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Abstract

The Von Bertalanffy growth function (VonB) specifies the length of a fish as a function

of its age. However, in practice, age is measured with error. We study the structural

errors-in-variables (SEV) approach to account for measurement error (ME) in age.

Cope and Punt (2007) also proposed this approach for fish growth data. They as-

sumed unobserved age had a simple Gamma distribution. In this study, we investigate

whether SEV VonB parameter estimators are robust to the Gamma approximation

of true unobserved ages. By robust we mean lack of bias due to ME and model mis-

specification. Our results demonstrate that this method is not robust. We propose

a flexible parametric Normal mixture distribution for the unobserved true ages to

reduce this bias when estimating the length-age relationship with a VonB model. We

investigate the performance of this approach in comparison to the Gamma age model

through extensive simulation studies and a real-life data set.
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based on the SEV VonB two-Normal mixture BI model. The true

unobserved age distribution is a Lognormal with µ = 1.275 and σ =

0.4723 which is misspecified as the two-Normal mixture distribution.

We consider the sample size 400. . . . . . . . . . . . . . . . . . . . . . 120

C.4 Frequency distribution of the estimates L̂∞(σu), k̂(σu), âo(σu) & σ̂c(σu)
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Chapter 1

Introduction

1.1 Measurement Error

The purpose of regression analysis is to make inference about a mathematical model

expressed in terms of an explanatory variable X. However, due to different reasons,

the most obvious being the inaccuracy of measurements, X may not be observable.

Hence, we consider XT to be the true but unobservable covariate and instead of it we

observe X as a proxy variable. The substitution of X for XT complicates statistical

analysis and creates problems due to the error in the measurement of X for XT . Error

in covariates is a problem in many scientific areas. For example, in fisheries science,

error in age estimates for individual fish could be a consequence of misinterpretation by

readers of ageing structures (e.g. scales and otoliths) or inability of ageing structures

to accurately record growth sequence information.

Special estimation methods are needed when a covariate in a model is measured

with error. Regression analysis ignoring this error is known to produce biased and

falsely precise estimates of the regression parameters (e.g. Fuller, 2009 [21]; Carroll

et al., 2006 [12]). Further effects are unreliable coverage levels of confidence intervals
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and reduced power of hypothesis tests.

1.1.1 Measurement Error Models

Specification of a model for the measurement error (ME) process is necessary for

analyzing a ME problem. There are two general approaches:

Classical ME Model: This is appropriate when a quantity is measured by some

device and repeated measurements vary around the true value. The model can be

specified as

X = XT + U,

where U , the ME, is assumed to be independent of XT with mean zero and variance

σ2
u, which is the ME variance.

Berkson Error Model: This is appropriate in a situation when a group’s average

is assigned to each individual suiting the group’s characteristics. The group’s average

is thus the measured value; i.e., the value that enters the analysis, and the individual

value is the true value. This type of error model can be defined as

XT = X + U,

where U is assumed to be independent of X with mean zero and variance σ2
u.

Finally, a very important difference between classical ME and Berkson error models

is that in the classical model, the variability of the observed X is larger than the

variability of the true XT . In the Berkson model it is the other way around. One

needs information about the data structure in order to perform a ME analysis.

2



1.1. MEASUREMENT ERROR 3

1.1.2 Sources of Data

The data sources can be separated into two main categories, 1) internal subsets of

the primary data, and 2) data from external or independent sources. Within each of

these broad categories, there are three types of data described in Carroll et al. (2006)

[12] which are as follows:

1. Validation Data: In which XT is observed directly.

2. Replication Data: In which replicates of X are available.

3. Instrumental Data: If the ME is unknown then one needs to estimate it with

the validation data or replicate measurements of X. However, it is not always

possible to obtain replicates, and thus estimation of ME variance σu is sometimes

impossible. When there is no information about the σu, the estimation of re-

gression parameters is still possible if the data contains an instrumental variable

I in addition to X. I must be observed and correlated with XT . Furthermore,

it must be uncorrelated with the ME, U = X −XT .

1.1.3 Differential and Non-differential Errors

It is important to make a distinction between differential and non-differential MEs.

Non-differential ME occurs in a broad sense when one would not be concerned with

X if XT were available. This is the type of error in a fish growth model, e.g. when

the true age (XT ) of a fish is known then the observed age (X) measured with error

does not have any information about the length of fish (Y ). Let the conditional pdf

of Y given XT = xT be fY |XT
(y | xT ), and the conditional pdf of X given XT = xT be

fX|XT
(x | xT ). We use the abbreviation pdf to stand for probability density function.

3
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When ME is non-differential then the joint pdf of (Y ,X) given XT = xT is

fY,X|XT
(y, x | xT ) = fY |XT

(y | xT )fX|XT
(x | xT ). (1.1)

However, when ME is differential, using standard conditioning arguments, the joint

pdf of (Y ,X) given XT = xT becomes

fY,X|XT
(y, x | xT ) = fY |XT

(y | xT )fX|Y,XT
(x | y, xT ). (1.2)

Note that the only difference between Eqns. (1.1) and (1.2) is in the ME term. In

the former, under non-differential ME, X and Y are independent when XT is given.

Therefore, one can estimate parameters in models for responses even when the true

covariates are not observable. However, parameter estimation is difficult when ME

is differential, since we must determine the conditional distribution of X given XT

and the response Y . This is essentially impossible to do in practice unless one has a

subset of the data in which all of (Y ;X;XT ) are observed, i.e., a validation data set.

1.1.4 Model Identification

Model identification is an important aspect of ME modeling. A model is identified if

all its parameters can be uniquely estimated from the data. According to Fuller (2009)

[21], the parameter θ of the distribution of a random variable Z, with distribution

function FZ(z; θ), is identified if, for any two parameters in the parameter space,

θ1 6= θ2, (θ1, θ2) ∈ Θ, FZ(z; θ1) 6= FZ(z; θ2) for at least one value of z. If the parameters

of a model are identified then the model is said to be identified.

4
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1.1.5 The Effect of ME in Simple Linear Regression

The linear model specifies Y as a function of XT ,

Y = βo + β1XT + ǫ, (1.3)

where β0 and β1 are the intercept and slope parameters, respectively. Suppose XT is

measured with the classical ME model and defined as

X = XT + U. (1.4)

Assume that ǫ and U follow N(0, σ2
e) and N(0, σ2

u), respectively. Further, assume that

XT follows a N(µxT
, σ2

xT
) and that XT , ǫ and U are mutually independent. Then the

multivariate Normal distribution (MVN) of (XT , U, ǫ) is













XT

U

ǫ













∼ MVN

























µxT

0

0













,













σ2
xT

0 0

0 σ2
u 0

0 0 σ2
e

























. (1.5)

Therefore, the bivariate Normal distribution (BVN) of (ǫ,XT ) is







ǫ

XT






=







Y − (βo + β1XT )

X − U






∼ BVN













0

µxT






,







σ2
e 0

0 σ2
xT












. (1.6)

By rearranging Eqn. (1.6), the BVN of (Y,X) is







Y

X






∼ BVN













µ1

µ2






,







σ11 σ12

σ21 σ22












, (1.7)
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1.1. MEASUREMENT ERROR 6

where µ1 = E(Y ) = βo + β1µxT
, µ2 = E(X) = µxT

, and the elements of the variance-

covariance matrix of the BVN of (Y,X) are

σ11 = V(βo + β1XT + ǫ) = β2
1σ

2
xT

+ σ2
e ,

σ22 = V(X) = V(XT + U) = σ2
xT

+ σ2
u,

σ12 = Cov(Y,X) = Cov(βo + β1XT + ǫ,XT + U) = Cov(β1XT , XT ) = β1σ
2
xT
.

Finally, the BVN in Eqn. (1.7) is







Y

X






∼ BVN













β0 + β1µxT

µxT






,







β2
1σ

2
xT

+ σ2
e β1σ

2
xT

β1σ
2
xT

σ2
xT

+ σ2
u












. (1.8)

Attenuation Bias: If the true covariate XT were observed in a sample of size n

observations (Yi, XTi
) of (Y,XT ), the ordinary least squares (OLS) estimator of β1 of

the linear model in Eqn. (1.3) is

β̂∗
1 =

∑n
i=1(XTi

− X̄T )(Yi − Ȳ )
∑n

i=1(XTi
− X̄T )2

. (1.9)

In the presence of ME, the model involving the measured value of XT , X, is

Y = β0 + β1X + ǫ∗, (1.10)

where ǫ∗ = −β1U + ǫ. Given a random sample of n observations (Yi, Xi) of (Y,X),

the OLS estimator of β1 for the model in Eqn. (1.10) is

β̂1 =

∑n
i=1(Xi − X̄)(Yi − Ȳ )
∑n

i=1(Xi − X̄)2
. (1.11)

6
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According to Fuller (2009) [21] if (Y,X) is a bivariate Normal vector (Eqn. 1.8), then

the expected value of β̂1 is given by

E[β̂1] =
Cov(X, Y )

V(X)

=
Cov(XT + U, Y )

V(XT + U)

=
Cov(XT + U, β0 + β1XT + ǫ)

V(XT ) + V(U)

= β1

σ2
xT

σ2
xT

+ σ2
u

= β1(1−
σ2
u

σ2
xT

+ σ2
u

).

(1.12)

In addition, X and ǫ∗ are correlated with each other, i.e.,

Cov[X, ǫ∗] = Cov[XT + U, ǫ− β1U ] = −β1σ
2
u 6= 0.

Hence, from Eqn. (1.12), E[β̂1] 6= β1; consequently, the OLS estimator of β1 is biased

and inconsistent. The expected value of β̂1 is attenuated toward zero when the ME

is large. The bias does not reduce with increasing sample size, n. The extent of the

attenuation is measured by the quantity Λ =
σ2
xT

σ2
xT

+σ2
u
, which is known as the reliability

ratio.

Model Identification: Model identification is a key issue here. All the parameters

in the model can be represented by the vector, θ = (β0, β1, µxT
, σ2

xT
, σ2

u, σ
2
e). The

BVN distribution in Eqn. (1.8) is completely determined by its mean and variance-

covariance matrix, which involve E(Y ),E(X),V(X),V(Y ), and Cov(X, Y ). Each of

these are functions of the six elements of θ. Hence, there are many parameter vectors θ

that produce the same mean vector and variance-covariance matrix of the BVN. Thus

by definition, the model defined in Eqns. (1.3)-(1.4) is not identified. This ME model

7



1.1. MEASUREMENT ERROR 8

is identified if one of the parameter values is known in addition to the information

in the sample. For example, if σ2
u is known then the other values of the parameters

uniquely determine the BVN distribution of X and Y.

The OLS of β1 can be corrected for bias to get the best linear unbiased estimator

of β1. This can be achieved when the reliability ratio Λ is known. By rearranging

Eqn. (1.12), a bias-corrected estimator of β1 is

E[β̂1Λ
−1] = β1. (1.13)

1.1.6 ME Methods

In the previous section, we showed that the OLS estimator is typically biased when

there is covariate ME, and the direction as well as severity of the bias increases with

the magnitude of the ME.

Two basic methods have been used in ME models (e.g. Stefanski, 2000 [43]). We

review the functional and structural based methods in the following sections.

Functional Errors-in-Variables

In functional errors-in-variables (FEV) models, the unobserved true covariates are

modeled as unknown, nonrandom constants (i.e. parameters) (e.g. Carroll et al., 2006

[12]). In this model, with a sample of size n, we have n measurements of unobserved

true covariates; hence, the parameter vector includes XT1 , XT2 , ...., XTn
and the num-

ber of parameters increases linearly with n. When the number of nuisance parameters

is large relative to n it is well known that maximum likelihood estimators (MLEs)

for some parameters, particularly for variance parameters, can be largely biased and

inconsistent (e.g. section 4.3 in Barndorff and Cox, 1994 [3]; Berger et al., 1999 [4]).

8
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Finding a conditional distribution or score function that does not depend on nui-

sance parameters is one approach to deal with this bias problem due to many nuisance

parameters. Methods based on FEV models can be divided into approximately con-

sistent (remove most bias) and fully consistent methods (remove all bias as n → ∞).

Fully consistent methods for nonlinear regression models typically require assump-

tions on the distribution of the ME. Regression calibration and SIMEX are examples

of approximately consistent methods while corrected scores and conditional scores

methods are fully consistent for large classes of models.

Simulation-Extrapolation (SIMEX): The underlying concept of SIMEX, pro-

posed in Cook and Stefanski (1994) [14] and further developed by Stefanski and Cook

(1995) [42], is to determine the effect of ME on the parameter estimator experimentally

via simulation, assuming that the ME variance is known or estimated from validation

data. A detail discussion of the method can be found in Carroll et al. (2006) [12].

The SIMEX algorithm is executed in two steps: Simulation and Extrapolation.

1. Simulation Step: Computer simulated ME (i.e. random error) is added to the

observed measurement X and the biased parameter estimate is computed with

the additional simulated pseudo error terms. This process is repeated for several

increments in the value of the simulated ME.

2. Extrapolation Step: It consists of modeling the trend between the biased

parameter estimates and the corresponding size of the simulated ME. A nearly

unbiased SIMEX estimator is then obtained by extrapolating the trend back to

the point of zero ME.

We explain this concept with the simple linear model. We generated 1000 observations

of XT from a standard Normal distribution. Then, we generated 1000 observations

9
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of Y assuming a linear model (Eqn. 1.3) using the β0 = 0, β1 = 1, σe = 1 and XT .

We use σu = 0.3 in the Eqn. (1.4) to generate 1000 observations of X. We have

considered the simulated ME λ such as 0.5, 1, 1.5 and 2. We randomly generate

b = 100 independent datasets for each λ. For each (say bth) dataset we follow the

following steps:

• Step 1: We generated simulated pseudo errors Zb,i (i = 1, 2,. . . , 1000) from a

standard Normal distribution.

• Step 2: We generate pseudo predictors Xb,i(λ) = Xi + λ0.5 σu Zb,i (i = 1,

2,. . . , 1000) for a specific value of λ.

• Step 3: Fit the linear model to (Yi, Xb,i(λ)) for a specific value of λ. We used

OLS method to estimate the slope parameter which is β̂1,b(λ).

Repeat these steps b times and calculate the average simulation estimate of β1, β̂1(λ) =

1
b

∑b
i=1 β̂1,i(λ). We plot the β̂1(λ) against each value of (1 + λ). We use a quadratic

extrapolation fitting method to the trend back to the point of zero ME, i.e., λ = −1.

Figure 1.1 illustrates that the SIMEX estimate β̂1(λ) changes as added simulated ME

increases. To estimate β̂1 if there is no ME we use a quadratic extrapolation fitting

method to the trend back to the point of zero ME, i.e., λ = −1. The estimated value

of β1 is 0.985 while the true value of β1 was 1.

Regression Calibration: Regression Calibration (RC) was introduced by Prentice

(1982) [33] in a proportional hazards model application and generalized by Carroll

and Stefanski (2006) [10] to increase its scope. The method and its applications are

discussed extensively in Carroll et al. (2006) [12]. The RC algorithm is as follows:

• Step 1: Estimate the regression of XT on X using replication or validation

data. This is called the calibration function.

10
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• Step 2: Replace the unobserved XT by its estimate from the regression model,

and then run a standard analysis to obtain parameter estimates.

• Step 3: Adjust the resulting standard errors to account for the estimation at

the step 1, using either the bootstrap or asymptotic methods.

