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Abstract 

As children learn algebra, it is not certain whether they are learning both the procedural 

and conceptual aspects in a balanced way. Instead, students may be learning one of these 

types of knowledge more than the other. Previous research on children’s understanding of 

fractions have used cluster analysis to demonstrate that there are some students who rely 

more on conceptual knowledge, some who rely more on procedural knowledge, and some 

who rely equally on both.  Using cluster analysis, the current study found that there are 

individual differences in the understanding of algebra in a sample of 104 grade eight 

students. Four clusters were found representing students who do relatively poorly on 

conceptual and procedural knowledge, those who do well on both types of knowledge, 

those who are relatively better conceptual problem solvers, and those who are relatively 

better procedural problem solvers. Furthermore, both conceptual and procedural 

knowledge are significant contributors to students’ overall performance in algebra, which 

suggests that both conceptual and procedural knowledge are important in algebraic 

learning. 

Keywords: conceptual knowledge, procedural knowledge, individual differences, 
algebra, youth 
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Chapter 1 

Introduction 

In the field of numerical cognition, there is a long-standing debate about the 

developmental relation between conceptual and procedural knowledge. This decades-old 

debate has been informed by researchers and educator’s beliefs about how children 

develop conceptual and procedural knowledge and what constitutes the best ways of 

teaching and learning these types of knowledge (Rittle-Johnson & Alibali, 2001). 

Specifically, the main bone of contention has been whether children should be taught to 

solve math problems by emphasizing procedures (known as procedural first) or by 

constructing rich connections between mathematical thoughts (known as conceptual first). 

The latter is taught through the use of an enhanced discovery-based learning, where 

children are guided to devise their problem-solving schemes given their understanding of 

the principles. On the other hand, students may be actively engaged to continually solve 

problems to bring forth the understanding of concepts needed to thrive in a domain 

(Bruner, 1961). 

Older research on the relation between these knowledge types – conceptual and 

procedural – have yielded contradictory findings. Some group of researchers (e.g., Byrne 

& Wasik, 1991) have suggested that conceptual knowledge develops first and influences 

the invention of procedural knowledge. Further, they indicate that children may depend 

more heavily on their conceptual understanding than their procedural understanding when 

solving math problems.  In contrast, another group of researchers (e.g., Fyre, Braisby, 

Lowe, Maroudas, & Nichools, 1989) have claimed that children first learn the procedures 

for solving given math problems, and that their conceptual understanding will develop 
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with continued practice. Recent studies (eg., Rittle- Johnson & Alibali, 1999; Rittle-

Johnson, Alibali & Siegler, 2001) on the other hand, have found a bi-directional relation 

between conceptual and procedural knowledge. They claimed that children could first 

develop the conceptual knowledge for a given math domain and this conceptual 

knowledge will then lead to the generation of procedural knowledge for solving questions 

in that domain. On the contrary, children can learn procedural knowledge first, and with 

continued practice of the problem-solving procedures, they will subsequently discern the 

principles underlying the given problem – a process they called iterative learning.  

Although it may be true that children learn conceptual and procedural knowledge 

iteratively, Hallett and his colleagues have proposed there may also be individual 

differences, or clusters, in conceptual and procedural knowledge (Hallett, Nunes, & 

Bryant, 2010; Hallett, Nunes, Bryant, & Thorpe, 2012). In the area of fractions 

understanding, these researchers found clusters that suggest there may be some children 

who rely primarily on conceptual knowledge, other children who may rely more on 

procedural knowledge, and yet others who may rely on both types of knowledge 

relatively equally. In other words, not all children rely equally on conceptual or 

procedural knowledge and therefore may approach math problems differently. 

To date, no study has specifically explored the existence of these individual 

differences in other domains, especially in algebra, a domain that has been found to be 

challenging for students. In this thesis, I will extend this research by investigating 

whether or not these same individual differences in fractions demonstrated by Hallett and 

his colleagues (2010; 2012) are evident in children’s understanding of algebra.  The 

existence of similar clusters in algebra learning would further support the notion that not 



CONCEPTUAL AND PROCEDURAL KNOWLEDGE 

   3 

all children combine conceptual knowledge and procedural knowledge in the same way.  

It would also highlight the importance of taking these individual differences into account 

when investigating mathematical learning.  

What is Algebra and Why Does it Matter? 

Algebra is a domain of mathematics that employs symbols and letters to represent 

unknown quantities, and devise mathematical statements that are used to make 

connections between objects or events that vary over time (Coolman, 2015). A critical 

look at algebra would reveal that it is a lot more like arithmetic, as it follows all the rules 

and operations (addition, multiplication, subtraction, and division) used in arithmetic. 

However, algebra introduces a new element called the ‘unknown,' and the primary goal of 

algebra is to manipulate the known terms given in an equation to find the unknown. 

 Algebra is considered to be one of the most significant concepts and tools in 

mathematics. Early knowledge of algebra, for example, is regarded as a significant 

predictor of future career prospects and overall life outcome [National Mathematics 

Advisory Panel (NMAP), 2008]. It is considered an entryway math domain, as it arms 

learners with the necessary foundation to thrive later in more advanced courses in college, 

and lifelong careers. It imparts students the language of math and helps them to build 

resilient general problem solving and critical thinking proficiencies (Education 

Commission of the States, 1998; Silver, 1997; Star et al., 2014; U.S. Department of 

Education, 1999). 

Research suggests that algebra knowledge provides students with the needed 

foundation and skills that facilitate their understanding of other abstract and complex 

areas such as the fields of Science, Technology, Engineering, and Mathematics (STEM), 
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and hence, students who excel in algebra are more likely to take advantage of the growth 

of technology and the concomitant job opportunities (Rose & Betts, 2001; Russell, 2014). 

In effect, proficiency in algebra during one’s early academic experiences (e.g., secondary 

and post-secondary) may provide opportunities for careers in STEM fields. For 

individuals who are motivated, a career in STEM fields can facilitate circumstances to 

make meaningful contributions to the global community in the long-run. This leads to the 

conclusion that educators should among other things, focus on improving students 

understanding and performance in algebra if they aim to help contribute to the 

enhancement of imminent human resource base of every nation.  

It is widely agreed that knowledge of algebra facilitates children’s abilities in 

other related math domains (Lucariello, Tine, & Ganley, 2014; Star, 2014). In the United 

States, Allenworth and Easton (2007), have analyzed data from Chicago Public Schools 

on students’ performance and how that predicts their graduation rates. In their study, they 

gathered data from more than 24,000 students in Chicago on specific aspects of school 

course works during their first year in high school and analyzed how students’ 

performance on those indicators affects their ability to graduate on time. They found that 

students who can pass Algebra I by the 8th grade are more likely to graduate on time (i.e., 

within the average four-year high school period) than their unsuccessful counterparts.  

In a similar study, Silver, Saunders, and Karate (2008) collected data on more than 

48,000 students from 163 schools who are part of the Los Angeles Unified School 

District to track their academic progress until they reached the 9th grade. The data 

analyzed by Silver et al. (2008) consisted of the school transcript records of students and 

their scores from other standardized test taken from the sixth grade through their expected 
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graduation year. They found that taking Algebra I increased the probability of graduating 

high school on time by approximately 75%. Other studies have found that students who 

complete Algebra II have a greater possibility to enter into a post-secondary education 

and subsequently finish a bachelor's degree (Adelman, 1999). 

As noted, the benefits of algebra transcend students’ academic experience. Some 

researchers have gone to the extent of describing algebra as the present day civil right 

(Moses, 1993). For the past few decades, governments and actors in educational sectors 

have begun to recognize the benefits of algebra and have started taking measures aimed at 

improving teaching and learning of algebra. In the United States, for instance, students 

are required to enroll and complete Algebra I in the 8th grade before graduating to 9th 

grade and beyond in some School Districts (Loveless, 2008). Despite the aforementioned 

significance of algebra, it still remains one of the most difficult branches of math (NMAP, 

2008). Before presenting these data, however, it is important to first describe the current 

research on algebra learning, as well as the previous research on conceptual and 

procedural knowledge of mathematics 

Students Struggles with Algebra 

The struggles students face with algebra are well documented (see Blume & 

Heckman, 1997). For example, in a study by the National Center for Educational 

Statistics of United States (2005), researchers reported that only 6.9% of 12-graders were 

able to score at or above a proficient level in algebra in that particular year's assessment. 

In the National Report Card, (2011), when grade 8 students were tasked to solve for n in a 

simple algebra problem (e.g., n + 18 = 28), only 59 % of the respondents accomplished 

the tasks correctly.  
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It is not surprising therefore that poor performance in algebra is ascribed as one of 

the major predictors of high school drop-outs. In a longitudinal study that tracked almost 

49,000 California students to assess the factors that lead to school drop-outs, Silver, 

Saunders, & Karate, (2008) found that students’ performance in algebra 1 at 9th grade 

was a significant predictor of their completion, controlling for all other variables. 

Specifically, the study found that the demographic background of students accounted for 

only 4% of why students drop out of school whereas students' academic experiences, 

including algebra, was considered an essential factor that accounted for a larger 

variability (Silver, Saunders, & Karate, 2008).  

The challenges with algebraic comprehension are widespread (Schmidt, 

McKnight, Cogan, Jakwerth, & Houang, 1999; Sfard, 1991), and this has attracted the 

attention of researchers over the past decades. Researchers have sought to find the 

specifics of algebra that make it challenging for students at least at the basic level. Several 

reasons have been proposed as the possible basis to this quandary. It has been suggested 

that the difficulty with algebra may be a result of a cognitive gap; that learning algebra 

demands that students operate with symbolic representations of limited concrete objects, 

and must process these symbols to produce numerical solutions (Kieran, 1992). Children 

learning algebra are therefore exposed to many abstract concepts that they must deal with 

by using symbols, and they may be overwhelmed by such tasks. This is particularly true 

because hitherto being introduced to algebra, children have mostly had experience with 

arithmetic (Sfard & Linchevski, 1994, Livneh & Linchevski, 2007; Kieran, 1992). 

In algebra, unlike arithmetic where final answers are obtained after operations, 

students must work with unknown variables, the relationships between these unknown 
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variables, and express the relationships using symbols (Benejee & Subramanian, 2012; 

Fischbein & Barash, 1993). Furthermore, although both algebra and arithmetic domains 

involve written symbols and the understanding of how operations work, arithmetic does 

not operate at the same level of abstraction as algebra. Arithmetic requires limited 

numbers and computations (Sfard & Linchevski, 1994). Thus, such complex tasks as the 

notion of the equal sign representing equivalence, operational laws, and understanding 

groups of numbers and symbols as objects may not be necessary for arithmetic but are 

crucial for algebra (Knuth, McNeil, & Alibali, 2006). Arithmetic is relatively 

straightforward and requires correct procedures and operations. As a result, shifting from 

concrete manipulation of numbers as pertains to arithmetic problem solving to a 

complicated and an ideal algebraic environment sometimes becomes a herculean task for 

these nascent learners. 

