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Abstract

This thesis describes the problem of terrain leveling, in which one or more robots or

vehicles are used to flatten a terrain. The leveling operation is carried out either in

preparation for construction, or for terrain reparation. In order to develop and proto-

type such a system, the use of simulation is advantageous. Such a simulation requires

high fidelity to accurately model earth moving robots, which navigate uneven terrain

and potentially manipulate the terrain itself. It has been found that existing tools

for robot simulation typically do not adequately model deformable and/or uneven

terrain. Software which does exist for this purpose, based on a traditional physics

engine, is difficult if not impossible to run in real-time while achieving the desired

accuracy. A number of possible approaches are proposed for a terrain leveling system

using autonomous mobile robots. In order to test these approaches in simulation, a

2D simulator called Alexi has been developed, which uses the predictions of a neural

network rather than physics simulation, to predict the motion of a vehicle and changes

to a terrain. The neural network is trained using data captured from a high-fidelity

non-real-time 3D simulator called Sandbox. Using a trained neural network to drive

the 2D simulation provides considerable speed-up over the high-fidelity 3D simulation,

allowing behaviour to be simulated in real-time while still capturing the physics of

the agents and the environment. Two methods of simulating terrain in Sandbox are

explored with results related to performance given for each. Two variants of Alexi

are also explored, with results related to neural network training and generalization

provided.
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Chapter 1

Introduction

Autonomous mobile robots which operate over uneven terrain are under active re-

search for a variety of applications such as space exploration [27], construction, and

search and rescue [43]. Due to the complex and often remote nature of these applica-

tions, it is advantageous to develop these systems using the aid of simulation. In the

case of construction, it is often necessary that the robots in use are able to modify the

terrain itself either actively or as a side-effect of their motion. Many software packages

exist in both the open-source and commercial space for robotics simulation, however

most do not support the simulation of outdoor environments and fewer offer a method

to simulate deformable terrain. Those that do are either prohibitively expensive in

the commercial space, or otherwise use approximations in the simulation which make

them less ideal for evaluation of algorithms.

This thesis is concerned with simulating an environment in order to prototype a

terrain leveling robot, as a precursor to a construction task. It is envisaged that such

a system might eventually be designed using several robots in a swarm configuration.

Such a system could also potentially be used to aid reparation efforts in outdoor

areas affected by disaster (natural or otherwise). In the case of a natural event such
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as flooding as the result of a hurricane, it is typical in rural areas to see roads and

bridges quickly eroded away. As an example, in the case of Hurricane Igor which

impacted the province of Newfoundland and Labrador in 2010, approximately 150

communities became isolated as a result of damaged roadway infrastructure [45]. A

multi-robot system could be used in such a future situation to aid in the construction

of temporary bypasses in the absence of human workers, and more specifically to level

damaged terrain such that it is traversable by humans as well as other machines.

This would mitigate risk to both sanctioned human responders as well as civilians

who may attempt to carry out work themselves. Additionally, the concept has been

briefly explored in relation to seabed preparation for underwater construction [19]. For

underwater construction, current methods typically involve the use of large machinery

or other tools which require multiple personnel to operate. Leveling is often carried

out using a tool called a screed across the seabed, or by dredging [29]. Such a tool

is usually suspended from one or more surface vessels, and care must be taken that

the tool remains level at the seabed. In conditions creating high-wave activity, this

may often prove difficult. Other tools have been proposed, such as the SILT Wing

Excavator by Francingues et al [28]. The device is described by the authors as one

which requires less manpower for operation, improving mobilization. However it still

requires at least one surface vessel to operate, and is deployed via crane from a barge.

The use of a multi-robot system instead allows the required personnel for operation to

be reduced much further since the system operates with a higher degree of autonomy.

Prototyping a multi-robot system such as this hardware-first would not be ideal,

as multiple robots must be built and debugged and a model environment must be

created for them to operate in. It is also unclear what sort of control strategy might

be optimal for such a task. Several algorithms must be developed and tested, each

of which may have varying hardware requirements. Using simulation allows one to
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focus primarily on algorithm development before focusing on hardware development

and incurring the associated cost. Simulation also allows one to rapidly test different

hardware platforms. For example, the current hypothesis is that the leveling task may

be carried out using only the motion of the robots themselves (see Section 7.1.1 for

further discussion). If this is not the case, an approach using some sort of actuated

manipulator will need to be tested.

There is a plethora of existing work in robot simulation software [18], all of which

generally argues that simulation-first development alleviates many of the common is-

sues that arise in robot development and aides development productivity. Arguably,

the most prominent of these issues tends to be expense and difficulty. Many of the

simulators currently in use for robotics offer some level of support for physics simula-

tion, usually made possible by way of open-source physics engines such as Bullet [2] or

ODE [7]. These simulators are also typically coupled with 3D rendering engines for vi-

sualization, such as OGRE [6] or Irrlicht [3]. These engines offer a relatively high level

of physical realism, while being fast enough to run simulations in real-time. Simula-

tors based on these engines may support the simulation of static terrain, modeled as a

convex mesh. Simulation tools in the closed-source and/or commercial space such as

Vortex [11] provide earthmoving simulation (typically for the purpose of equipment

training simulation). In this environment the simulated volumes employ a hybrid

modeling approach, which combines models based on discrete particle simulation as

well as mesh-based soil simulation, in order to provide a realistic approximation which

maintains interactivity [34].

Rather than rely on approximations, a simulator designed for robotics prototyping

should aim to be as accurate as possible in order to ensure that the resulting control

algorithms translate to reality. For the simulation of a terrain leveling system such

as the one described here, the simulator is required to support the interaction of a
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potentially large volume of granular material, which is manipulated by one or more

robots. Accuracy is important not only to the simulation of the robot movement about

the environment, but also to the interaction of the robot with the environment during

the leveling task. The simulation of granular material using particle-based methods

such as one discussed by Bell et al. typically come with very high compute times

per-frame, taking the simulation out of the real-time domain [14]. In their 300-frame

simulation of a bulldozer through a granular volume, they report a compute time of

17.4 minutes per frame. To be considered real-time the frame-rate of the simulation

should be interactive, which conventionally refers to a frame-rate of 15 frames-per-

second or higher (approximately 66 milliseconds per frame) [12]. In a simulation such

as this, true interactivity is not always necessary (as it is in a game, for instance).

However, the rate should be high enough to allow an accelerated view of the systems

performance versus an offline method.

In order to maintain both accuracy and interactivity of the simulation, this thesis

proposes a simulator based on a system of neural networks, rather than a physics

engine traditionally found in simulation software. A neural network trained on data

generated from a high-fidelity non-real-time simulation allows the simulation to retain

a realistic physical model, while providing real-time prediction of the robot’s motion.

The neural network model proposed allows simulating a vehicle or robot which has

a 3D orientation inside a 2D simulation environment. Removal of a true 3D physics

solver and 3D graphics removes the majority of the computational burden of typical

simulations.

At first glance, it may appear to some that using neural networks to bridge high-

fidelity simulation to low-fidelity is an unnecessary step. If computational power

is limited, why not start with the low-fidelity simulation in the first place? If the

application demands the highest level of accuracy, why not wait for the high-fidelity
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simulation to execute?

To the first question, the case against low-fidelity in such a simulation is that often

so much of the necessary detail is abstracted away. For the application described in

this work, the movement of the robots about the environment and their physical

interaction with the terrain is central to their operation. Taking any part of this

physical interaction out of the model will negatively affect the utility of the simulation

and potentially skew the design of the controller. As the simulation is simplified and

high-fidelity components are abstracted away, so too are any components of the robot

controller that may deal with them. This phenomenon has been noted at least as

far back as 1991 in Rodney Brooks’ seminal work [16]. There, Brooks argues that

early robotics work carried out in a “blocks world” often gave way to special-purpose

solutions that did not generalize to reality. The argument here against low-fidelity

simulation follows the same principle.

The second question is admittedly one of patience. There is nothing stopping

one from waiting the required time for a simulation to execute; however with limited

computational resources the time to completion often reaches upwards of several days.

Consider for example that the high-fidelity simulation used to generate training data

(see Section 5.3) is reduced in scope from what would be required to allow an agent

to fully execute a leveling algorithm over a terrain. For data generation, we require

only a small number of frames to be executed. For a full-length run of a leveling

algorithm, we expect that the execution time in terms of number of frames would be

much higher. Furthermore, relying only on the high-fidelity simulation would require

that the terrain be larger in area and use finer particle scale or denser mesh. Assuming

optimistically the same run-time of approximately 8.98 seconds per frame as described

in Section 5.4.1 (medium-size particle terrain), and predicting optimistically that a

full-length simulation could require at least 256000 frames, the total execution time
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reaches approximately 27 days. For the development of algorithms for operation on

uneven terrain and for terrain modification, it is advantageous to iterate through the

development process more quickly.

1.1 Contributions

The the primary contributions of this thesis are derived from simulators discussed in

Chapter 5 and Chapter 6. Related work in the literature towards neural network-

based simulation required the collection of data from the movement of a real-world

robot. Using the high-fidelity simulator, this thesis demonstrates that a usable sys-

tem can be trained using data collected in simulation, removing the need to develop

a hardware platform for experimentation. This thesis also represents the first known

step towards using a neural network-based method to predict the deformation of ter-

rain. On the subject of the high-fidelity simulator itself, two methods of simulating

a deformable terrain are evaluated in terms of both computational and practical per-

formance. The high-fidelity simulator is novel in that it is the only known platform

explicitly designed for the simulation of a robot over a deformable terrain. Chapter 6

provides network training and generalization results for several versions of the simu-

lator. These results are focused primarily on the simulation of robot motion over an

uneven terrain, however early results for a network simulated terrain deformation are

also provided.

The author has several published or submitted works related to this thesis:

• A Survey of AUV and Robot Simulators for Multi-Vehicle Operations [22] [Pub-

lished, Conference]

• Terrain Leveling by a Swarm of Simple Agents [19] [Published, Conference]
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• Towards Real-Time Robot Simulation on Uneven Terrain Using Neural Networks

[21] [Published, Conference]

• Simulation of a Mobile Robot on Uneven Terrain Using Neural Networks [20]

[Submitted, Journal]

It should be noted however that A Survey of AUV and Robot Simulators for Multi-

Vehicle Operations was written and published prior to beginning the work contained

in this thesis.

1.2 Scope of Work and Thesis Overview

While the motivating application of the simulator described is a terrain leveling system

using a swarm of robots, this thesis is focused on the problem of accurately simulating

the movement of a single robot as a necessary first step. The simulation of a complete

terrain leveling swarm is considered outside of the scope of Chapters 5 and 6, and

is left as a future extension of the systems described here. An overview of an early

hardware prototype is described in Section 4.3. A discussion of a practical real-world

implementation of a terrain leveling robot is purely hypothetical from the perspective

of this thesis, however the prototype which was designed provides a basis for the robot

modeled in simulation.

Chapter 2 presents a review of previous works in the areas of robotic construction,

robot simulation, and neural networks applied to simulation. Chapter 3 gives a brief

overview of both artificial neural networks and robot simulation. This overview fo-

cuses on feed-forward neural networks as they are exclusively used within this work.

Chapter 4 provides a formal definition for the terrain leveling task, and describes two

leveling algorithms developed using low-fidelity simulation. These algorithms describe
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the first attempts at developing a terrain leveling system. It is shown that while simu-

lation was a highly useful tool in their development, the limitations of the low-fidelity

simualation are reflected in the algorithms themselves. Chapter 4 also describes a

robot prototype which was built following the development of the previous leveling

algorithms. Continued use of simulation was preferred following its construction, due

in part to issues in creating an environment for the prototype to operate in. Chapter

5 describes the development of a high-fidelity terrain leveling simulator, which sought

to re-create the prototype robot and an environment in which to experiment with

leveling algorithms. Several performance characteristics are compared, and practical

considerations of the simulators use are explored. Chapter 6 provides a description of

a 2D simulator based on neural-networks. Generalization results for several versions

of this simulator are given, to demonstrate that the neural networks can be appro-

priately trained for such a task. Early results are also given for the prediction of

terrain deformation using the same neural network concept. Chapter 7 provides final

conclusions of the completed work, as well as discussion of possible future extensions

to the concepts discussed within the scope of this thesis.



Chapter 2

Literature Review

A selection of work from the areas of swarm construction, robot simulation, and neural

network-based simulation are reviewed in Sections 2.1, 2.2, and 2.3. These domains

in particular are covered to provide context to the concepts discussed in this thesis.

As previously discussed, intended application for the terrain leveling system is to

aid in construction or terrain reparation. Works related to robotic construction are

reviewed to provide background to this application. Similarly, simulation and neural

network-based simulation works are reviewed to provide background to other works

which made use of or developed simulators for robotics, as well as explored the use of

neural networks for simulation.

2.1 Robotic Construction and Site Preparation

The potential for robotic swarms to be utilized for construction purposes has been

recognized for several decades, beginning in the literature with Brooks et al.’s theoret-

ical description of a swarm used in the construction of a lunar base [17]. Their work

proposed that such a swarm modeled on the collective behaviour of ants or termites
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would allow the construction system to be more robust against a changing remote en-

vironment. Their work also describes an algorithm which might be employed by the

swarm for leveling terrain in preparation for construction, from which some inspiration

is taken for the system described earlier in this chapter.

