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ABSTRACT 

 

The increased prevalence of high-fat food in modern society has led to an 

epidemic of overeating and obesity. High-fat diets are known to modulate homeostatic 

and reward pathways in the brain that regulate feeding, which may underlie caloric 

overconsumption. Such modulation may involve functional plasticity of feeding-related 

neurons including orexin and melanin-concentrating hormone (MCH) neurons of the 

lateral hypothalamus. However, how these neurons respond to high-fat diet at a cellular 

level and whether their responses precede obesity is incompletely understood. We used in 

vitro electrophysiology on acute brain slices from rats fed a high-fat, Western Diet (WD) 

or a standard chow to assess WD-induced plasticity of orexin and MCH neurons.  

 We found that orexin neurons display dynamic responses to WD. Excitatory 

transmission to orexin neurons is potentiated as early as 1 day and 1 week of WD feeding. 

At the same time, we found that a novel activity-dependent presynaptic long-term 

depression occurs only in the WD condition in orexin neurons, which is mediated by 

mGluR5 and retrograde cannabinoid signaling. This LTD may be a homeostatic 

mechanism to limit overactivation of the orexin system. With longer feeding, these effects 

on excitatory transmission become attenuated while inhibitory transmission is increased, 

which would limit the excitability of orexin neurons.  

 Contrastingly, WD induced a delayed activation of MCH neurons by 4 weeks of 

feeding through increased excitatory synaptic input and direct membrane depolarization 

due to an inhibition of the Na+/K+-ATPase. The latter depends on the activity of 
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cyclooxygenase and is mimicked by prostaglandin E2, an inflammatory mediator. These 

changes are persistent and further exacerbated by prolonged feeding. Furthermore, this 

activation of MCH neurons underlies increased WD intake and weight gain, which likely 

contributes to diet-induced obesity. This is the first study to link excitation of feeding-

related neurons with brain inflammation as a mechanism to explain high fat diet-induced 

weight gain. 

 In summary, we have found that complex, time-dependent plasticity occurs in the 

lateral hypothalamus over the course of WD feeding. This plasticity likely affects food 

intake and weight gain, as well as other physiological functions of orexin and MCH 

neurons. Therefore, our study may provide valuable insights into developing treatments 

for obesity. 
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CHAPTER 1 

 

INTRODUCTION AND OVERVIEW 
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1.1 Regulation of food intake and body weight 

 Body weight is regulated by the brain and determined by the balance between 

energy taken in as food and energy used for metabolic processes. Normally, food intake is 

regulated in a homeostatic manner; however, hedonic or reward-based feeding also occurs 

in the absence of metabolic need. Therefore, the interaction and activities of these two 

feeding mechanisms determine overall energy balance and body weight regulation (Lutter 

& Nestler, 2009).  

Although often presented as two separate mechanisms, homeostatic and reward-

based feeding are interrelated. As such, homeostatic circuits can recruit the reward 

circuitry to drive food intake. For instance, the rewarding value of food increases when 

energy stores are low, while satiety limits reward-based feeding pathways (Morton, 

Cummings, Baskin, Barsh, & Schwartz, 2006). Moreover, since the reward system can 

lead to overconsumption of energy-dense food, this system could have been 

evolutionarily advantageous for long-term energy balance to increase energy stores when 

food is abundant for future periods when it may be scarce (Bellisari, 2008). However, in 

modern society where high-fat foods are readily available, caloric overconsumption 

driven by the reward system is not countered by subsequent food scarcity, which can lead 

to weight gain (Volkow, Wang, & Baler, 2011). Accordingly, in the past few decades, 

there has been a steady rise in obesity rates, which has been tied to reward-based 

overconsumption of high-fat foods (Lutter & Nestler, 2009). Therefore, understanding 

how high-fat diets affect both homeostatic and reward pathways underlying food intake is 

critical to develop strategies to prevent and treat diet-induced obesity. 
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1.1.1 Homeostatic feeding mechanisms and circuitry 

 Homeostatic feeding mechanisms ensure sufficient energy is ingested and stored 

in the body to meet current and future energy demands for physiological functions. 

Conversely, when energy reserves are in excess, homeostatic mechanisms limit feeding 

behaviours. Homeostatic centers can also regulate energy balance by modulating energy 

expenditure through metabolism, thermogenesis, sympathetic activity, and physical 

activity (Lenard & Berthoud, 2008).  

The hypothalamus is the main brain region that controls energy homeostasis. First 

order neurons in the mediobasal hypothalamus integrate information on the body’s energy 

state from humoural signals and vagal afferents and then project to second order neurons 

to adjust food intake and energy expenditure accordingly. These first order neurons 

include two main populations in the arcuate nucleus: appetite-promoting Agouti-related 

peptide/Neuropeptide Y (AgRP/NPY)-expressing neurons and appetite suppressing pro-

opiomelanocortin (POMC)-expressing neurons (Schwartz, Woods, Porte, Seeley, & 

Baskin, 2000). Since these neurons are located near the median eminence, which has a 

semi-permeable blood-brain barrier (Morita & Miyata, 2013), they are able to directly 

sense circulating hormones and macronutrients. These peripheral factors include 

triglycerides, amino acids, and glucose, as well as the satiety hormones leptin and insulin, 

and the hunger hormone ghrelin. When energy stores are abundant, satiety signals such as 

leptin, insulin, glucose, and triglycerides are elevated, which activate POMC neurons to 

attenuate feeding. Contrastingly, when energy stores are low, hunger signals such as 

ghrelin activate AgRP/NPY neurons (Fig. 1.1; Belgardt, Okamura, & Brüning, 2009). 
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AgRP/NPY neurons promote food intake by directly inhibiting POMC neurons (Cowley 

et al., 2001) and by their other efferent pathways via second order neurons. These second 

order neurons include neurons in the paraventricular nucleus, ventromedial nucleus, and 

the lateral hypothalamus, which project widely throughout the central nervous system to 

coordinate relevant physiological responses to the body’s energy state (Schwartz et al., 

2000).  

1.1.2 Hedonic and reward feeding mechanisms and circuitry  

While food intake occurs in response to metabolic need, it can also occur 

independent of need due to the rewarding properties of food. There are two main 

components underlying reward-based feeding: “liking” and “wanting.” “Liking” is the 

hedonic aspect of feeding representing the pleasure experienced during reward seeking 

and is mediated through hedonic hotspots including the nucleus accumbens (NAcc) and 

cortical structures, while the “wanting” aspect of reward-based feeding encompasses the 

motivational aspects of feeding and is thought to be mediated mainly by the mesolimbic 

dopamine system (Berridge, 2009).  

This reward system involves projections between the ventral tegmental area 

(VTA) and NAcc, along with connections to executive centers such as the prefrontal 

cortex and limbic structures (Fig. 1.1; Volkow et al., 2011). A key neurotransmitter for 

motivational salience is dopamine, which is produced by VTA neurons and released into 

the NAcc (Hernandez & Hoebel, 1988; Salamone, Cousins, McCullough, Carriero, & 

Berkowitz, 1994). Dopamine release in the NAcc is associated with post-ingestive 
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pleasure ratings in humans (D. M. Small, Jones-Gotman, & Dagher, 2003) and can lead to 

excessive intake of palatable food (Berridge, Ho, Richard, & DiFeliceantonio, 2010). The 

rewarding nature and motivation underlying palatable food intake is salient. Accordingly, 

mice will work to obtain food rewards (Guegan et al., 2013), show a strong preference for 

palatable, high-fat diets (Geiger et al., 2009; Rockwood & Bhathena, 1990), and continue 

to consume palatable food in the presence of aversive stimuli (Teegarden & Bale, 2007). 

Similarly, humans also show a strong preference for palatable, calorie-dense food 

(Drewnowski & Greenwood, 1983).  

This motivational control of food intake is physiologically significant as it is 

necessary to reinforce food seeking, particularly energy-dense food, which is an essential 

behaviour for survival. For example, dopamine signaling through the mesolimbic 

pathway is thought to coordinate arousal and locomotor activation for general feeding 

behaviour (Szczypka et al., 1999) and for learning food associations (Schultz, 2010), 

highlighting the role of reward circuitry in energy intake. 

1.2 High-fat diet effects on the brain 

 High-fat diets influence the activity of neurons both within the homeostatic and 

reward circuitry to affect further high-fat diet intake. Moreover, the effects of high-fat 

diet extend beyond feeding circuits and can affect cognition, anxiety, and sleep.  
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1.2.1 Effect on homeostatic circuitry 

 The hypothalamus undergoes a variety of changes during high-fat diet feeding, 

such as inflammation and resistance to satiety signals. Collectively, these changes reduce 

the ability of homeostatic circuits to maintain a lean body weight, and therefore weight 

gain and obesity commonly result. High-fat diet feeding induces an inflammatory 

response in the hypothalamus (Thaler et al., 2012) that is thought to cause several 

disruptions to the homeostatic circuitry. First, it is thought to underlie leptin and insulin 

resistance, where these hormones are unable to initiate their respective signaling cascades 

in target cells (El-Haschimi, Pierroz, Hileman, Bjørbaek, & Flier, 2000; Posey et al., 

2009). Accordingly, while leptin can reduce NPY and increase POMC mRNA expression 

in chow-fed controls, it has no effect on animals fed a high-fat diet (van den Heuvel et al., 

2014). As a result, neither leptin nor insulin can reduce food intake in high-fat diet-fed 

animals at the same concentrations as chow controls. Therefore, with prolonged high-fat 

diet feeding, the amount of leptin and insulin required to suppress feeding becomes 

greater, leading to higher plasma leptin and insulin levels (Lin, Thomas, Storlien, & 

Huang, 2000; Posey et al., 2009), indicative of increased energy stores and weight gain.  

Other changes linked to inflammation include endoplasmic reticulum stress and 

associated apoptosis (Moraes et al., 2009), reactive gliosis (Horvath et al., 2010), and 

decreased neurogenesis (McNay, Briançon, Kokoeva, Maratos-Flier, & Flier, 2012) in the 

arcuate nucleus and other hypothalamic regions. These changes may underlie some of the 

perturbations of neural activity and synaptic remodeling of the arcuate nucleus after high-

fat diet feeding (Horvath et al., 2010). Such changes include increased excitatory 
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transmission and decreased inhibitory transmission to POMC neurons within three days 

of high-fat diet feeding (Benani et al., 2012), indicating a homeostatic response that 

would limit food intake. Moreover, diet-induced obese mice have increased POMC and 

decreased NPY mRNA expression, along with a reduction in inhibitory synapses to 

POMC neurons and a reduction in excitatory synapses to NPY neurons (Horvath et al., 

2010). Similarly, the percentage of electrically silent AgRP neurons is increased by diet-

induced obesity (Dietrich, Liu, & Horvath, 2013).  

In summary, while compensatory changes in synaptic remodeling may occur in 

the homeostatic circuitry, overall the effect of leptin and insulin resistance appear to 

predominate. This leads to fat accrual, metabolic disturbances, and weight gain with 

prolonged high-fat diet consumption. 

1.2.2 Effect on reward circuitry 

As described in the previous section (1.1), activation of the reward circuitry is 

critical for the promotion of palatable food intake, specifically of high-fat diets. Short-

term high-fat diet exposures lead to a long-lasting increase in glutamatergic transmission 

on dopaminergic VTA neurons, which is thought to prime future high-fat diet intake, as it 

is associated with increased food approach behaviours (Liu et al., 2016). However, the 

VTA is also sensitive to homeostatic factors such as insulin, ghrelin, and leptin (Abizaid 

et al., 2006; Liu et al., 2016; Thompson & Borgland, 2013). Accordingly, direct 

administration of insulin or leptin into the VTA reduces food intake (Hommel et al., 

2006; Liu et al., 2016), while ghrelin administration into the VTA triggers feeding 
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(Abizaid et al., 2006). These data illustrate that the interaction between the reward and 

homeostatic circuitry determines high-fat diet intake and the potential resultant weight 

gain. Nevertheless, obesity rates worldwide have been steadily increasing over the past 

few decades (Ng et al., 2014), suggesting that the hedonic and reward system may often 

outweigh homeostatic factors. 

Interestingly, prolonged activation of the reward pathway is thought to lead to 

compensatory changes that limit motivation and pleasure, known as reward hypofunction 

(Guo, Simmons, Herscovitch, Martin, & Hall, 2014; Johnson & Kenny, 2010; Vucetic, 

Kimmel, & Reyes, 2011). Reward hypofunction is evident in high-fat diet-fed animals as 

they show a decrease in preference for food rewards such as sucrose, saccharin, and high-

fat diet (Carlin, Hill-Smith, Lucki, & Reyes, 2013; Carlin et al., 2016; Rabasa et al., 2016; 

Sharma, Fernandes, & Fulton, 2013). This is thought to be mediated by plasticity of the 

reward circuitry, such as decreased dopamine release, sensitivity, and receptor expression 

(Geiger et al., 2009; Sharma et al., 2013). Importantly, reward hypofunction also leads to 

withdrawal-like symptoms when high-fat diet is not available, such as an increased 

preference for rewarding foods and increased anxiety and compulsive-like behaviour that 

drives further high-fat diet intake (Carlin et al., 2016; Johnson & Kenny, 2010; Sharma et 

al., 2013). For example, during obesity, there is decreased dopamine receptor 2 

expression and dopamine release in the NAcc, which is linked to compulsive eating in 

rats (Johnson & Kenny, 2010). Therefore, these adaptive changes may represent a 

dependence on continued high-fat diet intake and contribute to the difficulty in dieting 

and losing weight. 
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On the other hand, overeating in obesity has also been attributed to hyper-

responsivity of reward-related brain regions that encode cues for palatable food. This is 

supported by evidence that visual food cues lead to greater activation of reward centers 

such as the dorsal striatum in obese people compared to lean counterparts (Rothemund et 

al., 2007). Burger and Slice have suggested that both hypo-responsivity in reward 

pathways associated with food intake and hyper-responsivity in reward pathways that 

process food cues contribute to obesity in a “dynamic vulnerability model” (Burger & 

Stice, 2011). Further research is required to fully understand how high-fat diet affects 

individual components of the reward circuitry and may provide further insight on the 

pathogenesis of obesity. 

1.2.3 Effects on other brain regions and functions 

 In addition to acting on feeding circuits, high-fat diet consumption affects other 

brain functions including sleep, mood, cognition and memory. Namely, high-fat diet can 

disrupt circadian rhythms (Kohsaka et al., 2007), increase time asleep, and accordingly, 

decrease arousal (Tanno, Terao, Okamatsu-Ogura, & Kimura, 2013). Moreover, high-fat 

diet leads to deficits in spatial and procedural memory as well as in general intellectual 

function. These deficits are attributed to increased saturated fatty acids (Greenwood & 

Winocur, 1996) that lead to brain inflammation (Pistell et al., 2010) and impaired 

neurogenesis in the hippocampus by lipid peroxidation (Lindqvist et al., 2006; Park et al., 

2010). Additionally, alterations in insulin resistance and glucose regulation may be 

involved (McNay et al., 2010), as insulin resistance affects synaptic plasticity in the 
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hippocampus (Stranahan et al., 2008), while glucose treatment can ameliorate cognitive 

issues (Greenwood & Winocur, 2001).  

Finally, in humans, there is an association between high-fat diet intake and 

depression and anxiety (Jacka et al., 2010). Similarly in rats, high-fat diet can aggravate 

depressive behaviours in a genetic model of depression (Abildgaard et al., 2011). 

Interestingly, this may be dependent on the length of high-fat diet feeding as brief, 1 week 

exposures can reduce anxiety behaviours (Prasad & Prasad, 1996) and stress induced by 

early life trauma (Maniam & Morris, 2010). Contrastingly, longer high-fat diet feeding is 

reported to increase anxiety-like behaviour (Del Rosario, McDermott, & Panee, 2012; 

Souza et al., 2007). Therefore, high-fat diet leads to a variety of time-dependent 

pathological changes in energy homeostasis, reward, cognition, emotion, and sleep. 

1.3 Lateral hypothalamus 

 Of particular interest for high-fat diet intake are two neuronal populations in the 

lateral hypothalamus: orexin and melanin-concentrating hormone (MCH) neurons. These 

neurons are connected to homeostatic centers as well as the reward circuitry and may act 

as an interface between these two components of feeding (Fig. 1.1). Moreover, while both 

neurons can promote food intake, they have a greater ability to increase the consumption 

of palatable, high-fat food compared to low-fat chow, which suggests a role in diet-

induced obesity. Finally, orexin and MCH neurons can also mediate other brain functions 

that are perturbed by high-fat diet. Therefore, these neurons may mediate many of the 

effects of high-fat diet on the brain. 
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1.3.1 Orexin neurons 

 Orexin neurons are localized to the lateral hypothalamus and perifornical area 

(Peyron et al., 1998). These neurons selectively express the orexin peptides A and B (also 

known as hypocretin 1 and 2), which are cleaved from the same precursor, prepro-orexin 

(de Lecea et al., 1998; Sakurai et al., 1998). Orexins can act on two orexin receptors 

OX1R and OX2R; however, OX1R has a greater affinity for orexin A, while OX2R has 

equal affinities for both peptides (Sakurai et al., 1998). Orexin neurons receive diverse 

afferents from different brain areas (Burdakov, Karnani, & Gonzalez, 2013; González, 

Iordanidou, Strom, Adamantidis, & Burdakov, 2016; Sakurai et al., 2005; Yoshida, 

McCormack, España, Crocker, & Scammell, 2006), which allow them to integrate various 

metabolic and environmental cues. In turn, they also project widely to allow a 

coordinated physiological response that generally promotes arousal and motivated 

behaviours (Tsujino & Sakurai, 2013).  

1.3.1.1 Role of orexin neurons in energy homeostasis 

 Orexin peptides play a significant role in food intake as both orexin A and B dose-

dependently increase (Sakurai et al., 1998), while antagonists decrease (Haynes et al., 

2000), food intake in freely fed rats. However, since orexins do not change total daily 

food intake (Blais et al., 2017) and orexin neurons are rapidly inactivated at the onset of 

food intake (González, Jensen, et al., 2016), they may be more involved in the initiation 

of food intake rather than increasing the amount of food consumed. Therefore, orexin 

neurons may have less of a role in the homeostatic regulation of feeding and instead may 

coordinate the arousal and motivation necessary for food seeking. This is supported by 
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evidence of increased orexin neuron activity during fasting that drives locomotion and 

food seeking behaviour (Diano, Horvath, Urbanski, Sotonyi, & Horvath, 2003; Haynes et 

al., 2000; Sakurai et al., 1998; Yamada, Okumura, Motomura, Kobayashi, & Kohgo, 

2000; Yamanaka et al., 2003). Furthermore, lack of orexin signaling reduces food 

anticipatory activity during food restriction (Akiyama et al., 2004), entrainable feeding 

schedules (Mieda et al., 2004), and binge eating (Alcaraz-Iborra, Carvajal, Lerma-

Cabrera, Valor, & Cubero, 2014).  

The role of orexin neurons in anticipatory and motivated food intake is most likely 

related to reward processing (Borgland et al., 2009; Perello et al., 2010) as they promote 

consumption of non-caloric rewards, such as saccharin (Cason & Aston-Jones, 2013). In 

line with this, orexin neurons are also involved in substance abuse, as they increase 

ethanol, cocaine, and heroin intake (Borgland, Taha, Sarti, Fields, & Bonci, 2006; 

Moorman & Aston-Jones, 2009; Shoblock et al., 2011; Smith & Aston-Jones, 2012; 

Smith, See, & Aston-Jones, 2009). These effects on food and drug intake are mediated 

through their connections with reward circuitry (Harris, Wimmer, & Aston-Jones, 2005; 

Valdivia, Patrone, Reynaldo, & Perello, 2014; Zheng, Patterson, & Berthoud, 2007), 

including the VTA and NAcc (Peyron et al., 1998; Sakurai et al., 2005; Yoshida et al., 

2006). Orexin activates VTA dopaminergic neurons (Baimel, Lau, Qiao, & Borgland, 

2017; Korotkova, Sergeeva, Eriksson, Haas, & Brown, 2003), which is required for high-

fat diet intake (Valdivia et al., 2014). Moreover, the NAcc promotes food intake via 

orexin signaling (Zheng et al., 2007). 
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 In addition to food intake, orexin neurons also influence energy expenditure 

through sympathetic outflow and spontaneous physical activity. Orexins increase oxygen 

consumption, heart rate, respiratory rate, and blood pressure (Shahid, Rahman, & 

Pilowsky, 2011; J. Wang, Osaka, & Inoue, 2001), while genetic ablation of orexin 

neurons decreases spontaneous physical activity and induces a late-onset obesity despite 

consuming less food than wild-type controls (Hara et al., 2001). In agreement with these 

studies, orexin 2 receptor signaling protects against weight gain through increasing 

energy expenditure (Funato et al., 2009). 

 It may seem paradoxical that orexin neurons increase energy intake and energy 

expenditure concurrently; however, evidence from ablation studies (Hara et al., 2001) 

suggests that overall their effect on energy expenditure may be more important than 

energy intake for energy balance.   

1.3.1.2 Effects of high-fat diet and obesity on orexin neurons 

 As expected from orexin neurons’ role in food reward processing, they are critical 

for the consumption of high-fat diet. Orexin A administration selectively increases high-

fat diet intake (Clegg, Air, Woods, & Seeley, 2002), while an OX1 receptor antagonist 

decreases high-fat food consumption (Valdivia et al., 2014; White et al., 2005). 

Interestingly, high-fat diets can also activate orexin neurons. Specifically, increased 

expression of cFos in orexin neurons occurs after a 2-hour high-fat diet exposure 

(Valdivia et al., 2014) and increased orexin mRNA and peptide expression is seen in rats 

fed high-fat diet for 2-3 weeks (Park et al., 2004; Wortley, Chang, Davydova, & 

Leibowitz, 2003). This may be due to a direct effect of the diet as intralipid injections also 
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increase orexin mRNA and protein expression (Chang, Karatayev, Davydova, & 

Leibowitz, 2004; Wortley et al., 2003). However, this activation does not appear to persist 

with longer periods of high-fat diet feeding as orexin mRNA expression and peptide 

levels are decreased in rodents fed a high-fat diet for 1 month compared to chow controls 

(Novak et al., 2010; Tanno et al., 2013). Similar reduced orexin expression is also seen in 

genetically obese animals (Cai et al., 2000), suggesting that this may be the result of 

weight gain or obesity. 

1.3.1.3 Other functions of orexin neurons 

 Orexin neurons are well recognized for their role in the sleep-wake cycle. The 

most remarkable phenotype of orexin gene deletion is narcolepsy (Chemelli et al., 1999; 

Hara et al., 2001). Similarly, it has been shown that narcolepsy can result from a loss of 

orexin neurons in humans (Thannickal et al., 2000) and a mutation in the gene for OX2 

receptors in dogs (Lin et al., 1999). Furthermore, orexin neurons promote locomotor and 

sympathetic activity (Adamantidis, Zhang, Aravanis, Deisseroth, & de Lecea, 2007; 

Alexandre, Andermann, & Scammell, 2013; Kotz et al., 2006). Therefore, the role of 

orexin neurons appears to be to coordinate arousal, energy balance, and attention to 

mediate their various physiological functions (Yamanaka et al., 2003). 

1.3.2 MCH neurons 

 MCH neurons are a distinct cell population that are intermingled with orexin 

neurons in the lateral hypothalamus and perifornical area but are also found in the zona 

incerta (Bittencourt et al., 1992). The MCH peptide is a cyclic 19 amino acid 
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neuropeptide cleaved from its precursor prepro-MCH (Saito et al., 1999). In rodents, there 

is only one MCH receptor (MCHR1) expressed; however, humans and other species also 

express a second, MCHR2 (Tan et al., 2002). Therefore, caution must be used when 

extrapolating data on MCH signaling from rodent models to humans. MCH neurons 

project to many of the same targets as orexin neurons (Barson, Morganstern, & 

Leibowitz, 2013); however, their functions are not redundant, rather they are either 

complementary or antagonistic.  

1.3.2.1 Role of MCH neurons in energy homeostasis 

 MCH neurons promote positive energy balance by increasing food intake and 

decreasing energy expenditure. This is reflected in an upregulation of MCH mRNA in 

both fasting and genetically obese mice (Qu et al., 1996). Accordingly, 

intracerebroventricular administration of the MCH peptide and MCH receptor agonists 

increase food intake (Della-Zuana et al., 2002; Qu et al., 1996; Shearman et al., 2003), 

while MCH receptor antagonists reduce food intake (Shearman et al., 2003). Unlike 

orexin neurons, MCH neurons do not respond to the rewarding value of food but rather its 

caloric content. This is demonstrated in the lack of effect of MCH to promote intake of 

non-caloric sweeteners (Karlsson et al., 2012). Consistent with this role in nutrient 

sensing, MCH neurons are excited by glucose (Kong et al., 2010) and promote the 

consumption of energy-dense foods (Clegg et al., 2002). Moreover, MCH signaling 

increases not only the frequency but also the size and duration of meals (Morens, 

Nørregaard, Receveur, van Dijk, & Scheurink, 2005), while MCHR1 antagonists reduce 

food intake by decreasing meal size (Kowalski, Farley, Cohen-Williams, Varty, & Spar, 
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2004). Therefore, in contrast to orexin neurons that are important for the motivation and 

initiation of eating, MCH neurons support the ongoing consumption of calories 

suggesting a prominent role in energy homeostasis.  

The role of MCH neurons to decrease energy expenditure is also in contrast to the 

role of orexin neurons. Chronic intracerebroventricular infusion of MCH results in 

decreased body temperature and oxygen consumption (Glick, Segal-Lieberman, Cohen, & 

Kronfeld-Schor, 2009). Moreover, acute treatment with an MCH1 receptor antagonist 

increases energy expenditure, while chronic administration increases physical activity 

(Zhang et al., 2014). 

Collectively, MCH neurons promote weight gain and positive energy balance. 

