dipole sources respectively. Triangles represent
receivers at the surface which record the observed data from either pressure dq or
point-force-dipole sources df . Adjoint wavefields u†q and u†f are shown by the right
side red and blue paths, respectively. Having the source wavefields and the receiver
wavefields from either source type which are composed of scalar pressure and vector
displacement data in the subsurface we can construct the image.(Modified after [31]).

• dq,f = [pmeasq,f vmeasq,f]T are measured data;

• xs = (zs, xs) and xr = (zr, xr) are source and receiver coordinates;

• wqs and wfs are source weights necessary to balance the contributions of the

different source types in the objective;

• Wr is a 3× 3 receiver weight matrix that weights the contributions of different

data components in the objective.

In general, the source weights are determined in such a way that different sources

produce waves that carry comparable energy. The receiver weighting matrix is de-

termined in such a way that the contributions from different data components are

comparable and have the same physical dimensions. However, in order to simplify

22

our objective function and the subsequent derivation of the adjoint state gradient, we

introduce the following modifications. In what follows we set the wqs = wfs = 1 and

weigh the sources directly in the forward modelling equations. In the numerical ex-

amples we use only one source type per experiment, so that source weighting becomes

less important. Also, we set the matrix Wr to identity. Therefore, the objective

functions used in this thesis is as follows:

J (m) = 1
2
∑
s,r

∫ T

0

[
‖uq(xs,xr, t)− dq(xs,xr, t)‖2

2 + ‖uf (xs,xr, t)− df (xs,xr, t)‖2
2

]
dt.

(2.10)

This function is to be minimized over the model space.

2.3 Adjoint problem and gradient: theoretical frame-

work

Following Fichtner’s notations [52], in order to derive the gradient of the objective

function J (m) in (2.10), we rewrite it as follows:

J (m) = 1
2
∑
s

∫ T

0

∫
G

[
‖uq(xs,x, t)− dq(xs,x, t)‖2

2+

+ ‖uf (xs,x, t)− df (xs,x, t)‖2
2]
]
δ(x− xr)dx dt.

(2.11)

Then, it can be written as

J (m) =
∫ T

0

∫
G
J1(m) dx dt = 〈J1(m)〉 . (2.12)

23

where

J1(m) = 1
2
∑
s

[
‖uq(xs,x, t)− dq(xs,x, t)‖2

2 + ‖uf (xs,x, t)− df (xs,x, t)‖2
2

]
δ(x− xr),

(2.13)

and

〈 f(x, t), g(x, t) 〉 =
∫ T

0

∫
G
f(x, t) g(x, t) dx dt. (2.14)

Then we can show that

∇mJ (m)δm = 〈∇uq,fJ1(m), δuq,f 〉. (2.15)

We prove equation (2.15) in appendix A.1.

We then differentiate equation (2.6) with respect to m, using the chain rule and

keeping in mind that the source s does not depend on m:

∇mLV A δm+∇uq,f L
V A ∇muq,f δm = 0.

Using relationship (A.1) we obtain:

∇mLV A δm+∇uq,f L
V A δuq,f = 0. (2.16)

Now we introduce the adjoint fields

u†q,f =

 p†q,f

v†q,f

 . (2.17)

By taking the dot product of the adjoint field u†q,f with equation (2.16) and integrating

24

over space and time we obtain:

〈
u†q,f ,∇mLV A δm

〉
+
〈
u†q,f ,∇uq,f L

V A δuq,f
〉

= 0. (2.18)

Now we add together equations (2.15) and (2.18), we obtain:

∇mJ (m)δm =
〈
∇uq,fJ1(m), δuq,f

〉
+
〈
u†q,f ,∇mLV A δm

〉
+
〈
u†q,f ,LV A δuq,f

〉
. (2.19)

The goal of the adjoint state method is to eliminate δuq,f from equation (2.19)

in order to avoid the calculation of Jacobian ∇muq,f . It means that by using adjoint

state method we find the gradient of our objective function only by taking adjoints of

state variables which results in less computational cost [20]. To this end, we first note

that using the definition of adjoint the third term on the right hand side of (2.19) can

be rewritten as: 〈
u†q,f ,LV A δuq,f

〉
=
〈
LV A† u†q,f , δuq,f

〉
, (2.20)

where LV A† is the adjoint of LV A. Equation (2.19) now takes the form:

∇mJ (m)δm =
〈
∇uq,fJ1(m), δuq,f

〉
+
〈
u†q,f ,∇mLV A δm

〉
+
〈
LV A† u†q,f , δuq,f

〉
. (2.21)

The first and the third terms on the right hand side of (2.21) add up to zero if we can

now find the adjoint field u†q,f that satisfies the following adjoint equation

LV A† u†q,f = −∇uq,fJ1(m). (2.22)

The right hand side of equation (2.22) is called adjoint sources. We then can simplify

25

it using equation (2.13) gives

s†q,f (x,xs, t) =
∑
r

[uq,f (xr,xs, T − t;m)− dq,f (xr,xs, T − t)]δ(x− xr), (2.23)

we then can rewrite equation (2.22) as

LV A† u†q,f = −s†q,f (x,xs, t). (2.24)

Therefore equation (2.21) can be written as:

∇mJ (m)δm =
〈
u†q,f ,∇mLV A δm

〉
=
∫ T

0

∫
G

u†q,f · ∇mLV A δm dx dt, (2.25)

so that the gradient can be computed as follows:

∇mJ (m) =
∫ T

0
u†q,f · ∇mLV A dt. (2.26)

In order to compute the gradient equation (2.26) we need to differentiate the LV A(uq,f)

from equation (2.7) with respect to m, which gives

∇mLV A(uq,f) = (pq,f , 0)T ,

then equation (2.26) becomes

∇mJ(m) =
∑
s

∫
T
p†q,f (x,xs, t)pq,f (x,xs, t) dt. (2.27)

Where in equation (2.27) u†q,f is p†q,f since v†q,f vanishes as a result of inner product

operation between the integrand in equation (2.26).

In order to complete derivations for our problem, we need to derive the adjoint

26

operator LV A† based on our forward operator LV A and our objective function. We do

this in the following section.

2.3.1 Adjoint problem

In this section we derive the adjoint operator LV A†.

For simplicity we drop the V A superscript from operator L i.e.,

LV A = L.

By invoking the definition of an adjoint in the form of an inner product [4] we have

〈L δuq,f ,u†q,f 〉 = 〈δuq,f ,L† u†q,f 〉, (2.28)

expanding the inner product of left hand side of equation (2.28) we get

〈L δuq,f ,u†q,f 〉 =
∫ T

0

∫
G

(mδpq,f +∇ · δvq,f)p†q,f dxdt︸ ︷︷ ︸
A

+

+
∫ T

0

∫
G

(∇δpq,f + ∂2

∂t2
δvq,f) · v†q,f dxdt︸ ︷︷ ︸

B

.

(2.29)

The second term of A is

A1 =
∫ T

0

∫
G
∇ · δvq,f p†q,f dxdt =

∫ T

0

∫
G

(∇ · δvq,f) (p†q,f) dxdt, (2.30)

If we integrate the equation (2.30) using Green’s identities [5], after simplification it

gives

A1 = −
∫ T

0

∫
G
δvq,f · ∇(p†q,f) dxdt +

∮
∂t
∂n(δvq,f) · p†q,f ds. (2.31)

Since we use PML absorbing boundary conditions, that implies p†q,f in the second

27

integral of equation (2.31) vanishes as pressure components and their adjoints are

zero at the boundary. Finally we get

A =
∫ T

0

∫
G

(mδpq,f p
†
q,f − δvq,f · ∇(p†q,f)) dxdt. (2.32)

As for B by having these relations between ∇· and ∇, namely, that the adjoint of

divergence is negative gradient [34], we obtain

∇δpq,f · v†q,f 7−→ −δpq,f (∇ · v†q,f)

∂2

∂t2
δvq,f · v†q,f 7−→ δvq,f · ∂

2

∂t2
v†q,f

, (2.33)

and again boundary conditions yield

v†q,f (T) = 0,

δvq,f (0) = 0.
(2.34)

The second equation in the set (2.33) can be obtained by taking integral by parts as

follows:

∫ T

0

∂2

∂t2
δvq,f · v†q,f dt = ∂

∂t
δvq,f · v†q,f

∣∣∣T
0
−
∫ T

0

∂

∂t
δvq,f

∂

∂t
v†q,f =

= ∂

∂t
δvq,f v†q,f

∣∣∣T
0︸ ︷︷ ︸

α

− δvq,f
∂

∂t
v†q,f

∣∣∣T
0︸ ︷︷ ︸

β

+
∫ T

0
δvq,f

∂2

∂t2
v†q,f dt.

(2.35)

if we use an initial and boundary conditions for forward and adjoint problems as

follows
δuq,f (0) = ∂

∂t
δuq,f (0) = 0,

u†q,f (T) = ∂
∂t

u†q,f (T),
(2.36)

28

then the terms α and β in equation (2.35) vanish. Therefore we get

∫ T

0

∫
G

∂2

∂t2
δvq,f · v†q,f dxdt =

∫ T

0

∫
G
δvq,f

∂2

∂t2
v†q,f dxdt. (2.37)

Which denotes the second equation in the set (2.33). Therefore they give

B =
∫ T

0

∫
G

(−δpq,f (∇ · v†q,f) + δvq,f ·
∂2

∂t2
v†q,f) dxdt. (2.38)

Finally for the left hand side of equation (2.28) we get

〈L δuq,f ,u†q,f 〉 =
∫
R

∫
T
[δpq,f (mp†q,f −∇v†q,f) + δvq,f · (−∇(p†q,f) + ∂2

∂t2
v†q,f)] drdt =

= 〈δuq,f ,L† u†q,f 〉,

(2.39)

which equals to the right hand side of equation (2.28).

Finally we can find L†

L†uq,f =

 mp†q,f −∇ · v
†
q,f

−∇(p†q,f) + ∂2

∂t2
v†q,f

 =

 m −∇·

−∇ ∂2

∂t2
I

p
†
q,f

v†q,f

 , (2.40)

which gives that

L† =

 m −∇·

−∇ ∂2

∂t2
I

 . (2.41)

Now we review the source signatures and corresponding modeled data in the

forward modeling scheme.

29

2.4 Sources and Data

In this section we explain the sources and then by means of forward modeling we

generate pressure and velocity data. It is worth mentioning that these sources have

potential applications in real life, however the development of this technology (design-

ing these sources) is intrinsically connected to the design of acquisition geometries,

i.e., where to best place a distribution of a limited number of sources and receivers

within certain practical constraints. For example, one of the real life applications of

these sources is in marine seismic acquisition in which designing such dipole point

force sources helps to overcome some challenges including noise, illumination, band-

width and signal aliasing on the source-side. Such sources also contribute to wavefield

separation and ghost removal. Meier et al. (2015) discuss the design of a marine dipole

source and explain how its technical realization could help to overcome the ghost is-

sues at low frequencies [32]. Also in seismic imaging by employing such sources we

can image down-going waves as well as up-going waves. Another application of these

sources can be in medical imaging where the dipole sources can generate wavefields in

specific directions. In this thesis we employ these sources to generate vector acoustic

data for the purpose of VFWI. To this end we begin with explaining the different

type of sources.

We consider two main types of sources: Monopole Pressure (Figure 2.3) and Dipole

Point Force Sources. We utilize three types of dipole sources, namely: Vertical Dipole

Point Force Source (Figure 2.4), Horizontal Dipole Point Force Source (Figure 2.5)

and Angle Dipole Point Force Source (Figure 2.6).

Having these sources ensures that we have a fully vector data set, on both the source

and receiver sides.

30

2.4.1 Monopole Pressure and Dipole Point Force Sources

The conventional seismic source is defined by the multiplication of the Ricker wavelet

w(t) in time and Dirac delta function in space:

s(t, z, x) = w(t) δ(x− xs). (2.42)

In the conventional second order acoustic wave equation, which is used to solve

the forward modeling problem in our method, we therefore need to input κ ∂2

∂t2
q for

the monopole pressure source and ρ−1 ∇ · f , for the dipole point force source. Thus

our sources have the following signatures:

β
∂2w(t)
∂t2

δ(x− xs), (2.43)

for the monopole pressure source, and

nz γ w(t)∂δ(z − zs, x− xs)
∂z

+ nx γ w(t)∂δ(z − zs, x− xs)
∂x

, (2.44)

for the dipole point force source, where x = (z, x), xs = (zs, xs), β and γ are source

weights and (nz, nx)T is a unit vector. By varying this unit vector we can arbitrarily

set the orientation of the dipole point force source, e.g. (nz, nx)T = (0, 1)T for the

horizontal dipole source and (1, 0)T for the vertical dipole source. Introducing β and

γ ensures that different sources have correct total output energy:

β = 2.0κ ∆t

∆x2 ,

γ = 2.0ρ−1 ∆t
∆x2 .

(2.45)

31

We then define the vertical dipole source by

svertical = γ

w(t)∂δ(z−z
′,x−x′)
∂z

k̂

0

 .

Our horizontal dipole source similarly is

shorizontal = γ

 0

w(t)∂δ(z−z
′,x−x′)
∂x

î

 .

Finally our angle dipole source is

sangle = w(t)

∂δ(z−z′,x−x′)

∂z
k̂

∂δ(z−z′,x−x′)
∂x

î

 .

Compared to standard data, the monopole pressure source generates the same

data with the same polarity as usual seismic source, up to a scalar multiplier except

that standard data only record the pressure and not the velocity data.

In order to generate vector data and solve the wave equation of our system in the

time domain, we use a two-dimensional acoustic solver from PySIT [56]. Figure 2.2

shows a graphical representation of the staggered-grid implementation for computing

the velocity. Vx and Vz represent the particle displacement, and P represents the

acoustic pressure. The grids of the Vx and Vz wavefields are positioned in between

the P grids [27].

Generated scalar and vector data by using different sources are shown in Fig-

ures 2.3, 2.4, 2.5 and 2.6. Figure 2.3 shows a graphical representation of monopole

source (Eq. 2.43) orientation and its associated wavefield. Also data generated by

this source and a standard seismic source (equation 2.42). The data are similar as

32

expected. Figure 2.4 represents a vertical dipole source orientation and its associated

wavefield. In addition, it shows the generated data by this source which depicts the

polarity in vertical direction. The two last figures (2.5 and 2.6) also give the same

information as figure 2.4, however they clearly differ in source orientations, their asso-

ciated wavefields and generated data polarities. As can be seen from Figure 2.4, the

wavefields are in vertical direction and data polarity indicates the vertical direction.

Also Figure 2.5 shows that its associated wavefields are in the horizontal direction

and its data polarity is asymmetric respect to vertical axis with plus/minus polarity.

Figure 2.6 indicates more or less the same data polarity as Figure 2.5, however the

direction of wavefields clearly makes an angle with respect to the horizontal axis.

Figure 2.2: Acoustic staggered calculation grid for a fourth-order scheme in space.
The grid points needed to update the Vx and Vz (left) and P (right) wavefields. The
wavefields all have a unique grid position. This means that the grids of the Vx and
Vz wavefields are positioned in between the P grid. (The figure is taken from [27].)

33

Figure 2.3: Monopole source orientation and a snapshot of its wavefields. Also scalar
data generated by usual seismic (bottom left) and monopole pressure (bottom right)
sources are shown (generated data should be similar). The data is generated for a
single layered model where sources and receivers are equally spaced and spread over
the entire top surface of computational domain. The pressure component of data is
shown in the bottom left and right. The polarities of generated data by the usual
seismic and monopole pressure sources are roughly the identical. The polarities are
denoted clearly by the direct wave (first arrival events) and the other events are
reflections.

34

Figure 2.4: Vertical Dipole source orientation and a snapshot of its wavefields. Vector
data generated by vertical dipole source is plotted. The data is generated for a single
layered model where sources and receivers are equally spaced and spread over the
entire top surface of computational domain. The pressure component of data is shown
in the bottom. Direction of generated wavefields indicates downward force direction
along vertical axis.

