GEMINAL ACYLATION OF KETONES AND ACETALS:

USE OF METHYL-SUBSTITUTED ANALOGUES OF 1,2-BIS ITRIMETHYLSILYL(OXY) CYCLOBUTENE AND APPLICATION OF THIS METHODOLOGY IN MODEL STUDIES AIMED TOWARD AN ENANTIOSELECTIVE SYNTHESIS OF THE ANTITUMOR ANTIBIOTIC FREDERICAMYCIN A

TOTAL OF 10 PAGES ONLY MAY BE XEROXED
(Without Author's Permission)

SHELDON N. CRANE

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bloedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing peges, these will be noted. Also, it unauthorized copyright material had to be removed, a note will indicate the delation.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper lefthand comer and continuing from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality $6^{\prime \prime} \times 9^{\prime \prime}$ black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

Bell \& Howell Information and Leaming 300 North Zeeb Road, Ann Arbor, MI 48108-1346 USA 800-521-0800
UMI'

Geminal Acylation of Ketones and Acetals: Use of Methyl-Substituted Analogues of 1,2-Bis[trimethylsilyl(oxy)]cyclobutene and Application of this Methodology in Model Studies Aimed Toward an Enantioselective Synthesis of the Antitumor Antibiotic Fredericamycin A

by
Sheldon N. Crane

A thesis submitted to the School of Graduate Studies in partial fulfillment of the requirements for the degree of Doctor of Philosophy

Department of Chemistry
Memorial University of Newfoundland

April 1999

St. John's
©
Newfoundland

Abstract: The $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$-catalyzed geminal acylation of ketones and acetals with 3-methyl-1,2-bis(trimethylsilyloxy)cyclobutene (3) provided methylcyclopentanediones in yields that ranged from 40 to 94%. The best substrates were unhindered cyclohexanones. With acetals, stereochemical preferences in the initial Mukaiyama-like aldol step giving cyclobutanones translated into the stereochemistry of the ultimate cyclopentanedione products. With ketones, equilibration of the initial cyclobutanone compounds resulted in cyclopentanedione products with a different stereochemical preference. The gem-dimethyl cyclobutene reagent 4 reacted with ketones to give gemdimethylcyclopentanediones in modest yield. The process was much more stereochemically efficient than the reaction with 3. Rearrangement from the initial cyclobutanone compound was partially diverted towards air-sensitive 3-furanone compounds and ring-opened 1,2-diones. Use of BCl_{3} as the Lewis acid in reactions of ketones with $\mathbf{4}$ inhibited cyclobutanone equilibration by formation of five-membered borate-containing compounds. Conversion to the corresponaing diol cyclobutanones with hydrofluoric acid and thence to dimethylcyclopentanediones with trifluoroacetic acid provided dimethylcyclopentanediones in synthetically acceptable yields.

Treatment of aromatic ketones with 1,2-bis(trimethylsilyloxy)cyclobutene 1 or its methylated analogues $\mathbf{3}$ and $\mathbf{4}$ in the presence of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ smoothly led to products of geminal acylation, i.e., 2,2-disubstituted 1,3-cyclopentanedione derivatives. Yields ranged from 42 to 76%. Minor products (up to 27%) were lactones that are proposed to have arisen by an altemate rearrangement pathway from a common cyclobutanone intermediate.

Since its discovery in 1981, the antitumor antibiotic fredericamycin A (91) has been the subject of extensive synthetic efforts focused mainly on construction of its spiro-1,3-cyclopentanedione subunit. Six total syntheses of 91 in racemic form have been reported. An asymmetric synthesis of fredericamycin A was accomplished only very recently. We have devised a potentially enantioselective route to fredericamycin A relying on precedents set in our laboratory for the construction of spiro-1,3cyclopentanediones and their reduction in an enantioselective manner by Baker's yeast. The naphthoquinone portion of 91 was to be constructed by a silicon-tethered photochemical [2+2] cycloaddition or alternatively an irtermolecular Diels-Alder reaction. The isoquinoline fragment was to be introduced using a Beckmann rearrangement strategy. A review of the literature dealing with 91 and the results of our own preliminary studies directed toward an enantioselective synthesis of this interesting molecule are presented.

TABLE OF CONTENTS

Page
Abstract i
Acknowledgements iii
List of Abbreviations and Symbols iv
List of Tables viii
List of Figures ix
Chapter 1 - Geminal Acylation of Ketones and Acetals with Methyl- Substituted Analogues of 1,2-Bis(trimethylsilyloxy)cyclobutene. 1
Results and Discussion
Reactions of Ketones and Acetals with Mono-methylcyclobutene 3 6
Reactions of Ketones with gem-Dimethylcyclobutene 4 10
Reactions of 1,3, and 4 with Aromatic Ketones and Acetals 16
Geminal Acylation of Ketones Mediated by Boron Trichloride 21
Experimental Section 27
Chapter 2 - Model Studies Aimed Toward an Enantioselective Synthesis of the Antitumor Antibiotic Fredericamycin A.
Introduction 79
Literature Review - Strategies for the Synthesis of Fredericamycin A 82
Bis-Functionalization of Intact DE Synthons 82
D-ring Annelation Strategies 90
Other Novel Approaches 97
Retrosynthetic Analysis and Preliminary Studies 120
Regiocontrolled Photoaddition Employing a Disposable Silicon Tether 120
Regiocontrolled Diels-Alder Strategy - Retrosynthetic Analysis 128
F-ring Construction: Beckmann Rearrangement 132
Diels-Alder Strategy - Efforts Directed at Synthesis of the C Ring Diene 137
Considerations for Future Work 147
Experimental Section 149
References 170
Appendix I: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra and X-ray structures for Chapter 1 178
Appendix II: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for Chapter 2 311

Acknowledgements

I would like to take this opportunity to express my sincere gratitude to the following individuals and organizations for their contributions to my doctoral research:

Professor Jean Burnell for guidance, inspiration and supervision.
Professor Chet Jablonski, Ms. Nathalie Brunet and Mr. David Miller for NMR spectra.

Professor John Bridson and Mr. David Miller for x-ray structure determinations.
Ms. Marion Baggs and Professor Brian Gregory for mass spectra.
Professor Peter Golding for helpful discussions and encouragement.
Professor Brian Gregory and Professor Mike Mackey for their critical evaluations this document.

The Natural Sciences and Engineering Research Council of Canada (PGS B graduate research scholarship) and the Memorial University of Newfoundland for financial support.

List of Abbreviations and Symbols

Ac	acetyl
acac	acetylacetonate
AIBN	2,2'-azobis(isobutyronitrile)
AM1	Austin Model 1
APT	attached proton test
Bn	benzyl
Bu	butyl
CAN	ceric ammonium nitrate
ca.	approximately
cat	catalytic
CD	circular dichroism
$m-C P B A$	3-chloroperoxybenzoic acid
Cmp	$(-)$-camphanyl
DBU	1,8-diazabicyclo[5.4.0]undec-7-ene
DCC	dicyclohexylcarbodiimide
DCE	1,2-dichloroethane
DDQ	2,3-dichloro-5,6-dicyano-1,4-benzoquinone
DEAD	diethyl azodicarboxylate
DHP	dihydropyran
DIBAL-H	diisobutylaluminum hydride
DM	Dess-Martin

DMAD	dimethyl acetylenedicarboxylate
DMAP	4-dimethylaminopyridine
DME	dimethoxyethane
DMF	dimethylformamide
DMSO	dimethyl sulfoxide
DNA	deoxyribonucleic acid
DNP	dinitrophenyl
DNPH	dinitrophenylhydrazone
dr	diastereoselectivity ratio
ee	enantiomeric excess
Et	ethyl
FG	functional group
FID	free induction decay
FMO	frontier molecular orbital
GC-MS	gas chromatograph coupled to a mass spectrometer
h	hour(s)
hr	ultraviolet irradiation
Hexarnine	hexamethylenetetramine
HMDS	hexamethyldisilazide or bis(trimethylsilyl)amide
HMPA $2,2,6,6$-tetramethylpiperidide	

IC_{50}	concentration of inhibiting agent resulting in a 50% reduction in enzyme activity
Imid	imidazole
IR	infrared
LAH	LiAlH_{4}, lithium aluminum hydride
LDA	lithium diisopropylamide
Me	methyl
MEM	2-methoxyethoxymethyl
min	minute(s)
MOM	methoxymethyl
MS	mass spectrum
Ms	mesyl
NBS	N -bromosuccinimide
NMO	N -methylmorpholine- N -oxide
NMR	nuclear magnetic resonance
NPM	N-phenylmaleimide
NOE	nuclear Overhauser enhancement
PCC	pyridinium chlorochromate
PDC	pyridinium dichromate
PPTS	pyridinium para-toluenesulfonate
PTC	phase-transfer catalysis
py or pyr	pyridine
RNA	ribonueleic acid

rt	room temperature
sh	shoulder
TBAB	tetra-n-butylammonium bromide
TBAF	tetra-n-butylammonium fluoride
TBAI	tetra- n-butylammonium iodide
TBDPS	tert-butyldiphenylsilyl
TBS	tert-butyldimethylsilyl
TEA	triethylamine
TES	triethylsilyl
Tf	trifluoromethanesulfonate (triflate)
TFA	trifluoroacetic acid
TFAA	trifluoroacetic anhydride
THF	tetrahydrofuran
TLC	thin layer chromatography
TMEDA	$N, N, N^{\prime}, N^{\prime}$-tetramethylethylenediamine
TMP	2,2,6,6-tetramethylpiperidide
TMS	trimethylsilyl
p-Tol	para-tolyl
TosMIC	tosylmethyl isocyanide
p-TsOH	para-toluenesulfonic acid
UV	ultraviolet
xs	excess

LIST OF TABLES

Table 1 Reactions of $\mathbf{3}$ with Ketones and Their Corresponding AcetalsDerived from 1,2-Ethanediol.Pg. 7
Table 2 Reactions of $\mathbf{4}$ with Ketones. Pg. 12
Table 3 Reactions of Five Aromatic Ketones with Cyclobutenes
1,3 and 4. Pg. 18
Table $4 \quad \mathrm{BCl}_{3}$ Mediated Reactions of $\mathbf{4}$ with Various Ketones Pg. 24

LIST OF FIGURES

Figure $1 \quad$ Natural products that have been synthesized by routes that relied on geminal acylation as a key transformation. Pg. 4

Figure 2 Natural Products that could potentially be synthesized using the geminal acylation reaction employing methylsubstituted analogues of 1 as a key step.

Pg. 5
Figure 3 Nuclear Overhauser enhancements (NOE) used for assignment of the relative stereochemistry of cyclobutanones $\mathbf{1 5 a}$ and $\mathbf{1 5 b} . \quad \mathbf{P g} .10$

Chapter 1. Geminal Acylation of Ketones and Acetals with Methyl-Substituted Analogues of 1,2Bis(trimethylsilyloxy)cyclobutene.

Introduction

Geminal acylation of an acetal with 1,2-bis(trimethylsilyloxy)cyclobutene (1) is a powerful method for the construction of a variety of 1,3-cyclopentanediones (Scheme 1 with R_{1} and $R_{2}=$ various alkyl substituents). This methodology, first introduced by Kuwajima and co-workers, ' is comprised of a two-step process. The first event is a Lewis acid-catalyzed Mukaiyama-like aldol reaction yielding an isolable α (trimethylsilyloxy)cyclobutanone. Treatment of this cyclobutanone with trifluoroacetic acid induces a 1,2-migration of the acyl function. This bond reorganization results in a 1.3-cyclopentanedione. The reaction sequence was named geminal acylation to reflect the net displacement of $\mathrm{C}=\mathrm{O}$ double bond by two acyl groups.

Scheme 1

Wu and Burnell later observed that conversion of acetals to 1,3cyclopentanediones could be effected in a single operation. ${ }^{2.3}$ Treatment of the more synthetically useful 1,3-dioxolanes with several equivalents of 1 and a large excess of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ at low temperature gave a cyclobutanone intermediate that was not isolated. In the presence of this large excess of Lewis acid, the 1,2-acyl migration occurred in situ (Scheme 2). Yields of cyclopentanedione were significantly improved using this
modification. It was also shown that 1,3-cyclohexanediones could be formed in high yield by substituting 1,2-bis(trimethylsilyloxy)cyclopentene (2) for $\mathbf{1}(\mathrm{n}=2 \text {, Scheme } 2)^{4}{ }^{4}$

Scheme 2

Ketones do not undergo Mukaiyama-aldol reactions with enol-silyl ethers at the lower temperatures employed for the more reactive aldehydes and acetals. However, Mukaiyama noted that the desired reaction does occur at room temperature (rt). ${ }^{5}$ Kuwajima stated that the aldol reaction between ketones and $\mathbf{1}$ did not proceed under a variety of acidic or basic conditions. ${ }^{1}$ Jenkins and Burnell ${ }^{6}$ found that the Mukaiyamatype reaction of 1 with ketones does occur if the reaction is conducted at rt . Cyclobutanone intermediates were isolated as bis-silyl ethers or as the corresponding diols depending on the reaction conditions. Optimal conditions for the initial Mukaiyama-like step typically employed 1.5 equivalents of 1 and an equivalent of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$. Rearrangement of the intermediate cyclobutanone in the same vessel required the addition of a small quantity of water prior to the introduction of a large excess of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$. The reaction of 4-tert-butylcyclohexanone with 1 produced the bis-silylated cyclobutanone originating from equatorial delivery of 1 onto the carbonyl (Scheme 3). Kuwajima made a similar observation with the corresponding dimethyl acetal. ${ }^{1}$

Scheme 3

The yields of 1,3-cyclopentanediones from ketone substrates rivaled or exceeded those obtained from the corresponding acetals. Thus, the formation of an acetal is no longer a prerequisite for geminal acylation onto a ketone center. The clear advantage of this method in synthesis is a reduction in the number of steps.

The synthetic utility of the geminal acylation reaction is further illustrated when one considers that a quarternary center is formed in concert with a cyclopentane ring. The geminal acylation reaction also represents a powerful spiroannelation method when an alicyclic ketone or acetal is used. The ability to fashion such hindered geometries about carbon is one of the more challenging tasks confronting a synthetic organic chemist. It therefore is not surprising that synthetic approaches to a diverse array of natural products (Fig. 1) such as trichothecanes, ${ }^{7} \beta$-bulnesene, ${ }^{8}$ estrone, ${ }^{9}$ isokhusimone, ${ }^{2}$ pentalenene, ${ }^{10}$ and fredericamycin $A,{ }^{11}$ have relied on geminal acylation as a key transformation. ${ }^{12}$

Fig. 1. Natural products that have been synthesized by routes that relied on geminal acylation as a key transformation.

Fredericamycin A

Trichothecanes

Isokhusimone

A variety of interesting natural products possess cyclopentane subunits decorated with methyl or gem-dimethyl substituents. Some representative examples are illustrated below in Figure 2.

Fig. 2. Natural Products that could potentially be synthesized using the geminal acylation reaction employing methyl-substituted analogues of 1 as a key step.

Pentalenolactone G

Alliacolide

Eremolactone

Silphinene

Clovene

Pinguisone

Synthetic routes to these molecules employing the geminal acylation methodology could potentially be designed using methyl-substituted versions $(3,4)$ of 1 . These can be prepared from the corresponding methyl- and dimethylsuccinic acid esters via an acyloin condensation (Scheme 4). ${ }^{13,14}$ Key questions regarding the reactivity of 3 and 4 in the initial aldol-type reaction and the course of rearrangement of the cyclobutanone, as well as issues of regio- and stereochemistry, must first be addressed before such future synthetic journeys can commence.

Scheme 4

Results and Discussion

Reactions of Ketones and Acetals with Methylcyclobutene 3. A variety of ketones and their corresponding acetals, derived from 1,2-ethanediol, were treated with 3 and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ following the procedure developed for the reaction of 1 with ketones. ${ }^{6}$ In this procedure, the initial aldol reaction was mediated by $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ in dichloromethane under anhydrous conditions, and then the second, rearrangement step was initiated by addition of water and a large excess of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$. As can be seen in Table 1, the yields of cyclopentanediones ranged from modest to excellent. Trends were similar to those seen previously in the reactions of 1 with both ketones ${ }^{6}$ and acetals. ${ }^{2.3}$ The ketones gave similar, or better, yields than did the acetals. Unencumbered cyclohexanones and their acetals gave the best yields (entries 3, 6, 7). Cyclopentanone and its acetal (entry 2) gave more modest yields of the spiro-diketone 6. α-Substitution had a deleterious effect on the efficiency of geminal acylation, especially with the acetal (entries 4 and 5).

Reactions with $\mathbf{3}$ introduced a stereochemical complexity that had not been present in reactions with 1. The reaction with butanone and its acetal (entry 1) provided 5 a and $\mathbf{5 b}$ with no diastereoselectivity whatsoever. However, with 4-tertbutylcyclohexanone and its acetal (entry 7) some modest selectivity was apparent. An Xray crystal structure of a 2,4-dinitrophenylhydrazone derivative 11c revealed that the major isomer obtained from the ketone was 11a. Selectivity was also evident in reactions between $\mathbf{3}$ and other substituted cyclohexanones and their acetals (entries 4-6). (Although it was not feasible to determine rigorously the stereochemistry of each component in these product mixtures, the relative stereochemistry at the spiro centers was inferred from

Table 1. Reactions of 3 with Ketones and Their Corresponding Acetals Derived from 1,2-Elhanediol entry substrate
results presented below.) It is important to note that the selectivity was clearly different, even complementary, with ketones and their corresponding acetals.

11c

In an effort to illuminate the reason for the stereochemical difference between the ketone and the acetal versions of the geminal acylation, the products were isolated after only the first step in the reactions of 4-tert-butylcyclohexanone and its acetal with 3 . The ketone provided two cyclobutanone compounds 12a and 12b in a 3.3:1 ratio, which was very similar to the $3.1: 1$ ratio for the cyclopentanedione products in entry 7. (Minor amounts of 11a and 11b, in a $2.6: 1$ ratio, were also detected in the crude product even when no water or extra $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ were added.) Comparison of the ${ }^{13} \mathrm{C}$ NMR chemical shifts of signals arising from the cyclohexyl moiety with those of the known, equatorial product with 1^{6} indicated that both of the cyclobutanone compounds had arisen by equatorial attack on the ketone. ${ }^{2}$ Considerable similarities between the NMR spectra of 12a and 12 b (p. 187-189) and the spectra of 15 a and 15 b (p. 190-193) allowed assignment of the structures of $\mathbf{1 2 a}$ and $\mathbf{1 2 b}$. The isolation of intermediates from acetals

[^0]was carried out in conjunction with an evaluation of the stereoselectivity of the geminal acylation with different acetals.

\[

$$
\begin{aligned}
& \text { 12a } X=H \quad Y=H \\
& \text { 3aa } X=M e Y Y=T M S \\
& \text { 4a } X=B n \quad Y=T M S \\
& \text { 15a } X=B n \quad Y=H
\end{aligned}
$$
\]

$$
\begin{array}{ll}
12 b & X=H \\
13 b & Y=H \\
14 b X=M e & Y=T M S \\
15 b & =T M S \\
15 b=B n & Y=H
\end{array}
$$

$\begin{array}{ll}\text { 12b } X=H & Y=H \\ 13 b & =M e \\ 14 b & =\text { TMS } \\ 15 b & =B n \\ \text { 15b } & =B n S \\ Y & =H\end{array}$
16

Reaction of the acetal derived from 2,2-dimethyl-1,3-propanediol gave cyclopentanediones 11a and 11b in a 1:2.4 ratio, which was not significantly different from the 1:2.2 ratio for the acetal derived from 1,2-ethanediol. Cyclobutanone derivatives from the dimethyl and dibenzyl acetals were obtained by following Kuwajima's procedure. ${ }^{1}$ The dimethyl acetal provided cyclobutanone compounds 13a and 13b in a $1: 4.1$ ratio. When this mixture was stirred in trifluoroacetic acid (TFA), 11a and 11 b were produced in a ratio of $1: 3.6$. The use of a dibenzyl acetal further improved selectivity. Cyclobutanones 14a and 14b were obtained in 1:7.4 ratio. In TFA, this mixture rearranged to 11 a and 11 b in a $1: 7.5$ ratio. Cyclobutanones 14 a and 14 b were desilylaied with tetrabutylammonium fluoride (TBAF) to keto-alcohols 15a and 15b, and these proved to be separable by chromatography. During chromatography, a fraction of 15a also showed a set of ${ }^{1} \mathrm{H}$ NMR signals attributed tentatively to a very small amount of 16. Nuclear Overhauser enhancement (NOE) measurements with both 15a and 15b established that the hydrogen of the methine of the cyclobutanone moiety was syn to the cyclohexane ring (Fig. 3). Hydrogenolysis of the benzyl groups of either 15a or 15b over Pd on charcoal in ethano/acetic acid provided a mixture of 12a and 12b in a 5.2:1 ratio,
which provided evidence of acid-mediated equilibration between 12 a and $\mathbf{1 2 b}$. This was exactly the ratio predicted by the Austin Model 1 (AM1) ${ }^{15}$ calculated relative energies of 12a and 12b.

Fig. 3. Nuclear Overhauser enhancements (NOE) used for assignment of the relative stereochemistry of cyclobutanones 15 a and 15 b .

15a

15b

These results lead to the following generalizations regarding reactions with 3.
The cyclobutanones obtained from acetals undergo rearrangement to cyclopentanediones by inversion at the cyclohexyl C-1, with little stereochemical scrambling. This was also true for the processes with 1 for both acetals ${ }^{\text {Ib }}$ and ketones. ${ }^{6}$ Thus, the stereochemistry of the cyclopentanediones derived from acetals was largely determined by stereochemical preferences in the first, aldol reaction. The stereochemistry of the cyclopentanediones derived from ketones was generally opposite to that from acetals, and appeared to reflect equilibration to the thermodynamically preferred cyclobutanone (Scheme 5).

Scheme 5

Reactions of Ketones with gem-Dimethyl Cyclobutene 4. The results of reactions of $\mathbf{4}$ with several ketones are presented in Table 2. Cyclobutene $\mathbf{3}$ had shown a considerable reluctance to add to its face syn to the methyl, but with cyclobutene 4 steric hindrance between a methyl on the cyclobutene and the ketone substrate seemed unavoidable. Hence, it was not surprising that in many examples with 4 the yields of the cyclopentanediones were modest, and a very significant proportion of intractable material was generally obtained. Addition of water and extra $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ was not necessary to effect rearrangement to cyclopentanediones from any of the enone substrates. The reaction with 2-cyclohexen-1-one (entry 10) only gave a 32% yield of 40 , but this was still considerably better than had been seen in the reaction of cyclohexenone with $1 .{ }^{5}$ Both isophorone and 4,4-dimethylcyclohex-2-en-1-one (entries 11 and 12) gave good yields of cyclopentanediones, although with the former there was some isomerization ($\mathrm{ca} .15 \%$) of the double bond during reaction. A comparison of the ${ }^{13} \mathrm{C}$ NMR spectrum of the predominant cyclopentanedione product from isophorone with the spectra of products from $1^{3.6}$ led to the assignment of structure 41.

Table 2. Reactions of 4 with Ketones
entry substrate \qquad

1

 22

26

18

 22

(1:1)

3

23

24

4

5

26

27

12

30a,b
(1.4:1)

29a,b

33a,b
($\mathbf{~} 100: 1$)
47

34a,b
(1.5:1)
${ }^{3}$ Two molar equivalents of 4 were used in this reaction.
${ }^{5}$ Chromatographic separation of 33 a and $\mathbf{3 4} \mathrm{a}$, b was incomplete.
Yields reffect the isolated yields and the proportion of 33a and 34a,b (GC-MS) in a mixed fraction.

Table 2. Reactions of 4 with Ketones (continued)

${ }^{6}$ Reaction of the 1,3 -dioxalane derived from 4-tert-butyloyclohexanone with 4, under the one-pot conditions developed for acetals with $1,{ }^{3}$ gave a 1.2:1 mixture of 36 a and its epimer 36 c in a total yield of $\mathbf{3 6 \%}$. As this process showed essentially no stereoselectivity, reactions of acatals wth $\mathbf{4}$ were not pursued further.

In spite of the poor yields, cyclopentanediones were produced from $\mathbf{4}$ with much higher stereoselectivity than had been seen from 3. In two instances (entries 7 and 9) one diastereomer of the cyclopentanedione was produced predominantly, and the structures of their 2,4-dinitrophenylhydrazone derivatives ($\mathbf{3 3}$ c and 36b) were determined by X-ray crystallography.

33c

36b

The yields with $\mathbf{4}$ suffered from synthetically troublesome, yet mechanistically interesting, side-reactions that repeatably produced substituted furanones, 1,2-diones, and lactones. The proportion of furanone in the product mixtures did not seem to correlate in a straightforward way with the structure of the ketone substrate. A comparison of entries 7 and 8 illustrates this. Furanones were formed with little to no geometrical preference (entries 2, 6, and 7), and they oxidized readily in air to dihydroxy compounds. Characterization of oxidation products 45 and $46 \mathrm{a} / \mathrm{b}$, derived from 18 and $30 \mathrm{a} / \mathrm{b}$, was helpful in establishing the general structure of the furanones.

45

46a

46b

1,2-Diones were isolated in lesser amounts. Careful analysis by ${ }^{1} \mathrm{H}$ NMR of the reactions with cyclohexanone (entry 5), and 4-tert-butylcyclohexanone (entry 9) showed that the β, γ-unsaturated compounds (28a, 38a, and 39a) were initially formed, and these rapidly isomerized in the reaction medium to α, β-unsaturated diones ($\mathbf{2 8 b}, \mathbf{3 8 b}$, and $\mathbf{3 9 b}$). A secondary rearrangement process led to minor amounts of lactones $\mathbf{4 2 a , b}$ and $\mathbf{4 4 a , b}$ from enone substrates (entries 11 and 12).

The dimethylcyclobutanone compounds 47 and 48 were prepared from the corresponding ketones by working up the reaction mixture without addition of extra $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ and water. The structure of 48 was determined unequivocally by X -ray

$47 \begin{aligned} & \mathrm{R}=\mathrm{H} \\ & \mathrm{R}=\mathrm{H} \\ & \mathrm{t} \\ & \mathrm{BL}\end{aligned}$
crystallography. This showed the reaction had resulted from equatorial addition with respect to the cyclohexanone ring, and that the new $\mathrm{C}-\mathrm{C}$ bond was to C -1 of cyclobutene 4. Prolonged treatment of cyclopentanediones with $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ did not provide any furanone, but when 47 was added to neat $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ the result was a $3: 1$ mixture of 26 and 27. On the other hand, treatment of 47 with dilute $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ in dichloromethane provided only cyclopentanedione 26. Similarly, cyclobutanone 48 in neat $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ provided 36a and 37 in an 8:1 ratio. With dilute $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ in dichloromethane the ratio improved to $13: 1$, and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ in dichloromethane in the presence of a small amount of
water provided 36a exclusively. The formation of furanone and the 1,2-diones can be rationalized as illustrated (Scheme 6) with the reaction of 4-tert-butylcyclohexanone.

Scheme 6

The equilibrium between 12 a and $\mathbf{1 2 b}$ suggests that $\mathbf{4 8}$ might equilibrate with cyclobutanone 49. We were unable to observe 49, but an AM1 calculation ${ }^{15}$ indicated that $\mathbf{4 9}$ should be $6.1 \mathrm{kcal} / \mathrm{mol}$ higher in energy than $\mathbf{4 8}$. Whereas both $\mathbf{1 2 a}$ and $\mathbf{1 2 b}$ rearranged to 1,3-diketones, an alternate pathway to the tertiary carbocation $\mathbf{5 0}$ presents itself with 49. (Furanones were never observed in reactions with 1 or 3 , so the intermediacy of a carbocationic intermediate was suspected.) Cyclization of $\mathbf{5 0}$ gives the furanone 37, or deprotonation of 50 with the internal assistance of an oxygen would give the terminal double bond in 38a and 39a. Evidence for the latter stage of this hypothesis is that treatment of a solution of the mixture of 31 and 32 in CDCl_{3} with $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ provided some $\mathbf{3 0 a}, \mathbf{b}$, but treatment of furanones with acid (with or without water) under an inert atmosphere did not give any 1,2-diketone. Additional support for the proposed
series of events came from the reactions of two ketones with the tetramethylcyclobutene 51. ${ }^{14}$ No cyclopentanedione was produced using the conditions employed with 4. Instead, furanone 52 (31% yield) was the only isolated product from the reaction with acetone, and 53 (35% yield) was the only isolated product from cyclohexanone.

51

52

53

Reaction of 1, 3 and 4 with Aromatic Ketones and Acetals. Unlike the reactions of their saturated counterparts, α, β-unsaturated ketones provided cyclopentanediones directly, without the addition of water and excess $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$. This might be attributed to allylic stabilization of a positive charge in the transition state of the rearrangement. We reasoned that a similar benzylic stabilization could arise with aromatic ketones, which might lead to an improvement in the procedure for the reaction of these substrates with 1 and an opportunity to carry out geminal acylation of aromatic ketones with both 3 and 4.

Five aromatic substrates were subjected to very similar reaction conditions. For 1 and 3 , the ketone and 1.5 equivalents of freshly distilled $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ were dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and 2-3 equivalents of the bis(trimethylsilyloxy)cyclobutene were added while maintaining anhydrous conditions. For 4, the only difference was that up to 3 equivalents of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ were employed. The reaction mixture was stirred at room temperature for
approximately 24 hours (h). Straightforward aqueous work-up followed by flash chromatography provided the geminally acylated product, a 1,3-diketone. The results are summarized in Table 3.

Table 3. Reactions of five aromatic ketones with cyclobutenes 1, 3, and 4.

* An 85\% yield of a 9:1 mixture of 67 and wo isomeric compounds.
${ }^{5}$ Sum of isolated yields plus propertion of a fraction containing a misture of 71 and 72a.b.
${ }^{6}$ An 87% yield of a 6.3:1 maxture of 60 and 61 .

The yields of $\mathbf{5 4}, \mathbf{5 5}, 56$, and 58 (from 1 with acetophenone, 1 -indanone, 1tetralone, and 4-chromanone) were similar to the yields by the earlier procedure that involved adding $\mathrm{H}_{2} \mathrm{O}$ to the reaction mixture, ${ }^{6}$ which in turn were generally better than the reactions with acetals derived from aromatic ketones. ${ }^{3,12 e}$ The acetal of benzophenone
was reported by Ayyangar ${ }^{12 e}$ to react with 1 to give only a trace of 60 , whereas the conversion of benzophenone to 60 was 75% under these anhydrous conditions. The reactions with 1-tetralone, 4-chromanone, and benzophenone also gave minor amounts of lactones 57, 59a,b, and 61, respectively.

57

59a

59b

61

Similar lactones had been observed in the reactions of enones with 4, and Pandey reported the photochemical conversion of 55 and 56 to the corresponding lactones. ${ }^{16}$ In our case, we postulate the formation of these lactones by the process shown in Scheme 7. Acid-promoted elimination of the benzylic oxygen function could lead not only to 1,2acyl shift (and thence to the 1,3-cyclopentanedione) but also to rupture of the fourmembered ring to produce the acylium ion in 75. Attack of the conjugated enol moiety onto the acylium ion would give the lactone.

Scheme 6

Yields in the reactions of (racemic) 3 with the five substrates mirrored those with 1: 1-tetralone and 4-chromanone gave lower yields, near 50\%. Unlike the products derived from 1 and 4, those from 3 were complicated by diastereoisomerism, except in the case of 66. Very modest stereochemical preferences were noted, with acetophenone showing the largest stereoselectivity, albeit only $2.6: 1$. When acetals were prepared from acetophenone, 1-indanone, and 1-tetralone, and these were reacted with 3, geminal acylation products were obtained in slightly lower yields and again with modest diastereoselectivities. Production of the isomer that had been more abundant from the ketone reactions was reduced in the reactions with acetals. In the cases of 1-indanone and 1-tetralone, the diastereoselectivities were opposite to the reactions of their corresponding acetals. AM1 calculations ${ }^{15}$ gave no difference in the energies of $\mathbf{6 2 a}$ and $\mathbf{6 2 b}$, so any stereoselectivity was likely to be the consequence of a kinetically controlled process. We suggest that the stereoselectivity was a result of facial selectivity in the initial aldol process since a regiochemical preference in the initial aldol step would have no remaining manifestation in a racemic product. It was curious that lactone products were not isolated from the reactions with 3, although small amounts of carbonyl-containing secondary products were detected by IR and NMR spectroscopy.

Geminal acylation using 4 with the five substrates gave 1,3-diketones in moderate yield. With acetophenone, 67 was the dominant component of the product, which also contained small amounts of isomeric compounds that were inseparable by flash chromatography. The reactions of 4 with 1-tetralone and 4-chromanone provided minor, but significant, amounts of the lactone pairs 70a,b and 72a,b (2.6:1 ratio in each case),
and NOE measurements indicated that the E-isomer was the more abundant isomer. ${ }^{b}$ A lactone 74 was also a by-product of the reaction with benzophenone.

70 a
72 a
$\mathrm{X}=\mathrm{CH}_{2}$

$70 \mathrm{bX} \mathrm{X}=\mathrm{CH}_{2}$
72 b

74

Solutions of diketone 71 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were stirred for 24 hours at room temperature with 4 equivalents of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ under anhydrous conditions, and with 15 equivalents of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ and 6 equivalents of water. In neither case were lactones 72a,b observed. Furthermore, when the reaction of 4 with acetophenone was conducted at $-20^{\circ} \mathrm{C}$ it was possible to intercept two diastereomeric cyclobutanone intermediates 76 and 77, in a 5.7 :

I ratio. ${ }^{\text {c }}$ (The relative stereochemistry of the minor product was determined by X-ray crystallography.) Thus, the regioselectivity of the initial aldol step was very high, and facial selectivity was responsible for the production of 76 over 77. The process shown in Scheme 7 would also account for the formation $70 \mathrm{a}, \mathrm{b}, 72 \mathrm{a}, \mathrm{b}$, and 74.

76

77

[^1]Geminal Acylation of Ketones Mediated by Boron Trichloride. To explore the possibility that the Lewis acid might both mediate the initial aldol reaction and inhibit subsequent equilibration of the initially formed cyclobutanone, reactions of 4 with BCl_{3} were conducted at $-78^{\circ} \mathrm{C}$ in an NMR tube and on a preparative scale. Scheme 8 presents the salient features of the novel process, which proceeds with the incorporation of boron by the formation of five-membered borate-containing compounds.

Scheme 8

Addition of cyclohexanone to a solution of $\mathrm{BCl}_{3}\left({ }^{11} \mathrm{~B} \mathrm{NMR} \delta 46.3\right.$) in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ resulted in a signal for the complexed BCl_{3} at $\delta 8.3$ in the ${ }^{11} \mathrm{~B} \mathrm{NMR}$ spectrum. ${ }^{17 \mathrm{a}}$ Introduction of $4\left({ }^{29} \mathrm{Si} \mathrm{NMR}^{17 \mathrm{~b}} \delta 18.4\right.$ and 18.0$)$ initiated the disappearance, over several hours, of the BCl_{3}-cyclohexanone complex and the emergence of a " B NMR signal at δ 27.6, which was ascribed to a very labile compound 78, and a ${ }^{29} \mathrm{Si}$ NMR signal at $\delta \mathbf{2 9 . 9}$, which was identified as $\mathrm{Me}_{3} \mathrm{SiCl}$ by admixture with genuine $\mathrm{Me}_{3} \mathrm{SiCl}$ (in a separate
experiment). Addition of water to the reaction medium caused the immediate disappearance of the "B NMR signal at $\boldsymbol{\delta} \mathbf{2 7 . 6}$ and the emergence of a signal at $\delta \mathbf{2 0 . 3}$. At the same time, the $\mathrm{Me}_{3} \mathrm{SiCl}$ signal was replaced by a ${ }^{29} \mathrm{Si}$ NMR signal at $\delta 16.5$. Aqueous work-up gave a mixture of 79 , the hydrolyzed product 80 , and the diolcyclobutanone 47 (2.4:1.2: 1, respectively). (Introduction of a large amount of $\mathrm{Me}_{3} \mathrm{SiCl}$ before work-up afforded only 79 and 47 , in a $6.5: 1$ ratio.) Spectral data supporting the structure of 79 included peaks in its infrared spectrum (IR) at $1785(\mathrm{C}=0$) and 1456 (B0) cm^{-1}, a 9-proton singlet at $\delta 0.19$ in its ${ }^{1} \mathrm{H}$ NMR spectrum, ${ }^{13} \mathrm{C}$ NMR signals at $\delta 215.5$ ($\mathrm{C}=0$), 99.3 and 88.1 (quaternary $\mathrm{C}-\mathrm{O}$'s), and 0.97 (SiMe_{3}), and the ${ }^{11} \mathrm{~B}$ and ${ }^{29} \mathrm{Si}$ NMR signals noted above. The "B NMR signal for 80 was at $\delta 21.9$, and the IR spectrum included an absorption at $3214 \mathrm{~cm}^{-1}(\mathrm{BO}-\mathrm{H})$. Thus, the labile nature of the $\mathrm{B}-\mathrm{Cl}$ bond, relative to the $\mathrm{B}-\mathrm{F}$ bonds of BF_{3}, allowed the initial aldol to take place by an association of the boron with both the carbonyl oxygen and an oxygen on 4 . Rearrangement of 47 in TFA gave only diketone 26, but stirring a $6.5: 1$ mixture of the borates 79 and 80 in TFA at rt overnight gave both 26 and 3 -furanone 27 ($1.2: 1$). Nevertheless, HF in methanol smoothly converted 79 and 80 to a mixture of $\mathbf{4 7}$ and $\mathbf{2 6}(7.4: 1)$, and the rearrangement to 26 was completed in 87% yield from cyclohexanone by the addition of TFA without the production of any 3 -furanone 27.

A one-pot procedure was developed based on the above findings. Geminal acylations were carried out on a variety of ketones. The results are summarized in Table 4.

Table 4. BCl_{3} Mediated Reactions of 4 with Various Ketones.

There was a great improvement in the overall yields of the diketones over the previous procedure with $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$. The relative stereochemistry of diketones $\mathbf{3 6 a}$ and 33a was the same as from the $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ procedure, and the stereoselectivity in their production was at least as good as with $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$. The relative stereochemistry of 81 , the
only product from 3-methylcyclohexanone, was established by an X-ray structure of the 2,4-dinitrophenylhydrazone (2,4-DNPH) derivative 82. Diketone 81 was derived from two cyclobutanone-diol compounds $\mathbf{8 3} \mathbf{a}, \mathrm{b}$. Comparison of their ${ }^{13} \mathrm{C}$ NMR shifts with those of $\mathbf{4 8}$ and other similar compounds indicated that they differed only in the face of 4 that had been attacked. However, 2-methylcyclohexanone was an exceptional substrate with regard to both yield and stereoselectivity. It appeared that the initial aldol step with this substrate took place in a reasonable yield, but six diol intermediates were produced in a ratio of $8.4: 1.9: 1.9: 1.1: 1: 1$. Two of these, the major diol 84 and one of the minor diols 85 , were isolated by chromatography. The structures of these were evident from the NMR data, although the relative configurations at C-2 of the cyclobutanone moiety could not be determined.

83a,b

$84 X=H, Y=M e$
$85 X=\mathrm{Me}, Y=\mathrm{H}$

Whereas 85 rearranged cleanly to $29 b$ in TFA, the major diol 84 gave only small amounts of diketone $\mathbf{2 9 a}$ and 3 -furanones $\mathbf{3 0 a}, \mathbf{b}$ along with intractable material. Except with acetophenone, starting materials were largely returned when conjugated ketones (isophorone, 1-indanone, and α-tetralone) were subjected to the one-pot procedure with $\mathbf{3}$ and BCl_{3}. Acetophenone gave dione 67 in 52% yield.

In summary, the mechanism of action of BCl_{3} differs in an important way from that of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ because BCl_{3} not only induces the initial aldol reaction, it is incorporated
into a cyclic borate that inhibits subsequent equilibration of the aldol product. The use of BCl_{3} now makes the formation of 4,4-dimethyl-1,3-cyclopentanediones by geminal acylation a very attractive synthetic methodology.

Experimental Section

General Section. Compounds 3, 4, and $\mathbf{5 1}$ were obtained using the method for the preparation of 1 of Bloomfield and Nelke. ${ }^{13}$ The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ used in the geminal acylation reactions was distilled from CaH_{2}. All reactions were performed under N_{2}. "Work-up" usually consisted of addition of the reaction mixture to $\mathrm{H}_{2} \mathrm{O}$, extraction of the aqueous layer with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washing with brine, drying of the combined organic solutions over anhydrous MgSO_{4} or $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporation of the solvent under vacuum. Flash chromatography ("chromatography") used 230-400 mesh silica gel. IR spectra were recorded on a Mattson FT-IR instrument as thin films unless otherwise noted. Relative intensities of absorption bands are indicated using the following abbreviations: s (strong), m (medium) and w (weak). ${ }^{1}$ H NMR spectra were obtained on a General Electric GE-300 NB at 300 MHz in CDCl_{3} unless specified otherwise, and shifts are relative to internal tetramethylsilane. The following abbreviations are used in descriptions of ${ }^{1} \mathrm{H}$ NMR spectra: s (singlet), d (doublet), t (triplet) and q (quartet), m (multiplet) and br (broad). For spectral data obtained from mixtures, only clearly distinguished signals are reported. Most product ratios were determined by integration of ${ }^{1} \mathrm{H}$ NMR spectra. NOE measurements were made from difference spectra and are reported as: saturated signal (observed signal, enhancement). ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 75 MHz ; chemical shifts are relative to solvent; the number of attached protons as determined by APT and heteronuclear correlation spectra follows each chemical shift in parentheses. Overlap may have prevented the reporting of all resonances when the spectral data of minor components were obtained from spectra of mixtures. ${ }^{\text {" }}$ B NMR spectra were recorded at
96.3 MHz ; chemical shifts relative to an external $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ standard. ${ }^{29} \mathrm{Si}$ NMR spectra were recorded at 59.6 MHz ; shifts were relative to an external chlorotrimethylsilane reference. NMR FID data were processed using WinNuts (Acom NMR software). Low and high resolution mass spectral data were obtained on a V.G. Micromass 7070HS instrument. Melting points were determined using a Fisher-Johns hot stage apparatus and were uncorrected. Data for the X-ray structures were obtained with a Rigaku AFC65 diffractometer. X-ray structure data collection and structure determinations were performed by Dr. John Bridson and Mr. David Miller. Ultraviolet (UV) spectra were recorded on a Varian Cary 5E instrument. GC-MS spectra were recorded using a Hewlett Packard model 5890 gas chromatograph coupled to a model 5970 mass selective detector. A 12.5 m fused silica capillary column with cross linked dimethylsilicone as the liquid phase was used for the GC-MS analyses.

3

3-Methyl-1,2-bis(trimethylsilyloxy)cyclobutene (3). Colorless liquid, $\mathrm{bp}_{\text {smm }} 69-72{ }^{\circ} \mathrm{C}$; IR $1720 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 2.45(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3), 2.36(1 \mathrm{H}$, $\mathrm{dd}, J=4.3,10.0 \mathrm{~Hz}, \mathrm{H} 4), 1.65(1 \mathrm{H}, \mathrm{dd}, J=1.2,10.0 \mathrm{~Hz}, \mathrm{H} 4), 1.10(3 \mathrm{H}$, $\mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{C} 3$-methyl), $0.21(9 \mathrm{H}, \mathrm{s}), 0.20(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\delta 125.4(0, \mathrm{C} 2), 119.6(0$, CI), 34.9 (2, C4), 33.3 (1, C3), 17.8 (3, C3-methyl), 0.35 (6C, 3); MS 244 (34, M ${ }^{+}$), 229 (19), 148 (12), 147 (83), 75 (12), 73 (100), 45 (20).

3,3-Dimethyl-1,2-bis(trimethylsilyloxy)cyclobutene (4). Colorless

4 $\left(6 \mathrm{H}, \mathrm{s}, \mathrm{C} 3\right.$-methyl), $0.21(9 \mathrm{H}, \mathrm{s}), 0.18(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\delta 128.6(0$, C2), 118.3 ($0, \mathrm{C} 1$), 42.7 (2, C4), 38.6 (0, C3), 24.2 (2C, 3, C3-methyls), 0.35 (6C, 3); MS

258 (33, $\left.\mathrm{M}^{+}\right), 242(24), 152$ (13), 148 (11), 147 (67), 75 (32), 74 (10), 73 (100), 69 (10), 60 (12), 58 (18), 57 (18), 56 (14), 55 (22); HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Si}_{2} 258.1470$, found 258.1472.