This is supported by the genetic ablation of MCH neurons, which results in leanness, 

reduced food intake, and increased energy expenditure (Alon & Friedman, 2006; 

Kokkotou et al., 2005). 

1.3.2.2 Effects of high-fat diet and obesity on MCH neurons 

 MCH neurons are known to respond to long exposures to high-fat diet. Animal 

models of diet-induced obesity have increased levels of MCH mRNA and peptide, as well 

as an upregulation of MCH1R mRNA expression (Elliott et al., 2004). Similarly, in 

humans, there is a positive association between MCH serum levels and fat mass (Gavrila 

et al., 2005). Additionally, mutations in MCH1R have been reported in obese and 

hyperphagic individuals that are not present in lean controls (Gibson et al., 2004). 
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 These high-fat diet-induced effects on the MCH system is thought to contribute to 

further high-fat diet intake and its associated weight gain. This is supported by the 

evidence that intracerebroventricular administration of MCH increases high-fat diet 

intake over a 2-hour period (Clegg et al., 2002) and overexpression of MCH leads to 

increased high-fat diet intake and obesity (Ludwig et al., 2001). Conversely, MCH 

antagonists are effective in reducing weight gain and food intake in animals fed a high-fat 

diet (Della-Zuana et al., 2012; Kowalski et al., 2006; Zhang et al., 2014), while MCH 

neuron ablation protects against diet-induced obesity. Moreover, recent evidence suggests 

that MCH neurons are activated during high-fat diet feeding in an insulin-dependent 

mechanism that contributes to weight gain by decreasing locomotor activity and insulin 

sensitivity (Hausen et al., 2016). 

 In summary, MCH neurons likely contribute to the development of diet-induced 

obesity during high-fat diet feeding. Due to this compelling evidence, MCH receptor 

antagonists are currently under development for the treatment of obesity (Moore, Sargent, 

Guzzo, & Surman, 2014). 

1.3.2.3 Other functions of MCH neurons 

 While MCH neurons are best known for their role in energy balance, they also 

affect other physiological functions, such as mood and sleep. The effect of MCH neurons 

on anxiety is not fully understood. MCHR1 antagonists are thought to be anxiolytic and 

anti-depressive (Borowsky et al., 2002), and in line with this, chronic stress upregulates 

MCHR1 in the hippocampus (Roy, David, Cueva, & Giorgetti, 2007). However, a 

separate study suggested that increased MCH mRNA expression and reduced MCHR1 
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mRNA expression in the hippocampus correlates with depressive behaviours (García-

Fuster et al., 2012). Even still, others have found that MCHR1 antagonists do not have 

any ability to reduce anxiety (Basso et al., 2006). Therefore, while MCH neurons may 

affect anxiety and depression, more research is required to determine the exact role they 

play. 

While orexin neurons are wake-promoting, MCH neurons instead promote sleep 

and fire in a reciprocal manner to orexin neurons across the sleep/wake cycle. 

Accordingly, MCH neurons are sleep active (Hassani, Lee, & Jones, 2009; Verret et al., 

2003) and likely contribute to sleep onset as optogenetic activation of MCH neurons 

initiates sleep (Konadhode et al., 2013), while MCH release is correlated with sleep onset 

in humans (Blouin et al., 2013). 

1.4 Rationale and objectives 

 Despite the overwhelming evidence connecting orexin and MCH neurons with 

high-fat diet intake, little is known about how high-fat diets affect the 

electrophysiological properties of orexin and MCH neurons. Moreover, while it has been 

suggested that these neurons are promising targets for the treatment of diet-induced 

obesity, this lack of understanding would limit available treatment options. Therefore, we 

sought to characterize the effects of high-fat diet on these neurons and investigate their 

respective underlying mechanisms. Specifically, to better understand the etiology of high-

fat diet-induced obesity, we investigated the time course of high-fat diet effects on orexin 

and MCH neurons by feeding Sprague-Dawley rats for different durations and compared 
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to those fed a chow control diet. Since this is the first study to assess the time course of 

high-fat diet effects on these neurons, we used only male rats to lower variability within 

those groups to have appropriate power. Future studies should address if similar results 

occur in female rats. 

1.5.1 Objective 1 – Characterize electrophysiological properties of orexin and MCH 

neurons in the post-weaning period 

 Investigating the effects of different lengths of high-fat diet feeding would 

inherently lead to differences in the age of rats tested at the various timepoints. This may 

be particularly problematic since in our study, the feeding period started at 3 weeks of 

age, which corresponds to the beginning of adolescence and is associated with ongoing 

development. If orexin and MCH neurons are not yet electrophysiologically mature by 3 

weeks of age in rats, this age difference would confound our results. Therefore, our first 

objective was to determine any age-dependent changes in the electrophysiological 

characteristics of orexin and MCH neurons from rats fed a control chow (Fig. 1.2A; 

Chapter 2). 

1.5.2 Objective 2 – Determine the time course of high-fat diet effects on orexin neurons 

 Next, we investigated the effects of high-fat diet on orexin neurons. Since orexin 

neurons are known to express long-term synaptic plasticity, which can be affected by 

physiological state (Y. Rao et al., 2007), we tested the effect of high-fat diet on activity-

dependent long-term plasticity (Chapter 3) and spontaneous synaptic transmission 

(Chapter 4) at different lengths of WD feeding (Fig. 1.2B).  
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1.5.3 Objective 3 – Determine the time course of high-fat diet effects on MCH neurons 

 Finally, we investigated how high-fat diet affects intrinsic and synaptic properties 

of MCH neurons at different lengths of feeding (Fig. 1.2B). Specifically, we investigated 

intrinsic plasticity and its underlying mechanisms (Chapter 5) as well as spontaneous 

synaptic transmission (Chapter 6).  

1.5.4 Objectives summary 

Overall, this thesis aims to uncover how the excitability and synaptic plasticity of 

orexin and MCH neurons are affected by short and long-term exposures to high-fat diet. 

This is the first comprehensive study to characterize synaptic properties from pre-

weaning to adult age and to follow the temporal effects of high-fat diet on these neurons. 

Therefore, the experiments performed in this thesis will allow a direct assessment of 

orexin and MCH neuron activity and an investigation of the respective underlying 

mechanisms with single cell resolution in in vitro slice recordings.  
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Figure 1.1: Homeostatic and hedonic control of high-fat diet intake. 

Within the homeostatic circuitry, the arcuate nucleus (ARC) contains POMC neurons that 

inhibit food intake and AgRP/NPY neurons that promote food intake. They are modulated 

by humoural factors such as appetite-suppressing leptin and insulin, and appetite-

promoting ghrelin. Within the hedonic and reward circuitry, the VTA and NAcc along 

with corticolimbic structures, such as the prefrontal cortex and insula, promote reward-

based high-fat diet intake. The VTA is also affected by leptin, insulin, and ghrelin, 

evident of an interaction of homeostatic and reward systems to control food intake and 

body weight. Finally, both systems have connections with MCH and orexin (ORX) 

neurons of the lateral hypothalamus (LH), which both preferentially promote high-fat diet 

intake. 

Red: Appetite-suppressing 

Green: Appetite-promoting 

Orange: Appetite-promoting (specifically high-fat diet)  
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Figure 1.2: Schematic of feeding paradigm. 

(A) Three-week old male Sprague-Dawley rats were fed a control chow diet and the 

electrophysiological characteristics of MCH and orexin neurons are investigated at various 

ages as indicated by the arrows. (B) The effect of different lengths of Western Diet (WD) 

feeding were tested on MCH and orexin neurons at the ages characterized in panel A.   
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CHAPTER 2 

 

CHARACTERIZATION OF AGE-DEPENDENT ELECTROPHYSIOLOGICAL 

PROPERTIES OF MCH AND OREXIN NEURONS IN POST-WEANING RATS 
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2.1 Introduction 

Orexin and MCH neurons are cell populations co-localized within the lateral 

hypothalamus that have key roles in several physiological functions including food 

intake, body weight regulation, motivation, reproductive function, and the sleep/wake 

cycle (Barson et al., 2013; Hassani et al., 2009; Qu et al., 1996; Sakurai et al., 1998; 

Skrapits et al., 2015; Wu, Dumalska, Morozova, van den Pol, & Alreja, 2009). To 

investigate these neurons at the cellular level, in vitro electrophysiological studies most 

commonly use young rodents in the early post-weaning period under the assumption that 

their nervous system is fully mature. However, the post-weaning period in rodents 

corresponds to adolescence, a period of ongoing neural development associated with 

cognitive and behavioural maturation (Paus et al., 2001; Spear, 2000; Steinberg, 2005). In 

humans, white matter increases continually during development, while gray matter 

volume reaches a peak in childhood and decreases during adolescence until reaching adult 

levels, with regional differences in the timing of these changes (Barnea-Goraly et al., 

2005; Lebel, Walker, Leemans, Phillips, & Beaulieu, 2008; Pfefferbaum et al., 1994). At 

the cellular level, these volumetric changes are associated with changes in neuron 

number, synaptic connections, and dendritic structure in several brain areas including the 

cortex (Markham, Morris, & Juraska, 2007), hippocampus (He & Crews, 2007; Yildirim 

et al., 2008), and cerebellum (McKay & Turner, 2005).  

As maturation occurs broadly during adolescence in the brain, it is possible that 

development of the orexin and MCH system also continues in the post-weaning period. If 

so, this may contribute to development of other physiological systems known to be 
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controlled by these neurons. For example, both orexin and MCH neurons regulate food 

intake and energy expenditure (Glick et al., 2009; Qu et al., 1996; Sakurai et al., 1998), 

thus their functional development during adolescence may influence growth spurts of 

body weight and height. In support of this idea, MCH deficiency reduces body length and 

weight gain in adolescent rats (Mul et al., 2010). Orexin and MCH neurons may also have 

a role in puberty as both are known to regulate gonadotropin-releasing hormone (GnRH) 

neurons (Gaskins & Moenter, 2012; Skrapits et al., 2015; Wu et al., 2009) and subsequent 

gonadotropin release (Murray et al., 2000, 2006; Small et al., 2003; Tsukamura et al., 

2000).  

 In this chapter, we characterize the electrophysiological properties of MCH and 

orexin neurons in rats at several time points post-weaning. Our hypothesis was that both 

these neurons undergo age-dependent changes over this period. However, our results 

show that MCH neurons undergo an age-dependent reduction in excitability, while no 

changes are observed in orexin neurons. These results demonstrate the importance of 

carefully considering the age of animals used in studies involving MCH neurons and the 

potential physiological significance of these developmental changes. 
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2.2 Methods 

2.2.1 Animals 

All experiments were conducted under the guidelines of the Canadian Council on 

Animal Care and were approved by Memorial University’s Institutional Animal Care 

Committee. Male Sprague-Dawley rats were weaned at 21 days old (Charles River, 

Quebec) and fed a standard chow ad libitum (Prolab RMH 3000). Food intake and body 

weight were measured weekly.  

2.2.2 Electrophysiological recording 

Rats were sacrificed by decapitation under isoflurane anesthesia at 4, 7, and 14 

weeks of age (Fig. 1.2A). Coronal slices of the hypothalamus (250µm) were generated 

using a vibratome (VT-1000, Leica Microsystems) in cold artificial cerebrospinal fluid 

(ACSF; in mM: 126 NaCl, 2.5 KCl, 1.2 NaH2PO4, 1.2 MgCl2, 18 NaHCO3, 2.5 glucose, 

and 2 CaCl2) bubbled with 95% O2/5% CO2 gas and then incubated in ACSF at 32-34 ̊C 

for 30 minutes. Then, hemisected slices were transferred into a recording chamber 

perfused with ACSF (30-32 ̊C), visualized with infrared-differential interference contrast 

optics (DM LFSA, Leica Microsystems), and cells in the lateral 

hypothalamus/perifornical area were selected for study. A glass pipette was filled with an 

internal solution (in mM: 123 K-gluconate, 2 MgCl2, 1 KCl, 0.2 EGTA, 10 HEPES, 5 

Na2ATP, 0.3 NaGTP, and 2.7 biocytin; tip resistance 3-5MΩ) and whole cell patch clamp 

recordings were performed using Clampex 9/10 software, and Multiclamp 700B 

(Molecular Devices).  
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Once whole cell access was achieved, a series of 600ms hyperpolarizing and 

depolarizing current injections were applied to cells in 50pA increments. Unique 

electrophysiological responses to these current injections were used to identify MCH and 

orexin neurons as described previously (Linehan, Trask, Briggs, Rowe, & Hirasawa, 

2015; Parsons & Hirasawa, 2011). Additionally, active membrane properties during this 

current injection protocol were assessed, including the action potential threshold, 

frequency, and first spike latency. If a positive current injection did not elicit firing, 

600ms was assigned for first spike latency. Voltage measurements were corrected for 

liquid junction potential (-14.9mV).  

The neurochemical phenotype was further confirmed in a subset of recorded 

neurons filled with biocytin using triple immunohistochemical staining for biocytin, 

MCH, and orexin A (Fig. 2.1), as previously described (Linehan et al., 2015; Parsons & 

Hirasawa, 2011). All neurons that were subjected to post hoc immunohistochemistry had 

matching electrophysiological properties and neurochemical phenotype (91 of 91 MCH 

neurons, 101 of 101 orexin neurons, total 192 cells confirmed; 100% accuracy). 

To study evoked EPSCs, a glass electrode filled with ACSF was used to stimulate 

afferent fibers. The chloride channel blocker, picrotoxin (50µM), was present for all 

recordings to isolate glutamatergic excitatory transmission (Li, Gao, Sakurai, & van den 

Pol, 2002; van den Pol, Acuna-Goycolea, Clark, & Ghosh, 2004) and the voltage-gated 

Na+ channel blocker, tetrodotoxin (TTX, 1µM), was used to study miniature EPSCs 

(mEPSC).  
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Train stimulation protocols consisted of 50-60 pulses at 10Hz or 50 pulses at 

50Hz, every 60 seconds. Paired-pulse ratio (PPR) was calculated as the amplitude of the 

second EPSC divided by the first EPSC (EPSC2/EPSC1). All EPSCs during train 

stimulation were normalized to the amplitude of the first EPSC. The plateau of the train 

was the average amplitude of the last 10 EPSCs normalized to the first EPSC of the train. 

For all voltage clamp experiments, a 20mV, 50ms square pulse was applied every 60 

seconds to monitor access resistance. Signals were filtered at 1kHz and digitized at 5-

10kHz.  

2.2.3 Statistical analysis 

Data are expressed as mean ± SEM. The number of observations is reported in the 

nested model where N/n represents the number of cells/the number of animals. 

MiniAnalysis (Synaptosoft) was used to manually analyze mEPSCs by selecting events 

that had a clear fast rise and exponential decay. For MCH neurons, 283±25 events per cell 

were analyzed for mEPSC frequency and 134±12 for amplitude. For orexin neurons, 

673±93 events per cell were analyzed for the frequency and 456±47 for the amplitude of 

mEPSCs. Clampfit was used for all other analysis. One- or two-way ANOVA and one- or 

two-way repeated measures (RM) ANOVA were used with Holm-Sidak post hoc tests as 

appropriate. p<0.05 was considered significant. 
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2.3 Results 

Rats rapidly gained weight and had a steady increase in caloric intake following 

weaning (21 days old) that tapered over time (Fig. 2.2A,B). Moreover, the rate of weight 

gain showed an age-dependent decline (n=22 rats; Fig. 2.2C), typical of post-weaning 

adolescent growth (Spear, 2000). We investigated the excitability of MCH and orexin 

neurons at three time points: early adolescence (4 weeks old), late adolescence (7 weeks 

old), and in adulthood (14 weeks old) (Sengupta, 2013).  

2.3.1 Intrinsic excitability of MCH neurons during the post-weaning period  

MCH neurons underwent an age-dependent decrease in excitability. Compared to 

those from 4-week old rats, MCH neurons of 7- and 14-week old rats had a 

hyperpolarized resting membrane potential (RMP; 4wk -77.3±1.6mV, N/n=20/17 vs 7wk              

-82.4±1.0mV, N/n=31/13, p=0.0090; 4wk vs 14wk -83.8±1.2mV, N/n=25/8, p=0.0020; 

Fig. 2.3A,B). To investigate action potential properties, positive current injections were 

applied to elicit firing since MCH neurons are silent at rest. The firing threshold of MCH 

neurons was lower in 4-week old rats compared to those of older rats (Fig. 2.3C). 

Additionally, MCH neurons from 4-week old rats showed higher firing frequency (Fig. 

2.3A,D) and a shorter latency to first spike (Fig. 2.3A,E). Overall these results suggest 

that the excitability of MCH neurons decreases with age and reaches the adult level by 7 

weeks of age.  
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2.3.2 Age-dependent changes in excitatory transmission to MCH neurons 

Compared to those of 4-week old rats, MCH neurons in 7- and 14-week old rats 

had lower mEPSC frequency and amplitude (Frequency: 4wk 2.2±0.2Hz, N/n=8/5 vs 7wk 

1.2±0.1Hz, N/n=9/8, p=0.0018; 4wk vs 14wk 1.1±0.2Hz, N/n=7/5, p=0.0018; Amplitude: 

4wk 13.1±0.8pA vs 7wk 9.1±0.6pA, p=0.0189; 4wk vs 14wk 8.9±1.5pA, p=0.0189; Fig. 

2.4A-C). Typically, a decrease in mEPSC frequency represents a presynaptic change, 

while a decrease in mEPSC amplitude would suggest a postsynaptic change (Han & 

Stevens, 2009). Therefore, this age-dependent process likely involves pre- and 

postsynaptic mechanisms. Alternatively, it is possible that the decrease in mEPSC 

amplitude in 7-week old rats decreased the number of events that were over the threshold 

of detection resulting in an apparent reduction in frequency. 

2.3.3 Characterization of activity-dependent short-term plasticity in MCH neurons 

To further investigate their synaptic properties, we applied train stimulation at 10 

and 50Hz (N/n=15/8; Fig. 2.5) to excitatory afferents to MCH neurons in 4-week old rats. 

Paired pulse facilitation, indicative of low release probability synapses, was observed 

with 10 and 50Hz stimulation but was significantly greater at 50Hz (10Hz 1.44±0.07 vs 

50Hz 1.68±0.12, p=0.0160; Fig. 2.5A,B). During a 10Hz train, most MCH neurons tested 

maintained a synaptic facilitation throughout the train. On the other hand, at 50Hz 

stimulation, the initial facilitation was brief and followed by synaptic depression (Fig. 

2.5C-E), likely due to vesicle depletion. These results suggest that the activity-dependent 
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short-term plasticity of MCH neurons can be either facilitating or depressing depending 

on the length and frequency of stimulation.  

2.3.4 Age-dependent changes in short-term plasticity in MCH neurons 

Interestingly, this activity-dependent plasticity was also affected by age. Namely, 

unlike the 4-week old group, 10Hz stimulation in the 7-week old group induced a brief 

facilitation which was then followed by a synaptic depression, resulting in a lower plateau 

of EPSC amplitude (4wk N/n=15/8, 7wk N/n=17/10, and 14wk N/n=18/10; Fig. 

2.6A,B,E). This synaptic depression was no longer present by 14 weeks of age (Fig. 

2.6A,B,E). An age-dependent change was also seen with 50Hz stimulation: the initial 

facilitation was smaller and the overall synaptic depression was more prominent in the 7-

week old group compared to 4-week and 14-week old groups (Fig. 2.6A,C-E). This 

suggests that excitatory synapses may have higher release probability and are more prone 

to synaptic fatigue in MCH neurons of 7-week old rats relative to 4- and 14-week old rats. 

2.3.5 Electrophysiological properties of orexin neurons during the post-weaning period 

In orexin neurons, there was no age-dependent change in the RMP, firing 

threshold, firing frequency, or first spike latency (4wk N/n=58/19, 7wk N/n=40/12, and 

14wk N/n=42/14; Fig. 2.7). Likewise, we did not find any differences in the frequency or 

amplitude of mEPSCs (4wk N/n=10/5, 7wk N/n=8/6, and 14wk N/n=9/6; Fig. 2.8), 

indicating no change in basal excitatory synaptic transmission. 
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We also investigated activity-dependent short-term plasticity in orexin neurons. In 

response to 10 or 50Hz stimulation, orexin neurons in 4-week old rats showed a similar 

degree of paired pulse depression (N/n=24/12; Fig. 2.9A,B), indicative of high release 

probability synapses. During train stimulation at 10 and 50Hz, these neurons showed 

robust short-term synaptic depression. However, the degree of synaptic depression was 

greater during 50Hz trains than that during 10Hz trains as indicated by significantly lower 

plateau at the end of the train (Fig. 2.9C-E). Finally, the degree of depression was similar 

regardless of age (4wk N/n=24/12, 7wk N/n=12/8, and 14wk N/n=14/5; Fig. 2.10). Thus, 

electrophysiological properties of orexin neurons reach the adult level by 4 weeks of age 

in rats. 
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2.4 Discussion 

The present study demonstrates that during the post-weaning period in rats, MCH 

neurons undergo an age-dependent decrease in excitability and reach the adult level by 7 

weeks of age. This decrease in excitability is characterized by a hyperpolarization of 

RMP and a depolarization of the firing threshold, which most likely contributed to the 

decrease in firing frequency and increased first spike latency. An age-dependent change 

in the transient outward potassium current is another possible modulator of MCH neuron 

excitability (Falk et al., 2003), which is a topic of future investigation.  

2.4.1 Comparison to previous research 

 These findings add to a previous study that showed that the excitability of MCH 

neurons undergo age-dependent changes in mice during pre-weaning development (Li & 

van den Pol, 2009). In addition to the difference in species used, the results of the present 

study and theirs differ in two main areas. Firstly, the RMP of MCH neurons in mice 

plateaus around 4 weeks of age and remains stable into adulthood; contrastingly, in rats, 

this plateau is reached by 7 weeks old. Secondly, the developmental changes in the 

excitability of MCH neurons in mice are largely dependent on excitatory GABAergic 

transmission. This mechanism is unlikely to underlie the excitability changes 

demonstrated in the present study as they were observed in the presence of the chloride 

channel blocker picrotoxin and the animals used were older than the age during which 

GABA is excitatory (Tyzio, Holmes, Ben-Ari, & Khazipov, 2007). Thus, our study shows 
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that GABA-independent mechanisms are involved in the change in excitability of MCH 

neurons in post-weaning development. 

2.4.2 Synaptic plasticity in MCH neurons during the post-weaning period 

 Excitatory transmission to MCH neurons also decreased with age. The amplitude 

of mEPSCs became smaller as animals aged, suggesting a postsynaptic mechanism such 

as a decrease in the surface expression or conductance of synaptic AMPA receptors 

(Lüscher et al., 1999; Swanson, Kamboj, & Cull-Candy, 1997). Furthermore, mEPSC 

frequency also decreased with age, suggesting a presynaptic mechanism such as a 

decrease in release probability or in the number of active synaptic inputs (Horvath & Gao, 

2005; Reim et al., 2001). However, we found that the PPR of MCH neurons decreased 

between 4 to 7 weeks, suggesting a relative increase in release probability. This 

discrepancy may be explained by a removal of low release probability synapses through 

pruning (Hashimoto & Kano, 2003; Huttenlocher & Dabholkar, 1997) or conversion to 

silent synapses that contain NMDA but not AMPA receptors (Petralia et al., 1999), 

mainly leaving the higher release probability synapses intact. Alternatively, separate 

pools of vesicles may exist for evoked and spontaneous EPSCs (Fredj & Burrone, 2009) 

that can be distinctly affected by intracellular signaling (Katsurabayashi, Kubota, 

Moorhouse, & Akaike, 2004), calcium concentration (Maeda et al., 2009) or spatial 

relationship with voltage gated calcium channels (Grauel et al., 2016). Finally, between 7 

and 14 weeks of age, mEPSC frequency does not show further change, while the PPR 

increases. This may indicate a reduction in release probability of existing glutamatergic 

synapses.  
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Our characterization of MCH neurons during the post-weaning period adds to the 

growing body of literature involving maturation and structural plasticity of neural 

circuitry during adolescence. For instance, over a very similar age range as our study, a 

subpopulation of neurons within the cingulate cortex show a developmental increase in 

miniature inhibitory postsynaptic currents (Vandenberg, Piekarski, Caporale, Munoz-

Cuevas, & Wilbrecht, 2015). Additionally, synaptic pruning has been reported in the 

medial prefrontal cortex in early adolescence in rats (Dagher et al., 2001) and in the 

hippocampus, as dendritic spines decrease during adolescence in female rats (Yildirim et 

al., 2008).  

2.4.3 Activity-dependent short-term plasticity in MCH and orexin neurons 

 This is the first study to report activity-dependent short-term synaptic plasticity of 

fast EPSCs in MCH neurons. These neurons show a robust paired pulse facilitation at 

both 10 and 50Hz, while this is followed by depression of EPSC amplitude with 50Hz 

stimulation, likely due to synaptic fatigue (Wu & Borst, 1999). In contrast, excitatory 

synapses to orexin neurons show a strong short-term depression at both 10 and 50Hz, 

with higher frequency resulting in greater depression as previously reported (Xia et al., 

2009). These different forms of synaptic plasticity in two populations of lateral 

hypothalamic neurons may have distinct functional implications. The synaptic facilitation 

seen in MCH neurons would act as a high-pass filter, which preferentially allows high 

frequency signals to trigger postsynaptic firing. On the other hand, short-term depression 

in orexin neurons would act as a low-pass filter, which preferentially dampens high 

frequency signals while allowing low frequency signals to trigger postsynaptic firing 
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(Fortune & Rose, 2001). It is possible that the differences in synaptic responses and age 

dependence between MCH and orexin neurons may differentially affect network activity 

within the lateral hypothalamus and consequently, their roles in physiology.  

