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ABSTRACT 

Phenolic compounds in oilseeds occur in the free, esterified and insoluble-bound forms. The 

phenolics in seeds act as natural antioxidants by preventing deteriorative oxidative 

processes in foods as well as oxidative stress and various disorders in the human body once 

consumed. The free, esterified and insoluble-bound phenolics were extracted from defatted 

camelina (Camelina sativa), chia (Salvia hispanica) and sophia (Descurainia sophia) seeds 

meals. All samples were evaluated for their total phenolic content (TPC), total flavonoid 

content (TFC), and total proanthocyanidin (PC) content as well as antioxidant activity of 

their various phenolic fractions. The TPC in camelina, chia and sophia defatted meal was 

11.69 ± 0.44, 14.22 ± 0.44 and 22.40 ± 0.87 mg GAE per gram sample, respectively. The 

corresponding values for TFC were 6.81 ± 0.68, 8.45 ± 0.80 and 8.59 ± 0.13 mg CE per gram 

defatted meal, respectively. Meanwhile, the PC in camelina, chia and sophia meals was 3.73 

± 0.03, 0.08 ± 0.02 and 2.23 ± 0.06 mg CE per gram sample, respectively. Several in vitro free 

radical scavenging assays, namely 2, 2- diphenyl-1-picrylhydrazyl (DPPH) radical scavenging 

activity, trolox equivalent antioxidant capacity (TEAC), hydroxyl radical scavenging capacity 

(HRSC), reducing power (RP), β-carotene/ linoleate model system and metal chelation 

activity were investigated for all fractions. In addition, inhibition activity against lipase, α-

glucosidase, low density lipoprotein (LDL) oxidation and DNA strand scission induced by 

peroxyl and hydroxyl radicals for all fractions was examined in biological systems. High 

performance liquid chromatography (HPLC) and HPLC-tandem mass spectrometry (HPLC-

MSn) led to positive identification of 36 phenolic compounds belonging to simple phenols, 

phenolic acids and their derivatives, flavonoids and procyanidins in the three phenolic 

fractions of camelina, chia and sophia. Esterified fraction was the predominant form of 

phenolics compared to the free and insoluble bound forms of phenolics in both defatted 
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camelina and sophia seeds whereas the free phenolic fraction was the predominant form in 

defatted chia seed meal. Thus, camelina, chia and sophia seeds may serve as viable 

functional food ingredients with protective antioxidant potential but further research is 

required to confirm their cardiovascular diseases (CVD) preventive effects. 
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CHAPTER 1  
INTRODUCTION 

 

 Phenolic compounds occur widely in plants as secondary metabolites. Although the 

particular role of these secondary metabolites remains unclear, phenolic compounds are 

known to be important in the survival of a plant in its environment (Vuorela 

2005; Puupponen-Pimiä et al. 2005). In general, phenolics are synthesized by plants 

during their normal growth in response to stress conditions such as infection, wounding, 

and UV radiation, among others (Naczk & Shahidi 2004). In addition to their role in 

plants, phenolics exhibit several bioactivities beneficial to humans. Many plant-derived 

foods, herbals and medicinal products are rich in phenolic compounds that can prevent, 

treat or cure diseases (Vuorela 2005; Scalbert 1993). In particular, phenolic compounds 

have been shown to exhibit protection against coronary heart disease and 

carcinogenesis (Albishi et al. 2013; Hertog et al. 1995). Epidemiological studies have 

shown that regular consumption of phenolic rich foods such as cereals, legumes and 

oilseeds as well as their products and by-products can protect against the risk of 

cardiovascular diseases, type 2 diabetes, gastrointestinal cancers, and a range of other 

disorders (Chandrasekera & Shahidi 2010; McKeown et al. 2002). Plant phenolics include 

simple phenols, phenolic acids (both hydroxybenzoic and hydroxycinnamic acid 

derivatives), flavonoids, isoflavonoids, stilbenes, hydrolysable and condensed tannins, 

lignans, and lignins (Naczk & Shahidi 2004; Dewick 2001). Phenolic compounds in 

oilseeds exist as free, soluble conjugates and insoluble-bound forms. The distribution of 

phenolic compounds is not equal in oilseeds, and a high proportion is found in the outer 

layers, namely the aleurone layer, testa, and pericarp, which form the main components 

in the bran fraction. Although insoluble-bound phenolics are not readily available for 
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absorption, they can be released under the low pH conditions of the gastrointestinal 

tract (Chandrasekera & Shahidi 2010; Liyana-Pathirana & Shahidi 2005) and upon colonic 

fermentation (Chandrasekera & Shahidi 2010; Kroon et al. 1997). Upon release, they can 

exert a localized effect on the gut lumen or could be absorbed into the bloodstream. 

Therefore, extraction and quantification of soluble and insoluble-bound phenolics and 

determination of their antioxidant activity in chemical and biological systems is of 

paramount importance to the understanding of the potential health benefits of oilseeds. 

Camelina (Camelina sativa) is an ancient oilseed crop belonging to the Brassicaceae 

family. It is commonly known as gold of pleasure or false flax. It has been cultivated as a 

native oilseed crop in Northern Europe and Central Asia. In western Canada, camelina is 

a new oilseed crop that may have a promising future. Camelina oil is one of the most 

important edible oil sources in the world, with excellent nutritive value due to its 

abundance of essential fatty acids. The oil of camelina contains about 45% 

polyunsaturated fatty acids (PUFA), 35% monounsaturated fatty acids (MUFA), 10% 

saturated fatty acids (SFA), and up to 10% free fatty acids (FFA), as well as tocopherols, 

sterols, terpenes, and volatiles (Das et al. 2014). Camelina meal is the by-product of 

camelina deoiling process and commonly used for animal feed. Its amino acid content is 

ideal and it has a high content of fibre, several minerals, and vitamins. Defatted camelina 

meal consists of approximately 45% protein, 15% insoluble fiber, 10% soluble 

carbohydrates, 5% minerals, approximately 0.2% nucleic acids, and 4% or more of a 

mixture of phytochemical components (Aziza, Quezada, & Cherian 2010). Camelina 

contains more phenolic compounds than other oilseeds. The most significant of these 

are sinapic acid and its derivatives, most notable sinapine as is the case for canola seeds.  
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Chia (Salvia hispanica) is an annual oilseed plant that belongs to the Lamiaceae family. It 

is cultivated as a native plant in Southern Mexico and Northern Guatemala (Ayerza 

1995), and has recently been marketed as a crop in South America (Ayerza & Coates 

2011). In Canada, it is sold primarily as a health food commodity. In 2009, chia seeds 

received approval from the European Union as a novel food and can be used up to 5% in 

bread formulations (Segura-Campos et al. 2014; Commission of the European 

Communities 2009). Nowadays, chia is generally grown in Mexico, Guatemala, Bolivia, 

Argentina, Ecuador, and Australia (Segura-Campos et al. 2014; Guiotto 2013).  It has 

been demonstrated that chia has great potential as a future crop plant (Segura-Campos 

et al. 2014; Guiotto 2013). Chia seeds contain a high amount of dietary fibre, protein, α-

linolenic acid (C18:3 n-3, ALA), phenolic acids and vitamins (Rincón-Cervera et al. 2016; 

Valdivia-López & Tecante 2015; Porras-Loaiza et al. 2014). It contains a high oil content 

(25–32%), protein (18.5–22.3%), fibre (20.1–36.15%), and 59.9–63.2% α-linolenic acid as 

well as 18.9–20.1% of linoleic acid (Porras-Loaiza et al. 2014). Most of the species of the 

genus Salvia have homeopathic and horticultural importance as a source of many useful 

natural constituents, like polyphenols, such as chlorogenic and caffeic acids, myricetin, 

quercetin and kaempferol (Ixtaina et al. 2011; Reyes-Caudillo et al. 2008). Due to high 

diversity of secondary metabolites like phenolic compounds, Salvia plants possess 

excellent antioxidant capacity as well as antimicrobial activity and some are used against 

several pathological disturbances, such as atherosclerosis, brain dysfunction, and cancer 

(Cvetkovikj et al. 2013). Valenzuela et al. (2015) reported that chia oil intake provides 

good source of ALA, allows an important modification in the EPA content of erythrocytes 

in pregnant mothers and an increase of DHA in their milk. 
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Sophia (Descurainia sophia), commonly known as flaxweed, belongs to the Brassicaceae 

family, is found throughout Canada, and is well adapted to the climate of the Canadian 

Prairies where it is one of the most abundant weeds (HadiNezhad et al. 2015; Best 

1977). Sophia has been used as a traditional medicine in many countries including China, 

India, and Iran (Khan et al. 2012). The seed is edible in the cooked or raw forms and 

contains 28 % protein, 33 % oil, and 4 % minerals (WHO 1997). The oil of sophia seed is 

good source of fatty acids which contain 69.91% polyunsaturated fatty acids (PUFAs), 

21.79 % monounsaturatd fatty acids (MUFAs) and 8.30% saturated fatty acids (SFA) 

(HadiNezhad et al. 2015). Among PUFAs, the omega-3 fatty acids predominated (51.30%) 

(HadiNezhad et al. 2015). The seed is a rich source of bioactive compounds such as 

phenols, phenolic acids, flavonoids and flavonoid glycosides. Phenolic compounds such 

as p-hydroxybenzoic acid, isovanillic acid, p-hydroxybenzaldehyde, syringic acid, and 4-

hydroxy-3, 5-dimethoxybenzaldehyde have been isolated from the whole seeds and 

meal of sophia (HadiNezhad et al. 2015; Sun 2005). 

Although there have been studies on the free phenolics and their antioxidant activity in 

camelina meal (Terpinc et al. 2016; Terpinc et al. 2012); chia meal (Reyes- Caudillo et al. 

2008; Marineli et al. 2014; Taga et al. 1984) and sophia meal (HadiNezhad et al. 2015; 

Sun 2005), there appears to be very little information available on the esterified and 

insoluble-bound phenolics in camelina (Terpinc et al. 2011) and none on the esterified 

and insoluble-bound phenolics in chia and sophia seeds. In the present study, the 

phenolic constituents of defatted camelina, chia and sophia seed meals were extracted 

by using an ultrasonic-assisted technique and alkaline hydrolysis and fractionated into 

their respective free, esterified (soluble), and insoluble-bound forms and the relative 
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proportions of various phenolic acids determined, both chemically and by using high-

performance liquid chromatography-tandem mass spectrometry (HPLC-DAD-MS/MS). To 

the best of our knowledge, this is the first study that extensively examines all three 

forms of phenolics in defatted camelina, chia and sophia seed meals by both Folin 

Ciacalteu test and HPLC-DAD-MS/MS along with their contribution to the antioxidant 

and biological potential in several in vitro chemical systems.   
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Phenolics and polyphenolics 

In the last few decades, phenolic compounds have gained increasing interest by 

researchers throughout the world. More research on phenolics and especially on 

polyphenolics is being done regularly because of their health benefits and due to their 

relatively large daily intake in food, including cereals, legumes, pulses, fruits, and 

vegetables that are responsible for many bioactivities. These compounds are potent 

antioxidants in food and biological systems and are involved in enzyme deactivation, 

apoptosis of certain cancerous cells, DNA repair, cell damage prevention, LDL oxidation 

inhibition and many other associated effects. Thus, they reduce the risk of development 

of several diseases due to their antioxidant power, among other factors in the human 

body. Figure 2.1 shows how research on phenolics has intensified since 1980 to 2016 

(Source: Scopus, January 2017). 
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Figure 2.1. Number of publications with the keyword “phenolics” (Scopus, January 2017) 
 
2.2 Occurrence of phenolics in plants 

Plant metabolism and metabolites can be divided into primary and secondary. Generally, 

primary metabolism-originated compounds are mainly lipids, proteins, carbohydrates, 

and nucleic acids. These compounds are essential for plant to maintain its cell activity, 

among others (Giada 2013). On the other hand, secondary metabolism- originated 

substances such as phenolics, terpenoids, alkaloids and cyanogenic glycosides are 

produced from several biosynthetic pathways and play multiple functions in plant 

protection and human health (Giada 2013; Vickery & Vickery 1981). Among secondary 

metabolites, phenolic compounds are of the biggest and most widely distributed group 

of compounds in plants and are well studied for their antioxidant activity and other 

effects (Giada 2013; Scalbert & Williamson 2000).  
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Phenolics are synthesized by plants during normal development and are involved in 

response to stress conditions such as infection, wounding, and UV radiation, among 

others (Shahidi & Naczk 2003; Naczk & Shahidi 2004). In general, plant phenolics are 

derived from two aromatic amino acids, namely phenylalanine and tyrosine (Figure 2.2) 

through two metabolic pathways: the shikimic acid pathway, where, mainly, 

phenylpropanoids are formed and the acetic acid pathway in which the main products 

are the simple phenols (Shahidi & Naczk 2003; Naczk & Shahidi 2004; Giada 2013; 

Sánchez-Moreno 2002). Most plant phenolics are synthesized through the 

phenylpropanoid pathway (Giada 2013; Hollman 2001). The combination of both 

pathways leads to the formation of flavonoids, the most plentiful group of phenolic 

compounds in nature (Giada 2013; Sánchez-Moreno 2002). Additionally, condensation 

and polymerization processes lead to the formation of condensed tannins. Meanwhile, 

hydrolysable tannins are derivatives of gallic acid or hexahydroxydiphenic acid (Naczk & 

Shahidi 2004; Shahidi & Naczk 2003; Giada 2013; Stafford 1983).  
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Figure 2.2. Synthesis of phenylpropanoids, stilbenes, lignans, lignins, flavonoids and 

tannins from phenylalanine through different enzymatic pathways. (Source: Naczk & 

Shahidi, 2004) 
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2.3 Classification and chemistry of phenolic compounds 

Phenolic compounds are the major and most common group among the approximately 

50,000 secondary plant metabolites (Grassmann et al. 2002). In plants, they are 

important constituents having several functions from overall fitness regulation to plant 

defence mechanism against insects, pathogens and extreme environmental conditions. 

As dietary phytochemicals for humans, phenolics exhibit a wide range of functional and 

biological activities. These activities depend on chemical structures of phenolic 

compounds. Phenolic compounds can be classified in different ways because they 

constitute many heterogeneous structures that range from simple molecules to highly 

polymerized compounds characterized by an aromatic ring with one or more hydroxyl 

groups. The aromatic ring (s) may also bear other functional substituents such as esters, 

methyl ethers and glycosides, and thus contributing to the great diversity of their 

structures. There are more than 8000 phenolic compounds identified in fruits, 

vegetables, seeds and related products. According to their distribution in nature, 

phenolic compounds in plants can be divided into two classes (Figure 2.3); simple 

phenolics which include various simple phenols, pyrocatechol, hydroquinone, and 

resorcinol, as well as aldehydes which are derived from benzoic acids that are 

components of essential oils, such as vanillin, and secondly complex phenolics which are 

divided into phenolic acids, such as hydroxybenzoic and cinnamic acid derivatives, 

flavonoids and their derivatives, coumarins, stilbenes, lignans and their polymerized 

counterparts, such as tannins and lignins. 

 As noted above, phenolics are generally classified into different groups. According to 

their location in the plant, phenolic compounds may also be classified as soluble 
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phenolics which include various simple phenols, flavonoids and tannins of low and 

medium molecular weight not bound to membrane compounds and insoluble-bound 

phenolics which are bound to cell wall polysaccharides and proteins to form insoluble-

bound complexes. The soluble phenolic fraction includes both free and soluble 

conjugates, which are responsible for the in vitro antioxidant capacity of the extracts. On 

the other hand, phenolics in the insoluble-bound form are covalently bound to cell wall 

structural components (Acosta-Estrada et al. 2014; Wong 2006). They serve multiple 

functions in the cell wall by providing both physical and chemical barriers, protection 

against pathogen invasion and astringency that deters attack by insects and animals, 

antibacterial, antifungal and antioxidant functions (Acosta-Estrada et al. 2014; Liu 2007; 

Sancho et al. 2001). This classification is useful from the nutritional viewpoint, to the 

extent that their metabolic fate in the gastrointestinal tract and the physiological effects 

of each group will depend largely on their solubility characteristics. Insoluble-bound 

phenolic compounds are not digested, but may be partially fermented in the colon, and 

mostly or fully recovered in the feces, while a part of the soluble phenolics can cross the 

intestinal barrier and found in the blood, unchanged or as metabolites (Giada 2013; 

Sánchez-Moreno 2002). The antioxidant activity of food phenolic compounds is of 

nutritional interest, since it has been associated with the potentiation of the promotion 

of human health through prevention of several diseases (Lampe 1999).  
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Figure 2.3. Classification of phenolic compound according to their distribution in plants 

 

Figure 2.4. Classification of phenolic according to their location in plant foods 
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2.2.1 Phenolic acids and derivatives 

Phenolic acids may constitute about one-third of the phenolic compounds in the human 

diet (Yang et al. 2001). Phenolic acids can be divided into two groups: benzoic acids and 

cinnamic acids and derivatives. Hydroxybenzoic acids have seven carbon atoms (C6-C1) 

and are the simplest phenolic acids found in nature. Cinnamic acids have nine carbon 

atoms (C6-C3). The general chemical formulas and names of the main benzoic and 

cinnamic acids are given in Figures 2.5 and 2.6, respectively. In the group of benzoic 

acids, most common phenolic acids are protocatechuic acid, vanillic acid, yringic acid, 

gentisic acid, salicylic acid, p-hydroxybenzoic acid and gallic acid (Sánchez-Moreno 2002). 

Among the cinnamic acids, p-coumaric, ferulic, caffeic and sinapic acid are most common 

in nature (Young et al. 2001). It has been documented that phenolic acids and their 

esters have high antioxidant activity, especially hydroxybenzoic and hydroxycinnamic 

acids and their derivatives such as chlorogenic acid, and although other characteristics 

also contribute to the antioxidant activity of phenolic acids and their esters, this activity 

is partly determined by the number of hydroxyl groups found in the molecules involved. 

In general, the hydroxylated cinnamic acids are more effective than their benzoic acids 

counterparts due to better radical scavenging activity arising from an additional 

resonance form possible for cimmanic acid derivatives (Shahidi & Naczk 1998; Sánchez-

Moreno 2002). 



14 
 

 

Figure 2.5. The basic formula and names of the main benzoic acids (Source: Giada 

2013) 

 

 

Figure 2. 6. The basic formulas and names of the main cinnamic acids (Source: Giada 

2013) 
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2.2.2  Flavonoids and derivatives 

Flavonoids are important constituents of the human diet and are the most widely 

distributed and studied phenolic compounds in plant foods (Bravo 1998). They are most 

potent antioxidants from plants with excellent activity which  is related to the presence 

of hydroxyl groups in positions 3' and 4' of the B ring, which confer high stability to the 

formed radical by participating in the displacement of the electron, and a double bond 

between carbons C2 and C3 of ring C together with the carbonyl group at the C4 position, 

which makes the displacement of an electron possible from ring B. Additionally, free 

hydroxyl groups in position 3 of ring C and in position 5 of ring A, together with the 

carbonyl group in position 4, are also important for the antioxidant activity of these 

compounds (Sánchez-Moreno 2002). However, the effectiveness of flavonoids decreases 

with the substitution of hydroxyl groups with sugars, the glycosides so formed being less 

antioxidantive than their corresponding aglycones (Rice-Evans 1996). 

