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Abstract

An automated hazard identification technique can substantially contribute to risk as-
sessment efficiency. This work presents an effort to introduce a dynamic hazard identi-
fication technique, which can translate the event propagation scenario into a graphical
representation with probabilistic interpretation of hazards. Expert knowledge based
database structure and probabilistic data driven dynamics were implemented on an
ontology-based intelligent platform. A simple demonstration utilizing semantic web-
based Web Ontology Language (OWL) was transformed into the Probabilistic-cOWL
(PR-OWL) based Multi Entity Bayesian Network (MEBN), which was incorporated
with prior probabilities, to produce Situation Specific Bayesian Networks (SSBN) re-
ferring to hazard probabilities. A generalized and detailed dynamic hazard scenario
model was then developed based on this same framework following the proposed
methodology. Two open-source software, Protégé and UnBBayes, were used to de-
velop the models. Case studies with different operational and environmental scenarios
were presented to demonstrate the applicability of the generic model. To verify the
application, the ontology based hazard scenario model was implemented on 45 indi-
vidual accidents (from the CSB Database) with different operational aspects. This

model was further used for causality studies and hazard mitigation measures.
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Chapter 1

Introduction

1.1 Overview

Prevention and mitigation of hazards are fundamental contributing factors of risk
management in process industries. Hence, identifying the domains which pose greater
risks and the hazards that can threaten potential loss is the primary step. Once the
hazards and domains are identified, risk assessment and mitigation measures can be
implemented for the better safety of any system.

Although hazard identification can sound simple, this is the most rudimentary and
crucial part of the process. It demands a decent amount of time and the participation
of experts from the field of interest. As newer technologies are being implemented
over time to cope with safety requirements and production demands, various hazards
and vulnerable points are getting newer perspectives. To deal with such constraints
of time, value and risk factors, numerous efforts have introduced different Hazard
Identification techniques. Some examples of the common methods can be found in
later sections. But these are mostly case oriented, qualitative and lack dynamic

behaviour. However, some recent works have been done to overcome these constraints.



This work introduces a dynamic hazard identification methodology which is more
versatile, can quantify hazard probabilities, and provides an ontology based platform
to facilitate a wide range of applications and scope of future developments. The
proposed dynamic hazard identification methodology based on scenario modeling,
utilizing an ontology based data structure to generate a first order Bayesian Logic
based network for a generic hazard identification scenario. Scenario based hazard
identification has been proposed earlier but the use of ontology based framework has
been the unique feature which is useful to develop a quick and reusable platform for

automatic updates.

1.2 Previous Works

Dynamic hazard identification is an established concept that captures system varia-
tions and offers mechanisms to use updated process knowledge and information [Pal-
trinier et al., 2015]. Methodologies for dynamic hazard identification includes the
Dynamic Procedure for Atypical Scenarios Identification (DyPASI) [Paltrinier et al.,
2013], dynamic risk assessment [Kalantarnia et al., 2009] and risk barometer [Kneg-
tering and Pasman, 2013|. Applications of these approaches have been documented
in the literature, e.g. [Wilday et al., 2011], [Paltrinieri et al., 2014] and [Villa et al.,
2016]. Some other methods with the goal to improve hazard identification proce-
dures by making those dynamic in nature have been proposed recently[Batres et al.,
2014, Wu et al., 2013]. However the most recent work of Dynamic Hazard Identifi-
cation [Xin et al., 2017] is based on the Bayesian graphical network which provides
a better sense of dynamic behaviour by updating the occurrence probabilities based
on historical data in a known hazard scenario. However, these approaches are and

mostly case specific and requires extensive modeling.



1.3 Motivations & Challenges

As dynamic hazard identification is a process-oriented and expertise-intense process, a
knowledge modeling based methodology can be adopted to capture the process knowl-
edge. When the process knowledge can be represented in an efficient and accessible
framework, it can easily be adapted to in various process risk management applica-
tions (e.g. automated hazard identification, expert systems ). The adaptive dynamic
method can be used to overcome the limitations of current techniques.

The challenges of this research can be called as barriers in the development of this

work. The most common challenges identified, are listed below.

e Process knowledge is the core of knowledge-based model for hazard scenario
development. In the current approach, an ontology can provide knowledge based
database structure, which might require a major amount of time. However, once
developed, the model is reusable. Therefore, the end users can utilize the model

with a general understanding of the process.

e There are thousands of processes and each one is different. Developing an indi-
vidual model for each industrial setting is a very challenging task. However, a
generalized model can reduce the effort. As ontology provides reusability and
ease of updates, a generalized model should have the versatility to be imple-

mented in most of the similar cases with minimal changes.

e Historical data has never been easy-to-obtain information. Therefore, the model
can be based on expert opinion, experience and common understanding of haz-

ard scenarios. However, the dynamic behaviour introduces the ease of utilizing



historical data. The probability declaration values can be saved and updated

over time.

e Ontology is a qualitative database platform for Artificial Intelligence (AI). There-
fore, a Java based comprehensive tool could be developed for automatic import
and quantitative reasoning utilizing the universal framework. However, available
tools can be used for demonstration purpose and a specialized expert system

can be recommended as future work.

1.4 Problem Statement & Objective

Dynamic hazard identification is a quantitative assessment technique, which requires
qualitative knowledge along with historical data for probabilistic assessment. A haz-
ard identification should be able to provide the assessment of hazards along with
hazard propagation scenario. The dynamic model should provide the versatility of

updating the model over time for greater suitability.

The primary goals of this research work can be listed as followings:

e Firstly, to propose a unique dynamic hazard identification methodology which

should have the following characteristics-
1. can incorporate process knowledge and history based information in an
explicit model,
2. has the ability to visualize and share hazard propagation scenario,

3. utilize available statistical tools (e.g. Bayesian Network) for quantitative

reasoning,



4. can provide probabilistic assessment of hazards based on available evidence

and

5. features accessibility for dynamic update of historical information.

e Secondly, to capture process knowledge of targeted domain in a well-established
knowledge modeling platform. The framework should provide the ability to de-
sign, store, share and reuse qualitative information required for hazard scenario
modeling. Once developed the model should provide the preliminary knowledge

base for further modeling.

e Thirdly, to demonstrate the proposed methodology a versatile and generic haz-
ard scenario model applicable for most process facilities is to be developed.
The model should be working in order to provide a probabilistic assessment of

fire-explosion-toxicity hazards.

e Finally, to test the validity and efficiency, this generic model should be imple-
mented on different hazard scenarios with known outcomes. Implementing the

model in previous accidents can indicate the prospects of the model.

This work adopts an ontology based framework to implement the proposed hazard
scenario methodology. The ontology based platform can provide the necessary data
structure for automation and World Wide Web Consortium(W3C) based web storage
provides versatility and updating capabilities. Moreover, utilizing the First Order
Bayesian Logic based probabilistic network provides the dynamic behaviour to quan-
tify hazards with the ability to update the probabilities from historical data. The
developed model has been applied in different accident scenarios to validate the ver-

satility and efficacy.



1.5 Thesis Organization

This thesis is a compilation of the research and work done with the goal to implement
an ontology based framework for dynamic hazard identification of process industries.
The following chapters contain detailed study and outcomes related to the research.
Chapter 2 contains a relevant detailed literature survey. Details concerning ontology;,
applications and scope with examples of previous works are compiled accordingly. A
brief background of risk assessment, hazard identification are included. The tools and
software are also introduced briefly.

Chapter 3 mostly focuses on a new dynamic hazard identification technique, adopting
an ontology framework. Based on the methodology, a hazard scenario model has been
developed and validated with case studies. An ontology based modeling approach is
demonstrated with a simple model.

Chapter 4 describes the model predictions for 45 different accident scenarios from
CSB database. This chapter also includes further application of the model in causality
analysis and hazard mitigation approaches.

Chapter 5 discusses about the results obtained from the study.

Chapter 6 consists of the concluding remarks and future scopes of the work.

Appendices document the supporting information and detailed results.



Chapter 2

Literature Review

2.1 Ontology

The concept of ontology is rooted in Greek Philosophy and later was introduced to
computer science with a slightly different description. Starting from Aristotle’s meta-
physics, it is now a widely used platform of knowledge representation and artificial
intelligence. This section briefly describes philosophical ontology and its adoption and

development in computer science and current applications related to the work.

Aristotle, one of the world’s greatest philosophers, in his writings on Metaphysics
searched for the primary constitutive element the "Essence” of being, asked "What is
being?", and concluded that all beings in the world must have some "thing’, some char-
acteristic, which give the property of "being” to the objects. He distinguished between
first principle and essence. Principle is the “source point of something” while essence
is the “intrinsic reason of existence of being”[Aristotle, 1994, Sanchez et al., 2007,
cited in]. In fact, Aristotle never used the term "Ontology’, or "Metaphysics'. Tt was

Andronicus of Rhodes, another Greek philosopher, who introduced metaphysics from



the writings of Aristotle. In the late seventeenth century "Metaphysics" was divided
into two streams: "metaphysica generalis” (General Metaphysics) and “metaphysica
specialis”(Special Metaphysics). Special metaphysics is deal with philosophical the-
ology, psychology and cosmology. General metaphysics, also called "ontologia" or
"Ontology" deals with a general concept of beings and their relations, searching the
intrinsic reason to name any thing’ as a ’being’ or as a hierarchical classification of

beings based on common characteristics. [Sanchez et al., 2007]

During the late 1980s, computer scientists looked to ontology as a basis of knowl-
edge engineering with numerous interpretations to develop artificial intelligence . All
the interpretations summarize "Ontology" as a formal/informal specification of con-
cepts of the knowledge base or logical theories with the purpose of expressing specific
domain knowledge. The concise definition: "Ontology is an explicit specification of
conceptualization and it’s a systematic account of existence" [Gruber, 1993]. While
Aristotle’s ’essence of beings’ investigates nature as classes and their determination or
attributes (also known as- Epistemology’) , in knowledge engineering formal ontology
can virtually deal with any 'thing’ for both knowledge representation and acquisition.
"In practice, formal ontology can be intended as theory of distinctions, which can be

applied independently , i.e. :

e among the entities of the world (Physical objects, events regions, quantities of

matter...);

e among the meta-level categories used to model the world(concept, property, qual-

ity, state, role, part...)" [Giaretta and Guarino, 1995]

According to its use in Al ontology is an "engineering artifact', consisting of specific

LA branch of philosophy, which is study of knowledge. Epistemology studies the nature of
knowledge, justification, and the rationality of belief.



"vocabulary" to describe reality, plus a set of explicit assumptions referring to the in-
tended interpretation of the vocabulary. "In the simplest case, an ontology describes
a hierarchy of concepts related by subsumption relationships; in more sophisticated
cases, suitable axioms are added in order to express other relationships between con-

cepts and to constrain their intended interpretation.” [Guarino, 1998]

In general description, formal representation of the knowledge of a domain requires
a set of objects that exist and an accessible way of representing the relations. An
ontological framework provides the structure of a knowledge based domain. A set
of representational vocabulary that defines the entities exists and describes the re-
lationships amongst them (e.g.classes, relations, functions etc.). A formal Ontology

comprises an understandable text to reproduce the domain knowledge.

2.1.1 Ontology Development & Knowledge Modeling

An ontology describes the acquired knowledge of a domain in a machine interpretable
form. From plant taxonomies to website listings, it has long been used as a platform.
But the specific purposes of ontology development are discrete. These are listed below.

[Noy et al., 2001]

e To share common understanding of the structure of information among people

or software agents

To enable reuse of domain knowledge

To make domain assumptions explicit

To separate domain knowledge from operational knowledge

To analyze domain knowledge



Thus, developing an ontology is more related to defining a set of data and the structure
to be used as a framework. Problem solving methods, domain independent applica-
tions, and software agents use ontologies and knowledge bases built from ontological
data [Noy et al., 2001]. The knowledge base utilizing ontology does not follow a strict
methodology. The acquisition of a domain idea and its representation totally depend
on the purpose and usability of information. Thus, the iterative modeling process
effectively reflects the expertise and the concept of an individual. However, it consists

of some vital steps including following.

e Identifying the domain-range and scope of ontology
e Definition of classes and subclasses of the taxonomic hierarchy
e Defining relations and attributes with relevant descriptions

e Introducing values or instances according to the class description.

When identifying the domain and scope of ontology, the concept and specific purpose
should be clear. The What, Why , How or Who kind of questions, also called com-
petency questions, should be answered to circumscribe the limits and usability of the
ontology. Thus a concept of class hierarchy and property definitions can be achieved
for the modeling. Generally a formal ontology consists of Classes, Rules or relations

(Properties), Attributes (Datatypes) and Individuals (Instances).

Classes defines the primary entities in the system. Each class represents a group of
entities or subclasses with some common relations or attributes. A subclass is an
entity of a class, and the class it belongs to is called a superclass. A class hierarchy
is the classification based on proper taxonomy, which is the backbone of an ontology

for a knowledge model.
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Rules or Relations describes the relations between classes. They are the properties
through which the classes are related. These rules can also have functional, transitive,

reflexive or symmetric properties.

Attributes are also called Datatypes, as they define the value type, range/limits and
cardinality 2. Attribute types can be String, Number, Boolean, Category, Instances

etc. These add data restrictions and limit to the framework.

Individuals or Instances are the values in the knowledge base. Each class contains a

set of individuals to complete the knowledge base.

Class Description describes the relationship within the domain. Each Class contains
a set of Instances, described with Rules or Properties and defined /restricted by At-

tributes.

2.1.2 Web Ontology Language or OWL

To Incorporate an Ontology based framework in Al development and knowledge mod-
eling, computer scientists created a universal language named "Web Ontology Lan-
guage (OWL)", which is developed and maintained by the World Wide Web Consor-
tium (W3C). OWL is designed to be used by applications for machine interpretability
of information instead of human interpretation[McGuinness et al., 2004]. The OWL
describes web content using the Extensive Markup Language(XML) and Resource De-
scription Framework (RDF) along with formal semantics. Therefore, ontologies based

on OWL have become a versatile base for development of Artificial Intelligence, with

2Cardinality defines how many values a slot can have which allows single or multiple values in
one slot.
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greater extent of interpretability both humans and machines. This method of con-
ceptualization had been adopted in biological science and information systems for
decades. Nowadays, with the development of OWL, this versatile network has been
being adopted to different engineering applications. The later sections further describe

the application and development of formal ontology based frameworks and OWL.

2.1.3 Probabilistic Ontology and Multi Entity Bayesian Net-

work(MEBN) in Artificial Intelligence

Ontologies based on the Web Ontology Language (OWL) can be used for information
management and presentations, but OWL some constraints. OWL based ontology
cannot deal with quantitative reasoning or uncertainty, which means it has limitations
when processing partial information. However, most of the systems in the universe
have to deal with uncertainty. Extension of the language with added uncertainty
using Bayesian statistics helped to restore the problem, called the Probabilistic Web
Ontology Language (PR-OWL)[Da Costa et al., 2008]. Probabilistic Ontology is an
explicit, formal knowledge representation that expresses knowledge about a domain of
application which includes (i) types of entities of the concept in the domain, (ii) prop-
erties of the entities, (iii) relationships among entities, (iv) Processes and events that
occurs with the entities, (v) statistical reqularities that characterize the domain, (vi)
inconclusive, incomplete, unreliable, dissonant knowledge related to the domain, (vii)
uncertainty about all forms of knowledge [Costa et al., 2005].

PR-OWL has been developed and implemented on the platform of the Multi Entity
Bayesian Network (MEBN) and has been used effectively in various applications hav-
ing uncertainty [Costa et al., 2006]. Subsequently, a newer version of PR-OWL has

been being used, named PR-OWL 2. Application of this knowledge based information
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management system has been proposed for complex systems with diverse sources of

data to improve the efficacy of the intelligent models [Laskey et al., 2010].

The Multi-Entity Bayesian Network (MEBN) is an extension of the Bayesian Net-
work (BN) based on first-order Bayesian logic and probability theory. Like Bayesian
Networks, MEBN theories use directed graphs to specify joint probability distribu-
tions for a collection of related random variables [Laskey, 2008]. MEBN theories
represent knowledge as a collection of MEBN Fragments (MFrags), and each MFrag
contains uncertainty information about the part of the domain having dependencies
using different variables. The fragment graph can contain context,input and resident
random variables compiled with the uncertainty hypothesis and logical dependencies.
The fragment models (MFrags) are interrelated with other MFrags within the domain
through context and input variables. A collection of MFrags with consistency to-
gether defines the joint probability distribution for instances of each random variable
[Carvalho et al., 2009]. Among many efforts to introduce uncertainty logic in formal
ontology and support artificial intelligence using the Bayesian Network[Fenz et al.,
2009] and MEBN based probabilistic ontology [Carvalho et al., 2007] , are of note.
Ultimately, among all these methods UnBBayes has the most applications in the field
of artificial intelligence for fraud detection [Carvalho et al., 2010a] and maritime do-
main applications [Laskey et al., 2011][Carvalho, 2011]. Based on a similar platform an
intelligent simulation module for Predictive Situational Awareness with Probabilistic

Ontologies (PROGNOS)[Carvalho et al., 2010b] has been in development.