35

Figure 2.5: Horizontal Dipole source orientation, a snapshot of its wavefields and
associated vector data generated are represented. Again the data is generated for a
single layered model where sources and receivers are equally spaced and spread over
the entire top surface of computational domain. The pressure component of data is
shown in the bottom. In this case, the polarity of data is similar to the angle dipole
source (figure 2.6).

36

Figure 2.6: Angle Dipole source orientation and a snapshot of its wavefields. Also The
pressure component of data generated by this source is shown which clearly represent
the vector data recorded by the receivers. The data is generated for a single layered
model where sources and receivers are equally spaced and spread over the entire top
surface of computational domain.

37

2.5 Optimization and Algorithm

In this section, we briefly review the optimization method which we used.

We rewrite the Taylor expansion of objective function J with respect to model pa-

rameter m as

J (m+ δm) = J (m) +∇J (m)δm+ 1
2δmH(m)δm+O(δm)3, (2.46)

where H(m) = ∇2J (m). If we assume that Hessian information is unavailable, as is

usually the case, then we can approximate H−1 directly:

∇mJ (m+ δm) ≈ ∇mJ (m) +Hδm, (2.47)

which leads to

H−1{∇mJ (m+ δm)−∇mJ (m)} = H−1δ∇mJ (m) ≈ δm, (2.48)

where

δ∇mJ (m) = ∇mJ (m+ δm)−∇mJ (m). (2.49)

However, the calculation of a very dense matrix H is unfeasible. This issue becomes

very important especially in the case of FWI which is a large scale problem, and the

storage of approximated H and its inverse is very expensive. This is also an important

issue for VFWI algorithm.

One of the methods which can be used is l-BFGS (Low-memory BFGS) which is called

after Broyden, Fletcher, Goldfarb and Shanno. The BFGS method is based on finding

the minimum Frobenius norm correction to the Hessian [37]. In order to overcome

the aforementioned challenge for our algorithm, we need to use l-BFGS which never

38

stores H−1. The salient point of using this method is that one does not require to

compute H in any way and only a few gradients of non-linear iterations need to be

stored. l-BFGS provides an appropriate scaling of the computed gradients for VFWI

which is computationally efficient compared to the other optimization methods.

Algorithm 1 summarizes the sequence of steps in our time domain VFWI method,

where we note that steps in the inner loop are performed in parallel. We modified

PySIT implementation of the l-BFGS method to our interest.

Algorithm 1 Time domain VFWI algorithm
Input: Measured vector acoustic data dq,f
Output: arg minm J(m)
Starting model ←− m0
For k=1:Niter

For s=1:Nsrc

Compute forward wavefields uq,f via Equation 2.5;
Compute data residuals and the objective function;
Compute back-propagated residual wavefields;
Compute the gradient using Equation 2.27;
Add to the summation over all sources;

End
Calculate the model update using l-BFGS and update the model

End

We clearly see that our VFWI algorithm is a new method to take advantage of

vector acoustic data and recover the model. Our algorithm differs from VARTM in

four ways:

• Scheme, i.e. FWI vs RTM;

• Methodology;

• Model parameter;

• Results.

39

We implemented a forward modeling as well as inversion codes of our algorithm which

are compatible with PySIT. We briefly explain the discretization of our system and one

of our codes in the appendices of this thesis. Also we explain our code implementations

by presenting a list of our sub-routines in the following section.

2.6 Implementations

In this section we briefly explain our code implementation by showing our code’s

sub-routines.

In algorithm 2 we summarize the sub-routines that we coded in order to run our

VFWI algorithm. We divide them into two main categories: Forward Modeling and

Inversion. We implemented all of these codes in Python language in order to be com-

patible with PySIT. Most of our codes were not available in PySIT so that we had

to write from scratch. For some of them e.g. lbfgsmodif, we were able to create

a modified version of the corresponding PySIT routine (e.g. PySIT’s l-BFGS algo-

rithm).

For forward modelling, we essentially designed our sources including monopole pres-

sure and dipole point force sources. We also implemented two classes for vector data

shots and generating vector data as well as pulse functions. Also for our large scale

models e.g. BP (chapter 3), we used some parallelization techniques including vec-

tor data shot level parallelism. In order to plot specifically some of data we did not

follow the conventional plotting tools in Python instead, we wrote some codes e.g.

Convenient-plot-functions and Ximage in order to visualize our data properly. Also,

we created a sub-routine (vis-plot) for making movie of our generated and save wave-

fields. The other sub-routines for example normalized amplitude is implemented to

scale the amplitudes. We explain the implementation of our smoothing operator in

40

Algorithm 2 List of code sub-routines
1. Forward Modeling

• sources: design monopole pressure source and dipole point-force sources;
• vector-data-shot-class: create a class to handle vector data shots;
• parallelisation: parallel vector data shots by using MPI4PY;
• pulse-functions: design pulse functions to handle different source sig-

natures;
• generating-vector-data-class: create a class for generating vector

data;
• convenient-plot-functions: create some functions to plot data corre-

sponding to some specific formats;
• ximage: create some functions to plot data corresponding to some specific

formats;
• util: including all the tools e.g. derivative operators;
• vis-plot: to generate and save wavefields movie;
• smoothing-operator: create an operator to obtain suitable initial mod-

els;
• normalized-amlitude: create a class to normalize wavefields amplitudes

and obtain average energy ratio;

2. Inversion Modeling

• joint-objective-function: to handle our joint objective function cor-
responding to vector data misfit function;
• temporalmodellingvdpointforcesource: create a temporal vector

data modelling to handle dipole point force source;
• temporalmodellingvdmonopolepressuresource: create a tempo-

ral vector data modelling to handle monopole pressure source;
• adjoints: to handle our adjoint parameters;
• lbfgsmodif: create a modified version of the corresponding PySIT routine

(e.g. PySIT’s l-BFGS algorithm);
• regularization: design a quadratic regularization term for joint objec-

tive function;

41

the next section.

The second category of our coding refers to inversion modeling where we wrote some

sub-routines to deal with our algorithm. We first implemented our joint objective

function equation (2.10) and then two temporal modeling routines as we wrote our

codes in time-domain. We also implemented adjoints, gradients and regularization.

We explain our penalty term (regularization) in the following sections and its dis-

cretization in appendix B. For optimization, since PySIT’s l-BFGS algorithm only

handles standard shots and objective functions, we needed to modify some of its

routines in order to implement vector data shots and the joint objective function.

2.7 Smoothing Operator

Even direct solutions to linear inverse problems often require smoothing and the

ill-posedness of an inverse problem increases the need for smoothing. Besides, we

always are not able to recover the earth’s model using FWI algorithm unless we use

suitable starting model for our algorithm. VFWI algorithm is an ill-posed problem

also strongly affected by the chosen initial model. So, in order to overcome the ill-

posedness issue and start with a reasonable initial model, we implemented a smoothing

operator as a tool to start with a good model. Our smoothing operator is based on

convolving two matrices, so that it takes length and number of times to convolve.

Then we use Kronecker tensor product to obtain our smoothed matrix. The result of

applying smoothed matrix for the BP model is presented in chapter 3.

2.8 Regularization

Our inverse problem is highly ill-conditioned. Rather than obtaining a solution for

our inverse problem we acknowledge the fact that there are infinitely many acceptable

42

solutions. So the strategy is to use optimization to find a suitable answer for our

problem. The solution we want to recover minimizes a functional R(m − mref),

where R(·) is a function from R2 → R which is called the regularizer. Usually the

best choice for R is a convex function as we do optimization. The reason is that a

convex function does not have multiple local minima so the iterations in algorithms

do not stuck in local minima. The choice of regularizer is significant since different

choices lead to very different solutions. Obviously, for a meaningful solution of the

problem we need to have R(m−mref) small for the true solution.

Regularization operators which have been successfully used for many problems include

the gradient and the Laplacian and variations and combination of thereof. These

operators imply that the solution is expected to be smooth, with no discontinuities.

We used a standard quadratic regularization technique for our problem. Setting

R(m) = ‖Lm‖2,

where L is a gradient operator. Therefore, our joint objective function becomes

J (m) = 1
2
∑
s,r

∫ T

0

[
‖uq(xs,xr, t)− dq(xs,xr, t)‖2

2 + ‖uf (xs,xr, t)− df (xs,xr, t)‖2
2

]
dt+

+ µ

2‖∇m‖
2,

(2.50)

where µ is a regularization weight. The result is a well-behaved objective function. To

illustrate the benefit of this function we apply it to the BP velocity model in the next

chapter. Also we explain the discretization of our regularization in appendix B.5.

43

Chapter 3

Results and discussions

In this chapter we demonstrate our algorithm by giving four examples with different

models: two isolated perturbations, horizontal reflector, Marmousi [49] and BP [50]

velocity models.

In all of the examples sources and receivers are equally spaced and spread over

the entire top surface of our computational domain and below the PML. Depending

on the case, each receiver records velocity or/and pressure. The peak frequency asso-

ciated with the source signature is 10 Hz and our solver has a spatial accuracy order

of 4. In all of the examples the generated data are without noise. There are a lot of

metrics by which one can estimate the error in the recovered model. We use RMS

velocity errors as one of the simplest metrics to do that. We show the RMS velocity

error for the Marmousi and the BP model in Tables 3.1 and 3.2. RMS velocity errors

can be expressed by

RMS velocity error = ||True velocity− Estimated velocity||
||True velocity|| .

44

3.1 Two Isolated Perturbations

For the first example we tested our algorithm on a synthetic model shown in Fig-

ure 3.1(bottom).

As can be seen from this plot there are two isolated perturbations which violate

the homogeneous model. This velocity model is discretized using 91 nodes in the z

direction and 71 nodes in the x direction. We start with the uniform model as an

initial model to recover the ultimate model using reflected waves. For this purpose,

we use 10 equally-spaced sources and receivers and 30 iterations of the l-BFGS scheme

for each source type as it is enough to get to the minimum of the objective functions.

Figures 3.2 and 3.3 show the results. For all of the source types we obtain a

good reconstruction, with the fewest number of artifacts in the case of vertical and

angle sources. Because of the radiation pattern of the horizontal sources, we have

less energy interacting with the perturbations so we obtain a poorer reconstruction.

For the monopole source, which uniformly radiates energy, we see more artifacts;

these are caused by edge effects at the corners of the computational domain that are

shown by black arrows in all the figures. Also orange arrows in vertical sources case

(Figure 3.3) indicate the areas which have been best illuminated by the radiation of

the sources. We also plotted the velocity slices for all the sources at the same plot

shows the difference between true and estimated velocities (figure 3.4).

45

Figure 3.1: Initial (top) and true velocity models (bottom) of two isolated perturba-
tions model. 10 equally-spaced sources and receivers are placed at the top surface of
the computational domain. They are indicated by red explosion signs (sources) and
black triangles (receivers). As can be seen from true model, there are two isolated
perturbations like islands which violate the uniform background model.

46

Figure 3.2: Estimated velocities for the two isolated perturbations model by using
monopole pressure (top) and angle dipole sources (bottom). Black arrows show the
artifacts caused by the edge effect. In the case of monopole pressure source, the
artifacts are more clear at both sides of the perturbations, whereas for angle source
we only have artifacts at the left side of the perturbation. In both cases (monopole
pressure and angle dipole sources), the orange arrows indicate the areas which have
been best illuminated by the radiation patters of the sources.

47

Figure 3.3: Estimated velocities for the two isolated perturbations model by using
horizontal (top) and vertical dipole sources (bottom). In the case of horizontal source,
the artifacts appear a bit higher compared to the other cases, which is shown by the
black arrow. In both cases (horizontal and vertical dipole sources), the orange arrows
indicate the areas which have been best illuminated by the radiation patters of the
sources.

48

Figure 3.4: Velocity slices for all the sources at the same plot shows the difference
between true and estimated velocities.

49

3.2 Horizontal Reflector

Another synthetic model that we used is horizontal reflector. This model consists of

two identical parallel reflection layers. The initial and true velocity models are shown

in Figure 3.5. It is worth mentioning that this is not a realistic earth model, but it

gives a nice illustration of the effects of the radiation patters of the source. Like the

previous example, this model is discretized using 91 nodes in the z direction and 71

nodes in the x direction.

In this case we use 1 source and 10 receivers and 10 iterations to construct the

different images. Using 10 iterations in this case gives us desirable convergence, i.e.

the objective function values reach a plateau. The results of VFWI corresponding to

different sources are shown in Figures 3.6 and 3.7.

The Expected directivity information is very clear in this case. For instance the

model estimated using a horizontal dipole source clearly shows the radiation pattern

of this source in the recovered image. Also, it can be seen from Figure 3.6 that the

reconstructed model by using angle dipole source is lopsided which comes from the

angle orientation. The final estimated model using vertical dipole sources also shows

strong radiation in vertical direction (Figure 3.7). Like previous example, we plotted

the velocity slices for all the sources at the same plot shows the difference between

true and estimated velocities (figure 3.8).

50

Figure 3.5: Initial (top) and true velocity (bottom) of the horizontal reflector model.
1 source and 10 receivers are placed at the top surface of the computational domain.
They are indicated by red explosion sign (source) and black triangles (receivers). As
can be seen from the bottom figure, there are two layers located at 30 and 45 kilometer
depth in the true model.

51

Figure 3.6: Estimated velocities for the horizontal reflector model by using monopole
pressure (top) and angle dipole sources (bottom). In the bottom figure the recon-
structed model by using angle dipole source is lopsided which comes from the angle
orientation.

52

Figure 3.7: Estimated velocities for the horizontal reflector model using horizontal
(top) and vertical dipole sources (bottom). The top figure clearly shows the radiation
pattern of horizontal source in the recovered image.

53

Figure 3.8: Velocity slices for all the sources at the same plot shows the difference
between true and estimated velocities.

54

3.3 Marmousi

In this example we use the VFWI algorithm to reconstruct the Marmousi velocity

model [49]. The Marmousi velocity model is discretized using 151 nodes in the z

direction and 461 nodes in the x direction. Node spacing is 20m. The inverse crime is

committed by using the same solver for generating the ’true’ data and the ’synthetic’

data. This may make our results appear better than they would be for a real data set.

As in the previous examples, we estimate velocity models using four different

sources: monopole pressure, vertical dipole, horizontal dipole and angle dipole sources.

Initial and true velocities are plotted in Figure 3.9. For this example we used 10

sources and the receivers are placed all the way across the top of the computational

domain which means in a fixed spread acquisition. We use 30 iterations in this case.

As can be seen from Figure 3.12, the model generated by the monopole pressure

sources has better resolution compared to the other cases. The horizontal dipole

sources generate poor recovery (Figure 3.12) but show the directivity of wavefields as

gives us only the sides velocity recovery. In this case, since recorded VA data con-

tains more horizontal components of velocity, therefore both sides of the model are

recovered better than the other areas. Also as for the case of angle dipole source (Fig-

ure 3.13), we can see some artefacts in the direction of source orientation. Generating

VA data by using these point-force sources and finally recording such data enables

us to have clear directivity information about the wavefields and its impact on final

estimated model for the Marmousi model. It also has some disadvantages in this case

as it cannot provide good resolution compared to the usual monopole seismic source.

55

Estimated Velocity Error for Marmousi Velocity Model
Source
type

FWI VFWI

Monopole
Pressure

0.004 ——-

Monopole
Pressure

——- 0.008

Vertical
Dipole

——- 0.012

Horizontal
Dipole

——- 0.222

Angle
Dipole

——- 0.013

Table 3.1: RMS velocities of different source types using FWI and VFWI algorithms
for Marmousi model.

