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Abstract

In this thesis, we study the dynamics of some partial differential models arising in

fluid mechanics and biology. First, we analyze a long-wave model for a liquid thin

film on an inclined periodic substrate that is valid at a near-critical Reynolds number.

The existence and the uniqueness, as well as the asymptotic formula, of a periodic

steady-state are derived. Floquet-Bloch theory and asymptotic analysis are carried

out to study the stability in a weighted functional space. The generalized Burgers

equation is another fluid model that we consider. After transforming the problem

into a constant coefficients problem, a shooting method is used to prove the existence

of separable solutions. The total number of them is given and the uniqueness of the

positive solution is proved. The stability of the small-amplitude positive steady-state

is provided using the bifurcation analysis. Dynamics of a two-species competition

model with diffusion is studied in the last part. The minimal wave speed selection

mechanism (linear vs. nonlinear) is investigated. Hosono conjectured that there is a

critical value of the birth rate so that the speed selection changes only at this value.

We prove a modified version of this conjecture and establish some new results for the

linear and the nonlinear speed selection. The local and the global stability, using the

comparison principle together with the squeezing technique, of the traveling wavefront

are studied in a weighted functional space. Some open problems and future works are

presented.
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Chapter 1

Introduction

Partial differential equation models arise mainly in the formulation of the physical,

chemical, and biological laws. Most of these models are nonlinear and have a compli-

cated structure. This makes the solution formula not always valid, even numerically.

However, the existence of the solution, or the so-called steady-state solution, can be

proved for some models. Also, the long-time behavior of the solution can be found.

Generally, such information leads to further studies of the problem to obtain more

explanation and significant results.

This thesis is concerned with the steady-state (stationary or equilibrium) solutions

to some partial differential equations and their stability. A steady-state is a time-

independent solution, i.e., there is no change with respect to time in the functions

which describe the behavior of the system. The stability of the steady-state is the

behavior of the solution under perturbations of the initial condition. If the solution,

after a long enough time period, converges to the steady-state, then we say that the

steady-state is stable. Otherwise, it is unstable. Usually, when the perturbation is

sufficiently close to the steady-state, the stability analysis becomes easier. In this

case, if we get the required convergence, the steady-state is said to be locally stable.



1.1. A LIQUID THIN FILM ON A PERIODIC WALL

For arbitrary initial value, we have global stability.

In this thesis, we study the dynamics of three partial differential equation models

arising in fluid mechanics and biology. In the following sections, we introduce these

models and give a brief introduction for our research works on each model.

1.1 A Liquid Thin Film on a Periodic Wall

In the first research work of this thesis, we consider a flow of a thin film over an inclined

periodic wall under gravity. This problem has been of great interest to scientific

researchers, as it arises in considerable applications for many topics, for example

see [1, 6, 40, 74, 75, 92, 93]. In 1955, Yih [100] investigated flow over a vertical plane.

By numerical computations, the instability of the flow is proved for a large value of

a Reynolds number (R), which is given in terms of the liquid density and the liquid

viscosity. Based on Yih’s formulation, Binjamin 1957 [5] proved that the steady flow

is unstable for all finite Reynolds numbers. Yih 1963 [101] considered flow on an

inclined flat wall. When the wall is inclined at an angle θ to the horizontal line, he

proved that there exists a critical value

Rc =
5

4
cot(θ)

so that the steady-state solution to the equation of motion is stable if R ≤ Rc, and

unstable if R > Rc, see also the earlier articles [45, 55]. It is easy to see that Rc = 0

for vertical inclinations. This means that the flow is unstable for all values of R,

or simply critical Reynolds number does not exist. In the last thirty years a large

number of works considered the problem with a flat wall , e.g. [2, 3, 23, 38,66,69,102]

and the reference therein.

The surface between the liquid and the air responds to the wall topography shape
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1.1. A LIQUID THIN FILM ON A PERIODIC WALL

when it becomes uneven. The flow on an uneven wall has been investigated in many

previous works, e.g. [8,16,36,68,71,83,87,95]. Some of previous numerical, experimen-

tal, and analytical results will be discussed in Chapter 2. To study the problem, we

consider a long wave model that is valid at a near-critical Reynolds number. Assume

that the flow is in the x-direction and let h(x, t) be the film thickness at location x

and time t. The equation of motion is given by (see [83])

ht +
d

dx

[
2

3
h3 +

8R

15
h6hx −

2 cot(θ)

3
h3(h+ s)x +

1

3C
h3(h+ s)xxx

]
= 0.

Here,

R =
gh30 sin(θ)

2ν2
and C =

ρgh20 sin(θ)

2γ

are Reynolds and capillary numbers, respectively, where g is gravity, h0 is the average

film thickness, ν is the liquid kinematic viscosity, ρ is the liquid density, and γ is the

surface tension. The model is derived in [82–84] based on the Navier-Stokes equation.

In Chapter 2, we construct an iteration scheme in terms of an integral form of the

original steady-state problem. The uniform convergence of the scheme is proved so

that we can derive the existence and the uniqueness, as well as the asymptotic formula,

of the periodic solutions. The analysis is split into three cases based on the formulation

of the integral form. We re-write the equation into a new form so that we can combine

the different cases in a single case. By the method of abstract contraction mapping, we

prove the existence and the uniqueness of the steady-state in a particular functional

space. Using the Floquet-Bloch theory and asymptotic method, we establish several

analytic results on the stability of the periodic steady-state solution in a weighted

functional space.
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1.2. THE GENERALIZED BURGERS EQUATION

1.2 The Generalized Burgers Equation

A physical model that describes fluid turbulences is the convection-diffusion Burgers

equation

ut + u · ∇u = δ∇2u,

where u is the flow velocity, t is time, and δ is the kinematic liquid viscosity. This

equation is introduced for the first time by Burgers [10], and it can be derived from

the Navier-Stokes equation for Newtonian incompressible fluid

ρ (ut + u · ∇u) = −∇p+ µ∇2u+ F,

where ρ is the density, p is the pressure, µ is the dynamic liquid viscosity, and F is

an external force. If we assume no pressure or external forces and use the relation

δ = µ/ρ, then the Burgers equation follows. In one space dimension, 0 ≤ x ≤ l, the

equation becomes

ut + uux = δuxx.

The exact solution to the Burgers equation in one dimension with the boundary-

initial conditions

u(0, t) = u(l, t) = 0,

u(x, 0) = u0(x),

can be obtained by using the Hopf-Cole transformation (see [27])

v(x, t) = exp

⎛⎝− 1

2δ

x∫
0

u(ξ, t)dξ

⎞⎠ .

This transforms the equation into heat equation form vt = δvxx. If the initial function

4



1.2. THE GENERALIZED BURGERS EQUATION

is given by

u0(x) = u0 sin
(πx
l

)
,

then the exact solution has the formula

u(x, t) =
4πδ

l

⎧⎨⎩
∑∞

n=1 exp
(
−n2π2δt

l2

)
n sin

(
nπx
l

)
1 + 2

∑∞
n=1 exp

(
−n2π2δt

l2

)
cos
(
nπx
l

)
⎫⎬⎭ .

See a similar formula (8.7.8) in [12] and also formula (2.114) in [65].

The generalized Burgers equation with time-dependent viscosity in the form

ut + uux = f(t)uxx,

has been considered in some previous works [24,72,73]. In Chapter 3, we consider the

last equation, a time-dependent viscose equation, with

f(t) =
δ

(t+ 1)M
,

for constant M , subject to the initial-boundary conditions

u(0, t) = u(l, t) = 0, t ∈ R+,

u(x, 0) = u0(x), x ∈ [0, l].

This model is investigated in [72,73]. We study the dynamics of separable solutions to

the equation. We first incorporate a transformation to reduce the separable solutions

into steady-states of a nonlinear partial differential equation with constant coefficients.

By developing a shooting method, the existence of steady-state solutions is proved and

their number is given by an explicit formula. The uniqueness of the positive solution is

also verified. The weakly nonlinear bifurcation-analysis is conducted and the stability

5



1.3. TRAVELING WAVES TO A TWO-SPECIES COMPETITION MODEL

of the small-amplitude positive solution is provided.

1.3 Traveling Waves to a Two-species Competition

Model

A traveling wave solution to a partial differential equation model is a wave-shaped

function that travels in a special domain with a constant speed c ≥ 0. At any time

the shape will be the same. This kind of solution has been extensively investigated

in the last few years, e.g. [17, 33, 44, 50, 59, 64, 88, 89, 98]. To have a mathematical

understanding of this kind of solution, we present the work of Fisher [19] and KPP [41]

on the reaction-diffusion scalar equation (Fisher-KPP equation)

⎧⎪⎨⎪⎩ ut = uxx + f(u),

u(x, 0) = u0(x),

where u(x, t) is a function of a special variable x and time t. Here f(u) is a nonlinear

function which is positive inside the interval (0, 1) and satisfies

f(0) = f(1) = 0, f ′(0) > 0, and f ′(1) < 0.

A simple common example of the nonlinearity in the equation is the Fisher function

f(u) = (1− u)u.

A traveling wave solution connecting 1 to 0 and spreads with speed c ≥ 0 is a

solution in the form

u(x, t) = U(z), z = x− ct.

Here U is called the wavefront, z is the wave variable, and c is the wave speed. From

6



1.3. TRAVELING WAVES TO A TWO-SPECIES COMPETITION MODEL

the Fisher-KPP equation, U(z) satisfies the ordinary differential equation

Uzz + cUz + f(U) = 0, (1.3.1)

subject to

U(−∞) = 1, U(+∞) = 0. (1.3.2)

To be applicable in physics, chemistry, and biology the wave profile U(z) has to be

bounded and non-negative in the domain for which we are concerned. By the lineariza-

tion and the phase plane analysis, a positive monotone solution U(z) to (1.3.1)-(1.3.2)

exists with

c ≥ c0 = 2
√
f ′(0).

Define cmin as the minimal wave speed so that solution to (1.3.1)-(1.3.2) exists.

Indeed, cmin is greater than or equal to c0. These two cases are said to be nonlinear

and linear speed selection, respectively. It is known that when f(u) is bounded by its

linearization about 0, i.e., satisfies the inequality

f(u) ≤ f ′(0)u, (1.3.3)

a traveling wave exists for any c ≥ c0, see e.g. [4, 41]. In fact, the existence of a

traveling wave which spreads with the same speed of the corresponding linear system

can also be obtained by the upper-lower solution method similar to that in [103],

that is, the linear speed selection is realized. Lucia et al [48] completely studied the

problem of speed selection to the Fisher-KPP equation, where sufficient conditions

for the linear and the nonlinear selection mechanisms were obtained. We include here

some of their results.

7



1.3. TRAVELING WAVES TO A TWO-SPECIES COMPETITION MODEL

Theorem 1.3.1. [48, Theorems 5.1-5.2].

(i) If 2
u∫
0

f(s)ds ≤ f ′(0)u2, then the linear speed selection is realized.

(ii) If 2f ′(0) ≤
1∫
0

f(s)ds, then the nonlinear speed selection is realized.

Observe that the condition in (i) is the generalization of the condition (1.3.3). In

general, determination of the speed selection mechanisms is not trivial and depends

on the nonlinearity of the equations, especially for systems of equations.

For the stability of the traveling wave U(x − ct) to (1.3.1)-(1.3.2), we recall the

work of Moet [53]. Let the condition (1.3.3) be satisfied and u(x, t) be the solution of

(1.3.1) which is perturbed initially from U(x− ct). Hence,

u(x, t) = U(x− ct) + v(x, t; c),

for some function v(x, t; c). The partial differential equation for v in the (z, t)-

coordinates is given by

⎧⎪⎨⎪⎩ vt = vzz + cvz + f(U + v)− f(U),

v(z, 0) = v0(z) := u0(z)− U(z).

Introduce a weight function w(z) = exp
(
c
2
z
)
and a weighted functional space

Lp
w(R) = {v(z) : w(z)v(z) ∈ Lp(R), p ≥ 1}

with the norm defined by

∥v∥w =

⎛⎝ ∞∫
−∞

w(z)|v(z)|pdz

⎞⎠ 1
p

.

8



1.3. TRAVELING WAVES TO A TWO-SPECIES COMPETITION MODEL

Assume 0 ≤ U(z) + v0(z) ≤ 1, for all z ∈ R, and v0(z) ∈ Lp
w(R), for some p ≥ 1. Let

v̄(z, t) = w(z)v(z, t), then the equation for v̄ is given by

⎧⎪⎨⎪⎩ v̄t = v̄zz + F (v̄),

v̄(z, 0) = v̄0(z) := w(z)v0(z),

where

F (v̄) = −c
2

4
v̄ + wf

(
U +

v̄

w

)
− wf(U).

Define p1(z, t) and p2(z, t) as solutions of the differential equation

pt = pzz + F (p),

with the initial conditions p(z, 0) = min{v̄0(z), 0} and p(z, 0) = max{v̄0(z), 0}, re-

spectively. By comparison, we have

p1(z, t) ≤ v̄(z, t) ≤ p2(z, t), ∀(z, t) ∈ R× R+.

By the condition (1.3.3), it is easy to get

F (v̄) ≤ −
(
c2

4
− f ′(0)

)
v̄.

Using this fact in the p−equation, Moet proved that p1(z, t) and p2(z, t) tend to zero

as t→ ∞. By the squeezing technique, this is true for v(z, t), which gives the stability

of U(z) in the weighted space Lp
w.

We choose to work on the speed selection problem and the stability of the traveling

wave solution to a two-species competition model in a Lotka-Volterra type. Consider

9



1.3. TRAVELING WAVES TO A TWO-SPECIES COMPETITION MODEL

the system ⎧⎪⎨⎪⎩
φt = d1φxx + r1φ(1− b1φ− a1ψ),

ψt = d2ψxx + r2ψ(1− a2φ− b2ψ),

(1.3.4)

with the initial data

φ(x, 0) = φ0(x) ≥ 0, ψ(x, 0) = ψ0(x) ≥ 0, ∀x ∈ R,

where φ(x, t) and ψ(x, t) are the population densities of the species at time t and

location x. Here di, ri, ai, and bi, for i = 1, 2, are non-negative biological parameters.

Equilibrium solutions and their stability, with di = 0, can be determined by the

standard linearization in terms of the parameters. We consider a traveling wave solu-

tion to the diffusive system (1.3.4) that connects a stable equilibrium to an unstable

one. This is called a monostable traveling wave and equivalent to assuming

a1
b2
< 1 and

a2
b1
> 1,

with considering a traveling wave which connects

(1/b1, 0) and (0, 1/b2).

In contrast, when a traveling wave connects two stable equilibria it is called a bistable

case, e.g. [20] for scaler equations, [33] for systems, and [44] for equations with delay.

For the speed selection mechanism of the monostable traveling waves to (1.3.4), a

conjecture by Hosono [30] states that there exists a positive constant rc so that the

wave speed is linearly selected when

(r1, r2, a1, a2, b1, b2) ∈
{
a1a2
b1b2

≤ 1

}
∪
{
a1a2
b1b2

> 1 and
r2
r1

≤ rc

}
,

10



1.3. TRAVELING WAVES TO A TWO-SPECIES COMPETITION MODEL

and nonlinearly selected otherwise. This conjecture attracted the attention of re-

searchers since it was raised in 1998, see [32, 33, 42]. Lewis et al [42] proved a part

of this conjecture when d2
d1

≤ 2 and gave a lower bound for the critical value rc.

Huang [32] claimed that the result in [42] proves the Hosono’s conjecture for the case

when d2
d1

≤ 2. We study the problem of the speed selection in the case when d2 = 0

in Chapter 4. After transforming the partial differential equations into a cooperative

system, the problem is investigated for the new system. We show that the result in [42]

does not give the value of rc, for the case when
d2
d1

≤ 2, in the Hosono’s conjecture and

the conjecture itself is not completely true. We successfully prove a modified version

of the conjecture. Estimation of the critical value is given and some new conditions

for linear or nonlinear selection are established. The previous results are presented in

detail and compared with ours.

In Chapter 5, we study the local and the global stability of the traveling wave-

front to the diffusive competition model (1.3.4) in a weighted functional space. For

the global stability, comparison principle together with the squeezing technique, as

discussed above for the Fisher-KPP equation, are applied to derive the main results.

The speed selection problem for the full system when d1, d2 > 0 is still challenging

and will be discussed in Chapter 6, the future work.
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Chapter 2

Steady-states to a Thin Film on an

Inclined Periodic Substrate

Results in Section 2.2 of this chapter have been published in the Canadian Mathemat-

ical Bulletin1. The other part has been accepted for publication in the Asymptotic

Analysis journal2.

2.1 Introduction

In literature, many studies initially dealt with the problem of a viscous liquid falling

down an inclined wall with a flat surface, where the steady-state solution and its sta-

bility characteristics were discussed numerically or theoretically. A change of flatness

in the wall surface is more reasonable in practice and this definitely affects the liquid

surface behavior. Flow over an inclined corrugated topography has a long history in

literature studies. Tougou [78], by using asymptotic analysis, derived an approximate

1Alhasanat, A. and Ou, C. H. Periodic steady-state solutions of a liquid film model via a classical
method, CMB, 2017, http://dx.doi.org/10.4153/CMB-2017-035-5.

2Alhasanat, A. and Ou, C. H. Existence and stability of the steady-state to a thin film on an
inclined periodic substrate under gravity, Asym. Anal., 2017.

http://dx.doi.org/10.4153/CMB-2017-035-5


2.1. INTRODUCTION

system up to first-order accuracy of the model based on the continuity equation and

the Navier-Stokes equation to describe the liquid flow over an uneven wall. The un-

evenness factor was included in the system and was also addressed in the stability

analysis to show its significant impact compared to the flat wall case. Wang [86]

applied the perturbation theory to study the flow at low Reynolds numbers on a

three-dimensional uneven plate with small amplitude compared to the liquid depth.

He investigated the combined effect of the plate wavelength, the inclination angle, and

the surface tension on the flow behavior of the liquid surface. Based on the analysis,

he found that the liquid surface shares the same period of the plate, while the am-

plitude and flow rate have more complicated dependency. Pozrikidis [61] investigated

creeping flow along a periodic solid wall with arbitrary geometrical shapes including

smooth boundaries and corners. The mathematical model was formulated by using

the boundary-integral method for the Stokes flow. Detailed numerical calculations

for the flow along a sinusoidal wall were performed. The results were compared to

previous studies, with an excellent agreement with the asymptotic analysis in [86] for

small amplitude wall, but no agreement was also observed in the case for low flow

rate. Shetty and Cerro [71] investigated a flow on a wall with semicircles shape. A

nonlinear equation of the motion based on the linear momentum balance equation

was derived. For small average film thickness (compared to the wall amplitude and

wavelength), they found that the film thickness agrees with the Nusselt solution for

flow over a flat surface. In the frame of Stokes equation and the continuity equation,

flow over a sinusoidal wall with small amplitude (compared to the film thickness)

was studied numerically by Bontozoglou and Papapolymerou [8]. For a wide range of

Reynolds numbers and a fixed inclination angle, they successfully calculated the res-

onance phenomenon. Trifonov in [79] investigated a flow down a vertical wall. It was

shown that the flow is controlled by the forces of surface tension for small Reynolds
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2.1. INTRODUCTION

number, and by inertia forces for large Reynolds number. For fixed wall amplitude

and wavelength, behavior of the liquid surface was studied numerically. Comparison

with experimental data was carried out. Kalliadasis et al in [35] studied the motion

of a thin viscous film flowing over a topographical feature (trench or mound) under

the action of an external body force. They applied the lubrication theory to derive

a nonlinear partial differential equation of the liquid motion. By solving this equa-

tion numerically, it has been shown that the dynamics of the film is governed by the

feature depth, feature width, and the capillary scale. Bontozoglou [7] studied flow

along large amplitude periodic wall. A numerical method was applied to extend the

resonance observed in [8]. Wierschem and Aksel [94] studied the linear stability of a

liquid film falling down an inclined wavy wall with long wavelength compared to the

film thickness. They found that the critical Reynolds number for instability is greater

than that on the flat wall. Further in [96], Wierschem et al extended the analysis

in [94] by including a missing term to the model. Perturbation theory was carried

out to analyze the film flow. Away from the singularity, they found a good agreement

between experimental results and the perturbation analysis. They also applied the

Floquet theory to study the linear stability. Trifonov in [80] followed the spirit in [79]

to study the steady-state solution of the flow and its stability on an inclined wavy

wall. Numerical method that allows to describe more complicated regimes of the flow

without asymptotic approximation was applied to find the steady-state and show the

effect of the parameter values on the stability.

Recently, Tesuilko and Blyth [82] studied the effect of inertia on a film flowing on

an uneven wall in the presence of an electric field. They investigated the flow on a wall

with small-amplitude sinusoidal corrugations, and derived a nonlinear equation for a

thin-film flow (see equation (36) in [82]). This result included the special case derived

in [84] (eq. 3.25) for a flow over a flat wall. Tseluiko et al [83] worked on the long-wave

14



2.1. INTRODUCTION

model derived in [82], assuming that the flow variation as well as the variation in the

wall shape in the flow direction are subtle. Ignoring the electric effects, they solved

the steady-state problem numerically, and applied the Floquet-Bloch theory to work

on the spectrum problem numerically.

As can be seen above, most of previous works dealt with the problem numerically

or experimentally. Analytic studies, which give more general results and deep un-

derstanding, were not widely carried out. The purpose of this work is to study the

problem with a mathematical rigor. Consider a liquid film flow over a periodic wavy

wall inclined at an angle θ to the horizontal line. Introduce the (x, y)-coordinates so

that x+-axis represents the flow direction. Let y = s(x) be the periodic function that

describes the wall topography. See Figure 2.1.

y-axis

x-axis

θ

g
wall

surface (s)

film

thickness (h)

flow direction

Figure 2.1: The representation of a thin film on a periodic uneven wall.
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The flow is governed by the partial differential equation (see [82–84])

ht + qx = 0, (2.1.1)

where h(x, t) is the dimensionless film thickness at time t and location x, and q(x, t)

is the flux rate given by

q =
2

3
h3 +

8R

15
h6hx −

2 cot(θ)

3
h3(h+ s)x +

1

3C
h3(h+ s)xxx. (2.1.2)

Here, R and C are the Reynolds and capillary numbers, respectively, which are given

in terms of the liquid density, the liquid viscosity, and the wall friction. Equation

(2.1.1) represents the conservation of mass. The first and third terms in (2.1.2) are

due to the x− and y−component of gravity, respectively, the second term represents

the inertia effects, and the fourth term is due to the surface tension (see [83]).