13



2.1.4 Ontology: Applications & Scopes

Starting from philosophical Epistemology, an ontological framework has been adopted
in knowledge engineering and artificial intelligence(AlI). Primarily, the application
started with medical informatics, phylogenetic analysis and plant taxonomy in bio-
logical sciences, data science and artificial intelligence in computer science. Ontology
attracted building the data structure of expert systems, when human expertise worth
sharing as knowledge base is required along with the data. Biomedical informatics

and Al development scientists have been using ontology based framework for decades.

However, Ontology Engineering has been introduced by researchers as a useful tool
for knowledge management in the field of process design [Brandt et al., 2008]. ONTO-
CAPE provides deep insight of various types of ontology for chemical process systems
[Wiesner et al., 2008]. An ontological framework has been introduced for implementa-
tion in process safety analysis [Daramola et al., 2011}, HAZOP study [Zhao et al., 2009]
and operational risk management [Lykourentzou et al., 2011]. The work has intro-
duced smart, automated safety and risk analysis tools based on ontological framework
Fault Tree Analysis(FTA) and HAZOP are a established tool for root-cause analysis
for any process incidents to understand the most probable process incidents from any
fault induced. However, Formal Concept Analysis (FCA) is a data mining tool for
data analysis and knowledge discovery. We will use HAZOP and FTA to build up the
knowledge base and develop the incident based domain using FCA, which can produce
a binary matrix to facilitate computing systems. FCA consists of Formal Objects €
Formal Attributes, which together produce a binary relation to build formal context.
The formal context can be demonstrated by cross table and a lattice structure is used
to visualize the relations[Batres et al., 2009]. The FCA table can be used to prepare

the binary matrices for each fault scenario. Each fault propagation domain will be
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nested in the primary ontology structure as as incident /event based warning domains.
Semantic Web database can be used for more efficient process monitoring to identify
the major incidents [Elhdad et al., 2013]. Additionally, using the fault diagnosis tool
based on ontological anomaly detection, can improve security of any automated pro-
cess in case of cyber intrusions in the SCADA system [Jeffrey Hieb, 2009].

An ontological framework has been introduced in the fault diagnosis of electrical net-
works through alarm ontology [Bernaras et al., 1996]. An ontology based framework
had been used in electrical engineering [Zhou et al., 2015] [Pradeep et al., 2012] with
great efficacy. Recently, this idea has been adapted for failure mode effect analysis
studies [Ebrahimipour et al., 2010] and process control systems [Melik-Merkumians
et al., 2010]. A detailed method of fault diagnosis based on FMEA has been proposed
by the researchers based on a case study of a pneumatic valve [Ebrahimipour and
Yacout, 2015]. The same group of researchers proposed a detailed study of the ap-
plication of the ontological framework in fault diagnosis and physical asset integrity
management [Vahid Ebrahimipour, 2015]. Fuzzy Logic is another type of reasoning,

introduced as FuzzyOWL2 [Bobillo and Straccia, 2011] used for Artificial Intelligence.
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2.2 Softwares & Tools

2.2.1 Protégé

Protégé [Musen and Team, 2015] is a Java® based open source ontology develop-
ment platform, developed by the Stanford Center for Biomedical Informatics Re-
search (BMIR) at Stanford University. Since the 1980s, Protége has been the skeletal
platform for Knowledge Acquisition to support expert systems (Al) in medical infor-
matics. Protége is neither an expert system itself nor program that builds an expert
system directly; instead Protége is a tool that helps users to build other tools that are
custom-tailored to assist with knowledge acquisition for expert systems in specific ap-
plication areas."[Musen, 1989]

Different versions of this software have been developed to assist knowledge based mod-
els, Protége -2000 was published with an open-source license for the accessibility of
developers and used plug-in based architecture to provide versatility. This was a revo-
lutionary step for knowledge engineering, as this new tool mostly focused on "domain
experts" instead of knowledge engineers, plug-in architecture and the re-usability of
the model in different platforms. Thus, the introduction of the Semantic Web to store
all the ontological information in a single online platform came into practice [Gennari
et al., 2003]. However, in later years, by the introduction of Web Ontology Language
(OWL) as a plug-in editor named Protégé OWL Plug-in [Knublauch et al., 2004] pro-
vided this software with a universal platform to be a user interface based ontology
editor.

As Protége is open source, many Java based Application Programming Interfaces

3Java is a class-based, object oriented general purpose programming language which can perform
on different platforms without repetitive compilation.
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(API) are available with the core software. Protége 4.1% is used in this work and

has following functionality [Yu, 2011] :
e Can create ontologies using OWL/OWL2.
e Edits and visualizes ontology as classes , properties and relations.
e Defines logical Characteristics in OWL expressions.
e Edits OWL instances for semantic markup.
e Can use reasoners(e.g. FaCT++, HermiT) as plug-in extensions.
e Is reusable and can be imported or exported as OWL/RDF /XML files.

e Can be extended through industry standard Java OSGi based plug-in architec-

ture.

However, among several other different ontology editor tools (e.g. Ontolingua, We-
bOnto, OntoSaurus, ODE, KADS22 ), Protége offers ease of learning with a reason-

able degree of application [Duineveld et al., 2000].

2.2.2 UnBBayes

UnBBayes,” is the Graphical User Interface (GUI) tool to develop and edit proba-
bilistic OWL ontology in PR-OWL environment to generate MEBN [Section 2.1.3].
The UnBBayes project was created because of necessity of introducing uncertainty in
ontology or knowledge representation. Uncertainity is ubiquitous. Any representation

scheme intended to model real-world action and processes must be able to cope with

4Protégé (4.1), Stanford Center for Biomedical Informatics Research (BMIR) at Stanford Uni-
versity School of Medicine CA USA, 2011 http://protege.stanford.edu(Latest Version: 5.0, 2016)

5UnBBayes (4.21.18) GNU  General Public  License, Version 3, 2007,
https://sourceforge.net/projects /unbbayes/
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effects of uncertain phonomena. [Costa et al., 2005]" This tool was developed based
on the Java application by the Artificial Intelligence Group(GIA) of the computer

science department at the Universidade de Brasilia®.

Based on the Bayesian Network’s graphical and theoretical structure, UnBBayes pro-
vides a framework for building probabilistic graphical models and performing rea-
soning. Its open source license and plug-in support provide the ultimate versatility
and adaptability to different platforms. The driving factors of UnBBayes design and

development consist:

e Being an operative platform for dissemination of concepts and usefulness of

probabilistic reasoning.
e Being an easy-to-use and configurable visual tool.
e Being an achieving extensibility and variability. [Matsumoto et al., 2011]

However, this tool not only implements probabilistic graphical formalism,but also of-
fers a wide range of plug-ins for the Bayesian Network(BN), Influence Diagram(ID),
Multiple-Sectioned Bayesian Network (MSBN), Hybrid-Bayesian Network(HBN), Object-
Oriented Bayesian Network (OOBN), Probabilistic Relational Model(PRM), Multi-
Entity Bayesian Network (MEBN), Probabilistic-Web Ontology Language (PR-OWL),
parameter learning, structure learning, incremental learning of BN, statistical data
sampling, classification performance evaluation, data mining and several other algo-
rithms for Bayesian inference.

Although there are other tools available for graphical Bayesian Network generation,

this tool provides the unique feature of importing OWL based ontology and effectively

¢University of Brazil, website: http://www.unb.br/.
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utilizes the class-relation-attributes-instances structure in a graphical model, which

can produce a Bayesian Network incorporating the logical uncertainty information.

2.3 Hazard Identification and Process Safety

"Hazard’ can be defined as the possible situations or scenarios, which might cause
potential damage loss or injury; while 'risk’ is the chance or probability of any loss,
damage or illness as a result of being exposed to the hazard. Risk estimation process
lies within three basic questions - "What can go wrong?", "How bad could it be?" and
"How often it might happen?"; which answers about hazards, consequences and occur-
rence probabilities respectively [CCPS, 2010]. Therefore, in any system or cases, the
preliminary step of isolating the hazards according to the nature of potential threats
can be called as hazard identification. However, in complex chemical processes haz-
ardous events are results of set of unfavorable conditions or causes, which may be
called as hazard scenario. Any kind of hazard appears as a complimentary outcome

of a hazard scenario.

In chemical process industries, common process hazards can be categorized into- chem-
ical, thermodynamic, electrical/ electromagnetic, mechanical and health hazards. Any
incident or hazardous event might consist of one or more of these hazard types and
this preliminary idea of the potential hazards might be obtained from basic knowledge
of engineering with help of process flow diagrams, material properties etc. This idea
of deducing potential hazards is called preliminary process hazard analysis (PPHA or

PHA), which a basic technique of hazard identification. [Wells, 1996]

Different hazard identification techniques such as the Checklist review, Safety Re-
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view, What-If-Analysis, Hazard and Operability Study (HAZOP),Failure Mode and
Effects analysis (FMEA) and many others are already established in industrial prac-
tice. What-if-analysis and Checklist Review is a list of questionnaire or items to
improve process safety and hazard analysis. HAZOP lists the hazardous outcomes
of possible process deviations. Any of the above methods can be adopted in safety
review. FMEA focuses on equipment/system failure types and consequences, based o
the functionality. Further details in these processes can be found in literature [Man-
nan, 2004] [CCPS, 2010]. However, these methods are quite time consuming and
slow in nature, as these require a team of experts and intense brainstorming. More-
over, sometimes the outcome cannot be quantified because of its qualitative nature,
depending on the process. Therefore, development of a smart and effective identifica-

tion technique has been considered as a prospective area or research in this topic.

Automatic and expert systems for hazard identification has been proposed in pre-
vious studies. Hazard Identification and Ranking (HIRA)[Khan and Abbasi, 1998]
has been developed and applied for fire, explosion and toxic release scenarios. A
knowledge-based intelligent system named HAZOPExpert[Venkatasubramanian and
Vaidhyanathan, 1994] has been proposed for chemical process systems and devel-
oped. The computer aided software tool HAZID[McCoy et al., 1999] had been
proposed for automatic hazard identification. Blended Hazard Identification (BL-
HAZID)[Seligmann et al., 2012] is another automated technique which combines a
function-goal-relationship with FMEA and FTA for HAZID in process systems. All
these methods have similar goals, improvement of the hazard identification technique

for a more responsive and dynamic procedure.
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2.4 Accident Database : Overview and Impact

The intrinsic property of "Hazard" can only be identified through previous experience
or study of similar incidents. Study of historical accidents/incidents provides a good
basis for identifying and eliminating possible hazards. Industrial accidents like the
Bhopal Disaster(1984)7 were important lessons of accident history. Reporting of ac-
cidents/incident in a database is mandatory in most industries.

A typical accident database requires the reporting of accident details such as the
type of chemicals released along with the quantity released, the cause of the incident,
the number of fatalities, number of injuries and degree and number of evacuations.
The information is used to summarize the types of incidents, the different initiations
or causes for incidents, common chemical releases and the severity of their conse-

quences.[Prem et al., 2010]

The accident database can be used for statistical purposes, further learning or mod-
eling. However, many accident reports, for both minor and major accidents, fail to
identify all the lessons that can be learned from them.[Kletz, 2009] Therefore, more
detailed investigation is required whenever necessary. Accident modeling of disasters
like the BP Texas Refinery Explosion (2005) can reveal the risk of catastrophic events
using mathematical prediction models and lead to safe practices[Khan and Amyotte,
2007].

Independent organizations like the United States Chemical Safety Board(CSB)® pro-
vide through investigations and recommendations to improve regulatory standards.
Since the formation of this Board in 1998, CSB has conducted more than 60 through

investigations with detailed recommendations. CSB proposed the modernization of

"One of the most devastating Industrial Disasters : Release of lethal gas from Union Carbide’s
MIC storage tank killed thousands of people on December 1984, in Bhopal, India.
8website:http: //www.csb.gov/
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"Combustible Dust Standard", "Process Safety Management Regulations', "Emer-
gency Response Planning" and "Preventive Maintenance" . The Occupational Health
& Safety Association (OSHA), National Fire Protection Agency (NFPA), Environ-
mental Protection Agency (EPA) and other regulatory bodies have adopted their

recommendations to update safety standards and operating procedures.

Although compliance with safety standard regulations minimizes the risk of accidents,
40% of the incidents in CSB database occurred in processes covered by the Occu-
pational Safety and Health Administration’s (OSHA’s) process safety management
(PSM) regulations. Insights from the accident database identified process design,
safeguards, operation and maintenance, abnormal/non-routine operations, process
hazard analysis failures, human and organizational factors, process changes, proxim-
ity, emergency response, etc. as the contributors to most of the incidents. Findings
suggest that process hazard analysis(PHA) studies are only performed when required
by regulations, but failed to identify the hazards [Baybutt, 2016]. Therefore, the CSB
database is a valuable resource to improve PHA and HAZOP performance as part of

Inherent Safety|Amyotte et al., 2011].

For chemical industries, the major hazards are fire, explosion and toxic release. Al-
though fire is the most common, explosion is more significant in terms of its damage
potential (e.g. fatality or property damage). Toxic release has the highest potential
of fatalities, toxicity or contamination in the areas of proximity [Khan and Abbasi,
1999]. Additionally, fire-explosion and toxicity can occur simultaneously or conse-

quently depending on the propagation of an event.
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Chapter 3

Ontology Based Framework in

Dynamic Hazard Identification

Hazard Identification is the principal inception of risk assessment and management.
Therefore, the objective is to seek for an easily accessible and efficient method to iden-
tify and quantify the associated hazards in certain industrial scenarios. This chapter
introduces an effective methodology to model probabilistic assessment of hazards in
a dynamic model. The methodology then utilizes an ontological framework to model
the hazard scenario and probabilistic reasoning to estimate the probable hazards in
common industrial environments. The purpose of using an ontological framework is
to introduce semantic-web based knowledge management which can be a vital frame-
work to introduce automation and artificial intelligence (AI) in hazard identification
techniques. In the following section, a methodology is proposed to develop a dynamic
hazard identification model based on scenario modeling. Then an ontology based
probabilistic modeling approach is described with a simple demonstration. Finally, a
complete and generalized hazard scenario model has been developed with the insight

of the proposed dynamic modeling methodology, adopting an ontology based Bayesian
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reasoning approach. The versatile model was tested with multiple case studies, de-

scribed later in this chapter.

3.1 Dynamic Hazard Identification Methodology

Dynamic risk assessment(DRA) is a continuous procedure which can be updated over
time. Like the preliminary step of DRA, the hazard identification and assessment
process must be updated over time. Therefore, approaches suggesting dynamic haz-
ard identification have been proposed. Some other recent works introduce the bow-tie
method in process hazard identification [Saud et al., , Nakayama et al., 2016]. The
goal of this section is to present a scenario based dynamic hazard identification which
combines both process faults and event propagation as scenarios. Mapping of scenar-
ios has been adopted in the literature using the Bayesian Network with quantitative
assessment[Xin et al., 2017]. Although proposed methodology utilize the scenario
based modeling, the proposal is different in procedure and aims to develop an expert
system based on knowledge-modeling.

In chemical process industries, common hazard identification methods are developed
for the same purpose but with different approaches. While Preliminary Hazard Analy-
sis(PHA) looks for generalized overall hazards and events, the Hazard and Operability
Study(HAZOP) focuses on the process parameters and Failure Mode Effects Analysis
(FMEA) is mostly equipment oriented. However, to develop a realistic model, a sce-
nario based modeling approach is required to completely capture information of an
accident scenario, either from experience or visualization [Khan, 2001]. Therefore, an
event based hazard progression scenario can be considered, to outline the model, using
the process parameters contributing to the initiating event or causation followed by a

set of events or leading to final hazard. Hazards might be of many types; however, for
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chemical industries, fire, explosion and toxicity pose most potential risks [Khan and
Abbasi, 1999]. To develop a Hazard scenario for process industries, scenarios leading
to fire, explosion or toxicity are considered. A knowledge based model for identi-
fying the important hazards, causes and parameters involved might provide enough
information to develop the generalized model. A probabilistic interpretation utilizing
expert systems can be deduced to introduce quantitative assessment. A step-by-step

methodology (Figure:3.1) illustrates the proposed idea of dynamic hazard modeling.