Misfit values (in figures 3.10, 3.11, 3.12 and 3.13) corresponding to monopole pres-

sure, vertical, horizontal and angle dipole sources do not converge to zero, which point

out a crucial point about our objective functions. Practically, we can not reach zero

for misfit values as there are three different issues regarding objective functions; Local

minima, saddle point and ill-conditioning issues [54]. Here our objective functions are

highly ill-conditioned. I should mention that the misfit values corresponding to the

monopole and dipole sources for Marmousi model, are levelled off which can be seen

in figures 3.10, 3.11, 3.12 and 3.13.

The resulting RMS velocity errors between each recovered model and the true

model are shown in Table 3.1. It proves that in this case, the final reconstructed

velocity model associated with the monopole pressure source using FWI algorithm is

better than in other cases. In other words, although using VFWI for the Marmousi

model can provide us with the directivity of wavefields, it has some shortcomings in

proving good resolution in the final images.

56

Figure 3.9: Initial and true Marmousi velocity model. 10 equally-spaced sources
and receivers are placed at the top surface of the computational domain. They are
indicated by red explosion signs (sources) and black triangles (receivers).

57

Figure 3.10: Reconstruction of velocity and corresponding misfit values by using
monopole pressure source (The result is similar to ordinary seismic source, i.e.
monopole pressure source using FWI algorithm).

58

Figure 3.11: Reconstruction of velocity and corresponding misfit values by using
vertical dipole source (directionality information).

59

Figure 3.12: Reconstruction of velocity and corresponding misfit values by using
horizontal dipole source (directionality information).

60

Figure 3.13: Reconstruction of velocity and corresponding misfit values by using angle
dipole source (directionality information).

61

3.4 BP

The last example is the BP velocity model which contains salt bodies with steep flanks

and irregular shapes [50]. The BP velocity model is discretized using 115 nodes in

the z direction and 205 nodes in the x direction. Like in the previous example, the

inverse crime is committed by using the same solver for generating the ’true’ data and

the ’synthetic’ data.

As in the previous examples, we recover velocity models using four different

sources: monopole pressure, vertical dipole, horizontal dipole and angle dipole sources.

Initial and true velocity models are plotted in Figures 3.14, respectively. Since the

BP model is large, we subsampled it so that only 12% of the samples remained, to

reduce the computational cost.

Reconstruction of velocity in the case of BP model is very hard as the model is

so complicated. We used our smoothing operator (explained in Chapter 2) to smooth

the true model and and thereby obtain an appropriate starting model initial model

(Figure 3.14). This is the kind of starting model one would expect to obtain by other

processing techniques prior to FWI.

For this example we used 50 sources and 50 receivers placed all the way across

the top of the computational domain for monopole pressure, vertical dipole and angle

dipole sources. We used 100 sources and 100 receivers for the case of horizontal dipole

source. We used 30 l-BFGS iterations to invert this model.

The recoveries from the monopole pressure and horizontal dipole sources, Fig-

ure 3.15, are quite good and look similar. As can be seen from Figures 3.16 and 3.18,

62

the recovered velocity models associated with vertical and angle dipole sources have

oscillations across the models, especially in the case of vertical sources, where we have

a poorer overall reconstruction. However, we also see that we are getting sharper

edges on some of the smaller features especially at the top of the salt body and near

the edges of the model. In order to remove the artefacts, we add a regularization term

in our objective functional (Eq. 2.50) as explained in Chapter 2. After applying reg-

ularization we obtain more reliable results shown in Figures 3.16 (bottom), 3.17, 3.18

(bottom) and 3.19. We performed regularization process for two different weights:

µ = 6 and µ = 10 for both angle and vertical dipole sources. The corresponding plots

demonstrate how increasing µ results in better artefact removal.

As can be seen from Figure 3.15, the model generated by horizontal dipole sources

has better lateral resolution compared to the model generated by the vertical dipole

sources, Figure 3.17. Similar to the Marmousi model, recorded VA data are more

sensitive to the scatterers at the sides of the computational domain. However, the

difference between our recovery of the Marmousi and BP models is that in the BP

case we used more horizontal dipole sources to obtain a better recovery of other areas

of the model as well, whereas in the Marmousi case we did not increase the number

of the horizontal dipole sources compared to other source types. The resulting RMS

velocity errors between each recovered model and the true model are shown in Ta-

ble 3.2, which demonstrates the best velocity recovery corresponding to the horizontal

dipole source. The second best recovery refers to the monopole pressure source more-

over both monopole pressure and horizontal dipole sources do not seem to require

regularization. It should be noted that the resulting RMS velocity errors in the case

of vertical and angle dipole are calculated for regularized BP model.

63

We also plotted the velocity slices for each case show the difference between true

and estimated velocities (Figures 3.20, 3.21, 3.22 and 3.23). The last plot (Fig-

ure 3.23) denotes a reliable velocity reconstruction corresponding to the horizontal

dipole source.

64

Figure 3.14: A sub-sampled initial and true BP velocity model (with 12% of samples
remaining).

65

Figure 3.15: Reconstruction of a sub-sampled BP velocity model by using monopole
pressure and horizontal dipole sources.

66

Figure 3.16: Reconstruction of a sub-sampled BP velocity model by using vertical
dipole source without regularization (top) and with regularization for µ = 6 (bottom).

67

Figure 3.17: Reconstruction of a sub-sampled BP velocity model by using vertical
dipole source with regularization (µ = 10).

68

Figure 3.18: Reconstruction of a sub-sampled BP velocity model by using angle dipole
source without regularization (top) and with regularization for µ = 6 (bottom).

69

Figure 3.19: Reconstruction of a sub-sampled BP velocity model by using one angle
dipole source with regularization (µ = 10).

70

Figure 3.20: The velocity difference between true and estimated velocities of monopole
pressure source.

Figure 3.21: The velocity difference between true and estimated velocities of angle
dipole source.

71

Figure 3.22: The velocity difference between true and estimated velocities of vertical
dipole source.

Figure 3.23: The velocity difference between true and estimated velocities of horizontal
dipole source.

72

Estimated Velocity Error for the BP Velocity Model
Source
type

VFWI

Monopole
Pressure

0.052

Vertical
Dipole

0.055

Horizontal
Dipole

0.050

Angle
Dipole

0.055

Table 3.2: RMS velocities of different source types using VFWI algorithm for the BP
model.

73

Chapter 4

Conclusions and future work

In this thesis we have extended full waveform inversion to vector data. In the method-

ology Chapter we introduced our VFWI algorithm in detail followed by derivation of

first order adjoint-state method. In Chapter 3 we demonstrated our algorithm by

implementing the codes into PySIT package so as to obtain our results. We have

investigated four different velocity models: two isolated perturbations, horizontal re-

flector, Marmousi and BP.

In the case of horizontal reflector and the Marmousi models horizontal dipole

source shows the strong directivity of the wavefields. The directivity of these models

can be mitigated by including more sources and receivers in the calculation. We use

a single source/receiver pair here to highlight the differences in illumination between

the different source types.

As for the image resolution, in the two isolated perturbations case, vertical and

angle dipole sources generate the highest resolution image and the true model is re-

constructed very well. In the horizontal reflector example, however, as can be seen

74

in Figure 3.6, the most accurate recovered model is that made with the monopole

pressure source.

In the third example, our recovered Marmousi model (in the case of using stan-

dard FWI) has an RMS velocity error that is less than the RMS velocity error of

our VFWI algorithm. This difference becomes more important when we compare the

error associated with usual seismic source with horizontal dipole source as shown in

Table 3.1. In addition, the monopole pressure source provides better lateral resolution

as shown in Figure 3.10. One reason might be in regular FWI we use the standard

Ricker wavelet for the source signature which transmits uniform energy across our

computational domain. Whereas in VFWI the source signatures are no longer Ricker

wavelet to ensure directionality of wavefields. Therefore, the transmitted energy is

not as uniform as FWI case.

The last example was the reconstruction of the BP velocity model. In this exam-

ple we needed to define a smoothing operator in order to deal with the true model.

Since the BP model is so large and computationally expensive, first we had to sub-

sample the true model in such a way that only 12 percent of sample remaining. The

BP model recovery is almost impossible unless we start with an appropriate initial

model. Therefore by using our smoothing operator we could obtain a suitable starting

model. Recording VA data in the case of using horizontal dipole sources provided bet-

ter sides and edges recovery. In the BP case, we used double the number of sources

and receivers all across the surface to compensate the poor recovery in the middle

areas of our model.

Another issue which we resolved was the presence of artefacts across our recovered

75

model in the case of using angle and vertical dipole sources. In order to overcome this

issue, we used a regularization term with the definition of the gradient of our model

and a variable to control over its weight. The regularization process successfully mit-

igates this problem.

VFWI is a novel imaging technique that allows one to obtain directivity informa-

tion from the wave fields about the subsurface scatterers. Moreover, by introducing

dipole sources, one can create source radiation patters that better illuminate specific

parts of the model that might be of interest to the researcher. The effect of the

source radiation patters on the model recovery was demonstrated in the synthetic

examples in Chapter 3. We discovered that some source types work better for some

models, and not so well for other models, for example, the horizontal dipole sources

in the case of Marmousi and BP models. In some cases, especially for the BP model,

we obtained a lot of oscillatory artefacts with the vertical and angle dipole sources

that we were able to mitigate using regularization. More experiments need to be per-

formed in order to determine the most appropriate source type for a particular model.

Other possible future research directions include:

• applying different kinds of regularization, for example TV that might allow us to

preserve sharper boundaries of the homogeneous salt bodies in the regularized

recovery of models such as BP with vertical and angle dipole sources;

• Investigating how combining different source types in one experiment could lead

to higher resolution in the recovered models and better cancellation of artifacts;

• Extending the method to the variable density acoustic case with appropriate

receiver weighting.

76

Bibliography

[1] Özdogan Yilmaz and Stephen M. Doherty, Seismic data analysis: Prcessing,

inversion and interpretation of seismic data, V. 1, Society of Exploration Geo-

physicists, (2001).

[2] F. Jones and D. Oldenberg, Inversion theory, Course notes, (2007).

[3] J. Virieux and S. Operto, An overview of full waveform inversion in exploration

geophysics, Geophysics, 74(6), WCC1-WCC26, (2009).

[4] Reed, M. and Simon, B., Functional Analysis, Elsevier, (2003).

[5] Strauss, W. A., Partial Differential Equations: An Introduction, Wiley, (2007).

[6] Collino, F. and Tsogka. C, Application of the perfectly matched absorbing layer

model to the linear elastodynamic problem in anisotropic heterogeneous media,

Geophysics, 66(1), 294-307, (2001).

[7] Yonina C. Eldar and Gitta Kutyniok, Compressive Sensing: Theory and Appli-

cations, Cambridge University Press, (2012).

[8] Baysal, E., D. D. Kosloff, and J. W. C. Sherwood, Reverse time migration:

Geophysics, 48, 1514-1524, (1983).

77

[9] Hyunggu Jun, Youngseo Kim, Jungkyun Shin, Changsoo Shin and Dong-Joo

Min, Laplace-Fourier-domain elastic full-waveform inversion using time-domain

modeling, GEOPHYSICS, VOL. 79, NO. 5, (2014).

[10] Pratt, R. G., Seismic waveform inversion the frequency domain, Part 1: Theory

and verification in a physical scale model. Geophysics 64, 888-910, (1999).

[11] Pratt, R., Shin, C., and Hicks, G., Gauss-Newton and full newton methods

in frequency-space seis- mic waveform inversion: Geophysical Journal Inter-

national, 133, no. 2, 341–362, (1998).

[12] Sirgue, L., Pratt, R. G., Efficient waveform inversion and imaging : A strategy

for selecting temporal frequencies, (2004).

[13] Tristan Van Leeuwen and Felix J. Herrmann, Mitigating local minima in full-

waveform inversion by expanding the search space, GEOPHYSICS, J. Int,

(2013).

[14] Tarantola, A. and Valette, A., Generalized nonlinear inverse problems solved

using the least squares criterion, Reviews of Geophysics and Space Physics,

(1982).

[15] Symes, W. W., Migration velocity analysis and waveform inversion, Geophysical

Prospecting, 56(6), 765–790. (2008).

[16] Virieux, J., and S. Operto, An overview of full-waveform inversion in exploration

geophysics: Geophysics, 74, no. 6, WCC1–WCC26, (2009).

[17] Mora, P. R., Nonlinear two-dimensional elastic inversion of multioffset seismic

data: Geophysics, 52, 1211–1228 (1987).

78

[18] Bunks, C., F. M. Saleck, S. Zaleski, and G. Chavent, Multiscale seismic wave-

form inversion: Geophysics, 60, 1457–1473,(1995).

[19] Pratt, R. G., C. Shin, and G. J. Hicks, Gauss-Newton and full newton methods

in frequency-space seismic waveform inversion: Geophysical Journal Interna-

tional, 133, 341–362, (1998).

[20] Plessix, R., A review of the adjoint-state method for computing the gradient of

a functional with geophysical applications: Geophysical Journal International,

167, 495–503, (2006).

[21] Operto, S., Y. Gholami, R. Brossier, L. Metivier, V. Prieux, A. Ribodetti, and

J. Virieux, A guided tour of multiparameter full-waveform inversion with mul-

ticomponent data: From theory to practice: The Leading Edge, 32, 1040–1054,

(2013).

[22] Operto, S., J. Virieux, P. Amestoy, J. L’Excellent, L. Giraud, and H. Ben-

Hadj-Ali,3D finite-difference frequency-domain modeling of visco-acoustic wave

propagation using a massively parallel direct solver: A feasibility study: Geo-

physics, 72, no. 5, SM195–SM211, (2007).

[23] Kim, Y., C. Shin, H. Calandra, and Min D-J, An algorithm for 3D acoustic

time-Laplace-Fourier-domain hybrid full-waveform inversion: Geophysics, 78,

no. 4, R151–R166, (2013).

[24] Davis, T., UMFPACK version 5: University of Florida. Gardner, G. H. F.,

L.W. Gardner, and A. R. Gregory, 1974, Formation velocity and density— The

diagnostic basics for stratigraphic traps: Geophysics, 39, 770–780, (2006).

79

[25] Trefethen, L. L., and D. Bau, Numerical linear algebra: SIAM. Virieux, J., 1986,

P-sv wave propagation in heterogeneous media: Velocitystress finite-difference

method: Geophysics, 51, 889–901, (1997).

[26] Kim, J. H., and S. J. Kim, A multifrontal solver combined with graph parti-

tioner: The American Institute of Aeronautics and Astronautics (AIAA) Jour-

nal, 37, 964–970, (1999).

[27] Jan Thorbecke, 2D Finite-Difference Wavefield Modelling, (2015).

[28] Guitton, A., andW.W. Symes, Robust inversion of seismic data using the Huber

norm: Geophysics, 68, 1310–1319, (2003).

[29] Huber, P. J., Robust regression: Asymptotics, conjectures, and Monte Carlo:

Annals of Statistics, 1, 799–821, (1973).

[30] Shin, C., and D. Min, Waveform inversion using a logarithmic wavefield: Geo-

physics, 71, no. 3, R31–R42, (2006).

[31] Clement Fleury and Ivan Vasconcelos, Adjoint-state reverse time migration of

4C data:Finite-frequency map migration for marine seismic image: Geophysics,

78, no. 2, WA159-WA172, (2013).

[32] Meier, M. A., R. E. Duren, K. T. Lewallen, J. Otero, S. Heiney, and T. Murray.,

A marine dipole source for low frequency seismic acquisition, SEG Technical

Program Expanded Abstracts, Society of Exploration Geophysicists, 176–180,

(2015).

[33] De Hoop, AT, Handbook of radiation and scattering of waves: Acoustic waves in

fluids, elastic waves in solids, electromagnetic waves: with corrections, Former

publisher: Academic Press, (2017).

80

[34] Allaire, Grégoire, Numerical analysis and optimization: an introduction to

mathematical modelling and numerical simulation, Oxford University Press,

(2007).

[35] Tarantola, A., Inversion of seismic reflection data in the acoustic approximation:

Geophysics, 49, 1259–1266, (1984).

[36] Symes,W., The seismic reflection inverse problem: Inverse Problems, 25, 123008,

(2009).

