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Abstract

An automated hazard identification technique can substantially contribute to risk as-

sessment efficiency. This work presents an effort to introduce a dynamic hazard identi-

fication technique, which can translate the event propagation scenario into a graphical

representation with probabilistic interpretation of hazards. Expert knowledge based

database structure and probabilistic data driven dynamics were implemented on an

ontology-based intelligent platform. A simple demonstration utilizing semantic web-

based Web Ontology Language (OWL) was transformed into the Probabilistic-OWL

(PR-OWL) based Multi Entity Bayesian Network (MEBN), which was incorporated

with prior probabilities, to produce Situation Specific Bayesian Networks (SSBN) re-

ferring to hazard probabilities. A generalized and detailed dynamic hazard scenario

model was then developed based on this same framework following the proposed

methodology. Two open-source software, Protégé and UnBBayes, were used to de-

velop the models. Case studies with different operational and environmental scenarios

were presented to demonstrate the applicability of the generic model. To verify the

application, the ontology based hazard scenario model was implemented on 45 indi-

vidual accidents (from the CSB Database) with different operational aspects. This

model was further used for causality studies and hazard mitigation measures.
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Chapter 1

Introduction

1.1 Overview

Prevention and mitigation of hazards are fundamental contributing factors of risk

management in process industries. Hence, identifying the domains which pose greater

risks and the hazards that can threaten potential loss is the primary step. Once the

hazards and domains are identified, risk assessment and mitigation measures can be

implemented for the better safety of any system.

Although hazard identification can sound simple, this is the most rudimentary and

crucial part of the process. It demands a decent amount of time and the participation

of experts from the field of interest. As newer technologies are being implemented

over time to cope with safety requirements and production demands, various hazards

and vulnerable points are getting newer perspectives. To deal with such constraints

of time, value and risk factors, numerous efforts have introduced different Hazard

Identification techniques. Some examples of the common methods can be found in

later sections. But these are mostly case oriented, qualitative and lack dynamic

behaviour. However, some recent works have been done to overcome these constraints.
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This work introduces a dynamic hazard identification methodology which is more

versatile, can quantify hazard probabilities, and provides an ontology based platform

to facilitate a wide range of applications and scope of future developments. The

proposed dynamic hazard identification methodology based on scenario modeling,

utilizing an ontology based data structure to generate a first order Bayesian Logic

based network for a generic hazard identification scenario. Scenario based hazard

identification has been proposed earlier but the use of ontology based framework has

been the unique feature which is useful to develop a quick and reusable platform for

automatic updates.

1.2 Previous Works

Dynamic hazard identification is an established concept that captures system varia-

tions and offers mechanisms to use updated process knowledge and information [Pal-

trinier et al., 2015]. Methodologies for dynamic hazard identification includes the

Dynamic Procedure for Atypical Scenarios Identification (DyPASI) [Paltrinier et al.,

2013], dynamic risk assessment [Kalantarnia et al., 2009] and risk barometer [Kneg-

tering and Pasman, 2013]. Applications of these approaches have been documented

in the literature, e.g. [Wilday et al., 2011], [Paltrinieri et al., 2014] and [Villa et al.,

2016]. Some other methods with the goal to improve hazard identification proce-

dures by making those dynamic in nature have been proposed recently[Batres et al.,

2014, Wu et al., 2013]. However the most recent work of Dynamic Hazard Identifi-

cation [Xin et al., 2017] is based on the Bayesian graphical network which provides

a better sense of dynamic behaviour by updating the occurrence probabilities based

on historical data in a known hazard scenario. However, these approaches are and

mostly case specific and requires extensive modeling.
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1.3 Motivations & Challenges

As dynamic hazard identification is a process-oriented and expertise-intense process, a

knowledge modeling based methodology can be adopted to capture the process knowl-

edge. When the process knowledge can be represented in an efficient and accessible

framework, it can easily be adapted to in various process risk management applica-

tions (e.g. automated hazard identification, expert systems ). The adaptive dynamic

method can be used to overcome the limitations of current techniques.

The challenges of this research can be called as barriers in the development of this

work. The most common challenges identified, are listed below.

• Process knowledge is the core of knowledge-based model for hazard scenario

development. In the current approach, an ontology can provide knowledge based

database structure, which might require a major amount of time. However, once

developed, the model is reusable. Therefore, the end users can utilize the model

with a general understanding of the process.

• There are thousands of processes and each one is different. Developing an indi-

vidual model for each industrial setting is a very challenging task. However, a

generalized model can reduce the effort. As ontology provides reusability and

ease of updates, a generalized model should have the versatility to be imple-

mented in most of the similar cases with minimal changes.

• Historical data has never been easy-to-obtain information. Therefore, the model

can be based on expert opinion, experience and common understanding of haz-

ard scenarios. However, the dynamic behaviour introduces the ease of utilizing

3



historical data. The probability declaration values can be saved and updated

over time.

• Ontology is a qualitative database platform for Artificial Intelligence (AI). There-

fore, a Java based comprehensive tool could be developed for automatic import

and quantitative reasoning utilizing the universal framework. However, available

tools can be used for demonstration purpose and a specialized expert system

can be recommended as future work.

1.4 Problem Statement & Objective

Dynamic hazard identification is a quantitative assessment technique, which requires

qualitative knowledge along with historical data for probabilistic assessment. A haz-

ard identification should be able to provide the assessment of hazards along with

hazard propagation scenario. The dynamic model should provide the versatility of

updating the model over time for greater suitability.

The primary goals of this research work can be listed as followings:

• Firstly, to propose a unique dynamic hazard identification methodology which

should have the following characteristics-

1. can incorporate process knowledge and history based information in an

explicit model,

2. has the ability to visualize and share hazard propagation scenario,

3. utilize available statistical tools (e.g. Bayesian Network) for quantitative

reasoning,
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4. can provide probabilistic assessment of hazards based on available evidence

and

5. features accessibility for dynamic update of historical information.

• Secondly, to capture process knowledge of targeted domain in a well-established

knowledge modeling platform. The framework should provide the ability to de-

sign, store, share and reuse qualitative information required for hazard scenario

modeling. Once developed the model should provide the preliminary knowledge

base for further modeling.

• Thirdly, to demonstrate the proposed methodology a versatile and generic haz-

ard scenario model applicable for most process facilities is to be developed.

The model should be working in order to provide a probabilistic assessment of

fire-explosion-toxicity hazards.

• Finally, to test the validity and efficiency, this generic model should be imple-

mented on different hazard scenarios with known outcomes. Implementing the

model in previous accidents can indicate the prospects of the model.

This work adopts an ontology based framework to implement the proposed hazard

scenario methodology. The ontology based platform can provide the necessary data

structure for automation and World Wide Web Consortium(W3C) based web storage

provides versatility and updating capabilities. Moreover, utilizing the First Order

Bayesian Logic based probabilistic network provides the dynamic behaviour to quan-

tify hazards with the ability to update the probabilities from historical data. The

developed model has been applied in different accident scenarios to validate the ver-

satility and efficacy.
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1.5 Thesis Organization

This thesis is a compilation of the research and work done with the goal to implement

an ontology based framework for dynamic hazard identification of process industries.

The following chapters contain detailed study and outcomes related to the research.

Chapter 2 contains a relevant detailed literature survey. Details concerning ontology,

applications and scope with examples of previous works are compiled accordingly. A

brief background of risk assessment, hazard identification are included. The tools and

software are also introduced briefly.

Chapter 3 mostly focuses on a new dynamic hazard identification technique, adopting

an ontology framework. Based on the methodology, a hazard scenario model has been

developed and validated with case studies. An ontology based modeling approach is

demonstrated with a simple model.

Chapter 4 describes the model predictions for 45 different accident scenarios from

CSB database. This chapter also includes further application of the model in causality

analysis and hazard mitigation approaches.

Chapter 5 discusses about the results obtained from the study.

Chapter 6 consists of the concluding remarks and future scopes of the work.

Appendices document the supporting information and detailed results.
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Chapter 2

Literature Review

2.1 Ontology

The concept of ontology is rooted in Greek Philosophy and later was introduced to

computer science with a slightly different description. Starting from Aristotle’s meta-

physics, it is now a widely used platform of knowledge representation and artificial

intelligence. This section briefly describes philosophical ontology and its adoption and

development in computer science and current applications related to the work.

Aristotle, one of the world’s greatest philosophers, in his writings on Metaphysics

searched for the primary constitutive element the "Essence" of being, asked "What is

being?", and concluded that all beings in the world must have some "thing", some char-

acteristic, which give the property of "being" to the objects. He distinguished between

first principle and essence. Principle is the “source point of something” while essence

is the “intrinsic reason of existence of being”[Aristotle, 1994, Sánchez et al., 2007,

cited in]. In fact, Aristotle never used the term "Ontology", or "Metaphysics". It was

Andronicus of Rhodes, another Greek philosopher, who introduced metaphysics from
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the writings of Aristotle. In the late seventeenth century "Metaphysics" was divided

into two streams: "metaphysica generalis" (General Metaphysics) and “metaphysica

specialis”(Special Metaphysics). Special metaphysics is deal with philosophical the-

ology, psychology and cosmology. General metaphysics, also called "ontologia" or

"Ontology" deals with a general concept of beings and their relations, searching the

intrinsic reason to name any ’thing’ as a ’being’ or as a hierarchical classification of

beings based on common characteristics. [Sánchez et al., 2007]

During the late 1980s, computer scientists looked to ontology as a basis of knowl-

edge engineering with numerous interpretations to develop artificial intelligence . All

the interpretations summarize "Ontology" as a formal/informal specification of con-

cepts of the knowledge base or logical theories with the purpose of expressing specific

domain knowledge. The concise definition: "Ontology is an explicit specification of

conceptualization and it’s a systematic account of existence" [Gruber, 1993]. While

Aristotle’s ’essence of beings’ investigates nature as classes and their determination or

attributes (also known as-Epistemology1) , in knowledge engineering formal ontology

can virtually deal with any ’thing’ for both knowledge representation and acquisition.

"In practice, formal ontology can be intended as theory of distinctions, which can be

applied independently , i.e. :

• among the entities of the world (Physical objects, events regions, quantities of

matter...);

• among the meta-level categories used to model the world(concept, property, qual-

ity, state, role, part...)" [Giaretta and Guarino, 1995]

According to its use in AI, ontology is an "engineering artifact", consisting of specific
1A branch of philosophy, which is study of knowledge. Epistemology studies the nature of

knowledge, justification, and the rationality of belief.
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"vocabulary" to describe reality, plus a set of explicit assumptions referring to the in-

tended interpretation of the vocabulary. "In the simplest case, an ontology describes

a hierarchy of concepts related by subsumption relationships; in more sophisticated

cases, suitable axioms are added in order to express other relationships between con-

cepts and to constrain their intended interpretation." [Guarino, 1998]

In general description, formal representation of the knowledge of a domain requires

a set of objects that exist and an accessible way of representing the relations. An

ontological framework provides the structure of a knowledge based domain. A set

of representational vocabulary that defines the entities exists and describes the re-

lationships amongst them (e.g.classes, relations, functions etc.). A formal Ontology

comprises an understandable text to reproduce the domain knowledge.

2.1.1 Ontology Development & Knowledge Modeling

An ontology describes the acquired knowledge of a domain in a machine interpretable

form. From plant taxonomies to website listings, it has long been used as a platform.

But the specific purposes of ontology development are discrete. These are listed below.

[Noy et al., 2001]

• To share common understanding of the structure of information among people

or software agents

• To enable reuse of domain knowledge

• To make domain assumptions explicit

• To separate domain knowledge from operational knowledge

• To analyze domain knowledge
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Thus, developing an ontology is more related to defining a set of data and the structure

to be used as a framework. Problem solving methods, domain independent applica-

tions, and software agents use ontologies and knowledge bases built from ontological

data [Noy et al., 2001]. The knowledge base utilizing ontology does not follow a strict

methodology. The acquisition of a domain idea and its representation totally depend

on the purpose and usability of information. Thus, the iterative modeling process

effectively reflects the expertise and the concept of an individual. However, it consists

of some vital steps including following.

• Identifying the domain-range and scope of ontology

• Definition of classes and subclasses of the taxonomic hierarchy

• Defining relations and attributes with relevant descriptions

• Introducing values or instances according to the class description.

When identifying the domain and scope of ontology, the concept and specific purpose

should be clear. The What, Why , How or Who kind of questions, also called com-

petency questions, should be answered to circumscribe the limits and usability of the

ontology. Thus a concept of class hierarchy and property definitions can be achieved

for the modeling. Generally a formal ontology consists of Classes, Rules or relations

(Properties), Attributes (Datatypes) and Individuals (Instances).

Classes defines the primary entities in the system. Each class represents a group of

entities or subclasses with some common relations or attributes. A subclass is an

entity of a class, and the class it belongs to is called a superclass. A class hierarchy

is the classification based on proper taxonomy, which is the backbone of an ontology

for a knowledge model.
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Rules or Relations describes the relations between classes. They are the properties

through which the classes are related. These rules can also have functional, transitive,

reflexive or symmetric properties.

Attributes are also called Datatypes, as they define the value type, range/limits and

cardinality 2. Attribute types can be String, Number, Boolean, Category, Instances

etc. These add data restrictions and limit to the framework.

Individuals or Instances are the values in the knowledge base. Each class contains a

set of individuals to complete the knowledge base.

Class Description describes the relationship within the domain. Each Class contains

a set of Instances, described with Rules or Properties and defined/restricted by At-

tributes.

2.1.2 Web Ontology Language or OWL

To Incorporate an Ontology based framework in AI development and knowledge mod-

eling, computer scientists created a universal language named "Web Ontology Lan-

guage (OWL)", which is developed and maintained by the World Wide Web Consor-

tium (W3C). OWL is designed to be used by applications for machine interpretability

of information instead of human interpretation[McGuinness et al., 2004]. The OWL

describes web content using the Extensive Markup Language(XML) and Resource De-

scription Framework (RDF) along with formal semantics. Therefore, ontologies based

on OWL have become a versatile base for development of Artificial Intelligence, with
2Cardinality defines how many values a slot can have which allows single or multiple values in

one slot.
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greater extent of interpretability both humans and machines. This method of con-

ceptualization had been adopted in biological science and information systems for

decades. Nowadays, with the development of OWL, this versatile network has been

being adopted to different engineering applications. The later sections further describe

the application and development of formal ontology based frameworks and OWL.

2.1.3 Probabilistic Ontology and Multi Entity Bayesian Net-

work(MEBN) in Artificial Intelligence

Ontologies based on the Web Ontology Language (OWL) can be used for information

management and presentations, but OWL some constraints. OWL based ontology

cannot deal with quantitative reasoning or uncertainty, which means it has limitations

when processing partial information. However, most of the systems in the universe

have to deal with uncertainty. Extension of the language with added uncertainty

using Bayesian statistics helped to restore the problem, called the Probabilistic Web

Ontology Language (PR-OWL)[Da Costa et al., 2008]. Probabilistic Ontology is an

explicit, formal knowledge representation that expresses knowledge about a domain of

application which includes (i) types of entities of the concept in the domain, (ii) prop-

erties of the entities, (iii) relationships among entities, (iv) Processes and events that

occurs with the entities, (v) statistical regularities that characterize the domain, (vi)

inconclusive, incomplete, unreliable, dissonant knowledge related to the domain, (vii)

uncertainty about all forms of knowledge [Costa et al., 2005].

PR-OWL has been developed and implemented on the platform of the Multi Entity

Bayesian Network (MEBN) and has been used effectively in various applications hav-

ing uncertainty [Costa et al., 2006]. Subsequently, a newer version of PR-OWL has

been being used, named PR-OWL 2. Application of this knowledge based information
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management system has been proposed for complex systems with diverse sources of

data to improve the efficacy of the intelligent models [Laskey et al., 2010].

The Multi-Entity Bayesian Network (MEBN) is an extension of the Bayesian Net-

work (BN) based on first-order Bayesian logic and probability theory. Like Bayesian

Networks, MEBN theories use directed graphs to specify joint probability distribu-

tions for a collection of related random variables [Laskey, 2008]. MEBN theories

represent knowledge as a collection of MEBN Fragments (MFrags), and each MFrag

contains uncertainty information about the part of the domain having dependencies

using different variables. The fragment graph can contain context,input and resident

random variables compiled with the uncertainty hypothesis and logical dependencies.