This experience may present an abrupt increase in the cognitive demands of these 

students, and the results are sometimes poor performance when solving algebra problems. 

Star and Newton (2009) explain that children may not have developed the cognitive 

resources required to meet the demands of the abstract concepts and procedures that come 

with algebra. Hence, it is likely that they tend to be overwhelmed when algebra is 

introduced.  

The seeming abstraction of algebra may, however, be beneficial to children's 

cognitive development. This is because algebra requires the application of critical 

thinking abilities. As such, the constant use of the working memory in attempting algebra 

problems sharpens one’s brain faculty. Recently, Star et al. (2014) have suggested that 

although the nonconcrete reasoning nature of algebra makes it difficult for students, it 
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also serves as a vital learning instrument and network by preparing kids to acquire more 

advanced concepts in high school and beyond.   

Other researchers have asserted that the teaching methodology adopted by 

educators may be a factor to why many children find algebra learning challenging 

(National Research Council, 2001; Star & Rittle-Johnson, 2008). The basis of this claim 

is that the nature of algebra demands a reliable connection of the knowledge of concepts 

to the exact procedures to get the appropriate solutions to problems. It is, therefore, 

imperative that educators identify this connection and teach kids how to master it. This 

can be achieved only when the right teaching methods are defined and employed. 

Consequently, the inability of pedagogy to make this connection could make learning 

algebra a difficult task. So the question now is: What exemplifies algebra and what are 

the best ways to improve students learning of algebraic concepts?  

 

Resolving the challenge with algebra 

Identifying students’ struggles in algebra and the reasons for such struggles is one 

thing but helping students to improve their performance is another. To improve students’ 

performance, the National Mathematics Advisory Panel (NMAP; 2008) have 

recommended a curricular focus on enhancing sound foundations in three primary areas 

including mastery of conceptual and computational skills. Specifically, as stated by the 

panel, “to prepare students for algebra, the curriculum must simultaneously develop 

conceptual understanding, computational fluency, and problem-solving skills" (NMAP, 

2008, p.18).  
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To ascertain how these knowledge types, contribute to improving algebra 

performance, it is imperative that the relationships between them be explored. Knowing 

these relationships will enable researchers, educators and other players in the teaching 

and learning setting to identify the extent to which the acquisition of one type of 

knowledge affects the development of the other, and devise the right pedagogical strategy 

to achieve those ends. This is particularly important in algebra considering that to be a 

successful algebra problem solver one needs to successfully employ all the steps involved 

in solving a given question while simultaneously understanding why each step is 

indispensable. Failure to build a strong connection between how and why steps work in 

algebra will most likely lead to an undesired result. That is, students may struggle when 

learning other higher-level math, which requires the application of algebraic 

understanding (NMAP, 2008; Star, 2014; Wang, 2015).  

One can make the conclusion that conceptual and procedural understanding in 

algebra are essential factors that determine how students perform in algebra. What then 

represents these two types of understanding? Are they separate from each other? 

Moreover, how do these two knowledge types differ or relate to one another?  The 

following sections discuss conceptual and procedural knowledge and how researchers in 

numerical cognition have defined and described the relationships that exist among them.      

Conceptual Knowledge 

There is no universally accepted definition of conceptual knowledge (see Crooks 

& Alibali, 2014). Conceptual knowledge is the ability to discern mathematical concepts 

and operations, and the relations that exist between them (Kilpatrick, Swafford, & 

Findell, 2001). Learning conceptual knowledge may be associated with declarative 
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memory since children have to learn facts, rules, operations, and symbols and match all 

these ranges of information, and apply it to make meaning of the given math domain 

(Mastin, 2010). Some researchers have argued that the definitions of conceptual 

knowledge are often vague and therefore using such definitions as the basis for the 

measurement of conceptual knowledge makes it difficult. Crooks and Alibali (2014) 

conducted a review of the literature investigating conceptual knowledge in mathematical 

cognition, and they concluded that there are two categories of conceptual knowledge.  

The first kind of conceptual knowledge is the understanding of the principles that 

guides a given math domain. In this first case, Crooks and Alibali (2014) claimed that 

individuals learning math could possess such conceptual understanding without being 

able to link it with any given procedures. The authors suggested that this aspect of 

conceptual knowledge may include rules, definitions, and aspects of any domain 

structure. For example, children's ability to discern the meaning of the equal sign as being 

a representative of equivalence which is not tied to any procedure or any particular 

domain (e.g., algebra, fractions). They further stressed that general conceptual knowledge 

could take the form of categorization and grouping of formulae and symbols applicable in 

a general math sense. For example, a child must be able to understand that the equal sign 

(=), greater-than (>) and less than (<) symbols all belong to the same family because they 

are all used to demonstrate the relations existing between the left and the right sides of 

these symbols (i.e., they symbolize a connection). Crooks and Alibali (2014), contended 

that conceptualizing conceptual knowledge this way enables children to have a better 

understanding of the idea that different symbols and formulae belong to the different or 
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same classes, and as such, children are more likely to recognize and select the appropriate 

procedures for solving questions on such problems.   

The second kind of conceptual knowledge is the ability to form connections 

between the various procedures involved in solving any given problem (Crooks & 

Alibali, 2014). Baroody, Feil, and Johnson (2007) emphasized that conceptual knowledge 

should not be just an understanding of the principles that govern a particular math field, 

but that conceptual knowledge should be, in part, an understanding of the rich 

connections underlining particular action sequences or procedures. This leads to the 

conclusion that the ability of children to understand why certain steps must precede 

others, and the role of such steps in solving a problem, is an integral part of conceptual 

understanding. 

In the case of algebra, one must understand that when a number crosses the equal 

sign, its sign changes. That is, when a positive number is moved to the other side of the 

equation (i.e., across the equal sign), it changes to a negative number. One must 

understand how the second step, where the number changes from positive to negative in 

the above instance, is related to the previous step when it was positive. That is, to have 

conceptual knowledge means to understand that this change of sign is not just magical, 

but a result of the process where that original number is negated on one side of the equal 

sign with its opposite, and therefore its opposite must also be added to the other end of the 

equal sign so that the overall relation remains equal. Another key aspect of conceptual 

knowledge of algebra is the ability to understand equivalence. Equivalence is the idea that 

both the right and the left-hand side of the equal sign or an equation are equal, and that 

whatever is done to the right side must be done to the left side. For example, suppose a 
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student is asked to compare the answers to these two equations without doing the 

calculation: 214x + 214 = 428 and 214x + 214 + 6 = 428 +6. A student who possesses a 

conceptual understanding of algebra in general, and the equal sign more specifically, will 

understand that the answers to both equations will be the same because the equal sign 

represents a balance or equivalence and hence adding the same number to both sides of 

the sign will cancel out, and the result from equation two will be unaffected by the 6 

added. 

To be a competent math problem solver, one needs to combine their knowledge of 

the concepts with their ability to execute the right procedures to solve a given math 

problem. Knowledge of procedures is, therefore, another significant knowledge that 

students must possess. 

Procedural Knowledge 

Procedural knowledge refers to the ability to summon the right steps or sequences 

of actions to accomplish a goal (Hallett, Bryant and Nunes, 2010; Rittle-Johnson, 2015). 

The phrase “computational skills” is sometimes used interchangeably to refer to 

procedural knowledge (Byrne & Wasik, 1991). Some researchers have suggested that 

procedural knowledge can be acquired through rote learning and may not necessarily 

require an understanding when learning (Hallett. et al, 2012; Rittle-Johnson, 2015). It is 

possible that children can execute the steps involved in solving some given math 

problems successfully without having an understanding of why those steps worked (Fyre, 

Braisby, Lowe, Maroudas, & Nicholls, 1989).  

However, the best math problem solvers appear to possess the skills to ‘know 

how’ to apply the rules about a particular problem and execute the procedures 
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concurrently (Hallett et al., 2012). Studies have demonstrated that although children can 

learn the steps involved in solving a particular math problem without necessarily 

understanding why such procedures work, it is also possible to learn these procedures 

with meaning. That is, procedural knowledge may be linked to conceptual knowledge and 

that generally, children’s knowledge of procedures is enhanced when they can link 

conceptual knowledge to procedural knowledge (Hiebert & LeFevre, 1986).  

Rittle-Johnson and Alibali (2001) have suggested that procedures learned in one 

domain may not necessarily apply in a different field. Thus, procedural knowledge is 

often not transferable. For example, adding a zero to a number when multiplying by 10 

(e.g., 2 x 10 = 20) does not work in situations where a decimal figure is multiplied by 10 

(e.g., 0.134 x 10 ≠ 0.1340 but rather 1.34). A child who transfers the procedural 

knowledge used to solve questions that require the use of this ‘add zero' method to 

solving questions that need the ‘move the decimal point to the right or left' procedure is 

indeed bound to deviate on the solution. Nevertheless, procedural knowledge can involve 

the ability to adapt known methods to new problems (Rittle-Johnson & Star, 2007). For 

example, understanding the many ways of using the Lowest Common Multiple (LCM) 

principles when solving math fraction problems can also be adapted when solving algebra 

problems.  

Hiebert and Lefevre (1986) claimed that procedural knowledge might be divided 

into two broad categories. One type of procedural knowledge would represent the ability 

to use symbols and legal rules (proper syntax). For example, a student who possesses this 

aspect of procedural ability will be able to discern an acceptable expression as f(x) = 2x-1 
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from an unacceptable one f3 = x/(). This does not include the capacity to know how to 

perform calculations or interpretations of the expressions, but rather the ability to discern 

what is right from wrong in using math symbols. The other aspect of procedural 

knowledge according to Hiebert and Lefevre (1986) relates to algorithms, which are step-

by-step procedures. This involves knowledge about the actual sequence of actions that 

will eventually lead to the final answer to the problem. In carrying out these steps, the 

action to be done next is determined by the previous step, and each step is relatively 

distinct from the other. For example, in algebra, a student who has procedural 

understanding would be able to know that to solve a question such as ¼ (3y + 3) = 4, they 

would first have to remove any fractions by multiplying through the equation by the LCM 

(which in this case would be 4), expand to eliminate the bracket, and group like terms 

before finally simplifying and solving for the answer. 

The Relationship Between Conceptual and Procedural Knowledge 

Many researchers have claimed that conceptual knowledge is differentiated from 

procedural knowledge (Byrne & Wasik, 1991; Fyre et al.,1989; Fyre, Fuson, & Hall 

1983; Rittle-Johnson & Alibali, 2001; Hallett. et al., 2010, 2012; Peck & Jencks, 1981). 