Theraulaz and Bonabeau later applied stigmergic behaviour to the problem of col-

lective building, in which they simulated the construction of three-dimensional nests

[51]. In their work they demonstrated that biologically-inspired behaviour algorithms

could be used to guide the construction of relatively complex 3D structures, analo-

gous to construction observed in nature by insects such as wasps. Each agent in the

system responded to particular configurations of blocks, by then triggering a ‘build-

ing behaviour’ (the placement of a block). This work represents one of the earliest

practical applications of collective robotics to construction.

Parker et al. described a collective robot system for off-Earth site preparation

[46]. Their work proposed an algorithm based on a number of high-level and low-

level behaviours, selected through a mechanism of motivational behaviour. While

behaviour-based, the algorithm did not make use of stigmergic behaviour and instead

assumed that some map of the environment was available globally to each agent in

the system. This work was demonstrated by way of simulation, however they had

begun to implement the system on a number of real-world robots. They stated that

more extensive experimentation was possible in simulation as opposed to on physical

robots and that simulation “can contribute to the variety of situations and robot

control designs that can be explored”.

Wawerla et al. applied collective construction robots to the task of building a

barrier [55]. The robots constructed the barrier from coloured blocks within a 2D

planar environment. Experiments involving multiple robots were carried out only

in simulation, due to “limitations of hardware availability and reliability”. They
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did however demonstrate that the system could function in reality in a single-robot

experiment. The simulated environment allowed experiments with up to 8 robots,

repeated 10 times. Each simulation was limited to run for 4500 seconds. This is in

contrast to the single-robot experiment which ran for only 3 trials, each trial running

for approximately 30 minutes.

Napp and Nagpal demonstrated a method for building ramp structures over ir-

regular terrain, with the goal of making the terrain traversable [43]. The robots they

describe are capable of depositing a formation of amorphous material at a location on

the terrain. These deposits may be made using an adaptive algorithm with multiple

robots. The algorithm is adaptive (or reactive) in the sense that agents collectively

react to the addition of new material, in order to ensure that the resulting structure

is navigable according to a set a mathematical constraints.

Werfel et al. implemented another collective construction system for building 3D

nest-like structures using a number of blocks [56]. Their system made use of a number

of minimalistic robots with limited actuation and sensing abilities. The agents placed

bricks by reacting to the current configuration, however their movement is restricted

to a set of pre-compiled rules called a “structpath”. The structpath is generated from

a 3D representation of the desired structure, and is available to each agent in the

system. Such a system used for building structures provides the inspiration for the

terrain leveling algorithm described in this thesis, where the terrain leveling operation

is carried out prior to construction using another robotic swarm.

Ardiny et al. provide a further review of construction using autonomous mobile

robots [13]. Their review examines the field of autonomous construction across the

axes of applications, materials, and robotic systems, and explores the challenges re-

lated to each.
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2.2 General-Purpose Robot Simulation

Recent years have seen the emergence of computing hardware capable of high-fidelity

graphics and physical simulation for games and multimedia. The ubiquity of such

hardware and software has also led naturally to the utilization of the same technologies

for simulation of many kinds, including that of mobile robots and their sensors and

acutators.

One of the earlier and arguably most notable of the simulators to arise from this

development is the Stage simulator, in development since 2001 as part of the Player

Project (formerly Player/Stage) [54]. The Stage simulator provides simulation fidelity

suitable mainly for indoor environments, as it does not allow movement in the “up”

direction and is described as a 2.5D simulator. It also does not offer any dynamic

physics simulation. Stage has, however, been reported to scale linearly with the

number of robots present in an environment, and has been suggested as a candidate

for swarm robotics simulation. Gazebo, a simulator which is developed in cooperation

with the Player Project, aims to provide 3D dynamics and is intended to allow for

higher-fidelity outdoor simulation [38]. Despite being compatible with the Player

project, the authors state that Gazebo is not intended as a replacement for Stage, as

the inclusion of 3D dynamics greately reduces the number of robots which may be

simulated concurrently.

As part of the Swarmanoid project [9], the ARGoS simulator was developed to

allow the simulation of large numbers of mobile robots in a dynamic 3D environment

[47]. ARGoS differs from its contemporaries in that it supports simulation backed by

multiple physics engines running simultaneously. When simulating several types of

robots in a single environment for example, one may use different physics engines for

each type of robot so that the most appropriate or efficient engine is used to model
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the agent in question. This division of labour within the simulator comes with the

caveat that agents modeled using differing physics engines may not interact with each

other; they may however still communicate as the physics layer is not responsible for

those mechanisms.

Coppelia Robotics develops the Virtual Robot Experimentation Platform (V-REP)

as a commercial product (offering a free license for eductaional purposes) [50]. V-

REP’s greatest strengths lie in its well-developed user interface as well as embedded

scripting language. Robot models may be developed with embedded Lua scripts, al-

lowing models to be ported between users of V-REP without requiring additional plu-

gins or installations. It allows one to create a multi-robot simulation nearly trivially,

however like most other 3D simulators it may suffer from performance degredation as

the number of agents increases. These performance issues may be more pronounced

if one is also using built-in sensors such as vision sensors which are computationally

demanding to simulate.

CM Labs develops the commercial software Vortex Studio [11]. Vortex is mar-

keted as being suitable for equipment and operator training, as well as for prototyping

mechatronic products. Vortex Studio offers an option for earth moving simulation,

which provides an environment for simulated construction equipment such as bull-

dozers and excavators to interact with the terrain. The method used to simulate

interaction with the terrain employes a hybrid approach of mesh deformation and

particle simulation, in an effort to maintain interactivity while being relatively real-

istic. The marketing material places an emphasis on pile formation and pouring in

the simulation (being necessary for simulating excavators), while Holz’s work under-

pinning the simulation [33] describes experiments related to particle adhesion for pile

forming. While this is useful for a terrain leveling simulation, we believe a more ac-

curate and generalized method of simulation is required. Being commercial software,
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it is also much more expensive than other available options for simulation software,

imposing a potential barrier to access.

NetLogo is a programming language and modeling environment commonly used

in swarm robotics research, though it is not designed specifically for this purpose [52].

It is described by Tisue and Wilensky as an environment for simulating “natural and

social phenomena”. It is intended to be simple to use by students and researchers

who may not have a strong background in programming, and it differs from some

other simulators in that it offers no physics simulation whatsoever. It instead focuses

on algorithmic simulation, allowing for adjustable parameters through a user-defined

GUI and a 2D visualisation for output.

Platforms intended for game development have also seen use in simulation for

robotics. The Unity game engine has been used to develop a mobile robot simulator

[32], as well as a robot operator training game and simulator [23]. While a platform

such as this is typically not intended to be used for simulation, there is very little

separating a game engine from a simulator using a physics engine such as ODE [7].

In each case the underlying rendering and physics systems are typically designed to

acheive real-time performance and may sacrifice accuracy for this purpose.

Several surveys exist in the literature which can provide further review of available

robot simulators. A survey by Castillo-Pizarro et al. provides a more in-depth study

of some simulators described here, as well as several others [18]. A previous survey

by the author surveyed simulators that may be suitable for underwater robotics, but

many of the simulators discussed are also suitable for land-based robotics [22].
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2.3 Neural Network-Based Simulation

Artificial neural networks have been in use in a variety of capacities for several decades,

and have recently seen a resurgence owing to increases in computing power, improved

methods of training and the adoption of “big data”. So-called “deep learning” meth-

ods such as recurrent or convolutional neural networks have seen renewed use for tasks

such as speech recognition and computer vision. Neural network-based learning meth-

ods have been shown to offer high capacity for generalization (accuracy of prediction

given unknown input) and noise tolerance (ability to generalize when trained with

noisy input). While neural networks typically require significant computing time in

order to train (typically in proportion to the size of the network and number of train-

ing examples), trained networks used in production generally execute predictions in

a fraction of that time. It is primarily for this reason that neural networks have been

explored for use as emulators to replace more computationally expensive portions of

software.

The earliest known use of neural networks for this purpose is by Grzeszczuk et

al., in which neural networks were used in a system called NeuroAnimator to re-

place numerical calculations needed for physics-based animation [31]. Typically in

a physics-based platform the motion defined for an animation would be computed

based on a number of controller inputs and forces. These inputs are integrated over a

number of relatively small time-steps using a numeric solver for a system of equations

or constraints. For more complex systems, it is not hard to imagine that the required

computational time balloons rather quickly. Grzeszczuk et al. proposed that a neural

network could be trained to emulate the physical model with enough accuracy such

that it could replace the physics layer in the animation application. The system they
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describe has several attributes which carry over to the work described here. In partic-

ular, their system used single-layer feed-forward neural networks to predict changes

to state variables in each time-step rather than predicting the final value. This sig-

nificantly reduces the range of output variables, and when training data is properly

normalized allows the network to be trained using much smaller hidden layer dimen-

sions. They additionally used a heirarchy of smaller networks rather than one large

network to predict the state variables. They found that large monolithic networks

were harder to train, and that using a number of smaller networks allowed state vari-

ables to be separated according to their dependencies. Their system was trained by

using a set of samples generated by recording pairs of input and output vectors from

the physics-based numeric simulator. In particular, rather then generating training

pairs uniformly for all possible input/output values, they found it suitable to instead

sample only pairs which would typically be seen in practice. This allowed faster gen-

eration, and the neural network was still able to generalise without apparent loss of

fidelity to these other “unseen” examples when used in production.

Appearing much later, Pretorius et al. in a successive series of papers proposed

a system employing neural networks to replace physics-based simulation of robots,

which they refer to as Simulator Neural Networks (SNNs) [49] [48]. Their system was

designed for an Evolutionary Robotics (ER) application, in which robot controllers

must be evolved and evaluated relatively rapidly as part of a genetic algorithm. Rather

than relying on real-world evaluation of candidate controllers, ER researchers often

rely on evaluation in simulation. Pretorius et al.’s work proposed that a simulator

using a neural network to emulate physical simulation would greatly increase the

performance for these ER simulators. The network architecture and training method-

ology they use follows similarly from Grzeszczuk et al. Training data is generated

by providing random input to a prototype robot and the corresponding output is
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recorded. However rather than relying on simulation to generate training data, they

instead gathered data by tracking a real-world robot using an overhead camera. The

networks employed as SNNs were single-layer feed-forward networks, and they (like

Grzeszczuk et al.) found greater results in using several smaller networks to compose

the underlying system. Their earlier explorations produced encouraging results, and

more recently they demonstrated the SNN system for use in evolving controllers for

a snake-like robot [57].

De at al. presented “Physics-driven Neural Networks-based simulation system”

(PhyNNeSS), a neural network-based platform for simulating deformable models for

medial applications [25]. Their system was devised to drive simulations which must

support haptic feedback, which they state must run at a much higher update rate

(1000Hz) than typical visual-only simulations which are typically rendered at 30Hz.

Their work deviates from the previous literature in that they use Radial Basis Function

networks (RBFN) rather than vanilla feed-forward networks, however data generation

and network training proceed along similar lines. Their work demonstrated that such a

neural network-based approach can be made suitable for systems much more complex

than simple rigid bodies.

2.4 Summary

This chapter has presented a review of a selection of work from three areas; robotic

construction, robot simulation, and neural network-based simulation. The reviewed

works provide foundation and inspiration for the work described here. The works

related to robotic construction in Section 2.1 provide a background to the larger

problem we wish to solve in terrain leveling. Section 2.2 provides a review of existing

‘traditional’ simulation solutions, some of which we have attempted to use in past
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experiments with mixed results. Finally, several works specific to neural network-

based simulation were reviewed in Section 2.3 to provide an assesment of similar

attempts towards utilizing neural networks to enhance simulation.



Chapter 3

Background

This chapter provides a condensed overview of concepts related to both neural net-

works, as well as the simulation of robots. Section 3.1 provides an overview of the

basic back-propigation algorithm used during network training, and briefly describes

some more advanced concepts used to aid generalization and/or prevent over-fitting of

the network. Section 3.2 provides a short summary of the various components making

up a typical robotic simulation.

3.1 Artificial Neural Networks

An Artificial Neural Network (ANN) is an approach for computation modeled on

the interconnection of biological neurons in the brain. Artificial ‘neurons’ in the

network are represented as a node with one or many input and output connections

to other nodes. Each input to a neuron is given a weight which may strengthen or

weaken the contribution of an input value. Each weighted input value is typically

summed together and passed through an activation function σ(x). The activation

function is often a continuous differentiable ‘squashing’ function such as the logistic

sigmoid or hyperbolic tangent. The selected activation function typically depends on
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the particular problem the network is applied to, as well as the desired range of the

function.