2.4.4 Physiological implications of age-dependent changes in MCH neurons 

 Altogether, these age-dependent changes likely affect MCH neuron excitability 

and functional output. Notably, these changes occur between early (4 weeks old) and late 

adolescence (7 weeks old), where 4-5 weeks of age in rats represents the peak of the 

growth spurt and normally coincides with the onset of puberty (Sengupta, 2013; Spear, 

2000). Given the known role of MCH in energy homeostasis, body growth, and 

reproductive functions (Barson et al., 2013; Qu et al., 1996; Wu et al., 2009), the 

electrophysiological maturation of MCH neurons may impact these functions in 

adolescence. To further support this idea, MCH knockout results in decreased bone mass, 

body length, and body weight in adolescence and adulthood (Alon & Friedman, 2006; 

Mul et al., 2010). These findings agree with our results showing higher excitability of 

MCH neurons during a period of rapid weight gain (4 weeks of age), while older rats 

show decreases in both MCH neuron excitability and weight gain. Additionally, MCH 

neurons regulate the release of GnRH and luteinizing hormone (Murray et al., 2006; 

Segal-Lieberman, Rubinfeld, Glick, Kronfeld-Schor, & Shimon, 2006; Wu et al., 2009), 

which suggests an involvement of MCH in reproductive function. Finally, adolescents are 

known to be particularly susceptible to obesity or substance abuse (Chambers, Taylor, & 

Potenza, 2003; Teegarden, Scott, & Bale, 2009), both of which can be influenced by 

MCH signaling (Chung et al., 2009; Elliott et al., 2004; Kowalski et al., 2006). Therefore, 
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the age-dependent change in the excitability of MCH neurons potentially broadly affects 

their functional output, including energy homeostasis, growth, obesity, addictive 

behaviours, and hormonal components of adolescent development.  

While orexin neurons are also reported to affect energy homeostasis, reward-

based behaviour, and the reproductive system (Choi, Davis, Fitzgerald, & Benoit, 2010; 

Gaskins & Moenter, 2012; González, Jensen, et al., 2016; Skrapits et al., 2015; Small et 

al., 2003), we found no change in the excitability of orexin neurons during adolescent 

development. However, our results are consistent with previous studies that reported age-

dependent increases in orexin-immunopositive cell number and prepro-orexin mRNA 

expression before weaning, which reach adult levels between 2 and 3 weeks of age (Iwasa 

et al., 2015; Sawai, Ueta, Nakazato, & Ozawa, 2010; Yamamoto et al., 2000). Therefore, 

while orexin neurons may contribute to physiology and physical development during 

adolescence, this does not involve changes in electrophysiological properties of these 

neurons. 

2.4.5 Conclusions 

  In summary, during the post-weaning period, MCH but not orexin neurons 

undergo an age-dependent decrease in excitability. These changes may be important to 

promote caloric intake and weight gain during growth spurts or to affect hormonal 

regulation during puberty. Importantly, our findings have implications for designing 

experiments involving MCH neurons. Namely, studies on the MCH system should 

account for age-dependent changes in intrinsic excitability and synaptic properties of 
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MCH neurons, which may indicate that findings in adolescents may not be generalizable 

to adults. Furthermore, it is possible that these age-dependent changes are species- or 

strain-specific; therefore, it is important to determine maturational stages of neurons and 

use age-matched controls within specific animal models.  
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Figure 2.1: Immunohistochemical identification of MCH and orexin neurons.  

(A) A sample image of a MCH neuron (adjacent to the white arrow) identified by immuno-

histochemistry. (B) A sample image of an orexin neuron (adjacent to the white arrow) 

identified by immunohistochemistry. 
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Figure 2.2: Body weight and food intake of post-weaning rats.  

(A) Body weight of rats starting at 3 weeks old fed a chow diet ad libitum. (B) Weekly 

caloric intake. (C) Rate of weight gain expressed as a percent increase in body weight 

compared to total body weight at 4, 7, and 14 weeks old.  

One-way ANOVA with post hoc comparisons: ****p<0.0001 
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Figure 2.3: MCH neurons undergo an age-dependent decrease in excitability.  

(A) Sample traces showing the electrophysiological response of MCH neurons to a 200pA 

current injection in rats at 4, 7, and 14 weeks old. Dotted line is -80mV. (B) RMP and (C) 

firing threshold of MCH neurons in rats at 4, 7, and 14 weeks old. (D) Firing frequency and 

(E) first spike latency with current injections in MCH neurons of rats at 4 (black circles), 7 

(open squares), and 14 (grey triangles) weeks old.  

One-way ANOVA with post hoc comparisons: *p<0.05, **p<0.01  

Two-way RM ANOVA with post hoc comparisons: 4wk vs 7wk $$p<0.01, $$$p<0.001, 

$$$$p<0.0001; 4wk vs 14wk: #p<0.05, ##p<0.01, ####p<0.0001 
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Figure 2.4: Excitatory synaptic transmission to MCH neurons decreases with age.  

(A) Sample traces of mEPSCs in MCH neurons of rats at 4, 7, and 14 weeks old. (B) The 

frequency and (C) amplitude of mEPSCs in MCH neurons.  

One-way ANOVA with post hoc comparisons: *p<0.05, **p<0.01 
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Figure 2.5: Activity-dependent short-term plasticity in MCH neurons of 4-week old 

rats.  

(A) Sample traces of paired EPSCs evoked at 10 and 50Hz. (B) Paired pulse ratio is higher 

when MCH neurons are stimulated at 50Hz. (C) Sample 10 and 50Hz trains showing 50 

evoked EPSCs. Insets represent the initial portion of the train in the dotted box. Scale bars 

for 10Hz inset is 20pA and 50ms, and 50Hz inset is 20pA and 20ms. (D) Normalized EPSC 

amplitude of 50 pulses in 10 and 50Hz stimulation trains in MCH neurons. (E) The 

normalized plateau of 10 and 50Hz stimulation trains.  

Paired t-test: *p<0.05, ****p<0.0001 
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Figure 2.6: Activity-dependent short-term plasticity in MCH neurons is modulated 

by age.  

(A) Sample traces of EPSCs during 50Hz train stimulation, recorded in MCH neurons from 

rats 4, 7, and 14 weeks old. Normalized EPSC amplitude during (B) 10Hz and (C) 50Hz 

stimulation train in MCH neurons. (D) Paired pulse ratio at 10 and 50Hz in MCH neurons 

at various ages. (E) Plateau of 10 and 50Hz stimulation trains in MCH neurons at various 

ages.  

Two-way RM ANOVA with post hoc comparisons: *p<0.05, **p<0.01, ****p<0.0001 
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Figure 2.7: Orexin neurons do not undergo a change in excitability over the post-

weaning period.  

(A) Sample traces of basal firing and firing in response to a 200pA current injection in 

orexin neurons of rats at 4, 7, and 14 weeks old. Dotted line is -65mV. (B) RMP and (C) 

firing threshold of orexin neurons. (D) Firing frequency and (E) first spike latency of orexin 

neurons at baseline and with current injections.  
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Figure 2.8: Orexin neurons do not undergo changes in spontaneous excitatory 

transmission after weaning.  

(A) Sample traces of mEPSCs in orexin neurons of rats at 4, 7, and 14 weeks old. (B) 

Frequency and (C) amplitude of mEPSCs in orexin neurons.  
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Figure 2.9: Activity-dependent short-term plasticity in orexin neurons of 4-week old 

rats.  

(A) Sample traces of paired EPSCs evoked at 10 and 50Hz. (B) Paired pulse ratio does 

not differ between 10 and 50Hz stimulation. (C) Sample 10 and 50Hz trains showing 50 

evoked EPSCs. Insets represent the initial portion of the train in the dotted box. Scale bars 

for 10Hz inset is 50pA and 50ms, and 50Hz inset is 50pA and 20ms. (D) Normalized 

EPSC amplitude of 50 pulses in 10 and 50Hz stimulation trains in MCH neurons. (E) The 

normalized plateau of 10 and 50Hz stimulation trains.  

Paired t-test: ****p<0.0001 
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Figure 2.10: Orexin neurons do not undergo changes in activity-dependent short-

term plasticity after weaning.  

(A) Sample traces of EPSCs evoked at 50Hz in orexin neurons from rats at 4, 7, and 14 

weeks old. Normalized EPSC amplitude of a (B) 10Hz and (C) 50Hz stimulation train in 

orexin neurons. (D) Paired pulse ratio at 10 and 50Hz in orexin neurons at various ages. 

(E) Plateau of the 10 and 50Hz stimulation trains in orexin neurons at various ages.  
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CHAPTER 3 

 

HIGH-FAT DIET PRIMES EXCITATORY SYNAPSES TO OREXIN NEURONS 

FOR LONG-TERM DEPRESSION 
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3.1 Introduction 

Excessive consumption of high-fat diets has become common in many countries 

around the world, increasing the risks for serious health outcomes such as cardiovascular 

diseases, metabolic syndrome, and obesity (Cordain et al., 2005). The rewarding value of 

high-fat food leads to caloric consumption beyond metabolic need and the motivation for 

this excessive intake is driven by the mesolimbic dopamine pathway (Volkow et al., 

2011). Activation of this pathway by high-fat diet involves orexin signaling. Specifically, 

orexin neurons of the lateral hypothalamus are activated by short-term high-fat diet 

(Chang et al., 2004; Valdivia et al., 2014) and subsequently stimulate dopamine neurons 

within the ventral tegmental area (VTA), thereby activating the mesolimbic pathway 

(Baimel et al., 2017; Valdivia et al., 2014; Zheng et al., 2007). This suggests that 

overconsumption of high-fat diet is driven by a positive feedback loop between high-fat 

diet, orexin neurons and VTA dopamine neurons. However, high-fat diet may suppress 

the orexin system in the long term, as orexin gene and peptide levels are lower in animals 

after chronic high-fat diet compared to those fed a low-fat diet (Novak et al., 2010; Tanno 

et al., 2013). Thus, the regulation of the orexin system may change over the course of 

high-fat diet feeding.  

While high-fat diet is known to induce various types of functional and structural 

plasticity within the reward circuitry (Johnson & Kenny, 2010; Liu et al., 2016; Sharma et 

al., 2013; Vucetic, Carlin, Totoki, & Reyes, 2012), plastic changes in orexin neurons 

during high-fat diet feeding are poorly understood. There has been one study that 

investigated structural synaptic plasticity in orexin neurons after chronic high-fat diet, 
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which found changes in type 1 cannabinoid receptor (CB1R)-expressing presynaptic 

terminals apposed to orexin neurons (Cristino et al., 2013). However, to my knowledge 

there has been no report on synaptic plasticity of orexin neurons during short-term high-

fat diet exposure. Such plasticity of excitatory synapses should impact the excitability of 

orexin neurons, as excitatory synaptic contacts to these neurons significantly outnumber 

inhibitory ones and influence their basal firing rate (Horvath & Gao, 2005; Li et al., 

2002). Moreover, orexin neurons are known to display plasticity of excitatory synapses 

under various physiological states, such as fasting (Horvath & Gao, 2005) and sleep 

deprivation (Y. Rao et al., 2007), which has been postulated to affect foraging and 

arousal, respectively.   

In this study, we investigated the effect of short-term exposure to a palatable high-

fat Western Diet (WD) on excitatory transmission to orexin neurons. Our hypothesis was 

that WD induces synaptic plasticity in orexin neurons. We identified a novel form of 

long-term plasticity of these synapses after one week of WD feeding. This effect was 

diminished after a prolonged WD exposure, suggesting an adaptation to the diet. These 

changes may alter orexin network properties and underlie their physiological role in 

reward-based feeding during short- and long-term high-fat diet. 
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3.2 Methods 

3.2.1 Animals and diets 

All animal procedures were conducted as approved by the Memorial University’s 

Institutional Animal Care Committee under the guidelines of the Canadian Council on 

Animal Care. Male 3-week old Sprague-Dawley rats were obtained either from Charles 

River (Quebec, Canada) or Memorial University’s Breeding Colony. Upon arrival, rats 

were weighed then singly housed and fed either WD (TestDiet AIN-76A: 4.55kcal/g: 

40% fat, 16% protein, and 44% carbohydrates by caloric content) or a standard rodent 

chow ad libitum. Body weight and food intake were measured weekly. 

3.2.2 Electrophysiological recording 

After 1 or 4 weeks of feeding, rats were sacrificed by decapitation under 

isoflurane anesthesia and acute 250µm hypothalamic slices were generated on a 

vibratome (VT-1000, Leica Microsystems) in ACSF composed of 126mM NaCl, 2.5mM 

KCl, 1.2mM NaH2PO4, 1.2mM MgCl2, 18mM NaHCO3, 2.5mM glucose, and 2mM 

CaCl2. ACSF was chilled on ice for 5-10 minutes before slicing. After dissection, 

hypothalamic slices were incubated at 32-34 ̊C for 30-35 minutes in ACSF then left at 

room temperature until experiments were performed. ACSF was continuously bubbled 

with 95% O2/5% CO2 gas.  

Slices were transferred to a recording chamber, perfused with ACSF (1-2mL per 

minute at 30-32 ̊C) and visualized with infrared-differential interference contrast optics 

(DM LFSA, Leica Microsystems). Whole cell patch clamp recordings were performed on 
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neurons of the lateral hypothalamus/perifornical area using Multiclamp 700B and pClamp 

9 or 10 software (Molecular Devices). Signals were filtered at 1kHz and digitized at 5-

10kHz. An internal solution containing 123mM K gluconate, 2mM MgCl2, 1mM KCl, 

0.2mM EGTA, 10mM HEPES, 5mM Na2ATP, 0.3mM NaGTP, and 2.7mM biocytin was 

used to fill glass electrodes with a final tip resistance between 3-5MΩ.  

A glass pipette stimulation electrode filled with ACSF was placed medial to 

recorded neurons to stimulate afferent fibers. Evoked EPSCs were pharmacologically 

isolated using the GABAA channel blocker picrotoxin (50µM) and recorded every 15 

seconds at a holding potential of –70mV. These EPSCs are largely mediated by AMPA 

receptors but not kainite receptors (Alberto & Hirasawa, 2010). Paired pulses were 

applied at 10 or 50Hz to assess paired pulse ratio (PPR) defined as the amplitude of 

EPSC2 divided by that of EPSC1. To induce activity-dependent synaptic plasticity, high 

frequency stimulation (HFS) was applied to the afferents using the same stimulation 

electrode while in current clamp mode, consisting of 100 pulses at 100Hz every 5 

seconds, 10 times. NMDA receptor mediated EPSCs (NMDAR-EPSC) were obtained as 

the difference between evoked EPSCs recorded at +50mV in the absence or presence of 

the NMDA receptor antagonist (DAP5, 50µM). Access resistance was assessed by 

applying 20mV, 50ms hyperpolarizing pulses every 15 seconds. Cells that showed a 

change in these parameters by more than 20% were excluded from further analysis.   
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3.2.3 Identification of orexin neurons 

A series of hyperpolarizing and depolarizing currents (600ms steps) were applied 

in current clamp mode to identify putative orexin neurons. Orexin neurons display a 

distinct electrophysiological response to these current injections compared to other cell 

types in the region which allow for high accuracy identification (Alberto, Trask, & 

Hirasawa, 2011; Linehan et al., 2015). Specifically, orexin neurons display spontaneous 

firing, uniphasic after-hyperpolarizing potential, H-current, and rebound depolarization 

following relief from hyperpolarization.  

To confirm the neurochemical phenotype, post hoc immunohistochemistry was 

performed in a subset of cells (114 of 148 cells included in this study). During recording, 

cells were filled with biocytin via the recording pipette and subsequently brain slices were 

fixed in 10% formalin for at least 24 hours. Slices were then incubated with a goat anti-

orexin A IgG (1:2000; SC8070, Santa Cruz Biotechnology, Santa Cruz, CA) for 3 days, 

followed by Alexa 594-conjugated donkey anti-goat IgG (1:500) and Alexa 350-

conjugated streptavidin (1:500). Colocalization of biocytin with orexin A staining was 

assessed on an epifluorescence microscope (Fig. 2.1). Using immunohistochemical 

analysis, the success rate for correct identification of orexin neurons from 

electrophysiological properties was verified to be over 99% (113 of 114 cells). Therefore, 

cells that displayed the characteristic electrophysiological fingerprint of orexin neurons 

were included in the analysis. 
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3.2.4 Drugs 

Drugs were prepared as stock solutions and were diluted with ACSF to the final 

concentration immediately prior to experiment except for GDPβS, which was added to 

the internal solution at its final concentration in place of GTP (0.3mM). Picrotoxin, 

GDPβS, and AM251 were from Sigma Aldrich (Oakville, ON, CA); DAP5 and γDGG 

were from Abcam (Cambridge, MA, US); and MPEP, DHK, CPPG, and DHPG were 

from Tocris Bioscience (Minneapolis, MN, US). 

3.2.5 Statistical analysis 

Data are expressed as the mean ± SEM and p<0.05 was considered significant. 

The number of observations is reported in the nested model where N/n represents the 

number of cells/the number of animals. Statistical analyses were performed using Prism 

6.0 (GraphPad). Unpaired, ratio paired, or paired t-test and one-way or two-way ANOVA 

with post hoc Holm-Sidak tests were performed on the data as applicable.  
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3.3 Results 

To examine the effects of high-fat diet on orexin neurons, rats were fed with either 

a WD or a standard chow (Ctrl) for up to 4 weeks. While rats overconsumed calories 

from WD throughout the entire feeding period compared to chow controls (Ctrl n=14 vs 

WD n=15; Fig. 3.1A), they only had a significantly higher body weight by the fourth 

week of feeding (Fig. 3.1B). To study the time-dependent effects of WD on plasticity in 

orexin neurons, two time points were investigated: 1 week of feeding, when orexin 

neurons are reported to be activated by high-fat diet (Valdivia et al., 2014; Wortley et al., 

2003), and at 4 weeks, when orexin gene expression is first reported to decrease (Novak 

et al., 2010). 

3.3.1 HFS induces a presynaptic LTD of excitatory transmission in the WD condition 

After 1 week of feeding, all orexin neurons tested in the WD condition displayed a 

long-term depression (LTD), resulting in approximately 50% reduction on average in 

EPSC amplitude (WD: baseline 285.9±60.9pA vs post-HFS 162.3±28.1pA, N/n=6/4, 

p=0.0115; Fig. 3.2A-C). In contrast, chow control orexin neurons did not display a 

consistent response. A fraction of chow control cells (3 out of 7 cells) displayed a long-

term potentiation (LTP), defined as an increase in EPSC amplitude by more than 20% of 

baseline values, while others showed no change (Fig. 3.2A-C). Collectively, EPSC 

amplitude post-HFS was significantly different between chow control and WD (Ctrl 

118.7±9.0% vs WD 60.5±7.0%, p=0.0004; Fig. 3.2C). The LTD in the WD group was 

accompanied by an increase in PPR (WD: baseline 0.93±0.16 vs post-HFS 1.22±0.18, 
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p=0.0006; Fig. 3.2A,D) but there was no PPR change in chow controls (Ctrl: baseline 

0.79±0.08 vs post-HFS 0.78±0.05, p>0.05; Fig. 3.2D). Thus, LTD in the WD condition 

has a presynaptic locus of expression. 

3.3.2 LTD is dependent on metabotropic glutamate receptors 

Since a robust LTD occurred only in the WD condition in orexin neurons, we 

sought to determine the mechanism underlying this plasticity using brain slices from WD-

fed rats. NMDA receptors are commonly involved in long-term synaptic plasticity; 

however, we found that NMDA receptors are not involved in this LTD, as the NMDAR 

antagonist DAP5 (50µM) failed to significantly influence the HFD-induced changes in 

EPSC amplitude (HFS N/n=6/4 vs HFS+DAP5 N/n=5/4; Fig. 3.3A,C) or PPR (Fig. 

3.3A,D). Another glutamate receptor that could mediate presynaptic LTD is metabotropic 

glutamate receptor 5 (mGluR5) (Robbe, Kopf, Remaury, Bockaert, & Manzoni, 2002). 

We found that LTD was attenuated by the mGluR5-specific antagonist, MPEP (20-

40µM) (HFS 60.5±7.0%, N/n=6/4 vs HFS+ MPEP 94.6±4.2%, N/n=5/4, p=0.0029; Fig. 

3.3B-D). Further supporting mGluR5 involvement, the group 1 mGluR agonist DHPG 

(50µM) induced LTD on its own (baseline: 301.4±53.5pA vs post-DHPG: 230.1±48.6pA, 

N/n=13/7, p<0.0001; Fig. 3.3E) and occluded HFS-induced LTD (HFS 60.5±7.0%, 

N/n=6/4 vs HFS post-DHPG 101.7±4.3%, N/n=6/3, p=0.0005; Fig. 3.3F,G). Taken 

together, these results suggest that LTD in the WD condition is due to an mGluR5-

dependent mechanism. 
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3.3.3 LTD is dependent on retrograde endocannabinoid signaling 

To test whether mGluR5 signaling is pre- or postsynaptic, 2mM GDPβS was 

added to the pipette solution and allowed to diffuse into the cell for 10 minutes prior to 

baseline recording. We have shown previously that this concentration of GDPβS and 

procedure inhibits G-protein signaling within the postsynaptic orexin neuron (Parsons et 

al., 2012). We found that GDPβS blocked both the reduction in EPSC amplitude (HFS 

60.5±7.0%, N/n=6/4 vs HFS+GDPβS 120.9±9.6%, N/n=5/3, p<0.0001; Fig. 3.4A,C) and 

the increase in PPR (Fig. 3.4A,D) in the WD condition, suggesting an involvement of 

postsynaptic G-protein signaling. This data, along with the result showing that LTD is 

expressed presynaptically, suggests that a retrograde transmitter such as 

endocannabinoids must be involved (Robbe et al., 2002). Consistent with this idea, the 

CB1R antagonist AM251 (5µM) blocked HFS-induced LTD (HFS 60.5±7.0%, N/n=6/4 

vs HFS+AM251 98.5±2.8%, N/n=6/4, p=0.0011; Fig. 3.4B-D). These results suggest that 

LTD in orexin neurons is dependent on postsynaptic mGluR5 and retrograde 

endocannabinoid signaling.  

3.3.4 Activation of group 1 mGluRs induces LTD in both Ctrl and WD conditions 

It remains unknown why LTD is consistently observed in orexin neurons in the 

WD condition but not in chow-fed controls. One possibility is that orexin neurons do not 

express functional mGluR5 receptors in chow conditions. However, pharmacologically 

activating group 1 mGluRs in chow controls using the group 1-specific mGluR agonist 

DHPG also led to a presynaptic LTD (Ctrl: baseline 353.9±55.5pA vs post-DHPG 
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187.3±29.8pA, N/n=7/5, p=0.0008; Fig. 3.5A-C). Thus, the molecular machinery 

necessary for mGluR5-dependent LTD is intact even in the chow-fed condition. 

3.3.5 WD attenuates DHPG-induced LTD  

Interestingly, the magnitude of the decrease of EPSC amplitude in DHPG-induced 

LTD was smaller in WD (Ctrl 53.8±5.7%, N/n=7/5 vs WD 71.6±3.9%, N/n=13/7, 

p=0.0159; Fig. 3.5A,B). This may be an indication that LTD had been endogenously 

established in WD rats prior to our recordings and was therefore occluding the effect of 

DHPG. If so, the baseline release probability would be lower, which should be observed 

as an increase in PPR. This indeed appeared to be the case since the baseline PPR was 

higher in the WD group compared to chow controls (Ctrl 0.70±0.05, N/n=20/14 vs WD 

0.92±0.07, N/n=17/10, p=0.0131; Fig. 3.6A,B). An alternative explanation for this higher 

PPR is a tonic activation of presynaptic inhibitory group III mGluRs (Acuna-Goycolea, 

Li, & van den Pol, 2004); however, the group III mGluR antagonist CPPG (200µM) had 

no effect on EPSCs in the WD condition (N/n=6/3; Fig. 3.6C). Taken together, it is 

possible that LTD may have occurred endogenously in orexin neurons in the WD 

condition and occluded the effects of DHPG.  

3.3.6 WD increases synaptic glutamate 

Since the signaling components for group 1 mGluR-dependent LTD are present in 

both chow and WD conditions, unmasking of HFS-induced LTD by WD may involve a 

process upstream of mGluR5 activation, such as synaptic glutamate clearance. To test any 

difference in the level of extracellular glutamate during synaptic activity, we used the 
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compound, γ-D-glutamylglycine (γDGG). It is a low affinity, competitive AMPA 

receptor antagonist, which competes with endogenous glutamate for AMPA receptors. 

Therefore, the degree of EPSC inhibition induced by γDGG is negatively correlated to 

glutamate concentration at the synapse (Budisantoso et al., 2013). We tested different 

concentrations of γDGG to find a concentration (1mM) that reduced EPSC amplitude by 

about 50% in chow controls, such that we could equivocally detect either an increase or 

decrease in the response (Fig. 3.7A,B). In the WD group, the same concentration of 

γDGG induced significantly less inhibition of EPSCs (Ctrl 45.3±4.4%, N/n=7/3 vs WD 

71.7±4.4%, N/n=5/3, p=0.0020; Fig. 3.7A,B), indicating an increase of synaptic 

glutamate. However, there was no difference in the decay of AMPA or NMDA receptor-

mediated EPSCs between WD and chow controls (AMPAR-EPSC decay: Ctrl N/n=13/8 

vs WD N/n=10/6; NMDAR-EPSC decay: Ctrl N/n=5/2 vs WD N/n=5/2; Fig. 3.7C-E), 

suggesting that the time course of the glutamate transient at the synapse is not affected. 