[37] Haber, E., Computational Methods in Geophysical Electromagnetics, University

of British Columbia, Vancouver, British Columbia, Canada, (2015).

[38] Sun, D. and Jiao, K. and Vigh, D., Compensating for source and receiver ghost

effects in full waveform inversion and reverse time migration for marine streamer

data, V. 201, 3, Journal of Geophysical Research, 1507-1521, (2015).

[39] Louboutin, Mathias and Herrmann, Felix J, Time compressively sampled full-

waveform inversion with stochastic optimization, SEG Technical Program Ex-

panded Abstracts 2015, Society of Exploration Geophysicists, 5153-5157, (2015).

[40] Robertsson, J. O. A. and Moore, I. and Vassallo, M. and Kemal, Van Manen,

D.-J. and Ozbek, A., On the use of multicomponent streamer recordings for

reconstruction of pressure wavefields in the crossline direction, V. 73, 5, Journal

of Geophysical Research, A45–A49, (2008).

[41] Carlson, D. H., A. Long, W. Sollner, H. Tabti, R. Tenghamn, and N. Lunde,

Increased resolution and penetration from a towed dual-sensor streamer: First

Break, 25, 71–77, (2007).

81

[42] Tenghamn, R., S. Vaage, and C. Borresen, A dual-sensor towed marine streamer:

Its viable implementation and initial results: 77th Annual International Meet-

ing, SEG, Expanded Abstracts, 989–993, (2007).

[43] Cambois, G., D. Carlson, C. Jones, M. Lesnes, W. Sollner, and H. Tabti, Dual-

sensor streamer data: Calibration, acquisition QC and attenuation of seismic

interferences and other noises: 79th Annual International Meeting, SEG, Ex-

panded Abstracts, 142–146, (2009).

[44] Vassallo, M., A. Ozbek, K. Ozdemir, and K. Eggenberger, Crossline wavefield

reconstruction from multicomponent streamer data: Part 1 Multichannel inter-

polation by matching pursuit (MIMAP) using pressure and its crossline gradient:

Geophysics, 75, no. 6, WB53–WB67, (2010).

[45] Ozbek, A., M. Vassallo, D. J. van Manen, and K. Eggenberger, Crossline wave-

field reconstruction from multicomponent streamer data: Part 2 Joint interpola-

tion and 3D up/down separation by generalized matching pursuit: Geophysics,

75, no. 6, WB69–WB85, (2010).

[46] Frijlink, M., R. van Borselen, and W. Sollner, The free surface assumption for

marine data-driven demultiple methods: Geophysical Prospecting, 59, 269–278,

(2011).

[47] Brandsberg-Dahl S., and De Hoop, M. V., Velocity analysis in the com-

mon scattering-angle/azimuth domain, 51, Geophysical Prospecting, 295–314,

(2003).

[48] Sava, P., and Biondi, B., Wave-equation migration velocity analysis, Geophysi-

cal Prospecting, (2004).

82

[49] Brougois, A and Bourget, Marielle and Lailly, Patriek and Poulet, Michel

and Ricarte, Patrice and Versteeg, Roelof, Marmousi, model and data, EAEG

Workshop-Practical Aspects of Seismic Data Inversion, 1990.

[50] Billette, FJ and Brandsberg-Dahl, Sverre, The 2004 BP velocity benchmark,

67th EAGE Conference & Exhibition, 2005.

[51] Biondi, B., Almomin, Ali, Tomographic Full Waveform Inversion (TFWI) by

Extending the Velocity Model Along the Time-Lag Axis, Society of Exploration

Geophysicists, SEG Annual Meeting, 22-27 September, Houston, Texas, (2013).

[52] Fichtner, A., Full Seismic Waveform Modelling and Inversion, Springer, Heidel-

berg Dordrecht London New York, (2011).

[53] Nocedal, J. and Wright, S. J., Numerical Optimization, Springer, Library of

Congress Control Number, (2006).

[54] Boyd, Stephen and Vandenberghe, Lieven, Convex optimization, Cambridge

university press, (2004).

[55] Gary Margrave, Matt Yedlin and Kris Innanen, Full waveform inversion and

the inverse hessian, 23, CREWES Research Report, (2011).

[56] Russell J. Hewett and Laurent Demanet, an open source toolbox for seismic in-

version and seismic imaging, Imaging and Computing Group in the Department

of Mathematics at MIT, http://pysit.bitbucket.org/.

83

Appendix A

Some derivations

In this appendix I derive equation (2.15) that we used in chapter 2 of my thesis.

A.1 Derivation of equation 2.15

In order to prove formula (2.15), we use the following relationship:

δuq,f = ∇muq,f δm, (A.1)

which means that δuq,f is the linear differential of uq,f with respect to m and ∇muq,f

is the Jacobian. Then we can write:

∇mJ (m)δm = lim
ε→0

1
ε

∫ T

0

∫
G

[J1(m+ εδm)− J1(m)] dx dt =

= lim
ε→0

1
ε

∫ T

0

∫
G

[J1(uq,f (m+ εδm))− J1(uq,f (m))] dx dt

(A.2)

Then, expanding uq,f (m+ εδm) around m, we obtain:

uq,f (m+ εδm) = uq,f (m) +∇muq,f (m) εδm+O(ε2) = uq,f (m) + εδuq,f (m) +O(ε2),

(A.3)

84

where we used (2.15) so that

∇mJ (m)δm = lim
ε→0

1
ε

∫ T

0

∫
G

[
J1(uq,f (m) + εδuq,f (m) +O(ε2))− J1(uq,f (m))

]
dx dt.

(A.4)

In this last equation we expand J1(uq,f (m) + εδuq,f (m) +O(ε2)) around uq,f (m):

J1(uq,f (m) + εδuq,f (m) +O(ε2)) = J1(uq,f (m)) + ε∇uq,fJ1(uq,f (m)) · δuq,f (m) +O(ε2),

(A.5)

so that

∇mJ (m)δm = lim
ε→0

1
ε

∫ T

0

∫
G

[
J1(uq,f (m)) + ε∇uq,fJ1(uq,f (m)) · δuq,f (m)+

+O(ε2)− J1(uq,f (m))
]
dx dt =

= lim
ε→0

1
ε

∫ T

0

∫
G

[
ε∇uq,fJ1(uq,f (m)) · δuq,f (m) +O(ε2)

]
dx dt =

=
∫ T

0

∫
G
∇uq,fJ1(uq,f (m)) · δuq,f (m)dx dt = 〈∇uq,fJ1(m), δuq,f 〉,

(A.6)

which completes the proof.

85

Appendix B

Coding Description

In this chapter we briefly describe our coding. We used PySIT package [56] and

develop it for our own purpose. PySIT is a python package for seismic inversion and

imaging especially designed for FWI. Our contribution to PySIT consists of forward

problem and discretization, inverse problem and joint objective function,

regularization and optimization.

B.1 Forward Problem and Discretization

In this section we describe our forward problem and discretization. The forward prob-

lem is a parameter identification problem since in our case, it is a Partial Differential

Equation (PDE) and the data is the solution of that PDE. As we explained before

in Chapter 2, in order to make sure that we have vector data rather than only scalar

data in acoustic FWI, we need to have dipole sources to generate vector data and then

record them by the receivers. In forward problem first we need to discretize the wave

equation. In our vector-acoustic equation (2.5), we assume that density is constant

86

which is a similar assumption in a standard acoustic wave equation:

(
m(z, x) ∂

2

∂t2
−∇2

z,x

)
us(t, z, x) = s(t, z, x), (B.1)

where ∇2
z,x is a two dimensional Laplacian operator and us(t, z, x) is a scalar wave-

field generated by a conventional seismic source s(t, z, x), i.e. equation (2.42). The

solver for equation B.1 was already existed in PySIT [56], so we used the same two

dimensional constant density solver for our problem. However, vector-acoustic equa-

tion is different in the sense that we needed to also compute gradient of pressure

and discretize the right-hand-side of equation, i.e. different sources and data (as we

explained in Chapter 2). All of them had to be implemented in PySIT so as to have a

working forward problem. For example, in order to compute gradient of pressure for

different components we implemented a staggered grid or stencil using finite difference

method. In order to discretize our forward problem we assume that the domain in

R2, is divided into n2 voxels of size h. If we consider u as a general wavefield, then

the derivative of u in the x direction can be written as

∂hxu(xi + h

2 , zj) ≈
1
h

(u(xi+1, zj)− u(xi, zj)).

We can assume that D is the 1D derivative matrix and U is the 2D wavefield ordered

as a matrix

Dx ≈
1
h

−1 1 0

0 −1 1

 .

87

So, the 1D derivative of U is DUI, where I is identity matrix. Similarly, in vertical

direction z we have

Dy ≈
1
h

−1 0

1 −1

0 1

 ,

which leads to IUDT. Finally by using Kronecker product we can construct gradient

operator ∇ as

∇ =

∂x
∂z

 '
I ⊗Dx

Dz ⊗ I

 .
It is easy to verify that divergence operator can be written as

∇· = −∇T.

Going to the higher order, a second order finite difference in 1D of the second derivative

can be written as

∂2

∂x2u(xi, zj) = ui+1,j − 2ui,j + ui−1,j

h
+O(h2).

Similarly, second order derivatives are used in the z direction. So, the finite difference

matrix for the Laplacian is

∇2
h = D2 ⊗ In + In ⊗D2,

88

where, assuming Neumann Boundary conditions,

D2 = 1
h2

−1 1 0 · · · · · · · · · · · · 0

1 −2 1 0 ...

0 1 −2 1 0 ...
...
...
... 0 1 −2 1 0
... 0 1 −2 1

0 · · · · · · · · · · · · 0 −1 1

.

Using these operators, we can compute gradient or laplacian of our parameters and

wavefields. Setting up the right-hand-side (sources), finally we can solve and visualize

the results i. e. generated data. We already showed the generated and recorded data

in Chapter 2.

B.2 Forward Modelling Python Code for Horizon-

tal Reflector

Here we show one of our forward modelling codes for horizontal reflector model.

1

2 from __future__ import absolute_import

3

4 import numpy as np

5 import s c ipy as sp

6 from sc ipy . spa r s e import spd iags

7 import s c ipy . spar s e as spsp

8 import matp lo t l i b . pyplot as cm

89

9 import s c ipy . i o

10 import s c ipy . spar s e as spsp

11

12 from my_extensions . my_sources import ∗

13 from my_extensions . convenient_plot_funct ions import ∗

14 from my_extensions . ximage import ∗

15 from s o l v e r s . wave f i e ld_vector import ∗

16 from p y s i t . s o l v e r s . constant_dens i ty_acoust i c . time . s c a l a r .

constant_density_acoust ic_time_scalar_base import ∗

17 from p y s i t . s o l v e r s . constant_dens i ty_acoust i c . time . s c a l a r .

constant_density_acoustic_time_scalar_2D import

ConstantDensityAcousticTimeScalar_2D_cpp

18 from my_util import Bunch

19 from my_util import Pos i t i v eEven In t ege r s

20 from my_util . d e r i v a t i v e s import bui ld_der ivat ive_matr ix

21 from my_util . matr ix_helpers import build_sigma , make_diag_mtx

22 from my_util . s o l v e r s import i n h e r i t _ d i c t

23

24

25 __all__ = [’ Hor i zonta lRe f l e c to rMode l ’ ,

26 ’ ho r i zonta l_re f l e c to r_hor i zonta l_x_vec to r ’]

27

28 de f _gauss ian_der ivat ive_pulse (XX, thresho ld , ∗∗kwargs) :

29 " " " Der iva t iv e o f a Gaussian at a s p e c i f i c sigma " " "

30 T = −100.0∗XX∗np . exp(−(XX∗∗2) /(1 e−4))

31 T[np . where (abs (T) < thre sho ld)] = 0

32 return T

33

34 de f _gaussian_pulse (XX, thresho ld , s igma_in_pize ls =1.0 , ∗∗kwargs) :

35 " " " Gaussian funct ion , in X d i r e c t i o n , with sigma s p e c i f i e d in terms

o f p i z e l s " " "

90

36 xde l ta = XX[np . where ((XX−XX. min) != 0 . 0)] . min () − XX. min ()

37 sigma = sigma_in_pize ls ∗ xde l ta

38 T = np . exp(−(XX∗∗2) / (2∗ sigma ∗∗2)) / (sigma∗np . sq r t (2∗np . p i))

39 T = T ∗ xde l ta

40 T[np . where (abs (T) < thre sho ld)] = 0

41 return T

42

43 _pulse_funct ions = { ’ gaus s i an_der iva t ive ’ : _gauss ian_der ivat ive_pulse ,

44 ’ gauss ian ’ : _gaussian_pulse

45 }

46

47

48 c l a s s Hor i zonta lRe f l e c to rMode l (GeneratedGalleryModel) :

49

50 " " " Ga l l e ry model f o r constant background plus s imple h o r i z o n t a l

r e f l e c t o r s . " " "

51

52 model_name = " Hor i zonta l R e f l e c t o r "

53

54 val id_dimens ions = (1 , 2 , 3)

55

56 @property

57 de f dimension (s e l f) :

58 re turn s e l f . domain . dim

59

60 supported_physics = (’ a c o u s t i c ’ ,)

61

62 de f __init__(s e l f , mesh ,

63 r e f l e c t o r_depth =[0 .45 , 0 . 6 5] , # as percentage o f

domain

64 r e f l e c t o r _ s c a l i n g =[1 .0 , 1 . 0] ,

91

65 background_veloc ity =1.0 ,

66 drop_threshold=1e−7,

67 pu l s e_s ty l e=’ gaus s i an_der iva t ive ’ ,

68 pu l se_con f ig ={},

69) :

70 " " " Constructor f o r a constant background model with h o r i z o n t a l

r e f l e c t o r s .