In a feed-forward network architecture (among others), neurons are organized into

several layers. These include an input and output layer as well as one or more hidden

layers, where each layer l receives input only from layer l − 1. Mathematically, the

activation value of a neuron j in layer l is given by Equation 3.1. wljk denotes the

weight value assigned to the connection from the kth neuron in the (l− 1)th layer to

the jth neuron in the lth layer.

alj = σ(
∑
k=1

wljka
l−1
k ) (3.1)

This equation may be re-written in a vectorized format as

al = σ(wlal−1) (3.2)

Where al now represents a vector of activation values at layer l, w a matrix of

weights at layer l, and activation function σ is applied element-wise. The elements

of wl are weight values wljk such that the value is placed at the jth row and the kth

column of w.

At the input layer l = 0, a vector x may be presented to the network where each

element maps to each input node in the layer. The values at each input node are

propagated forward through the network, being weighted and summed by nodes in

each subsequent layer until being emitted at the output layer. The weighting of input

from preceding nodes is analogous to the reinforcement of some neural pathways over

others in the brain, and allows the network to respond appropriately to a variety of

input. For this process to work effectively however, the weight values of the network

must be trained. Training is typically carried out via gradient descent by way of
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the back-propagation algorithm. In this process, a number of possible input and

corresponding output vectors are provided to the network as training examples. The

input values are passed through the network, and the result is compared with the

known output. The error computed by a loss function at the output layer may then

be propagated backwards through the network, adjusting the weight values at each

node correspondingly. The training examples are fed into the network repeatedly for

a number of epochs and the weights adjusted such that the total error at the output

layer is reduced on each iteration.

The loss function used for neural networks in this work is the mean squared error

(MSE), which is given by

C =
1

2

∑
j

(y − ax,L)2 (3.3)

Where yj is the output of the output layer, and ax,L is the activation value of the

Lth layer, where L is the index of the final (output) layer in the network for a given

training example x.

Using this loss function, the error at the output layer L for each training example

x is first computed by

δx,L = ∇aC � σ
′
(zx,L) (3.4)

Where ∇aC is the gradient of C with respect to ax,L, σ
′

is the derivative of acti-

vation function σ, zx,L is the weighted activation value zx,L = wLax,L−1, and � is the

Hadamard product (element-wise product).

The error at each previous layer is then computed by

δx,l = ((wl+1)T δx,l+1)� σ′
(zx,l) (3.5)
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for each layer from l = L− 1 to l = 0. Once the error has been back-propagated

through the network, weights for each layer may be updated by

wl ← wl − η

m

∑
x

δx,l(ax,l−1)T (3.6)

where η is the learning rate and m is the number of training examples.

L2 regularization is used in this work to help alleviate over-fitting, in which the

neural network is trained such that it may only predict the training data it was shown

correctly (i.e. unable to generalize to unseen data). The L2 regularization term is

added to the loss function such that

C =
1

2

∑
j

(yj − aLj )2 +
λ

2n

∑
w

w2 (3.7)

where λ is the regularization parameter, n is the number of training examples, and∑
w w

2 provides the sum of the squares of all weights in the network (i.e. summed for

each weight matrix at each layer l).

Batch normalization is also used in this work to aid training. Training examples

are typically fed into the network in batches (thought of as a matrix where each

column represents a training example). Batch normalization adjusts the vectors in

the batch such that they have a mean of zero and are of unit variance.

Several sets of data are typically used in the training and evaluation of a neural

network. These are the training, validation, and testing sets. The training set is

simply the set of input-output pairs fed into the network during the training process

described above. The validation and testing sets are other data which are not shown

to the network during training. The validation set is used during training to assess

the performance of the network in its current state (often at the end of an epoch), by

testing the network with the inputs of the validation set and comparing the network
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output for each example with the real output found in the set. The testing set is used

in a similar manner using the final trained network. Unseen data is used in both cases

to provide a measure of how well the network generalizes to unseen data. A network

with high training accuracy but low performance in validation and/or testing is said

to suffer from overfitting. Guiding training using metrics obtained on the validation

set can aide in improving generalization on the final testing set.

3.2 Simulation of Robots and Vehicles

Computer simulation appears in many forms across many different fields, generally

referring to some method by which a real-world system or phenomenon may be mod-

eled using a computer system. These may be simulations which execute without user

interaction or visual output (referred to here as ‘offline’ simulation), or those which

provide visualization or allow the user to interact with the simulated system in real-

time. It is possible to make use of either approach in the field of robotics, however it is

often advantageous to provide some real-time visual feedback to the user. This allows

one to observe the system in an environment that mimics the real-world environment

it is to be used in.

Real-time simulations using 3D visuals are not unlike modern games, which them-

selves may (to a degree) be considered simulation. The main components of such

simulators are a physics engine and a graphics engine. As their names imply, the

physics engine is responsible for driving the physical interactions of objects in the

scene, such as motion and collision, and maintaining the physical state of the objects.

The graphics engine drives the visual representation of the objects, and depending

on the engine used, may allow the developer to implement high-fidelity visual effects

such as those found in modern games. Craighead et al. assert that a simulator with
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a high-level of visual (or physical) fidelity should use high-resolution textures and

models with a high polygon count [24]. In modern graphics engines however, these

textures and models are typically loaded as external assets and have very little to do

with the engine or software. It is up to the end-user of the engine to provide assets of

sufficient quality. It is then also the users’ responsibility to ensure that the system that

will run the simulation is of sufficient power to execute the software in real-time using

high-resolution assets. For the simulation to appear real-time, the graphics engine

needs to update the screen at a rate of 15Hz or higher. This definition of ‘real-time’

follows roughly the same meaning as found in the area of real-time rendering, where

we are interested in the minimum frame-rate needed for interactivity [12]. Since the

visuals are driven by the underlying physics engine, the physics must also be stepped

at least as many times a second.

3.3 Summary

This chapter has provided a preliminary introduction to the topics of artificial neural

networks, as well as robot simulation. Section 3.1 provided a description of the math-

ematics and design of a feed-forward neural network, as well as the backpropigation

algorithm. Section 3.2 provided an introduction to robot and vehicle simulation, and

described the common components which they are composed of. The concepts of

offline and high-fidelity simulation were introducted. Finally, a formal definition of

real-time simulation was provided.



Chapter 4

Terrain Leveling

Prior to discussing terrain leveling simulation in Chapters 5 and 6, it is helpful to

explore the previous work which was carried out in terrain leveling system without

the aid of more advanced simulators. Section 4.1 first provides a formal definition

of the leveling task. The definition provided builds on on a previous description of

the site preparation task given in the literature. Section 4.2 provides details of two

terrain leveling algorithms which were designed and tested using low-fidelity simula-

tion. Results for each are given, where in each case the leveling algorithm appears

to be viable. Despite this, it is noted that the experiments were carried out using

low-fidelity simulation, and that the algorithms make several assumptions which may

not be satisfied in real-world deployments. Section 4.3 describes a hardware prototype

of a leveling robot which was designed, which was later modeled in simulation.

4.1 Defining the Leveling Task

The terrain leveling task is a particular subtask of the more abstract collective site

preparation task proposed by Huntsberger et al. [35]. Their work does not provide

a formal specification of the task, however they describe the task as involving the
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removal of rocks or other debris by a swarm of bulldozer-like robots. Here, terrain

leveling as a task is given a more strict definition within the context of site preparation.

The following assumptions define the environmental constraints of terrain leveling

task envisioned for this work:

1. The site acted upon is a 3D volume of granular material

2. No granule is too large to be moved by a single robot

3. The volume of material in the site remains constant

4. The terrain remains traversable

Assumption (1) dictates that the material acted upon by agents in the swarm is

granular in nature, such as sand or gravel. Assumption (2) precludes configurations

such as those described in [35] in which large rocks may have to be moved by multiple

agents in cooperation. Assumption (3) dictates that material may not be brought in

from outside the site, nor may material be removed from the site. The leveling task

therefore involves re-configuring the existing granular medium such that it becomes

flat. Finally, assumption (4) stipulates that modifications are not made to the terrain

which would prevent the a robot from traversing it (e.g. there should be no large

differences in height from one point of the terrain to the next). In reality these

assumptions, such as (2), would need to be relaxed in order for a leveling agent to

operate in a typical environment, but they have proven useful for the bounding the

scope of our investigations.

It is also necessary to provide some specific definition of ‘flatness’ that defines the

goal state of the task. Given a 2D function f(x, y) ∈ R where x, y ∈ R such that

f(x, y) defines the height of the terrain at location (x, y), a terrain which is sufficiently

flat is one in which
∣∣∇f(x, y)

∣∣ ≤ ε for all values (x, y). Here ε defines a threshold,
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where smaller values imply a more uniform terrain surface. This value is considered

to be application specific.

4.2 Terrain Leveling Algorithms

4.2.1 Probabilistic Algorithm

Previous work by the author explored an algorithm using agents capable of explicitly

manipulating the environment [19]. An algorithm was developed for leveling terrain

which targeted underwater vehicles. It was assumed that each agent had the ability

to pick up material from the sea floor, and deposit it in another location. Each agent

could hold only a single unit of material, and the model was simplified such that

material was always picked up from or deposited directly below the agent.

Loop
for each agent ∈ environment do

if agent sensing then
if rand() < ρsense then

h← sensed height
enqueue memory(h)
α← update average()

end
state← acting

else if agent acting then
if agent not carrying material and rand() < ρpu and h > α then

pick up material
end
if agent carrying material and rand() < ρde and h < α then

deposit material
end
move agent()
state← sensing

Forever
Algorithm 1: Probabilistic leveling algorithm requiring actuated component
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if rand() < 0.75 then
move random() // Only if an agent is not occupying new position

else
move forward() // Only if an agent is not occupying new position

Algorithm 2: Algorithm governing the move agent() function

The model used in the development of this algorithm differs from the continuous

environment discussed in Section 4.1. Instead a discrete grid is employed which the

agents are able to move about. Agents may move in any direction on the grid to an

adjacent cell, but are prevented from leaving the grid or moving into a cell occupied

by another agent. The agents are prevented from moving in to occupied space by an

outside oracle—there is no real communication between agents. As agents move about

the terrain, they are always considered to be just above the seafloor. As such, an agent

moving to an adjacent cell would complete the action regardless of the difference in

height of the cells. Agents act in two stages, sensing and acting. In the sensing stage,

agents may sample the height of the cell they occupy. This is followed by the acting

stage, where an agent may execute one or more actions. The height sampled in the

sensing stage is stored in a FIFO queue which may hold a maximum of eight heights.

The acting stage allows the agent to move to an adjacent cell, and either pickup or

deposit material at that location.

As each agent moves about the environment, it is given ρsense probability of storing

a sampled height value from the current cell on the read step (i.e. upon arriving in

a new cell, the agent has a ρsense chance to sample the height). By sampling heights

sparsely about the grid, each agent is able to estimate the overall average height

α of the terrain. Each agent is instructed to pickup material above this computed

average, and deposit only at heights below the average. Each of these pick-up and

deposit operations are carried out with probability ρpu and ρde respectively. Using
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probabilistic decision-making for each of these actions offers the agents some freedom

against incomplete information. Each agent has only an estimate of the average

height—making a pick-up or deposit decision based strictly on this value causes the

agents to act on a value that contains inherant error. Probabilities provide extra

freedom of movement to counteract this. Additionally, the agents are meant to loosely

mimic swarms found in reality. In the absense of exact information with respect to

why an organism may make a particular decision, probabilities allow us to create an

apporiximate model for our algorithm.

The algorithm was tested with two variations in the selection of probabilities ρpu,

ρde, and ρsense. The first selected various constant values in the range (0.0, 1.0) for each

variable, while the second allowed the probability to be computed by each agent based

on the height of its current cell. This value was computed on a curve defined by the

functions ρpu = ( height
k+height

)2 and ρde = ( k
k+height

)2, as described in work by Deneubourg

et al. [26] and Vardy et al. [53] The value of ρsense is chosen experimentally; generally

speaking it should be low enough that cells are sampled sparsely across the grid to

reduce the possibilty that an agents sensed height α is derived from a singular location.

Experimentation with this algorithm was carried out in a low-fidelity voxel-based

simulator. In this environment each cell of the terrain is represented by a stack

of voxels shaded by height. Agents are each represented by an icosahedron. For the

purpose of generating results over repeated executions of the algorithm, the simulation

could be run in a headless mode which delivered output to a command-line interface

rather than the 3D voxel view. Experiments with each probability function were

conducted over a range of probabilities for k-values in an effort to determine which

performed the best. For each value, the simulation was run 30 times (ending when

the terrain reached a flat state), and the mean number of cycles to completion was

recorded for the value.
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Figure 4.1: 32x32 terrain before and after flattening by 8 agents

4.2.2 Results: Probabilistic Algorithm

The performance of the algorithm was evaluated by the average time to completion,

where time is measured as the number of cycles of the algorithm’s outer-most loop as

seen in Algorithm 1. Averages were taken over 30 runs for each probability or k-value

shown in Figure 4.2 and Figure 4.3, where each execution was halted when the level

condition of the terrain was reached.



31

Figure 4.2: Comparison of various constant values for ρpu and ρde.

Figure 4.3: Comparison of various k values in pick-up and deposit probabilities.
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A U-shaped curve can be seen in time to completion in both Figure 4.2 and Figure

4.3, with minimums at 0.3 and k = 6 respectively. This probability for ρpu effectively

controls how far (or how long) an agent may explore after encountering a cell of

height greater than α. Similarly, the probability for ρde controls how far an agent

may move before depositing once the condition that its height is less than α is met.