Throughout this chapter, we assume that the wall surface shape s(x) satisfies

|s′(x)| ≤ a1ϵ and |s′′′(x)| ≤ a2ϵ, (2.1.3)

for small positive number ϵ, and constants a1, a2. Actually, this assumption also arose

in [83], where both a sinusoidal wall with s(x) = A cos
(
πx
l

)
and a rectangular wall

with s(x) = A tanh(cos(πx
l
)/d) were considered. Here A is the amplitude, l is the

period, and d is a constant such that the smaller the value of d the steeper the wall

is. They assumed that A/l is small so that the condition (2.1.3) holds true. However,

the analysis in the present work is valid for any pattern subject to this condition.

We should mention that the rigorous proof for the existence of periodic steady

state in [82] and [83] is left open, to the best of our knowledge. Our new contribution

is proving the existence of periodic steady-states to the partial differential equations
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analytically. Based on the asymptotic solution formula, we obtain the stability con-

dition of the periodic solution via a perturbation argument in a weighted functional

space. Previously this was only carried out numerically in [83].

We study the existence of the steady-states first via a classical method. We give

the details in three cases in terms of integral equations. The result not only provides

the existence and the uniqueness of a periodic solution, but also gives a generalized

asymptotic formula. As can be seen in [25], by “classical methods in differential equa-

tions”, we mean finite dimensional methods, derived from what is called “classical

analysis”. Whereas modern applied analysis is commonly used to cast differential

equation problems (including boundary value problems) into infinite dimensional set-

tings so that degree theory or infinite-dimensional fixed point theorems can be applied

to prove the existence of solutions, “classical analysis”, in handling the same prob-

lems, often provides more information than the abstract approaches. In particular,

the “classical analysis” methods used are more likely to be constructive in some sense

and so can form the basis of numerical methods. They are sometimes more global, for

instance giving estimates of the size of a small parameter. By applying the technique

of modern functional analysis, we can also prove the existence of the steady-state in

a unified abstract method.

The rest of the chapter is organized as follows. In Section 2.2, we give the detailed

prove of the existence and the uniqueness. By this analysis we derive the asymptotic

formula of the steady-state solution. In Section 2.3, we show how to use the contrac-

tion mapping method to obtain the existence and the uniqueness in a simple fashion.

Linear stability is analytically investigated in Section 2.4, where Floquet-Bloch the-

ory is used to find the stability criteria. Conclusions and summary are presented in

Section 2.5.
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2.2 Steady-state and its Asymptotic Formula

In this section, we prove the existence and find the asymptotic formula of a periodic

steady-state solution, h(x, t) = h0(x), to (2.1.1)-(2.1.2) via a classical method. By

(2.1.2), this is equivalent to find h0(x) that solves the ordinary differential equation

qx(x, t) = q′(x) = 0 or q(x) = q0 for a constant q0 that is related to the flow flux

of the model. For convenience and without loss of generality, we choose q0 = 2/3.

Therefore, the steady-state h0(x) from equation (2.1.2) satisfies

2

3
h30 +

8R

15
h60h

′
0 −

2 cot(θ)

3
h30(h0 + s)′ +

1

3C
h30(h0 + s)′′′ =

2

3
, (2.2.1)

where prime denotes the derivative d/dx. When condition (2.1.3) holds, h0(x) = 1

is an approximation solution to (2.2.1) (for any q0, the approximation is h0(x) =

3
√

3q0/2). This suggests that h0(x) = 1 + w(x) is the exact steady-state solution to

(2.2.1), for some periodic small-amplitude function w(x) ̸= −1. Substitute it into

equation (2.2.1) and multiply the equation by 3C/h30 to get

8RC

5
(3w + 3w2 + w3)w′ +

(
8RC

5
− 2C cot(θ)

)
w′ − 2C cot(θ)s′ + w′′′ + s′′′

= 2C

[
1

(1 + w)3
− 1

]
.

By collecting the linear terms, the latter equation is equivalent to

w′′′ +

(
8RC

5
− 2C cot(θ)

)
w′ + 6Cw = F (s′, s′′′, w, w′), (2.2.2)
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where

F (s′, s′′′, w, w′)(x) = 2C cot(θ)s′(x)− s′′′(x) +
2Cw2(x)

(1 + w(x))3
[
6 + 8w(x) + 3w2(x)

]
− 8RC

5

[
3w(x) + 3w2(x) + w3(x)

]
w′(x).

Define

a :=
8RC

5
− 2C cot(θ) and b := 6C. (2.2.3)

The homogeneous part of the non-homogeneous equation (2.2.2) becomes

w′′′ + aw′ + bw = 0. (2.2.4)

To find the fundamental set of solutions for the third-order homogeneous equation

(2.2.4), which has the characteristic equation

r3 + ar + b = 0, (2.2.5)

we need the following lemma, which we will use in the stability analysis as well.

Lemma 2.2.1 (Cardano’s Formula, see [34, formulas (50)-(51), chapter 4]). The cubic

algebraic equation (2.2.5) has the roots

r1 = φ+ ψ, r2 = −1

2
(φ+ ψ) +

√
3

2
(φ− ψ)i, and r3 = −1

2
(φ+ ψ)−

√
3

2
(φ− ψ)i,

where

φ =
3

√
− b
2
+

√
b2

4
+
a3

27
and ψ =

3

√
− b
2
−
√
b2

4
+
a3

27
.

Moreover, let ∆ = b2/4 + a3/27. Then we have the following three cases:

• If ∆ = 0, then (2.2.5) has three real roots, at least two of which are equal. Here
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when a and b are not equal to 0, the number of equal roots is exactly two.

• If ∆ < 0, then (2.2.5) has three real distinct roots.

• If ∆ > 0, then (2.2.5) has a real root and two conjugate complex roots.

The three different possibilities in Lemma 2.2.1 divide our work into three subsec-

tions. In subsection 2.1, we will show the existence of the steady-state solution h0(x)

to (2.2.1) by proving the existence of a periodic solution w(x) to (2.2.2) when a and b,

defined in (2.2.3), satisfy ∆ = 0. After that, we will use the same idea in subsections

2.2 and 2.3 to prove the existence when ∆ < 0 or ∆ > 0 is satisfied.

2.2.1 The Steady-state When ∆ = 0

In the case b2/4+a3/27 = 0, a must be negative, that is, R < 5
4
cot(θ) = Rc, where Rc

is the critical Reynolds number for the flat wall. In particular, R = Rc−(15/8) 3
√
9/C.

By applying Lemma 2.2.1, the characteristic equation (2.2.5) associated to the homo-

geneous equation (2.2.4) has a simple root r = −2α, and a root of multiplicity 2,

r = α, where α = 3
√
3C. Then the fundamental set of solutions to the homogeneous

equation (2.2.4) is

{w1, w2, w3} = {e−2αx, eαx, xeαx},

with a constant Wronskian W (w1, w2, w3) = 9α2. Using the variation-of-parameters

method, the integral form of the non-homogeneous equation (2.2.2) becomes

w(x) = e−2αx

∫ x

−∞

e2αt

9α2
F (t)dt+eαx

∫ x

∞

−(3αt+ 1)e−αt

9α2
F (t)dt+xeαx

∫ x

∞

3αe−αt

9α2
F (t)dt,
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which can be further written as

w(x) =
1

9α2

∫ x

−∞
e2α(t−x)F (t)dt+

1

3α

∫ ∞

x

(t−x)e−α(t−x)F (t)dt+
1

9α2

∫ ∞

x

e−α(t−x)F (t)dt.

(2.2.6)

In order to construct a better iteration scheme for w(x) in a simple functional space

so that the estimate of the norm of the integral operator becomes affordable, we want

to remove the derivative term w′ in the right-hand side of (2.2.6) and rewrite it as a

functional of w(x) only. To do this, we substitute the formula F (t) and integrate the

w′-term by parts. The first term in the right-hand side of (2.2.6) becomes

∫ x

−∞
e2α(t−x)F (t)dt

=

∫ x

−∞
e2α(t−x)

{
2C cot(θ)s′ − s′′′ +

2Cw2

(1 + w)3
(
6 + 8w + 3w2

)}
dt

− 8RC

5

∫ x

−∞
e2α(t−x)(3w + 3w2 + w3)w′dt

=

∫ x

−∞
e2α(t−x)

{
2C cot(θ)s′ − s′′′ +

2Cw2

(1 + w)3
(
6 + 8w + 3w2

)}
dt

− 2RC

5
(w4 + 4w3 + 6w2) +

4RCα

5

∫ x

−∞
e2α(t−x)(w4 + 4w3 + 6w2)dt.

Similarly for the second and the last term, we have

∫ ∞

x

(t− x)e−α(t−x)F (t)dt

=

∫ ∞

x

(t− x)e−α(t−x)

{
2C cot(θ)s′ − s′′′ +

2Cw2

(1 + w)3
(
6 + 8w + 3w2

)}
dt

+
2RC

5

∫ ∞

x

(1− α(t− x))e−α(t−x)(w4 + 4w3 + 6w2)dt,
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and ∫ ∞

x

e−α(t−x)F (t)dt

=

∫ ∞

x

e−α(t−x)

{
2C cot(θ)s′ − s′′′ +

2Cw2

(1 + w)3
(
6 + 8w + 3w2

)}
dt

+
2RC

5
(w4 + 4w3 + 6w2)− 2RCα

5

∫ ∞

x

e−α(t−x)(w4 + 4w3 + 6w2)dt.

Now, we define functions G,H, and Q by

G(s) := 2C cot(θ)s′ − s′′′,

H(w) := 2C
w2

(1 + w)3
(6 + 8w + 3w2),

Q(w) :=
2RC

5
(w4 + 4w3 + 6w2).

(2.2.7)

Then we re-write the integral equation (2.2.6) in the form

w(x) = T0(G)(x) + T1(H)(x) + T2(Q)(x) := T (w)(x), (2.2.8)

where

T0(G)(x) =
1

9α2

∫ x

−∞
e2α(t−x)G(s(t))dt+

1

3α

∫ ∞

x

(t− x)e−α(t−x)G(s(t))dt

+
1

9α2

∫ ∞

x

e−α(t−x)G(s(t))dt,

T1(H)(x) =
1

9α2

∫ x

−∞
e2α(t−x)H(w(t))dt+

1

3α

∫ ∞

x

(t− x)e−α(t−x)H(w(t))dt

+
1

9α2

∫ ∞

x

e−α(t−x)H(w(t))dt,

T2(Q)(x) =
2

9α

∫ x

−∞
e2α(t−x)Q(w(t))dt− 1

3

∫ ∞

x

(t− x)e−α(t−x)Q(w(t))dt

+
2

9α

∫ ∞

x

e−α(t−x)Q(w(t))dt.

(2.2.9)
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To find a periodic function w(x) that satisfies equation (2.2.8), we define an iter-

ation scheme with the initial periodic function w0(x) as

w0(x) = T0(G)(x),

wn+1(x) = T (wn)(x), for n ≥ 0.

(2.2.10)

Obviously, the operator T maps a periodic function into a periodic function with the

same prime period. We shall show that the series
∑∞

n=1 (wn(x)− wn−1(x)) converges

uniformly for x in (−∞,∞). Then the required periodic solution w(x) can be obtained

by the limit

w(x) = lim
n→∞

wn(x) = w0(x) +
∞∑
i=1

(wi(x)− wi−1(x)) .

First of all, we want to estimate the initial function w0(x). Note that

|w0(x)| ≤ ∥G(s(x))∥
{

1

9α2

⏐⏐⏐⏐∫ x

−∞
e2α(t−x)dt

⏐⏐⏐⏐+ 1

3α

⏐⏐⏐⏐∫ ∞

x

(t− x)e−α(t−t)dt

⏐⏐⏐⏐
+

1

9α2

⏐⏐⏐⏐∫ ∞

x

e−α(t−x)dt

⏐⏐⏐⏐} ,
which implies

|w0(x)| ≤
1

2α3
∥G(s(x))∥,

where ∥·∥ is the maximum norm. This means that we can determine the bound of the

periodic function w0(x) by the bound of s(x), that is, for s(x) satisfying inequalities

in (2.1.3) and using the definition of G(s), we have

|w0(x)| ≤ ∥w0(x)∥ ≤ Bϵ <
1

2
, (2.2.11)

where B = 1
2α3 (2C cot(θ)a1 + a2), and ϵ is sufficiently small (less than ϵ0 below).
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Now we are ready to show the uniform convergence of the series
∑∞

n=1 (wn − wn−1).

To this end, we define the constants

M1 := sup
|w|≤ 1

2

|H ′′(w)|, M2 := sup
|w|≤ 1

2

|Q′′(w)|, (2.2.12)

M :=
1

2α3
M1 +

2

3α2
M2, β := 2MB.

We shall show that there exists a constant ϵ0 such that for 0 < ϵ < ϵ0, we have

|wn − w0| ≤ βϵ∥w0∥, n = 1, 2, 3, . . . , (2.2.13)

and

|wn − wn−1| ≤ (2βϵ)n∥w0∥, n = 1, 2, 3, . . . . (2.2.14)

Indeed, for n = 1, we use the iteration definition (2.2.10) and (2.2.8) to have

|w1 − w0| = |T (w0)− w0| ≤ |T1(H(w0))|+ |T2(Q(w0))|. (2.2.15)

Using Taylor expansion, Q(w) = Q′′(ν)w2 for ν ∈ (0, w) and |w| < 1
2
. This implies

∥Q(w0)∥ ≤M2∥w0∥2. (2.2.16)

Similarly,

∥H(w0)∥ ≤M1∥w0∥2. (2.2.17)

By using (2.2.9), (2.2.16), and (2.2.17) in (2.2.15) yields

|w1 − w0| ≤M∥w0∥2. (2.2.18)
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Hence, from inequality (2.2.11), we have

|w1 − w0| ≤MBϵ∥w0∥ ≤ βϵ∥w0∥,

which proves that inequalities (2.2.13) and (2.2.14) hold for n = 1. To complete our

argument, we assume, by induction, that inequalities (2.2.13) and (2.2.14) are true

for n = k. This gives |wk| ≤ (1+βϵ)Bϵ ≤ 1
2
as long as ϵ < ϵ0 for a given small ϵ0. We

need to show that both of (2.2.13) and (2.2.14) hold true for n = k + 1. Actually we

have

|wk+1 − w0| = |T (wk)− w0|

≤ |T1(H(wk))|+ |T2(Q(wk))|

≤M∥wk∥2 similar to (2.2.18)

≤M(1 + βϵ)2∥w0∥2 from our assumption

≤ BM(1 + βϵ)2ϵ∥w0∥ using (2.2.11)

≤ βϵ∥w0∥.

This implies that the inequality (2.2.13) is satisfied for all n. Here, we have assumed

that ϵ is sufficiently small so that (1+ βϵ)2 ≤ 2 for ϵ < ϵ0. For inequality (2.2.14), we

have

|wk+1 − wk| = |T (wk)− T (wk−1)|

≤ |T1(H(wk)−H(wk−1))|+ |T2(Q(wk)−Q(wk−1))|.
(2.2.19)

By the Mean Value Theorem, for 0 ≤ θ ≤ 1, we get

∥Q(wk)−Q(wk−1)∥ ≤ ∥Q′(θwk + (1− θ)wk−1)∥ · ∥wk − wk−1∥

= ∥Q′′(ν)∥ · ∥θwk + (1− θ)wk−1∥ · ∥wk − wk−1∥ for some ν

≤M2(1 + βϵ)∥w0∥ · ∥wk − wk−1∥,
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and similarly,

∥H(wk)−H(wk−1)∥ ≤M1(1 + βϵ)∥w0∥ · ∥wk − wk−1∥.

Hence, inequality (2.2.19) implies

|wk+1 − wk| ≤M(1 + βϵ)∥w0∥∥wk − wk−1∥

≤M(1 + βϵ)(2βϵ)k∥w0∥2

≤MBϵ(1 + βϵ)(2βϵ)k∥w0∥

≤ (2βϵ)k+1∥w0∥,

which proves that inequality (2.2.14) is true for all n. By the well-known Weierstrass

M-test, series

w0(x) +
∞∑
n=1

(wn(x)− wn−1(x))

is uniformly convergent for x ∈ (−∞,∞). Consequently, we have the following theo-

rem.

Theorem 2.2.1. Assume that a and b, defined in (2.2.3), satisfy b2/4 + a3/27 = 0.

There exists a small ϵ0 such that for ϵ < ϵ0, (2.2.1) has a solution h0(x) = 1 +

w(x), where w(x) is a solution of the differential equation (2.2.2) with the asymptotic

expansion

w(x) = w0(x) +
∞∑
n=1

(wn(x)− wn−1(x)) ,

and wn(x), n = 0, 1, 2, . . . , are defined in (2.2.10).

Remark 2.2.1. Based on (2.2.13) and (2.2.14), Theorem 2.1 also provides a gener-

alized asymptotic expansion to the periodic steady-state solution.
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2.2.2 The Steady-state When ∆ < 0

In this subsection, we shall study the existence of periodic steady-state in the case

b2/4 + a3/27 < 0. The fundamental set of solutions to the homogeneous equation

(2.2.4), in this case, is {w1, w2, w3} = {er1x, er2x, er3x}, where r1, r2, and r3 are the

real distinct roots of the characteristic equation (2.2.5) defined in Lemma 2.2.1, with

a constant Wronskian

Ŵ := W (w1, w2, w3) = r2r3(r3 − r2)− r1r3(r3 − r1) + r1r2(r2 − r1).

Note that, when ∆ < 0, we have r1 < 0 and r2, r3 > 0. Then using the variation-

of-parameters method, we have the following integral form of the non-homogeneous

differential equation (2.2.2):

w(x) = C1

∫ x

−∞
e−r1(t−x)F (t)dt+ C2

∫ ∞

x

e−r2(t−x)F (t)dt+ C3

∫ ∞

x

e−r3(t−x)F (t)dt,

(2.2.20)

where

C1 =
r3 − r2

Ŵ
, C2 =

r3 − r1

Ŵ
, and C3 =

−(r2 − r1)

Ŵ
.

Substitute F (t) and integrate the w′-term by parts to have

∫ x

−∞
e−r1(t−x)F (t)dt

=

∫ x

−∞
e−r1(t−x)

{
2C cot(θ)s′ − s′′′ +

2Cw2

(1 + w)3
(
6 + 8w + 3w2

)}
dt

− 2RC

5
(w4 + 4w3 + 6w2)− 2RCr1

5

∫ x

−∞
e−r1(t−x)(w4 + 4w3 + 6w2)dt
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and ∫ ∞

x

e−ri(t−x)F (t)dt

=

∫ ∞

x

e−ri(t−x)

{
2C cot(θ)s′ − s′′′ +

2Cw2

(1 + w)3
(
6 + 8w + 3w2

)}
dt

+
2RC

5
(w4 + 4w3 + 6w2)− 2RCri

5

∫ ∞

x

e−ri(t−x)(w4 + 4w3 + 6w2)dt,

for i = 2, 3. In terms of G(s), H(w), and Q(w) defined in (2.2.7), the integral equation

(2.2.20) can be written in the form

w(x) = T̂0(G)(x) + T̂1(H)(x) + T̂2(Q)(x) := T̂ (w)(x), (2.2.21)

where

T̂0(G)(x) = C1

∫ x

−∞
e−r1(t−x)G(s(t))dt+

3∑
i=2

Ci

∫ ∞

x

e−ri(t−x)G(s(t))dt,

T̂1(H)(x) = C1

∫ x

−∞
e−r1(t−x)H(w(t))dt+

3∑
i=2

Ci

∫ ∞

x

e−ri(t−x)H(w(t))dt,

and

T̂2(Q)(x) = −C1r1

∫ x

−∞
e−r1(t−x)Q(w(t))dt−

3∑
i=2

Ciri

∫ ∞

x

e−ri(t−x)Q(w(t))dt.

Similar to the previous subsection, we define an iteration scheme

ŵ0(x) = T̂0(G)(x),

ŵn+1(x) = T̂ (ŵn)(x), for n ≥ 0,

(2.2.22)
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and later use the following constants:

B̂ := (2C cot(θ)a1 + a2)
3∑

i=1

⏐⏐⏐⏐Ci

ri

⏐⏐⏐⏐ ,
M̂ :=M1

3∑
i=1

⏐⏐⏐⏐Ci

ri

⏐⏐⏐⏐+M2

3∑
i=1

|Ci|,

β̂ := 2M̂B̂,

where M1 and M2 are the same as those in (2.2.12). The operator T̂ maps periodic

functions into periodic functions. Then we can apply the same technique used in the

previous subsection to show that, there exists an ϵ0 > 0 such that for sufficiently small

ϵ < ϵ0, the inequalities

|ŵ0| ≤ B̂ϵ,

|ŵn − ŵ0| ≤ β̂ϵ∥ŵ0∥, n = 1, 2, 3, . . . ,

and

|ŵn − ŵn−1| ≤ (2β̂ϵ)n∥ŵ0∥, n = 1, 2, 3, . . .

hold. Hence, the Weierstrass M-test implies that series

ŵ0(x) +
∞∑
n=1

(ŵn(x)− ŵn−1(x))

is uniformly convergent for x ∈ (−∞,∞). Then the following result is valid:

Theorem 2.2.2. Assume that a and b, defined in (2.2.3), satisfy b2/4 + a3/27 < 0.

There exists a constant ϵ0 > 0 such that for ϵ < ϵ0, (2.2.1) has a periodic solution

h0(x) = 1 + w(x), where w(x) is a solution of the differential equation (2.2.2) with
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the asymptotic expansion

w(x) = ŵ0(x) +
∞∑
n=1

(ŵn(x)− ŵn−1(x)) ,

and ŵn(x), n = 0, 1, 2, . . . , are defined in (2.2.22).

2.2.3 The Steady-state When ∆ > 0

When ∆ > 0, Lemma 2.2.1 implies that the characteristic equation (2.2.5), associated

to the homogeneous equation (2.2.4), has a real root r and two complex conjugate

roots u ± iv, where r, u, and v can be defined in terms of φ and ψ in Lemma 2.2.1.

The fundamental set of solutions is {w1, w2, w3} = {erx, eux cos(vx), eux sin(vx)}, with

a constant Wronskian

W := W (w1, w2, w3) = v(2r2 + u2 + v2).

Note that, since b > 0, we have r < 0 and u > 0, with r+2u = 0. Hence, the integral

form of the differential equation (2.2.2), in this case, is

w(x) = erx
∫ x

−∞

W1(t)

W
F (t)dt+ eux cos(vx)

∫ x

∞

W2(t)

W
F (t)dt

+ eux sin(vx)

∫ x

∞

W3(t)

W
F (t)dt,

where

W1(t) = ve−rt, W2(t) = −[(u− r) sin(vt) + v cos(vt)]e−ut,

W3(t) = [(u− r) cos(vt)− v sin(vt)]e−ut.
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This integral form can be written as

w(x) =
v

W

∫ x

−∞
e−r(t−x)F (t)dt+

∫ ∞

x

g(x, t)e−u(t−x)F (t)dt, (2.2.23)

where g(x, t) is given by

g(x, t) =
1

W
[(u− r) sin(v(t− x)) + v cos(v(t− x))] .