Although in many spheres of learning children must learn both the fundamental concepts 

and correct procedures for solving problems to be proficient problem solvers, there are 

instances where children can possess the ability to execute the right procedures 

successfully to solving a problem without necessarily having the capacity to understand 

the concepts behind those procedures. The quest to describe the relationships between 

knowledge concepts and procedural understanding has led to virtually an impasse and a 

longstanding debate among numerical cognition researchers (Byrne & Wasik, 1991; Peck 
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& Jencks, 1981; Fyre et al.,1989; Fyre et al., 1983; Rittle-Johnson & Alibali, 2001, 

Hallett et al, 2010; 2012).  

Historically, the age-old debate has been largely informed by researchers and 

educator’s beliefs about which of these two types of knowledge children first develop and 

whether building one type of knowledge will influence the acquisition of the other 

knowledge type. While one group of researchers (e.g., Byrne & Wasik, 1991) argued that 

conceptual knowledge precedes procedural knowledge, another group of researchers (e.g., 

Fyre et al., 1989) have claimed vice-versa. The third group of researchers (Rittle-Johnson 

& Alibali, 2001) have contended that it is possible to build conceptual knowledge first 

before procedural knowledge and the reverse is true. An emerging school of thought (e.g., 

Hallett et al., 2010, 2012) is that there are individual differences. A review of studies that 

have found evidence in support of each of these perspectives is provided below. 

Concept First? 

The first group of researchers (e.g., Byrne & Wasik, 1991; Gelman & Bailargeon, 

1983; Gelman & Gallistel, 1978; Gelman & Meck, 1983; 1986) have suggested that 

children, implicitly through the environment they are initially exposed to, be it at home or 

school, develop conceptual knowledge first, and this later influences the generation of 

procedural knowledge. This perspective is what Rittle-Johnson and Alibali (2001), 

described as the concept first viewpoint.  

Gelman and Meck (1983) adopted an error detection task to explore 3 and 4- year 

olds understanding of counting. Gelman and Meck claimed that young children possess 

an implicit understanding of the five counting principles. These counting principles are: 

the stable order principle (that counting is done by following a single sequence of 
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counting words. Example, one can only start counting from one, two, etc., or starting with 

the last number and counting downwards), the one on one counting principle (that each 

member of a target objects is counted once and with only one counting word), the 

cardinality principle (that the last count represents the numerosity of the set), the 

abstraction principle (that any given set of objects can be counted), and finally the order 

irrelevance (that counting can be done in any order; that is, it is not always necessary to 

start counting from the first object).  

To investigate their claim, three separate studies were conducted by Gelman and 

Meck (1983). In all three studies, children were exposed to a puppet counting objects and 

were asked to judge whether the puppet was correct or wrong. In the first study, 

children’s understanding of the one-on-one principle was explored. Children watched a 

puppet count two rows of red and blue objects. In half of the counts, the puppet made 

errors (i.e., skipped one item or double counted one item). On the other half, the puppet 

made accurate counts. These groups of objects were of sizes: 6, 8, 12 and 20. Each object 

size had two trials or wrong counts, and two trials of accurate counts. For the second 

study, children were asked to judge whether a puppet violated the stable order principle of 

counting. For a count to be considered wrong, the puppet skipped number words (eg., 

counted 1, 2, 4,…) or counted two objects using the same word (eg., 1, 2, 2, …). The 

third study examined children’s understanding of cardinality. Here, children watched a 

puppet counting, after counting, the puppet mentioned a number which supposedly 

representing the size or quantity of the objects counted. In half of the trials, the puppet 

was wrong, and was correct on half of the counts. 
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In all these three studies, Gelman and Meck (1983) found that children were able 

to detect when any of the counting principles tested were violated The authors concluded 

that children as young as 3 and 4-year olds possess the ability to understand the principles 

underlying a counting procedure, although they are unable to demonstrate this ability. 

This means that children develop conceptual understanding before they finally learn to 

engage in the actual counting procedures.   

In the area of fractions understanding, Byrne and Wasik (1991) conducted two 

studies among fourth, fifth, and sixth-graders to determine the relationship between 

conceptual and procedural knowledge. In Study 1, knowledge of concepts was assessed 

regarding the ability of children to understand equivalence and ordering of fractions using 

items designed to reflect three aspects of fractions, namely, picture symbol, simple 

morphism, and the order of items. Procedural knowledge was assessed using items 

designed to reflect two kinds of problems: multiplication and addition (e.g., using the 

LCM principle to add) of simple fractions. These problems required the use of 

computational skills and knowledge of algorithms. 

Byrne and Wasik (1991) found that approximately 81% of children score above 

chance on all the conceptual items and that 93% of the children did not score above 

chance on the LCM. Since the LCM assessed procedural knowledge, the authors 

concluded that the children possessed more conceptual understanding than procedural 

knowledge. A similar result was found for the multiplication items as well. In Study 2, 

Byrne and Wasik classified participants as being significantly above chance or not on 

each of the conceptual and procedural scales. They found that almost all participants were 

above chance on conceptual scales before they were above chance on procedural scales. 
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They concluded that conceptual knowledge was necessary but not essentially sufficient 

for understanding procedural items, like finding the LCM successfully. In conclusion, 

such evidence supports the claim that conceptual knowledge precedes procedural 

knowledge.  

Procedure First? 

In contrast, another group of researchers (e.g., Briars & Sieglar, 1984; Fyre et al., 

1983; Fyre et al., 1989) have claimed that children first learn the procedures for solving 

given math problems and their conceptual understanding develops later with continued 

practice. This view has come to be labeled the “procedure first” perspective by Rittle-

Johnson and Alibali (2001). 

In a test of this view, Peck and Jencks (1981) found, from interviews with several 

sixth graders about their understanding of fractions, that less than 10% of the children had 

a good conceptual understanding of fractions. Although children demonstrated a limited 

conceptual ability, approximately 35% of these children were able to employ correct 

procedures for solving fractions. Other studies have found results that corroborate Peck 

and Jencks’ findings. For example, in a study that examined the type of strategies that 

children employ when solving fractions and the errors they usually commit, it was found 

that some children can perform addition computations with fraction correctly but are 

unable to explain why the procedures they used work (Kerslake, 1986) 

In the realm of counting, Fyre et al. (1989) found that 4-year-olds who count 

accurately often have a limited understanding of the cardinal goal of counting. There are 

five core principles that one needs to know to be considered a competent counter. 

Previous studies (Gelman & Bailargeon, 1983; Gelman & Gallistel, 1978; Gelman & 



CONCEPTUAL AND PROCEDURAL KNOWLEDGE 

   19 

Meck, 1983) found that children are born with the inherent understanding of these 

counting principles. In Experiment 1, Fyre. et al., (1989) investigated the assertion that 

young children have an understanding of cardinality of counting by asking children three 

cardinality questions; “are there X here?”, “give me X” and “how many objects are 

here?” (X represents the number of objects). In half of their experiment, these questions 

were posed before the child was allowed to count. They found that, children performed 

better on the “how many” questions than when they were asked “are there X,” and also 

performed better on the “are there X” than the “give me X”. In all of these trials, Fyre. et 

al., found that children performance were poor when they were asked to answer the 

questions (i.e., are there X?, give me X and how many are there?) before they were 

allowed to count. 

To have a better understanding of children’s understanding of counting, Fyre. et 

al., (1989) included all the counting principles in Experiment 2. For Experiment 2, 

children watched the experimenter do the counting and were required to judge whether 

the experimenter was correct or incorrect on following the proper counting procedure. 

Also, children were asked whether the last count given by the experimenter was correct or 

incorrect.  For half of the trials, the experimenter made a counting mistake, and for the 

other half, the correct counting procedure was followed. Wrong counting procedures 

violated at least one of the other four counting principles (i.e., one to one, stable order, 

abstraction and order irrelevance). Thus, counting procedures were assessed using the 

child’s ability detect whether the experimenter had violated each of the counting 

principles except cardinality. On cardinality, the experiment on half of the trials gave a 

number less than or greater than the actual numerosity while on the other half, the 
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experimenter gave the correct figure representing the number of objects counted. Children 

were asked to judge whether the counting procedure used was incorrect or correct and 

whether the number mentioned at the end of the count as representing the cardinality of 

the objects counted was correct or incorrect.  

Fyre et al. (1989) found that children mostly made accurate judgments on the 

counting procedures, except the order irrelevance counting principle. That is, children 

were able to judge when most counting procedures were violated. However, children 

were much less successful at judging when cardinality rules were violated, and there were 

also less successful at identifying when experimenters could count in a non-standard 

order (e.g., from the middle rather than from left to right). These errors on cardinality and 

the order irrelevance principle suggest a lack of conceptual understanding of what 

counting does. These findings support the perspective that children build procedural 

knowledge before conceptual knowledge.  

Bidirectional Learning 

The third group of researchers holds the view that conceptual and procedural 

knowledge learning is an iterative process. According to this group of researchers, 

drawing a sharp contrast between conceptual and procedural learning could be misleading 

and contradictory to the way that children build an understanding of mathematics (see 

Rittle-Johnson & Alibali, 2001; Rittle-Johnson, 2016). The basic tenet of this view is that 

knowledge is not a discrete quantity, and, as such, it is hard to determine at which point 

one knowledge type begins and how to completely separate it that knowledge from the 

other knowledge type. Proponents of this perspective, therefore, claim that the 

relationship between conceptual and procedural knowledge is bi-directional. This means 
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that children can first develop the conceptual knowledge and this conceptual knowledge 

will then lead to the generation of procedural knowledge for solving questions in that 

domain. On the other hand, procedural knowledge can emerge first and, subsequently, 

with continued practice of the problem-solving sequence, learners will discern the 

principles underlying a given problem.  

Rittle-Johnson and Alibali (1999) examined the relations between children's 

conceptual understanding of mathematical equivalence and their ability to execute 

procedures in solving equivalent problems among fourth and fifth graders. To examine 

how each knowledge type affects the other, the authors asserted that it would be 

important to investigate whether an instruction on conceptual knowledge would influence 

students’ procedural knowledge and vice versa. To achieve this, students were first given 

general equivalence questions to solve. Equivalence problems are ones that present 

mathematical calculation in non-standard ways to see if children understand the meaning 

of the equal sign. For example, children would be asked to fill in the blank for the answer 

6 + 5 = 2 + __. Students who performed well on this task were categorized as the 

equivalence group, while those who performed poorly were put into the nonequivalence 

group. The nonequivalence group was further randomized into three groups, two 

instructional and one control: a procedural instruction group, conceptual instruction 

group, and a non-instructional control group. A conceptually designed instruction was 

provided for those in the procedural group, and procedural instruction is given to the 

conceptual group. Participants were then reassessed at post-test to determine if their 

conceptual and procedural knowledge scores were affected. The pretest and post-test 

items had been designed to reflect students' knowledge in three components of 



CONCEPTUAL AND PROCEDURAL KNOWLEDGE 

   22 

equivalence: the meaning of two quantities being equal, the sense of the equal sign, and 

the idea that equation has two sides. The procedural task was also designed such that 

children could answer whether a given procedure for solving the equivalence task was 

right or wrong.  