 

Figure 2.7: Basic structure of flavonoids  

According to the degree of hydroxylation and the presence of a C2-C3 double bond in the 

heterocyclic pyrone ring, various flavonoids can be found in plants. Most common 

flavonoids are represented by flavonols, flavanols, flavones, isoflavones, flavan-3-ol 
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anthocyanidins or anthocyanins and flavanones which are structurally different 

according to the degree of hydrogenation and hydroxylation of the three ring systems 

involved with various functions in plants. Flavonoids also occur as sulphated and 

methylated derivatives, conjugated with monosaccharides and disaccharides and 

forming complexes with oligosaccharides, lipids, amines, carboxylic acids and organic 

acids, that constitute approximately 8000 compounds (Duthie et al. 2003). While certain 

classes of flavonoids (e.g. flavonones) are colourless, the others (e.g. anthocyanins) are 

always coloured, such as flower pigments and other plant parts (Harborne 1980). The 

basic chemical structures of the main classes of flavonoids are presented in Figure 2.8. 

Table 2.1. Common sources of flavonoids and their derivatives 

Flavonoids Flavonoids derivatives Major sources 

Flavonol Quercetin, Rutin, 
Myricetin, 

Kaempferol  

Tea, Red wine, 
Tomato, Apple, Cherry, 
and Onion 

Flavanols Catechin, Epicatechin, 
Gallocatechin 

Tea and Apple 

Flavones  Apigenin, Luteonin, 
Chrysin 

Thyme and Parsley 

Isoflavones Genistein, Glycitein, Soya bean and other 
legumes 

Flavanones Hesperidin, Narigenin Grape fruit and Orange 

Flavanonols Taxifolin, Engeletin, 
Astilbin 

White grape skin, 
Lemon and Sour 
orange 
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Figure 2.8. Backbone chemical structures of the main classes of flavonoids.  
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2.2.3 Tannins 

Tannins are phenolic compounds with intermediate to high molecular weights (500-3000 

Da) (Giada 2013; Sánchez-Moreno 2002) and classified into two major groups: 

hydrolysable tannins and non-hydrolysable or condensed tannins, also known as 

proanthocyanidins (Chung 1998). The hydrolysable tannins have a central glucose or a 

polyhydric alcohol partially or completely esterified with gallic acid or 

hexahydroxydiphenic acid, forming gallotannins and ellagitannins, respectively (Okuda et 

al. 1995). These metabolites are readily hydrolyzed with acids, bases or enzymes. 

However, they may also be oxidatively condensed to other galoyl and 

hexahydroxydiphenic molecules and form polymers of high molecular weight. The best 

known hydrolysable tannin is tannic acid, which is a gallotannin consisting of a 

pentagalloyl glucose molecule that can additionally be esterified with another five units 

of gallic acid (Bravo 1998). The condensed tannins are polymers of catechin and/or 

leucoanthocyanidin, not readily hydrolyzed by acid treatment, and constitute the main 

phenolic fraction responsible for the characteristics of astringency of foods (Giada 2013). 

Although the term condensed tannins is still widely used, the chemically more 

descriptive term "proanthocyanidins" has gained more acceptance. These substances 

are polymeric flavonoids. The proanthocyanidins most widely studied are based on 

flavan-3-ols (-)-epicatechin and (+)-catechin (Stafford 1983). The chemical structures of 

hydrolysable tannin and proanthocyanidins (nonhydrolyzable or condensed tannins) are 

shown in Figure 2.9. 
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Figure 2.9. Chemical structures of hydrolysable tannin and proanthocyanidins 

(nonhydrolyzable or condensed tannins).  (Source: Naczk & Shahidi, 2004) 
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2.4 Sources, extraction methods and analysis of phenolics 

Phenolics are present abundantly in plant sources and their content may vary depending 

on the species and cultivar as well as environmental and agronomic conditions. The most 

common natural sources of phenolics and polyphenolics include fruits, vegetables, 

legumes, cereals, oilseeds, nuts, herbs and spices, among others. Fruits are rich sources 

of phenolic compounds and their antioxidant and biological activity in vitro systems has 

been well documented. Berries, grapes, apples, citrus, and pomegranates are among the 

common fruits available globally and serve as good sources of phenolics, especially 

flavonols (e.g. quercetin, kaempferol, myricetin and isorhamenetin), proanthocyanidins 

(e.g. procyanidins and prodelphinidins) and phenolic acids (mostly in esterified form, e.g. 

sinapic, gallic, ferulic, coumaric, caffeic and chlorogenic acids) (Zhong 2010). Stilbenes 

are predominant phenolics present in grape skin, leaves, seeds and stems as monomeric, 

oligomeric and polymeric forms. Resveratrol is the predominant stilbene found in grape 

skin as well as in wilting berries (Versari et al. 2001). Pomegranates are rich in 

hydrolysable tannins, particularly the gallagyl type tannins (e.g. punicalagin), its content 

is in the range of 150-190 mg/L juice (Gil et al. 2000).  

Vegetables are a rich source of phenolics and polyphenols. The content and composition 

of phenolics in various groups of vegetables have been reviewed (Shahidi & 

Ambigaipalan 2015; Shahidi et al. 2010). Onions are a rich source of flavonoids of which 

quercetin is the most predominant one (Galdon et al. 2008). Roots (carrots, beets) and 

tubers (sweet potatoes, potatoes) are good sources of chlorogenic and caffeic acids 

while betalains contribute to the colour of beets. Green leafy vegetables such as lettuce, 

spinach and kale contain high levels of flavonoids at 0.80 - 2.241 mg/g fresh weight 
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(Howard et al. 2002). Phenolics are also found in flowers (broccoli and artichoke) and 

stems (asparagus) of vegetables at varying levels and compositions.  

Cereals, legumes, oilseeds and nuts are recognized as good sources of phenolics with 

high amounts of phenolic acids and flavonoids that present in the aleurone layer of 

grains and seeds. In beans, a higher level of phenolics was detected in the hulls (6.7-27.0 

mg catechin equivalents/g extracts) than in whole seeds (4.9-9.36 mg/g extracts) 

(Madhujith & Shahidi 2005). Major phenolic acids present in bean hulls include vanillic, 

caffeic, p-coumaric, ferulic and sinapic acids. These phenolic acids were also found in 

wheat bran at higher levels compared to its corresponding flour (Liyana-Pathirana & 

Shahidi 2007). Oilseeds are a potential source of phenolic acids and flavonoids. The 

major phenolic compounds present in oilseed are various phenolic acids, coumarins, 

flavonoids, tannins and lignins. In the family of brassica oilseeds, sinapic acid is the 

dominant phenolic acid.    

Several extraction methods have been employed for the extraction of plant phenolics. 

The solvent extraction for phenolic compounds includes solid–liquid extraction (SLE), 

and liquid–liquid extraction, among others. Solvent extraction technique was mainly 

used in a laboratory scale (Kartsova & Alekseeva 2008). This technique has several 

drawbacks like use of a high volume of solvents, low selectivity, low extraction efficiency, 

long extraction time, solvent residue, and environmental pollution. Many novel 

extraction techniques have been developed and applied for the extraction of phenolic 

compounds without loss of their activity such as supercritical fluid extraction (SFE), 

ultrasound-assisted extraction (UAE), enzyme-assisted extraction (EAE), microwave-

assisted extraction (MAE), and pressurized liquid extraction (PLE). These techniques are 
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characterized by higher extraction yield, shorter extraction time, and final extract 

obtained in a solvent-free environment as a concentrate of biologically active 

compounds (Michalak & Chojnacka 2015; Kadam et al. 2013; Ibanez et al. 2012; Jeon et 

al. 2012). However, among all novel techniques, SFE method is preferred in the food and 

pharmaceutical industries because of minimal or no use of organic solvents, faster 

extraction rate and high yield without loss of activity of bioactive compounds (Michalak 

& Chojnacka 2015; Kadam et al. 2013; Ibanez et al. 2012). In addition to extraction from 

natural plant sources, some high-value phenolic compounds are also prepared by 

chemical or enzymatic synthesis and plant cell cultures as well as biosynthesis by 

microorganisms. Separation of phenolics may be necessary when one or more specific 

compounds are of interest in various plants/food materials and biological fluids (e.g. 

urine, plasma, blood serum, saliva). Techniques such as HPLC, LC-MS, LC-MS/MS and 

TLC, and electrophoresis such as capillary zone electrophoresis and micellar 

electrokinetic chromatography are among the main physicochemical methods for 

separation of phenolics (Zhong 2010; Kartsova & Alekseeva 2008). 

2.5  Phenolic compounds as antioxidants 

2.5.1 Lipid oxidation  

Lipid oxidation is a major cause of food quality deterioration and also has negative 

effects in biological systems. The oxidation of foods may occur during harvesting and 

upon processing and storage. The oxidation process has several effects in foods such as 

development of off-odours and off-flavours, loss of essential fatty acids, fat soluble 

vitamins and other bioactives, and even formation of potentially toxic compounds 

(Zhong 2010; Shahidi 1994), thus decreasing shelf-life and nutirion of foods as well as 
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altering their texture and colour (Albishi 2012; Alamed et al. 2009). In vivo biological 

systems, oxidation has adverse cellular effects and may cause various diseases and 

health conditions including, atherosclerosis, inflammation, cancer and aging, among 

others (Kruidenier & Verspaget 2002; Floyd & Hensley 2002; Davies 2000; Dalton et al. 

1999).    

Lipid oxidation of foods has been well studied as it relates to nutritional and sensory 

quality of food and food products. Lipids are susceptible to oxidation because of their 

fatty acid composition, processing and storage conditions as well as presence of 

endogenous and exogenous antioxidants. Lipid oxidation is quite a complex process, 

which includes autoxidation, photooxidation, thermal and enzymatic oxidation (Shahidi 

2000; Vercellotti et al. 1992). The unsaturated fatty acids lose a hydrogen atom and 

produce free radicals in the presence of initiators and the reaction can be catalyzed by 

light, heat, transition metal ions (Cu2+, Fe2+ etc.), haemoproteins, metalloproteins and 

cellular enzymes such as lipoxygenase. These lipid radicals subsequently react with 

oxygen and form peroxyl radicals, which act as the chain carriers of the rapidly 

progressing reaction by attacking new lipid molecules. This self propagating and self 

accelerating reaction may be repeated many times until no hydrogen source is available 

upon which radicals meet each other and the termination process, or the chain is 

interrupted by antioxidants or other means (Zhong 2010; de Man 1999). 

Autoxidation is one of primary pathways that degrades lipids in food. It occurs via a free 

radical mechanism in which atmospheric oxygen is added to the unsaturated fatty acid 

chains of lipid molecules. The reaction can be catalyzed by various initiators as 

mentioned above. Autoxidation with the three aforementioned steps of initiation, 
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propagation and termination, leads to a series of complex chemical changes (Shahidi & 

Zhong 2005; Shahidi & Wanasundara 1992).  A simplified scheme explaining the 

mechanism of autoxidation is given in Figure 2.10.  

 

Figure 2.10.  Simple schematic pathways of lipid autoxidation reaction mechanism  

Oxidation in lipid-containing foods proceeds very slowly at the initial stage until crosses 

the induction period after which a sudden increase occurs. This initiation process (I) is 

quite complex and involves removing of a hydrogen atom from the lipid molecule (LH) to 

form a lipid radical (L·). Conjugated dienes and trienes are formed because of the 

rearrangement of the methylene interrupted double bonds in polyunsaturated fatty 

acids (PUFA). These conjugated dienes and trienes are good indicators of lipid oxidation 

(Shahidi & Zhong 2005). During propagation (II), the highly reactive alkyl radical of 

unsaturated fatty acids (L·) can react with atmospheric oxygen and form peroxyl radical 

(LOO·) or abstract a hydrogen atom from another lipid molecule (III) and form 

hydroperoxides (LOOH). These hydroperoxides are primary products of oxidation. 

Hydroperoxides are unstable and break down to a wide range of secondary oxidation 
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products, including aldehydes, ketones, alcohols, hydrocarbons, volatile organic acids 

and epoxy compounds, among others, some of which have undesirable odours with very 

low threshold values. Meanwhile, alkoxyl (LO·), peroxyl (LOO·), hydroxyl (·OH) and new 

lipid radicals (L·) are generated from the decomposition of hydroperoxides, and further 

participate in the chain reaction of free radicals. In the termination stage of oxidation 

(IV), radicals neutralize each other through radical-radical coupling or radical-radical 

disproportionation to form stable non-radical products, including a variety of polymeric 

compounds (Zhong 2010; Erickson 2002).  

2.5.2 Mechanism of antioxidant action of phenolic compounds 

Antioxidants are compounds that can delay or inhibit the oxidation of lipids or other 

molecules by inhibiting the initiation or propagation of oxidizing chain reactions (Sang et 

al. 2002; Velioglu et al. 1997). Antioxidants have been used globally by food 

manufacturers for stabilizing food lipids. When added to foods, antioxidants reduce 

deteriorative processes and rancidity, retard the formation of toxic oxidation products, 

maintain nutritional quality, and increase shelf life (Sang et al. 2002; Jadhav et al. 1995). 

In the health-related areas antioxidants are used for health promotion due to their 

ability to protect the body against oxidative damage. They may be broadly classified 

based on their mode of action into primary antioxidants which break the chain reaction 

of oxidation by scavenging free radical intermediates, and secondary antioxidants, which 

prevent or retard oxidation by deactivation of oxidation initiators/accelerators or 

regeneration of primary antioxidants. Phenonic compounds and their derivatives can act 

as primary and, depending on their chemical structure, as secondary antioxidants due to 

their redox properties, which can play an important role in neutralizing free radicals, 

quenching singlet and triplet oxygen, or decomposing peroxides and other reactive 
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oxygen species (ROS), metal ion chelators, quenchers of secondary oxidation products, 

and inhibitors of prooxidative enzymes, among others (Shahidi & Zhong 2007; Sang et al. 

2002; Osawa et al. 1995). Basically, the antioxidant action of phenolic compounds 

depends on the number and arrangement of the hydroxyl groups in the molecules of 

interest (Cao et al. 1997; Sang et al. 2002), among other factors. Phenolic compounds 

(AH) can donate hydrogen atoms to lipid radicals and produce lipid derivatives and 

antioxidant radicals (Reaction I), which are more stable and less readily available to 

promote autoxidation (Kiokias et al. 2008; Shahidi et al. 1992). The antioxidant free 

radical may further interfere with the chain-propagation reactions (Reactions II and III).  

 

Figure 2.11. Antioxidant action of phenolic compounds 

 

Figure 2.12. Resonance stabilization of phenoxyl radical 

The resultant phenolic radicals are stabilized by delocalization of the unpaired electron 

around the phenol ring to form a stable resonance hybrid (Reische et al. 2002). These 

radicals have low reactivity and generally do not initiate the formation of new radicals, 

thus breaking the chain-reaction of free radical propagation (Nawar 1996). Moreover, 
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the phenolic radicals so formed can further scavenge free radicals by participating in the 

termination of oxidation. Therefore, phenolic antioxidants can trap two lipid radicals by 

donating a hydrogen atom to one radical and receiving an electron from another radical 

to form stable non-radical products (Young & Woodside 1999). Phenolic compounds may 

also act as secondary antioxidants that prevent or retard oxidation by suppressing the 

oxidation promoters, including metal ions, singlet oxygen, prooxidative enzymes and 

other oxidants. Phenolics, as reducing agents, can reduce lipid peroxides and related 

oxidants through redox reactions, and are also referred to as oxygen scavengers. Metal 

ions act as catalysts of oxidation reaction by producing free radicals through electron 

transfer (as shown below), but may be chelated by some polyphenols, hence being 

deactivated. 

 

Figure 2.13. Metal chelation mechanism of phenolic compounds 

2.6 Health benefits and bioavailability of phenolic compounds 

Regular consumption of fruits, vegetables, legumes and various edible oilseeds may 

lower the risk of many diseases, including inflammation, cardiovascular disease (CVD), 

cancer, diabetes and neurodegenerative diseases.  Many of the in vitro and in vivo 
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studies have shown that phenolics and polyphenolics possess antioxidant, anti-

inflammatory, antiatherogenic, anticarcinogenic, antidiabetic, anti-allergic, antimicrobial 

and antiviral activities, among others. The mechanisms of these biological activities of 

phenolics and their related health effects have been reviewed (Zhong 2010; Aron & 

Kennedy 2008; Scalbert et al. 2005). Fruits, vegetables and various edible seeds are good 

sources of hydroxycinnamic acid conjugates and flavonoids. These phenolic compounds 

show a wide range of antioxidant activities in vitro (Shahidi & Ambigaipalan 2015; Rice-

Evans et al. 1995) and are believed to exert protective effects against major diseases 

such as cancer and cardiovascular diseases (Shahidi & Ambigaipalan 2015; Boudet 2007). 

The health benefits of dietary phenolic compounds and flavonoids depend on the 

bioavailability of the individual compound during metabolism in the body. Increasing 

evidence shows that hydroxycinnamic acid derivatives and flavonoids can be absorbed 

into the human body in amounts that are, in principle, sufficient to exert antioxidant or 

other biological activities in vivo (Shahidi & Ambigaipalan 2015; Olthof et al. 

2001; Scalbert & Williamson 2000). Dietary polyphenols are substrates for β-

glucosidases, UDP-glucuronosyltransferase, or catechol-O-methyltransferase in the small 

intestine. Polyphenols taken from dietary sources are hydrolysed and degraded in the 

colon because of the activity of enzymes of the colonic microflora and show various 

bioactivities (Shahidi & Ambigaipalan 2015; Booth et al. 1957). Rechner et al. 

(2002) found that intact conjugated polyphenols are present at much lower levels than 

their degradation products due to the hydrolysis by colonic bacterial enzymes during 

metabolism in the liver. Grape anthocyanidins were found to be effective in preventing 

stomach mucosal injury induced by acidified ethanol, and their antiulcer property was 

thought to be due to both antioxidant activity and proteins binding ability (Saito et al. 
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1998). It has been reported that flavonoid intake from fruits and vegetables was 

inversely associated with all cause cancer risk and cancer of the alimentary and 

respiratory tract (Hertog et al. 1994). Quercetin was reported to show vasoactive and 

gastroprotective effects, as well as inhibition against heterocyclic amine (HCA)-induced 

mutagenesis (Alarcon 1994; Kahraman et al. 2003). Proanthocyanidin A2 treatment 

effectively modulated expression of antioxidant enzymes and decreased UVB-induced 

skin tumours (Pan & Ho 2008). Isoflavones in soybean exhibit estrogenic activities and 

may protect against hormone-related cancer and cardiovascular diseases (Adlercreutz & 

Mazur 1997; Lichtenstein 1998). Recent research findings indicate that tea polyphenols 

can protect against different stages of carcinogenesis (Khan & Mukhtar 2010). EGCG 

(epigallocatechin-3-gallate), the main catechin in green tea, serves as a cancer 

chemopreventive agent (lungs, liver, gastrointestinal tract, skin and prostate cancer), as 

well as anti-obesity and cardiovascular protective compound (Khan & Mukhtar 2010; 

Klaus et al. 2005; Yang & Wang 1993). The antioxidant activity and beneficial health 

effects of EGCG as the main polyphenol of green tea was enhanced upon conjugation 

with docosahexaenoic acid (DHA) and the tetra ester so formed was able to arrest colon 

cancer effectively (Zhong, Chiou, Pan, Ho, & Shahidi 2012). Other bioactivities of 

phenolics include antiviral, anti-allergic, antidiabetic and analgesic properties, among 

others (Musci 1986; Nguyen et al. 1999; Hossain et al. 2008). 