3.3.7 Inhibition of glutamate uptake is sufficient to prime synapses for LTD 

An increase in synaptic glutamate may lead to more glutamate spillover during 

HFS to activate perisynaptic mGluR5 receptors and their downstream LTD signaling 

cascade. To test this idea, we used a low concentration of DHK (10-15µM), an inhibitor 

of the astrocytic glutamate transporter-1 (GLT-1), to inhibit glutamate uptake and 

facilitate spillover in chow controls. This concentration of DHK did not affect EPSC 

amplitude (N/n=8/3, baseline: 302.2±70.1pA, DHK: 276.9±73.3pA, ratio paired t-test, 

p=0.2466) or decay (Fig. 3.7F); however, in its presence, chow control synapses 

expressed a presynaptic LTD in response to HFS (HFS 118.7±9.0%, N/n=7/4 vs 
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HFS+DHK 67.9±7.9%, N/n=6/3, p=0.0016; Fig. 3.7G-I). Thus, increased extracellular 

glutamate is sufficient for LTD induction.  

3.3.8 LTD can no longer be induced by HFS after 4 weeks of WD feeding 

Finally, we asked whether these WD-induced synaptic changes are long lasting. 

After 4 weeks of feeding, we found that there was no longer any difference between WD 

and age-matched chow control groups in synaptic glutamate as measured by the degree of 

EPSC inhibition by γDGG (4wCtrl 59.2±5.4%, N/n=5/4 vs 4wWD 48.1±1.3%, N/n=4/3, 

p>0.05; Fig. 3.8A,B). Accordingly, neither group expressed HFS-induced LTD (4wCtrl 

N/n=6/2 vs 4wWD N/n=5/2; Fig. 3.8C-E). Therefore, adaptation to WD occurs at 

excitatory synapses to orexin neurons. 
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3.4 Discussion 

The present study demonstrates that one week of WD feeding primes excitatory 

synapses to orexin neurons to undergo activity-dependent LTD. WD increases the level of 

synaptic glutamate, which results in activation of postsynaptic mGluR5 receptors during 

intense synaptic activity. This leads to endocannabinoid release from orexin neurons, 

subsequent activation of presynaptic CB1Rs, and the expression of a presynaptic LTD 

(Fig. 3.9). This priming effect is transient and disappears with longer periods of WD 

feeding. To our knowledge, this is the first study to describe LTD of excitatory inputs to 

orexin neurons. Because orexin neurons promote high-fat food intake, it is reasonable to 

assume that LTD of excitatory synapses to these neurons is a homeostatic response to 

WD, limiting food intake. On the other hand, a previous study described a postsynaptic 

LTP at these synapses via a cAMP-dependent mechanism (Y. Rao et al., 2007). In our 

chow controls, HFS induced LTP without a change in PPR in 43% of cells tested, which 

may be explained by this mechanism.  

3.4.1 LTD is mediated by mGluR5 and endocannabinoid signaling 

Orexin neurons have been shown to synthesize and release endocannabinoids in 

response to membrane depolarization (Cristino et al., 2013), which in turn acutely inhibit 

excitatory and inhibitory transmission presynaptically (Cristino et al., 2013; Huang et al., 

2007). Our results show that endocannabinoids can also be released by mGluR5 

activation in orexin neurons and retrogradely induce an LTD of excitatory synapses to 

these neurons. Glutamate has been reported to induce endocannabinoid synthesis via 
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other receptors in other brain regions, namely NMDA receptors (Stella & Piomelli, 2001). 

However, our study indicates that these receptors are unlikely to be involved in LTD 

induction. Therefore, mGluR5 is the primary glutamate receptor responsible for 

stimulating endocannabinoid synthesis from orexin neurons during intense activity of 

excitatory synapses.  

3.4.2 DHPG-induced LTD is occluded in the WD condition 

Although WD feeding was necessary for HFS to induce LTD, pharmacological 

activation of group 1 mGluRs could induce LTD in both Ctrl and WD conditions. 

Therefore, the machinery for LTD, including the mGluR5-CB1R pathway, is present and 

functional under both conditions. Nevertheless, the magnitude of DHPG-induced LTD 

was smaller in WD compared to chow controls. It is possible that in WD animals, LTD is 

induced endogenously and occludes the DHPG-induced LTD. This is supported by our 

results showing a higher basal PPR in WD cells, which could indicate a decrease in basal 

release probability. Alternatively, a change in cell surface expression (Knackstedt & 

Schwendt, 2016) or perisynaptic localization of mGluR5 receptors (Sergé, Fourgeaud, 

Hémar, & Choquet, 2002) may account for this difference. In addition, chronic high-fat 

diet has been shown to induce synaptic remodeling in orexin neurons, accompanying a 

decrease in the number of CB1R-expressing excitatory synapses (Cristino et al., 2013), 

which could influence this CB1R-dependent LTD. However, whether this type of 

synaptic remodeling in orexin neurons would occur after 1 week of WD feeding is 

unknown. 



65 
 

3.4.3 Synaptic glutamate is increased by WD and may underlie unmasking of LTD 

Our study suggests that a change in synaptic glutamate levels underlies the WD-

induced unmasking of LTD in orexin neurons. Synaptic glutamate concentration is 

determined by the amount of release, uptake, and diffusion of glutamate. It is unlikely 

that WD increases glutamate release, since the basal release probability at these excitatory 

synapses was decreased during WD feeding. Synaptic remodeling is known to occur in 

orexin neurons due to dietary factors (Cristino et al., 2013; Horvath & Gao, 2005) and 

this may accompany a change in synaptic morphology, such as the number of synapses, 

which could result in altered capacity for glutamate diffusion (Piet, Vargová, Syková, 

Poulain, & Oliet, 2004). Finally, synaptic glutamate could also increase if glutamate 

uptake through transporter activity is decreased. Indeed, WD may alter glutamate uptake, 

since hormones influenced by high-fat diet, such as leptin and ghrelin, have previously 

been described to modulate the expression of astrocytic glutamate transporters GLT-1 and 

GLAST in the hypothalamus (Fuente-Martín et al., 2012, 2016). Furthermore, we showed 

that a GLT-1 inhibitor DHK mimics WD and permits HFS-induced LTD in chow control 

orexin neurons. Thus, a decrease in glutamate transport may be at least partially 

responsible for increased synaptic glutamate by WD. Nevertheless, we did not detect any 

effect of WD or DHK on the decay and/or amplitude of EPSCs in orexin neurons. This 

suggests that the kinetics of fast excitatory transmission at these synapses may not be 

influenced by glutamate transport, similar to what is seen in the cerebellum and 

hippocampus (Isaacson & Nicoll, 1993; Marcaggi, Billups, & Attwell, 2003). Limited 

glutamate uptake may instead have greater influence on glutamate spillover and 
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subsequent activation of extrasynaptic receptors (Freestone et al., 2014), and facilitate 

synaptic plasticity that depends on these receptors (Brasnjo & Otis, 2001). Notably, the 

developing brain is more vulnerable to the effects of high-fat diet (Morin et al., 2017), 

while the expression of astrocytic glutamate transporters rapidly increases postnatally and 

continues to increase into adulthood (Furuta, Rothstein, & Martin, 1997). Therefore, it is 

possible that young animals, such as those used in this study (3 weeks of age at the start 

of feeding paradigm), are particularly sensitive to modulation of glutamate clearance 

mechanisms and the induction of LTD by WD. 

3.4.4 Physiological implications of LTD in orexin neurons 

While the source of excitatory afferents to orexin neurons tested in this study were 

not defined, these neurons are known to receive diverse inputs from several brain regions 

involved in energy balance, reward, and arousal. These include the basal forebrain, the 

limbic system, the brainstem, and the hypothalamus including the arcuate nucleus and the 

ventromedial, dorsomedial, posterior, and lateral hypothalamus (Acuna-Goycolea et al., 

2004; Deurveilher & Semba, 2005; Henny & Jones, 2006; Yoshida et al., 2006). Since 

LTD was observed in all orexin neurons tested in the WD group, it may not be a 

mechanism restricted to certain afferents. Thus, LTD at these glutamatergic synapses 

would be poised to influence the integration of diverse signals received by orexin neurons 

and hence their functional output relevant for high-fat diet consumption, including 

arousal, motivation, locomotor activity, and sympathetic outflow (Tsujino & Sakurai, 

2013). 
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The effects of high-fat diet on the orexin system are known to be time-dependent: 

short exposures to high-fat diet stimulate, while longer exposures suppress the orexin 

system. For example, after 2 hours of high-fat diet, orexin neurons increase cFos 

expression (Valdivia et al., 2014), while orexin cell density and mRNA expression 

increases within 3 weeks of high-fat diet (Wortley et al., 2003; but see Ziotopoulou et al., 

2000). The resulting increases in orexin signaling can lead to a positive feedback loop of 

high-fat diet overconsumption (Valdivia et al., 2014; Zheng et al., 2007). It is possible 

that the LTD described in the present study represents a homeostatic mechanism to put a 

brake on this positive feedback loop to prevent overexcitation of orexin neurons. Because 

orexin neurons are responsible for activating the VTA upon high-fat diet intake (Valdivia 

et al., 2014; Zheng et al., 2007), plasticity at the level of orexin neurons could have 

functional consequences within the reward circuitry. Moreover, high-fat diet is also 

known to induce an endocannabinoid-dependent LTD in the VTA and decreases the 

salience of high-fat diet (Labouèbe et al., 2013). Therefore, LTD at both sites could act in 

concert to regulate behavioral responses to high-fat diet. 

In contrast to these excitatory effects of short-term high-fat diet, prolonged 

exposures (1 to 4 months) reduce orexin gene and peptide levels within the hypothalamus 

(Novak et al., 2010; Tanno et al., 2013). This may be due to obesity per se, as genetically 

obese animals also show low orexin mRNA expression (Cai et al., 2000). A reduction in 

orexin expression suggests that the homeostatic mechanism to keep the activity of the 

orexin system in check may no longer be necessary. In support of this idea, the present 

study found that LTD was not induced after 4 weeks of WD. While the mechanism 
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underlying this adaptation to long-term WD remains unknown, it may be secondary to an 

extended presence of triglycerides or dynamic changes in diet-sensitive hormone levels 

that have time-dependent effects on brain and behavior (Cansell et al., 2014; Fuente-

Martín et al., 2012, 2016).  

3.4.5 Conclusions 

In summary, the present study demonstrates a novel mechanism by which WD 

induces metaplasticity in orexin neurons. This plasticity is time-dependent and may 

underlie changes in the activity of the orexin system over the course of high-fat diet 

feeding. In a recent paper using a similar WD and animal model as our study, adolescent 

male Sprague-Dawley rats were shown to display reward hypofunction after 10 days of 

WD that was normalized by continued WD feeding into adulthood (Rabasa et al., 2016). 

It is tempting to speculate that priming of orexin neurons to LTD and its reversibility 

shown in our study contributes to these behavioral responses and adaptation to WD. 

Furthermore, apart from modulating motivation and intake of high-fat diet, this synaptic 

plasticity may also underlie other alterations in physiological functions associated with 

high-fat diet and obesity, such as diminished wakefulness/alertness and energy 

expenditure that can be explained by inhibition of orexin neurons (Jenkins et al., 2006; 

Tanno et al., 2013).   
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Figure 3.1: Western Diet promotes caloric intake and weight gain.  

(A) Caloric intake of rats fed Western Diet (WD, open symbol) or standard chow (Ctrl, 

filled symbol). (B) Body weight of rats fed WD or chow controls.  

Two-way RM ANOVA with post hoc comparisons: *p<0.05, ****p<0.0001 
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Figure 3.2: One week of WD feeding primes orexin neurons to undergo HFS-

induced presynaptic LTD.   

(A) Sample traces showing paired EPSCs of orexin neurons in Ctrl and WD groups at 

baseline (a) and post-HFS (b), recorded at time points indicated in panel B. Post-HFS traces 

are scaled so that the first EPSC of baseline and post-HFS are comparable (right traces). 

Dotted reference lines show that the PPR changed in WD but not in Ctrl. (B) EPSC 

amplitude normalized to respective baseline in WD and Ctrl orexin neurons. HFS was 

applied at time 0 (grey bar). Normalized (C) EPSC amplitude and (D) PPR 25-30 minutes 

post-HFS (b in panel B) normalized to a 5-minute baseline (a in panel B) in Ctrl and WD. 

For C and D, each symbol denotes an individual orexin neuron.  

Unpaired t-test (Ctrl vs WD): **p<0.01, ****p<0.0001  

Paired t-test (baseline vs post-HFS within individual groups): #p<0.05, ###p<0.001 
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Figure 3.3: LTD in the WD condition is mGluR5-dependent.  

(A) Sample EPSCs showing the effect of HFS on WD cells in the presence of DAP5 

(50µM) applied 10 minutes before HFS up until 5 minutes post-HFS. (B) Sample EPSCs 

pre- and post-HFS in the presence of group 1 mGluR antagonist MPEP (20-40µM) applied 

10 minutes before HFS up until 5 minutes post-HFS. Summary of EPSC amplitude (C) and 

PPR (D) 25 minutes post-HFS normalized to baseline. HFS-induced LTD is not affected 

by DAP5 but blocked by MPEP. Each symbol denotes an individual orexin neuron. (E) 

Representative time effect plot of DHPG (50µM) application and subsequent HFS on EPSC 

amplitude in WD orexin neurons. Summary of EPSC amplitude (F) and PPR (G) post-HFS 

normalized to respective baseline without or with prior DHPG application. DHPG occludes 

HFD-induced LTD. Each symbol denotes an individual orexin neuron.  

One-way ANOVA (C,D) and unpaired t-test (F,G): **p<0.01, ***p<0.001  

Paired t-test (baseline vs post-HFS within individual groups): #p<0.05, ###p<0.001  
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Figure 3.4: LTD is mediated by postsynaptic G protein and retrograde 

endocannabinoid signaling in orexin neurons.  

Sample EPSCs showing the effect of HFS on WD orexin neurons patch clamped with an 

inhibitor of G-protein signaling GDPβS (2mM) in the recording pipette. (B) Sample EPSCs 

showing the effect of HFS on WD orexin neurons in the presence of the CB1R antagonist 

AM251 (5µM). AM251 was applied 10 minutes before HFS up until 5 minutes post-HFS. 

Normalized EPSC amplitude (C) and PPR (D) 25 minutes post-HFS in orexin neurons 

treated with GDPβS or AM251. LTD is abolished by both treatments.  

One-way ANOVA with post hoc comparisons: **p<0.01, ****p<0.0001 

Paired t-test (baseline vs post-HFS within individual groups): #p<0.05, ###p<0.001  
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Figure 3.5: Group 1 mGluR activation induces presynaptic LTD regardless of diet.  

(A) Sample EPSCs recorded during baseline or 20-30 minutes after DHPG (50µM) 

application. EPSC amplitude (B) and PPR (C) 20-30 minutes following DHPG application. 

DHPG induces LTD in both Ctrl and WD conditions, however the magnitude of LTD is 

greater in Ctrl.  

Unpaired t-test (Ctrl vs WD): *p<0.05 

Paired t-test (baseline vs post-HFS within individual groups): #p<0.05, ##p<0.01, 

###p<0.001, ####p<0.0001 
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Figure 3.6: Presynaptic release probability is reduced by WD independently of 

group III mGluR.  

(A) Sample traces of paired EPSCs recorded from orexin neurons in Ctrl and WD 

conditions. (B) WD increases baseline PPR in orexin neurons. (C) Group III mGluR 

antagonist CPPG (200µM) has no effect on EPSC amplitude or PPR.  

Unpaired t-test: *p<0.05  
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Figure 3.7: Reduced synaptic glutamate clearance may underlie the priming of 

synapses for LTD by WD.  

(A) Sample EPSCs showing the effect of the low-affinity, competitive AMPA receptor 

antagonist γDGG (1mM) on EPSC amplitude in orexin neurons. (B) EPSC amplitude 

expressed as percent of baseline (before γDGG) and during γDGG treatment. EPSC 

amplitude is less sensitive to the inhibitory effect of γDGG in WD than in Ctrl. (C) Sample 

EPSCs (without drug or HFS treatment) and their overlay showing similar decay times in 

Ctrl and WD conditions. Diet has no effect on the 10-90% decay time of (D) AMPA 

receptor-dependent EPSCs or (E) NMDA receptor-dependent EPSCs. (F) GLT-1 inhibitor 

DHK (10-15µM) has no effect on the 10-90% decay time of AMPA receptor-dependent 

EPSCs. (G) Sample time effect plot showing that HFS induces LTD in the presence of 

DHK in the chow Ctrl condition. (H) Normalized EPSC amplitude 20-30 minutes post-

HFS in Ctrl orexin cells with and without DHK. (I)  HFS-induced LTD primed by DHK 

accompanies an increase in PPR.  

Unpaired t-test: *p<0.05, **p<0.01  

Paired t-test (baseline vs post-HFS within individual groups): #p<0.05  
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Figure 3.8: Prolonged WD feeding reverses synaptic priming for LTD in orexin 

neurons.  

(A) Sample EPSCs before and during γDGG (1mM) application in orexin neurons from 

rats fed WD for 4 weeks (4wWD) and age-matched controls (4wCtrl). (B) γDGG effect on 

EPSC amplitude is not different between 4wWD and 4wCtrl. (C) Time-effect plot of HFS 

on EPSC amplitude showing a lack of HFS effect in orexin neurons from 4wCtrl or 4wWD 

groups. EPSC amplitude (D) and PPR (E) are not affected by HFS after 4 weeks of Ctrl or 

WD. 
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Figure 3.9: Summary of experimental results.  

In chow-fed controls (left), synaptically released glutamate is efficiently removed, 

preventing activation of perisynaptic mGluR5. In WD-fed condition (right), synaptic 

glutamate is increased, leading to glutamate spillover during HFS, which activates 

postsynaptic mGluR5 and induces retrograde endocannabinoid signaling to induce a 

presynaptic LTD.   
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CHAPTER 4 

 

OREXIN NEURONS UNDERGO TRANSIENT, TIME-DEPENDENT SYNAPTIC 

PLASTICITY DURING HIGH-FAT DIET FEEDING 
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4.1 Introduction 

Orexin neurons within the lateral hypothalamus are a key component of the 

circuitry underlying energy homeostasis and reward-based feeding. While orexin neurons 

promote food intake, particularly so with rewarding, palatable diets (Choi et al., 2010; 

Perello et al., 2010; Valdivia et al., 2014), they also increase energy expenditure through 

increased sympathetic activation, locomotion, and spontaneous physical activity (Kotz et 

al., 2006; Shahid et al., 2011; Wang et al., 2001; Wang, Osaka, & Inoue, 2003). Due to 

these opposing roles on energy balance and their role in promoting palatable high-fat diet, 

orexin neurons have a unique role in diet-induced obesity.  

Orexin neurons are initially activated by, and then further promote, high-fat diet 

intake by activating the mesolimbic reward pathway (Valdivia et al., 2014; Wortley et al., 

2003). While their role to increase caloric intake would seemingly suggest that orexin 

neurons are obesogenic, this is not the case – orexin signaling instead protects against 

weight gain through its actions on energy expenditure (Funato et al., 2009). In fact, a 

reduction of orexin activity during obesity may contribute to weight gain, as orexin 

neuron ablation leads to late onset obesity (Hara et al., 2001). Accordingly, in contrast to 

the activation of orexin neurons seen with short-term high-fat diet exposure, prolonged 

high-fat diet consumption is associated with decreased orexin mRNA expression and 

peptide levels (Novak et al., 2010; Tanno et al., 2013), as well as increased inhibitory 

transmission (Cristino et al., 2013). Together, this evidence suggests that orexin neurons 

may be regulated in a time-dependent manner during high-fat diet feeding, which may 

affect energy balance to promote obesity. 
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However, how high-fat diet affects orexin neurons over the course of feeding is 

incompletely understood. Cristino and colleagues described synaptic remodeling of 

orexin neurons in obese mice (Cristino et al., 2013), which they postulated would affect 

orexin signaling in obesity. In support of this idea, synaptic remodeling has also been 

reported in other appetite-regulating neurons within the hypothalamus after chronic high-

fat diet feeding and is thought to influence body weight regulation (Horvath et al., 2010). 

Therefore, it is possible that synaptic plasticity also occurs in orexin neurons, and 

different forms of plasticity may be seen at early and late periods during high-fat diet 

feeding. 

In the present study, synaptic transmission to orexin neurons was characterized 

over the course of high-fat diet feeding. Our hypothesis was that WD induces synaptic 

plasticity in orexin neurons. The results show that both excitatory and inhibitory synaptic 

transmission to orexin neurons are dynamically modulated by high-fat diet and these 

changes are dependent on the duration of feeding. Given the role of orexin neurons in 

energy balance, these changes may contribute to the development and maintenance of 

obesity. 
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4.2 Methods 

4.2.1 Animals and diets 

 All experiments were conducted following the guidelines of the Canadian Council 

on Animal Care as approved by Memorial University’s Institutional Animal Care 

Committee. Male 3-week old Sprague-Dawley rats (Charles River, Quebec, Canada and 

Memorial University Breeding Colony) were fed ad libitum for 1, 4, and 11 weeks 

(Chapter 1, Fig. 1.2B) with a control, low fat diet (LabDiet 5010 – 3.08kcal/g, % by 

calories: 12.7% fat, 28.7% protein, and 58.5% carbohydrates) or a palatable, high-fat 

Western Diet (WD; TestDiet AIN-76A– 4.55kcal/g, % by calories: 40% fat, 16% protein, 

and 44% carbohydrates).  

4.2.2 Electrophysiological recording 

 Rats were sacrificed after feeding by deep isoflurane anesthesia and decapitation. 

Brains were removed and acute 250µm hypothalamic slices were generated using a 

vibratome (VT-1000, Leica Microsystems) in chilled ACSF (in mM: 126 NaCl, 2.5 KCl, 

1.2 NaH2PO4, 1.2 MgCl2, 18 NaHCO3, 2.5 glucose, and 2 CaCl2) that was bubbled with 

95% O2/5% CO2. Slices were incubated in ACSF at 32-34 ̊C for 30 minutes and then left 

at room temperature until experiments were performed. 

 For patch clamp recordings, hemisected slices were placed in a temperature-

controlled recording chamber (30-32 ̊C) that was perfused with ACSF (1-2mL/min). 

Differential interference contrast optics (DM LFSA, Leica Microsystems) were used to 

visualize slices and neurons in the perifornical area and lateral hypothalamus were 
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targeted for study. Multiclamp 700B and pClamp 9 or 10 software (Molecular Devices, 

Sunnyvale, CA) were used. Signals were filtered at 1kHz and digitized at 5-10kHz.  

Glass pipettes were filled with an internal solution (EPSCs: in mM: 123 K-

gluconate, 2 MgCl2, 1 KCl, 0.2 EGTA, 10 HEPES, 5 Na2ATP, 0.3 NaGTP, and 2.7 

biocytin; IPSCs: K-gluconate was replaced with KCl for a total concentration of 131mM), 

and had a resistance of 3-5MΩ in the bath. Access resistance was 5-20MΩ once whole 

cell access was obtained. All experiments were conducted in voltage clamp at -70mV and 

a 20mV, 50ms square hyperpolarizing step was applied every 15-60 seconds to monitor 

access resistance. 

 Since blocking glutamatergic and GABAergic channels completely abolishes 

synaptic currents in orexin neurons (Li et al., 2002), the chloride channel blocker 

picrotoxin (50µM) could be used to isolate glutamatergic transmission. Moreover, our lab 

has previously shown that the remaining fast glutamatergic currents are largely mediated 

by AMPA receptors (Alberto & Hirasawa, 2010). Therefore, to record AMPA receptor-

mediated mEPSCs, TTX (1µM) was used to inhibit action potentials. For mIPSCs, in 

addition to TTX, DAP5 (50µM) an NMDA receptor antagonist, and DNQX (10µM) an 

AMPA/kainate receptor antagonist was used. EPSCs were also evoked in the presence of 

picrotoxin by a glass stimulating electrode filled with ACSF and connected to a 

stimulation box (ISO-Flex, A.M.P.I.). 
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4.2.3 Identification of neurons 

 Orexin neurons were identified through a combination of electrophysiological 

characteristics and immunohistochemical analysis. We have previously established that 

orexin neurons display a unique combination of responses to positive and negative current 

injections, which can predict the neurochemical phenotype with a high accuracy rate of 

identification (>99% in prior studies) (Linehan et al., 2015). Briefly, orexin neurons 

display an H current and a rebound depolarization following relief from 

hyperpolarization, which is capped by action potentials in some cells. They also fire 

spontaneously, and display a uniphasic after-hyperpolarizing potential. 

 Post hoc immunohistochemistry was also performed in a subset of cells to support 

initial electrophysiological identification. During recording, cells were labeled with 

biocytin via the internal solution. Following recording, slices were fixed in 10% formalin 

for at least 48 hours. Then, slices were washed three times in a PBS solution and then 

incubated with goat anti-orexin A IgG (1:2000; SC8070, Santa Cruz Biotechnology, 

Santa Cruz, CA) for 3 days at 4 ̊C. Then slices were washed again and fluorescent 

conjugated donkey anti-goat (Alexa 488 or 594, 1:500) and streptavidin (1:500) were 

incubated with slices for 3 hours at room temperature or overnight at 4 ̊C. Slices were 

then mounted and an epifluorescent microscope was used to check for colocalization of 

biocytin and orexin A staining (Fig. 2.1). 
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4.2.4 Data and statistical analysis 

  MiniAnalysis (Synaptosoft) was used to analyze the frequency and amplitude of 

miniature postsynaptic currents. Events were manually selected that had a clear fast rise 

and exponential decay. For mEPSCs, an average of 622±43 (frequency) and 380±27 

(amplitude) events were analyzed in each cell. For mIPSCs, an average of 85±7 

(frequency) and 90±6 (amplitude) events were analyzed. MiniAnalysis was also used to 

perform peak-scaled non-stationary noise analysis (NSNA) to estimate the conductance 

and number of channels that contribute to mEPSCs. Relative frequency distributions of 

mEPSC amplitude were generated for individual cells and were fitted with a 

log(Gaussian) non-linear regression to determine the peak of individual distributions in 

Prism. Distributions were also combined to show an average distribution of mEPSC 

amplitude. Clampfit (Molecular Devices) was used to analyze evoked EPSC amplitude 

for paired pulse ratio (PPR) calculations.  