There are two important drawbacks of RC, 1) for linear and log-linear models

RC provides asymptotically unbiased estimators whereas for nonlinear models the

RC estimator is approximately unbiased (e.g. Buzas et al., 2003 [7]); 2) standard

errors for parameter estimates are obtained from bootstrapping or asymptotic normal

assumptions; consequently, statistical inference is not exact.

Structural Errors-in-Variables

In structural errors-in-variables (SEV) models the observed X and true unobserved

covariate XT are jointly considered to be random and vary in repeated sampling. Let

Y be the response variable, and we define YT as a function of XT ,

YT = g(XT ; θR), (1.14)

where the mean function g(.) is a continuous real valued function and θR is the pa-

rameters of the mean function. We define the classical ME models as

Y = YT + ǫ, (1.15)

X = XT + U, (1.16)

11
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where ǫ follows N(0, σ2
e), and U follows N(0, σ2

u) with σ2
u is known. We assume that

the conditional pdf of Y given XT = xT is

fY |XT
(y | xT ; θR),

and the conditional pdf of X given XT = xT is

fX|XT
(x | xT ; σu).

The joint pdf of (Y ,X) is

fY,X(y, x; θ) =

∫ ∫

fY,X|YT ,XT
(y, x | yT , xT ; θR, σu) fXT ,YT

(xT , yT ; θR, θE) ∂yT ∂xT ,

where θ = (θR, θE). We assume that MEs in X and Y are independent so that

fY,X|YT ,XT
(y, x | yT , xT ; θR, σu) = fX|XT

(x | xT ; σu) fY |YT
(y | yT ; θR). (1.17)

The joint pdf of (YT ,XT ) can be expressed as

fXT ,YT
(xT , yT ; θR, θE) = fYT |XT

(yT | xT ; θR) fXT
(xT ; θE). (1.18)

Combining Eqns. (1.17)-(1.18), the joint pdf of (Y ,X) is

fY,X(y, x; θ) =

∫ ∫

fX|XT
(x | xT ; σu) fY |YT

(y | yT ; θR) fYT |XT
(yT | xT ; θR) fXT

(xT ; θE) ∂yT ∂xT .

If we know the true covariate XT , then we assume that we would know the true

response exactly, i.e., YT | XT = g(XT ; θR) is the regression model value of response

12
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for a true covariate XT ; hence,

fYT |XT
(yT | xT ; θR) =











1 yT = g(xT ; θR)

0 otherwise.
(1.19)

Eventually, under the above assumption,

fY |YT
(y | yT ; θR) = fY |XT

(y | xT ; θR).

Therefore, the joint pdf of (Y ,X) is

fY,X(y, x; θ) =

∫

fY |XT
(y | xT ; θR) fX|XT

(x | xT ; σu) fXT
(xT ; θE) dxT . (1.20)

The integral is replaced by a sum if XT is a discrete random variable. In Eqn. (1.20),

1. Response Model: fY |XT
(y | xT ; θR) describes the relationship between Y and

XT ;

2. ME Model: fX|XT
(x | xT ; σu) describes the relationship between X and XT ;

3. Covariate Model: The true unobserved covariate XT is considered as a ran-

dom variable with pdf fXT
(xT ; θE).

The likelihood for the observed data is then maximized over all the parameters in two

of the above three component distributions, i.e., response model and covariate model,

to obtain MLEs of the parameters.

The SEV approach requires parametric distributional assumptions for the unob-

served covariate, XT , which none of the preceding FEV methods required. It is com-

mon to assume a Normal distribution for the covariate model, but unless there are

validation data, it is not possible to assess the adequacy of the covariate model using

13



1.1. MEASUREMENT ERROR 14

the data. In SEV models, the distribution of XT is speculative and could be quite dif-

ferent from it’s true underlying distribution leading to model misspecification. Hence,

an important concern is whether the SEV estimates are robust to misspecification of

the distribution of the true covariate. The sensitivity of the regression parameters

estimators to covariate model misspecification in SEV models has been illustrated in

Carroll, Roeder and Wasserman (1999) [11].

Semi-parametric and flexible parametric modeling are two approaches that have

been explored to address potential robustness issues in specifying a pdf for XT . Semi-

parametric methods leave the pdf for XT unspecified, and the pdf for XT is essentially

considered as another parameter that needs to be estimated. These models have the

advantage of model robustness but may lack efficiency relative to the full likelihood

(e.g. Suh and Schafer, 2002 [45]). A flexible parametric model is described in Carroll,

Roeder and Wasserman, 1999 [11], where mixtures of Normals were used to approx-

imate the covariate model (since the true covariate model is generally unknown) to

estimate the parameters of a linear errors-in-variables model and a change-point Berk-

son model. Flexible parametric approaches have been studied in, e.g. Kuchenhoff and

Carroll (1997) [30], Schafer (2002) [39].

The choice between functional or structural models depends both on the assump-

tions one is willing to make and, in a few cases, the form of the model relating Y to

X. To explain this point we have taken one of the examples stated in Fuller (2009)

[21]. Consider the relationship between yield of corn, say Y , and available nitrogen,

say XT , in the soil. To estimate the available soil nitrogen, it is necessary to sample

the soil of the experimental plot and to perform a laboratory analysis on the selected

sample. As a result of the sampling and of the laboratory analysis, we observe X

instead of XT . The description of the collection of the soil nitrogen data allows two

14
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interpretations of the true values XT . First, assume that the fields are a set of ex-

perimental fields managed by the experiment station in ways that produce different

levels of soil nitrogen in the different fields. In such a situation, one would treat the

true, but unknown, nitrogen levels in the different fields as fixed. In this case the

FEV approach is a natural choice. On the other hand, if the fields were a random

sample of farmers fields, the XT could be treated as random variables. In this case

SEV is preferable. In addition, the type and amount of data available also play role.

For example, validation data provides information on the distribution of XT , and may

make structural modeling more preferable.

To sum up, the SEV approach can yield high efficiency and allow construction of

likelihood-based inference, whereas this may be more difficult in FEV models due to

the large number of parameters. However, robustness in SEV estimates is an impor-

tant issue due to misspecification of the covariate model. Despite this shortcoming,

SEV models are more common and usually preferable to FEV models because of the

general applicability of SEV models, and their simple computation and potential gain

in efficiency.

1.2 Fish Growth and ME

Body growth is an important factor in fish population dynamics and determining

sustainable levels of fishing. Growth varies from species to species, for different pop-

ulations of a species (i.e. stocks), and different year-classes within a population (e.g.

Chen and Mello, 1999 [13]). Growth information is essential for fish stock assessment

which is a process that produces scientific advice on the health of a fish stock and the

impacts of fisheries. Fishing quotas are usually based on weight whereas mortality

involves the number of fish in a stock. Good information about body growth rates
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are required to predict the impacts of future fishing quotas on stock mortality and

when deciding what are good and sustainable harvest rates. Poor information on

body growth rates may lead to incorrect prediction of the mortality impacts of fishing

and other population dynamics (e.g. Vincenzi et al., 2014 [49]). Therefore, estimation

of growth rates is a common and important part of fisheries stock assessment studies.

Generally, two basic types of growth data are available from commercial fisheries:

1) age-to-length data in which one age and length measurement per fish is collected

from a large sample of fish, and 2) multiple measurements of the same fish via capture-

recapture or other repeated measures studies (e.g. Francis, 1988 [19]). The first type

of data is more common. Ages are determined by counting growth bands in ear bones

(otoliths) and this can involve substantial error especially for older fish because the

bands get harder to differentiate as a fish gets older. There are several growth models

available in literature; however, the Von Bertanlanffy growth model is the most widely

used and its parameters are useful for describing a fish growth curve as discussed in

Von Bertalanffy (1960) [50].

1.2.1 Von Bertanlanffy (VonB) Growth Model

The theory of the VonB model is based on the assumption that the change in length

per unit time, dYT

dXT
, declines with length. That is, the growth rate of large individuals

is less than the growth rate of small individuals. If YT denotes the length at age XT ,

then the VonB growth rate model is based on the differential equation

dYT

dXT

= k(L∞ − YT ), (1.21)

and dYT

dXT
= 0 when YT = L∞. Thus, the growth rate of fish will get smaller and even-

tually becomes zero as a fish nears its maximum possible length L∞. The parameter
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L∞ is the asymptotic length at which the growth rate is zero and k is the growth rate

parameter. Assuming that YT = 0 when XT = 0, the solution of Eqn. (1.21) is

YT = L∞(1− e−kXT ).

We illustrate this model in Figure 1.2 (top panel) when L∞ = 120 and k = 0.2.

This figure demonstrates that for the VonB model, fish grow more quickly when they

are young, growth slows gradually as the individual fish ages, and eventually stops

growing at length, L∞ = 120.

Generally, the length of a fish during its first year (age zero) is not zero, i.e., YT > 0

at XT = 0. To account for this, we use the following form of the VonB growth model,

YT (XT ;L∞, ao, k) = L∞(1− e−k(XT−ao)), (1.22)

where ao < 0 is the theoretical age at which a fish has zero length. In practical terms

age cannot be negative, but if YT > 0 at age XT = 0 and we extrapolate the growth

curve back to when YT = 0, we obtain a negative age (see Figure 1.2, bottom panel).

The VonB model (Eqn. 1.22) is used to describe the mean growth of a population

where L∞, k and a0 are the population mean growth parameters.

1.2.2 The Effect of ME in VonB Model

In reality the length of fish can usually be measured fairly accurately, however, error in

measuring age (i.e. covariate ME) is very common in age-to-length data. Age reading

errors may be due to 1) misinterpretation by readers of ageing structures to record

growth sequence information, 2) different readers provides different age measurements.

Therefore, in practice, XT is not observed, and instead of it we observe X.
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The standard method used in fish stock assessments to fit VonB models, i.e., Eqn.

(1.22), to data is either by nonlinear least squares (e.g. Tomilnson and Abramson,

1961 [46]) or maximum likelihood (e.g. Kimura, 1980 [29]). In both model fitting

procedures YT is thought of as the expected or mean length of a fish with age X,

and the fitting procedure simply selects parameter values to minimize the difference

between the observed and the expected values of YT for each observed age X. This

approach assumes that all the deviations between the model and the data are due to

variation in length measurements. ME in age may cause bias, and we will investigate

the potential magnitude of the bias using a simulation experiment.

In a simulation study, we randomly generated 1000 independent datasets. For

each dataset we follow the following steps:

• Step 1: We generated 1000 true ages XT from a Gamma distribution with

α = 7 and β = 1. The pdf of the Gamma distribution with parameters α and β

is

fXT
(xT ;α, β) =

1

βα Γ (α)
xα−1
T e

−
xT
β .

• Step 2: We generated 1000 true lengths YT assuming a VonB growth model

(Eqn. 1.22) using L∞ = 120, k = 0.2 and ao = −0.1 and the true age XT

generated in step 1.

• Step 3: We considered the classical error model of Y defined in Eqn. (1.15) to

generate 1000 observed lengths Y with σe = 0.1. We used the classical error

models of X defined in Eqn. (1.16) to generate 1000 observed ages X with a

range of σu values vary from 0 to 0.8.

• Step 4: For each data set we used nonlinear least squares to estimate the VonB

growth parameters.

18
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Finally, we calculate the average simulated estimates of growth model parameters.

Figure 1.3 displays the change in estimates of growth parameters L∞, k, and a0 with

the magnitude of ME. The results illustrate that as the ME in age increases the change

in average simulated estimates of growth parameters is substantial. When there is

no ME in age, i.e., σu = 0 the average simulated estimates are the same as their

corresponding true values. For example, the average estimated value of L∞ is 120.

However, as σu increases the average estimated values of L∞ increases substantially.

For instance, when σu = 0.8 then the average estimated value of L∞ is 127, which is

very different from its true value 120. Therefore, ME in age has a substantial effect

on the estimates of growth parameters.

MEs in age and length of fish have substantial consequences on estimates of growth,

mortality, recruitment and yield (e.g. Bradford, 1991 [6]; Reeves, 2003 [35]). Covariate

ME has long been recognized as important in fisheries science when fitting linear

regression models (Schnute, 1990 [38]), stock-recruit models (Walters and Ludwig,

1981 [47]), simple biomass production models (Uhler, 1980 [48]), and growth models

(e.g. Kitakado, 2000 [28], Cope and Punt, 2007 [15]), which is the focus of this study.

It is difficult to estimate the ME in both age (i.e. the covariate) and length (i.e.

the response) without additional information on the accuracy of at least one of these

sources. An SEV model approach was used by Suh and Schafer (2001) [45]. They

considered a situation where individual growth measurements were available, with

error in both length and age, but also a smaller validation sample in which there were

no aging errors. Such validation data are not commonly available. Cope and Punt

(2007) [15] considered the more common situation in which estimates of the ageing

error variance are available from multiple age measurements of a sample of fish. They

suggested an SEV model with a Gamma distribution for the unobserved true ages,

and they showed using simulations that this approach provided more precise estimates

19
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of VonB model parameters compared to the conventional “errors in length” nonlinear

least squares method.

1.3 Organizations of Subsequent Chapters

The following chapters are organized as follows. In Chapter 2, we approximate the

unobserved true age distribution using a simple Gamma distribution in an SEV VonB

model to estimate the VonB model parameters. This approach is commonly used for

age-to-length data (e.g. Cope and Punt, 2007 [15]). In this study, we call it the SEV

VonB Gamma model. We investigate whether SEV VonB Gamma model parameter

estimators are robust to misspecification of the true unobserved age distribution or

not. We consider robustness (Huang, X. (2006) [53], and Huang, Stefanski, and

Davidian (2006) [26]) to mean lack of bias in estimators for the parameters.

In Chapter 3, we propose an SEV VonB growth model that involves mixtures of

Normal distributions for the unobserved ages, which is more robust to misspecification

of the true unobserved age distribution. For our purposes, we call it the SEV VonB

G-Normal mixture model. We compare the estimators based on the SEV VonB G-

Normal mixture model with that based on the SEV VonB Gamma model in terms of

large sample bias.

In Chapter 4, we extend the SEV VonB G-Normal mixture model in Chapter 3

to account for between-individual (BI) variation in growth. We assume BI variation

in growth appears because individuals achieve different asymptotic sizes (L∞). Here,

we call it the SEV VonB G-Normal mixture BI model. We compare the estimators

based on the SEV VonB G-Normal mixture BI model with that based on the SEV

VonB Gamma BI model in terms of finite sample bias.

20
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In Chapter 5, we apply the SEV VonB G-Normal mixture BI model to the length-

at-age Greenland Hailbut data in the NAFO management unit Subarea 2 + Divisions

3KLMNO provided by Dwyer et al. (2016)[17].

In Chapter 6, we conclude by summarizing the main ideas proposed in this thesis

and the main results obtained.

21
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1.4 Figures

Figure 1.1: Simulation-Extrapolation (SIMEX) estimate β̂1(λ) of slope parameter of
simple linear model. The simulated measurement error denoted by λ.
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Figure 1.2: Application of the Von Bertalanffy (VonB) model for L∞ = 120, k =
0.2. The top panel illustrates the growth curve when a0 = 0, and the bottom panel
illustrates when a0 < 0. YT and XT denote the true length and true age of fish,
respectively.
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Figure 1.3: Average simulated values of Von Bertalanffy (VonB) parameters L∞, k

& ao estimated using the nonlinear least squares method. The measurement error
variance is denoted by σu.