When Rittle-Johnson and Alibali (1999) controlled for differences in procedural 

knowledge at pretest, the results showed that students who received conceptual 

instruction at pretest not only increased their conceptual understanding but also improved 

in correctly applying procedures for solving those problems at posttest. Similarly, when 

the researchers controlled for differences in conceptual knowledge at pretest students who 

received procedural instruction at pretest improved in generating the correct problem-

solving procedures, and also improved in their conceptual understanding at posttest. They 

concluded that procedural knowledge could lead to conceptual understanding and that 

conceptual knowledge can also lead to procedural understanding.  

A follow-up study by Rittle-Johnson and Alibali (2001) sampled fifth and sixth 

graders learning decimal fractions, using similar methods as Rittle-Johnson and Alibali 

(1999). They explored if the iterative relationship would be found in decimal fractions. 

Children were assessed at pretest and were grouped into a conceptual or procedural 

instruction. Conceptual knowledge and procedural knowledge were assessed at pretest 

and instructions provided afterward. Rittle-Johnson and her colleague then assessed the 

kids’ procedural knowledge on number line problems. They also administered a 

conceptual knowledge of general fraction and decimals. Overall, they found that 

children's fundamental conceptual knowledge at pretest predicted their procedural 

understanding at both pretest and post-test. Also, gains in procedural knowledge at post-
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test predicted conceptual knowledge at post-test. The authors concluded that children 

could start to learn conceptual knowledge first, and this could help improve their 

knowledge of procedures. On the other-hand, children can learn to use procedures first, 

and with further practices, they procedural knowledge could be enhanced.   

Individual Differences  

Although the iterative model is one way to reconcile the contradictory findings 

supporting “concepts-first” and those supporting “procedures-first," Hallett and 

colleagues (2010, 2012) proposed that individual differences in conceptual and 

procedural knowledge may also explain these findings. In other words, it could be the 

case that some children rely more on concepts and some children rely more on 

procedures. Individual differences in conceptual and procedural knowledge have been 

found in many mathematical domains such as addition and subtraction (e.g., Canobi, 

2005; Canobi 2004), multiplication (e.g., Mabbott & Bisanz, 2003), fractions (e.g., Hallett 

et al., 2010; Hallett et al., 2012), and arithmetic (e.g., Gilmore & Bryant, 2006). In the 

past, the methods and procedures used have varied, but general findings have been similar 

– children have different profiles of conceptual and procedural knowledge that usually 

show up as different clusters.   

Gilmore and Bryant (2006) tested fourth-grade children on inversion problems 

and standard problems to determine if there may be individual differences in their 

conceptual understanding and computational skills. Inversion problems refer to problems 

that can be very easily solved if one understands the inverse relationship between addition 

and subtraction. For example, the problem 89 + 123 – 123 can be very easily solved 

without calculation because the last two terms negate each other (i.e., an indication of 
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conceptual understanding), whereas the problem 123 +123 -89 actually requires 

calculation even though it uses the same numbers (i.e., an indication of procedural skill). 

Gilmore and Bryant (2006) presented children with four-term problems that were either 

inverse problems (e.g., a + b – b = a) or control problems (e.g., a + b – c = d).   

A cluster analysis was conducted on the children’s accuracy scores on the 

inversion problems, the control problems, and an arithmetic reasoning test. Three 

different clusters, each of roughly the same size, were found. In one of the groups, 

children tended to have high scores on the inverse problems, the control problems, and 

the arithmetic test, and they labeled this high-ability group. The second group had low 

scores on all three measures; they suggested that this group included children with 

generally lower ability. However, the third group tended to have high scores on the 

inverse problems but low scores on the control problems and the arithmetic test. These 

were children who had a good understanding of the inverse principle but did poorly in 

computation skills. Gilmore and Bryant concluded that children in the ‘high ability’ and 

‘low ability’ groups showed conceptual understanding that was in-line with their 

arithmetical skill, and the third group of children had more advanced conceptual 

understanding than their arithmetical skill. This showed individual differences in how 

children performed on tasks that had been grouped taking into consideration the type of 

knowledge children used in solving them. 

Canobi (2004) assessed 6 to 8-year-old children’s understanding of the part-whole 

principle and their ability to use the right strategy to solve such problems. In their study, 

problem-solving tasks were administered to assess the procedures employed by kids when 

performing addition and subtraction of the part-whole equations. For example, children 
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saw a problem in the form a + b =? appear on a computer screen; they were asked by an 

interviewer after they have solved the problem to self-report which of the two numbers 

they first counted. For the conceptual tasks, the kids had been invited to judge whether a 

task performed by a puppet was correct or incorrect. The strategies used were coded into 

retrieval, decomposition, counting on, counting all, and fingers. Retrieval was when 

children self-reported that they knew the answer because they remember it, for example, 

if the student said: “I just knew it because I remember it.” Decomposition was when 

children reported that they selected a particular answer because they remember how a 

related problem was solved (e.g., “I know that 5 + 5 equals 10, so 5 + 6 must be 11”). For 

answers to be coded into counting all, children must have counted, say for 2 + 3, “I 

counted 1, 2, 3, 4, and 5, while children who started counting on a term; say for 2 + 3, 

they started counting from 2, 3, 4, etc. Lastly, when children used their fingers to show 

the answer without counting, it was coded as fingers. For subtraction, answers were coded 

as counting up when they counted in an increasing order starting with the smallest 

number. When children report that counted backward starting from the smaller term, 

(e.g., starting from 6, 5, etc. for a 7 – 5 counting), they were coded as using a counting-

down approach. A final method of counting was where fingers are used to model the 

arithmetic. To measure conceptual understanding, the researchers relied on children’s 

ability to use solve part-whole relations to solve problems, their ability to judge correctly 

whether an approach employed by a puppet is right or not, and their ability to justify their 

answers.  

Using cluster analysis, Canobi (2004) found individual differences in children’s 

problem solving abilities. For procedural knowledge, they found three separate clusters 
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representing the different strategies employed by children to solve addition and 

subtraction of part-whole problems. The first cluster represents those children who 

employed all the different methods of counting (i.e., counting-on, counting-all, retrieval, 

and finger), and they called this cluster the flexible counters. The second cluster 

represents those kids who applied only counting on and counting-all, and they labeled this 

efficient group counters. A final cluster was those who did not use any of the methods 

explained above, and the called this group the inefficient group. On conceptual 

knowledge, three clusters were identified as well. The first cluster was those kids who 

performed better on part-whole tasks; the second cluster were those who had a greater 

degree of understanding of the commutativity of addition and subtraction and a final 

group which represented those who were good at the judgement and commutative tasks. 

They concluded that there are individual differences in the conceptual and procedural 

knowledge for understanding subtraction and addition.  

Canobi’s (2004) approach to finding individual differences in conceptual and 

procedural knowledge, however, examined conceptual and procedural knowledge 

separately. It did not consider how these individual differences could be part of a larger 

cluster structure that included both types of knowledge. A better way of doing this would 

be to put these knowledge types together in a cluster analysis and explore how children 

combine these two knowledge types. 

In the realm of fractions, Hallett and colleagues (2010) investigated whether there 

are individual differences in how children use conceptual and procedural knowledge. In 

their study, fourth- and fifth-grade students were drawn from schools across England and 

were presented different kinds of fraction questions which were later coded to reflect 
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conceptual and procedural knowledge. Items defined as conceptual were those that 

involved an understanding of equivalence (that two fractions with different numbers can 

be equal), a comparison between two quantities (judging which fractions are larger), or 

the realization that fractions can refer to different wholes (a third of something can be 

greater than a half of something smaller). For example, children were asked to order 1/4, 

1/2, 1/100, and 1/3 in increasing order of magnitude. On the other hand, procedural items 

were those that were judged to be primarily solved by applying an algorithm or procedure 

taught in school, and that can be implemented without checking for meaning outside the 

proceedings. Because there was a significant correlation between the two knowledge 

types, they adopted a procedure where procedural scores were regressed against the 

conceptual scores while also regressing the conceptual scores against the procedural 

scores.  

In using this regression procedure, Hallett and his colleagues were able to have 

residuals that were representative of scores of the procedural scale independent of the 

conceptual scores and conceptual scores of the conceptual scale that were also 

independent of the procedural scores. Furthermore, these scores were illustrative of 

relative abilities and not absolute competencies in conceptual or procedural knowledge. 

These residualized scores were then cluster analyzed to look for different profiles of 

conceptual and procedural knowledge. Hallett and his colleagues found five different 

groups: Children who performed highly on the conceptual scales relative to what their 

procedural score would have predicted (higher conceptual-lower procedural);  those who 

performed high on procedural items relative to what their conceptual scores would have 

predicted (higher procedural-lower conceptual; students who performed highly on both 
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types of knowledge (higher group); and, lastly, two groups of students who performed 

poorly overall, but one that did especially poorly on procedural items (lower procedural) 

and one that did especially poorly on conceptual items (lower conceptual). These results 

added further credence to what past studies have concluded – that individual differences 

may exist in the way children acquire and use conceptual and procedural knowledge. 

In a follow-up study, Hallett and colleagues (2012) attempted to examine if the 

same results found among grades four and five would be replicated among older grades. 

Again, they provided the participants with measures that had been coded into conceptual 

knowledge (e.g., questions that asked them to order fractions from smallest to largest) and 

those that reflected procedural understanding (e.g., asking students to solve 2/5 + 3/10) 

and then interviewed them to explain how they arrived at the solution. Conceptual and 

procedural scores were again residualized, and separate analyses were conducted for each 

grade. The result of the cluster analysis using these residualized scores replicated the 

previous findings in Hallett et al. (2010) among the grade six students but not in the grade 

eight students. That is, they found similar four clusters among the Grade 6 students 

representing those who were more procedural, more conceptual, high on both, and low on 

both. However, for the Grade 8 students, only two clusters were evident, representing 

children who are dominantly conceptual (more conceptual) and those who are dominantly 

procedural (more procedural). Hallett et al concluded that it is possible that the 

differences in the number of clusters may be a result of the fact that as students get older, 

they tend to specialize in each of these types of knowledge. The results give further 

evidence that there are individual differences in how children rely on conceptual and 

procedural knowledge when solving math problems. 
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The Current Study 

While Hallett and colleagues (2010, 2012) demonstrated that individual 

differences might exist in the conceptual and procedural understanding of fractions, it has 

yet to be determined if the same or similar pattern can be found in other math domains. 

Moreover, as asserted by Star (2016), “notably absent are the studies of the development 

of conceptual and procedural in algebra” (p. 2). As a consequence, the current study 

involves an investigation into whether or not the individual differences (i.e., clusters) 

found in fractions by Hallett and his colleagues (2010, 2012) are evident in children’s 

understanding of algebra. 