The preliminary step of the hazard identification technique is to outline the applicable
domain, i.e., limit the boundaries of a process or unit to model the hazard scenario.
A hazard scenario consists of conditions, propagating events and hazards. A process
hazard scenario can be conceptualized and visualized from prior accidents and events
or from the PHA/HAZOP /FMEA studies. Therefore, to share the idea of a scenario,
a generalized hazard scenario checklist can be developed where the operational as-
pects, conditions and progression of events are classified as classes and sub-classes,
which we can call a knowledge model. A progression of events with the contributing
parameters can lead to the final hazard. In the following section, a model has been
developed as a classification which represents the integral information required to de-

termine the most probable hazards.

When a knowledge based hazard scenario model has been developed, it can be uti-
lized to develop the probabilistic data model for the quantitative assessment. Any
statistical modeling tool which can incorporate uncertainty for probabilistic reasoning
and which can be updated over time will complete the dynamic hazard identification
model. The parameters or factors identified above are constant; however, the values

or attributes are supposed to change over time. Therefore, a reusable probabilistic
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Figure 3.1: Dynamic Hazard Identification modeling Methodology

network is necessary to introduce the dynamics to this system. This work employs the
ontology based framework for the knowledge based data model and the Probabilistic
Web Ontology Language (PR-OWL) has been taken into account to aid the proba-

bilistic assessment. Detailed methods with examples are discussed in later sections.
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3.2 Probabilistic Modeling & Ontology Framework:
A Simple Demonstration

The ontology based framework can be a versatile tool for knowledge modeling of a
specific unit/domain to represent a formal concept in Probabilistic Web Ontology
Language (PR-OWL) and execute probabilistic reasoning using Bayesian statistics.
Before implementing the dynamic hazard identification methodology (Section 3.1),
this section describes a generalized approach for ontology based probabilistic mod-
eling with a simple demonstration. The methodology is partially adopted from the
UnBBayes developer’s team, and was initially developed for fraud detection [Carvalho
et al., 2010a], medical diagnosis, vehicle and marine vessel’s identification[Laskey
et al., 2011, Carvalho, 2011, Carvalho et al., 2010b]. The methodology comprises of
the few principal steps as of Figure 3.2. A step by step demonstration is provided

with a simple example.

The first step of this approach is to accumulate detailed knowledge and domain spe-
cific ideas for the overall process. The goal is to deliver complete knowledge of the
domain scenario with entities, relations and instances which will be the frame of the
formal ontology. To demonstrate the methodology, a simple case of a predictive haz-
ard identification model can be considered, which can deal with any abnormal events
matching them with the known types of events and predict the most probable haz-
ards from predefined probability values. The simple fire hazard scenario consists of
four predefined eventtypes- overpressure, leakage, rupture and over flow and can
predict four states of hazards- Fire, Explosion, Material Loss & NoHazard . This
model describes the conditions- presence of the flammablematerial and ignition in

the event. A UML diagram (Figure:3.3) illustrates the relations and entities in the
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Figure 3.2: Ontology Based Bayesian Reasoning Methodology (Adapted and modified
from[Carvalho, 2011])
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Figure 3.3: Basic Fire Hazard Scenario UML Modeling

lightweight hazard model. This simple model is considered for easy understanding

and to avoid complexities in MEBN modeling.

The second step consists of the development of the formal ontology, which is one of the
most versatile ways to represent a knowledge model or domain concept. This frame-
work provides both machine and human accessibility and can be reused for different
purposes. This process can be aided by the Web Ontology Language (OWL)which has
been discussed in the literature survey (chapter 2). Open source software- Protége
! can be used for the ontology development. The definition of classes, properties
and relations has to be specified in this step. The UML diagram in Figure 3.3 is
a guide to model the ontology. There are only three classes- Event, Fventtype, and
Hazard. There are two object-properties hasHazard, hasFEventtype. Object-property

hasHazard has Fvent as domain and Hazard as range. Similarly hasFuventtype has

the domain and ranges of Fvent and Eventtype respectively. To keep the ontology

Protégé (4.1), Stanford Center for Biomedical Informatics Research (BMIR) at Stanford Uni-
versity School of Medicine CA USA, 2011 http://protege.stanford.edu
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Figure 3.4: Lightweight Hazard Ontology

simple, three boolean datatypes- hasChanceofHazard, hasFlammableMaterial Present,
haslgnitionSourcePresent can be added. The data-types have Fvent & FEventtype as
their domains and boolean data-type as ranges. As the final step of the ontology
development, the individuals or instances must be added in corresponding classes.
The final ontology relations with the instances is demonstrated in Figure 3.4. The

different colors of the arrow defines different relations amongst the entities.

In the next step, the Multi Entity Bayesian Network (MEBN) can be used to in-
troduce probabilistic reasoning to the existing ontology. More details about MEBN
can be found in Chapter 2. This step is similar to Bayesian Network (BN) mapping,
not as the whole network, but as fragments called ‘MEBN Fragments’ (MFrags),
which altogether construct ‘MEBN Theory’ (MTheory). Random variables (RVs)
and resident nodes should be linked with the previously developed ontology. The

OWL ontology developed based on the lightweight hazard model can be imported
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in the UnBBayes 2

environment to modify and save OWL ontology files with prob-
abilistic information. In the demonstration model, there are only three Mfrags:
Eventtype M F, HasChanceO f HazardM F' and HazardMF. To keep the linkage
with the ontology, all variables (random, context, ordinary) should be introduced
from previously developed OWL ontology properties. The datatypes and states can
introduced from the individuals added in the ontology or new states can be introduced
through plug-ins. The complete MEBN model is demonstrated in Figure 3.5. At this

point, the MEBN model should be ready to incorporate probabilistic information in

the next step.

Event_MF

isA(ev,Event) isAl{evtyp, Eventtype) isA(ignition, Event)
HasChanceofHazard{ev,eviyp) isA({mat,Event)

\ HasEventtypeeviyp) / C HaslgnitionPresent(ignition) )

HasHazard(ev)
Hazardtype_MF Eventtype_MF
isA(ev,Event) isAlevtyp,Eventtype) isA(evityp, Eventtype)
[ HasChanceofHazard(ev, eviyp) ) (HasEvenﬂype(evtyp))

-

A Y
Legends:
= ] (G )

Figure 3.5: MEBN Theory for simple Hazard Model

HasFlamableMaterial{mat) )

o’

2UnBBayes  (4.21.18)  GNU  General  Public  License, Version 3, 2007,
https://sourceforge.net/projects /unbbayes/
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In the next step of the methodology, probabilistic information should be added in
the MEBN model to incorporate probabilistic reasoning. In the UnBBayes environ-
ment, Local Probability Distributions (LPD) for all resident nodes have to be pro-
vided as prior knowledge. In addition, conditional dependencies and constraints with
default values are included in this step. The default values for the haseventtype
resident node-states are: Leakage(5 %), Overflow (7 %), Rupture (3%) and Overpres-
sure (85%). In all cases of hasChanceof Hazard, and haslgnitionSourcePresent
node, the default values to be true are considered as 10%. The default LPD of
hasFlammableMaterial Present is 70% true. The decision node hasHazard has
conditional probabilities which had been described in logical expressions. Part of the
logical expression can be seen in Figure 3.6. The LPD definitions should be saved

and compiled for a consistent output while executing the query.

The UnBBayes query tool can generate a situation specific Bayesian network (SSBN)
that only shows the values for a specific case for a certain node and its contribut-
ing nodes. Case specific information can be saved and stored as the knowledge base
and can be reused. In the demonstration, the resident node hasHazard had condi-
tional probability, so a query for the Fventl to be true for leakage could be run,
without adding any other knowledge base. In this case the model should use the
default values to calculate the probabilities. The Bayesian belief bar shows accept-
able values(Fire=27.76%, Explosion=28.31 %, Mat.Loss=26.07%, NoHazard=17.86%
) derived from the default LPD distribution (Figure 3.7). If the hasIgnitionPresent

node is changed to be true(100%) and hasEventtype= leakage (100%) from the be-
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Figure 3.6: LPD definition for simple Hazard Model
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Figure 3.7: Testing the MEBN simple hazard model(Belief Bar shows default LPDs)

lief bar to propagate the evidence, the result shows an acceptable hazard scenario

(Fire=55.5%, Explosion=28.2%, Mat.Loss=9.07%, NoHazard= 7.23%) in Figure 3.8.

The tests confirm that the model can provide probabilistic assessment of a hazard

scenario.
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HaslgnitionPresent_ EVEMT1

HasFlamableMaterial__ EVEMNTZ

Figure 3.8: Testing the MEBN simple hazard model(Belief Bar shows propagation of

events for leakage and ignition)

The SSBN generation completes the probabilistic reasoning based on the ontology
based framework. The complete model has features of reasoning and updates prior

information, adding individuals and save them for reuse, which make this tool easy

to use, adaptive and versatile.
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3.3 Ontology-based Dynamic Hazard Identification

Model

The proposed approach in this section comprises knowledge modeling of dynamic haz-
ard scenario based on the methodology in Section 3.1 and conceptualizes the domain
in Probabilistic Web Ontology Language (PR-OWL) to execute the probabilistic rea-
soning as demonstrated in Section 3.2. The innovative approach of this article is
to implement the proposed dynamic hazard identification methodology (Figure 3.1)
for process operations, which requires an assortment of ideas, and both knowledge
based and data driven uncertainty. Therefore, an application of the ontology based
framework with a Bayesian reasoning approach (Figure 3.1) can contribute greatly to
expert systems in hazard identification. Following the steps of general methodology
in (Section-3.1), efforts have been concentrated on development of an ontology based

hazard scenario model applicable in most process industries.

3.3.1 Outlining Domain & Envisaging Hazard Scenario

First, the hazard scenario domain and relevant factors leading to major hazards have
to be outlined. It is most important to identify involved process parameters and
anomalous situations for hazards and to collect evidence to support the hazard sce-
nario. Then the parameters, conditions and events are characterized to integrate
the scenario. As there is no unique way to design a knowledge-based model, this
part requires repetitive procedure and rigorous brainstorming to focus on the goal
of scenario modeling. To complete a hazard scenario, operating parameters, external
conditions and additional features with the progression of events are involved. As the

goal of this work is to develop a generic dynamic hazard scenario model, a hazard
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Figure 3.9: Hazard scenario map for common process hazards.

scenario classification is adapted as the domain to accommodate process parameters,
relations, sequential events and hazards; this will be the skeleton of the dynamic or
knowledge model. This classification captures the general idea of a process industry,

involving operational aspects, external factors, causation and propagation of hazards.

This scenario is illustrated in figure 3.9.
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Hazard Scenario :

Knowledge-Based Model

1. Conditions

(a) Operational Aspects

4. Secondary Events

(a) Material release

i. Operating Conditions

A. Temperature 5. Tertiary Events

B. Pressure (a) Dispersion
C. Flow rate b V. Cloud T .
D. Unit capacity (b) Vapour Cloud Formation
E. Source of ignition (¢) Dust Cloud Formation
F. Confi t
onfmemen 6. Hazards
G. Heat Flow
ii. Material properties (a) Fire Hazard
g. g}(iml.)usltlblhty i Pool fire
C' . y.s1.(;a State ii. Flash fire
- roxaty iii. Jet fire

D. Vapour pressure ] .
iv. Fireball

(b) Explosion Hazard

iii. Strength of Materials
iv. Process Type (Reaction)
(b) Environmental Conditions i. Dust explosion
ii. VCE
iii. BLEVE
(¢) Toxic Hazard

i. Atmospheric Conditions

ii. Location

2. Human Factor

3. Primary events 7. Secondary Hazards

(a) Overflow (a) Secondary Fire
(b) Mechanical failure

(¢) Reaction Runaway

(b) Secondary Explosion

(c) Toxic Exposure

3.3.2 Development of an Ontology-Based Hazard Scenario

To complete the knowledge-based model for hazard identification, statistical and data
modeling incorporates uncertainty information are essential. This work utilizes ontol-
ogy based data structure to develop the basic framework. Developing the ontology is
related to defining a set of data and the structure to be used as a support framework

for the knowledge base [Noy et al., 2001]. When identifying the domain and scope
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of ontology, the concept and specific purpose should clear. What How or Whom
kind of questions, also called competency questions, should be answered to circum-
scribe the limits and usability of the ontology. Operational Aspects, Scenario and
Hazard are the classes for the hazard scenario ontology. Similarly, Operating Pa-
rameters such as Pressure, Temperature and Flow-Rate are the subclasses of their
Superclass OperatingConditions. The hazard scenario classification can be called
class-hierarchy. Hazard Ontology has Functional Properties (e.g., haspressure defines
the relation of the scenario to the operating conditions). And Operating Conditions
,Primary Fvents, Secondary Events, Tertiary Events and Hazards are sequentially
dependent. haslgnitionSourcePresent has a Boolean data-type, which involves only
a True/False answer. Individuals or Instances are the values in the knowledge base.
Each class contains a set of individuals to complete the knowledge base. In the Hazard
ontology each operating parameter has high, Low or Normal value, which were added
as instances. These individuals provide the states to construct probabilistic ontology.
Protégé is used to develop the Hazard Identification Ontology, illustrated in Figure
3.10. Protégé[Musen and Team, 2015] is a Java- based open source ontology devel-
opment platform, which has been the skeletal platform for Knowledge Acquisition to

assist expert systems (AI)[Musen, 1989] in medical informatics and other fields.

3.3.3 Incorporating Uncertainty Information: MEBN Model
& LPD Data

The Multi Entity Bayesian Network (MEBN) can be used to introduce probabilistic
reasoning to the hazard scenario ontology, utilizing PR-OWL. This step is similar to

Bayesian Network (BN) mapping; however, not as the whole network, but as frag-
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Figure 3.10: Detailed ontology model for hazard identification.

ments called MEBN Fragments (MFrags). There are five MFrags in the model, which
represent each step of event propagation leading to any hazard. All the MFrags of
a domain are combined to obtain MEBN Theory (MTheory). The UnBBayes- based
MEBN Model of the detailed Hazard Scenario Model looks like Figure 3.11. These
MPFrags contain context, input and resident random variables compiled with the un-
certainty hypothesis and logical dependencies. The MTheory altogether defines the
whole domain through context and input variables. Each individual/instance of each
class node has mutually exclusive, collectively exhaustive possible states. A proper
linkage among the variables with dependencies and constraints will deliver a consis-
tent MEBN model.

UnBBayes is a versatile and easy Graphical User Interface (GUI) tool to develop and

edit probabilistic OWL ontology in the PR-OWL environment to generate MEBN
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[Matsumoto et al., 2011], which was developed based on the Java application by
Artificial Intelligence Group(GIA) of the computer science department at the Univer-
sidade de Brasilia®. Based on Bayesian Network’s graphical and theoretical structure,
UnBBayes provides a framework for building probabilistic graphical models and per-

forming reasoning.

Uncertainty is ubiquitous. Any representation scheme intended to model real-world

r . r )
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Figure 3.11: MEBN Fragments for the Detailed Hazard Scenario Model.

action and processes must be able to cope with effects of uncertain phenomena. [Costa
et al., 2005] Thereby, uncertainty introduces the dynamics in the hazard scenario
model. All random variables have conditional or unconditional probability distribu-
tion linked to the respective nodes in the PR-OWL environment. To build probabilis-

tic hazard ontology in UnBBayes, the Local Probability Distributions (LPD) for all

3University of Brazil, website: http://www.unb.br/.
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resident nodes have to be provided as prior knowledge. The default LPD values can

be declared from prior information or a rational knowledge base.

