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Abstract  

Hydrodesulfurization (HDS) is an important process in refining industries. Advanced 

control system (e.g. model predictive controller) requires on-line measurement of the 

product sulfur at the reactor outlet. However, most HDS processes do not have a sulfur 

analyzer at the reactor outlet. In order to predict product sulfur concentration usually a 

data based sulfur predictor is developed. Performance of data based predictor is usually 

poor since some of the input parameters (e.g. feed sulfur concentration) are unknown. 

The objective of this thesis is to overcome these limitations of data based predictors and 

develop an online product sulfur predictor for HDS unit. In this thesis, a hybrid model is 

proposed, developed and validated (using industrial data), which could predict product 

sulfur concentration for online HDS system. The proposed hybrid structure is a 

combination of a reaction kinetics based HDS reactor model and an empirical model 

based on support vector regression (SVR). The mechanistic model runs in off-line mode 

to estimate the feed sulfur concentration while the data based model uses the estimated 

feed sulfur concentration and other process variables to predict the product sulfur 

concentration. The predicted sulfur concentration can be compared with the lab 

measurements or sulfur analyzer located further downstream of the process at the 

tankage. In case there is a large discrepancy, the predictor goes to a calibration mode and 

uses the mechanistic model to re-estimate the feed sulfur concentration. The detailed 

logic for the online prediction is also developed. Finally a Matlab based Graphical User 

Interface (GUI) has been developed for the hybrid sulfur predictor for easy 

implementation to any HDS process. 
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Chapter 1 

1 Introduction   

1.1 Importance of Desulfurization Process 

Petroleum  consists of a significant  part  of  our  lives  and  will  do  so  for  upcoming 

decades.  The  fuel  that  is  produced  from  petroleum, supplies more  than  half  of  the 

world's  total  supply  of  energy.  Gasoline, kerosene and diesel oil provide fuel for 

automobiles, aircrafts and ships. Fuel oil, heavy oil and natural gas are employed for 

heating homes and commercial buildings in addition to generating electricity. The 

declining reserves of oil in the world have resulted in decline in quality of petroleum, 

which has caused the nature of crude oil refining to change considerably (Speight et al., 

2015). 

 

The fuels extracted these days have high traces of sulfur, nitrogen, aromatic and various 

other compounds. The presence of sulfur and other compounds in crude oil has a 

significant impact upon quality of oil products. On combustion of such fuels, sulfur 

compounds releases into atmosphere as harmful sulfur oxides (SOx) and sulfate 

particulates. These SOx compounds are hygroscopic and in atmosphere, it reacts with 

humidity to forms sulfuric and sulfurous aerosol acid (acid rain). The exposure to sulfates 

and to acids derived from SOx compounds can cause corneal haze, breathing difficulty, 

airways inflammation, eye irritation, psychic alterations, pulmonary edema, heart failure 

and circulatory collapse. Sulfur compounds can also cause asthma, chronic bronchitis, 
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morbidity and mortality increase in old people and infants. These compounds are noxious 

venom for vegetation when compared to human health. For example, the level of 0.3 SOx 

µg per cubic meter of air implies a potential risk for human health, but for plants 0.2 SOx 

µg per cubic meter of air is lethal. Therefore, sulfur oxides (SOx) and sulfuric acid 

(H2SO4) causes damage and destruction of vegetation, soil deterioration, corrosion of 

construction material and erosion of watercourses (De la Paz-Zavala et al., 2013; 

Khalfhallah et al., 2009; Mederos et al., 2007). Usage of high sulfur concentration fuel 

can also cause corrosion of automobile engine, affecting its performance and increasing it 

maintenance. Studies have shown that amount of SOx emissions is directly proportional 

to the amount of sulfur contained in the fuel (Kim et al., 2013). The SOx oxides, 

particulates and other harmful pollutants present in atmosphere are main reasons for 

targeting sulfur content in fuel and decreasing it to lower levels in many countries 

worldwide. It has been proved that low level sulfur fuels and use of appropriate 

particulate filters can reduce particulate matter by as much as 90% (Marafi et al., 2007). 

Therefore, desulfurization of fuel oils is an important process in oil refinery.  

 

In order to limit the concentration of SOx, various countries have now stringent 

specification on petroleum products including diesel. The Environmental Protection 

Agency (EPA) has changed the allowable to limit sulfur in diesel fuels from 500 ppm 

(low sulfur diesel (LSD)) to 15ppm (ultra-low sulfur diesel (ULSD)) in 2010 (Ocic et al., 

2010). Similar regulations have been proposed by European Commission (Jones et al., 

2006), while the same path is followed by other legislations, introducing, limitations on 
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sulfur concentration in fuels. In EU, by the year 2006, the sulfur content was reduced to 

50 ppm. By January of  2011  all  on-road  diesel  in  EU had  a  specification  of  

maximum  10  ppm sulfur. In the EU, Germany was the first country to adopt the 10 ppm 

sulfur limit. Other EU countries and Japan introduced diesel fuel with 10 ppm soon after 

Germany. (EU fuel Regulation, 2016, Japan Fuel Regulation, 2016). Thus low sulfur 

concentration fuel has a demand in current market, making desulfurization as an 

important process. 

 

1.2    Brief description of Different method for desulfurization  

Desulfurization processes can broadly be classified in two groups, „hydrotreating based‟ 

and „non-hydrotreating based‟, desulfurization depending on the role of hydrogen in 

removing sulfur (Figure. 1.1) (Babich et al.,2003). In hydrotreating based process 

hydrogen is used to decompose organosulfur compounds and eliminate sulfur while non-

hydrotreating based process uses other means to remove sulfur.      
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Figure 1.1: Desulfurization technology classified by nature of a key process to remove 

Sulfur (Babich et al., 2003) 

1.3    Hydrodesulfurization process 

Among all the various methods of desulfurization, hydrodesulfurization process 

(conventional HDS as per Figure 1.1) is commonly used to produce ultra-low 

concentration sulfur fuel. In hydrodesulfurization process, hydrogen gas reacts with 

liquid fuel with high sulfur concentration on a Nickel – Molybdenum catalyst bed to 

produce low sulfur concentration fuel with hydrogen sulfide gas. The overall reaction is 

stated as follows  

       
 

 
                 

As all the three phases are present (i.e.    in gaseous phase, fuel with high concentration 

of sulfur reacting, in a liquid phase on a Ni-Mo catalyst bed, solid phase) during the HDS 
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reaction, trickle bed reactor is used for HDS reaction (Farahani et al., 2011). In industrial 

scenario, as HDS unit is generally at the end of the process, effluents from various 

different units, having different sulfur concentration are passed through HDS unit to 

decrease sulfur concentration in fuel. This causes feed sulfur concentration values to vary 

in HDS unit. This results in fluctuation in product sulfur concentration accordingly, 

which may or may not result into a fuel with desired sulfur concentration. Thus, a 

predictor task is to predict the product sulfur concentration for the given feed conditions 

to HDS unit. Based on its estimation of product sulfur concentration controller will take 

necessary actions in order to ensure that the product sulfur concentration produced has 

always have acceptable sulfur levels.  

 

1.3.1 Historical development of HDS process models 

Various sulfur predictor have been designed which are able to predict the product sulfur 

concentration for a HDS unit. Initially, steady state models (mathematical models) were 

developed which described and captured HDS unit (Babich et al., 2003). These models 

were one dimensional heterogeneous model, using kinetic rate equations to describe 

HDS. These proposed models were able to predict product sulfur concentration in steady 

state. However, mathematical models developed in recent times, were able to capture 

dynamic behavior of HDS unit while predicting product sulfur concentration (Mederos et 

al., 2009; Deng et al., 2010; Cicili et al., 2009). Mathematical models can‟t predict for 

online simulations due to their shortcomings, therefore data driven model were used to 

develop model for HDS unit. (Lukec et al., 2008).  Data driven models has its advantages 
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over mathematical model and these models are able to capture dynamic behavior of HDS 

unit in order to predict  product sulfur concentration. (Kadlec et al., 2009; Lukec et al., 

2008). When it comes to online prediction even data driven model has its limitations, as 

these models are only limited to the ranges they are trained for. Thus, the data used to 

trained these data driven model checked for any data outliners and noise, in order to 

minimize the modelling error.  Thus in recent times, hybrid models are being used to 

predict the product sulfur concentration. These models are able to extrapolate and 

interpolate more accurately than data driven or mathematical models while estimating 

product sulfur concentration. (Bhutani et al., 2006).  

 

1.3.2 Problem encounter / formulation  

There are various sulfur predictors developed in past (Von Stosch et al., 2014), which can 

capture the dynamic behavior and can predict product sulfur concentration for HDS unit. 

These proposed sulfur models predicts product sulfur concentration satisfactorily for 

offline prediction.  However, for an industrial perspective, it is necessary to predict sulfur 

concentration for HDS unit on an online system, which is a hassle because  

 The feed sulfur concentration keeps on fluctuating, as the effluents from various 

different units having different sulfur concentrations are passed through HDS 

unit. In absence of sulfur analyzer at the beginning of HDS unit, no data is being 

recorded regarding feed sulfur concentration. Therefore, for any online predictor, 

predicting product sulfur concentration in absence of feed sulfur concentration 

data is quite difficult, especially when feed sulfur concentration keeps on varying. 
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 Unlike the input stream of HDS reactor, there is a sulfur analyzer installed at the 

output stream for the HDS unit. It records the product sulfur concentration and 

sends it back to the online predictor with a time lag. This causes hindrance in 

predicting product sulfur concentration effectively in a continuous manner.   

 

In this thesis, our objective is to develop a sulfur predictor, when implemented on an 

online system for prediction will not only be able to handle above mentioned problems 

but also can predict product sulfur concentration effectively. 

 

1.4  Objective of this thesis 

Based on the problem stated above, in this thesis, a sulfur predictor is developed which 

estimates product sulfur concentration for a HDS unit when implemented on an online 

system. As numerous sulfur predictors are developed in past we have developed a sulfur 

predictor, which estimates feed sulfur concentration before it estimates product sulfur 

concentration. Our hypothesis is, as product sulfur concentration is affected by feed 

sulfur concentration, estimating feed sulfur concentration and utilizing that info to predict 

product sulfur concentration will ensure that our product sulfur estimation is as close as 

to any given HDS unit (even for online predictions). Therefore, our proposed model will 

be able to predict product sulfur concentration effectively and continuously. The 

proposed hybrid model will be validated with lab scale reactor and with industrial data. 
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A Graphical User Interface (GUI) is design in the later part of this thesis, which will 

assist implementation of our proposed sulfur predictor on any HDS unit. The sulfur 

predictor designed in this thesis will be able to overcome all the obstacles mentioned in 

section 1.3.2 and would be able to predict online product sulfur concentration effectively.     

 

1.5    Thesis Layout  

Chapter 1, gives a brief about Hydrodesulfurization and Desulfurization and states the 

problems encounter when a sulfur predictor is implemented online to estimate product 

sulfur concentration for HDS unit. It also mentions the objective of this thesis. Chapter 2, 

states literature review on past developed sulfur predictors for Hydrodesulfurization 

(HDS) unit. It states about different types of HDS process have been developed to 

improve the efficiency of desulfurization process. It also covers different types of sulfur 

predictors developed in past which can capture the trend of hydrodesulfurization process 

and can predict product sulfur concentration for HDS unit. Chapter 3, states a 

mathematical model and validates the same for a lab-scale reactor and industrial reactor. 