General procedure for the reactions of $\mathbf{3}$ with ketones or acetals. Based on the procedure of Jenkins and Burnell, ${ }^{6}$ to a solution of ketone or acetal (2.0 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10.0 \mathrm{~mL})$ were successively added $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.30 \mathrm{~mL}, 2.4 \mathrm{mmol})$ and $3(0.73 \mathrm{~g}, 3.0$ $\mathrm{mmol})$. The mixture was stirred at rt for 24 h before $\mathrm{H}_{2} \mathrm{O}(0.30 \mathrm{~mL})$ was introduced, followed 10 minutes (\min) later by $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(3.7 \mathrm{~mL}, 30 \mathrm{mmol})$. The resulting black solution was stirred for 24 h . Work-up and decolorization of a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution by activated charcoal and filtration through Florisil, gave the cyclopentanedione product(s). For yields and product ratios see Table 1.

2-Ethyl-2,4-dimethylcyclopentane-1,3-dione (5a,b). From spectra of the
 mixture: IR $1765(\mathrm{~m}), 1723(\mathrm{~s}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\mathbf{8} 3.10-2.96$ (1 H from each, two overlapping dd, H5), 2.96-2.77 (1H from each, m, H4), $2.37(1 \mathrm{H}, \mathrm{dd}, J$ $=8.7,18.3 \mathrm{~Hz}, \mathrm{H} 5), 2.29(1 \mathrm{H}, \mathrm{dd}, J=9.3,18.0 \mathrm{~Hz}, \mathrm{H} 5), 1.80-1.55(2 \mathrm{H}$ from each, m, ethyl $\left.\mathrm{CH}_{2}\right), 1.29(3 \mathrm{H}$ from each, d, $J=6.9 \mathrm{~Hz}, \mathrm{C} 4$-methyl), $1.12(3 \mathrm{H}, \mathrm{s}$, C2-methyl), $1.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 2\right.$-methyl), $0.81\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}\right.$, ethyl $\left.\mathrm{CH}_{3}\right), 0.76(3 \mathrm{H}, \mathrm{t}, J=$ 7.5 Hz , ethyl $\left.\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 219.0 / 218.6(0, \mathrm{C} 3), 216.3 / 216.1(0, \mathrm{C} 1), 57.2 / 57.0(0$, C2), 44.5/43.7 (2, C5), 41.7/40.9 (1, C4), 29.4/28.2 (2, ethyl CH_{2}), 20.2 (3), 17.9 (3), 15.7 (3), 15.1 (3), 9.4/8.9 (3, ethyl CH_{3}); MS 154 ($48, \mathrm{M}^{+}$), 139 (41), 84 (37), 69 (100), 55 (11), 42 (19), 41 (37); HRMS calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{2}$ 154.0993, found 154.0985 .

2-Methylspiro[4.4]nonane-1,4-dione (6). Tan-colored oil; IR 1761 (m), $1719(\mathrm{~s}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 3.02(1 \mathrm{H}, \mathrm{dd}, J=10.3,17.7 \mathrm{~Hz}, \mathrm{H} 3), 2.88(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H} 2$), 2.35 ($1 \mathrm{H}, \mathrm{dd}, J=8.2,17.7 \mathrm{~Hz}, \mathrm{H} 3$), $1.90-1.70(8 \mathrm{H}, \mathrm{m}, \mathrm{H} 6-\mathrm{H} 9)$,

6 $1.29\left(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{C} 2\right.$-methyl); ${ }^{13} \mathrm{C}$ NMR 8220.4 ($0, \mathrm{Cl}$), 217.6 (0 , C4), 61.9 ($0, \mathrm{C} 5$), 42.3 (2, C3), 39.7 (1, C2), 35.4 (2), 32.4 (2), 25.1 (2), 25.3 (2), 13.7 (3, C2-methyl); MS 166 (98, M $^{+}$), 151 (12), 138 (12), 125 (19), 97 (56), 96 (100), 95 (20), 70 (12), 69 (29), 68 (54), 67 (29), 55 (16), 42 (34), 41 (41), 40 (23); HRMS caled for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2} 166.0993$, found 166.0995 .

7 2-Methylspiro[4.5]decane-1,4-dione (7). Yellow oil; IR 1760 (m), 1718 (s) cm^{-1}; 'H NMR $\delta 3.00(1 \mathrm{H}, \mathrm{dd}, J=10.4,17.6 \mathrm{~Hz}, \mathrm{H} 3), 2.90(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2)$, $2.34(1 \mathrm{H}, \mathrm{dd}, J=8.2,17.6 \mathrm{~Hz}, \mathrm{H} 3), 1.90-1.42(10 \mathrm{H}, \mathrm{m}, \mathrm{H} 6-\mathrm{H} 10), 1.27$ $\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{C} 2\right.$-methyl); ${ }^{13} \mathrm{C}$ NMR $\delta 218.0(0, \mathrm{Cl}), 215.3(0, \mathrm{C} 4)$, 55.5 ($0, \mathrm{C} 5$), 43.1 (2, C3), 40.3 (1, C2), 30.5 (2), 28.6 (2), 24.9 (2), 20.5 (2), 20.3 (2), 15.6 (3, C2-methyl); MS 180 (100, M ${ }^{+}$), 151 (12), 138 (14), 126 (38), 125 (25), 113 (11), 111 (32), 110 (42), 109 (17), 99 (16), 82 (21), 81 (25), 79 (13), $70(10), 69$ (17), 67 (79), 55 (18), 54 (26), 53 (18), 43 (13), 42 (38), 41 (63), 40 (14); HRMS caled for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2}$ 180.1149, found 180.1168 .

8a,b

2,6-Dimethylspiro[4.5]decane-1,4-dione (8a-d). Spectra of the mixture: IR 1758 (m), 1716 (s) cm^{-1}; MS 194 (97, M ${ }^{+}$), 180 (11), 179 (89), 152 (13), 140 (20), 139 (34), 138 (12), 126 (93), 125 (26), 124 (13), 123 (15), 111 $(10), 110(10), 109(100), 96(12), 95(22), 81(59), 79(16), 77(11), 69$ (18), 68 (17), 67 (57), 55 (35), 54 (13), 53 (29), 43 (18), 42 (52), 41 (78), 40 (14); HRMS caled for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2}$ 194.1306, found 194.1285. For 8a from the mixture: ${ }^{1} \mathrm{H}$ NMR $\delta 3.03$
($1 \mathrm{H}, \mathrm{dd}, J=10.6,18.2 \mathrm{~Hz}, \mathrm{H} 3$), $2.12(1 \mathrm{H}, \mathrm{dd}, J=9.0,18.2 \mathrm{~Hz}, \mathrm{H} 3), 1.25$

$8 \mathrm{c}, \mathrm{d}$ $\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{C} 2\right.$-methyl), $0.705(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{C} 6-$ methyl $) ;{ }^{13} \mathrm{C}$ NMR $\delta 219.6(0, \mathrm{Cl}), 215.6(0, \mathrm{C} 4), 60.4$ ($0, \mathrm{C} 5$), 45.1 (2, C3), 40.0 (1, C2), 34.9 (1, C6), 32.8 (2), 28.9 (2), 25.3 (2), 20.1 (2), 18.5 (3, C6-methyl), 14.8 (3, C2-methyl). For 8 b from the mixture: ${ }^{1} \mathrm{H}$ NMR $\delta 2.70(1 \mathrm{H}$, overlapped dd, H 3$)$, $2.41(1 \mathrm{H}$, overlapped dd, H 3$), 1.31(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{C} 2$-methyl), $0.74(3 \mathrm{H}, \mathrm{d}, J=6.9$ $\mathrm{Hz}, \mathrm{C} 6-\mathrm{methyl}) ;{ }^{13} \mathrm{C}$ NMR $\delta 219.8(0, \mathrm{C} 1), 217.2(0, \mathrm{C} 4), 60.0(0, \mathrm{C} 5), 44.1(2, \mathrm{C} 3), 43.1$ (1, C2), 36.3 (1, C6), 32.2 (2), 29.1 (2), 25.3 (2), 20.2 (2), 18.1 (3, C6-methyl), 16.5 (3, C2-methyl). For 8c from the mixture: ${ }^{1} \mathrm{H}$ NMR $\delta 3.08(1 \mathrm{H}, \mathrm{dd}, J=10.5,18.8 \mathrm{~Hz}, \mathrm{H} 3)$, $2.18(1 \mathrm{H}, \mathrm{dd}, J=6.9 \mathrm{~Hz}, \mathrm{H} 3), 0.715\left(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, \mathrm{C} 6\right.$-methyl); ${ }^{13} \mathrm{C}$ NMR $8218.3(0$, C1), 216.5 ($0, \mathrm{C} 4$), 60.7 ($0, \mathrm{C} 5$), 44.6 (2, C3), 39.9 (1, C2), 35.2 (1, C6), 32.9 (2), 28.9 (2), 25.4 (2), 20.2 (2), 18.3 (3, C6-methyl), 14.8 (3, C2-methyl). For 8 d from the mixture: ${ }^{1} \mathrm{H}$ NMR $82.42(1 \mathrm{H}$, overlapped dd, H 3$), 1.32(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{H} 3), 0.75(3 \mathrm{H}$, $\mathrm{d}, J=6.3 \mathrm{~Hz}, \mathrm{C} 6-$ methyl); ${ }^{13} \mathrm{C}$ NMR $\delta 218.6(0, \mathrm{Cl}), 216.2(0, \mathrm{C} 4), 59.6(0, \mathrm{C} 5), 43.6(2$, C3), 35.7 (1, C6), 32.0 (2), 19.9 (2), 16.3 (3, C2-methyl).

9a,b (11), 67 (18), 66 (18), 65 (20), 53 (15), 42 (11), 41 (30); HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2}$ 192.1149, found 192.1147. For 9a from the mixture: ${ }^{1} \mathrm{H}$ NMR δ $1.20\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{C} 4\right.$-methyl); ${ }^{13} \mathrm{C}$ NMR $\delta 215.5(0, \mathrm{C} 3), 213.1$ (0, Cl^{\prime}), 66.4 ($0, \mathrm{C} 2$), 49.2 (1), 44.0 (2), 39.5 (1), 37.3 (2), 36.9 (1), 33.0 (2), 28.0 (2), 24.1 (2), 15.4 (3, C4'-methyl); For 9 b from the mixture: ${ }^{\mathrm{t}} \mathrm{H}$ NMR $\delta 2.82$ (1 H , dd,
$J=9.0,16.5 \mathrm{~Hz}, \mathrm{H} 5), 2.55(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 2.46(1 \mathrm{H}, \mathrm{dd}, J=9.8,16.5 \mathrm{~Hz}), 2.46(1 \mathrm{H}, \mathrm{m}), 2.36$ $(1 \mathrm{H}, \mathrm{m}), 1.44(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $8216.1\left(0, \mathrm{C} 3^{\prime}\right), 213.2\left(0, \mathrm{Cl}^{\prime}\right), 65.4(0, \mathrm{C} 2)$, 48.6 (1), 43.9 (2), 42.1 (1), 37.1 (2), 36.7 (1), 33.9 (2), 27.7 (2), 24.5 (2), 17.6 (3, C4. methyl). For 9c from the mixture: ${ }^{1} \mathrm{H}$ NMR $\delta 3.23(1 \mathrm{H}, \mathrm{dd}, J=11.4,19.0 \mathrm{~Hz}, \mathrm{H} 5), 2.94$ $(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 2.48(1 \mathrm{H}, \mathrm{m}), 2.36(1 \mathrm{H}, \mathrm{m}), 2.15(1 \mathrm{H}, \mathrm{dd}, J=8.7,19.0 \mathrm{~Hz}, \mathrm{H} 5), 1.22(3 \mathrm{H}, \mathrm{d}$, $J=6.9 \mathrm{~Hz}, \mathrm{C} 4{ }^{\prime}$-methyl); ${ }^{13} \mathrm{C}$ NMR $\delta 215.2(0, \mathrm{C} 3 '), 212.4\left(0, \mathrm{Cl}{ }^{\prime}\right), 66.5(0, \mathrm{C} 2), 49.1(1)$, 43.2 (2), 40.5 (1), 37.0 (2), 36.8 (1), 32.8 (2), 27.8 (2), 24.5 (2), 14.3 (3, C4'-methyl). For 9d from the mixture: ${ }^{13} \mathrm{C}$ NMR $8216.5\left(0, \mathrm{C} 3\right.$ '), $213.4\left(0, \mathrm{Cl}^{\prime}\right), 42.8(2), 41.8(1), 37.6$ (2), 34.1 (2), 27.7 (2), 17.6 (3, C4'-methyl).

2,7-Dimethylspiro[4.5]decane-1,4-dione (10a-d). Spectra of the mixture:

10a,b

10c,d IR 1761 (m), 1718 (s) $\mathrm{cm}^{-1} ;$ MS 194 (86, M ${ }^{+}$), 151 (10), 139 (18), 138 (65), 127 (12), 126 (100), 125 (28), 124 (14), 123 (12), 109 (12), 99 (14), 96 (13), 95 (39), 93 (10), 82 (23), 81 (56), 79 (14), 70 (17), 69 (31), 68 (14), 67 (30), 55 (30), 54 (12), 53 (15), 43 (17), 42 (24), 41 (52), 40 (12); HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2}$ 194.1306, found 194.1306. ${ }^{1} \mathrm{H}$ NMR for each isomer contains $\delta 3.03(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3), 2.88(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2), 2.33(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3), 2.00$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 7$), $1.27(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{C} 2-m e t h y l),(0.857(3 \mathrm{H}, \mathrm{d}, J=6.3$ $\mathrm{Hz}) 0.86(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 0.85(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), \mathrm{C} 7$-methyl $)$. For $10 \mathrm{a} / \mathrm{b}:{ }^{13} \mathrm{C}$ NMR $8217.9 / 217.9(0, \mathrm{C} 1), 215.64 / 215.59(0, \mathrm{C} 4), 56.5(0, \mathrm{C} 5), 43.3(2, \mathrm{C} 3), 40.9(1, \mathrm{C} 2)$, 38.1/36.8 (2), 33.76 (2), 33.4 (2), 28.9 (2), 26.53/26.46 (1, C7), 22.5/22.4 (3, C7-methyl), 20.96/20.90 (2), 15.9 (3, C2-methyl). For 10c/d: ${ }^{13} \mathrm{C}$ NMR $\delta 218.2 / 218.1(0, \mathrm{C} 1), 215.0$ ($0, \mathrm{C} 4$), $56.6 / 56.5(0, \mathrm{C} 5), 43.4 / 43.3(2, \mathrm{C} 3), 40.3 / 40.2(1, \mathrm{C} 2), 38.6 / 36.5(2), 33.80(2)$,
30.9 (2), 28.5 (2), 26.7/26.3 (1, C7), 22.6/22.3 (3, C7-methyl), 21.02/20.8 (2), 15.7/15.6 (3, C2-methyl).

11a

11b

11c
t-8-tert-Butyl-2-methyl- r-1-spiro[4.5]decane-1,4-dione (11a) and c-8-tert-butyl-2-methyl-r-1-spiro[4.5]decane-1,4-dione (11b). Spectra of the mixture: IR 1756 (m), 1713 (s) cm^{-1}; MS $236\left(44, \mathrm{M}^{+}\right), 221$ (17), 181 (12), 180 (88), 179 (39), 139 (12), 138 (15), 126 (24), 125 (26), 109 (23), 81 (19), 79 (14), 67 (12), 57 (100), 55 (15), 53 (13), 43 (17), 42 (10), 41 (54); HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{2} 236.1775$, found 236.1773. For 11a from the mixture: ${ }^{1} \mathrm{H}$ NMR $\delta 2.96(1 \mathrm{H}, \mathrm{dd}, J=10.4,17.4 \mathrm{~Hz}, \mathrm{H} 3), 2.33$ $(1 \mathrm{H}, \mathrm{dd}, J=7.7,17.4 \mathrm{~Hz}, \mathrm{H} 3), 1.26(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{C} 2-$ methyl); ${ }^{13} \mathrm{C}$ NMR 8218.2 ($0, \mathrm{C} 1$), 215.4 ($0, \mathrm{C} 4$), 55.3 ($0, \mathrm{C} 5$), 46.8 (1, C8), 43.2 (2, C3), 40.8 (1, C2), 32.3 ($0, t$-butyl), 31.2 (2), 29.7 (2), 27.3 (3C, 3, t-butyl), 21.7 (2), 21.6 (2), 15.7 (3, C2methyl). For 11b from the mixture: ${ }^{1} \mathrm{H}$ NMR $\delta 3.02(1 \mathrm{H}, \mathrm{dd} J=10.4,18.0 \mathrm{~Hz}, \mathrm{H} 3) \cdot 2.33$ $(1 \mathrm{H}, \mathrm{dd}, J=8.9,18.0 \mathrm{~Hz}, \mathrm{H} 3), \mathrm{l} .27\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{C} 2\right.$-methyl); ${ }^{13} \mathrm{C}$ NMR $8218.1(0$, Cl), 215.3 ($0, \mathrm{C} 4$), 55.4 ($0, \mathrm{C} 5$), 46.8 ($1, \mathrm{C} 8$), 43.3 (2, C3), 40.1 (1, C2), 32.3 (0, t-butyl), 31.7 (2), 29.3 (2), 27.3 (3C. 3, t-butyl), 21.7 (2), 21.5 (2), 15.4 (3, C2-methyl). For the 4-(2,4-dinitrophenylhydrazone) derivative $11 \mathbf{c}$ (derived from 11a, purified by recrystalilization): orange solid, $\mathrm{mp} 194.5-197.5^{\circ} \mathrm{C}$; IR (Nujol) $3301,1747,1712,1615$, $1589 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 11.11(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 9.12(1 \mathrm{H}, \mathrm{d}, J=2.6 \mathrm{~Hz}), 8.31(1 \mathrm{H}, \mathrm{dd}, J=2.5,9.6$ $\mathrm{Hz}), 7.92(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}), 3.27(1 \mathrm{H}, \mathrm{dd}, J=10.4,17.6 \mathrm{~Hz}), 2.83(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 2.43(1 \mathrm{H}$, $\mathrm{dd}, J=8.7,17.6 \mathrm{~Hz}), 1.85-1.60(8 \mathrm{H}, \mathrm{m}), 1.31(3 \mathrm{H}, \mathrm{d}, J=2.9 \mathrm{~Hz}), 1.14(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 0.95$
$(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\delta 218.3(0), 164.5(0), 145.0(0), 138.0(0), 130.0(1), 129.3(0), 123.4$ (1), 116.3 (1), 52.7 (0), 46.9 (1), 40.4 (1), 33.4 (2), 32.6 (2), 31.4 (2), 31.3 (2), 27.4 (3C, 3), 21.5 (2), 15.7 (3); MS 416 (2, M ${ }^{+}$, 81 (15), 79 (16), 78 (10), 77 (12), 68 (16), 67 (12), 57 (100), 55 (21), 53 (12), 43 (15), 41 (70); HRMS caled for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{~N}_{4} 416.2058$, found 416.2047 . The structure of 11c was determined by X-ray crystallography.

12a

12b (2R/S,4R/S)-2-(c-4-tert-Butyl-r-1-hydroxycyclohexyl)-2-hydroxy-4-methylcyclobutanone 12 a and $(2 R / S, 3 S / R)$-2-(c-4-tert-butyl-r-1-hydroxycyclohexyl)-2-hydroxy-3-methylcyclobutanone $\mathbf{1 2 b}$. Compound $\mathbf{3}(0.34 \mathrm{~g}, 1.4 \mathrm{mmol})$ was added to a solution of 4-tert-butylcyclohexanone ($219 \mathrm{mg}, 1.42 \mathrm{mmol}$) and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.17 \mathrm{~mL})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7.0 \mathrm{~mL})$. The mixture was stirred at rt for 4.5 h . Work-up gave an oily, tan solid (304 mg). ${ }^{1} \mathrm{H}$ NMR analysis revealed this to be a mixture of 12 a and $\mathbf{1 2 b}$ in a $3.3: 1$ ratio, and 11a and 11 b in a $2.6: 1$ ratio, with the ratio of cyclobutanone compounds to cyclopentanediones being $6: 1$. Cyclobutanones 12a and 12b could not be separated by flash chromatography. Spectra of the mixture: IR $3453,3357,1767 \mathrm{~cm}^{-1}$; MS no M ${ }^{+}, 236$ (2), 166 (18), 155 (23), 137 (11), 123 (11), 109 (13), 98 (21), $95(20), 83$ (11), $82(10), 81(28), 71(10), 69(14), 67(15)$, 57 (100), $55(22), 53(10), 43(26), 42(11), 41$ (49); HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right.$$\left.\mathrm{H}_{2} \mathrm{O}\right)$ 236.1775, found 236.1775. For 12a from the mixture: ${ }^{1} \mathrm{H}$ NMR $\delta 3.30(1 \mathrm{H}$, br s, $\mathrm{OH}), 3.05(1 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{H} 4), 2.58(1 \mathrm{H}$, apparent $\mathrm{t}, J=11.8 \mathrm{~Hz}, \mathrm{H} 3), 1.86(1 \mathrm{H}, \mathrm{m}), 1.81-$ $1.45(4 \mathrm{H}, \mathrm{m}), \mathrm{l} .45-1.27(3 \mathrm{H}, \mathrm{m}), 1.24(3 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, \mathrm{C} 4$-methyl $), 0.96\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 4^{\prime}\right)$, $0.87\left(9 \mathrm{H}, \mathrm{s}, t\right.$-butyl); ${ }^{13} \mathrm{C}$ NMR $\delta 215.7(0, \mathrm{C} 1), 94.5(0, \mathrm{C} 2), 72.7\left(0, \mathrm{Cl}^{\prime}\right), 49.6(1, \mathrm{C} 4)$, 47.7 (1, C4'), 32.6 (2, C2), 32.4 (0, t-butyl), 32.3 (2), 30.9 (2), 27.5 (3C, 3,t-butyl), 21.9
(2), 21.8 (2), 14.4 (3, C4-methyl). For 12b from the mixture: ${ }^{1} \mathrm{H}$ NMR $\delta 2.48$ (1H, dd, J $=6.0,17.8 \mathrm{~Hz}, \mathrm{H} 4), 1.18\left(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{C} 3\right.$-methyl); ${ }^{13} \mathrm{C}$ NMR $\delta 213.6(0, \mathrm{Cl}), 95.2$ (0, C2), 73.3 (0, C1'), 50.6 (1, C4), 47.6 (1, C4'), 32.5 (0, t-butyl), 32.4 (2), 32.1 (2), 30.6 (2), 27.5 (3C, 3, t-butyl), 21.8 (2), 21.7 (2), 14.4 (3, C3-methyl).

13a

(2R/S,4R/S)-2-(c-4-tert-Butyl-r-1-methoxycyclohexyl)-4-methyl-2-(trimethylsilyloxy)cyclobutanone 13a and (2RSS,3S/R)-2-(c-4-tert-butyl-r-1-methoxycyclohexyl)-3-methyl-2-(trimethylsilyloxy)cyclobutanone 13b. Based on the procedure of Kuwajima, ${ }^{1}$ compound $\mathbf{3}$ ($0.53 \mathrm{~g}, 2.1 \mathrm{mmol}$) was added dropwise over 2-3 min to a solution at $-78{ }^{\circ} \mathrm{C}$ of 4 -tertbutylcyclohexanone dimethyl acetal $(0.39 \mathrm{~g}, 2.0 \mathrm{mmol})$ and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.24 \mathrm{~mL})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$. After stirring at this temperature for 6 h , the reaction mixture was poured into aqueous NaHCO_{3} solution (10 mL) and extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 40 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$ and brine $(40 \mathrm{~mL})$ and dried over anhydrous MgSO_{4}. Evaporation of the solvent under vacuum left a viscous. colorless oil ($0.66 \mathrm{~g}, 99 \%$) as a 1: 4.1 mixture of 13 a and 13 b . Spectra of the mixture: IR $1775(\mathrm{~s}) \mathrm{cm}^{-1} ;$ MS $340\left(2, \mathrm{M}^{+}\right), 170(12), 169(100), 81(23), 75(13), 73(64), 67(11), 59$ (14), 57 (43), 41 (18); HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{Si} 340.2432$, found 340.2413. For 13a from the mixture: ${ }^{1} \mathrm{H}$ NMR $\delta 3.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 0.14(9 \mathrm{H}, \mathrm{s}, \mathrm{OTMS}) ;{ }^{13} \mathrm{C}$ NMR $\delta 214.2$ ($0, \mathrm{Cl}$), 97.1 ($0, \mathrm{C} 2$), 22.5 (2), 22.3 (2), 14.5 (3, C4-methyl), 1.7 (3C, 3, OTMS). For 13b from the mixture: 'H NMR $\delta 3.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.94(\mathrm{dd}, J=10.7,18.0 \mathrm{~Hz}, \mathrm{H} 4), 2.83-$ $2.68(\mathrm{~m}, \mathrm{H} 3), 2.33(\mathrm{dd}, J=6.3,18.0 \mathrm{~Hz}, \mathrm{H} 4), 2.19-2.05(2 \mathrm{H}, \mathrm{m}), 1.84-1.70(1 \mathrm{H}, \mathrm{m})$, $1.67-1.44(2 \mathrm{H}, \mathrm{m}), 1.40-1.00(3 \mathrm{H}, \mathrm{m}), 1.12(3 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}, \mathrm{C} 3$-methyl), $1.00-0.87$
($1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{4}$), 0.84 ($9 \mathrm{H}, \mathrm{s}$, t-butyl), 0.16 ($9 \mathrm{H}, \mathrm{s}, \mathrm{OTMS}$); ${ }^{13} \mathrm{C}$ NMR $8212.2(0, \mathrm{Cl}), 99.3$ $(0, \mathrm{C} 2), 75.9\left(0, \mathrm{Cl}^{\prime}\right), 51.7\left(3, \mathrm{OCH}_{3}\right), 50.1(2, \mathrm{C} 4), 47.3\left(1, \mathrm{C}^{\prime}\right), 32.2(2), 27.5(3 \mathrm{C}, 3, t-$ butyl and 1C, 2), 27.1 (1, C3), 22.2 (2), 22.1 (2), 15.2 (3, C3-methyl), 1.8 (3C, 3, OTMS). This mixture of $\mathbf{1 3 a}$ and $\mathbf{1 3 b}(114 \mathrm{mg}, 0.335 \mathrm{mmol})$ was stirred in TFA $(1.0 \mathrm{~mL})$ at rt for 20 h . Work-up afforded 82.6 mg of a pale brown oil consisting largely of 11 a and 11b in a 1:3.6 ratio.
 butylcyclohexanone dibenzyl acetal $(0.70 \mathrm{~g}, 2.0 \mathrm{mmol})$ and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.25 \mathrm{~mL})$ at -78 ${ }^{\circ} \mathrm{C}$. Stirring at this temperature for 9.5 h . followed by work-up and chromatography gave $0.79 \mathrm{~g}(96 \%)$ of a white solid, consisting of a I:7.4 mixture of $\mathbf{1 4 a}$ and $\mathbf{1 4 b}$. Spectra of the mixture: IR $1775 \mathrm{~cm}^{-1}$; MS 416 (0.3, M $), 245$ (12), 143 (13), 92 (14), $91(100), 75$ (13), 73 (46), 57 (19). For 14a from the mixture: ${ }^{1} \mathrm{H}$ NMR $\delta 4.68(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}$, benzyl), $4.61\left(\mathrm{lH}, \mathrm{d}, J=10.0 \mathrm{~Hz}\right.$, benzyl), $0.16(9 \mathrm{H}, \mathrm{s}, \mathrm{OTMS}) ;{ }^{13} \mathrm{C}$ NMR $8213.8(0$, $\mathrm{Cl}), 97.5(0, \mathrm{C} 2), 75.9\left(0, \mathrm{Cl}^{\prime}\right), 65.3$ (2 , benzyl), $48.4\left(1, \mathrm{C}^{\prime}\right), 33.7(2), 28.0(2), 22.4(2)$, 14.6 (3, C4-methyl), 1.7 (3C, 3, OTMS). For 14 b from the mixture: ${ }^{1} \mathrm{H}$ NMR $\delta 7.50-7.18$ ($5 \mathrm{H}, \mathrm{m}$, aryl), $4.58(1 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz}$, benzyl), $4.49(1 \mathrm{H}, \mathrm{d}, J=11.7 \mathrm{~Hz}$, benzyl), 2.92 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 4$), $2.86(1 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{H} 3), 2.40-2.26(2 \mathrm{H}$, overlapping m$), 1.89(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 4)$, $1.68-1.50(2 \mathrm{H}, \mathrm{m}), 1.42(1 \mathrm{H}, \mathrm{m}), 1.33-1.24(2 \mathrm{H}, \mathrm{m}), 1.20(1 \mathrm{H}$, apparent $\mathrm{dd}, J=4.7,12.2$
$\mathrm{Hz}), 1.13\left(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{C} 3\right.$-methyl), $\left.0.98(1 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{H} 4)^{\prime}\right), 0.85(9 \mathrm{H}, \mathrm{s}, t$-butyl), 0.19 ($9 \mathrm{H}, \mathrm{s}, \mathrm{OTMS}$); ${ }^{13} \mathrm{C}$ NMR $\delta 212.0(0, \mathrm{Cl}), 140.0(0), 128.2$ (1), 127.1 (1), 127.0 (1), 99.5 ($0, \mathrm{C} 2$), $76.1\left(0, \mathrm{Cl}^{\prime}\right), 65.4$ (2, benzyl), $50.2(2, \mathrm{C} 4), 47.1$ ($1, \mathrm{C} 4$ '), $33.0(2), 32.4$ ($0, t-$ butyl), 27.8 (2), 27.5 (3C, 3, t-butyl), 27.1 (1, C3), 22.2 (2), 22.1 (2), 15.3 (3, C3-methyl), 1.8 (3C, 3, OTMS).

15b

(2R/S,4R/S)-2-(r-1-Benzyloxy-c-4-tert-butyleyclohexyl)-2-hydroxy-4-methylcyclobutanone $15 a$ and $(2 R S, 3 S / R)-2-(r-1-$ benzyloxy-c-4-tert-butylcyclohexyl)-2-hydroxy-3-
methylcyclobutanone 15b. Treatment of the above mixture of $14 \mathrm{a}, \mathrm{b}(0.20 \mathrm{~g}, 0.48 \mathrm{mmol})$ with TBAF ($0.60 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF) in $\mathrm{Et}_{2} \mathrm{O}(4.0 \mathrm{~mL})$, followed by chromatography afforded 15 a and 15b (total $0.142 \mathrm{~g}, 84 \%$). ${ }^{1} \mathrm{H}$ NMR signals for a very minor third isomer, tentatively ascribed structure 16, were noted in some fractions that were mainly 15a. IR (mixture) 3506 (m), 1775 (s), 1607 (w), 1497 (m) cm ${ }^{-1}$. MS (mixture) no $\mathrm{M}^{+}, 155$ (13), 92 (13). 91 (100), 86 (28), 84 (46), 81 (16), 79 (15), 67 (10), 57 (67), 55 (14), 47 (13), 43 (21), 41 (36). For 15a: ${ }^{1} \mathrm{H}$ NMR $\delta 7.60-7.21(5 \mathrm{H}, \mathrm{m}$, aryl $), 4.71(1 \mathrm{H}, \mathrm{d}, J=11.1 \mathrm{~Hz}$, benzyl), $4.40(1 \mathrm{H}, \mathrm{d}, J=11.0$ Hz , benzyl), $3.45(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.00(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 4), 2.59(1 \mathrm{H}$, apparent $\mathrm{t}, J=12.2 \mathrm{~Hz}, \mathrm{H} 3)$, $2.04(1 \mathrm{H}, \mathrm{ddd}, J=3.0,6.0,13.2 \mathrm{~Hz}), 1.96(1 \mathrm{H}, \mathrm{ddd}, J=3.1,6.1,13.2 \mathrm{~Hz}), 1.72(1 \mathrm{H}, \mathrm{dd}$, $J=9.2,12.2 \mathrm{~Hz}, \mathrm{H} 3 \mathrm{syn}$ to methyl), $1.71-1.58(2 \mathrm{H}, \mathrm{m}), 1.55-1.27(4 \mathrm{H}, \mathrm{m}), 1.24(3 \mathrm{H}, \mathrm{d}, J$ $=7.2 \mathrm{~Hz}, \mathrm{C} 4$-methyl), $1.01\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{\prime}\right), 0.87(9 \mathrm{H}, \mathrm{s}, t$-butyl); NOE data $3.00(2.59,2 \%$; $2.04-1.96,1.6 \% ; 1.24,6 \%), 2.59(3.00,3 \% ; 1.72,22 \% ; 1.48-1.39,9 \%), 2.04-1.96$ (4.71, $1.2 \% ; 3.00,1 \% ; 4.40,3 \% ; 1.48-1.39,31 \%)$, $1.72(2.59,9 \% ; 1.24,2 \%) ;{ }^{13} \mathrm{C}$ NMR $\delta 214.8$
$(0, \mathrm{C} 1), 138.7(0$, aryl), $128.4(2 \mathrm{C}, 1), 127.5(2 \mathrm{C}, 1), 95.6(0, \mathrm{C} 2), 76.9(0, \mathrm{Cl}), 64.4(2$, benzyl), 49.0 (1, C4), 47.4 (1, C4'), 32.8 (2, C3), 32.4 ($0, t$-butyl), 31.2 (2), 28.3 (2), 27.5 (3C, 3, t-butyl), 22.0 (2C, 2, C3', C5'), 14.4 (3, C4-methyl). For 15b: 'H NMR 87.54 $7.20(5 \mathrm{H}, \mathrm{m}$, aryl $), 4.73(1 \mathrm{H}, \mathrm{d}, J=11.2 \mathrm{~Hz}$, benzyl), $4.42(1 \mathrm{H}, \mathrm{d}, J=11.2 \mathrm{~Hz}$, benzyl), $3.35(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 2.99(1 \mathrm{H}, \mathrm{dd}, J=10.4,17.7 \mathrm{~Hz}, \mathrm{H} 4), 2.62(1 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{H} 3), 2.48(1 \mathrm{H}, \mathrm{dd}$, $J=6.4,17.7 \mathrm{~Hz}, \mathrm{H} 4 \mathrm{syn}$ to methyl), $2.08(1 \mathrm{H}$, ddd, $J=3.2,6.2,13.7 \mathrm{~Hz}), 1.93(1 \mathrm{H}$, ddd, $J=3.1,6.0,12.9 \mathrm{~Hz}), 1.64(2 \mathrm{H}, \mathrm{m}), 1.55-1.26(4 \mathrm{H}, \mathrm{m}), 1.20(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{C} 3-$ methyl), $1.02(1 \mathrm{H}, \mathrm{m}), 0.87$ (9H, s, t-butyl); NOE data 4.73 (2.08, 3\%), 2.99 (2.62, 4.5\%; $2.48,13 \%), 2.62$ (2.99, 4\%; 1.49-1.36, 6.5\%; 1.20, 4\%), 2.48 (2.99, 8\%; 1.20, 1.6\%), 2.08 ($4.42,3 \% ; 1.49-1.36,13 \%), 1.93(1.36,16 \%), 1.20(2.62,4 \% ; 2.48,4 \%) ;{ }^{13} \mathrm{C}$ NMR δ $212.2(0, \mathrm{C} 1), 138.8(0$, aryl $), 128.4(2 \mathrm{C}, 1), 127.5(2 \mathrm{C}, 1), 95.9(0, \mathrm{C} 2), 77.5\left(0, \mathrm{Cl}^{\prime}\right)$, 64.6 (2, C4), 50.1 (2, benzyl), 47.4 (1, C3), 32.4 ($0, t$-butyl), 30.8 (2), 28.3 (1, C4'), 27.8 (2), 27.4 (3C, 3, t-butyl), 22.0 (2C, 2), 14.1 (3, C3-methyl). For tentative 16 (from mixture of 15a and 16): ${ }^{1} \mathrm{H}$ NMR $\delta 4.75(1 \mathrm{H}$, overlapped d, benzyl), $4.49(1 \mathrm{H}, \mathrm{d}, J=11.3$ Hz , benzyl), $2.29(1 \mathrm{H}, \mathrm{dd}, J=11.4,12.9 \mathrm{~Hz}, \mathrm{H} 3), 1.84(1 \mathrm{H}, \mathrm{dd}, J=9.9,12.9 \mathrm{~Hz}, \mathrm{H} 3)$, $1.17(3 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, \mathrm{C} 4$-methyl).

A mixture of $\mathbf{1 5 a , b}(105 \mathrm{mg}, 0.251 \mathrm{mmol})$ was stirred in TFA $(1.0 \mathrm{~mL})$ at rt for 4 h. Work-up afforded 76 mg of an oily, yellow solid consisting largely of 11a and 11b, in a ratio of $1: 7.5$.

Hydrogenolysis of 15a and 15b. A mixture of 15a and 15b (4.3:1;64 mg, 0.19 $\mathrm{mmol})$ in $\mathrm{EtOH}(3.5 \mathrm{~mL})$ and $\mathrm{AcOH}(0.5 \mathrm{~mL})$ with 10% Pd on charcoal (15 mg) under H_{2} (1 atm) for 18 h gave $42 \mathrm{mg}(96 \%)$ of 12a and 12b (5.1:1).
 $10 \% \mathrm{Pd}$ on charcoal (13 mg) under $\mathrm{H}_{2}(1 \mathrm{~atm})$ for 48 h gave $42 \mathrm{mg}(100 \%)$ of 12 a and 12b (5.2:1).

General procedure for the reactions of 4 with ketones. $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.30 \mathrm{~mL}, 2.4$ $\mathrm{mmol})$ and $4(0.84 \mathrm{~g} 3.2 \mathrm{mmol})$ were added in succession to a solution of the ketone (2.0 $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10.0 \mathrm{~mL})$. The mixture was stirred at rt for $24 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(0.30 \mathrm{~mL})$ was introduced followed 10 min later by $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(3.7 \mathrm{~mL}, 30 \mathrm{mmol})$. The resulting black solution was stirred for 1-3 h, except for the reaction with 2-methylcyclohexanone, which required 24 h . Work-up gave the crude product, consisting of cyclopentanedione(s), furanone(s), and 1,2-dione(s). Flash chromatography (hexane with an increasing proportion of EtOAc) could usually effectively separate the three types of product, but cyclopentanedione diastereomers, geometric isomers of furanones, and isomeric 1,2diones were generally not separable in this way. Furanones were susceptible to oxidation in air. Yields and product ratios for the individual reactions are given in Table 2.

17

2,2,4,4-Tetramethyl-1,3-cyclopentanedione (17). Faint yellow oil (faint yellow solid below $\left.4^{\circ} \mathrm{C}\right)$; IR $1763(\mathrm{~m}), 1725(\mathrm{~s}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 2.66(2 \mathrm{H}$, s. H5), $1.25\left(6 \mathrm{H}, \mathrm{s}, \mathrm{C} 2\right.$-methyls), $1.17\left(6 \mathrm{H}, \mathrm{s}, \mathrm{C} 4\right.$-methyls); ${ }^{13} \mathrm{C}$ NMR δ $220.8(0, \mathrm{C} 3), 216.4(0, \mathrm{C} 1), 51.6(0, \mathrm{C} 2), 50.1(2, \mathrm{C} 5), 46.6$ (0. C4), 25.5 (2C, 3, C4methyls), 21.4 (2C, 3, C2-methyls); MS 154 (15, M ${ }^{+}$), 70 (100), 42 (31), 41 (16); HRMS calcd for $\mathrm{C}_{9} \mathrm{H}_{4} \mathrm{O}_{2}$ 154.0993, found 154.0993 .

4,5-Dihydro-2-isopropylidene-5,5-dimethyl-3(2H)-furanone (18).

18 Yellow oil; IR 1724 (s), 1644 (m) cm ${ }^{-1}$; ${ }^{1}$ H NMR 82.48 ($2 \mathrm{H}, \mathrm{s}, \mathrm{H} 4$), 2.07 $(3 \mathrm{H}, \mathrm{s}), 1.79(3 \mathrm{H}, \mathrm{s}), 1.39\left(6 \mathrm{H}, \mathrm{s}, \mathrm{C} 5\right.$-methyls); ${ }^{13} \mathrm{C}$ NMR 8199.7 ($0, \mathrm{C} 3$), 143.3 (0, C2'), 120.1 ($0, \mathrm{C} 2$), 77.9 ($0, \mathrm{C} 5$), 50.5 ($2, \mathrm{C} 4$), 28.1 (2C, 3, C5methyls), 19.5 (3), 16.8 (3); MS 154 (42, M ${ }^{+}$), 139 (24), 130 (14), 83 (78), 71 (24), 70 (100), 59 (28), 56 (30), 55 (30), 43 (38), 42 (47), 41 (38).

19

2,6-Dimethylhept-5-ene-3,4-dione (19). Yellow oil; ${ }^{1} \mathrm{H}$ NMR $\delta 6.71$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 5$), $3.47(\mathrm{lH}$, septet, $J=6.9 \mathrm{~Hz}, \mathrm{H} 2), 2.26(3 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz})$, $2.02(3 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}), 1.10(6 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{Hl}, \mathrm{C} 2$-methyl); MS (from GC-MS) 154 ($5, \mathrm{M}^{+}$), 128 (10), 83 (12), 70 (33), 59 (23), 57 (10), 56 (43), 55 (11), 44 (31), 43 (100), 41 (31).

20

2-Ethyl-2,4,4-trimethylcyclopentane-1,3-dione (20). Yetlow oit, IR $1764(\mathrm{~m}), 1722(\mathrm{~s}) \mathrm{cm}^{-1} ;$ 'H NMR $\delta 2.67(1 \mathrm{H}, \mathrm{d}, J=18.2 \mathrm{~Hz}, \mathrm{H} 5), 2.57$
($\mathrm{IH}, \mathrm{d}, J=18.2 \mathrm{~Hz}, \mathrm{H} 5$), $1.67(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}$, ethyl CH), $1.25(3 \mathrm{H}, \mathrm{s}$, C4-methyl), 1.24 ($3 \mathrm{H}, \mathrm{s}, \mathrm{C} 4$-methyl), 1.15 ($3 \mathrm{H}, \mathrm{s}, \mathrm{C} 2$-methyl), 0.80 ($3 \mathrm{H}, \mathrm{t}$, $J=7.5 \mathrm{~Hz}$, ethyl CH_{3}); ${ }^{13} \mathrm{C}$ NMR $8221.2(0, \mathrm{C} 3), 216.5(0, \mathrm{Cl}), 56.7(0, \mathrm{C} 2), 51.1(2$, C5), 46.2 ($0, \mathrm{C} 4$), 29.0 (2 , ethyl CH ${ }_{2}$), 26.5 (3, C4-methyl), 24.5 (3, C4-methyl), 20.3 (3, C2-methyl), 9.3 (3, ethyl CH3); MS 168 ($11, \mathrm{M}^{+}$), 91 (16), 90 (26), 85 (15), 84 (68), 83 (61), 81 (12), 73 (72), 70 (12), 69 (55), 67 (13), 59 (14), 57 (26), 56 (100), 55 (85), 53 (19), 43 (67), 41 (86); HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}$ 168.1149, found 168.1158.

(E)- and (Z)-4,5-Dihydro-2-isobutylidene-5,5-dimethyl-3(2H)-

21a,b furanone (21a,b). From spectra of the mixture: IR $1725,1639 \mathrm{~cm}^{-1} ;$ 'H NMR $\delta 2.58(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}$, ethyl CH$), 2.16(2 \mathrm{H}, \mathrm{q}, J=7.5 \mathrm{~Hz}$, ethyl CH_{2}), $2.482(2 \mathrm{H}, \mathrm{s}, \mathrm{H} 4), 2.475(2 \mathrm{H}, \mathrm{s}, \mathrm{H} 4), 2.06(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 2$ methyl), 1.78 ($3 \mathrm{H}, \mathrm{s}, \mathrm{C} 2$-methyl), 1.39 ($6 \mathrm{H}, \mathrm{s}, \mathrm{C} 5$-methyls), 1.38 ($6 \mathrm{H}, \mathrm{s}, \mathrm{C} 5$-methyls), $1.02\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}\right.$, ethyl $\left.\mathrm{CH}_{3}\right), 1.00\left(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}\right.$, ethyl $\left.\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 200.5$ ($0, \mathrm{C} 3$), 199.6 ($0, \mathrm{C} 3$), 143.3 ($0, \mathrm{C} 2^{\prime}$), 142.9 ($0, \mathrm{C}^{\prime}$), 126.6 ($0, \mathrm{C} 2$), 126.0 ($0, \mathrm{C} 2$), 78.1 (0 , C5), 78.0 ($0, \mathrm{C} 5$), 50.7 (2, C4), 50.6 ($2, \mathrm{C} 4$), 28.21 (3, C5-methyls), 28.16 (3, C5methyls), 26.4 (2), 23.4 (2), 16.9 (3), 14.5 (3), 12.9 (3), 11.4 (3); MS 168 ($62, M^{\dagger}$), 153 (18), 85 (13), 84 (98), 83 (22), 69 (100), 57 (17), 56 (33), 55 (31), 43 (33), 41 (76).