LPD Declaration* Example: causePraimaryEvent Node

if any Sc have (ReactiveProcess = true & HasCapacity
= LowCapacity )[if any Sc have ( HasFlowRate = HighFlowRate )
[Overflow = 0.15, MechanicalFailure = 0.05,
NormalOperation = 0.05, ReactionRunaway = 0.75]
else [Overflow = 0.05, MechanicalFailure = 0.10,
NormalOperation = 0.60, ReactionRunaway = 0.25]
]
else if any Sc have(ReactiveProcess= false & HasCapacity
=LowCapacity )[if any Sc have (HasFlowRate= HighFlowRate )
[Overflow = 0.85, MechanicalFailure = 0.05,
NormalOperation = 0.05, ReactionRunaway = 0.05]
else [Overflow = 0.15, MechanicalFailure = 0.10,
NormalOperation = 0.60, ReactionRunaway = 0.15]
]
else if any Sc have( HasStrengthOfMaterials = LowStrength)
[if any Sc have (HasFlowRate= HighFlowRate )[if any Sc have
( HasPressure = HighPressure ) [ if any Sc have
(HasTemperature = HighTemperature )
[Overflow = 0.05, MechanicalFailure = 0.8,
NormalOperation = 0.13, ReactionRunaway = 0.02]
else [Overflow = 0.10, MechanicalFailure = 0.37,
NormalOperation = 0.50, ReactionRunaway = 0.03]
]
else [Overflow = 0.05, MechanicalFailure = 0.25,
NormalOperation = 0.65, ReactionRunaway = 0.05]
]
else [Overflow = 0.05, MechanicalFailure = 0.20,
NormalOperation = 0.70, ReactionRunaway = 0.05]
]
else [Overflow = 0.03, MechanicalFailure = 0.10,
NormalOperation = 0.85, ReactionRunaway = 0.02]

As data is mostly case centric, and this a generic model, the knowledge-base was
developed based on expert opinion and a basic understanding of hazard propagation
behaviour. Each mutual conditional dependency, constraint with discreet probabilis-
tic data is declared in this step as a simple logical statement. A sample is listed

following this section. Successful compilation of the LPD values and conditions com-

4The LPD description for the rest of the model is listed in Appendix A
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plete the modeling of dynamic hazard scenario model in the PR-OWL2 environment.
This model can be used for situation specific queries and results can be viewed as
Bayesian belief network. This step is the most significant part of dynamic modeling.
As this step can introduce prior probabilities, this model can be updated using his-
torical values for use over time. The extension of this work building an automatic

import tool/plug-ins can improve the dynamics.

3.3.4 Probabilistic Reasoning: SSBN

To perform a query using the hazard scenario model, the information for the specific
case is inserted in the model. The UnBBayes query tool generates a situation specific
Bayesian network (SSBN) that shows the probabilistic values and contributing nodes
for the scenario. Different scenarios can be saved and stored as the knowledge base
and can be reused. The feature of adding individuals and different cases makes this
tool easy to use, modify and reuse in different situations. Figure 3.12 illustrates the

dynamic hazard identification Bayesian network with default values.

3.4 The Dynamic Hazard Identification Model: Case

Studies

To test and validate the model, several previous accidents are used as case studies.
This section describes four different scenarios that can be predicted using our model.

The results are compared with the historical outcomes.
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Figure 3.12: Basic SSBN for the Hazard Scenario Model.

3.4.1 Vapour Cloud Explosion in Danvers, 2006

A vapor cloud explosion occurred on November 22, 2006 in Danvers, Massachusetts.
According to CSB Report °, a tank of flammable liquid was heated due to an acci-
dentally open steam valve on the heater coil, thus vaporized the liquid. Gradually
released vapor formed a vapor-cloud, which was ignited and caused vapor cloud ex-
plosion in a congested area. This evidences wes used in the model and it predicted

Explosion(51%) as the most credible hazard and Vapour Cloud Explosion (35.3%) as

the most probable type. Figure 3.13 shows the result for this case study.

5CSB US Chemical

Safety Board.

CAI

http:/ /www.csb. gov/cai- /-arnel-chemical-plant-explosion/
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Figure 3.13: Results for the Vapour Cloud Explosion Danvers, Massachusetts on
November 22, 2006.

3.4.2 Chevron Refinery Fire and Explosion in Richmond,

2012

On August 6, 2012, an explosion followed by fire caused destruction in the Chevron
Refinery in Richmond, CA, USA. According to the CSB investigation®, the accident
caused due to failure of a low strength High-temperature Gas Oil Draw Pipe: the
minor leakage in the low strength was increased by improper actions which agitated
the line to fail completely, a high temperature fuel was released on the unit floor

and a large vapour cloud was formed. The ignition was triggered from the source of

6US Chemical Safety Board (CSB) website: http://www.csb.gov/chevron-refinery-fire/

44



leakage as the liquid temperature was well above the flash point. A timely evacuation
decision helped to avoid any death, but severe damage caused loss of production for
more than a year. The model used these data as evidence to simulate the scenario
(Low Strength Material, High Temperature, High Capacity, Low vapour Pressure
Liquid, Stable Weather, Highly Combustible, Ignition Source Present). The final
predicted result (Figure- 3.14) shows the chance of Explosion=36.07 % and type of
explosion to be VCE = 30.63%.
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Figure 3.14: Results for the Vapour

Chevron.
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Cloud Explosion case study for Richmond

The Dupont Corporation Toxic Chemical Release in La Porte, TX on November 13,

2014 caused at least 4 deaths due to toxic exposure. According to CSB reports during a
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troublesome startup operation, a valve to vent header was left open during hot-water
flushing to remove a pipeline blockage. As the running circulation pump was left
unnoticed and the blockage was cleared, the vent header tank filled with toxic liquids.
The operators intended to drain the liquid opened a valve and they drained inside a
building. Highly volatile-liquid created toxic vapor, which caused toxic exposure to
the operators and led to death. Our model counts the mistake as an event of material
release and all other evidences to simulate the scenario. The model predicted Toxicity

= 67 %(Figure: 3.15).
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Figure 3.15: Results for the Dupont Toxic-Exposure case study.
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3.4.4 Caribbean Petroleum Corporation Tank Explosion &

Fire, 2009

On October 23, 2009, The Caribbean Petroleum Corporation (CAPECO) near San
Juan, Puerto Rico, faced a fire and explosion accident due to tank overflow. During
a gasoline reception pumping operation, an automated tank gauging system failed
to show the correct tank level which caused a massive amount of gasoline overflow.
The liquid pool inside the containment dike formed a layer of vapour cloud. Some
of the liquid gasoline passed through drain reached wastewater treatment facility,
where the cloud was ignited by electrical equipment. The ignition caused a large
flash fire followed by a massive explosion. This accident was simulated in our model
to determine the predictability. As input data, we considered the Low Capacity,
High Flow Rate, Low Vapour Pressure Liquid, Combustibility and Ignition Source as
principal evidences. The simulation result shows the chance of Fire = 39%, Explosion
= 27 % and that the most probable type of fire is Flash Fire(30%). Figure: 3.16

shows the SSBN with results.
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Figure 3.16: Results for CAPECO fire and explosion accident.
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Chapter 4

Dynamic Hazard Identification

Model: Application & Prospects

Investigation of previous accidents is the most effective way to enhance hazard scenario
knowledge As part of the work, 45 previous accidents in US chemical industries were
examined to contribute to the knowledge base. The Hazard Scenario Model was
implemented both to predict hazards. The results were evaluated to check the validity
of the model. Also, some the model was tested in reverse direction in some cases to
identify the root causes of an accident. The first section describes the accidents; later

sections include results, comparison and further tests of the model.

4.1 Industrial Fire, Explosion & Toxicity Accidents

The Hazard Scenario Model is a conceptual representation of a generalized Fire, Ex-
plosion or Toxicity hazard scenario. To validate the adaptability and precision of
the model a total of 45 previous incidents from the United States Chemical Safety

Board(CSB)! were considered for study. According the hazard types, there were Fire

Lwebsite:http: //www.csb.gov/
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Figure 4.1: Hazards according to types, from the accidents investigated

BLEVE

VCE
Fire & Exp.
Misc.
Flash Fire
Toxic Rel. Dust Fire & Exp.

Fire & Toxicity Dust Exp.

and Explosion (26) , Reactive Hazard (5), Dust Fire & Explosion (6) and Toxicity
(8) Accidents. Table 4.1 briefly describes the accidents taken into account for model
validation. Figure 4.1 represents a graphical representation of the actual hazards ob-

served in the accidents.
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Table 4.1: Description of Fire, Explosion and Toxicity Accidents Studied.

Serial

No.

Accident

Short Description

1.

ConAgra Natural Gas

Explosion and Ammo-

nia Release, NC, 2009

During installation and commissioning of a
new gas fired water heater, a new steel gas
pipe was pressure tested with air. Air was be-
ing purged using natural gas and purged in
a confined area. While trying to ignite the
heater natural gas was purges in indoor plant
area for an extended period. The natural gas

was ignited from a electrical ignition source.

Richmond

Chevron

Refinery Fire, 2012

A Distillation column collection pipe leaked
due to low material strength at high temper-
ature. The pipeline failed and spilled a high
quantity of high-temperature Gas-Oil to form
Vapour Cloud which subsequently ignited and

caused a Vapour Cloud Explosion.

BP Texas

Refinery

Explosion , 2005

During the Isomerization Unit start up , be-
cause of level transmitter failure, the distil-
lation tower overflowed with temperature hy-
drocarbon to the blow-down drum. A vapour
cloud of hydrocarbon was released into the at-
mosphere and then ignited causing an explo-

sion.
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West  Virginia  Lit-

tle General Store

Propane  Explosion,

2007

Propane leak from a tank during maintenance
caused a massive amount of release. The gas
entered the store through the ventilation duct
and created a vapour cloud inside the store
which later on ignited with blast of explosion.
Human Error due to inexperience was the pri-

mary cause of release.

Huston Marcus Oil

and Chemical Explo-

A modified pressure vessel containing wax and

hydrocarbons ruptured at high pressure due

sion, 2004 to fabrication flaws. This caused hydrocarbon
release and fire. This then ignited the liquid
inside the tank, which exploded. Most likely
the Explosion was BLEVE.

Puerto Rico | A tank overflow during a pumping operation

Caribbean Petroleum
Corporation
(CAPECO) Fire

& Explosion, 2009

caused a large spill of gasoline. The Gasoline
vapour dispersed and created a large vapour
cloud. The cloud was ignited from electrical
equipment and caused a Flash fire. The fire

triggered a secondary explosion of the tank.

West Fertilizer Fire &

Explosion, Texas 2013

A Fertilizer storage facility caught fire. The
stored nitrate fertilizer was heated, leading a

fatal explosion due to explosive properties.

52




Valero Refinery

Propane Fire, Texas

2007

An elbow failed due to icing inside the line and
led to a high pressure propane leak forming a
vapour cloud. The vapour cloud ignited from

the nearby boiler house and created a jet-fire.

Veolia ES Technical
Solutions Hazardous
Waste Fire and

Explosion, Ohio 2009

A flammable vapor of tetrahydrafuran (THF)
was released from a waste recycling process,
ignited, and violently exploded. Contact of
THEF with air may lead to a high pressure vent
of the gas which might cause vapour cloud ex-

plosion as fireball.

10.

Herrig Brothers Farm
Propane Tank Explo-

sion, Towa 1998

A Leakage in the propane tank due a broken
pipeline caused a vapor fire in the propane
storage tank. The fire heating the tank caused
boiling of liquids inside the tank. After reach-
ing a certain pressure, the tank exploded. The

type of explosion was BLEVE.

11.

Silver Eagle Refinery
Flash Fire and Explo-
sion, Utah 2009

A 10" pipe below the distillate de-waxing unit
failed due to corrosion and released hydro-
gen gas to the atmosphere. The gas created
a vapour cloud and caused flash-fire sending

workers to the hospital
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12.

Carbide Industries
Explosion, Louisville,

Kentucky, 2011

A water leakage to an electric arch furnace
with molten calcium carbide, caused overpres-
sure of the furnace and released tons of debris
and powdered gases. The high temperature
furnace cover with water jacket having low
material strength was suspected be exposed to
high temperature "Boil-Up" spills and caused
the leak in the furnace. Water in-touch with
the molten metals created an extreme high

pressure blow up and explosion.

13.

Williams Olefins
Plant Explosion,

Louisiana 2013

Amongst two water heated Re-boilers of a
propylene fractionation tower, the 16 month
standby re-boiler exploded due to high pres-
sure. The stand-by re-boiler was suspected to
be filled with high temperature process fluid
and water was introduced to the reboiler as a
part of unprecedented process diagnosis oper-
ation. The trapped propylene in the re-boiler

overheated and exploded due to overpressure.
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14. EQ Hazardous Waste | A flammable vapour release along causing
Fire and Explosion, | chlorine from E(Q hazardous waste facility
Apex, NC, 2006 caught fire with toxic smoke. The fire spread
inside the facility and storage containers ex-
ploded subsequently causing numerous explo-
sion fireballs. The toxic smoke led to evacua-
tion of neighbourhood.
15. Tosero Refinery Ex- | A heat exchanger exploded due to high tem-
plosion, Washington | perature and high pressure during commis-
2010 sioning after service. The low strength heat
exchanger shell wall was weakened due to in-
ternal cracks caused by High Temp Hydrogen
Attack (HTHA). The shell cracked due to high
heat and pressure releasing hydrogen with hy-
drocarbon causing self ignition and fire.
16. Hilton Hotel, San | After Installation of new piping in the ho-
Diego, California, | tel under construction, gas was purged indoor
2008 and ignited causing explosion.
17. Sterigenics  Interna- | A sterilization chamber filled with explosive

tional Ethylene Oxide
Explosion, California,

2004

concentration of ethylene oxide found an ig-
nition source in the ventilation oxidizer and
exploded. The event was triggered by a hu-
man error of overriding the regular gas purge

cycle.

95




18.

Kleen Energy Natural
Gas Explosion, Mid-
dletown, CT, 2010

Natural gas was being used to clean new
pipelines (aka Gas Blow) and purged in con-
fined plant area. The high concentration of

natural gas ignited and caused explosion.

19.

BLSR Fire, TEXAS,
2003

In an oilfield waste disposal facility, two per-
sonnels were disposing oilfield waste in an
open pit. The waste contained volatile liquid
which dispersed in air and caused the nearby
truck to backfire. The bacfire ignited the va-

por resulting in a flash fire.

20.

Partridge Raleigh Oil-
field Explosion and

Fire, Mississippi, 2006

An open pipe of nearby tank released
flammable vapor during a hot-work. The
flammable vapor was ignited and fire prop-
agated to another connected tank containing

crude oil and exploded.

21.

Formosa Plastics Cor-
poration  Explosion
and Fire, Illiopolis,

Tllinois 2004

An operator opened a running vinyl-chloride
reactor drain valve releasing high pressure-
high temperature flammable materials. The
building, filled with flammable vapour ex-

ploded within minutes.

22.

Formosa Plastics Cor-
poration Fire, Point

Comfort, Texas, 2005

A Propylene strainer drain valve broke when
stuck by a forklift, causing large liquid leak.
The liquid caused a vapour cloud and ignited

causing fire.
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23. Praxair Propylene | Propylene cylinders overheated due to atmo-
Cylinders Fire, St. | spheric high temperature in a storage facility
Louis, Missouri 2005 | and caused release of propylene. The released
gas ignited from static charge and caused fire
and accelerated series of explosions due to
overheating of nearby cylinders.
24. ASCO Acetylene Ex- | A failed check valve caused acetylene flow
plosion, Perth Amboy, | back to a shed and accumulated through the
New Jersey 2005 open drain valve. The explosive mixture ex-
ploded, finding an ignition source.
25. CITGO’s Corpus | A fire in the alkylation unit at CITGO’s
Christi refinery, Texas | Corpus Christi refinery led to a release of
2009 hydrofluoric acid (HF). The alkylation unit
makes high-octane blending components for
gasoline. One worker was critically burned.
Primary Fire & Secondary Toxicity (Chemi-
cal Burn)
26. Horsehead  Holding | A buildup of superheated liquid zinc inside a
Company Explo- | ceramic zinc distillation column “explosively

sion,Pennsylvania

2010

decompressed” and ignited.
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27.

BP Ameco Polymers

Plant Explosion, 2001

After a mechanical failure, a waste tank filled
with molten plastic had a decomposition reac-
tion causing high pressure. When the main-
tenance workers tried to open the tank lid for
cleaning, the tank lid exploded, causing fatal-

ities and damage to the unit.

28.

First Chemical Corp.

Reactive Chemical
Explosion, Mississipi
2002

An Out of Operation distillation tower par-
tially filled with mono-nitro-toluene (MNT)
was heated by leaky steam valve causing a
runaway decomposition reaction with high
temperature. The high temperature and pres-

sure caused a massive explosion in the tower.

29.

Synthron Inc Ex-
plosion, Morganton,

North Carolina 2006

A runaway reaction occurred in the batch re-
actor during an attempt to produce a larger
sized batch. The overpressure ruptured reac-
tor cap seal and released flammable vapour

inside the building, which then exploded.