The mathematical model validated in this thesis is able to capture the dynamic nature of 

HDS unit while predicting product sulfur concentration effectively. In this chapter, 

sensitivity analysis of mathematical model is conducted which justifies the importance of 

feed sulfur concentration data while predicting product sulfur concentration for HDS unit. 

In chapter 4, we develop an empirical (data driven) model, which will be part of our 

proposed hybrid model for online product sulfur concentration prediction. Using Design 

of experiments technique, we improve the prediction of our data driven model. This new 
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data driven model is validated and results are stated in this chapter. Chapter 5, states 

Hybrid model and explains the proposed hybrid model for the HDS unit. This chapter 

gives details how mathematical model and data driven model developed in earlier 

chapters are combined together to develop hybrid model, without affecting the speed of 

simulation. In this chapter, proposed hybrid model validated (with a lab – scale and 

industrial reactor) and results are stated. In chapter 6, graphical user interfaces (GUI) is 

design and develop which assists our proposed structure of sulfur model to estimate 

product sulfur concentration when implemented on an online scenario, for any given 

HDS unit. In this chapter, GUI is simulated and results are stated using the industrial real 

time data collected from an HDS unit. Chapter 7 concludes the thesis with conclusion of 

this thesis. 
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Chapter 2 

2 Literature Survey 

2.1 Different types of HDS process 

As mentioned in Figure 1.1, there are different ways in which HDS process can be 

classified. In this section these different types of HDS process are explained in brief as 

follows  

 

2.1.1 Conventional HDS 

Catalytic HDS for crude oil and refinery streams is carried out at elevated temperature. 

Hydrogen partial pressure converts organosulfur compounds to hydrogen sulfide (H2S) 

and hydrocarbons. Detailed description of the HDS process is presented in the literature 

(Henrik et al., 1996; Chen et al., 2010). The conventional HDS process is usually 

conducted with CoMo/Al2O3 and NiMo/Al2O3 catalysts (Henrik et al., 1996). Factors 

affecting HDS reactions are desulfurization level, activity and selectivity depends on the 

properties of the specific catalyst used, the reaction conditions, compositions of various 

compounds present in the feed stream, and reactor and process design. 

 

2.1.2 HDS by advanced catalyst  

Deep desulfurization is achieved by increasing the severity of process conditions. But 

severe process conditions results not only in deep sulfurization but also undesirable 

conditions. This could be avoided if catalyst with improved pore activity and selectivity 
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is used.  Advance catalyst like Cobalt – Molybdenum (Co-Mo) and Nickel–Molybdenum 

(Ni-Mo) with high selectivity for sulfur and nitrogen removal can improve 

desulfurization process for existing HDS reactors. Also in some cases these catalyst are 

synthesized which not only have improved pore activity and selectivity but also improve 

octane number or aromatics content which are essential for high fuel quality. Co-Mo 

catalyst performs better when operating pressure is low and feed has little amount of 

impurities. Ni-Mo catalyst performs better for heavier feeds and at higher pressures. The 

main factors that should be considered in selection of appropriate catalysts for the 

production of low sulfur fuel are (Vergov et al., 2009; Stratiev et al., 2006). 

 The activity of the catalyst in desulfurizing, the least reactive sterically hindered 

alkyl Dibenzothiophene. 

 Feedstock quality, especially the concentration of inhibiting compounds (i.e. 

hydrogen sulfide and other aromatics) in the feedstock, feed blend components, 

distillation range, etc. 

 Operating variables, especially, the hydrogen partial pressure. 

 

2.1.3 HDS by Advanced Reactor Design  

Counter-current operations  

Conventionally  used  hydro treating  reactors  are fixed – beds  with  concurrent  supply  

of  oil  streams  and hydrogen, resulting in unfavorable H2 and H2S concentration profiles 

through the reactor. Counter–current operations can provide a more preferable 

concentration profile. In counter–current reactor operation mode, the oil feed is 
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introduced into the reactor at the top and hydrogen is introduced at the bottom of the 

reactor. H2S is removed from the reactor at the top, avoiding possible recombination of 

H2S and olefins at the reactor outlet, this results in better level of desulfurization level as 

compared to concurrent flow because presence of H2S inhibits the process. Counter 

current operation yields lower sulfur, higher conversion and efficient removal of other 

impurities content in the product even at high velocities when compared to concurrent 

flow as H2S formed is removed from the system and have no chance to affect the 

reaction. (Mederos et al., 2007). 

 

Change of feed quality  

The quality of the feedstock plays an important role in hydrodesulfurization (Marafi et 

al., 2007; Stanislaus et al., 2003). The concentration of nitrogen and presences of other 

compounds affects the level of desulfurization process. Cracked distillates are more 

difficult to desulfurize and thus, they should be avoided if existing HDS reactor operates 

at low pressures. Hydro treating experiments were conducted using feeds under identical 

conditions in the temperature range 320–380
◦
C. The results showed that the degree of 

desulfurization  of  the  diesel  for  the  heavy  crude  was remarkably  lower  than  that  

of  the  light  crude  diesel (Marafi et al., 2007). 

 

Change in feed temperature for the reactor 

Reactor temperature is an important variable that has a significant influence on HDS. The 

start of the run temperature is normally selected  based  on  the  required  sulfur  
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reduction  which  usually depends on the operating conditions. This temperature is 

gradually increased to maintain the catalyst performance.  Studies showed that a 38
◦
C 

increase in reactor temperature is required to reduce the sulfur content of diesel from 500 

to 50 ppm. Further large increases in temperature will be required to reduce the sulfur 

level to 10 ppm. However, high temperatures increase the rate of catalyst deactivation 

and reduce the operating range for production of low sulfur concentration fuel (Henrik et 

al., 1996). 

 

Reduction of liquid hourly space velocity (LHSV) or increase of catalyst volume 

Liquid hourly space velocity (LHSV) is the reactant liquid flow rate to the reactor volume 

at standard temperature. The inverse of LHSV is generally referred as residence time. 

Decreasing LHSV usually increases the degree of desulfurization and reduces product 

sulfur concentration due to an increase in the contact time between the liquid feed and the 

catalyst. Thus by reducing LHSV or increasing catalyst volume the reactor can be 

operated at lower temperature. Studies have shown that reducing the LHSV by half, 

results in 20
◦
C decrease in average reactor temperature to achieve the same specific 

performance when all other operating conditions are unchanged (Knudsen et al., 1999).  

 

All these points are taken into consideration when we design sulfur predictor or HDS 

unit. Sulfur predictor for HDS reactor in literature can be broadly classified into two 

categories 

 Mathematical Model  
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 Data Driven Model 

 

2.2 Overview of Mathematical Model developed for HDS system 

Knowledge driven parametric models are often referred as “mathematical models”, 

“mechanistic  models” or “first principle model”.  Mathematical models are able to 

capture dynamic behavior of HDS unit while predicting product sulfur concentration 

(Mederos et al., 2009; Cicili et al., 2009; Deng et al., 2010). For mathematical model, 

equations are derived based on the following considerations 

 Mass and Energy balances.  

 System constraints.  

For mathematical models, the impact of temperature, feed concentration and effect of any 

variables on the rate of reaction is reported by kinetic model. The reactor model relates 

the state variables of the process to other variables. A certain degree of extrapolation 

beyond the domain of known process operating conditions is one of the greatest strengths 

of these models (Bhutani et al., 2006). Mathematical models  are  not  as  simple  to  

obtain  as  parametric or data driven models,  and  owing  to  the  extreme  non-linear  

behavior  of  HDS it can  be difficult. In order to reduce some of complexity, assumptions 

are generally made, and an easy to understand model are develop which does not 

appropriately describe the process but sometime  still  preferred  over  a  very  detailed 

one (Khalfalla et al., 2009; Slimani et al., 2013). The complex mathematical model 

developed  is usually  solved  by  numerical methods.  
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With increase in demand of low sulfur concentration fuel, studies are focused on HDS 

unit, where mathematical models were used as HDS equivalent to study effect of various 

parameters on product sulfur concentration. The parameters studied were, catalyst type: 

its length and arrangement, (Fujikawa et al., 2009; Oyama et al., 2009), process 

parameters, feed source and its quality or composition (De la Paz-Zavala et al., 2013;  

Mochida et al., 1996), inhibitions caused by presence of H2S (Dong et al., 2014) and 

reactivity of sulfur (Stanislaus et al., 2003). Mathematical model were used to estimate 

the kinetic parameters and optimum operating conditions (Jarullah et al., 2011), which 

would ensure lower sulfur concentration for the fuel. 

 

There are different mathematical models developed in past, some of which are described 

below: 

  

Avraam et al., 2003, presented a steady–state model for three phase trickle flow fixed bed 

reactors applied to hydrodesulfurization of light oil feedstocks containing volatile 

compounds.  Mass balances, energy balances and overall two phase flow momentum 

balance were considered in detail. All physical and chemical properties were estimated as 

a function of process conditions. The chemical reaction rate was described by  Langmuir–

Hinshelwood mechanisms where inhibition by H2S were considered.  A collocation  

method  for  solving  extended  system  of  nonlinear  equations  was  used successfully. 

The experimental data obtained from a pilot plant unit showed excellent agreement with 

the mathematical model employed.   
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Bhaskar et al., 2004, developed a gas–liquid–solid model to simulate the performance of 

pilot plant and commercial trickle bed reactors applied to the hydro treating of diesel.  A  

three  phase  heterogeneous  model  was  used  and  based  on  two–film  theory, where   

mass   transfer   phenomena   at   gas–liquid   and   liquid–solid   interfaces   was 

incorporated.  Their  model  was  developed  to  calculate  kinetic  parameters  HDS  

reactions using  the  results  obtained  in  lab  scale  experiments.  A  Runge-Kutta fourth 

order numerical technique was used to integrate the differential equations along the 

catalyst bed length. The Newton-Raphson  method  was  used  to  solve  the  nonlinear  

equations concerning the surface concentrations of various compounds. The model 

simulations showed good agreement with the experimental results. The model was also 

employed to investigate the effect of operating conditions on product quality. 

 

Alvarez et al., 2009 presented a three phase heterogeneous plug flow reactor model for 

describing the behavior of HDS in a multi–fixed bed reactor system.  The  main  

reactions  were  mass  transfer  phenomena  between  gas–liquid  and  liquid–solid  were  

taken  into account. Langmuir–Hinshelwood kinetics were used to model HDS reactions. 

In order to calculate kinetic parameters, a set of experiments were conducted in a multi 

reactor pilot plant at several operating conditions.  The optimal set of kinetic parameters 

was calculated using the Levenberg-Marquardt algorithm. The predicted model was 

found to be satisfactory with experimental results obtained  from the lab–scale.   
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Bahzad et al., 2009, developed a mathematical model to simulate the performance of  a  

pilot  plant  reactor  during   hydrodesulfurization  reaction. They found some 

discrepancies between predictions and pilot plant data that may be attributed to the type 

of catalyst used. In literature, an one-dimensional, plug-flow trickle bed reactor model 

was developed by Cheng (Cheng et al., 2004)  for  modelling  and  simulation  of  a  

steady  state,  adiabatic  commercial  HDS reactor. The effect of operating conditions on 

impurities removals were investigated and mentioned in Cheng‟s report.   

 

Farahani  et al., 2011,  discussed  the  process  of  hydrodesulfurization  of heavy  gas  

oil.  A  non-isothermal  heterogeneous  reactor  model  was  developed  and  then 

simulated  with  a  three  stage  trickle  bed  reactor  and  kinetic  models  based  on  the 

Langmuir-Hingshelwood  approach.  The results showed good agreement between the 

simulation results and the experimental data. 