  Exploring this relationship is very essential, especially in the field of algebra. In 

algebra, one needs to be very proficient in applying procedures without compromising on 

conceptual abilities to be a successful problem solver. This study facilitates a comparison 

of the extent to which children use different conceptual-procedural strategies in algebra 

than in other math domains. The existence of similar clusters in algebra learning would 

further support the notion that not all children combine conceptual and procedural 

understanding in the same way, but that there are individual variations. Thus, if the same 

profiles found in fractions (see Hallett et al., 2010, 2012) are seen with algebra, it will 

strengthen the claim that children do not follow a universal developmental pattern in 

learning conceptual and procedural understanding.  

Research questions 

Three major research questions are examined.  

1.    Do children learn and use conceptual and procedural knowledge differently in 

algebra? 
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2.    If there are individual differences in conceptual and procedural knowledge, do these 

clusters differ in their overall understanding of algebra? 

3.    Does conceptual and procedural knowledge contribute significant variance 

independently on kids' overall algebra performance? 
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Chapter 2 

Method 

Participants  

A total of 124 Grade 8 students were recruited from a junior high school in 

Newfoundland, Canada. Twenty students were excluded from the analyses because they 

did not complete at least three tasks that were used in this study. Of the 104 that were 

included in the analysis, 65 were boys, and 39 were girls (Mage = 13.660, SD = 0.451).   

Design and Measures 

This was a correlational study that used a within-participant design. Four separate 

measures were administered to participants. These are the conceptual measure, procedural 

measure, the Chelsea Diagnostic Mathematics Algebra Test, and the Ravens Standard of 

Progression Test. The Conceptual and procedural measure was adopted from Rittle-

Johnson and Star (2007). Below are details of each measure and how they were scored. 

Conceptual and Procedural knowledge assessment (Rittle-Johnson & Star, 

2007). The conceptual and procedural knowledge assessment was designed to measure 

conceptual and procedural knowledge, as well as assess whether or not comparing 

solutions in algebra influences students understanding and performance. This assessment 

consists of 29 questions (12 multiple-choice, 17 open-ended). Nine of the questions are 

procedural knowledge items which require the use of procedural understanding to solve, 

eight questions test flexibility (e.g., judging the best first step in a solution), and 12 

questions test conceptual knowledge (e.g., understanding of equivalence). The test was 

recently used by Star et al., 2014 with a little modification and yielded overall internal 

consistency (conceptual and procedural items a= .89 and a= .77, respectively) and a= .76 
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on the procedural flexibility items. The flexibility items were removed from the measure 

because it was not the core focus of this research and it shortened the duration of the test. 

This brought the total number of questions to 16 although the conceptual items have 

aspects that require further explanations.  

The nine procedural knowledge items were algebraic equations where the student 

was asked to solve for x. One point was awarded for each right step that was shown. 

Scores obtained were calculated based on the overall percentage of the correct steps for a 

total possible score of 40.  The conceptual knowledge questions were designed to test 

children’s understanding of different aspects of algebra, including the meaning of the 

equal sign (e.g., that adding the same thing to both sides of an equation do not change the 

validity of the equation, or the solution for x), the combination of like terms (e.g., what is 

m + m + m + m the same as?), the nature of unknowns (e.g., how many possible values 

are there for k in the expression k + 6), and how children could conceptually understand 

procedures in order to be able to pick out which next steps in a problem would be valid 

(and potentially more than one of them could be; see Parts II and III in Appendix B).   

On the conceptual knowledge assessment, students received one point for 

correctly answering each of the nine objective questions. Of these nine multiple choice 

items, six had more than one answer correct, and participants were asked to select all 

options that were correct. A point was given for each correct answer selected. Also, 

students were asked to explain their reasoning on three items, and these explanations were 

scored for one point each. The scores from these explanations were added to students’ 

conceptual knowledge totals. Thus, a conceptual knowledge score was calculated as a 

percentage of total possible points. On the conceptual measure, students could earn a 



CONCEPTUAL AND PROCEDURAL KNOWLEDGE 

   33 

maximum of 20 points. The results were coded by the researcher and his supervisor based 

on the operational definition of conceptual understanding in this study and the guide 

provided by the authors of the measure. The conceptual measure and procedural measures 

had Cronbach alpha’s of = 0.60 and = 0.81, respectively. See Appendix B for the full 

measure.  

Raven’s Standard Progressive Matrices (Raven, Raven, & Court, 1998).  The 

Raven’s Progressive Matrices is a non-verbal test to measure students overall cognitive 

abilities. This standardized measure consists of geometric analogy problems in which a 

matrix of geometric figures is presented with one entry missing, and the correct missing 

entry must be selected from a set of answer choices. This measure has been designed to 

be and has been separately validated as, an index of general conceptual ability or fluid 

intelligence (Raven et al., 1998). Participants were asked to complete a subset of 32 

items, based on age-norms, ranging from C3 to E10. 

The Chelsea Diagnostic Mathematics Algebra Test [Hart & National 

Foundation for Education Research (NFER), 1984]. The Chelsea Diagnostic 

Mathematics Algebra Test was used as a measure of students’ general algebra 

understanding. This test has been designed to test children’s level of understanding across 

a broad range of typical secondary school algebra tasks. These include substitution, 

simplifying expressions and constructing, and interpreting and solving equations. It 

contains 23 questions and focusses on the different ways in which children use and 

interpret letters in generalized arithmetic. It has been shown to be an appropriate test for 

children in their second, third, and fourth year in high school. Specifically, it can be used 

for students aged 12 years or older. 
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Procedure 

Students were given a permission form for their parents to sign and return. Only 

those students with signed, returned forms participated in the study. Before distributing 

the assessment measure, students were reminded that despite receiving permission from 

their parents to participate, it was still their decision as to whether they would like to 

participate. They were also told that they could withdraw from the study at any time and 

it will not impact their grades. The administration of the tests was counter-balanced. One 

group of students (n = 39 in the final analysis) had the Raven’s test first before the 

conceptual and procedural measure and the general algebra measure, while another group 

of students (n = 65 in the final analysis) had the conceptual and procedural measures 

taken first before the general algebra measure and Raven's test. All measures were group 

administered. Instructions were read out loud, and the experimenter completed two 

examples with the students on the Raven’s and the Chelsea Diagnostic. After each student 

had finished all measures, the students were debriefed and thanked for participating in the 

research and were given $10 in compensation. 

Analyses 

This thesis adopted the method of analysis used by Hallett et al. (2010, 2012). 

However, as explained in more detail below, the analyses were slightly modified by 

adding a third variable into the cluster analysis, which helped to better classify the data 

into clusters.  

 Residualized Conceptual and Procedural Scores. Although the measures of 

conceptual and procedural knowledge were designed to include items that participants 

would be expected to mostly employ conceptual or procedural understanding, 
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respectively, to solve, previous studies have shown a significant correlation between these 

two measures. To have scores that were separate from each other, conceptual scores were 

regressed against procedural scores while procedural scores were also regressed against 

procedural scores (see Fig. 1, Panels A & B), and these residuals were then standardized. 

Regressing procedural scores  against conceptual scores generated residuals which 

represent conceptual scores independent of procedural ability while regressing conceptual 

scores against procedural scores created residuals which represents procedural scores that 

were independent of conceptual scores.  

It is important to note that these residuals are relative scores and not absolute 

scores. Thus, a score represented students’ performance on one type of knowledge 

relative to how the other type of knowledge would predict they would do. For example, a 

participant who received a score of 2 on conceptual residual did not score 2 standard 

deviations above the mean, but instead, 2 standard errors above their conceptual predicted 

from their procedural score. Likewise, a procedural score of -1 would not necessarily 

mean that that student is below the mean on their procedural skill, just that their 

procedural skill is lower (by 1 standard error) than what we would expect that score to be, 

given their conceptual score. That is what makes these scores relative instead of absolute. 
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Improved Way of Doing Cluster Analysis. Creating residualized scores in the 

manner explained above means that there is a possibility for an individual who has a very 

weak score on one variable to be wrongly classified as possessing that knowledge. This is 

because the nature of regression is that predicted scores can be negative even if it is not 

actually possible to receive a negative score, especially if there are a substantial number 

of students who score near zero on the predictor variable. In these data, 21 of the 104 

participants scored a zero on the procedural measure. With data having this signature, a 

participant who had a very low score on the procedural measure, even if that score was 

zero, could end up with a positive procedural residual if their score on the conceptual 

measure was low enough that it predicted a negative score on the procedural measure.   

This would make it look like a student with zero on the procedural measure, probably 

erroneously, was relatively strong on procedural skill. This means the cluster solutions 

obtained may not be a true representation of the actual situation on the ground. 

Panel A Panel B 

  

Figure 1. The above figures show how residualized conceptual and procedural scores were obtained. In 
Panel A, conceptual raw scores are entered into the regression analysis as the criterion while procedural 
scores are entered as the predictor. In Panel B, the procedural raw score is entered in the regression analysis 
as the dependent variable (criterion) while conceptual raw scores are entered as the predictors. The results 
are two separate residualized scores. This was adopted from Hallett et al., (2010, 2012). 
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To rectify this problem, two options were considered. The first option was to 

exclude the students who scored zero on the conceptual and the procedural measures. Of 

the final 104 students included in this analysis, 21 scored zero on those two measures and 

as such their data would have be excluded if this option was adopted. A second option 

would be to add a third variable representing overall ability to control for the potential 

clustering errors. The addition of this general ability measure would help separate out low 

overall ability people from others, which would include those who have zero on the 

procedural measure but appear to have a relative strength in procedural knowledge. A 

preliminary analysis compared the results of the cluster analysis when these students were 

deleted to when a third variable was added. This analysis found that the number of 

clusters and the cluster pattern were essentially the same. For this reason, the present 

analysis used the third variable control, as this included the most subjects. 

To obtain a third variable, we created a measure that was an equally weighted and 

standardized combination of the conceptual and procedural scores. This variable was a 

representation of the absolute and actual scores obtained by students and was used as a 

proxy measure of their general strength in algebra. This variable was named the overall 

score. This was then included in the cluster analysis to control for students’ general 

ability, which would have the effect of preventing children with low ability with relative 

scores that might not reflect their relative strength (because of the boundary limits of the 

measure) from being grouped with children whose relative strength in procedural 

knowledge is likely more real. 
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Chapter 3 

Results 

Before proceeding to cluster analyze the data, correlations were run on all of the 

assessments (Table 1). There was a significant positive correlation between the Chelsea 

Diagnostic test and all other measures. The Raven’s Matrices, however, did not correlate 

with the Conceptual and Procedural Knowledge measures, which was not expected. 

However, there was a significant positive correlation between conceptual and procedural 

knowledge. 