24



Chapter 2

Robustness of Structural

Errors-in-Variables Model

2.1 Introduction

In Chapter 1 we introduced the structural errors-in-variables (SEV) model. This

approach was proposed to account for age ME in VonB growth models in fisheries

science. Cope and Punt (2007) [15] suggested an SEV model with a Gamma distri-

bution for the unobserved true ages, XT , and their results showed that this approach

provided more precise estimates of VonB model parameters compared to the nonlinear

least squares method.

Mohammed (2015) [32] extended the model in Cope and Punt (2007) [15] to in-

clude between-individual variation in growth, but still assuming that unobserved ages

have a simple Gamma distribution. The simulation studies in Mohammed (2015) [32]

indicated that misspecification of the distribution of unobserved age did not result

in much bias in the estimates of VonB parameters. However, we note that the age

reading error variance considered in Mohammed (2015) [32] was very small. Cadigan
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and Campana (2016) [8] also assumed a Gamma age distribution in their hierarchi-

cal modelling of growth for many fish populations, and they showed that parameter

estimates did not change much when a more flexible parametric age distribution was

used. Huang, Stefanski and Davidian (2006) [26] showed that when the covariate ME

is low the asymptotic bias of parameter estimators is close to zero for SEV models.

Therefore, potential bias is due to the joint effect of model misspecification and the

magnitude of covariate ME. This was not studied much in Cope and Punt (2007) [15],

Mohammed (2015) [32], or Cadigan and Campana (2016) [8].

This is the motivation for this chapter. We investigate whether SEV VonB model

parameter estimators based on a simple Gamma distribution for unobserved ages are

robust to misspecification of the true unobserved age distribution. We consider ro-

bustness (e.g. Huang, X. (2006) [53], and Huang, Stefanski, and Davidian (2006)

[26]) to mean lack of bias in estimators for the parameters of interest. In practice

the true age distribution may be quite complicated, varying from unimodal to mul-

timodal. The age distribution of a fish population will depend on the reproduction

and survival of previous cohorts, and reproduction rates and early life-stage survival

for fish are known to vary widely from year to year. This can lead to potentially

complicated and multi-modal age distributions; hence, robustness to such misspecifi-

cations is practically relevant. Heagerty and Kurland (2001) [23] proposed a method

for evaluating large sample bias due to misspecification of the random effects distri-

bution in generalized linear mixed models. A general framework to quantify the bias

due to covariate ME misspecification was proposed by Hossain and Gustafson (2011)

[24]. We used their approaches to compute the large sample bias in SEV VonB model

parameter estimators to investigate how this is jointly affected by misspecification of

the distribution of unobserved true ages and the magnitude of the ME in age.
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2.2 Structural Errors-in-Variables Model

In this section, we investigate a method to assess the robustness of the estimates of

parameters in the SEV model. Recall from Chapter 1 that the joint pdf of (Y ,X)

defined in Eqn. (1.20) is

fY,X(y, x; θ) =

∫

fY |XT
(y | xT ; θR) fX|XT

(x | xT ; σu) fXT
(xT ; θE) dxT ,

where

1. Response Model: fY |XT
(y | xT ; θR) describes the relationship between Y and

XT ;

2. ME Model: fX|XT
(x | xT ; σu) describes the relationship between X and XT ;

3. Covariate Model: the true covariate XT is considered as a random variable

with pdf fXT
(xT ; θE).

Let fT
XT

(xT ; ΘE) denote the true pdf of XT and fA
XT

(xT ; θE) denote the assumed pdf of

XT that we use in the SEV model. If the true covariate model with pdf fT
XT

(xT ; ΘE)

is misspecified as the assumed covariate model with pdf fA
XT

(xT ; θE), then under such

misspecification θE may no longer be meaningful; however, θR will still be meaningful.

In this chapter, our interest is in how sensitive the bias in the estimate of θR is to

such misspecification.

Note that the true response model and the true ME model are the same as the

corresponding assumed models because we are assuming they are correctly specified;

only the covariate model is misspecified.
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2.2.1 Covariate Model Correct Specification

Under the correct model, the observed data likelihood is

LT (Θ | Y,X) =

∫

fY |XT
(y | xT ; θR) fX|XT

(x | xT ; σu) f
T
XT

(xT ; ΘE) dxT , (2.1)

where Θ = (θR,ΘE). The log-likelihood function for Θ based on Y and X under

correct specification is

l(Θ | Y,X) = log{LT (Θ | Y,X)}.

The score function for Θ is

S(Θ | Y,X) =
∂

∂Θ
l(Θ | Y,X) =

∂
∂Θ

LT (Θ | Y,X)

LT (Θ | Y,X)
.

The expected score function, E[S(Θ | Y,X)], evaluated at the true parameter value

θ∗ of Θ is

E[S(θ∗ | Y,X)] = 0. (2.2)

The proof is as follows:

E[S(θ∗ | Y,X)] =

∫ ∫ ∂
∂Θ

LT (θ∗ | Y,X)

LT (θ∗ | Y,X)
LT (θ∗ | Y,X) dy dx

=

∫ ∫

∂

∂Θ
LT (θ∗ | Y,X) dy dx

=
∂

∂Θ

∫ ∫

LT (θ∗ | Y,X) dy dx

=
∂

∂Θ

∫ ∫ ∫

fY |XT
(y | xT ; θ

∗
R) fX|XT

(x | xT ; σu) f
T
XT

(xT ; Θ
∗
E) dxT dy dx

=
∂

∂Θ
(1)

= 0.
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2.2.2 Covariate Model Misspecification

Under the misspecified (assumed) covariate model, the observed likelihood in Eqn.

(2.1) is

LA(θ | Y,X) =

∫

fY |XT
(y | xT ; θR) fX|XT

(x | xT ; σu) f
A
XT

(xT ; θE) dxT , (2.3)

where θ = (θR, θE) be a (P × 1) vector. The log-likelihood function for θ based on Y

and X under misspecification is

l(θ | Y,X) = log{LA(θ | Y,X)}.

The score function for θ for the misspecified model is

S(θ | Y,X) =
∂

∂θ
l(θ | Y,X) =

∂
∂θ
LA(θ | Y,X)

LA(θ | Y,X)
.

The SEV MLE of θ under the misspecified covariate model are the values maximizing

Eqn. (2.3). Let θ̂ be the SEV MLE of θ. Hence, θ̂R is the SEV MLE of θR.

Define θ(σu) as a function of σu implicitly via

E[S{θ(σu) | Y,X}] = 0. (2.4)

The expectation is taken with respect to the joint pdf of (Y ,X) (Eqn. 2.1) for the

correct specification of XT . Let θ(σu) = (θR(σu), θE(σu)) be the analytical solution

that makes the expected score equation under misspecification (Eqn. 2.4) equal zero.

Theoretical Robustness of MLE of θR : Huang, X. (2006) [53], and Huang,

Stefanski, and Davidian (2006) [26] proposed a method to study the robustness to
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model specification of XT . For studying robustness, we assume that ME exists with

known variance σu and that the unknown pdf of XT is possibly misspecified. The

SEV MLE θ̂R is robust if

θR(σu) is approximately equal to θ∗R for σu ≥ 0,

where θ∗R is the true parameter value that makes the correctly specified mean score

function equal to zero. Therefore, the asymptotic bias in the SEV MLE of θR that

arises due to covariate model misspecification is

Asymptotic Bias(θ̂R) = θR(σu)− θ∗R. (2.5)

The main difficulty in finding the asymptotic bias of θ̂R is finding the analytical

solution θR(σu) when there is no closed form of Eqn. (2.4). Therefore, to approximate

the solution of θ(σu) one idea is to generate a large sample of size n and apply the

large sample theory of estimation. The large sample estimation process for θ(σu) is

described below.

2.2.3 Estimating Method of the SEV Model Parameters

Let D = (Yi, Xi)
n
i=1 denote independent realizations from the ME models defined in

Eqns. (1.15) and (1.16) and Di = (Yi, Xi) be the ith realization. By the law of large

numbers we have

1

n

n
∑

i=1

S{θ(σu) | Di}
p→ E[S{θ(σu) | Y,X}],
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in probability when n is large. Therefore, for large sample estimation of θ(σu) we

need to solve
n

∑

i=1

S{θ(σu) | Di} = 0, (2.6)

for a large sample of size n. Eqn. (2.6) is the estimating equation for θ(σu) under the

misspecified model. Let θ̃(σu) be the solution to the estimating Eqn. (2.6) for large n.

We used the Newton-Raphson (N-R) iterative method to solve the estimating Eqn.

(2.6) for θ(σu), where at any particular iteration (r+1) we have

θ̃(r+1)(σu) = θ̃(r)(σu)− [I{θ̃(r)(σu)}]−1[S{θ̃(r)(σu)}], (2.7)

where S{θ̃(r)(σu)} is a (P×1) score vector and I{θ̃(r)(σu)} is a (P×P) Hessian matrix

at the rth iteration. The jth element of S{θ̃(r)(σu)} is

Sj{θ̃(r)(σu)} =
n

∑

i=1

Sj{θ̃(r)(σu) | Di} =
n

∑

i=1

∂

∂θj
l{θ(σu) | Di}

∣

∣

∣

θ(σu)=θ̃(r)(σu)
, (2.8)

and the (k, j)th element of I{θ̃(r)(σu)} is

Ik,j{θ̃(r)(σu)} =
n

∑

i=1

Ik,j{θ̃(r)(σu) | Di} =
n

∑

i=1

∂2

∂θk∂θj
l{θ(σu) | Di}

∣

∣

∣

θ(σu)=θ̃(r)(σu)
, (2.9)

for j, k = 1, 2, . . . ,P. Evaluation of the terms in Eqns. (2.8)-(2.9) requires evaluation

of integrals with no closed form except in the case of the linear regression model.

Therefore, numerical integration is required. The estimation procedure discussed in

Hossain and Gustafson (2011) [24] is as follows:

1. Generate a sample of the D = (Yi, Xi)
n
i=1 using Eqns. (1.15) and (1.16);

2. Integrate out theXT numerically in order to evaluate S{θ(σu) | Di} and I{θ(σu) |

Di};
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3. Use the N-R iterative method discussed in the Eqn. (2.7) to find θ̃(σu).

Large Sample Bias of MLE of θR : Let θ̃(σu) be the numerically approximating

θ(σu) of Eqn. (2.6) for large n. The large sample bias in the SEV MLE θ̂R under

covariate model misspecification is

Bias(θ̂R) = θ̃R(σu)− θ∗R,

which is a numerical approximation of the asymptotic bias defined in Eqn. (2.5).

Therefore, the SEV MLE for θR, i.e., θ̂R is robust if

θ̃R(σu) approximately equal to θ∗R for σu ≥ 0.

2.2.4 Example: Assessing Bias due to Covariate Model Mis-

specification in a Simple Linear Model

Huang, Stefanski, and Davidian (2006) [26] investigated the bias in the estimates of

the parameters in a simple linear model due to covariate model misspecification. We

have reproduced their results to check our bias estimation procedure for the SEV

model. The linear model specifies Y as a function of XT ,

Y = βo + β1XT + ǫ,

with β0 and β1 are the intercept and slope parameters, respectively. Suppose, XT is

measured with the classical ME model,

X = XT + U.
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Assume that ǫ and U are N(0, σ2
e) and N(0, σ2

u), respectively.

1. Response Model: The Normal pdf of Y given XT is

fY |XT
(y | xT ; θR) =

1

σe

√
2π

e−(y−η(xT ;β0,β1))
2
/2σ2

e , (2.10)

where η(xT ; β0, β1) = βo + β1xT and θR = (βo, β1, σ
2
e).

2. ME Model: The Normal pdf of X given XT is

fX|XT
(x | xT ; σu) =

1

σu

√
2π

e−(x−xT )2/2σ2
u . (2.11)

3. Covariate Model: The assumed Normal pdf of XT is

fA
XT

(xT , θE) =
1

µ
√
2π

e−(xT−µ)2/2µ2

. (2.12)

where the parameter, θE = µ. The mean, E(XT ) = µ, variance, V(XT ) = µ2,

and the coefficient of variation, CV(XT )= 1.

To estimate the parameters of interest (β0 and β1) we follow the estimating method

discussed in Section 2.2.3. We used the simulation procedure described below to

compute the large sample bias in the SEV MLE of β0 and β1.

A large random sample (n = 50,000) of responses Y were generated with pa-

rameters fixed at β0 = 0, β1 = 1 and σe = 1. Three true distributions of XT were

investigated: N(0.5, 1), N(1, 1), and N(1.5, 1). When the true distribution of XT is

N(1, 1) then the assumed model N(µ, µ2) is correctly specified, while for the other

two cases the assumed model is incorrect. Figure 2.1 displays the bias in the estimates

of β0 and β1 against σu for three true distributions of XT , two of which were misspec-

ified as N(µ, µ2). The misspecification and lack of flexibility in modelling XT results
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in bias in the estimates of β0 and β1 that increase in magnitude with σu. Virtually

identical results were provided by Huang, Stefanski and Davidian (2006) [26].

2.3 SEV VonB Model

Let Y be the measured length of a fish, YT be the unknown true length, XT be the

unobserved true age, and X be the observed age. For simplicity we assume that

measurements of both length and age of fish are continuous similar to Cope and Punt

(2007) [15]. The VonB growth model specifies YT as a function of XT ,

YT (XT ;L∞, ao, k) = L∞(1− e−k(XT−ao)).

The parameter L∞ is the asymptotic length (as XT → ∞) at which the growth rate

is zero, k is the growth rate parameter, and ao < 0 is the theoretical age at which

a fish has zero length. We assume that the observed length (Y ) and age of fish (X)

have independent multiplicative MEs,

Y = YT (XT ;L∞, ao, k) e
ǫ, (2.13)

X = XT eU , (2.14)

where ǫ isN(0, σ2
e) and U isN(0, σ2

u). Since U isN(0, σ2
u), e

U is a Lognormal(0, σu) dis-

tribution. The coefficient of variation of a Lognormal(0, σu) distribution is
√
eσ

2
u − 1,

which is approximately σu when σu is small. Therefore, e.g. σu = 0.3 will be regarded

as 30 percent ME variance in age.

We assume multiplicative ME in length because in practice errors will be smaller

for small fish compared to larger sizes. Errors in age will also usually increase with
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age because it is more difficult to count annual otolith growth increments for older

fish; therefore, the multiplicative error in age is valid as described in Cope and Punt

(2007) [15] and Cadigan and Campana (2016)[8].

1. Length Model: The Lognormal pdf of Y given XT is

fY |XT
(y | xT ; θR) =

1

yσe

√
2π

e−(log(y)−η(xT ;L∞,k,ao))
2/2σ2

e , (2.15)

where η(xT ;L∞, k, ao) = log{L∞(1− e−k(xT−ao))} and θR = (L∞, k, ao, σ
2
e).

2. ME Model: The Lognormal pdf of X given XT is

fX|XT
(x | xT ; σu) =

1

xσu

√
2π

e−(log(x)−log(xT ))2/2σ2
u . (2.16)

3. Age Model: The assumed pdf of XT is Gamma,

fA
XT

(xT ; θE) =
1

βα Γ (α)
xα−1
T e

−
xT
β , (2.17)

where the parameter vector θE = (α, β). The mean is E(XT ) = αβ and the

variance is V(XT ) = αβ2.