 

Even though these models are able to estimate the product sulfur concentration, 

mathematical models when implemented on an online system fails to predict product 

sulfur concentration for HDS unit (Von Stosch et al., 2014).  The reason behind this 

unexpected behavior is that mathematical model needs various parameters, which may or 

may not be available / recorded for an online system or only partial knowledge about the 

physical phenomena taking place in the process is available.  Mathematical model 

requires feed sulfur concentration data (which is not recorded for the online system) 

resulting, in poor prediction of product sulfur concentration. The problem was not only 
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limited to non-availability of data, mathematical model is calculation intensive. Solving 

of these numerous correlation and differential equations need time which slows the 

predictions for product sulfur concentration for an online system. Thus, slow and poor 

response of mathematical model limits its use as control tool for on-line application in 

industrial practice (Stanislaus et al., 2003; Bhutani et al., 2006). 

 

2.3    Data Driven Model developed for HDS systems 

A data driven model is also known as “regression model”, “empirical model” or “data 

driven soft sensor”. Data Driven model is a predictive model that describes the 

relationship between the predicted process variables and the measured variables.  Data-

driven soft sensors can  be  applied  to  the online  estimation  of  product  using  process 

measurement data because they have become widely available in many chemical plants 

(Kadlec et al., 2009). Unlike physical  sensors,  which  directly  measure  the  value  of  a 

variable,  data  driven models  measure  the  process variables.  Therefore, data driven 

model use frequently sampled process variables such as temperature, pressure, flowrate, 

etc.  to measure hard–to–measure variables.  There are various modelling techniques to 

develop data driven models. The most popular modelling techniques used to develop 

data-driven models are the principal component analysis (PCA) (Jolliffe, 2005), partial  

least-squares  (PLS)  (Ahmed  et  al.,  2009;  Sharmin  et  al., 2006), artificial neural 

networks (Gonzaga et al., 2009; Lou et al., 2012; Mat Noor et al., 2010; Shi et al., 2005; 

Zhang et al., 2006) and support  vector  regression  (SVR).   
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Various data driven models were developed in past for Hydrodesulfurization unit. Some 

of them are stated here;  

 

PLS modelling technique was used to develop data driven model for HDS unit by Qin 

(Qin et al., 1998).In his work, the recursive PLS algorithm is extended to works block-

wise and is thus suitable for adaptive modelling. The algorithm is combined with the two 

common techniques for adaptive modelling, namely with the moving window and the 

forgetting factor approaches. The performance of the proposed algorithms is 

demonstrated by applying it modelling in a refinery process. One of the contributions of 

this work is the definition of Neural Network Partial Least Squares (NNPLS) algorithm 

which is a hybrid system combining the PLS algorithm with an MLP. This algorithm 

makes use of the capabilities of the MLP to map the input variables non-linearly onto the 

latent variables of the PLS.  

 

Jolliffe 2005, in his work, used PCA modelling technique to develop a data driven model 

to predict SOx. A case study applying the proposed method to process industry problems, 

namely SOx prediction is discussed. Within the proposed development procedure, firstly 

missing values are handled using a heuristic approach. This is followed by outlier 

detection using univariate Hampel identifier and multivariate robust statistics. After the 

data pre-processing, a PCA data driven model is used to predict SOx which was within 

error limits of case study data.  
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Artificial Neural Network (ANN) modelling technique was used by Berger (Berger et al., 

2006) to develop a data driven model for hydrodesulfurization in a mini-pilot plant 

trickle-bed reactor. Product sulfur concentration was predicted as a function of 

temperature, pressure, LHSV and staging.  The hidden layer contained three neurons. 

Inputs were normalized in order to give equal importance to each input and to reduce the 

effect of outliers in the database. The database containing 25 examples which was 

randomly divided into learn and test sets containing 17 and 8 examples respectively. 

Almost linear dependence was observed for product sulfur as function of LHSV, 

however, this behavior does not correspond to experimental data which, indicated that it 

is necessary to input more data to the model in order to do better learning at low spaces 

velocities. 

 

Lukec et al., 2008, developed ANN data driven model to determine sulfur content in the 

hydro-treatment product of distillates. The models were trained using the process and 

laboratory data from a petroleum refinery. As the models showed to be simple, easy to 

use, with a good predictability they were used in practice for accurate continuous process 

monitoring,  process fault detection, pointing out a measurement error to the analyzer 

hardware, estimation of unmeasured states and parameters, process  regulation,  adaptive  

control, optimization,  and  efficient product  quality  control.  This work emphasizes the 

main advantage of the neural network models that they can estimate the kinetic 

parameters for different feed conditions. 
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Behnasr et al., 2015, used support vector regression (SVR) modelling technique to 

develop a data driven model for sulfur content prediction in HDS process. Due  to  the  

huge  size  of  industrial  data  sets  used  by soft  sensors,  training  and  validation  time  

of  SVR model has become a challenging issue. In their study, an accurate  and  reliable  

data-driven  model  was developed by means of a SVR integrated with a  data 

compression technique (VQ/PCA) to predict the  sulfur content in an industrial HDS 

process. The proposed  integrated  technique  incorporated  two  stages:  1)  the  data  

compression  stage  and  2)  the  prediction  stage. First, the PCA and VQ were applied to 

reduce  the  dimensionality  of  the  dataset  and  then  a  SVR  model  was  developed.  In  

order  to  evaluate  the  performance, a wide range of  experimental  data  according  to  

real  condition  of  the  refineries  were  taken  from  a  HDS  setup.  Therefore, the results 

can be generalizable to real processes. The obtained results show that integrated 

technique (VQ-SVR) was better than (PCA-SVR) in prediction  accuracy.   

 

For product sulfur predictions, compared to mathematical model, regression model are 

easy to implement and faster in prediction. However, these models fail to predict sulfur 

concentration whenever the feed concentration and operating conditions change beyond 

ranges of their training data sets. Thus, these data driven sulfur predictors are not able to 

extrapolate any feed conditions for which they are not trained for.  In an ideal scenario, 

data driven model should be trained and developed using entire historical data of plant 

which is not feasible. In industries recorded data sets are incomplete, does not cover all 

operating conditions thus its limits the training and in turn the prediction ability of these 
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data driven models (Kadlec et al., 2009). Also in some cases some important quality 

variables are not measured, for example feed sulfur concentration in a HDS process. This 

further limits the effectiveness of these predictors. 
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Chapter 3 

3 Mechanistic Model  

3.1    Literature Review  

A Mechanistic model (also known as first principle model (FPM), mathematical model, 

deterministic model) is used when complete information of the process is accessible and 

the governing equations of the system are solved using analytical or numerical 

techniques. Mechanistic model inherits a high degree of knowledge abstraction as it is 

based on mass balance, energy balance and reaction kinetics (Thompson et al., 1994; 

Estrada et al., 2006). The advantage of mechanistic models is that these models have a 

certain degree of extrapolation beyond the domain of the known process operating 

conditions. Various mechanistic models described in the literature have been used to 

develop, to capture and to optimize HDS process (Rodriguez et al., 2004). 

 

3.2    Mathematical model  

The mathematical model is an offline component of the hybrid model. The mathematical 

model used for our hybrid model is based on the work of Ancheyta (Ancheyta et al., 

2006). This particular mathematical model is selected because Ancheyta and his team 

developed a mathematical model accurate in predicting product sulfur concentration 

while capturing the dynamic behavior of the system. Ancheyta had used this 

mathematical model extensively to study the HDS system and effects of various 

parameters on product sulfur concentration (Ancheyta et al., 2006; Mederos et al., 2007). 
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Thus, the mathematical model is able to process disturbance while capturing the dynamic 

behavior essential for our proposed online hybrid model predictions.  

 

For an HDS reaction, all three phases are present in the reactor. Hence, a 

hydrodesulfurization (HDS) reaction prefers a trickle bed reactor. A brief description of 

the chemical reaction, for an HDS unit, is stated in section 1.3. The reactor model 

considers that HDS reactions take place on the catalyst surface. The concentration profile 

of reactants and products in a trickle bed reactor model is shown schematically in Figure 

3.1. 

 

Figure 3.1: Two film model for transport phenomenon of HDS reactor (Shokri et 

al.,2006) 
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Figure 3.1 represents two-film transport phenomenon, which is valid for the mass transfer 

for HDS reaction in the trickle bed reactor.     represents the component concentration in 

each phase.    is the liquid-gas mass transfer film cross-sectional area and    is the 

liquid-solid mass transfer film cross-sectional area.       is the mass transfer coefficients 

for liquid and solid films respectively.  

 

Inside the HDS unit, hydrogen gas (a constituent of the gas–phase) has to be transferred 

to the liquid phase and then to the catalyst surface in order to react with other reactants. 

Sulfur has to transfer from the liquid phase to the catalyst surface in order to react with 

the hydrogen gas. The hydrogen sulfide (H2S) formed on the solid surface of the catalyst 

is transferred to the liquid phase and then subsequently to the gas phase. However, there 

is a probability of H2S being adsorbed on the catalyst sites inhibiting HDS reactions 

(Bhaskar et al., 2004). 

 

The assumptions assumed for the HDS unit is as follows 

 The reactor is adiabatic  

 There are no radial concentration gradients 

 The Fick‟s Law describes the mass transfer. 

 The catalyst activity does not change with time. 

 Vaporization and condensation do not take place in the reactor.  

 There is a negligible pressure drop across the reactor. 
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 The chemical reaction takes place only at the surface of the catalyst and not in any 

other phase. 

 

We briefly describe the model for completeness based on these assumptions and chemical 

reaction knowledge 

 

The mass balance equation (3.1) is the balance equation for the gas phase in the reactor  

  
  

 
    

  
      

    

  
      (

   

  
     ) 

             … (3.1) 

                  where i = H2 and H2S 

The differential equation of mass balance for the concentrations of hydrogen and 

hydrogen  sulfide in the liquid phase is stated as equation (3.2) by equating the 

concentrations gradient to the mass  transfer of H2 and H2S across the gas–liquid and 

liquid–solid  as follows  (Bhaskar et al., 2004; Mederos et al., 2007) 

   
    

  
      

    

  
      (

   

  
     )       (       ) 

                   … (3.2) 

                             where  i =  H2 and H2S 

The mass balance equation for the sulfur present in the liquid phase is stated as equation 

(3.3) by equating sulfur‟s liquid–phase concentration gradient to the mass transfer 

between the liquid–phase and the solid-phase. (Mederos et al., 2007; Alvarez et al., 

2009): 
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      (       )          

                                                                                                           …(3.3) 

                                      where  i =   sulfur  

The solution of the above equations requires surface concentrations of H2, H2S and 

sulfur. At steady–state, the compounds transported between the liquid phase and the solid 

phase (on the surface of the catalyst) are consumed or produced through the chemical 

reaction. By equating the liquid–solid interfacial mass transfer of H2, H2S and sulfur 

components with their reaction rates,  we get the following equation (Chowdhury et al., 

2002; Bhaskar et al. 2004; Rodriguez et al., 2004; Alvarez et al., 2009): 

       
    

  
       (       )         (         )          

                                                                                                            …(3.4) 

                       where  i =  H2, sulfur and H2S 

The “-” sign is for the reactants, and the “+” sign is for the products. 

 

We include the energy balance equation as the reactions are exothermic and the system is 

adiabatic. Energy balance equations for liquid and solid phases are stated as equation 

(3.5) and equation (3.6) respectively.  