Table 1 

Pearson correlations between Conceptual and Procedural measures, Chelsea 
Diagnostics Test and the Ravens Matrices (N= 92) 
Measures 1 2 3 4 

1. Concepts 

2. Procedures 

3. Chelsea 

4. Ravens 

-    

0.244* -   

0.388** 0.342** -  

0.130 0.091 0.294** - 

Note. Concepts is the conceptual part of the Conceptual and Procedural Knowledge task, Procedures is the 
procedural part for the Conceptual and Procedural Knowledge task, Chelsea is the Chelsea Diagnostic Test 
for General Knowledge of Algebra, Raven’s is the Raven’s Standard Progressive Matrices task. *p < 0.05, 
**p < 0.01  
 

 

Cluster Analysis 

The first thing to determine was if there are individual differences in conceptual 

and procedural knowledge of algebra.  Two separate residual scores were created from 
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regressing one variable against the other as described above in the Method.  Furthermore, 

an overall score was created by combining the conceptual and procedural scores, again, as 

outlined in the Method. These three variables were then cluster analyzed together.  

To obtain the ideal cluster solution, this thesis adopted the procedure used by 

Hallett and his colleagues (2010, 2012). In this method, a rate (denoted by C(g)) is 

calculated based on the amount of variance between and within the clusters. Thus, the 

good cluster solution would have a larger variance between the clusters but a relatively 

small variance within each cluster. A better cluster solution, therefore, is one that has the 

bigger calculated C(g) statistic. Furthermore, cluster solutions that had splinter clusters 

were to be ignored. Table 2 displays the C(g) statistic for each solution from 2 to 10 

clusters. Although cluster solutions 7, 8, 9, and 10 have higher C(g) scores, they all have 

at least one group that have very low number of members (2). Because of the potential for 

such small groups to act as outliers, these cluster solutions were not considered – a 

practice consistent with others who have done cluster analysis in mathematical cognition 

(see Gilmore and Bryan, 2008). For this reason, the best cluster solution was the four-

cluster solution. 

 

Research question 1: Do individual differences exist in conceptual and procedural        
knowledge? 

To answer the question of whether there are individual differences, we relied on 

the cluster solutions explained above. As mentioned earlier, the analysis found four 

different clusters representing the different ways in which Grade 8 students combine 

conceptual and procedural knowledge. The first group of students (33.65%), belonged to 
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the cluster designated the lower cluster. For these students, their performance was below 

expectation on both conceptual and procedural knowledge. 

 

Table 2 

C(g) statistics showing the number of cluster solution 
Solution C(g) 
10 107.73421 
9 96.22245 
8 91.34717 
7 90.08904 
6 82.13914 
5 79.45711 
4 86.77680 
3 66.63228 
2 55.50238 
C(g) is the rate of variability between clusters divided by the variability within each cluster. Generally, the 
higher the C(g), the better the cluster. Although cluster solutions 10, 9, 8, and 7 had higher C(g) statistical 
rate, they have too many splinter clusters that have very few members. In this study, cluster 4 was adopted 
as the best cluster solution although it has a lower C(g) than cluster solutions 10, 9, 8, and 7. This was 
because cluster 4 have relatively comparable number of members. 

  

 The last cluster was called the higher cluster. This represented a group of students 

(12.50%), who performed above expectation on both their conceptual and procedural 

scores. The two middle groups represented students (20.19%) who performed better on 

conceptual scores than their procedural would have predicted, and students (33.65%), 

who performed better on procedural scores than their conceptual scores would have 

predicted. These groups were called more conceptual and more procedural, respectively 

(see Fig. 2).  

As would be expected, students who did relatively poorly on both conceptual and 

procedural knowledge were those with lower scores on the overall score, and the students 
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who had relatively better scores on both conceptual and procedural knowledge were the 

ones with better performance on the overall variable. The more conceptual group had 

relatively higher performance on the overall score than the more procedural group.  

 Research question 2: Do these clusters differ on general algebra performance? 

To give meaning to the clusters, we compared these clusters on the Chelsea 

Diagnostic test. This was to examine whether the cluster to which one belongs affects 

how they will perform on a general algebra ability. To achieve this, a One-way ANOVA 

was conducted with Cluster as the grouping variable and performance on the Chelsea 

Diagnostic test as the dependent variable. Overall, there was a significant difference in 

performance between these clusters, F(3, 99) = 8.515, p < 0.001, η2 = 0.212. Tukey’s post 

hoc test showed that the Lower group (M = 23.53), differed significantly from the Higher 

group (M = 35.538, p < 0.001), the more procedural group (M = 29.882, p = 0.015), and 

the more conceptual group, (M = 32.700, p = 0.001)1.  

 

 The more procedural group, (M = 29.882), did not differ significantly from the 

more conceptual group, (M = 32.700, p = 0.636), and the Higher group, (M = 35.538, p = 

0.174). Finally, the more conceptual group, M = 32.700, also did not differ significantly 

from the Higher group, (M = 35. 538, p = 0.790). The analysis shows that the differences 

that exist among these clusters at the general level are driven by the Lower cluster.  

 

 

                                                
1

p-values are reported exactly to three decimal places. When p values were too small to be represented to three decimal places, p < 
.001 was used. 
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Figure 2. Cluster solution for residualized conceptual and procedural scores for grades 8 students on 
Procedural and Conceptual Knowledge of Algebra measure. 
 

The inability to detect a statistically significant group differences between the 

more conceptual and the more procedural clusters could be another way of arguing that 

both conceptual and procedural knowledge are equally beneficial in learning algebra. To 

test for this specifically, would require analyzing to determine the amount of variance in 

the Chelsea task explained by each of these knowledge types. This brings up the third 

research question examined in this study. 
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Research question 3: Do conceptual and procedural knowledge independently 

predict general performance in algebra? 

The next question explored in this study was whether conceptual or procedural 

knowledge was more strongly related to one’s general performance in algebra, assessed 

using the Chelsea Diagnostic Algebra Test. Using hierarchical regression analysis, scores 

on the Chelsea Diagnostic test were entered as the criterion variable, Gender, Order, and 

Raven’s scores were entered into the first block, and conceptual and procedural scores 

were entered in the second block. Gender, Order, and Raven’s predicted a significant 

amount of variance in scores on the general algebra performance (see Table 3), but only 

scores on the Raven’s added a unique amount of variance in general algebra performance. 

When conceptual and procedural scores were added in the second block, the model 

continued to account for a significant amount of variance in the general algebra scores, 

ΔR2 = 0.204, F(2, 87) = 13.397, p <.001. Both conceptual and procedural scores 

independently predicted general algebra performance and scores on the Raven’s remained 

a unique predictor of the variable in general algebra scores.  

To test for the amount of variance uniquely explained by conceptual and 

procedural knowledge, a three block regression analysis was conducted. It was found that 

conceptual knowledge uniquely predicted 13.400%, p <0.001 of the variance controlling 

for Order, Gender and the general cognitive ability of the students. On the other hand, 

procedural knowledge exclusively accounted for 7.007%, p = 0.003 of the variance in the 

general algebra measure. This is quite surprising, especially because both conceptual and 

procedural knowledge were highly correlated. This indicates that both conceptual and 
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procedural knowledge independently explained a significant amount of variance above 

and beyond the order in which a test was presented and gender. 

 

Table 3 
 
Predictors of General Algebra performance in a hierarchical regression indicating 
variance explained by each block, B values, and ß values (SE) (N = 93) 
 Predictors R2 B ß(SE) 
Block 1     
 Gender  -2.562 -0.134(1.898) 
 Order  -0.333 -0.020(1.642) 
 Raven’s      0.705* 0.333(0.210) 
 Total R2 0.133**   
Block 2     
 Gender  -2.928 -0.153(1.685) 
 Order  -1.016 -0.062(1.459) 
 Raven’s      0.577* 0.273(0.188) 
 Conceptual         0.802** 0.317(0.229) 
 Procedural      0.303* 0.271(0.100) 
 Total R2 0.337**   
Total R2  0.0.470**   
Note. R2 is the amount of variance accounted for in general algebra scores; B is the unstandardized 
coefficient, ß is the standardized coefficient, and SE is the standard error of the ß coefficient *p < 0.01, **p 
< .001 
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Chapter 4 
Discussion 

The current study examined three main research questions. The first was whether 

there are individual differences in the way in which students combine conceptual and 

procedural knowledge when solving algebra questions, as has been found in other math 

domains (see Canobi 2003, 2004; Hallett et al., 2010, 2012). The second issue was 

whether these clusters would differ in overall algebra ability. Finally, this study explored 

whether conceptual and procedural knowledge would independently predict significant 

variance in students’ general performance of algebra.  

Generally, the results from this study have further supported the claim that there 

are individual differences in conceptual and procedural knowledge. As previously 

discussed, there are three main perspectives on what researchers believe to be the 

relationship between conceptual and procedural knowledge. These are the concepts first, 

procedural first, and the bi-directional outlook. If the claim by the proponents of the 

concepts first approach were true, then it would have been expected that there will be 

only one cluster that would be made up of only students who are relatively good at 

conceptual knowledge. On the other-hand, if the claim by the procedures first perspective 

is true, then it would be expected that we would find only one cluster that would represent 

students who are relatively good with procedural knowledge. Finally, if the view by the 

bi-directional perspective is true, then we would expect no clusters, as children would 

switch back and forth between learning conceptual knowledge and procedural knowledge 

in such a way that they would not develop a strong reliance on one over the other.  
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The findings of the current study, however, demonstrate that students may choose 

different ways of learning and use conceptual and procedural knowledge when solving 

algebra problems.  This is evidenced in the four different cluster solutions obtained. The 

more concept cluster represents the perspective that claimed that children develop 

conceptual understanding first and later build upon this to derive the knowledge of 

procedures needed to solve a given math problem. The more procedural group represents 

the procedures first perspective which claims that procedural knowledge precedes 

conceptual knowledge. The iterative viewpoint might be represented in both the higher 

group and the lower group.  