2.7 Phenolics and polyphenolics of camelina seeds 

Camelina is an ancient oilseed crop. It has many vernacular names such as false flax and 

gold of pleasure (English), lendotter (German), and dorella (Italian) (Hrastar et al. 2009). 

It belongs to the cruciferae family (Brassicaceae), which includes mustard, canola, 
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rapeseed, crambe, broccoli, cabbage, cauliflower and several other vegetable and 

oilseed crops (Hrastar et al. 2009; Grady & Nleya 2010). It is a plant native to Northern 

Europe and Southeast Asia where it has been grown for at least 3,000 years. As an 

agricultural crop, camelina was grown in Europe and the former Soviet Union through 

World War II (Grady & Nleya 2010). Camelina is a new promising crop in Canada. It is 

widely cultivated in Canada and USA. In Montana (USA), camelina has been grown for 

the last several years on a commercial scale. The National Agricultural Statistics Service 

office reported 22,500 acres of camelina planted in 2007 and 12,200 acres in 2008 in 

Montana. Camelina is a cool-season crop. Plants are 2–3-feet tall at maturity. Seedpods 

are pear shaped and contain 8–10 seeds. The seeds are reddish-brown in colour and very 

small (less than 1/16 inch). Camelina is more resistant to seed shatter than canola (Grady 

& Nleya 2010). 

The main product of camelina is its oil. The seeds of camelina contain around 30-40% oil 

on a dry weight basis. Usually, the oil is produced from seeds by crushing and warm 

pressing. The oil produced from the seeds is partly used as an edible oil, but most of it is 

used as a traditional home remedy, where it is thought to be useful for the treatment of 

stomach and duodenal ulcers, or applied topically for the treatment of burns, wounds 

and eye inflammations (Terpinc et al. 2012). The oil is a good source of essential and 

highly unsaturated fatty acids. It contains a high amount of oleic acid C18:1n-9 (15-20%), 

linoleic acid C18:2n-6 (15-20%), omega-3 (ω3) α-linolenic acid C18:3n-3 (30-40%), 

eicosenoic acid C20:1n-9 (15-20%), low content of erucic acid C22:1n-9 (about 3%), and 

high content of tocopherols (700 mg/kg) and phenolic compounds (128 mg/kg as 

chlorogenic acid), making it more stable toward oxidation than highly unsaturated 

linseed oil (Hrastar et al. 2009; Zubr & Matthäus 2002; Budin et al. 1995; Abramovič et 
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al. 2007). The high contents of ALA, tocopherols and other antioxidants make camelina 

oil nutritionally very attractive. During metabolism, α-linolenic acid is converted to some 

extent to the long-chain omega-3 fatty acids eicosapentaenoic acid (EPA, 20:5) and 

docosahexaenoic acid (DHA, 22:6) in the body (Kirkhus et al. 2013; Barceló-Coblijn & 

Murphy 2009). It has been reported that the intake of camelina oil compared to 

rapeseed oil gives significantly higher serum concentrations of ALA, EPA, and DHA, as 

well as a decrease in serum cholesterol in hypercholesterolaemic subjects (Kirkhus et al. 

2013; Karvonen et al. 2002). The health benefits of EPA and DHA are well documented, 

including their protective effects on cardiovascular disease and autoimmune and mental 

disorders (Kirkhus et al. 2013; Calder 2006; McCann & Ames 2005; Mozaffarian 2008), 

but there is also a growing body of scientific data supporting the idea that 18:3 may 

exert beneficial effects by mechanisms other than simply acting as a precursor for EPA 

and DHA (Kirkhus et al. 2013; Boelsma 2001; Djoussé et al. 2005; Guizy et al. 2008; 

Nelson et al., 2007; Zatonski et al. 2008; Zhao et al. 2007). Camelina oil also contains 

phytosterols, which are known to have a cholesterol-lowering effect (Katan et al. 2003; 

Miettinen et al. 1995) and natural antioxidants such as tocopherols (vitamin E). Camelina 

oil is particularly rich in γ-tocopherol (Schwartz et al. 2008), making it very resistant to 

oxidation (Ehrensing & Guy 2008; Szterk et al. 2010). The consumption of camelina oil 

can help improving the general health of the population to desired levels (Waraich et al. 

2013; Zubr 1997; Rokka et al. 2002; Lu and Kang 2008). Camelina oil is helpful in the 

regeneration of cells, skin elasticity and slenderness recovery (Waraich et al. 2013; 

Vollmann et al. 1996).    

Camelina meal, obtained after oil extraction from the seeds typically contains 10–12% oil 

and 40% protein. It may be used to enhance the food quality of fish, meat, poultry, and 
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dairy products (Grady & Nleya 2010). The oilseed from Camelina sativa is of interest 

from an aquaculture perspective. Camelina meal is used as aquaculture feed. Hixson, 

Parrish and Anderson (2014) conducted a study on the use of camelina oil in the diet of 

farmed salmonids and Atlantic cod. They found significant omega-3 enrichment in fish 

tissue fatty acid profile including fish growth development. Camelina meal may also be 

used to produce omega-3 enriched meat, milk, and eggs. The US Food and Drug 

Administration (FDA) allows the use of camelina meal for up to 10% by weight of the 

total dietary ration fed to poultry broilers and has limited approval in Montana for up to 

2% by weight of the total ratio fed to feed lot beef cattle and growing swine (Grady & 

Nleya 2010). However, the meal contains anti-nutritive compounds (glucosinolates) that 

can reduce livestock performance at high concentrations. Research has been conducted 

on the impact of higher levels of camelina on livestock performance and product quality 

(Grady & Nleya 2010).  

The distribution of phenolics in plants at the tissue, cellular and subcellular levels is not 

uniform. The seeds of oil crops, particularly those with high contents of PUFA, provide an 

important source of antioxidants (Terpinc et al. 2012). The residue obtained after oil 

extraction from the seed is known as the cake or meal. This protein-rich by-product is 

currently used mainly for animal feed and as fertilizer. Recently oil cakes have become 

an attractive source to produce industrial enzymes, antibiotics, bio-pesticides, vitamins 

and other biochemicals (Ramachandran et al. 2007). Similarly, Matthäus (2002) reported 

that camelina cake contains a remarkable amount of bioactive substances such as 

glucosinolates, vitamins, and antioxidants. 
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Terpinc and Abramovič (2016) conducted a study on phenolic compounds, their 

occurrence and identification in the residues after pressing of the oil from camelina 

seeds of Slovenian origin, i.e. oilcake reported that almost all seed phenolics ended up in 

the oilcake. The major phenolic compounds were sinapine, 4-vinylphenol, 4-

vinylguaiacol, 4-vinylsyringol, 4-vinylcatechol, ellagic acid, protocatechuic acid, 4-

hydroxybenzoic acid, sinapic acid, salicylic acid, catechin, quercetin and quercetin 

glucoside. They also reported that the oilcake had high reducing power and radical 

scavenging activity. In the same study, heat treatment of seeds affected the amount of 

free, soluble and insoluble-bound phenolic compounds as well as antioxidant capacity of 

individual fractions. Terpinc et al. (2012) conducted a study on “The occurrence and 

characterisation of phenolic compounds in Camelina sativa seed, cake and oil “. They 

found that camelina seeds and its cake possess a similar phenolic profile which included 

ellagic acid, protocatechuic acid, p-hydroxybenzoic acid, sinapic acid, salicylic acid, 

catechin, rutin, quercetin and quercetin glucoside (Figures 2.13 & 2.14). Camelina cake 

showed higher reducing power and free radical scavenging activity, whereas camelina 

oil, with a relatively low phenolic content, exhibited a higher iron-chelating capacity and 

inhibitory effects against β-carotene discoloration in an emulsified system in the same 

study. 
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Figure 2.14. Chemical structures of Identified phenolic acids in camelina whole seeds 

and cake by LC- MS2 (Name of compounds adopted from Terpinc et al. 2012) 

 

Figure 2.15.  Chemical structures of flavonoids Identified in camelina whole seeds and 

cake by LC-MS2 (Name of compounds adopted from Terpinc et al. 2012). 
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2.8 Phenolics and polyphenolics in sophia seeds  

There is limited information on sophia seeds phenolics and polyphenolics as a potential 

source of bioactive compounds. The first study on phenolic analysis and their antioxidant 

activities in sophia seed was reported by HadiNezhad, Rowland and Hosseinian (2015). 

They extracted phenolics from whole sophia seed and deoiled meal by using a 

supercritical CO2. More than 10 phenolic compounds were analysed by HPLC and sinapic 

acid was the dominant compound in both sophia whole seed and meal extracts. Sophia 

seed extracts showed a high level of antioxidant activity in the ORAC and β-carotene 

bleaching assays in the same study.  

 

Figure 2.16. Chemical structures of phenolic acids identified in sophia whole seed by 

HPLC-PDA analysis (Name of compounds adopted from HadiNezhad, Rowland & 

Hosseinian 2015) 
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Figure 2.17. Chemical structures of flavonoids identified in sophia whole seed by HPLC-

PDA analysis (Name of compounds adopted from HadiNezhad, Rowland & Hosseinian 

2015) 

2.9 Phenolics and polyphenolics in chia seeds  

Many studies have been done on the phenolic profile of chia seeds and their potential 

antioxidant activity in vitro. While these studies were focussed on only crude phenolics 

of chia seeds, they still provide an overall idea on the phenolics present and their 

bioactivities. Reyes-Caudillo et al. 2008 reported that chia seeds contain 8.8 % of total 

phenolics on a dry weight basis. In the same study, the presence of caffeic acid, 

chlorogenic acid and quercetin was correlated with higher contents of phenolics in chia. 

Uribe et al. (2011) described that the chia seed is potentially a great source of 
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antioxidants and could have better health effects and used for preservation of lipid rich 

foods and food products. Ayerza and Coates (2001) identified and quantified chlorogenic 

acid, caffeic acid, myricetin, quercetin and kaempferol from chia seeds and evaluated 

their total antioxidant potential. Tepe et al. (2006) studied the antioxidant activity of 

ethanolic extract of chia seed and reported that polyphenols of chia seed inhibited free 

radical scavenging effect in a beta-carotene /linoleate model system. The free radical 

scavenging activity of chia seed was even greater than many natural sources of 

antioxidant such as those of Moringa oleifera, and sesame cake extract as described by 

Nadeem et al. (2013, 2014). Craig (2004) reported that polyphenols in chia seed 

protected it from oxidative deterioration. Reyes-Caudillo et al. (2008) also reported that 

chia seeds contain a wide range of phenolic compounds and their antioxidant potential 

was reviewed in the same study. Tepe et al. (2006) reported that phenolics of chia seed 

extract have potential antioxidant activity and their inhibition of lipid peroxidation was 

also reviewed in the same study. Quercetin, chlorogenic acid, and caffeic acid are 

believed to have anti-carcinogenic, antihypertensive, and neuron protective effects 

(Shahidi & Naczk 1995). Ayerza and Coates (2002) demonstrated that chia seed 

contained myricetin, quercetin, kaemferol, caffeic acid, flavonol glycosides and 

chlorogenic acid. Azeem et al. (2015a) found that 750 ppm chia seed extract significantly 

extended the shelf life of cottonseed oil at ambient temperatures. 
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Figure 2.18. Chemical structures of phenolic acids and isoflavones identified in chia 

seeds by UHPLC analysis (Name of compounds adopted from Martínez-Cruz and 

Paredes-López 2014). 
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CHAPTER 3 
MATERIALS AND METHODS 

 
3.1 Sample collection and material procurement 

The camelina, chia, and sophia seeds were used in this study. Camelina seeds were 

obtained via Professor C. Parrish, Department of Ocean Sciences, Memorial University of 

Newfoundland, St. John’s, NL, Canada. Chia seeds were bought from Costco wholesale, 

St. John’s, NL, Canada. Sophia seed was a product of Daghdaghabad near the city of 

Hamedan in Iran and purchased from Tavazo store, Toronto, ON, Canada. 

Standards of gallic acid, catechin, 2,2’-azinobis (3-ethylbenzothiazoline-6-sulphonate) 

(ABTS), 2,2’-azobis(2-methylpropionamidine) dihydrochloride (AAPH), DPPH, trolox, 

ascorbic acid, and ethylenediaminetetraacetic acid trisodium salt (Na3EDTA) were 

purchased from Sigma-Aldrich Canada Ltd. (Oakville, ON, Canada). Organic solvents and 

reagents, namely diethyl ether, ethyl acetate, hexane, acetone, methanol, chloroform, 

formic acid, sodium chloride, mono- and dibasic potassium phosphates, hydrochloric 

acid, aluminum chloride, sodium nitrite, sodium  hydroxide, potassium ferricyanide, 

ferric chloride, ferrous chloride, Folin-Ciocalteu’s reagent, vanillin, trichloroacetic acid 

(TCA), 3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine-4,4-disulphonic acid sodium salt 

(Ferrozine) and sodium carbonate were purchased from Fisher Scientific Ltd. (Ottawa, 

ON, Canada). 

3.2 Sample preparation  

All samples were ground using a coffee bean grinder (model CBG5 series, Black & 

Decker, Canada Inc., Brockville, ON, Canada) and passed through a 0.5 mm sieve to 
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obtain a fine powder and defatted by blending with hexane (1:5 w/v, 5 min, 3X) in a 

Waring blender (model 33BL73, Waring Products Division Dynamics Co. of America, New 

Hartford, CT, USA) at ambient temperature. Defatted samples were dried at 370C and 

used immediately for extraction of phenolics. 

3.3 Extraction of phenolic compounds 

Free, esterified, and insoluble-bound phenolic compounds were extracted and 

fractionated according to Chandrasekara and Shahidi (2010) with some modifications. An 

ultrasonic-assisted extraction procedure was used for the extraction of soluble phenolic 

compounds. Defatted meal (510g) was mixed with 200-400 mL of 70% (v/v) acetone and 

then placed in an ultrasonic bath (300 Ultrasonik, Whittemore Enterprises, Inc., Rancho 

Cucamonga, CA, USA) and sonicated at the maximum power for 20 min at 300 C. The 

resultant slurry was centrifuged for 5 min at 4000g IEC Centra MP4, International 

Equipment Co., Needham Heights, MA, USA) and the supernatant was collected and 

extraction wasrepeated two more times. After centrifugation, combined supernatants 

were evaporated under vacuum using a rotary evaporator at 400C (Buchi, Flawil, 

Switzerland) to remove the organic solvents. Residues of whole oilseed samples were 

air-dried for 24 h and used to extract insoluble-bound phenolic compounds within a 

week. During all stages of extraction, extracts were protected from light by using 

aluminum foil.  

3.4 Extraction of free and esterified phenolic compounds  

After evaporation, the aqueous suspension of extract was adjusted to pH 2 with 6 M HCl, 

and free phenolics were then extracted five times with diethyl ether and ethyl acetate 

(1:1, v/v). The free phenolic extract was evaporated under vacuum using a rotary 
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evaporator at 400C and dissolved in 5-10 mL of 80% methanol (HPLC grade). The esters 

remaining in the water phase were hydrolysed with 4 M NaOH for 4 h under a nitrogen 

atmosphere for the extraction of esterified phenolics. The liberated phenolics were then 

extracted from the hydrolysates five times with diethyl ether (1:1, v/v) and evaporated 

to dryness under vacuum and subsequently dissolved in 5-10 mL 80% methanol for 

comprehensive analysis of phenolics profile, determination of antioxidant and biological 

activities of camelina, chia and sophia seed meals. 

3.5 Extraction of insoluble-bound phenolic compounds 

The residue of the whole oilseed sample of camelina, chia and sophia obtained after 

extraction of soluble phenolics was hydrolyzed with 4M NaOH and stirred at room 

temperature for 4h under nitrogen. The resulting slurry was acidified to pH 2 with 6 M 

HCl and centrifuged as in the case of free phenolics. The liberated bound phenolic 

compounds were then extracted five times with diethyl ether and ethyl acetate (1:1, 

v/v), evaporated and then dissolved in methanol as described for esterified phenolics.  

3.6 Determination of total phenolic content (TPC)  

The total phenolic content (TPC) of each extract was determined according to Singleton 

and Rossi (1990). Briefly, 0.5mL of sample dissolved in methanol was taken in a 

centrifuge tube and Folin-Ciocalteu’s reagent (0.5mL) was added to it. The contents were 

mixed thoroughly and 1 mL of saturated sodium carbonate was added to each tube for 

neutralization. Then, 8 mL of distilled water were added and vortexed thoroughly. Tubes 

were allowed to stand for 35 min at room temperature in the dark followed by 

centrifugation for 10 min at 4000g. The absorbance of the resultant blue colour 

supernatant was read at 725 nm (model HP 8452A diode array spectrophotometer, 
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Agilent Technologies, Palo Alto, CA, USA) using appropriate blanks for background 

subtraction. The content of total phenolic in each extract was determined and expressed 

as milligrams of gallic acid equivalents (mg GAE) per gram of defatted sample.  

3.7 Determination of total flavonoid content (TFC) 

The total flavonoid content (TFC) was determined using a colorimetric method explained 

by Kim, Jeong and Lee (2003) with slight modifications as described by Chandrasekara 

and Shahidi (2010). In 20 mL centrifuge tubes, 1mL of extract, dissolved in methanol, was 

mixed with 4 mL of distilled water and 0.3 mL of 5% NaNO2 was added to it. The tubes 

were then allowed to stand for 5 min and subsequently 0.3 mL of 10% AlCl3 was added to 

the reaction mixture and again allowed to stand for 1 min. Finally, 2 mL of 1 M NaOH 

and 2.4 mL of distilled water were added and mixed immediately. After centrifugation at 

4000 g for 5 min, the tubes were kept in the dark at room temperature for 15 min. The 

absorbance was read at 510 nm against a blank prepared in a similar manner by 

replacing the extract with methanol. The TFC, calculated from a standard curve for 

catechin, was expressed as mg catechin equivalents (CE) per gram of defatted sample. 

3.8 Determination of proanthocyanidin content (PC)   

Total proanthocyanidin content of camelina, chia and sophia seeds was determined 

colorimetrically as explained by Price et al. (1978) with some modifications. The sample 

extract (0.2mL of it) in methanol was added to 1 mL of 0.5% vanillin-HCl reagent (0.5%, 

w/v vanillin in 4% concentrated HCl in methanol). The mixtures were then incubated for 

20 min at room temperature and absorbance was read at 500 nm.  A separate blank for 

each sample (4% HCl in methanol) was used; the content of proanthocyanidins was 

expressed as mg CE per gram of defatted seeds. 
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3.9 Identification of phenolic compounds by HPLC-DAD-ESI-MSn analysis  

Phenolic profiles in the free (F), esterified (E), and insoluble-bound (B) fractions of 

defatted camelina, chia and sophia seed meals were identified and quantified by high 

performance liquid chromatography (HPLC) as described by Ambigaipalan et al. (2016) 

and de Camargo et al. (2014). The RP-HPLC analysis was carried out using an Agilent 

1100 system (Agilent Technologies, Palo Alto, CA, USA) equipped with a quaternary 

pump (G1311A), a degasser (G1379A), an ALS automatic sampler (G1329A), an ALS 

Therm (G1130B), a Colcom column compartment (G1316), a diode array detector (DAD, 

G1315B), and a system controller linked to a Chem Station Data handling system (Agilent 

Technologies, Palo Alto, CA, USA). Separations of phenolic compound were done with a 

SUPERLCOSILTM LC-18 column (4.6 * 250 mm * 5 μm, Merck, Darmstadt, Germany). The 

mobile phase consisted of 0.1% formic acid (eluent A) and 0.1% formic acid in 

acetonitrile (eluent B). The gradient solvent system used was as follows: 0 min, 100% A; 

5 min, 90% A; 35 min, 85% A; 45 min, 60% A; held at 60% A from 45 - 50 min; 

subsequently mobile phase A was increased to 100% at 55 min, followed by column 

equilibration from 55 to 65 min. Injection volume was 50 µL and flow rate was adjusted 

to 0.5 mL/min for a total run time of 65 min. The detection of phenolic acids and 

flavonoids was performed at 280 nm. All samples were filtered through a 0.45 lm PTFE 

membrane syringe filter (Whatman Inc., Florham Park, NJ, USA) before injection. 