30.

Denvers Arnel Chemi-
cals Vapor Cloud Ex-

plosion, 2006

Accidentally open steam valve overheated a
tank and formed a vapour cloud leaking
through the unsealed vent, causing a Vapour

Cloud Explosion.

31.

T2 Laboratories Ex-
plosion, Jacksonville,

Florida, 2007

Due to malfunctioning cooling system a run-
away chemical reaction in MCMT reactor
caused high temperature inside the reactor.

As a result the vessel exploded with fire.
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32. Imperial Sugar Refin- | One of the largest Dust explosions, killing 14
ery Dust explosion, | people and injured many. Sugar dust was ig-
Georgia 2008 nited inside a closed conveyor by contact with

the high temperature bearings. The dust ex-
plosion caused several chain explosions and
fireballs destroying the whole facility.

33. AL Solutions Metal | Metal combustible dust was ignited from a
Recycling, West Vir- | spark in the blender. The flashfire ignited and
ginia 2007 created a combustible vapour cloud leading to

dust explosion.

34. Hoeganaes facility | The iron recycling facility had several fatal ac-
Flash  Fires, Ten- | cidents with combustible dust flash fires. Dur-
nessee 2011 ing a maintenance operation a combustible

dust cloud was ignited from a metal spark and
caused a flash fire alt least three times in the
same year, causing total of 5 fatalities.

35. West Pharmaceutical | Accumulation of Polyethylene dust over the

Explosion, North Car-
olina 2003

acoustic tile ceiling was agitated due to a small
fire inside the facility, forming dust cloud. The
dust cloud ignited from a source causing mas-

sive explosion inside the building.
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36.

Hayes Lemars Plant,

Indiana 2003

The factory prepared aluminum wheels. The
aluminum dust from machining-grinding was
collected through dust collector and fed to the
furnace for remelting. A dust fire started in-
side the dust collector from metal spark or hot
surface causing the flame-front to propagate
back to the furnace area, releasing an airborne
dust cloud, which exploded inside the confined

plant area.

37.

CTA Acoustics, Ken-
tucky, 2003

Polymer resin dust clouds from improper
housekeeping operations dispersed inside the
facility and found an ignition source from a
open furnace door. The Dust cloud caused
two small dust explosions. The consequence
was dispersion of more accumulated dust and
propagation of the explosions destroyed the

whole production line.

38.

Dupont Chemical
Toxic Release, Texas,

2014

An unnoticed valve left open during startup
operation caused toxic liquid carryover to the
blowout drum. The operators tried to purge
the liquid and inhaled toxic gas resulting fa-

talities.

39.

DPC Enterprises
Chlorine Release,

Missouri 2002

A chlorine transfer hose ruptured during rail
unloading, releasing a huge quantity of toxic

gas.
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40. DuPont facility Toxic | A toxic Phosgene gas hose was disconnected
Exposure, West Vir- | during cylinder replacement and created a
ginia 2008 toxic environment leading to fatalities.

41. Bayer Crop Science, | During a startup of the Methomyl unit, a run-
West Virginia away reaction occurred in the waste cooker

and exploded, with flammable toxic material
release and fire.

42. MFG Chemical Inc. | A chemical reactor overheated releasing toxic
Toxic Gas Release, | allyl alcohol vapour. The overheating caused
Dalton, Georgia, 2001 | overpressure and rupture of the tank seal.

43. Millard Refrigerated | The refrigeration system was started after an
Services Ammonia | unplanned shut-down without removing lig-
Release, AL, 2010 uid from the circuit. As a result, a hydraulic

shock was generated which led to rupture of
the pipeline. Ammonia leaked to atmosphere
and affected the community.

44. Freedom  Industries | A leakage of hazardous materials led to toxic
Chemical Release, | contamination of nearby river water, which re-
WV, 2014 sulted in contamination of water supply to the

nearby community.

45. Honeywell Plant | While unloading a railroad chlorine tanker,
Chlorione Release, | the transfer hose ruptured due to high pres-
LA, 2003 sure. The release lasted for 45 seconds before

the operators responded by closing the shutoff

valves. The exposure affected 11 workers.

61




4.2 Implementing The Hazard Scenario Model :
Evidence and Results

The Hazard Scenario Model can predict different hazards from existing knowledge
based data. The development of the primary hazard scenario was a knowledge-based
model depending on th literature and investigations of the US Chemical Safety Board
(CSB). However, to validate adaptability, the model was tested and trained with trials
of accidents from previous database. For convenience the results are categorized based

on the nature of scenario and listed in tabular form.

4.2.1 Fire & Explosion Scenarios

Chemical fire and explosion hazards are most commonly observed in process indus-
tries. For most of the cases material release due to Mechanical Failure, Overflow, or
Reaction Runaway, and some cases were influenced by Human FError initiating the
primary events. The propagation of event can lead to Fire Hazard, Explosion Hazard
or Toxicity or all of these. Our results in Table 4.2 represents how the model predicts

fire and explosion incidents based on the provided evidence.
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Table 4.2: Explosion & Fire Accidents

Accident Important Evidence?(Scenario) Results

1.  ConAgra Natural | Comb. Gas > Mat.Rel. > Conf. > Ig. | Exp. = 51.60 % ;

Gas Exp. and NH; Re- | > Exp. VCE = 43.24 %

lease, NC, 2009

2. Richmond Chevron | Low St. > HT > H Cap. > LVP Liq. > | Exp.=36.07 % ;

Refinery Fire, 2012 Stable Weather > Mat.Rel. > VCFor- | Fire = 27.92%;
mation >Comb. >Ig. Source > VCE | VCE = 30.63%

3. BP Texas Refinery | Low Cap. > H Flow > HT > Over- | Exp. = 39.88 % ;

Exp. , 2005 flow > Mat.Rel. > Vap.Cloud > Ig. | Fire = 30.22 % ;
>Comb. > No-Conf. > VCE VCE = 33.32 %
4. Little General Store | Hum.Err. > Mat.Rel. > Comb. gas > | Exp. = 42.6 %;
Propane Exp., 2007 Dsp.> Conf.Space > Ig. > VCE = 36.78%
5. Houston Marcus | LowSt. > HP > HT > HCap. > | Exp. = 46.06
Oil and Chemical Exp., | Mat.Rel. > LVPLiq. > Dsp.> No Conf. | % ; VCE =
2004 > Comb. > Ig. > Fire > BLEVE 32.22% BLEVE
= 18.79%
6. CAPECO Fire 2009 | Low Cap. > H Flow> LVP Liq. > | Fire =41.7%;
& Exp., 2009 Comb. > Ig. > Fire > Sec.Exp. FlashFire
=20.65%
7. West Fertilizer Fire | Solid Mat. > Mat.Rel. > Comb. > Ig. | Exp. =24.45%;

& Exp., Texas 2013

> Fire > Explosive Mat. > Sec. Exp.

D.Exp. = 17.64%

2Abbreviations Used; (e.g. Mat. Release= Mat. Rel , Temperature=T, Pressure=P, Vapor

=V /Vap, High =H, Combustible=Comb.

, Strength=St., Exp.

Capacity =Cap., Dispersion=Dsp., Vapor Cloud=VC)
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8. Valero Refinery Fire,
Texas 2007

LowSt. > HP > Mech. Fail > Mat.Rel.

> LVPliq. > [g. > Comb. > Fire

Fire = 42.82% ;
JetFire=22.13% :
Sec.Exp.=38.69%

9. Veolia ES Tech. | Mat.Rel. > Comb.Gas > Vap.Cloud > | Exp. = 34.66% ;
Sol.  Fire and Exp., | Ig. > VCE Tox. = 46.94 %
Ohio 2009

10. Herrig Broth- | HP > Leakage > LowVPLiq. > Dsp.> | Fire = 31.31 % ;

ers Farm Propane Tank

Exp., Towa 1998

Ig. Source >Fire > Liq. > Sec. BLEVE

JetFire=20.67%;
Sec.Exp.=29.93%

11. Silver Eagle Refin-
ery Flash Fire and Exp.,
Utah 2009

Gas>Low St.Mat.> HP > HFlow > HT
> Mech.Fail > Mat.Rel. > Dsp.> VC

> Comb. > Ig. > Fire

Fire = 38.8%
; Flashfire =

18.58%

12. Carbide Industries

Exp., Kentucky, 2011

H T > Mech. Fail > Mat.Rel.> Non-
Toxic & Non-Comb. Lig. > No. Ig.>
Conf. Vessel > Exp. (BLEVE)

Mat. Rel.= 62.06
% (No Hazard)

13. Williams Olefins

Exp., Louisiana 2013

Liq.> Mat. Rel.> HT > BLEVE

Exp. = 60.55 %

. VCE = 43.52
%

19.19%

BLEVE =

14. EQ Hazardous
Waste Fire and Exp.,
Apex, NC, 2006

Mat.Rel. > Comb. > Ig. > Toxic >

Fire> Toxic Vap.

Fire = 34.66 % ;
Tox. = 40.94 %
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15. Tosero Refinery
Exp., Washington 2010

Low St.(HTHA)> HT > HCap. >
Gas > Mech.Fail >Mat. Rel.> VC

>Comb.> Ig.> no Conf. > Fire

Fire =42.8%:;
FlashFire=
32.8%;  SecExp.
=38.6%

16. Hilton Hotel, San
Diego, California, 2008

Comb. Gas > Mat.Rel. > Conf > Ig.

> Exp.

Exp. = 48.34 % ;
VCE = 39.93 %

17. Sterigenics Int.

Hum. Err. > Mat.Rel. > Conf. Vessel

Exp. = 49.67 % ;

Ethylene Oxide Exp., | > Explosive Conc. > Exp. VCE = 37.74%
California, 2004

18. Kleen Energy Nat- | Comb. Gas > Mat.Rel. > Conf.> Ig. | Exp. = 49.09 % ;
ural Gas Exp., Middle- | > Exp. VCE = 39.6 %
town, CT, 2010

19. BLSR Fire, | Mat.Rel. > LVP Gas > Comb. > Ig. | Exp. = 32.79% ;
TEXAS, 2003 > Fire Fire = 32.45 % ;

VCE = 26.09 %

20. Partridge Raleigh

Mat.Rel. > Ig. Source > Comb. Vap.

Exp. =49.43 % ;

Oilfield Exp. & Fire, | > Fire > Conf. Tank > Exp. VCE = 41.67 %
Missisipi, 2006

21.  Formosa Plastics | Hum. Err. > Mat.Rel. > HT Vap.> | Exp. = 39 % ;
Corporation Exp. & | Conf. Space> Ig. > Exp.(VCE) VCE = 33.46 %
Fire, Illinois 2004

22. Formosa Plas- | Hum. Err.> Low St. Mat.> Mech. | Exp. = 37.17 % ;
tics Corporation Fire, | Fail> Mat.Rel.> LVP Liq.> HT> VC> | VCE = 31.58 %

Texas, 2005

Ig. > VCE
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23. Praxair Propylene
Cylinders Fire, Missouri

2005

HT > H P Gas > Low St. Mat.
> Insuff. Heat Rem.> Mech. Fail >
Mat.Rel. > VC > Ig.(Static Charge )

> VCE > Sec. Exp.

Fire = 30.73% ;
Exp. = 36.75 %

. VCE = 33.34 %

24. ASCO Acetylene

Exp., New Jersey 2005

Low St. Mat. > H Flow > Low Cap.
> Mat.Rel. > Dsp.> Conf. space > Ig.
> VCE > Sec. Fire

Exp. — 23.061 %
: VCE = 43.82 %

25.  CITGO’s Corpus

Mat.Rel.> LVP Gas.> HT> VC> Ig.

Fire = 34.02 % ;

Christi refinery, Texas | > Primary Fire & Sec. Tox. (Chemical | Tox. = 38.34 %
2009 Burn)

26. Horsehead | HP > H T > Liq. > Explosive > Conf. | Exp. = 41.87 %
Holding Company | Space > Self Ig. > Exp. ; BLEVE = 18.74
Exp.,Pennsylvania 2010 %
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4.2.2 Reactive Hazards

Reactive hazards are commonly known as Fire/Explosion/Toxicity Hazards posed by

reactive chemical processes. A reactive hazard normally initiates by reaction run-

away caused during any operating conditions. The Hazard model results for reactive

hazard related industrial incidents are listed in Table-4.3.

Table 4.3: Accidents from Reactive Hazards

Accident

Important Evidence?(Scenario)

Results

27. BP Ameco Poly-

mers Plant Exp., 2001

Reac. Process > H Flow > Insuff. Heat
Rem.> R. Runaway > Mat.Rel.> Exp.
(BLEVE) > VCE

Exp. = 4818 %
; BLEVE = 19.85

%

28. First Chem. Corp.

Low St. Mat. > H P > Reac. Process>

Exp. = 56.67 % ;

Reactive  Explosion, | H Flow> R. Runaway > Insuff. Heat | VCE = 28.3 %
Mississippi 2002 Rem.> Mat.Rel. > Exp.

29. Synthron Inc | Reac. Process > Insuff. Heat Rem.> R. | Exp. = 53.02 %
Exp., Morganton, | Runaway > Mat.Rel.>VC >Ig. > Exp. | ; VCE = 44.2 % ;

North Carolina 2006

BLEVE = 9.86 %

30. Arnel Chemicals | LowVP Liq. > H-T > H-P > Reac. | Exp. =51%;

Vap. Cloud Exp., 2006 | process> Mat.Rel. > Conf.> Ig. > | VCE=35.3%
Exp.

31. T2 Laboratories | Reac. Process > Conf.> Insuff. Heat | Exp. = 61.01 % ;

Explosions,  Florida,

2007

Rem. > R. Runaway > HP > Mat.
Rel.> BLEVE > Sec. Fire

VCE = 43.82 %

3Similar abbreviations used as Table-4.2
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4.2.3 Combustible Dust Fire And Explosions

Combustible dust in manufacturing industries is a potential hazard which needs proper

attention. Most commonly, incombustible solids are ignored, but smaller size particles

or dust can be dangerously combustible in certain concentration. Recent incidents in

particulate-solid / combustible dust associated industries were examined. The model

provides results (Table 4.4)which is in compliance with the real scenarios.

Table 4.4: Fire and Explosions due to Combustible Dust

Accident Important Evidence!(Scenario) Results

32. Imperial Sugar Re- | Dust > HCap. > >Mat. Rel.> Dsp> | Exp. = 49.95%;
finery Dust explosion, | Conf. Space > Ig. Source> Flash Fire | D. E.= 41.91%
Georgia 2008 > Dust Exp.

33. AL Solutions Metal | Dust> LowCap. > Hum. Err.>Mat. | Fire = 47 % ;
Recycling, West Vir- | Rel.> Dsp> Conf. Space > Ig. > Flash | Exp. = 19.64 %
ginia 2007 Fire > Dust Exp.

34. Hoeganaes facility
Flash Fires, Tennessee

2011

Dust > LessCap. > Hum. Err.>Mat.
Rel.> Dsp> Conf. Space > Ig. Source

> Flash Fire > Dust Exp.

Fire = 54.58 % ;
DE = 33.15 % %

35.  West Pharmaceu-
tical Exp., North Car-
olina 2003

Dust> HCap. > Hum. Err.>Mat.
Rel.> Dsp> Conf. Space > Ig. Source

> Dust Exp.

Exp. = 49.95 %
:DE =40.64 %

36. Hayes Lemars Plant,
Indiana 2003

Dust > Low Cap. > Hum. Err.>Mat.
Rel.> Dsp> Conf. Space > Ig. > Flash

Fire > Dust Exp.

Exp. = 49.95 %
D.E. =41.29 %

4Similar abbreviations used as Table-4.2
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37. CTA Acoustics,

Kentucky, 2003

Dust> HCap. > Hum. Err.>Mat.
Rel.> Dsp> Conf. Space > Ig. Source

> Dust Exp.

Exp. = 56.58 %
. D. E. = 48.35
%

4.2.4 Toxic Exposure Accidents

Toxic Exposure is the hazard which is most dangerous for living beings. Toxicity in-

cidents can be lethal or pose long term health effects to a widely exposed area. Table

4.5 list results of some of the accidents investigated.