2,6-Dimethyloct-2-ene-4,5-dione (22). Yellow oil; IR 1710, 1677, 1618

$\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 6.72(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3), 3.36(1 \mathrm{H}, \mathrm{q}, J=6.7 \mathrm{~Hz}, \mathrm{H} 6), 2.06$ $(3 \mathrm{H}, \mathrm{s}), 2.02(3 \mathrm{H}, \mathrm{s}), 1.69(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 7), 1.38(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 7), 1.07(3 \mathrm{H}, \mathrm{d}, J$ $=7.0 \mathrm{~Hz}, \mathrm{C} 6$-methyl), $0.88(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{H} 8)$; ${ }^{13} \mathrm{C}$ NMR $\delta 205.2$ (0), 188.2 (0), 163.4 (0, C3), 117.5 (1, C2), 40.0 (1, C6), 28.5 (3), 25.3 (2), 21.6 (3), 15.0 (3), 11.5 (3); MS 168 (2, M), 83 (100), 57 (16), 55 (32), 41 (10).

2,2-Dimethylspiro[4.4]nonane-1,4-dione (23). Pale yellow oil; IR 1761 (m), $1721(\mathrm{~s}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 2.62(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 3), 1.93-1.75(8 \mathrm{H}, \mathrm{m}, \mathrm{H} 6-$ H9), 1.24 ($6 \mathrm{H}, \mathrm{s}, \mathrm{C} 2$-methyls); ${ }^{13} \mathrm{C}$ NMR $\delta 221.6(0, \mathrm{Cl}), 216.4(0, \mathrm{C} 4)$, 61.6 (0, C5), 50.9 (2, C3), 46.4 (0, C2), 36.5 (2C, 2), 27.2 (2C, 2), 25.2 (2C, 3, C2-methyls); MS 180 ($26, \mathrm{M}^{+}$), 96 (100), 68 (25), 41 (14); HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2}$ 180.1149, found 180.1139 .

24

2-Cyclopentylidene-4,5-dihydro-5,5-dimethyl-3(2H)-furanone (24). ${ }^{1} \mathrm{H}$ NMR (impure sample) $\delta 2.78(2 \mathrm{H}, \mathrm{m}), 2.48(2 \mathrm{H}, \mathrm{s}, \mathrm{H} 4), 1.42(6 \mathrm{H}$, s, C5-methyls); MS (from GC-MS) 180 (33, M ${ }^{+}$), 96 (100), 68 (35), 41 (32).

25a,b

2,2,7-Trimethylspiro[4.4]nonane-1,4-dione (25a,b). From spectra of the mixture: IR $1760(\mathrm{~m}), 1721(\mathrm{~s}) \mathrm{cm}^{-1}$; for major isomer: ${ }^{1} \mathrm{H}$ NMR $\delta 2.64$ $(1 \mathrm{H}, \mathrm{d}, J=17.8 \mathrm{~Hz}, \mathrm{H} 3), 2.56(1 \mathrm{H}, \mathrm{d}, J=17.8 \mathrm{~Hz}, \mathrm{H} 3), 2.25(1 \mathrm{H}, \mathrm{br} \mathrm{m}$, H7), 2.05-1.68 ($4 \mathrm{H}, \mathrm{m}$), 1.55-1.30(2H, m), $1.22(6 \mathrm{H}, \mathrm{s}, \mathrm{C} 2$-methyls), 1.04 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{C} 7$-methyl); ${ }^{13} \mathrm{C}$ NMR $8221.5(0, \mathrm{Cl}), 216.0(0, \mathrm{C} 4), 61.9(0, \mathrm{C} 5)$, 50.9 (2, C3), 46.2 (0, C2), 44.3 (2), 36.2 (2), 35.9 (1, C7), 35.3 (2), 25.3 (3, C2-methyl), 25.1 (3, C2-methyl), 18.6 (3, C7-methyl); for minor isomer: ${ }^{1} \mathrm{H}$ NMR $\delta 1.23(6 \mathrm{H}, \mathrm{s}, \mathrm{C} 2$ methyls); ${ }^{13} \mathrm{C}$ NMR $\delta 221.3(0, \mathrm{C} 1), 216.2(0, \mathrm{C} 4), 62.0(0, \mathrm{C} 5), 50.7(2, \mathrm{C} 3), 46.3(0$, C2), 43.8 (2), 35.8 (1, C7), 35.6 (2), 35.2 (2), 25.2 (3, C2-methyl), 25.0 (3, C2-methyl), 19.5 (3, C7-methyl). MS 194 (22, M ${ }^{+}$), 111 (14), 110 (100), 95 (26), 82 (11), 81 (12), 68 (26), 67 (44), 56 (11), $55(12), 53(10), 41$ (32), $40(20)$; HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2}$ 194.1306, found 194.1322.

26

2,2-Dimethylspiro[4.5]decane-1,4-dione (26). White solid, mp 41.5-43 ${ }^{\circ} \mathrm{C}$; IR $1760(\mathrm{~m}), 1719(\mathrm{~s}) \mathrm{cm}^{-1}$; ${ }^{\text {'H NMR }} 82.61(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 3), 1.75-1.40$ ($10 \mathrm{H}, \mathrm{m}, \mathrm{H} 6-\mathrm{Hl} 10$), 1.22 ($6 \mathrm{H}, \mathrm{s}, \mathrm{C} 2$-methyls); ${ }^{13} \mathrm{C}$ NMR 8220.3 (0, C1), 216.3 ($0, \mathrm{C} 4$), $54.9(0, \mathrm{C} 5), 50.3(2, \mathrm{C} 3), 46.2(0, \mathrm{C} 2), 30.5(2, \mathrm{C} 8), 25.7$ (2C, 3, C2-methyls), 25.0 (2C, 2), 20.6 (2C, 2); MS 194 (38, M ${ }^{+}$), 111 (12), 110 (100), 82 (24), 81 (10), 67 (55), $55(10), 54(15), 53$ (10), 41 (29); HRiMS calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2}$ 194.1306, found 194.1320 .

2-Cyclohexylidene-4,5-dihydro-5,5-dimethyl-3(2H)-furanone (27).

27 Yellow oil; IR 1724, $1637 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta \mathbf{2 . 7 4}(2 \mathrm{H}, \mathrm{m}), 2.48$ ($2 \mathrm{H}, \mathrm{s}$, H4), $2.25(2 \mathrm{H}$, apparent triplet, $J=5.4 \mathrm{~Hz}), 1.65-1.40\left(6 \mathrm{H}, \mathrm{m}, \mathrm{H} 3^{\prime}-\right.$ H5'), 1.38 ($6 \mathrm{H}, \mathrm{s}, \mathrm{C} 2$-methyls); ${ }^{13} \mathrm{C}$ NMR 8200.8 ($0, \mathrm{C} 3$), 140.8 (0 , Cl^{\prime}), 128.7 ($0, \mathrm{Cl}$), 77.8 ($0, \mathrm{C} 5$), $\mathbf{5 0 . 9}$ (2, C4), 28.6 (2), 28.1 (2C, 3, C5-methyls), 27.9 (2), 27.3 (2), 26.3 (2), 25.9 (2); MS 194 (38, M ${ }^{+}$, 111 (12), 110 (100), 82 (24), 81 (10), 67 (55), 55 (10), 54 (15), 53 (10), 41 (29).

1-Cyclohexyl-4-methylpent-4-ene-1,2-dione (28a) and 1-cyclohexyl-4-

28a,b methylpent-3-ene-1,2-dione (28b). An attempt to separate a $1.2: 1$ mixture by preparative TLC led predominantly to isomerization of 28a to 28b. For 28a (from the mixture): ${ }^{1} \mathrm{H}$ NMR $\delta 4.97$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 5$), 4.79 (1 H , $\mathrm{m}, \mathrm{H} 5$), 3.13 ($1 \mathrm{H}, \mathrm{m}, \mathrm{Hl}$ '), 3.44 (2H, s, H3), 1.77 (3H, s, C4-methyl); MS (from GC-MS) 194 (4, M ${ }^{\dagger}$), 83 (100), 55 (31). For 28b: yellow oil; IR 1710, 1678, 1613 $\mathrm{cm}^{-1} ;$ 'H NMR $\delta 6.69(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3), 3.24\left(1 \mathrm{H}, \mathrm{m}, \mathrm{Hl}^{\prime}\right), 2.26(3 \mathrm{H}, \mathrm{s}), 2.01(3 \mathrm{H}, \mathrm{s}), 1.79$ $(3 \mathrm{H}, \mathrm{m}), 1.70(1 \mathrm{H}, \mathrm{m}), 1.30(4 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\delta 204.5$ (0), 188.3 (0), 163.3 (0, C4), 117.6 (1, C3), 43.1 (1, C1'), 28.5 (3), 27.8 (2C, 2), 25.8 (2), 25.4 (2C, 2), 21.6 (3); MS (from GC-MS) $194\left(2, \mathrm{M}^{+}\right), 11!(39), 83(100), 55(70)$.

2,2,6-Trimethylspiro[4.5]decane-1,4-dione (29a,b). For 29a: IR 1759

29a (m), 1717 (s) cm^{-1}; 'H NMR $\delta 2.69(1 \mathrm{H}, \mathrm{d}, J=18.3 \mathrm{~Hz}, \mathrm{H} 3), 2.39(1 \mathrm{H}, \mathrm{d}, J$ $=18.3 \mathrm{~Hz}, \mathrm{H} 3), 1.26(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 2$-methyl), $1.20(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 2$-methyl), 0.74 (3H, d, $J=6.5 \mathrm{~Hz}, \mathrm{C} 6$-methyl); ${ }^{13} \mathrm{C}$ NMR $\delta 222.0(0, \mathrm{Cl}), 216.2(0, \mathrm{C} 4)$, 60.4 (0, C5), 51.9 (2, C3), 45.6 (0, C2), 35.7 (1, C6), 33.8 (2), 29.0 (2), 26.8 (3, C2methyl), 25.4 (2), 24.6 (3, C2-methyl), 20.4 (2), 18.7 (3, C6-methyl). From spectra of the

29b
mixture: 29b: 'H NMR $\delta 2.74(1 \mathrm{H}, \mathrm{d}, J=18.6 \mathrm{~Hz}, \mathrm{H} 3), 2.46(1 \mathrm{H}, \mathrm{d}, J=$ $18.6 \mathrm{~Hz}, \mathrm{H} 3), 1.29(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 2$-methyl), $1.16(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 2$-methyl), $0.73(3 \mathrm{H}$, d, $J=6.2 \mathrm{~Hz}$, C6-methyl); MS 208 (57, M ${ }^{+}$), 193 (38), 153 (13), 140 (34), $124(38), 110(10), 109(100), 95(10), 96(13), 81(27), 67(33), 56(12)$, 55 (21), 53 (12), 41 (29); HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{2}$ 208.1462, found 208.1458.

4,5-Dihydro-5,5-dimethyl-2-(2-methylcyclohexylidene)-3(2H)-

30a,b furanone (30a,b). From spectra of the mixture: UV (cyclohexane) $291 \mathrm{~nm}(\varepsilon=9,600)$; IR $1721,1630 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 4.02(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H} 2^{\prime}\right), 3.64\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}=14.6 \mathrm{~Hz}, \mathrm{H} 6^{\prime}\right), 2.98\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{\prime}\right), 2.60(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{H} 6^{\prime}\right), 2.48(2 \mathrm{H}, \mathrm{s}, \mathrm{H} 4), 2.47(2 \mathrm{H}, \mathrm{s}, \mathrm{H} 4), 1.94\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 6^{\prime}\right), 1.40(3 \mathrm{H}, \mathrm{s}), 1.384(3 \mathrm{H}, \mathrm{s})$, $1.376(3 \mathrm{H}, \mathrm{s}), 1.36(3 \mathrm{H}, \mathrm{s}), 1.11\left(6 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{C} 2\right.$-methyl); ${ }^{13} \mathrm{C}$ NMR 8201.1 (0 , $\mathrm{C} 3), 200.4(0, \mathrm{C} 3), 140.8\left(0, \mathrm{Cl}^{\prime}\right), 140.6\left(0, \mathrm{Cl}^{\prime}\right), 133.0(0, \mathrm{C} 2), 132.6(0, \mathrm{C} 2), 77.9(0$, C5), 77.8 ($0, \mathrm{C} 5$), 51.0 (2, C4), 33.1 (2), 32.7 (2), 29.7 (1, C2'), 26.7 (1, C2'), 28.1 (4C, 3, C5-methyls), 27.5 (2), 27.1 (2), 23.7 (2, C6'), 21.3 (2, C6'), 20.6 (2), 20.4 (2), 19.0 (3, C2'-methyl), 17.7 (3, C2'-methyl); MS 208 (100, M $^{+}$), 193 (19), 152 (26), 125 (18), 124 $(73), 123$ (14), 113 (36), 112 (21), 109 (95), 96 (30), $95(52), 84$ (35), 83 (29), 81 (69), 79 (21), 77 (11), 69 (17), $68(30), 67(74), 56(62), 55(51), 54(15), 53(32), 43$ (31), 42 (12), 41 (77), 40 (11); HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{2}$ 208.1462, found 208.1470.

31, 32
(trans)- (31) and (cis)-4-Methyl-1-(2-methylcyclohexyl)pent-3-ene-1,2-dione (32). From spectra of a 2.4 : 1 mixture: IR 1706, 1676, 1614 cm^{-1}; for 31: ${ }^{1} \mathrm{H}$ NMR $\delta 6.74(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3), 3.06(1 \mathrm{H}, \mathrm{m}, \mathrm{Hl}), 2.26(3 \mathrm{H}, \mathrm{s}$, C4-methyl), 2.02 ($3 \mathrm{H}, \mathrm{s}, \mathrm{C} 4$-methyl), 0.79 ($3 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz}, \mathrm{C} 2{ }^{\prime}-$ methyl); ${ }^{13} \mathrm{C}$ NMR $\delta 204.9(0), 187.9(0), 163.5(0), 117.1$ (1, C3), 49.4 (1, C1'), 20.6 (3,

C2'-methyl). For $32:{ }^{1} \mathrm{H} N M R 86.67(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3), 3.46(1 \mathrm{H}, \mathrm{m}, \mathrm{Hl}), 2.26(3 \mathrm{H}, \mathrm{s}), 2.02$ $(3 \mathrm{H}, \mathrm{s}), 0.81\left(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}\right.$, C2'-methyl); ${ }^{13} \mathrm{C}$ NMR $\delta 204.8(0), 188.5(0), 163.2(0)$, 117.4 (1, C3), 45.7 (1, C1'), 14.9 (3, C2'-methyl); MS 208 (3, M ${ }^{+}$), 97 (30), 83 (100), 55 (33).
(1R/S,2S/R,4S/R)-4',4'-Dimethylspiro(bicyclo[2.2.1]heptane-2,2'-cyclopentane)-1', $\mathbf{3}^{\prime}$-dione (33a). Yellow oil; IR 1758 (m), 1717 (s) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 2.72(1 \mathrm{H}, \mathrm{d}, J=16.9 \mathrm{~Hz}, \mathrm{H} 5), 2.43(1 \mathrm{H}, \mathrm{d}, J=16.9$ $\mathrm{Hz}, \mathrm{H} 5), 2.49(1 \mathrm{H}, \mathrm{m}), 2.36(1 \mathrm{H}, \mathrm{m}), 2.05(1 \mathrm{H}, \mathrm{m}), 1.69(1 \mathrm{H}, \mathrm{ddd}, J$ $=2.9,4.0,12.2 \mathrm{~Hz}), 1.53(1 \mathrm{H}, \mathrm{br}$ m), $1.43(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 4$-methyl $)$, $1.42-$ $1.28(4 \mathrm{H}, \mathrm{m}), 1.23(1 \mathrm{H}, \mathrm{m}), 1.04\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 4\right.$-methyl); ${ }^{13} \mathrm{C}$ NMR δ $218.5(0, \mathrm{C} 3), 213.6(0, \mathrm{C} 1), 64.8(0, \mathrm{C} 2), 51.2(2, \mathrm{C} 5), 49.1(1)$, 46.1 (0, C4), 37.4 (2), 36.7 (1), 34.5 (2), 27.7 (2), 26.5 (3, C4methyl), 25.6 (3, C4-methyl), 24.6 (2); MS 206 (54, M $^{+}$), 177 (31), 140 (76), 122 (85), 94 (13), 93 (100), 83 (12), 79 (20), 77 (10), 67 (19), 66 (17), 65 (17), 56 (10), 55 (12), 53 (13), 41 (29); HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}$ 206.1306, found 206.1313. For the $1^{1}-(2,4-$ dinitrophenylhydrazone) derivative 33e (purified by recrystallization): red-orange solid, $\mathrm{mp} 199.5-201^{\circ} \mathrm{C}$; IR (Nujol) 3307, 1747, $1739 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 11.2$ ($1 \mathrm{H}, \mathrm{br} \mathrm{s}$), 9.15 $(1 \mathrm{H}, \mathrm{d}, J=2.6 \mathrm{~Hz}), 8.36(1 \mathrm{H}, \mathrm{dd}, J=2.5,9.6 \mathrm{~Hz}), 7.99(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}), 2.81(1 \mathrm{H}, \mathrm{d}, J$ $=16.6 \mathrm{~Hz}), 2.49(1 \mathrm{H}, \mathrm{d}, J=16.6 \mathrm{~Hz}), 2.41(2 \mathrm{H}$, apparent $\mathrm{t}, J=4.2 \mathrm{~Hz}), 2.15(1 \mathrm{H}, \mathrm{m})$, 1.96 ($1 \mathrm{H}, \mathrm{ddd}, J=2.7,3.9,12.0 \mathrm{~Hz}$), $1.73(1 \mathrm{H}, \mathrm{dd}, J=2.8,12.1 \mathrm{~Hz}), 1.69-1.55(2 \mathrm{H}, \mathrm{m})$, $1.49(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 1.40-1.28(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR 8218.9 (0), 162.1 (0), 145.1 (0), 138.0 (0), 130.2 (1), 129.2 (0), 123.4 (1), 116.1 (1), 61.1 (0), 48.6 (1), 45.7 (0), 39.4 (2), 37.6 (2), 37.3 (2), 36.8 (1), 28.1 (2), 26.6 (3), 26.2 (3), 24.4 (2); MS 386 (43, M'), 351 (20), 340
(12), 320 (38), 319 (11), 285 (15), 204 (16), 189 (28), 138 (28), 120 (10), 105 (13), 95 (13), 94 (12), 93 (34), 92 (22), 91 (46), 83 (10), 82 (19), 81 (18), $80(16), 79$ (40), 78 (18), 77 (46), 75 (13), 67 (79), 66 (20), 65 (41), 63 (16), 56 (10), 55 (55), 54 (11), 53 (29), 52 (12), 51 (13), 43 (26), 42 (11), 41 (100); HRMS caled for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{5} 386.1589$, found 386.1569. The structure of $\mathbf{3 3} \mathrm{c}$ was determined by X-ray crystallography.

33b
(1R/S,2R/S,4S/R)-4',4'-Dimethylspiro(bicyclo[2.2.1]heptane-2,2'-
cyclopentane)-1',3'-dione (33b). One chromatographic fraction contained a minor amount of the isomer 33b along with 33a. Signals for 33b in the mixture: ${ }^{1} \mathrm{H}$ NMR $82.88(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=18.1 \mathrm{~Hz}, \mathrm{H} 5), 1.33(3 \mathrm{H}, \mathrm{s}, \mathrm{C}$-methyl), 1.13 (3H, s, C4-methyl).

34a,b

2-(2-Bicyclo[2.2.1]heptylidene)-4,5-dihydro-5,5-dimethyl-3(2H)furanone (34a,b). From spectra of the mixture: IR $1726,1658 \mathrm{~cm}^{-1}$; for the major isomer: ${ }^{1} \mathrm{H}$ NMR $\delta 3.87(1 \mathrm{H}, \mathrm{m}), 2.47(2 \mathrm{H}, \mathrm{s}, \mathrm{H} 4), 1.41$ (6H, s, C5-methyls); ${ }^{13} \mathrm{C}$ NMR $\delta 199.4(0, \mathrm{C} 3), 140.2\left(0, \mathrm{Cl}^{\prime}\right), 133.3$ $(0, \mathrm{C} 2), 78.9(0, \mathrm{C} 5)$. For the minor isomer: ${ }^{\mathrm{l}} \mathrm{H}$ NMR $\delta 3.05(1 \mathrm{H}, \mathrm{m}), 2.45(2 \mathrm{H}, \mathrm{s}, \mathrm{H} 4)$, $1.38\left(6 \mathrm{H}, \mathrm{s}, \mathrm{C} 5\right.$-methyls); ${ }^{13} \mathrm{C}$ NMR $\delta 200.3(0, \mathrm{C} 3), 139.5(0, \mathrm{Cl}), 132.5(0, \mathrm{C} 2), 79.0(0$, C5); MS $206\left(80, \mathrm{M}^{+}\right), 191$ (15), 178 (24), 123 (16), 122 (82), 94 (23), 93 (100), 80 (22), 79 (27), 77 (11), 66 (16), 65 (22), 53 (13), 41 (16).

4',4'-Dimethylspiro(bicyclo[2.2.2]octane-2,2'-cyclopentane)-1',3'-dione

35 (35). Tan-colored solid, mp $30-32^{\circ} \mathrm{C}$; IR 1755 (m), 1714 (s) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 2.88(1 \mathrm{H}, \mathrm{d}, J=17.3 \mathrm{~Hz}, \mathrm{H} 5), 2.40(1 \mathrm{H}, \mathrm{d}, J=17.3 \mathrm{~Hz}, \mathrm{H} 5), 1.82$ $(1 \mathrm{H}, \mathrm{m}), 1.78-1.71(3 \mathrm{H}, \mathrm{m}), 1.71-1.63(2 \mathrm{H}, \mathrm{m}), 1.63-1.52(2 \mathrm{H}, \mathrm{m}), 1.52-$ $1.41(2 \mathrm{H}, \mathrm{m}), 1.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 4\right.$-methyl), 1.37-1.29(2H, m), $1.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 4\right.$-methyl); ${ }^{13} \mathrm{C}$ NMR $\delta 218.4(0, \mathrm{C} 3), 214.3(0, \mathrm{C} 1), 61.5(0, \mathrm{C} 2), 49.9(2, \mathrm{C} 5), 45.7(0, \mathrm{C} 4), 32.4$ (1), 28.1 (2), 26.7 (3, C4-methyl), 25.8 (3, C4-methyl), 24.4 (2), 24.0 (2), 23.1 (1), 21.6 (2), 20.9 (2); MS 220 (59, M $), 141$ (13), 140 (89), 137 (11), 136 (100), 125 (20), 108 (15), 107 (27), 93 (25), 89 (14), $81(20), 80$ (37), 79 (70), 78 (11), 77 (28), 67 (17), 66 (16), 65 (11), 56 (13), $55(20), 53(23), 43$ (10), 41 (62); HRMS caled for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2} 220.1462$, found 220.1459 .

36a

36b
t-8-tert-Butyl-2,2-dimethyl- r-1-spiro[4.5]decane-1,4-dione (36a). White solid, $\mathrm{mp} 84-86^{\circ} \mathrm{C}$; IR 1752 (m), 1713 (s) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\delta 2.60(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 3), 1.80-1.37(8 \mathrm{H}, \mathrm{m}, \mathrm{H} 6, \mathrm{H} 7, \mathrm{H} 9$, $\mathrm{H} 10), 1.21(6 \mathrm{H}, \mathrm{s}, \mathrm{C} 2$-methyls), $1.06(1 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{H} 8), 0.87(9 \mathrm{H}$, s, t-butyl); ${ }^{13} \mathrm{C}$ NMR $\delta 220.5(0, \mathrm{Cl}), 216.1(0, \mathrm{C} 4), 55.0(0, \mathrm{C} 5)$, 50.4 (2, C3), 46.8 (1, C8), 46.3 ($0, \mathrm{C} 2$), 32.4 ($0, t$-butyl), 31.4 (2C, 2), 27.3 (3C, 3, t-butyl), 25.3 (2C, 3, C2-methyls), 21.9 (2C, 2); MS 250 (68, M $^{+}$), 235 (20), 194 (73), 193 (38), 166 (16), 152 (10), 151 (10), 140 (20), 139 (19), 123 (11), 110 (42), 109 (42), 107 (12), 95 (19), 83 (14), 82 (12), 81 (33), 79 (14), 67 (16), 57 (100), 56 (13), 55 (25), 53 (16), 43 (18), 41 (55); HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{2} 250.1931$, found 250.1952. For the 4-(2,4-dinitrophenylhydrazone) derivative $\mathbf{3 6 b}$ (purified by recrystallization): orange
solid, mp 234-235 ${ }^{\circ} \mathrm{C}$; IR (Nujol) 3312 (m), 1746 (m), 1712 (sh), 1618 (s), 1595 (s), 1518 (m) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 11.12(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 9.13(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}), 8.32(1 \mathrm{H}, \mathrm{dd}, J=2.5,9.6$ $\mathrm{Hz}), 7.93(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}), 2.78(2 \mathrm{H}, \mathrm{m}), 1.75-1.65(8 \mathrm{H}, \mathrm{m}), 1.25(6 \mathrm{H}, \mathrm{s}), 1.17(1 \mathrm{H}, \mathrm{br}$ $\mathrm{m}), 0.95(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\delta 220.8(0), 164.6(0), 145.0(0), 137.9(0), 130.0(1), 129.2$ $(0), 123.4$ (1), 116.3 (1), $52.6(0), 46.8(1), 46.0(0), 38.7(2), 33.1(2 \mathrm{C}, 3), 32.6(0), 27.4$ (3C, 3), 25.8 (2C, 3), 21.7 (2C, 2); MS $430\left(64, \mathrm{M}^{+}\right), 373$ (30), 320 (18), 319 (39), 318 (21), 248 (19), 233 (13), 138 (12), 82 (20), 81 (18), 69 (10), 67 (14), 57 (100), 55 (36), 43 (16), 41 (48); HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{~N}_{4} 430.2214$, found 430.2239. The structure of 36b was determined by X-ray crystallography. c-8-tert-Butyl-2,2-dimethyl-r-1-spiro[4.5]decane-1,4-dione (36c). Only

36c unequivocal signals, from mixture: ${ }^{1} \mathrm{H}$ NMR $\delta 2.59(2 \mathrm{H}, \mathrm{s}, \mathrm{H} 3), 1.25(6 \mathrm{H}$, s, C2-methyls), $0.88\left(9 \mathrm{H}, \mathrm{s}, t\right.$-butyl); ${ }^{13} \mathrm{C}$ NMR $\delta 220.6(0, \mathrm{Cl}), 216.4(0$, C4), 54.1 ($0, \mathrm{C} 5$), 50.1 (2, C3), 46.8 (1, C8), 46.3 ($0, \mathrm{C} 2$), 32.4 ($0, t$-butyl), 31.3 (2C, 2), 27.4 (3C, 3, t-butyl), 25.9 (2C, 3, C2-methyls), 21.3 (2C, 2). 2-(4-tert-Butylcyclohexylidene)-4,5-dihydro-5,5-dimethyl-

37 3(2H)-furanone (37). Yellow oil; IR 1724 (s), 1640 (s) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\delta 3.82(1 \mathrm{H}, \mathrm{m}), 2.80(1 \mathrm{H}, \mathrm{m}), 2.51(1 \mathrm{H}, \mathrm{d}, J=17.6$ $\mathrm{Hz}, \mathrm{H} 4), 2.45(1 \mathrm{H}, \mathrm{d}, J=17.6 \mathrm{~Hz}, \mathrm{H} 4), 1.89(2 \mathrm{H}, \mathrm{m}), 1.73(2 \mathrm{H}$, m), $1.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 5\right.$-methyl), $1.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 5\right.$-methyl), $\left.1.14(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 4)^{\prime}\right), 0.83(9 \mathrm{H}, \mathrm{s}, \mathrm{t}$ butyl); ${ }^{13} \mathrm{C}$ NMR $\delta 200.8(0, \mathrm{C} 3), 140.5\left(0, \mathrm{Cl}^{\prime}\right), 128.4(0, \mathrm{C} 2), 77.9(0, \mathrm{C} 5), 50.9(2, \mathrm{C} 4)$, 47.8 (1, C8), 32.5 (0,t-butyl), 28.7 (2), 28.5 (2), 28.2 (3, C5-methyl), 28.1 (3, C5methyl), 28.0 (2), 27.5 (3C, 3, t-butyl), 25.9 (2); MS 250 ($100, \mathrm{M}^{+}$), 166 (35), 151 (14),

123 (19), 110 (15), 109 (22), 107 (19), 95 (24), 83 (16), 82 (15), 81 (33), 79 (10), 69 (11), 67 (13), 57 (72), 56 (11), 55 (19), 53 (14), 41 (41).

38a,b; 39a,b
(cis)-1-(4-tert-Butylcyclohexyl)-4-methylpent-4-ene-1,2-dione (38a), (cis)-1-(4-tert-butylcyclohexyl)-4-methylpent-3-ene-1,2-dione (38b), (trans)-1-(4-tert-butylcyclohexyl)-4-methylpent-4-ene-1,2-dione (39a), and (trans)-1-(4-tert-butylcyclohexyl)-4-methylpent-3-ene-1,2-dione (39b). Initially obtained in a $7.7: 2.5: 1.1: 1$ ratio, respectively. Preparative TLC gave only 38b and 39b in a $2.6: 1$ ratio. From spectra of the mixtures: IR (mixture of $\mathbf{3 8 b}, \mathbf{3 9 b}$) $1706,1677,1614 \mathrm{~cm}^{-1}$; for $\mathbf{3 8 a}$: ${ }^{1} \mathrm{H}$ NMR $\delta 5.01$ $(1 \mathrm{H}, \mathrm{m}), 4.84(1 \mathrm{H}, \mathrm{m}), 3.44(2 \mathrm{H}, \mathrm{s}, \mathrm{H} 3), 1.79(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 4$-methyl), $0.83(9 \mathrm{H}, \mathrm{s}, \mathrm{t}$-butyl). For 38b: 'H NMR $\delta 6.61(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3), 3.44(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 1$ '), $2.25(3 \mathrm{H}, \mathrm{s}), 2.00(3 \mathrm{H}, \mathrm{s}), 0.86$ (9H, s, t-buryl); ${ }^{13} \mathrm{C}$ NMR $8205.9(0), 189.4(0), 163.1(0), 117.9(1), 48.0\left(\mathrm{l}, \mathrm{Hl}^{\prime}\right), 39.1$ (3), 32.5 ($0, t$-butyl), 28.5 (2), 28.4 (2), 27.4 (3C, 3, t-butyl), 26.6 (2C, 2), 23.6 (3). For 39a: ${ }^{1} \mathrm{H}$ NMR $\delta 4.97(1 \mathrm{H}, \mathrm{m}), 4.80(1 \mathrm{H}, \mathrm{m}), 3.04\left(1 \mathrm{H}, \mathrm{m}, \mathrm{Hl}{ }^{\prime}\right)$. For $\mathbf{3 9 b}$: ${ }^{\text {'H N NMR }} 86.70$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3), 3.15\left(1 \mathrm{H}, \mathrm{tt}, J=3.2,11.8 \mathrm{~Hz}, \mathrm{Hl}^{\prime}\right), 2.25(3 \mathrm{H} ; \mathrm{s}), 2.00(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR δ $204.6(0), 188.2(0), 163.3(0), 117.6$ (1), 47.4 (1), 43.3 (3), 32.4 ($0, t$-butyl), 28.6 (2), $27.5(2 \mathrm{C}, 2), 26.5(2 \mathrm{C}, 2), 21.6(3)$; MS (mixture of 38b, 39b) $250\left(2, \mathrm{M}^{+}\right), 83(100), 57$ (25), 55 (11).

Procedure for the reactions of 4 with enones. $\mathrm{BF}_{3} \mathrm{Et}_{2} \mathrm{O}(0.74 \mathrm{~mL}, 6.0 \mathrm{mmol})$ and $4(1.55 \mathrm{~g}, 6.0 \mathrm{mmol})$ were added in succession to a solution of the ketone (2.0 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The mixture was stirred at rt for 24 h before work-up. Chromatography provided the products. Yields and product ratios for the individual reactions are given in Table 2.

2,2-Dimethylspiro[4.5]dec-6-ene-1,4-dione (40). Oily tan solid, mp 30-

40 $32^{\circ} \mathrm{C}$; IR 1764 (m), 1722 (s), 1649 (w) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR 86.16 (1H, td, $J=$ $3.8,9.9 \mathrm{~Hz}, \mathrm{H} 7), 5.22(1 \mathrm{H}, \mathrm{td}, J=2.2,9.9 \mathrm{~Hz}, \mathrm{H} 6), 2.75(1 \mathrm{H}, \mathrm{d}, J=17.7$ $\mathrm{Hz}, \mathrm{H} 3), 2.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=17.7 \mathrm{~Hz}, \mathrm{H} 3), 2.20-2.04(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 8), 1.95-1.68$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{H} 9, \mathrm{H} 10$), 1.31 (3H, s, C2-methyl), 1.22 (3H, s, C2-methyl); ${ }^{13} \mathrm{C}$ NMR 8218.5 $(0, \mathrm{C} 1), 214.1(0, \mathrm{C} 4), 133.3(1, \mathrm{C} 7), 120.6(1, \mathrm{C} 6), 58.5(0, \mathrm{C} 5), 50.2(2, \mathrm{C} 3), 46.9(0$, C2), 29.2 (2), 25.7 (3, C2-methyl), 25.1 (3, C2-methyl), 23.8 (2, C8), 17.2 (2); MS 192 $\left(15, M^{\dagger}\right), 108(100), 80(42), 79(33), 77$ (11), 41 (13). HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}$ 192.1149, found 192.1148 .

41

2,2,7,9,9-Pentamethylspiro[4.5]dec-6-ene-1,4-dione (41). Yellow oil, contaminated with isomeric compound(s) (approximately 15\%); IR 1766 (m), 1724 (s), 1665 (w) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\delta 5.00(1 \mathrm{H}, \mathrm{d}, J=1.4 \mathrm{~Hz}, \mathrm{H} 6), 2.70$ $(1 \mathrm{H}, \mathrm{d}, J=17.0 \mathrm{~Hz}, \mathrm{H} 3), 2.64(1 \mathrm{H}, \mathrm{d}, J=17.0 \mathrm{~Hz}, \mathrm{H} 3), 1.77(\mathrm{lH}$, overlapped d), $1.71(3 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}, \mathrm{C} 7$-methyl $), 1.65(1 \mathrm{H}, \mathrm{d}, J=13.8 \mathrm{~Hz}, \mathrm{H} 10), 1.52$ $(1 \mathrm{H}, \mathrm{d}, J=13.8 \mathrm{~Hz}, \mathrm{H} 10), 1.22(3 \mathrm{H}, \mathrm{s}), 1.21(3 \mathrm{H}, \mathrm{s}), 1.00(3 \mathrm{H}, \mathrm{s}), 0.95(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\delta 218.4(0, \mathrm{Cl}), 213.6(0, \mathrm{C} 4), 139.3(0, \mathrm{C} 7), 113.9(1, \mathrm{C} 6), 61.5(0, \mathrm{C} 5), 50.2(2, \mathrm{C} 3)$, 47.0 (0, C2), 43.1 (2), 39.9 (2), 30.2 (3), 30.0 (0, C9), 28.2 (3), 25.5 (3), 25.3 (3), 24.5 (3); MS $34\left(24, \mathrm{M}^{+}\right), 150(100), 135(17), 107$ (77), 91 (27), 79 (16), 77 (13), 55 (12), 41 (32); HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2}$ 234.1619, found 234.1613.

42a,b
(E)- (42a) and (Z)-3,4-Dihydro-3,3-dimethyl-5-(3,5,5-
trimethylcyclohex-2-enylidene)-2-furanone (42b). From spectra of the mixture: UV (cyclohexane) $267 \mathrm{~nm}(\varepsilon=8,700)$; IR 1797 (s), $1686(\mathrm{~m}), 1636(\mathrm{~m}), 1086(\mathrm{~s}) \mathrm{cm}^{-1}$; for 42a: ${ }^{1} \mathrm{H}$ NMR $85.74(1 \mathrm{H}, \mathrm{dd}, J=1.4,3.0 \mathrm{~Hz}$,
$\left.\mathrm{H} 2^{\prime}\right), \mathbf{2 . 7 6}(2 \mathrm{H}, \mathrm{s}, \mathrm{H} 4), 2.15(2 \mathrm{H}$, apparent t, $J=1.8 \mathrm{~Hz}), 1.85(2 \mathrm{H}, \mathrm{br} \mathrm{s}), \mathbf{1 . 7 7}(3 \mathrm{H}, \mathrm{br} \mathrm{s}$, C3'-methyl), 1.29 ($6 \mathrm{H}, \mathrm{s}, \mathrm{C} 3$-methyls), 0.91 ($6 \mathrm{H}, \mathrm{s}, \mathrm{C} 5$-methyls); NOE data 5.74 (2.76, $7 \% ; 1.77,4 \%), 2.76(5.74,13 \%, 1.29,6 \%) ;{ }^{13} \mathrm{C}$ NMR 8180.4 ($0, \mathrm{C} 2$), 145.0 (0), 135.8 (0), 116.9 ($\left.1, \mathrm{C} 2^{\prime}\right), 113.0(0), 44.8$ (2, C4), $40.0(0, C 3), 38.6$ (2), 36.5 (2), 29.8 ($\left.0, \mathrm{C} 5^{\prime}\right)$, 28.32 (2C, 3, C5'-methyl), 25.0 (2C, 3, C3-methyls), 24.3 (3, C3'-methyl). For 42b: 'H NMR $\delta 6.26\left(1 \mathrm{H}, \mathrm{dd}, J=1.4,2.8 \mathrm{~Hz}, \mathrm{H}^{\prime}\right), 2.69(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H} 4), 1.85\left(4 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}^{\prime}, \mathrm{H}^{\prime}\right)$, 1.77 ($3 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{C} 3^{\prime}$-methyl), 1.28 ($6 \mathrm{H}, \mathrm{s}, \mathrm{C} 3$-methyls), 0.92 ($6 \mathrm{H}, \mathrm{s}, \mathrm{C} 5^{\prime}$-methyls); NOE data $6.26(1.77,2 \%), 2.69(1.85,6 \%, 1.28,8 \%) ;{ }^{13} \mathrm{C}$ NMR $\delta 180.3(0, \mathrm{C} 2), 140.6(0)$, $135.1(0), 116.6\left(1, C^{\prime}\right), 112.0(0), 44.8(2, C 4), 39.9(0, C 3), 39.0(2), 37.8(2), 30.3(0$,
 $\left(23, \mathrm{M}^{+}\right), 150(100), 135(13), 107$ (63), 91 (21), 79 (15), 77 (11), 41 (24).

2,2,8,8-Tetramethylspiro[4.5]dec-6-ene-1,4-dione (43). White solid, mp

43 $41-42^{\circ} \mathrm{C}$; IR (Nujol) $1756(\mathrm{~m}), 1723(\mathrm{~s}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 5.87$ ($1 \mathrm{H}, \mathrm{d}, J=$ $9.9 \mathrm{~Hz}, \mathrm{H} 7), 5.09(1 \mathrm{H}, \mathrm{d}, J=9.8 \mathrm{~Hz}, \mathrm{H} 6), 2.74(1 \mathrm{H}, \mathrm{d}, J=17.6 \mathrm{~Hz}, \mathrm{H} 3)$, $2.66(1 \mathrm{H}, \mathrm{d}, J=17.6 \mathrm{~Hz}, \mathrm{H} 3), 1.84-1.50(4 \mathrm{H}, \mathrm{m}, \mathrm{H} 9, \mathrm{H} 10), 1.30(3 \mathrm{H}, \mathrm{s})$, $1.22(3 \mathrm{H}, \mathrm{s}), 1.06(3 \mathrm{H}, \mathrm{s}), 1.04(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\delta 218.3(0, \mathrm{Cl}), 213.9(0$, C4), 143.3 (1, C7), 118.3 (1, C6), $58.8(0, C 5), 50.3(2, C 3), 46.9(0, C 2), 31.9(2), 31.1$ ($0, \mathrm{C} 8$), 29.2 (3), 29.1 (3), 26.9 (2), 25.7 (3), 25.2 (3); MS 220 ($19, \mathrm{M}^{+}$), 205 (12), 136 (44), 121 (100), 93 (15), 91 (15), 77 (18), 41 (20). HRMS caled for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2} 220.1462$, found 220.1464 .

(E) - and (Z)-3,4-Dihydro-3,3-dimethyl-5-(4,4-dimethylcyclohex-2-enylidene)-2-furanone (44a,b). ${ }^{1} \mathrm{H}$ NMR (selected signals from mixture) $\delta 6.37(\mathrm{IH}, \mathrm{d}, J=10.0 \mathrm{~Hz}), 5.86(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}), 5.56$
$44 a, b$ $(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}), 5.52(1 \mathrm{H}, \mathrm{d}, J=9.9 \mathrm{~Hz}), 2.75(2 \mathrm{H}$, apparent t, $J=1.6 \mathrm{~Hz}), 2.70(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 1.31(6 \mathrm{H}, \mathrm{s}), 1.02(6 \mathrm{H}, \mathrm{s})$.

4,5-Dihydro-2-hydroxy-2-(1-hydroxy-1-methylethyl)-5,5-dimethyl-

45 3(2H)-furanone (45). Exposure of 18 to air left 45 as a yellow oil: IR 3468 (s), $1760(\mathrm{~s}), 1660(\mathrm{w}) \mathrm{cm}^{-1}$; ${ }^{\mathrm{t}} \mathrm{H}$ NMR $\delta 3.64(\mathrm{IH}, \mathrm{OH}), 2.64(1 \mathrm{H}, \mathrm{d}$, $J=18.0 \mathrm{~Hz}, \mathrm{H} 4), 2.55(1 \mathrm{H}, \mathrm{OH}), 2.43(1 \mathrm{H}, \mathrm{d}, J=18.0 \mathrm{~Hz}, \mathrm{H} 4), 1.49$ $(3 \mathrm{H}, \mathrm{s}), 1.46(3 \mathrm{H}, \mathrm{s}), 1.27(3 \mathrm{H}, \mathrm{s}), 1.26(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\delta 213.6(0, \mathrm{C} 3), 100.2(0, \mathrm{C} 2)$, 78.1 (0), 73.9 (0), 49.1 (2, C4), 29.7 (3), 29.4 (3), 23.9 (3), 22.9 (3); MS no M ${ }^{+}, 171$ (2), 155 (4), 130 (34), 105 (24), 87 (19), 85 (34), 84 (25), 83 (26), 69 (27), 59 (87), 57 (10), 56 (100), 55 (13), 43 (61), 41 (46).