We write the integrals in (2.2.23) as

v

W

∫ x

−∞
e−r(t−x)F (t)dt

=
v

W

∫ x

−∞
e−r(t−x)

{
2C cot(θ)s′ − s′′′ +

2Cw2

(1 + w)3
(
6 + 8w + 3w2

)}
dt

− 2RCv

5W
(w4 + 4w3 + 6w2)− 2RCrv

5W

∫ x

−∞
e−r(t−x)(w4 + 4w3 + 6w2)dt,

and

∫ ∞

x

g(x, t)e−u(t−x)F (t)dt

=

∫ ∞

x

e−u(t−x)g(x, t)

{
2C cot(θ)s′ − s′′′ +

2Cw2

(1 + w)3
(
6 + 8w + 3w2

)}
dt

+
2RCv

5W
(w4 + 4w3 + 6w2)

+
2RC

5

∫ ∞

x

[gt(x, t)− ug(x, t)]e−u(t−x)(w4 + 4w3 + 6w2)dt.

From this, the formula of w(x) in (2.2.23) can be expressed as

w(x) = T0(G)(x) +T1(H)(x) +T2(Q)(x) := T(w)(x),
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where G(s), H(w), and Q(w) are defined in (2.2.7), and

T0(G)(x) =
v

W

∫ x

−∞
e−r(t−x)G(s(t))dt+

∫ ∞

x

g(x, t)e−u(t−x)G(s(t))dt,

T1(H)(x) =
v

W

∫ x

−∞
e−r(t−x)H(w(t))dt+

∫ ∞

x

g(x, t)e−u(t−x)H(w(t))dt,

T2(Q)(x) = −vr
W

∫ x

−∞
e−r(t−x)Q(w(t))dt+

∫ ∞

x

[gt(x, t)− ug(x, t)]e−u(t−x)Q(w(t))dt.

Similar to the previous cases, we define an iteration scheme, for this case, as

w0(x) = T0(G)(x),

wn+1(x) = T(wn)(x), for n ≥ 0.

(2.2.24)

Then we can show that, there exists an ϵ0 > 0 such that for ϵ < ϵ0, the inequalities

|w0| ≤Bϵ,

|wn −wn−1| ≤ βϵ∥w0∥,

and

|wn −wn−1| ≤ (2βϵ)n∥w0∥, n = 1, 2, 3, . . . ,

hold, where

B = (2C cot(θ)a1 + a2)

{⏐⏐⏐ v
rW

⏐⏐⏐+ ∥g∥
|u|

}
,

M :=M1

{⏐⏐⏐ v
rW

⏐⏐⏐+ ∥g∥
|u|

}
+M2

{⏐⏐⏐ v
W

⏐⏐⏐+ ∥gt∥
|u|

+ ∥g∥
}
,

and

β := 2MB,

with the same constants M1 and M2 defined in (2.2.12). Note that g and gt are
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bounded and satisfy

∥g∥ ≤ 1

|W|
(|u− r|+ |v|), ∥gt∥ ≤

⏐⏐⏐ v
W

⏐⏐⏐ (|u− r|+ |v|).

Then, the uniform convergence of

w0(x) +
∞∑
n=1

(wn(x)−wn−1(x))

is confirmed for x ∈ (−∞,∞). Hence, we obtain

Theorem 2.2.3. Assume that a and b, defined in (2.2.3), satisfy b2/4 + a3/27 >

0. There exists an ϵ0 > 0 such that for ϵ < ϵ0, (2.2.1) has a periodic solution

h0(x) = 1 + w(x), where w(x) is a solution of the differential equation (2.2.2) with

the asymptotic expansion

w(x) =w0(x) +
∞∑
n=1

(wn(x)−wn−1(x)) ,

and wn(x), n = 0, 1, 2, . . . , are defined in (2.2.24).

2.3 The Existence of the Steady-state by an Ab-

stract Method

We are wondering if we can study the existence and the uniqueness of the solution

w(x) to the ordinary differential equation (2.2.2) in a unified method. Actually, this

can be done by writing the ordinary differential equation in a new form so that the

characteristic equation corresponding to the homogeneous part has three distinct real

roots, that is, a unique solution expression. This allows to write the problem in a fixed

point problem form. Then we can use the contraction mapping theorem together with
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the fixed point theorem to get the desired result in a simple fashion. The new form

of (2.2.2) is

w′′′ − 3w′ + w = −(a+ 3)w′ − (b− 1)w + F. (2.3.1)

Similar to the integral formula (2.2.20), the characteristic equation r3 − 3r + 1 = 0

corresponding to the homogeneous part of (2.3.1) has three distinct real roots, ρ1 <

0, 0 < ρ2 < 1, and ρ3 > 1. Then w′′′−3w′+w = 0 has the fundamental set of solutions

{w1, w2, w3} = {eρ1x, eρ2x, eρ3x}, with

W := Wronskain(w1, w2, w3) = ρ2ρ3(ρ3 − ρ2) + ρ1ρ3(ρ1 − ρ3) + ρ1ρ2(ρ2 − ρ1).

Hence, one can get the integral form of the non-homogeneous differential equation

(2.3.1) as follows

w(x) =B1

∫ x

−∞
eρ1(x−t){−(a+ 3)w′(t)− (b− 1)w(t) + F (t)}dt

+B2

∫ ∞

x

eρ2(x−t){−(a+ 3)w′(t)− (b− 1)w(t) + F (t)}dt

+B3

∫ ∞

x

eρ3(x−t){−(a+ 3)w′(t)− (b− 1)w(t) + F (t)}dt,

where

B1 =
ρ3 − ρ2
W

, B2 =
ρ3 − ρ1
W

, and B3 =
−(ρ2 − ρ1)

W
.

We write this integral form as

L(w) = N(w), (2.3.2)
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where the linear operator L(w) and the nonlinear operator N(w) are defined by

L(w)(x) =w(x)−B1

∫ x

−∞
eρ1(x−t){−(a+ 3)w′(t)− (b− 1)w(t)}dt

−B2

∫ ∞

x

eρ2(x−t){−(a+ 3)w′(t)− (b− 1)w(t)}dt

−B3

∫ ∞

x

eρ3(x−t){−(a+ 3)w′(t)− (b− 1)w(t)}dt,

(2.3.3)

and

N(w)(x) = B1

∫ x

−∞
eρ1(x−t)F (t)dt+B2

∫ ∞

x

eρ2(x−t)F (t)dt+B3

∫ ∞

x

eρ3(x−t)F (t)dt.

Note that if w ∈ C1
p [0, l], then L(w) ∈ C1

p [0, l], where C1
p [0, l] is the space of all

l−periodic functions with continuous derivatives, with the norm defined by

∥φ∥ = ∥φ∥∞ + ∥φ′∥∞.

Similar to that in (2.2.21), we substitute the formula F (t) and integrate the w′-

term by parts so that the integral operator N(w) become a functional of w(x) only.

By this and using the same functions G,H, and Q, defined in (2.2.7), the nonlinear

operator N can be written in the form

N = N0(s) +N1(w),
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where N0(s) and the remainder part N1 are given by

N0(s)(x) =B1

∫ x

−∞
eρ1(x−t)G(s(t))dt+

3∑
i=2

Bi

∫ ∞

x

eρi(x−t)G(s(t))dt,

N1(w)(x) =B1

∫ x

−∞
eρ1(x−t)H(w(t))dt+

3∑
i=2

Bi

∫ ∞

x

eρi(x−t)H(w(t))dt

−B1ρ1

∫ x

−∞
eρ1(x−t)Q(w(t))dt−

3∑
i=2

Biρi

∫ ∞

x

eρi(x−t)Q(w(t))dt.

The following lemmas give the estimations of integrals in N(w).

Lemma 2.3.1. We have ∥N0(s)∥ ≤ O(ϵ).

Proof. In veiw of definition of N0(G), we need to prove that

⏐⏐⏐⏐B1

∫ x

−∞
eρ1(x−t)dt+B2

∫ ∞

x

eρ2(x−t)dt+B3

∫ ∞

x

eρ3(x−t)dt

⏐⏐⏐⏐ = O(1),

which is readily satisfied. Since s(x) satisfies relation (2.1.3), we then have ∥N0(G)∥ ≤

O(ϵ).

Lemma 2.3.2. For each δ, there is a σ such that

∥N1(ψ)−N1(φ)∥ ≤ δ∥ψ − φ∥ (2.3.4)

uniformly for all ψ, φ ∈ C1
p [0, l] with ∥ψ∥ ≤ σ < 1/2, ∥φ∥ ≤ σ < 1/2.

Proof. From definition of H(w) and Q(w) in (2.2.7), we have ∥H(w)∥ = O(∥w∥2) and

∥Q(w)∥ = O(∥w∥2), for ∥w∥ ≤ σ ≤ 1/2. Then estimation (2.3.4) follows.

Now we state and prove the main result of this section.

Theorem 2.3.1. There exists a constant ϵ0 > 0 such that for small ϵ < ϵ0, the

non-homogeneous equation (2.2.2) has a unique periodic solution w ∈ C1
p [0, l].
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Proof. We write the proof in four steps:

Step 1. Define an operator χ : Y ∈ C3
p [0, l] → C3

p [0, l] by

χ(Y )(x) = Y ′′′(x) + aY ′(x) + bY (x).

Then the adjoint operator of χ(Y ) = 0 is given by χ∗(Z) = 0, where χ∗ is defined by

χ∗(Z)(x) = −Z ′′′(x)− aZ ′(x) + bZ(x).

It is obvious that χ∗(Z) = 0 has only zero periodic solution. By Fredholm theory (see

Lemma 4.2 in [60]), χ(Y ) = f has a unique solution for any f ∈ C1
p [0, l].

Step 2. We define a linear operator L : C1
p [0, l] → C1

p [0, l] by (2.3.3), and prove

that it is onto, that is, for any f̄ ∈ C1
p [0, l], equation

w(x) =B1

∫ x

−∞
eρ1(x−t){−(a+ 3)w′(t)− (b− 1)w(t)}dt

−B2

∫ ∞

x

eρ2(x−t){−(a+ 3)w′(t)− (b− 1)w(t)}dt

−B3

∫ ∞

x

eρ3(x−t){−(a+ 3)w′(t)− (b− 1)w(t)}dt = f̄(x)
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has a solution w ∈ C1
p [0, l]. Indeed, assume that u = w − f̄ and substitute it to get

u(x)−B1

∫ x

−∞
eρ1(x−t){−(a+ 3)u′(t)− (b− 1)u(t)}dt

−B2

∫ ∞

x

eρ2(x−t){−(a+ 3)u′(t)− (b− 1)u(t)}dt

−B3

∫ ∞

x

eρ3(x−t){−(a+ 3)u′(t)− (b− 1)u(t)}dt

=B1

∫ x

−∞
eρ1(x−t){−(a+ 3)f̄ ′(t)− (b− 1)f̄(t)}dt

+B2

∫ ∞

x

eρ2(x−t){−(a+ 3)f̄ ′(t)− (b− 1)f̄(t)}dt

+B3

∫ ∞

x

eρ3(x−t){−(a+ 3)f̄ ′(t)− (b− 1)f̄(t)}dt,

which is equivalent to

u′′′(x) + au′(x) + bu(x) = −(a+ 3)f̄ ′(x)− (b− 1)f̄(x) := f̂(x).

By step 1 and since f̂ ∈ C1
p [0, l] then u ∈ C1

p [0, l], which implies that w = u + f̄ ∈

C1
p [0, l].

Step 3. We claim that L is a one-to-one operator. Indeed, if L(w1) = L(w2) for

periodic functions w1, w2 ∈ C1
p [0, l], then L(w1 − w2) = 0. Since χ(w) = 0 has only

zero periodic solution, then so is L(w) = 0, which gives that w1 = w2. By the Banach

Inverse Operator Theorem [49, pp. 149], L−1 : C1
p [0, l] → C1

p [0, l] is a linear bounded

operator.

Step 4. Since ∥L−1∥ is independent of ϵ, it follows from lemmas 2.3.1 and 2.3.2 that,

there exists a constant ϵ0 > 0 such that for ϵ < ϵ0, we have σ = σ(ϵ) > 0, δ = δ(ϵ) > 0,

and 0 < ν(ϵ) < 1 satisfying, for w, φ, ψ ∈ B(σ),

∥L−1N(w)∥ ≤ 1

3
(∥w∥+ σ),
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and

∥L−1N(φ)− L−1N(ψ)∥ ≤ ν∥φ− ψ∥,

where B(σ) is a ball in C1
p [0, l] with radius σ and center at origin. Consequently,

L−1N is a contractive mapping for w ∈ B(σ) and, by the Contractive Fixed Point

Theorem (e.g. [11, pp. 177]), equation (2.3.2) has a unique periodic solution in the

ball B(σ) in C1
p [0, l], which is the desired result.

2.4 Stability Analysis

In this section, we study the linear stability of the steady-state solution h0(x), founded

in Sections 2.2-2.3. For this purpose, we add a small perturbation to h0(x), and study

the behavior of the solution when t becomes very large. We say that h0(x) is stable

if this perturbation decays when t→ ∞, and unstable if it grows when t→ ∞. This

perturbation is written in the form δ1φ(x)e
λt, where δ1 ≪ 1, φ(x) ∈ L2(R), and λ is a

parameter. Thus, we write

h(x, t) = h0(x) + δ1φ(x)e
λt. (2.4.1)

By this ansatz, if any value of λ lies in the right-half complex plane, then h0(x) is

unstable, while if all λ lie in the left-half complex plane, then the perturbation term

δ1φ(x)e
λt decays exponentially and h0(x) is stable.

Substituting (2.4.1) into the problem (2.1.1) and linearizing the equation give

Lφ = −λφ, (2.4.2)
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where the differential operator L is defined by

Lφ =
d

dx

[
2h20φ+

8R

15

(
h60φ

′ + 6h50φh
′
0

)
−2 cot(θ)

3

(
h30φ

′ + 3h20φ(h
′
0 + s′)

)
+

1

3C

(
h30φ

′′′ + 3h20φ(h
′′′
0 + s′′′)

)]
.

To study the stability analytically, we introduce a weighted functional space L2
η,

L2
η(R) = {u(x) : eηxu(x) is in L2(R)},

with the norm defined by

∥u(x)∥2η =
∫ ∞

−∞
|eηxu(x)|2 dx,

where η is a real number. Then, we consider L on the new space L2
η(R) and find its

spectrum. Since φ in the space is not periodic and all coefficients in equation (2.4.2)

are periodic, we incorporate the Floquet-Bloch theory. For this purpose, we assume

φ(x) = e(ik−η)xg(x),

where g(x) is an l-periodic function and k ∈ [−π/l, π/l] is called the Bloch wave-

number. Equation (2.4.2) reads

Lk
ηg := e−(ik−η)xL(e(ik−η)xg) = −λg. (2.4.3)

The spectrum of L is the union of all point spectra of Lk
η when k varies in the interval

from −π/l to π/l.

Now, we use an asymptotic approach to find leading terms of λ. We know that
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h0(x), s
′(x), and s′′′(x) can be written in the forms

h0(x) = 1 + ϵh0,1(x) + ϵ2h0,2(x) + . . . ,

s′(x) = ϵs′1(x) + ϵ2s′2(x) + . . . ,

s′′′(x) = ϵ3s′′′3 (x) + . . . .

(2.4.4)

Then we set λ and g as

λ = λ0 + ϵλ1 + ϵ2λ2 + . . . ,

g = g0 + ϵg1 + ϵ2g2 + . . . ,

(2.4.5)

and determine the sign of the real part of λ0. Substitute (2.4.4) and (2.4.5) into (2.4.3)

and equate O(1) terms to get the following differential equation

−3Cλ0g0(x)

=[(ik − η)4g0(x) + 4(ik − η)3g′0(x) + 6(ik − η)2g′′0(x) + 4(ik − η)g′′′0 (x) + g
(4)
0 (x)]

+ a[(ik − η)2g0(x) + 2(ik − η)g′0(x) + g′′0(x)] + b[(ik − η)g0(x) + g′0(x)],

(2.4.6)

where a and b are defined in (2.2.3), with the periodic boundary conditions

g
(m)
0 (0) = g

(m)
0 (l), m = 0, 1, 2, 3. (2.4.7)

g
(m)
0 (x) denotes the mth derivative of g0 at x with g

(0)
0 is g0 itself. Periodic solutions

to the BVP (2.4.6)-(2.4.7) can be expressed in the form g0(x) = erx, where r ∈ C is

a purely imaginary number having the form r = ωi for the real number ω = 2nπ
l
, n =

0, 1, 2, . . . . Hence, by letting λ0 = λ0,R + iλ0,I , we find from (2.4.6) that λ0,R and λ0,I
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satisfy

− 3Cλ0,R(q) = q4 − (6η2 + a)q2 + η4 + aη2 − bη, (2.4.8)

− 3Cλ0,I(q) = 4ηq3 + (b− 2aη − 4η3)q, (2.4.9)

where q = (k + ω) ∈ [−π/l,∞). When k varies from −π/l to π/l, and ω ∈

{0, 2π/l, 4π/l, ...}, we determine the maximal real part of the spectrum, i.e, λ0,R(p)

for some value of p ∈ [−π/l,∞), so that λ0,R(p) ≥ λ0,R(q) for all q ∈ [−π/l,∞). Since

this maximization depends on the sign of 6η2+a, we shall study the stability in terms

of the following two cases.

2.4.1 Stability of the Periodic Steady-state When a ≤ −6η2

For a ≤ −6η2, the right-hand side of (2.4.8) has its minimum when q = 0, where k = 0

and n = 0 are the values satisfying this minimization, which in turn means that the

maximal real part of the spectrum is λ0(0). Hence, we have the following theorem.

Theorem 2.4.1. Assume a ≤ −6η2 and η4 + aη2 − bη ̸= 0.

(i) If b2/4 + a3/27 ≤ 0, then the steady-state solution h0(x) is stable when η ∈

(−∞, η3) ∪ (η2, 0) ∪ (η1,∞), and unstable when η ∈ (η3, η2) ∪ (0, η1), where ηi,

for i = 1, 2, 3, are solutions of η3 + aη − b = 0, and defined in Lemma 2.2.1

(equal to ri by replacing −b with b).

(ii) If b2/4 + a3/27 > 0, then the steady-state solution h0(x) is stable when η ∈

(−∞, 0) ∪ (η1,∞), and unstable when η ∈ (0, η1).

Proof. The maximal real part of the spectrum, λ0,R(0), satisfies

−3Cλ0,R(0) = η4 + aη2 − bη := F1(η, a, b).
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η
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,η
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Figure 2.2: The sign of F1(η, a, b) and the stability/instability intervals provided in
Theorem 2.4.1, where S: stable and U: unstable.

Therefore, we use Lemma 2.2.1 to solve F1(η, a, b) = 0:

(i) if b2/4 + a3/27 ≤ 0, then there exist four real solutions to F1(η, a, b) = 0 for

η, which are η1 > 0, η0 = 0, η2, η3 < 0 (we may have η2 = η3). Noting that

F1(0
+, a, b) < 0 and F1(0

−, a, b) > 0, we find that F1(η, a, b) > 0 for η ∈

(−∞, η3) ∪ (η2, 0) ∪ (η1,∞), and F1(η, a, b) < 0 for η ∈ (η3, η2) ∪ (0, η1). This

implies that λ0,R(0) < 0 and h0(x) is a stable steady-state solution, for η ∈

(−∞, η3) ∪ (η2, 0) ∪ (η1,∞). Also, λ0,R(0) > 0 and h0(x) is unstable, for η ∈

(η3, η2) ∪ (0, η1).

(ii) if b2/4 + a3/27 > 0, then there exist two real solutions η = η0 and η = η1 to

F1(η, a, b) = 0 with η1 > 0 and η0 = 0. The periodic steady-state is stable for

η ∈ (−∞, 0) ∪ (η1,∞), and unstable for η ∈ (0, η1).

Figure 2.2 shows the sign of F1 around its zeros and the stability intervals.

So far, we have studied the stability when a ≤ −6η2 for all possible values of η

except for any value when F1 = 0, where, from (2.4.8) and (2.4.9), the value of λ0(0)

43



2.4. STABILITY ANALYSIS

is 0. Hence, we need to find one correction term λ1(0) to determine the stability for

these special cases.

By substituting (2.4.4)-(2.4.5) into (2.4.3) and using k = 0, ω = 0 (g0(x) = 1), and

F1 = 0, we get the BVP

L1g1 = −3C

[
λ1(0) + eηx

d

dx

(
e−ηxU1(x)

)]
,

g
(m)
1 (0) = g

(m)
1 (l), m = 0, 1, 2, 3,

(2.4.10)

where

L1g1 = g
(4)
1 − 4ηg′′′1 + (6η2 + a)g′′1 − (4η3 + 2aη)g′1,

U1(x) = 4h0,1 +
16R

5
(−ηh0,1 + h′0,1)− 2 cot(θ)(−ηh0,1 + h′0,1 + s′1) +

1

C
(h′′′0,1 − η3h0,1).

To find the formula for λ1, we define an adjoint problem from (2.4.10) by

L∗
1u :=u(4) + 4ηu′′′ + (6η2 + a)u′′ + (4η3 + 2aη)u′ = 0,

u(m)(0) = u(m)(l), m = 0, 1, 2, 3,

where any constant solves this adjoint problem. Thus we take u = 1. Multiplying

(2.4.10) by u = 1 and integrating from 0 to l give

∫ l

0

1 · L1g1dx = 0 =⇒ λ1(0) =
1

l

∫ l

0

ηU1(x)dx.

Here, we have made use of the technique of integration by parts. To simplify the last
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integral, let

h0,1(x) = α0 +
∞∑

m=1

αm cos

(
2mπx

l

)
+

∞∑
m=0

βm sin

(
2mπx

l

)
,

s′1(x) = γ0 +
∞∑

m=1

γm cos

(
2mπx

l

)
+

∞∑
m=0

ζm sin

(
2mπx

l

)

be the Fourier series of h0,1(x) and s
′
1(x), where

α0 =
1

l

∫ l

0

h0,1(x)dx, γ0 =
1

l

∫ l

0

s′1(x)dx,

αm =
2

l

∫ l

0

h0,1(x) cos

(
2mπx

l

)
dx, γm =

2

l

∫ l

0

s′1(x) cos

(
2mπx

l

)
dx,

βm =
2

l

∫ l

0

h0,1(x) sin

(
2mπx

l

)
dx, ζm =

2

l

∫ l

0

s′1(x) sin

(
2mπx

l

)
dx,

i.e., α0 and γ0 are the periodic constant part of h0,1(x) and s
′
1(x), respectively. Recall

that, from (2.2.2), h0,1(x) and s
′
1(x) satisfy

h′′′0,1 + ah′0,1 + bh0,1 = 2C cot(θ)s′1.