In this study, we called an SEV VonB model with a simple Gamma distribution

for unobserved ages a SEV VonB Gamma model. For simplicity, we assumed σe was

known. To estimate the parameters, i.e. θ = (L∞, k, ao, α, β), we follow the estimating

method discussed in Section 2.2.3. The score vector and Hessian matrix of θ for this

model are provided in Appendix A. The R procedure “integrate” is used to integrate

out the XT numerically in order to evaluate the score vector and Hessian matrix of θ.

In the next section, we conduct a simulation study to investigate the impact of

mis-specifying the true unobserved age distribution as Gamma when it is actually
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something else, like a Lognormal or mixture of distributions.

2.3.1 Simulation Design and Settings

The response Y is generated assuming a VonB growth model (Eqn. 2.13) with the

parameters fixed at L∞ = 120, k = 0.2, ao = −0.1 and σe = 0.1. We assume that

only the true unobserved age distribution is misspecified. For all simulation setups

we consider σu varies from 0 to 0.3. When σu = 0, there is no ME in age. We use a

sample of size n = 50,000 for studying the bias in the estimates of θR = (L∞, k, ao).

2.3.2 Simulation Design 1: Lognormal versus Gamma Distri-

bution for True Age

The true distribution of unobserved age XT is generated from a Lognormal(µ, σ)

distribution with pdf

fT
XT

(xT ; ΘE) =
1

xT σ
√
2π

e−(log(xT )−µ)2/2σ2

. (2.18)

The parameter vector includes ΘE = (µ, σ). The mean is E(XT ) = eµ+
σ2

2 , the variance

is V(XT ) = (eσ
2 − 1)e2µ+σ2

, the coefficient of variation is CV(XT ) =
√
eσ

2 − 1, and

the skewness is Sk = (eσ
2
+ 2)

√
eσ

2 − 1. We consider different degrees of skewness

and heavy tailedness for the distribution of XT . Different simulation settings for the

true unobserved age distribution of fish are:

1. E(XT ) = 4, CV(XT ) = 0.5; therefore, µ = 1.275, σ = 0.4723 and Sk = 1.6;

2. E(XT ) = 7, CV(XT ) = 0.5; therefore, µ = 1.834, σ = 0.4723 and Sk = 1.6;

3. E(XT ) = 10, CV(XT ) = 0.5; therefore, µ = 2.2, σ = 0.4723 and Sk = 1.6;
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4. E(XT ) = 4, CV(XT ) = 1.5; therefore, µ = 0.7946, σ = 1.085 and Sk = 7.9;

5. E(XT ) = 7, CV(XT ) = 1.5; therefore, µ = 1.35, σ = 1.085 and Sk = 7.9;

6. E(XT ) = 10, CV(XT ) = 1.5; therefore, µ = 1.713, σ = 1.085 and Sk = 7.9.

Figure 2.2 illustrates the simulated true ages. Cases 1-3 represent situations where

the Lognormal distributions have less heavy tails and cases 4-6 have heavier tails.

Cases 1-3 and 4-6 are contrasting situations where the levels of skewness are different

for the same corresponding mean age. The Gamma distribution is expected to pick

up the shape of the true unobserved age distributions in cases like 4-6. Cases 1-

3 are considered to examine whether light tails in the age distribution are a factor

contributing to estimator bias.

As shown in Figure 2.3, in case of correct specification, i.e., when the true dis-

tribution of XT follows Gamma(α = 7, β = 1), there is little bias in the estimators

of L∞, k and ao. However, mis-specifying the distribution of XT as Gamma (when

it was actually Lognormal) may result in large bias in estimators of L∞, k and ao.

When there is no ME in age, i.e. σu = 0, all the estimated values are about the

same as the true values of the corresponding parameters irrespective of the different

levels of skewness in the true age distribution. The estimates of the VonB growth

parameters are fairly close to their true values when σu is less than 5 percent. Hence,

misspecification of the true age distribution does not cause much bias when ME in age

is low. However, as σu increases the bias of these estimators increases substantially

in cases like 1-2 where skewness is comparatively small. Notice that across all the

situations L∞ is overestimated while k and ao are underestimated. The bias in L∞ is

negatively correlated with the bias in k, which is expected as described in (e.g. Quinn

and Deriso, 1999 [51]). Interestingly, when skewness increases to 7.9 from 1.6, the

bias in L∞, k and ao becomes low.
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It is well known that a broad range of ages is required to estimate VonB model

parameters reliably. This should include young fish whose growth rates provide more

direct information about k, and old fish that provide information about the asymp-

totic size, L∞. Otherwise, there may be confounding between k and L∞. To further

explore how the distribution of ages may affect bias, we computed the proportion

of large fish (Y > 0.95L∞) and investigated the relationship of this proportion with

bias. Let X0.95L∞
be the age at which the length of a fish is 95 percent of L∞ = 120.

Let Pr denote the probability of the event (X >X0.95L∞
), which is an indicator of

the proportion of old aged fish in the population. Table 2.1 demonstrates that when

the skewness of the Lognormal age distributions is the same as the proportion of old

aged population Pr increases the bias in the estimates of L∞, k and ao decreases. For

example, in cases like 1-3 where the skewness is 1.6, the proportion of old aged fish

increases from 0.001 to 0.14, and the bias in the estimates of L∞ and k decreases sub-

stantially as Pr increases. Therefore, the percentage of old aged fish in the population

seems to be a factor contributing to the bias in the estimates of L∞ and k.

The results from Table 2.2 are based on two cases where the true unobserved age

distributions are Lognormal with the same mean, 4. The proportion of old aged fish

in the population is 0.001 for both cases, however, the level of skewness is different.

Table 2.2 indicates that when the skewness increases from 1.63 to 2.67 the change in

bias in the estimates is substantial. It implies that when the percentage of old aged

fish in the population is small the bias in the estimates are high irrespective of the

level of skewness increases.

The results from Table 2.3 are based on cases where the percentage of old aged

fish is 4 percent, and skewness increases from 7.86 to 13.97. The bias in the estimates

of L∞, k, and ao are low as skewness increases. It implies that when the percentage of

old aged fish in the population is large the bias in the estimates are low irrespective
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of the skewness increases.

Therefore, we conclude that the estimates of L∞, k and ao are not only affected

by a joint effect of ME in age and the nature of the misspecification of the true

unobserved age distribution, but they are also affected by the percentage of old fish

in the population that are near their asymptotic length.

2.3.3 Simulation Design 2: Mixture versus Gamma Distribu-

tion for True Age

Age-distributions of fish in practice is complicated and often multi-modal. For exam-

ple, if reproduction was really good 5 years ago and 2 years ago, but not otherwise,

then the age distribution this year will have peaks at 2 and 5. The true age dis-

tribution of a population is the result of complex temporal variability in previous

reproduction and survival rates (e.g. Kitakado, 2000 [28]). In order to examine the

sensitivity to Gamma model misspecification in a SEV VonB model, we investigate

the following mixture distributions for true unobserved ages.

Three-Gamma Mixture Distribution: This distribution is refereed to as the

“TriGamma” case which corresponds to generating XT from a well-separated three-

Gamma mixture distribution with pdf

fT
XT

(xT ; ΘE) =
3

∑

g=1

pg fg(xT ;αg, βg), (2.19)

where fg(xT ;αg, βg) denotes the Gamma pdf which is defined in Eqn. (2.17) and
∑3

g=1 pg = 1, pg ≥ 0 for g = 1, 2, 3. Let α = (α1, α2, α3); β = (β1, β2, β3); therefore,

the parameter vector, ΘE = (p,α, β); where p = (p1, p2, p3). To generate XT from the

three-Gamma mixture distribution we consider p = (0.2, 0.3, 0.5); α = (20, 50, 90);

and β = (0.1, 0.1, 0.1). The means of three independent Gamma distributions are 2, 5
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and 9, respectively; and the variances are 0.2, 0.5 and 0.9. The mixture distribution

is illustrated in Figure 2.4 (First Panel) and has its highest peak at age 10.

Ten-Gamma Mixture Distribution: This distribution is referred to as the

“MultiGamma” case where XT is generated from a mixture of ten Gamma distribu-

tions with pdf (defined in Eqn. 2.19), where g = 1, 2, ..., 10 with different means but

the same CV(XT ) = 0.0025 (see Figure 2.4).

Three-Truncated Normal Mixture Distribution: This distribution is refer-

eed to as the “TriNormal” case which corresponds to generating XT from a mixture

of three-truncated Normals with the pdf

fT
XT

(xT ; ΘE) =
3

∑

g=1

pg fg(xT ;µg, σg), (2.20)

where fg(xT ;µg, σg) denotes the truncated Normal density, which is

fg(xT ;µg, σg) =
φg(

xT−µg

σg
)

σg(1− Φg(
−µg

σg
))
,

where φ(.) is the standard Normal density and Φ(.) is its cumulative Normal dis-

tribution function. Let µ = (µ1, µ2, µ3); σ = (σ1, σ2, σ3); furthermore, the param-

eter vector, ΘE = (p,µ, σ); where p = (p1, p2, p3). To generate XT from the three-

truncated Normal mixture distribution we consider p = (0.2, 0.3, 0.5); µ = (2, 5, 9);

and σ = (0.2, 0.5, 0.9). Figure 2.4 shows that the mixture of three truncated Normal

age distributions represents a younger age population since the distribution has its

highest peak at age 2.

Results corresponding to TriGamma, MultiGamma, and TriNormal cases are pre-

sented in Figure 2.5. The estimates are very close to the true values when the σu

is less than or equal to 0.1, but when σu reached 0.3 the bias was large. In these
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simulation designs L∞ was underestimated while ao and k were overestimated. This

is in contrast to the situation where the Lognormal distribution of the true age was

misspecified as a Gamma distribution.

2.4 Summary

Our simulation results show that

• The SEV estimates of L∞, k and ao are not robust when the true distribution

of XT is misspecified as the simple Gamma distribution.

• When ME in age is small, e.g. σu ≤ 0.05; the bias of these estimates are small

even when the distribution of true ages is misspecified.

• However, as σu increases the bias increases substantially.

In the next chapter, we propose an SEV VonB growth model that involves a mixture

model component for the distribution of unobserved ages that is more robust to mis-

specification of this component of the model.
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2.5 Figures

Figure 2.1: Sensitivity analysis of large sample bias in the estimates of β0 and β1

based on the SEV linear model where two true covariate Normal distributions, i.e.,
Normal(1.5,1) and Normal(0.5,1) misspecified as Normal(µ, µ2).
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Figure 2.2: True unobserved age (XT ) distribution is Lognormal with mean, E(XT )
and skewness, Sk.
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Figure 2.3: Sensitivity analysis of large sample bias in the estimates of L∞, k, and ao
based on the SEV VonB Gamma model. Results were based on simulating data from a
correctly specified Gamma distribution and six misspecified Lognormal distributions
with different means, E(XT ) and skewness, Sk.
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Figure 2.4: True unobserved age (XT ) mixture Gamma and truncated Normal distri-
butions.
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Figure 2.5: Sensitivity analysis of large sample bias in the estimates of L∞, k, and ao
based on the SEV VonB Gamma model. Results were based on simulating data from a
correctly specified Gamma distribution and three misspecified mixture distributions.
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2.6 Tables

Table 2.1: Estimated values of L∞, k, and ao based on the SEV VonB Gamma model,
versus the proportion of old aged fish in the population (Pr) and skewness of the
distribution.

Simulation Setup Skewness Pr L̃∞ k̃ ão

1 1.6 0.001 136.08 0.154 -0.34
2 1.6 0.03 124.95 0.170 -0.49
3 1.6 0.14 122.00 0.18 -0.65
4 7.9 0.04 123.00 0.186 -0.12
5 7.9 0.10 120.72 0.195 -0.14
6 7.9 0.18 120.07 0.197 -0.17

Table 2.2: SEV VonB estimates of L∞, k, and ao, versus skewness of the distribution
at Pr = 0.001.

Skewness L̃∞ k̃ ão

1.63 136.08 0.15 -0.30
2.67 128.34 0.17 -0.22

Table 2.3: SEV VonB estimates of L∞, k, and ao, versus skewness of the distribution
at Pr = 0.04.

Skewness L̃∞ k̃ ão

7.86 123.0 0.186 -0.12
13.97 122.2 0.190 -0.11
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Chapter 3

Robustness of SEV VonB

G-Normal Mixture Model

3.1 Introduction

In Chapter 2 we showed that if the true unobserved age distribution is misspecified

as the simple Gamma distribution then the bias in the estimates of VonB growth

parameters increases with the magnitude of the ME in age. This is a serious drawback

of using the Gamma as the assumed unobserved age distribution in a SEV VonB model

for analyzing growth data. In this chapter, we investigate a more flexible mixture

Normal distribution as the assumed unobserved age distribution in an SEV VonB

model to get more robust estimates of the VonB growth parameters.
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3.2 Finite Mixture Models

A finite mixture model is a convex combination (i.e. a weighted sum, with non-negative

weights that sum to 1) of two or more pdf’s. By combining the properties of the indi-

vidual pdfs, mixture models are capable of approximating more complex distributions.

Mixture models have been used in many applications in statistical analysis and ma-

chine learning such as modeling, clustering, classification, and latent class and survival

analysis.

A mixture model is based on the assumption that the data are sampled from

a population consisting of a finite collection of subpopulations, usually of the same

statistical distribution type. More specifically, an independently and identically dis-

tributed (i.i.d.) random variableW arises from a finite mixture model if for all w ⊂ W,

f(w; ν) =
G
∑

g=1

pg fg(w; νg), (3.1)

such that ν = (p1, p2, . . . , pG, ν1, ν2, . . . , νG), pg ≥ 0, and
∑G

g=1 pg = 1, where pg is the

gth mixing proportion, νg is a vector of parameters, and fg(w; νg) is the g
th component

pdf.

Let W1,W2, . . . ,WG denote random variables from the G component distributions,

and let W denote a random variable from the mixture distribution with the density

in Eqn. (3.1). Then, for any function H(.) for which E(H(Wg)) exists, and assuming
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that the component densities fg(w; νg) exist,

E(H(W )) =

∫ ∞

−∞

H(W )
G
∑

g=1

pgfg(w; νg) dw

=
G
∑

g=1

pg

∫ ∞

−∞

H(W )fg(w; νg)dw

=
G
∑

g=1

pgE(H(Wg)).

(3.2)

Therefore, the expectation ofH(W ) from the mixture distribution is simply a weighted

average of the E(H(Wg)) of the G components.

3.2.1 G-Normal Mixture Distribution

In general, we define an i.i.d. random variable W drawn from G different Normal

distributions with probability pg by specifying the component pdf as

f(w; ν) =
G
∑

g=1

pg φg(w;µg, σg), (3.3)

where φg(w;µg, σg) denotes the Normal density with mean µg and standard deviation

σg which is

φg(w;µg, σg) =
1

σg

√
2π

e−(w−µg)
2/2σ2

g .

Furthermore,
∑G

g=1 pg = 1, pg ≥ 0 for g = 1, 2, . . . , G. Let µ = (µ1, µ2, . . . , µG)

with restriction µ1 < µ2 < . . . < µG, and σ = (σ1, σ2, . . . , σG). In this study, we

call a mixture with G Normal components a G−Normal mixture distribution. The

parameter vector includes ν = (p, µ, σ) of dimension (q×1) where p, µ, and σ are

(G×1) vectors. All the probabilities but the last one will be estimated. The gth

component probability (pG) can be computed from the relation pG = 1 − ∑G−1
g=1 pg.
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Therefore, in ν there are q-1 = G + G + G - 1 = (3G-1) parameters to estimate.