For liquid phase 

   
   

  
       

      
   

  
       

                       

                                                                                                            …(3.5) 
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For solid phase 

            
 
   
  

               ∑      (         ) (     
)          

                                                                                                             …(3.6) 

As the heat capacity of the gas is lower to the liquid and solid phases, we do not consider 

the gas phase energy balance equation (Ancheyta et al., 2006). Developing a kinetic 

model for HDS reaction is not a simple task because of the complexities of crude oil 

composition and its analysis. Impurities in crude oil are found in various forms which 

include but not limited to mercaptan, sulfide, thiophene, dibenzothiophene and their alkyl 

derivatives shapes. Each form has its own reactivities and a complex reactions ways. For 

a complex feed, the rate of chemical reaction is usually lumped into a single power law 

reaction. Langmuir-Hinshelwood models are used for such reactions that include the 

effect of inhibiting species like H2S. The hydrodesulfurization reaction is described by 

the following kinetic equation of the Langmuir–Hinshelwood model that accounts for 

hydrogen sulfide-inhibiting influence (Bhaskar et al.,  2004; Alvarez et al.,2009). 

           
    (   

)
    

(           )
           

                                                                                                          …(3.7) 

The  equilibrium  constant  of  hydrogen  sulfide  (H2S)  can  be  described  by the Van‟t 

Hoff equation (Mederos et al., 2007) 

                     (
    

  
)          

                                                                                                            …(3.8) 
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The initial conditions for the above mentioned mathematical model is stated as follows 

(Mederos et al., 2007) 

For t = 0, at z = 0,     

 
 =     

 
 0 

           
 

 = 0, i= H2S 

              
  = (  

  0, i=  H2, S 

                 
 =0, i= H2S 

                  
 =0, i = H2, H2S, S 

                T=T0 

   at z > 0 ,    
 

 = 0, i= H2, H2S 

             
 =0, i= H2, H2S, S 

                
 =0, i = H2, H2S, S 

             T=T0 

 

For the above equations, as mentioned in Nomenclature the symbols ϵ,       and   are 

different notations. The calculations of hold up phase for gas (  ) and liquid (  ) is 

mentioned in study presented by Mederos et al., 2007 and Jarullah et al., 2011. 

 

The oil density as a function of temperature and pressure can be estimated by the 

Standing–Katz  equation,  (Macı´as et al., 2004) 
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Henry‟s coefficients for H2  and H2S can be calculated from solubility coefficients  

(Mederos et al., 2007; Alvarez et al., 2009) 

      
  

     
 

 

(Korsten  et al., 1996)  presented  the  following  equations  for  the  solubility  of  

hydrogen and hydrogen sulfide in hydrocarbon mixtures 

   
                                         

 

   
                 

   
        

   
   

                             

 

The correlations used for estimating the gas–liquid mass transfer coefficients are  

(Rodriguez et al., 2004; Mederos et al., 2007) 
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Glaso‟s equation, as presented in (Korsten et al., 1996) and (Shokri et al., 2006) is used a 

generalized mathematical equation for oil viscosity.  

                               [          ]  

           [            ]          

 

The liquid–solid mass transfer coefficients can be calculated from the Van Krevelen 

Krekels equation as published by various authors (Bhaskar et al., 2004; Mederos et al., 

2007),  

   

     
        

  

     
      

  

     
     

 

In order to determine the liquid – solid and gas – liquid mass transfer coefficients, it is 

necessary to know the molecular diffusivity of H2, H2S and sulfur in liquid. The 

diffusivity can be calculated by Tyn–calus correlation (Dudukovic et al., 2002, Jarullah et 

al., 2011) 

                    
         

             

        where i= H2, H2S and sulfur in liquid 

Other correlations, which are required for simulating this mechanistic model, are stated in 

below Table 3.1.  

 

Table 3.1: Correlation equations to calculate various parameters for oil and gases 

(Mederos et al., 2009) 
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Molar Volume  

            
      

                          
             

        

Specific Surface Area 

                   

 

3.3    Validation and Results  

3.3.1 Validation for lab-scale reactor  

In order to validate the mechanistic model, we consider a lab –scale reactor and the feed 

signal mentioned in Table 3.2. We simulate the mechanistic model for the lab –scale 

reactor with the feed signal as mentioned in Table 3.2 to generate a product sulfur 

concentration. This product sulfur concentration is referred as simulated product sulfur 

concentration.  Ancehyta uses the data mentioned in Table 3.2 in his work (Ancheyta et 

al., 2006) to generate the product sulfur concentration for HDS unit (referred as literature 

product sulfur concentration in this simulation). A comparison plot between two product 

sulfur concentrations (simulated and literature) is shown in Figure 3.2. 

 

Table 3.2: Operating conditions to simulate a lab – scale reactor 

Parameter Value 

Length of Reactor Bed (cm) 31.58 

Reactor diameter (cm) 2.54 

Temperature (
0
Celsius) 380 

Oil Velocity (cm/sec) 1.75*10
-2

 

Gas Velocity (cm/sec) 0.28 
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Figure 3.2: Validation of mechanistic model for lab – scale reactor with the data 

mentioned in  (Anchetya et al., 2006) 

 

The residual plot from the above Figure 3.2 indicates that simulation of the mechanistic 

model is able to predict product sulfur concentration as per the data mentioned in 

Ancheyta et al.,2006 (mentioned as literature value in the above plot). The comparison 

plot and the residual plots conclude that results generated by of our mechanistic model 

can predict product sulfur concentration for a lab – scale reactor with some error when 

compared to results generated by Ancheyta (Ancheyta et al., 2006). 
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3.3.2 Validation for Industrial reactor 

We consider an industrial reactor, which is stated in Table 3.3 and the operating 

conditions for our industrial reactor are mentioned in Table 3.3 (Anchetya et al., 2006). 

After simulating the model using these conditions, we compare our results with the 

results presented in (Anchetya et al., 2006) paper. The comparison is shown in Figure 

3.3.  

Table 3.3: Operating conditions to simulate Industrial reactor 

Parameter Value 

Length of Reactor Bed (cm) 853.4 

Reactor diameter (cm) 304.8 

Temperature (
0
Celsius) 380 

Oil Velocity (cm/sec) 0.63 

Gas Velocity (cm/sec) 10.27 
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Figure 3.3: Validation of mechanistic model for industrial reactor with the data 

from (Anchetya et al., 2006) 

In the above plot, solid line represents data simulated by the mechanistic model when 

data from Table 3.3 is simulated. The dotted line represents the data mentioned by 

(Anchetya et al., 2006) and it is termed as Literature Data in the plot. As we can see from 

above plot, the mechanistic model can predict the product sulfur concentration 

satisfactorily as compare to data presented by (Ancheyta et al., 2006) referred as 

literature data in the plot. The plot indicates that our validation generated results close to 

the results mentioned by Ancheyta in his work (Ancheyta et al., 2006)  

 

In above Figure 3.2 and Figure 3.3, there is a very small error in our simulated results. 

This is because our mechanistic model will be a part of the hybrid model for online 

product sulfur concentration, thus we have reduced the complexity of the mechanistic 

model. As the error between our simulated results and results stated by (Ancheyta et al., 

2006) is minimal, we can conclude that our mechanistic model is able to predict product 

sulfur concentration for an HDS unit within acceptable error limits. As there are three 

phases present in the reactor, the feed flowrate and catalyst dimensions are mentioned in 

Table 3.1 and 3.2 respectively. This is to ensure that the residence time for the reactor is 

same. If this does not happened to be true for any industrial reactor, the mathematical 

model will calculate the necessary parameters as per the given feed flowrates and its 

effect will be taken into consideration while estimating feed sulfur concentration, which 

will in turn affect the product sulfur concentration prediction. 
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3.4    Sensitivity Analysis  

In an online scenario, the feed concentration tends to fluctuate as effluents from various 

units are passed through HDS unit.  Therefore, in this section, our aim is to study how 

sensitive our mechanistic model is when subjected to fluctuation in feed parameters. The 

changes are mentioned in Table 3.4. For our sensitivity analysis, we change one variable 

at a time (by giving a step change) and study how it affects the product sulfur 

concentration. The results are simulated and sensitivity analysis plot is shown in Figure 

3.4 

 

Table 3.4: Sensitivity Analysis of our Mechanistic Model 

Sr. No 
Feed 

Parameters 

Nominal 

Operating 

Range 

Average 

Amplitude of 

Step Change 

Average 

Response 

Time 

(minutes) 

Average 

Change in 

Product 

Sulfur (ppm) 

1 
Velocity of oil 

(cm/sec) 

1.729x10
-2

 

+ 25% 
0.4375x10

-2
 20-22 1.5 

2 
Temperature 

(Kelvin) 
600 + 50 40 20-25 1.9 

3 

Feed Sulfur 

Concentration 

(wt%) 

5% + 2% 2 20-25 5 
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Figure (3.4a): Effect of Feed Oil velocity on Product Sulfur concentration 

 

 

Figure (3.4b): Effect of Feed Temperature on Product Sulfur Concentration 
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Figure (3.4c): Effect of Feed Sulfur Concentration on Product Sulfur Concentration 

Figure 3.4: Sensitivity Analysis of Mechanistic Model 

 

Figure 3.4 shows the sensitivity analysis results for the mechanistic model. In the above 

plots, the solid lines represent the feed oil velocity (for Figure (3.4a)), feed temperature 

(Figure (3.4b)) and feed sulfur concentration (Figure (3.4c)), while the dotted line 

represents the product sulfur concentration for HDS unit (in all the three plots). Figure 

(3.4a) shows the effect of the change in feed oil velocity on product sulfur concentration. 

We can conclude from the plot that for our mechanistic model, product sulfur 

concentration is directly proportional to feed oil velocity. From the Figure (3.4b) 

concludes that product sulfur concentration is inversely proportional to feed temperature. 

This is because an increase in reaction temperature can substantially enhance the rate of 

catalytic reaction and favors the sulfur removal. Figure (3.4c) represents the effect of feed 

sulfur concentration on product sulfur concentration. It is evident from the plot, product 

sulfur concentration is directly proportional to feed sulfur concentration. This concludes 
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that any changes made in feed sulfur concentration will affect the product sulfur 

concentration.  

 

Thus in presence of fluctuating feed concentration where feed sulfur concentration is not 

recorded predicting product sulfur concentration will not be accurate. This is one of the 

reasons, why mechanistic model tends to fail to predict product sulfur concentration 

when implemented online to predict product sulfur concentration. Also, mechanistic 

models require time to simulate which is not ideal for online prediction, hence data-

driven model are often used for online prediction for HDS unit.   

 

3.5    Conclusions  

In this chapter, we have stated a mechanistic model based on the work of Ancheyta, in 

order to study dynamic behavior for HDS unit. The model stated here comprise mass 

balance, energy balance and chemical kinetics of HDS process. The mechanistic model is 

validated for a lab – scale reactor and industrial reactor and found to be predicting the 

product sulfur concentration as close as to the actual HDS unit. The stated model here is 

able to capture not only the steady state but also the dynamic state for HDS unit. The 

sensitivity analysis concluded that mechanistic model is sensitive to feed oil velocity, 

feed temperature and feed sulfur concentration. 
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Chapter 4 

4 Empirical Model 

4.1  Literature Review 

Empirical model are easier to develop and implement than mathematical models. These 

models describe the relationship between the predicted variables and the measured 

variables (Kadlec et al., 2009). There are different modelling techniques to develop a data 

driven model or an empirical model for the HDS unit, each with their own advantages 

and disadvantages. An  overview  of  the  various  soft  sensor  modeling  techniques had 

been mentioned in literature (Gonzalez et al., 1999; Sliskovic et al., 2011).  