HPLC-ESI-MSn analysis was performed as described above using an Agilent 1100 series 

capillary liquid chromatography mass selective detector (LC-MSD) ion trap mass 

spectrophotometer (Agilent Technologies) which was connected to the Agilent 1100 

HPLC system via an electrospray ionization (ESI) in the negative mode for phenolic acids 
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and flavonoids. The data were achieved and analyzed with Agilent LC-MSD software 

(Agilent Technologies). The mass spectrometer was run in a scan range of m/z 50 to 

2000, using smart parameter setting, drying nitrogen gas temperature of 350°C along 

with flow of 12 L/min, and nebulizer gas pressure of 70 psi. Limits of detection were in 

the range of 3 to 19 ng/g whereas the limits of quantification were in the range of 8 to 

57 ng/g. Phenolic compounds were identified by comparing their retention times and 

UV absorption spectra with authentic standards and confirmed by LC-MS. Other 

compounds with no standard reference materials were tentatively identified using 

tandem mass spectrometry (MSn) data, UV spectral data, and by matching with 

literature data. Quantification of phenolic compounds was done by DAD using standard 

curves of their authentic standards generated by plotting HPLC peak areas vs 

concentrations. For compounds with no standard reference materials, quantification 

was done based on standard curves of similar compounds of the same phenolic 

subgroup. The results of quantification of phenolic compounds were expressed as µg 

per gram defatted sample. 

 3.10 Trolox equivalent antioxidant capacity (TEAC)  

The total antioxidant capacity of the tested oilseed extracts was measured according to 

the method described by van den Berg et al. (1999) with some modification. This assay is 

based on the scavenging of 2, 2’-azino-bis (3-ethylbenzothiazoline-6-sulphonate) radical 

cation (ABTS•+). An ABTS•+solution was prepared in 100 mL phosphate buffer saline (0.1 

M, pH 7.4, 0.15 M NaCl) (PBS) by mixing 2.5 mM AAPH with 2.5 mM ABTS stock solution 

(1:1, v/v). During heating at 600 C for 20 min, the solution was protected from light by 

covering the container in a tin foil, and cooled to room temperature. Before mixing with 
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the extracts, ABTS•+solution was filtered using medium-porosity P5 filter papers (Fisher 

Scientific Co., Pittsburgh, PA, USA). Forty microlitres (40 μL) of the sample were mixed 

with 1960 μL of the ABTS•+ solution to determine the total antioxidant capacity and 

absorbance of the reaction mixture was read at 734 nm immediately at the point of 

mixing (t0) and after 6 min (t6). The decrease in absorbance at 734 nm after addition of 

both trolox and phenolic extract 6 min later was used for calculating TEAC values. The 

TEAC vales were determined using the equation below and and where ΔA is the 

reduction of absorbance and A is the absorbance at a given time. TEAC values were 

calculated as micromole trolox equivalents (TE) per gram of defatted sample. 

ΔA Sample= [(A Sample 0 min – A Sample 6 min) - (A Blank 0 min – A Blank 6 min)] 

3.11 DPPH radical scavenging capacity (DRSC) using electron paramagnetic resonance 

(EPR) 

DPPH radical scavenging capacity (DRSC) assay was carried following the method 

described by Madhujith and Shahidi (2006). Briefly, 1 mL of 0.3 mM solution of DPPH 

was mixed with 250 µL of appropriately diluted free, esterified and insoluble-bound 

phenolics extracts. Contents were mixed thoroughly and kept in the dark for 10 min at 

room temperature. The sample was subsequently passed through the sample cavity of a 

Bruker E- scan EPR spectrometer (Bruker E-scan, Bruker Biospin Co., Billercia, MA, USA) 

and the spectrum was recorded (5.02 * 102 receiver gain, 1.86 G modulation amplitude, 

2.621 s sweep time, 8 scans, 100.000 G sweep width, 3495.258 G centre field, 5.12 ms 

time constant, 9.795 GHZ microwave frequency, 86.00 kHZ modulation frequency, 1.86 

G modulation amplitude). DRSC of the extracts was calculated using the following 

equation. 
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DPPH radical scavenging capacity (%) 

= [100 – (EPR signal intensity for the control - EPR signal intensity for the extract)] * 100 

The DPPH scavenging activity of all extracts were expressed as micromoles TE/g defatted 

seed. 

3.12 Hydroxyl radical scavenging capacity (HRSC) by EPR 

The hydroxyl radical scavenging capacity (HRSC) was determined according to the 

method explained by Madhujith and Shahidi (2006) with slight modifications. Extracts of 

free, esterified and bound phenolic compounds of camelina, chia and sophia were 

dissolved in sodium phosphate buffer (PBS) (0.75M, pH 7.00) and diluted accurately. 

Briefly, 0.2 mL of each phenolic extracts was mixed with 0.2mL of H2O2 (10 mM), and 

4mL of DMPO (17.6 mM). Then, 0.2mL of FeSO4 (10mM) was added to the mixture to 

initiate the reaction. After 3 min, the mixtures were introduced into the sample cavity of 

the EPR spectrometer and the spectrum was recorded. Phosphate buffer saline (0.75M, 

pH 7.00) (PBS) was used as the control in place of the extract. Hydroxyl radical 

scavenging capacities of the extracts were calculated using the following equation. 

 Hydroxyl radical scavenging capacity (%) = [(EPR signal intensity for the control - EPR 

signal intensity for the sample)/EPR signal intensity for the control] *100.  

The hydroxyl radical scavenging activity of the extracts was expressed as micromoles of 

micromoles of catechin equivalents (CE) per g of the defatted seed. 
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3.13 Reducing power (RP) assay 

 The reducing power was determined according to the method of Oyaiza (1986) with 

some modifications. In a centrifuge tube, 0.5 mL sample extract was mixed with 2.5 mL 

of a phosphate buffer solution (0.2M, pH 6.6) and subsequently to which 2.5 mL of 

potassium ferricyanide (1%, w/v) were added. The mixture was incubated at 500C for 20 

min, and then 2.5 mL of 10% TCA were added before centrifugation at 1750 g for 10 min.  

A 2.5 mL aliquot of the supernatant was taken in a test tube containing 2.5 mL of 

deionized water. After adding 0.5 mL of 0.1% (w/v) FeCl3, the absorbance of the reaction 

mixture was read at 700 nm using a spectrophotometer. The standard curve was 

prepared using trolox. The reducing power (RP) of extracts were calculated using the 

following equation. 

Reducing Power (RP) = [(Absorbance Sample – Absorbance Control)/ Absorbance Sample] * 100 

The results were expressed as micromole of trolox equivalents (TE) per gram of defatted 

sample.   

3.14 Ferrous ion chelating activity (FCA) assay 

The ferrous ion chelating activity (FCA) of camelina, chia and sophia phenolic extracts 

was measured according to the method described by Dinis et al. (1994) with some 

modifications. Briefly, 0.2mL of phenolic extracts dissolved in PBS (0.75M, pH 7.00) was 

taken in a test tube and 0.025ml a solution of FeCl2 (2mM) was added to each tube. The 

reaction was initiated by adding 0.1 ml of Ferrozine solution (5 mM), and the total 

volume was adjusted to 2 mL with distilled water. The mixture was left at room 

temperature for 10 min after shaking vigorously. The absorbance of the reaction mixture 
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was read at 562 nm and for the control, PBS was used instead of the extract. The 

inhibition percentage of Ferrozine-ferrous ion complex formation was calculated by the 

following equation. 

 Metal chelating effect (%) = [1- (absorbance of the sample / absorbance of the control)] 

* 100. The results were expressed as µmoles of EDTA equivalents per gram of defatted 

meal. 

3.15 β -carotene-linoleate model system 

 A β-carotene−linoleate model system was used to evaluate the antioxidant activity of 

camelina, chia and sophia seeds meal in an oil-in-water emulsion (Amarowicz & Shahidi 

1997). β- Carotene (10 mg) was dissolved in chloroform (10 mL), and an aliquot (1.2 mL) 

of it was transferred into a flask containing linoleic acid (40 mg) and Tween 40 (400 mg). 

A blank without β-carotene was also prepared (40 mg of linoleic acid + 400 mg of Tween 

40). Chloroform was removed under a nitrogen stream; 100 mL of oxygenated distilled 

water were added to the flask, and the mixture was stirred vigorously for 30 min. Each 

0.5 mL of camelina, chia or sophia meal phenolic extracts was dissolved in deionized 

water and mixed with 4.5 mL of the above emulsion. A control without sample and a 

mixture of blank (without β-carotene) was prepared for each sample. The absorbance at 

470 nm was read immediately after the addition of the emulsion. The tubes were 

incubated in a shaking water bath at 50 °C, and the absorbance was read over a 105-min 

period at 15 min intervals. Antioxidant activity of the polyphenolics extract camelina, 

chia and sophia in protecting β-carotene/linoleic acid oxidation was calculated using the 

equation of Barros et al. (2007).   
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 Antioxidant activity (%) = (β-carotene content after 105 min/ Initial β-carotene content) * 100 

The corresponding IC50 value, defined as the concentration of inhibitor required to 

inhibit 50% of the β-carotene bleaching was also calculated. 

3.16 Inhibition of α-glucosidase activity assay 

Alpha-glucosidase inhibitory activity of camelina, chia and sophia polyphenolic extracts 

was determined using the method of Eom et al. (2012) with slight modifications. An 

aliquot of the sample dissolved in methanol (10 µL) was mixed with 620 µL of potassium 

phosphate buffer (0.1 M, pH 6.8) in a 1.5 mL Eppendorf tube. α-Glucosidase solution (5 

µL; 10U/mL) in PBS (0.1 M, pH 6.8) was added and incubated for 20 min at 37°C. After 

incubation, 10 µL a substrate p-nitrophenyl glucopyranoside (10 mM) were added to 

initiate the reaction and the reaction mixture was incubated at 37 °C for 30 min. After 

that, 650 µL of 1 M Na2CO3 were added to terminate the reaction and the quantity of 

released product (p-nitrophenol; yellow colour) was measured at 410 nm by using a UV 

visible spectrophotometer. Sample blanks without enzyme and a control without sample 

were also measured. α-Glucosidase inhibition was calculated using the equation below. 

α-Glucosidase inhibition (%)= [(Abs control – Abs sample)/ Abs control] *100 

The corresponding IC50 value, defined as the concentration of inhibitor required to 

inhibit 50% of the α-glucosidase activity, was also calculated. 

3.17 Inhibition of pancreatic lipase activity assay 

Pancreatic lipase inhibition activity of camelina, chia and sophia phenolic extracts was 

determined as described by Marrelli et al. (2012). In this study, we used 5mg/mL 

concentration of lipase from porcine pancreas, dissolved in 1 M Tris–HCl buffer 
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(pH = 8.5). Phenolic extract of each of the camelina, chia and sophia (100 μL) was added 

in 4mL tris-HCl buffer solution (1M, pH 8.5). Then, 100 μL of pancreatic lipase solution 

were added and incubated for 25 min at 37 °C. A substrate solution of 4-nitrophenyl 

octanoate (10 mM) was prepared in dimethyl sulphoxide (DMSO) and diluted with 

ethanol (5 mM).  To initiate the reaction, 100 μL of 4-nitrophenyl octanoate (5 mM) were 

added and incubated at 37 °C for 25 min. A control with methanol instead of sample and 

sample blanks without enzyme were prepared. The absorbance (yellow colour) was 

measured at 412 nm using a UV-visible spectrophotometer. The lipase inhibition was 

calculated using the equation below. 

Lipase inhibition (%)= [(Abs control – Abs sample)/ Abs control] *100 

The corresponding IC50 value was also calculated for each sample extracts. 

3.18 Inhibition of cupric Ion-induced human low-density lipoprotein (LDL) peroxidation 

The inhibitory activity of phenolic extracts of camelina, chia and sophia meals on the 

cupric ion-induced human LDL oxidation was investigated using a method described by 

Ambigaipalan and Shahidi (2016). At first, 5 mg/mL LDL were dialyzed in 100 mL of 

freshly prepared PBS (10 mM, pH 7.4, 0.15 M NaCl) using a dialysis tube with the 

molecular weight cut off of 12−14 kDa (Fischer, Carle and Kammerer Scientific, Nepean, 

ON, Canada) at 4 °C under a nitrogen blanket in the dark for 12 h.  After dialysis, diluted 

LDL cholesterol (0.04 mg LDL/mL) was mixed with the phenolics extracts of both samples 

(0.1 mg/mL). The reaction mixture was incubated at 37 °C for 15 min. After that, a 

copper sulphate solution of 0.1 mL (100 μM) was added to initiate the oxidation 

reaction. Subsequently, the samples were incubated at 37 °C for 22 h. The formation of 

conjugated dienes (CD) was measured using a diode array spectrophotometer (Agilent, 
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Palo Alto, CA, USA) at 234 nm. A positive control was excluding phenolic extracts. The 

appropriate blank for each sample was prepared by replacing LDL cholesterol and CuSO4 

with distilled water for background correction. 

3.19 Supercoiled plasmid DNA strand scission inhibition assay 

The inhibition activity of camelina, chia and sophia phenolic extracts on supercoiled 

strand DNA scission induced by hydroxyl and peroxyl radicals was evaluated as stated by 

Hiramoto et al. (1996) and Liyanapathirana and Shahidi (2006) with slight modifications. 

Supercoiled plasmid DNA (pBR 322 from Escherichia coli RRI) (50 μg/mL) was dissolved in 

PBS (0.5 M, pH 7.4). Phenolics extracts of camelina, chia and sophia meals at various 

concentration (0.25-1.5 mg/mL) were prepared in PBS. In a 0.5 mL Eppendorf tube, 2 μL 

each of a solution of supercoiled plasmid DNA, PBS, phenolic extract, H2O2 (1 mM), and 

FeSO4 (0.5 mM) were added to determine the inhibitory activity of test material on DNA 

strand scission induced by hydroxyl radical. A control with DNA alone and a blank devoid 

of phenolic extracts were included with each set. The mixture was incubated at 37 0C for 

1 h in the dark. After incubation, loading dye (5μL) consisting of 0.25% bromophenol 

blue, 0.25% xylene cyanol, and 50% glycerol in distilled water were added to the reaction 

mixture.  

The inhibitory effect of camelina, chia and sophia phenolic extract against DNA oxidation 

induced by peroxyl radical was also investigated in another set of studies. In this assay, 

AAPH in PBS (17.25 mM) was mixed with DNA and the extracts to a final volume of 10μL. 

The mixture was incubated at 37 0C for 1 h in the dark. A control with DNA alone and a 

blank devoid of phenolic extracts were prepared with each set. The samples were 

electrophoresed using a 0.7% (w/v) agarose gel prepared in Tris-acetic acid EDTA (TAE) 
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buffer (40 mM Tris acetate, 1mM EDTA, pH 8.5). SYBR safe (100 μL/L of TAE buffer) was 

added as a gel stain. Submarine gel electrophoresis was run at 80 V for 1.5 h using a 

model B1A horizontal mini gel electrophoresis system (Owl Separation Systems Inc., 

Portsmonth, NH, USA) and a model 500 V power supply (WMR International Inc., West 

Chester, PA, USA) at room temperature in TAE buffer. The bands were visualized under 

trans illumination of UV light using an Alpha Imager gel documentation system (Cell 

Biosciences, Santa Clara, CA, USA). The images were analyzed using Chemilmager 4400 

software (Cell Biosciences) to quantify DNA scission. The inhibitory effect of the seeds 

extracts was calculated using the retention of the normalized supercoiled DNA as given 

below. 

DNA retention % = (intensity of supercoiled DNA with the oxidative radical and extract/ 

intensity of supercoiled DNA in control) *100.  

The concentration of extracts that retain 50% (EC50) of supercoiled DNA was also 

calculated. 

3.20 Statistical analysis 

All tests were done in triplicate from three individuals extracts, and mean values and 

standard deviations were reported. One-way ANOVA was used, and the mean 

separations were analysed by Tukey’s HSD test (p < 0.05) using SPSS 16.0 for Windows 

(SPSS Inc., Chicago, IL, USA). 
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CHAPER 4 

RESULTS AND DISCUSSION 

4.1 Total phenolic content (TPC) 

The total phenolic content (TPC) of soluble (free and esterified) and insoluble-bound 

fractions of defatted camelina, chia and sophia seed meals were determined using Folin-

Ciocalteu assay. This is the most common spectroscopic method to measure the total 

amounts of phenolics. In this assay, under alkaline conditions, phenolic groups are 

deprotonated and form phenolate ions due to reduction of the phosphotungstic-

phosphomolybdic complex in the Folin Ciocalteu reagent producing a blue colour. The 

soluble phenolic fraction includes both free and soluble ester conjugates, which are 

responsible for the in vitro antioxidant capacity of the extracts. Free and esterified 

phenolics may be absorbed in the small intestine and gastrointestinal track and could be 

highly metabolized or rapidly eliminated (Manach 2004). After metabolism, they can be 

found in the blood and other target organs as metabolites with biological activities. On 

the other hand, phenolics in the insoluble-bound form are covalently bound to cell wall 

structural components such as cellulose, hemicellulose (e.g. arabinoxylans), lignin, pectin 

and rod-shaped structural proteins (Acosta-Estrada et al. 2014; Wong 2006). Insoluble 

bound phenolic compounds are not digested in the small intestine, but passed into the 

colon where they are hydrolyzed by intestinal enzymes and colonic microflora before 

being absorbed and render various bioactivities like soluble phenolics (Manach 2004). In 

addition to health benefits, they have multiple functions in the cell wall by providing 

both physical and chemical barriers, protection against pathogen invasion and 

astringency that deters attack by insects and animals, as well as rendering antibacterial, 



54 
 

antifungal and antioxidant functions (Acosta-Estrada et al. 2014; Liu 2007; Sancho et al. 

2001).  

The total phenolic content (TPC) of soluble (free and esterified) and insoluble-bound 

phenolic extracts of camelina, chia and sophia meals are summarized in Table 4.1. The 

total phenolic content (TPC) in camelina, chia and sophia defatted meal was 11.69 ± 

0.44, 14.22 ± 0.44 and 22.40 ± 0.87 mg GAE per gram sample, respectively. 

Table 4. 1. Total phenolic content (TPC), flavonoids content (TFC) and proanthocyanidins 

content (PC) of the defatted camelina, chia and sophia meals.  