Rationale of Ordered Mean: The ordered restriction on group means, i.e.,

µ1 < µ2 < . . . < µG, is imposed to avoid non-identifiability issues with the G-Normal

mixture distribution. We explain this with a two-Normal mixture distribution. The

number of parameters to estimate is five, i.e., p1, µ1, µ2, σ1, σ2. The two-Normal mix-

ture pdf (Eqn. 3.3) with parameter values p1 = 0.5, µ1 = 1, µ2 = 2, σ1 = 1, σ2 = 1

is

N1 = 0.5× φ1(w; 1, 1) + 0.5× φ2(w; 2, 1),

and with another set of parameter values, i.e., p1 = 0.5, µ1 = 2, µ2 = 1, σ1 = 1, σ2 = 1

the pdf is

N2 = 0.5× φ1(w; 2, 1) + 0.5× φ2(w; 1, 1).

It is evident that without order restriction on group means, N1 = N2; hence, different

parameter values can define the same distribution and the mixture distribution be-

comes non-identifiable. However, when we impose the order restriction on the means,

i.e., µ1 < µ2, the non-identifiability problem can be avoided since there will be no

switching between φ1(w;µ1, σ1) and φ2(w;µ2, σ2).

Moments: According to Eqn. (3.2) the 1st and 2nd order moments of theG−Normal

mixture distribution are

E(W ) =
G
∑

g=1

pgE(Wg) =
G
∑

g=1

pgµg,

E(W 2) =
G
∑

g=1

pgE(W 2
g ) =

G
∑

g=1

pg(σ
2
g + µ2

g),

and

Var(W ) = E(W 2)− {E(W )}2 =
G
∑

g=1

pgσ
2
g +

G
∑

g=1

pgµ
2
g − (

G
∑

g=1

pgµg)
2.
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The variance formula indicates that the variance of the mixture is the weighted

variances plus a non-negative term accounting for the (weighted) dispersion of the

means. These relations highlight the potential of the G-Normal mixture distribu-

tion to display non-trivial higher-order moments such as skewness and kurtosis (fat

tails) and multi-modality, even in the absence of such features within the components

themselves.

3.3 SEV VonB G-Normal Mixture Model

We propose an SEV VonB model with a G-Normal mixture distribution for unobserved

ages (SEV VonB G-Normal mixture model). Recall that in Chapter 2 (section 2.3)

we introduced an SEV VonB model which specifies YT as a function of XT ,

YT (XT ;L∞, ao, k) = L∞(1− e−k(XT−ao)).

The observed length of a fish, Y, and observed age of a fish, X, including multiplicative

MEs are

Y = YT (XT ;L∞, ao, k) e
ǫ,

X = XT eU ,

where ǫ is N(0, σ2
e) and U is N(0, σ2

u). By taking logarithm transformations we get

log(Y ) = log{YT (XT ;L∞, ao, k)}+ ǫ, (3.4)

log(X) = log(XT ) + U. (3.5)
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Let Y = log(Y ), X = log(X) and XT = log(XT ). Therefore, under the misspecified

age model the observed likelihood is

LA(θ | Y ,X ) =

∫

fY|XT
(Y | XT ; θR) fX|XT

(X | XT ; σu) f
A
XT

(XT ; θE) dXT , (3.6)

where

1. Length Model: The pdf of Y given XT is

fY|XT
(Y | XT ; θR) =

1

σe

√
2π

e−{Y−η(xT ;L∞,k,ao)}
2/2σ2

e , (3.7)

where η(xT ;L∞, k, ao) = log{L∞(1− e−k(xT−ao))} and θR = (L∞, k, ao, σ
2
e).

2. ME Model: The pdf of X given XT is

fX|XT
(X | XT ; σu) =

1

σu

√
2π

e−(X−XT )2/2σ2
u . (3.8)

3. Age Model: The assumed pdf of XT is

fA
XT

(XT ; θE) =
G
∑

g=1

pg φg(XT ;µg, σg), (3.9)

where φg(x;µg, σg) denotes the Normal density with mean µg and standard

deviation σg, which is

φg(x;µg, σg) =
1

σg

√
2π

e−(x−µg)
2/2σ2

g .

Furthermore,
∑G

g=1 pg = 1, pg ≥ 0 for g = 1, 2, . . . , G. The parameter vector

θE = (p, µ, σ) where p = (p1, p2, . . . , pG); µ = (µ1, µ2, . . . , µG) with restriction

µ1 < µ2 < . . . < µG; and σ = (σ1, σ2, . . . , σG). All the probabilities but the last
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one will be estimated. The Gth component probability (pG) can be computed

from the relation pG = 1−∑G−1
g=1 pg. Therefore, in θE there are G - 1 + G + G

= (3G-1) parameters to estimate.

Modelling the Mixing Probabilities p’s: The probabilities p1, p2, . . . , pG for

groups 1, 2, . . . , G with the property that
∑G

g=1 pg = 1, pg ≥ 0 for g = 1, 2, . . . , G.

There have been numerous publications focusing on how to model the probabili-

ties p1, p2, . . . , pG. Recently Francis (2014) [20] studied the Logistic Normal Multi-

nomial distribution commonly advocated for modelling probabilities. We use the

continuation-ratio logit that has been used for modelling age distributions (e.g. Kvist

et al., 2000 [27]; Rindford and Lewy, 2001 [36]). We transform p1, p2, . . . , pG−1

into λ1, λ2, . . . , λG−1, where λg ∈ (−∞,+∞) for g = 1, 2, . . . , G − 1. Let λg be

the continuation-ratio logit [Eqn. (B.2) in (Appendix B)] of pg. We will estimate

continuation-ratio logits λ = (λ1, λ2, . . . , λG−1), and then use these estimated values

in Eqn. (B.1) (Appendix B) in order to estimate p1, p2, . . . , pG−1. Then, the pG will

be estimated using the relationship pG = 1−∑G−1
g=1 pg.

Modelling the Restriction on Group Means: The ordered mean constraint

assumes that µ1 < µ2 < . . . < µG. We will estimate the means from the following

relation

µg =











µ1 g = 1

µg−1 + eµ
d
g g = 2, 3, . . . , G.

where µd
g = µg − µg−1, µ

d
g ∈ (−∞,∞) for g = 2, 3, . . . , G. Therefore, eµ

d
g ∈ (0,∞) for

g = 2, 3, ..., G. We will estimate the parameters in the vector µd = (µ1, µd
2, . . . , µd

G).

Using these we can estimate µ = (µ1, µ2, . . . , µG) from the above relation.
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Determining G: It is necessary to decide how many mixtures (the value of G)

to use in the pdf (Eqn. 3.9) of the G-Normal mixture distribution to model the

distribution of the unobserved age XT . Increasing the value of G will provide more

flexibility. However, there is always a price to pay in terms of efficiency of the estimates

for allowing extra flexibility. According to Ma and Genton (2004) [31], G= 3 can

provide enough flexibility to approximate a wide variety of densities. This is especially

reasonable in ME problems, because, in practice, the true covariate distribution does

not usually have many well separated modes (e.g. Hossain and Gustafson, 2009 [25]).

Therefore, in this study we investigate the suitability of a Normal mixture distribution

with G= 2 and G= 3 as the distribution of true age in the SEV age models.

3.3.1 Estimation of Parameters

In our proposed SEV VonB G-Normal mixture model we approximate the true un-

observed age distribution by assuming a G-Normal mixture distribution. For sim-

plicity, we assumed σe is known. Therefore, the parameter vector includes θ =

(L∞, k, a0, λ, µ
d, σ) of dimension P×1, where λ is a (G-1) × 1 vector; µd and σ are

G × 1 vectors. Therefore, in θ there are P = 3 + G + G + G - 1 = (3G+2) pa-

rameters to estimate. The log-likelihood function for θ based on Y and X under

misspecification is

l(θ | Y ,X ) = log{LA(θ | Y ,X )}.

The estimating equation for θ(σu) under the misspecified model is

n
∑

i=1

S{θ(σu) | Yi,Xi} = 0.

To optimize the above estimating equation for θ(σu) it is difficult to follow the N-R

approach discussed in Chapter 2 (section 2.2.3). The evaluation of S{θ̃(σu)} and
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I{θ̃(σu)} requires a large number of derivative calculations when the number of pa-

rameters P increases. For estimating the parameters of the proposed SEV VonB

G-Normal mixture model this work increases as the number of groups, G, increases.

Alternatively, the Template Model Builder (TMB) frees the statistician from the task

of writing, testing and maintaining derivative code.

In the next section, we discuss the TMB package and its implementation of our

proposed approach to estimate parameters.

3.4 Template Model Builder

TMB (e.g. Skaugh and Fournier, 2006 [41]; Wang, 2015 [52]) is a free and open source

R package (R Core Team, 2014 [34]) that is designed for estimating complex nonlinear

random effects models. One needs to define the joint log-likelihood function of the

data and the random effects as a C++ template function. Other operations such as

integration and calculation of the marginal score function are done in R. This package

evaluates and maximizes the Laplace approximation of the marginal likelihood where

the random effects are automatically integrated out. This approximation, and its

derivatives, are obtained using automatic differentiation of the joint likelihood.

3.4.1 Automatic Differentiation

Automatic Differentiation (AD) (e.g. Fournier et al., 2012 [18]), also known as com-

putational differentiation or algorithmic differentiation, is a set of techniques that nu-

merically differentiate a function, which frees us from calculating and incorporating

the derivatives. Two methods, “source transformation” and “operator overloading”

are commonly used to implement automatic differentiation. C++ automatic differen-

tiation (CppAD) (e.g. Bell, 2012 [5]) implements the operator overloading approach.
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This approach is easier to implement and use than “source transformation”. The

TMB R package uses CppAD to provide up to third order derivatives of the joint

likelihood function that the user writes in the C++ template. These derivatives are

required for the Laplace approximation of the marginal likelihood.

3.4.2 Laplace Approximation

The Laplace approximation (e.g. Skaugh and Fournier, 2006 [41]) is used to ap-

proximate the intractable integral in the marginal likelihood (Eqn. 3.10). Let y =

(y1, y2, ..., yn) be the vector of response variables, Λ = (Λ1,Λ2, ...,Λn) be the vector

of unobserved random effects, and let θ = (θ1, θ2, ..., θm) be the vector of fixed effects

parameters. Moreover, fθ(y | Λ) denotes the conditional pdf of y given Λ, and fθ(Λ)

denotes the marginal pdf of random effects Λ. The marginal likelihood function for

θ is defined by integrating out the random effects Λ from the joint pdf of y and Λ,

fθ(y | Λ)fθ(Λ), such that

L(θ) =

∫

fθ(y | Λ)fθ(Λ)dΛ =

∫

eh(Λ,θ)dΛ, (3.10)

where h(Λ, θ) = log{fθ(y | Λ)} + log{fθ(Λ)} is the joint log-likelihood. The main

computational challenge is in computing the integral in Eqn. (3.10), when there is

no analytical solution. TMB uses the Laplace approximation for Eqn. (3.10), which

yields the marginal likelihood approximation

L∗(θ) = det{H(θ)}−1/2eh(Λ̂(θ),θ), (3.11)

where Λ̂(θ) = argmax
Λ

{h(Λ̂(θ), θ)}, H(θ) = ∂2

∂Λ2h(Λ, θ)|Λ=Λ̂(θ), and det{H(θ)} denotes

the determinant of H(θ). The term eh(Λ̂(θ),θ) in Eqn. (3.11) is a profile likelihood,

57



3.4. TEMPLATE MODEL BUILDER 58

which treats the random effects as nuisance parameters and θ as the parameters

of interest. The Hessian, H, is evaluated by CppAD. Using the AD and Laplace

approximation simplifies the parameter estimation of hierarchical models. The TMB

user needs only to specify the joint log-likelihood function h(Λ, θ). TMB uses the

Cholesky decomposition of H(θ); therefore, the Laplace approximation is well-defined

only if h(Λ, θ) is positive definite.

In an R session, we read in the data, dynamically link the C++ function template,

set up the initial values for θ, specify the random effects, and optimize the objective

function. TMB automatically provides a standard error report for θ̂, and also any

differentiable function of θ, φ(θ) that the user specifies, by using the δ-method:

Var(φ(θ̂)) = −
{

φ′(θ)[
∂2{logL∗(θ)}

∂θ∂θ
′

]−1φ(θ)
}∣

∣

∣

θ=θ̂
.

3.4.3 SEV VonB G-Normal Mixture Model Implementation

In this section, we describe the implementation in TMB of the SEV VonB G-Normal

mixture model. The observed likelihood (Eqn. 3.6) is re-written as

LA(θ | Y ,X ) =

∫

eh(XT ,θ)dXT ,

where h(XT , θ) = log{fY|XT
(Y | XT ; θR)}+ log{fX|XT

(X | XT ; σu)}+ log{fA
XT

(XT ; θE)},

which is the joint log-likelihood. For convenience we estimate the logarithm of L∞, k,

and σ, which can take values between (−∞,∞) whereas L∞, k, and σ vary between

(0,∞). Let

θ = (log(L∞), log(k), a0, λ, µ
d, log(σ)).

The vector of random effects are XT . We first specify the negative joint likelihood

function −h(XT , θ) in the C++ template (see Appendix B). The TMB code in R
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for an SEV VonB G-Normal mixture model then calculates the marginal likelihood

function for θ using the Laplace approximation. The final step is to optimize this

objective function in R.

C++ Template Code: The user template for the negative joint log-likelihood

(the file named fitmix.cpp) is given in Appendix B (section B.2). The first four

lines are standard and should be the same for most models. The first line includes

the TMB specific macros and functions, including dependencies such as CppAD and

Eigen. The following three lines are the syntax for starting a function template,

where Type is a template parameter that the compiler replaces by an AD type that

is used for numerical computations. Lines 5-10 declare the vector of variables to be

the same as tmb.data in the R session included at Appendix B (section B.3). For

example, in line 5 DATA VECTOR(age) declares the vector age to be the same as

tmb.data$age in the R session. Lines 11-17 include the parameters to be the same as

parameters in the R session. For example, line 11 PARAMETER(log Linf) declares

the scalar log Linf to be the same as parameters$log Linf in the R session. Line

14 PARAMETER VECTOR(lambda) declares the vector lambda to be the same as

parameters$lambda in the R session. The other scalar parameters are declared in a

similar manner. Note that the user template does not distinguish between the fixed

parameters and random effects but rather codes them both as parameters.

Lines 33-37 include the code for estimating λ, which are the continuation ratio

logits of probabilities for groups. Lines 38-42 include the pdf of a G-normal mixture

distribution. Lines 43-47 include the negative joint log-likelihood. Lines 48-53 include

the template syntax which reports the parameters back to R with derivatives. For

example, line 48 ADREPORT(Linf) reports the Linf back to R with derivatives. Lines

54-61 include the template syntax which report the parameters back to R. The last
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line 62 is standard syntax, which returns the negative joint log-likelihood. Having

specified the user template it can be compiled, linked, evaluated, and optimized from

within R.

TMB Code in R: The TMB code in R for SEV VonB G-Normal mixture model

is given in Appendix B (section B.3). In the R code the first line loads the TMB

package. The second line compiles the C++ template and the third line links it.