The fragment models (MFrags) are interrelated with other MFrags within the domain

through context and input variables. A collection of MFrags with consistency to-

gether defines the joint probability distribution for instances of each random variable

[Carvalho et al., 2009]. Among many efforts to introduce uncertainty logic in formal

ontology and support artificial intelligence using the Bayesian Network[Fenz et al.,

2009] and MEBN based probabilistic ontology [Carvalho et al., 2007] , are of note.

Ultimately, among all these methods UnBBayes has the most applications in the field

of artificial intelligence for fraud detection [Carvalho et al., 2010a] and maritime do-

main applications [Laskey et al., 2011][Carvalho, 2011]. Based on a similar platform an

intelligent simulation module for Predictive Situational Awareness with Probabilistic

Ontologies (PROGNOS)[Carvalho et al., 2010b] has been in development.
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2.1.4 Ontology: Applications & Scopes

Starting from philosophical Epistemology, an ontological framework has been adopted

in knowledge engineering and artificial intelligence(AI). Primarily, the application

started with medical informatics, phylogenetic analysis and plant taxonomy in bio-

logical sciences, data science and artificial intelligence in computer science. Ontology

attracted building the data structure of expert systems, when human expertise worth

sharing as knowledge base is required along with the data. Biomedical informatics

and AI development scientists have been using ontology based framework for decades.

However, Ontology Engineering has been introduced by researchers as a useful tool

for knowledge management in the field of process design [Brandt et al., 2008]. ONTO-

CAPE provides deep insight of various types of ontology for chemical process systems

[Wiesner et al., 2008]. An ontological framework has been introduced for implementa-

tion in process safety analysis [Daramola et al., 2011], HAZOP study [Zhao et al., 2009]

and operational risk management [Lykourentzou et al., 2011]. The work has intro-

duced smart, automated safety and risk analysis tools based on ontological framework

Fault Tree Analysis(FTA) and HAZOP are a established tool for root-cause analysis

for any process incidents to understand the most probable process incidents from any

fault induced. However, Formal Concept Analysis (FCA) is a data mining tool for

data analysis and knowledge discovery. We will use HAZOP and FTA to build up the

knowledge base and develop the incident based domain using FCA, which can produce

a binary matrix to facilitate computing systems. FCA consists of Formal Objects &

Formal Attributes, which together produce a binary relation to build formal context.

The formal context can be demonstrated by cross table and a lattice structure is used

to visualize the relations[Batres et al., 2009]. The FCA table can be used to prepare

the binary matrices for each fault scenario. Each fault propagation domain will be
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nested in the primary ontology structure as as incident/event based warning domains.

Semantic Web database can be used for more efficient process monitoring to identify

the major incidents [Elhdad et al., 2013]. Additionally, using the fault diagnosis tool

based on ontological anomaly detection, can improve security of any automated pro-

cess in case of cyber intrusions in the SCADA system [Jeffrey Hieb, 2009].

An ontological framework has been introduced in the fault diagnosis of electrical net-

works through alarm ontology [Bernaras et al., 1996]. An ontology based framework

had been used in electrical engineering [Zhou et al., 2015] [Pradeep et al., 2012] with

great efficacy. Recently, this idea has been adapted for failure mode effect analysis

studies [Ebrahimipour et al., 2010] and process control systems [Melik-Merkumians

et al., 2010]. A detailed method of fault diagnosis based on FMEA has been proposed

by the researchers based on a case study of a pneumatic valve [Ebrahimipour and

Yacout, 2015]. The same group of researchers proposed a detailed study of the ap-

plication of the ontological framework in fault diagnosis and physical asset integrity

management [Vahid Ebrahimipour, 2015]. Fuzzy Logic is another type of reasoning,

introduced as FuzzyOWL2 [Bobillo and Straccia, 2011] used for Artificial Intelligence.
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2.2 Softwares & Tools

2.2.1 Protégé

Protégé [Musen and Team, 2015] is a Java3 based open source ontology develop-

ment platform, developed by the Stanford Center for Biomedical Informatics Re-

search (BMIR) at Stanford University. Since the 1980s, Protége has been the skeletal

platform for Knowledge Acquisition to support expert systems (AI) in medical infor-

matics. Protége is neither an expert system itself nor program that builds an expert

system directly; instead Protége is a tool that helps users to build other tools that are

custom-tailored to assist with knowledge acquisition for expert systems in specific ap-

plication areas."[Musen, 1989]

Different versions of this software have been developed to assist knowledge based mod-

els, Protége -2000 was published with an open-source license for the accessibility of

developers and used plug-in based architecture to provide versatility. This was a revo-

lutionary step for knowledge engineering, as this new tool mostly focused on "domain

experts" instead of knowledge engineers, plug-in architecture and the re-usability of

the model in different platforms. Thus, the introduction of the Semantic Web to store

all the ontological information in a single online platform came into practice [Gennari

et al., 2003]. However, in later years, by the introduction of Web Ontology Language

(OWL) as a plug-in editor named Protégé OWL Plug-in [Knublauch et al., 2004] pro-

vided this software with a universal platform to be a user interface based ontology

editor.

As Protége is open source, many Java based Application Programming Interfaces
3Java is a class-based, object oriented general purpose programming language which can perform

on different platforms without repetitive compilation.

16



(API) are available with the core software. Protége 4.14 is used in this work and

has following functionality [Yu, 2011] :

• Can create ontologies using OWL/OWL2.

• Edits and visualizes ontology as classes , properties and relations.

• Defines logical Characteristics in OWL expressions.

• Edits OWL instances for semantic markup.

• Can use reasoners(e.g. FaCT++, HermiT) as plug-in extensions.

• Is reusable and can be imported or exported as OWL/RDF/XML files.

• Can be extended through industry standard Java OSGi based plug-in architec-

ture.

However, among several other different ontology editor tools (e.g. Ontolingua, We-

bOnto, OntoSaurus, ODE, KADS22 ), Protége offers ease of learning with a reason-

able degree of application [Duineveld et al., 2000].

2.2.2 UnBBayes

UnBBayes,5 is the Graphical User Interface (GUI) tool to develop and edit proba-

bilistic OWL ontology in PR-OWL environment to generate MEBN [Section 2.1.3].

The UnBBayes project was created because of necessity of introducing uncertainty in

ontology or knowledge representation. Uncertainity is ubiquitous. Any representation

scheme intended to model real-world action and processes must be able to cope with
4Protégé (4.1), Stanford Center for Biomedical Informatics Research (BMIR) at Stanford Uni-

versity School of Medicine CA USA, 2011 http://protege.stanford.edu(Latest Version: 5.0, 2016)
5UnBBayes (4.21.18) GNU General Public License, Version 3, 2007,

https://sourceforge.net/projects/unbbayes/
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effects of uncertain phonomena. [Costa et al., 2005]" This tool was developed based

on the Java application by the Artificial Intelligence Group(GIA) of the computer

science department at the Universidade de Brasília6.

Based on the Bayesian Network’s graphical and theoretical structure, UnBBayes pro-

vides a framework for building probabilistic graphical models and performing rea-

soning. Its open source license and plug-in support provide the ultimate versatility

and adaptability to different platforms. The driving factors of UnBBayes design and

development consist:

• Being an operative platform for dissemination of concepts and usefulness of

probabilistic reasoning.

• Being an easy-to-use and configurable visual tool.

• Being an achieving extensibility and variability. [Matsumoto et al., 2011]

However, this tool not only implements probabilistic graphical formalism,but also of-

fers a wide range of plug-ins for the Bayesian Network(BN), Influence Diagram(ID),

Multiple-Sectioned Bayesian Network (MSBN), Hybrid-Bayesian Network(HBN), Object-

Oriented Bayesian Network (OOBN), Probabilistic Relational Model(PRM), Multi-

Entity Bayesian Network (MEBN), Probabilistic-Web Ontology Language (PR-OWL),

parameter learning, structure learning, incremental learning of BN, statistical data

sampling, classification performance evaluation, data mining and several other algo-

rithms for Bayesian inference.

Although there are other tools available for graphical Bayesian Network generation,

this tool provides the unique feature of importing OWL based ontology and effectively
6University of Brazil, website: http://www.unb.br/.
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utilizes the class-relation-attributes-instances structure in a graphical model, which

can produce a Bayesian Network incorporating the logical uncertainty information.

2.3 Hazard Identification and Process Safety

’Hazard’ can be defined as the possible situations or scenarios, which might cause

potential damage loss or injury; while ’risk’ is the chance or probability of any loss,

damage or illness as a result of being exposed to the hazard. Risk estimation process

lies within three basic questions -"What can go wrong?","How bad could it be?" and

"How often it might happen?"; which answers about hazards, consequences and occur-

rence probabilities respectively [CCPS, 2010]. Therefore, in any system or cases, the

preliminary step of isolating the hazards according to the nature of potential threats

can be called as hazard identification. However, in complex chemical processes haz-

ardous events are results of set of unfavorable conditions or causes, which may be

called as hazard scenario. Any kind of hazard appears as a complimentary outcome

of a hazard scenario.

In chemical process industries, common process hazards can be categorized into- chem-

ical, thermodynamic, electrical/ electromagnetic, mechanical and health hazards. Any

incident or hazardous event might consist of one or more of these hazard types and

this preliminary idea of the potential hazards might be obtained from basic knowledge

of engineering with help of process flow diagrams, material properties etc. This idea

of deducing potential hazards is called preliminary process hazard analysis (PPHA or

PHA), which a basic technique of hazard identification. [Wells, 1996]

Different hazard identification techniques such as the Checklist review, Safety Re-
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view, What-If-Analysis, Hazard and Operability Study (HAZOP),Failure Mode and

Effects analysis (FMEA) and many others are already established in industrial prac-

tice. What-if-analysis and Checklist Review is a list of questionnaire or items to

improve process safety and hazard analysis. HAZOP lists the hazardous outcomes

of possible process deviations. Any of the above methods can be adopted in safety

review. FMEA focuses on equipment/system failure types and consequences, based o

the functionality. Further details in these processes can be found in literature [Man-

nan, 2004] [CCPS, 2010]. However, these methods are quite time consuming and

slow in nature, as these require a team of experts and intense brainstorming. More-

over, sometimes the outcome cannot be quantified because of its qualitative nature,

depending on the process. Therefore, development of a smart and effective identifica-

tion technique has been considered as a prospective area or research in this topic.

Automatic and expert systems for hazard identification has been proposed in pre-

vious studies. Hazard Identification and Ranking (HIRA)[Khan and Abbasi, 1998]

has been developed and applied for fire, explosion and toxic release scenarios. A

knowledge-based intelligent system named HAZOPExpert[Venkatasubramanian and

Vaidhyanathan, 1994] has been proposed for chemical process systems and devel-

oped. The computer aided software tool HAZID[McCoy et al., 1999] had been

proposed for automatic hazard identification. Blended Hazard Identification (BL-

HAZID)[Seligmann et al., 2012] is another automated technique which combines a

function-goal-relationship with FMEA and FTA for HAZID in process systems. All

these methods have similar goals, improvement of the hazard identification technique

for a more responsive and dynamic procedure.
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2.4 Accident Database : Overview and Impact

The intrinsic property of "Hazard" can only be identified through previous experience

or study of similar incidents. Study of historical accidents/incidents provides a good

basis for identifying and eliminating possible hazards. Industrial accidents like the

Bhopal Disaster(1984)7 were important lessons of accident history. Reporting of ac-

cidents/incident in a database is mandatory in most industries.

A typical accident database requires the reporting of accident details such as the

type of chemicals released along with the quantity released, the cause of the incident,

the number of fatalities, number of injuries and degree and number of evacuations.

The information is used to summarize the types of incidents, the different initiations

or causes for incidents, common chemical releases and the severity of their conse-

quences.[Prem et al., 2010]

The accident database can be used for statistical purposes, further learning or mod-

eling. However, many accident reports, for both minor and major accidents, fail to

identify all the lessons that can be learned from them.[Kletz, 2009] Therefore, more

detailed investigation is required whenever necessary. Accident modeling of disasters

like the BP Texas Refinery Explosion (2005) can reveal the risk of catastrophic events

using mathematical prediction models and lead to safe practices[Khan and Amyotte,

2007].

Independent organizations like the United States Chemical Safety Board(CSB)8 pro-

vide through investigations and recommendations to improve regulatory standards.

Since the formation of this Board in 1998, CSB has conducted more than 60 through

investigations with detailed recommendations. CSB proposed the modernization of
7One of the most devastating Industrial Disasters : Release of lethal gas from Union Carbide’s

MIC storage tank killed thousands of people on December 1984, in Bhopal, India.
8website:http://www.csb.gov/
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"Combustible Dust Standard", "Process Safety Management Regulations", "Emer-

gency Response Planning" and "Preventive Maintenance" . The Occupational Health

& Safety Association (OSHA), National Fire Protection Agency (NFPA), Environ-

mental Protection Agency (EPA) and other regulatory bodies have adopted their

recommendations to update safety standards and operating procedures.

Although compliance with safety standard regulations minimizes the risk of accidents,

40% of the incidents in CSB database occurred in processes covered by the Occu-

pational Safety and Health Administration’s (OSHA’s) process safety management

(PSM) regulations. Insights from the accident database identified process design,

safeguards, operation and maintenance, abnormal/non-routine operations, process

hazard analysis failures, human and organizational factors, process changes, proxim-

ity, emergency response, etc. as the contributors to most of the incidents. Findings

suggest that process hazard analysis(PHA) studies are only performed when required

by regulations, but failed to identify the hazards [Baybutt, 2016]. Therefore, the CSB

database is a valuable resource to improve PHA and HAZOP performance as part of

Inherent Safety[Amyotte et al., 2011].

For chemical industries, the major hazards are fire, explosion and toxic release. Al-

though fire is the most common, explosion is more significant in terms of its damage

potential (e.g. fatality or property damage). Toxic release has the highest potential

of fatalities, toxicity or contamination in the areas of proximity [Khan and Abbasi,

1999]. Additionally, fire-explosion and toxicity can occur simultaneously or conse-

quently depending on the propagation of an event.
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Chapter 3

Ontology Based Framework in

Dynamic Hazard Identification

Hazard Identification is the principal inception of risk assessment and management.

Therefore, the objective is to seek for an easily accessible and efficient method to iden-

tify and quantify the associated hazards in certain industrial scenarios. This chapter

introduces an effective methodology to model probabilistic assessment of hazards in

a dynamic model. The methodology then utilizes an ontological framework to model

the hazard scenario and probabilistic reasoning to estimate the probable hazards in

common industrial environments. The purpose of using an ontological framework is

to introduce semantic-web based knowledge management which can be a vital frame-

work to introduce automation and artificial intelligence (AI) in hazard identification

techniques. In the following section, a methodology is proposed to develop a dynamic

hazard identification model based on scenario modeling. Then an ontology based

probabilistic modeling approach is described with a simple demonstration. Finally, a

complete and generalized hazard scenario model has been developed with the insight

of the proposed dynamic modeling methodology, adopting an ontology based Bayesian
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reasoning approach. The versatile model was tested with multiple case studies, de-

scribed later in this chapter.

3.1 Dynamic Hazard Identification Methodology

Dynamic risk assessment(DRA) is a continuous procedure which can be updated over

time. Like the preliminary step of DRA, the hazard identification and assessment

process must be updated over time. Therefore, approaches suggesting dynamic haz-

ard identification have been proposed. Some other recent works introduce the bow-tie

method in process hazard identification [Saud et al., , Nakayama et al., 2016]. The

goal of this section is to present a scenario based dynamic hazard identification which

combines both process faults and event propagation as scenarios. Mapping of scenar-

ios has been adopted in the literature using the Bayesian Network with quantitative

assessment[Xin et al., 2017]. Although proposed methodology utilize the scenario

based modeling, the proposal is different in procedure and aims to develop an expert

system based on knowledge-modeling.

In chemical process industries, common hazard identification methods are developed

for the same purpose but with different approaches. While Preliminary Hazard Analy-

sis(PHA) looks for generalized overall hazards and events, the Hazard and Operability

Study(HAZOP) focuses on the process parameters and Failure Mode Effects Analysis

(FMEA) is mostly equipment oriented. However, to develop a realistic model, a sce-

nario based modeling approach is required to completely capture information of an

accident scenario, either from experience or visualization [Khan, 2001]. Therefore, an

event based hazard progression scenario can be considered, to outline the model, using

the process parameters contributing to the initiating event or causation followed by a

set of events or leading to final hazard. Hazards might be of many types; however, for
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chemical industries, fire, explosion and toxicity pose most potential risks [Khan and

Abbasi, 1999]. To develop a Hazard scenario for process industries, scenarios leading

to fire, explosion or toxicity are considered. A knowledge based model for identi-

fying the important hazards, causes and parameters involved might provide enough

information to develop the generalized model. A probabilistic interpretation utilizing

expert systems can be deduced to introduce quantitative assessment. A step-by-step

methodology (Figure:3.1) illustrates the proposed idea of dynamic hazard modeling.