Table 4.5: Toxicity Accident Results

Accidents Important Evidence °(Scenario) Results
38. Dupont Chemical | Mat.Rel.> Low Vap P Liq. > H T > | Tox. = 73.3%
Toxic Release, 2014 Dsp.> Conf. Space > No Ig. > Toxic
Mat. > ToxicExposure
39. DPC Enterprises | Low St. Mat. > H flow Rate > H P > | Tox. = 69.83 %
Chlorine Release, Mis- | Tox. > No Ig. > Mat. Rel. > Toxic
souri 2002 Exposure
40. DuPont facility | Hum. Err. > Mech. Fail > Mat. release | Tox. =73.3 %

Toxic Exposure, West

Virginia 2008

> Toxic Gas > No Ig. Source > Conf.

> Toxic Exposure

41. Bayer Crop Science,

West Virginia

Hum. Err. > R. Runaway > Mech. Fail
> Mat. Rel. > Comb. Tox. Gas >Ig.

>No Conf. > Fire > Tox.

Fire= 45.14 % ;
Tox. = 24.45 %

5Similar abbreviation used as Table-4.2
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42. MFG Chemical | Reac. Process > Hum. Err. > R. Run- | Fire = 40.96%;
Inc. Toxic Gas Release, | away > Mech. Fail > Mat. Rel.> Comb. | Tox. = 30.72 %
Georgia, 2001 Toxic Gas > Ig.> No Conf. > Fire >

Tox.
43.  Millard Refriger- | H P(Hyd.Shock)> Low St. Mat. > | Tox. = 72.83 %
ated Services NHjz Re- | Mat.Rel. > Tox. Gas > Dsp.> No Ig.
lease, AL, 2010 > NotComb. > Tox.
44. Freedom Industries | Low St. Mat. > H P > HVP Liq. > | Tox. = 67.46 %
Chemical Release, WV, | Mech. Fail > Mat.Rel. > Dsp.> Tox.
2014 Liq. > Toxic Exposure
45.  Honeywell Plant | HP > Low St. Mat. > H Flow> Toxic | Tox. = 69.28%

Chlorine Release, LA,
2003

Gas > Mat.Rel. > No Ig. > Tox.
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4.3 Analysis & Applications

4.3.1 Hazard Scenario Model For Risk Management

The Hazard Scenario Model included at least two mitigation factors (e.g. Suffi-
cient Heat Removal, Release Containment) as controlling parameters in the scenario.
Mostly "Human Error" was considered as the trigger for Dust related accidents. In
this section the goal is to find out how much effect these mitigation factors have on
the final hazard. To verify this, one or two selective nodes will have the opposite
value of previous tests. The comparison of results for a few example cases are listed
in Table: 4.6. The previous assumptions or significance of the selective nodes are as
below.

Heat Removal: This node is represented in the model as "hasSufficientHeat Removal’
which is a controlling parameter of the reaction runaway. In most cases overheating
due to reaction-runaway causing overpressure and material release, which might led
to a hazardous situation.

Release containment: To prevent material release due to overflow or safety re-
lief some process operations have containment facility (e.g. Flare, Dilution Tanks,
Knockout-Drum) for safe discard of released material. Sometimes there are remotely
operated isolation valves for mechanical failure which may minimize or stop any release
situation. These options are considered in as a boolean value hasReleaseContainment
node.

Human Error: Most hazards are direct and indirect result of human error. How-
ever, for dust explosion scenarios, human error has the most direct contribution. Poor
Housekeeping, Material Agitation and Inadequate Maintenance can be considered to
be in this criterion. For Particulate solid or Dust handling facilities "Human Error"

is a vital controlling factor for potential hazards.
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The comparison from Table 4.6 indicates that the controlling nodes have a significant

effect on the final hazard. However, for reactive processes he overheat-protection im-

pact is significant but cannot eliminate the potential final hazard. On the other hand,

release containment or minimizing can reduce the risk of hazard most significantly .

For Dust or solid handling facilities, Human Error creates most for potential Hazards.

Table 4.6: Hazard Scenario Model For Risk Management

Accident Actual Result Controlling Pa- | Controlled Re-
rameter sult
Richmond  Chevron | Explosion=36.07 % | Release = Contain- | Explosion= 13 %
Refinery Fire, 2012 : Fire = 27.92%; | ment =  True|; Fire = 13.5%;
VCE = 30.63% (Emergency Isola- | No Hazard = 68.5%
tion)
Valero Refinery | Fire = 42.82 % | Release  Contain- | Explosion= 13 %
Propane Fire, Texas | Jet fire =22.13 % |ment =  True |; Fire = 13.5%;

2007

(Remote Isolation )

No Hazard = 68.5%

Little General Store | Explosion = 42.6 % | Release  Contain- | Explosion= 17.5 %
Propane  Explosion, | VCE = 36.78% ment =  True|; Fire = 9.5%;
WV, 2007 (Isolation valve or | No Hazard = 68.4%
Stop ventilation)

First Chemical Corp. | Explosion Sufficient Heat | Explosion=37.62
Reactive Chemical | = 56.67%; | Removal = True | % ; Fire = 16.14%;
Explosion, Mississippi | VCE = 28.3% (Overheat Control) | No  Hazard =
2002 42.27%
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Synthron Inc Ex- | Explosion Sufficient Heat | Explosion = 3.92 %
plosion, Morganton, | = 53.02 % | Removal = True | ; Fire = 15.08 % ;
North Carolina 2006 | VCE = 44.02 | (OverHeat Re- | No Hazard = 46.92
% moval) %
T2 Laboratories Ex- | Explosion Sufficient Heat | Explosion = 37.62
plosions, Jacksonville, | = 56.84 % | Removal = True; | % ; Fire =16.14 % ;
Florida, 2007 VCE = 41.11 | (Overheat Protec- | No Hazard = 42.27
% tion) %
Imperial Sugar Refin- | Explosion = | Human Er- | Explosion = 16.01
ery Dust explosion, | 49.95 % % | ror = False; | % ; Fire = 9.23 % ;
Georgia 2008 Dust Explosion | (Adequate Mainte- | No Hazard = 70.12
=41.91 % nance, Housekeep- | %
ing)
AL Solutions Metal | Fire = 47 % | Human Er- | Explosion = 10.8 %
Recycling, West Vir- | Dust Explosion = | ror = False | ; Fire = 14.64 % ;
ginia 2007 19.64 % (Better House- | No Hazard = 69.39
keeping) %
MFG Chemical Inc. | Fire Haz- | Sufficient Heat | Fire Haz-
Toxic Gas Release, | ard = 40.96% | Removal = True |ard = 29.04%

Dalton, Georgia, 2001

Toxicity = 30.72 %

& Human Error =

False

Toxicity = 43.81 %

4.3.2 Hazard Scenario Model for Causality Analysis

A previous section describes Hazard Prediction from the evidence of any scenario.

However, to check the contributions of the nodes, we ran the test for some predefined
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hazard and checked the results with limited evidences of the site and material prop-

erties. To run these tests we used three previous historical incidents to determine if

the contributing factors could indicate the contribution of the event propagation in

the incident.

PEPCON Disaster, Henderson, Nevada, 1988:

A fire started in the Am-

monium Perchlorate production and storage facility. The batch first caught fire in

high temperature which spread because of dust and fiberglass building materials in

the area. The fire caused two massive explosions consecutively. Heating of explosive

materials due to fire caused the explosions.

Evidence: Secondary Explosion, Fire, High Temperature, Reactive Process, Com-

bustible Material, Ignition, High Temperature.

Results: Flash Fire = 70.89 %

v
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Figure 4.2: Results for the PEPCON Disaster diagnostic test.
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Materials = 62.83% Vapor, 19.24% Dust, 16.53% Liquid

Dispersion = 49.33%

Material Release = 53.61%

Reaction Runaway = 32.85 %. [Details in Figure 4.2]

Union Carbide Disaster, Bhopal, India, 1986: Water carry-over into a Methyl

iso-Cyanide (MIC) storage tank led to a runaway reaction which led to toxic gas

release through a flare. Because the adsorption tower was inoperable, the toxic gas

killed more than 3000 people around the plant.

Evidence: Toxic Vapor, Fire, Reaction Runaway, Reactive Process, Non-Combustible

Material, Insufficient Heat Removal.

Results: Toxic Hazard = 73.11 %, Dispersion = 35.69% Vapor Cloud = 44.75%
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Figure 4.3: Results for the Bhopal Disaster diagnostic test.

Material Release = 90.2%. [Details in Figure 4.3]
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Piper Alpha Disaster, North Sea, Off-shore Aberdeen, UK 1988:

A series

of explosion in the offshore oil rig and processing unit Piper Alpha caused the struc-

ture to collapse totally with 167 fatalities. The cause of the primary explosion is

suspected to have been gas condensate leakage which led to the disaster.

FEvidance: Explosion, High pressure, Non-Reactive Process, Combustible Material,

Ignition, High Temperature, Low Vapour Pressure Liquid

Results: Vapour Cloud Explosion = 45.22 %,
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Figure 4.4: Results for the Piper-Alpha Disaster diagnostic test.

Dispersion = 35.35% Vapour Cloud Formation = 51.65%

Material Release = 58.51%

Overflow=25.18 % Mechanical Failure = 19.45 %. [Details in Figure 4.4]
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Chapter 5

Results & Discussion

This chapter discusses the results obtained from implementation of the hazard sce-
nario model in the historical accident database. The case specific results are listed
in the previous chapter. The following mostly focuses on comparison of results and

discussion.

5.1 Model Predictions & Actual Scenario

The goal of implementing the hazard scenario model was to evaluate and validate
if the model behaviour was in agreement with the actual scenario. However, most
of the results are in agreement with the actual scenario in Section 4.2. A statistical
representation was prepared based on the results. Figure 5.1 illustrates the model
results for the accidents discussed in an earlier section. From the tables in the earlier
chapter, the columns show that the model mostly predicts the probable hazards cor-
rectly. However there are a very few exceptions lower accuracy for very few complex

cases (e.g.Cases 7, 12 24).
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5.2 Discussion: Limitations & Scope

The hazard scenario modelwas developed based on the general ideal of hazard scenario
using the proposed methodology for dynamic hazard identification. However, the
primary target was to develop a versatile model for hazard identification, using the
ontology based framework as a tool. Then the model was implemented to check
whether or not the model could predict from actual evidence. From the results a set of
limitations might be drawn which can help to upgrade the hazard identification model
to produce an intelligent and quick hazard assessment tool. The results provide the
following main factors to be taken into account as limitations of the dynamic hazard

identification model.

Prior Probabilities Declaration(LPD): In the hazard scenario model, the de-
fault LPD values and conditions are described mostly based on expert knowledge and
common logic. However, since quantification requires valid evidence and big datasets
to derive probabilistic values, a generalized approach of assumptions was made to
deduce the probabilistic values. Dependencies and LPD values were refined through
theoretical targeted hazard scenarios to produce precise results. As the model is
re-usable and there is scope to update the probabilistic information (LPD) and de-
pendencies based on specific application, the results from this model are mostly the
outcome of expert knowledge and understanding of the scenario. Probabilistic values
from historical data could improve the precision of the result and introduce dynamic

behavior of the model.

Human Error Consideration: Unwanted events due to human error are quite
common in process industries. As the unique property of SSBN, any unwanted pri-

mary, secondary or tertiary events can be initiated in the model without providing
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primary evidence. However, to manually generate the scenario is not always effective.
The model considers human error to trigger only secondary events. However, in some
cases operating conditions were manipulated by human error (e.g. Arnel Chemicals
industry explosion, Richmond Chevron Refinery Fire etc.) involving hazard propaga-
tion. Therefore, in some cases operating conditions represented human error rather
then direct input of the human error node. Additionally, in the developed model, for
dust explosion or fire scenario, HumanError was considered as the vital factor to
cause a solid material release, although in cases like the Imperial Sugar Refinery ex-
plosion, apparently the initiation was not likely from a single human error bur rather

from the long term effects of poor housekeeping or design.

Type of Fire or Explosion: Classification of the type of fire or explosion is the
major disadvantage of the model. From the results, the categories of Vapour cloud
explosion, Dust-Explosion, Flash Fire and Jet Fire are quite adequate and easily
interpretable. However, BLEVE, Fireball and Pool-fire are hazards that mostly occur
as a result of a fire or explosion. Therefore, the model has limitations to predict these
types of explosions (e.g. Synthon Inc Explosion, Williams olefins Explosion, Huston

Marcus Oil Explosion, Herrig Brothers Farm Propane Tank Explosion etc.).

Secondary Hazards: In this model secondary hazards were not considered in de-
tail. However, most often secondary hazards were the major potential threat. In this
model, fire was considered a secondary hazard of explosion and vise versa (e.g. Tosero
Refinery Explosion, Herrig Brothers Propane Tank Explosion). However, explaining
secondary explosion is complicated; for example, the presence of combustible or explo-
sive material nearby can cause consequent explosions (e.g. West Fertilizer Explosion).
However, BLEVE is mostly a consequence of a primary fire or overheating. Based on

evidence, the secondary hazards could be classified more clearly.
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Type of Accident
Type of Facility Cases Fire & Reactive Dust o
Explosion Hazard Explosion Toxiay

Hydrocarbon 9 8 1 0 0
Chemical Process 13 6 4 0 3
Manufacturing 6 0 0 6 0
Storage & Transfer 11 6 0 0 5
Others 6 5 0 0 0
Total 45 26 5 6 8

Figure 5.2: Accidents based on industry type and hazards.

Type of Facility: Table 5.2 provides a tabular representation combining both haz-
ard type and industry type. The matrix indicates that Most of the accidents has
been occurred in Chemical (31%)and Hydrocarbon (22%) related process industries,
although seemingly less-threatening storage and transfer facilities (25%) had almost
a similar number of accidents as the previous types. And almost all the dust-related
incidents occurred in manufacturing industries. Thus type of hazards may vary de-
pending on type industries. For example, operating an petroleum refining process
can pose greater risk of fire and explosion than a chemical, pharmaceutical or storage
facility. Similarly, chemical industries pose greater risk of toxic hazards than com-
mon petroleum refineries. Selection criteria of an facility and quantification of the
the type in a Risk Index for different kind of facilities can be introduced for better

impact (e.g Richmond Chevron Refinery vs West Pharmaceutical vs. Dupont Facility).
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Explosive or Self Ignition: Combustibility is not the only property of any mate-
rial. In some cases materials can be explosive or pyrophoric, so do not require any
external ignition source, rather than heat or oxygen (e.g. Horsehead Holding Com-
pany Explosion, West Fertilizer Explosion, Formosa Plastics Corporation Explosion ).
To simplify the model, only property of combustibility was taken into account. The
prediction of this scenario of self ignition can also be described as a true/false state-
ment. However, adding more states as material property can reduce the confusion

but introduce more complexity to the description of dependencies.

Solid Material and Chemical Fire:  The important limitation of this model is
the prediction for solid material and chemical explosions. Explosions like West Fer-
tilizer are caused by primary fire or overheating of material. The model prediction
worked for the situation, but some other cases was not considered here, due to the

explosive properties of solid materials.

Incombustible Liquid BLEVE Prediction: The significant exception for the
model was the Carbide Industries Explosion, Louisville, Kentucky, 2011. A water
leakage to an electric arch furnace with molten calcium carbide caused overpressure
of the furnace and released tons of debris and powdered gases. The model could not
predict BLEVE properly, as the material "water' was non-toxic and incombustible
and there was lack of ignition, at the very high temperature. However the model
could simulate Material Release as 62 %. This can be considered as an exception of

this model’s application.
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Model Dynamics & Automated System: This work has been introduced as a
framework for an automated hazard identification tool. However, all the steps here
utilize different softwares and plug-ins to produce the MEBN model, which can re-
fer to the most probable hazards as probabilistic values. Once the model has been
prepared, modifications and input of LPDs as prior probabilities can take place with
minimal effort. As all the tools used here are Java based open source software, a
single and completely automated software tool can be a possible outcome as a future
extension of the work, which can utilize the ontology based data structure to collect

data, train and modify the model with ease of access.

As a Generic Hazard Identification Model, despite the limitations, this model can still
predict the scenario effectively with a wide range of applications. A specific scenario
based model could be improvised for more efficacious precision, which was not the
primary goal. However, these case studies demonstrate that the goal to achieve a

versatile model to quantify basic industrial hazards was accomplished.
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Chapter 6

Conclusion

This work introduces an ontology based framework, to model and quantify the most
probable hazard scenarios for different system properties as well as operational and
environmental conditions. The aim is to reduce risk assessment and management
efforts by using an automated procedure for hazard identification. The developed
ontology-based model can be updated without extensive modifications and can be

adapted for different systems.