46a

46b
(1'R/S,2R/S,2'R/S)- (46a) and (1'R/S,2R/S,2'S/R)-4,5-Dihydro-2-hydroxy-2-(1-hydroxy-2-methylcyclohexyl)-5,5-dimethyl-3(2H)furanone (46b). Exposure of $\mathbf{3 0} \mathrm{a} / \mathrm{b}$ to air left a waxy yellow solid. Chromatography provided a colorless oil consisting of 46a and 46b in a $1.5: 1$ ratio. Crystallization occurred during refrigeration to provide a small, homogenous sample of 46a: colorless solid; mp $107.5-109.5^{\circ} \mathrm{C}$; IR $3434,1762 \mathrm{~cm}^{-1}$; 'H NMR $\delta 3.69$ ($\mathrm{IH}, \mathrm{s}, \mathrm{OH}$), $2.63(1 \mathrm{H}, \mathrm{d}, J=18.7 \mathrm{~Hz}, \mathrm{H} 4), 2.53(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 2.42(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=18.7 \mathrm{~Hz}, \mathrm{H} 4), 2.08-1.84$ ($3 \mathrm{H}, \mathrm{m}$), 1.70-1.50 ($3 \mathrm{H}, \mathrm{m}$), 1.49 ($3 \mathrm{H}, \mathrm{s}, \mathrm{C}$-methyl), 1.43 ($3 \mathrm{H}, \mathrm{s}, \mathrm{C} 5$-methyl), 1.42-1.20 $(3 \mathrm{H}, \mathrm{m}), 1.00\left(3 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, \mathrm{C} 2\right.$-methyl); ${ }^{13} \mathrm{C}$ NMR $\delta 213.6(0, \mathrm{C} 3), 100.5(0, \mathrm{C} 2)$,
77.7 (0), 77.2 (0), 48.3 (2, C4), 34.2 (1, C2'), 30.3 (3, C5-methyl), 29.8 (3, C5-methyl), 29.4 (2), 26.5 (2), 21.0 (2), 19.8 (2), 16.2 (3, C2'-methyl); MS no M ${ }^{+}, 225$ (4), 223 (10), 213 (13), 211 (32), 141 (11), 139 (13), 124 (10), 123 (12), 113 (68), 112 (13), 111 (22), $95(56), 84$ (17), 83 (100), 81 (10), 69 (16), 68 (15), 67 (16), 59 (20), 57 (11), 56 (48), 55 (77), 45 (16), 44 (11), $43(54), 42(13), 41(57) ;$ HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{O}_{3}\left(\mathrm{M}^{+} \cdot \mathrm{OH}\right)$ 225.1490 , found 225.1470 . The structure of 46a was determined by X-ray crystallography. For $\mathbf{4 6 b}$: ${ }^{1} \mathrm{H}$ NMR $\delta 3.74(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 2.58(1 \mathrm{H}, \mathrm{d}, J=18.4 \mathrm{~Hz}, \mathrm{H} 4)$, $2.49(1 \mathrm{H}, \mathrm{d}, J=18.4 \mathrm{~Hz}, \mathrm{H} 4), 2.22(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 1.48(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 5$-methyl $), 1.47(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 5-$ methyl), $1.05\left(3 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}, \mathrm{C} 2\right.$-methyl), 1.77 (2 H , apparent triplet); ${ }^{13} \mathrm{C}$ NMR δ $214.0(0, \mathrm{C} 3), 100.4(0, \mathrm{C} 2), 78.6(0), 76.8(0), 48.5(2, \mathrm{C} 4), 35.4(1, \mathrm{C} 2), 30.0(3, \mathrm{C} 5-$ methyl), 29.6 (3, C5-methyl), 24.8 (2), 21.1 (2), 20.8 (2), 19.7 (2), 16.6 (3, C2'-methyl). 2-Hydroxy-2-(1-hydroxycyclohexyl)-4,4-dimethylcyclobutanone
 (47). White solid; mp $145-148^{\circ} \mathrm{C}$; IR (Nujol) $3452,1766 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 3.38(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.18(1 \mathrm{H} . \mathrm{d}, J=12.8 \mathrm{~Hz}, \mathrm{H} 3), 1.91(1 \mathrm{H}$, d. $J=12.8 \mathrm{~Hz}, \mathrm{H} 3), 1.83(1 \mathrm{H} . \mathrm{m}), 1.73(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 1.67-1.40(6 \mathrm{H}, \mathrm{m})$. $1.36\left(3 \mathrm{H}, \mathrm{s}\right.$. C4-methyl), $1.27-1.16(2 \mathrm{H}, \mathrm{m}), 1.15\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 4\right.$-methyl); ${ }^{13} \mathrm{C}$ NMR $\delta 220.0$ (0, C1), 92.6 (0, C2), 73.3 (0. C1'), 55.2 (0, C4), 38.6 (2, C3), 32.1 (2), 29.6 (2), 25.6 (2), 24.7 (3, C4-methyl), 20.9 (3, C4-methyl), 20.8 (2), 20.7 (2); MS no M+, 194 (10), 111 $(10), 110(100), 99(30), 82(22), 81(33), 70(30), 69(14), 67(47), 55(19), 43(37), 42$ (13), 41 (32); HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2}\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right)$ 194.1307, found 194.1311 .

Compound 47 ($10.1 \mathrm{mg}, 47.5 \mathrm{mmol}$) was stirred with $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(1.1 \mathrm{~mL})$ for 2 h . Work-up gave a yellow oil (11.8 mg), which ${ }^{1} \mathrm{H}$ NMR revealed to be a $3.0: 1$ mixture of 26 and 27. A solution of $47(18.3 \mathrm{mg}, 86.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.7 \mathrm{~mL})$ and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$
(0.18 mL) was stirred for 15 h at rt . Work-up gave an oily, brown solid $(24.4 \mathrm{mg})$, which contained only 26 but no trace of 27.

2-(c-4-tert-Butyl-r-1-hydroxycyclohexyl)-2-hydroxy-4,4-
 dimethylcyclobutanone (48). White solid; mp $158-159.5^{\circ} \mathrm{C}$; IR $3495,3404,1761 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 3.30(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.15(\mathrm{IH}$, $\mathrm{dd}, J=0.9,12.9 \mathrm{~Hz}, \mathrm{H} 3), 1.91(1 \mathrm{H}, \mathrm{d}, J=12.9 \mathrm{~Hz}, \mathrm{H} 3), 1.90$ (1H, m), 1.72-1.40(6H, m), 1.37 (3H, s, C4-methyl), 1.31 ($1 \mathrm{H}, \mathrm{br}$ m), $1.16(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 4-$ methyl), $0.96\left(1 \mathrm{H}\right.$, apparent $\left.\mathrm{tt}, J=2.9,11.8 \mathrm{~Hz}, \mathrm{H}^{\prime}\right), 0.87\left(9 \mathrm{H}, \mathrm{s}, t\right.$-butyl); ${ }^{13} \mathrm{C}$ NMR δ $220.0(0, \mathrm{Cl}), 92.6(0, \mathrm{C} 2), 72.9(0, \mathrm{Cl})$, $55.2(0, \mathrm{C} 4), 47.7\left(1, \mathrm{C}^{\prime}\right), 38.7(2, \mathrm{C} 3), 32.6$ (2), 32.4 ($0, t$-butyl), 30.2 (2), 27.5 (3C, 3, t-butyl), 24.7 (3, C4-methyl), 21.8 (2), 21.6 (2), 20.9 (3, C4-methyl); MS 268 (5, M ${ }^{+}$), 250 (21), 240 (22), 235 (12), 222 (13), 207 (18). 194 (10), 193 (12), 167 (16), 166 (100), 165 (23), $155(76), 151$ (18), 138 (11), 137 (20), 130 (12), 123 (25), 114 (16), 113 (14), 110 (17), 109 (39), 107 (12), 98 (40), 97 (20), $96(16), 95(57), 86(12), 85(25), 84(13), 83(36), 82(24), 81(64), 80(10), 79$ (14), 71 (12), 70 (35), 69 (24), 67 (24), 57 (100), 56 (18), 55 (36), 43 (41), 42 (11). 41 (54); HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{2}\left(\mathrm{M}^{+} \cdot \mathrm{H}_{2} \mathrm{O}\right) \mathbf{2 5 0 . 1 9 3 1}$, found 250.1933. The structure of $\mathbf{4 8}$ was determined by X-ray crystallography.

Compound $48(60.8 \mathrm{mg}, 0.227 \mathrm{mmol})$ was stirred with $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(1.0 \mathrm{~mL})$ for 20 h. Work-up gave 56.0 mg of a mixture of 36 a and 37 in a $8: 1$ ratio by GC-MS.

A solution of $48(122 \mathrm{mg}, 0.489 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.90$ mL) was stirred for 21 h at rt . Work-up gave an oily, tan solid (107 mg), consisting of a 13: 1 mixture of $\mathbf{3 6 a}$ and $\mathbf{3 7}$ by GC-MS.

A solution of $48(84 \mathrm{mg}, 0.31 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.6 \mathrm{~mL})$ with $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.58$ $\mathrm{mL})$ and $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ was stirred for 23 h at rt . Work-up gave 36 a as pale yellow solid ($77 \mathrm{mg}, 98 \%$).

51

3,3,4,4-Tetramethyl-1,2-bis(trimethylsilyloxy)cyclobutene (51). Colorless liquid, $\mathrm{bp}_{2.5 \mathrm{~mm}} 83-87.8^{\circ} \mathrm{C}$; IR $1719 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.01$ ($12 \mathrm{H}, \mathrm{s}, \mathrm{C} 3, \mathrm{C} 4$-methyls), $0.20(6 \mathrm{H}, \mathrm{s}, \mathrm{OTMS}) ;{ }^{13} \mathrm{C}$ NMR $\delta 128.2$ (2 C , $0, \mathrm{Cl}, \mathrm{C} 2), 43.9$ (2C, 0, C3, C4), 21.8 (4C, 3, C3, C4-methyls), 0.6 (6C, 3, OTMS); MS 286 (29, M ${ }^{+}$), 271 (10), 243 (14), 181 (14), 147 (42), 75 (16), 73 (100), 45 (18); HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Si}_{2}$ 286.1783, found 286.1783.

4,5-Dihydro-2-isopropylidene-4,4,5,5-tetramethyl-3(2H)-furanone (52). Yellow oil (31% yield from acetone); UV (cyciohexane) 285 nm (ε

52 $=10,000$); IR $1726(\mathrm{~s}), 1605(\mathrm{~s}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 2.08(3 \mathrm{H}, \mathrm{s}), 1.79(3 \mathrm{H}$, s), $1.22(6 \mathrm{H}, \mathrm{s}), 1.00(6 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\delta 205.2(0, \mathrm{C} 2), 141.8\left(0, \mathrm{C} 2{ }^{\prime}\right), 121.1(0, \mathrm{C} 3), 83.1$ (0, C5), $51.0(0, \mathrm{C} 4), 23.5(2 \mathrm{C}, 3), 19.5$ (3C, 3), 17.1 (3); MS 182 ($40, \mathrm{M}^{+}$), 168 (15), 168 $(15), 167(10), 153(10), 85(17), 84(100), 71(23), 70(56), 69(67), 55(17), 43(38), 42$ (21), 41 (50); HRMS caled for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{2}$ 182.1306, found 182.1298 .

53 2-Cyclohexylidene-4,5-dihydro-4,4,5,5-tetramethyl-3(2H)furanone (53). Tan-colored oil (35\% yield from cyclohexanone); ${ }^{1} \mathrm{H}$ NMR $\delta 2.74(2 \mathrm{H}, \mathrm{m}), 2.25\left(2 \mathrm{H}\right.$, distorted t), $1.75-1.40\left(6 \mathrm{H}, \mathrm{m}, \mathrm{H} 3{ }^{\prime}-\right.$ $\left.\mathrm{H}^{\prime}\right), 1.22(3 \mathrm{H}, \mathrm{s}), 1.00(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $8206.0(0, \mathrm{C} 2), 139.0(0, \mathrm{C} 2$), $129.4(0, \mathrm{C} 3)$, 82.9 (0, C5), 51.2 (0, C4), 28.6 (2), 28.1 (2), 27.2 (2), 26.4 (2), 26.2 (2), 23.4 (3), 19.6 (3).

2-Methyl-2-phenylcyclopentane-1,3-dione (54). A solution of

54 acetophenone ($241 \mathrm{mg}, 2.01 \mathrm{mmol}$), $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.30 \mathrm{~mL}, 2.4 \mathrm{mmol})$, and $1(0.73 \mathrm{~g}, 3.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was stirred at rt for 25.5 h . Work-up gave a viscous, tan-colored oil (406 mg). Chromatography ($0.5 / 99.5 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded 54 as a pale yellow oil ($267 \mathrm{mg}, 70 \%$). Spectra were as reported in ref. 3.
$\mathbf{2}^{\prime}, 3^{\prime}$-Dihydrospiro(cyclopentane-1,1'-[1H]indene)-2,5-dione (55). A

55 solution of 1 -indanone $(1.33 \mathrm{~g}, 10.0 \mathrm{mmol}), \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(1.85 \mathrm{~mL}, 15.1$ mmol), and $1(3.70 \mathrm{~g}, 16.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(36 \mathrm{~mL})$ was stirred at rt for 24 h . Work-up gave a brown resin. Chromatography (40/60

EtOAc/petroleum ether) provided a yellow solid ($1.48 \mathrm{~g}, 75 \%$). Spectra were as reported in ref. 6.

56

57
$1,{ }^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}-$ Tetrahydrospiro(cyclopentane-1,1'-naphthalene)-2,5dione (56) and 3,4-dihydro-5-(1-naphthylidene)-2-furanone (57). A solution of 1-tetralone ($226 \mathrm{mg}, 1.54 \mathrm{mmol}$), $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.30 \mathrm{~mL}, 2.4$ mmol), and $1(0.71 \mathrm{~g}, 3.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10.0 \mathrm{~mL})$ was stirred at rt for 19 h . Work-up supplied a tan-colored resin (407 mg).

Chromatography ($30 / 70 \mathrm{EtOAc}$ /petroleum ether) provided 56 as a white solid (139 mg, 42\%) as well as recovered 1-tetralone ($47 \mathrm{mg}, 21 \%$) and 57 as a beige solid ($2 \mathrm{mg}, 2 \%$); IR $\left(\mathrm{CCl}_{4}\right) 1803(\mathrm{~s}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 8.04(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.7$ $\mathrm{Hz}), 7.24-7.06(3 \mathrm{H}, \mathrm{m}), 3.01(2 \mathrm{H}$, apparent $\mathrm{t}, J=8.6 \mathrm{~Hz}), 2.85-2.66(4 \mathrm{H}, \mathrm{m}), 2.37(2 \mathrm{H}$, apparent $\mathrm{t}, J=6.2 \mathrm{~Hz}), 1.86(2 \mathrm{H}, \mathrm{m})$. Spectra for 56 were as reported in ref. 6.
$1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}$-Tetrahydro-4'-oxaspiro(cyclopentane-1,1'-naphthalene)-

58

59a

59b

2,5-dione (58) and (E)- and (Z)-3,4-dihydro-5-(1-($1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}-$ tetrahydro-4-oxanaphthylidene))-2-furanone (59a,b). A solution of 4-chromanone ($254 \mathrm{mg}, 1.71 \mathrm{mmol}$), $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.32 \mathrm{~mL}, 2.6 \mathrm{mmol}$), and $1(0.79 \mathrm{~g}, 3.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was stirred at rt for 23 h . Work-up gave a tan-colored resin (432 mg). Chromatography (0.5/99.5 $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) provided $58(168 \mathrm{mg}, 45 \%)$ as a pale yellow solid, mp $110-111.5^{\circ} \mathrm{C}$ and $59 \mathrm{a}, \mathrm{b}$ as a gummy, yellow solid ($40 \mathrm{mg}, 11 \%$) (1.5:1 mixture of geometric isomers). For 58: IR (CCl_{4}) 1721 (s), 1603 (w), $1581(\mathrm{w}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.19(1 \mathrm{H}, \mathrm{dt}, J=1.3,7.7 \mathrm{~Hz}), 6.91(1 \mathrm{H}, \mathrm{d}, J=$ $7.4 \mathrm{~Hz}), 6.85(1 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 6.58(1 \mathrm{H}, \mathrm{dd}, J=1.6,7.7 \mathrm{~Hz}), 4.33$ $(2 \mathrm{H}, \mathrm{t}, J=5.2 \mathrm{~Hz}), 3.02(4 \mathrm{H}$, symmetric m$), 2.08(2 \mathrm{H}, \mathrm{t}, J=5.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 213.6$ (2C, 0, C2, C5), 155.2 (0), 129.2 (1), 128.0 (1), 120.9 (1), 117.7 (1), 117.6 (0), 60.7 (2), 60.0 (0, C1), 35.2 (2C, 2, C3, C4), 28.9 (2); MS 216 (100, M ${ }^{+}$), 160 (32), 146 (21), 132 (27), 131 (81), 103 (11), 77 (16), 51 (19); HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{3}$ 216.0786 , found 216.0775 . For $59 \mathrm{a}, \mathbf{b}$: from spectra of the mixture: IR $\left(\mathrm{CCl}_{4}\right) 1800(\mathrm{~s})$, $1670(\mathrm{~m}), 1124(\mathrm{~s}) \mathrm{cm}^{-1}$; 59a: ${ }^{1} \mathrm{H}$ NMR (discernable signals) $\delta 7.19(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=7.8 \mathrm{~Hz}$), $2.53\left(2 \mathrm{H}, \mathrm{br}\right.$ t). 59b: ${ }^{1} \mathrm{H}$ NMR (discernable signals) $\delta 8.10(1 \mathrm{H}, \mathrm{dd}, J=1.6,8.0 \mathrm{~Hz}), 3.25$ $(2 \mathrm{H}, \mathrm{br} \mathrm{t}) .{ }^{13} \mathrm{C}$ NMR (signals for both isomers) $\delta 174.9 / 174.0(0, \mathrm{C} 2), 154.6 / 153.7(0)$, $143.5 / 142.5$ (0), 108.3/104.7 (0), 65.9/65.5 (2); MS 216 (100, M ${ }^{+}$), 160 (34), 148 (16), 146 (22), 133 (10), 132 (27), 131 (79), 120 (23), 103 (11), 92 (12), 86 (35), 84 (55), 80 (10), 77 (17), 63 (11), 55 (11), 51 (20), 47 (13); HRMS caled for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{3}$ 216.0786, found 216.0774 .

60

61

2,2-Diphenylcyclopentane-1,3-dione (60) and 3,4-dihydro-5-(diphenylmethylene)-2-furanone (61). A solution of benzophenone ($277 \mathrm{mg}, 1.52 \mathrm{mmol}$), $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.30 \mathrm{~mL}, 2.4 \mathrm{mmol})$, and $1(0.70 \mathrm{~g}$, $3.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was stirred at rt for 22 h . Work-up afforded an oily brown solid. Chromatography ($0.5 / 99.5$ $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave a beige solid (330 mg) composed of 60 and 61 in a 6.3 : 1 ratio. Further chromatography ($20 / 80 \mathrm{EtOAc} /$ petroleum ether) provided analytical samples of each component. For 60: pale yellow solid; $\mathrm{mp} 158-160^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $87.40-7.28(6 \mathrm{H}, \mathrm{m}), 7.12-7.04(4 \mathrm{H}, \mathrm{m}), 2.96$ (4H, s, H4, H5); ${ }^{13} \mathrm{C}$ NMR $\delta 211.3$ (2C, 0, Cl, C3), 136.5 (2C, 0), 128.9 (1), 128.1 (1), 72.2 (0), 36.0 (2C, 2, C4, C5); IR (Nujol) 1721 (s) cm^{-1}; MS 250 (100, M+), 222 (11), 194 (12), 167 (17), 166 (44), 165 (53), 83 (11), 82 (12); HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{2}$ 250.0993, found 250.1001 . For 61: Yellow solid, mp $103.5-106.5^{\circ} \mathrm{C}$; IR 1804 (s), 1657 (m), 1597 (w), 1495 (m), 1113 (s) cm ${ }^{-1}$; 'H NMR $\delta 7.44-7.16$ ($10 \mathrm{H}, \mathrm{m}$, aryl), $2.92(2 \mathrm{H}, \mathrm{m}), 2.70$ $(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\delta 174.7(0, \mathrm{C} 2), 146.2(0), 138.7(0), 137.5(0), 129.9(2 \mathrm{C}, 1), 129.2$ (2C, 1), 128.6 (2C, 1), 127.9 (2C, 1), 127.3 (1), 126.8 (1), 118.5 (0), 27.5 (2), 25.9 (2); MS 250 ($100, \mathrm{M}^{+}$), 222 (14), 194 (12), 167 (18), 166 (40), 165 (53), 83 (11), 82 (11); HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{2} 250.0993$, found 250.0995 .

62a

62b
($2 R^{*}, 4 R^{*}$)-(62a) and ($2 R^{*}, 4 S^{*}$)-2,4-Dimethyl-2-phenyl-1,3cyclopentanedione (62b). (a) A solution of acetophenone (236 mg , $1.97 \mathrm{mmol}), \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.29 \mathrm{~mL}, 2.3 \mathrm{mmol})$, and $3(0.77 \mathrm{~g}, 3.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was stirred at rt for 26 h . Work-up provided a tan oil (490 mg). Chromatography ($0.5 / 99.5 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave a yellow oil ($304 \mathrm{mg}, 77 \%$) as a $1: 2.6$ mixture of $\mathbf{6 2 a}$ and $\mathbf{6 2 b}$.
(b) To a solution of acetophenone ethylene acetal ($326 \mathrm{mg}, 1.98 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.37 \mathrm{~mL}, 3.0 \mathrm{mmol})$ and $3(1.46 \mathrm{~g}, 6.00 \mathrm{mmol})$. After stirring at rt for 26 h , work-up gave a yellow resin (902 $\mathrm{mg})$. Chromatography $\left(0.5 / 99.5 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ gave a yellow oil $(265 \mathrm{mg}, 63 \%)$ as a 1 : 1.2 mixture of $\mathbf{6 2 a}$ and $\mathbf{6 2 b}$. Further chromatography ($20 / 80 \mathrm{EtOAc} /$ hexanes) provided a small sample of each isomer for NMR analysis. For the 62a,b mixture: IR 1765 (m), 1724 (s), $1600(\mathrm{w}), 1494(\mathrm{~m}) \mathrm{cm}^{-1} ;$ MS 202 (8, M ${ }^{+}$), 132 (45), 105 (14), 104 (100), 103 (42), 78 (61), 77 (42), 63 (15), 52 (12), 51 (34), 50 (11), 42 (21), 41 (34); HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{2}$ 202.0993, found 202.0990. For 62a: colorless oil; ${ }^{1} \mathrm{H}$ NMR $87.39-7.25(3 \mathrm{H}$, m), $7.25-7.17(2 \mathrm{H}, \mathrm{m}), 3.13(1 \mathrm{H}, \mathrm{dd}, J=11.7,18.2 \mathrm{~Hz}, \mathrm{H} 5), 3.01(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 4), 2.34(1 \mathrm{H}$, dd, $J=8.0,18.2 \mathrm{~Hz}, \mathrm{H} 5), 1.43(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 2$-methyl), $1.28(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{C} 4$-methyl); ${ }^{13} \mathrm{C}$ NMR $\delta 215.0(0, \mathrm{C} 4), 212.6(0, \mathrm{C} 1), 137.4(0), 129.3(2 \mathrm{C}, 1), 127.8(1), 126.2$ (2C, 1), 62.1 ($0, \mathrm{C} 2$), 43.9 (2, C5), 40.8 (1, C4), 20.1 (3, C2-methyl), 14.7 (3, C4-methyl). For 62b: Pale yellow oil; ${ }^{1} \mathrm{H}$ NMR $\delta 7.40-7.25(3 \mathrm{H}, \mathrm{m}), 7.25-7.19(2 \mathrm{H}, \mathrm{m}), 2.98(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ $9.6,16.7 \mathrm{~Hz}, \mathrm{H} 5$ syn to phenyl), $2.86(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 4), 2.53(1 \mathrm{H}, \mathrm{dd}, J=8.6,16.7 \mathrm{~Hz}, \mathrm{H} 5)$, 1.43 (3H, s, C2-methyl), 1.29 (3H, d, $J=7.1 \mathrm{~Hz}, \mathrm{C} 4$-methyl); NOE data 2.53 (2.98, 6\%; $2.86,4 \%), 1.43(7.22,8 \% ; 2.86,2 \%) ;{ }^{13} \mathrm{C}$ NMR $8216.2(0, \mathrm{C} 4), 212.7(0, \mathrm{Cl}), 137.0(0)$,
129.0 (2C, 1), 127.7 (1), 126.4 (2C, 1), $61.0(0, C 2), 43.7(2, C 5), 42.0(1, C 4), 20.8(3$, C2-methyl), 16.9 (3, C4-methyl).

63a
($2 R^{*}, 4 R^{*}$) - (63 a) and ($\left.2 R^{*}, 4 S^{*}\right)$-2', 3^{\prime}-Dihydro-4-methylspiro(cyclopentane-2,1'-[1H]indene)-1,3-dione (63b). (a) A solution of 1 -indanone ($259 \mathrm{mg}, 1.96 \mathrm{mmol}$), $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.36 \mathrm{~mL}, 3.0$ mmol), and $3(1.45 \mathrm{~g}, 5.93 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10.0 \mathrm{~mL})$ was stirred at rt for 25 h . Work-up gave a yellow resin (853 mg). Chromatography ($1 / 99 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave a viscous, yellow oil ($261 \mathrm{mg}, 62 \%$) as a $1.8: 1$ mixture of 63 a and $\mathbf{6 3 b}$.
63b
(b) To a solution of 1-indanone ethylene acetal ($338 \mathrm{mg}, 1.92 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.35 \mathrm{~mL}, 2.8 \mathrm{mmol})$ and $\mathbf{3}(1.43 \mathrm{~g}, 5.85 \mathrm{mmol})$. After stirring at rt for 24 h , work-up gave a yellow resin (790 mg). Chromatography ($\mathrm{t} / 99$ $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave a viscous, yellow oil ($228 \mathrm{mg}, 55 \%$) as a $1: 1.5$ mixture of 63 a and 63b. Further chromatography ($20 / 80 \mathrm{EtOAc} /$ petroleum ether) provided a small sample of each isomer for NMR analysis. For the 63a,b mixture: IR $1765(\mathrm{~m}), 1721(\mathrm{~s}) \mathrm{cm}^{-1}$; MS 214 (77, M ${ }^{*}$), 145 (12), 144 (100), 117 (13), 116 (85), 115 (75), 41 (12); HRMS caled for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2} 214.0993$, found 214.0997 . For 63a: viscous, yellow oil; 'H NMR $\delta 7.30(1 \mathrm{H}$, d, $J=8.0 \mathrm{~Hz}), 7.23(1 \mathrm{H}$, apparent $\mathrm{t}, J=7.4 \mathrm{~Hz}), 7.15(1 \mathrm{H}$, apparent $\mathrm{t}, J=7.2 \mathrm{~Hz}), 6.93$ $(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 3.32(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 5), 3.29-3.09\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H} 4, \mathrm{H}^{\prime}\right), 2.59-2.32(2 \mathrm{H}, \mathrm{m}$, H^{\prime}), 2.49 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H} 5$), L .37 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{C} 4$-methyl); ${ }^{13} \mathrm{C}$ NMR $8214.9(0, \mathrm{C} 3)$, 212.8 ($0, \mathrm{Cl}$), 144.6 (0), 141.0 (0), 128.1 (1), 126.7 (1), 125.2 (1), 122.2 (1), 69.5 ($0, \mathrm{C} 2$), 44.1 (2, C5), 41.6 (1, C4), 32.6 (2), 31.6 (2), 15.1 (3, C4-methyl).

For 63b: viscous, pale yellow oil; ${ }^{1} \mathrm{H}$ NMR $\delta 7.30(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 7.24(1 \mathrm{H}$, apparent $\mathrm{t}, J=7.2 \mathrm{~Hz}), 7.16(1 \mathrm{H}$, apparent $\mathrm{t}, J=7.4 \mathrm{~Hz}), 6.83(1 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}), 3.26-3.09(3 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{H} 3^{\prime}, \mathrm{H} 5\right), 3.02(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 4), 2.62(1 \mathrm{H}, \mathrm{dd}, J=9.6,18.0 \mathrm{~Hz}, \mathrm{H} 5$ syn to phenyl), 2.49$2.26\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 2^{\prime}\right), 1.41(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{C} 4$-methyl); NOE data $6.83(2.62,1 \%), 2.62$ $(6.83,2 \% ; 3.19 \mathrm{dd}, 6 \% ; 3.02,2 \% ; 1.41,1 \%)$, $1.41(6.83,2 \% ; 3.02,5 \% ; 2.62,4 \%) ;{ }^{13} \mathrm{C}$ NMR $\delta 216.3(0, \mathrm{C} 3), 212.7(0, \mathrm{Cl}), 145.3(0), 140.8(0), 128.1(1), 126.8(1), 124.9(1)$, 123.2 (1), 69.1 ($0, \mathrm{C} 2$), 44.5 (2, C5), 41.9 (1, C4), 35.6 (2), 31.5 (2), 15.1 (3, C4-methyl). ($2 R^{\star}, 4 R^{*}$)- (64 a) and ($2 R^{*}, 4 S^{\star}$)-1', $2^{\prime}, 3^{\prime}, 4^{\prime}$-Tetrahydro-4-

64a

64b methylspiro(cyclopentane-2,1'-naphthalene)-1,3-dione (64b). (a) A solution of 1-tetralone ($288 \mathrm{mg}, 1.97 \mathrm{mmol}$), $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.36 \mathrm{~mL}, 2.9$ mmol), and $3(1.45 \mathrm{~g}, 5.92 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ was stirred at rt for 22 h . Work-up gave a yellow resin (883 mg). Chromatography ($0.5 / 99.5 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave a pale yellow oil ($179 \mathrm{mg}, 52 \%$) as a 1.5 : 1 mixture of 64a and 64b. A second fraction (64 mg) consisting of both 64a and 64b (1.6:1) and 1-tetralone (87% diketones, $13 \% 1$ tetralone by GC-MS) was also obtained.
(b) To a solution of 1-tetralone ethylene acetal ($356 \mathrm{mg}, 1.87 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL) at $-78^{\circ} \mathrm{C}$ was added $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.35 \mathrm{~mL}, 2.8 \mathrm{mmol})$ and $2(1.38 \mathrm{~g}, 5.64 \mathrm{mmol})$. After stirring at rt for 26 h , work-up gave a yellow resin (879 mg). Chromatography (0.5/99.5 $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave a yellow oil ($205 \mathrm{mg}, 48 \%$) as a $1: 2.3$ mixture of 64a and $\mathbf{6 4 b}$. Further chromatography (20/80 EtOAc/petroleum ether) provided a small sample of each isomer for NMR analysis. For the 64a,b mixture: IR 1763 (m), 1720 (s) cm^{-1}; MS 228 $\left(81, \mathrm{M}^{+}\right), 185(18), 159(12), 158(88), 157$ (13), 131 (21), 130 (100), 129 (90), 128 (61),

127 (26), 115 (62), 102 (12), 77 (16), 75 (10), $65(10), 63(10), 51$ (15), 42 (12), 41 (24); HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2}$ 228.1149, found 228.1137. For 64a: yellow resin; ${ }^{1} \mathrm{H}$ NMR δ $7.23-7.12(2 \mathrm{H}, \mathrm{m}), 7.08(1 \mathrm{H}, \mathrm{m}), 6.56(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 3.11(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 5), 3.08-2.92$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 4), 2.85\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}^{\prime}\right), 2.69(1 \mathrm{H}, \mathrm{br} \mathrm{dd}, J=8.5,16.1 \mathrm{~Hz}, \mathrm{H} 5), 2.14-1.79(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H} 2^{\prime}, \mathrm{H}^{\prime}\right), 1.45\left(3 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}, \mathrm{C} 4\right.$-methyl); ${ }^{13} \mathrm{C}$ NMR $\delta 217.0(0, \mathrm{C} 3), 214.8(0, \mathrm{C} 1)$, 138.4 (0), 132.2 (0), 129.9 (1), 127.9 (1), 127.5 (1), 126.3 (1), 61.5 ($0, \mathrm{C} 1), 43.7$ (1, C4), 43.2 (2, C5), 31.5 (2), 28.7 (2, C4'), 18.0 (2), 16.5 (3, C4-methyl). For 64b: colorless resin; ${ }^{1} \mathrm{H}$ NMR $87.22-7.12(2 \mathrm{H}, \mathrm{m}), 7.09(1 \mathrm{H}, \mathrm{m}), 6.48(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 3.32(1 \mathrm{H}, \mathrm{dd}$, $J=10.4,18.3 \mathrm{~Hz}, \mathrm{H} 4), 3.20(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 4), 2.84\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}^{\prime}\right), 2.48(1 \mathrm{H}, \mathrm{dd}, J=8.6,18.3$ $\mathrm{Hz}, \mathrm{H} 5 \operatorname{syn}$ to methyl), 2.11-1.81 (4H, m, H2', H3'), 1.37 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{C} 4$-methyl); NOE data $2.48(6.48,1 \% ; 3.32,5 \% ; 3.20,3 \%)$, $1.37(6.48,2 \% ; 3.20,6 \% ; 2.48,4 \%) ;{ }^{13} \mathrm{C}$ NMR $\delta 217.2(0, \mathrm{C} 3), 213.9(0, \mathrm{C} 1), 138.5(0), 132.0(0), 129.6(1), 128.7(1), 127.5(1)$, 126.2 (1), 63.0 ($0, \mathrm{C} 1$), 44.6 (2, C5), 40.0 (1, C4), 32.1 (2), 28.7 (2, C4'), 18.0 (2), 15.4 (3, C4-methyl).

65a

65b
$\left(2 R^{*}, 4 R^{*}\right)$ - $(65 \mathrm{a})$ and $\left(2 R^{*}, 4 S^{*}\right)-1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}$-Tetrahydro-4-methyl-4'-oxaspiro(cyclopentane-2,1'-naphthalene)-1,3-dione (65b). A solution of 4-chromanone ($214 \mathrm{mg}, 1.44 \mathrm{mmol}$), $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.27 \mathrm{~mL}, 2.2 \mathrm{mmol})$ and $3(1.06 \mathrm{~g}, 4.34 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was stirred at rt for 23 h .

Work-up gave a bright yellow resin (622 mg). Chromatography ($0.5 / 95.5 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave a pale yellow resin ($164 \mathrm{mg}, 49 \%$) as a 1.2 : I mixture of 65 a and $\mathbf{6 5 b}$. Further chromatography (30/70 EtCAc/hexane) provided samples of each isomer for NMR analysis. For the 65a,b mixture: 'R 1766 (w), 1722 (s), 1606 (w), 1583 (w), 1227 (m) cm^{-1}; MS 230
$\left(42, M^{+}\right), 160(46), 132(33), 131(100), 103(15), 78(10), 77(19), 51(12)$; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{3} 230.0942$, found 230.0956. For 65a: white resin; ${ }^{1} \mathrm{H}$ NMR 87.17 (1H, ddd, $J=1.5,7.2,8.4 \mathrm{~Hz}), 6.90(1 \mathrm{H}, \mathrm{dd}, J=0.9,8.3 \mathrm{~Hz}), 6.83(1 \mathrm{H}, \mathrm{ddd}, J=1.3,7.2,7.8 \mathrm{~Hz})$, $6.60(1 \mathrm{H}, \mathrm{dd}, J=1.6,7.8 \mathrm{~Hz}), 4.43\left(\mathrm{IH}^{2}, \mathrm{ddd}, J=4.2,6.8,11.3 \mathrm{~Hz}, \mathrm{H} 3^{\prime}\right), 4.32(1 \mathrm{H}$, ddd, J $\left.\left.=4.0,7.0,11.3 \mathrm{~Hz}, \mathrm{H}^{\prime}\right)^{\prime}\right), 3.25-3.05(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 5, \mathrm{H} 4), 2.64(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 5), 2.06(2 \mathrm{H}, \mathrm{m}$, H 2 '), 1.43 (3H, d, $J=7.0 \mathrm{~Hz}, \mathrm{C} 4$-methyl); ${ }^{13} \mathrm{C}$ NMR $\delta 215.6(0, \mathrm{C} 3), 213.5(0, \mathrm{Cl}), 155.1$ (0), 129.2 (1), 127.6 (1), 120.9 (1), 118.0 (1), 117.9 (0), 61.1 (2, C3'), 56.2 (0, C2), 43.4 (1, C4), 43.3 (2, C5), 28.9 (2), 16.0 (3, C4-methyl). For 65b: white resin; ${ }^{1}$ H NMR $\delta 7.19$ $(1 \mathrm{H}, \mathrm{m}), 6.90(1 \mathrm{H}, \mathrm{m}), 6.85(1 \mathrm{H}, \mathrm{m}), 6.50(1 \mathrm{H}, \mathrm{dd}, J=1.6,7.8 \mathrm{~Hz}), 4.30(2 \mathrm{H}$, symmetric $\left.\mathrm{m}, \mathrm{H} 3^{\prime}\right), 3.31(1 \mathrm{H}, \mathrm{dd}, J=10.5,18.4 \mathrm{~Hz}, \mathrm{H} 5), 3.16(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 4), 2.09(2 \mathrm{H}$, symmetric m , $\left.\mathrm{H}^{\prime}{ }^{\prime}\right), 2.56(1 \mathrm{H}, \mathrm{dd}, J=9.1,18.4 \mathrm{~Hz}, \mathrm{H} 5$ syn to methy1), $1.41(3 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}, \mathrm{C} 4-$ methyl); NOE data $2.56(6.50,1 \% ; 3.31,7 \%, 3.16,2 \%, 1.41,1 \%)$, $1.41(6.50,2 \% ; 3.16$, $5 \%, 2.56,3 \%) ;{ }^{13} \mathrm{C}$ NMR $\delta 216.3(0, \mathrm{C} 3), 212.7(0, \mathrm{Cl}), 155.5(0), 129.3(1), 128.6$ (1), 121.0 (1), 118.0 (0), 117.7 (1), $60.8\left(2, C^{\prime}\right), 57.8(0, \mathrm{C} 2), 44.7(2, \mathrm{C} 5), 40.4$ (1, C4), 29.9 (2), 15.3 (3, C4-methyl).

66 4-Methyl-2,2-diphenylcyclopentane-1,3-dione (66). A solution of benzophenone ($268 \mathrm{mg}, 1.47 \mathrm{mmol}$), $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.27 \mathrm{~mL}, 2.2 \mathrm{mmol})$, and $3(1.08 \mathrm{~g}, 4.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was stirred at rt for 26 h . Work-up provided a yellow resin $(670 \mathrm{mg})$. Chromatography ($0.5 / 99.5 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded 66 as a yellow solid ($275 \mathrm{mg}, 71 \%$), mp 86.5-88.5 ${ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CCL}_{4}\right) 1727(\mathrm{~s}), 1600(\mathrm{w}), 1495(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{\mathrm{t}} \mathrm{H}$ NMR $87.40-7.27(6 \mathrm{H}, \mathrm{m}), 7.20-$ $7.12(2 \mathrm{H}, \mathrm{m}), 7.30-6.95(2 \mathrm{H}, \mathrm{m}), 3.20(1 \mathrm{H}, \mathrm{dd}, J=10.6,17.9 \mathrm{~Hz}, \mathrm{H} 5), 3.07(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 4)$, $2.54(1 \mathrm{H}, \mathrm{dd}, J=8.7,17.9 \mathrm{~Hz}, \mathrm{H} 5), 1.35\left(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{C} 4\right.$-methyl); ${ }^{13} \mathrm{C}$ NMR δ
$213.6(0, \mathrm{C} 3), 210.7(0, \mathrm{Cl}), 137.3(0), 136.4(0), 129.8(1), 128.9(1), 128.5(1), 128.4$ (1), 128.0 (1), 127.9 (1), 127.6 (1), 44.3 (2, C5), 41.8 (1, C4), 15.6 (3, C4-methyl); MS $264\left(100, \mathrm{M}^{+}\right), 221(12), 194(46), 167(19), 166(90), 165(90)$; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{2} 264.1149$, found 264.1161 .

67 Work-up gave a dark brown oil (846 mg). Chromatography ($0.5 / 99.5$ $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) provided a tan-colored oil (356 mg) that was $90 \% 67$ and 10% two isomeric compounds by GC-MS. Preparative layer chromatography (25/75 EtOAc/hexanes) afforded an analytical sample of 67 as a pale yellow oil; IR 1764 (m), $1724(\mathrm{~s}), 1600(\mathrm{w}), 1494(\mathrm{~m}) \mathrm{cm}^{-1},{ }^{1} \mathrm{H}$ NMR $87.40-7.20(5 \mathrm{H}, \mathrm{m}, \operatorname{ary}), 2.77(\mathrm{HH}, \mathrm{d}, J=$ $17.4 \mathrm{~Hz}, \mathrm{H} 5), 2.58(1 \mathrm{H}, \mathrm{d}, J=17.4 \mathrm{~Hz}, \mathrm{H} 5), 1.47(3 \mathrm{H}, \mathrm{s}), 1.24(3 \mathrm{H}, \mathrm{s}), 1.23(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\delta 218.3(0, \mathrm{C} 3), 213.2(0, \mathrm{C} 1), 137.4\left(0, \mathrm{Cl}^{\prime}\right), 129.1(2 \mathrm{C}, 1), 127.7(1), 126.2(2 \mathrm{C}$, 1), 60.9 ($0, \mathrm{C} 2$), 50.8 (2, C5), 46.9 ($0, \mathrm{C} 4), 26.2$ (3), 25.8 (3), 22.0 (3); MS 216 ($70, \mathrm{M}^{+}$), 133 (14), 132 (100), 104 (70), 103 (12), 78 (10); HRMS caled for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2}$ 216.1149, found 216.1153.

68

2',3'-Dihydro-4,4-dimethylspiro(cyclopentane-2,1'-[1H]indene)-1,3dione (68). A solution of 1 -indanone ($260 \mathrm{mg}, 1.96 \mathrm{mmol}$), $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ $(0.36 \mathrm{~mL}, 2.9 \mathrm{mmol})$, and $4(1.55 \mathrm{~g}, 6.00 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was stirred at rt for $\mathbf{2 6 h}$. Work-up provided a viscous orange-brown oil (876 mg). Chromatography ($1 / 99 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave 68 as a yellow solid (311 mg , $69 \%), \mathrm{mp} 65-66.5^{\circ} \mathrm{C}$; IR $1764(\mathrm{~m}), 1722(\mathrm{~s}) \mathrm{cm}^{-1}$; ${ }^{\mathrm{I}} \mathrm{H}$ NMR $87.28(1 \mathrm{H}$, apparent $\mathrm{t}, J=$
$7.0 \mathrm{~Hz}), 7.23(1 \mathrm{H}$, apparent dt, $J=1.2,7.4 \mathrm{~Hz}), 7.15(1 \mathrm{H}$, apparent $\mathrm{t}, J=7.1 \mathrm{~Hz}), 6.85$ $(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 3.18\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 3^{\prime}\right), 2.87(1 \mathrm{H}, \mathrm{d}, J=17.7 \mathrm{~Hz}, \mathrm{H} 5), 2.76(1 \mathrm{H}, \mathrm{d}, J=$ $17.6 \mathrm{~Hz}, \mathrm{H5}), 2.50-2.30\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 2^{\prime}\right), 1.39(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 4$-methyl), 1.30 (3H, s, C4-methyl); ${ }^{13} \mathrm{C}$ NMR $\delta 218.9$ (0, C3), 213.0 (0, C1), 145.3 (0), 141.2 (0), 128.2 (1), 126.9 (1), 125.1 (1), 123.0 (1), $68.4(0, C 2), 51.5(2, \mathrm{C} 5), 46.9(0, \mathrm{C} 4), 36.2(2, \mathrm{C} 2$ '), $31.8(2, \mathrm{C} 3$), 25.8 (3, C4-methyl), 24.0 (3, C4-methyl); MS 228 (39, M ${ }^{+}$), 145 (11), 144 (100), 116 (53), 115 (35); HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2}$ 228.1149, found 228.1149.