The preliminary step of the hazard identification technique is to outline the applicable

domain, i.e., limit the boundaries of a process or unit to model the hazard scenario.

A hazard scenario consists of conditions, propagating events and hazards. A process

hazard scenario can be conceptualized and visualized from prior accidents and events

or from the PHA/HAZOP/FMEA studies. Therefore, to share the idea of a scenario,

a generalized hazard scenario checklist can be developed where the operational as-

pects, conditions and progression of events are classified as classes and sub-classes,

which we can call a knowledge model. A progression of events with the contributing

parameters can lead to the final hazard. In the following section, a model has been

developed as a classification which represents the integral information required to de-

termine the most probable hazards.

When a knowledge based hazard scenario model has been developed, it can be uti-

lized to develop the probabilistic data model for the quantitative assessment. Any

statistical modeling tool which can incorporate uncertainty for probabilistic reasoning

and which can be updated over time will complete the dynamic hazard identification

model. The parameters or factors identified above are constant; however, the values

or attributes are supposed to change over time. Therefore, a reusable probabilistic
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Outline Hazard or Event Domain
(Hazards, Process/Units, Parameters)

Envisage Scenarios & Mapping
(Causation, Initiation, Escalation, Consequence)

Develop Knowledge Model
(Scenarios, Factors,Hazards)

Develop Statistical/Data Model
(Qualitative/Meta-Model)

Incorporate Uncertainity Information
(Probabilities,Dependencies, Constraints)

Statistical/Probabilistic Reasoning
(Conditions, Evidances, Results)

Prior Information

Dynamic Hazard Identification

Case Specific
Information

Expert Knowledge
(Accident History /

HAZOP / FMEA / PHA)

Figure 3.1: Dynamic Hazard Identification modeling Methodology

network is necessary to introduce the dynamics to this system. This work employs the

ontology based framework for the knowledge based data model and the Probabilistic

Web Ontology Language (PR-OWL) has been taken into account to aid the proba-

bilistic assessment. Detailed methods with examples are discussed in later sections.
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3.2 Probabilistic Modeling & Ontology Framework:

A Simple Demonstration

The ontology based framework can be a versatile tool for knowledge modeling of a

specific unit/domain to represent a formal concept in Probabilistic Web Ontology

Language (PR-OWL) and execute probabilistic reasoning using Bayesian statistics.

Before implementing the dynamic hazard identification methodology (Section 3.1),

this section describes a generalized approach for ontology based probabilistic mod-

eling with a simple demonstration. The methodology is partially adopted from the

UnBBayes developer’s team, and was initially developed for fraud detection [Carvalho

et al., 2010a], medical diagnosis, vehicle and marine vessel’s identification[Laskey

et al., 2011, Carvalho, 2011, Carvalho et al., 2010b]. The methodology comprises of

the few principal steps as of Figure 3.2. A step by step demonstration is provided

with a simple example.

The first step of this approach is to accumulate detailed knowledge and domain spe-

cific ideas for the overall process. The goal is to deliver complete knowledge of the

domain scenario with entities, relations and instances which will be the frame of the

formal ontology. To demonstrate the methodology, a simple case of a predictive haz-

ard identification model can be considered, which can deal with any abnormal events

matching them with the known types of events and predict the most probable haz-

ards from predefined probability values. The simple fire hazard scenario consists of

four predefined eventtypes- overpressure, leakage, rupture and overflow and can

predict four states of hazards- Fire, Explosion, MaterialLoss & NoHazard . This

model describes the conditions- presence of the flammablematerial and ignition in

the event. A UML diagram (Figure:3.3) illustrates the relations and entities in the
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Figure 3.2: Ontology Based Bayesian Reasoning Methodology (Adapted and modified
from[Carvalho, 2011])
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Figure 3.3: Basic Fire Hazard Scenario UML Modeling

lightweight hazard model. This simple model is considered for easy understanding

and to avoid complexities in MEBN modeling.

The second step consists of the development of the formal ontology, which is one of the

most versatile ways to represent a knowledge model or domain concept. This frame-

work provides both machine and human accessibility and can be reused for different

purposes. This process can be aided by the Web Ontology Language (OWL)which has

been discussed in the literature survey (chapter 2). Open source software- Protége

1 can be used for the ontology development. The definition of classes, properties

and relations has to be specified in this step. The UML diagram in Figure 3.3 is

a guide to model the ontology. There are only three classes- Event, Eventtype, and

Hazard. There are two object-properties hasHazard, hasEventtype. Object-property

hasHazard has Event as domain and Hazard as range. Similarly hasEventtype has

the domain and ranges of Event and Eventtype respectively. To keep the ontology
1Protégé (4.1), Stanford Center for Biomedical Informatics Research (BMIR) at Stanford Uni-

versity School of Medicine CA USA, 2011 http://protege.stanford.edu
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Figure 3.4: Lightweight Hazard Ontology

simple, three boolean datatypes- hasChanceofHazard, hasFlammableMaterialPresent,

hasIgnitionSourcePresent can be added. The data-types have Event & Eventtype as

their domains and boolean data-type as ranges. As the final step of the ontology

development, the individuals or instances must be added in corresponding classes.

The final ontology relations with the instances is demonstrated in Figure 3.4. The

different colors of the arrow defines different relations amongst the entities.

In the next step, the Multi Entity Bayesian Network (MEBN) can be used to in-

troduce probabilistic reasoning to the existing ontology. More details about MEBN

can be found in Chapter 2. This step is similar to Bayesian Network (BN) mapping,

not as the whole network, but as fragments called ‘MEBN Fragments’ (MFrags),

which altogether construct ‘MEBN Theory’ (MTheory). Random variables (RVs)

and resident nodes should be linked with the previously developed ontology. The

OWL ontology developed based on the lightweight hazard model can be imported
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in the UnBBayes 2 environment to modify and save OWL ontology files with prob-

abilistic information. In the demonstration model, there are only three Mfrags:

EventtypeMF, HasChanceOfHazardMF and HazardMF . To keep the linkage

with the ontology, all variables (random, context, ordinary) should be introduced

from previously developed OWL ontology properties. The datatypes and states can

introduced from the individuals added in the ontology or new states can be introduced

through plug-ins. The complete MEBN model is demonstrated in Figure 3.5. At this

point, the MEBN model should be ready to incorporate probabilistic information in

the next step.

Figure 3.5: MEBN Theory for simple Hazard Model
2UnBBayes (4.21.18) GNU General Public License, Version 3, 2007,

https://sourceforge.net/projects/unbbayes/
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In the next step of the methodology, probabilistic information should be added in

the MEBN model to incorporate probabilistic reasoning. In the UnBBayes environ-

ment, Local Probability Distributions (LPD) for all resident nodes have to be pro-

vided as prior knowledge. In addition, conditional dependencies and constraints with

default values are included in this step. The default values for the haseventtype

resident node-states are: Leakage(5 %), Overflow (7 %), Rupture (3%) and Overpres-

sure (85%). In all cases of hasChanceofHazard, and hasIgnitionSourcePresent

node, the default values to be true are considered as 10%. The default LPD of

hasF lammableMaterialPresent is 70% true. The decision node hasHazard has

conditional probabilities which had been described in logical expressions. Part of the

logical expression can be seen in Figure 3.6. The LPD definitions should be saved

and compiled for a consistent output while executing the query.

The UnBBayes query tool can generate a situation specific Bayesian network (SSBN)

that only shows the values for a specific case for a certain node and its contribut-

ing nodes. Case specific information can be saved and stored as the knowledge base

and can be reused. In the demonstration, the resident node hasHazard had condi-

tional probability, so a query for the Event1 to be true for leakage could be run,

without adding any other knowledge base. In this case the model should use the

default values to calculate the probabilities. The Bayesian belief bar shows accept-

able values(Fire=27.76%, Explosion=28.31 %, Mat.Loss=26.07%, NoHazard=17.86%

) derived from the default LPD distribution (Figure 3.7). If the hasIgnitionPresent

node is changed to be true(100%) and hasEventtype= leakage (100%) from the be-
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Figure 3.6: LPD definition for simple Hazard Model

Figure 3.7: Testing the MEBN simple hazard model(Belief Bar shows default LPDs)

lief bar to propagate the evidence, the result shows an acceptable hazard scenario

(Fire=55.5%, Explosion=28.2%, Mat.Loss=9.07%, NoHazard= 7.23%) in Figure 3.8.

The tests confirm that the model can provide probabilistic assessment of a hazard

scenario.

33



Figure 3.8: Testing the MEBN simple hazard model(Belief Bar shows propagation of
events for leakage and ignition)

The SSBN generation completes the probabilistic reasoning based on the ontology

based framework. The complete model has features of reasoning and updates prior

information, adding individuals and save them for reuse, which make this tool easy

to use, adaptive and versatile.
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3.3 Ontology-based Dynamic Hazard Identification

Model

The proposed approach in this section comprises knowledge modeling of dynamic haz-

ard scenario based on the methodology in Section 3.1 and conceptualizes the domain

in Probabilistic Web Ontology Language (PR-OWL) to execute the probabilistic rea-

soning as demonstrated in Section 3.2. The innovative approach of this article is

to implement the proposed dynamic hazard identification methodology (Figure 3.1)

for process operations, which requires an assortment of ideas, and both knowledge

based and data driven uncertainty. Therefore, an application of the ontology based

framework with a Bayesian reasoning approach (Figure 3.1) can contribute greatly to

expert systems in hazard identification. Following the steps of general methodology

in (Section-3.1), efforts have been concentrated on development of an ontology based

hazard scenario model applicable in most process industries.

3.3.1 Outlining Domain & Envisaging Hazard Scenario

First, the hazard scenario domain and relevant factors leading to major hazards have

to be outlined. It is most important to identify involved process parameters and

anomalous situations for hazards and to collect evidence to support the hazard sce-

nario. Then the parameters, conditions and events are characterized to integrate

the scenario. As there is no unique way to design a knowledge-based model, this

part requires repetitive procedure and rigorous brainstorming to focus on the goal

of scenario modeling. To complete a hazard scenario, operating parameters, external

conditions and additional features with the progression of events are involved. As the

goal of this work is to develop a generic dynamic hazard scenario model, a hazard
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Operating Conditions

Chemical Process
(Process/Storage/TransferUnits)

Material Properties Material Strength

Primary Events
(Overflow/Mech.Failure/Overpressure)

Secondary Events
(MaterialRelease)

Human Error Environmental Conditions

Tertiary Events
(Dispersion/V aporCloud)

Ignition Source Confinement

Hazard
(Fire/Explosion/Toxicity)

Fire Hazard
(PoolF ire/F lashF ire/F ireball/JetF ire)

Explosion Hazard
(V CE/BLEV E/DustExplosion)

Secondary Hazards
(SecondaryF ire/Explosion/Toxicity)

Figure 3.9: Hazard scenario map for common process hazards.

scenario classification is adapted as the domain to accommodate process parameters,

relations, sequential events and hazards; this will be the skeleton of the dynamic or

knowledge model. This classification captures the general idea of a process industry,

involving operational aspects, external factors, causation and propagation of hazards.

This scenario is illustrated in figure 3.9.
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Hazard Scenario : Knowledge-Based Model

1. Conditions

(a) Operational Aspects
i. Operating Conditions

A. Temperature
B. Pressure
C. Flow rate
D. Unit capacity
E. Source of ignition
F. Confinement
G. Heat Flow

ii. Material properties
A. Combustibility
B. Physical State
C. Toxicity
D. Vapour pressure

iii. Strength of Materials
iv. Process Type (Reaction)

(b) Environmental Conditions
i. Atmospheric Conditions
ii. Location

2. Human Factor

3. Primary events

(a) Overflow
(b) Mechanical failure
(c) Reaction Runaway

4. Secondary Events

(a) Material release

5. Tertiary Events

(a) Dispersion

(b) Vapour Cloud Formation

(c) Dust Cloud Formation

6. Hazards

(a) Fire Hazard

i. Pool fire
ii. Flash fire
iii. Jet fire
iv. Fireball

(b) Explosion Hazard

i. Dust explosion
ii. VCE
iii. BLEVE

(c) Toxic Hazard

7. Secondary Hazards

(a) Secondary Fire

(b) Secondary Explosion

(c) Toxic Exposure

3.3.2 Development of an Ontology-Based Hazard Scenario

To complete the knowledge-based model for hazard identification, statistical and data

modeling incorporates uncertainty information are essential. This work utilizes ontol-

ogy based data structure to develop the basic framework. Developing the ontology is

related to defining a set of data and the structure to be used as a support framework

for the knowledge base [Noy et al., 2001]. When identifying the domain and scope
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of ontology, the concept and specific purpose should clear. What How or Whom

kind of questions, also called competency questions, should be answered to circum-

scribe the limits and usability of the ontology. Operational Aspects, Scenario and

Hazard are the classes for the hazard scenario ontology. Similarly, Operating Pa-

rameters such as Pressure, Temperature and Flow-Rate are the subclasses of their

Superclass OperatingConditions. The hazard scenario classification can be called

class-hierarchy. Hazard Ontology has Functional Properties (e.g., haspressure defines

the relation of the scenario to the operating conditions). And Operating Conditions

,Primary Events, Secondary Events, Tertiary Events and Hazards are sequentially

dependent. hasIgnitionSourcePresent has a Boolean data-type, which involves only

a True/False answer. Individuals or Instances are the values in the knowledge base.

Each class contains a set of individuals to complete the knowledge base. In the Hazard

ontology each operating parameter has high, Low or Normal value, which were added

as instances. These individuals provide the states to construct probabilistic ontology.

Protégé is used to develop the Hazard Identification Ontology, illustrated in Figure

3.10. Protégé[Musen and Team, 2015] is a Java- based open source ontology devel-

opment platform, which has been the skeletal platform for Knowledge Acquisition to

assist expert systems (AI)[Musen, 1989] in medical informatics and other fields.

3.3.3 Incorporating Uncertainty Information: MEBN Model

& LPD Data

The Multi Entity Bayesian Network (MEBN) can be used to introduce probabilistic

reasoning to the hazard scenario ontology, utilizing PR-OWL. This step is similar to

Bayesian Network (BN) mapping; however, not as the whole network, but as frag-
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Figure 3.10: Detailed ontology model for hazard identification.

ments called MEBN Fragments (MFrags). There are five MFrags in the model, which

represent each step of event propagation leading to any hazard. All the MFrags of

a domain are combined to obtain MEBN Theory (MTheory). The UnBBayes- based

MEBN Model of the detailed Hazard Scenario Model looks like Figure 3.11. These

MFrags contain context, input and resident random variables compiled with the un-

certainty hypothesis and logical dependencies. The MTheory altogether defines the

whole domain through context and input variables. Each individual/instance of each

class node has mutually exclusive, collectively exhaustive possible states. A proper

linkage among the variables with dependencies and constraints will deliver a consis-

tent MEBN model.

UnBBayes is a versatile and easy Graphical User Interface (GUI) tool to develop and

edit probabilistic OWL ontology in the PR-OWL environment to generate MEBN
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[Matsumoto et al., 2011], which was developed based on the Java application by

Artificial Intelligence Group(GIA) of the computer science department at the Univer-

sidade de Brasília3. Based on Bayesian Network’s graphical and theoretical structure,

UnBBayes provides a framework for building probabilistic graphical models and per-

forming reasoning.

Uncertainty is ubiquitous. Any representation scheme intended to model real-world

Figure 3.11: MEBN Fragments for the Detailed Hazard Scenario Model.

action and processes must be able to cope with effects of uncertain phenomena. [Costa

et al., 2005] Thereby, uncertainty introduces the dynamics in the hazard scenario

model. All random variables have conditional or unconditional probability distribu-

tion linked to the respective nodes in the PR-OWL environment. To build probabilis-

tic hazard ontology in UnBBayes, the Local Probability Distributions (LPD) for all
3University of Brazil, website: http://www.unb.br/.
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resident nodes have to be provided as prior knowledge. The default LPD values can

be declared from prior information or a rational knowledge base.