The proposed methodology, based on scenario modeling, adopts the ontology based
framework for the mapping and then converts to a Bayesian network for probabilistic
assessment of hazards. The following features can be highlighted from the proposed

dynamic hazard identification model.

e A dynamic hazard scenario development methodology has been proposed and

adopted utilizing ontology based framework.

e A hazard scenario ontology is developed to illustrate the data structure and

relations between elements.
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e The Ontology has been implemented to develop a graphical representation based

on the Bayesian Network.

e The generic model can be implemented for most fire/explosion/toxicity scenarios

in the process industries.
e Hazards are identified as probabilities of occurrence.

e Probabilistic data are implemented based on expert knowledge, which can be

replaced by historical data for any known domain.
e Declaration of prior probabilities introduce the dynamics of the model.

e Automatic data acquisition system and dynamic updates can be developed in

future.

The dynamic hazard identification model was implemented for previous accidents to
verify the effectiveness and prediction capability of the model. Although this is a
generic model from knowledge based data, in almost all the cases the model predicted
the most probable hazards successfully. Some additional applications for risk manage-
ment and causality analysis were verified in different circumstances. The application
results indicate the model to be effective in most cases. Although this model has
limitations, a situation based application can be accomplished using historical data

to upgrade the efficacy and adaptability of the model.

6.1 Future Scopes

Current work was motivated for dynamic hazard identification, adapting the ontol-

ogy based framework to model the process hazard scenario. However, this modeling
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approach, along with the framework can be adapted to different risk management

application. The future scopes can be described as below.

e Ontology based knowledge modeling approach can provide an explicit, accessi-
ble and reusable knowledge model to capture the process knowledge from back-
ground study. This model will be ready to be utilized for different applications
which require process knowledge as a data-structure along with quantitative

reasoning.

e Current work utilizes available OWL based ontology development software Protégé
and PR-OWL based Bayesian reasoning software UnBBayes, which are open
source and use similar Java based platform. However, this shared platform

opens a possible extension leading to a unique hazard identification interface.

e The dynamics of the hazard scenario model is dependent on the LPD declara-
tions, which can be updated over time. As the model was based on machine
interpretable framework, an automatic data acquisition system can be designed

to build the interlink between the model and database.

e Although this report explores the application of an ontology based framework
in dynamic hazard identification, several other applications are in consideration.
Knowledge based process monitoring focusing on event based alarm annuncia-
tion, probabilistic risk assessment through process fault scenario generation are
the notable applications. Moreover, ontology modeling can be adopted in differ-
ent risk modeling approaches which require qualitative information as evidence.
An automatic expert system might overcome the challenges of developing an

intelligent risk management tool in future.
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Appendix A

Local Probability Distributions

Local Probabilistic Distributions are Actually the Probabilistic logics and values de-
clared to generate the Bayesian network. UnBBayes software MEBN plug-in calcu-
lates the probabilistic values for random variable states. A probabilistic scenario is

declared through simple "I f...Else..." logics and predefined Probabilities.

A.1 Demonstration: Simple Hazard Model

The Local Probability Distributions(LPDs) for the simple h azard model has been
based on logical expressions for three different nodes. The declarations are listed in

following sub-sections.
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A.2 Dynamic Hazard Identification: The Hazard

Scenario Model

A.2.1 Input Nodes:Default LPD Values

Default State values for The Hazard Scenario Model can be found from following
table.

The LPD distribution logics based on each node can be found below.

A.2.2 ’causePraimaryFEvent’ Node LPD

if any Sc have (ReactiveProcess= true & HasCapacity = LowCapacity)
[if any Sc have (HasFlowRate = HighFlowRate )]
Overflow = 0.15,
MechanicalFailure = 0.05,
NormalOperation = 0.05,
ReactionRunaway = 0.75
| else |
Overflow = 0.05,
MechanicalFailure = 0.10,
NormalOperation = 0.60,
ReactionRunaway = 0.25
)
| else if any Sc have
(ReactiveProcess= false & HasCapacity = LowCapacity)
[if any Sc have (HasFlowRate = HighFlowRate )]
Overflow = 0.85,
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MechanicalFailure = 0.05,

NormalOperation = 0.05,

o

ReactionRunaway = 0.05
| else |
Overflow = 0.15,
MechanicalFailure = 0.10,
NormalOperation = 0.60,
ReactionRunaway = 0.15
]
] else if any Sc have ( HasStrengthOfMaterials = LowStrength)
[if any Sc have (HasFlowRate = HighFlowRate )
[if any Sc have ( HasPressure = HighPressure )
[ if any Sc have ( HasTemperature = HighTemperature )]
Overflow = 0.05,
MechanicalFailure = 0.8,
NormalOperation = 0.13,
ReactionRunaway = 0.02
| else |
Overflow = 0.10,
MechanicalFailure = 0.37,
NormalOperation = 0.50,

ReactionRunaway = 0.03

| else |
Overflow = 0.05,

MechanicalFailure = 0.25,
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NormalOperation = 0.65,
ReactionRunaway = 0.05

)

Jelse |
Overflow = 0.05,
MechanicalFailure = 0.20,
NormalOperation = 0.70,
ReactionRunaway = 0.05

]] else [
Overflow = 0.03,
MechanicalFailure = 0.10,
NormalOperation = 0.85,

ReactionRunaway = 0.02

A.2.3 ’causeSecondaryFEvent’ Node LPD

if any Sc have (HumanError = true)
[if any Sc have ( HasMatState = Dust | HasMatState = Solid)
[
MaterialRelease = 0.85,
NoRelease = 0.15
] else [if any Sc have ( CausePrimaryEvents = MechanicalFailure)
[
MaterialRelease = 0.95,
NoRelease = 0.05

] else if any Sc have ( CausePrimaryEvents = Overflow)
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[
MaterialRelease = 0.80,

NoRelease = 0.20
] else if any Sc have (CausePrimaryEvents = ReactionRunaway)
[if any Sc have (SufficientOverHeatRemoval =false)
[

MaterialRelease = 0.95,

NoRelease = 0.05 |
else |

MaterialRelease = 0.60,

NoRelease = 0.40
]
Jelse |

MaterialRelease = .65,

NoRelease = .35

]
]

Jelse [if any Sc have ( CausePrimaryEvents = MechanicalFailure)
[if any Sc have ( HasMatState = Vapor )
[ if any Sc have ( HasPressure = HighPressure ) |
MaterialRelease = 0.8,
NoRelease = 0.2
] else if any Sc have (HasPressure = NormalPressure ) |
MaterialRelease = 0.50,
NoRelease = 0.50

] else |
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MaterialRelease = 0.20,

NoRelease = 0.80

] else if any Sc have ( HasMatState = Liquid )

[ if any Sc have ( HasPressure = HighPressure ) |
MaterialRelease = 0.7,
NoRelease = 0.3

] else if any Sc have (HasPressure = NormalPressure ) |
MaterialRelease = 0.40,
NoRelease = 0.60

] else |
MaterialRelease = 0.15,

NoRelease = 0.85

] else | if any Sc have ( HasPressure = HighPressure ) |
MaterialRelease = 0.5,
NoRelease = 0.5

] else if any Sc have (HasPressure = NormalPressure ) |
MaterialRelease = 0.20,
NoRelease = 0.80

] else |
MaterialRelease = 0.05,
NoRelease = 0.95

I

] else if any Sc have ( CausePrimaryEvents = Overflow)

[if any Sc have ( HasMatState = Vapor ) |
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MaterialRelease = 0.30,
NoRelease = 0.70
] else if any Sc have ( HasMatState = Liquid ) |
MaterialRelease = 0.80,
NoRelease = 0.20
] else |
MaterialRelease = 0.06,
NoRelease = 0.94
]
] else if any Sc have (CausePrimaryEvents = ReactionRunaway)
[ if any Sc have (SufficientOverHeatRemoval =false) |
MaterialRelease = 0.90,
NoRelease = 0.10 |
else |
MaterialRelease = 0.40,
NoRelease = 0.60
]
Jelse |
MaterialRelease = 0.02,

NoRelease = 0.98

A.2.4 ’causeTertiaryFvent’ Node LPD

if any Sc have (HasReleaseContainement = false )

[if any Sc have ( CauseSecondaryEvents = MaterialRelease )
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[
[
[

]

if any Sc have ( HasMatState = Vapor )
if any Sc have ( HasAtmConditions = UnstableWeather )
if any Sc have ( HasLocation = Rural ) |
Dispersion = 0.80,

NoDispersion = 0.02,
VaporCloudFormation = 0.18,

DustCloud = 0.00

else |

Dispersion = 0.63,

NoDispersion = 0.02,
VaporCloudFormation = 0.35,

DustCloud = 0.00

else |

Dispersion = 0.30,
NoDispersion = 0.05,
VaporCloudFormation = 0.64,
DustCloud = 0.01

else if any Sc have ( HasMatState = Liquid )

[ if any Sc have ( HasVapPressure = LowVapPressure)

[ if any Sc have ( HasAtmConditions = UnstableWeather)
[ if any Sc have ( HasTemperature = HighTemperature) |

Dispersion = 0.68,
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NoDispersion = 0.02,
VaporCloudFormation = 0.30,
DustCloud = 0.00

| else [ Dispersion = 0.40,
NoDispersion = 0.10,
VaporCloudFormation = 0.50,
DustCloud = 0.00

)

| else [ if any Sc have ( HasTemperature = HighTemperature) |
Dispersion = 0.250,
NoDispersion = 0.05,
VaporCloudFormation = 0.70,
DustCloud = 0.00

| else | Dispersion = 0.20,
NoDispersion = 0.15,
VaporCloudFormation = 0.65,

DustCloud = 0.00

]
]

|else | if any Sc have ( HasTemperature = HighTemperature) |
Dispersion = 0.30,
NoDispersion = 0.15,
VaporCloudFormation = 0.55,
DustCloud = 0.00
| else [ Dispersion = 0.10,

NoDispersion = 0.45,
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VaporCloudFormation = 0.45,

DustCloud = 0.00

| else if any Sc have (HasMatState = Dust)
[ if any Sc have ( HasAtmConditions = UnstableWeather) |
Dispersion = 0.33,
NoDispersion = 0.02,
VaporCloudFormation = 0.05,
DustCloud = 0.60
| else |
Dispersion = 0.10,
NoDispersion = 0.15,
VaporCloudFormation = 0.05,
DustCloud = 0.70

| else [ Dispersion = 0.10,
NoDispersion = 0.65,
VaporCloudFormation = 0.05

DustCloud = 0.20

else |
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Dispersion = 0.10,
NoDispersion = 0.85,
VaporCloudFormation = 0.05

]
|else |
Dispersion = .1,

NoDispersion = .8,

VaporCloudFormation = .1

A.2.5 ’HasHazardof’ Node LPD

if any Sc have ( HasMaterialToxicity = true)
[if any Sc have
(CauseTertiaryEvents = Dispersion |CauseTertiaryEvents = DustCloud)
[ if any Sc have ( HasCombustibility = true)
[ if any Sc have (HasIgnition = true )
| if any Sc have ( HasConfinement= true ) |
FireHazard = 0.08,
ExplosionHazard = 0.60,
ToxicHazard = 0.30,
NoHazard = 0.02
| else |
FireHazard = 0.60,
ExplosionHazard = 0.10,
ToxicHazard = 0.28,
NoHazard = 0.02
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]

|else |
FireHazard = 0.10,
ExplosionHazard = 0.10,
ToxicHazard = 0.75,
NoHazard = 0.05

]

|else |
FireHazard = 0.10,
ExplosionHazard = 0.10,
ToxicHazard = 0.75,
NoHazard = 0.05

|else if any Sc have ( CauseTertiaryEvents = VaporCloudFormation )
[ if any Sc have ( HasCombustibility = true)
[ if any Sc have (HaslIgnition = true )
[ if any Sc have ( HasConfinement= true ) |
FireHazard = 0.08,
ExplosionHazard = 0.70,
ToxicHazard = 0.20,
NoHazard = 0.02
| else |
FireHazard = 0.15,
ExplosionHazard = 0.65,
ToxicHazard = 0.18,
NoHazard = 0.02
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]

|else |
FireHazard = 0.10,
ExplosionHazard = 0.10,
ToxicHazard = 0.75,
NoHazard = 0.05
]
|else |
FireHazard = 0.10,
ExplosionHazard = 0.10,
ToxicHazard = 0.75,
NoHazard = 0.05
]
|else |
FireHazard = 0.10,
ExplosionHazard = 0.10,
ToxicHazard = 0.65,
NoHazard = 0.15
]
|else [if any Sc have
(CauseTertiaryEvents=Dispersion | CauseTertiaryEvents = DustCloud)
[ if any Sc have ( HasCombustibility = true)
[ if any Sc have (HaslIgnition = true )
[ if any Sc have ( HasConfinement= true ) |
FireHazard = 0.30,
ExplosionHazard = 0.65,
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ToxicHazard = 0.03,
NoHazard = 0.02
| else |
FireHazard = 0.65,
ExplosionHazard = 0.25,
ToxicHazard = 0.07,
NoHazard = 0.03
)
Jelse |
FireHazard = 0.20,
ExplosionHazard = 0.20,
ToxicHazard = 0.05,
NoHazard = 0.55
]
|else |
FireHazard = 0.15,
ExplosionHazard = 0.15,
ToxicHazard = 0.05,
NoHazard = 0.65
]
|else if any Sc have ( CauseTertiaryEvents = VaporCloudFormation )
[ if any Sc have ( HasCombustibility = true)
[ if any Sc have (HasIgnition = true )
[ if any Sc have ( HasConfinement= true ) |
FireHazard = 0.25,
ExplosionHazard = 0.70,
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ToxicHazard = 0.03,
NoHazard = 0.02

| else |
FireHazard = 0.30,
ExplosionHazard = 0.65,
ToxicHazard = 0.03,
NoHazard = 0.02

)

Jelse |
FireHazard = 0.20,
ExplosionHazard = 0.20,
ToxicHazard = 0.15,
NoHazard = 0.45

]

|else |
FireHazard = 0.15,
ExplosionHazard = 0.150,
ToxicHazard = 0.15,
NoHazard = 0.55

]
]

else |
FireHazard = 0.05,
ExplosionHazard = 0.05,
ToxicHazard = 0.05,
NoHazard = 0.85
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A.2.6 ‘’hasFireHazard’ Node LPD

if any Sc have ( HasHazardof = FireHazard )
[if any Sc have ( HasMatState = Vapor )
[ if any Sc have ( HasPressure = HighPressure )
[ if any Sc have ( HasTemperature = HighTemperature ) |
NoFire =0.05,
JetFire = 0.15,
PoolFire = 0.05,
FlashFire = 0.70,
FireBall = 0.05
| else |
NoFire = 0.05,
JetFire = 0.55,
PoolFire = 0.05,
FlashFire = 0.30,
FireBall = 0.05
]
|else if any Sc have ( HasPressure = LowPressure)
[ if any Sc have ( HasTemperature = HighTemperature ) |
NoFire =0.05,
JetFire = 0.10,
PoolFire = 0.05,
FlashFire = 0.65,
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]

FireBall = 0.15

else |

NoFire = 0.05,
JetFire = 0.05,

PoolFire = 0.20,

FlashFire = 0.45,

FireBall = 0.25

else |

NoFire = 0.05,
JetFire = 0.10,
PoolFire = 0.10,
FlashFire = 0.65,

FireBall = 0.10

else if any Sc
if any Sc have
if any Sc have
if any Sc have
NoFire = 0.03,
JetFire =

PoolFire

have ( HasMatState

( HasPressure =

( HasTemperature

= Liquid )

HighPressure )

HighTemperature )

( HasVapPressure = LowVapPressure) |

0.35,
=0.45,

FlashFire = 0.10,

FireBall
else |

NoFire = 0.03,

=0.07
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]
]

]
]

]

[ if any Sc have ( HasTemperature

[

else

JetFire = 0.20,
PoolFire =0.55,
FlashFire = 0.10,
FireBall = 0.12

else |

NoFire = 0.02 |
JetFire = 0.25,
PoolFire = 0.65,

FlashFire = 0.04,

FireBall = 0.04

if any Sc have ( HasVapPressure

NoFire = 0.03,
JetFire = 0.05,
PoolFire =0.15,

FlashFire = 0.70,

FireBall =0.07

else |

NoFire = 0.03,
JetFire = 0.10,
PoolFire =0.65,

FlashFire = 0.10,

FireBall = 0.12
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if any Sc have ( HasPressure = NormalPressure )

HighTemperature )

LowVapPressure)

[



]
]

]