Samples Free phenolic Esterified Phenolic Insoluble-Bound Total 

Total phenolics content (mg GAE/ g defatted sample) 
 

Camelina 4.07 ± 0.45Bd 6.80 ± 0.30Ac 0.82 ± 0.13Cf 12.96 ± 0.87C’ 

Chia 8.69 ± 0.53Ab 0.95 ± 0.07Cf 4.59 ± 0.16Bd 14.22 ± 0.44B’ 

Sophia 4.14 ± 0.36Bd 15.85 ± 0.15Aa 2.49 ± 0.08Ce 22.40 ± 0.42A’ 

Total flavonoids content (mg CE/ g defatted sample) 
 

Camelina 2.26 ± 0.28Bc 4.32 ± 0.47Aa 0.22 ± 0.00Ce 6.8 ± 0.68B’ 

Chia 4.86 ± 0.8A4a 0.23 ± 0.01Ce 3.35 ± 0.03 Bb 8.45 ± 0.80A’ 

Sophia 2.53 ± 0.18Bc 4.95 ± 0.16Aa 1.10 ± 0.19 Cd 8.59 ± 0.13A’ 

Total proanthocyanidins (Condensed tannin) content (mg CE / g defatted sample) 

Camelina 3.13 ± 0.01Aa 0.28 ± 0.01B c 0.32 ± 0.01Bc  3.73 ± 0.03A’ 

Chia 0.05 ± 0.56A d 0.00 ± 0.00 b 0.02 ± 0.01 Ad 0.08 ± 0.02C’ 

Sophia 1.77 ± 0.02Ab 0.28 ± 0.04Bc 0.17 ± 0.00C 2.23 ± 0.06B’ 

Data represent the mean values for each sample ± standard deviations (n = 3). Means followed by the different 
upper case letters within a row and different lower case letters among all fractions are significantly different (p < 
0.05) but same letters are not significantly different (p > 0.05). GAE, Gallic acids equivalents and CE, Catechin 
equivalents. 

 

 Sophia seed extract showed significantly (p < 0.05) higher total phenolics content 2.24 % 

(22.40 ± 0.87 GAE per gram sample) compared to camelina meal 1.14% and chia seed 

meal 1.42 % (11.69 ± 0.44 and 14.22 ± 0.44 mg GAE per gram sample, respectively). The 
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TPC of free, esterified, and insoluble-bound fractions of camelina, chia and Sophia was in 

the range of 0.82 ± 0.13 to 15.85 ± 0.18 mg GAE per gram defatted sample (Table 4.1). 

Sophia's esterified fraction showed significantly (p< 0.05) higher phenolic content (15.85 

± 0.18 mg GAE per gram sample) among all fractions of three samples tested whereas 

the lowest phenolic content was found in the insoluble-bound fraction of camelina (0.82 

± 0.13 mg GAE per gram /g sample). No significant difference was observed between 

chia esterified and camelina insoluble-bound phenolics contents 0.95 ± 0.07 and 0.82 ± 

0.13 mg GAE per gram sample, respectively). In case of free form of phenolics, chia had 

the highest free phenolics (8.69 ± 0.53 mg GAE per gram sample), whereas camelina and 

sophia showed practically the same amount of free phenolics (4.07 ± 0.45 and 4.14 ± 

0.36 mg GAE per gram sample, respectively). For the insoluble-bound form of phenolics, 

chia showed the highest content (2.50 ± 0.08 mg GAE per gram sample) compared to 

camelina (0.82± 0.13 mg GAE per gram sample). Esterified fraction was the predominant 

form of phenolics compared to the free and insoluble-bound forms in both defatted 

camelina and sophia seeds whereas the free phenolic fraction was the predominant 

form in defatted chia seed meal. The variation in phenolic content among defatted seeds 

of camelina, chia and sophia may be attributed to the variety, growing location, storage 

and harvesting period that were not considered in this study. According to Shahidi 

(1992), total phenolic acids content in various cultivars of rapeseed/ canola meals was in 

the range of 13-18 mg per gram, on a dry and defatted weight basis. The phenolic acid 

content of free, esterified and insoluble-bound fractions in mustard meal was 10.81, 

15.38 and 0.228 mg per gram sample, respectively (Shahidi & Naczk 1990). In agreement 

with these published data, the total, free, esterified and insoluble-bound phenolics 

extracts of camelina, chia and sophia seeds varied with respect to their different 
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phenolics fractions. The results of this study clearly showed that the distribution of TPC 

among free, soluble esters and insoluble-bound phenolic extracts may be different 

depending on the variety as shown for different seed meals (Shahidi & Naczk 1990; 

Krygier et al. 1982; Naczk & Shahidi 1989). Furthermore, the Folin-Ciocalteu assay is non-

specific and results may be affected by the presence of co-existing simple carbohydrates 

and/or amino acids in the crude extracts which could interfere with determinations of 

TPC, leading to discrepancies of the results obtained in the present work (Chandrasekara 

& Shahidi 2010; Zielinski & Kozlowska 2000). 

4.2 Total flavonoid content (TFC) 

Flavonoids are the most studied group of polyphenols in plant foods with well 

documented antioxidant activity. In this study, total flavonoid content (TFC) was 

determined using the chelating power of flavonoids with aluminum (III). Flavonoids form 

a pink-coloured complex with aluminum (III) through the 4-keto and neighboring 

hydroxyl group.  

The TFC of camelina, chia and sophia meals is shown in Table 4.1; the respective values 

are 6.81 ± 0.68, 8.45 ± 0.80 and 8.59 ± 0.13 mg CE per gram defatted meal. Both chia and 

sophia seeds showed higher flavonoids content compared to camelina seeds and no 

significant difference (p > 0.05) was found for the flavonoids contents between chia and 

sophia phenolics extract (Table 4.1). The TFC of free, esterified, and insoluble-bound 

fractions of camelina, chia and sophia seeds varied from 0.22 ± 0.0 to 4.95 ± 0.16 mg per 

gram defatted meals. Esterified fraction of camelina and sophia showed a higher 

flavonoids content (4.32 ± 0.47 and 4.95 ± 0.16 mg per gram sample, respectively) 

among all fractions of three types of seeds tested. This might be due to their high 
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phenolic content that we found in the same study. No significant (p > 0.05) difference 

existed in the free flavonoids of chia and esterified flavonoids contents of camelina and 

sophia meals whereas the content of insoluble-bound flavonoids was significantly 

different at p < 0.05. The flavonoids content in camelina, chia and sophia defatted meals 

were significantly different (p < 0.05). In this study, camelina and sophia meals had a 

higher flavonoid content in esterified fraction compared to their free and insoluble-

bound flavonoids while chia meal showed higher flavonoids in the free fraction. The 

variation of flavonoid contents among different fractions of camelina, chia and sophia 

meals might be due to the same reasons as total phenolic content mentioned above in 

the same study. This is the first study on TFC of free, conjugate esterified and insoluble-

bound phenolics of camelina, chia and sophia seed meals as determined calorimetrically, 

hence comparison with published data is not possible.  

4.3 Total proanthocyanidins (PC; condensed tannin) content  

Proanthocyanidins are polymeric polyphenols consisting of flavan-3-ol units. They are 

biologically active and may adversely affect the nutritional value and biological 

availability of proteins and minerals if present in high quantities in plant food and food 

products (Chandrasekara & Shahidi 2010). Vanillin reagent (0.5%) was used in this study 

to assay the tannin content (Price, Van Scoyoc, & Butler 1978). This method is specific 

for flavanols and dihydrochalcones, which have a single bond at the 2, 3 position and 

free meta-oriented hydroxyl groups (Naczk & Shahidi 1989). Vanillin may react with 

condensed tannins and its monomeric components. The sensitivity of this reaction 

depends on the type of solvent employed. Absolute methanol was used for carrying out 
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the vanillin-tannin reaction because in this solvent the vanillin reagent is less sensitive to 

the monomeric units (Naczk & Shahidi 1989).  

The proanthocyadinins content (PC) of the three seed meals is shown in Table 4.1. In this 

study, total proanthocyanidin content (TPC) in camelina, chia and sophia meals was 3.73 

± 0.03, 0.08 ± 0.02 and 2.23 ± 0.06 mg CE per gram sample, respectively. We found that 

camelina seed meal showed significantly higher (3.73 ± 0.03 mg CE per gram sample) PC 

compared to chia and sophia seed meals (0.08 ± 0.02 and 2.23 ± 0.06 mg CE per gram 

sample, respectively). Proanthocyanidins predominated in the free phenolic fraction of 

both camelina and sophia meals (Table 4.1). This might be because both seeds belong to 

the same family. Camelina free phenolic extracts showed significantly higher (3.73 ± 0.03 

mg CE per gram sample) proanthocyanidin content compared to others phenolic extracts 

of camelina, chia and sophia. Low amounts of TPC were detected in both insoluble-

bound fraction of all seed meals tested (Table 4.1). In this study, chia seed meal showed 

a low amount of proanthocyanidins content compared to camelina and sophia seeds 

meals while no proanthocyanidins was found in chia esterified fraction, possibly due to a 

low amount of phenolics that was observed in this work. The condensed tannin content 

in various canola varieties ranged from 6.82 to 7.72 mg per gram of oil-free meal, 

expressed as catechin equivalents (Naczk & Shahidi 1989). Consistent with these 

published data, we found low amounts of proanthocyanidins among camelina, chia and 

sophia seed meals which indicates that proanthocyanidin contents varied because of 

their family of origin and genotype, among others. 
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4.4 Identification and quantification of phenolic compounds by HPLC-DAD-ESI-MSn 

Gallic, trans-sinapic, and chlorogenic acids, as well as protocatechuic acid pentoside, 

catechin, and epicatechin were detected in camelina and sophia but not in chia. Cis-p-

coumaric, cis-caffeic, hydroxycoumaric acid, cis- and trans-ferulic acids as well as 

genistein were specific to chia, whereas carboxyprotocatechuic acid and isorhamnetin- 

pentoside were found only in sophia. Chlorogenic acid and 

dihydrodihydroxyisorhamnetin were detected only in their free form, whereas gallic acid

was found only in the fraction containing phenolics released from their insoluble-bound 

form. 

4.4.1 Phenolic acids and their derivatives 

Nineteen phenolic acids were tentatively or positively identified in the present study 

from the different phenolic extracts of camelina, chia and sophia defatted seed meals 

(Table 4.2). Compound 1, which showed [M - H]- at m/z 137, gave a product ion at 93 in 

MS2 due to the loss of a hydrogen and a carboxyl group [M - H - CO2]-, therefore being 

tentatively identified as p-hydroxybenzoic acid (Chandrasekara & Shahidi, 2011). 

Compounds 2 (protocatechuic acid), 5 (gallic acid), and 17 (ellagic acid) were positively 

identified using authentic standards. The literature has reported that cis isomers usually 

elute before their trans counterparts during the chromatographic separation (Ma, 

Kosińska-Cagnazzo, Kerr, Amarowicz, Swanson, & Pegg 2014); therefore, compounds 3 

and 4 were tentatively identified as cis- and trans-p-coumaric acids due to their identical 

deprotonated ion at m/z 163 and a signal at 119 in MS2, which is characteristic of p-

coumaric acid (de Camargo, Regitano-d'Arce, Gallo, & Shahidi 2015). Accordingly, 

compounds 6 and 7 were also tentatively identified as cis- and trans-caffeic acids 

because both showed m/z signals at 179 in MS and at 135 in MS2, therefore matching 
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with the characteristic loss of carboxyl group [M - H - CO2]-, as previously reported for 

caffeic acid (de Camargo, Regitano-d'Arce, Gallo, & Shahidi, 2015). Betés-Saura et al. 

(1996) also demonstrated that cis-caffeic acid eluted before its trans isomer using a 

similar solvent system in HPLC, thus supporting our identification. Compound 8 gave 

deprotonated ion at m/z 181 and at m/z 137, 93 in MS2, the latter ones matching with 

the identity of p-hydroxybenzoic acid (Chandrasekara & Shahidi 2011). Because of the 

loss of carboxyl group [M-H-CO2]-, compound 8 was tentatively identified as carboxy p-

hydroxybenzoic acid. Compound 9 showed the same deprotonated ion of compound 8 at 

m/z 181; however, it gave m/z signals at 163 and 119, which are typical of p-coumaric 

acid as confirmed with an authentic standard. Compound 9 was tentatively identified as 

hydroxycoumaric acid due to the loss of water [M-H-H2O]-. Compounds 10 and 11 

showed the same molecular ion [M-H]- at m/z 193 and at m/z 135 in MS2 which matches 

with the fragmentation pattern of ferulic acid (Chandrasekara & Shahidi, 2011). Betés-

Saura et al. (1996) reported that cis-ferulic acid eluted before trans-ferulic acid, thus 

compounds 10 and 11 were tentatively identified as cis- and trans-ferulic acids, 

respectively, in the present study. Compound 12 was tentatively identified as 

hydroxycaffeic acid (Ambigaipalan, de Camargo, & Shahidi 2016; de Camargo, Regitano-

d’Arce, Biasoto, & Shahidi,2014) due to its molecular ion [M-H]- at m/z 197, followed by 

loss of water [M-H-H2O]-, which gave m/z at 179 followed by 135 in MS2. The latter ones 

were compared with an authentic standard of caffeic acid. Compound 13 showed 

deprotonated ion at m/z 197 and m/z signals at 153 and 109 in MS2, the second two are 

characteristic of protocatechuic acid, as confirmed with an authentic standard. 

Therefore, due to loss of carboxyl group [M-H-CO2]-, compound 13 was tentatively 

identified as carboxyprotocatechuic acid. Compounds 14 and 15 gave [M – H]- at m/z 
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223, which is typical of sinapic acid. Accordingly, they were tentatively identified as cis- 

and trans-sinapic acids, respectively. Furthermore, several studies (Ambigaipalan, de 

Camargo, & Shahidi, 2016; Betés-Saura, Andrés-Lacueva, & Lamuela-Raventós 1996; Ma, 

Kosińska-Cagnazzo, Kerr, Amarowicz, Swanson, & Pegg 2014) have demonstrated that 

usually cis isomers elute first during the chromatographic separation, which supports the 

present identification. Compound 16 showed deprotonated ion at 285 and gave product 

ions at 153 and 109. The last two matched with an authentic standard of protocatechuic 

acid; however, due to its loss of pentose loss of pentose [M - H - 132]-, compound 16 was 

tentatively identified as protocatechuic acid pentoside. Compound 18, with a 

deprotonated ion at 353 showed loss of hexose [M - H -162]- and gave a product ion at 

191 which matches with the fragmentation pattern in previous studies (Chandrasekara & 

Shahidi 2011), thus being tentatively identified as chlorogenic acid. Rosmarinic acid 

(compound 19) was tentatively identified due to its deprotonated molecular ion at m/z 

359, followed by loss of hexosyl group [M - H - 162]-, and two molecules of water [M - H - 

162 - H2O - H2O]-, thus giving m/z signals at 197, 179, and 161, respectively, which 

matches with the literature data (Justesen 2000).  
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Table 4.2.  Identification of phenolic compounds in camelina, chia and sophia meals by HPLC-MS/MS 

     Camelina Chia Sophia 

 

C# 
Phenolic acids MW 

[MH]- 

(m/z) 

MS2 products 

ions 

 

F 

 

E 

 

B 

 

F 

 

E 

 

B 

 

F 

 

E 

 

B 

1 p-hydroxybenzoic acid+ 138 137 93 *  * *   *   
2 Protocatechuic acid+ 154 153 109 *  * *   *  * 
3 Cis-p-coumaric acid 164 163 119    *      
4 Trans-p-coumaric acid 164 163 119 *   * *  *   
5 Gallic acid+ 170 169 125   *      * 
6 Cis-caffeic acid 180 179 135    * *     
7 Trans-caffeic acid 180 179 136 * * * * * * *   
8 Carboxy p-hydroxybenzoic acid 182 181 137, 93   * *     * 
9 Hydroxycoumaric acid 182 181 163, 119     *     
10 Cis-ferulic acid 194 193 135    *      
11 Trans-ferulic acid 194 193 135    * * *    
12 Cis-hydroxycaffeic acid 198 197 179, 135   *   *   * 
13 Carboxyl protocatechuic acid 198 197 153, 109        *   
14 Cis-sinapic acid  224 223 179  *  * *  * *   
15 Trans-sinapic acid 224 223 179 * * *    * * * 
16 Protocatechuic acid pentoside  286 285 153, 109 * * *    *  * 
17 Ellagic acid+ 302 301 283, 257 * * *  * * * * * 
18 Chlorogenic acid 354 353 191 *      *   
19 Rosmarinic acid 360 359 197,179, 161  * * * *  * *  
 Flavonoids & Procyanidins             
20 Genistein 270 269 133      *    
21 Glycitein 284 283 165         * 
22 Catechin+ 290 289 245, 205, 179   *    *  * 
23 Epicatechin+ 290 289 245, 205, 179 *  *    *  * 
24 Quercetin+ 302 301 179, 151, 107 *    *  *   
25 Myricetin 318 317 151, 179 * * *    * * * 
26 Apigenin 270 269 241, 225, 183          
27 Dihydrodihydroxyisorhamnetin 354 353 315  *     *     *      
28 Daidzein 416 415 253 *   * * *    
29 Kaempferol-hexoside 448 447 285    * * * *  * 
30 Isorhamnetin-pentoside 448 447 315       *  * 
31 Quercetin-hexoside 464 463 301, 179, 151 * * * *   * * * 
32 Rutin 610 609 301  * *  *  *  * 
33 Procyanidin dimer A type 576 575 285, 407, 449       *  * 
34 Procyanidin dimer B1 578 577 289, 425, 451    *      
35 Procyanidin dimer B2 578 577 289, 407, 425 *      *   
36 Procyanidin dimer B3 578 577 289, 425, 452     *   * * 

Abbreviations are: MW, molecular weight; [M-H] - is deprotonated molecular; C#, compound number; F, free; 
E, esterified; and IB, insoluble-bound. * Indicates the presence of the compound in the fraction.  + Identified 
with authentic standard 
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Table 4.3. Quantification of phenolic compounds in camelina, chia and sophia defatted meal 
(μg per gram sample) by HPLC-MS/MS. 