The findings from this study offer one way to reconcile all the various 

perspectives that exist in the literature. The four-cluster solution found in this study 

paralleled that observed by Hallett et al. (2010, 2012). In Hallett and colleague’s study 

(2012), although four cluster solutions were found for the grade 6 students, only 2 cluster 

solutions were found for grades 8 students. One can speculate that the differences in the 

cluster solution may be a result of poor performance of the participants in their study. It is 

possible that the cluster solutions in this study returned to the four cluster solutions found 

by Hallett et al., (2010, 2012) with their grades 6 because of the third variable included in 

the current study. The grades 8 data in Hallett et al. (2012) has recently been re-analyzed 

by adding a similar third variable representing overall ability, and a 3-cluster solution 

became the optimal one (see Appendix A). By adding a third variable to the cluster 

analysis, the cluster solution found in this study more closely parallels the one found by 

Hallett and his colleagues (2012), as the three clusters seem to parallel the more 

conceptual, more procedural and higher clusters from this study. 
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Although individual differences in conceptual and procedural knowledge have 

been found in other math domains such as fractions (Hallett et al., 2010, 2012), addition 

and subtraction (Canobi, 2004), this is the first time conceptual and procedural knowledge 

in algebra has been investigated using this approach. Further, using residualized scores 

enabled the current study to create independent scores. It can, therefore, be concluded that 

there are individual differences in the way students combine their conceptual and 

procedural knowledge when solving algebra problems and individual differences are not 

restricted to only one math domain, and it also cuts across different age groups. Further, 

our inability to find significant group differences between the more procedural and the 

more conceptual group means that children who are good at using their conceptual 

knowledge of algebra perform equally well as those who perform best on procedural 

knowledge. Although we did not find significant group differences between the more 

procedural, more conceptual groups, and the higher group, this could be a result of 

differences in the sample sizes between the groups, as the pattern of means would suggest 

that the Higher group might outperform all other groups.  

In addition to demonstrating individual differences in conceptual and procedural 

knowledge, the next research question that was investigated in this study was whether 

both conceptual and procedural independently predict variance in the overall algebra 

measure. The results confirm that conceptual knowledge uniquely explained 13.400% of 

the variance in the overall scores for algebra while procedural scores uniquely explained 

7.00% of the variance in the general algebra scores. In a previous study, Hallett and 

colleagues (2012) similarly found that both conceptual and procedural knowledge were 

independently predictive of both grades 6s and 8s knowledge of fractions. The results 
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from this study have further confirmed this observation. Children rely on both conceptual 

and procedural knowledge when they have to solve algebra questions. Educators must, 

therefore, make conscious efforts to ensure that children have the opportunity to learn 

both knowledge types. Thus, one type of knowledge must not be given preferential 

treatment or sacrificed in the classroom at the expense of the other. 

Not much research has been done with the direct intention of investigating 

whether teaching concepts first or procedures first affects the way kids perform in 

algebra. However, generally, the latent reason for the longstanding debate on whether 

children develop conceptual knowledge first or procedural knowledge first is to argue for 

kids to be taught the concepts that underlay certain procedures before they are made to 

use the procedures to solve any given question. On the contrary, the group of researchers 

who believe that procedures precede concepts would presumably advocate for children to 

be taught to use procedures first so that they build an understanding of the principles 

underneath those procedures with time. One can argue that the purpose of these debates is 

to devise the best approach to learning math in generally irrespective of the domains.  

The result of this study, however, has discounted the argument from both ends. In 

other words, the findings from this study could help to begin to bring closure to the 

debate. That is, this study has found that children’s performance is dictated by first, both 

their level of conceptual understanding and their ability to execute the right procedures to 

solve problems. Secondly, learning conceptual or procedural knowledge does not have a 

significant bearing on the performance of the each other.  
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Limitations 

Some issues may have affected the result of this study. The first is sample 

selection. Although the study had a sizeable sample, all of the participants were sampled 

from the same school. This hinders the ability to generalize the findings in this study, 

although the school was located in an area with a wide range of incomes. Also, even 

though the order in which the conceptual and procedural knowledge items were presented 

was counterbalanced, both of these measures were in the same booklet. It is possible that 

although kids had one task first, they flipped to the other task. For example, students who 

received a conceptual and procedural measure that has conceptual knowledge items first 

may have flipped to the procedural knowledge section. Consequently, although they 

would be classified as those who received conceptual items first, in reality, they may have 

answered procedural knowledge tasks first. A better way would be to present a timed 

version of each of these tasks separately. This would restrict students to answering the 

tasks in the order in which they are presented. Finally, this is a correlation study, and as 

such, it was difficult to infer a causal relationship.  

On a separate note, the inability of the Ravens to correlate with the conceptual and 

procedural measures was somewhat surprising given our expectation that the student’s 

general cognitive ability should relate to their performance. At the same time, the Raven’s 

was correlated with the Chelsea Diagnostic Test of Algebra, which is to be expected, but 

it is interesting that this general measure of Algebra is related to the Raven’s while the 

conceptual and procedural measures of Algebra are not. Furthermore, the regression done 

for Research Question 3 above found that the Raven’s was independently predictive of 

scores on the Chelsea Diagnostic Test even after controlling for conceptual and 



CONCEPTUAL AND PROCEDURAL KNOWLEDGE 

   50 

procedural knowledge. In their work on fractions, Hallett and his colleagues (2012) 

performed a similar regression and found that the Raven’s was not independently 

predictive of general fraction ability after controlling for their measures of conceptual and 

procedural knowledge of fractions. This would suggest that these measures of conceptual 

and procedural knowledge of algebra, developed by Rittle-Johnson & Star (2007), may be 

ones that measure conceptual and procedural knowledge independent from academic 

ability. This result, however, is still unexpected, and suggests that further research should 

be done to ensure these tasks are measuring the constructs that they were designed to 

measure. 

Future Work 

Future work could explore these individual differences with older grades. For 

instance, grades 10s or older could be considered. This would help to ascertain whether 

these individual differences are true across higher grades. Also, future research should 

investigate these individual differences in other math domains such as calculus, 

proportions, percentage calculations, and the like. This would help to explore the 

universality of these individual differences. Future work should consider a longitudinal 

method where the conceptual and procedural knowledge developments are tracked across 

developmental time periods. This will help to draw a better conclusion about the 

relationship between these two knowledge types. 

Implications 

The implications of this study are of two fold. The first implication of this study is 

in the classroom setting. The results of this study have shown that there are children who 

are better at absorbing the principles and concepts of algebra than employing the 
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procedures to solve given problems. On the contrary, there are also some children who 

are better at employing procedures to solve algebra questions than understanding the 

concepts. In other words, some kids can learn to use algebra procedures without 

necessarily understanding why those procedures work, while other children could possess 

the understanding of the concepts behind algebra problems but have difficulties in using 

the right procedures to solve problems in the domain. 

As implied by the results, the kids who performed best are the ones who are good 

at both conceptual and procedural knowledge. If this is the case, then educators can 

devise means of assessing the relative strength of kids in these two knowledge types. 

Thus, kids who lack conceptual knowledge could be identified, and the needed 

intervention could be attention provided to help them catch up. On the contrary, educators 

could identify procedural deficient kids and provide the necessary intervention to help 

improve their knowledge in that regard.  

This study has further strengthened the argument that research on conceptual and 

procedural knowledge must involve an investigation of individual differences. It can, 

therefore, be argued that researchers must learn to adopt the investigation of individual 

differences when exploring conceptual and procedural knowledge.  Exploring individual 

differences enables researchers to understand conceptual and procedural knowledge 

holistically and in a much more detail. This could help resolve future debates such as that 

which has been witnessed among numerical cognition researchers on the developmental 

relationship between conceptual and procedural knowledge.  

Conclusion 
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This study is the first to explore the relationship between conceptual and 

procedural knowledge in algebra. Although several studies have in the past examined this 

relationship in other mathematical domains, this was the first attempt at exploring those 

relations with algebra by considering the possibility of individual differences. 

Additionally, the findings from this study have further strengthened the argument made 

by Hallett and his colleagues that children learn conceptual and procedural knowledge 

differently. This has contributed to resolving the long-standing debates on the 

developmental relation between conceptual and procedural knowledge. The study did not 

discount the three competing sides of the debate, i.e., the concept first, the procedures 

first, and the bidirectional approach. It does, however, offer a better approach to 

interpreting the results in so far as examining conceptual and procedural knowledge are 

concerned.   
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Appendix 

Appendix A 

Cluster solutions from Hallett et, (2012), grade 8 students with a third variable 
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Appendix B 
CONCEPTUAL AND PROCEDURAL ALGEBRA MEASURE 

 
 
 
 
 

   First Name & Last Initial _______________________________ 
                 Date _______________________________ 
 
 
                 Class Period: 1 2 4 5 6 
                     # ______ 
 
This exercise will help us learn how you think about algebra. Please do your 
best to complete all the questions. 
If you don’t know an answer, you may guess or write “I don’t know”. 
Please don’t leave any questions blank – we want to know how much you 
had time to try. 
If you make a mistake, please gently 
erase it. 
 
Each section is timed. If you finish a section early, you may go ahead to the 
next section. You may not go back, even if you have extra time later. Once 
you finish a page, please move to the next page and do not look back. 
 
Thank you for doing your best work on this exercise. 
  



CONCEPTUAL AND PROCEDURAL KNOWLEDGE 

   65 

Part I. Answer the questions below. {10 mins} 
 
1) What does the equal sign mean? 

Can the equal sign mean anything else? If yes, what? 
_____________________________________________________________
_____________________________________________________________
_____________________________________________________________
_____________________________________________________________
_____________________________________________________________
_____________________________________________________________
_____________________________________________________________
___________________________________ 
2) If m is a positive number, which of these is equivalent to (the same as) 

m + m + m + m? Circle your answer. 
a. m + 4 
b. 4m 
c. m4

 

d. 4(m + 1) 
3) Here are two equations. 

 
Equation #1: 213x + 476 = 984 
 
Equation #2: 213x + 476 + 4 = 984 + 4 

 
Without doing the math, what can you say about the answers to this two 
equations? Circle a, b, or c below. 

 
a. The answer to Equation #1 is same as the answer to Equation #2 
b. The answer to Equation #1 is different from the answer to Equation #2 
c. I can’t tell without doing the math 

 
Explain your reasoning: 
_____________________________________________________________
_____________________________________________________________
_____________________________________________________________
_____________________________________________________________
_____________________________________________________________
_____________________________________________________________
_____________________________________________________________
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_____________________________________________________________
________________________________________ 
 
4) If k can be replaced by any number, how many different values can the 
expression k + 6 have? 

a. None 
b. One 
c. Six 
d. Seven 
e. Infinitely many 

5) Without solving each equation, which of the following equations are 
equivalent to (will have the same answer as) the equation: 32(x - 12) = 96. 
Circle all that apply 

 
a. 32x – 12 = 96 
b. x – 12 = 96 – 32 
c. 16x – 16•12 = 48 
d. 16x – 6 = 48 
e. 32(x − 12)    = 96 

32           32 
 
Explain why you chose those ones: 
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________ 
 
 
Part II. On each of the problems in this section, you will see one line in a student's 
solution 
to an equation. Listed below each line are four possible next steps. For each 
equation, figure 
out ALL possible steps that the student could do in the NEXT step. For each 
problem, circle 
ALL steps that are possible for the student to do in the NEXT step. {3mins} 
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6) 2(x + 1) + 4 = 12 
 
a. Combine like terms 
b. Distribute across parentheses 
c. Add or subtract the same number on both sides 
d. Multiply or divide by the same number on both sides 
 