69

70a

70b

1',2',3',4'-Tetrahydro-4,4-dimethylspiro(cyclopentane-2,1'-naphthalene)-1,3-dione (69) and 3,4-dihydro-3,3-dimethyl-5-(1-(1,2,3,4-tetrahydronaphthyl)idene)-2-furanone (70a,b). A solution of 1-tetralone ($292 \mathrm{mg}, 2.00 \mathrm{mmol}$), $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.37 \mathrm{~mL}, 3.0 \mathrm{mmol})$, and $4(1.55 \mathrm{~g}, 6.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was stirred at rt for $\mathbf{2 4} \mathrm{h}$. Work-up gave a dark brown oil (929 mg). Chromatography ($0.5 / 99.5$ $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) provided 69 pale yellow solid ($312 \mathrm{mg}, 65 \%$), mp 97$98.5^{\circ} \mathrm{C}$ and a yellow resin ($75 \mathrm{mg}, 15 \%$) consisting of geometrical isomers $70 \mathrm{a}, \mathrm{b}$ in a $2.6: 1$ ratio. A small amount of the major isomer 70 a as a beige solid, $\mathrm{mp} 69-71.5^{\circ} \mathrm{C}$, was obtained in homogeneous form by preparative layer chromatography. For 69: IR 1764 (m), 1719 (s), $1495(\mathrm{w}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $87.24-7.04(3 \mathrm{H}, \mathrm{m}), 6.55(1 \mathrm{H}, \mathrm{d}, J=7.8$ $\mathrm{Hz}), 2.98(1 \mathrm{H}, \mathrm{d}, J=18.3 \mathrm{~Hz}, \mathrm{H} 5), 2.85(2 \mathrm{H}$, apparent $\mathrm{t}, J=6.0 \mathrm{~Hz}$, H^{\prime}), $2.70(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=18.3 \mathrm{~Hz}, \mathrm{H} 5), 2.10-1.88\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H} 2^{\prime}, \mathrm{H}^{\prime}\right), 1.44(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 4$-methyl), $1.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 4\right.$-methyl); ${ }^{13} \mathrm{C}$ NMR 8219.7 (0, C3), 214.6 ($0, \mathrm{Cl}$), $138.5(0), 132.0(0)$, 129.8 (1), 128.5 (1), 127.6 (1), 126.3 (1), 62.7 ($0, \mathrm{C} 2), 50.7$ (2, C5), 46.5 (0, C4), 32.7 (2),
28.7 (2, C4'), 26.6 (3, C4-methyl), 26.0 (3, C4-methyl), 18.0 (2); MS 242 (46, M $^{\circ}$), 159 (14), 158 (100), 130 (44), 129 (23), 128 (15), 115 (15); HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2}$ 242.1306, found 242.1300. For 70a: UV (cyclohexane) $271 \mathrm{~nm}(\varepsilon=7,730$); IR 1795 (s), $1667(\mathrm{~m}), 1600(\mathrm{w}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.16$ ($4 \mathrm{H}, \mathrm{br}$ s, aryl), 3.02 (2 H , narrow m, H4), 2.74 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}^{\prime}\right), 2.65(2 \mathrm{H}, \mathrm{m}), 1.80(2 \mathrm{H}$, apparent pentet, $J=6.4 \mathrm{~Hz}), 1.30(6 \mathrm{H}, \mathrm{s}, \mathrm{C} 3-$ methyls); NOE data 7.16 (3.02, $9 \% ; 2.74,4 \%$), 3.02 ($7.16,24 \% ; 1.30,7 \%$), 1.30 (3.02, $10 \%) ;{ }^{13} \mathrm{C}$ NMR $\delta 179.8(0, \mathrm{C} 2), 142.2\left(0, \mathrm{Cl}^{\prime}\right), 139.4(0), 133.5(0), 128.5(1), 126.32$ (1), 126.28 (1), 125.5 (1), 114.7 ($0, \mathrm{C} 5$), 41.9 (2, C4), 40.1 ($0, \mathrm{C} 3$), 30.4 ($2, \mathrm{C4}$), 25.2 (2), 24.8 (2C, 3, C3-methyls), 22.7 (2); MS 242 (29, M $^{+}$), 159 (13), 158 (100), 130 (58), 129 (39), 128 (23), 127 (10), 115 (30), 57 (11), 55 (14), 43 (12), 41 (24); HRMS caled for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{2} 242.1306$, found 242.1307. For 70 b (discernable signals from spectrum of mixture): ' H NMR $\delta 8.07$ ($1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=7.5 \mathrm{~Hz}$), $2.85(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 4), 2.79(2 \mathrm{H}, \mathrm{t}, J=6.2$ $\mathrm{Hz}), 2.36(2 \mathrm{H}, \mathrm{br} \mathrm{t}, J=6.4 \mathrm{~Hz}), 1.86(2 \mathrm{H}$, apparent pentet, $J=6.3 \mathrm{~Hz}), 1.36(6 \mathrm{H}, \mathrm{s}, \mathrm{C} 3-$ methyls).

71

72a
$1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}$-Tetrahydro-4,4-dimethyl-4-oxaspiro(cyclopentane-2,1'-naphthalene)-1,3-dione (71) and 3,4-dihydro-3,3-dimethyl-5-(1-(1,2,3,4-t:trahydro-4-oxanaphthyl)idene)-2-furanone (72a,b). A solution of 4-chromanone ($306 \mathrm{mg}, 2.07 \mathrm{mmol}$), $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.76 \mathrm{~mL}, 6.2$ $\mathrm{mmol})$, and $4(1.60 \mathrm{~g}, 6.20 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was prepared at $78^{\circ} \mathrm{C}$. The mixture was then stirred at rt for 24 h . Work-up gave a black $\operatorname{tar}(968 \mathrm{mg})$. Chromatography ($0.5 / 99.5 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) provided 71 as a tin-colored resin (196 mg, 39\%), 72a,b (2.6:1) as a tan resin (116 $\mathrm{mg}, \mathbf{2 3 \%}$), and thi: d fraction (94 mg) consisting of 71 and $72 \mathrm{a}, \mathrm{b}$ in a $4: 1$ ratio. A small

72b
amount of the major lactone 72 a as a white solid, $\mathrm{mp} 164-165^{\circ} \mathrm{C}$, was obtained in homogeneous form by repeated chromatography (0.5/99.5 $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$). For 71: IR $1766(\mathrm{~m}), 1722(\mathrm{~s}), 1607(\mathrm{~m}), 1583(\mathrm{~m})$, $1491(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.18(1 \mathrm{H}, \mathrm{ddd}, J=1.7,7.2,8.3 \mathrm{~Hz}), 6.90(1 \mathrm{H}$, dd, $J=1.2,8.4 \mathrm{~Hz}), 6.84(1 \mathrm{H}$, apparent dt, $J=1.3,7.5 \mathrm{~Hz}), 6.55(1 \mathrm{H}$, $\mathrm{dd}, J=1.6,7.8 \mathrm{~Hz}), 4.34\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 3^{\prime}\right), 2.95(1 \mathrm{H}, \mathrm{d}, J=18.1 \mathrm{~Hz}, \mathrm{H} 5), 2.80(1 \mathrm{H}, \mathrm{d}, J=$ $18.2 \mathrm{~Hz}, \mathrm{H} 5), 2.11$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 2$ '), 1.41 (3H, s, C4-methyl), 1.38 (3H, s, C4-methyl); ${ }^{13} \mathrm{C}$ NMR $8220.6(0, \mathrm{C} 3), 215.0(0, \mathrm{Cl}), 156.1(0, \mathrm{C} 5 '), 135.9\left(0, \mathrm{Cl} 0^{\prime}\right), 129.6(1), 128.6(1)$, 121.1 (1), 117.9 (1), 59.9 (2, C3'), 56.2 ($0, \mathrm{C} 2$), 49.7 (2, C5), 45.5 ($0, \mathrm{C} 4$), $29.0\left(2, \mathrm{C} 2^{\prime}\right)$, 24.9 (3, C4-methyl), 23.9 (3, C4-methyl); MS 244 (37, M $), 161$ (11), 160 (100), 132 (56), 131 (100), 103 (14), 78 (10), 77 (19), 41 (12); HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{3}$ 244.1099, found 244.1102. For 72a: UV (cyclohexane) $302 \mathrm{~nm}(\varepsilon=8,600), 272 \mathrm{~nm}(\varepsilon=8,100)$; IR $\left(\mathrm{CCl}_{4}\right) 1791(\mathrm{~s}), 1682(\mathrm{~m}), 1604(\mathrm{w}), 1572(\mathrm{w}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $87.14(2 \mathrm{H}, \mathrm{m}), 6.89(2 \mathrm{H}$, $\mathrm{m}), 4.23\left(2 \mathrm{H}, \mathrm{t}, J=5.7 \mathrm{~Hz}, \mathrm{H}^{\prime}\right), 3.08(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H} 4), 2.80\left(2 \mathrm{H}, \mathrm{brt}, J=5.7 \mathrm{~Hz}, \mathrm{H}^{\prime}\right), 1.35$ (6H, s, C3-methyls); NOE data 3.08 ($7.14,23 \%$; 1.35, 7%), $1.35(3.08,10 \%) ;{ }^{13} \mathrm{C}$ NMR δ 179.3 (0, C2), 154.6 (0), 141.1 (0), 128.19 (1), 126.2 (1), 120.2 (1), 120.1 (0), 117.3 (1), 109.0 (0), 66.2 (2, C3'), 41.7 (2, C4), 40.0 ($0, \mathrm{C} 3$), 25.1 (2C, 3, C3-methyls), 24.5 (2, C^{\prime}); MS 244 (33, M ${ }^{+}$), 161 (11), 160 (93), 132 (47), 131 (100), 103 (15), 83 (33), 77 (21), 55 (11), 41 (13); HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{3}$ 244.1099, found 244.1112. For 72b (discernable signals from spectra of mixture): ${ }^{1} \mathrm{H}$ NMR $\delta 8.09(1 \mathrm{H}, \mathrm{dd}, J=1.6,8.1 \mathrm{~Hz})$, $2.85(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H} 4), 2.52(2 \mathrm{H}$, apparent $\mathrm{t}, J=5.6 \mathrm{~Hz}), 1.37(6 \mathrm{H}, \mathrm{s}, \mathrm{C} 3-$ methyls $) ;{ }^{13} \mathrm{C}$ NMR $\delta 153.7$ (0), 140.3 (0), 129.2 (1), 128.24 (1), 120.9 (1), 116.9 (1), 65.6 (2, C3'), 40.3 (2, C4), 26.2 (2, C2'), 25.2 (2C, 3, C3-methyls).

4,4-Dimethyl-2,2-diphenylcyclopentane-1,3-dione (73) and 3,4-dihydro-3,3-dimethyl-5-(diphenylmethylene)-2-furanone (74). A solution of benzophenone ($240 \mathrm{mg}, 1.32 \mathrm{mmol}$), $\mathrm{BF}_{3} \mathrm{Et}_{2} \mathrm{O}(0.49 \mathrm{~mL}$, $4.0 \mathrm{mmol})$, and $4(1.03 \mathrm{~g}, 4.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.6 \mathrm{~mL})$ was prepared at $-78^{\circ} \mathrm{C}$. The mixture was then stirred at rt for 23 h . Work-up provided a brown tar (652 mg). Chromatography ($15 / 85$ EtOAc/petroleum ether, then $0.5 / 99.5 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) yielded 73 as a white solid ($250 \mathrm{mg}, 68 \%$), $\mathrm{mp} 67-68^{\circ} \mathrm{C}$, and 74 as a pale yellow solid ($58 \mathrm{mg}, 16 \%$), mp $111-113^{\circ} \mathrm{C}$. For 73: IR (Nujol) 1764 (sh), 1723 (s), 1597 (w), 1580 (sh), $1493(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.40-7.23(6 \mathrm{H}, \mathrm{m}), 7.15-7.03(4 \mathrm{H}, \mathrm{m}), 2.78(2 \mathrm{H}, \mathrm{s}, \mathrm{H} 5)$, $1.39\left(6 \mathrm{H}, \mathrm{s}, \mathrm{C} 4\right.$-methyls); ${ }^{13} \mathrm{C}$ NMR $\delta 216.4(0, \mathrm{C} 3), 211.2(0, \mathrm{C} 1), 137.4(2 \mathrm{C}, 0), 128.7$ (1), 127.8 (1), 51.3 ($2, \mathrm{C} 5$), 47.3 ($0, \mathrm{C} 2$), 26.1 ($2 \mathrm{C}, 3, \mathrm{C4}$-methyls); MS 278 ($4 \mathrm{l}, \mathrm{M}^{+}$), 195 (12), 194 (75), 167 (14), 166 (100), 165 (28), 164 (62), 41 (14); HRMS caled for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{2} 278.1306$, found 278.1310. For 74: UV (cyclohexane) $273 \mathrm{~nm}(\varepsilon=10,000$); IR (Nujol) 1803 (s), 1672 (m), 1599 (w), 1497 (w), 1076 (s) cm^{-1}; 'H NMR $87.40-7.17$ $\left(10 \mathrm{H}, \mathrm{m}\right.$, aryl), $2.77(2 \mathrm{H}, \mathrm{s}, \mathrm{H} 4), 1.33\left(6 \mathrm{H}, \mathrm{s}, \mathrm{C} 3\right.$-methyls); ${ }^{13} \mathrm{C}$ NMR $\delta 179.9(0, \mathrm{C} 2)$, $144.1\left(0, \mathrm{Cl}^{\prime}\right), 138.8(0), 137.5(0), 130.0(1), 129.4$ (1), 128.5 (1), 128.0 (1), $127.2(1)$, 126.9 (1), 119.3 (0), 41.6 (2, C4), 39.8 ($0, \mathrm{C} 3$), 24.7 (2C, 3, C3-methyls); MS 278 (16 , M^{+}), 194 (38), 182 (27), 166 (44), 165 (4), 140 (35), 105 (100), 77 (67), 57 (12), 55 (14), 51 (30), 43 (10), 41 (16); HRMS caled for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{2} 278.1306$, found 278.1312.

76

77
(1 ' $R^{\star}, 2 S^{\star}$)- (76) and ($1^{\prime} R^{\star}, 2 R^{*}$)-4,4-Dimethyl-2-hydroxy-2-(1-hydroxy-1-phenylethyl)cyclobutanone (77). A solution of acetophenone ($0.41 \mathrm{~g}, 3.4 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was cooled to -78 ${ }^{\circ} \mathrm{C}$ before $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.42 \mathrm{~mL}, 3.4 \mathrm{mmol})$ and $4(0.97 \mathrm{~g}, 3.7 \mathrm{mmol})$ were added. The temperature was raised to $-20^{\circ} \mathrm{C}$, and the mixture was stirred for 29 h . The mixture was poured into $\mathrm{H}_{2} \mathrm{O}$, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under vacuum to give a yellow viscous oil (0.76 g) composed of acetophenone, 76, 67, and 77 in a ratio of $11: 5.7: 3.4: 1$ by ${ }^{\prime} \mathrm{H}$ NMR. Flash chromatography using an increasing proportion of EtOAc in hexanes provided 76 ($167 \mathrm{mg}, 21 \%$) and 77 ($29 \mathrm{mg}, 4 \%$). Major diastereomer 76: white solid, $\mathrm{mp} 79.5-80.5$ ${ }^{\circ} \mathrm{C}$; IR 3456 (s), 1770 (s), $1602\left(\mathrm{w}^{\prime}\right), 1497(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.45(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $7.1 \mathrm{~Hz}), 7.29(2 \mathrm{H}$, apparent $\mathrm{t}, J=7.4 \mathrm{~Hz}), 7.21(1 \mathrm{H}$, apparent $\mathrm{t}, J=7.0 \mathrm{~Hz}), 2.35(1 \mathrm{H}, \mathrm{d}, J$ $=12.5 \mathrm{~Hz}, \mathrm{H} 3), 1.72(1 \mathrm{H}, \mathrm{d}, J=12.5 \mathrm{~Hz}, \mathrm{H} 3), 1.64(3 \mathrm{H}, \mathrm{s}), 1.18(3 \mathrm{H}, \mathrm{s}), 0.51(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 219.7(0, \mathrm{Cl}), 145.8\left(0, \mathrm{Cl}^{\prime}\right), 128.8(2 \mathrm{C}, 1), 128.4(2 \mathrm{C}, 1), 128.0(1)$, $94.6(0, C 2), 76.1(0, C 2$) , $55.2(0, C 4), 40.5(2, C 3), 25.5(3), 25.0(3), 20.8(3) ;$ MS no $\mathrm{M}^{+}, 216(8), 133(10), 132(100), 122(16), 121$ (19), 118 (10), 105 (20), 104 (45), 77 (23), $70(25), 43(86), 42$ (11), 41 (12); HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2}\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right) 216.1149$, found 216.1155. Minor diastereomer 77: white solid, $\mathrm{mp} 150-151.5^{\circ} \mathrm{C}$; IR (Nujol) 3392 $(\mathrm{m}), 1769(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.57(2 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 7.29(2 \mathrm{H}$, apparent t, J $=7.4 \mathrm{~Hz}), 7.20(1 \mathrm{H}$, apparent $\mathrm{t}, J=7.2 \mathrm{~Hz}), 2.33(1 \mathrm{H}, \mathrm{d}, J=12.5 \mathrm{~Hz}, \mathrm{H} 3), 1.67(3 \mathrm{H}, \mathrm{s})$, $1.47(1 \mathrm{H}, \mathrm{d}, J=12.5 \mathrm{~Hz}, \mathrm{H} 3), 1.21(3 \mathrm{H}, \mathrm{s}), 1.02(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 221.0(0$,

C1), 146.4 (0), $128.6(2 \mathrm{C}, 1), 128.0(2 \mathrm{C}, 1), 127.9(1), 94.0(0, \mathrm{C} 2), 76.0\left(0, \mathrm{C} 2^{\prime}\right), 55.1(0$, C4), 40.6 (2, C3), 25.4 (3), 24.5 (3), 21.2 (3); MS no M ${ }^{+}, 216$ (12), 133 (10), 132 (100), 121 (31), 118 (11), 105 (25), 104 (49), 78 (10), 77 (32), $70(28), 51$ (11), 43 (98), 42 (12), 41 (19); HRMS caled for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2}\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right) 216.1149$, found 216.1144. The relative stereochemistry of 77 was determined by X-ray crystallography.

General procedure for the BCl_{3}-catalyzed reaction of ketones and 4. BCl_{3} (3.2 mL) and then $3(0.84 \mathrm{~g}, 3.2 \mathrm{mmol})$ were added to a solution of the ketone $(2.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. This was stirred at $-78^{\circ} \mathrm{C}$ for 24 to 37 h , or at $-22^{\circ} \mathrm{C}$ for 6 to 8 h , or warmed to rt ovemight. The mixture was recooled to $-78^{\circ} \mathrm{C}$ before a solution of $50 \% \mathrm{HF}(1.6 \mathrm{~mL})$ in $\mathrm{MeOH}(3.4 \mathrm{~mL})$ was added, and the mixture was stirred for 10 min . The mixture was warmed to rt and stirred for 1 h . The mixture was concentrated under reduced pressure. The residue was stirred in TFA (6.0 mL) for $24 \mathrm{~h} . \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added, and the solution was washed with $\mathrm{H}_{2} \mathrm{O}$, to which solid NaHCO_{3} was added to give pH 7 , and then the solution was dried over anhydrous granular $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration under vacuum gave brown material to which hexanes (50 mL) were added. The resulting solution was passed through :lorisil ($3 \mathrm{~cm} \times 1.5 \mathrm{~cm}$), flushing with additional hexanes $(100 \mathrm{~mL})$. Solvent evaporation from the combined filtrates gave the diketone product. Further purification, when necessary, was accomplished by flash chromatography. See Table 5 for specific reaction conditions for each substrate.

Table 5. Reaction products and conditions

Substrate	Product	Side- Product	Specific reaction conditions (based on the General Procedure)
Acetone	17	-	$-78{ }^{\circ} \mathrm{C}$ for 23 h
Acetone	87		$-78{ }^{\circ} \mathrm{C}$ for 23 h , aqueous work-up after HF step
2-Butanone	20*	-	$-78{ }^{\circ} \mathrm{C}$ for 37 h
Phenylacetone	86	88a,b	Reactants mixed at $-78^{\circ} \mathrm{C}$, but the reaction was allowed to warm slowly to rt overnight
Acetophenone	67	89	Reactants mixed at $-78^{\circ} \mathrm{C}$, but then reaction warmed to rt for $\mathbf{6}$ h. Ratio of 67 to 89 3.8:1
Cyclopentanone	33	-	$-78{ }^{\circ} \mathrm{C}$ for 36 h
3-Methylcyclopentanone	25a,b	-	Reactants mixed at $-78^{\circ} \mathrm{C}$, but then reaction maintained $-22^{\circ} \mathrm{C}$ for 6 h
Cyclohexanone	26	-	$-78^{\circ} \mathrm{C}$ for 34 h
2-Methylcyclohexanone	29a,b	30a,b	Reactants mixed at $-78^{\circ} \mathrm{C}$, but reaction warmed to rt and stirred overnight. Ratio of $29 \mathrm{a}, \mathrm{b}$ to 30a,b I: 1
Bicyclo[2.2.1]heptanone	33a	-	Reactants mixed at $-78{ }^{\circ} \mathrm{C}$, but reaction allowed to warm slowly to rt overnight
Bicyclo[2.2.2]octanone	35	90	$-78^{\circ} \mathrm{C}$ for $15 \mathrm{~min},-22^{\circ} \mathrm{C}$ for 7 h . Ratio of 35 to 90 1:1
Bicyclo[2.2.2]octanone	35	-	$-78^{\circ} \mathrm{C}$ for $15 \mathrm{~min},-22^{\circ} \mathrm{C}$ for 7 h , but then aqueous work-up before TFA
3-Methyicyclohexanone	82	-	$-78^{\circ} \mathrm{C}$ for 36 h
4-t-Butylcyclohexanone	36a	-	$-78^{\circ} \mathrm{C}$ for 29 h

79

12-Bora-2,2-dimethyl-11,13-dioxa-12-(trimethylsilyloxy)-dispiro[3.0.5.3]triscadecan-1-one (79) and 12-bora-12-hydroxy-2,2-dimethyl-11,13-dioxadispiro-[3.0.5.3]triscadecan-1-one (80). Compound 3 ($0.86 \mathrm{~g}, 3.3 \mathrm{mmol}$) was added over 5 min to a solution of cyclohexanone $(0.20 \mathrm{~g}, 2.1 \mathrm{mmol})$ and $\mathrm{BCl}_{3}(3.3 \mathrm{~mL})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(5.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 11 h . Aqueous work-up, drying of the solution over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporation of the solvent gave a mixture of white solid ($47,127 \mathrm{mg}$) and a yellow oil (79 and 80 in a $2: 1 \mathrm{ratio}, 459 \mathrm{mg}$). The sample consisting of just 79 and 80 was obtained by washing the oil off the solid with hexanes. For 79: ${ }^{1} \mathrm{H}$ NMR $82.29(1 \mathrm{H}, \mathrm{d}, J=13.2 \mathrm{~Hz}, \mathrm{H} 3), 2.07(1 \mathrm{H}, \mathrm{d}, J=13.2 \mathrm{~Hz}, \mathrm{H} 3), 1.29(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 2-$ methyl), 1.16 (3H, s, C2-methyl), 0.19 (9H, s, OTMS); $\left.{ }^{11} \mathrm{~B} \mathrm{NMR} \mathrm{(} \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 20.3 ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ (partial data): $8215.5(0, \mathrm{Cl}), 99.3(0), 88.1(0), 82.3(0), 39.6,34.8$, 34.5, 26.0, 24.1, 22.6, 22.3, 22.1, $0.97(3 \mathrm{C}, 3) ;{ }^{29} \mathrm{Si}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 816.5$. For $80:{ }^{1} \mathrm{H}$ NMR $\delta 2.32(1 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz}, \mathrm{H} 3), 2.12(1 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz}, \mathrm{H} 3), 1.30(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 2-$ methyl), $1.18\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 2\right.$-methyl); ${ }^{11} \mathrm{~B} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 21.9$.

The mixture of 79 and $80(0.584 \mathrm{~g})$ was stirred in TFA $(3.0 \mathrm{~mL})$ at rt for 20 h . Work-up provided a brown oil (0.408 g). ${ }^{1} \mathrm{H}$ NMR analysis showed the presence of 26 and $27(1.5: 1)$.

81

82
(5R ${ }^{\star}, 7 S^{\star}$)-2,2,7-Trimethylspiro[4.5]decane-1,4-dione (81). Very pale yellow crystals from EtOAc-hexane; mp $59.5-61{ }^{\circ} \mathrm{C}$; IR (Nujol) 1762 (m), 1722 (s) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 2.61$ (2H, s, H3), 1.93 $(1 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{H} 7), 1.81(1 \mathrm{H}, \mathrm{m}), 1.72(1 \mathrm{H}, \mathrm{m}), 1.68-1.55(2 \mathrm{H}, \mathrm{m})$, $1.53(1 \mathrm{H}, \mathrm{m}), 1.48(1 \mathrm{H}$, apparent dq, $J=3.9,12.9 \mathrm{~Hz}), 1.222(3 \mathrm{H}$, $\mathrm{s}, \mathrm{C} 2$-methyl), $1.215(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 2$-methyl), $1.15(1 \mathrm{H}, \mathrm{d}, J=13.2 \mathrm{~Hz})$, $0.92(1 \mathrm{H}$, apparent dt, $J=4.8,14.1 \mathrm{~Hz}), 0.86(3 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}$, C7-methyl); ${ }^{13} \mathrm{C}$ NMR 8220.1 ($0, \mathrm{C} 1$), 216.3 (0, C4), 56.0 (0, C5), 50.4 (2, C3), 46.4 (0, C2), 38.3 (2), 33.7 (2), 30.5 (2), 26.7 (1, C7), 25.5 (3, C2-methyl), 25.3 (3, C2-methyl), 22.4 (3, C7-methyl), 21.1 (2); MS 208 (M+, 64), 152 (25), 140 (44), 139 (11), 125 (15), 124 (100), 96 (21), 95 (16), 82 (12), 81 (76), 69 (13), 68 (13), 67 (19), 56 (12), $55(28)$, 54 (11), 53 (20), 41 (56), 40 (14); HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{2}$ 208.1462, found 208.1454. For the 4-(2,4-dinitrophenylhydrazone) derivative 82: orange crystals from MeCN $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane, mp 231-233 ${ }^{\circ} \mathrm{C}$; IR (Nujol) 3308 (m), 1742 (m), 1711 (w), 1614 (m), $1590(\mathrm{~m}), 1517(\mathrm{~m}), 1500(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 11.11(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 9.14(1 \mathrm{H}, \mathrm{d}, J=2.6 \mathrm{~Hz})$, $8.39(1 \mathrm{H}, \mathrm{dd}, J=2.5,9.5 \mathrm{~Hz}), 7.88(1 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}), 2.77(2 \mathrm{H}, \mathrm{s}), 2.18-1.88(2 \mathrm{H}, \mathrm{m})$, $1.82(1 \mathrm{H}, \mathrm{m}), 1.75-1.50(4 \mathrm{H}, \mathrm{m}), 1.33(1 \mathrm{H}$, apparent triplet, $J=12.8 \mathrm{~Hz}), 1.25(3 \mathrm{H}, \mathrm{s})$, $1.24(3 \mathrm{H}, \mathrm{s}), 1.01(1 \mathrm{H}$, apparent dq, $J=3.4,12.9 \mathrm{~Hz}), 0.92(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 220.3(0), 164.7(0), 145.0(0), 138.0(0), 130.3(1), 129.3(0), 123.4(1), 116.4(1), 53.8$ (0), 46.0 (0), 40.3 (2), 38.8 (2), 33.8 (2), 32.1 (2), 26.7 (1), 25.8 (2C, 3), 22.6 (3), 21.3 (2); MS $388\left(\mathrm{M}^{+}, 15\right), 320(11), 319(31), 273(10), 206(15), 167(12), 165(20), 164(20)$, $138(11), 122(10), 107(12), 105(13), 95(39), 94(14), 93(25), 83(11), 82(37), 81$ (32), 80 (20), 79 (29), 78 (11), 77 (27), 69 (19), 68 (11), 67 (53), 66 (10), 65 (13), 63 (12), 56
(15), 55 (100), 54 (15), 53 (36), 52 (11), 43 (23), 42 (15), 41 (96); HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{5} 388.1770$, found 388.1745 . The structure was determined by X-ray crystallography.

$83 a, b$
(1' $\boldsymbol{R}^{\star}, 3^{\prime} R^{\star}$)-2-Hydroxy-4,4-dimethyl-2-(1-hydroxy-3-methylcyclohexyl)-cyclobutanone (83a,b). A $1: 1$ mixture of epimers (at C-2) was obtained by aqueous work-up after the HF/MeOH treatment. For this mixture: IR (Nujol) 3471 (s), 3342 (s), $1765(\mathrm{~s}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 3.44(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.18(1 \mathrm{H}, \mathrm{d}, J=12.8 \mathrm{~Hz}, \mathrm{H} 3), 2.17(1 \mathrm{H}, \mathrm{d}$, $J=12.9 \mathrm{~Hz}, \mathrm{H} 3), 1.91(2 \mathrm{H}, \mathrm{d}, J=12.8 \mathrm{~Hz}, \mathrm{H} 3), 1.87-1.84(2 \mathrm{H}, \mathrm{m}), 1.36(6 \mathrm{H}, \mathrm{s}, \mathrm{C} 4-$ methyl), $1.155(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 4$-methyl), $1.153(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 4$-methyl), $0.90(6 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}$, C3'-methyl); ${ }^{13} \mathrm{C}$ NMR $\delta 220.0(0, \mathrm{C} 1), 92.6(0, \mathrm{C} 2), 92.5(0, \mathrm{C} 2), 74.0(0, \mathrm{Cl}), 55.2(0$, C4), 38.6 (2, C3), 38.0 (2), 34.4 (2), 31.7 (2), 29.2 (2), 27.3 (1, C3'), 27.0 (1, C3), 20.9 (2), 20.6 (2), 24.7 (3, C4-methyl), 22.5 (3, C3'-methyl), 20.9 (3, C4-methyl); MS no M ${ }^{+}$, $208\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 8\right), 124(100), 113(35), 96(28), 95(50), 82(10), 81(72), 70(38), 56$ (10), 55 (15), 43 (26), 42 (12), 41 (14); HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{2}\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right)$ 208.1462, found 208.1454 .
(1' $R^{\star}, 2 \mathrm{x}, 2^{\prime} R^{\star}$)-2-Hydroxy-4,4-dimethyl-2-(1-hydroxy-2-

84
methylcyclohexyl)-cyclobutanone (84). Yellow solid; mp 113.5-116 ${ }^{\circ} \mathrm{C}$; IR 3461 (s), 1773 (m) cm^{-1}; 'H NMR $\delta 3.60$ (1H, br s, OH), 2.15
$(1 \mathrm{H}, \mathrm{dd}, J=0.6,12.8 \mathrm{~Hz}, \mathrm{H} 3), 2.00(1 \mathrm{H}, \mathrm{d}, J=12.8 \mathrm{~Hz}, \mathrm{H} 3), 1.66$ $(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 1.36-1.17(8 \mathrm{H}, \mathrm{m}), 1.37(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 4$-methyl), $1.16(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 4$-methyl), 1.00 $\left(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{C} 2\right.$-methyl); ${ }^{13} \mathrm{C}$ NMR $\delta 218.9(0, \mathrm{Cl})$, $94.4(0, \mathrm{C} 2), 74.1(0, \mathrm{Cl})$,
55.3 ($0, \mathrm{C} 4$), 39.0 ($2, \mathrm{C} 3$), 36.3 (1, C2'), 34.0 (2), 30.9 (2), 25.7 (2), 24.8 (3, C4-methyl), 21.5 (3, C4-methyl), 21.0 (2), 17.5 (3, C2'-methyl); MS 226 ($\mathrm{M}^{+}, 0.54$), 208 ($\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}$, 9), 198 (16), 193 (16), 127 (11), 125 (15), 124 (100), 123 (17), 114 (11), 113 (74), 109 (83), 96 (78), 94 (58), 85 (20), 83 (16), 81 (50), 71 (14), 70 (50), 69 (44), 68 (18), 67 (44), 57 (32), 56 (20), 55 (41), 53 (13), 45 (21), 43 (91), 42 (18), 41 (67); HRMS caled for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{2}\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right) 208.1462$, found 208.1440 .

Stirring $84(9 \mathrm{mg})$ in TFA (1 mL) at rt for 7 h provided only 2 mg of a brown oil, which consisted of a $1: 1$ mixture of 29 a and $\mathbf{3 0 a}, \mathrm{b}(1: 1)$.
($1^{\prime} R^{*}, 2 x, 2 S^{*}$)-2-Hydroxy-4,4-dimethyl-2-(1-hydroxy-2-

85 methylcyclohexyl)-cyclobutanone (85). White solid; mp 139-141.5 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 2.45(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 2.44(1 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz}, \mathrm{H} 3), 1.84$ $(1 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz}, \mathrm{H} 3), 1.91(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 1.73-1.63(2 \mathrm{H}, \mathrm{m}), 1.63-$ 1.47 ($2 \mathrm{H}, \mathrm{m}$), 1.47-1.36 ($4 \mathrm{H}, \mathrm{m}$), 1.35 ($3 \mathrm{H}, \mathrm{s}, \mathrm{C} 4$-methyl), 1.20 ($3 \mathrm{H}, \mathrm{s}, \mathrm{C} 4$-methyl), 1.03 $\left(3 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{C} 2\right.$-methyl); ${ }^{13} \mathrm{C}$ NMR $8218.5(0, \mathrm{Cl}), 94.3(0, \mathrm{C} 2), 74.7(0, \mathrm{Cl})$, 55.4 (0, C4), 38.4 (2, C3), 34.7 (1, C2'), 29.2 (2), 27.1 (2), 25.1 (3, C4-methyl), 21.3 (3, C4-methyl), 20.9 (2), 19.6 (2), 15.8 (3, C2'-methyl); MS 226 (M ${ }^{+}, 0.2$), 208 (14), 193 (31), 139 (12), 127 (15), 125 (15), 124 (71), 123 (38), 121 (12), 113 (55), 109 (100), 96 (49), 95 (65), 85 (10), 83 (13), 81 (52), 71 (16), 70 (70), 69 (36), 68 (23), 67 (43), 57 (20), 56 (16), 55 (35), 45 (19), 43 (68), 42 (20), 41 (40); HRMS caled for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{3} 226.1568$, found 226.1568.

Diol 85 (11 mg) was dissolved in trifluoroacetic acid- d_{1} at rt . ${ }^{1} \mathrm{H}$ NMR after only 5 min revealed rearrangement to $\mathbf{2 9 b}$ was complete. Aqueous work-up provided 29b as a yellow oil (10 mg).

86

2-Benzyl-2,4,4-trimethyl-1,3-cyclopentanedione (86). Yellow oil; IR 1764 (m), 1724 (s), 1604 (w), 1496 (m) cm ${ }^{-1}$; 'H NMR $87.27-7.14$ (3H, m), 7.08-6.98(2H, m), $2.99(1 \mathrm{H}, \mathrm{d}, J=12.8 \mathrm{~Hz}$, benzyl), $2.92(1 \mathrm{H}, \mathrm{d}, J=$ 12.8 Hz , benzyl), $2.43(1 \mathrm{H}, \mathrm{d}, J=18.4 \mathrm{~Hz}, \mathrm{H} 5), 1.74(1 \mathrm{H}, \mathrm{d}, J=18.3 \mathrm{~Hz}$, H5), $1.27(3 \mathrm{H}, \mathrm{s}), 1.12(3 \mathrm{H}, \mathrm{s}), 0.62(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $8221.3(0, \mathrm{C} 3), 216.9(0, \mathrm{C} 5)$, $136.3(0), 130.0(2 \mathrm{C}, 1), 128.4(2 \mathrm{C}, 1), 127.1(1), 58.6(0, \mathrm{C} 2), 51.8(2, \mathrm{C} 5), 46.1(0, \mathrm{C} 4)$, 42.5 (2, benzyl), 26.7 (3), 23.0 (3), 22.4 (3); MS $230\left(\mathrm{M}^{+}, 36\right), 146$ (45), 145 (17), 118 (70), 117 (25), 115 (11), 105 (21), 91 (100), 83 (12), 65 (18), 56 (13), 55 (11), 41 (39); HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{2}$ 230.1306, found 230.1314 .

2-Hydroxy-2-(1-hydroxy-1-methylethyl)-4,4-dimethylcyclobutanone

87 (87). White solid; mp $80-80.5^{\circ} \mathrm{C}$; IR (Nujol) 3448 (s), 3417 (s), 1773 (m) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\delta 3.44(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.13(1 \mathrm{H}, \mathrm{d}, J=12.6 \mathrm{~Hz}, \mathrm{H} 3), 2.00$ $(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 1.94(1 \mathrm{H}, \mathrm{d}, J=12.6 \mathrm{~Hz}, \mathrm{H} 3), 1.37(3 \mathrm{H}, \mathrm{s}), 1.28(3 \mathrm{H}, \mathrm{s}), 1.23$ $(3 \mathrm{H}, \mathrm{s}), 1.17(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left.8219.8(0, \mathrm{C} 1), 92.2(0, \mathrm{C} 2), 72.4(0, \mathrm{C} 2)^{2}\right), 55.4(0, \mathrm{C} 4)$, 39.0 (2, C3), 25.3 (3), 24.7 (3), 22.9 (3), 20.9 (3); MS 154 no M ${ }^{+}$($\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 5$), 71 (10), 70 (100), $59(26), 43(12), 42(24)$; HRMS calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{2}\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right)$ 154.0993, found 154.0986.

5,5-Dimethyl-2-(phenylisopropylidene)-3(2H)-furanone (88a,b).

88a,b A 1:1 $1(E)(Z)$ mixture of 3-furanones was obtained in 15% yield as a side-product in the reaction that provided 18. UV (cyclohexane) 290 $\mathrm{nm},(\mathrm{\varepsilon}=10,700)$; IR $1724(\mathrm{~s}), 1639(\mathrm{~s}), 1602(\mathrm{~m}), 1494(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.31-7.14$ ($5 \mathrm{H}, \mathrm{m}$, aryl), 3.95, 3.48 (each 2H, s, benzyl), 2.56, 2.53 (each $2 \mathrm{H}, \mathrm{s}$, H4), 1.99, 1.70 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{C} 2$-methyl), 1.43, 1.42 (each 6H, s, C5-methyls); ${ }^{13} \mathrm{C}$ NMR δ $200.5(0, \mathrm{C} 2), 200.0(0, \mathrm{C} 2), 144.0\left(0, \mathrm{C}^{\prime}\right), 143.4\left(0, \mathrm{C} 2^{\prime}\right), 139.8(0), 139.2(0), 128.8(1)$, 128.7 (1), 128.24 (1), 128.18 (1), 126.02 (1), 125.91 (1), 122.6 ($0, \mathrm{C} 3), 122.2$ (0, C3), $78.5(0, \mathrm{C} 5), 78.3(0, \mathrm{C} 5), 50.7$ (2, C4), 39.2 (2, benzyl), 35.7 (2, benzyl), 28.30 (3, C5methyl), 28.25 (3, C5-methyl), 17.1 (3, C2'-methyl), 14.6 (3, C2'-methyl); MS $230\left(\mathrm{M}^{+}\right.$, $74), 174(14), 146(42), 145(41), 131(18), 119(12), 118(100), 117(53), 116(10), 115$ (23), 105 (31), 103 (11), 91 (51), 83 (11), 78 (16), 77 (12), 69 (10), 65 (14), 58 (10), 55 (11), 51 (11), 43 (11), 41 (39).

89

3,3-Dimethyl-4-oxo-5-phenylhexanoic acid (89). White solid; mp $132-133^{\circ} \mathrm{C}$; IR (Nujol) $3500-2400(\mathrm{~m}), 1713(\mathrm{~m}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR δ $11.5(1 \mathrm{H}$, very br, OH$), 7.41-7.30(2 \mathrm{H}, \mathrm{m}), 7.26(1 \mathrm{H}$, apparent tt, J $\left.=1.5,7.2 \mathrm{~Hz}, \mathrm{H}^{\prime}\right), 7.22-7.15(2 \mathrm{H}, \mathrm{m}), 3.70(1 \mathrm{H}, \mathrm{q}, J=7.0 \mathrm{~Hz}, \mathrm{H} 5), 2.72(1 \mathrm{H}, \mathrm{d}, J=17.9$ $\mathrm{Hz}, \mathrm{H} 2), 2.58(1 \mathrm{H}, \mathrm{d}, J=17.9 \mathrm{~Hz}, \mathrm{H} 2), 1.38(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{C} 5$-methyl), $1.17(3 \mathrm{H}, \mathrm{s}$, C3-methyl), 1.11 (3H, s, C3-methyl); ${ }^{13} \mathrm{C}$ NMR $\delta 208.4$ (0, C4), 182.1 (0, C1), 140.3 (0, $\left.\mathrm{Cl}^{\prime}\right), 128.9(2 \mathrm{C}, 1), 127.9(2 \mathrm{C}, 1), 127.2\left(1, \mathrm{C}^{\prime}\right), 53.1(1, \mathrm{C} 5), 50.4(2, \mathrm{C} 2), 39.8(0, \mathrm{C} 3)$, 25.9 (3, C3-methyl), 24.5 (3, C3-methyl), 17.3 (3, C5-methyl); MS no M ${ }^{+}, 217\left(\mathrm{M}^{+}-\mathrm{OH}\right.$, 2), $216\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 8\right), 132(15), 129(16), 106(92), 105(63), 104(15), 103(11), 101(50)$,

91 (21), 79 (12), 77 (19), 59 (100), 55 (10), 43 (44); HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{2}\left(\mathrm{M}^{+}-\mathrm{OH}\right)$ 217.1228, found 217.1226; calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2}\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right) 216.1149$, found 216.1155 . 4-(2-Bicyclo[2.2.2]octyl)-3,3-dimethyl-4-oxobutanoic acid (90). The

90 General Procedure with bicyclo[2.2.2]octanone gave a $1: 1$ mixture of a tancolored oil (35) and a white solid (90) that isolated by repeated washings with hexanes to remove the oily fraction, followed by recrystallization from hexanes- $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{mp} 156.5-157^{\circ} \mathrm{C}$; IR (Nujol) 3600-2200 (m), 1704 (s) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\delta 2.82(1 \mathrm{H}, \mathrm{d}, J=17.8 \mathrm{~Hz}, \mathrm{H} 2), 2.68(1 \mathrm{H}, \mathrm{d}, J=17.8 \mathrm{~Hz}, \mathrm{H} 2), 2.60(1 \mathrm{H}$, $\mathrm{m}), 2.04(1 \mathrm{H}$, apparent $\mathrm{dt}, J=2.2,6.4 \mathrm{~Hz}), 2.00(1 \mathrm{H}$, apparent $\mathrm{dt}, J=2.2,6.3 \mathrm{~Hz}), 1.90$ $(1 \mathrm{H}, \mathrm{m}), 1.69-1.57(2 \mathrm{H}, \mathrm{m}), 1.57-1.44(3 \mathrm{H}, \mathrm{m}), 1.42(1 \mathrm{H}, \mathrm{m}), 1.40-1.34(2 \mathrm{H}, \mathrm{m}), 1.32$ $(1 \mathrm{H}, \mathrm{m}), 1.26\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 3\right.$-methyl), $1.24\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 3\right.$-methyl); ${ }^{13} \mathrm{C}$ NMR $8210.4(0, \mathrm{C} 4)$, $183.6(0, \mathrm{Cl}), 50.7(2, \mathrm{C} 2), 49.5(1), 39.9(0, \mathrm{C} 3), 27.2(1), 26.7(2), 26.4(2), 25.6$ (3, C3methyl), 25.3 (3, C3-methyl), 25.2 (2), 25.0 (2), 23.8 (1), 21.4 (2); MS $238\left(\mathrm{M}^{+}, 1\right), 220$ $(28), 157(36), 139(27), 137(15), 136(71), 136(71), 133(11), 129(12), 111(13), 110$ $(12), 109(100), 108(10), 107(19), 101(29), 94(10), 93(15), 92(40), 91(12), 88(46)$, $83(21), 81$ (18), $80(20), 79(41), 77$ (14), 67 (93), $59(52), 55(33), 53$ (14), 43 (37), 41 (46); HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{3} 238.1568$, found 238.1573; calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2}$ (M+ $\left.\mathrm{H}_{2} \mathrm{O}\right) 220.1462$, found 220.1464 .

Chapter 2. Model Studies Aimed Toward an Enantioselective Synthesis of the Antitumor Antibiotic Fredericamycin A.

Introduction

The antitumor antibiotic fredericamycin A was first isolated by Pandey et al. from a strain of the soil bacterium Streptomyces griseus at the National Cancer Institute in Frederick, Maryland, in 1981. ${ }^{18,19}$ Single-crystal X-ray diffraction pattern ${ }^{20}$ analysis was successful in establishing its structure after extensive spectroscopic studies failed to resolve tautomeric forms in the ABC subunit. ${ }^{21}$ Central to its novel molecular architecture is the carbocyclic spiro[4.4]nonane subunit previously unknown to compounds in the antibiotic or antitumor classes.

(+)-91: Fredericamycin A

Fredericamycin A exhibits potent in vitro cytotoxicity as well as efficacious antitumor activity in a variety of tumor models such as P388 leukemia, CD8F mammary and B16 melanoma and fredericamycin A does not show mutagenicity in the Ames test. ${ }^{22}$ The origin of the antibiotic and antitumor properties of 91 appears to be through inhibition of RNA and protein biosynthesis. ${ }^{22}$ Although studies on the single-electron oxidation of fredericamycin A and its role in the generation of oxygen free radicals
initially supported an indiscriminate mode of action, ${ }^{23}$ more recent investigations ${ }^{24}$ have disputed these findings. It has since been determined that fredericamycin A inhibits DNA topoisomerases I and II at biologically relevant concentrations (total inhibition at 4.4 and $7.4 \mu \mathrm{~m}$, respectively) and DNA polymerase α at higher concentrations ($\left.\mathrm{IC}_{50} 93 \mu \mathrm{~m}\right) .{ }^{24}$ The finding that 91 may not act directly or detectably with DNA 22 suggests direct enzyme inhibition or selective stabilization of a tertiary complex of DNA, topoisomerase and 91. ${ }^{26 \mathrm{~b}}$ The observation that an analogue of 91 lacking the functionalized F ring (92) was approximately 100 times less potent has shed further doubt on the hypothesis that the indescriminate redox properties of 91 are solely responsible for its biological activity. ${ }^{27,28}$ This promising biological profile and the unique structure of 91 have made it quite attractive as a lead compound for a new type of chemotherapeutic drug for human cancers.