 Free Phenolics   

No. Compounds MW Camelina Chia Sophia 

1 p-Hydroxybenzoic acid 138 13.78 ± 0.78 tr 43.82 ± 2.97 
2 Protocatechuic acid 154 19.34 ± 0.32 13.01 ± 0.96 19.09 ± 2.64 
3 Cis-p-coumaric acid 164 nd 4.02 ± 0.60 nd 
4 Trans-p-coumaric acid 164 10.41 ± 0.01 12.42 ± 1.32 4.82 ± 0.63 
5 Gallic acid 170 nd nd nd 
6 Cis-caffeic acid 180 nd tr nd 
7 Trans-caffeic acid 180 10.81 ± 1.92 10.16 ± 0.76 6.08 ± 0.48 

8 Carboxyl p-hydroxybenzoic acid 180 nd tr nd 
9 Hydroxycoumaric acid 182 nd tr nd 
10 Cis- ferulic acid 194 nd 32.97 ± 4.38 nd 
11 Trans-ferulic acid 194 nd 54.67 ± 0.81 nd 
12 Cis-hydroxycaffeic acid 198 nd nd tr 
13 Carboxyl protocatechuic acid 198 nd nd 8.96 ± 0.13 
14 Cis-sinapic acid 224 nd tr tr 
15 Trans-sinapic acid 224 619.8 ± 4.13 nd 396.7 ± 7.6 
16 Protocatechuic acid pentoside 286 tr nd nd 

17 Ellagic acid 302 tr nd nd 

18 Chlorogenic acid 354 17.02 ± 1.67 nd tr 

19 Rosmarinic acid 360 nd 738.2 ± 17.9 tr 

 Total free phenolic acid  691.16 865.4 479.47 

 Flavonoids & Procyanidins     

20 Genistein  270 nd nd nd 

21 Glycitein 284 nd nd nd 

22 Catechin 290 nd nd 45.06 ± 3.88 

23 Epicatechin 290 nd tr nd 

24 Quercetin 302 56.32 ± 7.43 nd tr 

25 Myricetin 318 22.64 ± 6.48 10.07 ± 1.39 12.80 ± 1.32 

26 Apigenin 270 nd nd nd 
27 Dihydrodihydroxyisorhamnetin 354 21.73 ± 1.69 36.02 ± 3.5 tr 

28 Daidzein 416 477.2 ± 71.1 734.1 ± 16.2 734.1 ± 16.2 

29 Kaempferol-hexoside 448 nd tr 1889.2 ± 16.39 
30 Isorhamnetin-pentoside 448 nd nd 413.2 ± 4.27 
31 Quercetin-hexoside 464 89.28 ± 0.34 tr 283.28 ± 8.97 
32 Rutin 610 277.5 ± 0.77 nd nd 

 Total free flavonoids  944.67 780.19 3377.64 

33 Procyanidin dimer A type 576 nd nd 28.52 ± 2.05 
34 Procyanidin dimer B1 578 nd 22.67 ± 2.50 nd 
35 Procyanidin dimer B2 578 nd nd nd 
36 Procyanidin dimer B3 578 nd nd nd 
 Total free procyanidins   - 22.67 28.52 

 Total phenolics content  1686.59 1668.26 4013.39 
Data represent the mean values for each sample ± standard deviations (n = 3).  
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Table 4. 3 continued… 

 Esterified phenolics   

No. Compounds MW Camelina Chia Sophia 

Phenolic acids     

1 p-Hydroxybenzoic acid 138 nd nd tr 
2 Protocatechuic acid 154 nd nd nd 
3 Cis-p-coumaric acid 164  nd  
4 Trans-p-coumaric acid 164 tr 6.01 ± 0.01 nd 
5 Gallic acid 170 nd nd tr 
6 Cis-caffeic acid 180 nd 178.6 ± 17.8  nd 
7 Trans-caffeic acid 180 16.36 ± 0.32 42.4 ± 1.65 nd 
8 Carboxyl p-hydroxybenzoic acid 180 nd nd 9.79 ± 0.43 
9 Hydroxycoumaric acid 182 nd tr nd 

10 Cis-ferulic acid 194 nd nd nd 
11 Trans-ferulic acid 194 nd tr nd 

12 Cis-hydroxycaffeic acid 198 tr nd nd 

13 Carboxyl protocatechuic acid 198 nd nd 8.96 ± 0.13 

14 Cis-sinapic acid 224 13.98 ± 0.55 tr 22.61 ± 0.30 
15 Trans-sinapic acid 224 1899 ± 10.16 nd 481.1 ± 4.82 
16 Protocatechuic acid pentoside 286 tr nd nd 

17 Ellagic acid 302 25.21 ± 0.51 tr tr 
18 Chlorogenic acid 354 nd nd nd 
19 Rosmarinic acid  360 tr 31.03 ± 2.98 tr 

Total esterified phenolic  1954.55 258.04 522.46 

Flavonoids     
20 Genistein 270 nd nd nd 
21 Glycitein 284 nd nd 91.98 ± 12.66 
22 Catechin 290 nd nd tr 
23 Epicatechin 290 tr nd nd 
24 Quercetin 302 tr 309.5 ± 12.51 tr 
25 Myricetin 318 20.66 ± 1.03 18.24 ± 0.77 tr 
26 Apigenin 270 nd 76.51 ± 1.75 nd 
27 Dihydrodihydroxyisorhamnetin 354 nd nd tr 
28 Daidzein 416 tr 110.46 ± 10.56 tr 
29 Kaempferol-hexoside 448 tr tr nd 
30 Isorhamnetin-pentoside  448 nd nd tr 
31 Quercetin-hexoside 464 99.79 ± 2.94 nd 91.05 ± 2.39 
32 Rutin 610 tr 83.38 ± 1.84 nd 

Total esterified flavonoids   120.45 598.09 183.03 

Proanthocyanidins     
33 Procyadinin dimer A type 576 nd nd tr 
34 Procyadinin dimer B1 578 nd nd tr 
35 Procyadinin dimer B2 578 tr nd nd 
36 Procyadinin dimer B3 578 6.95 ± 0.21 23.94 ± 5.7 nd 

 Total esterified proanthocyanidins 6.95 23.94 - 

 Total esterified phenolic  2081.95 880.07 705.49 
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Table 4.3 continued… 

 Insoluble bound phenolics    

No. Compounds MW Camelina Chia Sophia 
Phenolic acids     

1 p-Hydroxybenzoic acid 138 16.60 ± 0.47 nd nd 
2 Protocatechuic acid 154 31.11 ± 1.51 nd 17.24 ± 1.55  
3 Cis-p-coumaric acid 164 nd nd nd 
4 Trans-p-coumaric acid 164 nd nd nd 
5 Gallic acid 170 8.86 ± 0.09 nd 4.79 ± 0.05 
6 Cis-caffeic acid 180 nd nd nd 
7 Trans-caffeic acid 180 7.19 ± 0.22 72.02 ± 0.71 nd 
8 Carboxyl p-hydroxybenzoic acid 180 tr nd nd 
9 Hydroxycoumaric acid 182 nd nd nd 

10 Cis- ferulic acid 194 nd nd nd 
11 Trans- ferulic acid 194 nd 69.70 ± 0.21 nd 
12 Cis-hydroxycaffeic acid 198 5.08 ± 0.01 67.44 ± 0.49 2.87 ± 0.03 
13 Carboxyl protocatechuic acid 198 tr nd nd 

14 Cis-sinapic acid 224 nd nd nd 
15 Trans-sinapic acid 224 172.02 ± 8.72 nd 70.48 ± 3.4 
16 Protocatechuic acid pentoside 286 nd nd nd 
17 Ellagic acid 302 3.54 ± 0.46 tr tr 
18 Chlorogenic acid 354 nd nd nd 
19 Rosmarinic acid 360 tr nd 31.03 ± 2.98 

Total insoluble bound phenolic  244.4 209.16 126.41 

Flavonoids     
20 Genistein 270 nd 607.8 ± 6.64 nd 
21 Glycitein 284  nd  
22 Catechin 290 12.49 ± 0.22 nd 8.78 ± 0.25 

23 Epicatechin 290 nd nd nd 
24 Quercetin 302 nd nd tr 
25 Myricetin 318 5.45 ± 0.66  3.01 ± 0.40 
26 Apeginin  270 nd 152.5 ± 1.93 nd 
27 Dihydrodihydroxyisorhamnetin 354 nd nd nd 
28 Daidzin 416 tr tr nd 
29 Kaempferol-hexoside 448 nd 76.18 ± 0.10 tr 
30 Isorhamnetin-pentoside  448 nd nd tr 
31 Quercetin-hexoside 464 48.49 ± 6.47 nd 21.54 ± 0.94 
32 Rutin 610 tr nd 21.54 ± 0.64 

Total insoluble bound flavonoids  66.43 335.54 54.87 

Proanthocyanidins     
33 Procyadinin dimer A type 576 nd 3.10 ± 0.30 6.22 ± 0.004 
34 Procyadinin dimer B1 578 nd nd tr 

35 Procyadinin dimer B2 578 tr nd nd 
36 Procyadinin dimer B3 578 5.29 ± 1.84 30.49 ± 2.12 nd 

Insoluble bound proanthocyanidins  5.29 33.59 6.22 

Total insoluble phenolic content  316.12 578.29 187.45 
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The quantification of phenolic acids of camelina, chia and sophia defatted meals is 

summarized in Table 4.3 as determined by HPLC-DAD-MS/MS.  Both camelina and sophia 

esterified fractions contained higher amounts of phenolic acids (1954.55 and 522.46 µg 

per gram sample, respectively) compared to the free and insoluble-bound fractions 

while the free fraction of chia seed meal showed higher amounts of phenolic acids 

(865.45 µg per gram sample) compared to the esterified (258.04 µg per gram sample) 

and the insoluble-bound fractions (209.16 µg per gram sample), respectively. Sinapic 

acid was the major phenolic acid found in the free and esterified fractions of both 

camelina and sophia seeds with concentrations of 2532.78 and 900.41 µg per gram 

sample, respectively. Rosmarinic acid was the major phenolic acid found in the free and 

esterified fractions with concentrations of 738.2 ± 17.9 and 31.03 ± 2.98 µg per gram 

sample, respectively, while total contribution (free, esterified & bound) of caffeic acid 

and ferulic acid was 303.13 and 157.34 µg per gram sample, respectively, as both cis and 

trans forms. Martinez-Cruz and Paredes-Lopez (2014) also identified and quantified 

rosmarinic acid as the major phenolic compound in chia seed with a concentration of 

926 µg per gram sample which is higher compared to our findings; the differences may 

possibly be due to differences in genetic and environmental factors. Rosmarinic acid has 

been reported to have many biological activities such as inflammatory, antiviral, 

antibacterial, antimutagen and astringent (Martinez-Cruz & Paredes-Lopez 2014; Tepe 

2008). Caffeic acid was the second major phenolic acid quantified in chia meal with a 

higher content of 303.13 µg per gram sample than that reported by Martinez-Cruz and 

Paredes-Lopez (2014) for Mexican chia seeds (27.4 µg per gram seed). Caffeic acid is a 

good free radical scavenger and enzyme inhibitor, and it may also show binding activity 

with specific receptors (Martinez-Cruz & Paredes-Lopez 2014; Son & Lewis 2002). Olthof, 
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Hollman, and Katan (2001) reported that caffeic acid inhibits low density lipoprotein 

(LDL) oxidation in vitro and thus might protect against cardiovascular diseases. A small 

amount of gallic acid was found in the insoluble-bound fraction of the both camelina and 

sophia seed samples at 8.86 and 4.79 µg per gram sample, respectively, but gallic acid 

was not identified in chia. Moreover, camelina showed a higher total phenolic acid 

content (2890.11 µg per gram sample) than chia and sophia seed meal (1332.65 and 

1128.34 µg per gram sample, respectively).  

4.4.2 Flavonoids and procyanidins 

Eleven (11) flavonoids  and four (4) procyanidins were positively or tentatively identified  

Freo camelina, chia and sophia seed meals (Table 4.2). Genistein (m/z 269 & 133), which 

was detected only in the fraction containing phenolics released from their insoluble-

bound form of chia, was tentatively identified as compound 20 (Orcic et al. 2014). 

Compounds 22, 23, and 24 were positively identified by comparing their retention times 

and fragmentation patterns with those of authentic standards. Compounds 25 and 26 

were tentatively identified as myricetin according to the published data and comparing 

their retention time, fragments ions and UV spectral data (Chandrasekara & Shahidi 

2011).   Compound 27 was tentatively identified as dihydrodihydroxyisorhamnetin due 

to its deprotonated molecular ion [M - H]- at m/z 353 and an MS2 product ion at m/z 

315, the latter one reflecting the loss of two atoms of hydrogen and one molecule of 

water [M- H - H - H - H2O]. Compound 28 was tentatively identified as daidzin, an 

isoflavone in the glucoside form, because it gave [M - H]- at m/z 415 and an MS2 signal at 

m/z 253 (Chen, Zhao, Plummer, Tang, & Games 2005), which is consistent with the loss 

of hexose [M - H - 162]-, thus releasing the aglycone daidzein. Kaempferol-hexoside 
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(compound 29) with the deprotonated molecular ion at m/z 447, showed loss of hexose 

and gave an MS2 product ion at 285, which matches with the molecular weight of 

kaempferol, therefore being tentatively identified as such (de Camargo, Regitano-d’Arce, 

Biasoto, & Shahidi 2014). Similar to kaempferol-hexoside, compound 30 showed 

deprotonated molecular ion at m/z 447; however, it gave MS2 signal at 315 (de Camargo, 

Regitano-d'Arce, Gallo, & Shahidi 2015), which matches the molecular weight of 

isorhamnetin, therefore allowing its tentatively identification as isorhamnetin-pentoside. 

Compound 31, which was tentatively identified as quercetin-hexoside (de Camargo, 

Regitano-d’Arce, Biasoto, & Shahidi 2014), exhibited a deprotonated molecular ion at 

m/z 463, followed by loss of hexose which gave m/z at 301 in MS2. Other fragment ions 

(m/z at 179 and at 151 in MS2) were confirmed by using a quercetin standard. 

Compound 32 was tentatively identified as rutin according to the fragmentation pattern 

reported in the literature (Gavrilova, Kajdžanoska, Gjamovski, & Stefova 2011). 

Procyanidin dimer A type (compound 33) was indentified temporaily with published data 

matched up products ions/ ions fragments reported by Ambigaipalan, de Camargo, & 

Shahidi (2016). Compounds 34, 35, and 36 were identified positively or tentatively as 

procyanidin dimers B1, B2, and B3, respectively. Compound 34 produced a molecular ion 

[M − H] − at m/z 562 with its MS2 fragment ions at m/z 289, 425, 451 which matched with 

published data (Chandrasekara, & Shahidi 2011; Ambigaipalan, de Camargo, & Shahidi 

2016). Compound 35 was identified as procyanidin dimer B2 that had a deprotonated 

ion at m/z 575 and fragmentation in MS2 produced ions at m/z 289 (typical 

deprotonated (epi) catechin) and m/z 407, 425, and 451, which is consistent with 

previously published data (Chandrasekara, & Shahidi 2011; Ambigaipalan, de Camargo, 

& Shahidi 2016). Procyanidin dimer B2 consists of epicatechin-(4β-8)-epicatechin. 
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Similarly, compound 36 was identified as procyanidin dimer B3 based on its molecular 

ion [M−H]- at 577 and MS2 fragments at m/z 289, 425, and 451 (Chandrasekara, & 

Shahidi 2011; Ambigaipalan, de Camargo, & Shahidi 2016).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    

Kaempferol-hexoside was the major flavonoid (1889.2 ± 16.39 µg per gram sample) in 

sophia seeds and found in the free phenolics fraction followed by daidzein (734.1 ± 16.2 

µg per gram sample), isorhamnetin-pentoside (413.2 ± 4.27 µg per gram sample), 

quercetin-hexoside (283.28 ± 8.97 µg per gram sample), catechin (45.06 ± 3.88 µg per 

gram sample), myricetin (12.80 ± 1.32 µg per gram sample), all of which were found in 

the same fraction of sophia seed. On the other hand, daidzein (477.2 ± 71.1 µg per gram 

sample) and rutin (277.5 ± 0.77 µg per gram sample) were found in the free phenolics 

fraction of camelina seed as a major flavonoid followed by quercetin (56.32 ± 7.43 µg 

per gram sample), quercetin-hexoside (89.28 ± 0.34 µg per gram sample) and myricetin 

(22.64 ± 6.48 µg per gram sample). Quercetin-hexoside and myricetin were found in the 

free, esterified and insoluble-bound fractions of camelina seed (Table 4.3) where their 

corresponding total contributions were 237.56 and 48.75 µg per gram sample, 

respectively. Daidzein was the major flavonoid  found in the free (734.1 ± 16.2 µg per 

gram sample) and esterified (110.46 ± 10.56 µg per gram sample) fractions of defatted 

chia seeds. Martinez-Cruz and Paredes-Lopez (2014) also quantified daidzein in chia seed 

with a concentration of 6.6 µg per gram sample which is lower than our finding, possibly 

because of differences in genotype and agronomic conditions. Quercetin (309.5 ± 12.51 

µg per gram sample) and rutin (83.38 ± 1.84 µg per gram sample) were found in the 

esterified fraction but only trace amounts of quercetin were found in the insoluble-

bound fraction. Genistein and quercetin-hexoside  were detected only in the insoluble-
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bound phenolic fraction of chia at concentrations of 91.98 ± 12.66 and 91.05 ± 2.39 µg 

per gram sample, respectively. Myricetin and apigenin were identified for the first time 

in chia; myricetin was present in the free, esterified, and insoluble-bound fractions 

(10.07 ± 1.39, 18.24 ± 0.77and 2.07 ± 0.49 µg per gram sample, respectively) and 

apigenin was found in the esterified and insoluble-bound fractions only at 

concentrations of 76.51 ± 1.75 & 152.51 ± 1.93 µg per gram sample, respectively. 

Flavonoids, especially isoflavones, are well known as anti-carcinogenic agents and they 

also have numerous applications in the prevention of inflammation, cardiovascular 

diseases and many other disorders (Martinez-Cruz & Paredes-Lopez 2014; Vacek et al. 

2008). Quantification of flavonoids by HPLC-DAD-MS/MS (Table 4.3) revealed that free 

phenolics (as flavonoids) fraction of both camelina and sophia existed in higher amounts 

compared to esterified and insoluble-bound fractions while chia seed revealed that free 

phenolics (as flavonoids) fraction was present in higher amounts (780.19 µg per gram 

sample) compared to esterified and insoluble-bound fractions (598.09 & 335.54 µg per 

gram sample, respectively).  

Proanthocyanin dimer B1 and B2 ware found in the free phenolics fraction of both 

camelina and sophia seeds at 50.76 ± 4.64 and 127.76 ± 3.23 µg per gram sample, 

respectively, whereas proanthocyanin dimer B3 was also present in the insoluble-bound 

fraction of camelina seed (5.29 ± 1.84 µg per gram sample). For chia seed meal, 

procyanidin dimer B1 was indentified only in the free fraction (22.67 ± 2.50 µg per gram 

sample) whereas procyanidin dimer B3 was found in both esterified and insoluble-bound 

fractions at 23.94 ± 5.7and 30.49 ± 2.12 µg per gram sample, respectively and 

procyanidin dimer B2 exited in trace amounts in the insoluble-bound fraction. 
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Proanthocyanin dimer A type is another proanthocyanidins which was identified and 

quantified by HPLC-DAD-MS/MS at 28.52 ± 2.05 and 6.22 ± 0.004 µg per gram sample, 

respectively, in the esterified and insoluble-bound fractions of both camelina and sophia 

meal whereas Procyanidin dimer A type was found (3.10 ± 0.30 µg per gram sample) 

only in the insoluble-bound fraction of chia. This is the first comprehensive study for 

identification and quantification of procyanidins in chia meal. Therefore, no information 

is available on quantification of procyanidins of camelina, chia and sophia meals to 

compare our results with it. The sum of the concentrations of all phenolic compounds 

detected in camelina, chia and sophia meals by HPLC-DAD-MS/MS was much lower than 

the TPC determined by Folin-Ciocalteu method (Table 4.1), which shows possible 

interference of other non-phenolic compounds in the latter method, and to a lesser 

extent, because of incomplete quantification of all compounds in the HPLC-DAD-MS/MS 

method. In addition, total flavonoid content by HPLC-DAD-MS/MS was lower than that 

by the AlCl3 method, possibly due to conjugation of flavonoids with soluble components 

such as small peptides or oligosaccharides (Zhang et al. 2015). 