 

The most popular soft sensors modeling techniques include Principal Component 

Analysis (PCA) (Jolliffe 2005), Partial Least Square (PLS) (Wold et al., 2001), Artificial 

Neural Network (ANN) (Principle et al., 2000) and Support Vector Machine (SVM) (Yin 

et al., 2014). PCA/PLS-based modeling techniques are mostly linear in nature. ANN is a 

well-established and powerful algorithm for nonlinear modeling, however, it has some 

limitations. One of them is that ANN-based models are prone to get stuck in local minima 

during the training and thus may achieve a suboptimal performance on the test data 

(Xiong et al., 2014). SVM proposed by Vladimir Vapnik (Vapnik et al., 2000) has 

benefits over other methods, which includes, not being stuck in local minima, less 

dependence on the amount of training data samples and better generalization ability 

(Feng et al., 2003; Yan et al., 2004). In literature PLS modeling technique and in recent 
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time SVR modeling technique is most favored modeling technique used to develop data 

driven models for HDS unit (Sliskovic et al., 2011; Wold et al., 2001; Yin et al., 2014). A 

brief about these data driven modelling techniques are stated below.  

 

4.2 Partial Least Square (PLS)  

Partial Least Square algorithm, instead of focusing on the covering of the input space 

variance, pays attention to the covariance matrix that brings together the input and the 

output data space. The algorithm decomposes the input and output space simultaneously 

while keeping the orthogonality constraint. In this way, it is assured that the model 

focuses on the relation between the input and output variables. The general model of PLS 

is  

        

        

where X is n x m matrix of predictors, Y is n x p matrix of response, T and U are n x l 

matrices, which are projection of X and Y respectively, P and Q are loading matrices of 

m x l and p x l respectively and E and F are the error terms assumed to be independent 

and distributed and random normal variables (Wold et al., 2001).  It is a modelling 

technique only for linear relations. 

 

As PLS is a very popular data drive modelling technique in chemical engineering, there 

are several publications dealing with the application aspects of PLS (Kourti et al., 2002). 

The original PLS algorithm suffers from similar problems as its PCA counterpart. It is 
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modelling technique suitable only to linear relations between the data. Therefore, there 

are some advanced versions of the PLS proposed, which are suited to nonlinear systems. 

Qin (Qin et al., 1998) proposed an adaptive version of the PLS called recursive PLS 

(RPLS). Another adaptive version of the PLS based on the moving window technique is 

the exponentially weighted PLS (EWPLS) (Dayal et al., 1997). There are other variation 

to PLS modelling technique which includes Neural Network PLS (NNPLS) (Qin et al., 

1998), multi – way PLS (Dayal et al., 1997) and exponentially weighted PLS (EWPLS) 

(Bro et al., 1996) 

 

4.3 Support Vector Regression (SVR)  

SVR gained attention within computational learning community because of its strong 

theoretical foundation in statistical learning theory. The derivation and theoretical 

justification were stated by Vapnik (Vapnik et al., 2000) while application aspects of 

SVR briefly discussed by other authors (Rodriguez et al., 2004; Feng et al., 2003).  SVR 

utilizes a nonlinear relation of the form y = f(x) between the vectors of observation x  and  

the  desired  y  from  a  given  set  of  training samples.  A  number  of  cost  functions  

such  as  the Laplacian,  Huber‟s,  Gaussian,  and ε-insensitive  can be  used  for  the  

SVR  formulation.  Among  these,  the robust ε-insensitive loss function (  ) is more 

common (Xiong et al., 2014). 

            {
|      |        |      |    
                                                    

          

where  ε  is  a  precision  parameter  representing  the radius of the tube located around 

the regression function, f(x) (Figure 4.1). The region within this tube is called ε-
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insensitive zone. The algorithm tries to minimize the error outside this zone while 

keeping the complexity of the model to minimal. c and ε are user-defined parameters in 

the empirical analysis where c > 0.  Penalty parameter determining the trade-off between 

generalization ability  and  accuracy  in  the  training  data,  while  the  parameter ε 

defines the degree of tolerance to errors. The optimization problem can be reformulated 

as: 

           
 

 
‖ ‖   ∑   

    
  

 

   

         

This is subject to the conditions 

  {

    〈    〉         
 〈    〉            

   

     
   

         

The  positive  slack  variables ξ and ξ
*
represent the distance from actual values to the 

corresponding boundary  values  of  the ε-tube. 

 

Figure 4.1: A schematic diagram of SVR using ϵ sensitive loss function (Shokri et al., 

2006) 
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While grounded in the theory, SVRs have been demonstrated to work very well for a 

wide spectrum of applications so it is not surprising that they have also been successfully 

applied as Soft Sensors. In recent time SVR, regression is often used to develop a data 

driven model as these models gives a better prediction when compared to other models. 

(Shokri et al., 2006) 

 

In order to decide which of these data driven modelling technique (PLS or SVR) will be 

better suited for proposed hybrid model, we compare these models. The comparison is 

stated in the Figure 4.4.  

 

4.4 CCD Design - Design of experiment technique  

SVR, despite being an effective regression model, suffers from the same limitations of 

other data- driven models (Montgomery et al., 2010). Unless the training data set covers 

the range well, the model fails to predict in that region. In order to train this model 

effectively, we have designed a training data set using CCD - Design of Experiments 

technique to train the SVR model. 

 

4.4.1 Central Composite Design (CCD) theory  

The Design of Experiments (DoE) states studying one variable at a time (OVAT) is not 

an ideal way to study a system (Laird et al., 2009). DoE suggests an alternative approach 

of full/fractional design or response surface methodology (RSM) (Box et al., 1951). 
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These alternative approaches are a dynamic, continuous learning process when compared 

to OVAT. One of DoE modeling technique is Central Composite Design (CCD). As, 

CCD suggest an additional data points / levels within the given data set, this generates a 

better model which increase accuracy in predictions (Desai et al., 2006).     

 

A central composite design is a 2k full factorial design to which central point and star 

points are added (Lye et al., 2013; Montgomery 2010). The star points are the sample 

points in which all parameters but one are set at the mean level  „m‟. The value of 

remaining parameters is given in terms of distance from the central point. The distance 

between the central point and each full factorial point can be normalized to 1. There are 

few types of CCD designs, which depends on the distance between the points and are 

shown in Figure 4.2 

 

Figure 4.2: Different types of CCD design 

 

Based on the Figure 4.2 various types of CCD design model is explain (Lye et al., 2013): 
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CCC: Central Composite Circumscribed (CCC) designs are the original form of the 

central composite design. The star points are at  √   = 1, from the center based on the 

properties desired for the design and the number of factors in the design. These designs 

have circular, spherical, or hyper-spherical symmetry and require 5 levels for each factor. 

Augmenting an existing factorial or resolution 5 fractional factorial design with star 

points can produce this design.  

 

CCI:  Central Composite Inscribed (CCI) design, for those situations in which the limits 

specified for factor settings are truly limits. The CCI design uses the factor settings as the 

star points and creates a factorial or fractional factorial design within those limits. In 

other words, a CCI design is a scaled down CCC design with each factor level of the 

CCC design divided by √   to generate the CCI design). This design also requires 5 

levels of each factor. 

 

CCF: Central Composite Face – Centered (CCF) design, in this design the star points are 

at the center of each face of the factorial space, so α = ± 1. This variety requires 3 levels 

of each factor. Augmenting an existing factorial or resolution 5 design with appropriate 

star points can also produce this design 

 

In our case, as we are handling the historical data, the limits specified for factor ranges 

are true limits, therefore we use CCI version of CCD design. The experimental design 

structure for CCD model is stated in Table 4.1.  
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Table 4.1: Localized CCD Design Model for HDS unit. 

 

 

 

 

 

 

 

 

 

 

 

 

Using the above scheme (Table 4.1) suggested by the CCD design first SVR model was 

trained with the available historical data.  

 

In an ideal scenario, to develop a SVR model plant historical data covering the entire 

region of operation is required, which is rarely available in an industrial scenario. Hence, 

when only available historical data set was used to develop a model for the entire range 

of operation, we call this global model, the prediction performance of the global model 

was not satisfactory for regions where data were scarce. In order to overcome this, for 

regions where prediction were poor we developed several local CCD models for those 

 
Independent Variable 

No of 

runs 

Feed Oil 

Velocity 

Feed 

Temperature 

Feed Sulfur 

Concentration 

1 -1 -1 -1 

2 1 -1 -1 

3 -1 1 -1 

4 1 1 -1 

5 -1 -1 1 

6 1 -1 1 

7 -1 1 1 

8 1 1 1 

9 -α 0 0 

10 +α 0 0 

11 0 -α 0 

12 0 +α 0 

13 0 0 -α 

14 0 0 +α 

15 0 0 0 

16 0 0 0 
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regions. Figure 4.3 explains, the methodology, which is implemented to train and develop 

the surrogate SVR model. . The local CCD models were used for interpolating the data 

points. These interpolated points from the local CCD models were included into the 

available historical data set. Finally, the global SVR model (i.e. surrogate SVR model) is 

trained and developed based on the updated data set comprised of historical data and 

interpolated points. This surrogate SVR model has better information about the system 

and therefore can predict better than previously developed SVR model. Thus, inclusion of 

additional data points suggested by localized CCD model into available historical data 

improves the quality of historical data, resulting a better predicting surrogate SVR model.  

 

 

Figure 4.3: Flowchart representing methodology for developing surrogate SVR model 
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4.5 Validation and Results   

4.5.1 Comparison between PLS and SVR empirical modeling technique  

We consider a lab-scale reactor as mentioned in Table 3.2. For the lab –scale simulated 

reactor we simulate our mathematical model with the Feed ranges mentioned in Table 4.2 

to predict product sulfur concentration.  In analogy to an industrial scenario, we consider, 

feed velocity of oil, temperature and product sulfur concentration as our historical data. 

Table 4.2: Feed Signal to Generate Historical Data for Lab –scale reactor. 

Input Variable Range 

Velocity of Oil (cm/sec) 1.725 x 10
-2

 + 25% 

Temperature (Kelvin) 600 + 20 

Input Sulfur  (wt%) 5% + 2% 

 

Using the historical data, we train and develop PLS and SVR models, a comparison plot 

between the PLS and SVR model is shown in Figure 4.4   

 

Figure 4.4: Comparison between PLS model and SVR model prediction for HDS unit. 
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In Figure 4.4, plot (a) represent SVR predictions while plot (b) shows PLS predictions, 

plot (c) and plot (d) are the residuals plots for SVR and PLS respectively. From the above 

plot, we can conclude that PLS model can predict product sulfur concentration; however, 

SVR predictions are better. The same is can also be concluded by residuals plot (subplot 

(c) and (d)), as magnitudes of SVR residuals are around „2 ppm‟ and remain to be same 

after 100
th

 point when product sulfur concentration changes. However for the PLS model 

predictions, the fluctuations in the residuals increase with the change in product sulfur.  

Thus, we select we SVR algorithm as our data driven modeling technique. 

 

4.5.2 Validation of Methodology  

4.5.2.1  Lab-scale reactor 

We improve our SVR data-driven model prediction using the methodology shown in 

Figure 4.2. The localized CCD models are developed as per the localized CCD design 

Table 3.4. The independent variables and their coded and actual value ranges for one of 

the localized model is stated in the following Table 4.3.  