LPD Declaration4 Example:causePraimaryEvent Node

i f any Sc have ( React iveProces s = true & HasCapacity
= LowCapacity ) [ i f any Sc have ( HasFlowRate = HighFlowRate )

[ Overflow = 0 .15 , Mechanica lFa i lure = 0 .05 ,
NormalOperation = 0 .05 , ReactionRunaway = 0 . 7 5 ]

e l s e [ Overflow = 0 .05 , Mechanica lFa i lure = 0 .10 ,
NormalOperation = 0 .60 , ReactionRunaway = 0 . 2 5 ]
]

e l s e i f any Sc have ( React iveProces s= f a l s e & HasCapacity
=LowCapacity ) [ i f any Sc have (HasFlowRate= HighFlowRate )

[ Overflow = 0 .85 , Mechanica lFa i lure = 0 .05 ,
NormalOperation = 0 .05 , ReactionRunaway = 0 . 0 5 ]

e l s e [ Overflow = 0 .15 , Mechanica lFa i lure = 0 .10 ,
NormalOperation = 0 .60 , ReactionRunaway = 0 . 1 5 ]
]

e l s e i f any Sc have ( HasStrengthOfMater ia l s = LowStrength )
[ i f any Sc have (HasFlowRate= HighFlowRate ) [ i f any Sc have
( HasPressure = HighPressure ) [ i f any Sc have
( HasTemperature = HighTemperature )

[ Overflow = 0 .05 , Mechanica lFa i lure = 0 . 8 ,
NormalOperation = 0 .13 , ReactionRunaway = 0 . 0 2 ]

e l s e [ Overflow = 0 .10 , Mechanica lFa i lure = 0 .37 ,
NormalOperation = 0 .50 , ReactionRunaway = 0 . 0 3 ]
]

e l s e [ Overflow = 0 .05 , Mechanica lFa i lure = 0 .25 ,
NormalOperation = 0 .65 , ReactionRunaway = 0 . 0 5 ]
]

e l s e [ Overflow = 0 .05 , Mechanica lFa i lure = 0 .20 ,
NormalOperation = 0 .70 , ReactionRunaway = 0 . 0 5 ]
]

e l s e [ Overflow = 0 .03 , Mechanica lFa i lure = 0 .10 ,
NormalOperation = 0 .85 , ReactionRunaway = 0 . 0 2 ]

As data is mostly case centric, and this a generic model, the knowledge-base was

developed based on expert opinion and a basic understanding of hazard propagation

behaviour. Each mutual conditional dependency, constraint with discreet probabilis-

tic data is declared in this step as a simple logical statement. A sample is listed

following this section. Successful compilation of the LPD values and conditions com-
4The LPD description for the rest of the model is listed in Appendix A
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plete the modeling of dynamic hazard scenario model in the PR-OWL2 environment.

This model can be used for situation specific queries and results can be viewed as

Bayesian belief network. This step is the most significant part of dynamic modeling.

As this step can introduce prior probabilities, this model can be updated using his-

torical values for use over time. The extension of this work building an automatic

import tool/plug-ins can improve the dynamics.

3.3.4 Probabilistic Reasoning: SSBN

To perform a query using the hazard scenario model, the information for the specific

case is inserted in the model. The UnBBayes query tool generates a situation specific

Bayesian network (SSBN) that shows the probabilistic values and contributing nodes

for the scenario. Different scenarios can be saved and stored as the knowledge base

and can be reused. The feature of adding individuals and different cases makes this

tool easy to use, modify and reuse in different situations. Figure 3.12 illustrates the

dynamic hazard identification Bayesian network with default values.

3.4 The Dynamic Hazard Identification Model: Case

Studies

To test and validate the model, several previous accidents are used as case studies.

This section describes four different scenarios that can be predicted using our model.

The results are compared with the historical outcomes.
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Figure 3.12: Basic SSBN for the Hazard Scenario Model.

3.4.1 Vapour Cloud Explosion in Danvers, 2006

A vapor cloud explosion occurred on November 22, 2006 in Danvers, Massachusetts.

According to CSB Report 5, a tank of flammable liquid was heated due to an acci-

dentally open steam valve on the heater coil, thus vaporized the liquid. Gradually

released vapor formed a vapor-cloud, which was ignited and caused vapor cloud ex-

plosion in a congested area. This evidences wes used in the model and it predicted

Explosion(51%) as the most credible hazard and Vapour Cloud Explosion (35.3%) as

the most probable type. Figure 3.13 shows the result for this case study.
5CSB US Chemical Safety Board. CAI / Arnel Chemical Plant Explosion,

http://www.csb.gov/cai-/-arnel-chemical-plant-explosion/
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Figure 3.13: Results for the Vapour Cloud Explosion Danvers, Massachusetts on
November 22, 2006.

3.4.2 Chevron Refinery Fire and Explosion in Richmond,

2012

On August 6, 2012, an explosion followed by fire caused destruction in the Chevron

Refinery in Richmond, CA, USA. According to the CSB investigation6, the accident

caused due to failure of a low strength High-temperature Gas Oil Draw Pipe: the

minor leakage in the low strength was increased by improper actions which agitated

the line to fail completely, a high temperature fuel was released on the unit floor

and a large vapour cloud was formed. The ignition was triggered from the source of
6US Chemical Safety Board (CSB) website: http://www.csb.gov/chevron-refinery-fire/
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leakage as the liquid temperature was well above the flash point. A timely evacuation

decision helped to avoid any death, but severe damage caused loss of production for

more than a year. The model used these data as evidence to simulate the scenario

(Low Strength Material, High Temperature, High Capacity, Low vapour Pressure

Liquid, Stable Weather, Highly Combustible, Ignition Source Present). The final

predicted result (Figure- 3.14) shows the chance of Explosion=36.07 % and type of

explosion to be VCE = 30.63%.

Figure 3.14: Results for the Vapour Cloud Explosion case study for Richmond
Chevron.

3.4.3 Dupont Chemical Toxic Release, Texas, 2014

The Dupont Corporation Toxic Chemical Release in La Porte, TX on November 13,

2014 caused at least 4 deaths due to toxic exposure. According to CSB reports during a
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troublesome startup operation, a valve to vent header was left open during hot-water

flushing to remove a pipeline blockage. As the running circulation pump was left

unnoticed and the blockage was cleared, the vent header tank filled with toxic liquids.

The operators intended to drain the liquid opened a valve and they drained inside a

building. Highly volatile-liquid created toxic vapor, which caused toxic exposure to

the operators and led to death. Our model counts the mistake as an event of material

release and all other evidences to simulate the scenario. The model predicted Toxicity

= 67 %(Figure: 3.15).

Figure 3.15: Results for the Dupont Toxic-Exposure case study.
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3.4.4 Caribbean Petroleum Corporation Tank Explosion &

Fire, 2009

On October 23, 2009, The Caribbean Petroleum Corporation (CAPECO) near San

Juan, Puerto Rico, faced a fire and explosion accident due to tank overflow. During

a gasoline reception pumping operation, an automated tank gauging system failed

to show the correct tank level which caused a massive amount of gasoline overflow.

The liquid pool inside the containment dike formed a layer of vapour cloud. Some

of the liquid gasoline passed through drain reached wastewater treatment facility,

where the cloud was ignited by electrical equipment. The ignition caused a large

flash fire followed by a massive explosion. This accident was simulated in our model

to determine the predictability. As input data, we considered the Low Capacity,

High Flow Rate, Low Vapour Pressure Liquid, Combustibility and Ignition Source as

principal evidences. The simulation result shows the chance of Fire = 39%, Explosion

= 27 % and that the most probable type of fire is Flash Fire(30%). Figure: 3.16

shows the SSBN with results.
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Figure 3.16: Results for CAPECO fire and explosion accident.
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Chapter 4

Dynamic Hazard Identification

Model: Application & Prospects

Investigation of previous accidents is the most effective way to enhance hazard scenario

knowledge As part of the work, 45 previous accidents in US chemical industries were

examined to contribute to the knowledge base. The Hazard Scenario Model was

implemented both to predict hazards. The results were evaluated to check the validity

of the model. Also, some the model was tested in reverse direction in some cases to

identify the root causes of an accident. The first section describes the accidents; later

sections include results, comparison and further tests of the model.

4.1 Industrial Fire, Explosion & Toxicity Accidents

The Hazard Scenario Model is a conceptual representation of a generalized Fire, Ex-

plosion or Toxicity hazard scenario. To validate the adaptability and precision of

the model a total of 45 previous incidents from the United States Chemical Safety

Board(CSB)1 were considered for study. According the hazard types, there were Fire
1website:http://www.csb.gov/
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Figure 4.1: Hazards according to types, from the accidents investigated

VCE
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7% Dust Fire & Exp.

7% Flash Fire
4% Misc.
4%

and Explosion (26) , Reactive Hazard (5), Dust Fire & Explosion (6) and Toxicity

(8) Accidents. Table 4.1 briefly describes the accidents taken into account for model

validation. Figure 4.1 represents a graphical representation of the actual hazards ob-

served in the accidents.
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Table 4.1: Description of Fire, Explosion and Toxicity Accidents Studied.

Serial

No.

Accident Short Description

1. ConAgra Natural Gas

Explosion and Ammo-

nia Release, NC, 2009

During installation and commissioning of a

new gas fired water heater, a new steel gas

pipe was pressure tested with air. Air was be-

ing purged using natural gas and purged in

a confined area. While trying to ignite the

heater natural gas was purges in indoor plant

area for an extended period. The natural gas

was ignited from a electrical ignition source.

2. Richmond Chevron

Refinery Fire, 2012

A Distillation column collection pipe leaked

due to low material strength at high temper-

ature. The pipeline failed and spilled a high

quantity of high-temperature Gas-Oil to form

Vapour Cloud which subsequently ignited and

caused a Vapour Cloud Explosion.

3. BP Texas Refinery

Explosion , 2005

During the Isomerization Unit start up , be-

cause of level transmitter failure, the distil-

lation tower overflowed with temperature hy-

drocarbon to the blow-down drum. A vapour

cloud of hydrocarbon was released into the at-

mosphere and then ignited causing an explo-

sion.
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4. West Virginia Lit-

tle General Store

Propane Explosion,

2007

Propane leak from a tank during maintenance

caused a massive amount of release. The gas

entered the store through the ventilation duct

and created a vapour cloud inside the store

which later on ignited with blast of explosion.

Human Error due to inexperience was the pri-

mary cause of release.

5. Huston Marcus Oil

and Chemical Explo-

sion, 2004

A modified pressure vessel containing wax and

hydrocarbons ruptured at high pressure due

to fabrication flaws. This caused hydrocarbon

release and fire. This then ignited the liquid

inside the tank, which exploded. Most likely

the Explosion was BLEVE.

6. Puerto Rico

Caribbean Petroleum

Corporation

(CAPECO) Fire

& Explosion, 2009

A tank overflow during a pumping operation

caused a large spill of gasoline. The Gasoline

vapour dispersed and created a large vapour

cloud. The cloud was ignited from electrical

equipment and caused a Flash fire. The fire

triggered a secondary explosion of the tank.

7. West Fertilizer Fire &

Explosion, Texas 2013

A Fertilizer storage facility caught fire. The

stored nitrate fertilizer was heated, leading a

fatal explosion due to explosive properties.
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8. Valero Refinery

Propane Fire, Texas

2007

An elbow failed due to icing inside the line and

led to a high pressure propane leak forming a

vapour cloud. The vapour cloud ignited from

the nearby boiler house and created a jet-fire.

9. Veolia ES Technical

Solutions Hazardous

Waste Fire and

Explosion, Ohio 2009

A flammable vapor of tetrahydrafuran (THF)

was released from a waste recycling process,

ignited, and violently exploded. Contact of

THF with air may lead to a high pressure vent

of the gas which might cause vapour cloud ex-

plosion as fireball.

10. Herrig Brothers Farm

Propane Tank Explo-

sion, Iowa 1998

A Leakage in the propane tank due a broken

pipeline caused a vapor fire in the propane

storage tank. The fire heating the tank caused

boiling of liquids inside the tank. After reach-

ing a certain pressure, the tank exploded. The

type of explosion was BLEVE.

11. Silver Eagle Refinery

Flash Fire and Explo-

sion, Utah 2009

A 10" pipe below the distillate de-waxing unit

failed due to corrosion and released hydro-

gen gas to the atmosphere. The gas created

a vapour cloud and caused flash-fire sending

workers to the hospital
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12. Carbide Industries

Explosion, Louisville,

Kentucky, 2011

A water leakage to an electric arch furnace

with molten calcium carbide, caused overpres-

sure of the furnace and released tons of debris

and powdered gases. The high temperature

furnace cover with water jacket having low

material strength was suspected be exposed to

high temperature "Boil-Up" spills and caused

the leak in the furnace. Water in-touch with

the molten metals created an extreme high

pressure blow up and explosion.

13. Williams Olefins

Plant Explosion,

Louisiana 2013

Amongst two water heated Re-boilers of a

propylene fractionation tower, the 16 month

standby re-boiler exploded due to high pres-

sure. The stand-by re-boiler was suspected to

be filled with high temperature process fluid

and water was introduced to the reboiler as a

part of unprecedented process diagnosis oper-

ation. The trapped propylene in the re-boiler

overheated and exploded due to overpressure.
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14. EQ Hazardous Waste

Fire and Explosion,

Apex, NC, 2006

A flammable vapour release along causing

chlorine from EQ hazardous waste facility

caught fire with toxic smoke. The fire spread

inside the facility and storage containers ex-

ploded subsequently causing numerous explo-

sion fireballs. The toxic smoke led to evacua-

tion of neighbourhood.

15. Tosero Refinery Ex-

plosion, Washington

2010

A heat exchanger exploded due to high tem-

perature and high pressure during commis-

sioning after service. The low strength heat

exchanger shell wall was weakened due to in-

ternal cracks caused by High Temp Hydrogen

Attack (HTHA). The shell cracked due to high

heat and pressure releasing hydrogen with hy-

drocarbon causing self ignition and fire.

16. Hilton Hotel, San

Diego, California,

2008

After Installation of new piping in the ho-

tel under construction, gas was purged indoor

and ignited causing explosion.

17. Sterigenics Interna-

tional Ethylene Oxide

Explosion, California,

2004

A sterilization chamber filled with explosive

concentration of ethylene oxide found an ig-

nition source in the ventilation oxidizer and

exploded. The event was triggered by a hu-

man error of overriding the regular gas purge

cycle.
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18. Kleen Energy Natural

Gas Explosion, Mid-

dletown, CT, 2010

Natural gas was being used to clean new

pipelines (aka Gas Blow) and purged in con-

fined plant area. The high concentration of

natural gas ignited and caused explosion.

19. BLSR Fire, TEXAS,

2003

In an oilfield waste disposal facility, two per-

sonnels were disposing oilfield waste in an

open pit. The waste contained volatile liquid

which dispersed in air and caused the nearby

truck to backfire. The bacfire ignited the va-

por resulting in a flash fire.

20. Partridge Raleigh Oil-

field Explosion and

Fire, Mississippi, 2006

An open pipe of nearby tank released

flammable vapor during a hot-work. The

flammable vapor was ignited and fire prop-

agated to another connected tank containing

crude oil and exploded.

21. Formosa Plastics Cor-

poration Explosion

and Fire, Illiopolis,

Illinois 2004

An operator opened a running vinyl-chloride

reactor drain valve releasing high pressure-

high temperature flammable materials. The

building, filled with flammable vapour ex-

ploded within minutes.

22. Formosa Plastics Cor-

poration Fire, Point

Comfort, Texas, 2005

A Propylene strainer drain valve broke when

stuck by a forklift, causing large liquid leak.

The liquid caused a vapour cloud and ignited

causing fire.
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23. Praxair Propylene

Cylinders Fire, St.

Louis, Missouri 2005

Propylene cylinders overheated due to atmo-

spheric high temperature in a storage facility

and caused release of propylene. The released

gas ignited from static charge and caused fire

and accelerated series of explosions due to

overheating of nearby cylinders.

24. ASCO Acetylene Ex-

plosion, Perth Amboy,

New Jersey 2005

A failed check valve caused acetylene flow

back to a shed and accumulated through the

open drain valve. The explosive mixture ex-

ploded, finding an ignition source.

25. CITGO’s Corpus

Christi refinery, Texas

2009

A fire in the alkylation unit at CITGO’s

Corpus Christi refinery led to a release of

hydrofluoric acid (HF). The alkylation unit

makes high-octane blending components for

gasoline. One worker was critically burned.