The fourth to tenth lines include the data. Lines 11-21 include the initial values

for the parameters. Notice that the names of the parameters should correspond to

those in the C++ template. Lines 22 to 37 include the upper and lower bounds for

the regression parameter estimates, and for the nuisance parameters. Line 38 defines

“obj” containing the data, parameters, and also specifies the random effects. Lines

41-45 optimize the objective function and generate a standard report.

In the next section, we conduct a simulation study to compare the performance of

the SEV VonB G-Normal mixture model and SEV VonB Gamma model in estimating

the VonB growth parameters.

3.5 Simulation studies

3.5.1 Simulation Settings

The response Y is generated assuming a VonB growth model (Eqn. 2.13) with the

parameters fixed at L∞ = 120, k = 0.2, ao = −0.1 and σe = 0.1. We assume that

only the age model is misspecified. For simplicity, we assumed σe is known. For all

simulation setups we consider σu varies from 0 to 0.3. We use a sample of size n =

50,000 for studying the large sample bias in the estimates of θR = (L∞, k, ao) under

the computational method using TMB.
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3.5.2 Analysis Methods

We focused on the bias, absolute bias, and percentage error for L∞, k and ao. The

bias of L̂∞ is

Bias(L̂∞) = L̃∞(σu)− L∗
∞,

where L∗
∞ is the true parameter value of L∞. The absolute bias (abias) of L̂∞ is

abias(L̂∞) = |Bias(L̂∞)|.

The percentage error (PE) in L̂∞ is

PE(L̂∞) = 100× (L̃∞(σu)− L∗
∞)

L∗
∞

.

In this manner we can also find the bias, abias, PE of the estimates of k and ao.

3.5.3 Determining the Value of G

We consider the TriGamma case (Section 2.3.3) to decide about the number of groups

G in the proposed flexible G-Normal mixture distribution. In TriGamma case the true

unobserved age follows a three-Gamma mixture distribution. The true unobserved age

distribution is misspecified as the two-Normal mixture (where G = 2) and the three-

Normal mixture (where G = 3) distribution. We perform a sensitivity analysis by

seeing how the inference for the SEV VonB parameters varies as a function of G. If

they remain stable as G varies, we have evidence that the inferences are insensitive

to G.

Table 3.1 demonstrates that the SEV VonB estimates of L∞, k and ao are fairly

stable for the two-Normal mixture and the three-Normal mixture age distributions.

For example, the estimates of L∞ for the SEV VonB two-Normal mixture model are
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120, 119.92 and 119.4 corresponding to low (i.e. σu = 0.05), substantial (i.e. σu = 0.2)

and high (i.e. σu = 0.3) MEs in age, respectively. In the low, substantial and high

ME in age situations, the estimates of L∞ for the SEV VonB three-Normal mixture

model are similar. An identical conclusion can be drawn for k and ao. Therefore,

our results demonstrate that the large sample bias calculations are fairly insensitive

to the number of groups G. Fitting a three-Normal mixture provides more flexibility,

however, the efficiencies of the estimators decrease in order to allow extra flexibility.

Hence, throughout this study we investigate the suitability of the two-Normal mixture

as an assumed distribution of the true unobserved age in the SEV VonB G-Normal

mixture model.

3.5.4 Two-Normal Mixture Versus Gamma: Sensitivity Com-

parison in Case of Lognormal True Age Distribution

Results presented in Table 3.2 are based on Case 1 (Section 2.3.2), where the true

unobserved age distribution is Lognormal with mean 4 and skewness 1.6. Recall

that in this case the SEV VonB Gamma model performed poorly in terms of large

sample bias for L∞, k and ao (illustrated in Figure 2.3). The results in Table 3.2

demonstrate that the SEV VonB two-Normal mixture model outperforms the SEV

VonB Gamma model in reducing the bias due to model misspecification and ME

in age. The estimates of L∞ and k show less percentage error when derived using

the Normal-mixture age distribution compared to the Gamma age distribution. For

instance, the percentage error of the estimates of L∞ for the Normal-mixture are 0,

-0.17 and 0.83 corresponding to σu values of 0.05, 0.1 and 0.3, respectively. However,

for the Gamma age distribution these are -0.15, 1.67 and 15.52.
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3.5.5 Two-Normal Mixture Versus Gamma: Sensitivity Com-

parison in Case of Mixture Distribution as True Unob-

served Age Distribution

In Section 2.3.3 we discussed mixtures of three Gamma distributions (TriGamma),

ten Gamma distributions (MultiGamma) and three truncated Normal distributions

(TriNormal) as true unobserved age distributions. Recall that Figure 2.5 illustrates

that if these true distributions are misspecified as a Gamma distribution then there

are substantial amounts of bias in the estimates of L∞, k, and a0 as the ME in age

increases.

Table 3.3 demonstrates that in the TriGamma case the SEV VonB two-Normal

mixture model estimators outperform the SEV VonB Gamma estimators in reducing

the bias. In this case the absolute biases in the estimate of L∞ for the two-Normal

mixture are 0, 0.02 and 0.6 for low (i.e. σu = 0.05), substantial (i.e. σu = 0.1) and

high (i.e. σu = 0.3) MEs in age, respectively. However, for the simple Gamma age

distribution the absolute bias in the estimates of L∞ are 0, 0.42 and 5.6. Therefore,

in this case a substantial amounts of bias reduction occurs when mis-specifying the

true age distribution as a two-Normal mixture when it is a mixture of three Gamma

distributions.

Table 3.4 shows that in the TriNormal case the estimates of L∞, k and ao for both

age distributions are very close to their corresponding true values when the ME in

age is low (i.e. σu = 0.05). However, as the ME in age increases from low to high the

magnitudes of bias increases substantially for the Gamma age distribution. However,

the scenario improve when the two-Normal mixture distribution is used instead of

the Gamma distribution as an assumed age distribution. For example, in the case

of the growth parameter k, for the Gamma age distribution the percentage of errors
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are 1, 17 and 35 corresponding to low (i.e. σu = 0.05), substantial (i.e. σu = 0.2)

and high (i.e. σu = 0.3) ME in age situations, respectively. These errors under the

Normal-mixture age distribution are 0, -0.5 and -1, respectively. This indicates that

the SEV VonB Normal mixture model exhibits less error as compared with the SEV

VonB Gamma model.

Table 3.5 demonstrates that in the MultiGamma case the percentages of error in

estimates of ao are very large for the both Normal-mixture and Gamma unobserved

age distributions. However, the Normal-mixture age distribution performs relatively

well in this case. For example, when ME is 0.3 the percentage error in the estimate of

ao is -115 for the two-Normal mixture age distribution while it is -450 for the Gamma

age distribution. The SEV VonB estimator of ao is underestimated for both assumed

age distributions. However, in the case of L∞ and k the percentage of errors are very

low for the SEV VonB G-Normal mixture model.

3.5.6 Two-Normal Mixture Versus Lognormal: Sensitivity

Comparison in Case of Lognormal True Age Distribu-

tion

In this section, we compare the bias of the estimators based on the SEV VonB G-

Normal mixture model with that of the SEV VonB estimators based on the true

Lognormal age distribution used to generate the true unobserved age, XT . Hence,

in the former case the age distribution was misspecified; however, in the latter case

it was correctly specified. The goal is to investigate the performance in terms of

bias of using the Normal mixture as an assumed age distribution instead of using

the true age distribution. For this purpose we consider Case 1 (see Section 2.3.2),

where the true unobserved age distribution is Lognomal with µ = 1.275 and σ =
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0.4723. The results presented in Table 3.6 demonstrate that the two-Normal mixture

performs about the same in terms of bias in the estimates of L∞, k and ao compared

with the true Lognormal age distribution. In the case of low ME, the two-Normal

mixture performs similarly to the true Lognormal age model, particularly, in terms

of absolute bias and percentage error in estimates. However, in the case of high ME

the performance of the Normal mixture model deteriorates slightly as demonstrated

by the absolute bias of the SEV VonB estimates for the assumed Normal mixture age

distribution. Therefore, the SEV VonB G-Normal mixture model is found to provide

adequate bias reduction when compared with the true age model in the simulation

setting investigated.

3.6 Summary

Our simulation results show that

• The proposed G-Normal mixture distribution for unobserved ages performed

well in all the situations considered as compared to the Gamma age distribution.

• The SEV VonB G-Normal mixture model provides adequate large sample bias

reduction due to ME in age and model misspecification.

In the next chapter, we extend the SEV VonB model to account for between-

individual variation in growth that appears because individuals achieve different asymp-

totic sizes.
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3.7 Tables

Table 3.1: Sensitivity to model misspecification: The true unobserved age distribution
is a mixture of three Gamma distributions, which is misspecified as the two-Normal
mixture (G = 2) and the three-Normal mixture (G = 3) distributions. Results for
estimated values, and standard error(SE) for L∞, k and ao.

σu = 0.05 σu = 0.1 σu = 0.2 σu = 0.3

Estimators G=2 G= 3 G= 2 G= 3 G= 2 G= 3 G= 2 G= 3

L̃∞ 120 119.92 120.02 120.1 119.92 119.5 119.4 118.42

SE 0.27 0.275 0.3 0.29 0.37 0.39 0.51 0.52

k̃ 0.2 0.2 0.2 0.198 0.2 0.205 0.198 0.21

SE 0.0012 0.001 0.0013 0.008 0.001 0.002 0.002 0.002

ão -0.10 -0.099 -0.097 -0.104 -0.089 -0.08 -0.086 -0.09

SE 0.007 0.0077 0.008 0.0098 0.011 0.015 0.012 .015
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Table 3.2: Sensitivity to model misspecification: The true unobserved age distribution
is a Lognormal with µ= 1.275 and σ = 0.4723, which is misspecified as the two-Normal
mixture and the Gamma distributions. Results for absolute bias(abias), percentage
error(PE), and standard error(SE) for L∞, k and ao.

σu = 0.05 σu = 0.1 σu = 0.2 σu = 0.3

Estimators Mixture Gamma Mixture Gamma Mixture Gamma Mixture Gamma

L̃∞ 120 119.82 119.8 122.01 120.5 128.8 121 138.63

abias 0 0.18 0.2 2.01 0.5 8.8 1 18.63

PE 0 -0.15 -0.17 1.67 0.041 7.33 0.83 15.52

SE 0.42 0.43 0.45 0.49 0.41 0.77 0.86 1.15

k̃ 0.2 0.201 0.2 0.1934 0.2 0.18 0.206 0.162

abias 0 0.001 0 0.0066 0 0.02 0.006 0.038

PE 0 -0.5 0 -3.3 0 -10 3 -19

SE 0.001 0.0015 0.0015 0.0013 0.002 0.002 0.003 0.002

ão -0.1 -0.1 -0.103 -0.147 -0.096 -0.25 -0.106 -0.35

abias 0 0 0.003 0.047 0.004 0.15 0.006 0.25

PE 0 0 -1 47 -5 150 3 250

SE 0.006 0.007 0.008 0.008 0.011 0.01 0.016 0.012
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Table 3.3: Sensitivity to model misspecification: The true unobserved age distribution
is a mixture of three Gamma distributions, which is misspecified as the two-Normal
mixture and the Gamma distributions. Results for absolute bias(abias), percentage
error(PE), and standard error(SE) for L∞, k and ao.

σu = 0.05 σu = 0.1 σu = 0.2 σu = 0.3

Estimators Mixture Gamma Mixture Gamma Mixture Gamma Mixture Gamma

L̃∞ 120 120 120.02 119.58 119.92 117.1 119.4 114.4

abias 0 0 0.02 0.42 0.08 2.9 0.6 5.6

PE 0 0 0.016 -0.35 -0.066 -2.41 -0.5 -4.67

SE 0.27 0.27 0.30 0.28 0.37 0.27 0.51 0.25

k̃ 0.2 0.2 0.2 0.205 0.2 0.227 0.198 0.26

abias 0 0 0 0.05 0 0.027 0.002 0.06

PE 0 0 0 2.5 0 13.5 -1 30

SE 0.0012 0.001 0.0013 0.001 0.001 0.001 0.002 0.002

ão -0.1 -0.085 -0.097 -0.06 -0.089 0.03 -0.086 0.105

abias 0 0.015 0.003 0.04 0.011 0.13 0.014 0.205

PE 0 -15 -1 -40 -11 130 -14 -205

SE 0.007 0.0075 0.008 0.008 0.012 0.001 0.012 .0109
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Table 3.4: Sensitivity to model misspecification: The true unobserved age distribution
is a mixture of three truncated Normal distributions, which is misspecified as the
two-Normal mixture and the Gamma distributions. Results for absolute bias(abias),
percentage error(PE), and standard error(SE) for L∞, k and ao.

σu = 0.05 σu = 0.1 σu = 0.2 σu = 0.3

Estimators Mixture Gamma Mixture Gamma Mixture Gamma Mixture Gamma

L̃∞ 119.97 119.8 119.6 119.43 120.45 116.15 121.15 113.38

abias 0.03 0.2 0.4 0.57 0.45 3.85 1.15 6.62

PE -0.03 -0.167 -0.33 -0.475 0.375 -3.2 0.95 -5.51

SE 0.32 0.31 0.33 0.31 0.46 0.28 0.59 0.25

k̃ 0.2 0.202 0.203 0.206 0.199 0.234 0.198 0.27

abias 0 0.002 0.003 0.006 0.001 0.034 0.002 0.07

PE 0 1 1.5 3 -0.5 17 -1 35

SE 0.0015 0.0014 0.001 0.001 0.002 0.001 0.002 0.002

ão -0.098 -0.082 -0.09 -0.06 -0.11 0.084 -0.13 0.19

abias 0.002 0.018 0.01 0.04 0.01 0.184 0.013 0.29

PE -2 -18 -10 -40 10 -184 30 -290

SE 0.01 0.0097 0.011 0.01 0.015 0.011 0.02 0.012
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Table 3.5: Sensitivity to model misspecification: The true unobserved age distribu-
tion is a mixture of ten Gamma distributions, which is misspecified as the two-Normal
mixture and Gamma distributions. Results for absolute bias(abias), percentage er-
ror(PE), and standard error(SE) for L∞, k and ao.

σu = 0.05 σu = 0.1 σu = 0.2 σu = 0.3

Estimators Mixture Gamma Mixture Gamma Mixture Gamma Mixture Gamma

L̃∞ 120 120 120.09 119.83 119.7 119.35 119.3 118.03

abias 0 0 0.09 0.17 0.3 0.65 0.7 1.97

PE 0 0 0.067 -0.141 -0.208 -0.541 -0.5 -1.641

SE 0.14 0.142 0.11 0.14 0.17 0.15 0.19 0.19

k̃ 0.2 0.2 0.199 0.206 0.2 0.22 0.21 0.25

abias 0 0 0.001 0 0 0.02 0.01 0.05

PE 0.0 0 -0.5 3 0 10 5 25

SE 0.001 0.001 0.001 0.0011 0.002 0.0015 0.0019 0.002

ão -0.1 -0.085 -0.102 -0.093 -0.027 0.115 0.015 0.35

abias 0 0.015 0.002 0.007 0.073 0.215 0.115 0.45

PE 0 -15 2 -7 -73 -215 -115 -450

SE 0.012 0.013 0.014 0.014 0.019 0.0178 0.025 0.021
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Table 3.6: Comparison of the two-mixture Normal age distributions with the true age
Lognormal distribution. Results for absolute bias(abias), percentage error(PE), and
standard error(SE) for L∞, k and ao.