Data are expressed as mean ± SEM. The number of observations is reported in the 

nested model where N/n represents the number of cells/the number of animals. One-way 

ANOVA with Holm-Sidak multiple comparisons, unpaired t-tests, and descriptive 

statistics were performed using Prism 6.0 (GraphPad). p<0.05 was considered significant. 

Outliers were identified using the ROUT method in Prism and removed from the data set. 
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4.3 Results 

4.3.1 One week of WD increases the AMPA receptor conductance in orexin neurons 

Following a brief WD feeding, the amplitude of mEPSCs was significantly 

increased. This occurred as early as 1 day of WD feeding (Ctrl 18.9±1.2pA, N/n=8/6 vs 

1dWD 26.5±1.2pA, N/n=11/3, p=0.0045; Fig. 4.1B) and at 1 week (Ctrl 18.9±1.2pA, 

N/n=8/6 vs 1wWD 26.8±1.8pA, N/n=12/6, p=0.0039; Fig. 4.1A,B). In both WD groups, 

there was a rightward shift in the peak and overall frequency distribution of mEPSC 

amplitude (Fig. 4.1C,D). Since there was no change in the coefficient of variation (CV) to 

indicate changes in the skewness of the distribution (Fig. 4.1E), this rightward shift is 

unlikely to be due to an increase in multivesicular release but rather an increased quantal 

current. Peak-scaled NSNA indicated that this was due to an increase in the single 

channel current of AMPA receptors (Ctrl 1.2±0.2pA vs 1wWD 2.1±0.2pA, p=0.0306; 

Fig. 4.1F,G), rather than a change in receptor number (Fig. 4.1F,H). Together these 

results suggest that 1 day to 1 week of WD feeding increases AMPA receptor 

conductance, indicating that there is a postsynaptic potentiation of excitatory input to 

orexin neurons. 

4.3.2 One week of WD differentially affects spontaneous and evoked glutamatergic 

release 

In contrast to the effect on mEPSC amplitude, one week of WD had no effect on 

mEPSC frequency (Ctrl N/n=8/6 vs 1wWD N/n=12/6; Fig. 4.2A,B), indicating no 

presynaptic change. On the other hand, we found an increased PPR suggesting a decrease 
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in release probability (Ctrl 0.67±0.04, N/n=19/15 vs 1wWD 0.87±0.07, N/n=16/10, 

p=0.0244; Fig. 4.2C,D). This indicates a possible dissociation between presynaptic 

regulation of evoked and spontaneous excitatory transmission. 

4.3.3 Four weeks of WD leads to an adaptation to increased mEPSC amplitude 

After 4 weeks of feeding, orexin neurons from WD and chow controls showed no 

difference in average mEPSC amplitude (Ctrl N/n=8/6 vs 4wWD N/n=9/5; Fig. 4.3A,B); 

nonetheless, there was still a modest but significant rightward shift in the peak of the 

distribution of mEPSC amplitude in the 4-week WD group (Fig. 4.3C,D). As there was no 

change in CV (Fig. 4.3E), the shift is likely a result of a small increase in quantal current, 

which may be obscured in the averaged amplitude data. Interestingly, peak-scaled NSNA 

suggested that the single AMPA receptor current remained higher in the WD group than 

control levels akin to the 1-week WD group (Ctrl 1.4±0.1pA vs 4wWD 1.9±0.2pA, 

p=0.0338; Fig. 4.3F,G), while AMPA receptor number decreased (Ctrl 15.2±1.0 vs 

4wWD 11.7±1.1, p=0.0296; Fig. 4.3F,H). These results suggest that the increase in 

mEPSC amplitude seen at 1 week is transient and is reversed by 4 weeks of WD; 

however, this is not through reversal of the increase in AMPA receptor conductance that 

occurred at 1 week, but rather a decrease in the number of AMPA receptors. This could 

be the phenomenon of synaptic scaling, a process by which synapses adjust their 

excitability to maintain their homeostasis (Turrigiano, 2008). Alternatively, the results 

may be explained by the addition of new excitatory synapses which initially have very 

few AMPA receptors (Parajuli, Tanaka, & Okabe, 2017) and these receptors could have 

different kinetic properties. 
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4.3.4 Four weeks of WD induces remodeling of excitatory synapses 

Unlike a lack of change in mEPSC frequency at 1 week, the frequency of 

mEPSCs was significantly increased after 4 weeks of WD (Ctrl 5.9±0.8Hz, N/n=9/6 vs 

4wWD 13.1±2.1Hz, N/n=8/5, p=0.0044; Fig. 4.4A,B). There was no change in PPR (Ctrl 

N/n=17/11 vs 4wWD N/n=17/9; Fig. 4.4C,D), suggesting no difference in presynaptic 

release and therefore, there is likely an increase in the number of excitatory inputs to 

orexin neurons.  

4.3.5 Excitatory transmission to orexin neurons is unaffected following 11 weeks of WD 

Interestingly, by 11 weeks of WD feeding, all plastic changes of excitatory 

transmission observed at earlier time points returned to control levels. There was no 

difference between chow- and WD-fed groups in mEPSC amplitude or frequency (Ctrl 

N/n=9/6 vs 11wWD N/n=9/7; Fig. 4.5A-G), AMPA receptor conductance or number 

(Fig. 4.5E,F), or PPR (Ctrl N/n=14/7 vs 11wWD N/n=13/4; Fig. 4.5H,I).  

These data suggest that orexin neurons have adapted to the effects of WD on both 

mEPSCs and PPR with prolonged feeding. Overall, both pre- and postsynaptic 

mechanisms are in flux early in WD feeding and then settle to baseline levels by 11 

weeks of feeding. 

4.3.6 Inhibitory transmission is also affected by WD in a time-dependent manner 

Next, we investigated inhibitory transmission in orexin neurons and found that it 

also underwent time-dependent plasticity. While no changes occurred after 1 week of 
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feeding (Ctrl N/n=7/4 vs 1wWD N/n=8/3; Fig. 4.6A-C), after 4 weeks of feeding, the 

frequency of mIPSCs was significantly increased (Ctrl 0.60±0.05Hz, N/n=10/3 vs 4wWD 

0.88±0.09Hz, N/n=13/3, p=0.0247; Fig. 4.6D,F). This changed to an increase in mIPSC 

amplitude after 11 weeks of feeding (Ctrl 48.2±4.8pA, N/n=7/5 vs 11wWD 81.1±11.1pA, 

N/n=8/5, p=0.0228; Fig. 4.6G,H). While these changes were interesting, the low 

frequency of mIPSCs, particularly in 14-week old rats, made the distribution analysis and 

NSNA unreliable and therefore these analyses were not conducted. 
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4.4 Discussion 

The present study demonstrated that changes occur in excitatory and inhibitory 

transmission to orexin neurons through various mechanisms in response to WD, which 

may interact to determine the output of these neurons. Specifically, orexin neurons first 

show an increase in mEPSC amplitude at 1 week of feeding, then an increase in mEPSC 

frequency at 4 weeks, and finally no difference in either at 11 weeks (Fig. 4.7A). At the 

same time, 4 weeks of WD feeding increased mIPSC frequency, while 11 weeks of WD 

feeding only increased mIPSC amplitude (Fig. 4.7B). Together, this suggests an increase 

in excitatory transmission early in feeding (1 week), switching to an increase in inhibitory 

transmission with longer WD feeding (11 week). 

4.4.1 Possible interaction of pre- and postsynaptic changes at 1 week of WD feeding 

After 1 week of WD feeding, we found an increase in PPR without a 

corresponding decrease in mEPSC frequency. This may be explained by a potential bias 

in the afferents that were stimulated to evoke EPSCs, as the stimulation electrode was 

always placed medially to the recorded neuron, while mEPSCs could arise from any 

glutamatergic afferents. Alternatively, there may be a dissociation between evoked and 

spontaneous glutamate release, including different vesicle pools, calcium dependence, 

and sensitivity to intracellular signaling pathways (Fredj & Burrone, 2009; Grauel et al., 

2016; Katsurabayashi et al., 2004; Maeda et al., 2009).  

Changes in the probability of transmitter release usually underlies changes in 

activity-dependent short-term plasticity, as shown elsewhere (Sippy, Cruz-Martín, 
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Jeromin, & Schweizer, 2003). Therefore, the combination of increased AMPA receptor 

conductance and decreased evoked release probability may have interesting repercussions 

for orexin neuron activity. A reduction in release probability may lessen synaptic fatigue 

and alleviate short-term synaptic depression during repetitive activity (Xia et al., 2009). 

While the decreased glutamate release may result in a reduction in EPSC amplitude (but 

not necessarily, see Chen & Buonomano, 2012), the increased AMPA receptor 

conductance may compensate for, or even lead to larger evoked EPSC amplitude than 

chow controls. Overall, this may increase the number of suprathreshold EPSPs during 

repetitive synaptic activity that would lead to postsynaptic firing. Therefore, together, this 

may suggest that the changes in excitatory transmission after 1 week of WD could act to 

change the pattern of presynaptic activity that would activate orexin neurons.  

4.4.2 WD affects both excitatory and inhibitory transmission 

At 4 weeks of WD feeding, there is a significant increase in both mEPSC and 

mIPSC frequency. The significance of this finding is unclear but the resultant effect on 

orexin neuron activity likely depends on input-specific activity, which could change the 

weight of inhibitory and excitatory synaptic inputs as a function of physiological state. 

However, since orexin neurons receive about five times more excitatory inputs than 

inhibitory ones (Horvath & Gao, 2005;), it is possible orexin neurons are more sensitive 

to the effects seen on excitatory synapses than those on inhibitory transmission.   
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4.4.3 Physiological implications of these findings 

The diet-induced time-dependent electrophysiological changes in orexin neurons 

described in this thesis correspond well with the biphasic changes in orexin mRNA levels 

reported in the literature. Specifically, orexin mRNA expression is increased by short-

term high-fat diet exposures (<3 weeks) or acute rises in triglycerides (Chang et al., 2004; 

Valdivia et al., 2014; Wortley et al., 2003) but instead is decreased by longer periods of 

high-fat diet feeding (>1 month) (Novak et al., 2010; Tanno et al., 2013). Similarly, we 

show that orexin neuron excitability is increased with short-term high-fat feeding through 

potentiation of mEPSC amplitude (1 week) and frequency (4 weeks) but is decreased in 

the long-term by increased mIPSC frequency (4 weeks) then amplitude (11 weeks). 

Delayed changes in inhibitory transmission suggest that this plasticity is unlikely a direct 

effect of diet but rather it may be secondary to obesity. Akin to these findings, the 

reported decreases in orexin mRNA expression and peptide levels after long-term high-fat 

diet may also be secondary to weight gain as decreased orexin mRNA expression is also 

seen in genetically obese rats (Cai et al., 2000).  

Thus, taken together, the initial activation of these neurons involving increased 

peptide expression and neuronal excitability may contribute to overfeeding early in high 

fat feeding, whereas the inhibition with longer high-fat diet feeding may reduce energy 

expenditure and contribute to diet-induced obesity. 
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4.4.4 Conclusions 

 The present study is the first to investigate time-dependent changes in synaptic 

transmission to orexin neurons over the course of high-fat diet feeding. This study 

highlights how synaptic plasticity in response to high-fat diet is dynamic and 

demonstrates how the length of high-fat diet feeding may influence the synaptic plasticity 

and excitability of feeding-related neurons. 
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Figure 4.1: The effect of 1 week of Western Diet on mEPSC amplitude in orexin 

neurons.  

(A) Sample traces of mEPSCs in orexin neurons from rats fed a control chow (Ctrl) or WD 

(1wWD) for 1 week. (B) Average mEPSC amplitude for Ctrl rats, rats fed 1 day of WD 

(1dWD), and 1wWD rats. (C) Relative distribution of mEPSC amplitudes, averaged by 

experimental groups. (D) The mEPSC amplitude corresponding to the peak of the 

distribution histogram for individual cells. (E) The coefficient of variation (CV) of mEPSC 

amplitude. (F) Sample analysis of peak-scaled NSNA in orexin neurons for Ctrl, 1dWD, 

and 1wWD. The slope of dotted lines represents the average single AMPA channel current 

of each cell. Group data for (G) single AMPA channel current and (H) number of channels 

estimated from NSNA.  

One-way ANOVA with post hoc comparisons: *p<0.05, **p<0.01 
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Figure 4.2: The effect of 1 week of WD on mEPSC frequency in orexin neurons.  

(A) An average cumulative frequency distribution of inter-event intervals in the Ctrl and 

1wWD groups. (B) Average mEPSC frequency for Ctrl and 1wWD. (C) Sample traces of 

paired pulses evoked at 50Hz in Ctrl and 1wWD. (D) Paired pulse ratio (PPR) of Ctrl and 

1wWD.  

Unpaired t-test: *p<0.05 
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Figure 4.3: The effect of 4 weeks of WD on mEPSC amplitude in orexin neurons.  

(A) Sample traces of mEPSCs in orexin neurons from rats fed a control chow (Ctrl) or WD 

(4wWD) for 4 weeks. (B) Average mEPSC amplitude. (C) Averaged relative distribution 

of mEPSC amplitudes. (D) The mEPSC amplitude corresponding to the peak of distribution 

histogram for individual cells. (E) The coefficient of variation (CV) for mEPSC amplitude. 

(F) Sample analysis of peak-scaled NSNA. The slope of dotted lines represents the average 

single AMPA channel current of each cell. Group data for (G) single AMPA channel 

current and (H) number of channels from NSNA.  

Unpaired t-test: *p<0.05 
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Figure 4.4: The effect of 4 weeks of WD on mEPSC frequency in orexin neurons.  

(A) An average cumulative frequency distribution for inter-event intervals in Ctrl and 

4wWD. (B) Average mEPSC frequency in orexin neurons of rats in Ctrl and 4wWD groups. 

(C) Sample traces of paired EPSCs evoked at 50Hz. (D) PPR in Ctrl and 4wWD.  

Unpaired t-test: **p<0.01 
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Figure 4.5: The effect of 11 weeks of WD on excitatory transmission to orexin 

neurons.  

(A) Sample traces of mEPSCs in orexin neurons from rats fed a control chow (Ctrl) or WD 

(11wWD) for 11 weeks. Average mEPSC (B) amplitude and (C) frequency in Ctrl and 

11wWD. (D) Averaged relative frequency distribution of mEPSC amplitudes. Group data 

for the (E) single AMPA channel current and (F) number of channels from NSNA. (G) An 

average cumulative frequency distribution of inter-event intervals in Ctrl and 11wWD. (H) 

Sample traces of paired EPSCs evoked at 50Hz. (I) PPR of Ctrl and 11wWD. 
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Figure 4.6: The effect of WD on inhibitory transmission to orexin neurons.  

(A) Sample traces of mIPSCs in orexin neurons from rats fed a control chow (Ctrl) or WD 

(1wWD) for 1 week. Average mIPSC (B) amplitude and (C) frequency in Ctrl and 1wWD. 

(D) Sample traces of mIPSCs in orexin neurons from Ctrl rats and rats fed WD (4wWD) 

for 4 weeks. Average mIPSC (E) amplitude and (F) frequency in Ctrl and 4wWD. (G) 

Sample traces of mIPSCs in orexin neurons from Ctrl rats and rats fed WD (11wWD) for 

11 weeks. (H) Average mIPSC (H) amplitude and (I) frequency in Ctrl and 11wWD.  

Unpaired t-test: *p<0.05 
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Figure 4.7: Summary of effects of WD on synaptic transmission in orexin neurons.  

(A) The frequency (black circles) and amplitude (grey squares) of mEPSCs at 1 day, 1 

week, 4 weeks, and 11 weeks of WD expressed as a percent of the chow control average at 

the corresponding timepoint. (B) The frequency (circle) and amplitude (square) of mIPSCs 

at 1, 4, and 11 weeks of WD expressed as a percent of the chow control average at the 

corresponding timepoint. 
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CHAPTER 5 

 

COX-DEPENDENT DOWNREGULATION OF THE NA+/K+-ATPASE 

UNDERLIES HIGH-FAT DIET-INDUCED ACTIVATION OF MELANIN-

CONCENTRATING HORMONE NEURONS 
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5.1 Introduction 

Hypothalamic inflammation is a typical immune response to various illnesses that 

induce sickness syndrome including fever, anorexia, and weight loss. However, a 

contrasting role of inflammation has recently emerged in energy balance. Chronic low-

grade hypothalamic inflammation has been shown to be one of the hallmarks of diet-

induced obesity (De Souza et al., 2005; Thaler et al., 2012). Furthermore, this 

inflammation has a causal role in caloric overconsumption and weight gain, which is 

thought to be mainly through leptin and insulin resistance (Araújo et al., 2007; 

Kleinridders et al., 2009; Klöckener et al., 2011; Posey et al., 2009; Zhang et al., 2008). 

However, the majority of these previous studies have examined the hypothalamus as a 

whole or focused only on the arcuate nucleus despite the importance of other 

hypothalamic nuclei, including the ventromedial, paraventricular, and lateral 

hypothalamus (Schneeberger, Gomis, & Claret, 2014). Whether inflammation affects 

these other components of the energy balance circuitry in diet-induced obesity remains 

obscure. 

Within the lateral hypothalamus, MCH neurons are of particular interest in 

relation to obesity as MCH signaling increases food intake and weight gain (Della-Zuana 

et al., 2002; Morens et al., 2005). In obese animals, there is an upregulation of MCH 

mRNA (Qu et al., 1996) and peptide levels (Elliott et al., 2004), while MCH receptor 

antagonists reduce food intake and body weight (Kowalski et al., 2006; Morens et al., 

2005; Zhang et al., 2014). Furthermore, MCH or MCH receptor deficiency protects 

against weight gain (Chen et al., 2002; Shimada, Tritos, Lowell, Flier, & Maratos-Flier, 
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1998; Wang, Ziogas, Biddinger, & Kokkotou, 2010). These studies demonstrate a role of 

MCH in diet-induced obesity. However, two main questions remain: whether the 

excitability of MCH neurons is indeed increased during high-fat diet feeding and if so, 

whether that prospective activation is a result of hypothalamic inflammation.   

In the present study, we investigated the electrophysiological characteristics of 

MCH neurons in animals exposed to high-fat diet. Our hypothesis was that MCH neurons 

are activated by high-fat diet, which could be observed through electrophysiological 

recording. Our results suggest that high-fat diet depolarizes MCH neurons, which 

contributes to increased food intake, fat accumulation, and weight gain. This 

depolarization results from the tonic inhibition of the Na+/K+-ATPase (NKA) by 

prostaglandin E2 (PGE2), an inflammatory mediator. Thus, our study provides a novel 

cellular mechanism by which hypothalamic inflammation can directly activate appetite-

promoting neurons to induce weight gain. 
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5.2 Methods 

5.2.1 Animals and diets  

All experiments were carried out in accordance with the Canadian Council on 

Animal Care guidelines and approved by Memorial University’s Institutional Animal 

Care Committee. Three-week old male Sprague Dawley rats were obtained from 

Memorial University breeding colony or Charles River Laboratories (Quebec, Canada), 

and 3-week old male C57BL/6NCrl mice were obtained from Charles River Laboratories 

(Quebec, Canada). Rats were singly housed whereas mice were housed in groups (3-4 

mice each) in a temperature and light controlled room. 

Animals were fed one of the two high-fat diets: a milk-based high-fat Western 

Diet (WD) from Research Diets (D12079B: 4.55 kcal/g: 40.0% fat, 15.8% protein, and 

44.2% carbohydrates by calories) or a lard-based high-fat diet (HFD) from Research 

Diets (D12451: 4.73kcal/g: 45% fat, 20% protein, and 35% carbohydrates by calories). 

The control chow diet was LabDiet autoclavable rodent diet 5010; 3.08 kcal/g; 12.7% fat, 

28.7% protein and 58.5% carbohydrates by calories or Prolab diet RMH 3000; 3.16 

kcal/g: 14% fat, 26% protein, and 60% carbohydrates. No differences were observed in 

caloric intake or other parameters between the different chow diets, thus data were 

combined. Food and water were available ad libitum. Body weight and food intake were 

measured once a week. For the mouse study, weekly food intake was monitored for each 

cage and divided by the number of mice to obtain an averaged food intake per mouse.  
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5.2.2 Electrophysiological recording 

Following feeding, animals were decapitated under isoflurane anesthesia. The 

brains were removed and 250µm-thick coronal slices of the hypothalamus were generated 

in ice-cold ACSF of the following composition (in mM): 126 NaCl, 2.5 KCl, 1.2 

NaH2PO4, 1.2 MgCl2, 2 CaCl2, 18 NaHCO3 and 2.5 glucose. Following dissection, the 

brain slices were incubated at 33-35°C for 30-35 minutes and then at room temperature 

until being transferred to the recording chamber. ACSF was continuously bubbled with a 

mixture of O2 (95%) and CO2 (5%) throughout the procedures.  

A hemisected slice was transferred into a recording chamber where it was 

submerged and perfused at 32-34°C with ACSF. Using infrared-differential interference 

contrast optics, large neurons (10-20µm diameter) in the lateral hypothalamus and 

perifornical area or zona incerta were selected. Whole cell patch clamp recordings were 

carried out using a Multiclamp 700B amplifier and pClamp 9 or 10 software (Molecular 

Devices, Sunnyvale CA). Electrodes had a tip resistance of 3-5M when filled with 

internal solution and an access resistance of 5-20MΩ when whole cell access was 

attained. The internal solution contained (in mM): 123 K-gluconate, 2 MgCl2, 8 KCl, 0.2 

EGTA, 10 HEPES, 4-5 Na2-ATP, 0.3 Na-GTP, pH 7.3. Biocytin (1-2mg/mL) was also 

included in the internal solution for post hoc immunohistochemical phenotyping. Some 

recordings were done in the presence of picrotoxin, a chloride channel blocker. Since it 

had no effect on the experimental results, the data was combined. For the K+ free 

experiment, KCl was replaced by NaCl in the ACSF to correct for osmolarity. To test the 

role of cyclooxygenase (COX) or PGE2, hypothalamic slices were incubated in the COX 
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inhibitor acetaminophen (50µM) for 2 hours or in PGE2 (0.1nM) for 35-40 minutes then 

transferred to the recording chamber for recording while being perfused with ACSF only 

for up to 90 minutes. 

For voltage clamp recordings, hyperpolarizing pulses (20mV, 100ms) were 

applied every 60 seconds to monitor access and input resistance. Signals were filtered at 

1kHz, digitized at 5-10kHz and stored for analysis. Electrophysiological parameters were 

measured using MiniAnalysis 6.0 (Synaptosoft; Decatur, GA) and Clampfit 9 and 10 

(Molecular Devices; Sunnyvale, CA). The liquid junction potential was corrected offline 

(-14.9mV). 

5.2.3 Identification of MCH and orexin neurons 

To characterize the electrophysiological features of the recorded cells, a series of 

hyperpolarizing and depolarizing 600ms step pulses were applied in current clamp mode. 

This protocol has a high success rate of correct identification of orexin and MCH neurons 

within our laboratory. Typical electrophysiological characteristics of MCH neurons 

include a lack of spontaneous activity, no H-current, no rebound following 

hyperpolarizing steps, and spike adaptation during depolarizing steps (Parsons & 

Hirasawa, 2011). On the other hand, orexin neurons display spontaneous activity, an H-

current, rebound following hyperpolarization, and uniphasic afterhyperpolarization 

potential (Linehan et al., 2015).  

To further confirm the phenotype, we used post hoc immunohistochemistry in a 

subset of cells tested. Immediately after the recording, each slice was fixed in 10% 
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formalin for at least 48 hours. Slices were then rinsed in PBS and treated with a primary 

antibody cocktail consisting of goat anti-orexin A (1:2000; SC8070, Santa Cruz 

Biotechnology, Santa Cruz, CA) and rabbit anti-MCH (1:2000; H-070-47, Phoenix 

Pharmaceuticals, Belmont, CA) for 3 days at 4ºC, followed by appropriate fluorophore-

conjugated secondary antibodies (anti-goat and anti-rabbit) and streptavidin (1:500; 

Jackson ImmunoResearch, West Grove, PA). The sections were examined under a 

fluorescence microscope for the presence of orexin A or MCH immunoreactivity with 

biocytin labeling (Fig. 2.1). Only cells that were confirmed by post hoc 

immunohistochemistry as orexin or MCH-immunopositive and/or had typical 

electrophysiological characteristics were included in the analysis.  

5.2.4 MCH antagonist feeding experiment 

For testing the effect of an MCH antagonist in vivo, WD was provided via glass 

feeding tubes attached to a tube holder with an extended spill catcher underneath to catch 

any crumbs. Rats were given three days to habituate to eating from these tubes. 

On the test day, each rat was injected intraperitoneally (I.P.) with the MCH 

antagonist GW 803430 (30mg/kg) or vehicle (10% Tween 80, 4% HCl and 4% 

bicarbonate in water; injection volume was 2mL/kg for both solutions) one hour before 

the dark cycle. Food intake was measured several times a day starting 1 day before until 5 

days after the injection, while body weight was measured once a day. At 5 days post-

injection, animals were sacrificed and organ weights were measured.  
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5.2.5 Drugs 

Picrotoxin, ouabain, acetaminophen, and GW 803430 were purchased from Sigma 

Aldrich (Oakville, Canada); PGE2 was purchased from Tocris Bioscience (Bristol, United 

Kingdom); and TTX was purchased from Alomone Labs (Jerusalem, Israel). Drugs used 

for electrophysiology were prepared from 1000x frozen stock aliquots. All stocks 

solutions were in water except DNQX and PGE2 (DMSO) and acetaminophen (ethanol); 

the final concentration of DMSO and ethanol did not exceed 0.1%. 

5.2.6 Statistical analysis 

Unpaired Student’s t-test and one- or two-way ANOVA with post hoc Holm-

Sidak’s tests were used for statistical comparisons as appropriate. p<0.05 was considered 

significant. Data are expressed as mean ± SEM. The number of observations is reported 

in the nested model where N/n represents the number of cells/the number of animals. 