 

Table 4.3:  Independent variables and their coded and actual values of a localized CCD 

model  

 

 

 

 

Independent Variable Levels ranges  

 
-1 - α 0 + α +1 

Feed Oil Velocity 1.32 1.456  1.785 2.072 2.25 

Feed Temperature 580 586 598 609 616 

Feed Sulfur Concentration 3.5 3.73 4 4.26 4.5 
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Localized CCD model is developed using a Design of Experiments (DoE) software for 

the given dataset. One of the localized equations generated for CCD model is stated 

below as the following equation (4.1) 

 

                             

                                            

                                                          

                                                      

                                                        

                                                       

                           

… (4.1) 

 

Thus by adding additional points suggested by CCD model into historical data , we 

develop another SVR model (surrogate SVR model). 

 

For the lab –scale simulated reactor (mentioned in Table 3.2) we simulate our 

mathematical model with the Feed ranges mentioned in Table 4.2 to predict product 

sulfur concentration.  In analogy to an industrial scenario, we consider, feed velocity of 

oil, temperature and product sulfur concentration as our historical data. 
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Using 70% of the historical data we trained SVR model and the remaining data were used 

to validate the SVR model. The comparison between SVR model predictions with 

measured sulfur concentration, from historical data is shown in Figure 4.5. In next step, 

localized CCD models were developed for the entire historical data and the new data 

points suggested were included in historical data. Thus, we have more data points in our 

historical data to train our surrogate SVR model.  Figure 4.6  shows a comparison of 

surrogate SVR model (i.e. SVR model developed by incorporating additional CCD 

suggested data points along with historical data) predictions, with measured product 

sulfur concentration from historical data. 

 

Figure 4.5: Comparison between the SVR prediction and Measured Sulfur concentration. 
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Figure 4.6: Comparison between the surrogate SVR prediction and Measured Sulfur 

concentration. 

 

Figure 4.5 shows that the SVR model developed on the basis of „historical data only‟ is 

capable to predict the historical product sulfur concentration with an average error of 

15% which was consistent with training data set. Figure 4.6 compares the prediction of 

surrogate SVR model with „historical data and imputed data from the localized CCD 

model‟. The average error for these predictions, both training and test data set is 10%, 

which is better than the SVR prediction in Figure 4.5. Thus, as compared to the SVR 

model developed, surrogate SVR model has more data points to train. By including these 

imputed data points for training overall prediction capability of the data based model can 

be improved. 
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4.5.2.2 For industrial plant data 

The specifications and  operating ranges limits of the industrial reactor are mentioned in 

Table 4.4 and 4.5 respectively. 

 

Table 4.4 : Specification of Industrial Reactor. 

Feed   

Flowrate  Data stated in MBPD 

Temperature Data stated in 
0
Fahrenit 

LHSV 2 hour
-1

 

Hydrogen to oil ratio  2000 std cubic feet per barrel 

Catalyst length  5 m 

Diameter  2 m 

Number of catalyst beds 

(in series arrangement) 

3 

Bulk density  816.3kg/m
3
 

Composition  

Carbon 80 wt% 

Hydrogen  15 wt% 

Sulfur 5 wt% 

 

Table 4.5: Input parameters and their ranges 

Input Parameter Range 

Velocity of Oil (MMBPD) 12.5 – 52.2 

Temperature (Kelvin) 520 – 630 

 

 

It is evident from given industrial data that feed sulfur concentration is not available. 

Thus, our historical data consists of velocity of oil, temperature and analyzer sulfur 

concentration for the industrial reactor. The analyzer is located at the tankage, the 

measured sulfur will be available with a time delay.  
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We first improve our SVR data-driven model prediction using the methodology 

mentioned in Figure 4.2. The localized CCD models are developed as per the localized 

CCD design Table 4.1. The independent variables and their coded and actual value 

ranges for one of the localized model is stated in the following Table 4.6. 

 

Table 4.6 : Independent variables and their coded and actual values of one localized 

model  

 

 

We followed the methodology mentioned in Figure 4.2 to develop, train and validate 

SVR model and the surrogate SVR model. The comparison of SVR model and surrogate 

SVR model predicted product sulfur concentration with measured sulfur concentration is 

shown in below figures. Figures 4.7 and 4.8 are SVR model and surrogate SVR model 

predictions for industrial data respectively. Figure 4.9 compares the mean squared error 

for SVR and surrogate SVR model for training and validating (test) data sets.  

Independent Variable Levels ranges  

 
-1 - α 0 + α +1 

Feed Oil Velocity 24.64 28.809  35.45 42.67 46.26 

Feed Temperature 576 593 622 654 668 
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Figure 4.7: Comparison between the SVR prediction and Measured Sulfur concentration. 

 

Figure 4.8: Comparison between the surrogate SVR prediction and Measured Sulfur 

concentration. 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

5

10

15

20

25

Data Points (Time interval of 30 minutes)

P
ro

d
u

c
t 
S

u
lf
u

r 
C

o
n

c
e

n
tr

a
ti
o

n
 (

p
p

m
)

 

 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-30

-20

-10

0

10

Data Points (Time interval of 30 minutes)

R
e

s
id

u
a

l 
(p

p
m

)

Measured Sulfur

Predicted Sulfur

Training Data

Test Data

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

5

10

15

20

25

Data Points (Time interval of 30 minutes)

P
ro

d
u

c
t 
S

u
lf
u

r 
C

o
n

c
e

n
tr

a
ti
o

n
 (

p
p

m
)

 

 

Measured Sulfur

Predicted Sulfur

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-30

-20

-10

0

10

Data Points (Time interval of 30 minutes)

R
e

s
id

u
a

l 
(p

p
m

)

Training Data

Test Data



57 

 

 

 

 

Figure 4.9: Comparison for MSE‟s for SVR and surrogate SVR model for training and 

test data. 

 

Comparing Figure 4.7 with Figure 4.8 we conclude that surrogate SVR model predicts 

with higher accuracy for the industrial data set. In Figure 4.8, the sudden spikes (one or 

two points) in the plot were considered as disturbances or faulty data recordings, which 

was part of the measured data. Thus while predicting the product sulfur concentration, 

our predictor is not able to predict those points resulting an error of range 10 to 25ppm. 

Figure 4.9 also confirms that the mean squared error for predictions of surrogate SVR 

model is lower than SVR model, which again confirms that surrogate SVR model 

predicts better of the two models. Thus, we will be using surrogate SVR data-driven 

model as our data-driven model in proposed hybrid model. 
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4.6 Conclusions  

In this chapter, we had developed an empirical model / data driven model to be a part of 

our proposed online Hybrid model for product sulfur concentration of HDS unit. In 

literature various data driven model are used in past to develop HDS model (Sliskovic et 

al., 2011). Therefore we compare PLS and SVR model and selected SVR model as its 

better suitable to capture nonlinear models. In order to improve the predictions of SVR 

data driven model, we develop a methodology. The methodology is explained in detail in 

this chapter. The methodology use Design of Experiments – CCD technique. This 

methodology is validated for both lab-scale reactor and industrial reactor. Thus, the new 

methodology improves the data driven model predictions, which helps us to develop a 

better predicting SVR model for proposed hybrid model. 
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Chapter 5 

5 Hybrid model 

5.1 Literature Review  

Various sulfur predictors (models) are generated and developed in past which are able to 

predict product sulfur concentration for hydrodesulfurization (HDS) unit (Von Stosch et 

al., 2014). (S. Porto et al., 2011) in his study of various sulfur predicting model stated that 

these proposed sulfur models can be classified into three board categories.  (i) 

mathematical or parametric (when process behavior can be represented mathematically 

with algebraic and/or differential equations), (ii) regression or non-parametric models 

(when no physical insight is available) and (iii) semi-parametric or hybrid model (when 

some physical insight is available). The same is shown in Figure 5.1.  

 

Figure 5.1: Mathematical, Regression and Hybrid modeling based on their types of 

knowledge.(S.Porto et al., 2011) 
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When mathematical and data driven model are combined together these models 

complement each other and can predict better (S. Porto et al., 2011).  (Cicili et al., 2009), 

developed a hybrid model where PLS data driven model was used to estimate the missing 

data, while mathematical model was used to estimate the output sulfur concentration. The 

hybrid model was able to predict better and was able to extrapolate and interpolate more 

accurately than data driven model. Unlike mathematical model, hybrid models do not 

require a huge amount of initial data, these models are not calculation oriented nor 

depend solely on the historical data for any predictions (Porto et al., 2011; Bhutani et al., 

2006; Gernaey et al., 2010). Hybrid models are also used for HDS modelling which 

included monitoring and optimization of process conditions. Since, hybrid models 

perform better than the mathematical and data driven models, these models are more 

favored as the HDS equivalent models in recent times (Kadlec et al., 2009). 

 

Various hybrid models have been developed in literature of offline implementation for 

HDS unit. (Behnasr et al., 2015) developed a hybrid model where the data is filled in and 

modified with the help of SVR regression. (Xiong et al., 2014) developed an offline 

hybrid model, which is used as a soft sensor to estimate hydrogen consumption rates and 

fuel gases losses. The hybrid models also assisted for reactor scale up scenarios and 

kinetic parameters estimation (Jarullah et al., 2011). Hybrid sulfur predictors are utilized 

effectively for offline monitoring and prediction of sulfur concentration (Kadlec et al., 

2009; Bhutani et al., 2006).  
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In this chapter hybrid model (combination of mathematical and data driven model) will 

be develop to predict product sulfur concentration for an online HDS system. 

 

5.2 Proposed Hybrid Structure 

The proposed hybrid model is shown in Figure 5.2 and it can be explained as follows 

 

In the Figure 5.2, the HDS reactor represents the actual HDS reactor followed by an 

analyzer (product sulfur analyzer) which analyzes product stream, measures and returns 

product sulfur concentration. The proposed Hybrid model has two components; (i) an 

online component (which comprise of data-driven model) and (ii) an offline component 

(consisting of mathematical model and optimization algorithm). 

 

At any given point of time, process data of feed stream (temperature, feed rate) is 

preprocessed and fed to the data-driven model along with estimated feed sulfur 

concentration. The data driven model predicts the product sulfur concentration (ĈSul). The 

predicted sulfur concentration is updated using previously calculated bias and display for 

online use. Since the sulfur analyzer is typically located near the tankage there is a delay 

in obtaining the analyzer measurement. Once the sulfur concentration from the analyzer 

(CSul) becomes available, it is compared with predicted sulfur concentration to calculate 

the error. If the calculated bias changed from the previous stage then there is need to 

update the predictor. In this present design since feed sulfur is not measured we consider 

this to be causing the mismatch between the predicted and measured value. When the 
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difference between (CSul) and (ĈSul) is beyond the acceptable limit an optimization 

algorithm is triggered which re-estimates the feed sulfur concentration in an offline 

mode.     

 

Once optimization algorithm is triggered, online prediction pauses and holds the 

predicted sulfur concentration to the most recent estimated value. The mathematical 

model then simulates feed conditions to predict product sulfur concentration (ĈSul). This 

predicted sulfur concentration (ĈSul) is compared with actual measured product sulfur 

concentration (Csul). Optimization algorithm then minimizes the difference between (Csul) 

and (ĈSul) and by changing feed sulfur concentration. This new estimated feed sulfur 

concentration is passed back to the online component (i.e. data-driven model) along with 

other feed conditions. Once feed sulfur concentration has been re-estimated the offline 

component stops and the online prediction process resumes until the next optimization 

algorithm trigger is activated where the cycle repeats itself. 