7) 15(x + 3) + 5(x + 3) = 10(x + 3) 
 
a. Combine like terms 
b. Distribute across parentheses 
c. Add or subtract the same number on both sides 
d. Multiply or divide by the same number on both sides 
 
 
Part III. Below are the beginning steps of how a student tried to solve several 
equations. 
Look at the way that this student started each equation and answer the questions 
below. {8mins} 
 
8) 3(x + 2) = 12 

x + 2 = 4 
a. In the part of the solution shown above, what step did the student use to 
get 
from the first line to the second line? Circle your answer below. 

 
a. Combine like terms 
b. Distribute across parentheses 
c. Add or subtract the same number on both sides 
d. Multiply or divide by the same number on both sides 

 
b. Looking at the problem shown above, do you think that this way of 
starting 
to do this problem is a good idea? An ok step to make? Circle your answer 
below and explain your reasoning. 
(a) Very good way (b) Ok to do, but not a very 
good way 
(c) Not OK to do 
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Explain your reasoning: 
_____________________________________________________________
_____________________________________________________________
_____________________________________________________________
_____________________________________________________________
_____________________________________________________________
_____________________________________________________________
_____________________________________________________________
___________________________________ 
_____________________________________________________________
_____________________________________________________________
__________ 
 
9) 13(x + 25) + 38 = 15(x + 25) 

38 = 2(x + 25) 
 
a. In the part of the solution shown above, what step did the student use to 
get 
from the first line to the second line? Circle your answer below. 

 
a. Combine like terms 
b. Distribute across parentheses 
c. Add or subtract the same number on both sides 
d. Multiply or divide by the same number on both sides 

 
 
b. Looking at the problem shown above, do you think that this way of 
starting 
to do this problem is a good idea? An ok step to make? Circle your answer 
below and explain your reasoning. 

(a) Very good way  
(b) Ok to do, but not a very good way 
(c) Not OK to do 

 
Explain your reasoning: 
_____________________________________________________________
_____________________________________________________________
_____________________________________________________________
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_____________________________________________________________
_____________________________________________________________
_____________________________________________________________
_____________________________________________________________
_____________________________________________________________
_____________________________________________________________
_____________________________________________ 
 
 
 
Part IV. Solve the following 8 equations. Show all your work and steps 
you used to arrive at your answer. {20mins) 
 
12) – 1/4(x – 3) = 10 
 
 
 
 
 
 
 
 
 
13) -3(b + 2) + 9(b + 2) + 4(b + 2) = -30 
 
 
 
 
 
 
 
 
 
14) 5(y – 12) = 3(y – 12) + 20 
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15) 5(2x + 3) + 4x + 2 = 7(x + 1) + 20 + 2x 
 
 
 
 
 
 
 
16) 0.25(t + 3) = 0.5 
 
 
 
 
 
 
 
 
 
17) -3(x + 5 + 3x) – 5(x + 5 + 3x) = 24 
 
 
 
 
 
 
 
 
 
18) -2(y + 1) + 7(y + 1) – 3(y + 1) + 5(2y – 6) = 2(y + 1) + 6(y + 1) 
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19) 3(x + 1) + 2x + 7 – 3(x + 1) – 7 = 4x + 12 – 4x – 12 + 10 
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Appendix C Student’s knowledge of algebra 
 

Researcher: Felix Ayesu, Master of Science Candidate 
Email: fayesu@mun.ca, Phone: 709-690-9452 

 
Supervisor: Darcy Hallett, Associate Professor of Psychology 

Email: darcy@mun.ca 
Phone: 709-864-4871, Fax: 709-864-2340 

 
 
Greetings, 

Your child has been invited to take part in a research project investigating children’s 
knowledge and understanding of algebra problems.  

This form is part of the process of informed consent. It will provide you with information 
regarding what the research is about and what your child's participation will involve. It 
also describes your child's right to withdraw from the study. To decide whether you wish 
to have your child participate in this research study, you should understand enough about 
it risks and benefits to be able to make an informed decision. Please take the time to read 
this carefully and to understand the information given to you. Please contact the 
researcher, Felix Ayesu if you have any questions about the study. 
It is you and your child's decision whether to take part in this research. If you or your 
child chooses not to participate in this study, or if you or your child decides to withdraw 
from the research once it has started, there will be no adverse consequences for your child 
now or in the future. 
 
Introduction: 
I am a Masters’ student in the Psychology Department at Memorial University of 
Newfoundland conducting data collection for a research project in your child’s school. 
The published results of this study will be publicly available at the QEII library, but these 
results will be aggregated across groups of students and will not include any identifying 
information about your child. The purpose of this study is to understand better how 
students approach algebra problems.  If we can better understand the different ways that 
students perform these problems, we may be able to devise better ways to teach them. 

 
What will your child do in this study? 

If your child participates in this study, he or she will complete three paper-and-pencil 
tasks in the classroom or any designated room on school grounds. The first, called 
Raven’s Progressive Matrices, asks participants to choose missing symbols that fit the 
various patterns presented to them.  The second is a general algebra measure, which will 
be a lot like a standard algebra test.  The third measure will be another algebra test, but 
this one will ask questions that are more focused on particular ways of understanding or 
doing algebra. 
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Length of time: 
This study will occur over two sessions (two different days) in total, and the entire study 
will take your child 2 hours of regular course instructional time.  
 
Withdrawal from the study: 
Your child is free to withdraw from the study with no consequences. If your child decides 
to no longer be involved in the study, he or she can inform the researcher during or after 
data collection. You or your child will cease to be able to withdraw from the study once 
the school year has ended (June 2017). If you or your child decides, before June 2017, to 
withdraw from the study, please contact my supervisor or myself using the above-listed 
contact information. In the case of withdrawal, the related data will be disposed of before 
data analysis. 

 
Possible benefits: 

This will give your child extra practice with algebra problems, which has been reported as 
an area in math that children find challenging. Also, your child will have an opportunity 
to experience scientific research firsthand and contribute to the advancement of the field.   
Compensation: 
As a gesture of thanks for their time spent participating in this study, your child will be 
given $10. If they complete only one of the data collections sessions and then decide to 
withdraw, they will receive $5.  
 

Possible risks: 
Conceivable risks are test and math anxiety, but these risks are no higher than it would be 
participating in a regular math class. Students will be reminded that this is not a test and 
will not count towards their grades. If your child experiences any anxiety during the 
study, they will be reminded that they can withdraw without consequence. Those who do 
withdraw due to anxiety will be brought back to their classroom (if the test is 
administered outside of the child’s classroom) or will be sent to any room deemed 
appropriate by the heads of the school (if the test is being administered in the classroom); 
those experiencing extreme anxiety (e.g., crying) will be brought to the school's guidance 
counselor. 

 
Confidentiality: 

Results for each child are kept strictly confidential. If the results are published in a 
scientific journal, it will be two or three years after the end of the study. Summaries of 
information about different groups of participants will be given.  There will be no 
permanent record kept that your child participated in this study.  
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Your child's data will be stored at Memorial University of Newfoundland's Research 
Centre for the Development of Mathematical Cognition. Data will be stored in a secured 
area in this locked laboratory in which only those associated with the study have access.  
Electronic data will also be stored on a computer that is password protected in the locked 
facility. Data will be kept for a minimum of five years, as required by Memorial 
University policy on Integrity in Scholarly Research. 
 
Anonymity: 
Anonymity cannot be maintained in this research project. Your child will participate in a 
group setting. Therefore, their peers will likely know that your child is participating. 
Complete anonymity will be maintained in the published findings.  

 
Recording of Data: 

Data will be recorded primarily using written responses. There will be no interview 
sessions and hence no audio information will be recorded.  

Storage of Data: 
All hard copy data will be stored in a locked filing cabinet, and electronic data will be 
stored on a password-protected computer in a locked laboratory at Memorial University’s 
Research Centre for the Development of Mathematical Cognition, where only lab 
members have keys. All electronic data will be accessible by only the lead researcher. All 
data will be kept for a minimum of five years, as required by Memorial University’s 
policy on Integrity in Scholarly Research.  
 
Questions: 
You are welcome to ask questions at any time before, during, or after your child's 
participation in this research. If you would like more information about this study, please 
contact Felix Ayesu at fayesu@mun.ca or Darcy Hallett at darcy@mun.ca. 

The proposal for this research has been reviewed by the Interdisciplinary Committee on 
Ethics in Human Research and found to be in compliance with Memorial University’s 
ethics policy.  If you have ethical concerns about the research, such as the way you have 
been treated or your rights as a participant, you may contact the Chairperson of the 
ICEHR at icehr@mun.ca or by telephone at 709-864-2861. 
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Felix Ayesu, Master of Science Candidate 

Email: fayesu@mun.ca, Phone: 709-690-9452 

Supervisor: Darcy Hallett, Associate Professor of Psychology 
Email: darcy@mun.ca 

Phone: 709-864-4871, Fax: 709-864-2340 
You and your child have agreed to take part in a study through Memorial University  

that is designed to investigate children’s knowledge and understanding of Algebra 
problems. 

Children will be visited by researchers in their school and will be asked to complete a 
series of tasks. 

Participation in this study is not a requirement of your child’s school or the teacher, and 
hence, will                             have no effect on your child’s school grades 

If you have any additional questions that are not answered by the information sheet,  
please contact Darcy Hallett, or Felix Ayesu through the contact details listed above. 

The proposal for this research has been reviewed by the Interdisciplinary Committee on 
Ethics in Human Research and found to be in compliance with Memorial University’s 
ethics policy.  If you have ethical concerns about the research, such as the way you 
have been treated or your rights as a participant, you may contact the Chairperson of 
the ICEHR at icehr@mun.ca or by telephone at 709-864-2861. 

Please fill out the form below to indicate whether or not you would like your child to  
participate. 

Your child is also required to complete this form to indicate whether they would like to 
participate. 
Your signature on this form means that: 
Parents: 
v You have read the information about the research. 
v You understand what the study is about and what your level and your child’s level 

of involvement are. 
v You understand that any data collected from your child up to the point of your 

withdrawal will be discarded. 
v You understand that you are consenting to the use of the data provided by your 

child on the demographics sheet (date of birth, gender, and grade) accompanying 
this consent form. This information will be used ONLY for the purpose of analysis 
and nothing else. 

Student: 
v You have read the information about the research. 
v You understand what the study is about and what your level of involvement are. 
v You understand that any data collected from you up to the point of your withdrawal 

will be discarded. 
v You understand that you are consenting to participate in this study. 
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Your signature: 
I have read and understood what this study is about and appreciate the risks and benefits. 
I have had adequate time to think about this and I agree to participate voluntarily, and I 
understand that I may end my or my child's participation at any time. 
 
 
 
 
 
______________________________  _________________________ 
Signature of Guardian     Date 
 
 
 

  
 
 

Signature of Student              Date 
 

 
 
 

 