Outliers were defined as values exceeding the mean ± 2 SD and excluded from analysis. 
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5.3 Results 

5.3.1 High-fat diets selectively activate MCH neurons  

To determine the effect of high-fat diet on the excitability of MCH neurons, patch 

clamp recordings were performed using brain slices from obese rats fed a high-fat diet 

(WD) for 11 weeks (Fig. 5.1A). MCH neurons from the WD group had significantly 

depolarized RMP compared to age-matched controls (Ctrl -82.5±1.0mV, N/n=38/13 vs 

WD -72.3±1.2mV, N/n=48/16, p<0.0001; Fig. 5.2A,B). The majority of these neurons 

were silent at rest, consistent with previous reports (Hausen et al., 2016); nonetheless, in 

response to a series of positive current injections, MCH neurons in the WD group fired 

action potentials at a higher frequency (Fig. 5.2A,C) with a shorter latency to the first 

spike (Fig. 5.2A,D). However, there was no difference in membrane resistance (Ctrl 

423.8±40.7MΩ, N/n=16/5 vs WD 466.8±46.5MΩ, N/n=17/5, p=0.4940) or membrane 

capacitance (Ctrl 84.1±3.6pF, N/n=16/5 vs WD 79.8 ± 4.4pF, N/n=17/5, p=0.4602) of 

these neurons. On the other hand, neighbouring orexin neurons in the lateral 

hypothalamus and magnocellular neurons of the supraoptic nucleus, other feeding-related 

and non-related cells, respectively, showed no change in RMP (n=28 and n=13, 

respectively; Fig. 5.2B), firing rate during positive current injection, membrane 

resistance, or capacitance (data not shown). A similar MCH neuron-specific 

depolarization was observed in rats fed a lard-based high-fat diet (HFD, Fig. 5.1B) for 8 

weeks (Ctrl -79.7±2.3mV, N/n=6/4 vs HFD -71.8±2.2mV, N/n=10/4, p=0.0033; Fig. 

5.2E). Moreover, this increase in excitability was also observed in mice fed WD (Fig. 

5.1C) for 11 weeks (Ctrl -83.1±1.8mV, N/n=25/10 vs WD -75.2±1.8mV, N/n=27/12, 
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p=0.0059; Fig. 5.2F-J), which persisted in the presence of the voltage-gated Na+ channel 

blocker, TTX, suggesting that it is a direct effect on MCH neurons (Ctrl N/n=4/3 vs WD 

N/n=9/5; Fig. 5.2H). Thus, high-fat diet induces MCH activation regardless of species or 

the type of high-fat diet. 

5.3.2 Time course of MCH activation during high-fat diet feeding 

To determine the time course of MCH neuron activation by high-fat diet feeding, 

electrophysiological properties of MCH neurons were examined at earlier timepoints 

(Fig. 5.3A). Rats, starting at 3 weeks of age, consumed more calories from WD 

throughout a 4-week feeding period compared to chow-fed controls (Ctrl n=18 vs WD 

n=15; Fig. 5.3B) while their body weight only became significantly different at the fourth 

week of feeding (Fig. 5.3C). One week of WD feeding (1wWD) did not affect the RMP 

(1wCtrl -79.1±1.5mV, N/n=18/13 vs 1wWD -79.1±2.1mV, N/n=20/14, p>0.05; Fig. 

5.3D) or firing response of MCH neurons to positive current injections compared to age 

matched chow controls (1wCtrl) (Fig. 5.3E). In contrast, four weeks of WD feeding 

(4wWD) significantly increased the excitability of MCH neurons (4wCtrl -82.4±0.8mV, 

N/n=46/14 vs 4wWD -76.6±1.2mV, N/n=40/15, p=0.0002; Fig. 5.3G-J), although the 

depolarization was not as large as that seen after 11 weeks of WD (Fig. 5.3F). It is 

possible that this time-dependent progression was due to age, as the RMP of control 

MCH neurons showed an age-dependent hyperpolarization between 4 and 7 weeks of age 

(Chapter 2). To determine whether age had any impact on the lack of 1-week WD effect 

on RMP, an age-matched control was tested, where the 1-week feeding period was 

staggered to match the age of the 4wWD group at the end of feeding period (age-
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matched, AM1wWD). One week of WD was also without significant effect in these age-

matched controls (Fig. 5.3H,I), suggesting that one week is not long enough for WD to 

depolarize MCH neurons. These results indicate that high-fat diet induces a delayed and 

chronic activation of MCH neurons.  

To address whether the WD-induced increase in excitability was solely dependent 

on RMP depolarization, the membrane response to current injections was examined in 

both WD and chow control MCH neurons (4 week feeding) while holding the baseline 

membrane potential at the same level (Fig. 5.4A). We found that compared to controls, 

WD cells fired at a higher frequency (Fig. 5.4B) and with a shorter first spike latency in 

response to a depolarizing step pulse (Fig. 5.4C). These results may be explained by the 

observed negative shift in firing threshold by WD (4wCtrl -40.6±0.8mV vs 4wWD -

43.5±0.6mV, p=0.0072; Fig. 5.4D). Unlike the RMP however, the change in the threshold 

is transient as the difference between the diet groups was no longer present after 11 weeks 

of feeding (4wWD N/n=20/10 vs 11wWD N/n=48/16; Fig. 5.4E). This shows that MCH 

neurons are initially activated by WD via multiple mechanisms and the RMP 

depolarization is the predominant mechanism that persists throughout WD feeding. Thus, 

we focused on the characteristics and mechanism of RMP depolarization. 

5.3.3 High-fat diet-induced depolarization is reversible but can sensitize 

To determine whether the depolarizing effect of WD on MCH neurons is 

reversible, rats were first fed WD for 4 weeks, then switched to standard chow (Diet) 

(Fig. 5.5A). While these rats initially showed hypophagia following the switch to chow, 

by the second week, they consumed similar calories to that of the chow-only control rats 
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(Ctrl n=10 vs Diet n=5; Fig. 5.5B). Similarly, the rate of weight gain, which was 

increased by WD, was normalized by the switch to chow (Fig. 5.5C). After four weeks of 

dieting on chow, the RMP of MCH neurons normalized to control levels (Ctrl                   

-83.0±0.7mV, N/n=62/17 vs Diet -84.7±0.9mV, N/n=37/7, p>0.05; Fig. 5.5D), indicating 

that the WD effect is reversible.  

To further investigate whether a history of WD feeding has any long-term 

consequences, we tested the response of MCH neurons to alternating access to WD and 

chow. Specifically, rats were exposed to WD for 4 weeks, followed by a 4-week dieting 

period on chow and 1-week re-exposure to WD (Yoyo). During the second WD exposure, 

rats showed hyperphagia (Ctrl n=10 vs Yoyo n=8; Fig. 5.5B) and gained significantly 

more weight (Fig. 5.5C) than chow controls. Following this 1-week WD re-exposure, 

MCH neurons were significantly depolarized (Ctrl -83.0±0.7mV, N/n=62/17 vs Yoyo                

-77.6±2.5mV, N/n=14/3, p=0.0391; Fig. 5.5D), which is unlike the lack of response to a 

1-week WD feeding in naïve animals (Fig. 5.3). These results indicate that a previous 

history of WD exposure may sensitize MCH neurons to the depolarizing effect of WD. 

5.3.4 Depolarization of MCH neurons is due to downregulation of the NKA 

The depolarization of MCH neurons by WD was not accompanied by a change in 

membrane resistance in any model tested, including the 4-week feeding group in rats 

(4wCtrl N/n=30/10 vs 4wWD N/n=19/10; Fig. 5.6A). Therefore, an electrogenic 

transporter is likely to be involved. The electrogenic activity of the NKA hyperpolarizes 

the cell membrane; therefore, its downregulation could depolarize MCH neurons. To test 

if this is the case, we used ouabain, a NKA inhibitor, on MCH neurons after a 4-week 



114 
 

feeding, when a significant difference in RMP was observed. Ouabain (25µM) induced an 

inward shift in the current-voltage relationship in both diet groups (Ctrl N/n=5/3, WD 

N/n=8/3; Fig. 5.6B); however, this current was significantly less in the WD condition 

(Fig. 5.6C). In current clamp, ouabain caused a depolarization within 0.5-2 minutes of 

application (Fig. 5.6D,E), which reached a similar membrane potential due to a larger 

change in the control than WD group (Ouabain-induced depolarization: Ctrl 33.1±1.7mV, 

N/n=6/3 vs WD 18.1±3.5mV, N/n=8/4, p=0.0045; Fig. 5.6E,F). Furthermore, K+-free 

ACSF, which non-pharmacologically inhibits the NKA (Senatorov, Mooney, & Hu, 

1997), caused a significantly greater depolarization in controls (Ctrl N/n=9/4 vs WD 

N/n=9/5; Fig. 5.6G-I), consistent with the effect of ouabain. These results suggest that 

downregulation of NKA activity accounts for the depolarization of MCH neurons by WD. 

5.3.5 The NKA is inhibited via a COX- and PGE2-dependent mechanism 

Next, we sought to find the mechanism underlying NKA inhibition in the WD 

condition. Since COX-2-mediated PGE2 production is responsible for NKA inhibition in 

various cell types (Cohen-Luria, Rimon, & Moran, 1993; Kreydiyyeh, Riman, Serhan, & 

Kassardjian, 2007) and high-fat diet induces chronic low grade inflammation (Thaler, 

Choi, Schwartz, & Wisse, 2010), we asked whether PGE2 signaling could mediate the 

downregulation of NKA in MCH neurons.  

We found that incubating brain slices with PGE2 (0.1nM) significantly 

depolarized MCH neurons in chow-fed controls (Ctrl: baseline-82.5±1.0mV, N/n=38/13 

vs PGE2 -75.9±1.5mV, N/n=28/9, p=0.0002; Fig. 5.7A). On the other hand, the COX 

inhibitor acetaminophen (APAP, 50µM) had no effect on Ctrl MCH neurons (baseline vs 
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APAP N/n=21/9; Fig. 5.7A), while it reversed the WD-induced depolarization to Ctrl 

baseline levels (WD: baseline -72.4±0.8mV, N/n=48/16 vs APAP -80.5±0.8mV, 

N/n=25/7, p=0.0001; Ctrl baseline vs WD APAP, p>0.05; Fig. 5.7A,B). Interestingly, 

incubating brain slices with PGE2 in the WD condition did not further activate MCH 

neurons, instead there appeared to be variable responses to the incubation, with an 

average effect to hyperpolarize RMP relative to the WD baseline (WD: baseline -

72.4±0.8mV vs PGE2 -76.8±2.0mV, N/n=23/6, p=0.0288; Fig. 5.7B). Concentration-

dependent bidirectional effects are commonly reported with PGE2 (Tang, Loutzenhiser, & 

Loutzenhiser, 2000; Jianying Zhang & Wang, 2014); therefore, we postulated that 

differences in PGE2 levels may explain the hyperpolarizing effect of PGE2 on WD MCH 

neurons. To test this, brain slices from chow-fed rats were incubated with either 0.1nM or 

1nM PGE2. We found that while 0.1nM PGE2 depolarized MCH neurons (Ctrl -

82.4±0.8mV, N/n=46/14 vs 0.1nM PGE2 -78.5±1.9mV, N/n=12/3, p=0.0399; Fig. 5.8A), 

1nM PGE2 instead hyperpolarized (Ctrl vs 1nM PGE2 -86.5±1.4mV, N/n=14/3, 

p=0.0399; Fig. 5.8A) MCH neurons and decreased action potential firing (Fig. 5.8B), 

suggesting that PGE2 can activate or inhibit these neurons depending on its concentration.  

Together, these results suggest that in brain slices from WD-fed animals, COX is 

active and producing PGE2 that depolarizes MCH neurons. Contrastingly, in control brain 

slices, the basal level of endogenous PGE2 appears to be insufficient for activation of 

these neurons. 

To determine whether the observed PGE2 effect was due to modulation of the 

NKA, we tested the effect of ouabain on MCH neurons treated with PGE2 or APAP. In 

non-treated slices (baseline) from rats fed chow or WD for 11 weeks, ouabain-induced 



116 
 

current was significantly greater in the Ctrl than the WD condition (Ctrl N/n=9/6 vs WD 

N/n=9/6; Fig.5.9A-C), similar to our results from the 4-week feeding groups (Fig. 5.6). 

PGE2 (0.1nM) caused a reduction in the ouabain-induced depolarization of Ctrl MCH 

neurons (baseline 34.0±0.9mV vs PGE2 20.8±1.7mV, N/n=9/8, p<0.0001; Fig. 5.9A,B), 

while APAP increased the ouabain-induced current of WD MCH neurons (baseline 

20.7±1.8mV vs APAP 29.7±1.3mV, N/n=9/7, p=0.0101; Fig. 5.9A,C). Thus, the effects 

of these compounds on ouabain currents mirror those on the RMP, suggesting that the 

PGE2 effect on RMP is due to modulation of the NKA. Interestingly, PGE2 incubation in 

the WD also increased ouabain-current (baseline 20.7±1.8mV vs PGE2 27.8±3.0mV, 

N/n=8/6, p=0.0274; Fig. 5.9C), suggesting that PGE2 bidirectionality regulates the NKA 

to affect RMP.  

5.3.6 Potential physiological significance of MCH neuron activation by high-fat diet 

To address the physiological implications of MCH neuron depolarization by WD, 

the effect of GW 803430, a MCH1R antagonist on food intake and weight was tested in 

vivo. Since a previous study showed that the effect of MCH antagonists on food intake 

depends on the type of diet (Morens et al., 2005), in this experiment, all the rats were fed 

with the same diet at the time of experimentation. Specifically, rats were fed with WD for 

4 weeks (4wWD) or 1 week (1wWD) before I.P. injection with 30mg/kg GW 803430 or 

vehicle (Fig. 5.10A). Feeding periods were staggered so that all rats were age-matched (7 

weeks old) at the time of injection. These groups were chosen as MCH neurons are 

depolarized in the 4wWD but not in the 1wWD group (Fig. 5.3). 
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We found that GW 803430 decreased food intake in both diet groups compared to 

their respective vehicle controls (4wWD-Veh n=9 vs 4wWD-GW n=8; 1wWD-Veh n=10 

vs 1wWD-GW n=7; Fig. 5.10B, Fig. 5.11). However, GW 803430 induced a greater 

reduction in food intake on Day 2 and 3 post-injection in the 4-week WD group compared 

to the 1-week group (Day 2: 1wWD-GW 16.94±1.02g vs 4wWD-GW 12.79±1.82g, 

p=0.0396; Fig. 5.10B). Concurrently, the antagonist significantly suppressed weight gain 

(Fig. 5.10C) and caloric efficiency (Fig. 5.10D) only in 4-week WD rats on Day 2 post-

injection. Moreover, GW 803430 selectively decreased the white fat pad weight 

(epididymal and retroperitoneal) only in 4-week WD animals (Fig. 5.10E1,E2) without 

any change in the weight of other organs including the heart, soleus muscle (Fig. 

5.10F,G), brain, kidney, testis, liver, and gastrocnemius muscle (data not shown). In 

contrast, GW 803430 had no effect on any of these measures in the 1-week WD group 

(Fig. 5.10C-G). Therefore, systemic administration of an MCHR1 antagonist shows that 

during high-fat diet feeding, MCH signaling significantly contributes to increased food 

intake and body weight, specifically fat pad weight.   
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5.4 Discussion 

The present study shows a novel mechanism by which high-fat diet induces a 

significant depolarization of MCH neurons due to a downregulation of the NKA in a 

COX-dependent manner. This excitatory effect is observed in both mice and rats and by 

two types of high-fat diet. Moreover, MCH neurons are activated during the onset of 

excess weight gain and promote food intake and fat accumulation, suggesting that this 

mechanism has a significant role in diet-induced obesity. Our study is the first to our 

knowledge to provide a cellular mechanism, independent of leptin and insulin resistance 

(de Git & Adan, 2015; Kleinridders et al., 2009) that directly links inflammation and 

excitability of feeding neurons in the hypothalamus.  

5.4.1 MCH neurons are depolarized through a COX-dependent inhibition of the NKA 

Our study using ouabain and K+ free ACSF shows that the NKA has a major role 

in the maintenance of RMP and that its downregulation by high-fat diet is the main 

underlying mechanism for the depolarization of MCH neurons. NKA downregulation is 

dependent on continuous presence of COX products such as PGE2, as high-fat diet-

induced depolarization of MCH neurons is reversed with the COX inhibitor 

acetaminophen in the in vitro slice preparation. Furthermore, PGE2 mimics the inhibitory 

effect of high-fat diet on NKA in MCH neurons from control animals, consistent with 

previous studies showing that PGE2 inhibits NKA in various tissues (Karmazyn, Tuana, 

& Dhalla, 1981; Kreydiyyeh et al., 2007; Oliveira et al., 2009). This modulation of the 
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NKA could be through PKC or cAMP signaling, which are known downstream effectors 

of PGE2 receptors (EP1-4) (Sugimoto & Narumiya, 2007).  

Our proposed mechanism differs from past reports suggesting that leptin or insulin 

resistance is the mechanism linking hypothalamic inflammation and weight gain since 

leptin and insulin signaling is unlikely to be involved in the NKA-dependent activation of 

MCH neurons. First, MCH neurons do not express leptin receptors (Leinninger et al., 

2009), whereas the depolarization was a direct effect as it persisted in TTX, and thereby 

could not be an indirect effect of leptin (Huang, Viale, Picard, Nahon, & Richard, 1999; 

Sahu, 1998). Secondly, while MCH neurons express insulin receptors (Hausen et al., 

2016), insulin is known to activate NKA, not inhibit it (Pirkmajer & Chibalin, 2016). 

Therefore, the present study provides a novel mechanism by which inflammation directly 

activates MCH neurons. 

While the NKA plays a fundamental role in neuronal function, the depolarizing 

effect of high-fat diet is specific to certain neurons within the hypothalamus, since 

neighboring orexin neurons showed no change in RMP. In addition, magnocellular 

neurons in the supraoptic nucleus, whose regulation of the NKA is known to be sensitive 

to salt intake (Mata, Hieber, Beaty, Clevenger, & Fink, 1992), was also not affected, 

further supporting the specificity of the high-fat diet effect on MCH neurons. This may 

result from a difference in NKA subunit isoforms expressed by different cells. The 

ouabain concentration (25M) used in the present study would inhibit all three α subunit 

isoforms (Mobasheri et al., 2000) expressed in the hypothalamus (Hieber, Siegel, Fink, 

Beaty, & Mata, 1991). In contrast, lower concentrations of ouabain (0.1-1M) that would 
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inhibit the α2 and 3 isoforms, but not the α1 isoform, had no effect on membrane 

potential (data not shown). Therefore, our data is consistent with the α1 NKA isoform 

being a target of WD and PGE2. Another possibility could be the variable expression of 

PGE2 receptors (EP1-4) in different neuronal populations (Ek, Arias, Sawchenko, & 

Ericsson-Dahlstrand, 2000; Zhang & Rivest, 1999), which could also explain the 

specificity of NKA downregulation in MCH neurons by high-fat diet intake. 

5.4.2 Bidirectional effects of inflammatory signaling on MCH neurons 

The sensitivity of MCH neurons to PGE2 suggests an interaction between these 

feeding neurons and inflammatory processes. Chronic low-grade inflammation is a 

hallmark of diet-induced obesity and is thought to underlie hyperphagia and weight gain 

(Kleinridders et al., 2009; Thaler et al., 2012; Zhang et al., 2008). High circulating levels 

of saturated fatty acids during high-fat diet feeding leads to activation of toll-like receptor 

4 and expression of cytokines such as TNFα, IL-1β, and IL-6 (De Souza et al., 2005; 

Milanski et al., 2009; Thaler et al., 2012). Interestingly, each of these inflammatory 

mediators are known to induce COX activity (Bouffi, Bony, Courties, Jorgensen, & Noël, 

2010; Kim et al., 1998).  Thus, COX/PGE2 may be a common downstream pathway 

mediating the effect of inflammation on MCH neurons. This is supported by the result 

that WD-induced depolarization of these neurons was completely abolished by treatment 

with a COX inhibitor. It is likely that COX-2, rather than the COX-1 isoform is 

responsible for PGE2 production during WD feeding as acetaminophen, which blocked 

the WD effect, has an apparent COX-2 specificity (Graham, Davies, Day, Mohamudally, 

& Scott, 2013). 
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Interestingly, COX-2-dependent PGE2 release is also linked to anorexia during 

high-grade inflammation associated with fever or sickness. A bidirectional effect of PGE2 

on feeding behaviours may be at least partially explained by its bidirectional effect on 

MCH neuron activity shown in this study: PGE2 depolarizes MCH neurons at low 

concentrations yet hyperpolarizes them at higher concentrations. This data suggests that 

high levels of PGE2 may inhibit MCH neurons to mediate fever-induced anorexia. 

Similarly, MCH neurons have previously been implicated in sickness behaviour through 

the inflammatory mediator CCL2 (Le Thuc et al., 2016). These results also explain how a 

relatively low level of PGE2 that depolarizes MCH neurons in chow fed controls induces 

an opposite effect on MCH neurons in WD slices. It is possible that endogenous PGE2 

production within WD slices combined with exogenously applied PGE2 added up to a 

higher concentration which hyperpolarizes MCH neurons. Correspondingly, PGE2 also 

increased the ouabain-sensitive current in the WD condition, indicating that the PGE2 

upregulates NKA at high concentrations. This concentration-dependent effect on the 

NKA has been observed in cardiac myocytes as low concentrations of PGE2 inhibit, while 

higher concentrations activate the NKA (Skayian & Kreydiyyeh, 2006). These contrasting 

effects may be mediated by different PGE2 receptors, as all EP receptors have been 

reported to affect NKA activity but their effects appear to be tissue specific (Oliveira et 

al., 2009; Skayian & Kreydiyyeh, 2006).  

5.4.3 WD affects the firing threshold of MCH neurons 

While depolarization of RMP certainly contributes to the increased excitability, 

this is not the only change induced by WD. Even when MCH neurons are held at a similar 
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membrane potential, the WD group shows greater action potential frequency and a shorter 

latency to the first spike during current injections. This RMP-independent increase in 

excitability could be at least partially explained by the hyperpolarizing shift in firing 

threshold. This change follows a different time course than that for RMP depolarization 

since the threshold decrease was only seen at 4 weeks of WD, while the NKA-dependent 

depolarization progressively increases over time from 4 weeks up to 11 weeks. The 

lowering of firing threshold may help to facilitate the activity of MCH neurons and hence 

the rate of weight gain early in the high-fat feeding period.  

5.4.4 The depolarization of MCH neurons is amenable to dietary manipulations 

Although chronic high-fat diet induces an enduring depolarization of MCH 

neurons, we found that this effect is reversible if animals are switched to a standard low-

fat diet. This reversibility suggests that the excitability of MCH neurons is dynamically 

regulated and ongoing nutrient-related or inflammatory signaling is required to maintain 

an activated state. Interestingly, the mechanism for depolarization sensitizes with repeated 

high-fat diet exposures. Specifically, we show that a 1-week high-fat diet feeding period 

is sufficient to depolarize MCH neurons only if rats have had a previous exposure to a 

high-fat diet. This may help explain weight rebound and difficulties in maintaining long-

term weight loss following a diet (Mann et al., 2007; Thaiss et al., 2016).  

5.4.5 The increased excitability of MCH neurons is likely physiologically significant 

Importantly, we show that the increased excitability of MCH neurons may 

underlie excess food intake and weight gain in vivo during high-fat diet feeding. We 
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found that a systemic injection of the MCH antagonist, GW 803430, induces a significant 

reduction in food intake, weight gain, and fat accumulation in rats after 4 weeks of WD 

feeding compared to those fed for only 1 week. The experiment was controlled for age 

and diet, therefore, the difference in the GW 803430 effect may be related to the MCH 

neurons depolarization in the 4-week WD condition but not in the control 1-week WD 

condition. Therefore, these results support that the COX/NKA-dependent activation of 

MCH neurons contributes to food intake and fat accumulation during high-fat diet 

feeding, and consequently, the etiology of obesity.  

5.4.6 Conclusions 

Our study provides a cellular mechanism by which high-fat diet may induce 

excess food intake and weight gain leading to obesity. Notably, we found that the degree 

of MCH neuron depolarization increases over time during chronic WD feeding. This may 

indicate a positive feedback loop, where high-fat diet activates MCH neurons, which in 

turn induces further caloric consumption. The membrane depolarization involves 

inhibition of the NKA via the COX-2/PGE2 pathway, indicating a direct effect of an 

inflammatory mediator in activating feeding-related neurons. Preventing the high fat diet-

induced activation of MCH neurons by targeting the mechanism identified in this study 

may be an excellent alternative to blocking MCH receptor signaling for treating obesity 

without interfering with normal functions of the MCH system.   
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Figure 5.1: Animals models of diet-induced obesity.  

(A) Weekly body weight and caloric intake of 3-week old Sprague Dawley rats fed either 

standard chow (Ctrl) or a milk-based high-fat/high-sugar Western Diet (WD). (B) Weekly 

body weight and caloric intake for 7-week old Sprague Dawley rats fed either standard 

chow (Ctrl) or a lard-based high-fat diet (HFD). (C) Weekly body weight and average daily 

caloric intake for 4-week old C57BL mice fed either standard chow (Ctrl) or WD.  

Two-way RM ANOVA with post hoc comparisons: *p<0.05, **p<0.01, ****p<0.0001 
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Figure 5.2: MCH neurons are activated in diet-induced obese rats and mice.  