σu = 0.05 σu = 0.1 σu = 0.2 σu = 0.3

Estimators Mixture Lognormal Mixture Lognormal Mixture Lognormal Mixture Lognormal

L̃∞ 120 119.99 119.8 120.02 120.5 119.9 121 120.4

abias 0 0.01 0.2 0.02 0.5 0.1 1 0.4

PE 0 0 -0.167 0.0167 0.416 -0.083 0.83 0.34

SE 0.42 0.41 0.45 0.46 0.41 0.54 0.86 0.63

k̃ 0.2 0.2 0.2 0.202 0.2 0.2 0.206 0.205

abias 0 0 0 0.002 0 0 0.006 0.005

PE 0 0 0 1 0 0 3 2.5

SE 0.001 0.0014 0.0015 0.0013 0.002 0.002 0.003 0.002

ão -0.1 -0.11 -0.103 -0.097 -0.096 -0.097 -0.106 -0.1

abias 0 0.01 0.003 0.003 0.004 0.003 0.006 0

PE 0 10 3 -3 -4 -3 6 0

SE 0.006 0.007 0.008 0.007 0.011 0.022 0.016 0.011
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Chapter 4

Robustness of SEV VonB Model

Including Between-Individual

Variation in Growth

4.1 Introduction

In Chapter 3 we demonstrated that if the true unobserved age distribution is mis-

specified as the proposed flexible G-Normal mixture distributions then the estimates

of the SEV VonB growth parameters are fairly close to their corresponding true val-

ues even as the magnitude (i.e. variance) of the ME in age increases. The proposed

estimators based on the SEV VonB G-Normal mixture model outperform the SEV

VonB Gamma model estimators in terms of reducing large sample bias due to ME in

age and true age distribution misspecification. In this chapter, we compare the finite

sample bias of the parameter estimators based on the SEV VonB G-Normal mixture

model and on the SEV VonB Gamma model. We consider robustness to mean lack

of finite sample bias in the estimators.
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The VonB model (Eqn. 1.22) assumes that all individuals in the population have

the same VonB growth parameters (L∞ and k) and does not account for the variability

among individuals. Different studies have been carried out to extend this model to

account for between-individual (BI) variation in growth. Shelton and Mangel (2012)

[40] extended the VonB model to account for BI variation in growth by varying the

VonB parameters (L∞ and k) among individuals. Schafer (2002) [39] argue that a

better way to formulate the VonB model is not to use the growth parameter L∞ but

rather to use a different constant parameter B such that L∞ = B/k. They variy only

k to account for BI variation in growth. In this approach the growth parameters

k and L∞ are negatively correlated. Therefore, a fast grower will have a lower L∞

and vice versa. However, in practice, this may not be the case. In this chapter,

we investigate the finite sample robustness of the SEV VonB estimators based on

the flexible G-Normal mixture age distribution, when the VonB model includes BI

variation in growth.

4.2 SEV VonB BI Model

We will extend the SEV VonB model (Section 2.3) to include BI variation in growth.

We assume BI variation in growth appears because individuals achieve different asymp-

totic sizes. Let L∞i be the asymptotic size of the ith fish. The length of the ith fish

with multiplicative ME is

Yi = L∞i(1− e−k(XTi
−ao)) eǫi ,

where

L∞i = L∞ eδi ,
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where δi is N(0, σ2
δ ) and ǫi is N(0, σ2

e). We assume δi and ǫi are independent. There-

fore, by combining the above equations we have

Yi = L∞(1− e−k(XTi
−ao)) eci ,

where ci = (δi + ǫi) is Normally distributed with mean E(δi + ǫi) = 0 and variance

σ2
c = σ2

δ + σ2
e . Let σ2

c be the ME variance in length confounded with BI variation in

growth. The age of the ith fish with multiplicative ME is

Xi = XTi
eUi ,

where Ui is N(0, σ2
u). By taking logarithm transformations we get

log(Yi) = log{L∞(1− e−k(XTi
−ao))}+ ci, (4.1)

log(Xi) = log(XTi
) + Ui. (4.2)

SEV VonB G-Normal Mixture BI Model: The SEV VonB G-Normal mix-

ture BI model is an extension of the SEV VonB G-Normal mixture model (Section

3.3) to include BI variation in growth. This model is actually the same as in Sec-

tion 3.3, except that the interpretation of σc is different from σe. So far we have

considered σe to be known. However, we will now treat σc as a parameter of inter-

est. Therefore, the parameter of interest is θR = (L∞, k, a0, σc). In order to estimate

θ = (L∞, k, a0, σc, λ, µ
d, σ) we optimize the likelihood function described by Eqn. (3.6).

SEV VonB Gamma BI Model: Similarly, we can extend the SEV VonB

Gamma model (Section 2.3) to account for BI in growth. We called it the SEV

VonB Gamma BI model. In this model, we estimate θ = (L∞, k, a0, σc, α, β) by opti-

mizing the the likelihood function described by Eqn. (2.3). We use TMB to estimate
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the parameters of the SEV VonB Gamma model.

4.2.1 Finite Sample Bias

Bias can be calculated by first simulating a large number of data sets (say S) of finite

size n, and then estimating the parameters of the misspecified model for each of the

data sets. Then the results are averaged over the S data sets to approximate the

bias in the estimated parameters. This is called the repeated finite sample method

of approximating bias due to model misspecification and ME in age. Recall that the

parameter of interest is θR and for the misspecified model the SEV MLE of θR is θ̂R.

The bias in the SEV MLE of θ̂R is

Bias(θ̂R) = E(θ̂R)− θ∗R,

where θ∗R is the true parameter value of θR. The finite sample method generates S

samples of finite size n, to approximate E(θ̂R). Therefore, the repeated finite sample

method provides the approximate bias at a given sample size. The E(θ̂R) can be

approximated by the average estimated value
¯̂
θR which is

¯̂
θR =

∑S
j=1 θ̂Rj

S
,

where θ̂Rj is the estimated value of θR for the jth(j = 1, 2, ..., S) data set. Therefore

the finite sample bias of θ̂R is

Bias(θ̂R) approximately equal to (
¯̂
θR − θ∗R).
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Therefore, the SEV MLE for θR, i.e. θ̂R, is robust if

¯̂
θR(σu) approximately equal to θ∗R for σu ≥ 0.

4.3 Simulation Studies

We conduct a simulation study to compare the performance of the SEV VonB G-

Normal mixture BI model and the SEV VonB Gamma BI model for estimating the

VonB growth parameters θR = (L∞, k, a0, σc). The response Y is generated assuming

a VonB growth model (Eqn. 4.1) with the parameters fixed at L∞ = 120, k = 0.2, ao =

−0.1 and σc = 0.1. For all simulations we consider σu to vary from 0 to 0.25. The

performance of the model estimators will be measured using bias and root mean

squared error (RMSE) based on S = 500 simulated data sets consisting of different

sample sizes using the following two examples. We consider sample sizes n = 300 and

n = 400.

Example 1: We consider Case 1 (Section 2.3.2), where the true unobserved age

distribution is Lognormal with mean 4 and skewness 1.6, which represents a light tail

distribution.

Example 2: We consider the “TriGamma” case (described in Section 2.3.3),

where the true unobserved age distribution is a mixture of three independent Gamma

distributions.
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4.3.1 Analysis Methods

In the case of repeated samples, the results are averaged over S = 500 data sets, each

of size 200 and 400. Therefore, the average estimated value of L∞,
¯̂
L∞, is

¯̂
L∞ =

∑S
j=1 L̂∞j

S
,

where L̂∞j is the SEV MLE of L∞ for the jth simulated dataset. We focus on the bias

and the RMSE for
¯̂
L∞,

¯̂
k, ¯̂ao and ¯̂σc. The bias of

¯̂
L∞ is

Bias(
¯̂
L∞) =

¯̂
L∞ − L∗

∞,

where L∗
∞ is the true value of L∞. The RMSE of

¯̂
L∞ is

RMSE(
¯̂
L∞) =

√

∑S
j=1(L̂∞j − L∗

∞)2

S
.

In this manner we can find the bias and RMSE of the estimates
¯̂
k, ¯̂ao and ¯̂σc.

4.3.2 Repeated Sampling

Results of Example 1:

The simulated bias in the estimated parameters and RMSE of the estimates are

shown in Figures 4.1 and 4.2. The average estimated values of the growth parameters

are given in Appendix C (Table C.1). The frequency distributions of the 500 estimated

parameters based on the SEV VonB two-Normal mixture BI model and the SEV VonB

Gamma BI model are presented in Figures C.1-C.4 (see Appendix C). Overall, the

bias as in the estimates of the VonB growth parameters based on the SEV VonB

two-normal mixture BI model are fairly close to zero when compared to the bias for
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the SEV VonB Gamma BI model. The SEV VonB Gamma BI model performs poorly

in terms of bias. For instance, when the sample size is 200 the results in Figure 4.1

(Top panel) illustrate that the bias in
¯̂
L∞ for the SEV VonB two-Normal mixture

BI model are 0.07, 0.4 and 3.53 corresponding to σu values of 0.05, 0.1 and 0.25,

respectively. However, for the SEV VonB Gamma BI model these biases are 1.6, 3.9

and 19.45, respectively. Furthermore, when the sample size increased from 200 to 400,

the bias in the estimates of the VonB growth parameters also decreases irrespective

of the models. In addition, the SEV VonB two-Normal mixture BI model performs

relatively well compared to the SEV VonB Gamma BI model in terms of estimating

σc. It implies that the SEV VonB two-Normal mixture BI model is capable of correctly

estimating the BI variation in growth. Therefore, in Example 1, a substantial amount

of finite sample bias reduction occurs when using the proposed SEV VonB two-Normal

mixture BI model.

The performance of the proposed SEV VonB two-Normal mixture BI model is

superior to that of the SEV VonB Gamma BI model in terms of bias-variance trade

off which is reflected in the RMSE values. For the SEV VonB two-Normal mixture BI

model, the RMSE of the estimator of L∞ varies from 7.1 to 16.7, while it varies from

7.5 to 27.6 for the SEV VonB Gamma BI model. An identical scenario is evident for

the RMSE of the estimators for k and ao. However, the RMSE of the estimator of

σc is almost the same for both models. Therefore, in terms of bias-variance trade-off

the SEV VonB Gamma BI model performs worse when compared with the proposed

SEV VonB two-Normal mixture BI model.

Results of Example 2:

The simulated bias in the estimated parameters and RMSE of the estimates are

shown in Figures 4.3 and 4.4. The average estimated values of the growth parameters

are given in Table 2 of Appendix C (Table C.2). The frequency distribution of the
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500 estimated parameters based on the SEV VonB two-Normal mixture BI model

and the SEV VonB Gamma BI model are presented in Figures C.5-C.8 (see Appendix

C). The SEV VonB two-Normal mixture BI model provides average estimates of the

VonB growth parameters that are generally closer to their true population values

when compared to those of the SEV VonB Gamma BI model. Therefore, the SEV

VonB two-Normal mixture BI model performs better than the SEV VonB Gamma BI

model in terms of reducing the bias. The SEV VonB Gamma BI model estimates have

higher RMSE than the proposed SEV VonB two-Normal mixture BI model estimates

(i.e., SEV VonB Gamma BI model estimates are less accurate).

Finally, we conclude that the proposed SEV VonB G-Normal mixture BI model

estimators of the growth parameters have less bias and provide more accurate esti-

mates than that of the SEV VonB Gamma BI model we investigated. Therefore, the

proposed SEV VonB G-Normal mixture BI model is the estimating method we pursue

in the remainder of this thesis.

4.4 Robustness of the SEV VonB G-Normal Mix-

ture BI Model under both ME and Age Models

Misspecifications

Recall that in our proposed model we have assumed that the length and ME models

are correctly specified; and only the age model is misspecified. The simulation results

suggest that the SEV MLE based on the proposed flexible G-Normal mixture distri-

bution for unobserved ages are robust to misspecification of the true unobserved age

distribution. While estimating the parameters in the SEV VonB BI model we assume

that the ME variance in age σu is known. However, it is not possible to estimate the
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ME in age until we have validation or replication data. In fisheries science sometimes

these data are not readily available. Hence, in this situation we need to get infor-

mation about the ME variance in age either from previous study results or from the

researchers own experience. Therefore, there is always a chance of misspecifying the

ME variance in age in the SEV VonB BI model. In this situation, misspecification not

only occurs in the age models, but also in the ME model. This joint misspecification

in both ME and age models may hamper the robustness of the SEV MLE based on

the SEV VonB G-Normal mixture BI model.

4.4.1 Model Framework

Let σu be the true but unknown ME variance in age and define σa
u as the assumed

ME variance in age. In the ME model, let fX|XT
(X | XT ; σu) be the true pdf of X

given XT and fA
X|XT

(X | XT ; σ
a
u) be the assumed pdf of X given XT . In our proposed

SEV VonB G-Normal mixture BI model we assume that the ME model is correctly

specified, i.e., fX|XT
(X | XT ; σu) = fA

X|XT
(X | XT ; σ

a
u). Now, the observed likelihood

(Eqn. 3.6) for (Y ,X ) under the misspecified age model is

∫

fY|XT
(Y | XT ; θR) fX|XT

(X | XT ; σu) f
A
XT

(XT ; θE) dXT .

The simulation results indicate that the SEV VonB G-Normal mixture BI model

estimators are robust to misspecification of the true unobserved age distribution.

However, when the ME variance in age is incorrectly assumed or estimated ( i.e., σu

6= σa
u; consequently, fX|XT

(X | XT ; σu) 6= fX|XT
(X | XT ; σ

a
u)) then misspecification

in the ME model occurs along with age model misspecification. Therefore, under
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misspecification in both ME and age models the observed likelihood is

∫

fY|XT
(Y | XT ; θR) f

A
X|XT

(X | XT ; σ
a
u) f

A
XT

(XT ; θE) dXT , (4.3)

where

1. Length Model: The pdf of Y given XT is defined in Eqn. (3.7) with the

parameter vector θR = (L∞, k, ao, σc).

2. ME Model: The pdf of X given XT is

fA
X|XT

(X | XT ; σ
a
u) =

1

σa
u

√
2π

e−(X−XT )2/2σa
u
2

,

3. Age Model: The assumed pdf of XT is defined in Eqn. (3.9) with the parameter

vector θE = (p,µ, σ); where p = (p1, p2, . . . , pG) with
∑G

g=1 pg = 1, pg ≥ 0 for

g = 1, 2, . . . , G; µ = (µ1, µ2, . . . , µG) with restriction µ1 < µ2 < . . . < µG; and

σ = (σ1, σ2, . . . , σG).

In the next section, we investigate the impact of mis-specifying both the true ME and

the age models on the SEV VonB estimators.

4.4.2 Simulation Results

We randomly generate S = 500 independent datasets. We consider sample sizes n =

200 and n = 500. For each data set we perform the following steps:

• Step 1: We generate n true ages XT from a Lognormal distribution (defined in

Eqn. 2.18) with µ = 1.275 and σ = 0.4723.

• Step 2: We generate n true lengths YT assuming a VonB growth model (Eqn.

1.22) using L∞ = 120, k = 0.2, ao = −0.1 and the true age XT generated in
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Step 1.

• Step 3: We use Eqn. (4.1) to generate n observed lengths Y with σc = 0.1, and

Eqn. (4.2) to generate n observed ages X with true ME variance in age (σu)

taken to be values of 0.05 and 0.15.