Primary Fire & Secondary Toxicity (Chemi-

cal Burn)

26. Horsehead Holding

Company Explo-

sion,Pennsylvania

2010

A buildup of superheated liquid zinc inside a

ceramic zinc distillation column “explosively

decompressed” and ignited.
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27. BP Ameco Polymers

Plant Explosion, 2001

After a mechanical failure, a waste tank filled

with molten plastic had a decomposition reac-

tion causing high pressure. When the main-

tenance workers tried to open the tank lid for

cleaning, the tank lid exploded, causing fatal-

ities and damage to the unit.

28. First Chemical Corp.

Reactive Chemical

Explosion, Mississipi

2002

An Out of Operation distillation tower par-

tially filled with mono-nitro-toluene (MNT)

was heated by leaky steam valve causing a

runaway decomposition reaction with high

temperature. The high temperature and pres-

sure caused a massive explosion in the tower.

29. Synthron Inc Ex-

plosion, Morganton,

North Carolina 2006

A runaway reaction occurred in the batch re-

actor during an attempt to produce a larger

sized batch. The overpressure ruptured reac-

tor cap seal and released flammable vapour

inside the building, which then exploded.

30. Denvers Arnel Chemi-

cals Vapor Cloud Ex-

plosion, 2006

Accidentally open steam valve overheated a

tank and formed a vapour cloud leaking

through the unsealed vent, causing a Vapour

Cloud Explosion.

31. T2 Laboratories Ex-

plosion, Jacksonville,

Florida, 2007

Due to malfunctioning cooling system a run-

away chemical reaction in MCMT reactor

caused high temperature inside the reactor.

As a result the vessel exploded with fire.
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32. Imperial Sugar Refin-

ery Dust explosion,

Georgia 2008

One of the largest Dust explosions, killing 14

people and injured many. Sugar dust was ig-

nited inside a closed conveyor by contact with

the high temperature bearings. The dust ex-

plosion caused several chain explosions and

fireballs destroying the whole facility.

33. AL Solutions Metal

Recycling, West Vir-

ginia 2007

Metal combustible dust was ignited from a

spark in the blender. The flashfire ignited and

created a combustible vapour cloud leading to

dust explosion.

34. Hoeganaes facility

Flash Fires, Ten-

nessee 2011

The iron recycling facility had several fatal ac-

cidents with combustible dust flash fires. Dur-

ing a maintenance operation a combustible

dust cloud was ignited from a metal spark and

caused a flash fire alt least three times in the

same year, causing total of 5 fatalities.

35. West Pharmaceutical

Explosion, North Car-

olina 2003

Accumulation of Polyethylene dust over the

acoustic tile ceiling was agitated due to a small

fire inside the facility, forming dust cloud. The

dust cloud ignited from a source causing mas-

sive explosion inside the building.

59



36. Hayes Lemars Plant,

Indiana 2003

The factory prepared aluminum wheels. The

aluminum dust from machining-grinding was

collected through dust collector and fed to the

furnace for remelting. A dust fire started in-

side the dust collector from metal spark or hot

surface causing the flame-front to propagate

back to the furnace area, releasing an airborne

dust cloud, which exploded inside the confined

plant area.

37. CTA Acoustics, Ken-

tucky, 2003

Polymer resin dust clouds from improper

housekeeping operations dispersed inside the

facility and found an ignition source from a

open furnace door. The Dust cloud caused

two small dust explosions. The consequence

was dispersion of more accumulated dust and

propagation of the explosions destroyed the

whole production line.

38. Dupont Chemical

Toxic Release,Texas,

2014

An unnoticed valve left open during startup

operation caused toxic liquid carryover to the

blowout drum. The operators tried to purge

the liquid and inhaled toxic gas resulting fa-

talities.

39. DPC Enterprises

Chlorine Release,

Missouri 2002

A chlorine transfer hose ruptured during rail

unloading, releasing a huge quantity of toxic

gas.
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40. DuPont facility Toxic

Exposure, West Vir-

ginia 2008

A toxic Phosgene gas hose was disconnected

during cylinder replacement and created a

toxic environment leading to fatalities.

41. Bayer Crop Science,

West Virginia

During a startup of the Methomyl unit, a run-

away reaction occurred in the waste cooker

and exploded, with flammable toxic material

release and fire.

42. MFG Chemical Inc.

Toxic Gas Release,

Dalton, Georgia, 2001

A chemical reactor overheated releasing toxic

allyl alcohol vapour. The overheating caused

overpressure and rupture of the tank seal.

43. Millard Refrigerated

Services Ammonia

Release, AL, 2010

The refrigeration system was started after an

unplanned shut-down without removing liq-

uid from the circuit. As a result, a hydraulic

shock was generated which led to rupture of

the pipeline. Ammonia leaked to atmosphere

and affected the community.

44. Freedom Industries

Chemical Release,

WV, 2014

A leakage of hazardous materials led to toxic

contamination of nearby river water, which re-

sulted in contamination of water supply to the

nearby community.

45. Honeywell Plant

Chlorione Release,

LA, 2003

While unloading a railroad chlorine tanker,

the transfer hose ruptured due to high pres-

sure. The release lasted for 45 seconds before

the operators responded by closing the shutoff

valves. The exposure affected 11 workers.
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4.2 Implementing The Hazard Scenario Model :

Evidence and Results

The Hazard Scenario Model can predict different hazards from existing knowledge

based data. The development of the primary hazard scenario was a knowledge-based

model depending on th literature and investigations of the US Chemical Safety Board

(CSB). However, to validate adaptability, the model was tested and trained with trials

of accidents from previous database. For convenience the results are categorized based

on the nature of scenario and listed in tabular form.

4.2.1 Fire & Explosion Scenarios

Chemical fire and explosion hazards are most commonly observed in process indus-

tries. For most of the cases material release due to Mechanical Failure, Overflow, or

Reaction Runaway, and some cases were influenced by Human Error initiating the

primary events. The propagation of event can lead to Fire Hazard, Explosion Hazard

or Toxicity or all of these. Our results in Table 4.2 represents how the model predicts

fire and explosion incidents based on the provided evidence.
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Table 4.2: Explosion & Fire Accidents

Accident Important Evidence2(Scenario) Results

1. ConAgra Natural

Gas Exp. and NH3 Re-

lease, NC, 2009

Comb. Gas > Mat.Rel. > Conf. > Ig.

> Exp.

Exp. = 51.60 % ;

VCE = 43.24 %

2. Richmond Chevron

Refinery Fire, 2012

Low St. > H T > H Cap. > LVP Liq. >

Stable Weather > Mat.Rel. > VCFor-

mation >Comb. >Ig. Source > VCE

Exp.=36.07 % ;

Fire = 27.92%;

VCE = 30.63%

3. BP Texas Refinery

Exp. , 2005

Low Cap. > H Flow > HT > Over-

flow > Mat.Rel. > Vap.Cloud > Ig.

>Comb. > No-Conf. > VCE

Exp. = 39.88 % ;

Fire = 30.22 % ;

VCE = 33.32 %

4. Little General Store

Propane Exp., 2007

Hum.Err. > Mat.Rel. > Comb. gas >

Dsp.> Conf.Space > Ig. >

Exp. = 42.6 %;

VCE = 36.78%

5. Houston Marcus

Oil and Chemical Exp.,

2004

LowSt. > HP > HT > HCap. >

Mat.Rel. > LVPLiq. > Dsp.> No Conf.

> Comb. > Ig. > Fire > BLEVE

Exp. = 46.06

% ; VCE =

32.22% BLEVE

= 18.79%

6. CAPECO Fire 2009

& Exp., 2009

Low Cap. > H Flow> LVP Liq. >

Comb. > Ig. > Fire > Sec.Exp.

Fire =41.7%;

FlashFire

=20.65%

7. West Fertilizer Fire

& Exp., Texas 2013

Solid Mat. > Mat.Rel. > Comb. > Ig.

> Fire > Explosive Mat. > Sec. Exp.

Exp. =24.45%;

D.Exp. = 17.64%

2Abbreviations Used; (e.g. Mat. Release= Mat. Rel , Temperature=T, Pressure=P, Vapor
=V/Vap, High =H, Combustible=Comb. , Strength=St., Exp. =Explosion, Toxicity =Tox. ,
Capacity =Cap., Dispersion=Dsp., Vapor Cloud=VC)
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8. Valero Refinery Fire,

Texas 2007

LowSt. > H P > Mech. Fail > Mat.Rel.

> LVPliq. > Ig. > Comb. > Fire

Fire = 42.82% ;

JetFire=22.13% ;

Sec.Exp.=38.69%

9. Veolia ES Tech.

Sol. Fire and Exp.,

Ohio 2009

Mat.Rel. > Comb.Gas > Vap.Cloud >

Ig. > VCE

Exp. = 34.66% ;

Tox. = 46.94 %

10. Herrig Broth-

ers Farm Propane Tank

Exp., Iowa 1998

HP > Leakage > LowVPLiq. > Dsp.>

Ig. Source >Fire > Liq. > Sec.BLEVE

Fire = 31.31 % ;

JetFire=20.67%;

Sec.Exp.=29.93%

11. Silver Eagle Refin-

ery Flash Fire and Exp.,

Utah 2009

Gas>Low St.Mat.> HP > HFlow > HT

> Mech.Fail > Mat.Rel. > Dsp.> VC

> Comb. > Ig. > Fire

Fire = 38.8%

; Flashfire =

18.58%

12. Carbide Industries

Exp., Kentucky, 2011

H T > Mech. Fail > Mat.Rel.> Non-

Toxic & Non-Comb. Liq. > No. Ig.>

Conf. Vessel > Exp. (BLEVE)

Mat. Rel.= 62.06

% (No Hazard)

13. Williams Olefins

Exp., Louisiana 2013

Liq.> Mat. Rel.> H T > BLEVE Exp. = 60.55 %

; VCE = 43.52

% ; BLEVE =

19.19%

14. EQ Hazardous

Waste Fire and Exp.,

Apex, NC, 2006

Mat.Rel. > Comb. > Ig. > Toxic >

Fire> Toxic Vap.

Fire = 34.66 % ;

Tox. = 40.94 %
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15. Tosero Refinery

Exp., Washington 2010

Low St.(HTHA)> HT > HCap. >

Gas > Mech.Fail >Mat. Rel.> VC

>Comb.> Ig.> no Conf. > Fire

Fire =42.8%;

FlashFire=

32.8%; SecExp.

=38.6%

16. Hilton Hotel, San

Diego, California, 2008

Comb. Gas > Mat.Rel. > Conf > Ig.

> Exp.

Exp. = 48.34 % ;

VCE = 39.93 %

17. Sterigenics Int.

Ethylene Oxide Exp.,

California, 2004

Hum. Err. > Mat.Rel. > Conf. Vessel

> Explosive Conc. > Exp.

Exp. = 49.67 % ;

VCE = 37.74%

18. Kleen Energy Nat-

ural Gas Exp., Middle-

town, CT, 2010

Comb. Gas > Mat.Rel. > Conf.> Ig.

> Exp.

Exp. = 49.09 % ;

VCE = 39.6 %

19. BLSR Fire,

TEXAS, 2003

Mat.Rel. > LVP Gas > Comb. > Ig.

> Fire

Exp. = 32.79% ;

Fire = 32.45 % ;

VCE = 26.09 %

20. Partridge Raleigh

Oilfield Exp. & Fire,

Missisipi, 2006

Mat.Rel. > Ig. Source > Comb. Vap.

> Fire > Conf. Tank > Exp.

Exp. = 49.43 % ;

VCE = 41.67 %

21. Formosa Plastics

Corporation Exp. &

Fire, Illinois 2004

Hum. Err. > Mat.Rel. > H T Vap.>

Conf. Space> Ig. > Exp.(VCE)

Exp. = 39 % ;

VCE = 33.46 %

22. Formosa Plas-

tics Corporation Fire,

Texas, 2005

Hum. Err.> Low St. Mat.> Mech.

Fail> Mat.Rel.> LVP Liq.> HT> VC>

Ig. > VCE

Exp. = 37.17 % ;

VCE = 31.58 %
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23. Praxair Propylene

Cylinders Fire, Missouri

2005

H T > H P Gas > Low St. Mat.

> Insuff. Heat Rem.> Mech. Fail >

Mat.Rel. > VC > Ig.(Static Charge )

> VCE > Sec. Exp.

Fire = 30.73% ;

Exp. = 36.75 %

; VCE = 33.34 %

24. ASCO Acetylene

Exp., New Jersey 2005

Low St. Mat. > H Flow > Low Cap.

> Mat.Rel. > Dsp.> Conf. space > Ig.

> VCE > Sec. Fire

Exp. = 23.061 %

; VCE = 43.82 %

25. CITGO’s Corpus

Christi refinery, Texas

2009

Mat.Rel.> LVP Gas.> HT> VC> Ig.

> Primary Fire & Sec. Tox. (Chemical

Burn)

Fire = 34.02 % ;

Tox. = 38.34 %

26. Horsehead

Holding Company

Exp.,Pennsylvania 2010

H P > H T > Liq. > Explosive > Conf.

Space > Self Ig. > Exp.

Exp. = 41.87 %

; BLEVE = 18.74

%
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4.2.2 Reactive Hazards

Reactive hazards are commonly known as Fire/Explosion/Toxicity Hazards posed by

reactive chemical processes. A reactive hazard normally initiates by reaction run-

away caused during any operating conditions. The Hazard model results for reactive

hazard related industrial incidents are listed in Table-4.3.

Table 4.3: Accidents from Reactive Hazards

Accident Important Evidence3(Scenario) Results

27. BP Ameco Poly-

mers Plant Exp., 2001

Reac. Process > H Flow > Insuff. Heat

Rem.> R. Runaway > Mat.Rel.> Exp.

(BLEVE) > VCE

Exp. = 48.18 %

; BLEVE = 19.85

%

28. First Chem. Corp.

Reactive Explosion,

Mississippi 2002

Low St. Mat. > H P > Reac. Process>

H Flow> R. Runaway > Insuff. Heat

Rem.> Mat.Rel. > Exp.

Exp. = 56.67 % ;

VCE = 28.3 %

29. Synthron Inc

Exp., Morganton,

North Carolina 2006

Reac. Process > Insuff. Heat Rem.> R.

Runaway > Mat.Rel.>VC >Ig. > Exp.

Exp. = 53.02 %

; VCE = 44.2 % ;

BLEVE = 9.86 %

30. Arnel Chemicals

Vap. Cloud Exp., 2006

LowVP Liq. > H-T > H-P > Reac.

process> Mat.Rel. > Conf.> Ig. >

Exp.

Exp. =51%;

VCE=35.3%

31. T2 Laboratories

Explosions, Florida,

2007

Reac. Process > Conf.> Insuff. Heat

Rem. > R. Runaway > HP > Mat.

Rel.> BLEVE > Sec. Fire

Exp. = 61.01 % ;

VCE = 43.82 %

3Similar abbreviations used as Table-4.2
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4.2.3 Combustible Dust Fire And Explosions

Combustible dust in manufacturing industries is a potential hazard which needs proper

attention. Most commonly, incombustible solids are ignored, but smaller size particles

or dust can be dangerously combustible in certain concentration. Recent incidents in

particulate-solid / combustible dust associated industries were examined. The model

provides results (Table 4.4)which is in compliance with the real scenarios.

Table 4.4: Fire and Explosions due to Combustible Dust

Accident Important Evidence4(Scenario) Results

32. Imperial Sugar Re-

finery Dust explosion,

Georgia 2008

Dust > HCap. > >Mat. Rel.> Dsp>

Conf. Space > Ig. Source> Flash Fire

> Dust Exp.

Exp. = 49.95%;

D. E.= 41.91%

33. AL Solutions Metal

Recycling, West Vir-

ginia 2007

Dust> LowCap. > Hum. Err.>Mat.

Rel.> Dsp> Conf. Space > Ig. > Flash

Fire > Dust Exp.

Fire = 47 % ;

Exp. = 19.64 %

34. Hoeganaes facility

Flash Fires, Tennessee

2011

Dust > LessCap. > Hum. Err.>Mat.

Rel.> Dsp> Conf. Space > Ig. Source

> Flash Fire > Dust Exp.

Fire = 54.58 % ;

DE = 33.15 % %

35. West Pharmaceu-

tical Exp., North Car-

olina 2003

Dust> HCap. > Hum. Err.>Mat.

Rel.> Dsp> Conf. Space > Ig. Source

> Dust Exp.

Exp. = 49.95 %

; D E = 40.64 %

36. Hayes Lemars Plant,

Indiana 2003

Dust > Low Cap. > Hum. Err.>Mat.

Rel.> Dsp> Conf. Space > Ig. > Flash

Fire > Dust Exp.