(A) Sample traces recorded during positive current injections in MCH neurons from rats 

fed WD for 11 weeks (WD) compared to age-matched chow controls (Ctrl). (B) MCH 

neurons are selectively depolarized by WD, while no change in resting membrane potential 

is seen in orexin neurons (ORX) of the lateral hypothalamus and magnocellular neurons 

(MCN) of the supraoptic nucleus. (C) Action potential frequency and (D) first spike latency 

of MCH neurons during current injections for Ctrl and WD rats (a latency of 600ms 

indicates that the cell did not fire). (E) MCH neurons are also selectively depolarized in 

rats fed a lard-based high-fat diet (HFD). (F) Sample traces of MCH neurons from mice 

fed WD for 11 weeks (WD) and age-matched chow control mice (Ctrl). (G) MCH neurons 

are selectively depolarized in WD mice compared to Ctrl. (H) The depolarization of MCH 

neurons in WD mice persists during TTX application. (I) Action potential frequency and 

(J) first spike latency in MCH neurons during positive current injections in Ctrl and WD 

mice.  

Two-way ANOVA with post hoc comparisons and unpaired t-test (H): *p<0.05, 

**p<0.01, ***p<0.001, ****p<0.0001 
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Figure 5.3: Activation of MCH neurons occurs at the onset of excess weight gain.  

(A) Schematic of short-term WD feeding and experimental groups. (B-C) Caloric intake 

and body weight during the 4-week feeding period. (D) Resting membrane potential for 

1wCtrl and 1wWD groups. (E) Action potential frequency during current injections for 

1wCtrl and 1wWD groups. (F) Time course of the change in the RMP of MCH neurons 

during WD feeding. Values represent the difference in the RMP of the WD group relative 

to the average RMP of age matched controls. (G) Sample traces of MCH neurons 

responding to current injections from different 4-week feeding groups described in A. (H-

J) Measures of excitability for MCH neurons in 4wCtrl, AM1wWD, and 4wWD groups, 

including RMP (H), and firing frequency (I) and first spike latency (J) during positive 

current injections.  

One-way (F,H) and two-way ANOVA with post hoc comparisons: * 4wCtrl vs 4wWD: 

*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001; # AM1wWD vs 4wWD: #p<0.05, 

##p<0.01 
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Figure 5.4: WD increases excitability of MCH neurons independent of RMP 

depolarization.  

(A) Sample traces for 4wCtrl and 4wWD MCH neurons held at -70 mV. (B) Action 

potential frequency and (C) first spike latency during step current injections in MCH 

neurons maintained at -70mV. (D) Firing threshold for 4wCtrl and 4wWD groups. (E) 

Time course of the effect of WD feeding on firing threshold in MCH neurons.  

Two-way ANOVA (B,C), one-way ANOVA (E), and unpaired t-test (D): *p<0.05, 

**p<0.01, ***p<0.001 
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Figure 5.5: Activation of MCH neurons by WD is reversible and sensitizes with 

further WD exposure.  

(A) Schematic of rat groups. Rats were either fed a standard chow (Ctrl), fed WD for 4 

weeks and then put on chow (Diet), or cycled between WD and chow (Yoyo). Weekly 

caloric intake (B) and weight gain (C) for the groups described in panel A.  

Two-way RM ANOVA with post hoc comparisons: * Ctrl vs Diet: *p<0.05, **p<0.01, 

****p<0.0001; # Ctrl vs Yoyo: ##p<0.01, ###p<0.001, ####p<0.0001; $ Diet vs Yoyo: 

$$$$p<0.0001  

(D) RMP in Ctrl rats (Week = 0; dotted line), and rats fed WD for 1 and 4 weeks, rats in 

the Diet condition, and those in the Yoyo condition.  

One-way ANOVA with post hoc comparisons: *p<0.05, **p<0.01, ****p<0.0001 
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Figure 5.6: A chronic inhibition of the Na+/K+-ATPase underlies depolarization of 

MCH neurons.  

(A) Membrane resistance of MCH neurons from Ctrl and WD groups. (B) Current-voltage 

relationship of MCH neurons at baseline and with ouabain (25µM) during 5 second voltage 

ramps. (C) The amplitude of ouabain-sensitive current at -85mV. (D) Sample current clamp 

traces of ouabain application in MCH neurons of Ctrl and WD rats. (E) Group data showing 

the effect of ouabain on the membrane potential in MCH neurons. (F) Ouabain causes a 

greater change in membrane potential in MCH neurons of Ctrl rats. (G) Sample current 

clamp traces from MCH neurons during K+ free ACSF application. (H) Membrane potential 

of MCH neurons before, during, and after K+ free ACSF. (G) There was a greater change 

in membrane potential in MCH neurons of Ctrl rats with K+ free ACSF.  

Two-way RM ANOVA (B,E,H) and unpaired t-test (C,F,I): *p<0.05, **p<0.01, 

***p<0.0001, ****p<0.00001  
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Figure 5.7: WD promotes COX-2 activity to depolarize MCH neurons.  

(A) Resting membrane potential of MCH neurons from control rats at baseline or treated 

with acetaminophen (APAP; 50µM) or PGE2 (0.1nM). (B) Resting membrane potential of 

MCH neurons from WD rats at baseline or treated with APAP or PGE2.  

One-way ANOVA with post hoc comparisons: *p<0.05, ***p<0.001  
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Figure 5.8: Concentration dependence of the PGE2 effect on MCH neurons.  

(A) RMP of 7-week old chow-fed rats (Ctrl) incubated with either 0.1nM or 1nM PGE2. 

(B) Action potential frequency of Ctrl rats incubated with either 0.1nM or 1nM PGE2.  

One-way ANOVA (A) and two-way RM ANOVA (B) with post hoc comparisons: *Ctrl vs 

+0.1nM PGE2: *p<0.05; #Ctrl vs +1nM PGE2: #p<0.05; $Ctrl+0.1nM PGE2 vs Ctrl+1nM 

PGE2: $p<0.05, $$p<0.01 
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Figure 5.9: WD and PGE2 modulate NKA function in MCH neurons.  

(A) Sample traces showing the effect of ouabain (25µM) on MCH neurons from the Ctrl 

group at baseline or treated with PGE2 and from the WD group at baseline or treated with 

APAP. (B) Effect of APAP or PGE2 on ouabain-induced depolarization in the Ctrl groups. 

(C) Effect of APAP or PGE2 on ouabain-induced depolarization in the WD groups.  

One-way ANOVA with post hoc comparisons: *p<0.05, ****p<0.0001  
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Figure 5.10: WD-induced excitation of MCH neurons is associated with increased 

MCHR1-mediated food intake, weight gain, and fat accrual.  

(A) Schematic of the diet groups and drug or vehicle injections. (B) Daily food intake of 

rats following the I.P. injection of 30mg/kg GW 803430 (GW) or a vehicle solution (Veh). 

(C) Weight gain on Day 2 post-injection of the groups described in panel A. (D) Caloric 

efficiency on Day 2 post-injection. (E1) Photograph of the epididymal fat from rats fed 

with WD then treated with vehicle or GW. (E2) Weight of fat pads (epididymal and 

retroperitoneal fat pads) after five days post-injection. (F-G) Weight of the heart and soleus 

muscle after five days post-injection.  

Two-way ANOVA with post hoc comparisons: † 1wW-Veh vs 1wW-GW: †p<0.05, 

†††p<0.001, †††† p<0.0001; * 4wW-Veh vs 4wW-GW: *p<0.05, **p<0.01, 

***p<0.001, ****p<0.0001; # 1wW-GW vs 4wW-GW: #p<0.05, ##p<0.01 
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Figure 5.11: Individual food intakes of rats in the GW 803430 experiment.  

(A) Individual food intake measurements taken every 6 hours following an I.P. injection of 

GW 803430 or vehicle in rats either fed for 1 or 4 weeks with WD. 
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CHAPTER 6 

 

SYNAPTIC PLASTICITY OF MELANIN-CONCENTRATING HORMONE 

NEURONS DURING HIGH-FAT DIET FEEDING 
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6.1 Introduction 

The rising number of overweight or obese individuals over the past few decades 

has become an epidemic in developed countries around the world. A major underlying 

cause of this excessive weight gain is an increased consumption of palatable high-fat and 

high-sugar food (Cordain et al., 2005). Caloric overconsumption is thought to occur not 

only because palatable food is energy dense but also because it can disrupt the 

hypothalamic neural circuitry for energy homeostasis to promote weight gain (El-

Haschimi et al., 2000; Woods et al., 2004; Zhang et al., 2008). In particular, MCH 

neurons of the lateral hypothalamus may be influenced by high-fat diets to promote 

obesity. In diet-induced obese rats, both MCH mRNA and peptide, as well as MCH 

receptor mRNA expression are upregulated (Elliott et al., 2004), indicating an overall 

activation of the MCH system. Since MCH signaling promotes food intake, especially of 

palatable diets (Morens et al., 2005), and suppresses energy expenditure to overall 

promote weight gain (Glick et al., 2009; Hausen et al., 2016; Zhang et al., 2014), an 

increase in MCH signaling may contribute to the development or maintenance of diet-

induced obesity.  

An intriguing idea in the literature is that palatable diets and obesity trigger 

plasticity within the hypothalamus and related areas to influence body weight regulation. 

For instance, synaptic remodeling occurs within two neuronal populations in the arcuate 

nucleus in obesity that is thought to oppose further food intake and weight gain (Horvath 

et al., 2010; Pinto et al., 2004). However, despite the evidence implicating MCH neurons 

in obesity, it is not yet known whether any electrophysiological changes occur in MCH 
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neurons during high-fat diet feeding. Furthermore, a key question is whether such 

changes would be a cause or effect of obesity. By investigating time-dependent effects of 

high-fat diet feeding, one can better understand the etiology of diet-induced obesity and 

identify which neural changes may be of interest for further investigation.  

In the present study, we hypothesized that synaptic plasticity occurs in MCH 

neurons with WD feeding. Our results show that MCH neurons undergo a time-dependent 

plasticity which occurs prior to the onset of significant weight gain and persists 

throughout the remainder of the feeding period. As this change occurs early in high-fat 

diet feeding, it may contribute to the development of obesity. 
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6.2 Methods 

6.2.1 Animals and diets 

All experiments were conducted per the guidelines of Canadian Council of 

Animal Care under Memorial University’s Institutional Animal Care Committee. Male 3-

week old Sprague-Dawley rats (Charles River, Quebec or Memorial University breeding 

colony, Newfoundland) were fed ad libitum either a standard chow (LabDiet autoclavable 

rodent diet 5010; 3.08 kcal/g: (% of total calories) 12.7% fat, 28.7% protein and 58.5% 

carbohydrates) or a palatable high-fat diet, Western Diet (WD; AIN-76A (TestDiet), 4.55 

kcal/g: (% of total calories) 40.0% fat, 15.8% protein, and 44.2% carbohydrates). Body 

weight and food intake was measured weekly. 

6.2.2 Electrophysiology 

Rats were deeply anesthetized with isoflurane and the brain was removed. Acute 

250µM slices of the hypothalamus were generated in cold ACSF (in mM: 126 NaCl, 2.5 

KCl, 1.2 NaH2PO4, 1.2 MgCl2, 2 CaCl2, 18 NaHCO3 and 2.5 glucose) bubbled with 95% 

O2/5% CO2 in a vibratome (VT-1000, Leica Microsystems). Slices were then incubated at 

32-34°C for 30 minutes and left at room temperature until experiments were performed. 

To perform whole cell patch clamp recordings, hemisected slices were placed in a 

recording chamber perfused at 1-2mL/min with ACSF maintained at 32°C. Glass pipettes 

electrodes were filled with an internal solution (EPSCs: composition (in mM): 123 K-

gluconate, 2 MgCl2, 8 KCl, 0.2 EGTA, 10 HEPES, 5 Na2-ATP, 0.3 Na-GTP, and 2.7 

biocytin; IPSCs: K-gluconate was replaced with KCl such that the total concentration of 
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KCl was 131mM) that had a tip resistance of 3-5 M. After whole cell access was 

attained, access resistance was 5-20 M and every minute a 20mV, 50ms square pulse 

was applied to monitor access. Multiclamp 700B, and Clampex 9/10 software (Molecular 

Devices, Sunnyvale, CA) were used to collect data. Signals were filtered at 1kHz and 

digitized at 5-10kHz.  

All recordings were performed at a holding potential of -70mV. Miniature 

postsynaptic currents were isolated using TTX (1µM; Alomone Labs, Jerusalem, Israel). 

Picrotoxin (50µM; Sigma, Oakville, Canada) was used to record EPSCs, while DNQX 

(10µM; Tocris Bioscience, Minneapolis, MN, US) and DAP5 (50µM; Abcam, 

Cambridge, MA, US) were used to record IPSCs. As ionotropic glutamate receptor 

antagonists block EPSCs (Huang & van den Pol, 2007; van den Pol et al., 2004) and 

GABAA antagonists block IPSCs (van den Pol et al., 2004), these were referred to as 

glutamatergic and GABAergic, respectively.  

For paired pulse experiments, a pair of EPSCs was elicited at a frequency of 50Hz 

every 15 seconds using a glass pipette filled with ACSF and placed medially to the 

recorded cell. 

6.2.3 Identification of MCH neurons 

MCH neurons have a unique response to positive and negative current injections 

among other neurons in the lateral hypothalamus. We used a protocol of 600ms 50pA 

steps from -200pA to +200pA to generate an electrophysiological fingerprint of MCH 

neurons. Briefly, MCH neurons are not spontaneously active, display spike adaptation, 
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have uniphasic afterhyperpolarization potential, show no H current, and have no rebound 

following depolarization. This method of identification has a high accuracy of correct 

detection in our lab for MCH neurons (Alberto et al., 2011). 

Post hoc immunohistochemistry was used in conjunction with 

electrophysiological identification in a subset of cells. Internal solution is filled with 

biocytin which diffuses into a cell during recording. Following experiments, slices are 

fixed in 10% formalin for at least 48 hours. Slices were incubated with a rabbit anti-MCH 

IgG (1:1000-2000; SC14509, Santa Cruz Biotechnology, Santa Cruz, CA) for 3 days at 

4ºC. Then fluorophore-conjugated secondary antibodies to stain MCH (Alexa 488- or 

594-conjugated donkey anti-rabbit; 1:500, Invitrogen, Carlsbad, CA) and streptavidin 

(1:500; Jackson ImmunoResearch, West Grove, PA, USA) to label biocytin-filled cells 

were applied for 3 hours at room temperature or at 4ºC overnight. Then slices were 

mounted and imaged on a fluorescent microscope to determine colocalization of biocytin 

and MCH (Fig. 2.1). 

6.2.4 Data and statistical analysis 

Data are expressed as mean ± SEM. The number of observations is reported in the 

nested model where N/n represents the number of cells/the number of animals. Unpaired 

t-tests for electrophysiological experiments and two-way ANOVA with Holm-Sidak post 

hoc tests for body weight and food intake were used to test for significance. All statistical 

analyses were performed with Prism 6.0 (GraphPad). p<0.05 was considered significant. 

Evoked EPSC amplitude was analyzed using Clampfit 10. mPSC frequency and 
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amplitude were analyzed using MiniAnalysis software (Synaptosoft). Events were 

manually analyzed and selected visually by those that had a clear fast rise and exponential 

decay. Peak scaled non-stationary noise analysis (NSNA) was performed using 

MiniAnalysis to estimate single channel conductance and number underlying mPSCs. 

NSNA analysis assesses the parabolic relationship between mPSC variance versus 

amplitude. However, for some cells that had an insufficient number of synaptic events, 

this relationship could not be properly fit with a parabola and therefore, these cells were 

excluded from NSNA analysis as indicated in the text. For mEPSCs, an average of 

290±24 and 128±8 events per cell were analyzed in each cell for frequency and 

amplitude, respectively. For mIPSCs, an average of 188±14 and 169±11 events per cell 

were analyzed for frequency and amplitude. The relative distributions of mEPSC 

amplitude were fit with a log(Gaussian) nonlinear regression to determine the mEPSC 

amplitude corresponding to the peak of the distribution.   
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6.3 Results 

Rats fed WD for 11 weeks consumed significantly more calories (Ctrl n=12 vs 

WD n=12; Fig. 6.1A) and were overweight (Fig. 6.1B) compared to those fed a standard 

chow (Ctrl). To investigate the time course of synaptic plasticity in MCH neurons, we 

looked at three key timepoints during WD feeding: 1 week, when rats overeat but do not 

gain weight; 4 weeks, before the onset of significant weight gain; and 11 weeks, when 

rats are overweight.  

6.3.1 One week of WD feeding decreases excitatory transmission in young rats 

After 1 week of WD feeding (4-week old rats), MCH neurons displayed a 

reduction in excitatory transmission through both pre- and postsynaptic mechanisms.  

Firstly, there was a decrease in mEPSC amplitude (Ctrl 14.4±1.1pA, N/n=9/7 vs 1wWD 

10.4±1.6pA, N/n=7/5, p=0.0493; Fig. 6.2A,B). Accordingly, the average relative 

distribution of mEPSC amplitude showed a leftward shift (Fig. 6.2C). The peaks of 

individual distributions also showed a leftward shift to lower amplitudes in the 1wWD 

condition (Fig. 6.2D). However, this did not accompany a change in the coefficient of 

variation (CV; Fig. 6.2E), suggesting a lack of change in skewness of the distribution. 

Thus, the decrease in mEPSC amplitude is unlikely to be due to reduced multiquantal 

release. To further determine the cause of the reduction in quantal current, we used peak-

scaled NSNA and found a decrease in single receptor current (Ctrl 1.41±0.18pA, N/n=9/7 

vs 1wWD 0.74±0.17pA, N/n=6/5 (1 cell could not be fit), p=0.0244; Fig. 6.2F,G), with 

no change in the number of receptors (Ctrl vs 1wWD; Fig. 6.2F,H). These results suggest 
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that the decrease in mEPSC amplitude was due to a reduction in the conductance of non-

NMDA glutamatergic receptors. 

We also found a reduction in the frequency of mEPSCs (Ctrl 1.84±0.22Hz, 

N/n=9/7 vs 1wWD 0.79±0.11Hz, N/n=7/5, p=0.0014; Fig. 6.3A,B). In contrast, there was 

no change in the PPR, an indirect measure of presynaptic release probability (Ctrl 

1.60±0.08, N/n=21/16 vs 1wWD 1.53±0.08, N/n=16/13, p>0.05; Fig. 6.3C,D). These 

combined results may be due to a reduction in the number of active synapses by synapse 

removal or silencing. Alternatively, the decrease in mEPSC amplitude may have 

increased the proportion of mEPSCs that were below the detection threshold, resulting in 

a lower apparent mEPSC frequency. 

6.3.2 Four weeks of WD feeding increases the frequency of excitatory transmission in 

MCH neurons 

After 4 weeks of feeding, WD had no effect on mEPSC amplitude (Ctrl N/n=10/6 

vs 4wWD N/n=9/5; Fig. 6.4A,B,D), non-NMDA receptor conductance (Fig. 6.4E) or 

number (Fig. 6.4F). In contrast, there was a significant increase in the frequency of 

mEPSCs in the WD group (Ctrl 1.2±0.1Hz vs 4wWD 2.0±0.3Hz, p=0.0087; Fig. 

6.4A,C,G), while there was no change in PPR (Ctrl 1.51±0.07, N/n=17/9 vs 4wWD 

1.67±0.11, N/n=15/5, p>0.05; Fig. 6.4H,I). Therefore, 4 weeks of WD appears to increase 

the number of active excitatory synaptic contacts without altering overall release 

probability. 
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6.3.3 Age-dependent effects of WD feeding 

The opposite effect of WD at 1 week and 4 weeks (a decrease and increase in 

excitatory transmission, respectively) may be due to the length of WD feeding. However, 

it is also possible that the age difference had an effect since rats from both groups were 3-

week old when feeding began and were therefore tested at different ages. To determine if 

age had an effect, we staggered 1 week of WD feeding so that the animals were age-

matched to the 4-week WD group at the time of testing. In this age-matched group, 1-

week WD did not induce any changes (mEPSC amplitude, Ctrl N/n=10/6: 10.55±0.83pA 

vs 1wWD N/n=6/4: 10.06±0.78pA, p>0.05; mEPSC frequency, Ctrl: 1.20±0.10Hz vs 

1wWD: 1.00±0.08Hz, p>0.05). Therefore, 1 week of WD feeding affects excitatory 

transmission in 3 - 4-week old but not 6 - 7-week old rats. 

6.3.4 Eleven weeks of WD feeding increases excitatory transmission onto MCH neurons 

Following 11 weeks of WD feeding, there was no change in mEPSC amplitude 

(Ctrl n/n=7/4 vs 11wWD N/n=8/4; Fig. 6.5A,B,D), or single non-NMDA receptor current 

(Ctrl N/n=6/3 (1 cell could not be fit) vs 11wWD N/n=8/4; Fig. 6.5E) and receptor 

number (Fig. 6.5F). On the other hand, WD induced an increase in mEPSC frequency 

(Ctrl 1.5±0.3Hz, N/n=7/4 vs 11wWD 3.7±0.4Hz, N/n=8/4, p=0.0003; Fig. 6.5A,C,G) 

with no change in PPR (Ctrl N/n=16/9 vs 11wWD N/n=15/6; Fig. 6.5H,I). This result is 

similar to what was seen after 4 weeks of feeding; however, the mEPSC frequency at 11 

weeks of WD was significantly greater than that after 4 weeks of WD (4wWD N/n=9/5: 

2.04±0.84Hz vs 11wWD N/n=8/4: 3.7±1.00Hz, p=0.0021), while there was no age-
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dependent change in mEPSC frequency in their respective age-matched controls (Ctrl, 7 

weeks old N/n=10/6: 1.20±0.30Hz vs Ctrl, 14 weeks old N/n=7/4: 1.49±0.71Hz, p>0.05). 

This suggests that there is a continuous addition of excitatory contacts with longer WD 

feeding. 

6.3.5 WD does not affect inhibitory transmission 

In contrast to excitatory transmission, WD induced no change in the amplitude or 

frequency of mIPSCs at all time points investigated (1 week: Ctrl N/n=7/3 vs 1wWD 

N/n=8/4, Fig. 6.6A-C; 4 weeks: Ctrl N/n=12/3 vs 4wWD N/n=11/4, Fig. 6.6D-F; 11 

weeks: Ctrl N/n=8/4 vs 11wWD N/n=8/4, Fig. 6.6G-I). Therefore, WD-induced synaptic 

plasticity in MCH neurons appears to be specific to excitatory inputs. 
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6.4 Discussion 

The present study is the first to investigate the synaptic properties of MCH 

neurons during high-fat diet feeding. Diet-induced plasticity appears to occur specifically 

on excitatory synapses to MCH neurons. When feeding is commenced from 3 weeks of 

age (adolescence), WD initially (1 week) induces a transient decrease in excitatory 

transmission. The effect is reversed if WD feeding continues, as an increase in excitatory 

transmission occurs around the onset of significant weight gain at 4 weeks of WD feeding 

and continues to increase in overweight rats by 11 weeks of WD feeding.  

6.4.1 WD induced plasticity of excitatory transmission to MCH neurons 

While there was a robust increase in excitatory transmission by WD, no changes 

were observed in inhibitory transmission throughout the WD feeding period. This 

indicates that MCH neuron excitability may only be gated by modulation of excitatory 

transmission with high-fat diet. As fast EPSCs in MCH neurons have been shown to be 

primarily mediated by glutamate receptors (van den Pol et al., 2004), this plasticity 

involves remodeling of glutamatergic afferents to MCH neurons. The mechanism 

underlying this synaptic remodeling is unknown; however, it may involve metabolic and 

hormonal changes known to result from prolonged high-fat diet. In other neuronal 

populations, high-fat diet associated leptin resistance, insulin signaling, cannabinoid 

signaling, and reductions in brain-derived neurotrophic factor (BDNF), have all been 

associated with structural or functional plasticity (Cristino et al., 2013; Labouèbe et al., 

2013; Pinto et al., 2004; Stranahan et al., 2008). MCH neurons are responsive to several 
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of these factors including leptin, cannabinoids, and insulin, which increase MCH neuron 

excitability or MCH mRNA expression (Hausen et al., 2016; Huang et al., 2007; Huang et 

al., 1999). However, whether these factors can also affect synaptic plasticity in MCH 

neurons is unknown. Since there is limited literature available on MCH neurons and their 

plasticity, further research is required to disseminate the factors underlying this increase 

in excitatory synaptic contacts.  

6.4.2 The WD effect on MCH neurons is age-dependent 

Interestingly, there was an age-dependence in the inhibitory effect of 1 week of 

WD on mEPSCs as the effect was only seen in 4- but not 7-week old rats. Since MCH 

neurons undergo an age-dependent decrease in excitability between these ages (Chapter 

2), it is possible that immature MCH neurons are more amenable to WD-induced 

changes. Since adolescent brains are still developing, they typically are more susceptible 

to plasticity, such as expressing greater magnitude of LTP than adults (Swartzwelder, 

Wilson, & Tayyeb, 1995), or expressing cognitive and structural changes following drug 

and high-fat diet exposure that are not seen in adults (Labouesse et al., 2016; McDonald 

et al., 2007; Valladolid-Acebes et al., 2013). Therefore, this interaction of WD- and age-

dependent plasticity may have physiological ramifications on MCH functions during 

early adolescence. 

6.4.3 Conclusions 

Synaptic remodeling is known to occur within the homeostatic circuitry in 

response to dietary manipulations. Within the arcuate nucleus, long-term high-fat diet 
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feeding and obesity reduces excitatory synapses on appetite-promoting NPY/AgRP 

neurons, while increasing excitatory and decreasing inhibitory synapses on appetite-

suppressing POMC neurons. These changes are thought to be homeostatic, suppressing 

food intake while increasing energy expenditure during times where caloric intake and fat 

mass is high (Horvath et al., 2010; Pinto et al., 2004). Our findings add appetite-

promoting MCH neurons as another hypothalamic target of high-fat diet, where increased 

excitatory transmission onto MCH neurons would be expected to increase the excitability 

of these neurons.  