71

72 Parameters

73 −−−−−−−−−−

74 mesh : mesh

75 Computational mesh on which to cons t ruc t the model

76 r e f l e c to r_depth : l i s t

77 Depths o f the r e f l e c t o r s , as a percentage o f domain depth

78 r e f l e c t o r _ s c a l i n g : l i s t

79 Sca l e f a c t o r s f o r r e f l e c t o r s

80 background_veloc ity : f l o a t

81 drop_threshold : f l o a t

82 Cutof f va lue f o r eva lua t i on o f r e f l e c t o r s

83 pu l s e_s ty l e : { ’ gaus s i an_der iva t ive ’ , ’ gauss ian_pulse ’}

84 Shape o f the r e f l e c t o r

85 pu l se_con f ig : d i c t

86 Conf igurat ion o f the pu l s e s .

87

88

89

90 GeneratedGalleryModel . __init__(s e l f)

91

92

93 s e l f . r e f l e c to r_depth = re f l e c to r_depth

94 s e l f . r e f l e c t o r _ s c a l i n g = r e f l e c t o r _ s c a l i n g

92

95

96 s e l f . background_velocity = background_velocity

97

98 s e l f . drop_threshold = drop_threshold

99

100 s e l f . pu l s e_s ty l e = pu l s e_s ty l e

101 s e l f . pu l s e_con f ig = pul se_con f ig

102

103 s e l f . _mesh = mesh

104 s e l f . _domain = mesh . domain

105 # Set _init ia l_model and _true_model

106 s e l f . rebui ld_models ()

107

108 de f rebui ld_models (s e l f , r e f l e c t o r_depth=None , r e f l e c t o r _ s c a l i n g=

None , background_veloc ity=None) :

109 " " " Rebuild the t rue and i n i t i a l models based on the cur rent

c o n f i g u r a t i o n . " " "

110

111 i f r e f l e c to r_depth i s not None :

112 s e l f . r e f l e c to r_depth = re f l e c to r_depth

113

114 i f r e f l e c t o r _ s c a l i n g i s not None :

115 s e l f . r e f l e c t o r _ s c a l i n g = r e f l e c t o r _ s c a l i n g

116

117 i f background_veloc ity i s not None :

118 s e l f . background_velocity = background_velocity

119

120 C0 = s e l f . background_velocity ∗np . ones (s e l f . _mesh . shape ())

121

122 dC = s e l f . _bu i l d_re f l e c t o r s ()

123

93

124 s e l f . _in i t ia l_model = C0

125 s e l f . _true_model = C0 + dC

126

127 de f _bu i l d_re f l e c t o r s (s e l f) :

128

129 mesh = s e l f . mesh

130 domain = s e l f . domain

131

132 g r id = mesh . mesh_coords ()

133 XX = gr id [−1]

134

135 dC = np . z e ro s (mesh . shape ())

136

137 # can s e t any d e f a u l t s here

138 i f s e l f . pu l s e_s ty l e == ’ gaus s i an_der iva t ive ’ :

139 pu l se_con f ig = {}

140 e l i f s e l f . pu l s e_s ty l e == ’ gauss ian ’ :

141 pu l se_con f ig = {}

142

143 # update to any user de f ined d e f a u l t s

144 pu l se_con f ig . update (s e l f . pu l s e_con f ig)

145

146 f o r d , s in z ip (s e l f . r e f l e c to r_depth , s e l f . r e f l e c t o r _ s c a l i n g) :

147

148 # depth i s a percentage o f the l ength

149 depth = domain . x . lbound + d ∗ domain . x . l ength

150

151 pu l s e = _pulse_funct ions [s e l f . pu l s e_s ty l e] (XX−depth , s e l f .

drop_threshold , ∗∗ pu l se_con f ig)

152 dC += s ∗ pu l s e

153

94

154 return dC

155

156 de f ho r i zonta l_re f l e c to r_hor i zonta l_x_vec to r (mesh , ∗∗kwargs) :

157 " " " Fr i end ly wrapper f o r i n s t a n t i a t i n g the h o r i z o n t a l r e f l e c t o r

model . " " "

158

159 # Setup the d e f a u l t s

160 model_config = d i c t (r e f l e c to r_depth =[0 .45 , 0 . 6 5] , # as percentage o f

domain

161 r e f l e c t o r _ s c a l i n g =[1 .0 , 1 . 0] ,

162 background_veloc ity =1.0 ,

163 drop_threshold=1e−7,

164 pu l s e_s ty l e =’ gaus s i an_der iva t ive ’ ,

165 pu l se_con f ig ={} ,)

166

167 # Make any changes

168 model_config . update (kwargs)

169

170 return Hor i zonta lRe f l e c to rMode l (mesh , ∗∗model_config) . get_setup ()

171

172 c l a s s PML(Domain) :

173 " " " P e r f e c t l y Matched Layer (PML) domain boundary cond i t i on .

174

175 de f __init__(s e l f , length , amplitude , f type=’ quadrat i c ’ , boundary=’

d i r i c h l e t ’) :

176 # Length i s c u r r e n t l y in p h y s i c a l u n i t s .

177 s e l f . l ength = length

178

179 s e l f . amplitude = amplitude

180

181 # Function i s the PML func t i on

95

182 s e l f . f type = f type

183

184 i f (f type == ’b−s p l i n e ’) :

185

186 s e l f . pml_func = s e l f . _bspl ine

187 e l i f (f type == ’ quadrat i c ’) :

188 s e l f . pml_func = s e l f . _quadratic

189 e l s e :

190 r a i s e NotImplementedError (. format (f type))

191

192 i f boundary in [’neumann ’ , ’ d i r i c h l e t ’] :

193 s e l f . boundary_type = boundary

194 e l s e :

195 r a i s e ValueError (" ’{0} ’ i s not ’neumann ’ or ’ d i r i c h l e t ’ . " .

format (boundary))

196

197 de f _bspl ine (s e l f , x) :

198 x = np . array (x ∗1 . 0)

199 i f (x . shape == ()) :

200 x . shape = (1 ,)

201

202 r e tve c = np . z e r o s_ l i k e (x)

203

204 l o c = np . where (x < 0 . 5)

205 r e tve c [l o c] = 1 .5 ∗ (8 . / 6 .) ∗ x [l o c]∗∗3

206

207 l o c = np . where (x >= 0 . 5)

208 r e tve c [l o c] = 1 .5 ∗ ((−4.0∗x [l o c]∗∗3 + 8.0∗ x [l o c]∗∗2 − 4 .0∗ x [l o c]

+ 2 . 0 / 3 . 0))

209

210 return r e tve c

96

211

212 de f _quadratic (s e l f , x) :

213 re turn x∗∗2

214

215 de f eva luate (s e l f , n , o r i e n t a t i o n=’ r i g h t ’) :

216 " " " Evaluates the PML p r o f i l e f unc t i on on ‘n ‘ po in t s over the range

[0 , 1] .

217

218 va l = s e l f . amplitude ∗ s e l f . pml_func (np . l i n s p a c e (0 . , 1 . , n ,

endpoint=False))

219 i f o r i e n t a t i o n i s ’ l e f t ’ :

220 va l = va l [: : − 1]

221

222 return va l

223

224 c l a s s CartesianMesh (StructuredMesh) :

225

226 @property

227 de f type (s e l f) : r e turn ’ s t ructured−c a r t e s i a n ’

228

229 de f __init__(s e l f , domain , ∗ args) :

230

231 StructuredMesh . __init__(s e l f , domain , ∗ args)

232

233 s e l f . parameters = d i c t ()

234

235 f o r (i , k) in _cart_keys [s e l f . dim] :

236

237 n = i n t (args [i])

238 de l t a = domain . parameters [i] . l ength / n

239

97

240 param = Bunch(n=n , de l t a=de l t a)

241

242 param . lbc = MeshBC(s e l f , domain . parameters [i] . lbc , i , ’ l e f t ’ ,

d e l t a)

243 param . rbc = MeshBC(s e l f , domain . parameters [i] . rbc , i , ’ r i g h t ’ ,

d e l t a)

244

245 s e l f . parameters [i] = param # d . dim[−1]

246 s e l f . parameters [k] = param # d . dim [’ z ’]

247 s e l f . __setattr__ (k , param) # d . z

248

249 s e l f . _shapes = d i c t ()

250 s e l f . _dofs = d i c t ()

251 s e l f . _ s l i c e s = d i c t ()

252

253 s e l f . _spgrid = None

254 s e l f . _spgrid_bc = None

255

256 de f nodes (s e l f , include_bc=False) :

257

258 return np . hstack (s e l f . mesh_coords ())

259

260 de f mesh_coords (s e l f , spa r s e=False , include_bc=False) :

261

262 sphash = lambda g : reduce (lambda x , y : x+y ,map(lambda x : x . hexd ige s t

() , map(hash l i b . sha1 , g)))

263

264 i f spa r s e :

265 i f (s e l f . _spgrid i s not None) and (s e l f . _spgrid_hash == sphash (

s e l f . _spgrid)) :

266 re turn s e l f . _spgrid

98

267 i f include_bc and (s e l f . _spgrid_bc i s not None) and (s e l f .

_spgrid_bc_hash == sphash (s e l f . _spgrid_bc)) :

268 re turn s e l f . _spgrid_bc

269

270 i f include_bc :

271 assemble_grid_row = lambda dim : np . l i n s p a c e (s e l f . domain .

parameters [dim] . lbound+s e l f . parameters [dim] . lbc . n∗ s e l f .

domain . parameters [dim] . de l ta ,

272 s e l f . domain .

parameters [dim] .

rbound+s e l f .

parameters [dim] .

rbc . n∗ s e l f . domain

. parameters [dim] .

de l ta ,

273 s e l f . parameters [dim

] . n+s e l f .

parameters [dim] .

lbc . n+s e l f .

parameters [dim] .

rbc . n ,

274 endpoint=False)

275 e l s e :

276 assemble_grid_row = lambda dim : np . l i n s p a c e (s e l f . domain .

parameters [dim] . lbound , s e l f . domain . parameters [dim] . rbound ,

s e l f . parameters [dim] . n , endpoint=False)

277

278 i f (s e l f . dim == 1) :

279

280 tup = tup l e ([assemble_grid_row (’ z ’)])

281 e l i f (s e l f . dim == 2) :

99

282 xrow = assemble_grid_row (’ x ’)

283 zrow = assemble_grid_row (’ z ’)

284 tup = np . meshgrid (xrow , zrow , spar s e=sparse , index ing = ’ i j ’)

285 e l s e :

286 xrow = assemble_grid_row (’ x ’)

287 yrow = assemble_grid_row (’ y ’)

288 zrow = assemble_grid_row (’ z ’)

289 tup = np . meshgrid (xrow , yrow , zrow , spar s e=sparse , index ing = ’

i j ’)

290

291 i f spa r s e :

292 i f not include_bc and s e l f . _spgrid i s None :

293 s e l f . _spgrid = tup

294 s e l f . _spgrid_hash = sphash (tup)

295 i f include_bc and s e l f . _spgrid_bc i s None :

296 s e l f . _spgrid_bc = tup

297 s e l f . _spgrid_bc_hash = sphash (tup)

298

299 i f spa r s e :

300 re turn tup

301 e l s e :

302 re turn tup l e ([x . reshape (s e l f . shape (include_bc)) f o r x in tup])

303

304 de f get_de l tas (s e l f) :

305 re turn tup l e ([s e l f . parameters [i] . d e l t a f o r i in xrange (s e l f . dim)])

306

307 d e l t a s = property (get_deltas , None , None , " Tuple o f g r id d e l t a s ")

308

309 de f _compute_shape (s e l f , include_bc) :

310

311 sh = []

100

312 f o r i in xrange (s e l f . dim) :

313 p = s e l f . parameters [i]

314

315 n = p . n

316 i f include_bc :

317 n += p . lbc . n

318 n += p . rbc . n

319

320 sh . append (n)

321

322 # pml , ghost_padding , as_grid

323 s e l f . _shapes [include_bc , True] = sh

324 s e l f . _shapes [include_bc , Fa l se] = (i n t (np . prod (np . array (sh))) , 1)

325 s e l f . _dofs [include_bc] = i n t (np . prod (np . array (sh)))

326

327 de f shape (s e l f , include_bc=False , as_grid=False) :

328

329 i f (include_bc , as_grid) not in s e l f . _shapes :

330 s e l f . _compute_shape (include_bc)

331 re turn s e l f . _shapes [(include_bc , as_grid)]

332

333 de f dof (s e l f , include_bc=False) :

334 i f include_bc not in s e l f . _dofs :

335 s e l f . _compute_shape (include_bc)

336 re turn s e l f . _dofs [include_bc]

337

338 de f unpad_array (s e l f , in_array , copy=False) :

339

340 sh_unpadded_grid = s e l f . shape (include_bc=False , as_grid=True)

341 sh_unpadded_dof = s e l f . shape (include_bc=False , as_grid=False)

342

101

343 i f in_array . shape == sh_unpadded_grid or in_array . shape ==

sh_unpadded_dof :

344 out_array = in_array

345 e l s e :

346 sh_grid = s e l f . shape (include_bc=True , as_grid=True)

347

348 s l = l i s t ()

349 f o r i in xrange (s e l f . dim) :

350 p = s e l f . parameters [i]

351

352 n l e f t = p . lbc . n

353 nr i gh t = p . rbc . n

354

355 s l . append (s l i c e (n l e f t , sh_grid [i]− nr i gh t))

356

357 out_array = in_array . reshape (sh_grid) [s l]

358

359 i f in_array . shape [1] == 1 :

360 out = out_array . reshape (−1 ,1)

361 e l s e :

362 out = out_array

363

364 return out . copy () i f copy e l s e out

365

366 de f pad_array (s e l f , in_array , out_array=None , padding_mode=None) :

367

368 sh_dof = s e l f . shape (True , Fa l se)

369 sh_grid = s e l f . shape (True , True)

370 sh_in_grid = s e l f . shape (False , True)

371 s l = l i s t ()

372 f o r i in xrange (s e l f . dim) :

102

373 p = s e l f . parameters [i]

374

375 n l e f t = p . lbc . n

376 nr i gh t = p . rbc . n

377

378 s l . append (s l i c e (n l e f t , sh_grid [i]− nr i gh t))

379

380 i f out_array i s not None :

381 out_array . shape = sh_grid

382 e l s e :

383 out_array = np . z e r o s (sh_grid , dtype=in_array . dtype)

384 out_array [s l] = in_array . reshape (sh_in_grid)

385

386 i f padding_mode i s not None :

387 _pad_tuple = tup l e ([(s e l f . parameters [i] . l b c . n , s e l f . parameters [

i] . rbc . n) f o r i in xrange (s e l f . dim)])

388 out_array = np . pad (in_array . reshape (sh_in_grid) , _pad_tuple ,

mode=padding_mode) . copy ()

389

390

391 i f in_array . shape [1] == 1 : # Does not guarantee dof shaped , but

sugge s t s i t .

392 out_array . shape = sh_dof

393 e l s e :

394 out_array . shape = sh_grid

395 re turn out_array

396

397 de f inner_product (s e l f , arg1 , arg2) :

398

399 return np . dot (arg1 .T, arg2) . squeeze () ∗ np . prod (s e l f . d e l t a s)

400

103

401

402 _sqrt2 = math . s q r t (2 . 0)

403

404

405 de f _array i fy (arg) :

406 i f not np . i t e r a b l e (arg) :

407 re turn True , np . array ([arg])

408 e l s e :

409 re turn False , np . asar ray (arg)

410

411

412 c l a s s SourceWaveletBase (ob j e c t) :

413

414 __call__(s e l f , t=None , nu=None , ∗∗kwargs)

415

416

417

418 @property

419 de f time_source (s e l f) :

420 " " " bool , I n d i c a t e s i f wavelet i s de f i ned in time domain . " " "

421 re turn Fal se

422

423 @property

424 de f f requency_source (s e l f) :

425 " " " bool , I n d i c a t e s i f wavelet i s de f i ned in f requency domain . " " "

426 re turn Fal se

427

428 de f __init__(s e l f , ∗ args , ∗∗kwargs) :

429 r a i s e NotImplementedError (’ ’)

430

431 de f __call__(s e l f , t=None , nu=None , ∗∗kwargs) :

104

432

433 i f t i s not None :

434 i f s e l f . t ime_source :

435 re turn s e l f . _evaluate_time (t)

436 e l s e :

437 r a i s e TypeError (’ Sources o f type {0} are not time−domain

sourc e s . ’ . format (s e l f . __class__ .__name__))

438 e l i f nu i s not None :

439 i f s e l f . f requency_source :

440 re turn s e l f . _evaluate_frequency (nu)

441 e l s e :

442 r a i s e TypeError (’ Sources o f type {0} are not time−domain

sourc e s . ’ . format (s e l f . __class__ .__name__))

443 e l s e :

444 r a i s e ValueError (’ E i ther a time or f requency must be provided

. ’)

445

446

447 c l a s s Der ivat iveGauss ianPul se (SourceWaveletBase) :

448

449 @property

450 de f time_source (s e l f) :

451 " " " bool , I n d i c a t e s i f wavelet i s de f i ned in time domain . " " "

452 re turn True

453

454 @property

455 de f f requency_source (s e l f) :

456 " " " bool , I n d i c a t e s i f wavelet i s de f i ned in f requency domain . " " "

457 re turn True

458

459 @property

105

460 de f order (s e l f) :

461 re turn 4

462

463 @order . s e t t e r

464 de f order (s e l f , n) :

465 pass

466

467 de f __init__(s e l f , nu , ∗∗kwargs) :

468 Der ivat iveGauss ianPul se . __init__(s e l f , nu , order=s e l f . order , ∗∗

kwargs)

469

470 de f _evaluate_time (s e l f , t s) :

471 re turn 1∗Der ivat iveGauss ianPulse . _evaluate_time (s e l f , t s)

472

473 de f _evaluate_frequency (s e l f , nus) :

474 re turn 1∗Der ivat iveGauss ianPulse . _evaluate_frequency (s e l f , nus)