4.5 In vitro antioxidant and biological activities of defatted camelina, chia and sophia 

meals 

Antioxidant activity is the most extensively investigated chemical property of phenolic 

and polyphenolic compounds. Phenolic compounds exhibit antioxidant activity because 

of their redox potential through transfer of a hydrogen atom or an electron, acting as a 

reducing agent, and possibly also by chelation of metal ions and inhibition of the activity 

of oxidases. In this study, we determined ABTS, DPPH, and hydroxyl radical scavenging, 

reducing power (RP), metal ion chelation and inhibition of bleaching of β-carotene in an 

oil-in-water emulsion system of the test samples in order to investigate the primary and 
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secondary oxidation inhibition ability of the phenolic extracts of camelina, chia and 

sophia seed meals. Several in vitro biological assays such inhibition of pancreatic lipase, 

α-glucosidase, LDL oxidation and DNA strand scission were also investigated. 

4.5.1 Trolox equivalent antioxidant capacity (TEAC) 

The TEAC assay is widely used to assess the antioxidant capacity of different biological 

matrices. The ability of antioxidant compounds to reduce the ABTS radical cation to its 

non- radical form is compared with that of trolox, which is a water-soluble analogue of 

alpha-tocopherol. In this study, the TEAC test is performed in an aqueous buffer; thus, 

only water-soluble compounds are measured. In the modified TEAC assay (van den Berg 

et al. 1999) that was used in this study, ABTS radical cations with a characteristic blue-

green colour were pre-generated by heating ABTS with the thermolabile azo compound 

AAPH before addition of the extracts. As documented in the literature (van den Berg et 

al. 1999), some compounds show a biphasic reaction pattern that includes fast and slow 

reactions in the TEAC assay. Therefore, TEAC values depend on the time point used to 

read the absorbance. In the present study, TEAC at 6 min was chosen as it includes more 

of the slow reaction as many antioxidants also demonstrate a slow reaction as well with 

ABTS radical (Madhujith & Shahidi 2006; Liyana-Pathirana & Shahidi 2007). 

The trolox equivalent antioxidant capacity (TEAC) of defatted camelina, chia and sophia 

seed meals as µmole trolox equivalents/g sample is shown in Table 4.4; the total values 

were 178.38 ± 0.80, 138.17 ± 4.98 and 344.87 ± 7.5 µmole TE per gram defatted sample, 

respectively. Sophia seed meal showed a significantly (p< 0.05) higher total TEAC value 

(344.87 ± 7.5 µmole TE per gram sample) than camelina (178.38 ± 0.80 µmole TE per 

gram sample) and chia (138.17 ± 4.98 µmole TE per gram sample), respectively. In this 
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study, all seed meals had significantly (p < 0.05) different ABTS radical scavenging 

capacity among their three phenolic fractions. The TEAC value of free, esterified, and 

insoluble-bound fractions of camelina, chia and sophia were in the range of 14.11 ± 2.51 

to 261.29 ± 6.04 µmole TE per gram defatted meals. The esterified extract of sophia 

showed the highest TEAC value (261.29 ± 6.04 µmole TE per gram sample) compared to 

the other fractions between three varieties tested. In the case of insoluble-bound 

phenolic extracts, chia showed a higher TEAC values (58.35 ± 1.89 µmole TE per gram 

sample) compared to camelina (14.11 ± 2.51 µmole TE per gram sample) and sophia 

(39.54 ± 1.6 µmole TE per gram sample). The TEAC value of camelina and sophia 

esterified phenolics was significantly (p< 0.05) higher than those of free and insoluble-

bound phenolics in both seeds whereas chia meals had a higher TEAC value in its free 

phenolic fraction (Table 4.4). This may be due to the high phenolic content found in 

Folin-Ciocalteu test for sophia esterified phenolic fraction. There was no significance 

difference (p > 0.05) famong camelina free and sophia free and esterified phenolics. No 

previus study on the ABTS radical scavenging activity of camelina and sophia seed meals 

has been carried out, therefore direct comparison with the literature data is not 

possible. However, in case of chia seed meal, our ABTS result was higher (138.17 ± 4.98 

µmole TE per gram sample) tahn that of the Mexican chia (84.51 ± 6.38 μmole TE per 

gram) but lower than Brazilian chia (255.88 ± 16.94 μmole TE per gram), as reported by 

Dick et al. (2015).  Vázquez-Ovando et al. (2009) also reported the ABTS radical 

scavenging capacity of Mexican chia as 488.88 μmole TE per gram, which is much higher 

than our finding. This variation may be attributed to differences in genotype, extraction 

procedure used and other agronomic conditions of chia seed tested. The trolox 

equivalent antioxidant capacity (TEAC) and total phenolics content (TPC) of different 
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fractions of camelina, chia and sophia were highly correlated (r2 = 0.91; p<0.01). This 

suggests that different phenolics fractions of defatted camelina, chia and sophia meals 

might have excellent free radical scavenging power. 

4.5.2 DPPH radical scavenging capacity (DRSC) by EPR 

DPPH radical is a synthetic organic radical with a deep purple colour that is widely used 

to evaluate free radical scavenging properties of foods and plant extracts as well as 

purified phenolic compounds. DPPH is a more stable radical compared to the highly 

reactive and transient hydroxyl and peroxyl radicals that are responsible for lipid 

peroxidation and tissue injury in biological systems (Chandrasekara & Shahidi 2010). The 

DRSC assay is based on the ability of antioxidants to donate a hydrogen atom or an 

electron to the DPPH radical to convert it to the non-radical form, which occurs slowly 

(Chandrasekara & Shahidi 2010; Moon & Shibamoto 2009). In the present study EPR 

spectroscopy was used to determine signal intensity of DPPH radical left following 

reaction with phenolic extracts of camelina, chia and sophia meals in the test system 

(Figure 4.1). 

Table 4.4 shows DPPH radical scavenging capacity (DRSC) of defatted seeds of camelina, 

chia and sophia which as 27.82 ± 1.44, 35.64 ± 2.44 and 71.05 ± 5.61 µmole TE per gram 

defatted sample, respectively. Sophia seed meal was highly effective in DPPH radical 

scavenging compared to chia and camelina seed meals. The total DRSC of free, esterified 

and insoluble-bound phenolics fractions of defatted meals of camelina, chia and sophia 

ranged from 1.28 ± 0.31 to 55.93 ± 6.04 µmole TE per gram sample. Sophia meal 

esterified fraction had the highest efficacy (55.93 ± 6.04 µmole TE per gram sample) in 

DPPH radical scavenging compared to all fractions tested for camelina, chia and sophia 
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seed meals. Similar results were found for ABTS radical scavenging and reducing power 

assays, possibly due to the high phenolic content of sophia meal esterified fraction and 

the high content of phenolics, especially tannins and flavonoids. Chia free fraction 

showed a higher DPPH radical inhibition effect compared to its esterified and insoluble-

bound fraction while esterified phenolic fraction in both camelina and sophia seeds 

showed significantly (p<0.05) higher DPPH radical scavenging activity (23.93 ± 2.00 and 

55.22 ± 6.04 µmole TE per gram sample, respectively) compared to their free and 

insoluble-bound counterparts. There was no significant difference in free and insoluble-

bound phenolics of camelina and sophia meals (Table 4.4). No information is available on 

DPPH radical scavenging activity of camelina and sophia seed meals to compare our 

results with published data, however, chia seed meal showed much lower total DPPH 

radical scavenging activity (27.7 ± 1.14 per gram sample) than DPPH results for Brazilian 

chia seeds (436.61 ± 9.67 µmole per gram seed) reported by de Silva Marineli et al. 

(2014) that might be attributed to genotype and other environmental factors. The DRSC 

and total phenolic content (TPC) was highly correlated (R2= 0.97), indicating that 

camelina, chia and sophia phenolics may play a role in quenching free radicals in both 

food and biological systems.  
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Figure 4.1. The EPR signal intensity of DPPH alone (a) and DMPO-OH radical adduct alone. 

The EPR signal intensity of DPPH (b) and DMPO-OH radical adduct (d) was significantly 

reduced in the presence of sophia esterified phenolic extract. 
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Table 4.4. Antioxidant activity of defatted camelina, chia and sophia samples reflected in 
their reducing power and free radical scavenging activity by different methods 

 

Samples Free phenolic Esterified Phenolic Insoluble-Bound Total 

Trolox equivalent antioxidant capacity (µmole TE/ g defatted sample) 

Camelina 44.55 ± 2.89Be 119.72 ± 1.01Ab 14.11 ± 2.51Cf 178.38 ± 0.80B’ 
Chia 73.40 ± 0.96Ac 6.42 ± 3.04Cf 58.35 ± 1.89Bd 138.17 ± 4.98C 
Sophia 44.04 ± 1.77 Be 261.29 ± 6.04 Aa 39.54 ± 1.6Be 344.87 ± 7.50A’ 
Reducing power (µmole TE/ g defatted sample) 

Camelina 39.51 ± 0.70Bd 59.40 ± 1.62Ac 6.44 ± 0.10Ci 105.35 ± 1.8C’ 
Chia 73.06 ± 0.64Ab 10.17 ± 0.19Ch 37.19 ± 0.13Bf 120.42 ± 0.46B’ 
Sophia 49.74 ± 0.39Bd 81.30 ± 0.82Aa 26.05 ± 0.66 Cg 157.10 ± 0.85A’ 

DPPH scavenging activity (µmole TE/ g defatted sample) 

Camelina 7.93 ± 0.29Bc 23.93 ± 2.00Ab 3.78 ± 0.93Cc 35.64 ± 2.44B’ 
Chia 16.56 ± 0.75Ab 1.28 ± 0.31Cf 9.98 ± 0.50Bc 27.82 ± 1.44C’ 
Sophia 8.33 ± 0.17Bc 55.22 ± 6.04Aa 7.50 ± 0.74Bc 71.05 ± 5.61 A’ 
Hydroxyl radical scavenging activity (µmole CE/ g defatted sample) 

Camelina 4.84 ± 1.18Bc 21.93 ± 3.85Ab 2.21 ± 0.68Bc      28.98 ± 4.28B’ 
Chia 23.29 ± 6.18Ab 21.73 ± 1.96Ab 17.90 ± 1.37Ab      62.92 ± 8.96A 
Sophia 22.46 ± 1.47Bb 39.26 ± 1.50Aa 5.36 ± 0.97Cc      67.09 ± 3.32A’ 
Metal chelation activity (µmole EDTA/ g defatted sample)  
Camelina 12.92 ± 0.04 Ab 10.88 ± 0.41 Bc 13.87 ± 0.83Aab       37.02 ± 4.28 

Chia 6.29 ± 0.33Be 14.28 ± 0.15Aa 2.50 ± 0.11C f       23.08 ± 0.47 

Sophia 7.92 ± 0.56 Bd 9.76 ± 0.21 Ac 6.91 ± 0.07 Cde      24.61 ± 0.59 

Data represent the mean values for each sample ± standard deviations (n = 3. Means followed by the different upper 
case letters within a row and different lower case letters among all fractions are significantly different (p < 0.05) but 
same letters indicate are not significantly different (p > 0.05). TE, Trolox equivalents and CE, Catechin equivalents, 
EDTA, Ethylenediaminetetraacetic acid. 

 

4.5.3 Hydroxyl radical scavenging capacity (HRSC) 

Hydroxyl radical (•OH) is an extremely reactive oxygen-centered radical, which can be 

generated in the body and may attack all biological molecules such as DNA, proteins, and 

polyunsaturated fatty acids (PUFA) in membranes, among others (Chandrasekara & 

Shahidi 2010). In addition, its significant role as an initiator of lipid peroxidation is well 

documented. In this study, hydroxyl radicals were produced through the Fenton 

reaction, in which ferrous sulphate reacts with H2O2 to generate hydroxyl radicals. As the 
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resulting hydroxyl radicals are short-lived, a spin trap, 5, 5-dimethyl-1-pyrrolidine-N-oxide 

(DMPO) is used to make them stable for detection by EPR spectrometry as DMPO-OH 

radical adducts. Table 4.4 shows the hydroxyl radical scavenging capacity (HRSC) of 

defatted meals of camelina, chia and sophia. Sophia meal showed a higher hydroxyl 

radical inhibition activity compared to camelina and chia seed meals. In the present 

study, the hydroxyl radical scavenging capacity (HRSC) of free, esterified and insolube-

bound phenolic extracts of defatted seeds of camelina, chia and sophia ranged from 

2.21± 0.68 to 39.26± 1.50 µmole CE per gram defatted sample (Table 4.4). Esterified 

extracts of sophia showed the highest (p<0.05) HRSC value (39.26 ±1 .50 µmole CE per 

gram defatted sample) compared to other phenolics extracts of camelina, chia and 

sophia tested. For camelina and sophia, esterified fraction showed a higher hydroxyl 

radical scavenging activity compared to the free and insoluble-bound fractions whereas 

chia had a higher hydroxyl radical activity in the free phenolic fraction. This is the first 

comprehensive study on hydroxyl radical scavenging activity for camelina, chia and 

sophia seed meals, hence the results cannot be compared with the literature. HRSC and 

total phenolics content (TPC) of different fractions of camelina, chia and sophia were 

poorly correlated (r2 = 0.45, p<0.01). This variation might be because hydroxyl radicals 

are very reactive and their scavenging efficacy depends on the chemical structure and 

the type of the phenolics involved. These results suggest that different phenolic fractions 

of defatted camelina, chia and sophia meals might have excellent hydroxyl radical 

scavenging power in peroxidation that attacks all biological molecules such as DNA, 

proteins, and polyunsaturated fatty acids (PUFA) in membranes, among others. 
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4.5.4 Reducing Power (RP) 

The reducing power (RP) of free and esterified and insoluble-bound phenolic extracts of 

camelina, chia and sophia mmeals was evaluated by the potassium ferricyanide method. 

In this method, phenolic compounds react with potassium ferricyanide(Fe3+) to form 

potassium ferrocyanide (Fe2+), which then reacts with ferric chloride to form ferrous ion 

complex that has an absorption maximum at 700 nm (Alshikh, de Camargo, & Shahidi 

2015; Jayanthi & Lalitha 2011). Phenolic compounds with reducing power (RP) showed 

that they could donate electrons thus reducing oxidized intermediates produced during 

lipid peroxidation processes, acting as antioxidants. In this assay, the colour of the tested 

sample turns into various shades of green from yellow colour based on the reducing 

power of the phenolic extract (Alshikh, de Camargo, & Shahidi 2015; Jayanthi & Lalitha 

2011). The absorbance increases with increasing phenolic contents in the extracts which 

shows a stronger reducing capacity. 

Table 4.4 summarizes the RP of defatted camelina, chia and sophia meals which varied 

from 6.44 ± 0.10 to 81.30 ± 0.82 µmole TE/g sample for all fractions. However, the total 

RP of camelina, chia   and sophia meals was 105.35 ± 1.8; 120.42 ± 0.46 and 157.10 ± 

0.85 µmole TE per gram sample, respectively. Sophia seed meal had a significantly (p < 

0.05) higher RP value compared to camelina and chia seed meal (Table 4.4). While 

comparing RP among all fractions of three seeds tested, the esterified extract of sophia 

showed the highest (p < 0.05) RP value (81.30 ± 0.82 µmole TE per gram sample). The 

same results were also observed in DPPH radical scavenging assay in this same study, 

possibly due to high phenolic content that we found in the Folin-Ciacalteu’s test in our 

study. The reducing power in the insoluble-bound phenolic fraction of defatted seeds of 
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sophia was 26.05 ± 0.66 µmole TE per gram sample which is 4 times higher than that of 

defatted camelina meal (6.44 ± 0.10 µmole TE per gram sample) and 6 times lower than 

that of chia seed meal (37.19 ± 0.13 µmole TE per gram sample). The reducing power 

(RP) among camelina, chia and sophia was significantly (p < 0.05) different. The variation 

in reducing power of different phenolics fractions in camelina, chia and sophia defatted 

meals is dictated by their phenolic content and the type of phenolics present. The total 

reducing power (RP) of chia seed meal (120.42 ± 0.46 µmole TE per gram sample) was 

much lower than the ferric reducing antioxidant power (FRAP; 405.71 µmole TE per 

gram) of Brazilian chia seed reported by de Silva Marineli et al. (2014) and the difference 

might be due to different genotype and other environmental factors; other results 

cannot be compared with the literature as there are no previous studies on this topic. RP 

was highly correlated with TPC (R2= 0.83), indicating that the phenolic extract of 

camelina, chia and sophia might serve as good reducing agents and as a viable source of 

natural antioxidants that could be used directly in selected foods or food formulations.    

4.5.5 Ferrous ion chelating activity  

Transition metal ions such Fe2+ and Cu2+ catalyse peroxidation in foods and biological 

systems. In the body, ferrous ions may produce hydroxyl radicals via Fenton’s reaction 

which leads to the destruction of biomolecules, thus causing disease conditions and 

aging. Chelating agents such as phenolics and polyphenolics can prevent oxidation by 

binding metal ions and serve as effective secondary antioxidants (Chandrasekara & 

Shahidi 2010). In our study, we used the ferrozine method for determination of metal 

chelation activity of camelina, chia and sophia polyphenolics extracts. In this assay, 

phenolic compounds and Ferrozine compete for the Fe2+ ion and form a coordinate 
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complex and stop transfer of electrons. Thus, phenolic compounds with cleating ability 

reduce the intensity of the purple colour of the complex. 

Table 4.4 shows the metal chelating activity of the phenolic extracts of camelina, chia 

and sophia meals. Total ferrous ion chelating activity of camelina, chia and sophia 

phenolic extracts was 37.51 ± 0.74; 23.08 ± 0.47 and 24.61 ± 0.59 µmole EDTA Eq per 

gram sample, respectively. Camelina meal showed a higher metal chelation activity 

(37.51 ± 0.74 µmole EDTA Eq per gram sample) while no significant difference existed in 

ferrous ion chelation between chia and sophia meals. In case of camelina seed, the 

insoluble-bound phenolic fraction showed significantly (p< 0.05) higher metal chelation 

activity (13.87 ± 0.83 µmole EDTA Eq per gram sample) compared to the free and 

esterified fractions. On the other hand, sophia's esterified phenolics showed significantly 

higher metal chelation activity (9.7 ± 0.21 µmole EDTA Eq per gram sample) compared to 

the free and insoluble-bound phenolics. Esterified phenolic fraction of both chia and 

sophia as well as insoluble-bound phenolics of camelina which showed high chelating 

activity were reported to contain flavan-3-ol monomers as well as dimmers such as 

procyanidin B1 and B2 which could be responsible for their high ferrous ion chelating 

activity (Chandrasekara & Shahidi 2010). Comparison of these results with the literature 

is not possible as no prior work has been done with such details earlier. No correlation 

existed between TPC and metal chelation activity indicating that metal chelation activity 

did not depend on the quantity of phenolics present, but to the specific type of phenolic 

compounds and the number of hydroxyl groups and their arrangement in the molecule.  

Thus, these results show that camelina, chia and sophia meal extracts may serve as good 

sources of food ingredients with secondary antioxidant activity.  
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4.5.6 β-carotene bleaching assay   

In the β-carotene /linoleate model system, free radicals are formed by abstracting a 

hydrogen atom from the active bis-allylic methylene group of linoleic acid in C-11 

between the two double bonds. Free radicals attack β-carotene, causing the molecule to 

lose its conjugation, resulting in the loss of the characteristic yellow-orange colour of the 

molecule. Phenolic compounds protect β-carotene from bleaching by protecting 

linoleate from oxidation (Chandrasekara & Shahidi 2010). Thus, in this study the 

antioxidant activity of the oilseed extracts was investigated in the beta-

carotene/linoleate emulsion system, which is more relevant to foods and biological 

systems. 