92

The synthetically challenging spiro[4.4]nonane subunit has been the subject of extensive synthetic efforts as evidenced by the large number of model studies aimed at its construction ${ }^{28}$ To date, these studies have culminated in six total syntheses ${ }^{11 \mathrm{~b}, \mathrm{c}, 26,28 \mathrm{a}, 30,31}$ of 91 in racemic form and very recently an asymmetric synthesis ${ }^{32}$ of fredericamycin A. At the time when we began work in this area, an enantioselective synthesis of 91 had yet
to be reported, and the configuration of the single stereogenic center in 91 was unknown. In the interest of resolving these issues we devised two potentially highly enantioselective routes to 91. One relied on a novel silicon-tethered $[2+2]$ photocycloaddition and the other a regiochemically controlled Diels-Alder reaction for assembly of the AB portion of 91. Construction of the spiro[4.4]nonane system was to employ the geminal acylation methodology developed in our laboratory. ${ }^{2,3,6}$ Before detailing the retrosynthetic analysis that led to the formulation of these synthetic plans and the results of synthetic studies using model systems, a review of the chemical literature dealing with the synthesis of 91 is presented below.

Literature Review - Strategies for the Synthesis of Fredericamycin A

The large majority of exploratory synthetic work on 91 has focused on the construction of the spiro CD linkage. Numerous partial structures differing in the levels of oxygeration in the B, D and E rings have been prepared using a variety of strategies. Several of these preliminary studies have culminated in total syntheses of fredericamycin A.

Bis-Functionalization of Intact DE Synthons. Ross Kelly was the first to explore the popular strategy of forming the spiro CD linkage by bis-acylation of an indenyl anion (Scheme 1a). ${ }^{28 \mathrm{a}}$ The initial attack of lithiated indene on dimethyl phthalate proceeded smoothly to give 93. However, the anticipated Dieckmann condensation did not occur to form the C ring. Work-up provided 94 as a mixture of tautomeric forms that could not be cyclized directly under a variety of acidic or basic conditions. Treatment of 94 with para-toluenesulfonic acid ($p-\mathrm{TsOH}$) followed by selective hydrogenation of the endocyclic alkene gave lactone 95. Treatment of 95 with diisobutylaluminum hydride (DIBAL-H) generated a keto-enolate that underwent the desired cyclization reaction to provide 96 as a stereoisomeric mixture of ketols. Swern oxidation (oxalyl chloride, dimethyl sulfoxide (DMSO), $-78^{\circ} \mathrm{C}$, triethylamine (TEA)) afforded the desired dione 97 . No yields were reported for any of these transformations.

Kelly successfully applied this strategy to the first total synthesis of 91 (Schemes 1b-Id) in 17 steps from dihydrocoumarin and methyl tetronate in 3.3% overall yield. ${ }^{282,29}$ The propensity of lithiated indene $\mathbf{1 0 2}$ to react from the undesired terminus of the allylic anion system necessitated modification of his initial plan. Success was achieved by conversion of $\mathbf{1 0 2}$ to regioisomeric $\mathbf{1 0 3}$ by trapping with chlorotrimethylsilane before repeated lithiation (108) and reaction with phthalate 107.

Scheme 1b

Scheme 1 c

$+\quad 107$

Scheme 1d

1. THF, $-78^{\circ} \mathrm{C}$
$\xrightarrow[\text { 3. } \mathrm{Ac}_{2} \mathrm{O}, \mathrm{NaOAc}]{\substack{\text { 2. } \mathrm{MeOH} \text { quench } \\-78 \rightarrow 40^{\circ} \mathrm{C}}}$ THF

$(\mathrm{EtO})_{2} \mathrm{HC}$
(81% from 102)
 then $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}$, it
2. Swern oxidation (50%)

Watanabe (Scheme 2) prepared 3-(1'-indanylidene)phthalide 114 using a Homer-Wadsworh-Emmons reaction between indanone $\mathbf{I 1 2}$ and phosphonate $\mathbf{1 1 3}{ }^{28 b}$ Reduction of 114 using DIBAL-H followed by addition of a catalytic amount of sodium methuxide invoked the intramolecular aldol spirocyclization to form the C ring. Oxidation of the resulting mixture of stereoisomeric spiroketoalcohols with pyridinium dichromate (PDC) afforded the fully oxygenated BCDE core fragment 115 .

Scheme 2

Kessar formed spiro model 118 in a single operation by using phthalide 116
(Scheme 3). ${ }^{28 c}$ Attack of the indenyl anion onto the lactone carbonyl with concomitant expulsion of ethoxide generated a keto-aldehyde. The lithium ethoxide liberated in the initial process subsequently effected an intramolecular aldol reaction to give 117a,b. Oxidation with pyridinium chlorochromate (PCC) afforded core fragment 118 in 55% overall yield.

Scheme 3

(55 \% overall)

Braun constructed the spiro CD linkage via a tandem Claisen-decarboxylationaldol reaction between indanecarboxylic acid and 116 (Scheme 4). ${ }^{28 \mathrm{~d}}$ PCC oxidation of the resulting 9:1 mixture of keto-alcohol diastereomers (96a,b) gave 97 in $\mathbf{4 9 \%}$ overall yield for this short sequence.

Scheme 4

Julia reported the bis-alkylation of indene with dibromide 119 under conditions of phase-transfer catalysis (Scheme 5) ${ }^{28 c}$ Introduction of the required oxygen functionality into the C ring of 120 was accomplished by benzylic bromination with N -bromosuccinimide (NBS), halide displacement from the 1,3-dibromide with silver acetate and reduction of the resulting diacetate to the diol (121) with lithium aluminum hydride (LAH). Hydrogenation of the double bond followed by PCC oxidation afforded dione 122 in 20 \% overall yield.

Scheme 5

Ayyangar demonstrated that direct bis-acylation of a metallated indene to give 118 can occur in modest yield using the more reactive phthaloyl chloride in the presence of tetra- n-butylammonium bromide (TBAB) (Scheme 6). ${ }^{28 f}$

Scheme 6

Ayyangar also prepared 3-(1'-indanylidene)phthalides $95 \mathrm{a}, \mathrm{b}$ that had previously been shown to undergo rearrangement to 118 on treatment with DIBAL-H. He subsequently demonstrated that it was possible to accomplish the formation of 118 from 95a,b photochemically (Scheme 7). ${ }^{\mathbf{2 8 f}}$ Longer irradiation times resulted in the same photostationary mixture (95a : 95b : 118, $20 \%, 50 \%, 20 \%$ isolated yields).

Scheme 7

Mehta (Scheme 8) constructed BCDE subunit 97 using a novel photochemical 1,6-H abstraction/5-exo-trig radical spirocyclization strategy. ${ }^{288}$

Pandey (Scheme 9) later reported a more efficient approach employing thioacetal 127. ${ }^{28 \mathrm{~h}}$

D-ring Annelation Strategies. The failure of Kelly's Dieckmann condensation tactic for the direct formation of the C ring dione from an acylated indene was likely a consequence of the stability of the intermediate enolate coupled with the low reactivity of the conjugated ester moiety in 130 (Scheme 10). The discovery that this reaction proceeds readily in similar systems lacking an intact D ring has led to the development of several D ring annelation strategies for final assembly of the spiro[4.4]nonane subunit.

129

130

97

Kende reported the synthesis of BCDE fragment 134 employing a 5-exo-trig phenoxy-enoxy coupling. ${ }^{28 \mathrm{i}} \mathrm{C}$ ring assembly was accomplished with a tandem Claisen-decarboxylation-Dieckmann reaction between 132 and dimethyl phthalate. Photolysis of the p-iodophenol generated a delocalized radical that participated in a 5-exo-trig cyclization ortho to the phenolic oxygen onto the enol-tautomer of the 1,3-dione to provide 134 in 59% yield. Interestingly, oxidative cleavage of the C-I bond with $\mathrm{Na}_{2} \mathrm{CO}_{3} / \mathrm{K}_{3} \mathrm{FeCN}_{6}$ gave only 8% of 134 . The major product $135(67 \%)$ arose from the corresponding coupling para to the phenolic oxygen in 133.

Starting from the known indane-1,3-dione 136, available from phthalic anhydride and 2-methoxyphenylacetic acid, Braun prepared thioacetal 138 (Scheme 12). ${ }^{28 \mathrm{j} j} 138$ participated in an intramolecular Friedel-Crafts type reaction upon treatment with either of the indicated Lewis acids to give thioether 139. Raney nickel desulphurization provided BCDE dione 140.

Scheme 12

136

Ciufolini prepared BCDE fragment 145 using a palladium promoted intramolecular arylation of β-diketone 144 (Scheme 13). ${ }^{23 k}$ Addition of lithium phthalide to aldehyde 141 provided alcohol 142. Base-induced elimination of the corresponding mesylate gave 3-alkylidenephthalide 143. Smooth conversion to β-diketone 144 was effected with LiOEt in THF. Oxidative addition of the sodium enolate of 144 to $\mathrm{Pd}^{\mathbf{0}}$ followed by heating to $135^{\circ} \mathrm{C}$ resulted in intramolecular reductive coupling with regeneration of Pd^{0} to give 145 in 76% yield.

Scheme 13

145

A similar strategy was used by Narasimhan in the synthesis of BCDE model 151 (Scheme 14). ${ }^{281}$ The 3-alkylidenephthalide substrate (148a,b) for the Dieckmann condensation was prepared in this case by Wittig olefination of aldehyde 146 with phosphonium salt 147. Treatment of 149 with $\mathrm{Mn}(\mathrm{OAc})_{3}$ in hot acetic acid induced the intramolecular arylation reaction to give 151 via 150.

Scheme 14

Rama Rao utilized Shapiro's Dieckmann conditions ${ }^{33}$ for the synthesis of 153 from aldehyde 151 and phthalide (Scheme 15a). ${ }^{28 \mathrm{~m}}$ Formation of the BCDE model 97 was achieved in 72% yield from $\mathbf{1 5 3}$ via a usually disfavored 5 -endo-trig radical cyclization.

Scheme 15a

Rama Rao later achieved the total synthesis of 91 (33 steps) using this strategy (Scheme $15 \mathrm{~b}-\mathrm{d})$. The seemingly circuitous synthesis of 174 outlined in Scheme 15 c reflects the inability of the orthoester derived from $\mathbf{1 7 0}$ to react with dimethyl acetylenedicarboxylate (DMAD) in a Diels-Alder addition despite the observation that 172 reacted readily under the same conditions.

Scheme 15b

Scheme 15b (continued)

Scheme 15c

Scheme 15d

Other Novel Approaches. Terashima prepared ABCD fragment 182 using an intramolecular dieneyne Diels-Alder strategy (Scheme 16) ${ }^{28 n}$ Aldol addition of the lithium enolate of 177 to 178 gave enone 179. A series of straightforward functional group (FG) transformations provided aldehyde 180. Final assembly of dieneyne 181 was achieved by addition of lithiated trimethylsilylacetylene to 180 followed by oxidation of the resulting propargylic alcohol with MnO_{2}. Heating 181 in a sealed tube initiated a highly efficient [$4+2]$ cycloaddition leading to 182 in quantitative yield.

Kita later reported that the B-ring trimethylsilyl (TMS) group of 182 could not be converted into the required phenol under a variety of conditions. ${ }^{280}$ Kita's modification (Scheme 17) overcomes this difficulty, however, the \mathbf{B} ring of 190 is still lacking a second oxygen found in 91. Kita applied a similar approach for the assembly of fully functionalized DEF fragment 198 (Scheme 18). ${ }^{28}$

Scheme 18

2. $\mathrm{NaBr}, \mathrm{TsOH}, \mathrm{MeOH}$ reflux (89%)

Andrew Evans assembled BCDE fragment 140 using an aldol strategy similar to those previously discussed (Scheme 19). ${ }^{289}$ Union of B and DE ring synthons 199 and 200 was accomplished using a modified Negishi palladium-catalyzed cross-coupling.

Scheme 19

Dale Boger's synthesis of model ABCD fragment 206 (Scheme 20a) employed an intermolecular alkyne-chromium carbene complex benzannelation (Scheme 20b). ${ }^{\text {28r }}$ Final assembly of the CD spiro link was also accomplished in this instance with an intramolecular aldol reaction. Boger's total synthesis of 91 (29 steps) is outlined in Schemes 20c-e. ${ }^{26}$

Scheme 20a

205

Scheme 20b. Alkyne-Chromium Carbene Complex Benzannellation

Scheme 20c

Scheme 20d

220

Scheme 20e

(土)-91

Derrick Clive constructed the spiro linkage present in 91 using a novel radical spirocyclization strategy (Scheme 21a). ${ }^{285}$ Nucleophilic addition of aryl lithium 222 to aldehyde $\mathbf{2 2 3}$ afforded alcohol $\mathbf{2 2 4}$. Conversion of $\mathbf{2 2 4}$ to organoselenide $\mathbf{2 2 5}$ was accomplished by oxidation with PCC and treatment of the resultant ketone with LDA and phenyiselenyl chloride. Treatment of $\mathbf{2 2 5}$ with triphenyltin hydride/2,2'-azobisisobutyronitrile (AIBN) generated a highly stabilized radical that underwent a favored 5-exo-dig cyclization to afford spirocyclized product 226. Ozonolytic cleavage of the double bond in 226 followed by demethylation with boron tribromide afforded BCDE fragment 227.

Clive's total synthesis of 91 ($\mathbf{3 4}$ steps) is illustrated in Schemes $21 \mathrm{~b}-\mathrm{d}$. ${ }^{30}$

Scheme 21a

$\xrightarrow[\text { AIBN }(79 \%)]{223}$

227

230

Scheme 21c

Parker utilized Kuwajima's geminal acylation methodology to construct \mathbf{C} ring cyclopentane-1,3-dione model 244 (Scheme 22a). ${ }^{1 / 2}$ Dehydrogenation of 244 provided enedione 245 that served as a Michael acceptor in a reaction with lithiated phthalide sulfone 246. Closure of the B ring was accomplished by a concomitant intramolecular Dieckmann-type reaction of the resultant enolate onto the carbonyl of the lactone with subsequent aromatization to form 247.

Scheme 22a

DEF fragment 252 was assembled using a biomimetic cyclization strategy employing polyketide 248 (Scheme 22b). ${ }^{28 t}$

Scheme 22b

Bach (Scheme 23a) later reported the synthesis of a model compound (259) possessing all the required oxygens in the A, B and C rings using a strategy similar to Parker's. Assembly of the AB portion was achieved by a Diels-Alder reaction between enedione $\mathbf{2 5 6}$ and isobenzofuran $\mathbf{2 5 8} .^{28 u}$

Scheme 23a

259

Bach and Julia independently synthesized 91 using this strategy. Bach's synthetic route (19 steps) is illustrated in Schemes 23b-d. ${ }^{11 \mathrm{c}}$ Julia's synthesis (18 steps) is illustrated in Schemes 24a-c. ${ }^{116}$

Scheme 23b

Scheme 23c

Scheme 23d

Scheme 24a

Scheme 24b

Scheme 24c

Julia also explored the possibility of forming the C ring using an intramolecular Friedel-Crafts acylation (Scheme 24d). ${ }^{1 \mathrm{~b}}$ Though successful in producing 122, this approach was not amenable to a synthesis of 91 .

Scheme 24d

Kita accomplished the formation of the CDE portion of 91 in optically active form by $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ catalyzed rearrangement of trans- α, β-epoxyacylate 292 (Scheme 25a). ${ }^{28 \mathrm{v}}$ Enantioselective reduction of enone $\mathbf{2 8 8}$ with Corey's L-proline-derived reducing reagent (289) gave allylic alcohol 290. A heteroatom-directed epoxidation with t - $\mathrm{BuOOH} / \mathrm{VO}(\mathrm{acac})_{2}$ followed by Mitsunobu inversion of the hydroxyl-bearing stereocenter gave trans- α, β-epoxyacylate 292. Stirring 292 in dichloromethane with an equivalent of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ resulted in a stereospecific rearrangement, presumably via 293 , to give $\mathbf{2 9 4}$ in 90% ee. Use of (15)-(-)-camphanic acid in the Mitsunobu procedure followed by recrystallization of the α, β-epoxyacylate prior to rearrangement raised the enantiomeric excess from 90 to 100%.

Kita recently reported the first enantioselective synthesis of 91 (34 steps) through an anionic [$4+2$] cycloaddition between homophthalate ester 306a and enedione 305 (Schemes $25 \mathrm{~b}-\mathrm{d}$) ${ }^{32}$ Both natural and ent-91 were synthesized in separate runs using 306a and 306b (Scheme 25e). Based on the known stereochemistry of 305 (from an Xray structure of $\mathbf{3 0 2}$) and the predicted regiochemical course of the $[4+2]$ cycloaddition, the configuration of the stereogenic center in 91 was ascertained to be S by comparison of the circular dichroism (CD) spectrum with that of natural fredericamycin A .

Scheme 25b

Scheme 25d

Scheme 25e

Retrosynthetic Analysis and Preliminary Studies

In fredericamycin A the absolute configuration of the single stereocenter, located at the spiro ring junction between the C and D rings, is determined by the position of the remote A-ring methoxy substituent. We reasoned that use of the geminal acylation protocol for C ring dione assembly would be perfectly suited for an asymmetric synthesis of 91 in light of the precedent set in our laboratory for the enantioselective reduction of spiro-1,3-cyclopentanediones by Baker's yeast. ${ }^{106}$

Regiocontrolled Photoaddition Involving a Disposable Silicon Tether

Our retrosynthetic disassembly of fredericamycin A is illustrated in Schemes $26 \mathrm{a}, \mathrm{b}$ and c . We chose a silicon-tethered [$2+2]$ photoaddition ${ }^{34}$ between enone 316 and the silyl-enol ether of racemic cyclobutanone 317 followed by oxidative scission of the latent diol-flanked central bond of the resulting bicyclo[2.2.0]hexane in $\mathbf{3 1 4}$ for introduction of the AB portion of 91 . Subsequent oxidation, conversion of the remote A ring hydroxyl to a methyl ether and introduction of the F ring diene appendage would provide one of either natural 91 or its enantiomer. From Kita's recently published asymmetric synthesis of 91 (Schemes $25 \mathrm{~b}-25 \mathrm{e}$), ${ }^{32}$ it appears that our initial guess of the absolute configuration of 91 was correct.

Reduction of dione 319 (Scheme 26b) with Baker's yeast is anticipated to yield the S configuration at both the hydroxyl bearing stereocenter and the spiro center in $318 .{ }^{10 \mathrm{~b}}$ For the tethered $[2+2]$ cycloaddition, analysis using molecular models suggested the endo mode of addition would be preferred. Inversion of the stereochemistry at the hydroxyl-bearing stereocenter in 318 using Mitsonobu's conditions ${ }^{35}$ was planned prior to
the tethering operation since delivery of the silyl-enol ether to the face of the enone anti to the aromatic portion of 314 would likely occur more readily.

Scheme 26a

323
\Rightarrow

Retrosynthetic disassembly of cyclobutanone 317 is shown in Scheme 26c. Our plan for the assembly of 317 relied on the ease with which fused bicyclic cyclobutanones are formed from the addition of dichloroketene to intraannular 1,3-dienes. ${ }^{36}$

Scheme 26c

Two of the required A ring oxygens in 91 were to originate from the 1,2-diol formed by dihydroxylation of the double bond in 325 . The third oxygen was to be introduced at the end of the synthesis by conversion of the A-ring methyl ether in 313 (Scheme 26a) to an aldehyde, followed by a Baeyer-Villiger oxidation. ${ }^{37}$ Enone 328, from which diene 327 was to be fashioned using a Shapiro reaction, ${ }^{38}$ should have been readily available from m-anisic acid by Birch reduction, conversion of the carboxylic acid function to the hydroxymethyl handle for introduction of the remaining A ring oxygen, and acidic hydrolysis of the enol ether. ${ }^{39}$ While the addition of dichloroketene to 327 would occur without any regiochemical preference likely resulting in a low yield of 326, it was anticipated that this material would be available in large quantities using this route.

A CDEF fragment similar to dione 319 (Scheme 26b) had previously been assembled by geminal acylation of an indanone acetal with 1 (see 253 (Scheme 23a) and 280 (Scheme 24a)). ${ }^{116.11 \mathrm{le}}$ We aimed to synthesize the C ring in a similar fashion, however, our plan for the construction of the F ring differed from previous syntheses of 91. We envisioned that the isoquinolinone portion could be formed using a Beckmann rearrangement. Thus, it should have been possible to assemble dione 319 from symmetrical ketone 322, which might arise through a Fries rearrangment employing acylated phenol 323. The required 7-hydroxyindanone was readily available from 4chromanone by aluminum trichloride-catalyzed rearrangement. ${ }^{40}$

To begin assessment of the viability of the tethered photoaddition, we selected model compound 335 as our initial target. Compound 335 was assembled as illustrated in Scheme 27a.
Scheme 27a

Diketone 330, available from cyclohexanone and $1,{ }^{6}$ was oxidized to enedione 331 with benzeneseleninic anhydride. ${ }^{41}$ Luche reduction ${ }^{42}$ gave 332 along with a 14% yield of a mixture of cis- and trans-1,4-diols (333a,b).

333a

333b

Treatment of 332 with a large excess of dichlorodimethylsilane provided silyl ether 334 that was added to the lithium enolate ${ }^{43}$ of cyclohexanone to give 335 . Irradiation of a cyclohexane solution of the crude material from the unoptimized trapping experiment gratifyingly produced endo-photoadduct 336 (Scheme 27b).

Scheme 27b

Encouraged by this result, we next sought to determine if we could construct a similar system from 334 and bicyclo[4.2.0]octan-2-one (337) (Scheme 28a). Compound 337 was prepared by hydrogenation of $\mathbf{3 4 0}$, the dehalogenated product of the addition of dichloroketene to cyclohexadiene (Scheme 28b). ${ }^{36}$

Scheme 28b

Treatment of 337 with LDA at $-78^{\circ} \mathrm{C}$ followed by the addition of 334 produced a complex mixture of products, none of which were identified as 338 . An examination of the literature on this subject revealed that the standard amide deprotonation protocol for the generation of enolates ${ }^{43}$ typically fails with cyclobutanones. ${ }^{44}$ Cyclobutanone enolates can however be formed by a metal-halogen exchange reaction using an α-chlorocyclobutanone. ${ }^{44}$

Monochlorocyclobutanone 341 was prepared from 339 by monodechlorination followed by catalytic hydrogenation of the double bond (Scheme 28c). Attempts to trap the lithium enolate of 337 , generated by treatment of 342 with $\mathrm{Me}_{2} \mathrm{CuLi}$ at $-78^{\circ} \mathrm{C}$ in ether, with 334 failed to produce detectable amounts of 338 .

Scheme 28c

Another commonly used method for generating silyl-enol ethers from ketones employs silyl triflates in the presence of an amine base. ${ }^{45 a, b}$ We reasoned that it might be possible to construct $\mathbf{3 3 8}$ by treatment of $\mathbf{3 3 2}$ with the chlorodialkylsilyl enol ether of $\mathbf{3 3 7}$ made in this manner (Scheme 29). The lack of a literature precedent for the preparation
of chlorodimethylsilyl trifluoromethanesulfonate limited our choices to the bulkier silylating reagents chloro-di-tert-butysilyl trifluoromethanesulfonate and chlorodiphenylsilyl trifluoromethanesulfonate. These reagents can be prepared from the commercially available chlorosilanes by treatment with trifluoromethanesulfonic acid. ${ }^{46}$ The reaction of chlorodimethylsilane with trifluoromethanesulfonic acid gave dimethylsilyl trifluoromethanesulfonate instead of the desired chlorodimethylsilyl trifluoromethanesulfonate.

Attempts to prepare $344(\mathrm{R}=t-\mathrm{Bu}$, Scheme 29) using a variety of conditions for the tethering step (TEA or DBU at rt or reflux, LDA at $-41^{\circ} \mathrm{C}$) did not provide any evidence supporting the formation of 344 . Faced with this disappointing result, we decided to redesign our synthetic strategy for the introduction of the $A B$ portion of 91 .

Scheme 29

343

Base

344

Regiocontrolled Diels-Alder Strategy - Retrosynthetic Analysis

Our second idea for an enantioselective synthesis of 91 relied on a Diels-Alder reaction for introduction of the AB naphthoquinone. The high level of regiocontrol available in this reaction was well-suited to our strategy based on ketol 318. In contrast to the Diels-Alder strategies used in previous syntheses of 91 by Julia, ${ }^{1 \mathrm{~b}} \mathrm{Bach}^{11 \mathrm{c}}$ and Kita, ${ }^{32}$ we envisioned forming the diene component from 318 (Scheme 30b). Diels-Alder addition of chloronaphthoquinone 347 to 346 (Scheme 30a), excision of the extraneous two-carbon bridge on treatment of 345 with fluoride ion (Scheme 30c), introduction of the diene by a Stille coupling using the aldehyde present in $\mathbf{3 5 0}$ and application of Clive's demethylation/oxidation protocol ${ }^{30}$ (Scheme 21d) was anticipated to give (+)-91.

Scheme 30a

$(+)-91$

345

Scheme 30b

We planned to prepare chloronaphthoquinone 347 via aromatization of the product from the Diels-Alder addition of 2,5-dichloro-1,4-benzoquinone to Brassard's diene $351^{47 \mathrm{a}}$ (Scheme 30d). Compound 351 is available from 352, the product of a thermal ring opening of the cyclobutene-derived from the $[2+2]$ cycloaddition of methoxyketene to ketene dimethyl acetal. ${ }^{47,48}$

Scheme 30d

In the event that our synthesis of 347 was unsuccessful, we could also proceed with the crucial Diels-Alder step using naphthoquinone 353, the aromatized product of a Diels-Alder addition of 2,6-dichloro-1,4-benzoquinone to diene 355 (Scheme 30e). We planned to construct $\mathbf{3 5 4}$ by treatment of 356a with LDA followed by trapping of the resultant anion as a silyl ether. 5,6-Dihydro-2-pyrone 356b has previously been prepared from the dianion of methylacetoacetate and acetaldehyde, as well as by TiCl_{4}-promoted addition of diketene to the dimethyl acetal of acetaldehyde. ${ }^{49 a b}$ However, in the interest of selectively introducing the remaining A ring oxygen of 91 by Baeyer-Villiger type oxidation ${ }^{37}$ while avoiding extra protection steps needed to preserve the C ring ketone functionalities, it would be sensible to explore the possibility of preparing 356a. Since the stereochemistry at the asymmetric center in 91 was unknown when we started work in this area, we aimed to devise a synthetic plan that would concurrently provide both enantiomers of fredericamycin A. Note that access to enantiomeric 91 should be possible by substituting 2,5-dichloro-1,4-benzoquinone for 2,6-dichloro-1,4-benzoquinone into either of Schemes 30d or \mathbf{e}.

Scheme 30e

The symmetry of ketone 322 (Scheme 26c) made it possible to use compound 357 as the model for both the studies on formation of the F ring by a Beckmann rearrangement strategy and for the construction of diene 360 (Scheme 31). Compound 357 was prepared by methylation $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right.$, MeI, acetone, reflux (97% yield)) of phenol 261 from Bach's synthesis of $91^{11 c}$ (Scheme 23b).

Scheme 31

F Ring Construction: Beckmann Rearrangement

In a Beckmann rearrangement (Scheme 32), 357 might potentially form the desired isoquinoline $\mathbf{3 5 8}$ by migration of the alkyl group or quinoline $\mathbf{3 6 2}$ by migration of the aryl group. ${ }^{50 \mathrm{a}}$

Scheme 32

Depending on the substrate and reaction conditions, either a trigonal (Scheme 33a) or tetrahedral (Scheme 33b) mechanism or a mixture of both processes may be in operation. ${ }^{50 b}$ The bond reorganization may also be concerted or involve discrete nitrenium and nitronium ions, respectively. ${ }^{\text {slab.d }}$

For a Beckmann rearrangement proceeding via a concerted trigonal process, under conditions where rearrangement is faster than oxime isomerization, migration of the bond situated anti and coplanar to the $\mathrm{N}-\mathrm{O}$ bond of the thermodynamically favored oxime would lead to the major product. If oxime isomerization is faster or the process proceeds via a nitrenium ion, the relative migratory aptitudes of the two oxime substituents will determine the product ratio. Migratory aptitudes will play the major role in determining the course of the rearrangement in the tetrahedral mechanism, as oxime geometry is no longer a controlling factor. Migratory aptitudes are known from the work of Beckmann and Schmidt to depend on a variety of factors such as the identity and orientation of the
leaving group, the solvent and catalyst, electronic variables, torsional strain and other conformational factors associated with the substrate. ${ }^{52}$

Yields tend to be moderate under classical Beckmann conditions for rearrangement of free indanone oximes (Scheme 32). ${ }^{503}$ The process can be facilitated by conversion of the oxime OH to a mesylate or tosylate, although this requiries an additional synthetic step. ${ }^{\text {Sta }}$ Olah's procedure (hydroxylamine- O-sulfonic acid, formic acid $(97 \%), 110^{\circ} \mathrm{C}$) accomplishes formation of the activated oxime and the Beckmann rearrangement in a single operation. ${ }^{53}$ When 357 was treated with hydroxylamine-Osulfonic acid in refluxing formic acid (88%), the desired isoquinoline $\mathbf{3 5 8}$ was produced in quantitative yield.

It is generally accepted that Beckmann rearrangements proceed via the concerted trigonal process, as shown in Scheme $33 a^{514}$ If this is true for the conversion of 357 to 358 , the structure of the product should correlate with the geometry of the oxime from which it originated. Upon initial examination, this seemed unlikely since the transformation would have had to occur through the less stable geometrical isomer 364 . Migration of the aryl group would cause greater torsional strain than migration of the alkyl group in the transition state of the Beckmann rearrangement of 1 -indanones. ${ }^{50,515,4}$ Thus, the experimental result may reflect this if oxime isomerization was faster than rearrangement in this instance.

Scheme 33a

The corresponding tetrahedral process (Scheme 33b) introduces an additional consideration that may better explain the observed selectivity and yield. Acid-assisted nucleophilic attack of water onto oxime 363 would give tetrahedral intermediate 367 , which could rearrange following protonation of the oxime oxygen to give $\mathbf{3 6 2}$ or $\mathbf{3 5 8}$ via migration of bond a or b respectively.

Scheme 33b

The developing positive charge at the ex-carbonyl carbon can be delocalized into the aromatic ring in 370 but not in 369 . Thus, migration of bond b would be favored as a result of stabilization of the transition state leading to 358. Note that similar benzylic stabilization of the positive charge in $\mathbf{3 6 6}$ (Scheme 33a) is precluded due to the orthogonal relationship of the sp^{2} orbital at the ex-carbonyl carbon and the aromatic π electron cloud.

Application of this methodology in a synthesis of 91 would necessitate that preexisting functionality be present to facilitate introduction of the F-ring diene appendage near the end of the synthesis. We envisioned an allyl group serving as a suitable surrogate for this purpose. Introduction of the F ring diene sidechain could then be accomplished by a Stille coupling ${ }^{54}$ following conversion of the terminal olefin into the requisite enol triflate. To test the effect of this added functionality on the course of the Beckmann rearrangement, we prepared α-allylindanone 372 by treatment of enol silyl ether 371 with allyl bromide in the presence of silver trifluoroacetate (Scheme 34). ${ }^{55}$

Scheme 34

When 372 was subjected to Olah's one-pot Beckmann conditions, in an unoptimized experiment, the desired dihydroisoquinoline 373 was produced in 67% yield (Scheme 35) along with recovered 372 (ca. 10%). With the viability of this strategy for construction of the F ring established, we next focused on fashioning the C ring diene crucial to our synthetic plan for Diels-Alder assembly of the naphthoquinone portion of 91.

Scheme 35

Diels-Alder Strategy - Efforts Directed at Synthesis of the C Ring Diene
In order to differentiate between the two ketone functionalities in 321 (Scheme 26 b), the geminal acylation reaction to form the C ring of 91 might be carried out before the Beckmann rearrangement. The presence of a geminally-substituted center next to both carbonyl functions in $\mathbf{3 2 0}$ should direct oxime formation to the less hindered carbonyl of the remaining indanone nucleus. Likewise, the presence of the allyl group should have a similar directing effect on the geminal acylation reaction.

To begin our investigations into construction of the C ring diene, we had originally planned to prepare 359 by direct geminal acylation of 357 . However, the $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$-catalyzed reaction of 357 with 1 returned the starting indanone unchanged. In contrast, the corresponding ethylene acetal 374 reacted smoothly with 1 to produce the desired spiro-1,3-diketone 359 (Scheme 36). The anticipated difficulty associated with direct geminal acylation of the less hindered indanone in 321 would require prior selective formation of an acetal at that site, a difficult task owing to the reversibility of this reaction and likely only a small energy difference between both possible acetals. Thus, if conditions could not be found for direct geminal acylation of the methoxyindanone, additional protection steps would be necessary to avoid formation of the oxime at the less hindered site.

Scheme 36

Acetal 374 was prepared in 15% yield using the conditions of Noyori. ${ }^{36}$ The major component of the reaction mixture was 357 , recovered in 74% yield. Similar experiments conducted at $-41^{\circ} \mathrm{C}$ with 1 -indanone and 1 -tetralone provided the corresponding ethylene acetals in 78% and 90% yield.

The added synthetic operation and the need for optimization of the conditions for forming an ethylene acetal from 357 prompted us to assess the viability of our DielsAlder plan for the construction of the ABC portion of 91 starting from $\mathbf{5 5}$ (Scheme 37).

Cyclopentanedione 55 was prepared from 1-indanone in 75% yield.
Monoreduction of $\mathbf{5 5}$ with lithium tri-tert-butoxyaluminohydride gave a $1.6: 1$ mixture of diastereomeric ketols 375a,b (Scheme 37). Analytical samples of each diastereomer as 2 methoxyethoxymethyl (MEM) ethers ${ }^{57}$ 376a,b were obtained by column chromatography. NOE measurements on 376b revealed that hydride delivery anti to the aromatic portion of 55 resuited in production of the major ketol diastereomer 375a. Treatment of the mixture of 376a,b with tert-butyldimethylsilyl trifluoromethanesulfonate (TBSOTf) in the presence of triethylamine (TEA) resulted in smooth conversion to the corresponding silylenol ethers 377a,b.

Scheme 37

(dr $1.6: 1$)

We planned to introduce a hydroxyl group α to the carbonyl functionality in 376a,b either by epoxidation or dihydroxylation of the mixture of enol ethers $\mathbf{3 7 7} \mathbf{a}, \mathbf{b}$. Rubottom oxidation (m-chloroperoxybenzoic acid (m-CPBA), NaHCO_{3}) ${ }^{58 \mathrm{ses}}$ produced a complex mixture of products whereas attempted epoxidation with methyltrioxorhenium/hydrogen peroxide ${ }^{585}$ resulted only in the hydrolysis of the enol
silyl ether to regenerate 376a,b. Attempted dihydroxylation with catalytic amounts of OsO_{4} using either N -methylmorpholine- N -oxide (NMO) (Upjohn conditions) ${ }^{58 \mathrm{c}}$ or tertbutylhydroperoxide (Sharpless conditions) ${ }^{58 \mathrm{~d}}$ as the stoichiometric oxidant also failed to produce any of the desired α-hydroxy ketone. Attempts to dihydroxylate 377a,b using a stoichiometric proportion of OsO_{4} in the presence of a catalytic amount of pyridine in aqueous acetone resulted only in hydrolytic regeneration of 376a,b. Interestingly, when a stoichiometric amount of OsO_{4} was added in one portion to the reaction of 377a under the Upjohn conditions, 378 was produced as a single diastereomer in 56% yield (Scheme 38a).

Scheme 38a

Addition of 0.25 equivalents of OsO_{4} to the reaction of $377 \mathrm{a}, \mathrm{b}(1.6: 1)$ under Sharpless conditions was sufficient to force the reaction to completion (Scheme 38b) producing 378 and a second diastereomer 379 (1.6:1, respectively) in 41% yield. The stereochemistries of $\mathbf{3 7 8}$ and $\mathbf{3 7 9}$ were both established by NOE measurements in the ${ }^{1} \mathrm{H}$ NMR.

Scheme 38b

Faced with modest yields of $\mathbf{3 7 8}$ and $\mathbf{3 7 9}$ and the prospect of using large amounts of expensive and toxic osmium tetroxide, we next turned our attention to the versatile oxidant dimethyl dioxirane. ${ }^{58 e}$ Treatment of the mixture $\mathbf{3 7 7} \mathbf{a}, \mathbf{b}$ with a freshly prepared 0.1 M solution of dimethyl dioxirane in acetone followed by opening of the resulting three-membered acetal with methanolic potassium fluoride resulted in clean conversion to 378 and 379 (Scheme 38c).

Scheme 38c

377a,b (1.6:1)

2. $\mathrm{KF} / \mathrm{MeOH}$ (90%)

378

The fact that only two of the four possible diastereomers were produced in the epoxidation and dihydroxylation reactions meant that 377 a and $\mathbf{3 7 7 b}$ must have each given only one product. The observed stereochemistries of $\mathbf{3 7 8}$ and $\mathbf{3 7 9}$ correlated with preferential delivery of the oxidant anti to the MEM ether substituent.

Oxidation of the secondary alcohol in 378 with Dess-Martin periodinane ${ }^{59}$ gave enol 380. Treatment of $\mathbf{3 8 0}$ with diazomethane afforded methyl ether $\mathbf{3 8 1}$ in $\mathbf{9 9 \%}$ overall yield (Scheme 39). We were now in a position to evaluate our synthetic plan for the construction of the ABCDE portion of 91 .

Scheme 39

We planned to form diene 386 by deprotonation at the γ-position of enone 381 followed by trapping of the resulting dienolate as a silyl ether. ${ }^{60}$ We selected 385 as a suitable model for chloronaphthoquinone 347. Quinone 385 was prepared according to the method of Brassard (Scheme 40). ${ }^{476}$

Scheme 40

It was anticipated that the addition of chloronaphthoquinone 385 to 386 could be carried out in a highly regioselective manner (Scheme 41) based on well-known frontier molecular orbital (FMO) considerations in the Diels-Alder reaction.

Scheme 41

Our attempts to prepare 387 by treatment of 381 with LDA and chlorotrimethylsilane at $-78^{\circ} \mathrm{C}$ followed by the addition of 385 produced a complex mixture of products. A similar experiment employing N-phenylmaleimide (NPM) as the dienophile failed to provide any of the corresponding Diels-Alder adduct. If diene 386 did form, the absence of a reaction with NPM would be unusual. The brown color that developed following the addition of $\mathbf{3 8 1}$ to LDA suggests $\mathbf{3 8 1}$ decomposed under these conditions. Attempts to form 386 under a variety of other conditions (Scheme 42) returned unreacted 381.

Scheme 42

Examination of the crude product mixture from the reaction of 381 with LDA revealed that the MEM protecting group was no longer present. The absence of any reaction with lithium bis(trimethylsilylamide) (LiHMDS) may suggest that removal of the γ-hydrogen in $\mathbf{3 8 1}$ may be suppressed by surrounding steric encumbrance. In the absence of the desired reaction, other destructive processes possibly involving loss of the MEM ether, may have been initiated with LDA. If this were true, use of a less labile methylether protecting group at this center seemed like a reasonable solution to the problem.

From the outset we were keenly aware of the retro aldol reaction possible with the β-hydroxy ketone functionality in 375a,b under the strongly basic conditions usually required for methyl ether formation. Fortunately, under conditions of phase-transfer catalysis (PTC), it was possible to convert 375a,b to the corresponding methyl ethers 388a,b in 84% yield (Scheme 43). ${ }^{61} \alpha$-Hydroxylation of 388a,b proceeded smoothly to give only two diastereomeric hydroxyketones 390a,b. The diastereoselectivity of this reaction paralleled that seen with 377a,b. The low yield for the oxidation and etherification sequence leading to $392 \mathrm{a}, \mathrm{b}$ was a consequence of purification problems
experienced in the oxidation step. The iodo- and iodosobenzoic acids produced from the Dess-Martin reagent were not completely separable from the enol products 391a,b by repeated filtration or chromatography.

Scheme 43

Unfortunately, a change in the protecting group did not alter the reactivity of the enone in the manner desired (Scheme 44). Attempts to form diene 393 using LDA resulted in decomposition as before. Reactions employing alkali metal salts of bis(trimethylsilylamine) at low temperatures returned unreacted 392a,b. The absence of deuterium incorporation in a deuterium oxide quench experiment conducted at $-78^{\circ} \mathrm{C}$ was indicative of a lack of significant deprotonation at this temperature. When the reaction
was carried out at $4^{\circ} \mathrm{C}$, the material decomposed in the same manner as with LDA. Use of the trimethylsilyl triflate/triethylamine (TEA) combination also resulted in decomposition of 392a,b.

Scheme 44

- LDA, THF, $-78^{\circ} \mathrm{C}$, TBSCI
-LDA, HMPA, TMEDA, $-78^{\circ} \mathrm{C}$, TBSCI
-LDA, HMPA, TMEDA, $-78^{\circ} \mathrm{C}$, TMSCl
- LiHMDS, THF,$-78^{\circ} \mathrm{C}$, TMSCl
-LiHMDS, THF, HMPA, $78^{\circ} \mathrm{C}$, TMEDA, TMSCI
- KHMDS, THF, $-78^{\circ} \mathrm{C}$, TMSCI
- KHMDS, THF, $4^{\circ} \mathrm{C}$, TMSCI
-TEA, TMSOTf, $4^{\circ} \mathrm{C}$
-TEA, TMSOTf, it

Considerations for Future Work

In order to proceed with our plan for an enantioselective synthesis of fredericamycin A, the crucial Diels-Alder union of the model quinone and diene systems must first be established. Quantitative deprotonation methods for diene preparation from 381 or $\mathbf{3 9 2 a}, \mathbf{b}$ may have proved ineffective due to an instability of the dienolate intermediate (if this species even formed under these reaction conditions). Use of a 2-methoxy-1,4-dione system and employing equilibrating conditions for silyl-enol ether formation ${ }^{60}$ may provide access to the desired diene since conversion of the initially formed β, γ-enone into a fully conjugated system should be favored energetically.

The viability of such a strategy was soon established when the corresponding diene (394) lacking the regiocontrolling oxygen was readily prepared from 55.

Compound 394 reacted instantaneously with N-phenylmaleimide providing adduct 395 in 61% yield after recrystallization (Scheme 45). Unfortunately, no reaction was observed with $\mathbf{3 8 5}$ returning only monosilylated enone 397 after workup.

The presence of an additional electron donating methoxy substituent in 386 should result in an increase in reactivity relative to 394. Whether or not the magnitude of this enhancement will be adequate to achieve a Diels-Alder addition of $\mathbf{3 8 5}$ to 386 remains to be seen. In the event a diene such as 386 cannot be prepared from an enone such as 381, an alternate synthetic route has been provided for future consideration in Scheme 46.

Note that only minor revisions to our original plan would be required.

Scheme 46

Experimental Section

General Section. See Chapter 1, p. 24.