Integrating from 0 to l gives bα0 = 2C cot(θ)γ0 or γ0 =
3

cot(θ)
α0. Then the formula for

λ1(0) is given by

λ1(0) = ηα0

(
2η cot(θ)− 2− 16R

5
η − 1

C
η3
)
. (2.4.11)

λ1(0) depends on the shape of the wall surface topography s(x), so that when

(2.4.11) is not equal to zero, the stability can be determined by λ1(0); otherwise same

steps can be repeated to find the formula for λ2(0), which depends on s(x) as well.

Note that we get λ(0) = 0, i.e., λi(0) = 0 for all i = 1, 2, 3, . . . when η = 0. This

means the neutral stability in this case. We summarize these results in the following

45



2.4. STABILITY ANALYSIS

theorem.

Theorem 2.4.2. Assume a ≤ −6η2.

(i) When η = 0, we have λ(0) = 0 and the steady-state h0(x) is neutrally stable.

(ii) When η = η1, η2, or η3, the steady-state solution h0(x) is stable if λ1(0) < 0,

and unstable if λ1(0) > 0, where λ1(0) is defined in (2.4.11).

2.4.2 Stability of the Periodic Steady-state When a > −6η2

It is easy to verify that, when 6η2+ a is positive, the right-hand side of (2.4.8) has its

minimum when

q = p, where p2 =
6η2 + a

2
.

Note that values of k and ω can be determined uniquely to satisfy this minimization.

Then the maximal spectrum, in this case, becomes λ0(p). Substituting this into

(2.4.8)-(2.4.9) yields

−3Cλ0,R(p) = −8η4 − 2aη2 − bη − a2

4
:= F2(η, a, b),

−3Cλ0,I(p) = ±(b+ 8η3)

√
6η2 + a

2
:= ∓3Cµ.

To find the stability conditions, we define

η− := − 3

√
b

4
, η+ := − 3

√
b

5
, a− := −4η2 −

√
−4η(4η3 + b), and

a+ := −4η2 +
√

−4η(4η3 + b),

(2.4.12)

and present our main result in the following theorem.

Theorem 2.4.3. When a > −6η2, we have the following cases:
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(i) If η is given in the interval η ≤ η− or η ≥ 0, then the steady-state h0(x) is

unstable for all a ∈ (−6η2,∞)− {a±}.

(ii) If η is given in the interval η− < η < 0, then the steady-state h0(x) is stable

when a ∈ (max{a−,−6η2}, a+), and unstable otherwise.

Figure 2.3 summarizes the regions in Theorem 2.4.3.

η

a

a = −6η2

a+

a−

η−

Stable

Untable

Figure 2.3: Stability/instability regions for the film flow provided in Theorem 2.4.3.

Proof. Equation F2(η, a, b) = 0 is equivalent to

a2 + 8η2a+ 4bη + 32η4 = 0, (2.4.13)

which has solutions at a = a±, where a± are defined in (2.4.12).

For η ≤ η− or η ≥ 0, there is no real solutions to (2.4.13), that is, F2(η, a, b) does

not change its sign from negativity, then λ0,R(p) > 0 and the steady-state solution is

unstable. For η = 0 or η−, we need to exclude a±. This gives the proof of part (i).
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For η− < η < 0, F2(η, a, b) changes its sign at a = a± and

F2(η, a, b)

⎧⎪⎨⎪⎩
> 0 when a ∈ (a−, a+),

< 0 when a ∈ (−∞, a−) ∪ (a+,∞).

To complete our proof, we connect these regions with the main condition a > −6η2.

When η− < η < 0, we have a+ > −6η2, but the branch a = a− intersects a = −6η2

only at η = η+ > η−, where a− > −6η2 when η < η+. Then, case (ii) can be easily

verified.

At a = a±, we have λ0(p) = ±iµ. Since the real part of the leading term of λ(p)

is zero, we need to find the formula for λ1(p). From substituting (2.4.4)-(2.4.5) into

(2.4.3), we have

L2g1 = −3C

[
λ1(p)g0(x) + e−(ik−η)x d

dx

(
e(ip−η)xU2(x)

)]
,

g
(m)
1 (0) = g

(m)
1 (l), m = 0, 1, 2, 3,

(2.4.14)

with

L2g1 = g
(4)
1 + A1g

′′′
1 + A2g

′′
1 + A3g

′
1 + A4g1,

U2(x) = 4h0,1 +
16R

5

[
(ip− η)h0,1 + h′0,1

]
− 2 cot(θ)

[
(ip− η)h0,1 + h′0,1 + s′1

]
+

1

C

[
(ip− η)3h0,1 + h′′′0,1

]
,

where Ai, i = 1, . . . , 4 are given by

A1 = 4(ik − η), A2 = 6(ik − η)2,

A3 = 4(ik − η)3 + 2a(ik − η),

A4 = (ik − η)4 + a(ik − η)2 + b(ik − η) + 3Cλ0(p).
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In view of (2.4.6)-(2.4.7), g0 = eiωx satisfies L2g0 = 0. Then it is easy to verify that

u = e−iωx solves the adjoint problem of (2.4.14), i.e.,

L∗
2u := u(4) − A1u

′′′ + A2u
′′ − A3u

′ + A4u = 0,

u(m)(0) = u(m)(l), m = 0, 1, 2, 3.

Similar to the previous subsection, we multiply (2.4.14) by u = e−iωx and integrate

from 0 to L. Then we substitute the value of p and use the relation γ0 = 3
cot(θ)

α0 to

find λ1(p) as

λ1(p) = α0

{
2η −

(
8R

5
− cot(θ)

)
(4η2 + a)− 1

4C
(a2 − 32η4)

}
. (2.4.15)

Therefore, we have the result.

Theorem 2.4.4. When a > −6η2 and a = a±, the steady-state h0(x) is stable if

λ1(p) < 0, and unstable if λ1(p) > 0, where λ1(p) is defined in (2.4.15).

2.5 Conclusions and Summary

We analytically studied the flow of a thin film over an inclined periodic wavy wall

governed by a long-wave model. The existence of periodic steady-state solution was

proved rigorously and its stability was analyzed by a perturbation analysis.

For the existence and the uniqueness of the steady-state solution, the variation-

of-parameter method was used to write the steady-state problem in an integral form.

We have started by constructing an iteration scheme in terms of the integral forms

to find periodic solutions in the form h0(x) = 1+w(x), where w(x) is solution to the

non-homogeneous equation (2.2.2). Three distinct cases have been handled depending

on the values of Reynolds number (R), the capillary number (C), and the inclination

49



2.5. CONCLUSIONS AND SUMMARY

angle (θ). For each case, we proved the result and found an asymptotic formula for

w(x). To work in a unified case, we chose to re-write equation (2.2.2) in the form

(2.3.1). Then the existence and the uniqueness were proved by incorporating an

abstract Banach contractive theorem.

For the stability, by using the Floquet-Bloch theory and the method of pertur-

bation analysis, we obtained the stability of the steady-state solutions in a weighted

functional space Lη. This study has been split into two different cases depending on a

relation between η, the real parameter defined in the weighted space, and the values

of R,C, and θ, particularly, the value of

a =
8RC

5
− 2C cot(θ).

For each case, stability conditions were successfully determined, see Theorems 2.4.1-

2.4.4.
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Chapter 3

Separable Solutions to the

Generalized Burgers Equation and

Their Stability

3.1 Introduction

Recently there have been extensive interests in the study of the generalized Burgers

equation with time dependent viscosity

ut + uux =
δ

(t+ 1)M
uxx, 0 ≤ x ≤ l, t > 0, (3.1.1)

subject to

u(0, t) = u(l, t) = 0, t > 0, (3.1.2)

u(x, 0) = u0(x), x ∈ [0, l], (3.1.3)



3.1. INTRODUCTION

where M ≥ 0, δ > 0 and l > 0 are constants. Here, u0(x) is a continuous function

on [0, l] satisfying u0(0) = 0 and u0(l) = 0. For the importance of this equation in

nonlinear acoustics, we refer to the references [14,15].

Srinivasarao and Satyanarayana [73] studied the large time asymptotics of the

solutions to (3.1.1)-(3.1.3) by developing the method of separation variables that used

to be valid to linear equations. They balanced the dominated contribution terms and

obtained the large time behavior of (3.1.1)-(3.1.3) for different values of M . When

0 ≤M < 1, and M = 1 with δ > l2/π2, they showed that the term uux in (3.1.1) can

be ignored and the large time behavior to (3.1.1)-(3.1.3) can be approximated by the

linear partial differential equation

ut =
δ

(t+ 1)M
uxx, 0 < x < l, t > 0,

subject to (3.1.2)-(3.1.3). Indeed, they obtained

u(t, x) ∼ A1 exp

(
−δπ

2(t+ 1)1−M

l2(1−M)

)
sin
(πx
l

)
as t→ ∞, for 0 ≤M < 1,

and

u(x, t) ∼ A2 (t+ 1)−
δπ2

l2 sin
(πx
l

)
as t→ ∞, for M = 1, δ >

l2

π2
,

where A1 and A2 are constants that can be determined from the initial functions.

The other case when M > 1 was also studied in [73] and they found that the solution

behaves like

u(x, t) =
x

t+ 1

for x near to zero.

The most difficult case to study is the critical case when M = 1 with δ < l2/π2.
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This was investigated in 2015 by Srinivasarao and Nath [72]. The existence of pos-

itive separable solution was proved, and they numerically claimed that the positive

separable solution, in the form

u(x, t) =
v(x, t)

t+ 1
, (3.1.4)

describes the large time behavior of the original problem, where v(x) is the positive

steady-state solution to the problem (3.1.5) below.

The purpose of this work is further to study (3.1.1)-(3.1.3) in the last case when

M = 1. We incorporate the transformation (3.1.4) and the time rescaling

τ = ln(1 + t)

to reduce the original problem into

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
vτ = v − vvx + δvxx,

v(0, τ) = 0, v(l, τ) = 0,

v(x, 0) = v0(x) = u0(x).

(3.1.5)

Since the existence of a steady-state solution v(x, τ) = v(x) to the partial dif-

ferential equation (3.1.5) gives the existence of a separable solution to the problem

(3.1.1)-(3.1.3) in the form (3.1.4), we shall focus on the existence and stability of the

steady-state solutions to (3.1.5). Also, the stability of v(x) in (3.1.5) implies that the

separable solution to the problem is stable. By developing the shooting arguments

in [57, 58], we not only obtain the existence and the uniqueness of the positive so-

lution, but also provide the existence of sign-changed steady-state solutions. More

interestingly, we also estimate the number of the total solutions of the problem in
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terms of the parameter values. Compared to [72], our method is new and seems easy

to follow. Our results greatly extend their studies. Furthermore, using a perturba-

tive bifurcation analysis, we obtain the asymptotic formula for the small-amplitude

positive solution when the parameter δ is near its first bifurcation location δ = l2/π2.

Based on this asymptotic formula, we also find that this solution is stable by finding

the principal eigenvalue to the eigenvalue problem corresponding to the linearized

equation. We should mention that when δ is sufficiently small, stability of the steady-

state to (3.1.5) has been studied by Sun and Ward [76] by estimating the principal

eigenvalue.

The rest of this chapter is as follows. We derive the partial differential equation

(3.1.5), and obtain the stability of the trivial solution in Section 3.2. In Section 3.3,

we use a shooting method to prove the existence of the non-constant steady-state so-

lutions. Then we derive the exact number of all solutions depending on the viscosity

parameter δ and the space bound l. Using bifurcation analysis, linear stability of

small-amplitude positive steady-state solution is investigated in Section 3.4. Conclu-

sions and summary are presented in Section 3.5.

3.2 Time Rescaling and Stability of the Trivial So-

lution

Consider the generalized Burgers equation (3.1.1) with M = 1,

ut + uux =
δ

t+ 1
uxx, 0 ≤ x ≤ l, t > 0, (3.2.1)

subject to the initial-boundary conditions (3.1.2)-(3.1.3).
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As mentioned before, we remove the time dependent coefficient 1/(t + 1) by in-

troducing a special transformation. To do this, for some function v(x, t), assume that

the solution u(x, t) to (3.2.1), with the initial-boundary conditions (3.1.2)-(3.1.3), has

the form (3.1.4). Substitute it into (3.2.1) to get

(1 + t)vt = v − vvx + δvxx.

From (3.1.2), the boundary conditions become

v(0, t) = 0, v(l, t) = 0.

Rescale time as τ = ln(1 + t). By finding the derivative vτ and simplifying the latter

partial differential equation, we obtain

⎧⎪⎨⎪⎩
vτ = v − vvx + δvxx,

v(0, τ) = 0, v(l, τ) = 0.

(3.2.2)

Note that when we study the large time behavior as τ → ∞ we also have t→ ∞.

For the local stability of the trivial solution (the zero solution) to (3.2.2) we use

the standard linear analysis, that is, we let

v(x, τ) = σw(x)eλτ ,

where σ ≪ 1, w(x) is a non-zero continuously differentiable function, and λ is a

parameter. We study the behavior of the small perturbation σw(x)eλτ , which can be

determined by finding the sign of the parameter λ. Substituting it into (3.2.2) and
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taking the linear terms give

⎧⎪⎨⎪⎩
δw′′ + (1− λ)w = 0,

w(0) = 0, w(l) = 0.

(3.2.3)

The non-trivial solution to the boundary value problem (3.2.3) is given by

w(x) = A sin

(√
1− λ

δ
x

)
,

for some constant A. By the boundary conditions, we have
√

1−λ
δ
l = nπ, n = 1, 2, 3, ...,

which implies that

λn = 1− δn2π2

l2
.

Since the principal eigenvalue λ1 = 1− δπ2

l2
has the same sign of l2

π2 − δ, we have the

following result.

Theorem 3.2.1. The trivial solution of (3.2.2), and hence of (3.2.1), is locally stable

when δ > l2/π2, and unstable when δ < l2/π2.

To prove the global stability of the trivial solution when δ > l2/π2, we use an

energy argument (see Logan [47]). Define the energy function

E(τ) =

∫ l

0

v2(x, τ)dx.

By differentiating both sides with respect to τ and using the differential equation in

(3.2.2), we get

E ′(τ) = 2

∫ l

0

[v2 − v2vx + δvvxx]dx.

The last two terms can be simplified by using integration by parts. Together with the
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boundary conditions in system (3.2.2), this leads to

E ′(τ) = 2

∫ l

0

v2dx− 2δ

∫ l

0

v2xdx.

Making use of the Poincaré inequality (see e.g. [47]) yields

E ′(τ) ≤ 2

∫ l

0

v2dx− 2
π2

l2
δ

∫ l

0

v2dx

= 2
(
1− δπ2

l2
)
E(τ),

which gives that

E(τ) ≤ E(0) exp

[
2τ

(
1− δπ2

l2

)]
. (3.2.4)

Then, E(τ) → 0 as τ → ∞ when δ > l2/π2. Hence,

Theorem 3.2.2. When δ > l2/π2, the trivial solution of (3.2.2), and hence of (3.2.1),

is globally asymptotically stable.

In the next section, we proceed to study the existence of the non-trivial steady-

state to (3.2.2). We will see that the problem has only the trivial solution when

δ ≥ l2/π2. The global stability result for the case when δ = l2/π2, can be obtained

from (3.2.4) and the uniqueness of the trivial solution.
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3.3 The Existence and the Number of Steady-states

We study here the existence of the non-trivial solutions to the steady-state problem

corresponding to (3.2.2), namely

⎧⎪⎨⎪⎩
δv′′ − vv′ + v = 0,

v(0) = 0, v(l) = 0,

(3.3.1)

where prime denotes the derivative d/dx. To do this, we develop the shooting method

in [57,58] and first consider the initial value problem

⎧⎪⎨⎪⎩
δv′′ − vv′ + v = 0,

v(0) = 0, v′(0) = k

(3.3.2)

where k is a constant. We want to study the behavior of the solution v(x, k) to

(3.3.2) and seek possible values of k so that the second boundary condition in (3.3.1)

is satisfied, i.e., v(l, k) = 0.

3.3.1 Pre-analysis

We start by analyzing the solution v(x, k) to (3.3.2). The following lemma gives the

possible values of k so that the problem has a non-trivial solution.

Lemma 3.3.1. For the solution v(x, k) of the initial-value problem (3.3.2), we have

(i) v(x) = 0 and v(x) = x are two solutions to (3.3.2) when k = 0 and k = 1,

respectively.

(ii) v(x, k) > x ,when exists, for all k > 1.
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(iii) If 0 < k < 1, then v(x, k) is periodic and has infinitely many zeros at x-axis.

Proof. It is easy to verify part (i) by direct substitution.

For part (ii), re-write the differential equation from (3.3.2) in the form

δv′′

v′ − 1
= v,

and integrate both sides from 0 to x to get the equation

v′(x, k) = 1 + (k − 1) exp

(
1

δ

∫ x

0

v(s) ds

)
.

For k > 1, we have v′(x, k) > 1, for all x ∈ [0,∞), and it follows that v(x, k) > x.

To prove part (iii), define p(x) = dv(x)
dx

for all x ∈ [0,∞). Then

dp

dv
=
dp/dx

dv/dx
=
v′′

p
,

which gives, by substituting the formula of v′′ from the equation in (3.3.1),

dp

dv
=
v(p− 1)

δp
=⇒ δp

(p− 1)
dp = v dv.

Integrating both sides yields

δ(p+ ln(1− p)) =
v2

2
+ c. (3.3.3)

Define Q : (−∞, 1)× R → R by

Q(p, v) = δ(p+ ln(1− p))− v2

2
.

Then the contour of Q shows that every solution is periodic for 0 < k < 1, see Figure
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3.1. The proof is complete.

Figure 3.1: Contour of Q(p, v) = δ(p+ ln(1− p))− v2/2, with δ = 2.

Remark 3.3.1. From Figure 3.1, the curve of Q is symmetrical about the variable v.

This leads to the following observation about the symmetry of the solution v(x, k):

(i) Assume that v(x, k) is a solution to (3.3.2) with 0 < k < 1 and x2 is its first

zero after x = 0. Then we have another solution v̂(x, k̂) that is a shift of half

period of v(x, k), i.e., we have v̂′(0) = v′(x2) < 0 and v̂′(x2) = k = v′(0).

(ii) Solution v(x, k) to (3.3.2) is oscillatory about the line v = 0, and every arch

above v = 0 is followed by an arch below v = 0 and vise versa, which are

symmetrical. See Figure 3.2.

In view of Lemma 3.3.1, solutions to the boundary value problem (3.3.1) only exist

when |k| < 1. We consider 0 < k < 1 first. Let x2 be the first positive value of x such

that v(x, k) = 0, and a be the maximum value of v(x, k) in the interval [0, x2], which

occurs at x = x1, i.e.,

max
0<x<x2

v(x, k) = v(x1, k) = a.

Denote the length of intervals [0, x1] and [x1, x2] by T1 and T2, respectively, see Figure

3.3 for details.
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x

v
v̂

Figure 3.2: Oscillation of the solution v(x, k) to (3.3.2) and its associated function
v̂(x, k̂) defined in Remark 3.3.1.

v(x, k)

x

T1 T2

x1 x2

a

Figure 3.3: The base length, in terms of T1 and T2, and the maximum value of the
solution v(x, k) to (3.3.2).
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We want to write T1 and T2 as functions of a. This leads to find a value of a > 0

(or 0 < k < 1) so that v(k, l) = 0. To do this, define

y = q(p) := −δ(p+ ln(1− p)). (3.3.4)

Note that q(p) is defined and continuous on (−∞, 1), with

q′(p)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
< 0, p ∈ (−∞, 0),

= 0, p = 0,

> 0, p ∈ (0, 1).

This means that y = q(p) is not one-to-one, that is, to find p in terms of y (> 0) we

need to split q(p) into two branches as

q(p) =

⎧⎪⎨⎪⎩
q0(p), p ∈ (0, 1),

q1(p), p ∈ (−∞, 0).

Let p+(y) = q−1
0 (y) and p−(y) = q−1

1 (y). From dv/dx = p, we have

∫ a

0

dv

p+(y)
=

∫ x1

0

dx = T1,

By letting v = at, we obtain that T1 has the form

T1(a) =

∫ 1

0

adt

p+(y)
=

∫ 1

0

adt

p+
(
a2

2
(1− t2)

) ,
where

y = c− v2

2
=
a2

2
(1− t2)

follows from the definition of y in (3.3.4) and by using the point x = x1 in (3.3.3).
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Similarly, we can find T2 as a function of a to be

T2(a) =

∫ x2

x1

dx =

∫ 1

0

− adt

p−(y)
=

∫ 1

0

− adt

p−
(
a2

2
(1− t2)

) .
Lemma 3.3.2. T1(a) is increasing and T2(a) is decreasing for all a > 0.

Proof. To prove T1(a) is increasing, it is enough to show that p+(y)
a

is decreasing in a.

Actually we have

d

da

(
p+(y)

a

)
=

1

a2

(
a
dp+(y)

dy

dy

da
− p+(y)

)
=

−1

a2p

(
2(1− p)(p+ ln(1− p)) + p2

)
, p ∈ (0, 1).

Here, we have made use of

a
dy

da
=
a

2

d

da

[
a2(1− t2)

]
= a2(1− t2)

= 2y

= −2δ(p+ ln(1− p))

and, by implicit differentiation of (3.3.4),

dp+
dy

=
1− p

δp
, for p ∈ (0, 1).

It is easy to verify that g(p) = 2(1 − p)(p + ln(1 − p)) + p2 satisfies g′(p) > 0 for all

p ∈ (−∞, 1)− {0}, g(0) = 0, and g′(0) = 0. This means that

g(p)

⎧⎪⎨⎪⎩
> 0 for p ∈ (0, 1),

< 0 for p ∈ (−∞, 0).
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Then d
da

(
p+
a

)
< 0 and T1(a) is increasing with respect to a.

Similarly,

d

da

(
dp−
a

)
=

1

a2p

(
2(1− p)(p+ ln(1− p)) + p2

)
, p ∈ (−∞, 0)

> 0.

Then T2(a) is decreasing with respect to a, which completes the proof.

Lemma 3.3.3. The following is true:

max
a>0

T1(a) = min
a>0

T2(a) =

√
δπ

2
.