Taken together with other studies showing increased MCH mRNA expression and 

peptide levels during obesity (Elliott et al., 2004), our study suggests that chronic high-fat 

diet results in activation of the MCH system, unlike the compensatory changes found in 

the arcuate nucleus. Since an increase in mEPSCs is observed around the onset of weight 

gain and its degree becomes greater with longer feeding, it may have a role in the 

development and maintenance of diet-induced obesity.   
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Figure 6.1: Western Diet increases caloric intake and body weight.  

(A) Weekly caloric intake of male Sprague-Dawley rats fed a palatable high-fat Western 

Diet (WD) or a control chow (Ctrl). (B) Weekly body weight of WD and Ctrl rats.  

Two-way RM ANOVA with post hoc comparisons: *p<0.05, **p<0.01, ****p<0.0001 
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Figure 6.2:  One week of WD feeding in early adolescence decreases mEPSC 

amplitude in MCH neurons.  

(A) Sample mEPSC traces from MCH neurons of 4-week old rats fed a control chow (Ctrl) 

or WD for 1 week (1wWD). (B) Amplitude of mEPSCs in Ctrl and 1wWD. (C) Averaged 

relative frequency distribution of mEPSC amplitudes. (D) The mEPSC amplitude 

corresponding to the peak of distribution histograms for individual cells. (E) The coefficient 

of variation (CV) of mEPSC amplitude. (F) Representative peak scaled NSNA for Ctrl and 

1wWD groups. (G) Estimated single channel current and (H) number of channels from 

NSNA.  

Unpaired t-test: *p<0.05, **p<0.01 
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Figure 6.3: One week of WD feeding in early adolescence decreases mEPSC 

frequency in MCH neurons. 

(A) Averaged cumulative relative frequency distribution of inter-event interval. (B) 

Frequency of mEPSCs in MCH neurons of Ctrl and 1wWD groups. (C) Sample paired 

EPSCs from Ctrl and 1wWD groups. (D) PPR for Ctrl and 1wWD.  

Unpaired t-test: *p<0.05 
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Figure 6.4: Four weeks of WD feeding increases excitatory transmission.  

(A) Sample mEPSC traces from MCH neurons in 7-week old rats fed control chow (Ctrl) 

or WD (4wWD) for 4 weeks. (B) Amplitude and (C) frequency of mEPSCs in MCH 

neurons of Ctrl and 4wWD. (D) Averaged relative frequency distribution of mEPSC 

amplitudes. (E) Estimated single channel current and (F) number of channels from NSNA. 

(G) Averaged cumulative relative frequency distribution of inter-event interval. (H) Sample 

paired pulse EPSCs from Ctrl and 4wWD groups. (I) PPR for Ctrl and 4wWD.  

Unpaired t-test: **p<0.01 
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Figure 6.5: Eleven weeks of WD feeding increases excitatory transmission. 

(A) Sample mEPSC traces from MCH neurons in 14-week old rats fed a control chow (Ctrl) 

or WD (11wWD) for 11 weeks. (B) Amplitude and (C) frequency of mEPSCs in Ctrl and 

11wWD. (D) Averaged relative frequency distribution of mEPSC amplitudes. (E) 

Estimated single channel current and (F) number of channels from NSNA. (G) Averaged 

cumulative relative frequency distribution of inter-event interval. (H) Sample paired pulse 

EPSCs from Ctrl and 11wWD groups. (I) PPR for Ctrl and 11wWD.  

Unpaired t-test: ***p<0.001 
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Figure 6.6: WD feeding has no effect on inhibitory transmission to MCH neurons.  

(A) Sample mIPSC traces from MCH neurons in 4-week old rats fed a control chow (Ctrl) 

or WD (1wWD) for 1 week. (B) Amplitude and (C) frequency of mIPSCs in MCH neurons 

of Ctrl and 1wWD. (D) Sample mIPSC traces from MCH neurons in 7-week old rats fed 

Ctrl or WD (4wWD) for 4 weeks. (E) Amplitude and (F) frequency of mIPSCs in Ctrl and 

4wWD. (G) Sample mIPSC traces from MCH neurons in 14-week old rats fed Ctrl or WD 

(11wWD) for 11 weeks. (H) Amplitude and (I) frequency of mIPSCs in Ctrl and 11wWD.  
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CHAPTER 7 

 

SUMMARY 
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7.1 Summary of main findings 

All the main experiments included in this thesis used the same diets, lengths of 

feeding, age of rats, and rat strain. Therefore, the results from each project are directly 

comparable with one another. Together, they summate to three key findings. First, orexin 

neurons undergo various forms of transient plasticity during WD feeding, most notably 

the unmasking of a presynaptic LTD. Second, MCH neurons show a delayed activation 

that occurs by the onset of weight gain during WD feeding and involves several 

mechanisms, including a COX-dependent depolarization. Finally, orexin neurons are 

electrophysiologically mature by weaning, whereas MCH neurons experience ongoing 

maturation during the post-weaning period, and perhaps related to this maturation, are 

modulated by WD in an age-dependent manner.  

7.1.1 Effects of WD on orexin neurons 

WD dynamically modulated orexin neurons in a time-dependent manner (Table 

7.1). Generally, WD appears to activate orexin neurons at early stages of the feeding 

period, which becomes attenuated by the end of the feeding period. Specifically, WD 

increased the excitability of orexin neurons after 1 week of feeding as orexin neurons 

displayed an increase in AMPA receptor conductance (Chapter 4, Fig. 4.1). As an 

additional observation of increased orexin neuron excitability outside the research 

chapters included in this thesis, I noted that their RMP was depolarized after 1 week of 

WD feeding (Fig. 7.1A). However, these excitatory changes may be opposed by a 

reduction in release probability (Fig. 3.6; Fig. 4.2D) and priming for LTD (Chapter 3) at 
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excitatory synapses to orexin neurons. This may explain a lack of change in their basal 

firing frequency despite RMP depolarization (Fig. 7.1B). By 11 weeks of feeding, there 

was only an increase in the amplitude of inhibitory postsynaptic currents (Fig. 4.7) 

without any other change (Table 7.1), suggesting a reduction in orexin neuron 

excitability.  

Together, these results suggest that there are multiple mechanisms by which WD 

affects orexin neuron excitability and that these changes are reversed or compensated for. 

These time-dependent changes may have interesting repercussions on orexin neuron 

function during WD feeding. Synaptic plasticity of orexin neurons is known to occur in 

various physiological states, such as sleep deprivation and fasting (Horvath & Gao, 2005; 

Y. Rao et al., 2007). Therefore, it is possible that plasticity of orexin neurons is an 

essential regulator of their activity and downstream physiological functions (Gao & 

Hermes, 2015). If so, the dynamic synaptic changes in orexin neurons throughout WD 

feeding may disrupt such routine plasticity and its corresponding regulatory functions in 

orexin neurons. 

7.1.2 Effects of WD on MCH neurons 

 MCH neurons undergo a delayed but stable set of changes during WD feeding 

(Table 7.2). The most remarkable finding was a WD-induced depolarization that was 

present from 4 weeks of WD and became more substantial by 11 weeks of feeding. 

Interestingly, this time course is paralleled by our finding of increased mEPSC frequency 

that is also present at 4 weeks and further increases by 11 weeks of feeding. Therefore, 
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these concurrent intrinsic and synaptic changes may be interconnected or induced by a 

common mechanism. 

The WD-induced depolarization persisted in the presence of TTX (Fig. 5.2H), 

which suggests an intrinsic change. Nonetheless, since synaptic tone influences RMP in 

MCH neurons (Huang et al., 2007) it is certainly possible that an increase in excitatory 

transmission could also contribute to depolarization. Alternatively, depolarized RMP can 

facilitate synaptic and structural plasticity (Armano, Rossi, Taglietti, & D’Angelo, 2000; 

Murase, Mosser, & Schuman, 2002), which may underlie the increased mEPSC 

frequency by WD in MCH neurons.  

On the other hand, a potential common mechanism that could explain both 

synaptic and intrinsic changes is through a COX-dependent pathway. We found that the 

depolarization of MCH neurons was due to COX activity, which could also act at 

excitatory synapses onto MCH neurons. COX-2 is expressed at dendritic spines and 

influences activity-dependent excitatory transmission and plasticity through presynaptic 

PGE2 receptors (Chen, Magee, & Bazan, 2002; Kaufmann, Worley, Pegg, Bremer, & 

Isakson, 1996; Sang, Zhang, Marcheselli, Bazan, & Chen, 2005). While limited data is 

available on a potential link between COX and structural plasticity, it would be an 

intriguing future direction for this project. 

Regardless of the mechanism, it is likely that RMP depolarization and increased 

excitatory input would synergistically increase MCH neuron firing. Overall, through both 
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intrinsic and synaptic mechanisms MCH neurons are activated with long-term WD 

consumption, which likely promotes weight gain and obesity.  

7.1.3 Age-dependent effects of WD on MCH neurons 

 Chapter 2 demonstrated that MCH neurons continue to mature 

electrophysiologically during the post-weaning period up to 7 weeks of age through 

intrinsic and synaptic mechanisms. We postulated that this may affect how MCH neurons 

respond to various stimuli. Within this thesis, we have provided evidence for this idea as 

we observed discrepancies between the WD effects on MCH neurons from 4- and 7-week 

old rats, which may be a result of the ongoing maturation of these neurons.  

 Specifically, 1 week of WD had differential effects on MCH neurons of 4-week 

and 7-week old rats. In 4-week old rats, 1 week of WD depolarized the firing threshold, 

while decreasing firing frequency and excitatory transmission (Fig. 7.2A-C). However, 

these changes were not observed in MCH neurons of 7-week old rats that were also fed 

WD for 1 week (Fig. 7.2D-F; and Chapter 6). Interestingly, these WD-induced changes 

are similar to the age-dependent changes that occur between 4 and 7 weeks of age, i.e. a 

depolarization of firing threshold, a decrease in firing, and a decrease in excitatory 

transmission (Fig. 2.3-2.4). The almost complete overlap between the effects of WD and 

age on MCH neurons suggests that they may share common mechanisms and that WD is 

accelerating the maturation of MCH neurons. In support of this idea, 4-week old rats fed 

WD had a similar mEPSC frequency and amplitude as older rats fed a control chow 

(Chapter 6). This early reduction in MCH neuron excitability may affect many MCH-
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dependent functions during the adolescent period including food intake, weight gain, 

anxiety, reproductive function, and sleep. 

 It is important to note that the robust depolarization of MCH neurons by 4 weeks 

of WD is likely not age-dependent, since high-fat diet effectively induced MCH neuron 

depolarization even when the feeding started at 7 weeks of age (Fig. 5.2E). Therefore, the 

activation of MCH neurons with long-term WD is not specific to young rats and may be a 

general mechanism underlying obesity.  

7.2 Comparison of the effects of WD on orexin and MCH neurons 

 Despite the similarities in the anatomical distribution of orexin and MCH neurons, 

we found that they vary widely in their response to WD feeding. Namely, there were 

differences in the age-dependence, the timing and nature of intrinsic and synaptic 

plasticity, and in their adaptation or sensitization to WD. These disparities may indicate 

that selective WD effects may have a role in the physiological functions of each separate 

neuronal population. 

7.2.1 Age-dependent effects of WD 

 Unlike the age-dependent effects of WD on MCH neurons discussed in the 

previous section (7.1.3), orexin neurons did not experience an age-dependent WD effect. 

1 week of WD feeding induces the same synaptic changes in orexin neurons from 4- and 

7-week old rats (Fig. 7.3). This may be because orexin neurons are electrophysiologically 

mature by 4 weeks of age (Chapter 2), while MCH neurons are not. Additionally, this 
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may indicate that orexin neurons may have less contribution to the adolescent-specific 

vulnerabilities to high-fat diets (Boitard et al., 2012; Rabasa et al., 2016; Teegarden et al., 

2009).  

7.2.2 Effect of WD on RMP  

While both orexin and MCH neurons experienced WD-induced depolarization, 

this followed distinct time courses. Orexin neurons were depolarized only after 1 week of 

WD (Fig. 7.1A), while MCH neurons became depolarized by 4 weeks and this further 

increased by 11 weeks of WD feeding (Fig. 5.3F). While the mechanism underlying the 

depolarization of orexin neurons was not investigated, it is likely distinct from the 

mechanism of MCH neuron depolarization since these two cell populations were 

activated at different time points (Fig.5.2B). Other possible factors that could mediate 

depolarization of orexin neurons during high-fat diet feeding include: cholecystokinin, 

glucagon-like peptide 1, leptin, and ghrelin (Acuna-Goycolea & van den Pol, 2004; 

Sheng, Santiago, Thomas, & Routh, 2014; Tsujino et al., 2005; Yamanaka et al., 2003). 

Alternatively, the depolarization of orexin neurons at 1 week of WD feeding could be 

secondary to the observed enhanced glutamatergic transmission, which could 

significantly contribute to basal firing rate and membrane potential (Li et al., 2002). 

7.2.3 Effect WD of synaptic transmission 

 WD-induced synaptic plasticity of orexin neurons was transient and dynamic 

throughout the course of feeding. Distinct changes were noted at 1, 4, and 11 weeks of 

feeding on both excitatory and inhibitory transmission (Table 7.1). However, this was not 
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the case for MCH neurons. MCH neurons had delayed plasticity of excitatory 

transmission that was stable over time (Chapter 6). Therefore, the two key differences 

between these neurons are the transient versus stable nature of plasticity, and the 

modulation of inhibitory transmission in orexin but not MCH neurons.  

 High-fat diet feeding results in many metabolic and hormonal changes, such as an 

increase in the satiety hormone leptin and a decrease in the hunger hormone ghrelin 

(Handjieva-Darlenska & Boyadjieva, 2009). Interestingly, both leptin and ghrelin have 

been implicated in synaptic plasticity within the hypothalamus (Cristino et al., 2013; 

Pinto et al., 2004; Yang, Atasoy, Su, & Sternson, 2011). However, it is unknown whether 

these hormones are involved in the plasticity described in this thesis or how they would 

specifically affect orexin or MCH neurons at distinct time periods. Such mechanisms may 

require both pre- and postsynaptic signaling components to selectively increase relevant 

input-postsynaptic target connections (Holtmaat & Svoboda, 2009). Therefore, 

identifying the sources of afferents that underlie WD-induced increased synaptic 

transmission in both neurons could provide key insights to these underlying mechanisms 

and their specificity. 

7.2.4 Adaptation versus sensitization to WD 

 Another key difference in the effects of WD in orexin and MCH neurons is that 

orexin neurons appear to adapt to WD while MCH neurons are progressively activated 

with longer periods on WD. The transient nature of orexin neuron plasticity indicates the 

possibility of negative feedback loops that regulate orexin neuron activation. On the other 
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hand, MCH neurons appear to be a part of a positive feedback loop – activation of MCH 

neurons promotes further WD intake and weight gain (Fig. 5.10), which leads to further 

depolarization of MCH neurons. This may be explained by a sensitization in the 

mechanism underlying the COX-dependent depolarization. In support of this idea, we 

found that the depolarizing mechanism sensitizes with repeated exposures to WD (Fig. 

5.5). 

Interestingly, this positive feedback loop or sensitization of the MCH system may 

occur at several levels. There is also an upregulation of MCH peptide and the MCH 

receptor mRNA during obesity (Elliott et al., 2004), suggesting that not only are MCH 

neurons more active (Chapter 5) and releasing more MCH (Elliott et al., 2004), but there 

is also a sensitization in their efferent targets.  

7.2.5 Differences in physiological roles 

 The key differences discussed throughout this section can be summarized as the 

following: MCH neurons undergo a positive feedback loop of activation that has a 

delayed onset but is stable throughout WD feeding, while orexin neurons undergo a 

variety of transient changes that lean toward increased activation in early WD feeding but 

instead favour inhibition with prolonged feeding. It is possible that these distinct effects 

of WD may relate to the differences in the physiological roles of orexin and MCH 

neurons. 

 While both neurons promote food intake and specifically that of palatable diets, 

they do so in distinct ways. Orexin neurons respond not to caloric content but to the 
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rewarding nature of food (Alcaraz-Iborra et al., 2014). They recruit the mesolimbic 

reward pathway to mediate hedonic feeding (Valdivia et al., 2014) and as such are 

particularly involved in behavioral responses to food rewards, such as anticipation and 

seeking (Akiyama et al., 2004; Mieda et al., 2004). The transient nature of the activation 

of orexin neurons described in this thesis may reflect heightened reward processing early 

in WD diet when the stimulus is novel, which decreases with prolonged feeding. 

Similarly, prolonged activation of the mesolimbic circuitry in obesity leads to reward 

hypofunction (Johnson & Kenny, 2010).  

 Contrastingly, MCH neurons respond to the caloric content of food and promote 

the ongoing consumption of food (Della-Zuana et al., 2012; Morens et al., 2005) while 

reducing energy expenditure, thus promoting positive energy balance (Alon & Friedman, 

2006; Segal-Lieberman et al., 2006). Persistent intrinsic and synaptic plasticity during 

chronic WD described in this thesis is consistent with their prominent role in long-term 

body weight regulation.     

7.3 Other considerations 

7.3.1 Interaction between orexin and MCH neurons 

 Orexin and MCH neurons have reciprocal connections with one another (Guan et 

al., 2002). Orexin neurons can have both excitatory and inhibitory effects on MCH 

neurons through their neuropeptides orexin A and orexin B or dynorphin and 

nociceptin/orphanin FQ, respectively (Apergis-Schoute et al., 2015; Li & van den Pol, 

2006; Parsons & Hirasawa, 2011; van den Pol et al., 2004). On the other hand, the MCH 
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peptide is reported to inhibit orexin neurons by downregulating AMPA receptors and 

preventing orexin-induced increases in excitatory transmission in orexin neurons (Y. Rao 

et al., 2008).  

 Due to these interactions, the changes in excitability of orexin and MCH neurons 

during WD feeding may affect how they regulate one another. For instance, it is possible 

that some changes described in this thesis could occur at synapses connecting orexin and 

MCH neurons as they both express glutamate and GABA (Apergis-Schoute et al., 2015; 

Chee, Arrigoni, & Maratos-Flier, 2015; Jego et al., 2013; Schöne, Apergis-Schoute, 

Sakurai, Adamantidis, & Burdakov, 2014). Additionally, as it has been reported that 

orexin and MCH neurons fire in a reciprocal manner to one another, it is possible that 

they may inhibit the other when they are active (Hassani et al., 2009). If true, this may 

explain the different time courses of activation of orexin and MCH neurons during WD 

feeding. For example, orexin neurons are activated initially by WD whereas MCH 

neurons are activated with a later onset. Furthermore, the persistent activation of MCH 

neurons may underlie the inhibition of orexin neurons during prolonged high-fat feeding 

and obesity (Cai et al., 2000; Tanno et al., 2013). Therefore, some of the synaptic changes 

in the lateral hypothalamus could be regulated within local circuitry in a concerted 

manner.     

7.3.2 Other potential functional consequences of plasticity in orexin and MCH neurons  

 Despite their functional differences, orexin and MCH neurons project to 

overlapping brain regions (Bittencourt et al., 1992; Peyron et al., 1998). Thus, these two 
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populations of neurons can independently and often oppositely regulate similar 

physiological functions. Briefly, orexin neurons are wake-promoting and activate the 

mesolimbic dopamine pathway (Adamantidis et al., 2007; Valdivia et al., 2014), while 

MCH neurons are sleep-promoting and may limit dopamine release in the NAcc 

(Konadhode et al., 2013; Pissios et al., 2008).  

Therefore, it is highly likely that the changes induced by WD feeding could also 

affect these functions. High-fat diet has been linked to increased sleep (Jenkins et al., 

2006) and reward hypofunction (Johnson & Kenny, 2010). It is tempting to speculate that 

the plasticity described in this thesis may have a role in these observations. The increase 

in inhibitory transmission in orexin neurons after prolonged WD may at least partly 

underlie the increased sleep and reward hypofunction. Moreover, the activation of MCH 

neurons with prolonged WD may promote sleep and anhedonia. Therefore, there may be 

broad functional consequences of the plasticity described in this thesis.   

7.4 Future Directions 

 The work presented in this thesis has provided a strong foundation for future 

research. While we have electrophysiologically characterized the effect of high-fat diet on 

orexin and MCH neurons and made several key discoveries, many questions remain 

unanswered. 

Concerning our work on orexin neurons, we have provided a detailed description 

of how high-fat diet affects their excitability and plasticity; however, how these changes 

summate to influence orexin neuron activity in vivo and its consequent physiological 
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significance is not fully understood. Future experiments could involve in vivo recording 

or immunohistochemistry for markers of neuronal activation to determine the activity of 

orexin neurons. Then, modulation of orexin neuron activity through either DREADDs, 

optogenetics, or siRNA against prepro-orexin mRNA could determine whether the 

physiological contributions of orexin neurons change over the time course of high-fat diet 

feeding. Moreover, future experiments should be designed to specifically address the role 

of LTD in orexin neurons. Intrahypothalamic injections of the antibiotic ceftraxione can 

increase the expression of GLT-1 and increase glutamate uptake. This treatment is able to 

modulate the expression of LTD in other brain regions (Omrani et al., 2009) and 

consummatory behaviours (P. S. S. Rao & Sari, 2014). If this treatment can successfully 

be applied to orexin neurons, the physiological effects of LTD on food intake and weight 

gain can be assessed in vivo. 

For MCH neurons, the next step would be further elucidating the mechanism and 

ramifications of WD-induced depolarization. First, the receptors that mediate the effect of 

PGE2 on the NKA should be identified through application of EP receptor antagonists and 

agonists. Then the intracellular signaling pathway and its effect on NKA function can be 

determined through molecular and electrophysiological techniques. These initial findings 

should provide the foundation to determine the mechanism by which MCH neurons are 

sensitized with multiple WD exposures. Secondly, the experiments in this thesis should 

be repeated in older animals and a comparison should be made to determine whether there 

is a long-term effect attributed to an adolescent vulnerability in the MCH system to the 
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effects of high-fat diet, since we found a short-term interaction between the effect of WD 

on 4-week and 7-week old animals on synaptic transmission. 

Finally, the work in the thesis suggests that MCH and orexin neurons may be 

activated at separate times during the course of high-fat diet feeding. This is in line with 

other work suggesting that these neurons may negatively regulate one another (Hassani et 

al., 2009), a possibility discussed in greater length in section 7.3.1. Therefore, an 

important future direction would address how changes in the orexin system influence the 

MCH system during high-fat diet feeding and vice versa. This could be achieved by 

modulating the activity of one system at both baseline and during high-fat diet feeding 

and studying how the other responds.  

7.5 Conclusions 

 WD induces substantial plasticity within orexin and MCH neurons of the lateral 

hypothalamus. Considering the role of these neurons in high-fat diet intake and energy 

homeostasis, it is likely that these changes contribute to the overconsumption of high-fat 

diet and the etiology of obesity. The work presented in this thesis informs on the intrinsic 

and synaptic response of orexin and MCH neurons, which was limited in the literature. 

Moreover, this work may provide a new understanding of how the lateral hypothalamus 

contributes to metabolic and homeostatic dysfunction caused by high-fat diet and provide 

new therapeutic targets for obesity. 
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Table 7.1: Summary of the effects of WD feeding on orexin neurons.  

Green arrows indicate changes that increase excitability of the postsynaptic orexin 

neuron, while red arrows indicate a decrease in excitability. Dashes signify no change in 

the parameter and finally, shaded cells indicate no data is available. 

  

Length 

of WD 

Feeding 

Age RMP 

EPSC mEPSC mIPSC 

PPR LTD? Amp. Freq. Amp. Freq. 

1 day 3-4 weeks     ---   

1 week 4 weeks   YES  --- --- --- 

1 week 7 weeks  ---   ---   

4 weeks 7 weeks --- --- NO ---  ---  

11 weeks 14 weeks --- ---  --- ---  --- 
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Table 7.2: Summary of the effects of WD feeding on MCH neurons.  

Green arrows indicate changes that increase excitability of the postsynaptic MCH neuron, 

while red arrows indicate a decrease in excitability. Dashes signify no change in the 

parameter and finally, shaded cells indicate no data is available. 

 

 

  

Length 

of WD 

Feeding 

Age RMP Threshold 

mEPSC mIPSC 

Amp. Freq. Amp. Freq. 

1 week 4 weeks ---    --- --- 

1 week 7 weeks ---  --- ---   

4 weeks 7 weeks   ---  --- --- 

11 

weeks 
14 weeks  --- ---  --- --- 
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Figure 7.1: Orexin neurons are transiently depolarized by short-term WD feeding.  

(A) RMP of orexin neurons from rats fed WD for 1 and 4 weeks and their age-matched 

chow-fed controls. (B) Baseline action potential frequency of orexin neurons from the 1-

week WD condition.  

Two-way ANOVA with post hoc comparisons: ****p<0.0001  
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Figure 7.2: Age-dependent effects of 1 week of WD on MCH neurons.  

4-week old rats: (A) The threshold to fire is higher in 1wWD and (B) the firing frequency 

during current injections is lower in the 1wWD condition. (C) WD also reduces excitatory 

transmission (this data was also reported in the text of Chapter 6). 7-week old rats: (D) 

Threshold to fire is lower in 1wWD but (E) there is no effect of 1wWD on firing frequency 

(data is also reported in Chapter 5), or (F) excitatory transmission (this data was also 

reported in Chapter 6).  

Unpaired t-test and two-way RM ANOVA (B,E): *p<0.05, **p<0.01  
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Figure 7.3: 1 week of WD feeding increases mEPSC amplitude in both 4- and 7-week 

old rats. 

4-week old (this data is also reported in Chapter 4): (A) Sample traces of mEPSCs from 1 

week of WD (1wWD) or chow controls (Ctrl). (B) mEPSC frequency and (C) amplitude. 

7-week old (D) Sample traces of mEPSCs from 1wWD or Ctrl. The frequency (E) and 

amplitude (F) of mEPSCs.  

Unpaired t-test: *p<0.05, **p<0.01  
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