It was conjectured that, assuming it is most efficient to pick up material from peaks

and deposit in valleys, that the optimal probability value may relate the the average

radius of hills and valleys found on a terrain. By selecting a value appropriate for

a given terrain, the probability may in most cases allow the agent to move forward

enough that it is positioned closer to the maximum height on the grid before picking

up material. The same reasoning holds for the deposit operation.

4.2.3 Memetic Algorithm

Two variations of the algorithm described in Section 4.2.1 were later developed which

incorporated evolutionary algorithms. They are each considered a memetic algorithm

as defined by Moscato [42], due to a combination of both a global population-based

search as well as a local heuristic search (in this case, the heuristic is the requirement

that pick-up and deposit still occur above and below height α).

In each variation, a chromosome is represented by a permutation of 20 (possibly

repeating) actions. Each element of the permutation may be 1 of 10 possible actions—

8 directions of movement, as well as the pick-up and deposit operation. Actions are

indicated by the integers 0-9 inclusive. Not all permutations are valid—restrictions

are placed on the ordering of actions. It is enforced that pick-up actions must always

come before deposit actions, and there must be an equal number of pick-up and

deposit actions in the permutation.

The same fitness function is also used in each variation, where the fitness of a
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chromosome in the population is defined by the equation f =
nchanges

pickupstotal+depositstotal
,

where nchanges is the number of positive changes made to the terrain. A positive

change is defined as one which is likely to make the terrain flatter, the determination

of which is part of the logic within the pick-up and deposit actions. A positive pick-up

is one which removes material from above the agent’s calculated average height α. A

positive deposit is one where material is deposited below the agent’s calculated average

height, and
∣∣heightdeposit − heightpickup∣∣ > 1.0 where heightdeposit and heightpickup are

the heights after the deposit and pick-up operations respectively.

Each variation of the algorithm is differentiated by the population model used.

In the first variation, each agent in the swarm represented an individual in the evo-

lutionary population. That is, each agent held a single chromosome. In the second

variation, each agent held a list of 5 chromosomes. In each case it was assumed

that an agent external to the swarm was responsible for managing the population of

chromosomes—performing selection, transferring chromosomes between agents, etc.

In the first variant (1 chromosome per agent), each agent is initialized with a ran-

dom (valid) chromosome. Each agent executes the sequence of actions stored in their

chromosome five times. At the end of these five executions, the fitness of each agent

is then evaluated. The agent with the highest fitness keeps its current chromosome,

while the chromosomes of all other agents are replaced with new randomly generated

chromosomes.

In the second variant (5 chromosomes per agent), each agent is initialized with

a random pool of valid chromosomes. Each of these permutations are executed in

turn, with the fitness of each evaluated at the end of the sequence. For each agent,

those chromosomes with fitness below some threshold are replaced with new randomly

generated chromosomes.
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Input : cx ← random, valid chromosome for each agent x
Loop

for each agent x ∈ environment do
for 5 iterations do

for each action ∈ cx do
execute(action)

xfitness ← f(cx)

end

evaluate fitness() // External oracle selects the fittest agent

for each agent x ∈ environment excluding the fittest do
cx ← new random chromosome

Forever
Algorithm 3: Memetic algorithm, first variant

Input : Cx ← a set of 5 random, valid chromosomes c ∈ Cx for each agent x
Loop

for each agent ∈ environment do
for each c ∈ Cx do

for each action ∈ c do
execute(action)

cfitness ← f(c)

for each c ∈ Cx do
if cfitness < 1.0 then

c← new random chromosome

Forever
Algorithm 4: Memetic algorithm, second variant

In either approach, while each action in a permutation is attempted during ex-

ecution, these actions are allowed to fail silently. That is, for example, if an agent

attempts to pick up material and conditions are not satisfied, the agent will do nothing

until its next action is called. Similarly, if an agent attempts to move but is prohib-

ited by the boundary or the presence of another agent, it will remain in place. This

exploits domain knowledge within the evolution—we already know that for flattening

we must remove material from above the calculated average, for example. Therefore,

if the agent is not above the average the pickup action will fail. Similar logic follows

for depositing below the average. This failure will be reflected in the fitness, since the
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failed pickup will not record a positive change in the terrain.

Figure 4.4: Comparison of average units moved between the probabilistic algorithm

and each variant of the memetic algorithm.

Figure 4.5: Comparison of average cycles between the probabilistic algorithm and

each variant of the memetic algorithm.



36

Experiments were carried out to compare each memetic variant with the proba-

bilistic algorithm, where in the original algorithm ρpu and ρde are set to the constant

value 0.3. In the second memetic variant, a threshold of 1.0 is used as fitness to keep a

chromosome in an agent. The results of these experiments are shown in Figure 4.4 and

Figure 4.5. Averages were taken over 30 runs on each terrain, where each execution

was halted when the level condition of the terrain was reached. From Figure 4.4 and

Figure 4.5, it can be seen that each variant of the memetic algorithm out-performs

the probablistic version in terms of units of material moved. Here a unit is defined as

a single ‘block‘ of a single grid cell, i.e. a cell of height 1 contains 1 unit. Each variant

performs much worse in terms of time to complete the leveling operation. It appears

from these results that while the memetic version appears to be slower, it may be

useful in developing stategies which are more conservative with respect to effort taken

in relocating material.

Experiments were run in simulation similar to the one used in the probabilistic

version of the algorithm. However rather than using the 3D output, the algorithm

was instead run using a 2D command-line view to allow the simulation to proceed

faster.

4.3 Prototype of a Leveling Robot

Prior to settling on the full use of simulation to first develop the terrain leveling

system, a hardware prototype for a leveliing robot was assembled. The goal was to

be able to test algorithms developed in low-fidelity simulations such as those used

in Sections 4.2.1 and 4.2.3, using the hardware to verify the algorithms in a mock

environment. This environment was to be composed of aquarium gravel, intended to

implement the task environment discussed in Section 4.1.
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4.3.1 Hardware

Component Type Model
Chassis Dagu Rover 5 (with encoders)
Mainboard Pololu A-Star 32U4 Robot Controller
IMU Pololu AltIMU-10 v4
Wireless X-Bee Pro

Table 4.1: Main hardware for prototype leveling robot

The prototype is designed around the Dagu Rover 5 chassis, a tracked vehicle with

two front-wheel motors and encoders. A tracked skid-steer vehicle was selected as such

a model reflects what is typically seen in real-world construction vehicles. The vehicle

benefits from the added traction provided by tracks in the gravel environment used

for testing. Unfortunately, the nature of skid-steering makes odometry inherently

error-prone. This makes the odometry-aided algorithm described in Section 7.1.1 dif-

ficult to implement correctly on this particular prototype. The Dagu chassis allows

reconfiguring the body height, by adjusting the inclination of the legs; the height may

vary by a maximum of 3.8cm. The motors which ship with the chassis have a gear

ratio of 86.8:1, with a maximum speed of 25cm/s. The included encoders are stated

to provide 1000 counts per 3 revolutions, or 333.33 Counts Per Revolution (CPR).
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Figure 4.6: Dagu Rover 5 with mounted hardware.

The mainboard selected was the A-Star 32U4. Pololu offers this platform in several

packages, one of which is a full robot controller. This variation includes a dual-motor

driver, as well as compatibility with the Raspberry Pi (via the Pi HAT specifica-

tion). The A-Star 32U4 itself is based on the Atmel ATmega 32U4 microcontroller,

a 16MHz CPU with 32kB of flash memory and 2.5kB of SRAM. The board is com-

patible with the Arduino prototyping platform [1], and is hardware-equivalent to the

Arduino Leonardo. Compatibility with the Aduino software ecosystem allows for more

rapid development that what is generally possible when developing with a microcon-

troller on its own. A large number of libraries for interfacing with various kinds of

hardware peripherals are available under open-source licenses, which decreases overall
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development time. Pololu also provides several Arduino-compatible libraries for their

hardware, including a library specifically for the A-Star 32U4. The A-Star library

does not include methods for interacting with wheel encoders, however one included

with the Zumo 32U4 (discussed in Section 4.3.3) was ported with relative ease. This

assumes however that the encoders are wired the same as those included with the

Zumo platform.

The 32U4-based boards include only a small number of interrupt pins, and several

of those are multiplexed with other board features which may be needed. Each wheel

encoder has two channels (A and B), each of which must be monitored via interrupt

to count revolutions. To reduce the number of needed interrupt pins, the Zumo 32U4

XORs each channel together and connects the resulting output to a single interrupt

pin. The second encoder channel (channel B) is connected to a non-interrupting input.

The resulting XOR’d signal and the signal from channel B can be used to reconstruct

the signal from channel A in software by XORing the inputs, since (A⊕B)⊕B = A.

The IMU contains an accelerometer, gyroscope, magnetometer and a barometric

altimeter. These are the LSM303D containing both the accelerometer and magne-

tometer, the L3GD20H gyroscope and the LPS25H digital barometer.

The X-Bee radio fitted to the prototype is used only for debugging. It allows

the device to report the state of the algorithm at each cycle, such as linear/angular

acceleration or estimated position. A receiver module may be used via USB adapter

on a PC, allowing the incoming data to be logged and/or plotted. This is particularly

useful when calibrating devices such as the IMU.

4.3.2 Noted Issues

The prototype performed relatively well when its movement was tested in the aquar-

ium gravel environment. It was discovered however that it is possible for gravel of
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this size to become stuck in a space on the backside of the wheels. Gravel with larger

granules would eliminate the issue, however if they are too large it may impact the

robots ability to move or dislodge it. A shroud placed around the back of each wheel

may also eliminate the issue, without needing to change the test environment.

The X-Bee radio used on the prototype operates at 3.3V, versus the 5V used by

the A-Star mainboard. This necessitated the use of a logic level shifter to allow com-

munication via USART between the devices. The A-Star provides pins for both a 5V

and 3.3V rail, however the 3.3V pin did not appear to be powered when tested. This

required the addition of a voltage divider circuit to be constructed on the perforated

circuit board used also to mount the IMU and motor sockets.

4.3.3 Alternate Platform

Figure 4.7: Pololu Zumo 32U4

Prior to the construction of the prototype depicted in Figure 4.6, a smaller version

was built using the Pololu Zumo 32U4 platform (see Figure 4.7). This platform
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is very similar electronically to the A-Star used in the existing prototype, and is

also equivalent to the Arduino Leonardo platform. The Zumo also includes several

infrared (IR) sensors, and integrates the same accelerometer and gyroscope found on

the AltIMU-10 package.

It was initially selected as it is also a tracked vehicle, and includes a flat plate

mounted at the front which could be used as a plow in a gravel environment. It was

found however that the Zumo has very little clearance between the ground and the

battery pack which is mounted at the bottom of the unit. It would frequently get

stuck on top of relatively small mounds of gravel, and eventually dig itself in as the

tracks spun in place. The front plate also did not fare well as a gravel plow, and often

prevented the vehicle from moving forwards in many instances.

4.4 Discussion

Experimenting with both the probabilistic and memetic terrain leveling algorithms

in simulation helped validate both the terrain leveling concept itself, as well as the

individual algorithms. A simulator which allowed both 3D rendering and ‘offline’

execution was useful for first visually validating results and debugging issues, and

later executing the system at full speed to gather performance metrics. The restric-

tions placed on each algorithm (and each simulator, by extension) such as discrete

movement are helpful for early prototyping, however they are naturally unrealistic for

further development. In order to carry the idea further, the algorithms and simulation

must either be updated to operate in a continuous environment, or a real-world envi-

ronment must be created. The Dagu-based prototype described in Section 4.3, while

relatively small, still required a large gravel-filled space in which to operate when the

need to eventually experiment with multiple agents is considered. Developing the
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hardware also requires writing software for interfacing with sensors and peripherals,

in addition to developing the behaviour algorihm itself. The desire to avoid the com-

plications of hardware development, as well as the need for a high-fidelity simulation

of deformable terrain, led to the development of the simulator discussed in Chapter

5.

4.5 Summary

Here we have provided a formal definiton for the leveling task, which provides context

for discussion in subsequent sections of this thesis. This definition provides several

assumptions the algorithms (as well as simulations) are bound to in their design. The

algorithms described were each tested within a simulated environment, however the

simulations utilized were of low fidelity. The low-fidelity simulations are helpful with

respect to validating the algorithms, however one can see that they are simplistic in

their design and ultimately restrict the types of experiments which may be carried

out. Instead we wish to develop these algorithms in a more realistic environment,

leading to the high-fidelity simulator described in Chapter 5. Finally, this chapter also

described an early hardware prototype of a leveling robot. Development in hardware

was eventually abandoned in order to persue a high-fidelity simulator, due to in part to

issues in creating a suitable operating environment. However, the prototype provided

inspiration for the design of the simulated agents and helped tie the simulations to

reality.



Chapter 5

High-Fidelity Simulation of a

Leveling Robot

This chapter describes a high-fidelity simulator used to simulate a single terrain level-

ing robot, called Sandbox. This simulator is used to generate training data for use in

the neural network-based simulator described in Chapter 6. As discussed in Chapter

4, low-fidelity simulation of a terrain forces some assumptions on the algorithm itself.