Proof. From the above lemma we conclude that maxa>0 T1(a) = lima→0+ T1(a). To

find this limit, we use Taylor expansion to the left-hand side of (3.3.3) when a → 0+

(p→ 0+) to get

δ

(
p− p− p2

2
+O(p3)

)
=
a2

2
(t2 − 1).

By simplifying this relation, we obtain the behavior

p ∼ a

√
1− t2

δ
, as a→ 0.

Then

lim
a→0+

T1(a) = lim
a→0+

∫ 1

0

√
δ

1− t2
dt =

√
δπ

2
.

Similarly, we can show that

min
a>0

T2(a) =

√
δπ

2
.

This completes the proof.
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Lemma 3.3.4. T (a) = T1(a) + T2(a) is increasing for all a > 0. Moreover,

min
a>0

T (a) =
√
δπ.

Proof. We have the following formula of T (a):

T (a) =

∫ 1

0

a

(
1

p+
− 1

p−

)
dt.

Define F (a) = a
(

1
p+

− 1
p−

)
, then

dF

da
=

1

(p+)2

(
p+ − 2y

1− p+
δp+

)
− 1

(p−)2

(
p− − 2y

1− p−
δp−

)
.

Let

G± =
1

(p±)2

(
p± − 2y

1− p±
δp±

)
.

Then we have

dG±

dy
=

1− p±
(p±)5

(
−3(p±)

2 + 6y − 4yp±
)
.

Since (−3p2+6y−4yp) = p2−6p+(4p−6) ln(1−p) := h(p) is defined and continuous

on (−∞, 1) with h(0) = 0, h′(0) = 0, and h′′(p) = 2p2

(1−p)2
> 0, for all p ∈ (−∞, 1)−{0},

we then obtain h(p) > 0 for all p ∈ (−∞, 1) − {0}. See graph of h(p) in Figure 3.4.

From the definition of p+ and p−, we have

1− p+
(p+)5

> 0 and
1− p−
(p−)5

< 0.

It follows that

dG+

da
> 0 and

dG−

da
< 0,
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that is, G+ is increasing and G− is decreasing for all a > 0.

h(p)

0.5

1

p
1−1−2

Figure 3.4: Graph of h(p) = (4p− 6) ln(1− p) + p2 − 6p

To complete our proof, we need to compare inf G+ and supG−. When a→ 0+ we

have p+ → 0+. Using (3.3.4) and L’Hopital’s rule, we can show that lima→0+ G+ = 1
3

(= inf G+). Similarly lima→0+ G− = 1
3
(= supG−). Then we conclude that G+ > G−,

for all a > 0. Hence F (a) is increasing and so is T (a). Its minimum value can be

easily computed as

min
a>0

T (a) = lim
a→0+

T (a)

= lim
a→0+

T1(a) + lim
a→0+

T2(a)

=
√
δπ.

The proof is complete.

3.3.2 Main Result

We are now ready to prove the existence of solutions to the boundary value problem

(3.3.1), and count the number of them.
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Theorem 3.3.1. Define the number

N(δ) =

⌈
l√
δπ

⌉
, for δ > 0,

where ⌈x⌉ denotes the smallest integer number greater than or equal to x. Then the

problem (3.3.1) has exactly 2N(δ)− 1 solutions.

Proof. We are looking for the value of k (or a > 0) so that the non-trivial solution

v(x, k) to the initial value problem (3.3.2) satisfies

v(l, k) = 0.

By Remark 3.3.1 (ii), this equation with some peaks can be expressed into the form

m(T1 + T2)(a) = l, (3.3.5)

wherem is a non-negative integer representing the number of intervals with the length

T1 + T2.

If m ≥ N(δ), then by Lemma 3.3.4, we have

m(T1 + T2)(a) > N(δ)(T1 + T2)(0
+) ≥ l, ∀a > 0,

which means that (3.3.5) fails to hold. Hence, there is no non-trivial solution to the

boundary value problem (3.3.1) in this case.

If 0 ≤ m < N(δ), then

m(T1 + T2)(0
+) ≤ (N(δ)− 1)(T1 + T2)(0

+) < l.
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In view of the continuity and the monotonicity of (T1 + T2)(a), as well as the limit

lim
a→∞

m(T1 + T2)(a) = ∞,

the Intermediate Value Theorem implies that there exists exactly one point a0 > 0

satisfying m(T1 + T2)(a0) = l, which means that there exists one solution to the

problem (3.3.1) with m arches of base-length T1 + T2.

Now, we can count the number of solutions when m changes from 0 to N(δ)− 1:

(1) If m = 0, then there is no solution with base length T1 + T2, that is, (3.3.1) has

the unique trivial solution.

(2) For 0 < m < N(δ), there exists one solution withm arches of base-length T1+T2

and k > 0. By Remark 3.3.1 (i), a symmetrical solution of base-length T1 + T2

with m arches and a negative slope at x = 0 exists. Thus when m changes from

1 to N(δ) − 1, we have two solutions for each m. Hence, the number of total

solutions in this case is given by

N(δ)−1∑
i=1

2 = 2N(δ)− 2.

From (1) and (2), the number of total solutions including the trivial solution is

2N(δ)− 1, which completes our proof.

The above result gives the existence and the number of solutions based on the

values of l and δ. For the uniqueness, we have the following result.

Theorem 3.3.2. The boundary value problem (3.3.1) has a unique solution, which is

v(x) = 0 if δ ≥ l2/π2, and a unique positive solution if δ < l2/π2.
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Proof. If δ ≥ l2/π2, then N(δ) = 1, where N(δ) is defined in Theorem 3.3.1. Hence,

(3.3.1) has a unique trivial solution. In the case δ < l2/π2 we have N(δ) ≥ 2, that

is, (3.3.1) has a positive solution with one arch of base-length T1 + T2. All other

non-trivial solutions are not positive in (0, l). This completes the proof.

From the above theorem and using (3.2.4), we have the following result.

Theorem 3.3.3. The trivial solution is a global asymptotically stable steady-state

solution to (3.2.2) when δ = l2/π2.

3.4 Bifurcation Analysis

In this section we study the stability of small-amplitude positive steady-state solu-

tion to (3.2.2) by estimating the sign of the principal eigenvalue via a perturbative

approach.

3.4.1 Weakly Nonlinear Analysis

Assume that v̄ is the positive steady-state solution bifurcated from the trivial solution.

For the bifurcation analysis, assume that δ and the positive solution v̄ have the forms,

for ϵ > 0,

δ = δ0 + ϵδ1 + ϵ2δ2 + · · · =
∞∑
i=0

ϵiδi, (3.4.1)

v̄ = v0 + ϵv1 + ϵ2v2 + · · · =
∞∑
i=0

ϵivi. (3.4.2)

In this analysis, δ is the bifurcation parameter, with δ0 = l2/π2 being the first

bifurcation location, where the corresponding small amplitude positive steady-state

solution v̄ can be bifurcated from the trivial solution v0 = 0. Substitute (3.4.2) and

(3.4.1) into (3.3.1) and equate O(ϵ), O(ϵ2), and O(ϵ3) to get the following boundary
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value problems ⎧⎪⎨⎪⎩
l2

π2
v′′1 + v1 = 0,

v1(0) = 0, v1(l) = 0,

(3.4.3)

⎧⎪⎨⎪⎩
l2

π2
v′′2 + v2 = v′1v1 − δ1v

′′
1 ,

v2(0) = 0, v2(l) = 0,

(3.4.4)

and ⎧⎪⎨⎪⎩
l2

π2
v′′3 + v3 = (v1v2)

′ − δ1v
′′
2 − δ2v

′′
1 ,

v3(0) = 0, v3(l) = 0,

(3.4.5)

Solving the boundary value problem (3.4.3) gives the unique (up to constant multiple)

positive solution

v1(x) = sin
(πx
l

)
. (3.4.6)

Consider the adjoint system obtained from the left-hand side of (3.4.4)

⎧⎪⎨⎪⎩
l2

π2
z′′ + z = 0,

z(0) = 0 , z(l) = 0,

which gives a solution

z(x) = sin
(πx
l

)
.

Multiplying both sides of the differential equation in (3.4.4) by z(x) and integrating

from 0 to l, give the solvability condition

∫ l

0

(v′1v1 − δ1v
′′
1)z dx = 0.
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By direct computations, we find δ1 = 0. Then (3.4.4) can be simplified as

⎧⎪⎨⎪⎩
l2

π2
v′′2 + v2 = v′1v1,

v2(0) = 0, v2(l) = 0.

(3.4.7)

Plugging v1 from (3.4.6) into (3.4.7) gives a non-homogeneous term in the form v1v
′
1 =

π
2l
sin
(
2πx
l

)
. Use the method of undetermined coefficients to find a particular solution

to (3.4.7) as

v2(x) = sin
(πx
l

)
− π

6l
sin

(
2πx

l

)
. (3.4.8)

In order to find δ2, we use the solvability condition of (3.4.5) with δ1 = 0. Hence, the

formula of δ2 is given by

δ2 =

∫ l

0
(v1v2)

′ sin
(
πx
l

)
dx∫ l

0
v′′1 sin

(
πx
l

)
dx

.

By using (3.4.6) and (3.4.8), we find

∫ l

0

(v1v2)
′ sin

(πx
l

)
dx =

π2

24l
, and

∫ l

0

v′′1 sin
(πx
l

)
dx =

−π2

2l
.

Then

δ2 = − 1

12
. (3.4.9)

3.4.2 Stability of Small-amplitude Steady-states

Now, we are in a position to estimate the principal eigenvalue and show the stability

of the small-amplitude steady-state v̄. We write the solution of (3.2.2) in the form

v(x) = v̄(x) + σ1w1(x)e
λτ ,
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where σ1 ≪ 1, w1(x) is a continuously differentiable function, and λ is a parameter.

Expand

v̄ =ϵv1 + ϵ2v2 + . . .

w =sin
(πx
l

)
+ ϵw1 + ϵ2w2 + . . .

λ =ϵλ1 + ϵ2λ2 + . . .

δ =
l2

π2
+ ϵ2δ2 + . . . ,

where v1, v2, and δ2 are given in (3.4.6),(3.4.8), and (3.4.9), respectively. Proceed to

substitute them into (3.2.2), linearize this equation, and compute the expansion of λ.

We have the following system in the order of O(ϵ):

⎧⎪⎨⎪⎩
l2

π2
w′′

1 + w1 =λ1w0 + (v1w0)
′,

w1(0) = 0, w1(l) = 0,

(3.4.10)

where w0 = sin(πx/l). To obtain the formula of λ1, we use the solvability condition

∫ l

0

[λ1w0 + (v1w0)
′] sin

(πx
l

)
dx = 0

of the system (3.4.10). Then

λ1 =
−
∫ l

0
(v1w0)

′ sin
(
πx
l

)
dx∫ l

0
w0 sin

(
πx
l

)
dx

,

which gives λ1 = 0. In this case, we need to find λ2 to determine the stability. We

simplify (3.4.10) to be ⎧⎪⎨⎪⎩
l2

π2
w′′

1 + w1 = (v1w0)
′,

w1(0) = 0, w1(l) = 0,
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and use the method of undetermined coefficients to find

w1 = sin
(πx
l

)
− π

3l
sin

(
2πx

l

)
.

Then, at the order of O(ϵ2), we have the boundary value problem

⎧⎪⎨⎪⎩
l2

π2
w′′

2 + w2 = λ2w0 + (v1w1)
′ + (v2w0)

′ − δ2w
′′
0 ,

w2(0) = 0, w2(l) = 0,

where the solvability condition gives

λ2 =

∫ l

0
[−(v1w1)

′ − (v2w0)
′ + δ2w

′′
0 ] sin

(
πx
l

)
dx∫ l

0
w0 sin

(
πx
l

)
dx

.

A computation gives

λ2 = − π2

6l2
< 0.

Hence, the following theorem is valid.

Theorem 3.4.1. When δ < l2/π2, the small-amplitude positive steady-state solution

to (3.2.2) is stable.

Figure 3.5 shows the bifurcation diagram near δ0.

3.5 Conclusions and Summary

In this chapter, we have investigated the dynamics of the separable solutions to the

generalized Burgers equation (3.2.1), subject to (3.1.2)-(3.1.3), by transforming the

generalized Burgers equation into a new constant-coefficient equation (3.2.2) and by

analyzing the steady-state solutions to the new equation. A shooting method was used

to prove the existence of steady-state solutions to (3.2.2) and we find the number
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ϵ (Amplitude)

δ
δ0 =

l2

π2

Figure 3.5: Bifurcation diagram of the positive steady-state to the generalized Burgers
equation in ϵδ-space.

of solutions depending on the viscosity parameter δ and the space bound l. This

number of solutions gave a full understanding of what the solutions look like and how

to determine the uniqueness of them.

We have shown the stability of trivial solution for the generalized Burgers equation

(3.2.1) when δ > l2/π2, which agrees with results in [72], and we proved that the trivial

solution is stable for the critical case δ = l2/π2. Using the bifurcation analysis, we have

given the asymptotic formula for the positive small-amplitude steady-state solution

of (3.2.2), and showed its stability when δ < l2/π2. Stability of the large-amplitude

positive steady-state solution is still challenging, and we will consider it in the future.
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Chapter 4

The Minimal Wave Speed Selection

to the Competition Model

4.1 Introduction

Consider the diffusive Lotka-Volterra competition model

⎧⎪⎨⎪⎩
φt = d1φxx + r1φ(1− b1φ− a1ψ),

ψt = d2ψxx + r2ψ(1− a2φ− b2ψ),

with the initial data

φ(x, 0) = φ0(x) ≥ 0, ψ(x, 0) = ψ0(x) ≥ 0, ∀x ∈ R.

Here φ(x, t) and ψ(x, t) are the population densities of the first and the second species

at time t and location x, respectively; d1 and d2 are the diffusion coefficients; r1 and

r2 are the net birth rates; a1 and a2 are the competition coefficients; 1/b1 and 1/b2

are the carrying capacities of two species. All these parameters are assumed to be
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non-negative. Biologically, the model is used to study the logistic growth of two

species population under competition. Originally, Okubo et al [56] used this model

to describe the interaction between the externally introduced gray squirrels and the

indigenous red squirrels in Britain.

Non-dimensionalizing the problem by

√
r1/d1 x→ x, r1t→ t,

b1φ(x, t) = φ̃(x, t), b2ψ(x, t) = ψ̃(x, t),

d =
d2
d1
, r =

r2
r1
,

a1
b2

→ a1,
a2
b1

→ a2,

gives a new system ⎧⎪⎨⎪⎩
φ̃t = φ̃xx + φ̃(1− φ̃− a1ψ̃),

ψ̃t = dψ̃xx + rψ̃(1− a2φ̃− ψ̃).

A change of variable u = φ̃ and v = 1 − ψ̃ transforms the above model into a

cooperative system ⎧⎪⎨⎪⎩
ut = uxx + u(1− a1 − u+ a1v),

vt = dvxx + r(1− v)(a2u− v),

(4.1.1)

with the initial data

u(x, 0) = u0(x) = b1φ0(x), v(x, 0) = v0(x) = 1− b2ψ0(x), ∀x ∈ R.

Throughout this chapter, we assume that a1 and a2 satisfy the condition

0 < a1 < 1 < a2 (4.1.2)

that arose in many previous studies. In [56], (4.1.2) means that the gray squirrels
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out-competes the reds. For biological interpretation of this condition, see also [28–30,

43,91].

The cooperative system (4.1.1), under the condition (4.1.2), has three equilibria

in the region {(u, v)|0 ≤ u ≤ 1, 0 ≤ v ≤ 1}, which are e0 = (0, 0), e1 = (1, 1), and

e2 = (0, 1). When a1a2 ̸= 1, another equilibrium exists with

e4 =

(
1− a1
1− a1a2

,
a2(1− a1)

1− a1a2

)
.

It is in the first quadrant and satisfies e4 ≫ (1, 1) when a1a2 < 1; otherwise when

a1a2 > 1, it is in the third quadrant and has negative components.

It is easy to see that e0 is an unstable and e1 is a stable equilibrium to the following

ordinary differential equations system

⎧⎪⎨⎪⎩
u′ = u(1− a1 − u+ a1v),

v′ = r(1− v)(a2u− v).

Let

u(x, t) = U(z), v(x, t) = V (z), z = x− ct,

be the traveling wave solution to the system (4.1.1), with speed c ≥ 0, that connects

e1 and e0, that is,

(U, V )(−∞) = e1, (U, V )(∞) = e0.

Substituting this into the system (4.1.1) leads to an ordinary differential system

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
− cU ′ = U ′′ + U(1− a1 − U + a1V ),

− cV ′ = dV ′′ + r(1− V )(a2U − V ),

(U, V )(−∞) = e1, (U, V )(∞) = e0,

(4.1.3)
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where prime denotes the derivative with respect to z. Results in [37,43,46,85] proved

that there exists a constant cmin ≥ 0 so that the system has a traveling wave solution

if and only if c ≥ cmin. In other words, cmin can be expressed as

cmin = inf{c : (4.1.3) has a non-negative solution (U, V )(z)}

Standard linearization analysis near the equilibrium point e0 shows that the nec-

essary condition for the existence of a traveling wave solution is

c ≥ c0 = 2
√
1− a1.

The value of c0 is the minimal wave speed for the linear system with non-negative

traveling wave solutions. Based on the relation between the two speed values cmin and

c0, we have the following definition.

Definition 1. If cmin = c0, then we say that the minimal wave speed is linearly

selected; otherwise, if cmin > c0, we say that the minimal wave speed is nonlinearly

selected.

The problem of speed selection (linear and nonlinear) has been of a great interest

in biological and mathematical studies, see e.g. [28–30, 32, 33, 42, 43, 48, 63, 64, 89, 91].

In literature, the linear speed selection for the system (4.1.1) was studied in [18, 29,

32, 42, 43, 54, 56]. Particularly, in [29], it was proved that the linear speed selection is

realized if

d = 0 and (a1a2 − 1)r ≤ 2(1− a1). (4.1.4)

Lewis et al [42] applied the results in [91] and proved that the minimal wave speed
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for (4.1.3) is linearly selected when the condition

d ≤ 2 and (a1a2 − 1)r ≤ (2− d)(1− a1) (4.1.5)

holds. By extending the above result, Huang [32] proved that, by constructing an

upper and a lower solution, the linear speed selection is realized without the restriction

d ≤ 2 but with the condition

(2− d)(1− a1) + r

ra2
≥ max

{
a1,

d− 2

2|d− 1|

}
. (4.1.6)

These two conditions (( 4.1.5) and (4.1.6 )) are equivalent when d ≤ 2, and are similar

to (4.1.4) when d = 0. For the special case when d = r = 1 and a1 + a2 = 2, the

system of equations can be reduced to a single equation in Fisher-KPP type and the

minimal wave speed can be found as cmin = c0, e.g. [30].

We should mention that, in 1998, Hosono [30] studied the speed selection problem

numerically and found that the wave speed is not always linearly selected. Based on

his numerical simulations, he raised the following conjecture.

Hosono’s conjecture. If a1a2 ≤ 1, then cmin = c0 for all r > 0. If a1a2 > 1, then

there exits a positive number rc such that cmin = c0 for 0 < r ≤ rc, and cmin > c0 for

r > rc.

This conjecture has been outstanding for almost twenty years and it is still open

now. The purpose of this chapter is to work on the Hosono’s conjecture for the special

case when d = 0 in (4.1.3). We find that the conjecture is not completely correct,

since the critical number rc could be infinite even though a1a2 > 1 is true. Therefore

we provide a modified version of this conjecture and prove it rigorously. Our main

result is the following theorem.

79



4.1. INTRODUCTION

Theorem 4.1.1. Suppose d = 0 in (4.1.1). There exists rc, 0 ≤ rc ≤ ∞, such that

(1) If r ≤ rc, the minimal wave speed is linearly selected.

(2) If r > rc, the minimal wave speed is nonlinearly selected.

We also give some estimates of rc. This successfully leads to some explicit and new

conditions for both linear and nonlinear speed selection mechanism. In [32], Huang

strongly believes that the condition (4.1.5) is necessary and sufficient for the linear

speed selection. Our results are against this claim.

We should emphasize that we will use the upper-lower solution method coupled

with the comparison principle to prove our result. The method originates from Wein-

berger [90] and Diekmann [13] with two classical constructions of upper and lower

solutions that have been extensively applied in the research of traveling wave solu-

tions. We will construct a new and smooth upper solution in the linear selection and

a new lower solution in the nonlinear selection mechanism. We find that these new

types of solutions approximate more accurately to the actual traveling waves, and this

not only improves previous explicit results on the linear selection, but also provides

some new results on the nonlinear selection that was thought to be very difficult in

study.

The rest of the chapter is organized as follows. We study the asymptotic behavior

of the traveling wave solution to (4.1.1), when d = 0, in Section 4.2. By applying

the upper-lower solution method, we study the speed selection mechanisms and prove

the modified Hosono’s conjecture, Theorem 4.1.1, in Section 4.3. In Section 4.4,

we estimate the critical value rc and give explicit conditions for the speed selection.

Conclusions are presented in Section 4.5. Section 4.6 is an appendix where the upper-

lower solution technique is illustrated to our model.
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4.2 The Asymptotic Behavior of the Wave Profiles

By letting d = 0 in (4.1.3), we get

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
U ′′ + cU ′ + U(1− a1 − U + a1V ) = 0,

cV ′ + r(1− V )(a2U − V ) = 0,

(U, V )(−∞) = e1, (U, V )(∞) = e0.

(4.2.1)

We assume here that the traveling wave solution to (4.2.1) exists and want to find its

asymptotic behavior. To this end, suppose that it exists and satisfies

(U, V )(z) ∼ (ζ1e
−µz, ζ2e

−µz) as z → ∞,

for some positive ζ1, ζ2, and µ. Substitute this into (4.2.1) and linearize the equation

to get the algebraic system

A(µ)ζ = 0,

where ζ = (ζ1 ζ2)
T , 0 is the zero vector, and A(µ) is a 2× 2 matrix given by

A(µ) =

⎛⎜⎝ µ2 − cµ+ 1− a1 0

ra2 −cµ− r

⎞⎟⎠ .

This algebraic equation has a non-trivial solution ζ if and only if det(A(µ)) = 0, that

is, [
µ2 − cµ+ 1− a1

]
[cµ+ r] = 0,

which implies that

µ = µ1(c) =
c−

√
c2 − 4(1− a1)

2
or µ = µ2(c) =

c+
√
c2 − 4(1− a1)

2
. (4.2.2)
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As such, if the traveling wave solution is non-negative, we require

c ≥ 2
√
1− a1 := c0.

Here c0 is called the linear speed of the system.