4-Hydroxyspiro[4.5]dec-2-en-1-one (332), and (1R/S, 4S/R)- and

332

333a

333b
(1R/S, 4R/S)-1,4-dihydroxyspiro[4.5]dec-2-ene (333a,b). NaBH_{4} (107 $\mathrm{mg}, 2.82 \mathrm{mmol}$) was added in one portion to a mixture of 331 (712 mg , $4.34 \mathrm{mmol})$ and $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(806 \mathrm{mg}, 2.16 \mathrm{mmol})$ in methanol $(12 \mathrm{~mL})$ cooled to $4^{\circ} \mathrm{C}$. The reaction mixture was stirred for $5 \min 20 \mathrm{~s}$, quenched by the addition of aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, poured into water $(60 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 50 \mathrm{~mL})$. The extracts were combined, washed with saturated NaCl aqueous solution (75 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give a viscous, faint yellow oil consisting of 332 and $\mathbf{3 3 3 a , b}$ ($9: 1$ by GC-MS). Chromatography ($50 / 50 \mathrm{EtOAc}$-petroleum ether) provided 332 as a viscous, faint yellow oil ($604 \mathrm{mg}, 84 \%$) and a colorless resin (64 mg) consisting of 333a,b (1.3:1). For 332: IR $3418(\mathrm{~m}), 1697(\mathrm{~s}), 1596(\mathrm{w}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR δ $7.48(1 \mathrm{H}, \mathrm{dd}, J=2.6,5.8 \mathrm{~Hz}, \mathrm{H} 3), 6.15(1 \mathrm{H}, \mathrm{dd}, J=1.0,5.8 \mathrm{~Hz}, \mathrm{H} 2), 4.67(1 \mathrm{H}, \mathrm{ddd}, J=$ $1.0,2.6,8.1 \mathrm{~Hz}, \mathrm{H} 4), 1.81(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}, \mathrm{OH}), 1.91-1.24(10 \mathrm{H}, \mathrm{m}, \mathrm{H} 6-\mathrm{Hl} 0) ;{ }^{13} \mathrm{C}$ NMR $\delta 212.5(0, \mathrm{Cl}), 160.7(1, \mathrm{C} 3), 132.5(1, \mathrm{C} 2), 78.6$ (1, C4), 51.1 (0, C5), 33.5 (2), 27.6 (2), 25.1 (2), 22.9 (2), 22.3 (2); MS (GC-MS) 166 (20, M ${ }^{+}$), 148 (36), 137 (20), 135 (10), 133 (14), 123 (29), 121 (10), 120 (36), 119 (17), 111 (38), 110 (29), 109 (19), 107 (18), 98 (19), 97 (37), 96 (16), 95 (23), 94 (13), 93 (13), 92 (10), 91 (26), 84 (73), 83 (19), $82(22), 81(39), 80(12), 79(46), 78(10), 77(24), 70(10), 69(16), 68(14), 67(35), 66$ $(10), 65$ (17), 57 (14), 56 (33), 55 (100), 54 (19), 53 (36), 52 (10), 51 (18), 43 (19), 41
(63). Discernable signals from spectra of the mixture of 333a,b: major isomer: ${ }^{1} \mathrm{H}$ NMR $\delta 5.92(2 \mathrm{H}, \mathrm{s}, \mathrm{H} 2, \mathrm{H} 3), 4.51(2 \mathrm{H}, \mathrm{s}, \mathrm{H} 1, \mathrm{H} 4)$; ${ }^{13} \mathrm{C}$ NMR $\delta 136.3(2 \mathrm{C}, \mathrm{C} 2, \mathrm{C} 3), 81.2(2 \mathrm{C}$, $\mathrm{Cl}, \mathrm{C} 4), 47.0(0, \mathrm{C} 5)$; minor isomer: ${ }^{1} \mathrm{H}$ NMR $86.07(2 \mathrm{H}, \mathrm{s}, \mathrm{H} 2, \mathrm{H} 3), 4.10(2 \mathrm{H}, \mathrm{s}, \mathrm{Hl}$, H4); ${ }^{13} \mathrm{C}$ NMR $\delta 135.5(2 \mathrm{C}, \mathrm{C} 2, \mathrm{C} 3), 81.1(2 \mathrm{C}, \mathrm{C} 1, \mathrm{C} 4), 47.4$ (0, C5). MS (GC-MS) 168 $\left(18, \mathrm{M}^{+}\right), 150(32), 148(11), 124(12), 112(19), 111(20), 110(10), 109(21), 108(55)$, 107 (16), 97 (15), 96 (15), 95 (32), 94 (21), 93 (31), 91 (16), 85 (10), 84 (24), 83 (29), 82 (19), 81 (100), $80(26), 79(60), 78(12), 77(18), 70(10), 69(16), 68(20), 67(71), 66$ (10), 65 (13), 57 (27), 56 (18), $55(72), 54$ (22), 53 (31), 51 (14), 44 (11), 43 (42), 42 (14), 41 (67).

334

4-(Chlorodimethylsilyloxy)spiro[4.5]dec-2-en-1-one (334). A solution composed of $332(809 \mathrm{mg}, 4.87 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.69 \mathrm{~mL}$, 4.9 mmol) in dry THF (3.4 mL) was added dropwise to dichlorodimethylsilane ($3.0 \mathrm{~mL}, 25 \mathrm{mmol}$) in THF (2.0 mL) cooled to $4^{\circ} \mathrm{C}$. The mixture was stirred at rt for 18 h , and the solvent was evaporated to give a mixture of solid and oil. The oil portion was rinsed free from the solid with dry hexanes. The combined washings were filtered and concentrated to provide 334 as a faint yellow oil $(1.26 \mathrm{~g}$, $>99 \%)$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.43(1 \mathrm{H}, \mathrm{dd}, J=2.4,5.8 \mathrm{~Hz}, \mathrm{H} 3), 6.14(1 \mathrm{H}, \mathrm{d}, J=5.8 \mathrm{~Hz}, \mathrm{H} 2), 4.67$ $(1 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{H} 4), 1.80(1 \mathrm{H}, \mathrm{m}), 1.72-1.22(9 \mathrm{H}, \mathrm{m}), 0.57\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.55(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{SiCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 211.4(0, \mathrm{C} 1), 159.3(0, \mathrm{C} 3), 132.7(0, \mathrm{C} 2), 79.3(1, \mathrm{C} 4), 51.0(0$, C5), 33.3 (2), 27.7 (2), 25.1 (2), 22.7 (2), 22.0 (2), 3.1 ($3, \mathrm{SiCH}_{3}$), 2.2 ($3, \mathrm{SiCH}_{3}$).

335 (335). A solution of cyclohexanone ($148 \mathrm{mg}, 1.50 \mathrm{mmol}$) in THF (0.92 mL) was added dropwise to freshly prepared LDA (1.5 mmol) in hexanes $(0.60 \mathrm{~mL})$ and THF (2.0 mL) cooled to $-78^{\circ} \mathrm{C}$. The resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min prior to the dropwise introduction of $334(395 \mathrm{mg}, 1.53 \mathrm{mmol})$ in THF (0.75 mL) with warming to rt over 3.5 h . The mixture was concentrated, the residue treated with dry hexanes, and filtered. Evaporation of the solvent from the filtrate yielded crude 335 as a yellow oil (392 mg). This material was used in the next step without additional purification. IR $1713(\mathrm{~s}), 1671(\mathrm{~m}) \mathrm{cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.43(1 \mathrm{H}, \mathrm{dd}, J=2.4,5.7 \mathrm{~Hz}, \mathrm{H} 3), 6.10(1 \mathrm{H}, \mathrm{dd}, J=$ $0.8 .5 .7 \mathrm{~Hz}, \mathrm{H} 2), 4.94\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2^{\prime}\right), 4.76(1 \mathrm{H}, \mathrm{dd}, J=0.8,2.4 \mathrm{~Hz}, \mathrm{H} 4), 2.08-1.94(4 \mathrm{H}, \mathrm{m})$, $1.75-1.22(14 \mathrm{H}, \mathrm{m}), 0.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.25\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$.
(1R/S, 5S/R, 10R/S, 11S/R, 14R/S)-3,3-Dimethyl-2,4-dioxa-3-

336 silaspiro(cyclohexane-1',13-tetracyclo[9.2.1.0 $\left.0^{5.10} 0^{5.14}\right]$ tetra-decane)-12-one (336). A solution of 335 (392 mg) in cyclohexane $(5.0 \mathrm{~mL}$) was irradiated at 350 nm in a Rayonet photochemical reactor for 20 h . Evaporation of the solvent and chromatography ($5 / 95$ EtOAc-petroleum ether) of the residue provided 336 as a white solid ($73 \mathrm{mg}, 19 \%$ from 334); mp $80-81{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CCL}_{4}\right) 1731 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR} 84.52(1 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz}, \mathrm{Hl})$, $2.78(1 \mathrm{H}$, overlapped $\mathrm{m}, \mathrm{H} 10), 2.71(1 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}, \mathrm{H} 14), 2.47(1 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}$, H11), $2.00(1 \mathrm{H}, \mathrm{m}), 1.88-1.13(17 \mathrm{H}, \mathrm{m}), 0.20\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right), 0.17\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right) ; \mathrm{NOE}$ data 4.52 ($2.78,1.6 \% ; 2.71,6 \%), 2.71(4.52,6 \% ; 2.47,4 \%), 2.47(2.78,2 \% ; 2.71,2$ \%); ${ }^{13} \mathrm{C}$ NMR $\delta 221.5(0, \mathrm{Cl} 2), 72.6(1, \mathrm{Cl}), 70.5(0, \mathrm{C} 5), 59.2(0 . \mathrm{C} 13), 48.4(1), 46.2$
(1), 40.4 (1, C11), 38.9 (2), 30.7 (2), 25.6 (2), 25.5 (2), 24.2 (2), 22.1 (2), 21.9 (2), 21.0 (2), 20.3 (2), $0.3\left(3, \mathrm{SiCH}_{3}\right),-1.7\left(3, \mathrm{SiCH}_{3}\right) ; \mathrm{MS} 320\left(38, \mathrm{M}^{+}\right), 224(13), 222(12), 210$ (12), 209 (87), 195 (16), 194 (20), 181 (18), 171 (33), 169 (17), 168 (62), 156 (17), 155 (100); HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Si} 320.1806$, found 320.1786 .

357

7-Methoxy-5-methyl-1-indanone (357). 7-Hydroxy-5-methyl-1indanone ($2.73 \mathrm{~g}, 16.8 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(2.87 \mathrm{~g}, 20.8 \mathrm{mmol})$ and iodomethane ($2.0 \mathrm{~mL}, 32 \mathrm{mmol}$) were stirred together in refluxing acetone (40 mL) for 18 h . After cooling to rt , the mixture was filtered and the solvent was evaporated leaving a solid residue that was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(60 \mathrm{~mL})$. The aqueous layer was adjusted to pH 7 with 6 M HCl , extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$, the organic layers were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give 2 as a yellow solid ($2.92 \mathrm{~g}, 98 \%$). Mp 127-129 ${ }^{\circ} \mathrm{C}$; IR $1698 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 6.82$ $(1 \mathrm{H}, \mathrm{s}) 6.58(1 \mathrm{H}, \mathrm{s}) 3.93\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right) 3.02(2 \mathrm{H}, \mathrm{m}) 2.65(2 \mathrm{H}, \mathrm{m}), 2.42(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 7-$ methyl); ${ }^{13} \mathrm{C}$ NMR $\delta 204.3$ (0, C1), 158.2 (0), 157.8 (0), 147.9 (0), 123.0 (0), 119.0 (1), 109.8 (1), 55.6 (3. C7-methoxy), 36.9 (2), 25.4 (2), 22.3 (3, C5-methyl); MS 177 (12), $176\left(\mathrm{M}^{+}, 100\right), 175(27), 161(14), 148(12), 147(99), 133(14), 129(12), 119(16), 118$ (14), 117 (30), 115 (25), 105 (18), 103 (15), 91 (17), 90 (13), 77 (2), 63 (11), 62 (14), 51 (16), 45 (27); HRMS caled for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{2}, 176.0837$, found 176.0852 .

358 3,4-Dihydro-8-methoxy-6-methyl-(2H)isoquinolinone (358). A mixture of $\mathbf{3 5 7}(362 \mathrm{mg}, 2.05 \mathrm{mmol})$, hydroxylamine- O-sulfonic acid ($353 \mathrm{mg}, 3.12 \mathrm{mmol}$) and 88% formic acid $(5.0 \mathrm{~mL}$) was heated to reflux for 14 h , cooled in ice, adjusted to $\mathrm{pH} 8-9$ with 6 M NaOH , diluted with an equal volume of water and extracted with chloroform ($4 \times 50 \mathrm{~mL}$). The extracts were
combined, dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent was evaporated to give 358 as a tan solid (395 $\mathrm{mg},>99 \%$). Recrystallization of a portion from benzene afforded an analytical sample as a beige solid; $\mathrm{mp} 219^{\circ} \mathrm{C}$ (decomposition); IR (Nujol) 3209 (s), 1721 (w), 1660 (m), 1567 (m) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\delta 10.07(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 6.73(1 \mathrm{H}, \mathrm{s}), 6.56(1 \mathrm{H}, \mathrm{s}), 3.92(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 8-$ methoxy), 2.99 (4H, s, H3, H4), $2.37\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 6\right.$-methyl); ${ }^{13} \mathrm{C}$ NMR $\delta 162.2(0, \mathrm{Cl}), 156.1$ $(0), 150.7(0), 141.7(0), 121.7(0), 118.2$ (1), 109.6 (1), 55.2 (3, C8-methoxy), 28.5 (2), 26.0 (2), 22.0 (3, C6-methyl); MS 191 (27, M $)$, 175 (13), 174 (100), 145 (12), 144 (25), $131(10), 117(16), 116(10), 115(16), 105(10), 91(12), 78(12), 77(12), 51(10)$; HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{2}$ 191.0946, found 191.0946.
1-(tert-Butyldimethylsilyloxy)-7-methoxy-5-methyl-(3H)indene
(371). tert-Butyldimethylsilyl trifluoromethanesulfonate $(0.60 \mathrm{~mL}$,
$2.6 \mathrm{mmol})$ was added dropwise to a stirred solution of $357(451 \mathrm{mg}$, $2.56 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.39 \mathrm{~mL}, 2.8 \mathrm{mmol})$ in dry 1,2-dichloroethane $(4.0 \mathrm{~mL})$ cooled to 4 ${ }^{\circ} \mathrm{C}$. The mixture was held at $4^{\circ} \mathrm{C}$ for 10 min , then at rt for 1 h . The mixture was concentrated under vacuum and extracted with dry pentane $(5 \times 5 \mathrm{~mL})$. The extracts were combined and the solvent was evaporated leaving 371 as a yellow oil ($692 \mathrm{mg}, 93 \%$; IR $1609 \mathrm{~cm}^{-1}$; 'H NMR $\delta 6.82(1 \mathrm{H}, \mathrm{s}), 6.59(1 \mathrm{H}, \mathrm{s}), 5.24(1 \mathrm{H}, \mathrm{t}, J=2.4 \mathrm{~Hz}, \mathrm{H} 2), 3.82(3 \mathrm{H}, \mathrm{s}$, C7-methoxy), $3.18(2 \mathrm{H}, \mathrm{d}, J=2.4 \mathrm{~Hz}, \mathrm{H} 3), 2.37(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 5$-methyl), $1.01(9 \mathrm{H}, \mathrm{s}, t$-butyl), $0.20\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 153.8(0), 153.4(0), 145.8(0), 136.3(0), 126.6(0)$, 117.8 (1), 110.1 (1), 104.9 (1, C2), 55.2 (3, C7-methoxy), 33.6 (2, C3), 25.7 (3C, 3, t butyl), 21.7 (3, C5-methyl), 18.2 (0,t-butyl), $-4.9\left(2 \mathrm{C}, 3, \mathrm{SiCH}_{3}\right) ;$ MS $290\left(8, \mathrm{M}^{+}\right), 234$ (11), 233 (43), 220 (14), 219 (62), 218 (100), 217 (13), 203 (37), 165 (12), 159 (12), 147
$(22), 135(37), 115(12), 89(18), 77(13), 75(30), 73(59), 59(20), 57(13), 45(10), 41$ (15).

372

2-Allyl-7-methoxy-5-methylindanone (372). A solution composed of 371 ($686 \mathrm{mg}, 2.36 \mathrm{mmol}$), allyl bromide (0.24 mL , $2.8 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.8 \mathrm{~mL})$ was added dropwise to a stirred slurry of silver trifluoroacetate ($577 \mathrm{mg}, 2.61 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.4 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred at $\mathbf{- 7 8}{ }^{\circ} \mathrm{C}$ for $\mathbf{4 5} \mathrm{min}$, warmed to rt over 30 min , filtered (Celite) and concentrated. Chromatography (40/60 EtOAc-petroleum ether) provided 372 as a yellow oil ($260 \mathrm{mg}, 51 \%$); IR $1704(\mathrm{~s}), 1640(\mathrm{~m}), 1609(\mathrm{~s}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR 86.80 $(1 \mathrm{H}, \mathrm{s}), 6.59(1 \mathrm{H}, \mathrm{s}), 5.80\left(1 \mathrm{H}\right.$, symmetric m, H2'), $5.14-5.00\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 3^{\prime}\right), 3.93(3 \mathrm{H}, \mathrm{s}$, C7-methoxy). $\left.3.15(1 \mathrm{H}, \mathrm{dd}, J=8.4,18.0 \mathrm{~Hz}, \mathrm{H} 3), 2.79-2.62(3 \mathrm{H}, \mathrm{m}, \mathrm{H} 2, \mathrm{H} 3, \mathrm{HI})^{\prime}\right) .2 .41$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 5\right.$-methyl), $2.20\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 205.0(0, \mathrm{Cl}), 157.7(0), 156.5(0)$, $147.9(0), 135.5\left(1, \mathrm{C}^{\prime}\right), 122.3(0), 118.8\left(2, \mathrm{C} 3^{\prime}\right), 116.5(1), 109.7(1), 55.4$ (3, C7. methoxy), $46.6(1, C 2), 35.8\left(2, \mathrm{Cl}^{\prime}\right), 31.4(2, \mathrm{C} 3), 22.2\left(3, \mathrm{C} 5\right.$-methyl); MS $216\left(42, \mathrm{M}^{+}\right)$. 176 (27), 175 (100). 174 (18), 162 (10), 129 (11), 115 (19), 91 (16), 77 (10); HRMS caled for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2} 216.1149$, found 216.1160 .

3-Allyl-3,4-dihydro-7-methoxy-5-methyl-(2H)isoquinolinone (373). A mixture of $\mathbf{3 7 2}$ ($241 \mathrm{mg}, 1.12 \mathrm{mmol}$), hydroxylamine-O-sulfonic acid ($195 \mathrm{mg}, 1.72 \mathrm{mmol}$) and 88% formic acid (3.0 mL) was heated to reflux for 1 h , cooled in ice, adjusted to $\mathrm{pH} 7-8$ with 6 M NaOH , diluted with an equal volume of water and extracted with chloroform $(3 \times 30 \mathrm{~mL})$. The extracts were combined, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Chromatography (28/72 acetone-petroleum ether) gave a yellow resin (199 mg) that solidified on trituration with
hexanes. Recrystallization from hexanes afforded an analytical sample of $\mathbf{3 7 3}$ as a faintyellow solid (148 mg). Evaporation of the mother liquor left a viscous, yellow oil (47 mg) consisting of a $1: 1$ mixture of $\mathbf{3 7 2}$ and 373 (total 67%). For $\mathbf{3 7 3}$: $\mathrm{mp} 132-133.5^{\circ} \mathrm{C}$; IR (Nujol) 3247 (s), 1636 (w), 1606 (m), 1591 (m) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 10.03$ ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}$), $6.72(1 \mathrm{H}, \mathrm{s}), 6.58(1 \mathrm{H}, \mathrm{s}), 5.84\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2^{\prime}\right), 5.15-4.97(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 3$ '), $3.92(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 7-$ methoxy), $3.60(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3), 3.09(1 \mathrm{H}, \mathrm{dd}, J=8.2,17.0 \mathrm{~Hz}, \mathrm{H} 4), 2.91\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 2{ }^{\prime}\right), 2.75$ ($1 \mathrm{H}, \mathrm{dd}, J=1.6,17.0 \mathrm{~Hz}, \mathrm{H} 4$), $2.37\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 5\right.$-methyl), $2.23\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3{ }^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR δ $163.5(0, \mathrm{C} 1), 156.0(0), 149.2(0), 141.8(0), 136.5\left(1, \mathrm{C}^{\prime}\right), 121.3(0), 118.3(1), 116.3$ (2, C3'), 109.6 (1), 55.1 (3, C7-methoxy), 38.6 (1, C3), $36.0(2, C 1$), 34.4 (2, C4), 22.0 (3, C5-methyl); MS 231 (3, M ${ }^{+}$), 215 (42), 214 (50), 210 (11), 200 (21), 198 (11), 182 (13), 175 (15), 174 (100), 173 (14), 172 (11), 159 (12), 144 (12), 131 (15), 130 (16), 115 (17), 105 (14), 91 (11), 77 (17), 51 (12), 43 (16), 41 (22); HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{2}$ 231.1258 , found 231.1266 .

374

2',3'-Dihydro-7'-methoxy-5'-methyl-1,3-dioxaspiro(cyclopentane-2,1'-(1H)indene) (374). Trimethylsilyl trifluoromethanesulfonate (50 $\mu \mathrm{L}, 280 \mu \mathrm{~mol}$) was added to a dichloromethane (4.2 mL) solution of 357 and 1,2 -bis(trimethylsilyloxy)ethane $(1.02 \mathrm{~g}, 4.94 \mathrm{mmol})$ cooled to $-29^{\circ} \mathrm{C}$. The mixture was stirred at this temperature for 48 h , quenched by the addition of dry pyridine (0.12 mL). poured into a saturated NaHCO_{3} aqueous solution (15 mL) and extracted with ether ($3 \times 15 \mathrm{~mL}$). The combined extracts were dried over a $1: 1$ mixture of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}$. Evaporation of the solvent gave an oily, beige solid (862 mg) that consisted of a 4.8 : I mixture of 357 and 374. Chromatography (40/60 EtOAc-hexanes) gave recovered ketone 357 as a faint yellow solid (490 mg) and $\mathbf{3 7 4}$ as a yellow oil (127 mg ; 15%); IR
$1600,1459 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 6.63(1 \mathrm{H}, \mathrm{s}), 6.53(1 \mathrm{H}, \mathrm{s}), 4.27-4.16(2 \mathrm{H}, \mathrm{m}), 4.07-3.96(2 \mathrm{H}$, $\mathrm{m}), 3.83\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.84(2 \mathrm{H}$, apparent $\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}), 2.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} \mathrm{S}^{\prime}\right.$-methyl), 2.28 (2 H , apparent $\mathrm{t}, J=6.9 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR $\delta 155.7\left(0, \mathrm{C}^{\prime}\right), 146.3(0), 141.2(0), 130.4(0)$, 117.9 (1), 117.8 ($0, \mathrm{C} 2$), 109.8 (1), 65.7 (2C, 2, C4, C5), 55.1 (3, OCH3), 38.4 (2), 28.0 (2), 21.7 (3, C5'-methyl); MS 220 (61, M †), 190 (22), 189 (16), 177 (26), 176 (28), 175 (45), 162 (16), 161 (100), 160 (13), 149 (20), 147 (33), 145 (21), 131 (14), 129 (10), 117 (19), 115 (30), 105 (11), 103 (13), 91 (24), 78 (12), 77 (23), 65 (12), 63 (12), 51 (16), 43 (12).

359

2',3'-Dihydro-7'-methoxy-5'-methylspiro(cyclopentane-2,1'-(1H)indene)-1,3-dione (359). $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.14 \mathrm{~mL}, 1,1 \mathrm{mmol})$ and 1 ($259 \mathrm{mg}, 1.1 \mathrm{mmol}$) as a solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.84 \mathrm{~mL})$ were added in succession to a $-78^{\circ} \mathrm{C}$ solution of $\mathbf{3 7 4}(123 \mathrm{mg}, 557 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.2 \mathrm{~mL})$. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 5 min then at rt for 2 h , poured into $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30 \mathrm{~mL})$. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. Chromatography ($0.5 / 99.5 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded 359 as a white solid (76 mg, 56%); mp $110-112.5^{\circ} \mathrm{C}$; IR ($\left.\mathrm{CCl}_{4}\right) 1722(\mathrm{~s}), 1592(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{\mathrm{t}} \mathrm{H}$ NMR $\delta 6.70$ $(1 \mathrm{H}, \mathrm{s}), 6.43(1 \mathrm{H}, \mathrm{s}), 3.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.11(2 \mathrm{H}, \mathrm{t}, J=7.4), 3.07-2.72(4 \mathrm{H}$, symmetric $\mathrm{m}, \mathrm{H} 3, \mathrm{H} 4), 2.32(2 \mathrm{H}$, overlapped t$), 2.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 5\right.$ '-methyl); ${ }^{13} \mathrm{C}$ NMR $\delta 215.9(2 \mathrm{C}, 0$, C2, C5), 153.7 ($0, \mathrm{C}^{\prime}$), 147.4 (0), 140.5 (0), $127.4(0), 118.1$ (1), 109.3 (1), $65.6(0, \mathrm{Cl})$, $55.1\left(3, \mathrm{OCH}_{3}\right), 36.3$ (2C, 2, C3, C4), 35.4 (2), 32.2 (2), 21.7 (3, C5'-methyl); MS 245 (15), 244 (39, M $), 188$ (67), 174 (20), 160 (10), 159 (29), 145 (44), 131 (24), 130 (13),

129 (23), 128 (22), 117 (17), 116 (12), 115 (46), 91 (16), 55 (12); HRMS caled for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{3} 244.1098$, found 244.1086 .
(2R/S,3R/S)-(375a) and (2R/S,3S/R)-2',3'-Dihydro-3-hydroxy-
 375a
 375b spiro(cyclopentane-2,1'-(1H)indene)-1-one (375b). A solution of 55 $(1.98 \mathrm{~g}, 9.89 \mathrm{mmol})$ in anhydrous ether $(95 \mathrm{~mL})$ was cooled to $4^{\circ} \mathrm{C}$ and treated with a 1.0 M solution of $\mathrm{LiAlH}(\mathrm{Ot}-\mathrm{Bu})_{3}$ in $\mathrm{THF}(10.2 \mathrm{~mL})$. The resulting slurry was stirred at $4^{\circ} \mathrm{C}$ for 10 min , then at rt for 30 min , poured into water (100 mL), acidified to $\mathrm{pH} \sim 2-3$ with 6 M HCl and extracted with ethyl acetate $(4 \times 60 \mathrm{~mL})$. The extracts were combined, washed with a saturated NaHCO_{3} aqueous solution $(150 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give a mixture of $\mathbf{3 7 5 a}, \mathrm{b}(1.7: 1)$ as a tan-colored oil $(1.99 \mathrm{~g}, 99 \%)$. Compounds $\mathbf{3 7 5 \mathrm { a }}$ and 375b could not be separated by flash chromatography. From spectra of the mixture: for 375a: ${ }^{1} \mathrm{H}$ NMR $\delta 7.10(1 \mathrm{H}, \mathrm{m}), 4.23(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H} 3), 1.62(\mathrm{br} \mathrm{s}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR 8220.4 (0, $\mathrm{Cl}), 145.5(0), 140.5(0), 127.7$ (1), 126.2 (1), $125.8(1), 124.2(1), 75.4$ (1, C3), 67.8 (0 , C2), 34.9 (2), 34.4 (2), 30.7 (2), 27.8 (2); for 375b: ${ }^{\text {TH NMR }} 86.98$ ($1 \mathrm{H}, \mathrm{m}$), 4.43 (1 H , apparent $\mathrm{t}, J=6.4 \mathrm{~Hz}, \mathrm{H} 3) ;{ }^{13} \mathrm{C}$ NMR $\delta 218.5(0, \mathrm{Cl}), 145.4(0), 142.7(0), 127.3$ (1), 126.2 (1), 124.4 (1), 122.7 (1), 76.3 (1, C3), 67.3 (0, C2), 35.1 (2), 28.7 (2).

376a

376b
(2RS,3R/S)- (376a) and (2RS,3S/R)-2',3'-Dihydro-3-((methoxy-ethoxy)methoxy)spiro(cyclopentane-2,1'-(1H)indene)-1-one (376b). $375 \mathrm{a}, \mathrm{b}(1.93 \mathrm{~g}, 9.54 \mathrm{mmol}$), diisopropylethylamine ($3.4 \mathrm{~mL}, 19 \mathrm{mmol}$) and 2-methoxyethoxymethyl chloride $(2.2 \mathrm{~mL}, 20 \mathrm{mmol})$ were stirred together in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(16 \mathrm{~mL})$ for 60 h , poured into water (50 mL)
and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 40 \mathrm{~mL})$. The combined extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. Chromatography ($60 / 40 \mathrm{EtOAc}$-hexanes) gave a tan-colored oil ($2.23 \mathrm{~g}, 80$ \%) consisting of a mixture of $376 \mathrm{a}, \mathrm{b}$. Additional chromatography afforded samples of each diastereomer, however complete separation was not achieved. For 376a: yellow oil; IR $1740 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.23-7.13\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}^{\prime}-\mathrm{H}^{\prime}\right), 4.65\left(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{HI}^{\prime \prime}\right), 4.37$ $\left(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{Hl}^{\prime \prime}\right), 4.27(1 \mathrm{H}$, apparent $\mathrm{t}, J=3.4 \mathrm{~Hz}, \mathrm{H} 3), 3.46(1 \mathrm{H}, \mathrm{ddd}, J=3.2$, $6.3,10.4 \mathrm{~Hz}), 3.31\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.37-3.28(2 \mathrm{H}$, overlapped m$), 3.17(1 \mathrm{H}, \mathrm{ddd}, J=3.1$, $5.6,10.5 \mathrm{~Hz}), 3.05-2.96\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}^{\prime}\right), 2.62(1 \mathrm{H}, \mathrm{m}), 2.45(1 \mathrm{H}, \mathrm{m}), 2.31-2.02(4 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\delta 219.4$ ($0, \mathrm{Cl}$), $145.0(0), 141.0(0), 127.4$ (1), 126.7 (1), 125.9 (1), 123.8 (1), 93.6 (2, C1"), $80.1(1, \mathrm{C} 3), 71.3$ (2), 66.7 (2), $66.4(0, \mathrm{C} 2), 58.6\left(3, \mathrm{OCH}_{3}\right), 35.4(2), 34.4$ (2), 30.7 (2, C3'), 26.0 (2). For 376b: yellow oil; IR $1742 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.26-7.13(3 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}^{\prime}-\mathrm{H} 6^{\prime}\right), 7.01\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{\prime}\right), 4.74\left(1 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}, \mathrm{H} 1^{\prime \prime}\right), 4.57\left(1 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{H} 1^{\prime \prime}\right)$, $4.43(1 \mathrm{H}, \mathrm{dd}, J=5.4,7.8 \mathrm{~Hz}, \mathrm{H} 3), 3.57(1 \mathrm{H}, \mathrm{m}), 3.43-3.35(3 \mathrm{H}, \mathrm{m}), 3.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, 3.09-2.92 (2H, m, H3'), 2.68-2.31 (4H, m, H2', H4, H5), 2.14-1.95 (2H, m, H2', H4); NOE data 7.01 (4.43, 2.2%), 4.43 ($7.01,3.6 \% ; 3.57,1.5 \%$), 3.57 (4.43, 1.4%); ${ }^{13} \mathrm{C}$ NMR $\delta 217.4(0, \mathrm{C} 1), 145.3(0), 143.0(0), 127.5(1), 126.4(1), 124.5(1), 122.8\left(1, \mathrm{C}^{\prime}\right)$, $93.8\left(2, \mathrm{C} 1{ }^{\prime \prime}\right), 80.8(1, \mathrm{C} 3), 71.3(2), 66.6(2), 66.3(0, \mathrm{C} 2), 58.7\left(3, \mathrm{OCH}_{3}\right), 35.4(2, \mathrm{C} 3)$, $30.9\left(2, \mathrm{C}^{\prime}\right), 29.4$ (2, C4), 25.9 (2, C2'); MS $290\left(3, \mathrm{M}^{+}\right), 129(13), 89(54), 59$ (100); HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{4} 290.1517$, found 290.1535 .

377a

377b
(4R/S,5R/S)-(377a) and (4R/S,5S/R)-1-(tert-Butyldimethyl-silyloxy)-2',3'-dihydro-4-((methoxyethoxy)methoxy)-spiro(cyclopentane-5,1'-($1 H$)indene)-1-ene (377b). tertButyldimethylsilyl trifluoromethanesulfonate ($1.40 \mathrm{~mL}, 6.1 \mathrm{mmol}$) was added dropwise to a stirred solution of $\mathbf{3 7 6 a , b}(1.68 \mathrm{~g}, 5.79$ mmol $)$ and $\mathrm{Et}_{3} \mathrm{~N}(0.90 \mathrm{~mL}, 6.5 \mathrm{mmol})$ in dry 1,2-dichloroethane $\left(9.0 \mathrm{~mL}\right.$) cooled to $4^{\circ} \mathrm{C}$. The mixture was held at $4^{\circ} \mathrm{C}$ for 10 min , then at rt for 2 h , concentrated under vacuum and extracted with dry pentane ($5 \times 5 \mathrm{~mL}$). The extracts were combined and the solvent was evaporated to give a mixture of $\mathbf{3 7 7} \mathrm{a}, \mathrm{b}$ as a yellow oil ($2.26 \mathrm{~g}, 96 \%$). Chromatography provided homogenous samples of each diastereomer. For 377a: colorless oil; IR $1642 \mathrm{~cm}^{-1}$; 'H NMR $87.20-7.06\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H} 4{ }^{\prime}-\mathrm{H} 7\right.$ '), $4.58(1 \mathrm{H}, \mathrm{t}$, $J=2.3 \mathrm{~Hz}, \mathrm{H} 2), 4.54\left(1 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{Hl}^{\prime \prime}\right), 4.41\left(1 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}, \mathrm{Hl}{ }^{\prime \prime}\right), 4.27(1 \mathrm{H}$, dd, $J=5.6,7.2 \mathrm{~Hz}, \mathrm{H} 4), 3.46(1 \mathrm{H}, \mathrm{m}), 3.39(2 \mathrm{H}$, apparent $\mathrm{t}, J=4.8 \mathrm{~Hz}), 3.34(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 3.24(1 \mathrm{H}, \mathrm{m}), 2.93\left(2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{H}^{\prime}\right), 2.66(1 \mathrm{H}, \mathrm{ddd}, J=2.7,7.2,14.9 \mathrm{~Hz})$, 2.46-2.31 (2H, m, H3, H2'), $2.02(1 \mathrm{H}, \mathrm{m}), 0.72\left(9 \mathrm{H}, \mathrm{s}, t\right.$-butyl), $0.10\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right),-0.08$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $8157.4(0, \mathrm{Cl}), 144.7(0), 143.2(0), 126.7(1), 125.8(1), 125.5$ (1), 124.0 (1), 96.8 (1, C2), 94.5 (2, C1"), 82.6 (1, C4), 71.6 (2), 66.6 (2), 63.5 (0, C5), $58.9\left(3, \mathrm{OCH}_{3}\right), 34.6$ (2), 34.1 (2), 31.1 (2, C3'), 25.4 (3C, 3, t-butyl), 17.8 (0,t-butyl), $4.8\left(3, \mathrm{SiCH}_{3}\right),-5.4\left(3, \mathrm{SiCH}_{3}\right) ;$ MS $405\left(2, \mathrm{M}^{+}\right), 315(11), 299(13), 298(28), 287(12)$, 155 (14), 133 (13), 89 (24), 75 (26), 73 (100), 59 (64), 45 (11). For 377b: colorless oil; IR $1640 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.18-7.03\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H} 4^{\prime}-\mathrm{H}^{\prime}{ }^{\prime}\right), 4.67\left(1 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{Hl}{ }^{\prime \prime}\right), 4.53$ $(1 \mathrm{H}, \mathrm{t}, J=2.3 \mathrm{~Hz}, \mathrm{H} 2), 4.50\left(1 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{H}^{\prime \prime}\right), 4.32(1 \mathrm{H}, \mathrm{t}, J=6.6 \mathrm{~Hz}, \mathrm{H} 4), 3.54$ $\left.(1 \mathrm{H}, \mathrm{m}), 3.41-3.24(3 \mathrm{H}, \mathrm{m}), 3.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.92(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{H} 3)^{\prime}\right), 2.63(1 \mathrm{H}$,
overlapped ddd, $J=2.7,7.2,14.5 \mathrm{~Hz}), 2.56(1 \mathrm{H}$, overlapped m$), 2.03(1 \mathrm{H}, \mathrm{td}, J=8.1$, $13.2 \mathrm{~Hz}), 0.67\left(9 \mathrm{H}, \mathrm{s}, t\right.$-butyl), $0.11\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right),-0.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR δ $157.1(0, \mathrm{C} 1), 146.3(0), 144.9(0), 126.7(1), 126.0(1), 124.0(1), 123.2(1), 96.5(1, \mathrm{C} 2)$, $94.2\left(2, \mathrm{Cl}^{\prime \prime}\right), 82.9(1, \mathrm{C} 4), 71.5(2), 66.5(2), 63.0(0, \mathrm{C} 5), 58.8\left(3, \mathrm{OCH}_{3}\right), 33.3(2), 31.3$ $\left(2, \mathrm{C}^{\prime}\right), 28.8(2), 25.2\left(3 \mathrm{C}, 3, t\right.$-butyl), $17.7\left(0, t\right.$-butyl), $-4.8\left(3, \mathrm{SiCH}_{3}\right),-5.4\left(3, \mathrm{SiCH}_{3}\right)$.

378

379 (2R/S,4R/S,5R/S)-(378) and (2R/S,4S/R,5R/S)-2', 3^{\prime}-Dihydro-2-hydroxy-4-((methoxyethoxy)methoxy)spiro(cyclopentane-5,1'($1 H$) indene)-1-one (379). A solution of $377 \mathrm{a}, \mathrm{b}(1.66 \mathrm{~g}, 4.12 \mathrm{mmol})$ in acetone $(6.0 \mathrm{~mL})$ was treated with freshly prepared dimethyldioxirane ($63 \mathrm{~mL}, \sim 0.1 \mathrm{M}$ in acetone) at $-15^{\circ} \mathrm{C}$. The mixture was warmed to rt , concentrated under reduced pressure and the residue treated with saturated KF in methanol (75 mL) with stirring for 25 min . The mixture was concentrated to $\sim 30 \mathrm{~mL}$ volume, poured into water (75 mL) and extracted with ethyl acetate ($4 \times 60 \mathrm{~mL}$). The combined extracts were washed with a saturated NaCl aqueous solution $(60 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent was evaporated to give a viscous, orange oil (1.22 g). Chromatography ($30 / 70 \mathrm{EtOAc}$-petroleum ether) provided $378(489 \mathrm{mg})$ and $379(285 \mathrm{mg})$ as viscous, faint yellow oils; a mixed fraction (44 mg) was also isolated (total: 65% of theoretical). TLC analysis revealed that significant deterioration of the sample had occurred during the second (heated) evaporation. In a separate experiment, using $230 \mu \mathrm{~mol}$ of a $2.2: 1$ mixture of $\mathbf{3 7 7 a}, \mathrm{b}$ and conditions described below for $388 \mathrm{a}, \mathrm{b}$, no such deterioration was seen. ${ }^{1} \mathrm{H}$ NMR analysis of the isolated yellow oil (72 mg) indicated this material consisted of 378,379 and fluoro-tertbutyldimethylsilane (2.2:1:1). For 378: IR $3427,1744 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta \mathbf{7 . 2 6 - 7 . 1 9}$ (2H,
m), 7.19-7.10 ($1 \mathrm{H}, \mathrm{m}$), $7.05(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.7 \mathrm{~Hz}, \mathrm{H} 7$), $4.62(1 \mathrm{H}$, symmetric $\mathrm{m}, \mathrm{H} 2), 4.53$ $\left(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{H}^{\prime \prime}\right), 4.27(1 \mathrm{H}, \mathrm{d}, J=4.0 \mathrm{~Hz}, \mathrm{H} 4), 4.16\left(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{HI}^{\prime \prime}\right), 3.43$ $(1 \mathrm{H}, \mathrm{m}), 3.38-3.25(2 \mathrm{H}$, overlapped m$), 3.31\left(3 \mathrm{H}, \mathrm{s}, 0 \mathrm{OCH}_{3}\right)$, 3.11-3.00 $(3 \mathrm{H}, \mathrm{m}), 2.82(1 \mathrm{H}$, d, $J=2.1 \mathrm{~Hz}, \mathrm{OH}$), $2.71(1 \mathrm{H}, \mathrm{dd}, J=8.3,13.5 \mathrm{~Hz}, \mathrm{H} 3 \operatorname{syn} \mathrm{H} 2), 2.31(1 \mathrm{H}, \mathrm{td}, J=9.1,12.3$ $\mathrm{Hz}, \mathrm{H} 2$ '), 2.08-1.95 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 2$ ', H3 syn H4); NOE data 4.62 (7.05, 1.6 \%; 2.71, 4 \%), 4.27 (4.53, 1.6%; 2.08-1.95, 8%), 2.71 (4.62, 13%; 4.53, $2 \% ; 4.27,1.1 \%$; 2.08-1.95, 14%); ${ }^{13} \mathrm{C}$ NMR 8220.3 ($0, \mathrm{Cl}$), 144.7 (0), 141.4 (0), 127.7 (1), 126.6 (1), 126.2 ($1, \mathrm{C7}$), 124.0 (1), 94.0 (2, C1"), 75.8 (1, C4), 73.7 (1, C2), 71.4 (2), 66.5 (2), $64.8(0, \mathrm{C} 5), 58.9$ $\left(3, \mathrm{OCH}_{3}\right), 37.3\left(2, \mathrm{C}^{\prime}\right), 35.0(2, \mathrm{C} 3), 30.8\left(2, \mathrm{C}^{\prime}\right)$, MS $306\left(0.7, \mathrm{M}^{+}\right), 129(14), 117$ (11), $89(44), 59(100), 45(15)$; HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{5} 306.1466$, found 306.1468. For 379: IR 3427, $1747 \mathrm{~cm}^{-1}$; 'H NMR $87.28-7.11$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{H}^{4}-\mathrm{H} 6$ '), 7.00 ($1 \mathrm{H}, \mathrm{d}, J=7.1$ $\left.\mathrm{Hz}, \mathrm{H}^{\prime}\right), 4.81\left(1 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}, \mathrm{Hl}^{\prime \prime}\right), 4.65\left(1 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}, \mathrm{H} 1^{\prime \prime}\right), 4.50(1 \mathrm{H}, \mathrm{t}, J=8.8$ $\mathrm{Hz}, \mathrm{H} 2), 4.36(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=4.6 \mathrm{~Hz}, \mathrm{H} 4), 3.67(\mathrm{IH}, \mathrm{m}), 3.56(1 \mathrm{H}, \mathrm{m}), 3.49-3.43(2 \mathrm{H}, \mathrm{m})$, $3.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.06-2.91\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H} 3^{\prime}\right), 2.70(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.68-2.48\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}^{2}\right.$, H3 syn H2), 2.34-2.12 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 2$ ', H3 syn H4); NOE data 7.00 (4.36, $1.6 \% ; 2.34-2.12$, $2 \%), 4.50$ (OH, $6 \% ; 2.68-2.48,5 \%), 4.36(7.00,3 \% ; 4.81,1.1 \% ; 4.65,1.6 \%, 2.32-$ $2.12,3 \%$; ${ }^{13} \mathrm{C}$ NMR $8218.5(0, \mathrm{Cl}), 144.4(0), 143.8$ (0), 127.3 (1), 126.4 (1), 124.3 (1), 123.2 (1, C7'), 93.9 (2, C1"), 77.9 (1, C4), 72.1 (1, C2), 71.2 (2), 66.7 (2), 64.9 ($0, \mathrm{C} 5$), $58.5\left(3, \mathrm{OCH}_{3}\right), 34.5(2, \mathrm{C} 3), 30.8\left(2, \mathrm{C}^{\prime}\right), 30.7\left(2, \mathrm{C}^{\prime}\right)$; MS $306\left(0.4, \mathrm{M}^{\prime}\right), 141(11), 129$ (15), 128 (11), 117 (11), 115 (19), 89 (48), 59 (100), 45 (21); HRMS caled for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{5}$ 306.1466, found 306.1454 .
(4R/S,5RSS)-2',3'-Dihydro-2-hydroxy-4-((methoxyethoxy)-

380 methoxy)spiro(cyclopentane-5, 1'-(1H)indene)-2-en-1-one (380). A solution of 378 ($462 \mathrm{mg}, 1.51 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was treated with Dess-Martin periodinane ($760 \mathrm{mg}, 1.80 \mathrm{mmol}$) with stirring at rt for 30 min . The solvent was evaporated and the residue was treated with ether and filtered (Celite). Solvent removal from the filtrate gave a yellow-orange resin (464 mg) that was used without further purification in the next step. Chromatography (38/62 acetone-petroleum ether) of a portion (116 mg) from another experiment using the same conditions afforded 380 as a yellow resin ($91 \mathrm{mg}, 86 \%$); IR $\mathbf{3 6 0 0 - 2 4 0 0 (\mathrm { m }) , 1 7 1 5}$ $(\mathrm{s}), 1661(\mathrm{~m}), 1635(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.23(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}), 7.18(1 \mathrm{H}, \mathrm{dt}, J=1.2$, $7.4 \mathrm{~Hz}), 7.10(1 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 7.00(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}), 6.57(1 \mathrm{H}, \mathrm{d}, J=3.0 \mathrm{~Hz}, \mathrm{H} 3)$, $4.67(1 \mathrm{H}, \mathrm{d}, J=3.0 \mathrm{~Hz}, \mathrm{H} 4), 4.46\left(1 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}, \mathrm{Hl}{ }^{\prime \prime}\right), 4.33\left(1 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}, \mathrm{Hl}{ }^{\prime}\right)$, $3.50(1 \mathrm{H}, \mathrm{m}), 3.39(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=4.4 \mathrm{~Hz}), 3.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.22-2.96(3 \mathrm{H}, \mathrm{m}), 2.47(1 \mathrm{H}$, ddd, $\left.J=7.0,8.8,13.0 \mathrm{~Hz}, \mathrm{H}^{2}\right), 2.15\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{2}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 203.5(0, \mathrm{Cl}), 154.5(0$, C2), 144.9 (0), 141.0 (0), 127.6 (1), 127.3 ($1, \mathrm{C} 3$), 125.9 (1), 125.7 (1), 124.4 (1), $95.0(2$, $\left.\mathrm{Cl}^{\prime \prime}\right), 79.6$ (1, C4), 71.4 (2), 66.9 (2), 63.7 ($0, \mathrm{C} 5$), 58.8 ($3,0 \mathrm{OCH}_{3}$), 35.7 (2, C2'), 31.2 (2, C^{\prime}); MS 304 ($0.4, \mathrm{M}^{+}$), 170 (17), 142 (11), 141 (24), 115 (24), 89 (53), 59 (100), 45 (35); HRMS caled for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{5} 304.1310$, found 304.1298 .