475

476 de f __init__(s e l f , peak_frequency , order =0, th r e sho ld=1e−6,

s h i f t _ d e v i a t i o n s =6, t _ s h i f t=None) :

477 s e l f . o rder = order

478 s e l f . peak_frequency = peak_frequency

479 s e l f . th r e sho ld = thre sho ld

480 s e l f . s h i f t _ d e v i a t i o n s = s h i f t _ d e v i a t i o n s

481

482 nu = peak_frequency

483

484 s e l f . sigma = 1/(math . p i ∗nu∗_sqrt2)

485

486 i f t _ s h i f t i s None :

487 s e l f . t _ s h i f t = s e l f . s h i f t _ d e v i a t i o n s ∗ s e l f . sigma

488 e l s e :

106

489 s e l f . t _ s h i f t = t _ s h i f t

490

491 po ly_coe f f s = (order) ∗ [0 . 0] + [1 . 0]

492 s e l f . _hermite = np . polynomial . Hermite (po ly_coe f f s)

493

494 de f _evaluate_time (s e l f , t s) :

495

496 ts_was_not_array , t s = _array i fy (t s)

497

498 n = s e l f . order

499

500 x = (ts−s e l f . t _ s h i f t) /(_sqrt2∗ s e l f . sigma)

501 c = (−1/_sqrt2) ∗∗n

502 v = c∗ s e l f . _hermite (x) ∗np . exp(−(x∗∗2))

503

504 v [np . abs (v) < s e l f . th r e sho ld] = 0 .0

505

506 return v [0] i f ts_was_not_array e l s e v

507

508 de f _evaluate_frequency (s e l f , nus) :

509 nus_was_not_array , nus = _array i fy (nus)

510

511 omegas = 2∗np . p i ∗nus

512 n = s e l f . order

513

514 s h i f t = np . exp(−1 j ∗2∗np . p i ∗nus∗ s e l f . t _ s h i f t)

515

516 a = (−1)∗∗n

517 b = (1 j ∗omegas) ∗∗n

518 c = s e l f . sigma ∗∗(n+1)

519 d = math . sq r t (2∗np . p i)

107

520 v = d∗a∗b∗c∗np . exp (−0.5∗(s e l f . sigma ∗∗2) ∗ omegas ∗∗2) ∗ s h i f t

521

522 v [np . abs (v) < s e l f . th r e sho ld] = 0 .0

523

524 return v [0] i f nus_was_not_array e l s e v

525

526

527 c l a s s RickerWavelet (Der ivat iveGauss ianPulse) :

528 @property

529 de f order (s e l f) :

530 re turn 2

531

532 @order . s e t t e r

533 de f order (s e l f , n) :

534 pass

535

536 de f __init__(s e l f , nu , ∗∗kwargs) :

537 Der ivat iveGauss ianPul se . __init__(s e l f , nu , order=s e l f . order , ∗∗

kwargs)

538

539 de f _evaluate_time (s e l f , t s) :

540 re turn −1∗Der ivat iveGauss ianPulse . _evaluate_time (s e l f , t s)

541

542 de f _evaluate_frequency (s e l f , nus) :

543 re turn −1∗Der ivat iveGauss ianPulse . _evaluate_frequency (s e l f , nus)

544

545

546 c l a s s GaussianPulse (Der ivat iveGauss ianPulse) :

547 @property

548 de f order (s e l f) :

549 re turn 0

108

550

551 @order . s e t t e r

552 de f order (s e l f , n) :

553 pass

554

555 de f __init__(s e l f , nu , ∗∗kwargs) :

556 Der ivat iveGauss ianPul se . __init__(s e l f , nu , order=s e l f . order , ∗∗

kwargs)

557

558

559 c l a s s WhiteNoiseSource (SourceWaveletBase) :

560

561 @property

562 de f time_source (s e l f) :

563 re turn True

564

565 @property

566 de f f requency_source (s e l f) :

567 " " " bool , I n d i c a t e s i f wavelet i s de f i ned in f requency domain . " " "

568 re turn True

569

570 de f __init__(s e l f , seed=None , var i ance =1.0 , ∗∗kwargs) :

571

572 s e l f . _f = d i c t ()

573 s e l f . _f_hat = d i c t ()

574

575 s e l f . seed = seed

576 i f seed i s not None :

577 np . random . seed (seed)

578

579 s e l f . va r i ance = var iance

109

580

581 de f _evaluate_time (s e l f , t s) :

582

583 ts_was_not_array , t s = _array i fy (t s)

584

585 v = l i s t ()

586 f o r t in t s :

587 i f t not in s e l f . _f :

588 s e l f . _f [t] = s e l f . va r i ance ∗(np . random . randn ())

589 v . append (s e l f . _f [t])

590

591 return v [0] i f ts_was_not_array e l s e np . array (v)

592

593 de f _evaluate_frequency (s e l f , nus) :

594 nus_was_not_array , nus = _array i fy (nus)

595

596 v = l i s t ()

597 f o r nu in nus :

598 i f nu not in s e l f . _f_hat :

599 s e l f . _f_hat [nu] = s e l f . va r i ance ∗(np . random . randn () + np .

random . randn () ∗1 j)

600 v . append (s e l f . _f_hat [nu])

601

602 return v [0] i f nus_was_not_array e l s e np . array (v)

603

604

605

606

607

608 __all__ = [’ generate_seismic_vector_data ’ , ’

generate_shot_vector_data_time ’ , ’ generate_shot_vector_data_frequency

110

’]

609 __docformat__ = " r e s t r u c t u r e d t e x t en "

610

611

612 de f generate_seismic_vector_data (shots , s o l ve r , model , verbose=False ,

f r e q u e n c i e s=None , ∗∗kwargs) :

613

614 i f verbose :

615 p r i n t (’ Generating vec to r data . . . ’)

616 t t = time . time ()

617

618 f o r shot in shot s :

619

620 i f s o l v e r . supports [’ equation_dynamics ’] == " time " :

621 generate_shot_vector_data_time (shot , s o lve r , model , verbose=

verbose , ∗∗kwargs)

622 e l i f s o l v e r . supports [’ equation_dynamics ’] == " frequency " :

623 i f f r e q u e n c i e s i s None :

624 r a i s e TypeError (’A frequency s o l v e r i s passed , but no

f r e q u e n c i e s are g iven ’)

625 generate_shot_vector_data_frequency (shot , s o l ve r , model ,

f r equenc i e s , verbose=verbose , ∗∗kwargs)

626 e l s e :

627 r a i s e TypeError ("A time or f requency s o l v e r must be

s p e c i f i e d . ")

628

629 i f verbose :

630 data_tt = time . time () − t t

631 p r i n t ’ Vector Data gene ra t i on : {0} s ’ . format (data_tt)

632 p r i n t ’ Vector Data gene ra t i on : {0} s / shot ’ . format (data_tt / l en (

shot s))

111

633

634 de f generate_shot_vector_data_time (shot , s o l ve r , model , w a v e f i e l d s=None ,

wavef ie lds_padded=None , verbose=False , ∗∗kwargs) :

635

636 s o l v e r . model_parameters = model

637

638

639 t s = s o l v e r . t s ()

640 shot . r e s e t_t ime_ser i e s (t s)

641

642

643 shot . dt = s o l v e r . dt

644 shot . t range = s o l v e r . t range

645

646 i f s o l v e r . supports [’ equation_dynamics ’] != " time " :

647 r a i s e TypeError (’ So lve r must be a time s o l v e r to generate vec to r

data . ’)

648

649 i f (w a ve f i e l d s i s not None) :

650 w a v e f i e l d s [:] = []

651 i f (wavef ie lds_padded i s not None) :

652 wavef ie lds_padded [:] = []

653

654 mesh = s o l v e r . mesh

655 dt = s o l v e r . dt

656 source = shot . s ou r c e s

657

658

659 so lver_data = s o l v e r . SolverData ()

660

661 rhs_k = np . z e r o s (mesh . shape (include_bc=True))

112

662 rhs_kp1 = np . z e ro s (mesh . shape (include_bc=True))

663

664 # k i s the t index . t = k∗dt .

665 f o r k in xrange (s o l v e r . ns teps) :

666

667 uk = solver_data . k . pr imary_wavef ie ld

668

669

670 uk_bulk = mesh . unpad_array (uk)

671

672

673 shot . r e c e i v e r s . sample_data_from_array (uk_bulk , k , ∗∗kwargs)

674

675 i f (w a ve f i e l d s i s not None) :

676 w a v e f i e l d s . append (uk_bulk . copy ())

677 i f (wavef ie lds_padded i s not None) :

678 wavef ie lds_padded . append (uk . copy ())

679

680 i f (k == (s o l v e r . nsteps −1)) : break

681

682 i f k == 0 :

683 rhs_k = mesh . pad_array (source . f (k∗dt) , out_array=rhs_k)

684 rhs_kp1 = mesh . pad_array (source . f ((k+1)∗dt) , out_array=

rhs_kp1)

685 e l s e :

686

687 rhs_k , rhs_kp1 = rhs_kp1 , rhs_k

688 rhs_kp1 = mesh . pad_array (source . f ((k+1)∗dt) , out_array=

rhs_kp1)

689

690 s o l v e r . time_step (solver_data , rhs_k , rhs_kp1)

113

691

692 so lver_data . advance ()

693

694 de f generate_shot_vector_data_frequency (shot , s o l ve r , model , f r e quenc i e s

, verbose=False , ∗∗kwargs) :

695 s o l v e r . model_parameters = model

696

697 mesh = s o l v e r . mesh

698

699 source = shot . s ou r c e s

700

701 i f not np . i t e r a b l e (f r e q u e n c i e s) :

702 f r e q u e n c i e s = [f r e q u e n c i e s]

703

704 so lver_data = s o l v e r . SolverData ()

705 rhs = s o l v e r . Wavef ie ldVector (mesh , dtype=s o l v e r . dtype)

706 f o r nu in f r e q u e n c i e s :

707 rhs = s o l v e r . bui ld_rhs (mesh . pad_array (source . f (nu=nu)) ,

rhs_wave f i e ldvec to r=rhs)

708 s o l v e r . s o l v e (solver_data , rhs , nu)

709 uhat = solver_data . k . pr imary_wavef ie ld

710

711 shot . r e c e i v e r s . sample_data_from_array (mesh . unpad_array (uhat)

, nu=nu)

712

713

714 i f __name__ == ’__main__ ’ :

715 pmlx = PML(0 . 1 , 100)

716 pmlz = PML(0 . 1 , 100)

717

718 x_config = (0 . 1 , 1 . 0 , pmlx , pmlx)

114

719 z_conf ig = (0 . 1 , 0 . 8 , pmlz , pmlz)

720

721 d = RectangularDomain (x_config , z_conf ig)

722

723 m = CartesianMesh (d , 91 , 71)

724

725 C, C0 , m, d = h o r i z o n t a l _ r e f l e c t o r (m)

726

727 Nshots = 1

728 shot s = []

729

730 xmin = d . x . lbound

731 xmax = d . x . rbound

732 nx = m. x . n

733 zmin = d . z . lbound

734 zmax = d . z . rbound

735

736 source_l i s t_p = []

737 f o r i in xrange (Nshots) :

738 source_l i s t_p . append (PointSource (m, (xmax∗(i +1.0) /(Nshots +1.0) ,

0 . 2 5) , Dipo leSecondDer ivat iveRickerWavelet (1 0 . 0) , i n t e n s i t y =

(5)))

739 sou r c e_ l i s t_ f = []

740 f o r j in xrange (Nshots) :

741 sou r c e_ l i s t_ f . append (PointSource (m, (xmax∗(j +1.1) /(Nshots +1.0) ,

0 . 2 6) , SecondDer ivat iveRickerWavelet (1 0 . 0) , i n t e n s i t y = (5)))

742 source_set = SourceSet (m, source_l i s t_p+sour c e_ l i s t_ f)

743 zpos = (1 . / 9 .) ∗zmax

744 xpos = np . l i n s p a c e (xmin , xmax , nx)

745 r e c e i v e r s = Rece iverSet (m, [Po intRece iver (m, (x , zpos)) f o r x in

xpos])

115

746 shot = Shot (source_set , r e c e i v e r s)

747 shot s . append (shot)

748 trange = (0 . 0 , 3 . 0)

749

750 s o l v e r = ConstantDensityAcousticTimeScalar_2D_cpp (m,

751 spat ia l_accuracy_order =6,

752 trange=trange ,

753 kernel_implementat ion =’cpp ’)

754

755 t t = time . time ()

756 w a v e f i e l d s = []

757 true_model = s o l v e r . ModelParameters (m, { ’C ’ : C})

758 in i t i a l_mode l = s o l v e r . ModelParameters (m, { ’C ’ : C0})

759

760 generate_seismic_vector_data (shots , s o lve r , true_model , verbose=False ,

761 w a v e f i e l d s=w a v e f i e l d s)

762

763 Dx = np . spd iags (ones (n+1 ,1)∗[−1/h 1/h] , [0 , 1] , n , n+1)

764 d1 = Dx(n (1) ,h (1))

765 d2 = Dx(n (2) ,h (2))

766 Grad = [np . kron (spsp . eye (n (2) +1) , d1) , np . kron (d2 , spsp . eye (n (1) +1))]

767 L = np . t ranspose (Grad) ∗Grad

1

2 __all__ = [’ TemporalModelingVDPointForceSourceHorizontal ’]

3

4 __docformat__ = " r e s t r u c t u r e d t e x t en "

5

6 c l a s s TemporalModelingVDPointForceSourceHorizontal (ob j e c t) :

7

8 @property

9 de f so lver_type (s e l f) : r e turn " time "

116

10 @property

11 de f modeling_type (s e l f) : r e turn " time "

12

13 de f __init__(s e l f , s o l v e r) :

14

15 i f s e l f . so lver_type == s o l v e r . supports [’ equation_dynamics ’] :

16 s e l f . s o l v e r = s o l v e r

17 e l s e :

18 r a i s e TypeError (" Argument ’ s o l v e r ’ type {1} does not match

modeling s o l v e r type {0} . " . format (s e l f . so lver_type ,

s o l v e r . supports [’ equation_dynamics ’]))

19

20 de f _setup_forward_rhs (s e l f , rhs_array , data) :

21 re turn s e l f . s o l v e r . mesh . pad_array (data , out_array=rhs_array)

22

23 de f forward_model_vd (s e l f , shot , m0, imaging_period ,

return_parameters = []) :

24 s o l v e r = s e l f . s o l v e r

25 s o l v e r . model_parameters = m0

26

27 mesh = s o l v e r . mesh

28

29 d = s o l v e r . domain

30 dt = s o l v e r . dt

31 nsteps = s o l v e r . ns teps

32 source = shot . s ou r c e s

33

34

35 i f ’ wave f i e l d ’ in return_parameters :

36 us = l i s t ()

37

117

38

39

40

41 i f ’ simvdata ’ in return_parameters :

42 simvdata1 = np . g rad i en t (np . z e r o s ((s o l v e r . nsteps , shot .

r e c e i v e r s . r ece iver_count)))

43 simvdata1 = np . array (simvdata1) . squeeze ()

44 simvdata = simvdata1 [1 , : , :]

45 simvdata = np . array (simvdata) . squeeze ()

46 simvdata = np . t ranspose (simvdata)

47 simvdata = np . array (simvdata) . squeeze ()

48 i f ’dWaveOp ’ in return_parameters :

49 dWaveOp = l i s t ()

50

51

52 so lver_data = s o l v e r . SolverData ()

53

54 rhs_k = np . z e r o s (mesh . shape (include_bc=True))

55 rhs_kp1 = np . z e ro s (mesh . shape (include_bc=True))

56

57 f o r k in xrange (nsteps) :

58

59 uk = solver_data . k . pr imary_wavef ie ld

60 uk_bulk = mesh . unpad_array (uk)

61

62 i f ’ wave f i e l d ’ in return_parameters :