The voxel-based simulator used to develop the previous leveling algorithms was capa-

ble of providing only discrete movement to the agents. Furthermore, the dynamics of

a granular terrain were not represented, where instead the terrain was represented by

a number of blocks which could be turned ‘on’ or ‘off’ by an agent. The high-fidelity

simulator is capable of simulating a volume of deformable terrain by one of two meth-

ods, as well as a more accurate representation of the leveling robots. This simulation

however is non-real-time.

In order to accurately train the real-time neural network-based system described

in Chapter 6, a rather large amount of training data capturing both the movement of

a robot as well as the terrain must be generated. Rather than capturing data from
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a real-robot, this work opts instead to generate the data using Sandbox. Generating

data using a simulated environment allows more information to be captured in a more

straight-forward manner than would be possible using a real-world system. Capturing

movement of a robot would require some method of tracking via an overhead camera,

or very accurate odometry from the robot itself. Recording information about the

movement of the terrain would at the least require an overhead depth camera, and

any more information beyond changes in height would be much harder to capture.

Furthermore, one of the motivations for creating the simulator described in Chapter

6 is the absence of any real-world robot or testing environment to work with.

The fundamental purpose of Sandbox is to allow the simulation of leveling robot/vehicle

prototypes, as well as a terrain which may be deformed by these robots. It allows

simulating (in principle) a wide variety of vehicles, however it has been tested pri-

marily with both wheeled and tracked skid-steer vehicles similar to the one described

in Section 4.3. Simulation of deformable terrain is carried out using either using a

volume of discrete spherical particles, or a deformable mesh model implemented by

Chrono called Soil Contact Model (SCM) [39].

Section 5.1 provides further detail on the design and architecture of the simula-

tion software, and describes the methods available for simulating deformable terrain.

Section 5.2 provides a discussion of the tools used to design and represent a model

robot within the simulator. Section 5.3 discusses the use of the simulator to generate

training data for the neural network-based simulator covered in Chapter 6. Section

5.4 provides quantitative results comparing the computational performance of several

aspects of the simulator, as well as qualitative discussion of these aspects in their

practical use.
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5.1 Architecture

Sandbox is based on Chrono Engine [41], a library which prioritizes faithfulness to

physical realism over real-time performance. Chrono is not a stand-alone simulator,

but may be thought of as a simulation engine which may be used to build simulation

software. For the needs of Sandbox it provides a physics and collision system offering

a higher degree of realism than is available in other freely-available physics engines.

Chrono additionally provides Sandbox with several ways to visualize the systems

being modeled, including real-time output via the Irrlicht rendering engine and offline

output to be rendered by the POV-Ray ray-tracing engine.

While Chrono allows the simulation of soft-body dynamics and fluids, for the

purposes of Sandbox only rigid-body simulation is considered. In this regard, objects

composing a simulation in Chrono are made up of rigid-bodies with physical properties

such as mass and inertia, defined by collision primitives (sphere, cube, mesh, etc.)

and optionally constraints between other bodies. In Sandbox these constraints are

often joints, such as fixed or revolute joints. Each of these bodies may optionally

be visualized using assets. Assets provide a geometric description to the rendering

system (Irrlicht or POV-Ray) for displaying the body, and the visual geometry does

not necessarily have to be identical the collision geometry. Visual assets are not critical

to the execution of the simulator, however they are useful for debugging simulations.

Using the low-level components for physics and rendering provided by Chrono, a

framework for terrain leveling simulation was built which form Sandbox. These com-

ponents may be thought of as the mid-level of the system. These components include

a model importer, height-map importer, particle system, Unified Robot Description

Format (URDF) [10] importer, and tracked vehicle. The model importer is used to

load 3D models from file formats such as Wavefront .obj and convert them to the
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Chrono mesh representation. The height-map importer is used to load a grayscale

image, and optionally scale the image for use as a height-map terrain. The particle

system generates a particle terrain from a supplied height-map, and generates a con-

tainer in which to place the terrain. The URDF importer is used to convert a URDF

representation of a robot to a Sandbox assembly (discussed further in Section 5.1.1).

Finally, the tracked vehicle component adds facilities to a loaded assembly for the

simulation of a tracked skid-steer robot. In particular, this component is responsible

for generating track links about the assemblies wheels, and provides an interfacing for

controlling motor speeds of the left and right tracks.

Figure 5.1: Block diagram of Sandbox’s architecture
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Sandbox uses these concepts as the basis of implementation for higher-level con-

structs used to implement the terrain leveling environment. The major components

of the system are experiments, assemblies, platforms, and terrain. Each of these com-

ponents are discussed further in the following sections. A block diagram depicting the

high-level architecture of Sandbox may be seen in Figure 5.1.

5.1.1 Assembly

An assembly is a composition of geometry and connecting joints representing a system

in the simulation. For the purposes of Sandbox, assemblies are the representation of

a robot model loaded from a document in the XML-based Unified Robot Description

Format (URDF). The URDF and the process of creating an assembly in this format

is given in Section 5.2.

Sandbox assemblies support a subset of the representable geometries and joints

available in the URDF. Components of the assembly may load geometry for both

visual representation and collision—these geometries may be either boxes, cylinders or

triangle meshes. The assembly will also load inertial objects defining component mass

and inertia. Visual and collision geometries as well as inertial objects are represented

internally by Chrono bodies.

Assemblies may contain either fixed, revolute, or engine joints. Each joint defines

a constraint between two geometric components, as well as the relative transform

of one component in relation to the other. Fixed joints maintain a fixed transform

between bodies, while revolute joints allow one body to rotate about an axis relative to

another. Engine joints are revolute joints which may be powered. Powered joints are

not typically described by tools exporting URDF models—a method for specifying an

engine joint to Sandbox is described in Section 5.2. Assembly joints are represented

internally by Chrono as links.
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5.1.2 Platform

A platform is a representation of a robot or vehicle simulated in the Sandbox environ-

ment. Platform objects provide a binding between a vehicle assembly and a control

algorithm. Additionally, platforms provide emulation for hardware such as the IMU.

Platforms assume that the vehicle being modeled is skid-steer, and algorithms imple-

mented for a platform control the vehicle by varying the desired linear and angular

velocities. The platform object converts these values into individual wheel speeds us-

ing specified constants for wheel base and wheel radius. This conversion is calculated

using the kinematic model of a differential drive robot. Wheel speeds vleft and vright

are calculated in radians-per-second by

vleft =
l − Bω

2

r

vright =
l + Bω

2

r

where B is the wheel base of the vehicle, r is the wheel radius, l is linear velocity, and

ω is angular velocity.

5.1.3 Terrain

There are two supported methods for representing terrain in Sandbox, using either a

volume of discrete particles or a method provided by the “Chrono::Vehicle” module

based on SCM. Each terrain model provides a method to capture the current height-

map as it is modified throughout the simulation.

The particle-based method generates a number of spheres to fill a volume defined

by a grayscale height-map. For each pixel in the map, particles are generated vertically

up to a maximum height defined in the experiment configuration file. Particles are
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given a uniform radius and density. Particles are generated adjacent to each other

such that each pixel in the height-map contains exactly one particle stack. The mass

of each particle is calculated by m = 4πr3ρ
3

, and the moment inertia of each particle

as IXX = r2m where r is the particle radius and ρ is the particle density.

The SCM-based method provided by Chrono simulates terrain using a deformable

triangle mesh. Like the particle method, the mesh surface shape is defined by a

grayscale height-map where each pixel in the height-map maps to a vertex in the

resulting mesh. SCM is based on Bekker’s terramechanics theory [40], and simulates

the contact between a rigid body and a volume of plastically deformable soil.

For both terrain modeling methods, the height-map is typically scaled uniformly

from its original size by the xy scale parameter of the experiment configuration (See

Figure 5.3). The resulting dimensions of a particle terrain are (x, y) = (mapwidth ·

particleradius · xy scale,mapheight · particleradius · xy scale). For SCM terrain, each

vertex is placed in a grid orientation. Thus the resulting dimensions of an SCM

terrain are (x, y) = (mapwidth · xy scale,mapheight · xy scale).
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Figure 5.2: Profile view of a particle terrain (left), and wireframe view of a SCM mesh

terrain (right)

5.1.4 Experiment

An experiment may be considered the ‘root’ object in the Sandbox system. Several

experiments may be loaded, however they are separate entities and are required to

be run in succession. Each experiment may define a single terrain as well as one or

more platforms. The experiment object provides a method of initialization, as well as

a method to step all child objects in a single frame.

Experiments are initialized using an externally-defined configuration file which is

loaded at run-time. These files define the variables such as the initial position and

orientation of a platform, the terrain height-map, terrain particle size, and the scaling

values for the terrain (See Figure 5.3).

The experiment step method is used to step each platform in the system forward

by one frame. This does not execute a step of the physics simulation (which is han-

dled externally by Chrono), but instead executes a step of the platform algorithm.
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Additionally, the step method deals with re-positioning agents at the outer bounds

of the terrain. To allow data to be generated quickly, Sandbox implements a “wrap-

around” feature for terrains such that a platform is teleported to the opposite side of

the terrain when it reaches the boundary. Doing this allows terrain height-maps to be

relatively small while still generating enough data for later use. The procedure neces-

sitates that the terrain height-map loaded in the simulation is tileable (i.e. seamless

on each side).

output_directory_prefix = ./tracked_noplow_static/

chrono_data_path = ../data/

[vehicle]

tracks = true

model = Dagu5

x = -20.0

y = 8.0

z = -20.0

r = 0.0

p = 0.0

h = 0.0

[map]

filename = terrain_large.bmp

scale = 5.0

particle_radius = 0.15

xy_scale = 0.4

model = particle

[raygrid]

resolution = 2.0

[experiment]

name = sparse_random

algorithm = random

Figure 5.3: Example experiment configuration file
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5.2 Defining a Robot Model

Robot and vehicle models are defined in Sandbox using URDF. URDF is the stan-

dard XML format typically used by (and developed for) the Robot Operating System

(ROS). URDF is used by several ROS-related simulation and visualization tools such

as Gazebo and Rviz, and allow representing a robot model as a hierarchical scene-

graph.

The components of a URDF file used primarily by Sandbox are links and joints,

which differ from the naming conventions used by Sandbox and Chrono. URDF links

define geometries and inertial objects which are stored as Chrono bodies. URDF joints

define constraints between links—following the same naming used in Sandbox, but

differing from the Chrono naming of constraint objects as links. An example URDF

demonstrating links and joints is provided in Figure 5.4. URDF joint elements may

contain the limit tag which typically defines the safety limits of joint. This tag may

contain the velocity attribute, which when set to ‘1.0’ forces Sandbox to interpret the

joint as a powered engine joint if the type is also set to ‘revolute’.
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<?xml version="1.0"?>

<robot name="origins">

<link name="base_link">

<visual>

<geometry>

<cylinder length="0.6" radius="0.2"/>

</geometry>

</visual>

</link>

<link name="right_leg">

<visual>

<geometry>

<box size="0.6 .2 .1"/>

</geometry>

<origin rpy="0 1.57075 0" xyz="0 0 -0.3"/>

</visual>

</link>

<joint name="base_to_right_leg" type="fixed">

<parent link="base_link"/>

<child link="right_leg"/>

<origin xyz="0.22 0 .25"/>

</joint>

</robot>

Figure 5.4: Example URDF file
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While one could construct robot and vehicle models manually using URDF, it is

more practical to create the model visually in a modeling tool. This work has made

use of Phobos [8], which is a plugin for the Blender modeling software. Phobos was

originally created for use with MARS (Machina Arte Robotum Simulans) [5], however

its use of standard URDF allows it to be useful for any environment which can use

the format. Using Blender, Phobos allows detailed geometries to be created as part of

the visual and collision representation of the robot and allows Wavefront OBJ meshes

to be exported along-side the URDF document. Phobos also allows one to define

parent-child relationships between objects using built-in Blender tools, and provides

a means to define joints and constraints on these relations. Additionally, the tool also

allows the automatic generation of appropriate inertial objects based on the body

geometric properties and user-defined mass of each robot component (URDF link).

Whether defined manually or using Phobos, Sandbox makes use of a naming

convention when constructing models from URDF files. Four wheel bodies are re-

quired to be present in the model, each named ‘bl Wheel’, ‘br Wheel’, ‘fl Wheel’, and

‘fr Wheel’. The positions of these bodies are used to generate track links on tracked

vehicles. The names are used when searching for bodies in the Chrono scene graph,

both for track generation as well as when applying power to wheels attached using

engine revolute joints. Exactly one body named ‘Body’ is required to be present in

the URDF, which is assumed by Sandbox to be the chassis of the robot. This body

is used to generate IMU data for the platform.