Exp. = 49.95 %

; D.E. = 41.29 %

4Similar abbreviations used as Table-4.2
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37. CTA Acoustics,

Kentucky, 2003

Dust> HCap. > Hum. Err.>Mat.

Rel.> Dsp> Conf. Space > Ig. Source

> Dust Exp.

Exp. = 56.58 %

; D. E. = 48.35

%

4.2.4 Toxic Exposure Accidents

Toxic Exposure is the hazard which is most dangerous for living beings. Toxicity in-

cidents can be lethal or pose long term health effects to a widely exposed area. Table

4.5 list results of some of the accidents investigated.

Table 4.5: Toxicity Accident Results

Accidents Important Evidence 5(Scenario) Results

38. Dupont Chemical

Toxic Release, 2014

Mat.Rel.> Low Vap P Liq. > H T >

Dsp.> Conf. Space > No Ig. > Toxic

Mat. > ToxicExposure

Tox. = 73.3%

39. DPC Enterprises

Chlorine Release, Mis-

souri 2002

Low St. Mat. > H flow Rate > H P >

Tox. > No Ig. > Mat. Rel. > Toxic

Exposure

Tox. = 69.83 %

40. DuPont facility

Toxic Exposure, West

Virginia 2008

Hum. Err. > Mech. Fail > Mat. release

> Toxic Gas > No Ig. Source > Conf.

> Toxic Exposure

Tox. =73.3 %

41. Bayer Crop Science,

West Virginia

Hum. Err. > R. Runaway > Mech. Fail

> Mat. Rel. > Comb. Tox. Gas >Ig.

>No Conf. > Fire > Tox.

Fire= 45.14 % ;

Tox. = 24.45 %

5Similar abbreviation used as Table-4.2
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42. MFG Chemical

Inc. Toxic Gas Release,

Georgia, 2001

Reac. Process > Hum. Err. > R. Run-

away > Mech. Fail > Mat. Rel.> Comb.

Toxic Gas > Ig.> No Conf. > Fire >

Tox.

Fire = 40.96%;

Tox. = 30.72 %

43. Millard Refriger-

ated Services NH3 Re-

lease, AL, 2010

H P(Hyd.Shock)> Low St. Mat. >

Mat.Rel. > Tox. Gas > Dsp.> No Ig.

> NotComb. > Tox.

Tox. = 72.83 %

44. Freedom Industries

Chemical Release, WV,

2014

Low St. Mat. > H P > HVP Liq. >

Mech. Fail > Mat.Rel. > Dsp.> Tox.

Liq. > Toxic Exposure

Tox. = 67.46 %

45. Honeywell Plant

Chlorine Release, LA,

2003

H P > Low St. Mat. > H Flow> Toxic

Gas > Mat.Rel. > No Ig. > Tox.

Tox. = 69.28%
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4.3 Analysis & Applications

4.3.1 Hazard Scenario Model For Risk Management

The Hazard Scenario Model included at least two mitigation factors (e.g. Suffi-

cient Heat Removal, Release Containment) as controlling parameters in the scenario.

Mostly "Human Error" was considered as the trigger for Dust related accidents. In

this section the goal is to find out how much effect these mitigation factors have on

the final hazard. To verify this, one or two selective nodes will have the opposite

value of previous tests. The comparison of results for a few example cases are listed

in Table: 4.6. The previous assumptions or significance of the selective nodes are as

below.

Heat Removal: This node is represented in the model as ’hasSufficientHeatRemoval’

which is a controlling parameter of the reaction runaway. In most cases overheating

due to reaction-runaway causing overpressure and material release, which might led

to a hazardous situation.

Release containment: To prevent material release due to overflow or safety re-

lief some process operations have containment facility (e.g. Flare, Dilution Tanks,

Knockout-Drum) for safe discard of released material. Sometimes there are remotely

operated isolation valves for mechanical failure which may minimize or stop any release

situation. These options are considered in as a boolean value hasReleaseContainment

node.

Human Error: Most hazards are direct and indirect result of human error. How-

ever, for dust explosion scenarios, human error has the most direct contribution. Poor

Housekeeping, Material Agitation and Inadequate Maintenance can be considered to

be in this criterion. For Particulate solid or Dust handling facilities "Human Error"

is a vital controlling factor for potential hazards.
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The comparison from Table 4.6 indicates that the controlling nodes have a significant

effect on the final hazard. However, for reactive processes he overheat-protection im-

pact is significant but cannot eliminate the potential final hazard. On the other hand,

release containment or minimizing can reduce the risk of hazard most significantly .

For Dust or solid handling facilities, Human Error creates most for potential Hazards.

Table 4.6: Hazard Scenario Model For Risk Management

Accident Actual Result Controlling Pa-

rameter

Controlled Re-

sult

Richmond Chevron

Refinery Fire, 2012

Explosion=36.07 %

; Fire = 27.92%;

VCE = 30.63%

Release Contain-

ment = True

(Emergency Isola-

tion)

Explosion= 13 %

; Fire = 13.5%;

No Hazard = 68.5%

Valero Refinery

Propane Fire, Texas

2007

Fire = 42.82 %

Jet fire = 22.13 %

Release Contain-

ment = True

(Remote Isolation )

Explosion= 13 %

; Fire = 13.5%;

No Hazard = 68.5%

Little General Store

Propane Explosion,

WV, 2007

Explosion = 42.6 %

VCE = 36.78%

Release Contain-

ment = True

(Isolation valve or

Stop ventilation)

Explosion= 17.5 %

; Fire = 9.5%;

No Hazard = 68.4%

First Chemical Corp.

Reactive Chemical

Explosion, Mississippi

2002

Explosion

= 56.67%;

VCE = 28.3%

Sufficient Heat

Removal = True

(Overheat Control)

Explosion= 37.62

% ; Fire = 16.14%;

No Hazard =

42.27%

72



Synthron Inc Ex-

plosion, Morganton,

North Carolina 2006

Explosion

= 53.02 %

VCE = 44.02

%

Sufficient Heat

Removal = True

(OverHeat Re-

moval)

Explosion = 3.92 %

; Fire = 15.08 % ;

No Hazard = 46.92

%

T2 Laboratories Ex-

plosions, Jacksonville,

Florida, 2007

Explosion

= 56.84 %

VCE = 41.11

%

Sufficient Heat

Removal = True;

(Overheat Protec-

tion)

Explosion = 37.62

% ; Fire = 16.14 % ;

No Hazard = 42.27

%

Imperial Sugar Refin-

ery Dust explosion,

Georgia 2008

Explosion =

49.95 % %

Dust Explosion

= 41.91 %

Human Er-

ror = False;

(Adequate Mainte-

nance, Housekeep-

ing)

Explosion = 16.01

% ; Fire = 9.23 % ;

No Hazard = 70.12

%

AL Solutions Metal

Recycling, West Vir-

ginia 2007

Fire = 47 %

Dust Explosion =

19.64 %

Human Er-

ror = False

(Better House-

keeping)

Explosion = 10.8 %

; Fire = 14.64 % ;

No Hazard = 69.39

%

MFG Chemical Inc.

Toxic Gas Release,

Dalton, Georgia, 2001

Fire Haz-

ard = 40.96%

Toxicity = 30.72 %

Sufficient Heat

Removal = True

& Human Error =

False

Fire Haz-

ard = 29.04%

Toxicity = 43.81 %

4.3.2 Hazard Scenario Model for Causality Analysis

A previous section describes Hazard Prediction from the evidence of any scenario.

However, to check the contributions of the nodes, we ran the test for some predefined
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hazard and checked the results with limited evidences of the site and material prop-

erties. To run these tests we used three previous historical incidents to determine if

the contributing factors could indicate the contribution of the event propagation in

the incident.

PEPCON Disaster, Henderson, Nevada, 1988: A fire started in the Am-

monium Perchlorate production and storage facility. The batch first caught fire in

high temperature which spread because of dust and fiberglass building materials in

the area. The fire caused two massive explosions consecutively. Heating of explosive

materials due to fire caused the explosions.

Evidence: Secondary Explosion, Fire, High Temperature, Reactive Process, Com-

bustible Material, Ignition, High Temperature.

Results: Flash Fire = 70.89 %

Figure 4.2: Results for the PEPCON Disaster diagnostic test.
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Materials = 62.83% Vapor, 19.24% Dust, 16.53% Liquid

Dispersion = 49.33%

Material Release = 53.61%

Reaction Runaway = 32.85 %. [Details in Figure 4.2]

Union Carbide Disaster, Bhopal, India, 1986: Water carry-over into a Methyl

iso-Cyanide (MIC) storage tank led to a runaway reaction which led to toxic gas

release through a flare. Because the adsorption tower was inoperable, the toxic gas

killed more than 3000 people around the plant.

Evidence: Toxic Vapor, Fire, Reaction Runaway, Reactive Process, Non-Combustible

Material, Insufficient Heat Removal.

Results: Toxic Hazard = 73.11 %, Dispersion = 35.69% Vapor Cloud = 44.75%

Figure 4.3: Results for the Bhopal Disaster diagnostic test.

Material Release = 90.2%. [Details in Figure 4.3]
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Piper Alpha Disaster, North Sea, Off-shore Aberdeen, UK 1988: A series

of explosion in the offshore oil rig and processing unit Piper Alpha caused the struc-

ture to collapse totally with 167 fatalities. The cause of the primary explosion is

suspected to have been gas condensate leakage which led to the disaster.

Evidance: Explosion, High pressure, Non-Reactive Process, Combustible Material,

Ignition, High Temperature, Low Vapour Pressure Liquid

Results: Vapour Cloud Explosion = 45.22 %,

Figure 4.4: Results for the Piper-Alpha Disaster diagnostic test.

Dispersion = 35.35% Vapour Cloud Formation = 51.65%

Material Release = 58.51%

Overflow=25.18 % Mechanical Failure = 19.45 %. [Details in Figure 4.4]
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Chapter 5

Results & Discussion

This chapter discusses the results obtained from implementation of the hazard sce-

nario model in the historical accident database. The case specific results are listed

in the previous chapter. The following mostly focuses on comparison of results and

discussion.

5.1 Model Predictions & Actual Scenario

The goal of implementing the hazard scenario model was to evaluate and validate

if the model behaviour was in agreement with the actual scenario. However, most

of the results are in agreement with the actual scenario in Section 4.2. A statistical

representation was prepared based on the results. Figure 5.1 illustrates the model

results for the accidents discussed in an earlier section. From the tables in the earlier

chapter, the columns show that the model mostly predicts the probable hazards cor-

rectly. However there are a very few exceptions lower accuracy for very few complex

cases (e.g.Cases 7, 12 24).
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Figure 5.1: Hazard Scenario Model Results for the accidents taken into account for implementation
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5.2 Discussion: Limitations & Scope

The hazard scenario modelwas developed based on the general ideal of hazard scenario

using the proposed methodology for dynamic hazard identification. However, the

primary target was to develop a versatile model for hazard identification, using the

ontology based framework as a tool. Then the model was implemented to check

whether or not the model could predict from actual evidence. From the results a set of

limitations might be drawn which can help to upgrade the hazard identification model

to produce an intelligent and quick hazard assessment tool. The results provide the

following main factors to be taken into account as limitations of the dynamic hazard

identification model.

Prior Probabilities Declaration(LPD): In the hazard scenario model, the de-

fault LPD values and conditions are described mostly based on expert knowledge and

common logic. However, since quantification requires valid evidence and big datasets

to derive probabilistic values, a generalized approach of assumptions was made to

deduce the probabilistic values. Dependencies and LPD values were refined through

theoretical targeted hazard scenarios to produce precise results. As the model is

re-usable and there is scope to update the probabilistic information (LPD) and de-

pendencies based on specific application, the results from this model are mostly the

outcome of expert knowledge and understanding of the scenario. Probabilistic values

from historical data could improve the precision of the result and introduce dynamic

behavior of the model.

Human Error Consideration: Unwanted events due to human error are quite

common in process industries. As the unique property of SSBN, any unwanted pri-

mary, secondary or tertiary events can be initiated in the model without providing
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primary evidence. However, to manually generate the scenario is not always effective.

The model considers human error to trigger only secondary events. However, in some

cases operating conditions were manipulated by human error (e.g. Arnel Chemicals

industry explosion, Richmond Chevron Refinery Fire etc.) involving hazard propaga-

tion. Therefore, in some cases operating conditions represented human error rather

then direct input of the human error node. Additionally, in the developed model, for

dust explosion or fire scenario, HumanError was considered as the vital factor to

cause a solid material release, although in cases like the Imperial Sugar Refinery ex-

plosion, apparently the initiation was not likely from a single human error bur rather

from the long term effects of poor housekeeping or design.

Type of Fire or Explosion: Classification of the type of fire or explosion is the

major disadvantage of the model. From the results, the categories of Vapour cloud

explosion, Dust-Explosion, Flash Fire and Jet Fire are quite adequate and easily

interpretable. However, BLEVE, Fireball and Pool-fire are hazards that mostly occur

as a result of a fire or explosion. Therefore, the model has limitations to predict these

types of explosions (e.g. Synthon Inc Explosion, Williams olefins Explosion, Huston

Marcus Oil Explosion, Herrig Brothers Farm Propane Tank Explosion etc.).

Secondary Hazards: In this model secondary hazards were not considered in de-

tail. However, most often secondary hazards were the major potential threat. In this

model, fire was considered a secondary hazard of explosion and vise versa (e.g. Tosero

Refinery Explosion, Herrig Brothers Propane Tank Explosion). However, explaining

secondary explosion is complicated; for example, the presence of combustible or explo-

sive material nearby can cause consequent explosions (e.g. West Fertilizer Explosion).

However, BLEVE is mostly a consequence of a primary fire or overheating. Based on

evidence, the secondary hazards could be classified more clearly.
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Figure 5.2: Accidents based on industry type and hazards.

Type of Facility: Table 5.2 provides a tabular representation combining both haz-

ard type and industry type. The matrix indicates that Most of the accidents has

been occurred in Chemical (31%)and Hydrocarbon (22%) related process industries,

although seemingly less-threatening storage and transfer facilities (25%) had almost

a similar number of accidents as the previous types. And almost all the dust-related

incidents occurred in manufacturing industries. Thus type of hazards may vary de-

pending on type industries. For example, operating an petroleum refining process

can pose greater risk of fire and explosion than a chemical, pharmaceutical or storage

facility. Similarly, chemical industries pose greater risk of toxic hazards than com-

mon petroleum refineries. Selection criteria of an facility and quantification of the

the type in a Risk Index for different kind of facilities can be introduced for better

impact (e.g Richmond Chevron Refinery vs West Pharmaceutical vs. Dupont Facility).
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Explosive or Self Ignition: Combustibility is not the only property of any mate-

rial. In some cases materials can be explosive or pyrophoric, so do not require any

external ignition source, rather than heat or oxygen (e.g. Horsehead Holding Com-

pany Explosion, West Fertilizer Explosion, Formosa Plastics Corporation Explosion ).

To simplify the model, only property of combustibility was taken into account. The

prediction of this scenario of self ignition can also be described as a true/false state-

ment. However, adding more states as material property can reduce the confusion

but introduce more complexity to the description of dependencies.

Solid Material and Chemical Fire: The important limitation of this model is

the prediction for solid material and chemical explosions. Explosions like West Fer-

tilizer are caused by primary fire or overheating of material. The model prediction

worked for the situation, but some other cases was not considered here, due to the

explosive properties of solid materials.

Incombustible Liquid BLEVE Prediction: The significant exception for the

model was the Carbide Industries Explosion, Louisville, Kentucky, 2011. A water

leakage to an electric arch furnace with molten calcium carbide caused overpressure

of the furnace and released tons of debris and powdered gases. The model could not

predict BLEVE properly, as the material "water" was non-toxic and incombustible

and there was lack of ignition, at the very high temperature. However the model

could simulate Material Release as 62 %. This can be considered as an exception of

this model’s application.
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Model Dynamics & Automated System: This work has been introduced as a

framework for an automated hazard identification tool. However, all the steps here

utilize different softwares and plug-ins to produce the MEBN model, which can re-

fer to the most probable hazards as probabilistic values. Once the model has been

prepared, modifications and input of LPDs as prior probabilities can take place with

minimal effort. As all the tools used here are Java based open source software, a

single and completely automated software tool can be a possible outcome as a future

extension of the work, which can utilize the ontology based data structure to collect

data, train and modify the model with ease of access.