]
]

]

else

else

NoFire = 0.03,
JetFire = 0.05,
PoolFire =0.15,
FlashFire = 0.70,
FireBall =0.07

else |

NoFire = 0.03,

JetFire = 0.10,
PoolFire =0.65,
FlashFire = 0.10,
FireBall = 0.12

NoFire = 0.02,

JetFire = 0.03,
PoolFire = 0.05,
FlashFire = 0.80,
FireBall = 0.1

else |

NoFire = 0.1,

JetFire = 0.1,
PoolFire = .5,
FlashFire = 0.2,
FireBall = 0.1

[ if any Sc have ( HasVapPressure
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if any Sc have (HasMatState = Dust)|

LowVapPressure)

[



|else |
NoFire = 0.20,
JetFire = 0.15,
PoolFire = 0.35,
FlashFire = 0.15,
FireBall = 0.15

]

|else |
NoFire = 0.80,
JetFire = 0.05,
PoolFire = 0.05,
FlashFire = 0.05,
FireBall = 0.05

A.2.7 ’hasFExplosionHazard’ Node LPD

if any Sc have (HasHazardof= ExplosionHazard)
[ if any Sc have (CauseTertiaryEvents = VaporCloudFormation) |
VaporCloudExplosion = 0.80,
BLEVE = 0.10,
NoExplosion = 0.02,
DustExplosion = 0.08
]else if any Sc have (CauseTertiaryEvents = Dispersion )

[ if any Sc have ( HasMatState = Vapor )
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[if any Sc have ( HasTemperature = HighTemperature ) |
VaporCloudExplosion = 0.60,
BLEVE = 0.10,
NoExplosion = 0.05,
DustExplosion = 0.25
|else |
VaporCloudExplosion = 0.70,
BLEVE = 0.10,
NoExplosion = 0.05,
DustExplosion =0.15
]
| else if any Sc have ( HasMatState = Liquid )
[if any Sc have ( HasTemperature = HighTemperature ) |
VaporCloudExplosion = 0.25,
BLEVE = 0.70,
NoExplosion = 0.04,
DustExplosion = 0.01
|else |
VaporCloudExplosion = 0.05,
BLEVE = 0.90,
NoExplosion = 0.04,
DustExplosion =0.01
)
| else [if any Sc have ( HasTemperature = HighTemperature ) |
VaporCloudExplosion = 0.02,
BLEVE = 0.03,
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NoExplosion = 0.05,
DustExplosion = 0.90

|else |
VaporCloudExplosion = 0.03,
BLEVE = 0.02,
NoExplosion = 0.40,
DustExplosion =0.55

I ]

| else if any Sc have ( CauseTertiaryEvents = DustCloud) |
VaporCloudExplosion = 0.03,
BLEVE = 0.02,
NoExplosion = 0.1,
DustExplosion =0.85

| else |
VaporCloudExplosion = 0.1,
BLEVE = 0.1,
NoExplosion = 0.2,

DustExplosion = 0.6

| else |
VaporCloudExplosion = 0.10,
BLEVE = 0.10,
NoExplosion = 0.75,

DustExplosion = 0.05
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A.2.8 ’hazSecondaryHazard’ Node LPD

if any Sc have ( HasMaterialToxicity= true &
( HasHazardof= FireHazard | HasHazardof= ExplosionHazard ))
[
SecondaryFire = 0.05,
SecondaryExplosion = 0.05,
NoSecondaryHazard = 0.1,
ToxicRelease = 0.80
)
else if any Sc have
( HasHazardof= FireHazard &
(HasFireHazard = FlashFire | HasFireHazard =JetFire))
[if any Sc have ( HasMatState = Vapor ) |
SecondaryFire = 0.05,
SecondaryExplosion = 0.8
NoSecondaryHazard = 0.1,
ToxicRelease = 0.05
| else if any Sc have (HasMatState = Liquid)
| SecondaryFire = 0.8,
SecondaryExplosion = 0.1,
NoSecondaryHazard = 0.05,
ToxicRelease = 0.05
| else if any Sc have ( HasMatState = Dust )
[ SecondaryFire = 0.05,

SecondaryExplosion = 0.90,
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NoSecondaryHazard = 0.04,
ToxicRelease = 0.01

Jelse |
SecondaryFire = 0.3,
SecondaryExplosion = 0.2,
NoSecondaryHazard = 0.4,

ToxicRelease = 0.1

]

else if any Sc have
(HasHazardof = ExplosionHazard & HasExplosionHazard = DustExplosion)
[if any Sc have ( HasMatState = Solid | HasMatState = Dust) |
SecondaryFire = 0.1,
SecondaryExplosion = 0.8
NoSecondaryHazard = 0.05,
ToxicRelease = 0.05
] else [ SecondaryFire = 0.7,
SecondaryExplosion = 0.2,
NoSecondaryHazard = 0.05,
ToxicRelease = 0.05
]
|]else if any Sc have
(HasHazardof= ExplosionHazard &
HasExplosionHazard = VaporCloudExplosion)

[if any Sc have ( HasMatState = Liquid) |
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SecondaryFire = 0.3,
SecondaryExplosion = 0.6
NoSecondaryHazard = 0.05,
ToxicRelease = 0.05

] else [ SecondaryFire = 0.5,
SecondaryExplosion = 0.4,
NoSecondaryHazard = 0.05,
ToxicRelease = 0.05

| Jelse |
SecondaryFire = 0.05,
SecondaryExplosion = 0.05,
NoSecondaryHazard = 0.85,
ToxicRelease = 0.05
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Appendix B

Simulation Results

Total 45 Accident results has been listed in Chapter 4. Detailed simulation results
for 5 cases are available in case studies section of Chapter 3. Rest of the simulation
outputs are listed in this chapter. For some cases images of full SSBN is not provided

except for the resulting events nodes.
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B.1
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Figure B.1: Results for ConAgra Natural Gas Explosion accident.
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B.2 BP Texas Refinery Explosion , 2005
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Figure B.2: Results for BP Texas Refinery Explosion accident .
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B.3 WYV Little General Store Propane Explosion,

2007
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Figure B.3: Results for Little General Store Explosion .
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B.4 Huston Marcus Oil and Chemical Explosion,

2004
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Figure B.4: Results for Huston Marcus Oil and Chemical Explosion .
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B.

5

West Fertilizer Fire & Explosion,

Texas 2013
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Figure B.5: Results for West Fertilizer Fire & Explosion.
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B.6 Valero Refinery Propane Fire, Texas 2007
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Figure B.6: Results for Valero Refinery Propane Fire.
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B.7 Veolia ES Technical Solutions Fire and Explo-

sion, Ohio 2009
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Figure B.7: Results for Veolia ES Technical Solutions Hazardous Waste Fire and

Explosion.
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B.8 Herrig Brothers Farm Propane Tank

sion, Iowa 1998
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Figure B.8: Results for Herrig Brothers Farm Propane Tank Explosion, lowa 1998 .
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B.9 Silver Eagle Refinery

sion, Utah 2009
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Figure B.9: Results for Silver Eagle Refinery Flash Fire and Explosion.

131




B.10 Carbide Industries Explosion, Louisville, Ken-

tucky, 2011

absurd 0%

Figure B.10: Results for Carbide Industries Explosion accident.
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B.11 Williams Olefins Plant Explosion, Louisiana

2013
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Figure B.11: Results for Williams Olefins Plant Explosion.
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B.12 EQ Hazardous Waste Fire and Explosion,

NC, 2006
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Figure B.12: Results forEQ Hazardous Waste Fire and Explosion.
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B.13 Tosero Refinery Explosion, Washington 2010
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Figure B.13: Results for Tosero Refinery Explosion, Washington.
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B.14 Hilton Hotel, San Diego, California, 2008
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Figure B.14: Results for Hilton Hotel, San Diego, California.
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B.15 Sterigenics International Ethylene Oxide Ex-

plosion, California, 2004

Figure B.15: Results for Sterigenics International Ethylene Oxide Explosion.
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B.16

dletown, CT, 2010

Kleen Energy Natural Gas Explosion, Mid-
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Figure B.16: Results for Kleen Energy Natural Gas Explosion.
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B.17 BLSR Fire, TEXAS, 2003

Figure B.17: Results for BLSR Fire.
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B.18 Partridge Raleigh Oilfield Explosion and Fire,

Missisipi, 2006

HasStrengthOMdaterials__Scenariol HasCapacity__Scenariol
CausePrimaryEvents__Scenariol
HighStrenath 100%| HighCapacity 100%|
LowStrength u%l Overflow 3% Lo apacity 0%
MechanicalFailure 10| HasFlowRate_ Scenariol
ReacliveProcess__Scenariol | ——wMarmalOperation 25%| .: LowFlowRate 100%|
trug %] REa 0N AN Ava) 2%, SuficientOverHeatRemoval _ Scenario... NorralFlowRate 0%
ahsurd 0% HighFlowRate 0%
false 100 true 0]
false 100%| -] )
HagPressure_ Scenariol HumanError__Scenariol
MormalPressure 100% - true 1UU%|
HighFressure 0% CauseSecondarEvents__Scenariol false D%l
LowFressure %) hiaterialReleaze F9.05%) l
MoRelease 30,05 %) HasVapPressure__Scenariof
HasFireHazard__Scenariol ahsurd 0% LowiapPressure 100%]
MoFire G4 70%| I High¥apPressure g%\
JetFire 5,01 % /
PoolFire 501 CauseTeriarEvents_ Scenariol HasReleaseContainement__Scenario
FlashFire 17 1B Dispersion J3.81% . frue o
FireBall £.01%| NoDispersion 29, 76% false 100%] -]
absi 0% aporCloudF ormation 45 74%) — | HasLocation__Scenariol
Dustcloud 0.69%)|
absurd %) Rual 100%]
'\ Urban g%‘
HasMatstste__Scenarot HasAtmConditions__Scenariot
E.D“c.id D% UnstahlewWeather U%‘
L = StableVeather el |
Wapar 100% .
Dust 0% HasTemperature__Scenariot
¢ \ HighTemperature 0% HasHazardof__Scenariol HasCombustibility, Scenariol
MormalTerperature  100% q FireHazard 20.27 %) true 100%\
HasExplogionHazard__Scenariol LowTermperature 0%| ExplazionHazard 49 43% false o]
- ToxicHazard 3.A%|
;ip;frsluudExplusmn 41 7% | WoHazard 26 7% i Haslghition__Scenatiol
MNoExlasian 332:: HazSecondaryHazard_ Scenariol ‘_/EUJSWGl 0%l frue 100%|
DustExplosion 3.69% R 5econdanFire 25 48% f '\false 0%
absurd %) SecondaryExplosion 301 4%
NoSecondaryHazard  39.36% | HasMaterialToxicity__Scenariol HasCaonfinement__Scenariol
ToxicRelease 5%)| true n%| true 1E|EI%|
ahsurd 0% false 1 gu%| -] talse U%l

Figure B.18: Results of Partridge Raleigh Oilfield Explosion and Fire.
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B.19 Formosa Plastics Corporation Explosion and

Fire, Illiopolis, Illinois 2004
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Figure B.19: Results for Formosa Plastics Corporation Explosion and Fire 2004.
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B.20 Formosa Plastics Corporation Fire, Point Com-

fort, Texas, 2005
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Figure B.20: Results forFormosa Plastics Corporation Fire 2005.
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B.21 Praxair Propylene Cylinders Fire, St. Louis,

Missouri 2005
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Figure B.21: Results for Praxair Propylene Cylinders Fire.
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B.22 ASCO Acetylene Explosion, Perth Amboy,

New Jersey 2005
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Figure B.22: Results for ASCO Acetylene Explosion.
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B.23 CITGO’s Corpus Christi refinery, Texas 2009
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Figure B.23: Results for CITGO’s Corpus Christi refinery accident (1).
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B.24 Horsehead Holding Company Explosion,Pennsylvani:

2010
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Figure B.24: Results for Horsehead Holding Company Explosion.
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Figure B.25: Results for BP Ameco Polymers Plant Explosion.
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B.26 First Chemical Corp. Reactive Chemical Ex-
plosion, Mississipi 2002
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Figure B.26: Results for First Chemical Corp. Reactive Chemical Explosion.
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B.27 Synthron Inc Explosion, Morganton, North

Carolina 2006
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Figure B.27: Results for Synthron Inc Explosion.
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B.28 T2 Laboratories Explosions, Jacksonville, Florida,

2007
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Figure B.28: Results of T2 Laboratories Explosions.
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B.29 Imperial Sugar Refinery Dust explosion, (Geor-

gia 2008
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Figure B.29: Results for Imperial Sugar Refinery Dust explosion.
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B.30

ginia 2007

AL Solutions Metal Recycling, West Vir-
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Figure B.30: Results for AL Solutions Metal Recycling accident (1).
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B.31

2011

Hoeganaes facility Flash Fires, Tennessee

Figure B.31: Results for Hoeganaes facility Flash Fires.
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Figure B.32: Results for West Pharmaceutical Explosion.
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B.33 Hayes Lemars Plant, Indiana 2003
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Figure B.33: Results for Hayes Lemars Plant Dust Explosion accident.
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B.34 CTA Acoustics, Kentucky, 2003
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Figure B.34: Results for ConAgra Natural Gas Explosion accident (1).
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Figure B.35: Results for DPC Enterprises Chlorine Release accident.
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B.36 DuPont facility Toxic Exposure, West Vir-

ginia 2008

HasFlowRata_ Scenariol

HasCapacity__Scenariol

HasStrengthOMaterials_ Scenario

q

HighCapacity 100%
LowF lowR ate 0% P o S =
HormalFlowRate 0% BT T -]
HighFlowRate 100% “
CausaPrimaryEvents_ Scenarial
ReactiveProcess_ Scenariol m —
true 0%, ___FOVEI“HDW - 10% HasTemperature__Scenariol
e P -] MechanicalF ailure 37% _
Morrnal Operation 50% HighTemparature 0%
i MormalTemperature
HasPressure__Scenariol |——P|ReactionRunaway 3% B 100%
absurd 0%, LowTemperature 0%
MormalPressure 0%
HighPressure 100% _
LowPressure 0% HumanError__Scenariol
true 100%
false 0%

HasReleaseContainement__Scenario...

CauseSecondaryEvents__Scenariol SufiicientOverHe atRermaval__Scenaria... true 0%,
MaterialRelease g5% -:4 e 0% false 100%i -]
MoRelease 15%) e 100% -]
absurd 0%,

\ CauseTertianEvents_ Scenariol HasLocation__Scenariof
Dispersion 27, Rural 0% -]
- ; Urban 100%,
HasMatState_ Scenariod B RISREISION = 17%
: J_____,,VapanIDudFDrmatmn A5.15% |
S.nhq 0% DustCloud 0.05%, HasWapFPressure__Scenariol
Liguid 0% absurd it
Wapor 100%, - Lowi/apPressure 100%,
Dust 0% / '\ HighWapPressure 0%
J HasAtmConditions__Scenarial
HazSecondaryHazard_ Scenariol HasHazardof__Scenario Unstable\eather 0%
SecondanFire 19.66% FireHazard 10%,| StableWWeather 1 00%,| -]
: ™ ExplosionHazard 10%,|
SecondanExplosion 12 66% Rl - .
- HasComhbustibili Scenariol
MoSecondaryHazard 14.52%, ToxicHazard 73.3%) .:*__—_‘ -
ToxicRelease 5314% | MaHazard Fi.7 % true 0%,
absurd 0% /_'absurd * 0% V\false 100% -]
HasMaterial Taxicity_ Scenariod HasCaonfinerent_ Scenarial Haslgnition__Scenariol
true 100% true 100% frue 0%,
false 0%, false %, false 100% -]

Figure B.36: Results for DuPont facility Toxic Exposure.
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B.37 Bayer Crop Science, West Virginia
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Figure B.37: Results forBayer Crop Science Toxic accident (1).
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B.38 MFG Chemical Inc. Toxic Gas Release, Dal-

ton, Georgia, 2001
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Figure B.38: Results of MFG Chemical Inc. Toxic Gas Release.
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B.39 Millard Refrigerated Services Ammonia Re-

lease, AL, 2010
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Figure B.39: Results for Millard Refrigerated Services Ammonia Release Accident.
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B.40 Freedom Industries Chemical Release, WV,

2014
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Figure B.40: Results forFreedom Industries Chemical Release accident (1).
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B.41 Honeywell Plant Chlorione Release, LA, 2003
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Figure B.41: Results forHoneywell Plant Chlorione Release accident (1).

163