 

Figure 4.2. Inhibition of bleaching of β-carotene in beta-carotene/linoleate model 

system by camelina, chia and sophia seeds phenolic extracts. Data represent the mean 

values for each sample ± standard deviations (n = 3). Means followed by the different 

lower case letters among all fractions are significantly different (p < 0.05) but same 

letters indicate are not significantly different (p > 0.05).  
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The inhibition of bleaching of β-carotene in oil-in-water emulsion system was screened 

at 0.5mg/ mL extract of camelina, chia and sophia phenolics as shown in Figure 4.2 and 

Table 4.5. The percentage inhibition of bleaching of β-carotene by camelina, chia and 

sophia seed extracts was significantly varied from 14.38 ± 0.21 to 57.53 ± 1.51% in 

different fractions whereas the IC50 values ranged from 0.43 ± 0.01 to 1.73 ± 0.02 mg per 

mL of extract. A low IC50   indicates a higher inhibition activity. In this work, free seed 

extract of chia showed a significantly higher β-carotene bleaching inhibition (57.53 ± 

1.51%) with the lowest IC50 value at 0.43 ± 0.01 mg/ mL of extract. On the other hand, 

the lowest β-carotene bleaching inhibition (14.38 ± 0.21 %) of the free phenolic extract 

of sophia seed had the highest IC50 of 1.73 ± 0.02 mg/mL. For comelina and chia seeds, 

the free phenolic extracts were more effective against β-carotene bleaching compared 

to other fractions while esterified sophia seed extract was more effective in β-carotene 

oxidation. This is the first comprehensive study on β-carotene bleaching of camelina 

seed meal, hence the results cannot be compared with the literature. However, 

HadiNezhad, Rowland and Hosseinian (2014) reported that sophia whole seed phenolic 

extract was effective against β-carotene bleaching with an IC50 of 1.0 ± 0.1 mg/mL 

extract while that for sophia meal had IC50 of 1.6 ± 0.2 mg/mL extract in the same study. 

Reyes- Caudillo et al. (2008) reported that chia seed collected from two different places 

showed β-carotene bleaching inhibition 79.3 ± 0.13 and 73.5 ± 0.19% respectively, which 

is almost the same as that for the free phenolic fraction but lower compared to the total 

β-carotene bleaching inhibition of chia seed meal, again due to genotype and agronomic 

conditions of the chia seed tested. However, camelina, chia and sophia seeds showed 

higher inhibition activity against β-carotene bleaching in β-carotene/linoleate system 

which reflects many foods and biological systems. 
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4.5.7 Inhibition of α-glucosidase activity  

α-Glucosidase is a key enzyme in the digestive tract. It is a membrane-bound enzyme 

located on the epithelium of the small intestine.  α- Glucosidase breaks down dietary 

carbohydrates into glucose. If the pancreas does not produce a sufficient amount of 

insulin, or if the body does not properly use the insulin it makes, glucose (sugar) builds 

up in the blood instead of being used for energy, thus may cause type 2 diabetes. In 

addition, glucosidases are important enzymes in the processing of glycoprotein and 

glycolipids and are involved in the formation of essential glycoproteins required in viral 

assembly, secretion, and infection (Gruters et al. 1987). Phenolic and polyphenolic 

compounds with specific structural features may bind enzymes by complex formation 

through hydrogen bonding or other mechanisms. Therefore, we evaluated the effect of 

phenolic extracts of camelina, chia and sophia meals on the inhibition of α-glucosidase 

to examine their possible antidiabetic effects and enhancement of the body's host 

immune system. 

The inhibitory effect of camelina, chia and sophia phenolic extract on α-glucosidase in in 

vitro assay is shown in Table 4.5 and Figure 4.3. In this assay, we used the original 

concentration of phenolic extracts (9.3 -33.1 mg/ mL). The inhibitory effects of camelina, 

chia and sophia meals on α-glucosidase enzyme was significantly (p < 0.05) different 

among all phenolics fractions (Table 4.3) and varied from 0.47 ± 0.29 to 63.86 ± 1.25%. 

The free phenolics extract of sophia showed a significantly higher (63.86 ± 1.25%) 

inhibitory effect against α-glucosidase whereas the lowest inhibition activity (0.47 ± 0.29 

%) was found for the insoluble-bound fraction of camelina meal. Free phenolics showed 

a higher α-glucosidase inhibitory activity in all three seeds compared to other tested 

phenolic fractions in this study. However, sophia seed extract was more effective 
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compared to camelina and chia seeds. The concentration of the phenolic extract of 

camelina and sophia meals required for 50 % α-glucosidase inhibition (IC50) was also 

calculated and found to range from 25.92 ± 0.51 to 1281.39 ± 767.40 mg/ mL of extract. 

As low IC50 explains higher α-glucosidase inhibition activity, the highest inhibitory activity 

on α-glucosidase was found in sophia free phenolics at the lowest IC50 value of 25.92 ± 

0.51 mg/mL of extract. The highest IC50 value (1281.39 ± 767.40 mg/mL of extract) was 

found in the insoluble-bound phenolics of camelina meals, indicating its lowest inhibitory 

activity on α-glucosidase.  A direct comparison of these results with the literature is not 

possible as no prior data exists for detailed determinations. 

 

Figure 4.3.  α-Glucosidase inhibition activity of camelina, chia and sophia meals. Data 

represent the mean values for each sample ± standard deviations (n = 3). Means 

followed by the different lower case letters among all fractions are significantly different 

(p < 0.05) but same letters indicate are not significantly different (p > 0.05).  
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Table 4.5. Effect of camelina, chia and sophia seeds phenolic extracts on inhibition of 
bleaching of β-carotene in a water-in-oil model system, pancreatic lipase, α-glucosidase, LDL 
oxidation and DNA strand scission induced by hydroxyl and peroxyl radicals (IC50 mg/mL 
extract). 

 

Samples Free  Esterified  Insoluble-Bound 

   Antioxidant activity in β-carotene/linoleate model system  
Camelina 1.19 ± 0.01c 0.95 ± 0.01d 0.48 ± 0.00f 

Chia 0.43 ± 0.01 1.032 ± 0.03 0.84 ± 0.02 

Sophia 1.73 ± 0.02a 0.65 ± 0.00e 1.35 ± 0.01b 
α-Glucosidase inhibition activity  

Camelina 10.89 ± 0.13c 6.93 ± 0.01e 4.15 ± 0.04f 
Chia 56.54 ± 9.4 127.49 ± 12.78 192.54 ± 19.54 

Sophia 16.87 ± 0.11a 9.47 ± 0.18d 12.23 ± 0.02b 
Pancreatic lipase inhibition activity  

Camelina 10.89 ± 0.13c 6.93 ± 0.01e 4.15 ± 0.04f 
Chia 10.05 ± 0.09 16.58 ± 0.22 17.10 ± 0.08 

Sophia 16.87 ± 0.11a 9.47 ± 0.18d 12.23 ± 0.02b 
Low density lipoprotein (LDL) oxidation inhibition 

Camelina 0.06 ± 0.01a 0.02 ± 0.00b 0.02 ± 0.01b 
Chia 0.03 ± 0.01 0.02 ± 0.0 0.07 ± 0.01 

Sophia 0.07 ± 0.03a 0.02 ± 0.00b 0.03 ± 00ab 
DNA strand scission inhibition induced by hydroxyl radical  

Camelina 12.19 ± 0.36c 6.05 ± 0.10d 5.06 ± 0 .01e 

Chia 13.70 ± 1.59 20.95 ± 0.76 25.74 ± 3.7 

Sophia 22.01 ± 0.25a 4.09 ± 0.10f 15.74 ± 0.15b 

DNA strand scission inhibition induced by peroxyl radical  
Camelina 5.50 ± 0.03b 2.68 ± 0.00d 2.42 ± 0.05e 

Chia 2.75 ± 0.01 7.74 ± 0.01 5.26 ± 0.03 

Sophia 8.35 ± 0.03a 1.14 ± 0.00f 5.40 ± 0.01c 

Data represent the mean values for each sample ± standard deviations (n = 3. Means followed by the 
different lower case letters among all fractions are significantly different (p < 0.05) but same letters 
indicate are not significantly different (p > 0.05).  

 

4.5.8 Inhibition of pancreatic lipase activity 

Pancreatic lipase is an important enzyme in gastrointestinal tract. It is secreted from the 

pancreas and hydrolyses triacylglycerols to glycerol and fatty acids in the small intestine 

that may cause obesity. Thus, inhibition of pancreatic lipase provides a good strategy in 

weight management and may help controlling hyperlipidaemia and obesity. 
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Figure 4.4. Pancreatic lipase inhibition activity of camelina, chia and sophia meals. Data 

represent the mean values for each sample ± standard deviations (n = 3). Means 

followed by the different lower case letters among all fractions are significantly different 

(p < 0.05) but same letters indicate are not significantly different (p > 0.05).  

Camelina, chia and sophia seed extracts showed high inhibition against pancreatic lipase 

activity which was screened at 6 mg/mL of extract as shown in Figure 4.4 and Table 4.5. 

Camelina, chia and sophia seed extracts showed a significantly (p<0.05) wide range of 

pancreatic lipase inhibition activity which varied from 23.39 ± 0.11 to 96.19 ± 1.08% 

while the corresponding IC50 values of the extracts of camelina and sophia defatted 

meals ranged from 4.15 ± 0.04 to 16.87 ± 0.11 mg/mL of extract. Insoluble-bound 

phenolics extract of camelina showed the highest inhibitory effect on pancreatic lipase 

with lowest IC50 value of 4.15 ± 0.04 mg/mL, whereas the lowest inhibition activity 

(23.39 ± 0.11 %) was found for the insoluble-bound fraction of chia meal with highest 

IC50 value at 17.10 ± 0.08 mg/mL of extract.  In case of chia seed, the free phenolic 

fraction showed a high lipase inhibitory activity compared to other fractions whereas 

esterified fraction of sophia and the insoluble-bound phenolic fraction of camelina was 
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more effective for pancreatic lipase inhibition. Based on the results shown here it is 

evident that besides the content of phenolics, their composition/ structural features and 

possibly other factors may also play a role in the enzyme inhibition activity of each type 

of phenolics involved. Since this is the first study on pancreatic lipase inhibition activity 

of camelina, chia and sophia seed meals, a comparison with the literature is not possible. 

4.5.9 Low-density lipoprotein (LDL) oxidation inhibition 

The oxidized low-density lipoprotein (Ox-LDL) plays a role in atherogenesis and coronary 

heart disease in humans (Ambigaipalan, de Camargo & Shahidi 2016; Jialal & Devaraj, 

1996; Witztum & Steinberg 1991), and LDL oxidation may proceed via different 

pathways. The development of atheromatous plaques occurs due to uptake of oxidized 

LDL, through scavenger receptors followed by cholesterol accumulation and foam cell 

formation (Ambigaipalan, de Camargo & Shahidi 2016; Chisolm & Steinberg 2000). In this 

study, we examined the oxidative susceptibility of LDL catalyzed by Cu2+ in an in vitro 

system by monitoring conjugated dienes formation after 12 h of incubation at 370C. The 

conjugated dienes are formed when a hydrogen atom abstract from a PUFA followed by 

molecular rearrangement. The formation of conjugated dienes indicates the initiation 

phase of LDL oxidation. 

The LDL oxidation inhibition effect of camelina, chia and sophia seed meals in a Cu2+ 

catalyzed in vitro system was screened using 0.02 mg/ mL of phenolic extract as 

summarized in Figure 4.5 and Table 4.5. The LDL oxidation inhibition activity of camelina, 

chia and sophia phenolic extracts ranged from 13.99 ± 3.09 to 50.09 ± 2.80%.  
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Figure 4.5. LDL oxidation inhibition effects of camelina, chia and sophia meals. Data 

represent the mean values for each sample ± standard deviations (n = 3). Means 

followed by the different lower case letters among all fractions are significantly different 

(p < 0.05) but same letters indicate are not significantly different (p > 0.05).  

Sophia esterified phenolic fraction showed the highest inhibition effect (50.09 ± 2.80%) 

on LDL oxidation compared to other fractions of all three seeds tested.  There was no 

significant difference (p > 0.16) for the inhibition of LDL oxidation among esterified 

fractions of all three seeds and the free phenolic fraction of chia seed meal.  Similar 

results were also found at p > 0. 30 for the esterified phenolics fraction in both camelina 

and sophia as well as for the free and insoluble-bound phenolics of chia and sophia seed, 

respectively. The concentration of the phenolic extracts of camelina and sophia meals 

required for 50 % LDL oxidation inhibition (IC50) was also calculated and found to range 

from 0.02 ± 0.01 to 0.07 ± 0.03 mg/ mL of extract.  No significance difference (p > 0. 14) 
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existed at the IC50 value of free phenolics fractions in all three seeds as well as the 

insoluble-bound phenolics of chia and sophia seeds. A comparision of our findings with 

the literature is not possible since no prior work has been conducted. 

4.5.10 Supercoiled plasmid DNA strand scission assay  

Oxidative stress in cells is caused by ROS such as hydroxyl and peroxyl radicals.  Because 

of oxidative stress, DNA damage may occur which is the first step in many pathological 

conditions such as mutagenesis and carcinogenesis, among others. DNA damage is a free 

radical mediated process that may occur at both the phosphate backbone and the 

nucleotide bases of DNA molecules. A wide variety of modifications may be observed in 

DNA molecules due its damage by ROS, including strand scission, sister chromatid 

exchange, DNA-DNA and DNA-protein cross-links as well as base modification 

(Chandrasekara & Shahidi 2011; Valko et al. 2004; Davies 1995). Hydroxyl radical is 

generated through Fenton reaction in the presence of transition metal under 

physiological conditions from hydrogen peroxide (product of superoxide anion 

dismutation). Hydroxyl radical can abstract a hydrogen atom from the deoxyribose 

moiety as well as pyrimidine and purine bases of DNA, thus producing single strands 

(Chandrasekara & Shahidi 2011; Stolc, Valko, Valko, & Lombardi 1996). Double strand 

breaks, which occur near to each other on both strands, may be due to the multiple 

hydroxyl radical attacks and could lead to lethal damage of the cells (Chandrasekara & 

Shahidi 2011; Ward 1985). Peroxyl radicals have also been shown to be involved in DNA 

strand breakage and base modification (Rodriguez et al. 1999).  In this work, free radical 

induced DNA oxidation inhibition was investigated for camelina, chia and sophia seed 

meals extracts at a concentration of 8.0 and 4.0 mg/mL, and the retention of supercoiled 
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DNA and IC50 values were also calculated. When oxidation occurs in DNA by peroxyl or 

hydroxyl radical, the supercoiled form of DNA may be converted to a nicked open 

circular form and a linear form (Ambigaipalan, de Camargo, & Shahidi 2016). Supercoiled 

DNA moves faster through an agarose gel network compared to the linear form of DNA. 

Thus, we observed two rows of DNA such as nicked (N) and supercoiled (S) (Figure 2). 

Areas under these bands were used to calculate percentage inhibition of supercoiled 

DNA oxidation and also IC50 values.  

 

Figure 4.6. Agarose gel electrophoresis of inhibition of supercoiled DNA strand scission 
induced by hydroxyl radical (A) and peroxyl radical in the presence of camelina phenolic 
extracts (duplicates). Lanes: (1) blank; (2) control; (3) camelina free; (4) camelina 
esterified and (5) camelina insoluble bound phenolic extract. N, nicked DNA; S, 
supercoiled DNA. 
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Figure 4.7. Hydroxyl radical induced DNA damage inhibition of camelina, chia and sophia 

meals. Data represent the mean values for each sample ± standard deviations (n = 3). 

Means followed by the different lower case letters among all fractions are significantly 

different (p < 0.05) but same letters indicate are not significantly different (p > 0.05).  

 

Figure 4.8: Peroxyl radical induced DNA damage inhibition of camelina, chia and sophia 

meals. Data represent the mean values for each sample ± standard deviations (n = 3). 

Means followed by the different lower case letters among all fractions are significantly 

different (p < 0.05) but same letters indicate are not significantly different (p > 0.05).  
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Figures 4.7 and 4.8 as well as Table 4.5 summarize the inhibition effect of camelina, chia 

and sophia seed meals against DNA strand scission induced by both peroxyl and hydroxyl 

radicals which varied significantly (p <1.00) from 15.7 ± 2.28 to 97.61 ± 2.40 % and from 

11.97 ± 0.04 to 87.61 ± 0.08 %, respectively. The insoluble-bound phenolics fraction of   

camelina seed meal showed significantly (p < 0.05) higher inhibition effect (78.93 ± 

0.21%) against hydroxyl radical induced DNA strand scission with the lowest IC50 value of 

4.09 ± 0.10 mg/mL of extract while esterified sophia phenolic extract showed the highest 

inhibition activity against peroxyl radical induced DNA strand scission. The lowest 

inhibition activity was found for insoluble-bound phenolic fraction of chia against 

hydroxyl and peroxyl radicals during DNA damage. A similar result was found in the 

inhibition of cupric ion-induced LDL oxidation in our study.  
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CHAPTER 5 

SUMMARY, CONCLUSION AND FUTURE DIRECTIONS 

The phenolic and polyphenolic profiles of camelina (Camelina sativa), chia (Salvia 

hispanica) and sophia (Descurainia sophia) seed meals were evaluated and compared. 

Defatted camelina, chia and sophia seeds meals were rich sources of various phenolic 

compounds and displayed higher antioxidant and biological activities in several in vitro 

systems. Sophia seed meal showed significantly higher phenolics content compared to 

the camelina and chia. Esterified phenolics were predominant in both camelina and chia 

seed meals, whereas free phenolics predominated in chia seed. Phenolic content in free, 

esterified and insoluble fraction of camelina, chia and sophia defatted meals was 

significantly different. Sinapic acid was the predominant phenolic compound in both 

camelina and sophia, while chlorogenic acid was a major phenolic compound in chia 

seed meal in the HPLC-DAD-MS/MS analysis. Daidzein was the predominant flavonoid in 

chia meal whereas quercetin-hexoside was predominant in both camelina and sophia 

meals. Free radical scavenging activity and reducing power of sophia seed meal was 

better than those of camelina and chia. On the other hand, camelina seed meal showed 

a higher metal chelation activity compared to sophia and chia meals, indicating that it 

may act as a better secondary antioxidant. Camelina, chia and sophia defatted meal not 

only showed significant free radical scavenging and antioxidant activity, but also 

inhibited pancreatic lipase and α-glucosidase activities. These enzymes are found in the 

digestive tract associated with lipid and carbohydrate digestion, respectively, and control 

obesity and blood glucose level in the human body. The findings of this work provide 

supporting information that chia meal may inhibit human LDL oxidation and DNA nicking 
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caused by free radicals and may also exert potential for prevention of CVD once 

consumed. Thus, seed meals of camelina, chia and sophia may serve as nutritional 

supplement and bioactive phenolics based on our HPLC-DAD-MS/MS data and in vitro 

antioxidant and biological assays. However, in vivo confirmation is still needed. In 

addition, investigation on the absorption and metabolism of camelina, chia and sophia 

meals phenolics need be carried out in in vivo systems. Besides in vivo studies, the 

application of the camelina, chia and sophia meals as antioxidant preservatives in food 

processing and preservation may provide means for full and better utilization of the 

resources. The effects of genotypes, growing conditions, harvesting time and storage on 

the phenolic and polyphenolic profiles of defatted camelina, chia and sophia seeds and 

their antioxidant and biological activities in both in vitro and in vivo deserve attention in 

further studies. 
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