 

Figure 5.2: Proposed Hybrid Model to Estimate Output Sulfur Concentration for HDS 

unit 
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The salient features of the above proposed hybrid model are 

 The sulfur predictor is valid for conditions when feed sulfur concentration is 

varying and not available.  

 The proposed hybrid structure is able to predict product sulfur concentration 

while estimating the feed sulfur concentration in an adaptive manner, without 

affecting the simulation speed for online prediction.  

 Despite being intensive calculation oriented, the mathematical model does not 

hinder the simulation time of the process, as it is activated only when the 

optimization algorithm is triggered.  

 

The above hybrid sulfur predictor model comprises of three sub-models  

 Mathematical Model (Chapter 3) 

 Data Driven Model (Chapter 4) 

 Optimization Algorithm 

 

Optimization Algorithm  

The Optimization algorithm is an offline component of the proposed hybrid model. When 

optimization algorithm is triggered, the online simulation pauses and a batch of 

immediate past historical data set after the change in feed conditions are passed to the 

mathematical model, which estimates the product sulfur concentration (Ĉ). This 

algorithm focuses on minimizing the difference between the measured product sulfur 
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concentration (C) and predicted product sulfur concentration (Ĉ) by mathematical model 

by calibrating input sulfur concentration.  

 

Mathematically this is represented as the following set of equations   

      
  

∑       
           

     

 

   

  

…(5.1) 

where, Sul stands for Sulfur, l is for liquid  

      
   

  → estimated product sulfur concentration at the end of the reactor 

      
   

  → measured product sulfur concentration at the end of the reactor 

k → number of time points considered in batch window (for our simulation q = 20) 

   → feed sulfur concentration. 

 

Subject to the constraints given in Equation (3.1) to (3.8) describing the reactor model. 

The optimizing parameter feed sulfur concentration enters the mathematical equation 

through the boundary conditions of the reactor model. After discretization, Equation (3.3) 

will have the following form at the first discretization point the reactor inlet.  

 

   
      

             
   

  
      

      
           

   

  
            (      

           
   )  

                  …(5.2) 
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and t is for time. The liquid phase sulfur concentration at the boundary (      
   ) is the 

optimizing parameter, feed sulfur concentration    

 

Also, feed sulfur concentration generally ranges around 5wt% with + 2% variation, this 

forms the initial conditions and limits for our feed sulfur concentration values.  The 

above optimization is carried out using „fmincon‟ function from MATLAB optimization 

toolbox. After estimation of feed sulfur concentration, its value is passed to online SVR 

data-driven model. The data-driven model resumes predicting product sulfur 

concentration until a mismatch is detected between the predicted and measured sulfur 

concentration when the above cycle is repeated.  

    

5.3 Results 

In this section, the hybrid model is validated for lab scale and industrial reactor.  

 

5.3.1 Validation for Lab–scale simulated reactor  

For validation of lab-scale reactor, we implement hybrid model on the lab –scale reactor, 

specification of this reactor is mentioned in Table 3.2. The operating conditions are 

mentioned in Table 4.2 and can be represented in Figure 5.3.  
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Figure 5.3: Operating conditions signal to simulate Hybrid model for lab-scale reactor 

 

We used these input conditions in mathematical model to generate the historical data set 

for the measured sulfur concentration.  Using the historical data, we implement our 

hybrid model on our lab-scale reactor. A comparison plot between the measured product 

sulfur concentration and predicted product sulfur concentration is shown in Figure 5.4. 

 

As the feed sulfur changes, there is a small window, where the model cannot predict the 

product sulfur. Figure 5.4 shows that transition period where the analyzer data is 

collected. In the Figure 5.4, there is a small window, where the model cannot predict the 

product sulfur concentration. This small window is the required time period after which 

optimization algorithm is triggered, which re-calibrates the feed sulfur concentration. 

During this window feed sulfur concentration is kept at the most recently estimated value. 
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At the end of this window, optimization is triggered. Once optimization algorithm is 

triggered it re-estimates feed sulfur concentration and thus with the new value of feed 

sulfur concentration, the hybrid model can predict better which is within the acceptable 

error limit for the model. Our residual plot confirms that the error between the two 

product sulfur concentration is within acceptable error limits. Thus, our proposed hybrid 

model can predict product sulfur concentration as close as to measured product sulfur 

concentration for a lab-scale reactor.  

 

Figure 5.4: Comparison plot Product sulfur concentration for Lab – scale Reactor. 

 

One of the salient feature of proposed hybrid model is that it predict product sulfur 
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proposed hybrid model on the lab-scale reactor with the same historical data, but in this 

simulation, we do not estimate feed sulfur concentration i.e. optimization algorithm is not 

activated in this simulation. Figure 5.5 shows the comparison between the measured and 

predicted product sulfur concentrations when feed sulfur concentration is not estimated.  

 

Figure 5.5:  Simulation of Hybrid model without estimating Feed Sulfur concentration. 

 

As we can see in Figure 5.5, predicted product sulfur concentration deviates from 

measured product sulfur concentration. The average error between the two product sulfur 

concentration is from 10% to 25%. Clearly when feed sulfur concentration is not included 

in the model prediction is poor. Therefore estimating feed sulfur concentration is 

essential in order to predict product sulfur concentration effectively.  

 

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

Data Points (time interval of 30 minutes)

P
ro

d
u
c
t 

S
u
lf
u
r 

C
o
n
c
e
n
tr

a
ti
o
n
 (

p
p
m

)

 

 

Measured Sulfur

Predicted Sulfur

0 100 200 300 400 500 600 700 800 900 1000
-10

-5

0

5

10

Data Points (time interal of 30 minutes)

R
e
s
id

u
a
l 
(p

p
m

)



69 

 

 

 

5.3.2 Validation for industrial plant data.  

The specification and feed condition range for the industrial reactor are mentioned in 

Table 4.3 and Table 4.4 respectively. Figure 5.6 plots the given feed data signal for the 

industrial reactor. It is evident from given industrial data that feed sulfur concentration is 

not available. Thus, our historical data consists of velocity of oil, temperature and 

analyzer sulfur concentration for the industrial reactor. The analyzer is located at the 

tankage, the measured sulfur will be available with a time delay.  

 

Figure 5.6: Feed Oil Velocity recorded and Feed Temperature recorded for Industrial 

Reactor 
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Before we implement our hybrid model for the industrial plant, the industrial data is pre-

processed for any flat line and spike so that it will remove necessary data outliers, which 

might affect the simulation. 

 

We implement proposed hybrid model on the industrial data in order to predict the 

product sulfur concentration for the HDS unit. A comparison plot of predicted product 

sulfur and measured product sulfur concentration is shown in Figure 5.7 

 

 

Figure 5.7: Comparison plot for product sulfur concentration for industrial reactor  
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Figure 5.7 gives a comparison of predicted sulfur concentration and measured sulfur 

concentration for reactor when feed sulfur concentration values are estimated in the 

hybrid structure. Our proposed hybrid sulfur reactor was able to predict product sulfur 

concentration with an average error of 5% to 10% for the entire system. The proposed 

hybrid sulfur model predictor will be able to predict the product sulfur concentration in 

an online mode. Thus, it is essential to estimate feed sulfur concentration in order to 

predict product sulfur concentration as close as to the measured sulfur concentration. 

 

In order to understand significance of optimization algorithm and feed sulfur estimation, 

in our next simulation we implement the hybrid model but optimization algorithm is not 

triggered and our hybrid model predicts product sulfur concentration without estimating 

feed sulfur concentration. Figure 5.8 shows a comparison plot between the predicted and 

measured product sulfur concentration for the industrial reactor. 
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Figure 5.8: Prediction of hybrid model when feed sulfur concentration is not estimated 

 

On comparing Figure 5.7 with Figure 5.8 we could confirm that our hybrid model 

predictions have higher error when feed sulfur concentration is not estimated 
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necessary as the optimization algorithm, as it enables our hybrid model to predict product 

sulfur concentration within error limits.  

 

In this section, we will focus on importance of bias correction. For this simulation, we 

consider a small section of industrial data where optimization algorithm is not triggered 

and the hybrid model is predicting product sulfur concentration using online component 

(surrogate SVR data-driven model). Thus, we consider the 200 data points (data points 

between 3100 and 3300) from Figure 5.7. The following plot, Figure 5.9 shows the 

importance of bias correction.  

 

In Figure 5.9, the dotted line is the prediction of the online component.  This prediction 

has some bias error. This error could be due to various reasons like random disturbances, 

noise or limitation of data-driven model. Hence, this bias error needs to be corrected. 

Figure 5.9 shows the bias corrected predictions with correction intervals of 6 hours 

(represented by „-∆-„) and 3 hours (represented by „–x-„). Bias correction improves the 

prediction of hybrid model as we can see 3-hour biased correction has better prediction 

results when compared to 6-hour bias correction. Therefore, bias correction assists to 

improve the prediction of the Hybrid model. As the proposed model is comprises of 

online component (empirical model), which is developed based on the available historical 

data and offline component (mathematical model), which has an acceptable fluctuation 

limit of + 20% our model will be able to predict product sulfur concentration effectively 

even when the input parameters changes. The online component of the proposed hybrid 
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sulfur predictor is an empirical model. This model is developed using the available 

historical data. Therefore, the proposed hybrid model is capable to estimate product 

sulfur concentration within the limits of the historical data.

 

Figure 5.9: Comparison between the measured and predicted sulfur concentration 
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In this chapter, we have proposed and explained our hybrid model. The hybrid model 

proposed has two components (i) online component (which includes surrogate SVR data-

driven model explained in chapter 4) and (ii) offline component (includes mathematical 

model explained in chapter 3 and optimization algorithm). The hybrid model is validated 

for lab-scale simulated reactor and industrial plant. In both cases, the hybrid model can 
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is not triggered and hence optimization algorithm is one of the important components of 

proposed hybrid model for online product sulfur estimation.   
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Chapter 6 

6 Graphical User Interface 

One of the objectives for developing this Hybrid model is to implement it on the online 

HDS system, in order to predict product sulfur concentration for HDS unit. In this 

chapter, a Graphical User Interface (GUI) is developed which would assist our proposed 

hybrid model to be implemented on any given HDS system for online sulfur prediction. 

MATLAB is used to develop the GUI and it is stated and explained below.  

 

6.1 Developed Graphical User Interface for Online Estimation 

 

Figure 6.1: Graphical User Interface designed for Proposed Hybrid Model 

Implementation for Online System 
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The Figure 6.1 displays the Graphical User Interface (GUI), which is designed for 

proposed Hybrid model (mentioned in chapter 5) to estimate online product sulfur 

concentration of fuel. The major components of this GUI is stated as follows 

 Connection Panel for Input Parameters 

 Selection of Input Parameters 

 Connection Panel for Output Parameters 

 Online Components of Hybrid Model 

 Offline Components of Hybrid Model  

 Online Estimation  

 

6.1.1 Connection Panel for Input Parameters 

The primary goal of this tab is to connect the hybrid model with the online HDS data 

stored in the system. The “Connect” Tab looks for the excel file on the system in which 

online HDS system is stored. Once activated/clicked on “Connect” Tab it requests the 

user to input the number of data-points, one wish to simulate for sulfur prediction. This is 

necessary, as HDS process is a continuous process; therefore, the data is continuously 

recorded in the system and hence for sulfur predictor, there should be a defined endpoint. 