For c > c0, it gives µ1 < µ2, and the eigenvector of the matrix A(µ) corresponding

to µi, i = 1, 2 is the strongly positive vector

ζ = (ζ1 ζ2)
T = (cµi + r ra2)

T , i = 1, 2. (4.2.3)

Hence, as z → ∞,

⎛⎜⎝ U(z)

V (z)

⎞⎟⎠ = C1

⎛⎜⎝ cµ1 + r

ra2

⎞⎟⎠ e−µ1z + C2

⎛⎜⎝ cµ2 + r

ra2

⎞⎟⎠ e−µ2z

for some constants C1 and C2.

4.3 The Speed Selection Mechanism

In this section we will study the speed selection of (4.2.1). The method used is the

upper-lower solution pair coupled with the comparison technique, see the Appendix

in this chapter for details. Due to d = 0, V in the second nonlinear equation can be

solved explicitly in terms of U . Indeed, define first

y(z) =
V (z)

1− V (z)
and µ(z) = exp

(
r

c

∫ z

0

(a2U(t)− 1)dt

)
.
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From the second equation in (4.2.1), the differential equation of y(z) is given by

y′ +
r

c
(a2U − 1)y = −r

c
a2U,

with the boundary conditions

y(−∞) = ∞, y(∞) = 0.

Multiplying both sides by µ(z) and integrating over [z,∞) give the formula of y(z),

y(z) =
ra2
cµ(z)

∫ ∞

z

µ(s)U(s)ds.

This gives a formula for V (z) as

V (z) =
y(z)

1 + y(z)
=

ra2
∫∞
z
µ(s)U(s)ds

cµ(z) + ra2
∫∞
z
µ(s)U(s)ds

:= H(U)(z). (4.3.1)

By using this formula, (4.2.1) reduces to a non-local equation

⎧⎪⎨⎪⎩
L1(U, V ) :=U ′′ + cU ′ + U(1− a1 − U + a1V ) = 0,

U(−∞) = 1, U(∞) = 0,

(4.3.2)

where V is given in (4.3.1).

Remark 4.3.1. V is a continuous function of c. When c→ c0, V tends to

Vc0(z) =
ra2
∫∞
z
µ(s)U(s)ds

c0µ(z) + ra2
∫∞
z
µ(s)U(s)ds

.

For any c > c0, we proceed to construct an upper solution to the equation (4.3.2),

which in turn, with the exact formula of V (z), is an upper solution to the two-equation
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system (4.2.1). Define a continuous monotone function U(z) as

U =
k

1 + Aeµ1z
and let V = H(U), (4.3.3)

for some constants k ≥ 1 and A > 0, where µ1 is defined in (4.2.2). Finding the

derivatives U
′
(z) and U

′′
(z), and substituting them into (4.3.2) yield

L1(U,V ) =U

(
1− U

k

)⎧⎪⎨⎪⎩(µ2
1 − cµ1 + 1− a1

)
+
U

k

⎛⎜⎝−2µ2
1 + a1

V −U
(

a1−1+k
a1k

)
(
1− U

k

)
U
k

⎞⎟⎠
⎫⎪⎬⎪⎭ .

(4.3.4)

Let c = c0+ϵ1, where ϵ1 is a sufficiently small positive number. Take alsok= 1+ϵ1.

The formula of µ1(c) gives µ1 =
√
1− a1+δ1(ϵ1), with δ1(ϵ1) → 0 as ϵ1 → 0. By using

Lemma 4.6.1 in the Appendix, it is easy to see that, for ϵ1 ≪ 1, the pair of functions

(U(z),V (z)) is an upper solution to (4.2.1) when

− 2(1− a1) + a1Y1(z) < 0, where Y1(z) =
V −U

(1−U)U
. (4.3.5)

In the following lemmas we want to prove the boundedness of Y1(z) and its mono-

tonicity with respect to the parameter r.

Lemma 4.3.1. The function Y1(z) is bounded above for all z ∈ R.

Proof. Since Y1(z) is continuous in R, it is enough to show that lim
z→±∞

Y1(z) < ∞.

Note that, as z → −∞, we have

µ(z) ∼ D1 exp
(r
c
(a2 − 1)z

)
, D1 = exp

(∫ −∞

0

ra2
c
(U(s)− 1)ds

)
,

y(z) ∼ D−1
1 D2 exp

(
−r
c
(a2 − 1)z

)
, D2 = exp

(∫ ∞

−∞

ra2
c
µ(s)U(s)ds

)
,
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V (z) ∼ 1−D1D
−1
2 exp

(r
c
(a2 − 1)z

)
,

U(z) ∼ 1− A exp(µ1z).

This gives

lim
z→−∞

Y1(z) = lim
z→−∞

Aeµ1z −D1D
−1
2 e

r
c
(a2−1)z

Aeµ1z

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 , when r(a2 − 1) > cµ1

D3 , when r(a2 − 1) = cµ1

−∞ , when r(a2 − 1) < cµ1

where D3 = 1−D1D
−1
2 A−1 < 1.

For the limit when z → ∞, we also have

lim
z→∞

V −U
(1−U)U

= lim
z→∞

(
y(z)

U(z)
− 1

)
= lim

z→∞

ra2
∫∞
z
µ(s)U(s)ds

cµ(z)U(z)
− 1.

By making use of L’Hopital’s rule, it follows that

lim
z→∞

V −U
(1−U)U

=
r(a2 − 1)− cµ1

r + cµ1

.

This implies that Y1(z) is bounded above.

Lemma 4.3.2. The function Y1(z) is non-decreasing with respect to r.

Proof. SinceU(z) is independent of r, it is enough to show that V (z) is non-decreasing

with respect to r. We prove this in the following two steps:

Step 1. We prove here a2U(z) ≥ V (z), ∀z ∈ R. Note that 0 ≤ V (z) ≤ 1 with

V (−∞) = 1 and V (∞) = 0. On the other hand, we have a2U(−∞) = a2k > 1

and U
′
(z) < 0, ∀z ∈ R. From these facts, there exists a z∗ so that a2U(z

∗) = 1
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and a2U(z) > V (z), ∀z < z∗. Assume by contradiction there exists a first point z̄,

z∗ < z̄ <∞, so that a2U(z̄) <V (z̄). From the formula of V
′
(z),

V
′
(z) = −r

c
(1−V (z))(a2U(z)−V (z)),

V (z) is increasing in the right neighborhood of z̄, that is, for small δ > 0, V (z̄ + δ) >

V (z̄). But since U(z) is a decreasing function, V (z̄) > a2U(z̄) ≥ a2U(z̄ + δ) and

V (z̄ + δ) > a2U(z̄ + δ). This implies that V (z) is greater than a2U(z) and, hence

by the differential equation, increasing for all z > z̄, which contradicts the fact that

V (∞) = 0.

Step 2. Let τ = z/r and (U,V )(z) = (Ũ, Ṽ )(τ). Substituting into the V
′
(z) formula

gives

Ṽτ = −1

c
(1− Ṽ )(a2Ũ − Ṽ ).

From step 1, Ṽ (τ) is a non-increasing function in τ . Since τ is decreasing in r, then

Ṽ (τ) (hence V (z)) is a non-decreasing function in r. The lemma is proved.

By the above lemmas, we can define

r− = sup{ r ≥ 0 | the inequality (4.3.5) holds for c = c0 and all z ∈ R}. (4.3.6)

Hence, the following lemma is true.

Lemma 4.3.3. For c = c0 + ϵ1 and r ≤ r−, where ϵ1 is a sufficiently small posi-

tive number and r− is defined in (4.3.6), the pair of functions (U(z),V (z)), defined

in (4.3.3), is an upper solution to the system (4.2.1) with (U,V )(−∞) = (k, 1) and

(U,V )(∞) = (0, 0).

To show the existence of traveling waves (U, V )(z), we want to use Theorem 4.6.1

in the Appendix. To this end, we need to construct a lower solution to the system
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(4.2.1) when c is near c0. Define a continuous function
¯
U(z) as

¯
U(z) =

⎧⎪⎨⎪⎩ ζ1e
−µ1z(1−Me−ϵ2z) , z ≥ z1,

0 , z < z1,

where 0 < ϵ2 ≪ 1, M is a positive constant to be determined, z1 = 1
ϵ2
logM , and ζ1

is defined in (4.2.3). Let
¯
V (z) = H(

¯
U)(z). We can obtain the following lemma.

Lemma 4.3.4. When c = c0+ϵ1, the pair of functions (
¯
U(z),

¯
V (z)) is a lower solution

to the system (4.2.1).

Proof. Since
¯
V (z) is the exact solution to the V -equation when U(z) =

¯
U(z). This

automatically gives

c
¯
V ′ + r(1−

¯
V )(a2

¯
U −

¯
V ) = 0, ∀z ∈ R.

For the U -equation, when z ≤ z1, we have

¯
U ′′ + c

¯
U ′ +

¯
U(1− a1 −

¯
U + a1

¯
V ) = 0.

When z > z1, it follows that

L1(
¯
U,

¯
V ) =

¯
U ′′ + c

¯
U ′ +

¯
U(1− a1 −

¯
U + a1

¯
V )

=ζ1e
−µz
{
µ2
1 − cµ1 + 1− a1

}
−Mζ1e

−(µ+ϵ2)z
{
(µ1 + ϵ2)

2 − c(µ1 + ϵ2) + 1− a1
}

− ζ21e
−2µ1z

(
1−Me−ϵ2z

)2
+ a1ζ1

¯
V e−µ1z

(
1−Me−ϵ2z

)
.

In view of definition of µ1, the first term vanishes and, for sufficiently small ϵ2, the

second term is positive. We choose M sufficiently large so that z1 > 0 and the second

term dominates the third one. The last term is positive. Hence, L1(
¯
U,

¯
V ) ≥ 0.
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Now, we are ready to state our result for the linear speed selection.

Theorem 4.3.1. The linear speed selection of the system (4.2.1) is realized when

r ≤ r−.

Proof. When r < r−, by using (U,V )(z) and (
¯
U,

¯
V )(z) in Theorem 4.6.1, we conclude

that the system (4.2.1) has a traveling wave solution (U, V )(x−ct) with (U, V )(−∞) =

(1, 1) and (U, V )(∞) = (0, 0) for c = c0+ϵ1, 0 < ϵ1 ≪ 1. When r− is finite and r = r−,

a limiting argument can show the linear selection of the wave speed. This completes

the proof.

Remark 4.3.2. We can use the exponential function (ζ1, ζ2)e
−µ1z as an upper solution

to the system (4.2.1). This gives that the linear selection is realized when

r ≤ r0 :=

⎧⎪⎨⎪⎩
∞, a1a2 ≤ 1,

2(1− a1)

a1a2 − 1
, a1a2 > 1,

which agrees with the condition (4.1.4). This is also found in [62]. We will see that

our choice of upper solution (4.3.3) gives some better and new results.

To see the novel contribution of our upper solution to the linear selection, we will

show that the condition (4.1.5) is not necessary for the linear speed selection when

d = 0. Indeed, the following remark shows that r− > r0 when a1a2 > 1.

Remark 4.3.3. We give a counterexample with r− > r0 to show the non-necessity of

the condition (4.1.5). Let d = 0, a1 = 0.5, a2 = 3, r = 4,k= 1.001, c = c0 + 0.001, and

A = 1. Then r0 = 2,

U(z) =
1.001

1 + e0.6310z
, µ(z) = exp

(
2.8264

∫ z

0

(3 U(z)− 1)dt

)
,

y(z) =
8.4793

µ(z)

∫ ∞

z

µ(s)U(s)ds, V (z) =
y(z)

1 + y(z)
,
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and

−2(1− a1) + a1
V −U

(1−U)U
= −1 + 0.5Y1(z) := Y0(z).

Using MATLAB, we plot the graph of Y0(z). Figure 4.1 shows that Y0(z) < 0 for all

z ∈ R. This implies that the wave speed is linearly selected for r < 4. The result is

better than previous one that only gives the linear selection for r ∈ (−∞, 2]. In other

words, we have

r0 = 2 < r−.
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Figure 4.1: Graph of Y0(z) defined in Remark 4.3.3.

A natural question to ask is whether the speed selection mechanism changes to

nonlinear selection at some value of r ≥ r−. To answer this question, we will prove

the existence of a threshold value of r, in the sense that when r increases, the speed

selection changes from linear to nonlinear when r crosses this threshold value. For

this purpose, we first prove the following comparison lemma.

Lemma 4.3.5. For the system (4.2.1), if the wave speed is linearly selected when

r = rβ, for some rβ > 0, then it is linearly selected for all r < rβ.
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Proof. Let (Uβ, Vβ)(z) be the solution to the system (4.2.1) when r = rβ, that is,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
U ′′
β+cU

′
β + Uβ(1− a1 − Uβ + a1Vβ) = 0,

cV ′
β + rβ(1− Vβ)(a2Uβ − Vβ) = 0,

(Uβ,Vβ)(−∞) = e1, (Uβ, Vβ)(∞) = e0.

(4.3.7)

We want to show that (Uβ, Vβ)(z) is an upper solution to the system with r < rβ, i.e.,

⎧⎪⎨⎪⎩
U ′′
β+cU

′
β + Uβ(1− a1 − Uβ + a1Vβ) ≤ 0,

cV ′
β + r(1− Vβ)(a2Uβ − Vβ) ≤ 0.

The first inequality is naturally satisfied from (4.3.7). For the second inequality, add

and subtract rβ(1− Vβ)(a2Uβ − Vβ) to the left-hand side to get

cV ′
β + r(1− Vβ)(a2Uβ − Vβ)

= cV ′
β + rβ(1− Vβ)(a2Uβ − Vβ) + (r − rβ)(1− Vβ)(a2Uβ − Vβ)

= (r − rβ)(1− Vβ)(a2Uβ − Vβ)

≤ 0.

Here, we have used the fact that a2Uβ(z) ≥ Vβ(z), ∀z ∈ R, which can be proved

similarly to the proof of Lemma 4.3.2. Using the upper solution (Uβ, Vβ)(z) and the

lower solution defined in Lemma 4.3.4, we conclude that the wave speed is linearly

selected for r < rβ.

Form this lemma, we define a critical value of r as

rc = sup{ r | The linear speed selection of the system (4.2.1) is realized}. (4.3.8)
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Clearly 0 ≤ rc ≤ ∞ and the following result holds true.

Theorem 4.3.2. The minimal wave speed of the system (4.2.1) is linearly selected

for all r ≤ rc, and nonlinearly selected for r > rc.

Remark 4.3.4. This theorem is the main result Theorem 1.1 which we emphasize

in the Introduction section of this chapter. In the above theorem, if rc = 0 then the

interval 0 < r ≤ rc is empty. This means that the nonlinear selection is realized for

all r. Similarly, by rc = ∞ we mean that the linear selection is realized for all r.

From the result in Theorem 4.3.1, it is obvious to see that r− is a lower bound of

rc, that is r− ≤ rc. To give an upper bound to the value of rc, we proceed to find a

value of r so that the nonlinear speed selection is realized when r is greater than this

value.

Lemma 4.3.6. For c1 > c0, assume that there exists a lower monotonic solution

(
¯
U,

¯
V ) to (4.2.1), with (0, 0) ≤ (

¯
U,

¯
V ) < (1, 1), satisfying (

¯
U,

¯
V )(ξ) ∼ (

¯
ζ1,

¯
ζ2)e

−µ2ξ for

some (
¯
ζ1,

¯
ζ2) > (0, 0) as ξ → ∞, where µ2 is defined in (4.2.2) and ξ = x− c1t, i.e.,

(
¯
U,

¯
V )(ξ) have the faster decay rate near infinity. Then no traveling wave solution to

(4.2.1) exists with speed c ∈ [c0, c1).

Proof. By the assumption, it follows that (
¯
U,

¯
V )(x − c1t) is a lower solution to the

following partial differential equation

⎧⎪⎨⎪⎩
ut = uxx + u(1− a1 − u+ a1v),

vt = r(1− v)(a2u− v),

(4.3.9)

with the initial conditions

u(x, 0) =
¯
U(x) and v(x, 0) =

¯
V (x).
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Assume to the contrary, for some c ∈ [c0, c1), there exists a monotonic traveling

wave solution (U, V )(x− ct) to the system (4.3.9), with the initial condition

u(x, 0) = U(x) and v(x, 0) = V (x).

The asymptotic behavior of this solution near ±∞ can be easily found, see e.g.,

Section 4.2. By a simple computation, we can always assume (by shifting if necessay)

(
¯
U,

¯
V )(x) ≤ (U, V )(x) for all x ∈ (−∞,∞). Since (

¯
U,

¯
V )(x − c1t) is a lower solution

to the system (4.3.9) and by comparison, we have

¯
U(x− c1t) ≤ U(x− ct), (4.3.10)

¯
V (x− c1t) ≤ V (x− ct),

for all (x, t) ∈ (R,R+). On the other hand, fix ξ = x − c1t. Then
¯
U(ξ) > 0 is fixed,

and we have

U(x− ct) = U(ξ + (c1 − c)t) ∼ U(∞) = 0 as t→ ∞.

By (4.3.10), this implies that
¯
U(ξ) ≤ 0 , which is a contradiction. The proof is

complete.

By this lemma, we will find an upper bound of rc by a suitable choice of a lower

solution. Define

¯
U1 = ¯

k

1 +Beµ2z
and

¯
V1 = H(

¯
U1), (4.3.11)
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for some constant B and 0 <
¯
k < 1. Similar as previous analysis we find

L1(
¯
U1,

¯
V1) =

¯
U1

(
1− ¯

U1

¯
k

)⎧⎨⎩(µ2
2 − cµ2 + 1− a1

)
+ ¯
U1

¯
k

⎛⎝−2µ2
2 + a1

¯
V1 −

¯
U1

(
a1−1+

¯
k

a1
¯
k

)
(
1− ¯

U1

¯
k

)
¯
U1

¯
k

⎞⎠⎫⎬⎭ .

(4.3.12)

The pair of functions (
¯
U1(z),

¯
V1(z)) is a lower solution to (4.2.1) when

− 2µ2
2 + a1Y2(z) > 0, z ∈ (−∞,∞), (4.3.13)

where

Y2(z) =
¯
V1 −

¯
U1

(
a1−1+

¯
k

a1
¯
k

)
(
1− ¯

U1

¯
k

)
¯
U1

¯
k

.

It is easy to find lim
z→−∞

Y2(z) = ∞, for 0 <
¯
k < 1. The same argument as that in the

proof of Lemma 4.3.1 can yield that lim
z→∞

Y2(z) is finite. Hence, the minimum value

of Y2(z) is defined. In view of the monotonicity of Y1(z) with respect to r in Lemma

4.3.2, the result is true for Y2(z) as well. Then we can define

r+ = inf{ r ≥ 0 | The inequality (4.3.13) holds for some c > c0}. (4.3.14)

Hence, (
¯
U1,

¯
V1)(z) is a lower solution to (4.2.1) when r ≥ r+. Then the following

result is valid.

Theorem 4.3.3. The nonlinear speed selection of the system (4.2.1) is realized when

r ≥ r+.

By the above analysis, we have a general estimation of rc, defined in (4.3.8), as

r− ≤ rc < r+.
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We can use formulas of r− and r+ defined in (4.3.6) and (4.3.14), respectively, to

estimate the value of rc. This analysis will lead to new results and cover some previous

results. It will be done in the next section.

4.4 Estimation of rc

The extreme values of Y1(z) and Y2(z) cannot be easily found. For this reason, we

will estimate the upper and the lower solutions in the V -equation instead of using the

exact formula. This will lead to some new and explicit results on the speed selection.

Theorem 4.4.1. When a1a2 ≤ 2(1−a1), the minimal wave speed of the system (4.2.1)

is linearly selected for all r ≥ 0, that is, rc = ∞.

Proof. In (4.3.5), let

V (z) = min{1, a2U} =

⎧⎪⎨⎪⎩ 1, z ≤ z2,

a2U(z), z > z2,

where z2 satisfies a2U(z2) = 1. This function is an upper solution to the V -equation.

Indeed, when z ≤ z2, cV
′
+ r(1−V )(a2U−V ) = 0, and when z > z2, we have

cV
′
+ r(1−V )(a2U−V ) = −a2cµ1U(1−U) ≤ 0.

Same formulas as those in (4.3.4)-(4.3.5) hold true, and an estimate of Y1(z) is giving

by

Y1(z) =

⎧⎪⎨⎪⎩
1

U
≤ a2, when z ≤ z2,

a2 − 1

1−U
≤ a2, when z > z2.

Then −2(1− a1) + a1Y1(z) ≤ −2(1− a1) + a1a2 ≤ 0. From Theorem 4.3.1, the result

is true.
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From Remark 4.3.2, a1a2 ≤ 1 implies that rc = ∞. We combine this and the

above theorem to have the following corollary.

Corollary 4.4.1. The condition a1a2 ≤ max{1, 2(1 − a1)} implies the linear speed

selection for (4.2.1).

By an another choice of the upper solution, we have the following theorem.

Theorem 4.4.2. When a1 ≤ 2/3 and a1a2 > 2(1 − a1), the minimal wave speed of

the system (4.2.1) is linearly selected for all

r ≤ 4(1− a1)
2

a1a2 − 2(1− a1)
, that is, rc >

4(1− a1)
2

a1a2 − 2(1− a1)
.

Proof. Here we choose V (z) as

V (z) = min

{
1,

2(1− a1)

a1
U

}
=

⎧⎪⎨⎪⎩
1, z ≤ z3,

2(1− a1)

a1
U(z), z > z3,

so that z3 satisfies 2(1−a1)U(z3) = a1. When z ≤ z3, we have cV
′
+r(1−V )(a2U−V ) =

0, and when z > z3, we have

cV
′
+r(1−V )(a2U−V )

= −2c(1− a1)

a1

{
−µ1U(1−U)

}
+ r

(
1− 2(1− a1)

a1
U

)(
a2U− 2(1− a1)

a1
U

)
.

Since a1 ≤ 2/3, the inequality 1− 2(1−a1)
a1

U ≤ 1−U is true. Hence,

cV
′
+r(1−V )(a2U−V )

≤ 2(1− a1)

a1
U(1−U)

{
−cµ1 + r

(
a1a2

2(1− a1)
− 1

)}
≤ 0,
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when

r <
4(1− a1)

2

a1a2 − 2(1− a1)
and c = c0 + ϵ1,

for small ϵ1. Also, we have Y1(z) ≤
2(1− a1)

a1
. Then −2(1 − a1) + a1Y1(z) ≤ 0. By

Theorem 4.3.1, the proof is complete.

Again, from Remark 4.3.2, we have seen that, when a1a2 > 1,

rc ≥
2(1− a1)

a1a2 − 1
.