5.3 Generating Training Data

The primary purpose of the Sandbox simulation as it relates to this work is for the

generation of training data to feed into a neural network. Data is generated during
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the execution of an experiment (see Section 5.1.4) which is configured to run a single

vehicle using a particular control algorithm designed for data generation. The experi-

ment is run for a predefined number of simulation steps, with a number of parameters

of the simulation being recorded at the end of each step. The collection of recorded

data for an experiment is referred to as a session, and that data for each step is re-

ferred to as a frame. All of the available parameters which are recorded in each frame

are listed in Table 5.1. Not all of these captured parameters are necessarily used by

the neural network, but are available for future use or are used in data pre-processing.

As described in Section 5.1.3, a corresponding top-down image of the current terrain

height-field is also recorded with each frame.

Table 5.1: Variables recorded by Chrono simulation
Variable Description Input/Output

x Absolute X position N/A
y Absolute Y position N/A

∆x Change in X position Output
∆y Change in Y position Output
∆θ Change in yaw Output
vleft Left motor speed (rps) Input
vleft Right motor speed (rps) Input
ϕ Vehicle pitch (radians) Input
ψ Vehicle roll (radians) Input
l Desired linear velocity N/A
ω Desired angular velocity N/A

The x, y, and θ values are captured from the absolute orientation of the robot

chassis as computed internally by Chrono. ∆x, ∆y, and ∆θ are captured as the

difference between the x, y, and θ values of the current frame and the previous frame,

such that each delta is relative to the absolute world position of the chassis. Values

ϕ and ψ are also captured from the orientation of the robot chassis as reported by

Chrono.

The vehicle control algorithm used to generate data attempts to move the vehicle



56

Input : Number of frames n, where n ≥ 8
Output: Desired linear velocity l, desired angular velocity ω
i← 0;
for i < n do

if 0 ≡ i mod 250 then
r ← uniform rand(0.25, 1.0);

if i ≤ n
8

then
l← 3r;
ω ← 0;

else if n
8
≤ i < 2n

8
then

l← −3r;
ω ← 0;

else if 2n
8
≤ i < 3n

8
then

l← 0;
ω ← rπ

2
;

else if 3n
8
≤ i < 4n

8
then

l← 0;
ω ← −rπ

2
;

else if 4n
8
≤ i < 5n

8
then

l← 3r;
ω ← rπ

2
;

else if 5n
8
≤ i < 6n

8
then

l← −3r;
ω ← −rπ

2
;

else if 6n
8
≤ i < 7n

8
then

l← −3r;
ω ← rπ

2
;

else if 7n
8
≤ i < n then

l← 3r;
ω ← −rπ

2
;

i← i+ 1
end

Algorithm 5: Control algorithm used for data generation
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over a terrain using a variety of motor inputs. Since two of the inputs to each neural

network are the left and right motor speeds, it is important to generate a variety of

speeds which can be sampled over the total range. Rather than generating random

motor speed values directly, the algorithm instead sets the desired linear and angu-

lar velocities. The motor speeds are then calculated according to the equations in

Section 5.1.2. Each session is run for n frames, separated into n
8
-frame blocks—each

with varying combinations of the vehicles’ desired linear and angular velocities. For

example, the first block runs with forward linear velocity and zero angular, the second

with negative forward velocity and zero angular, the third with forward linear velocity

and right angular velocity, and so on. Each of these blocks are themselves split into

250-frame segments, each of which apply a random scaling coefficient to the maximum

desired linear or angular velocity. This process is illustrated in Algorithm 5, in which

l and ω refer to desired linear and angular velocity respectively.

The simulator also generates data to be used in the simulation of terrain deforma-

tion. The method used depends on the terrain model selected, however in both cases

Sandbox generates a series of height-map images—one for each frame in the session.

For height-map generation in the particle-based method, there are potentially a large

number of discrete objects making up the terrain volume from which we wish to ex-

tract a surface. To capture a height-map from the particles, ray-casting is utilized.

A number of rays are generated starting from a height above the terrain and ending

at height y = 0. The rays are cast uniformly over the area of the terrain, with a

density which may be defined in the experiment configuration. The ray-casts return

a value representing a relative distance from the starting point of the ray. Each of

these distance values are converted to a grayscale pixel value and written to an im-

age representing the height-map of the frame. For SCM-based terrain, height-map

generation is more straightforward since the terrain exists as a triangle mesh (already
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a convex surface with known heights at each point). For each vertex in the terrain

mesh, the height is recorded. Each height value is converted to a pixel intensity as a

fraction of the maximum height found in the terrain, and each pixel is recorded as a

height-map image for the frame.

5.4 Performance

Several approaches to vehicle and terrain modeling have been tested in Sandbox with

regards to both computational performance and usability. Chrono supports both

single-threaded and multi-threaded collision solvers, each of which have been experi-

mented with in the design of Sandbox. As outlined in Section 5.1.3, Sandbox imple-

ments two methods of simulation for deformable terrain. Each of these methods have

also been experimented with in terms of performance and usability.

The single-threaded and multi-threaded collision solvers are compared using the

particle terrain model, as it is the most likely candidate to benefit from multi-threading

due to the large number of bodies which must be simulated. However, it was not im-

mediately obvious prior to experimentation whether the size of the problem warranted

the extra overhead created by the introduction of multiple threads.

Each terrain model available in Sandbox is useful for simulating different kinds of

deformable terrain (e.g. loose gravel or soil). Thus it is beneficial to compare and

contrast each model in terms of computational performance, as well as qualitatively

in terms of their implementation and use.

5.4.1 Computational Performance

Evaluation with respect to computational performance of the simulator is carried out

by way of quantitative analysis. The metrics compared are mean frame time and total
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memory utilization, where mean frame time is the time to complete one algorithmic

step of the platform followed by one dynamics update by Chrono.

Figure 5.5: Height-map used in performance evaluation (left) and the same height-

map rendered in 3D (right)

Comparisons were conducted using three different scales applied uniformly to the

width and length of the terrain for each of the particle and SCM terrain models (see

Table 5.2). Each test was run using the same 600x600 pixel height-map, scaled to the

same in-simulation dimensions for each model. Due to the way each model interprets

the height-map, different scaling values are used to reach the desired dimensions. The

maximum height of each terrain for each model is 5 units. In the case of the particle

model, the particle radius is 0.15.
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Table 5.2: Terrain parameters for performance evaluation

Particle SCM

Small Medium Large Small Medium Large

Dimensions 18x18 36x36 72x72 18x18 36x36 72x72

Scale 0.1 0.2 0.4 0.03 0.06 0.12

Num. Particles 30642 112570 490379 N/A N/A N/A

Evaluations were executed on a PC with a Core i7-4700HQ CPU (8 logical cores)

and 16GB of RAM, where the simulator was compiled with version 17.0.1 of the

Intel C++ compiler. Multi-threaded evaluation was carried out using a maximum

of 8 threads, and uses the parallel collision solver provided by the ‘Chrono::Parallel’

module.

Figure 5.6: Mean per-frame execution time using particle and SCM terrain models
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Figure 5.7: Memory utilization of particle and SCM terrain models

Figure 5.8: Mean per-frame execution time on particle terrain in single-threaded and

multi-threaded mode
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Figure 5.9: Memory utilization of particle terrain in single-threaded and multi-

threaded mode

Figure 5.6 demonstrates the mean time per frame in microseconds for each terrain

size using either particle or SCM terrain. The particle method displays much larger

steps in execution time for each terrain size. This is due in large part to the higher

number of bodies which must be simulated as the terrain grows—particularly the

larger number of contact points which must be computed by the collision solver. The

time taken to execute a frame also grows with terrain size in the SCM model, however

much more slowly.

Figure 5.7 demonstrates the total memory utilization of the simulation using either

particle or SCM terrain. Following a similar pattern to frame execution time, the

particle terrain consumes substantially more memory than the SCM method and

with a rather wide disparity between terrain sizes within the particle model. However

unlike execution time, which appears to grow by a linear factor, memory use appears

to grow exponentially. Memory utilization in the SCM model appears to remain flat



63

across terrain size.

Figure 5.8 demonstrates the mean frame execution time of the particle model for

each terrain size using both the single-threaded and multi-threaded collision solver

in Chrono. At all sizes, the multi-threaded solver is slower than the single-threaded

version. This is likely due to the overhead involved in the parallel model which must

manage multiple threads of execution and communicate information between them.

It is probable that as the number of particles increases, the gap between single and

multi-threaded performance would close as parallelism becomes more efficient relative

to the size of the problem. Due to the constraints of the evaluation hardware, this has

not been tested. It is worth noting in Figure 5.9 that the memory utilization decreases

for each terrain size when using the parallel solver. This would support much longer

terrain sizes, however the time to execute becomes prohibitive when used for the

purpose data generation as it is in this work.

5.4.2 Qualitative Evaluation

The practicalities and limitations of the available terrain and vehicle models are eval-

uated qualitatively. Particular attention is paid to the terrain models, as that is where

differences appear to be the most pronounced.

Referring to Figure 5.7 one can see that large terrains using the particle model

quickly consume the majority of available RAM on the test system. It is very likely the

majority of memory available on most commodity PCs available at the time of writing

would also be exhausted. The effect is great enough that the ‘large’ terrain dimension

in Section 5.4 was selected by trial-and-error to find the largest particle terrain that

could reasonably fit in memory on the test machine alongside other necessary running

software. If used strictly for generating training data however, the terrain size is not

generally an issue since the wrap-around teleportation applied will give the illusion
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of infinite terrain to the vehicle. An attempt was made to reduce the memory con-

sumption of the particle model, by using the Chrono-provided ParticleClones object.

Rather than creating a unique body for each particle, the ParticleClones object shares

properties between a large number of bodies. Using this system however, the particles

no longer appeared to collide with the container holding the volume in place.

The method of tracking height-map changes between frames in the particle model is

particularly intensive (see Section 5.3). The ray-cast operation in the computational

evaluations consumed a sizeable portion of the recorded average frame time in the

‘large terrain’ trial. This feature should therefore be disabled if the simulator is not

being used to generate height-map data throughout the simulation.

Tracked vehicle models running on the particle terrain model often have several

issues. Depending on the properties of the particles themselves (namely mass, density,

and radius) vehicle tracks will often become dislodged and slide off of the wheels they

are wrapped around. This has been observed both with the vehicle track model

developed for Sandbox, as well as the tracked vehicle model distributed with the

‘Chrono::Vehicle’ module. Using smaller, heavier particles appears to alleviate the

issue. However, using smaller particles has the effect of shrinking the dimensions

of the terrain, requiring a greater scaling value to be used for the height-map. At

large dimensions, this generates an intractable number of particles to be simulated on

typical commodity hardware.

Simulations using the SCM terrain model are less computationally intensive than

particle terrains by a fairly wide margin. This should, in theory, allow much larger

terrains to be simulated versus the particle terrain model. In practice, the area of each

polygon making up the terrain mesh is required to be limited relative to the size of the

vehicle which will come in contact with it. Thus to create very large terrains, a high-

resolution height-map must be used and then scaled down to the desired in-simulation
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dimensions in order to increase the polygonal density. Low-density meshes result in

what is best described as undefined behaviour. Typically however, the result is the

instantaneous break-up of the vehicle tracks (if present) and/or a rapid ‘flying-away’

of the vehicle itself.

The speed of the SCM model allows generating a much larger number of frames for

training data in a period versus what is possible using particle terrain. However, the

SCM model appears best suited for simulating granular material which is relatively

cohesive, such such as soil or clay. Simulating loose particles such as gravel is more

difficult due to the nature of the model. The particle model by its own nature excels

in the simulation of loosely packed granules.

5.5 Summary

This chapter has presented Sandbox, a simulator built on the Chrono engine designed

for terrain leveling simulation. In addition to Chrono, Sandbox makes use of other

tools such as URDF robot definitions as well as the Phobos add-on for the modeling

software Blender. We have described how Sandbox can be used to generate training

data for a neural network, using a specialized algorithm to generate a large number

of data points as the simulated vehicle moves about the terrain. Several performance

metrics are compared, in particular demonstrating the disparity between a particle-

based terrain simulation method and the Soil Contact Model (SCM). Performance

characteristics of both the single-threaded and multi-threaded collision solver provided

by Chrono are also discussed. A qualitative evaluation of Sandbox (and by extension,

Chrono) is given, in which the practicalities of various aspects of the simulator are

discussed.



Chapter 6

Neural Network-Based Simulation

Using the training data obtained from the simulator described in Chapter 5, a much

computationally cheaper simulation can be leveraged for prototyping robot control

methods. The simulator developed for this purpose provides basic 2D visuals, and

replaces a physics engine with a neural network. This chapter describes Alexi, which

has been designed to be used in conjunction with training data obtained from Sandbox

in order to allow a computationally efficient terrain leveling simulation. In addition

to the simulator itself, several tools used to support the training and testing of neural

network models have been developed. Additionally, tools for pre-processing training

data have also been implemented.

Section 6.1 provides an overview of the implementation and design of the simula-

tor, as well as the tools developed to support data preprocessing and network training.

Section 6.2 describes the first implementation of the Alexi system, and provides results

related to the training of each neural network used in the simulator for robot kine-

matics. Section 6.3 provides the implementation details for a later implementation of

Alexi, again providing results for networks trained for robot kinematics, as well as a

network trained for terrain deformation. Finally, Section 6.5 offers a discussion of the
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concept as a whole, and offers a qualitative comparision of the results of each version

of Alexi.