Once the user key in the number of points, it marks as the endpoint for our hybrid model 

simulation. Once this endpoint is reached the GUI stops working and final results are 

displayed. After which proposed GUI can be implemented again for a new section of 

online data simulation. This helps in online simulation as the user will have complete 

control as in when to implement sulfur predictor for online product sulfur estimation.   
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6.1.2 Selection of Input Parameters 

In an industrial scenario, various parameters are recorded and stored which may or may 

not be required by the hybrid model in order to predict the sulfur concentration. 

Therefore, GUI gives an option to the user to select the necessary parameters, which will 

assist in simulating the hybrid model. When clicked on “Choose Inputs” tab “Given 

Inputs” panel is displayed for the user which will list all the parameters which are stored 

in the online data file for HDS process. The user then choose, necessary parameters by 

single clicking on the “Yes/No” tab which is beside the parameter name. As mentioned in 

the panel Single click on “Yes/No” tab consider the parameter for the simulation while 

double clicking on “Yes/No” tab ensure that the parameter is not selected for simulation. 

When satisfied with the selection of the parameters the user then confirm their choice by 

clicking on “Confirm Selected Inputs” tab, which will display another panel named 

“Selected Inputs” consisting all the parameters, which are selected by the user. In Figure 

6.1, the parameters, which are selected for hybrid model simulation, are Velocity of Oil, 

Temperature (Inlet) and Product sulfur Concentration and thus they are displayed in 

“Selected Inputs” parameters. The selected parameters are utilized by the GUI interface 

to predict online product sulfur concentration.  

 

6.1.3 Connection Panel for Output Parameters 

By now, GUI has created a temporary file where the selected parameters are stored and 

the endpoint for the simulation is marked. When clicked on “Lab/Measured Sulfur” tab, 

GUI selects product sulfur concentration values recorded by the analyzer and it is stored 
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in as the separate variable for GUI. As we can see in the above figure, the product sulfur 

concentration values are stored by GUI in two different location, one of them is stored in 

the “Selection of Input Parameters” Panel and other is stored by “Connection Panel for 

Output Parameters” panel. The values stored by both these panels are same. “Connection 

Panel for Output Parameters” is just a failsafe switch, which will ensure that if the user 

missed to include product sulfur concentration as one of the parameters for simulation, 

this panel will record the value for GUI in order to simulate the hybrid model.  

 

6.1.4 Online Components of Hybrid  model. 

As mentioned in our hybrid model (Chapter 5), the online component comprises of our 

Support Vector Regression Model (SVR) and Bias Calculation. These elements have 

different tab in GUI in order to work efficiently and are stated as follows 

 “Preprocess Select Inputs” Tab 

 “SVR Model” Tab 

 “Bias Estimation” Tab  

 “Optimization Trigger” Tab   

 

 

Preprocess Select Inputs Tab 

In industrial process, preprocessing is one of the important step, for simulation. This is 

because after the start-up phase of the plant, it operates in more or less constant and fully 

optimal state. However, even the steady state is progressively changing with time. The 
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most common causes of the process operating point changes are the changes of the 

process product demand, the change of the catalyst activity, clogging of heat exchangers, 

etc. Due to which the data recorded tends to have some disturbance or irregularities, 

which needs to be eliminated before simulation. As this data with noise will cause 

anomalies, which will either hinder or abruptly stop the simulation process (Kadlec et al., 

2009). While preprocessing, GUI looks out for two types of error and rectifies them  

 Flat Line   

 Spike 

 

Flat Line 

Flat Line Detection is a classic case of Missing data scenario. Missing data are single 

samples or consequent sets of samples, where one or more variables (i.e. measurements) 

have a value, which does not reflect the real state of the physical measured quantity. The 

affected variables usually have values like ±∞ , 0 or any other constant value. Possible 

causes of missing data are related to the transmission of the data between the sensors and 

the database, errors in the database, problems in accessing the database, etc. There are 

various approaches, which could eliminate flat line once detected. A non-optimal 

approach is to skip the data samples consisting of variable or variables with the missing 

values, i.e. case deletion. Another approach to missing values handling takes into account 

the multivariate statistics of the data and thus makes the reconstruction of the missing 

values dependent on the other available variables of the affected samples. However, most 
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commonly used approach is, to replace the missing values with the mean values of the 

affected variable, which is used by GUI here.  

 

Spike   

Spike Detection is another form of Data Outliers. Outliers are sensor values, which 

deviate from the typical or sometimes also meaningful, ranges of the measured values. 

These are the values, which violate the physical or technological limitations. For 

example, the absolute pressure may not reach negative values or flow sensor may not 

deliver values, which exceed the technological limitations of the sensor. To be able to 

detect this type of outlier efficiently the system has to provide with the limiting values in 

the form of a priori information. In order to eliminate these spikes, the most commonly 

used approach is, to replace the spiked values with the mean values of the affected 

variable.   

 

Once the “PreProcess Select Inputs” tab is clicked the GUI go through the data and looks 

for flat line and spike once detected it merely replace the value with the mean. This 

ensures that while simulating our regression model does not comes across values like + ∞ 

or 0 or any numerical constant which lies outside the range of the process data. This 

preprocessed data passes to the Online SVR regression tab for prediction of output sulfur 

concentration.   
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SVR Model tab  

When clicked on this tab, preprocessed data and feed sulfur concentration is passed to 

surrogate SVR data driven model (which is developed and validated in Chapter 4). This 

is where the surrogate SVR data driven model, predicts the product sulfur concentration 

for the given feed data. After which the data is passed to “Bias Estimation” Tab. 

 

Bias Estimation Tab 

The bias estimation tab compares the product sulfur concentration estimated by SVR 

model for online prediction with actual product sulfur concentration data (which is 

measured by sulfur analyzer), to calculate error. If the error is more than acceptable limit, 

a signal is sent to optimization Trigger tab. If not bias update is performed (if necessary) 

on SVR predicted online product concentration which is then displayed as estimated 

product sulfur concentration for HDS unit. 

 

Optimization Trigger Tab 

Once the tab is activated / clicked, it accepts the signals, which is passed from the “Bias 

Estimation” Tab and upon receiving the input. Optimization Trigger Tab pauses the 

online simulation and activates the mathematical model and optimization tabs in offline 

mode.   
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6.1.5 Offline Components of Hybrid Model  

As mentioned in chapter 5, the offline part of proposed Hybrid model consists of 

mathematical model and optimization algorithm. The sole objective of this offline model 

is to re-estimate feed sulfur concentration, which could be passed to the online part along 

with the selected input parameters to predict appropriate output sulfur concentration. 

Thus, this Offline components panel has two tab namely Mathematical Model Tab and 

Optimization tab. 

 

Mathematical Tab  

This tab gets activated after Optimization Trigger is triggered in the Online Components 

of Hybrid model. Once the online prediction pauses, current preprocessed feed conditions 

are simulated by mathematical model, estimating product sulfur concentration, which is 

passed to the optimization Tab 

 

Optimization Tab  

This tab optimizes the difference between the two product sulfur concentration (measured 

and predicted). This optimization is subjected to HDS unit equation and chemical kinetics 

to re – estimate feed sulfur concentration. Once feed sulfur concentration is re-estimated, 

optimization tab passes these new value to surrogate SVR model and stops. 
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6.1.6 Online Estimation Tab. 

Online estimation ensures that the cycle keeps on repeating until user-defined endpoint is 

passed. Once the endpoint is reached, it plots a graph between the estimated online 

product sulfur concentration and measured product sulfur concentration. Based on this 

graph the controller can take the necessary action, which would ensure that the fuel has a 

lower sulfur concentration value as per the guidelines for the refining process.  

 

6.2 Results  

In this section GUI, simulates the Hybrid model for the give set of industrial data. The 

industrial data for which the hybrid model will be implemented is a collective data set for 

a period of more than a year. The screen shot of GUI, which acts as the interface, to 

implement our proposed hybrid model is represented in Figure 6.1.  

 

As, GUI completes the simulation by Hybrid model and estimating the output sulfur 

concentration for the entire data series, Figure 6.2 represents the comparison plot between 

the predicted product sulfur concentration and measured product sulfur concentration . 
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Figure 6.2: Plot generated by GUI comparing Product Sulfur Concentration. 

 

From Figure 6.2 we could conclude that our GUI is able to simulate the hybrid model 

satisfactorily and the plots generated by the GUI concludes that proposed hybrid model 

can estimate output sulfur concentration with 10% of error limit.  

 

6.3 Conclusions 

In this chapter, we had developed a Graphical User Interface (GUI), which can be 

implemented on any HDS system. The proposed GUI when simulated, implements the 

hybrid model to estimate product sulfur concentration for online system. GUI while 
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implementing hybrid model, removes time lag, present in measured product sulfur 

concentration by sulfur analyzer. It also pre-process industrial data before the data is 

being used by hybrid model for product sulfur prediction. Once the marked end of GUI is 

achieved, it plots a graph comparing predicted product sulfur concentration with 

measured product sulfur concentration. GUI generates a plot comparing the estimated 

product sulfur concentration and measured product sulfur concentration.
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Chapter 7 

7 Conclusion 

In this thesis, a hybrid model for hydrodesulfurization is proposed and validated using 

lab-scale reactor and industrial data. The salient features of the proposed hybrid model 

are; (i) the sulfur predictor is valid for conditions when feed sulfur concentration is 

varying and not available. (ii) The proposed hybrid structure is able to predict product 

sulfur concentration while estimating the feed sulfur concentration in an adaptive manner, 

without affecting the simulation speed for online prediction and (iii) Despite being 

intensive calculation oriented, the mathematical model does not hinder the simulation 

time of the process, as it is activated only when the optimization algorithm is triggered.  

The proposed hybrid structure is a combination of mathematical model, optimization 

algorithm (off-line mode) and SVR data-driven model (on-line mode). The hybrid model 

can predict online product sulfur concentration with an error of 5% to 10%, thus giving a 

better opportunity to control the desulfurization process. The hybrid sulfur predictor is 

configured to predict product sulfur concentration as close as to measured product sulfur 

concentration while estimating feed sulfur concentration, which is unknown for the 

desulfurization unit.  The SVR model predictions are improved with help of CCD design 

– a DOE technique to ensure that our online product sulfur predictions are as close as to 

the measured product sulfur concentration.  The salient feature of this hybrid model is 

that it can estimate feed sulfur concentration adaptively which keeps on fluctuating for a 

desulfurization unit. In addition, as the mathematical model is in offline mode it does not 
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affect the online simulation with its processing time, unlike previous models in the 

literature. The MATLAB based GUI developed for sulfur predictor makes it easy to 

deploy on any desulfurization unit for prediction purpose.     

7.1 Future Scope of Work 

The future studies, some of the limitations of this model can be eliminated. The biggest 

limitation of the proposed model is similar to the empirical models developed in past. As 

the online component of proposed sulfur predictor is developed using available historical 

data, the data selected to develop the empirical model should not have any irregularities 

or noise. This will ensure that the empirical model is able to predict product sulfur 

concentration with a higher accuracy. The recorded time interval between two data points 

in the industrial data if reduced will assist to develop an effective and more sensitive 

hybrid sulfur predictor. This smaller time interval between two data points will reduce the 

acceptable window of error which triggers optimization algorithm and thus our predictor 

will be able to predict product sulfur concentration more faster and effectively.  In the 

offline component where numerous equations are used to calculate various parameters, if 

we actually measured these parameters directly from the field, process it will reduce the 

simulation time for offline component and the results will have more accuracy. The 

proposed hybrid model should be validated with other industrial data before we 

implement to actual HDS unit, this will validate the prediction capabilities of our 

proposed hybrid sulfur predictor. 
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