381
(4R/S,5R/S)-2', 3'-Dihydro-2-methoxy-4-((2-methoxyethoxy)-methoxy)spiro(cyclopentane-5,1'-(1H)indene)-2-en-1-one (381). A solution of $380(459 \mathrm{mg}, 1.51 \mathrm{mmol})$ in ether $(5.0 \mathrm{~mL})$ was treated with diazomethane ($3.3 \mathrm{~mL}, \sim 0.18 \mathrm{M}$ in ether) at $4^{\circ} \mathrm{C}$. The mixture was warmed to rt with occasional swirling over 45 min . Nitrogen was bubbled through the solution
until the yellow color of diazomethane had dissipated. Solvent evaporation yielded 381 as a viscous, yellow oil ($477 \mathrm{mg}, 99 \%$ over two steps); IR $1722,1632 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR δ $7.23(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}), 7.18(1 \mathrm{H}, \mathrm{dt}, J=1.4,7.4 \mathrm{~Hz}), 7.12(1 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 7.03(1 \mathrm{H}$, $\mathrm{d}, J=7.4 \mathrm{~Hz}), 6.47(1 \mathrm{H}, \mathrm{d}, J=3.0 \mathrm{~Hz}, \mathrm{H} 3), 4.69(1 \mathrm{H}, \mathrm{d}, J=3.0 \mathrm{~Hz}, \mathrm{H} 4), 4.47(1 \mathrm{H}, \mathrm{d}, J=$ $\left.7.2 \mathrm{~Hz}, \mathrm{Hl}^{\prime \prime}\right), 4.35\left(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{Hl}^{\prime \prime}\right), 3.56(1 \mathrm{H}, \mathrm{m}), 3.41(2 \mathrm{H}, \mathrm{t}, J=4.4 \mathrm{~Hz}), 3.36$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.22-2.97(3 \mathrm{H}, \mathrm{m}), 2.53\left(1 \mathrm{H}, \mathrm{ddd}, J=7.3,8.9,13 \mathrm{~Hz}, \mathrm{H} 2^{\prime}\right), 2.18(1 \mathrm{H}, \mathrm{ddd}$, $\left.J=4.7,8.3,13 \mathrm{~Hz}, \mathrm{H} 2{ }^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 201.5(0, \mathrm{Cl}), 158.1(0, \mathrm{C} 2), 145.0(0), 141.1(0)$, 127.5 (1), 125.9 (1), 125.8 (1), 124.4 (1), 124.2 (1, C3), 95.1 (2, C1" $), 79.4$ (1, C4), 71.5 (2), 67.0 (2), $64.4(0, \mathrm{C} 5), 58.9\left(3, \mathrm{OCH}_{3}\right), 57.2$ ($3, \mathrm{C} 2$ methoxy), $36.0(2, \mathrm{C} 2$), 31.2 (2, C^{\prime}); MS $318\left(4, \mathrm{M}^{+}\right), 213(14), 141(10), 89(44), 59(100), 45(16)$; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{5} 318.1466$, found 318.1452 .

388a

388b
($2 R / S, 3 R / S$)-(388a) and ($2 R / S, 3 S / R$)-2', 3^{\prime} '-Dihydro-3-methoxy-spiro(cyclopentane-2,1'-(1H)indene)-1-one (388b). Dimethyl sulfate $(4.5 \mathrm{~mL}, 48 \mathrm{mmol}), 375 \mathrm{a}, \mathrm{b}(1.52 \mathrm{~g}, 7.52 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, tetra-$n$-butylammonium iodide ($110 \mathrm{mg}, 300 \mu \mathrm{~mol}$) and $50 \% \mathrm{NaOH}$ solution ($3 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}, 3 \mathrm{~g} \mathrm{NaOH}$) were rapidly stirred together at rt for 21 h . The reaction vessel contents were poured into water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 40 \mathrm{~mL})$. The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Chromatography ($25 / 75$ acetone-hexanes) afforded an orange oil ($1.36 \mathrm{~g}, 84 \%$) consisting of a mixture of $\mathbf{3 8 8 a}, \mathrm{b}$. Discernable signals from a ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture: 388a: $\delta \mathbf{3 . 8 2}(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=3.4 \mathrm{~Hz}), 3.20(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 3$-methoxy); 388b: $\delta 4.02(1 \mathrm{H}, \mathrm{dd}$, $J=4.6,7.8 \mathrm{~Hz}, \mathrm{H} 3), 3.24(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 3$-methoxy).
(4R/S,5R/S)- (389a) and (4RS,5S/R)-1-(tert-Butyldimethylsilyl-oxy)-2',3'-dihydro-4-methoxyspiro(cyclopentane-5,1'-($1 H$)-indene)-1-ene (389b). tert-Butyldimethylsilyl trifluoromethane-sulfonate (1.7 $\mathrm{mL}, 7.6 \mathrm{mmol}$) was added dropwise to a stirred solution of $\mathbf{3 8 8} \mathrm{a}, \mathrm{b}$ $(1.54 \mathrm{~g}, 7.10 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.2 \mathrm{~mL}, 9.4 \mathrm{mmol})$ in dry $1,2-$ dichloroethane (11 mL) cooled to $4^{\circ} \mathrm{C}$. The mixture was held at $4^{\circ} \mathrm{C}$ for 15 min , then at It for $\mathbf{3 h}$ before it was concentrated under vacuum and extracted with dry pentane ($5 \times 5 \mathrm{~mL}$). The extracts were combined and the solvent was evaporated to give a yellow oil ($2.32 \mathrm{~g}, 99 \%$), a mixture of $\mathbf{3 8 9} \mathrm{a}, \mathrm{b}$. Discernable signals from a ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture: $389 \mathrm{a}: \delta 4.55(1 \mathrm{H}, \mathrm{t}, J=2.4 \mathrm{~Hz}, \mathrm{H} 2), 3.92(1 \mathrm{H}, \mathrm{dd}, J=6.6$, $7.4 \mathrm{~Hz}, \mathrm{H} 4), 3.11\left(\mathrm{IH}, \mathrm{s}, \mathrm{C} 4\right.$-methoxy), $0.71\left(9 \mathrm{H}, \mathrm{s}, t\right.$-butyl), $0.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right),-0.14$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right) ; 389 \mathrm{~b}: \delta 4.50(1 \mathrm{H}, \mathrm{t}, J=2.4 \mathrm{~Hz}, \mathrm{H} 2), 3.95(1 \mathrm{H}, \mathrm{dd}, J=6.2,7.0 \mathrm{~Hz}, \mathrm{H} 4)$, 3.18 ($3 \mathrm{H}, \mathrm{s}, \mathrm{C} 4$-methoxy), 0.65 ($9 \mathrm{H}, \mathrm{s}, t$-butyl), $0.10\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right.$), $-0.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right)$.

389a

389b ($2 R / S, 4 R / S, 5 R / S$)-(390a) and ($2 R / S, 4 S / R, 5 R / S)-2^{\prime}, 3^{\prime}-$ Dihydro-2-hydroxy-4-methoxyspiro(cyclopentane-5,1'-(1H)indene)-1-one (390b). A solution of $389 \mathrm{a}, \mathrm{b}(2.30 \mathrm{~g}, 6.97 \mathrm{mmol}$) in acetone (10 mL) was treated with freshly prepared dimethyldioxirane (115 mL , $\sim 0.1 \mathrm{M}$ in acetone) at $-20^{\circ} \mathrm{C}$. The mixture was warmed to rt over 30 \min with occasional swirling, stirred with saturated KF in methanol (75 mL) for 25 min , dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, diluted with dichloromethane and dried $\left(\mathrm{MgSO}_{4}\right)$ again. Evaporation of the solvent gave a viscous, yellow oil (1.74 g) consisting of $\mathbf{3 9 0} \mathbf{a}, \mathbf{b}$ and fluoro-tert-butyldimethylsilane ($1.9: 1: 1$). Chromatography ($30 / 70$ EtOAc-petroleum ether) of a portion $(180 \mathrm{mg}$) provided $\mathbf{3 9 0 a}(66 \mathrm{mg})$ and $\mathbf{3 9 0 b}$
(33 mg) as colorless resins (total: 59% of theoretical). For 390 a : IR $3436,1744 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.27-7.09\left(4 \mathrm{H}, \mathrm{m}, \mathrm{H}^{\prime}-\mathrm{H}^{\prime}\right), 4.55(1 \mathrm{H}, \mathrm{dd}, J=8.6,11.5 \mathrm{~Hz}, \mathrm{H} 2), 3.77(1 \mathrm{H}, \mathrm{d}, J=$ $4.1 \mathrm{~Hz}, \mathrm{H} 4), 3.30(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.04(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 4$-methoxy), $3.02(2 \mathrm{H}$, overlapped ddd, J $\left.=1.3,8.6,13.4 \mathrm{~Hz}, \mathrm{H}^{\prime}\right), 2.74(1 \mathrm{H}$, ddd, $J=1.3,8.6,13.4 \mathrm{~Hz}, \mathrm{H} 3 \operatorname{syn}$ to H 2$), 2.29(1 \mathrm{H}$, $\left.\mathrm{dt}, J=8.6,12.5 \mathrm{~Hz}, \mathrm{H} 2^{\prime}\right), 2.00\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}^{\prime}\right), 1.92(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3 \operatorname{syn}$ to H 4$)$; NOE data 4.55 $(7.15,1.3 \% ; 2.74,2 \%), 3.77(3.04,4 \% ; 2.00,3 \% ; 1.92,3 \%) ;{ }^{13} \mathrm{C}$ NMR $\delta 220.0(0$, C1), 144.9 (0), 141.4 (0$), 127.7$ (1), 126.7 (1), 126.3 (1), 124.0 (1), 81.6 (1, C4), 73.3 (1, C2), 65.0 ($0, \mathrm{C} 5$), 57.6 (3, C4-methoxy), 37.2 ($2, \mathrm{C} 2$), 33.8 (2, C3), 30.4 (2, C3); MS 232 $\left(5, M^{+}\right), 200(14), 181(13), 170(19), 160(23), 146(13), 143$ (12), 142 (13), 141 (29), 129 (11), 117 (24), 116 (18), 115 (45), 91 (11), 86 (62), 84 (100), 63 (11), 49 (15), 47 (24); HRMS caled for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{3} 232.1098$, found 232.1096. For 390b: IR $3426,1746 \mathrm{~cm}^{-}$ ${ }^{\prime}$, 'H NMR $87.26(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}), 7.21(1 \mathrm{H}, \mathrm{dt}, J=1.4,7.4 \mathrm{~Hz}), 7.14(1 \mathrm{H}, \mathrm{t}, J=7.4$ $\mathrm{Hz}), 7.00\left(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}, \mathrm{H}^{\prime}\right), 4.46(1 \mathrm{H}, \mathrm{t}, J=8.6 \mathrm{~Hz}, \mathrm{H} 2), 3.92(1 \mathrm{H}, \mathrm{t}, J=4.4 \mathrm{~Hz}$, H4), $3.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 4\right.$-methoxy), 3.08-2.92 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H} 3^{\prime}$), $2.87(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.66-2.50$ (2H, m, H2', H3 syn to H2), 2.27-2.07 (2H, m, H2', H3 syn to H4); NOE data 7.00 (3.92, $1 \% ; 2.27-2.07,2 \%), 4.46$ (2.66-2.50, $2 \%), 3.92$ (7.00, $1.4 \% ; 3.32,3 \% ; 2.27-2.07,2$ $\%) ;{ }^{13} \mathrm{C}$ NMR $\delta 218.9(0, \mathrm{Cl}), 144.8(0), 144.4(0), 127.8(1), 126.7(1), 124.8$ (1), 123.3 (1), 82.3 (1, C4), 72.6 (1, C2), 65.3 (0, C5), 57.5 (3, C4-methoxy), 33.4 (2, C3), 31.2 (2, $\left.\mathrm{C}^{\prime}\right), 30.6$ (2, C2'); MS 232 (20, M ${ }^{+}$), 214 (17), 200 (13), 186 (20), 183 (31), 181 (12), 174 (14), 161 (10), 160 (88), 156 (11), 155 (17), 154 (14), 153 (10), 146 (38), 145 (20), 143 (23), 141 (16), 130 (14), 129 (25), 128 (43), 127 (14), 117 (100), 116 (48), 115 (92), 97 (27), 89 (11), 65 (11), 63 (16), 51 (13), 45 (13), 43 (15); HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{3}$ 232.1098, found 232.1097.

392a

392b
(4R/S,5R/S)- (392a) and (4RS,5S/R)-2', 3'-Dihydro-2,4-dimethoxyspiro(cyclopentane-5,1'-(1H)indene)-2-en-1-one (392b). A solution of $390 \mathrm{a}, \mathrm{b}(1.43 \mathrm{~g}, 6.16 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(90 \mathrm{~mL})$ was treated with Dess-Martin periodinane $(3.50 \mathrm{~g}, 8.25 \mathrm{mmol})$ while stirring at rt for 45 min . Solvent removal from the filtrate gave an orange resin containing 391a,b and a mixture of iodo- and iodosobenzoic acids. Attempts to isolate $\mathbf{3 9 1} \mathbf{a , b}$ from this mixture by chromatography were unsuccessful. A solution of this crude material in ether (15 mL) was treated with diazomethane ($50 \mathrm{~mL}, \sim 0.26 \mathrm{M}$ in ether) at $4^{\circ} \mathrm{C}$. The mixture was warmed to rt with occasional swirling over 45 min . Solvent evaporation yielded a viscous, brown oil (1.53 g). Chromatography ($30 / 70$ acetone-hexanes) gave a viscous, brown oil (608 mg) that was chromatographed further ($50 / 50 \mathrm{EtOAc}$-hexanes) to yield $\mathbf{3 9 2}$ a (133 mg), 392b (54 mg) and a mixed fraction $392 \mathrm{a}, \mathrm{b}(228 \mathrm{mg}$) as yellow resins (total $415 \mathrm{mg}, 27 \%$ over two steps). For 392a: IR 1721 (s), $1632(\mathrm{~m}), 1607(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $87.26-7.17$ (2H, m), $7.13(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 7.05(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 6.42(1 \mathrm{H}, \mathrm{d}, J=2.9 \mathrm{~Hz}, \mathrm{H} 3), 4.27$ $(1 \mathrm{H}, \mathrm{d}, J=2.9 \mathrm{~Hz}, \mathrm{H} 4), 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 2\right.$-methoxy), $3.25-2.99\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}^{\prime}\right), 2.94(3 \mathrm{H}, \mathrm{s}$, C4-methoxy), $2.56\left(1 \mathrm{H}\right.$, ddd, $\left.J=7.3,9.1,13.0 \mathrm{~Hz}, \mathrm{H} 2^{\prime}\right), 2.13(1 \mathrm{H}, \mathrm{ddd}, J=4.7,8.4,13.0$ $\left.\mathrm{Hz}, \mathrm{H} 2{ }^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR $8201.6(0, \mathrm{C} 1)$, 158.2 (0, C2), $144.9(0), 140.6(0), 127.6(1), 126.0$ (1), 125.5 (1), 124.3 (1), 123.6 (1, C3), 83.6 (1, C4), 64.3 ($0, \mathrm{C} 5$), 57.6 (3, C4-methoxy), 57.2 (3, C2-methoxy), 36.0 (2, C2'), 31.2 (2, C3'); MS 244 (50, M ${ }^{+}$), 214 (15), 213 (100), 153 (10), $141(26), 117(10), 116(15), 115(53), 104(10), 85(77), 63$ (12); HRMS caled for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{3} 244.1098$, found 244.1100. For 392b: IR 1721, $1631 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.27$ $(1 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}), 7.21(1 \mathrm{H}, \mathrm{dt}, J=1.3,7.4 \mathrm{~Hz}), 7.14(1 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 6.91(\mathrm{IH}, \mathrm{d}, J$
$=7.4 \mathrm{~Hz}), 6.49(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}, \mathrm{H} 3), 4.35(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}, \mathrm{H} 4), 3.83(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 2-$ methoxy), $3.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 4\right.$-methoxy), $3.18\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3^{\prime}\right), 3.03\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H} 3^{\prime}\right), 2.51(1 \mathrm{H}, \mathrm{ddd}$, $\left.J=6.1,8.6,13.4 \mathrm{~Hz}, \mathrm{H} 2^{\prime}\right), 2.26\left(1 \mathrm{H}, \mathrm{ddd}, J=6.0,8.8,13.4 \mathrm{~Hz}, \mathrm{H} 2{ }^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR 8201.7 $(0, \mathrm{C} 1), 158.0(0, \mathrm{C} 2), 144.8(0), 144.3(0), 127.7(1), 126.6(1), 124.9(1), 123.0(1, \mathrm{C} 3)$, 122.2 (1), 83.6 (1, C4), 63.6 (0, C5), 57.8 (3, C4-methoxy), 57.2 (3, C2-methoxy), 31.4 $\left(2, \mathrm{C}^{\prime}\right), 30.8$ (2, C2'); MS 244 (38, M ${ }^{+}$), 214 (16), 213 (100), 181 (10), 153 (16), 141 (25), $128(10), 117(14), 116(14), 115(51), 85(82), 63(11) ;$ HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{3}$ 244.1098, found 244.1090 .

395
(3a $\alpha, 4 \beta, 7 \beta, 7 a \alpha, 8 r)-4,7-B i s(t e r t-b u t y l d i m e t h y l s i l y l o x y)-$ 3a,4,7,7a-tetrahydro-2-pheny1-4,7-methanospiro(isoindole-8,1'-(1H)indene)-1,3(2H)dione (395). tert-Butyldimethylsilyl trifluoromethanesulfonate $(0.23 \mathrm{~mL}, 1.0 \mathrm{mmol})$ was added dropwise to a stirred solution of $50(100 \mathrm{mg}, 500 \mu \mathrm{~mol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.14 \mathrm{~mL}, 1.0 \mathrm{mmol})$ in dry 1,2-dichloroethane (2.2 mL) cooled to $4^{\circ} \mathrm{C}$. The mixture was held at $4^{\circ} \mathrm{C}$ for 5 min and then warmed to rt for 2 h before N-phenylmaleimide ($81 \mathrm{mg}, 470 \mu \mathrm{~mol}$) was introduced. The mixture was stirred for 30 min , poured into water $(60 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30 \mathrm{~mL})$. The extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was evaporated to give a beige solid (302 mg). Recrystallization from hexanes yielded 395 as colorless, rectangular prisms ($170 \mathrm{mg}, 61 \%$); mp 184-185 ${ }^{\circ} \mathrm{C}$; IR (Nujol) 1778 (w), 1717 (s), $1599(\mathrm{w}), 1500(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 7.53-7.32(4 \mathrm{H}, \mathrm{m}), 7.22-7.11(4 \mathrm{H}, \mathrm{m}), 7.00(1 \mathrm{H}$, $\mathrm{m}), 6.38(2 \mathrm{H}, \mathrm{s}, \mathrm{H} 5, \mathrm{H} 6), 3.45(2 \mathrm{H}, \mathrm{s}, \mathrm{H} 3 \mathrm{a}, \mathrm{H} 7 \mathrm{a}), 2.93\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{H} 3^{\prime}\right), 2.19(2 \mathrm{H}$, $\left.\mathrm{t}, J=7.4 \mathrm{~Hz}, \mathrm{H} 2{ }^{\prime}\right), 0.72(9 \mathrm{H}, \mathrm{s}, t$-butyl $), 0.11\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right),-0.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right) ; \mathrm{NOE}$ data 6.38 (7.53-7.32, $7 \% ; 7.22-7.11,4 \%, 0.11,4 \% ;-0.32,3 \%), 3.45(2.19,21 \%), 2.93$
(7.22-7.11, $8 \% ; 2.19,5 \%), 2.19(3.45,29 \% ; 2.93,7 \%) ;{ }^{13} \mathrm{C}$ NMR $\delta 174.9$ (2C, C1, C3), 147.2 (0), 139.9 (0), 134.4 (2C, 1, C5, C6), 131.9 (0), 129.1 (2C, 1), 128.5 (1), 128.2 (1), 127.8 (1), 126.6 (2C, 1), 124.9 (1), 124.7 (1), 89.4 (2C, 0, C4, C7), 86.1 (0, C8), 53.0 (2C, 1, C3a, C7a), 30.3 (2, C3'), 28.0 (2, C2'), 35.4 (6C, $3, t$-butyl), 18.0 (2C, 0, t-butyl), -3.0 $\left(2 \mathrm{C}, 3, \mathrm{SiCH}_{3}\right),-3.5\left(2 \mathrm{C}, 3, \mathrm{SiCH}_{3}\right)$; MS no M$+430(20), 429(25), 173(17), 75(10), 73$ (100), 45 (17).

4-(tert-Butyldimethylsilyloxy)-2',3'-dihydrospiro(cyclopentane-
5,1'-(1H)indene)-3-en-1-one (397). tert-Butyldimethylsilyl trifluoromethanesulfonate ($0.48 \mathrm{~mL}, 2.1 \mathrm{mmol}$) was added dropwise to a stirred solution of $50(210 \mathrm{mg}, 1.05 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.30 \mathrm{~mL}, 2.2 \mathrm{mmol})$ in dry $1,2-$ dichloroethane $(1.5 \mathrm{~mL})$ cooled to $4^{\circ} \mathrm{C}$. The mixture was stirred at rt for 3 h before the introduction of $385(188 \mathrm{mg}, 789 \mu \mathrm{~mol})$ as a solution in benzene $(1.8 \mathrm{~mL})$ and $1,2-$ dichloroethane (2.5 mL). The mixture was stirred at rt for 1 h , heated to reflux for 3.5 h , cooled to rt , poured into water $(75 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$. The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give a black tar (611 mg). Chromatography (10/90 EtOAc-hexanes) provided 397 as a tan-colored oil (163 mg); IR $1752,1637 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $87.24(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 7.18(1 \mathrm{H}, \mathrm{dt}, J=1.5,7.2 \mathrm{~Hz}), 7.12$ $(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 6.92(1 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 5.00(1 \mathrm{H}, \mathrm{t}, J=2.2 \mathrm{~Hz}, \mathrm{H} 3), 3.14(1 \mathrm{H}$, overlapped dd, $J=2.2,22.2 \mathrm{~Hz}, \mathrm{H} 2), 2.96(1 \mathrm{H}$, overlapped dd, $J=2.2,22.2 \mathrm{~Hz}, \mathrm{H} 2)$, 3.24-2.97 (2 H , overlapped m), 2.34-2.26 $(2 \mathrm{H}, \mathrm{m}), 0.74(9 \mathrm{H}, \mathrm{s}, t$-butyl), $0.18(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiCH}_{3}\right),-0.01\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SiCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $8216.0(0, \mathrm{Cl}), 156.5(0, \mathrm{C} 4), 145.0(0), 142.5$ (0), 127.6 (1), 126.3 (1), 124.7 (1), 122.8 (1), 96.7 (1, C3), 66.1 (0, C5), 40.7 (2, C2), 32.3 (2), 31.6 (2), 25.2 (3C, 3, t-butyl), 17.8 ($0, t$-butyl), $-4.6\left(3, \mathrm{SiCH}_{3}\right),-5.3\left(3, \mathrm{SiCH}_{3}\right) ; \mathrm{MS}$

314 (2, M ${ }^{\dagger}$, 286 (35), 258 (16), 257 (75), 230 (10), 229 (44), 210 (11), 155 (15), 115 (12), 75 (100), 73 (53), 59 (18), 55 (14), 45 (22).

References

(1) (a) Nakamura, E.; Kuwajima, I. J. Am. Chem. Soc. 1977, 99, 961-963. (b) Shimada, J.; Hashimoto, K.; Kim, B. H.; Nakamura, E.; Kuwajima, I. J. Am. Chem. Soc. 1984, 106, 1759-1773. (c) Nakamura, E.; Kuwajima, I. Organic Syntheses; Wiley: New York, 1987; Vol. 65, pp 17-25.
(2) (a) Wu, Y.-J.; Burnell, D. J. Tetrahedron Lett. 1988, 29, 4369-4372. (b)

Burnell, D. J.; Wu, Y.-J. Can. J. Chem. 1990, 68, 804-811.
(3) Wu, Y.-J.; Strickland, D. W.; Jenkins, T. J.; Liu, P.-Y.; Burnell, D. J. Can. J. Chem. 1993, 71, 1311-1318.
(4) Wu, Y.-J.; Burnell, D. J. Tetrahedron Lett. 1989, 30, 1021-1024.
(5) Mukaiyama, T.; Banno, K.; Narasaka, K. J. Am. Chem. Soc. 1974, 96, 75037509.
(6) Jenkins, T. J.; Burnell, D. J. J. Org. Chem. 1994, 59, 1485-1491.
(7) Anderson, W. K.; Lee, G. E. J. Org. Chem. 1980, 45, 501-506.
(8) Oppolzer, W.; Wylie, R. D. Helv. Chim. Acta 1980, 63, 1198-1203.
(9) Burnell, D. J.; Wu, Y.-J. Can. J. Chem. 1989, 67, 816-819.
(10) (a) Wu, Y.-J.; Zhu, Y.-Y.; Burnell, D. J. J. Org. Chem. 1994, 59, 104-110.
(b) Zhu, Y.-Y.; Burnell, D. J. Tetrahedron: Asymm. 1996, 7, 3295-3304.
(11) (a) Parker, K. A.; Koziski, K. A.; Breault, G. Tetrahedron Lett. 1985, 26, 2181-2184. (b) Saint-Jalmes, L.; Lila, C.; Xu, J. Z.; Moreau, L.; Pfeiffer, B.; Eck, G.; Pelsez, L.; Rolando, C.; Julia, M. Bull. Soc. Chim. France 1993, 130, 447-449. (c) Wendt, J. A.; Gauvreau, P. J.; Bach, R. D. J. Am. Chem. Soc. 1994, 116, 9921-9926.
(12) Other development and synthetic uses of Lewis acid-catalyzed geminal acylation with 1: (a) Anderson, W. K.; Lee, G. E. Synth Commun. 1980, 10, 351-354.
(b) Nakamura, E.; Shimada, J; Kuwajima, I. J. Chem. Soc., Chem. Commun. 1983, 498499. (c) Bunnelle, W. H.; Shangraw, W. R. Tetrahedron 1987, 43, 2005-2011. (d) Martinez, R. A.; Rao, P. N.; Kim, H. K. Synth. Commun. 1989, 19, 373-377. (e) Pandey, B.; Khire, U. R.; Ayyangar, N. R. Synth. Commun. 1989, 19, 2741-2747. (f) Liu, P.-Y.; Burnell, D. J. J. Chem. Soc., Chem. Commun. 1994, 1183-1184. (g) Balog, A.; Curran, D. P.J. Org. Chem. 1995, 60, 337-344. (h) Balog, A.; Geib, S. J.; Curran, D. P. J. Org. Chem. 1995, 60, 345-352. (i) Liu, P.-Y.; Wu, Y.-J.; Burnell, D. J. Can. J. Chem. 1997, 75, 656-664.
(13) Bloomfield, J. J.; Nelke, J. M. Organic Syntheses; Wiley: New York, 1988; Collect. Vol. VI, pp 167-172.
(14) Rühlmann, K. Synthesis 1971, 236-253.
(15) Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. J. Am. Chem. Soc. 1985, 107, 3902-3909 using SPARTAN, Version 4.1 (Wavefunction, Inc., Irvine, (A).
(16) Pandey, B.; Reddy, R. S.; Kumar, P. J. Chem. Soc., Chem. Commun. 1993, 870-871.
(17) (a) Nöth, H.; Wrackmeyer, B. in Nuclear Magnetic Resonance Spectroscopy of Boron Compounds; NMR, Basic Principles and Progress; Diehl, P.; Fluck, E.; Kosfeld, R., Eds.; Springer-Verlag, Berlin, 1978; Vol. 14. (b) Marsmann, H. in Oxygen-17 and Silicon-29; NMR, Basic Principles and Progress; Diehl, P.; Fluck, E.; Kosfeld, R., Eds.; Springer-Verlag, Berlin, 1981; Vol. 17.
(18) Pandey, R. C.; Toussaint, M. W.; Stroshane, R. M.; Geoghegan, R. F., Jr.; White, R. J. J. Antibiot. 1981, 34, 1389-1401.
(19) Biosynthesis: Byrne, K. M.; Hilton, B. D.; White, R. J.; Misra, R.; Pandey, R. C. Biochemistry 1985, 24, 478-486.
(20) Misra, R.; Pandey, R. C.; Silverton, J. V. J. Am. Chem. Soc. 1982, 104, 4478-4479.
(21) Misra, R.; Pandey, R. C.; Hilton, B. D.; Roller, P. P.; Silverton, J. V. J. Antibiot. 1987, 40, 786-802.
(22) Warnick-Pickle, D. J.; Byrne, K. M.; Pandey, R. C.; White, R. J. J. Antibiot. 1981, 34, 1402-1407.
(23) Hilton, B. D.; Misra, R.; Zweier, J. L. Biochemistry 1986, 25, 5533-5539.
(24) Dalal, N. S.; Shi, X. Biochemistry 1989, 28, 748-750.
(25) Latham, M. D.; King, C. K.; Gorycki, P.; Macdonald, T. L.; Ross, W. E. Cancer Chemother. Pharamcol. 1989, 24, 167-171.
(26) (a) Boger, D. L. J. Heterocycl. Chem. 1996, 33, 1519-1531. (b) Boger, D. L.; Hueter, O.; Mbiya, K.; Zhang, M. J. Am. Chem. Soc. 1995, 117, 11839-11849.
(27) (a) Water-soluble potassium salt: Misra, R. J. Antibiot. 1988, 41, 976-981. (b) Derivatives: Yokoi, K.; Hasegawa, H.; Narita, M.; Asaoka, T.; Kukita, K.; Ishizeka, S.; Nakajima, T. Jpn Patent 152468, 1985; Chem. Abstr. 1986, 104, 33948j. (c) C ring expanded to six atoms: Clive D. L. J.; Kong, X. L.; Paul C. C. Tetrahedron 1996, 52, 6085-6116.
(28) (a) Kelly, T. R.; Bell, S. H.; Ohashi, N.; Armstrong-Chong, R. J. J. Am. Chem. Soc. 1988, 110, 6471-6480. (b) Watanabe, M.; Morimoto, H.; Furukawa, S.

Heterocycles 1993, 36, 2681-2686. (c) Kessar, S. V.; Vohra, R.; Kaur, N. P.; Singh, K. N.; Singh, P. J. Chem. Soc., Chem. Commun. 1994, 1327-1328. (d) Baskaran S.; Nagy, E.; Braun, M. Liebigs Ann/Recueil 1997, 311-312. (e) Eck, G.; Julia, M.; Pfeiffer, B.; Rolando, C. Tetrahedron Lett. 1985, 26, 4725-4726. (f) Naik, S. N.; Pandey, B.;

Ayyangar, N. R. Synth. Commun. 1988, 18, 633-638. (g) Mehta, G.; Subrahmanyam, D. Tetrahedron Lett. 1987, 28, 479-480. (h) Pandey, B.; Khire, U. R.; Ayyangar, N. R. J. Chem. Soc., Chem. Commun. 1990, 1791-1792. (i) Kende, A. S.; Ebetino, F. H.; Ohta, T. Tetrahedron Lett. 1985, 26, 3063-3066. (j) Braun, M.; Veith, R. Tetrahedron Letl. 1986, 27, 179-182. (k) Ciufolini, M. A.; Browne, M. E. Tetrahedron Lett. 1987, 28, 171-174. (1) Aidhen, I. S.; Narasimhan, N. S. Tetrahedron Lett. 1989, 30, 5323-5324. (m) Rao, A. V. R.; Singh, A. K.; Reddy, K. M.; Ravikumar, K. J. Chem. Soc., Perkin Trans. I 1993, 3171-3177. (n) Toyota, M.; Terashima, S. Tetrahedron Lett. 1989, 30, 829-832. (0) Kita, Y.; Okunaka, R.; Honda, T.; Kondo, M.; Tamura, O.; Tamura, Y. Chem. Pharm. Bull. 1991, 39, 2106-2114. (p) Kita, Y.; Ueno, H.; Kitagaki, S.; Kobayashi, K.; Iio, K.; Akai, S. J. Chem. Soc., Chem. Commun. 1994, 701-702. (q) Evans, P. A.; Brandt, T. A. Tetrahedron Lett. 1996, 37, 1367-1370. (r) Boger, D. L.; Jacobson, I. C. J. Org. Chem. 1990, 55, 1919-1928. (s) Clive, D. L. J.; Angoh, A. G.; Bennett, S. M. J. Org. Chem. 1987, 52, 1339-1342. (t) Parker, K. A.; Breault, G. A. Tetrahedron Lett. 1986, 27, 38353838. (u) Evans, J. C.; Klix, R. C.; Bach, R. D. J. Org. Chem. 1988, 53, 5519-5527. (v) Kita, Y.; Kitagaki, S.; Imai, R.; Okamoto, S.; Mihara, S.; Yoshida, Y.; Akai, S.; Fujioka, H. Tetrahedron Lett. 1996, 37, 1817-1820.
(29) Kelly, R. T.; Ohashi, N.; Armstrong-Chong, R. J.; Bell, S. H. J. Am. Chem. Soc. 1986, 108, 7100-7101.
(30) (a) Clive, D. L. J.; Tao, Y.; Khodabocus, A.; Wu, Y.-J.; Angoh, A. G.; Bennett, S. M.; Boddy, C. N.; Bordeleau, L.; Kellner, D.; Kleiner, G.; Middleton, D. S.; Nichols, C. J.; Richardson, S. R.; Vernon, P. G. J. Chem. Soc., Chem. Commun. 1992, 1489-1490. (b) Clive, D. L. J.; Tao, Y.; Khodabocus, A.; Wu, Y.-J.; Angoh, A. G.; Bennett, S. M.; Boddy, C. N.; Bordeleau, L.; Kellner, D.; Kleiner, G.; Middleton, D. S.; Nichols, C. J.; Richardson, S. R.; Vernon, P. G. J. Am. Chem. Soc. 1994, 116, 1127511286.
(31) (a) Rao, A. V. R.; Singh, A. K.; Rao, B. V.; Reddy, K. M. Tetrahedron Lett. 1993, 34, 2665-2668. (b) Rao, A. V. R.; Singh, A. K.; Rao, B. V.; Reddy, K. M. Heterocycles 1994, 37, 1893-1912.
(32) Kita, Y.; Higuchi, K.; Yoshida, Y.; Iio, K.; Kitagaki, S.; Akai, S.; Fujioka, H. Angew. Chem. Int. Ed. Engl. 1999, 38, 683-686.
(33) Shapiro, S. L.; Geiger, K.; Freedman, L. J. Org. Chem., 1960, 25, 18601865.
(34) (a) Bols, M.; Skrydstrup, T. Chem. Rev. 1995, 95, 1253-1277. (b) Gauthier, D. R., Jr.; Zandi, K. S.; Shea, K. J. Tetrahedron, 1998, 54, 2289-2338.
(35) Mitsunobu, O.; Kimura, J.; Iiizumi, K.; Yanagida, N. Bull. Chem. Soc. Jpn. 1976, 49, 510-513.
(36) Dichloroketene + cyclopentadiene: Stevens, H. C.; Reich, D. A.; Brandt, D. R.; Fountain, K. R.; Gaughan, E. J. J. Am. Chem. Soc. 1965, 87, 5257-5259.
(37) House, H. O. Modern Synthetic Reactions, $2^{\text {nd }}$ Ed. W. A. Benjamin: Menlo Park, CA, 1972; pp 324-329.
(38) (a) Shapiro, R. H. in Organic Reactions; Dauben, W.G., Ed.; Wiley: New York, 1976; Vol. 23, pp 405-507. (b) Chamberlin, A. R.; Bloom, S. H. in Organic Reactions; Paquette, L. A., Ed.; Wiley: New York, 1993; Vol. 39, pp 1-84.
(39) (a) Watt, G. W. Chem. Rev. 1950, 50, 317-379. (b) Chapman, O. L.; Fitton, P. J. Am. Chem. Soc. 1963, 85, 41-47.
(40) Loewenthal, H. J. E.; Schatzmiller, S. J. J. Chem. Soc., Perkin Trans. I 1975, 2149-2157.
(41) Jenkins, T. J.; Ph.D. Thesis, Memorial University of Newfoundland, St. John's, NF, 1994. p. 91.
(42) Gemal, A. L.; Luche, J.-L. J. Am. Chem. Soc. 1981, 103, 5454-5459.
(43) House, H. O.; Gall, M.; Olmstead, H. D. J. Org. Chem. 1971, 36, 2361-2371.
(44) Clark, G. R.; Lin, J.; Nikaido, M. Tetrahedron Lett. 1984, 25, 2645-2648.
(45) (a) Emde, H.; Domsch, D.; Feger, H.; Frick, U.; Götz, A.; Hergott, H. H.; Hofmann, K.; Kober, W.; Krägeloh, K.; Oesterle, T.; Steppan, W.; West, W.; Simchen, G. Synthesis 1982, 1-26. (b) Bellus, D.; Emst, B. Angew. Chem., Int. Ed. Engl. 1988, 27, 797-827.
(46) Gillard, J. W.; Fortin, R.; Grimm, E. L. Tetrahedron Lett. 1991, 32, 11451148.
(47) (a) Grandmaison, J.-L.; Brassard, P. J. Org. Chem. 1978, 43, 1435-1438. (b) Savard, J.; Brassard, P. Tetrahedron 1984, 40, 3455-3464.
(48) (a) Waters, P. M.; McElvain, S. M. J. Am. Chem. Soc. 1940, 62, 1482-1484.
(b) McElvain, S. M.; Anthes, H. I.; Shapiro, S. H. J. Am. Chem. Soc. 1942, 64, 2525-2531.
(49) (a) Huckin, S. N.; Weiler, L. Can. J. Chem. 1974, 52, 2157-2164. (b) Izawa, T.; Mukaiyama, T. Chem. Lett. 1975, 161-164.
(50) (a) Lansbury, P. T.; Mancuso, N. R. Tetrahedron Lett. 1965, 2445-2450. (b) Krow, G. R.; Szczepanski, S. J. Org. Chem. 1982, 47, 1153-1156.
(51) (a) Craig, D. Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I., Eds.; Pergamon Press: New York, 1991; Vol. 7, pp 689-702. (b) Donaruma, L. G.; Heldt, W. Z. in Organic Reactions; Cope, A.C., Ed.; Wiley: New York, 1960; Vol. 11, pp 1-156.
(c) Huisgen, R.; Witte, J.; Walz, W.; Waltraud, J. Liebigs Ann. Chem. 1957, 604, 191-202.
(d) Smith, P. A. S. in Molecular Rearrangements; De Mayo, P., Ed.; Wiley: New York, 1963; Vol. 1, pp 457-592.
(52) (a) Krow, G. Tetrahedron 1981, 37, 1283-1307. (b) Krow, G. Tetrahedron 1981, 37, 2697-2724.
(53) Olah, G. A.; Fung, A. P. Synthesis 1979, 537-538.
(54) (a) Scott, W. J.; Crisp, G. T.; Stille, J. K. J. Am. Chem. Soc. 1984, 106, 46304632. (b) Scott, W. J.; Crisp, G. T.; Stille, J. K. J. Am. Chem. Soc. 1984, 106, $7500-7506$. (c) Ritter, K. Synthesis 1993, 735-762.
(55) (a) Jefford, C. W.; Sledski, A. W.; Lelandais, P.; Boukouvalas, J. Tetrahedron Lett. 1992, 33, 1855-1858. (b) Angers, P.; Canonne, P. Tetrahedron Lett. 1994, 35, 367370.
(56) Tsunoda, T.; Suzuki, M.; Noyori, R. Tetrahedron Lett. 1980, 21, 1357-1358.
(57) Corey, E. J.; Gras, J.-L.; Ulrich, P. Tetrahedron Lett. 1976, 17, 809-812.
(58) (a) Rubottom, G. M.; Vazquez, M. A.; Pelegrina, D. R. Tetrahedron Lett. 1974, 15, 4319-4322. (b) Stankovic, S.; Espenson, J. H. J. Org. Chem. 1998, 63, 4129-
4130. (c) McCormick, J. P.; Tomasik, W.; Johnson, M. W. Tetrahedron Lett. 1981, 22, 607-610. (d) Akashi, K.; Palermo, R. E.; Sharpless, K. B. J. Org. Chem. 1978, 43, 20632066. (e) Adam, W.; Hadjiarapoglou, L.; Wang, X. Tetrahedron Lett. 1989, 30, 64976500.
(59) (a) Dess, D. B.; Martin, J. C.; J. Org. Chem. 1983, 48, 4155-4156. (b) Ireland, R. E.; Liu, L. J. Org. Chem. 1993, 58, 2899.
(60) Brownbridge, P. Synthesis 1983, 85-104.
(61) Merz, A. Angew. Chem., Int. Ed. Engl. 1973, 12, 846-847.

Appendix I

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra and X-ray Structures for Chapter 1

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compounds $\mathbf{3 , 4 , 6 , 7 , 1 1 c , 1 2 a , 1 2 b}$ (${ }^{\prime} \mathrm{H}$ only) $\mathbf{1 5 a}$, 15b, 17, 18, 20, 23, 26, 27, 28b, 29a, 33a, 33c, 35, 36a, 36b, 37, 40, 43, 45, 46a, 47, 48, $51,52,53,57$ (${ }^{l} \mathrm{H}$ only) 58, 60, 61, 62a, 62b, 63a, 63b, 64a, 64b, 65a, 65b, 66, 67, 68, $69,70 \mathrm{a}, 71,72 \mathrm{a}, 73,74,76,77,79,81,82,84,85,86,87,89$ and 90 . Spectra obtained for chromatographically inseparable mixtures of diastereomers have not been included.

X-ray structures for compounds 11c, 33c, 36b, 46a, 48 and 77.

$\stackrel{\infty}{\sim}$

36b

244

en

X-ray crystal structure (ORTEP) for 11e

X-ray crstal structure (ORTEP) for 33e

X-ray crystal structure (ORTEP) for $\mathbf{3 6 b}$

X-ray crystal structure (ORTEP) for 46a

48

X-ray crystal structure (ORTEP) for 48

77

X-ray crystal structure (ORTEP) for 77

Appendix II

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra for Chapter 2

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compounds $\mathbf{3 3 2}, 334,336,357,358,371,372,373$, 374, 359, 376a, 376b, 377a, 377b, 378, 379, 380, 381, 390a, 390b, 392a, 392b, 395 and 397.

 JUL 18 197e
[^0]: ${ }^{2}$ With the norbornyl system, exo addition of $\mathbf{3}$ was very likely favored with both the ketone and its acetal, but, as can be seen in entry 5, this system showed the largest, yet obviously different, stereoselectivities with ketone and acetal.

[^1]: ${ }^{5}$ The ${ }^{\text {'H }}$ NMR spectra of the (minor) Z-lactones 70b and 72b showed one aromatic resonance just downfield of 88 . This feature was used to assign the Z-lactone structures to 57 and 59b.
 ${ }^{\text {c }}$ Similar attempts to obtain cyclobutanone intermediates from 1 -indanone and 1 -tetralone at $-20^{\circ} \mathrm{C}$ gave only the 1,3 -diketone and lactone products.