6.1 Implementation Overview

Alexi has been implemented in two different versions, here referred to as V1 and V2.

Each version is composed of three tools. In addition to the simulator itself, tools

for data preprocessing and network training have been developed, where all three are

intended to be used as a ‘pipeline’ following the generation of data using Sandbox.

The data preprocessor is used in the first step, and is used to apply the various trans-

formations discussed in Sections 6.2.2 and 6.3.2. The result of the transformations

are saved to disk in a format specific to the neural network library used. The training

tool used in the next step provides an interface to load the preprocessed data, and

execute training of each network. The trained networks are saved to disk, again in a

format specific to the neural network library used.

Both V1 and V2 of Alexi provide a 2D simulator to visualize the response of the

robot, as well as to provide input to the neural networks for physics emulation. The

simulator provides a view of a height-map, as well as a marker illustrating the position

and orientation of the robot. The simulation is 2D in the sense that information is

rendered in only the x and y dimensions. However, the height-map pixel information

is used to construct a third dimension, providing pitch and roll information to the

neural network input. This is achieved by finding the slope of the line between a

point in front of and behind the vehicle for pitch, and between points on the left

and right side for roll, where the height of each point is captured from the pixel

intensity of the height-map. Mathematically, these pitch and roll angles are found by

ϕ = arctan
hfront−hback

2r
and ψ = arctan

hleft−hright
2r

respectively, where h∗ is the height
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(represented by pixel intensity) at each point about the vehicle, and r is the radius of

the area covered by the vehicle.

Each version of Alexi differ in their underlying implementation. Version 1 was

developed in C++ and depends on the Fast Artificial Neural Network (FANN) library

[44]. Version 2 was developed in Python and depends on the Keras neural network

package [4]. The 2D simulators for each version are largely the same, however version

1 is developed with the Simple DirectMedia Layer (SDL) library directly, whereas

version 2 is developed with PyGame (a thin Python interface to SDL). SDL (and by

extension PyGame) are graphics libraries which may be used to implement 2D or 3D

rendering.

In both versions of Alexi, the vehicle position is updated by

x← x+ v cos(θ)

y ← y + v sin(θ)

where v is vehicle speed. Vehicle yaw is simply updated each frame by θ ← θ+∆θ. The

input v may either be predicted directly by one of the neural networks, or computed

as v =
√

∆x2 + ∆y2 where ∆x and ∆y are predicted by a neural network. Because

v must always be positive, it is multiplied by −1.0 when the desired linear velocity is

also negative.

Alexi V2 allows predicting deformation of the terrain. To simulate changes to

the terrain, values of the pixel intensity of the height-map are updated in a window

centered around the robot position. The intensity values (representing height) are

offset by a delta value ∆h predicted by a neural network, such that h ← h + ∆h for

each pixel in the window.
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6.2 Alexi: Version 1

6.2.1 Network Architecture

Version 1 employs two separate feed-forward neural networks, each of which are used

to predict robot speed v and change in robot yaw ∆θ respectively. As was similarly

found by Pretorius et al, using separate networks with single-node output vectors

tended to preform better than a single network used to predict all values [48]. Each

network is provided the same four input variables: vleft, vright, ϕ, and ψ.

Each network is constructed with a single hidden, in addition to the input and

output layers. The hidden layer contains 20 nodes. Nodes in the input layer use linear

activation functions, while the hidden layer and output layer use the hyperbolic tan-

gent function tanh (see Figure 6.1). The tanh function was chosen as it is symmetric

about zero with a range of (-1, 1), appropriate for the min-max normalized data fed

into each network. A coefficient for the steepness of the tanh function was chosen to

be 0.5 such that

tanh(x) =
1− e−0.5x

1 + e−0.5x



70

Figure 6.1: Activation function used in Alexi V1

Initial weights for each network were initialized using normalized initialization [30].

Using this method, weights are initialized as uniform random values in the range

(
−
√

6

nin + nout
,

√
6

nin + nout

)

where nin is the number of input connections to a node, and nout is the number of

output connections from a node.

6.2.2 Data Preprocessing

Several pre-processing stages are applied to the raw data captured from Sandbox.

These include outlier removal, normalization, quantization, and optionally the ap-

plication of an exponential smoothing filter. Each frame captured from Sandbox is

treated as an individual sample when fed into the neural network; however in this

step each variable is processed (independently from other variables) as a series across
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the frames.

Frames passed in as training input are culled based on outliers found in several

variables. Frames are removed where ∆θ > 0.25 or ∆θ < 0.25, ϕ > 1.22 or ϕ < −1.22,

ψ > 1.22 or ψ < −1.22, and where v − vµ > vσ (where vµ is the mean of v and vσ is

the standard deviation of v).

Each input and output value is min-max normalized to a value in the range (−1, 1)

by the equation

x′i =
xi − Xmax−Xmin

2
Xmax−Xmin

2

where Xmin and Xmax are the minimum and maximum values found in the series.

The quantization operation maps several ranges of value to a single value such that

x =



−0.8 −1.0 < x ≤ −0.8

−0.6 −0.8 < x ≤ −0.6

−0.4 −0.6 < x ≤ −0.4

−0.2 −0.4 < x ≤ −0.2

0 −0.2 < x < 0.2

0.2 0.2 ≤ x < 0.4

0.4 0.4 ≤ x < 0.6

0.6 0.6 ≤ x < 0.8

0.8 0.8 ≤ x < 1.0

for each value x in the series. The operation assumes the data has previously been

normalized to the range (-1,1).
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The exponential smoothing filter is implemented by the equation

yi = αxi − (1− α)yi−1

where xi is the ith input in the series.

6.2.3 Training

Each network is trained using data from a single session containing 16000 frames,

where each frame provides a training example to the network. The motion data was

generated from a tracked robot model moving about a static particle terrain. The

terrain was held static as version 1 of Alexi does not model changes in the terrain

height-map. The networks are trained using the iRPROP- algorithm available in the

FANN library [36]. iRPROP- is a variant of the RPROP (resilient backpropagation)

algorithm [15], which is in turn a learning heuristic applied to the standard backprop-

agation algorithm. A learning rate of 1.25 was used to train the network predicting v,

while a learning rate of 0.25 was used to train the network predicting ∆θ. Training of

each network is run for 2000 of epochs. The epoch which yields the lowest error on the

testing set is kept as the final network configuration, where the testing set is another

session captured from Sandbox which is not shown to the network during training.

6.2.4 Results

The metrics used to evaluate training performance of each network are the mean

squared error and the coefficient of determination (R2). These metrics are calculated

between the real output logged by Sandbox in the session used as the testing set, and

the output predicted by the neural network when given the same input values. Table

6.1 provides the MSE and R2 value for each variable predicted.
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The mean squared error, as the name implies, provides a measure of the average

difference between the expected and predicted output of a neural network (given

identical inputs). A value of zero would imply that the neural network perfectly

predicts the output, and so lower values are generally better. There is no threshold

for the MSE which is universally regarded as acceptable—the acceptable error largely

depends on the problem and the data in question. It is therefore more beneficial to

compare results with others found for a similar (or identical) problem. The coefficient

of determination represents the squared correlation between the predicted output

and the expected output. More specifically, it is a measure of the extent to which

the variance in the dependent variable (predicted output) is predictable from the

independent variable (expected output). A value of 1 implies that the dependent

variable can be predicted without error from the independent variable. Thus, higher

values a generally better and imply a better predictive ability for a neural network.

Table 6.1: MSE and R2 of each network on testing set (Alexi V1)
Variable MSE R2

v 0.0133 0.398
∆θ 0.0062 0.56

Figures 6.2 and 6.3 provide plots of the real output for each frame of the testing set

vs. the values for the same data predicted by the neural network. Plots illustrating

R2 are shown in Figures 6.4 and 6.5.
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Figure 6.2: Comparison of real and predicted values on testing set for v (Alexi V1)

Figure 6.3: Comparison of real and predicted values on testing set for ∆θ (Alexi V1)
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Figure 6.4: Scatter plot of real and predicted values on testing set for v (Alexi V1)

Figure 6.5: Scatter plot of real and predicted values on testing set for ∆θ (Alexi V1)

In the Alexi V1 2D simulator the robot correctly responds to motor commands in
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terms of speed and turn direction. We can show that the response of the robot in the

2D simulator is generally consistent with the response in Sandbox, by measuring the

correlation between variables in the system. Table 6.2 gives correlation coefficients

for two pairs of variables:

• wheel speed (vleft−vright) and ∆θ—these should correlate as it is expected that

positive or negative differences in left and right wheels speeds create a positive

or negative change in yaw

• robot speed (v) and pitch (ϕ)—expected that speed should decrease as pitch

increases

These coefficients are calculated using output values in the testing set, as well

as the output predicted by the neural networks recorded from a session in the 2D

simulation.

Table 6.2: Spearman correlation coefficients
Type (vleft − vright) vs ∆θ v vs ϕ

Simulated 0.9731 -0.0066
Testing 0.8371 0.1091

6.3 Alexi: Version 2

6.3.1 Network Architecture

Version 2 employs two separate feed-forward neural networks for robot kinematics,

each of which are used to predict robot speed v, and change in robot yaw ∆θ re-

spectively. Like V1, each network is provided vleft, vright, ϕ, and ψ as input. Our

first experiments attempted to use three networks, for each of ∆x, ∆y, and ∆θ. This

pattern is based on the networks used by Pretorius et al, where three networks were
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also used for the same output variables. The results for ∆x and ∆y are given for

comparison against the v prediction network that was eventually used in the Alexi

simulator.

A feed-forward network is also used to train the terrain update model. The network

is trained to predict changes in pixel intensity for the height-map terrain as the robot

moves. The network is given vleft, vright, ϕ, and ψ as input, as well as an array of

values representing the change in pixel intensity of the previous frame, where each

pixel maps to a single input node. The output of the network is the predicted changes

in height (pixel intensity) at each point of the height-map, such that the number of

output pixels is the same as the number of input pixels (i.e. a 1-to-1 map).

Each kinematic network has 13 hidden layers containing 7 nodes each, in addition

to the input and output layers. All layers, including the input and output layer, make

use of the hyperbolic tangent activation function tanh. Each layer adds an L2 regu-

larization term (see Section 3.1) in the weight update step, where the regularization

coefficient is 0.0001. Batch normalization is also applied for each layer. Network

weights are initialized as uniform random values in the range (−0.05, 0.05).

The terrain network has 20 hidden layers containing 500 nodes each, in addition

to the input and output layers. This network is much larger than those used for

kinematics, due the the much larger number of input and output nodes required. All

layers use a linear activation function. The network layers apply the same regulariza-

tion, batch normalization, and weight initialization parameters as those used in the

kinematic networks.
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6.3.2 Data Preprocessing

As in V1, Alexi version 2 applies several preprocessing stages to the raw kinematic

data captured from Sandbox. These again include min-max normalization and quan-

tization. A smoothing operation via convolution rather than exponential smoothing is

also applied—an array of length 250 where each element is 1
250

is convolved with each

feature series. Frames containing outliers are discarded, where
∣∣∆x−∆xµ

∣∣ ≥ 3∆xσ

or
∣∣∆y −∆yµ

∣∣ ≥ 3∆yσ. Each operation is run successively, in the order of: outlier

removal, min-max normalization, smoothing, and quantization.

Terrain data is generated from the height-map images captured by Sandbox for

each frame in a session. Each image is first cropped in a 128 × 128 pixel window

about the robots position on the height-map. This position is determined from the

positioning data stored by Sandbox for the frame. The cropped images are then

loaded sequentially and subtracted from the previous image, to store as a matrix of

intensity differences. The image differences are flattened into 1D arrays when loaded

again for training. Only those frames which were not excluded in any of the culling

operations on kinematic data are processed.

6.3.3 Training

Each network (both kinematic and terrain) is trained using data from 3 sessions

containing 64000 frames each, where each frame provides a training example to the

network. The motion data was generated from a wheeled robot model about a de-

formable SCM terrain. A fourth session, also containing 64000 frames, is used as a

testing set. Testing sets using two different terrains were generated, the height-maps

of which are shown in Figure 6.6. Only terrain A is used to generate training data. For

each session the same vehicle is used, however a different starting position is selected
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in order to generate a different path from each other session.

Figure 6.6: Terrain A (left) and Terrain B (right)

The kinematic networks are trained using the stochastic gradient descent (SGD)

algorithm provided by Keras, with default parameters (learning rate of η = 0.01,

momentum and decay of 0). Training examples are evaluated in batches of 32 frames.

Training for each network is run for 25 epochs. Mean squared error is used as the loss

function during training.

The terrain network is trained using the ‘Adam’ stochastic optimizer implemented

by Keras [37], where the loss function is again the mean squared error. Training is

run for 10 epochs, and training examples are passed to the network in batches of 32.

6.3.4 Results

Kinematic networks are evaluated quantitatively by the same metrics as used in V1:

mean squared error and coefficient of determination.

Alexi V2 was tested using configurations of two networks as well as three. Figures

6.7, 6.8, 6.9, and 6.10 provide plots illustrating MSE and R2 for the three-network
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configuration, predicting ∆x, ∆y, and ∆θ. These networks were tested using only the

testing set generated on terrain A.