Define M =: max{1, 2(1− a1)}. If a1 ≤ 1/2 < 2/3, then M = 2(1− a1). In this case,

we have showed that, for a1a2 > M ,

rc ≥
4(1− a1)

2

a1a2 − 2(1− a1)
=

2M(1− a1)

a1a2 −M
.

This implies the following extension to the condition (4.1.5) with d = 0.

Corollary 4.4.2. When a1a2 > M , the minimal wave speed of the system (4.2.1) is

linearly selected for all

r ≤ 2M(1− a1)

a1a2 −M
, that is, rc >

2M(1− a1)

a1a2 −M
.

Theorem 4.4.3. If there exists η < 1 so that η ≥ (2/a1)max{1− a1, 1/a2}, then the

minimal wave speed of the system (4.2.1) is nonlinearly selected for all

r >
2(1− a1)η

(1− η)2
, that is, rc ≤

2(1− a1)η

(1− η)2
.
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Proof. In (4.3.13) we choose
¯
V1(z) as

¯
V1(z) = min{η, ηa2

¯
U1} =

⎧⎪⎨⎪⎩ η, z ≤ z4,

ηa2
¯
U1, z > z4,

where z4 satisfies a2
¯
U1(z4) = 1. When z ≤ z4, since a2

¯
U(z) ≥ 1, we have

c
¯
V ′
1 + r(1−

¯
V1)(a2

¯
U1 −

¯
V1) = r(1− η)(a2

¯
U1 − η) ≥ 0.

For the region z > z4, we obtain

c
¯
V ′
1 + r(1−

¯
V1)(a2

¯
U1 −

¯
V1)

= −ηa2cµ2
¯
U1(1−

¯
U1) + r(1− ηa2

¯
U1)(a2

¯
U1 − ηa2

¯
U1)

≥ −ηa2cµ2
¯
U1(1−

¯
U1) + r(1− η)(1− η)a2

¯
U1

≥ ηa2
¯
U1

{
−cµ2 +

r

η
(1− η)2

}
≥ 0,

when r > 2(1−a1)η
(1−η)2

and c = c0 + ϵ1, for some small ϵ1. On the other hand, since

ηa1a2 ≥ 2, we can fix the value of
¯
k in the formula of

¯
U(z) defined in (4.3.11) so that

the following holds true

1− a1
ηa1a2 − 1

≤
¯
k ≤ 1− a1.

Obviously, the same formula as that is (4.3.12) is still true with the neww choice of

¯
V1(z). By this choice and since 0 ≤

¯
U ≤

¯
k < 1, we have
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−2(1− a1) + a1Y2(z) = −2(1− a1) + a1
¯
V1 −

¯
U1

(
a1−1+

¯
k

a1
¯
k

)
(
1− ¯

U1

¯
k

)
¯
U1

¯
k

≥

⎧⎪⎨⎪⎩ −2(1− a1) + a1η − (a1 − 1 +
¯
k), z ≤ z4

−2(1− a1) + a1a2η
¯
k − (a1 − 1 +

¯
k), z > z4

≥ 0.

Hence, by Lemma 4.3.6, we conclude that the minimal wave speed is nonlinearly

selected.

Remark 4.4.1. We can include the case a1 = 0 in the condition (4.1.2), where the

speed selection can be studied directly. In this case, c0 = 2
√
1− a1 = 2, and the system

(4.2.1) reads ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
U ′′ + cU ′ + U(1− U) = 0,

cV ′ + r(1− V )(a2U − V ) = 0,

(U, V )(−∞) = e1, (U, V )(∞) = e0.

The first equation is the well-known Fisher equation. It has a monotone solution for

all c ≥ 2. Using its solution in the formula V = H(U) shows that the system has a

solution for any c ≥ 2. Hence, the minimal wave speed is linearly selected.

4.5 Conclusions and Summary

The speed selection mechanisms (linear and nonlinear) for traveling waves to a two-

species Lotka-Volterra competition model (4.1.1) are investigated when d = 0 and

0 ≤ a1 < 1 < a2. New types of the upper-lower solutions are constructed. We prove a

modified version of Hosono’s conjecture, and provided some estimates of the critical
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value rc.

The linear determinacy in the condition (4.1.5) with d = 0, has been extended to

the condition

d = 0 and (a1a2 −M)r ≤ 2M(1− a1),

where M = max{1, 2(1− a1)}. It extends the results in [29, 32], when d = 0, as well.

This together with a counterexample show that they are sufficient and not necessary

for the linear speed selection. Our result also indicates that the wave speed is linearly

selected when a1a2 > 1 for all values of r provided an extra condition on a1 and a2 is

satisfied. This shows the failure of Hosono’s conjecture for the existence of finite rc

when a1a2 > 1.

By our analysis, some new results on nonlinear speed selection are also established,

see e.g. Theorem 4.4.3.

The speed selection mechanism when d > 0 is challenging and will be considered

in our future work.

4.6 Appendix: Upper-lower Solution Method

A useful method to prove the existence of monotone traveling wave solution is the

upper-lower solution technique originated in [13,90]. Here we illustrate the main idea.

By transforming the system (4.2.1) to a system of integral equations, we can define a

monotone iteration scheme in terms of the integral system. By construction an upper

and a lower solutions to the system and using the iteration scheme, we can give the

existence of traveling wave solutions.

Let α be sufficiently large positive number so that

αU + U(1− a1 − U + V ) := F (U, V )
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and

αV + r(1− V )(a2U − V ) := G(U, V )

are monotone in U and V , respectively. Equations in (4.2.1) are equivalent to

⎧⎪⎨⎪⎩
U ′′ + cU ′ − αU = −F (U, V ),

cV ′ − αV = −G(U, V ).

(4.6.1)

Define constants λ±1 as

λ−1 =
−c−

√
c2 + 4α

2
< 0 and λ+1 =

−c+
√
c2 + 4α

2
> 0.

By applying the variation-of-parameter method to the first equation in the system

(4.6.1), and the first order theory of differential equations to the second equation, the

system can be written in the form

⎧⎪⎨⎪⎩ U(z) = T1(U, V )(z),

V (z) = T2(U, V )(z),
(4.6.2)

where

T1(U, V )(z) =
1

λ+1 − λ−1

{∫ z

−∞
eλ

−
1 (z−s)F (U, V )(s)ds+

∫ ∞

z

eλ
+
1 (z−s)F (U, V )(s)ds

}
,

T2(U, V )(z) =
1

c

∫ ∞

z

e
α
c
(z−s)G(U, V )(s)ds.

Definition 2. A pair of continuous functions (U(z), V (z)) is an upper (a lower)
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solution to the integral equations system (4.6.2) if

⎧⎪⎨⎪⎩ U(z) ≥ (≤) T1(U, V )(z),

V (z) ≥ (≤) T2(U, V )(z).

Definition 3. A pair of continuous functions (U(z), V (z)) that are differentiable on

R except at finite number of points {zi, i = 1, . . . , n} is an upper (a lower) solution to

the ordinary differential equations system (4.2.1) if

⎧⎪⎨⎪⎩
U ′′+cU ′ + U(1− a1 − U + a1V ) ≤ (≥) 0,

cV ′ + r(1− V )(a2U − V ) ≤ (≥) 0,

for all z ̸= zi, i = 1, . . . , n.

The relation between these two definitions is presented in the following lemma.

Lemma 4.6.1. A continuous upper solution (U, V )(z) to the system (4.2.1) which is

differentiable on R except at finite number of points {zi, i = 1, . . . , n} and satisfies

(U ′, V ′)(z−i ) ≥ (U ′, V ′)(z+i ), for all z = zi, i = 1, . . . , n, is an upper solution to the

integral equations system (4.6.2). A same result is true for the lower solution by

reversing the inequality.

Proof. We give the proof for the upper solution where the same argument can be

applied for the lower solution. When the inequalities in Definition 3 are true, it is

easy to verify that

U ′′ + cU ′ − αU + F (U, V ) ≤ 0

V ′′ + cV ′ − αV +G(U, V ) ≤ 0.
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From the first inequality, we have

T1(U, V )(z) =
1

λ+1 − λ−1

{∫ z

−∞
eλ

−
1 (z−s)F (U, V )(s)ds+

∫ ∞

z

eλ
+
1 (z−s)F (U, V )(s)ds

}
≤ −1

λ+1 − λ−1

{∫ z

−∞
eλ

−
1 (z−s)(U ′′ + cU ′ − αU)(s)ds

+

∫ ∞

z

eλ
+
1 (z−s)(U ′′ + cU ′ − αU)(s)ds

}
.

Simple computations as that in [51, proof of Lemma 2.5] yield

T1(U, V )(z) ≤ U(z).

Similarly T2(U, V ) ≤ V (z). This implies that (U, V )(z) is an upper solution to the

system (4.6.2).

The existence of an upper and a lower solution to the system (4.6.2) will give the

existence of the actual traveling wave solution. Indeed, for our problem, we assume

that the following hypothesis is true.

Hypothesis 1. There exists a monotone non-increasing upper solution (U,V )(z) and

a non-zero lower solution (
¯
U,

¯
V )(z) to the system (4.6.2) with the properties

(1) (
¯
U,

¯
V )(z) ≤ (U,V )(z), for all z ∈ R,

(2) (U,V )(+∞) = e0, (U,V )(−∞) = (k1,k2),

(3) (
¯
U,

¯
V )(+∞) = e0, (

¯
U,

¯
V )(−∞) = (

¯
k1,

¯
k2),

for e0 ≤ (
¯
k1,

¯
k2) ≤ e1 and (k1,k2) ≥ e1 = (1, 1) so that no equilibrium solution to

(4.2.1) exists in the set {(U, V )|e1 < (U, V ) ≤ (k1,k2)}.
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From the integral system, we define an iteration scheme as

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(U0, V0) = (U,V ),

Un+1 = T1(Un, Vn), n = 0, 1, 2, . . . ,

Vn+1 = T2(Un, Vn), n = 0, 1, 2, . . . ,

(4.6.3)

and arrive to the following result by the upper-lower solution method, see e.g. [13].

Theorem 4.6.1. If Hypothesis 1 holds, then the iteration (4.6.3) converges to a

non-increasing function (U, V )(z), which is a solution to the system (4.2.1) with

(U, V )(−∞) = e1 and (U, V )(∞) = e0. Moreover, (
¯
U,

¯
V )(z) ≤ (U, V )(z) ≤ (U,V )(z)

for all z ∈ R.
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Chapter 5

Stability of Traveling Waves to the

Competition Model

5.1 Introduction

In this chapter, we are concerned with the stability of the traveling wave solution

to the diffusive Lotka-Volterra competition model. Re-consider the non-dimensional

cooperative system (4.1.1),

⎧⎪⎨⎪⎩
ut = uxx + u(1− a1 − u+ a1v),

vt = dvxx + r(1− v)(a2u− v),

(5.1.1)

with

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, ∀x ∈ R.

We also assume the condition (4.1.2),

0 < a1 < 1 < a2, (5.1.2)



5.1. INTRODUCTION

and consider the monostable traveling wave solution, connecting (1, 1) to (0, 0), in the

form

(u, v)(x, t) = (U,V )(z),

where z = x− ct and c ≥ 0. The wavefront (U,V )(z) satisfies

⎧⎪⎨⎪⎩
0 =Uzz + cUz +U(1− a1 −U + a1V ),

0 = dV zz + cV z + r(1−V )(a2U−V ),
(5.1.3)

subject to

(U,V )(−∞) = (1, 1), (U,V )(∞) = (0, 0).

We know that (U,V )(x− ct) is a special pattern that only satisfies the equations in

(5.1.1). For the stability of this pattern, we want to know how the solution of (5.1.1)

tends to (U,V )(x− ct) for given initial data u0(x) and v0(x). To this end, we use the

(z, t)-coordinates and

(u, v)(x, t) = (U, V )(z, t),

to transform (5.1.1) into the partial differential model

⎧⎪⎨⎪⎩
Ut = Uzz + cUz + U(1− a1 − U + a1V ),

Vt = dVzz + cVz + r(1− V )(a2U − V ),

(5.1.4)

subject to

U(z, 0) = u0(z), V (z, 0) = v0(z), ∀z ∈ R.

It is easy to see that (U,V )(z) is the steady-state to the above new system.

The stability of traveling waves to a scalar partial differential equation has been

well-studied, e.g., [21,22,31,39,52,53,67,70,81,97], the monograph [9,85], the survey
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paper [99]. As far as we know, most of previous works were concerned with a scalar

equation, since the extension of this method to a general system is not trivial.

Or goal here is to systematically study the local and the global stability of the

steady-state (U,V )(z) to the system (5.1.4). Using the method of spectrum analysis

in [26], we give the local stability. For the global stability, we construct an upper and a

lower solution to the system (5.1.4), and prove their convergence to the traveling wave

(U,V )(z). In view of comparison together with the squeezing technique, we arrive at

new results on the global stability of the traveling waves.

The rest of the chapter is organized as follows. The asymptotic behavior of the

traveling waves are found in Section 5.2. In Section 5.3, we study the local stability

of the steady-state by applying the standard linearization. The resulted spectrum

problem is studied by the method in [26]. A suitable weighted functional space is

chosen to proceed the analysis. In Section 5.4, beside the weighted functional space,

the upper-lower solution method together with the squeezing technique are applied to

derive the global stability results. Conclusions and summary are presented in Section

5.5.

5.2 The Asymptotic Behavior of the Steady-state

In this section, we will derive the exponential asymptotic behavior of the steady-state

(U,V )(z) of the model (5.1.3) as z → ∞. Assume

(U,V )(z) ∼ (ζ1e
−µz, ζ2e

−µz) as z → ∞,
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for positive constants ζ1, ζ2, and µ. By substituting this into (5.1.3) and linearizing

the equations we have

A(µ)

⎛⎜⎝ ζ1

ζ2

⎞⎟⎠ =

⎛⎜⎝ 0

0

⎞⎟⎠ , (5.2.1)

where A(µ) is given by

A(µ) =

⎛⎜⎝ µ2 − cµ+ 1− a1 0

ra2 dµ2 − cµ− r

⎞⎟⎠ . (5.2.2)

The system of algebraic equations (5.2.1) has a non-trivial solution if and only if

det(A) = 0. This implies µ = µ1,2,3 > 0, where

µ1(c) =
c−

√
c2 − 4(1− a1)

2
, µ2(c) =

c+
√
c2 − 4(1− a1)

2
, (5.2.3)

and

µ = µ3(c) =
c+

√
c2 + 4dr

2d
. (5.2.4)

For c > c0, obviously µ1 < µ2. When 0 ≤ d ≤ 1, we have also µ2 < µ3 for all

c > c0, i.e., e
−µ1z dominates both of e−µ2z and e−µ3z. In this case, the eigenvector of

A(µ) corresponding to µi, for i = 1, 2, is the strongly positive vector (ζ1(µi) ζ2(µi))
T ,

where

ζ1(µi) = −(dµ2
i − cµi − r) and ζ2(µi) = ra2. (5.2.5)

It follows that⎛⎜⎝ U(z)

V (z)

⎞⎟⎠ = C1

⎛⎜⎝ ζ1(µ1)

ζ2(µ1)

⎞⎟⎠ e−µ1z + C2

⎛⎜⎝ ζ1(µ2)

ζ2(µ2)

⎞⎟⎠ e−µ2z, as z → ∞, (5.2.6)
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for C1 > 0 or C1 = 0, C2 > 0. For the case when

1 < d < 2 +
r

1− a1
,

the same behavior in (5.2.6) is still true if cmin ≤ c ≤ ĉ, where

ĉ =

√
r + 1− a1
d− 1

+ (1− a1)

√
d− 1

r + 1− a1
.

If c > ĉ, then µ1 < µ3 < µ2 and we have, as z → ∞,

⎛⎜⎝ U(z)

V (z)

⎞⎟⎠ = C1

⎛⎜⎝ ζ1(µ1)

ζ2(µ1)

⎞⎟⎠ e−µ1z + C2

⎛⎜⎝ −ζ1(µ2)

−ζ2(µ2)

⎞⎟⎠ e−µ2z + C3

⎛⎜⎝ 0

1

⎞⎟⎠ e−µ2z,

(5.2.7)

for C1 > 0 or C1 = 0, C2,3 > 0. Here, (0 1)T is the eigenvector of A(µ) corresponding

to µ3, and note that ζ1(µ2) < 0 in this case. On the other hand, when

d > 2 +
r

1− a1
,

(U,V )(z) behaves like (5.2.7) when c > ĉ. For the case when c0 < c < ĉ, we have

µ3 < µ1 < µ2. Hence, as z → ∞,

⎛⎜⎝ U(z)

V (z)

⎞⎟⎠ = C1

⎛⎜⎝ −ζ1(µ1)

−ζ2(µ1)

⎞⎟⎠ e−µ1z + C2

⎛⎜⎝ −ζ1(µ2)

−ζ2(µ2)

⎞⎟⎠ e−µ2z + C3

⎛⎜⎝ 0

1

⎞⎟⎠ e−µ3z,

for C1,3 > 0, or C1 = 0, C2,3 > 0.

Finally, we have the asymptotic behavior for the solution U(z) when the wave

speed is greater than the minimal speed cmin.
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Theorem 5.2.1. For c > c∗, the wavefront U has the following behavior

U(z) ∼ C1e
−µ1z, as z → ∞

for some C1 > 0.

Proof. Assume that for some c1 > c∗, the wavefront U has the following behavior

U(z) ∼ C2e
−µ2z, as z → ∞ (5.2.8)

for some C2 > 0. Similar to the proof of Lemma 4.3.6, the result can be proved by

contradiction.

5.3 The Local Stability

To study the local stability, as usual, we add a small perturbation to the steady-state

solution and study the behavior of this perturbation for large time period. If this

perturbation decays, then we say that the steady-state is locally stable. For δ ≪ 1,

and a parameter λ, let

U(z, t) =U(z) + δφ1(z)e
λt,

V (z, t) = V (z) + δφ2(z)e
λt.

where φ1 and φ2 are two real functions. Substitute these formulas into (5.1.4) and

linearize the system about (U,V ) to get the following spectrum problem

λΦ = LΦ := DΦ′′ + cΦ′ + J(z)Φ, (5.3.1)
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where Φ = (φ1 φ2)
T , D = diag(1, d), and J(z) is a 2× 2 matrix given by

J(z) =

⎛⎜⎝ 1− a1 − 2U + a1V a1U

ra2(1−V ) r(−1− a2U + 2V )

⎞⎟⎠ . (5.3.2)

For Φ in a suitable space, we shall find sign of the maximal real part to the

spectrum (λ) of the operator L to determine the local stability of the steady-state

solution. To proceed, we introduce a weighted functional space Lp
w,

Lp
w = {f(z) : w(z)f(z) ∈ Lp(R), p ≥ 1}

with the norm

∥f(z)∥Lp
w
=

(∫ ∞

−∞
w(z)|f(z)|pdz

) 1
p

,

where

w(z) = (1/w1(z), 1/w2(z)) (5.3.3)

is the weight function with

w1(z) =

⎧⎪⎨⎪⎩ e−α(z−z0) , z > z0

1 , z ≤ z0

, w2(z) =

⎧⎪⎨⎪⎩ e−β(z−z0) , z > z0

1 , z ≤ z0

, (5.3.4)

for some positive constants α, β and z0 to be chosen. Here, Lp(R), for p ≥ 1, is the

well-known Lebesgue space of the integrable functions defined on R. Then we consider

the operator L on this new space and find its spectrum. To do this, we write Φ(z) in

the form

Φ =

⎛⎜⎝ φ1

φ2

⎞⎟⎠ =

⎛⎜⎝ w1ψ1

w2ψ2

⎞⎟⎠ , (5.3.5)

for Lp-functions ψ1 and ψ2. Substituting (5.3.5) into (5.3.1) gives a new spectrum
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problem in the weighted space Lp
w,

λΨ = LwΨ := DΨ′′ +M(z)Ψ′ +N(z)Ψ,

where Ψ = (ψ1 ψ2)
T , M(z) and N(z) are 2× 2 matrices defined by

M(z) =

⎛⎜⎝ c+ 2
w′

1

w1
0

0 c+ 2d
w′

2

w2

⎞⎟⎠ (5.3.6)

and

N(z) =

⎛⎜⎝ w′′
1

w1
+ c

w′
1

w1
0

0 d
w′′

2

w2
+ c

w′
2

w2

⎞⎟⎠+ Y (z),

with the ik-element of the matrix Y (z), yik, is given in terms of the ik-element of the

matrix J(z) as yik =
wk

wi
jik, that is,

N(z) =

⎛⎜⎝ w′′
1

w1
+ c

w′
1

w1
+ 1− a1 − 2U + a1V a1U

w2

w1

ra2(1−V )w1

w2
d
w′′

2

w2
+ c

w′
2

w2
+ r(−1− a2U + 2V )

⎞⎟⎠ .

(5.3.7)

The details to find the essential spectrum of the operator Lw can be finalized by

using Theorem A.2 in [26] and are given below. After we choose the weight function

so that the essential spectrum is on the left-half complex plane, we shall determine

the sign of the maximal real part of the point spectrum in the weighted space.

First of all, to apply the method in [26], we need to choose α and β so that the

matrix functions M(z) and N(z) are bounded, i.e.,

lim
z→∞

U(z)
w2(z)

w1(z)
= A1 and lim

z→∞
(1−V (z))w1(z)

w2(z)
= A2,
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for some constants A1 and A2. We choose

α− µ1 < β ≤ α, (5.3.8)

where µ1 is defined in (5.2.3). This makes A1 = 0 and

A2 =

⎧⎪⎨⎪⎩ 0 when β < α,

1 when β = α.

Now, we define

S± := {λ | det(−τ 2D + iτM± +N± − λI) = 0,−∞ < τ <∞},

where M± and N± are the limits of M(z) and N(z) as z → ±∞, respectively. Then

the essential spectrum of the operator Lw is contained in the union of regions inside

or on the curves S+ and S−, see [26, pp. 140]. By letting z → +∞, M+ and N+ are

given as (taking condition (5.3.8) into account)

M+ =

⎛⎜⎝ c− 2α 0

0 c− 2dβ

⎞⎟⎠ and N+ =

⎛⎜⎝ α2 − cα + 1− a1 0

C dβ2 − cβ − r

⎞⎟⎠ .

The equation det(−τ 2D + iτM+ +N+ − λI) = 0 has two solutions λ = λ1,2, where

λ1 = −τ 2 + iτ(c− 2α) + α2 − cα + 1− a1,

λ2 = −τ 2d+ iτ(c− 2dβ) + dβ2 − cβ − r.

This means that S+ is the union of two parabolas in the complex plane which are
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symmetric about the real axis, namely

S+,1 = {λ1 | −∞ < τ <∞} and S+,2 = {λ2 | −∞ < τ <∞}.