63 us . append (uk_bulk . copy ())

64 i f ’ simvdata ’ in return_parameters :

65 shot . r e c e i v e r s . sample_data_from_array (uk_bulk , k , data=

simvdata)

66

118

67 i f k == 0 :

68 rhs_k = s e l f . _setup_forward_rhs (rhs_k , source . f (k∗dt))

69 rhs_kp1 = s e l f . _setup_forward_rhs (rhs_kp1 , source . f ((k

+1)∗dt))

70 e l s e :

71

72 rhs_k , rhs_kp1 = rhs_kp1 , rhs_k

73 rhs_kp1 = s e l f . _setup_forward_rhs (rhs_kp1 , source . f ((k+1)∗dt

))

74

75

76 s o l v e r . time_step (solver_data , rhs_k , rhs_kp1)

77

78

79 i f ’dWaveOp ’ in return_parameters :

80 i f k%imaging_period == 0 : #Save every ’ imaging_period ’

number o f s t e p s

81 dWaveOp . append (s o l v e r . compute_dWaveOp(’ time ’ ,

so lver_data))

82

83 i f (k == (nsteps −1)) : break

84

85

86

87 so lver_data . advance ()

88

89 r e t v a l = d i c t ()

90

91 i f ’ wave f i e l d ’ in return_parameters :

92 r e t v a l [’ wave f i e l d ’] = us

93 i f ’dWaveOp ’ in return_parameters :

119

94 r e t v a l [’dWaveOp ’] = dWaveOp

95

96 i f ’ simvdata ’ in return_parameters :

97 r e t v a l [’ simvdata ’] = simvdata

98

99 return r e t v a l

100

101 de f migrate_shot (s e l f , shot , m0,

102 operand_simvdata , imaging_period ,

operand_dWaveOpAdj=None , operand_model=

None ,

103 dWaveOp=None ,

104 a d j o i n t f i e l d=None , dWaveOpAdj=None) :

105 i f dWaveOp i s None :

106 r e t v a l = s e l f . forward_model_vd (shot , m0, imaging_period ,

return_parameters =[’dWaveOp ’])

107 dWaveOp = r e t v a l [’dWaveOp ’]

108

109 rp = [’ imaging_condit ion ’]

110 i f a d j o i n t f i e l d i s not None :

111 rp . append (’ a d j o i n t f i e l d ’)

112 i f dWaveOpAdj i s not None :

113 rp . append (’dWaveOpAdj ’)

114

115 rv = s e l f . adjoint_model (shot , m0, operand_simvdata ,

imaging_period , operand_dWaveOpAdj , operand_model ,

return_parameters=rp , dWaveOp=dWaveOp)

116

117 i f a d j o i n t f i e l d i s not None :

118 a d j o i n t f i e l d [:] = rv [’ a d j o i n t f i e l d ’] [:]

119 i f dWaveOpAdj i s not None :

120

120 dWaveOpAdj [:] = rv [’dWaveOpAdj ’] [:]

121

122

123 i c = rv [’ imaging_condit ion ’]

124

125

126 return i c . without_padding ()

127

128 de f _setup_adjoint_rhs (s e l f , rhs_array , shot , k , operand_simvdata ,

operand_model , operand_dWaveOpAdj) :

129

130 rhs_array = s e l f . s o l v e r . mesh . pad_array (shot . r e c e i v e r s .

extend_data_to_array (k , data=operand_simvdata) , out_array=

rhs_array)

131

132

133 i f (operand_dWaveOpAdj i s not None) and (operand_model i s not

None) :

134 rhs_array += operand_model∗operand_dWaveOpAdj [k]

135

136 return rhs_array

137

138 de f adjoint_model (s e l f , shot , m0, operand_simvdata , imaging_period ,

operand_dWaveOpAdj=None , operand_model=None , return_parameters

= [] , dWaveOp=None) :

139

140 s o l v e r = s e l f . s o l v e r

141 s o l v e r . model_parameters = m0

142

143 mesh = s o l v e r . mesh

144

121

145 d = s o l v e r . domain

146 dt = s o l v e r . dt

147 nsteps = s o l v e r . ns teps

148 source = shot . s ou r c e s

149

150 i f ’ a d j o i n t f i e l d ’ in return_parameters :

151 qs = l i s t ()

152 vs = l i s t ()

153

154

155 i f ’dWaveOpAdj ’ in return_parameters :

156 dWaveOpAdj = l i s t ()

157

158

159 i f dWaveOp i s not None :

160 i c = s o l v e r . model_parameters . pe r turbat i on ()

161 do_ic = True

162 e l i f ’ imaging_condit ion ’ in return_parameters :

163 r a i s e ValueError (’To compute imaging cond i t ion , forward

component must be s p e c i f i e d . ’)

164 e l s e :

165 do_ic = False

166

167

168 so lver_data = s o l v e r . SolverData ()

169

170 rhs_k = np . z e r o s (mesh . shape (include_bc=True))

171 rhs_km1 = np . z e ro s (mesh . shape (include_bc=True))

172

173 i f operand_model i s not None :

174 operand_model = operand_model . with_padding ()

122

175

176

177 f o r k in xrange (nsteps −1, −1, −1) :

178

179 vk = solver_data . k . pr imary_wavef ie ld

180 vk_bulk = mesh . unpad_array (vk)

181

182

183 i f ’ a d j o i n t f i e l d ’ in return_parameters :

184 vs . append (vk_bulk . copy ())

185

186

187 i f do_ic :

188 i f k%imaging_period == 0 :

189 entry = k/ imaging_period

190 i c += vk∗dWaveOp [entry]

191

192 i f k == nsteps −1:

193 rhs_k = s e l f . _setup_adjoint_rhs (rhs_k , shot , k ,

operand_simvdata , operand_model , operand_dWaveOpAdj)

194 rhs_km1 = s e l f . _setup_adjoint_rhs (rhs_km1 , shot , k−1,

operand_simvdata , operand_model , operand_dWaveOpAdj)

195 e l s e :

196 rhs_k , rhs_km1 = rhs_km1 , rhs_k

197 rhs_km1 = s e l f . _setup_adjoint_rhs (rhs_km1 , shot , k−1,

operand_simvdata , operand_model , operand_dWaveOpAdj)

198

199 s o l v e r . time_step (solver_data , rhs_k , rhs_km1)

200

201

202 i f ’dWaveOpAdj ’ in return_parameters :

123

203 i f k%imaging_period == 0 : #Save every ’ imaging_period ’

number o f s t e p s

204 dWaveOpAdj . append (s o l v e r . compute_dWaveOp(’ time ’ ,

so lver_data))

205

206 i f (k == 0) : break

207

208

209 so lver_data . advance ()

210

211 i f do_ic :

212 i c ∗= (−1∗dt)

213 i c ∗= imaging_period

214 i c = i c . without_padding ()

215

216 r e t v a l = d i c t ()

217

218 i f ’ a d j o i n t f i e l d ’ in return_parameters :

219

220 qs = l i s t (vs)

221 qs . r e v e r s e ()

222 r e t v a l [’ a d j o i n t f i e l d ’] = qs

223 i f ’dWaveOpAdj ’ in return_parameters :

224 dWaveOpAdj . r e v e r s e ()

225 r e t v a l [’dWaveOpAdj ’] = dWaveOpAdj

226

227 i f do_ic :

228 r e t v a l [’ imaging_condit ion ’] = i c

229

230 return r e t v a l

231

124

232 de f linear_forward_model_vd (s e l f , shot , m0, m1, return_parameters

= [] , dWaveOp0=None) :

233

234 s o l v e r = s e l f . s o l v e r

235 s o l v e r . model_parameters = m0

236

237 mesh = s o l v e r . mesh

238

239 d = s o l v e r . domain

240 dt = s o l v e r . dt

241 nsteps = s o l v e r . ns teps

242 source = shot . s ou r c e s

243

244 m1_padded = m1. with_padding ()

245

246 i f ’ wave f i e ld1 ’ in return_parameters :

247 us = l i s t ()

248 i f ’ simvdata ’ in return_parameters :

249

250 simvdata1 = np . g rad i en t (np . z e r o s ((s o l v e r . nsteps , shot .

r e c e i v e r s . r ece iver_count)))

251 simvdata1 = np . array (simvdata1) . squeeze ()

252 simvdata = simvdata1 [1 , : , :]

253 simvdata = np . array (simvdata) . squeeze ()

254 simvdata = np . t ranspose (simvdata)

255 simvdata = np . array (simvdata) . squeeze ()

256

257

258 i f ’dWaveOp0 ’ in return_parameters :

259 dWaveOp0ret = l i s t ()

260

125

261 i f ’dWaveOp1 ’ in return_parameters :

262 dWaveOp1 = l i s t ()

263

264

265 so lver_data = s o l v e r . SolverData ()

266

267 i f dWaveOp0 i s None :

268 solver_data_u0 = s o l v e r . SolverData ()

269

270

271 rhs_u0_k = np . z e ro s (mesh . shape (include_bc=True))

272 rhs_u0_kp1 = np . z e r o s (mesh . shape (include_bc=True))

273 rhs_u0_k = s e l f . _setup_forward_rhs (rhs_u0_k , source . f (0∗

dt))

274 rhs_u0_kp1 = s e l f . _setup_forward_rhs (rhs_u0_kp1 , source . f (1∗

dt))

275

276

277 s o l v e r . time_step (solver_data_u0 , rhs_u0_k , rhs_u0_kp1)

278

279

280 dWaveOp0_k = s o l v e r . compute_dWaveOp(’ time ’ , solver_data_u0)

281 dWaveOp0_kp1 = dWaveOp0_k . copy ()

282

283 solver_data_u0 . advance ()

284

285 rhs_u0_kp1 , rhs_u0_kp2 = rhs_u0_k , rhs_u0_kp1

286

287 e l s e :

288 solver_data_u0 = None

289

126

290 f o r k in xrange (nsteps) :

291 uk = solver_data . k . pr imary_wavef ie ld

292 uk_bulk = mesh . unpad_array (uk)

293

294 i f ’ wave f i e ld1 ’ in return_parameters :

295 us . append (uk_bulk . copy ())

296

297 i f ’ simvdata ’ in return_parameters :

298 shot . r e c e i v e r s . sample_data_from_array (uk_bulk , k , data=

simvdata)

299

300

301 i f dWaveOp0 i s None :

302

303 rhs_u0_kp1 , rhs_u0_kp2 = rhs_u0_kp2 , rhs_u0_kp1

304 rhs_u0_kp2 = s e l f . _setup_forward_rhs (rhs_u0_kp2 , source .

f ((k+2)∗dt))

305 s o l v e r . time_step (solver_data_u0 , rhs_u0_kp1 , rhs_u0_kp2)

306 dWaveOp0_k , dWaveOp0_kp1 = dWaveOp0_kp1 , dWaveOp0_k

307 dWaveOp0_kp1 = s o l v e r . compute_dWaveOp(’ time ’ ,

solver_data_u0)

308

309 solver_data_u0 . advance ()

310 e l s e :

311 dWaveOp0_k = dWaveOp0 [k]

312 dWaveOp0_kp1 = dWaveOp0 [k+1] i f k < (nsteps −1) e l s e

dWaveOp0 [k] # in case not enough dWaveOp0 ’ s are

provided , repea t the l a s t one

313

314 i f ’dWaveOp0 ’ in return_parameters :

315 dWaveOp0ret . append (dWaveOp0_k)

127

316

317 i f k == 0 :

318 rhs_k = m1_padded∗(−1∗dWaveOp0_k)

319 rhs_kp1 = m1_padded∗(−1∗dWaveOp0_kp1)

320 e l s e :

321 rhs_k , rhs_kp1 = rhs_kp1 , m1_padded∗(−1∗dWaveOp0_kp1)

322

323 s o l v e r . time_step (solver_data , rhs_k , rhs_kp1)

324

325 i f ’dWaveOp1 ’ in return_parameters :

326 dWaveOp1 . append (s o l v e r . compute_dWaveOp(’ time ’ ,

so lver_data))

327 i f (k == (nsteps −1)) : break

328 so lver_data . advance ()

329

330 r e t v a l = d i c t ()

331

332 i f ’ wave f i e ld1 ’ in return_parameters :

333 r e t v a l [’ wave f i e ld1 ’] = us

334 i f ’dWaveOp0 ’ in return_parameters :

335 r e t v a l [’dWaveOp0 ’] = dWaveOp0ret

336 i f ’dWaveOp1 ’ in return_parameters :

337 r e t v a l [’dWaveOp1 ’] = dWaveOp1

338 i f ’ simvdata ’ in return_parameters :

339 r e t v a l [’ simvdata ’] = simvdata

340

341 return r e t v a l

128

B.3 Inverse Problem and Optimization

Here we put one of our inverse modelling codes for horizontal reflector model.

Having forward problem and derivatives we can approach vector-acoustic FWI.

B.4 Inversion Python Code for Horizontal Reflec-

tor

1

2 from my_extensions . vector_data_modeling import ∗

3 import copy

4

5 __all__ = [’ TemporalLeastSquaresHorizontalVDFWI ’]

6

7 __docformat__ = " r e s t r u c t u r e d t e x t en "

8

9 c l a s s TemporalLeastSquaresHorizontalVDFWI (Object iveFunct ionBase) :

10

11 de f __init__(s e l f , s o l v e r , paral le l_wrap_shot=Paral le lWrapShotNul l ()

, imaging_period = 1) :

12

13 s e l f . s o l v e r = s o l v e r

14 s e l f . model ing_tools =

TemporalModelingVDPointForceSourceHorizontal (s o l v e r)

15

16 s e l f . paral le l_wrap_shot = paral le l_wrap_shot

17

18 s e l f . imaging_period = i n t (imaging_period)

19

20 de f _res idua l (s e l f , shot , m0, dWaveOp=None) :

129

21

22 rp = [’ simvdata ’]

23 i f dWaveOp i s not None :

24 rp . append (’dWaveOp ’)

25

26 r e t v a l = s e l f . model ing_tools . forward_model_vd (shot , m0, s e l f .

imaging_period , return_parameters=rp)

27

28

29

30

31

32 VD_retval = np . g rad i en t (r e t v a l [’ simvdata ’])

33 VD_retval = np . array (VD_retval) . squeeze ()

34 VD = VD_retval [1 , : , :]

35 VD = np . array (VD) . squeeze ()

36 VD = np . t ranspose (VD)

37 VD = np . array (VD) . squeeze ()

38

39 r e s i d = shot . r e c e i v e r s . in te rpo la te_data (s e l f . s o l v e r . t s ()) − VD

40 i f dWaveOp i s not None :

41 dWaveOp [:] = r e t v a l [’dWaveOp ’] [:]

42

43 re turn r e s i d

44

45 de f eva luate (s e l f , shots , m0, ∗∗kwargs) :

46

47 r_norm2 = 0

48 f o r shot in shot s :

49 r = s e l f . _res idua l (shot , m0)

50 r_norm2 += np . l i n a l g . norm(r) ∗∗2

130

51

52 i f s e l f . paral le l_wrap_shot . u s e_ p a r a l l e l :

53 new_r_norm2 = np . array (0 . 0)

54 s e l f . paral le l_wrap_shot .comm. Al l r educe (np . array (r_norm2) ,

new_r_norm2)

55 r_norm2 = new_r_norm2 [()] # goofy way to acces s 0−D array

element

56

57 return 0 .5∗ r_norm2∗ s e l f . s o l v e r . dt

58

59 de f _gradient_helper (s e l f , shot , m0, ignore_minus=False ,

ret_pseudo_hess_diag_comp = False , ∗∗kwargs) :

60

61 dWaveOp=[]

62 r = s e l f . _res idua l (shot , m0, dWaveOp=dWaveOp, ∗∗kwargs)

63

64

65 g = s e l f . model ing_tools . migrate_shot (shot , m0, r , s e l f .

imaging_period , dWaveOp=dWaveOp)

66

67 i f not ignore_minus :