Figure 6.7: Comparison of real and predicted values on testing set A for ∆x (Alexi

V2)
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Figure 6.8: Comparison of real and predicted values on testing set A for ∆y (Alexi

V2)

Figure 6.9: Linear regression plot of real and predicted values on testing set A for ∆x

(Alexi V2)
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Figure 6.10: Linear regression plot of real and predicted values on testing set A for

∆y (Alexi V2)

The two-network configuration was evaluated using data from both terrain A and

terrain B. Terrain B is used to further demonstrate the ability of the networks to

generalize, as the unseen data from terrain A still comes from the same terrain the

networks were trained against. Figures 6.11, 6.12, 6.13, and 6.14 provide plots illus-

trating MSE and R2 obtained on testing set A, using the two-network configuration

predicting v and ∆θ. Figures 6.15, 6.16, 6.17, and 6.18 provide plots for testing set B,

using the two-network configuration. MSE and R2 values are recorded in Table 6.3.

Table 6.3: MSE and R2 of each network on testing sets

Terrain A Terrain B

Variable MSE R2 MSE R2

v 0.0426 0.8828 0.0279 0.9254

∆θ 0.0003 0.9657 0.0012 0.9842
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Figure 6.11: Comparison of real and predicted values on testing set A for v

Figure 6.12: Comparison of real and predicted values on testing set A for ∆θ
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Figure 6.13: Linear regression plot of real and predicted values on testing set A for v

Figure 6.14: Linear regression plot of real and predicted values on testing set A for

∆θ
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Figure 6.15: Comparison of real and predicted values on testing set B for v

Figure 6.16: Comparison of real and predicted values on testing set B for ∆θ
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Figure 6.17: Linear regression plot of real and predicted values on testing set B for v

Figure 6.18: Linear regression plot of real and predicted values on testing set B for

∆θ

The terrain network, having 16384 output nodes, is somewhat more difficult to
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assess in terms of the MSE and R2 metrics. Given that the intent of the network is

to provide an approximation of terrain deformation about the simulated robot, it is

appropriate to observe the output of the network visually in the 2D simulator.

Figure 6.19: Screenshot of Alexi V2 demonstrating deformable terrain

As seen in Figure 6.19, the terrain appears to be deformed in along the same

trajectory as the vehicle’s movement. Several ‘lines’ across the width of the vehicle

appear to form which appear somewhat consistent with the tracks seen in the training

data generated by Sandbox. However, despite the the deformation having roughly the
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right shape and orientation, there are clearly too many ‘tracks’ being predicted along

the vehicle path. The terrain deformation shown may still be useful in in some level

of algorithm prototyping, however more accurate training of the terrain prediction

network is likely needed for it to be truly useful.

As in V1, the robot correctly responds to motor commands in terms of speed

and turn direction and its trajectory also appears to be consistent with that which is

observed in Sandbox.

6.4 Computational Performance

The 2D simulator of Alexi V1 performed considerably better than Sandbox in terms

of computational speed. On average Sandbox took 620000µs per frame, versus an

average of 285µs per frame in the 2D simulator, for an average speedup factor of

approximately 2175. The performance was measured on a laptop PC with an Intel

Core i7-4700HQ CPU, running Linux kernel 4.4.34. Each simulator was compiled

using Intel C++ compiler 16.0.3.

The 2D simulator in V2 performs also performs better than Sandbox in terms of

computational speed. On average Sandbox took approximately 150000µs per frame,

versus an average of approximately 22500µs per frame in the 2D simulator, for an

average speedup factor of approximately 9. For a terrain height-map doubled in size

from that used in training, Sandbox took an average of approximately 470000µs per

frame while the frame-time in the 2D simulator remained constant. This gives a

speedup factor of approximately 20.9.
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6.5 Discussion

This work represents one of the only known applications of neural networks to the

problem of robot simulation. Because of this, performance of the trained networks

are compared to the results obtained by Pretorius et al. All of the R2 values for

networks trained in the two-network of the V2 system are similar to those obtained

by Pretorius et al, however similar results were not obtained using explicit networks

for ∆x and ∆y in the three-network configuration. One possibility considered for

this discrepancy is the lack of motion in the y-direction by the vehicle in the training

data—when generating linear motion, the vehicle moves predominately along the x-

axis due to the vehicle’s initial orientation. This is due to programming issue within

Sandbox that causes vehicle tracks to be initially generated axis-aligned rather than

aligned to the vehicle frame. For wheeled vehicles this is not an issue, however for

conistency all vehicles are restricted to the same starting orientation. An attempt was

made to remedy this by swapping the x and y values for one of the sessions used in

the training set, however it did not have any measurable effect on the training of the

network.

Like Pretorius et al. it was found that the trained networks approximate the

robot’s motion with enough accuracy for the intended application. Despite the dis-

parity between real and predicted values at many time-steps, the predicted values

generally follow the overall trend seen in the real values. Absolute accuracy is not

necessary to capture enough of the physical model represented by the original Sand-

box simulation. Predicting only the speed of the robot rather than changes in position

appears to work equally as well, while reducing the number of networks which need

to be trained. Evaluation using testing data collected from multiple terrains shows

that the network is able to generalize to unseen environments, in addition to unseen
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data from the same environment.

The results obtained (in terms of the metrics given) are significantly better in

V2 over V1. This is likely due to the added facilities provided by Keras to aid

network training and prevent overfitting, such as batch normalization and weight

regularization.

Visual results for terrain deformation suggest that while simulation via neural

networks for this purpose is feasible, further work will be needed for better accuracy.

The terrain predictor is currently modeled as a regression problem, along the same

lines as the kinematic networks. However due to the extra complexity, a classification

network which predicts discrete vehicle ‘footprints’ for various orientations may be

more suitable.

It is worth noting that despite the promising results acheived in Alexi, the neural

networks only capture the conditions of the terrain on which they were trained. While

it has been shown that the networks can generalize across different terrain topologies,

changes to the behaviour of the terrain itself (i.e. greater friction or looser soil) will

require re-training the networks. While outside of the scope of this work, a more

robust training set would include data from both many topologies and many terrain

parameters.

6.6 Summary

We have presented in this chapter a novel robot simulator called Alexi, which is

based on neural networks rather than a traditional physics engine such as the one

used in Sandbox. Two versions of the simulator have been developed, with the second

providing far superior results in terms of network generalization. In the second version,

two network configurations were tested; one in which three networks were utilized, and
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another in which two were utilized. Both versions demonstrate considerable speed-

up over the Sandbox simulation with respect to computational performance, which

was a primary objective of this research. An early experiment in simulating terrain

deformation using a neural network was conducted; this will require further work to be

useful in any meaningful way, however the work presented here represents a valuable

first step.



Chapter 7

Conclusions

This thesis has presented a novel set of simulation software, for the purpose of sim-

ulating a robot on an uneven, deformable terrain. Taken together, the simulators

discussed (Sandbox and Alexi) represent a software pipeline. This pipeline can be

used to model a robot in a high-fidelity simulated environment (Sandbox), and cap-

ture the physics of both the robot’s movement as well as the deformation of the terrain

using a neural network, which in turn drives a much less computationally demanding

simulation (Alexi). Once terrain prediction is improved further, the simulators should

allow rapid prototyping of a terrain leveling system. In its current state, Alexi repre-

sents the first known implementation of a simulator which allows the modeling of an

uneven terrain without relying on a 3D physics engine. The ability to model a vehicle

with 3D orientation within an efficient 2D environment is novel, and offers advantages

in terms of both performance and realism over other methods. Scripted movement

for example would be much faster but lack physical modeling, while a traditional 2D

physics solver lacks the ability to incorporate 3D orientation information. Computa-

tional performance results of the Alexi simulator show that the neural network-based
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simulation is significantly faster than its more traditional counterpart, while still pro-

viding accurate robot motion. Results related to terrain deformation using a neural

network represent an early step towards this goal, but show that the idea is viable.

7.1 Future Work

This section discusses several concepts that, while outside of the scope of this thesis,

may be worthwhile to explore as an extension of the work described here. Section

7.1.1 discusses possible algorithms which may be applied to the terrain leveling prob-

lem, and tested using the Sandbox and Alexi simulation environments. Section 7.1.2

discusses possible enhancments which could be made with respect to neural network-

based simulation.

7.1.1 New Approaches to Leveling

The algorithms described in Section 4.2 are dependent on the presence of a mecha-

nism for gathering material. While the simulation carried out for evaluating those

algorithms didn’t consider it, the malfunction of such a mechanism would effectively

disable the agent. Many of the rules that have been defined for the behaviour of

these agents exist only to govern the pick-up/deposit states. Systems which assume

that the agents have some form of actuation are typically more complex mechanically,

which creates more opportunity for error. To reduce the system to a minimal set

of hardware and software, a method which does not rely on actuated earth-moving

components should be explored.

Assuming the site to be leveled is composed of granular material as described in

Section 4.1, it should be possible to level the terrain using only the motion of the

agents themselves. Without any method of explicitly gathering material, the effiency
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of the leveling operation will depend on the pattern of movement taken by the agent.

Like Algorithm 1, it is conjectured that the most efficient method should focus on

moving material from peaks to valleys in the terrain. Rather than explicitly picking

up material at a peak, a passive algorithm should instead drive each agent to seek

out peaks and maneuver about them in such a way that material is disloged. This

material will gradually be redistributed to the valleys as the agents continue moving.

A passive algorithm for leveling may still proceed by starting each agent on a

random walk, as initially no agent should have any record of the terrain configuration.

Since the system relies on the movement of the agent to dislodge the terrain, it is not

possible to make use of the rule pick-up/deposit above and below the average terrain

height. Futhermore, a land-based vehicle may not have the capacity to accurately

measure it’s altitude relative to the terrain. One possible approach simply makes use

of a magnetometer to measure the 3D orientation of the agent. As the vehicle moves,

it should check if its pitch angle crosses a particular threshold ε—if it does, we can

then increase the speed of the vehicle and proceed in a straight line. The random

walk may be resumed as the pitch crosses back below the threshold. This ‘charging’

action, if executed repeatedly, should allow material forming a peak in the terrain to
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be eroded.

Loop

for agent do

pitch← get pitch()

if pitch > ε then

set linear velocity(vclimb)

set angular velocity(0)

else if pitch ≤ ε then

set linear velocity(rand())

set angular velocity(rand())

end

Forever

Algorithm 6: Hill-sensing algorithm relying on magnetometer

Algorithm 6 has a minimal set of rules and requires very simple hardware—only

a means for the robot to move and sense its orientation. However, given the limited

amount of time the agent is likely to spend at a peak using this method, it may not

be particularly efficient. A better approach may be to perform some maneuver at the

peak, such as spinning the robot in place for some period of time. This is likely to

remove more material than merely driving over the peak, however the algorithm then

requires some method of detecting a peak rather than an incline. An approach using

the existing hardware from Algorithm 6 could continue on a straight path when an

incline is detected, but instead begin a ‘spinning’ maneuver once a decline is detected.

This method should improve on Algorithm 6 with respect to rate of material redis-

tribution, however it is not without its own issues. Relying only on a magnetometer

to detect agent orientation, which typically posess some level of internal error, means



96

that the agent may detect a peak where there is none. It may be that the detected

decrease in pitch is due to error, or that the agent has instead sensed a local maximum

rather than the global maximum. The algorithm also still relies on a random-walk

in order to find peaks, and there is no notion of memory for peaks that have been

encountered. The agents in [19] were assumed to have some means to sense the height

of the terrain, presumably by sonar or another range-finding method given that they

operated underwater. For a land-based robot, elevation could be detected in other

ways. One possibility would be to use a altimeter, keeping track of changes in eleva-

tion from the starting position. It would also be possible to use odometry (assuming

the agent posesses wheel encoders), since the agent is also aware of its orientation.

Using either of these methods, combined with odometry to allow the agent to deter-

mine its position relative to its starting location, a rough map of peak locations could

be recorded in the agents memory. This would then allow peaks to be sought out

explicitly rather than randomly, as well as allow the agents to distinguish between

local and global maxima. However, odometry over uneven granular material is not a

trivial task and may not be possible using a minimal set of hardware and software.

7.1.2 Enhancements to Neural Network-Based Simulation

Our work towards neural network-based simulation has largely incorporated elements

of work by Pretorious et al. as a starting point. We believe however that using this

work as a basis, several enhancements could be made with respect to neural network-

based simulation that may increase accuracy and generalization.

As mentioned in Section 6.5, the current system requires that the networks be

re-trained if the terrain parameters (such as friction) are changed. It should be pos-

sible to remove this limitation by training the networks on a wide variety of terrain

conditions, and providing terrain parameters as input to the network. It should be
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noted however that this would likely require significantly more training data than is

currently necessary.

The current system predicts only kinematic values v and ∆θ. It may also be

possible to make explicit use of kinetic data such as inertia. However it is also possible

that kinetics of the system are captured implicitly by the neural networks. Additional

experiments should be carried out to determine whether making explicit use of kinetics

has any measurable effect on accuracy.
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