As a Generic Hazard Identification Model, despite the limitations, this model can still

predict the scenario effectively with a wide range of applications. A specific scenario

based model could be improvised for more efficacious precision, which was not the

primary goal. However, these case studies demonstrate that the goal to achieve a

versatile model to quantify basic industrial hazards was accomplished.
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Chapter 6

Conclusion

This work introduces an ontology based framework, to model and quantify the most

probable hazard scenarios for different system properties as well as operational and

environmental conditions. The aim is to reduce risk assessment and management

efforts by using an automated procedure for hazard identification. The developed

ontology-based model can be updated without extensive modifications and can be

adapted for different systems.

The proposed methodology, based on scenario modeling, adopts the ontology based

framework for the mapping and then converts to a Bayesian network for probabilistic

assessment of hazards. The following features can be highlighted from the proposed

dynamic hazard identification model.

• A dynamic hazard scenario development methodology has been proposed and

adopted utilizing ontology based framework.

• A hazard scenario ontology is developed to illustrate the data structure and

relations between elements.
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• The Ontology has been implemented to develop a graphical representation based

on the Bayesian Network.

• The generic model can be implemented for most fire/explosion/toxicity scenarios

in the process industries.

• Hazards are identified as probabilities of occurrence.

• Probabilistic data are implemented based on expert knowledge, which can be

replaced by historical data for any known domain.

• Declaration of prior probabilities introduce the dynamics of the model.

• Automatic data acquisition system and dynamic updates can be developed in

future.

The dynamic hazard identification model was implemented for previous accidents to

verify the effectiveness and prediction capability of the model. Although this is a

generic model from knowledge based data, in almost all the cases the model predicted

the most probable hazards successfully. Some additional applications for risk manage-

ment and causality analysis were verified in different circumstances. The application

results indicate the model to be effective in most cases. Although this model has

limitations, a situation based application can be accomplished using historical data

to upgrade the efficacy and adaptability of the model.

6.1 Future Scopes

Current work was motivated for dynamic hazard identification, adapting the ontol-

ogy based framework to model the process hazard scenario. However, this modeling
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approach, along with the framework can be adapted to different risk management

application. The future scopes can be described as below.

• Ontology based knowledge modeling approach can provide an explicit, accessi-

ble and reusable knowledge model to capture the process knowledge from back-

ground study. This model will be ready to be utilized for different applications

which require process knowledge as a data-structure along with quantitative

reasoning.

• Current work utilizes available OWL based ontology development software Protégé

and PR-OWL based Bayesian reasoning software UnBBayes, which are open

source and use similar Java based platform. However, this shared platform

opens a possible extension leading to a unique hazard identification interface.

• The dynamics of the hazard scenario model is dependent on the LPD declara-

tions, which can be updated over time. As the model was based on machine

interpretable framework, an automatic data acquisition system can be designed

to build the interlink between the model and database.

• Although this report explores the application of an ontology based framework

in dynamic hazard identification, several other applications are in consideration.

Knowledge based process monitoring focusing on event based alarm annuncia-

tion, probabilistic risk assessment through process fault scenario generation are

the notable applications. Moreover, ontology modeling can be adopted in differ-

ent risk modeling approaches which require qualitative information as evidence.

An automatic expert system might overcome the challenges of developing an

intelligent risk management tool in future.
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Appendix A

Local Probability Distributions

Local Probabilistic Distributions are Actually the Probabilistic logics and values de-

clared to generate the Bayesian network. UnBBayes software MEBN plug-in calcu-

lates the probabilistic values for random variable states. A probabilistic scenario is

declared through simple "If...Else..." logics and predefined Probabilities.

A.1 Demonstration: Simple Hazard Model

The Local Probability Distributions(LPDs) for the simple h azard model has been

based on logical expressions for three different nodes. The declarations are listed in

following sub-sections.
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A.2 Dynamic Hazard Identification: The Hazard

Scenario Model

A.2.1 Input Nodes:Default LPD Values

Default State values for The Hazard Scenario Model can be found from following

table.

The LPD distribution logics based on each node can be found below.

A.2.2 ’causePraimaryEvent’ Node LPD

i f any Sc have ( React iveProces s= true & HasCapacity = LowCapacity )

[ i f any Sc have (HasFlowRate = HighFlowRate ) [

Overflow = 0 .15 ,

Mechanica lFa i lure = 0 .05 ,

NormalOperation = 0 .05 ,

ReactionRunaway = 0.75

] e l s e [

Overflow = 0 .05 ,

Mechanica lFa i lure = 0 .10 ,

NormalOperation = 0 .60 ,

ReactionRunaway = 0.25

]

] e l s e i f any Sc have

( React iveProces s= f a l s e & HasCapacity = LowCapacity )

[ i f any Sc have (HasFlowRate = HighFlowRate ) [

Overflow = 0 .85 ,
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Mechanica lFa i lure = 0 .05 ,

NormalOperation = 0 .05 ,

ReactionRunaway = 0.05

] e l s e [

Overflow = 0 .15 ,

Mechanica lFa i lure = 0 .10 ,

NormalOperation = 0 .60 ,

ReactionRunaway = 0.15

]

] e l s e i f any Sc have ( HasStrengthOfMater ia l s = LowStrength )

[ i f any Sc have (HasFlowRate = HighFlowRate )

[ i f any Sc have ( HasPressure = HighPressure )

[ i f any Sc have ( HasTemperature = HighTemperature ) [

Overflow = 0 .05 ,

Mechanica lFa i lure = 0 . 8 ,

NormalOperation = 0 .13 ,

ReactionRunaway = 0.02

] e l s e [

Overflow = 0 .10 ,

Mechanica lFa i lure = 0 .37 ,

NormalOperation = 0 .50 ,

ReactionRunaway = 0.03

]

] e l s e [

Overflow = 0 .05 ,

Mechanica lFa i lure = 0 .25 ,
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NormalOperation = 0 .65 ,

ReactionRunaway = 0.05

]

] e l s e [

Overflow = 0 .05 ,

Mechanica lFa i lure = 0 .20 ,

NormalOperation = 0 .70 ,

ReactionRunaway = 0.05

] ] e l s e [

Overflow = 0 .03 ,

Mechanica lFa i lure = 0 .10 ,

NormalOperation = 0 .85 ,

ReactionRunaway = 0.02

]

A.2.3 ’causeSecondaryEvent’ Node LPD

i f any Sc have (HumanError = true )

[ i f any Sc have ( HasMatState = Dust | HasMatState = So l i d )

[

Mate r i a lRe l ea se = 0 .85 ,

NoRelease = 0.15

] e l s e [ i f any Sc have ( CausePrimaryEvents = Mechanica lFa i lure )

[

Mate r i a lRe l ea se = 0 .95 ,

NoRelease = 0.05

] e l s e i f any Sc have ( CausePrimaryEvents = Overflow )
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[

Mate r i a lRe l ea se = 0 .80 ,

NoRelease = 0.20

] e l s e i f any Sc have ( CausePrimaryEvents = ReactionRunaway )

[ i f any Sc have ( Suf f ic ientOverHeatRemoval =f a l s e )

[

Mate r i a lRe l ea se = 0 .95 ,

NoRelease = 0.05 ]

e l s e [

Mate r i a lRe l ea se = 0 .60 ,

NoRelease = 0.40

]

] e l s e [

Mate r i a lRe l ea se = .65 ,

NoRelease = .35

]

]

] e l s e [ i f any Sc have ( CausePrimaryEvents = Mechanica lFa i lure )

[ i f any Sc have ( HasMatState = Vapor )

[ i f any Sc have ( HasPressure = HighPressure ) [

Mate r i a lRe l ea se = 0 . 8 ,

NoRelease = 0 .2

] e l s e i f any Sc have ( HasPressure = NormalPressure ) [

Mate r i a lRe l ea se = 0 .50 ,

NoRelease = 0.50

] e l s e [
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Mater ia lRe l ea se = 0 .20 ,

NoRelease = 0.80

]

] e l s e i f any Sc have ( HasMatState = Liquid )

[ i f any Sc have ( HasPressure = HighPressure ) [

Mate r i a lRe l ea se = 0 . 7 ,

NoRelease = 0 .3

] e l s e i f any Sc have ( HasPressure = NormalPressure ) [

Mate r i a lRe l ea se = 0 .40 ,

NoRelease = 0.60

] e l s e [

Mate r i a lRe l ea se = 0 .15 ,

NoRelease = 0.85

]

] e l s e [ i f any Sc have ( HasPressure = HighPressure ) [

Mate r i a lRe l ea se = 0 . 5 ,

NoRelease = 0 .5

] e l s e i f any Sc have ( HasPressure = NormalPressure ) [

Mate r i a lRe l ea se = 0 .20 ,

NoRelease = 0.80

] e l s e [

Mate r i a lRe l ea se = 0 .05 ,

NoRelease = 0.95

] ]

] e l s e i f any Sc have ( CausePrimaryEvents = Overflow )

[ i f any Sc have ( HasMatState = Vapor ) [
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Mater ia lRe l ea se = 0 .30 ,

NoRelease = 0.70

] e l s e i f any Sc have ( HasMatState = Liquid ) [

Mate r i a lRe l ea se = 0 .80 ,

NoRelease = 0.20

] e l s e [

Mate r i a lRe l ea se = 0 .06 ,

NoRelease = 0.94

]

] e l s e i f any Sc have ( CausePrimaryEvents = ReactionRunaway )

[ i f any Sc have ( Suf f ic ientOverHeatRemoval =f a l s e ) [

Mate r i a lRe l ea se = 0 .90 ,

NoRelease = 0.10 ]

e l s e [

Mate r i a lRe l ea se = 0 .40 ,

NoRelease = 0.60

]

] e l s e [

Mate r i a lRe l ea se = 0 .02 ,

NoRelease = 0.98

]

]

A.2.4 ’causeTertiaryEvent’ Node LPD

i f any Sc have ( HasReleaseContainement = f a l s e )

[ i f any Sc have ( CauseSecondaryEvents = Mater i a lRe l ea se )
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[ i f any Sc have ( HasMatState = Vapor )

[ i f any Sc have ( HasAtmConditions = UnstableWeather )

[ i f any Sc have ( HasLocation = Rural ) [

D i spe r s i on = 0 .80 ,

NoDispers ion = 0 .02 ,

VaporCloudFormation = 0 .18 ,

DustCloud = 0.00

] e l s e [

D i spe r s i on = 0 .63 ,

NoDispers ion = 0 .02 ,

VaporCloudFormation = 0 .35 ,

DustCloud = 0.00

]

] e l s e [

D i spe r s i on = 0 .30 ,

NoDispers ion = 0 .05 ,

VaporCloudFormation = 0 .64 ,

DustCloud = 0.01

]

] e l s e i f any Sc have ( HasMatState = Liquid )

[ i f any Sc have ( HasVapPressure = LowVapPressure )

[ i f any Sc have ( HasAtmConditions = UnstableWeather )

[ i f any Sc have ( HasTemperature = HighTemperature ) [

D i spe r s i on = 0 .68 ,
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NoDispers ion = 0 .02 ,

VaporCloudFormation = 0 .30 ,

DustCloud = 0.00

] e l s e [ D i spe r s i on = 0 .40 ,

NoDispers ion = 0 .10 ,

VaporCloudFormation = 0 .50 ,

DustCloud = 0.00

]

] e l s e [ i f any Sc have ( HasTemperature = HighTemperature ) [

D i spe r s i on = 0 .250 ,

NoDispers ion = 0 .05 ,

VaporCloudFormation = 0 .70 ,

DustCloud = 0.00

] e l s e [ D i spe r s i on = 0 .20 ,

NoDispers ion = 0 .15 ,

VaporCloudFormation = 0 .65 ,

DustCloud = 0.00

]

]

] e l s e [ i f any Sc have ( HasTemperature = HighTemperature ) [

D i spe r s i on = 0 .30 ,

NoDispers ion = 0 .15 ,

VaporCloudFormation = 0 .55 ,

DustCloud = 0.00

] e l s e [ D i spe r s i on = 0 .10 ,

NoDispers ion = 0 .45 ,
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VaporCloudFormation = 0 .45 ,

DustCloud = 0.00

] ]

] e l s e i f any Sc have ( HasMatState = Dust )

[ i f any Sc have ( HasAtmConditions = UnstableWeather ) [

D i spe r s i on = 0 .33 ,

NoDispers ion = 0 .02 ,

VaporCloudFormation = 0 .05 ,

DustCloud = 0.60

] e l s e [

D i spe r s i on = 0 .10 ,

NoDispers ion = 0 .15 ,

VaporCloudFormation = 0 .05 ,

DustCloud = 0.70

]

] e l s e [ D i spe r s i on = 0 .10 ,

NoDispers ion = 0 .65 ,

VaporCloudFormation = 0.05 ,

DustCloud = 0.20

] ]

e l s e [
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Dispe r s i on = 0 .10 ,

NoDispers ion = 0 .85 ,

VaporCloudFormation = 0.05

]

] e l s e [

D i spe r s i on = . 1 ,

NoDispers ion = . 8 ,

VaporCloudFormation = .1

]

A.2.5 ’HasHazardof’ Node LPD

i f any Sc have ( HasMater ia lTox ic i ty = true )

[ i f any Sc have

( CauseTert iaryEvents = Di spe r s i on | CauseTert iaryEvents = DustCloud )

[ i f any Sc have ( HasCombust ib i l i ty = true )

[ i f any Sc have ( Has Ign i t i on = true )

[ i f any Sc have ( HasConfinement= true ) [

FireHazard = 0 .08 ,

ExplosionHazard = 0 .60 ,

ToxicHazard = 0 .30 ,

NoHazard = 0.02

] e l s e [

FireHazard = 0 .60 ,

ExplosionHazard = 0 .10 ,

ToxicHazard = 0 .28 ,

NoHazard = 0.02
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]

] e l s e [

FireHazard = 0 .10 ,

ExplosionHazard = 0 .10 ,

ToxicHazard = 0 .75 ,

NoHazard = 0.05

]

] e l s e [

FireHazard = 0 .10 ,

ExplosionHazard = 0 .10 ,

ToxicHazard = 0 .75 ,

NoHazard = 0.05

]

] e l s e i f any Sc have ( CauseTert iaryEvents = VaporCloudFormation )

[ i f any Sc have ( HasCombust ib i l i ty = true )

[ i f any Sc have ( Has Ign i t i on = true )

[ i f any Sc have ( HasConfinement= true ) [

FireHazard = 0 .08 ,

ExplosionHazard = 0 .70 ,

ToxicHazard = 0 .20 ,

NoHazard = 0.02

] e l s e [

FireHazard = 0 .15 ,

ExplosionHazard = 0 .65 ,

ToxicHazard = 0 .18 ,

NoHazard = 0.02
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]

] e l s e [

FireHazard = 0 .10 ,

ExplosionHazard = 0 .10 ,

ToxicHazard = 0 .75 ,

NoHazard = 0.05

]

] e l s e [

FireHazard = 0 .10 ,

ExplosionHazard = 0 .10 ,

ToxicHazard = 0 .75 ,

NoHazard = 0.05

]

] e l s e [

FireHazard = 0 .10 ,

ExplosionHazard = 0 .10 ,

ToxicHazard = 0 .65 ,

NoHazard = 0.15

]

] e l s e [ i f any Sc have

( CauseTert iaryEvents=Di spe r s i on | CauseTert iaryEvents = DustCloud )

[ i f any Sc have ( HasCombust ib i l i ty = true )

[ i f any Sc have ( Has Ign i t i on = true )

[ i f any Sc have ( HasConfinement= true ) [

FireHazard = 0 .30 ,

ExplosionHazard = 0 .65 ,
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ToxicHazard = 0 .03 ,

NoHazard = 0.02

] e l s e [

FireHazard = 0 .65 ,

ExplosionHazard = 0 .25 ,

ToxicHazard = 0 .07 ,

NoHazard = 0.03

]

] e l s e [

FireHazard = 0 .20 ,

ExplosionHazard = 0 .20 ,

ToxicHazard = 0 .05 ,

NoHazard = 0.55

]

] e l s e [

FireHazard = 0 .15 ,

ExplosionHazard = 0 .15 ,

ToxicHazard = 0 .05 ,

NoHazard = 0.65

]

] e l s e i f any Sc have ( CauseTert iaryEvents = VaporCloudFormation )

[ i f any Sc have ( HasCombust ib i l i ty = true )

[ i f any Sc have ( Has Ign i t i on = true )

[ i f any Sc have ( HasConfinement= true ) [

FireHazard = 0 .25 ,

ExplosionHazard = 0 .70 ,
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ToxicHazard = 0 .03 ,