68 g = −1∗g

69

70 i f ret_pseudo_hess_diag_comp :

71 re turn g , r , s e l f . _pseudo_hessian_diagonal_component_shot (

dWaveOp)

72 e l s e :

73 re turn g , r

74

75 de f _pseudo_hessian_diagonal_component_shot (s e l f , dWaveOp) :

76 mesh = s e l f . s o l v e r . mesh

131

77

78 import time

79 t t = time . time ()

80 pseudo_hessian_diag_contrib = np . z e r o s (mesh . unpad_array (dWaveOp

[0] , copy=True) . shape)

81 f o r i in xrange (l en (dWaveOp)) :

82 unpadded_dWaveOp_i = mesh . unpad_array (dWaveOp [i])

83 pseudo_hessian_diag_contrib += unpadded_dWaveOp_i∗

unpadded_dWaveOp_i

84

85 pseudo_hessian_diag_contrib ∗= s e l f . imaging_period #Compensate

f o r doing fewer summations at h i ghe r imaging_period

86

87 p r i n t "Time e lapsed when computing pseudo he s s i an d iagona l

c on t r i bu t i on shot : %e "%(time . time () − t t)

88

89 re turn pseudo_hessian_diag_contrib

90

91 de f compute_gradient (s e l f , shots , m0, aux_info ={}, ∗∗kwargs) :

92

93 grad = m0. pe r turbat i on ()

94 r_norm2 = 0 .0

95 pseudo_h_diag = np . z e r o s (m0. asar ray () . shape)

96 f o r shot in shot s :

97 i f (’ pseudo_hess_diag ’ in aux_info) and aux_info [’

pseudo_hess_diag ’] [0] :

98 g , r , h = s e l f . _gradient_helper (shot , m0, ignore_minus=

True , ret_pseudo_hess_diag_comp = True , ∗∗kwargs)

99 pseudo_h_diag += h

100 e l s e :

132

101 g , r = s e l f . _gradient_helper (shot , m0, ignore_minus=True

, ∗∗kwargs)

102

103 grad −= g # handle the minus 1 in the d e f i n i t i o n o f the

g rad i en t o f t h i s o b j e c t i v e

104 r_norm2 += np . l i n a l g . norm(r) ∗∗2

105

106

107 i f s e l f . paral le l_wrap_shot . u s e_ p a r a l l e l :

108

109 new_r_norm2 = np . array (0 . 0)

110 s e l f . paral le l_wrap_shot .comm. Al l r educe (np . array (r_norm2) ,

new_r_norm2)

111 r_norm2 = new_r_norm2 [()] # goofy way to acces s 0−D array

element

112

113 ngrad = np . z e r o s_ l i k e (grad . asar ray ())

114 s e l f . paral le l_wrap_shot .comm. Al l r educe (grad . asar ray () , ngrad

)

115 grad=m0. pe r turbat i on (data=ngrad)

116

117 i f (’ pseudo_hess_diag ’ in aux_info) and aux_info [’

pseudo_hess_diag ’] [0] :

118 pseudo_h_diag_temp = np . z e ro s (pseudo_h_diag . shape)

119 s e l f . paral le l_wrap_shot .comm. Al l r educe (pseudo_h_diag ,

pseudo_h_diag_temp)

120 pseudo_h_diag = pseudo_h_diag_temp

121

122

123 r_norm2 ∗= s e l f . s o l v e r . dt

124 pseudo_h_diag ∗= s e l f . s o l v e r . dt

133

125

126

127 i f (’ residual_norm ’ in aux_info) and aux_info [’ residual_norm ’

] [0] :

128 aux_info [’ residual_norm ’] = (True , np . s q r t (r_norm2))

129 i f (’ ob j ec t ive_va lue ’ in aux_info) and aux_info [’ ob j ec t ive_va lue

’] [0] :

130 aux_info [’ ob j ec t ive_va lue ’] = (True , 0 .5∗ r_norm2)

131 i f (’ pseudo_hess_diag ’ in aux_info) and aux_info [’

pseudo_hess_diag ’] [0] :

132 aux_info [’ pseudo_hess_diag ’] = (True , pseudo_h_diag)

133

134 return grad

135

136 de f apply_hess ian (s e l f , shots , m0, m1, hessian_mode=’ approximate ’ ,

levenberg_mu =0.0 , ∗ args , ∗∗kwargs) :

137

138 modes = [’ approximate ’ , ’ f u l l ’ , ’ l evenberg ’]

139 i f hessian_mode not in modes :

140 r a i s e ValueError (" I n v a l i d Hess ian mode . Val id opt ions f o r

apply ing he s s i an are {0} " . format (modes))

141

142 r e s u l t = m0. pe r turbat i on ()

143

144 i f hessian_mode in [’ approximate ’ , ’ l evenberg ’] :

145 f o r shot in shot s :

146

147 r e t v a l = s e l f . model ing_tools . forward_model_vd (shot , m0,

return_parameters =[’dWaveOp ’])

148 dWaveOp0 = r e t v a l [’dWaveOp ’]

149

134

150 l i n e a r _ r e t v a l = s e l f . model ing_tools .

linear_forward_model_vd (shot , m0, m1,

return_parameters =[’ simvdata ’] , dWaveOp0=dWaveOp0)

151

152 d1 = l i n e a r _ r e t v a l [’ simvdata ’]

153

154 ##### vector−data again

155

156 VD_retval1 = np . g rad i en t (d1)

157 VD_retval1 = np . array (VD_retval1) . squeeze ()

158 VD1 = VD_retval1 [1 , : , :]

159 VD1 = np . array (VD1) . squeeze ()

160 VD1 = np . t ranspose (VD1)

161 VD1 = np . array (VD1) . squeeze ()

162 r e s u l t += s e l f . model ing_tools . migrate_shot (shot , m0, VD1

, dWaveOp=dWaveOp0)

163

164 e l i f hessian_mode == ’ f u l l ’ :

165 f o r shot in shot s :

166

167 dWaveOp0 = l i s t ()

168 r0 = s e l f . _res idua l (shot , m0, dWaveOp=dWaveOp0 , ∗∗kwargs

)

169

170 l i n e a r _ r e t v a l = s e l f . model ing_tools .

linear_forward_model_vd (shot , m0, m1,

return_parameters =[’ simvdata ’ , ’dWaveOp1 ’] , dWaveOp0=

dWaveOp0)

171 d1 = l i n e a r _ r e t v a l [’ simvdata ’]

172 dWaveOp1 = l i n e a r _ r e t v a l [’dWaveOp1 ’]

173

135

174 VD_retval1 = np . g rad i en t (d1)

175 VD_retval1 = np . array (VD_retval1) . squeeze ()

176 VD1 = VD_retval1 [1 , : , :]

177 VD1 = np . array (VD1) . squeeze ()

178 VD1 = np . t ranspose (VD1)

179 VD1 = np . array (VD1) . squeeze ()

180

181

182 dWaveOpAdj1=[]

183 r e s1 = s e l f . model ing_tools . migrate_shot (shot , m0, r0 ,

dWaveOp=dWaveOp1 , dWaveOpAdj=dWaveOpAdj1)

184 r e s u l t += re s1

185

186 r e s2 = s e l f . model ing_tools . migrate_shot (shot , m0, VD1,

operand_dWaveOpAdj=dWaveOpAdj1 , operand_model=m1,

dWaveOp=dWaveOp0)

187 r e s u l t += re s2

188

189 i f s e l f . paral le l_wrap_shot . u s e_ p a r a l l e l :

190

191 n r e s u l t = np . z e r o s _ l i k e (r e s u l t . a sar ray ())

192 s e l f . paral le l_wrap_shot .comm. Al l r educe (r e s u l t . a sar ray () ,

n r e s u l t)

193 r e s u l t = m0. pe r turbat i on (data=n r e s u l t)

194 i f hessian_mode == ’ l evenberg ’ :

195 r e s u l t += levenberg_mu∗m1

196

197 return r e s u l t

198

199 ___

200 from c o l l e c t i o n s import deque

136

201

202 __all__=[’LBFGSMODIF ’]

203

204 __docformat__ = " r e s t r u c t u r e d t e x t en "

205

206 c l a s s LBFGSMODIF(OptimizationBase) :

207

208 de f __init__(s e l f , object ive_0 , ob ject ive_1 = None , memory_length=

None , reset_on_new_inner_loop_call=True , geom_fac = 0 . 6 ,

geom_fac_up = 0 . 7 , s ca l e_step = False , ∗ args , ∗∗kwargs) :

209 i f ob ject ive_1 == None :

210 object ive_1 = object ive_0

211

212 OptimizationBase . __init__(s e l f , object ive_0 , object ive_1 ,

geom_fac = geom_fac , geom_fac_up = geom_fac_up , ∗ args , ∗∗

kwargs)

213 s e l f . prev_alpha = None

214 s e l f . prev_model = None

215 s e l f . memory_length=memory_length

216 s e l f . reset_on_new_inner_loop_call = reset_on_new_inner_loop_call

217 s e l f . s ca l e_step = sca l e_step

218

219 s e l f . _reset_memory ()

220

221 de f _reset_memory (s e l f) :

222 s e l f . memory = deque ([] , maxlen=s e l f . memory_length)

223 s e l f . _reset_l ine_search = True

224 s e l f . prev_model = None

225

226 de f inner_loop (s e l f , ∗ args , ∗∗kwargs) :

227

137

228 i f s e l f . reset_on_new_inner_loop_call :

229 s e l f . _reset_memory ()

230

231 OptimizationBase . inner_loop (s e l f , ∗ args , ∗∗kwargs)

232

233 de f _se lect_step (s e l f , shot_0 , shot_1 , beta , beta_scale ,

current_object ive_value , grad ient , i t e r a t i o n , object ive_arguments

, ∗∗kwargs) :

234 mem = s e l f . memory

235

236 q = copy . deepcopy (g rad i en t)

237

238 x_k = copy . deepcopy (s e l f . base_model)

239

240

241 i f l en (mem) > 0 :

242 mem[−1] [2] += grad i en t # y

243 mem[−1] [1] = x_k − s e l f . prev_model #Sub t rac t i on w i l l r e s u l t

a model per turba t i on , which i s l i n e a r .

244 mem[−1] [0] = 1 ./mem[− 1] [2] . inner_product (mem[− 1] [1]) # rho

245 gamma = mem[− 1] [1] . inner_product (mem[− 1] [2]) / mem[− 1] [2] .

inner_product (mem[− 1] [2])

246 e l s e :

247 gamma = 1.0

248

249 alphas = []

250

251 f o r rho , s , y in r eve r s ed (mem) :

252 alpha_ = rho ∗ s . inner_product (q)

253 t= alpha_ ∗ y

254 q −= t

138

255 alphas . append (alpha_)

256

257 alphas . r e v e r s e ()

258

259 r = gamma ∗ q

260

261 f o r alpha_ , m in z ip (alphas , mem) :

262 rho , s , y = m

263 beta_ = rho∗y . inner_product (r)

264 r += (alpha_−beta_) ∗ s

265

266

267 d i r e c t i o n = −1.0∗ r

268

269 alpha0_kwargs = { ’ r e s e t ’ : Fa l se }

270 i f s e l f . _reset_l ine_search :

271 alpha0_kwargs = { ’ r e s e t ’ : True}

272 s e l f . _reset_l ine_search = False

273

274 s e l f . unscaled_suggested_step = d i r e c t i o n

275 alpha_ = s e l f . s e l e c t_a lpha (shot_0 , shot_1 , beta , beta_scale ,

grad ient , d i r e c t i o n , object ive_arguments ,

276 current_object ive_va lue=

current_object ive_value ,

277 alpha0_kwargs=alpha0_kwargs , ∗∗kwargs)

278

279 s e l f . _print (’ alpha {0} ’ . format (alpha_))

280 s e l f . s t o r e_h i s t o ry (’ alpha ’ , i t e r a t i o n , alpha_)

281

282 step = alpha_ ∗ d i r e c t i o n

283

139

284

285 s e l f . prev_model = x_k

286 s e l f . memory . append ([None , None , copy . deepcopy(−1∗ grad i ent)])

287

288 return step

289

290

291 de f _compute_alpha0 (s e l f , phi0 , grad0 , r e s e t=False , ∗ args , ∗∗kwargs)

:

292 i f r e s e t :

293 s e l f . did_grad_descent = True

294 return phi0 / (grad0 . norm () ∗np . prod (s e l f . s o l v e r . mesh . d e l t a s)

) ∗∗2

295 e l s e :

296 i f s e l f . s ca l e_step and not s e l f . did_grad_descent :

297 mem = s e l f . memory

298 last_accepted_step = mem[−1] [1]

299 last_accepted_step_len = np . sq r t (np . l i n a l g . norm(

last_accepted_step . p_0 . data) ∗∗2 + np . l i n a l g . norm(

last_accepted_step . p_1 . data) ∗∗2)

300

301 geom_fac_up = kwargs [’ upsca l e_fac to r ’]

302 desired_new_step_len = last_accepted_step_len /

geom_fac_up

303

304 current_new_step_len = np . sq r t (np . l i n a l g . norm(s e l f .

unscaled_suggested_step . p_0 . data) ∗∗2 + np . l i n a l g . norm

(s e l f . unscaled_suggested_step . p_1 . data) ∗∗2)

305

306

307 ret_val = desired_new_step_len /current_new_step_len

140

308

309 i f ret_val > 1 . 0 :

310

311 ret_val = 1 .0

312

313 e l s e :

314 ret_val = 1 .0

315

316 s e l f . did_grad_descent = False

317 re turn ret_val

141

B.5 Discretization of Regularization

Here we explain the discretization of our quadratic regularization.

If we consider the regularization of the form

R = 1
2

∫
Ω
α0m

2 + α1(x)m2
x + α2(x)m2

y dv =

= 1
2

∫
Ω
α0m

2 + (mx my)

 α1

α2

 mx

my

 dv,
(B.2)

where αi(x) i = 0, 1, 2 are positive coefficient functions.

Figure B.1: Model discretization in a 2D staggered grid, explaining finite difference
method by letting J1 = mx and J2 = my.

We can assume that m is discretized in cell centers as shown in Fig. B.1. Let

142

J1 = mx and J2 = my. Using finite difference method we have

(J1)i+ 1
2 ,j

= 1
h

(mi+1,j −mi,j) +O(h2),

(J2)i,j+ 1
2

= 1
h

(mi,j+1 −mi,j) +O(h2).

This formulation leads to a staggered grid, i.e. J1, J2 andm are discretized in different

locations. Using a combination of the trapezoidal and midpoint method we can now

discretize R(m). Considering i and j cells, we have

∫
Ωi,j

m2 dv = h2m2
i,j +O(h2).

Similarly, for approximation of the derivatives we have

∫
Ωi,j

m2
x dv = 1

2((mi+1,j −mi,j)2 + (mi,j −mi−1,j)2) +O(h2),

∫
Ωi,j

m2
y dv = 1

2((mi,j+1 −mi,j)2 + (mi,j −mi,j−1)2) +O(h2).

If we sum over all cells we obtain a second order approximation to the integral. We

can our discretization in matrix form. In order to discretize gradient of m, we need

to use our gradient discretization in previous sections i. e.,

D = 1
h

−1 1 0

0 −1 1

 .

Then, using the Kronecker product we can approximate the gradient by the matrix

∇h =

I ⊗D
D ⊗ I

 .

143

Here ∇h : cell centers ⇒ cell faces. Now we build a matrix that approximates the

averaging process. We can do it by a combination of 1D matrices and Kronecker

products. Therefore, in 1D we have

A = 1
2

2

1 1
.

2

.

In 2D we write

Av =
[
I ⊗ A A⊗ I

]
,

and we have Av : cell faces ⇒ cell centers. By having all of these operators now we

can approximate the integral as

R = m>diag(v) m+ v> Av((∇hm)� (∇hm)) = m> ∇>h diag(A>v v) ∇h m.

Where � is Hadamard product.

144