The most right points of these curves are α2−cα+1−a1 and dβ2−cβ−r, respectively,

which are negative if

α ∈ (µ1, µ2) and β ∈ (0, µ3), (5.3.9)

where µ1, µ2, and µ3 are defined in (5.2.3)-(5.2.4). Hence, when the above condition

satisfies, S+ = S+,1 ∪ S+,2 is on the left-half complex plane.

Similarly, we find S− by solving the equation det(−τ 2D + iτM− +N− − λI) = 0,

with

M− =

⎛⎜⎝ c 0

0 c

⎞⎟⎠ and N− =

⎛⎜⎝ −1 a1

0 r(1− a2)

⎞⎟⎠ .

This gives two solutions λ = λ3,4, where

λ3 = −τ 2 + iτc− 1,

λ4 = −τ 2d+ iτc+ r(1− a2).

From (5.1.2), S− = {λ3 | − ∞ < τ < ∞} ∪ {λ4 | − ∞ < τ < ∞} is on the left-half

complex plane.

The above analysis shows that the essential spectrum of Lw is on the left-half

complex plane as long as conditions (5.3.8) and (5.3.9) are satisfied. In fact, there are

many choices of α and β satisfying these conditions depending on µ1, µ2, and µ3. We

choose them by the following algorithm.

Algorithm 1. Two mechanisms are valid to choose α and β so that all conditions in

(5.3.8) and (5.3.9) hold:
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(1) If µ1 < µ3, then we choose β = α for any α ∈ (µ1,min{µ2, µ3}).

(2) If µ1 ≥ µ3, then we choose ϵ < β < µ3 and α = µ1 + ϵ, for small ϵ > 0. In

particular, we can choose β = 2ϵ and α = µ1 + ϵ, for ϵ < min{µ2 − µ1, µ3/2}.

For any c > c∗, we have from 5.2.1 that U(z) ∼ C1e
−µ1z, C1 > 0, as z → ∞. Since

λ = 0 is the principal eigenvalue to the operator L defined in (5.3.1) with the one-sign

eigenvector (U
′
,V

′
)(z). By the choice of the weighted functional space Lp

w, the one-sign

eigenvector (U
′
,V

′
)(z) is not inside. Hence, the eigenvalues of the operator Lw in Lp

w

are all negative. Now we are in a position to state the local stability result.

Theorem 5.3.1. For any c > cmin, the wavefront (U,V )(z) is locally stable in the

weighted functional space Lp
w with the weight function w(z) defined in (5.3.3)-(5.3.4),

where α and β in the formula of w(z) are chosen by Algorithm 1.

5.4 The Global Stability

We study here the global stability of the steady-state (U,V )(z) in a special choice

of the weighted functional space Lp
w(R). Let p = ∞ and define the norm ∥f∥L∞

w
=

ess supz∈R |w(z)f(z)|, for some weight function w(z). Assume µ1 < µ3. By Algorithm

1, we choose α = β ∈ (µ1,min{µ2, µ3}). Specifically, let α = β = µ1 + ϵ, for small

positive number ϵ. Also, we assume that the functions U(z) and V (z) satisfy the

condition

V (z)

U(z)
< min {a2, 1/a1} , ∀z ∈ (−∞,+∞). (5.4.1)

Theorem 5.4.1. Suppose c > cmin, µ1 < µ3, and conditions (5.1.2)-(5.4.1) hold true.
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If the initial data U(z, 0) = U0(z) and V (z, 0) = V0(z) satisfy

(0, 0) ≤ (U0, V0)(z) ≤ (1, 1), ∀z ∈ R,

lim
z→−∞

inf(U0, V0)(z) > (0, 0),

and [
U0(z)−U(z)

]
∈ L∞

w (R),
[
V0(z)−V (z)

]
∈ L∞

w (R).

Then the solution (U, V )(z, t) to (5.1.4) exists globally with

(0, 0) ≤ (U, V )(z, t) ≤ (1, 1), ∀(z, t) ∈ R× R+,

and converges to the steady-state (U,V )(z) exponentially in the sense of

sup
z∈R

⏐⏐U(z, t)−U(z)⏐⏐ ≤ ke−ηt, t > 0,

sup
z∈R

⏐⏐V (z, t)−V (z)
⏐⏐ ≤ ke−ηt, t > 0,

for positive constants k and η.

To prove Theorem 5.4.1, we will find an upper and a lower solution to the partial

differential equations system (5.1.4). For z ∈ R, define

U+
0 (z) = max

{
U0(z),U(z)

}
, V +

0 (z) = max
{
V0(z),V (z)

}
,

U−
0 (z) = min

{
U0(z),U(z)

}
, V −

0 (z) = min
{
V0(z),V (z)

}
.

It is easy to see that the following inequalities are true

(0, 0) ≤ (U−
0 , V

−
0 )(z) ≤ (U0, V0)(z) ≤ (U+

0 , V
+
0 )(z) ≤ (1, 1),

(0, 0) ≤ (U−
0 , V

−
0 )(z) ≤ (U,V )(z) ≤ (U+

0 , V
+
0 )(z) ≤ (1, 1).

(5.4.2)
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Denote (U+, V +)(z, t) and (U−, V −)(z, t) as the solutions to the system (5.1.4) with

the initial data (U+
0 , V

+
0 )(z) and (U−

0 , V
−
0 )(z), respectively, that is,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
U±
t = U±

zz + cU±
z + U±(1− a1 − U± + a1V

±),

V ±
t = dV ±

zz + cV ±
z + r(1− V ±)(a2U

± − V ±),

(U±, V ±)(z, 0) = (U±
0 , V

±
0 )(z).

(5.4.3)

By the comparison principle, one gets

(0, 0) ≤ (U−, V −)(z, t) ≤ (U, V )(z, t) ≤ (U+, V +)(z, t) ≤ (1, 1), ∀(z, t) ∈ R× R+,

(0, 0) ≤ (U−, V −)(z, t) ≤ (U,V )(z) ≤ (U+, V +)(z, t) ≤ (1, 1), ∀(z, t) ∈ R× R+.

(5.4.4)

In the following lemmas we shall prove the convergence of (U+, V +)(z, t) and

(U−, V −)(z, t) to the wavefront (U,V )(z). Then we apply the squeezing theorem to

obtain the result in Theorem 5.4.1.

Lemma 5.4.1. Under the conditions in Theorem 5.4.1, (U+, V +)(z, t) converges to

(U,V )(z).

Proof. For (z, t) ∈ R× R+, define

P (z, t) = U+(z, t)−U(z) and Q(z, t) = V +(z, t)−V (z).

These functions, P and Q, satisfy the initial value conditions

P (z, 0) = U+
0 (z)−U(z) and Q(z, 0) = V +

0 (z)−V (z).
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By (5.4.2) and (5.4.4), for all z ∈ R and t ≥ 0, we have

(0, 0) ≤ (P,Q)(z, t) ≤ (1, 1).

By (5.1.3) and (5.4.3) and using condition (5.4.1), we can verify that P and Q satisfy

Pt ≤ Pzz + cPz + (1− a1)P + (P +U)(−P + a1Q),

Qt ≤ Qzz + cQz + r(a2P −Q) + r(Q+V )(−a2P +Q).

(5.4.5)

To study the stability in the weighted functional space L∞
w , with w(z) defined in

(5.3.3), we first let

⎛⎜⎝ P

Q

⎞⎟⎠ (z, t) = e−α(z−z0)

⎛⎜⎝ P

Q

⎞⎟⎠ (z, t), for all (z, t) ∈ R× R+,

where P andQ are functions in L∞(R) and z0 is the same used in the weight function

w(z). This gives

⎛⎜⎝ P

Q

⎞⎟⎠
t

≤ D

⎛⎜⎝ P

Q

⎞⎟⎠
zz

+M

⎛⎜⎝ P

Q

⎞⎟⎠
z

+ A(α)

⎛⎜⎝ P

Q

⎞⎟⎠+

⎛⎜⎝ (U + e−αzP)(−P + a1Q)

r(V + e−αzQ)(−a2P +Q)

⎞⎟⎠
:=

⎛⎜⎝ L1(P,Q)

L2(P,Q)

⎞⎟⎠ ,

(5.4.6)

where A(α) is the same matrix defined in (5.2.2) and M = diag(c− 2α, c− 2dα).

Define P1(z, t) andQ1(z, t) as

P1(z, t) = k1ζ1e
−η1t and Q1(z, t) = k1ζ2e

−η1t, ∀(z, t) ∈ R× R+,
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for some constants k1, η1 > 0 to be chosen and (ζ1, ζ2) = (ζ1(α), ζ2(α)) is the eigen-

vector of the matrix A(α) associated to the eigenvalue α2 − cα + 1 − a1. Simple

computations give

ζ1(α) = (α2 − cα + 1− a1)− (dα2 − cα− r)

= (µ2
1 + ϵ)(1− d) + 1− a1 + r,

ζ2(α) = ra2,

which are positive for small ϵ and µ1 < µ3. Since the initial values P(z, 0) and

Q(z, 0) are in the space L∞
w , we can choose k1 ≥ maxz∈R{P(z, 0)/ζ1,Q(z, 0)/ζ2}. Direct

computations and using condition (5.4.1) show that both of L1(P1,Q1) and L2(P1,Q1)

are negative. This allows to choose a positive value to η1 so that the inequality

⎛⎜⎝ P1

Q1

⎞⎟⎠
t

= −η1k1

⎛⎜⎝ ζ1

ζ2

⎞⎟⎠ e−η1t ≥

⎛⎜⎝ L1(P1,Q1)

L2(P1,Q1)

⎞⎟⎠ . (5.4.7)

holds. Hence, since (P1,Q1)(0, z) ≥ (P,Q)(0, z) and by comparison on unbounded

domain, see e.g. [4, Proposition 2.1],

(P,Q)(z, t) = (P,Q)e−α(z−z0) ≤ k1(ζ1, ζ2)e
−α(z−z0)−η1t, ∀(z, t) ∈ R× R+.

In particular, this is true when z ∈ [z0,∞), for any fixed z0.

Now, we introduce the weight function w(z) defined in (5.3.3)-(5.3.4) with α =

β = µ1+ ϵ. By the above analysis, we need to prove the convergence of (P,Q)(z, t) to
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(0, 0) for z ∈ (−∞, z0]. Note that the full system for (P,Q)(z, t) can be expressed as

⎛⎜⎝ P

Q

⎞⎟⎠
t

= D

⎛⎜⎝ P

Q

⎞⎟⎠
zz

+c

⎛⎜⎝ P

Q

⎞⎟⎠
z

+J(z)

⎛⎜⎝ P

Q

⎞⎟⎠+

⎛⎜⎝ (−P + a1Q)P

r(−a2P +Q)Q

⎞⎟⎠ . (5.4.8)

Here, J(z) is the same 2× 2 matrix defined in (5.3.2). Let z0 be chosen so that

J(z) ≤

⎛⎜⎝ −1 + ϵ1 a1 + ϵ1

ϵ1 r(1− a2) + ϵ1

⎞⎟⎠ := Jϵ1 ,

for some given small ϵ1 > 0, when z ≤ z0. This is equivalent to require that (U,V )(z)

is close to (1, 1) for all z ≤ z0. Define (P̂ , Q̂)(t) as the solution of the autonomous

system ⎛⎜⎝ P̂

Q̂

⎞⎟⎠
t

= Jϵ1

⎛⎜⎝ P̂

Q̂

⎞⎟⎠+

⎛⎜⎝ (−P̂ + a1Q̂)P̂

r(−a2P̂ + Q̂)Q̂

⎞⎟⎠ , (5.4.9)

with the initial data

P̂ (0) ≥P(z, 0), Q̂(0) ≥Q(z, t), ∀z ∈ R.

Then (P̂ , Q̂) is an upper solution to the system (5.4.8).

Now we need to prove the convergence of (P̂ , Q̂)(t) to (0, 0) as t → ∞. The

Jacobian matrix J(0, 0) = Jϵ1 of system (5.4.9) at the fixed point (0, 0) has two

eigenvalues, λ̂2 < λ̂1 < 0. By the phase plane analysis, there exists 0 < δ ≤ 1 so that

the flow in the P̂ Q̂−space converges to origin for any initial data (P̂ , Q̂)(0) in the box

[0, 1]× [0, δ]. Hence, we conclude that

(P̂ , Q̂) = k̂1(Ĉ1, Ĉ2)e
λ̂1t as t→ ∞,
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for positive constant k̂1 and (Ĉ1 Ĉ2)
T is the eigenvector of Jϵ1 corresponding to λ̂1.

For the maximal possible choice of the constant δ so that we have the convergence

result inside the box [0, 1]× [0, δ], see Remark 5.4.1 below.

We can choose k̂1 large and λ̄1 = min{η1,−λ̂1} so that, at the boundary z = z0,

we have

(P,Q)(z0, t) ≤ k1(ζ1, ζ2)e
−η1t ≤ k̂1(ζ1, ζ2)e

−λ̄1t = (P̂ , Q̂)(z0, t).

Hence, by comparison on the domain (−∞, z0]× [0,∞), see e.g. [77, Lemma 3.2],

(P,Q)(z, t) ≤ k̂1(ζ1, ζ2)e
−λ̄1t, ∀(z, t) ∈ (−∞, z0]× R+.

This completes the proof.

Remark 5.4.1. The maximal possible value of the constant δ, which could be 1,

depends on the location of the fourth fixed point to the system (5.4.9) near or inside

the box [0, 1]× [0, 1]. See Figure 5.1 for all possible different cases. In (a), the positive

fixed point is far away from the box [0, 1] × [0, 1] and does not effect the flow. This

happens when a2 > 2. Hence we set δ = 1. The second figure (b) shows the effect of

the positive fixed point on the flow, which still outside the box. The maximal choice

of δ for this case exists in the interval (a2 − 1 − ϵ1/r, 1). The number a2 − 1 − ϵ1/r

is the positive Q̂-intercept of the nullcline Q̂t = 0. A fixed point exists inside the box

[0, 1]× [0, 1] in (c), where δ becomes close to the value a2 − 1− ϵ1/r.

Lemma 5.4.2. Under the conditions in Theorem 5.4.1, (U−, V −)(z, t) converges to

(U,V )(z).
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(a) a1 = 0.5 and a2 = 2.4. We chose δ = 1. (b) a1 = 0.5 and a2 = 1.4. In this case, the
maximal possible choice of δ is in (0.3984, 1)

(c) a1 = 0.3 and a2 = 1.4. Here, the maximal
choice of δ becomes close to 0.3984.

Figure 5.1: The phase portrait of the system (5.4.9) when ϵ1 = 0.003 and r = 1.875.
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Proof. For (z, t) ∈ R× R+, define

R(z, t) =U(z)− U−(z, t) and S(z, t) = V (z)− V (z, t).

These functions, R and S, satisfy the initial value conditions

R(z, 0) =U(z)− U−
0 (z) and S(z, 0) = V (z)− V −

0 (z).

From (5.4.2) and (5.4.4), for all z ∈ R and t ≥ 0, we have

(0, 0) ≤ (R, S)(z, t) ≤ (1, 1).

From (5.1.3) and (5.4.3), R and S satisfy the system

⎛⎜⎝ R

S

⎞⎟⎠
t

= D

⎛⎜⎝ R

S

⎞⎟⎠
zz

+c

⎛⎜⎝ R

S

⎞⎟⎠
z

+J(z)

⎛⎜⎝ R

S

⎞⎟⎠−

⎛⎜⎝ (−R + a1S)R

r(−a2R + S)S

⎞⎟⎠ , (5.4.10)

with J(z) defined in (5.3.2). By condition (5.4.1), we have

Rt ≤ Rzz + cRz + (1− a1)R + (R−U)(R− a1S),

St ≤ dSzz + cSz + r(a2R− S) + r(S −V )(a2R− S).

(5.4.11)

Similar to the previous analysis in the proof of Lemma 5.4.1, and making a use of the

facts R <U and S <V, we can prove that there exist η2 > 0 and

k2 ≥ e−α(z−z0) max
z∈R

{R(z, 0)/ζ1, S(z, 0)/ζ2}, ∀(z, t) ∈ R× R+

so that

(R, S)(z, t) ≤ k2(ζ1, ζ2)e
−η2t, ∀(z, t) ∈ R× R+.
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For the choice of z0 in proof of Lemma 5.4.1, we study the stability in the weighted

space L∞
w . To this end, define (R̂, Ŝ)(t) as the solution of the system

⎛⎜⎝ R̂

Ŝ

⎞⎟⎠
t

= Jϵ1

⎛⎜⎝ R̂

Ŝ

⎞⎟⎠− w1

⎛⎜⎝ (−R̂ + a1Ŝ)R̂

r(−a2R̂ + Ŝ)Ŝ

⎞⎟⎠ , (5.4.12)

with the initial data

R̂(0) ≥ R(z, 0), Ŝ(0) ≥ S(z, 0), ∀z ∈ R. (5.4.13)

It is easy to see that (R̂, Ŝ) is an upper solution to the system (5.4.10). The phase

plane analysis shows that (R̂, Ŝ)(t) converges to origin for any initial data in the region

[0, 1]× [0, 1] except the point (1, 1). Similar to the previous lemma,

(R, S)(z, t) ≤ k̂2(ζ1, ζ2)e
−λ̄2t, ∀(z, t) ∈ (−∞, z0]× R+.

for some positive constants k̂2 and λ̄2. This completes the proof.

Now, we are ready to give the proof of Theorem 5.4.1.

Proof of Theorem 5.4.1. From (5.4.4), for all (z, t) ∈ R× R+, we have

|R(z, t)| ≤ |U(z, t)−U(z)| ≤ |P (z, t)|,

|S(z, t)| ≤ |V (z, t)−V (z)| ≤ |Q(z, t)|.

By lemmas 5.4.1-5.4.2 and the squeezing theorem, it follows that there exist k > 0
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and η > 0 so that

|U(z, t)−U(z)| ≤ ke−ηt,

|V (z, t)−V (z)| ≤ ke−ηt,

for all (z, t) ∈ R× R+. This proves the desired result.

Condition (5.4.1) is used in the previous analysis to construct the upper solutions

in the proof of lemmas 5.4.1-5.4.2. It implies that, at c = c0 and z → +∞,

ζ2(µ1)

ζ1(µ1)
< min {a2, 1/a1} =⇒

⎧⎪⎨⎪⎩ d < 2,

(a1a2 − 1)r < (2− d)(1− a1).

This condition is the same derived in [42] for the linear speed selection. To see that

the condition (5.4.1) can be realized for all z ∈ R, we prove the following lemma.

Lemma 5.4.3. d = 0 and a1a2 ≤ 1 imply (5.4.1).

Proof. Since a1a2 ≤ 1, we only need to prove the inequality V (z) ≤ a2U(z) for all

z ∈ R. Same argument as that in the proof of Lemma (4.3.2) completes the proof.

5.5 Conclusions and Summary

The local and the global stability of traveling waves to the two-species Lotka-Volterra

competition model (5.1.1) under the condition (5.1.2) are investigated. Using the

linearization and the essential spectrum analysis in [26], we find that the traveling

wavefront is stable in some weighted functional space, see Theorem 5.3.1. Many

choices of the exponential weight functions are valid, see Algorithm 1.

Under some further condition, (5.4.1), we apply the upper-lower solution method
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to obtain a global stability result. Indeed, we prove that both the upper and the lower

solutions tend to the wavefront. Our main results are presented in Theorem 5.4.1.
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Chapter 6

Future Work

The minimal wave speed selection mechanisms of the traveling wave solution to the

system ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
U ′′ + cU ′ + U(1− a1 − U + a1V ) = 0,

dV ′′ + cV ′ + r(1− V )(a2U − V ) = 0,

(U, V )(−∞) = e1, (U, V )(∞) = e0,

(6.0.1)

which is the corresponding system to the non-dimensional competition model, has

been studied in Chapter 4 for the special case when d = 0. The solution formula to

the second equation, for a given monotone function U(z), was given. We have used

this formula to prove some properties of the functions regarding the boundedness and

the monotonicity. Then we applied the upper-lower solution method to determine the

speed selection mechanisms.

The speed selection problem becomes more challenging when d > 0, due to the

invalidity of the solution formula V (z) in terms of U(z) for the second equation in

(6.0.1). Also, U(z) and V (z) have different behaviors near infinity for some cases

(see Theorem 6.0.2 below), which makes the construction of the upper and the lower

solutions more complicated.



Indeed, as we can see in Chapter (5), if assume that the traveling wave solution

to the full system (6.0.1) exists with the behavior

(U, V )(z) = (ξ1, ξ2)e
−µz, as z → ∞,

for some positive constants ξ1, ξ2, and µ, then the following theorem is true.

Theorem 6.0.1. For c ≥ cmin, if

0 ≤ d ≤ 2 +
r

1− a1
, (6.0.2)

then (U, V )(z) has the behavior

(U, V ) ∼ C1(ξ1, ξ2)e
−µ1z, as z → ∞, (6.0.3)

where µ1 =
c−
√

c2−4(1−a1)

2
, ξ1 = dµ2

1 − cµ1 + 1 − a1, ξ2 = ra2, and C1 is a positive

constant.

As mentioned in Chapter 4, Huang [32] proved that the linear speed selection is

realized when

(2− d)(1− a1) + r

ra2
≥ max

{
a1,

d− 2

2|d− 1|

}
,

which also extended the result of Lewis et al [42] when 0 ≤ d ≤ 2. It is easy to see

that the Huang’s result contributes only when

2 < d ≤ 2 +
r

1− a1
,

i.e., the study of [42] and [32] consider the case in Theorem 6.0.1. Also, the nonlinear
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result by Huang and Han [33] requires

d = r < 2 +
r

1− a1
.

On the other hand, when condition (6.0.2) does not hold, we have the following

result.

Theorem 6.0.2. If d > 2+
r

1− a1
, then there exists ĉ > c0 so that (U, V )(z) has the

same behavior as that in (6.0.3) when cmin ≤ c < ĉ, and has the behavior

(U, V )(z) ∼ (C2e
−µ1z, C3e

−µ3z), as z → ∞,

when c > ĉ. Here C2 and C3 are positive constants, and µ3 =
c+

√
c2 + 4rd

2d
.

As far as we know, the case in the above theorem has not been considered before.

To conclude, the speed selection problem of the system (6.0.1) for any value of

d > 0 is quite interesting and challenging. This problem will be studied in another

project in our future work, via the extension of our novel idea in the case when d = 0.

Besides, for a short term plan, we expect to extend the method here for further study

on the speed selection problem for general abstract monotone systems, including time-

periodic and periodic habitat systems, as well as some non-monotone systems.
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