NoHazard = 0.02

] e l s e [

FireHazard = 0 .30 ,

ExplosionHazard = 0 .65 ,

ToxicHazard = 0 .03 ,

NoHazard = 0.02

]

] e l s e [

FireHazard = 0 .20 ,

ExplosionHazard = 0 .20 ,

ToxicHazard = 0 .15 ,

NoHazard = 0.45

]

] e l s e [

FireHazard = 0 .15 ,

ExplosionHazard = 0 .150 ,

ToxicHazard = 0 .15 ,

NoHazard = 0.55

]

]

e l s e [

FireHazard = 0 .05 ,

ExplosionHazard = 0 .05 ,

ToxicHazard = 0 .05 ,

NoHazard = 0.85
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]

]

A.2.6 ’hasFireHazard’ Node LPD

i f any Sc have ( HasHazardof = FireHazard )

[ i f any Sc have ( HasMatState = Vapor )

[ i f any Sc have ( HasPressure = HighPressure )

[ i f any Sc have ( HasTemperature = HighTemperature ) [

NoFire =0.05 ,

J e tF i r e = 0 .15 ,

Poo lFi re = 0 .05 ,

F lashFi re = 0 .70 ,

F i r eBa l l = 0 .05

] e l s e [

NoFire = 0 .05 ,

J e tF i r e = 0 .55 ,

Poo lFi re = 0 .05 ,

F lashFi re = 0 .30 ,

F i r eBa l l = 0 .05

]

] e l s e i f any Sc have ( HasPressure = LowPressure )

[ i f any Sc have ( HasTemperature = HighTemperature ) [

NoFire =0.05 ,

J e tF i r e = 0 .10 ,

Poo lFi re = 0 .05 ,

F lashFi re = 0 .65 ,
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F i r eBa l l = 0 .15

] e l s e [

NoFire = 0 .05 ,

J e tF i r e = 0 .05 ,

Poo lFi re = 0 .20 ,

F lashFi re = 0 .45 ,

F i r eBa l l = 0 .25

]

] e l s e [

NoFire = 0 .05 ,

J e tF i r e = 0 .10 ,

Poo lFi re = 0 .10 ,

F lashFi re = 0 .65 ,

F i r eBa l l = 0 .10

]

] e l s e i f any Sc have ( HasMatState = Liquid )

[ i f any Sc have ( HasPressure = HighPressure )

[ i f any Sc have ( HasTemperature = HighTemperature )

[ i f any Sc have ( HasVapPressure = LowVapPressure ) [

NoFire = 0 .03 ,

J e tF i r e = 0 .35 ,

Poo lFi re =0.45 ,

F lashFi re = 0 .10 ,

F i r eBa l l =0.07

] e l s e [

NoFire = 0 .03 ,
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Je tF i r e = 0 .20 ,

Poo lFi re =0.55 ,

F lashFi re = 0 .10 ,

F i r eBa l l = 0 .12

]

] e l s e [

NoFire = 0 .02 ,

J e tF i r e = 0 .25 ,

Poo lFi re = 0 .65 ,

F lashFi re = 0 .04 ,

F i r eBa l l = 0 .04

]

] e l s e i f any Sc have ( HasPressure = NormalPressure )

[ i f any Sc have ( HasTemperature = HighTemperature )

[ i f any Sc have ( HasVapPressure = LowVapPressure ) [

NoFire = 0 .03 ,

J e tF i r e = 0 .05 ,

Poo lFi re =0.15 ,

F lashFi re = 0 .70 ,

F i r eBa l l =0.07

] e l s e [

NoFire = 0 .03 ,

J e tF i r e = 0 .10 ,

Poo lFi re =0.65 ,

F lashFi re = 0 .10 ,

F i r eBa l l = 0 .12
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]

] e l s e [ i f any Sc have ( HasVapPressure = LowVapPressure ) [

NoFire = 0 .03 ,

J e tF i r e = 0 .05 ,

Poo lFi re =0.15 ,

F lashFi re = 0 .70 ,

F i r eBa l l =0.07

] e l s e [

NoFire = 0 .03 ,

J e tF i r e = 0 .10 ,

Poo lFi re =0.65 ,

F lashFi re = 0 .10 ,

F i r eBa l l = 0 .12

] ]

] e l s e i f any Sc have ( HasMatState = Dust ) [

NoFire = 0 .02 ,

J e tF i r e = 0 .03 ,

Poo lFi re = 0 .05 ,

F lashFi re = 0 .80 ,

F i r eBa l l = 0 .1

] e l s e [

NoFire = 0 . 1 ,

J e tF i r e = 0 . 1 ,

Poo lFi re = . 5 ,

F lashFi re = 0 . 2 ,

F i r eBa l l = 0 .1
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]

] e l s e [

NoFire = 0 .20 ,

J e tF i r e = 0 .15 ,

Poo lFi re = 0 .35 ,

F lashFi re = 0 .15 ,

F i r eBa l l = 0 .15

]

] e l s e [

NoFire = 0 .80 ,

J e tF i r e = 0 .05 ,

Poo lFi re = 0 .05 ,

F lashFi re = 0 .05 ,

F i r eBa l l = 0 .05

]

A.2.7 ’hasExplosionHazard’ Node LPD

i f any Sc have ( HasHazardof= ExplosionHazard )

[ i f any Sc have ( CauseTert iaryEvents = VaporCloudFormation ) [

VaporCloudExplosion = 0 .80 ,

BLEVE = 0 .10 ,

NoExplosion = 0 .02 ,

DustExplosion = 0.08

] e l s e i f any Sc have ( CauseTert iaryEvents = Di spe r s i on )

[ i f any Sc have ( HasMatState = Vapor )
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[ i f any Sc have ( HasTemperature = HighTemperature ) [

VaporCloudExplosion = 0 .60 ,

BLEVE = 0 .10 ,

NoExplosion = 0 .05 ,

DustExplosion = 0.25

] e l s e [

VaporCloudExplosion = 0 .70 ,

BLEVE = 0 .10 ,

NoExplosion = 0 .05 ,

DustExplosion =0.15

]

] e l s e i f any Sc have ( HasMatState = Liquid )

[ i f any Sc have ( HasTemperature = HighTemperature ) [

VaporCloudExplosion = 0 .25 ,

BLEVE = 0 .70 ,

NoExplosion = 0 .04 ,

DustExplosion = 0.01

] e l s e [

VaporCloudExplosion = 0 .05 ,

BLEVE = 0 .90 ,

NoExplosion = 0 .04 ,

DustExplosion =0.01

]

] e l s e [ i f any Sc have ( HasTemperature = HighTemperature ) [

VaporCloudExplosion = 0 .02 ,

BLEVE = 0 .03 ,
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NoExplosion = 0 .05 ,

DustExplosion = 0.90

] e l s e [

VaporCloudExplosion = 0 .03 ,

BLEVE = 0 .02 ,

NoExplosion = 0 .40 ,

DustExplosion =0.55

] ]

] e l s e i f any Sc have ( CauseTert iaryEvents = DustCloud ) [

VaporCloudExplosion = 0 .03 ,

BLEVE = 0 .02 ,

NoExplosion = 0 . 1 ,

DustExplosion =0.85

] e l s e [

VaporCloudExplosion = 0 . 1 ,

BLEVE = 0 .1 ,

NoExplosion = 0 . 2 ,

DustExplosion = 0 .6

]

] e l s e [

VaporCloudExplosion = 0 .10 ,

BLEVE = 0 .10 ,

NoExplosion = 0 .75 ,

DustExplosion = 0.05

]
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A.2.8 ’hazSecondaryHazard’ Node LPD

i f any Sc have ( HasMater ia lTox ic i ty= true &

( HasHazardof= FireHazard | HasHazardof= ExplosionHazard ) )

[

SecondaryFire = 0 .05 ,

SecondaryExplos ion = 0 .05 ,

NoSecondaryHazard = 0 . 1 ,

ToxicRelease = 0.80

]

e l s e i f any Sc have

( HasHazardof= FireHazard &

( HasFireHazard = FlashFi re | HasFireHazard =Je tF i r e ) )

[ i f any Sc have ( HasMatState = Vapor ) [

SecondaryFire = 0 .05 ,

SecondaryExplos ion = 0 .8 ,

NoSecondaryHazard = 0 . 1 ,

ToxicRelease = 0.05

] e l s e i f any Sc have (HasMatState = Liquid )

[ SecondaryFire = 0 . 8 ,

SecondaryExplos ion = 0 . 1 ,

NoSecondaryHazard = 0 .05 ,

ToxicRelease = 0.05

] e l s e i f any Sc have ( HasMatState = Dust )

[ SecondaryFire = 0 .05 ,

SecondaryExplos ion = 0 .90 ,
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NoSecondaryHazard = 0 .04 ,

ToxicRelease = 0.01

] e l s e [

SecondaryFire = 0 . 3 ,

SecondaryExplos ion = 0 . 2 ,

NoSecondaryHazard = 0 . 4 ,

ToxicRelease = 0 .1

]

]

e l s e i f any Sc have

( HasHazardof = ExplosionHazard & HasExplosionHazard = DustExplosion )

[ i f any Sc have ( HasMatState = So l i d | HasMatState = Dust ) [

SecondaryFire = 0 . 1 ,

SecondaryExplos ion = 0 .8 ,

NoSecondaryHazard = 0 .05 ,

ToxicRelease = 0.05

] e l s e [ SecondaryFire = 0 . 7 ,

SecondaryExplos ion = 0 . 2 ,

NoSecondaryHazard = 0 .05 ,

ToxicRelease = 0.05

]

] e l s e i f any Sc have

( HasHazardof= ExplosionHazard &

HasExplosionHazard = VaporCloudExplosion )

[ i f any Sc have ( HasMatState = Liquid ) [
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SecondaryFire = 0 . 3 ,

SecondaryExplos ion = 0 .6 ,

NoSecondaryHazard = 0 .05 ,

ToxicRelease = 0.05

] e l s e [ SecondaryFire = 0 . 5 ,

SecondaryExplos ion = 0 . 4 ,

NoSecondaryHazard = 0 .05 ,

ToxicRelease = 0.05

] ] e l s e [

SecondaryFire = 0 .05 ,

SecondaryExplos ion = 0 .05 ,

NoSecondaryHazard = 0 .85 ,

ToxicRelease = 0.05

]
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Appendix B

Simulation Results

Total 45 Accident results has been listed in Chapter 4. Detailed simulation results

for 5 cases are available in case studies section of Chapter 3. Rest of the simulation

outputs are listed in this chapter. For some cases images of full SSBN is not provided

except for the resulting events nodes.
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B.1 ConAgra Natural Gas Explosion, NC, 2009

Figure B.1: Results for ConAgra Natural Gas Explosion accident.
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B.2 BP Texas Refinery Explosion , 2005

Figure B.2: Results for BP Texas Refinery Explosion accident .
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B.3 WV Little General Store Propane Explosion,

2007

Figure B.3: Results for Little General Store Explosion .
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B.4 Huston Marcus Oil and Chemical Explosion,

2004

Figure B.4: Results for Huston Marcus Oil and Chemical Explosion .
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B.5 West Fertilizer Fire & Explosion, Texas 2013

Figure B.5: Results for West Fertilizer Fire & Explosion.
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B.6 Valero Refinery Propane Fire, Texas 2007

Figure B.6: Results for Valero Refinery Propane Fire.
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B.7 Veolia ES Technical Solutions Fire and Explo-

sion, Ohio 2009

Figure B.7: Results for Veolia ES Technical Solutions Hazardous Waste Fire and
Explosion.
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B.8 Herrig Brothers Farm Propane Tank Explo-

sion, Iowa 1998

Figure B.8: Results for Herrig Brothers Farm Propane Tank Explosion, Iowa 1998 .
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B.9 Silver Eagle Refinery Flash Fire and Explo-

sion, Utah 2009

Figure B.9: Results for Silver Eagle Refinery Flash Fire and Explosion.
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B.10 Carbide Industries Explosion, Louisville, Ken-

tucky, 2011

Figure B.10: Results for Carbide Industries Explosion accident.

132



B.11 Williams Olefins Plant Explosion, Louisiana

2013

Figure B.11: Results for Williams Olefins Plant Explosion.
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B.12 EQ HazardousWaste Fire and Explosion, Apex,

NC, 2006

Figure B.12: Results forEQ Hazardous Waste Fire and Explosion.
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B.13 Tosero Refinery Explosion, Washington 2010

Figure B.13: Results for Tosero Refinery Explosion, Washington.
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B.14 Hilton Hotel, San Diego, California, 2008

Figure B.14: Results for Hilton Hotel, San Diego, California.
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B.15 Sterigenics International Ethylene Oxide Ex-

plosion, California, 2004

Figure B.15: Results for Sterigenics International Ethylene Oxide Explosion.
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B.16 Kleen Energy Natural Gas Explosion, Mid-

dletown, CT, 2010

Figure B.16: Results for Kleen Energy Natural Gas Explosion.
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B.17 BLSR Fire, TEXAS, 2003

Figure B.17: Results for BLSR Fire.
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B.18 Partridge Raleigh Oilfield Explosion and Fire,

Missisipi, 2006

Figure B.18: Results of Partridge Raleigh Oilfield Explosion and Fire.
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B.19 Formosa Plastics Corporation Explosion and

Fire, Illiopolis, Illinois 2004

Figure B.19: Results for Formosa Plastics Corporation Explosion and Fire 2004.
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B.20 Formosa Plastics Corporation Fire, Point Com-

fort, Texas, 2005

Figure B.20: Results forFormosa Plastics Corporation Fire 2005.
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B.21 Praxair Propylene Cylinders Fire, St. Louis,

Missouri 2005

Figure B.21: Results for Praxair Propylene Cylinders Fire.

143



B.22 ASCO Acetylene Explosion, Perth Amboy,

New Jersey 2005

Figure B.22: Results for ASCO Acetylene Explosion.
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B.23 CITGO’s Corpus Christi refinery, Texas 2009

Figure B.23: Results for CITGO’s Corpus Christi refinery accident (1).

145



B.24 Horsehead Holding Company Explosion,Pennsylvania

2010

Figure B.24: Results for Horsehead Holding Company Explosion.
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B.25 BP Ameco Polymers Plant Explosion, 2001

Figure B.25: Results for BP Ameco Polymers Plant Explosion.
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B.26 First Chemical Corp. Reactive Chemical Ex-

plosion, Mississipi 2002

Figure B.26: Results for First Chemical Corp. Reactive Chemical Explosion.
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B.27 Synthron Inc Explosion, Morganton, North

Carolina 2006

Figure B.27: Results for Synthron Inc Explosion.
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B.28 T2 Laboratories Explosions, Jacksonville, Florida,

2007

Figure B.28: Results of T2 Laboratories Explosions.
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B.29 Imperial Sugar Refinery Dust explosion, Geor-

gia 2008

Figure B.29: Results for Imperial Sugar Refinery Dust explosion.
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B.30 AL Solutions Metal Recycling, West Vir-

ginia 2007

Figure B.30: Results for AL Solutions Metal Recycling accident (1).
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B.31 Hoeganaes facility Flash Fires, Tennessee

2011

Figure B.31: Results for Hoeganaes facility Flash Fires.
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B.32 West Pharmaceutical Explosion, North Car-

olina 2003

Figure B.32: Results for West Pharmaceutical Explosion.
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B.33 Hayes Lemars Plant, Indiana 2003

Figure B.33: Results for Hayes Lemars Plant Dust Explosion accident.
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B.34 CTA Acoustics, Kentucky, 2003

Figure B.34: Results for ConAgra Natural Gas Explosion accident (1).
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B.35 DPC Enterprises Chlorine Release, Missouri

2002

Figure B.35: Results for DPC Enterprises Chlorine Release accident.
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B.36 DuPont facility Toxic Exposure, West Vir-

ginia 2008

Figure B.36: Results for DuPont facility Toxic Exposure.
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B.37 Bayer Crop Science, West Virginia

Figure B.37: Results forBayer Crop Science Toxic accident (1).
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B.38 MFG Chemical Inc. Toxic Gas Release, Dal-

ton, Georgia, 2001

Figure B.38: Results of MFG Chemical Inc. Toxic Gas Release.
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B.39 Millard Refrigerated Services Ammonia Re-

lease, AL, 2010

Figure B.39: Results for Millard Refrigerated Services Ammonia Release Accident.
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B.40 Freedom Industries Chemical Release, WV,

2014

Figure B.40: Results forFreedom Industries Chemical Release accident (1).
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B.41 Honeywell Plant Chlorione Release, LA, 2003

Figure B.41: Results forHoneywell Plant Chlorione Release accident (1).
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