• Step 4: We find the MLEs of the parameters in θ by maximizing the observed

likelihood Eqn. (4.3) with a range of σa
u values varying from 0 and 0.25.

We calculate the average estimated value of the parameter of interest θR. This average

is taken over S = 500 estimated parameters. In addition, we calculate the 1st and

3rd quartiles of the 500 estimated values of θR.

Figure 4.5 illustrates the joint impact of mis-specifying the true age distribution

as a two-Normal mixture when it is actually something else, like a Lognormal dis-

tribution and wrongly assuming the true ME variance in age when it is 0.05. When

σu = 0.05 misspecified by a range of σa
u values vary from 0 to 0.25 then the bias in

the estimates of parameters based on the SEV VonB two-Normal mixture BI model

increase substantially. When σa
u is close to σu = 0.05 all of the average estimated

values are about the same as the true values of the corresponding parameters. For

example, when we take σa
u = 0.05 the average estimated value of L∞ is about 120.

This is expected since the estimators of the SEV VonB growth parameters are robust

when we correctly assume the true ME variance in age; only the true unobserved Log-

normal age distribution is misspecified by the proposed flexible G-Normal mixture

distribution. When σa
u is in the vicinity of σu = 0.05 the average estimated values

of L∞ are still about the same as the true value of L∞, which is 120. Figure 4.5

illustrates that when σa
u varies from 0.03 to 0.08, there is little bias in the estimates

of L∞. However, when the σu = 0.05 is wrongly assumed by σa
u (say 0.25) then there

is a substantial amount of bias in the estimate of L∞. Virtually identical results can
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be seen in the case of k and ao. The average estimates of σc are very close to the true

values when the σa
u is less than or equal to 0.08, but when σa

u reaches 0.15 the bias

is large. Moreover, the average estimated values are zero for σa
u values 0.2 and 0.25.

This implies that when σa
u is away from σu the average estimated values of σc reach

zero. The results do not change when we use the sample size of 500 instead of the

sample size of 300.

The results in Figure 4.6 illustrate the joint impact of mis-specifying the true

age distribution as a two-Normal mixture when it is actually something else, like a

Lognormal distribution and wrongly assuming the true ME variance in age, when it is

0.15. The estimates are very close to the true values when the σ∗
u value varies between

0.12 to 0.17, but when σa
u reaches 0.25 the bias is large. Furthermore, when σa

u is less

than or equal to 0.1, the bias is large. In addition, the average estimates of σc are

fairly close to its true value when σa
u is close to 0.15.

4.5 Summary

Results show that

• The proposed SEV VonB G-Normal mixture BI model performs relatively well

in all the scenarios compared to the SEV VonB Gamma BI model in the case

of finite sample.

• The SEV VonB G-Normal mixture BI model provides adequate finite sample

bias reduction due to ME in age and age model misspecification.

• It also provides reasonable bias-variance trade-off, which is reflected by the

RMSE values.
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• When both ME and age models misspecifications occur, the estimators based

on the SEV VonB G-Normal mixture BI model are not robust.

In the next chapter, we study the growth of Greenland Hailbut in the Northwest

Atlantic using the SEV VonB G-Normal mixture BI model.
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4.6 Figures

Figure 4.1: Sensitivity analysis of bias in the average estimates of L∞, k, ao and σc

based on the SEV VonB BI model. The true unobserved age distribution is a Log-
normal distribution with µ = 1.275 and σ = 0.4723 which is misspecified as the
two-Normal mixture and Gamma distributions.
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Figure 4.2: Sensitivity analysis of root mean squared error (RMSE) in the average
estimates of L∞, k, ao and σc based on the SEV VonB BI model. The true unobserved
age distribution is a Lognormal distribution with µ = 1.275 and σ = 0.4723 which is
misspecified as the two-Normal mixture and Gamma distributions.
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Figure 4.3: Sensitivity analysis of bias in the average estimates of L∞, k, ao and σc

based on the SEV VonB BI model. The true unobserved age distribution is a mixture
of three Gamma distributions which is misspecified as the two-Normal mixture and
Gamma age distributions.
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Figure 4.4: Sensitivity analysis of root mean squared error (RMSE) in the average
estimates of L∞, k, ao and σc based on the SEV VonB BI model. The true unobserved
age distribution is a mixture of three Gamma distributions which is misspecified as
the two-Normal mixture and Gamma age distributions.
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Figure 4.5: The estimated values based on the SEV VonB G-Normal mixture BI
model estimators of L∞, k, ao and σc, when the true measurement error variance in
age (σu = 0.05) is wrongly assumed by σa

u. The true unobserved age distribution is a
Lognormal with µ = 1.275 and σ = 0.4723, which is misspecified as the two-Normal
mixture distribution. The first and third quartiles of the estimated parameters are
presented.
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Figure 4.6: The estimated values based on the SEV VonB G-Normal mixture BI
model estimators of L∞, k, ao and σc, when the true measurement error variance in
age (σu = 0.15) is wrongly assumed by σa

u. The true unobserved age distribution is a
Lognormal with µ = 1.275 and σ = 0.4723, which is misspecified as the two-Normal
mixture distribution. The first and third quartiles of the estimated parameters are
presented.
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Chapter 5

Application

5.1 Background

Greenland Halibut (Hippoglossoides reinhardtius) are a relatively large, deep water

flatfish, and right-eyed flounder from the family Pleuronectidae. They inhabit the

continental shelf and slope down to depths of 2200 meters, and are among the top

predators in the Northwest Atlantic. They are found in the northern Atlantic and

northern Pacific oceans. The Northwest Atlantic Fisheries Organization (NAFO)

manages the stock off the East Coast of Canada in the Northwest Atlantic. Greenland

Halibut was added to the seafood red list by Greenpeace International [22]. The

seafood red list is a list of fish that are commonly sold in supermarkets around the

world, and which have a very high risk of being sourced from unsustainable fisheries.

This makes understanding their growth patterns a highly important subject, especially

in the context of sustainable fishery management.

In this chapter, we study the growth of Greenland Halibut (Reinharditus hip-

poglossoides) in the Northwest Atlantic. We apply the SEV VonB G-Normal mixture

BI model (see Section 4.2) to the age-to-length Greenland Hailbut data collected in
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the NAFO management unit Subarea 2 + Divisions 3KLMNO.

5.1.1 Sampling Scheme

NAFO conducted annual autumn surveys in NAFO management unit Subarea 2 +

Divisions 3kLMNO during 1976 and 1977. The age, gender and length of fish records

are mainly from these surveys. In addition, some smaller fish (≤ 21 cm) collected

in 2007 by NAFO are considered in this analysis. The sample consists of 271 fish,

of which 104 are male and 167 are female. The relationship between fish length and

age is curvilinear as can be seen from Figure 5.1. The maximum age is 33 years and

maximum length is 110 cm. The maximum length is 70 cm for males and 110 cm for

females.

Table 5.1 demonstrates that the average age and length of fish are about 8.5 years

and 48 cm, respectively. Around fifty percent of fish are aged less than 6 years; for

female and male fish it is 8 years and 5 years. Therefore, we have a young age fish

population irrespective of sex. The variability in age of female fish (CV = 72 percent)

is higher than that of male fish (CV = 57 percent). In addition, the median length of

fish was 43 cm. On average the length of female fish (54 cm) is higher than that of

male fish (37 cm). Overall, the high variability in the length of fish is evident from

the CV of 54 percent. The variability in the length of female fish (CV = 52 percent)

is higher than that of the male fish (CV = 44 percent).

5.2 Fitting of the SEV VonB Two-Normal Mixture

BI Model with Greenland Hailbut Data

We fit the proposed SEV VonB two-Normal mixture BI model to estimate the VonB

growth parameters L∞, k, ao and σc for the Greenland Hailbut data collected by
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NAFO. To fit the model we need ME variance in age, σu, to be known. Since there

are no gold-standards or replicated measurements of age by which to formally estimate

the magnitude of the ME in age, sensitivity analyses are performed under different

values for the magnitude of ME in age.

5.2.1 Fitting of the SEV VonB Two-Normal Mixture BI Model

to the Full Data

The assumed value of σu is denoted by σa
u. We consider σa

u = 0.05, 0.12, 0.15, 0.2, and

0.25, which represents a range from no ME to substantial ME in age. For example,

σa
u = 0.25 can be regarded as 25 percent ME in age.

Table 5.2 displays that the estimated values of the VonB growth parameters, i.e.

L∞, k, ao and σc for the different values of σ
a
u. Overall, the estimated growth parame-

ters increase with the value of σa
u. If there is no ME in age, i.e. σa

u = 0, the estimated

asymptotic length (L∞) for fish is 123.82 cm and the estimated growth parameter

k, is 0.06. For small changes in the ME in age the estimated asymptotic length re-

mains quite stable. For instance, the estimated asymptotic length is 124.5 cm when

σa
u = 0.05, even for σa

u = 0.15 the estimated length is 126 cm. Therefore, the increase

in the estimate of L∞ for σa
u = 0.15 relative to σa

u = 0 is quite small. However,

when the assumed ME in age increases substantially to (σa
u = 0.25) the estimated

asymptotic length increases to 155 cm. This implies that if we ignore the impact of

ME in age, the estimated asymptotic length will be much larger. Furthermore, the

estimated values of k and ao are insensitive to the magnitude of the assumed ME,

σa
u. For example, when there is no ME in age the estimated value of k is 0.06, while

it is 0.052 when σa
u = 0.2. Therefore, the increase in the estimate of k for σa

u = 0.2

relative to σa
u = 0 is quite small. The estimated variance of length confounded with BI

variation in growth σc decreases with the increase in σa
u. The estimates of σc are fairly
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stable when σa
u is less than or equal to 0.15, but when σa

u reaches 0.25 the estimated

value is 0 which is the lower bound of σc.

In addition, the standard error of the estimators for the growth parameters in-

creases with the increase in σa
u, which reflects the larger information loss associated

with higher ME in age. For example, the standard error of L̂∞ is 7.73 when σa
u =

0.05, however, it reaches to 13.93 as σa
u increases to 0.25.

5.2.2 Fitting of the SEV VonB Two-Normal Mixture BI Model

to the Female Data

We fit the SEV VonB two-normal Mixture Model to Greenland Halibut data, for

females. Table 5.3 gives the VonB growth parameter estimates of L∞, k, ao and σc for

different values of σu. We observe that the estimates of all the parameters increase

with the assumed value of σu. When there is no ME in age, i.e. σa
u = 0, the estimated

asymptotic length for female fish is 122.32 cm and the estimated growth parameter k is

0.062. These estimates are not comparable with the results of Dwyer et al. (2016)[17]

since our estimates are based on the VonB model with multiplicative error while they

used the VonB model with additive error. Moreover, our sample size is larger. The

increase in the estimate of L∞ for σa
u = 0.15 relative to σa

u = 0 is small. However,

when σa
u increases substantially, the asymptotic length goes to 160 cm. Furthermore,

the standard errors of the estimators of L∞ increase with σa
u. The estimates of k and

ao are insensitive to the assumed value of σu.
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5.2.3 Fitting of the SEV VonB Two-Normal Mixture BI Model

to the Male Data

Table 5.4 provides estimated values of the VonB growth parameters for all assumed

σu values in the case of male data. Overall, the estimated growth parameters increase

with increasing σa
u. When there is no ME in the age of male fish (i.e. σa

u = 0) the

estimated asymptotic length is 111.68 cm. The increase in the estimates of L∞ for

σa
u = 0.15 relative to σa

u = 0 is high. The standard errors of these estimates increase

substantially with increasing σa
u. Moreover, the estimates of k and ao are sensitive to

the magnitude of ME in age.

5.3 Summary

In this chapter, we studied the impact of ME in age on the growth of Greenland

Halibut in the Northwest Atlantic. We applied the SEV VonB two-Normal BI mixture

model to the data. ME variance is often estimated in practice using multiple readers

for the same fish, however, unfortunately, there is no such information available for

Greenland Halibut. In addition, the analysis of age reader variation data can also

be complicated and is beyond the scope of this thesis. As the SEV estimates of the

growth parameters depend on σu, more precise knowledge of σu leads to more accurate

estimates of the growth parameters (see section 4.4.2). Therefore, we performed a

sensitivity analysis with different ME scenarios. We considered plausible values of

ME in age σa
u varies from 0 to 0.25. The estimated asymptotic length of male fish is

lower than that of female fish when σa
u = 0. The difference between sexes (e.g. Dwyer

et al. (2016)[17]) is thought to be due to manner in which males and females direct

excess energy into growth and reproduction. Therefore, we compare the growth rate

curves by sex of Greenland Halibut over the different ME scenarios. The estimated
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values of L∞ increases substantially when the ME in age increases, irrespective of

sex. Therefore, the estimates of L∞ is sensitive to the magnitude of σa
u. However, the

estimates of k and ao are insensitive to the value of σa
u for both the full and female

data. The estimate of the variance of length confounded with BI variation in growth

σc decreases when the σa
u increases.
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5.4 Figure

Figure 5.1: Length versus age plot of the Greenland Hailbut fish by their sex. The
data collected by NAFO management unit Subarea 2 + Divisions 3kLMNO.
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5.5 Tables

Table 5.1: Summary table of length and age of Greenland Halibut. The results
for mean, median and coefficient of variation (CV) for length and age of Greenland
Halibut by their sex.

Data Estimators Length age

Full Mean 47.5 8.46
Median 43 6
CV 54% 76.5%

Female Mean 54.35 10.24
Median 54 8
CV 51.5% 71.5%

Male Mean 36.5 5.61
Median 37 5
CV 43.75% 56.8%

Table 5.2: Parameter estimation results of Greenland Halibut based on the SEV
VonB G-Normal mixture BI model for different assumed values of ME in age (σa

u).
The results for the estimated values and its corresponding standard errors (SE) of the
parameters based on the full data.

σa
u

Estimators 0 0.05 0.12 0.15 0.2 0.25

L̂∞ 123.82 124.53 125.2 126 138.65 155.53
SE(L̂∞) 7.8 7.64 8.24 8.53 10.8 13.93

k̂ 0.06 0.059 0.056 0.057 0.052 0.044

SE(k̂) 0.0056 0.0054 0.0054 0.0056 0.0058 0.0054

âo -0.5 -0.497 -0.56 -0.44 -0.454 -0.48
SE(âo) 0.18 0.0078 0.070 0.082 0.087 0.088

σ̂c 0.158 0.153 0.130 0.117 0.082 0
SE(σ̂c) 0.006 0.0069 0.0079 0.0088 0.012 0.018
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Table 5.3: Parameter estimation results of Greenland Halibut female fish based on
the SEV VonB G-Normal mixture BI model for different assumed values of ME in age
(σa

u). The results for the estimated values and its corresponding standard errors (SE)
of the parameters based on the female data.

σa
u

Estimators 0 0.05 0.12 0.15 0.2 0.25

L̂∞ 122.32 122.72 125.51 125.7 136.9 160.38
SE(L̂∞) 8.35 8.07 8.87 9.78 12.92 21.59

k̂ 0.062 0.061 0.06 0.058 0.053 0.042

SE(k̂) 0.007 0.0064 0.0067 0.007 0.0077 0.008

âo -0.508 -0.503 -0.487 -0.488 -0.50 -0.57
SE(âo) 0.11 0.10 0.11 0.113 0.124 0.121

σ̂c 0.159 0.152 0.132 0.118 0.092 0.021
SE(σ̂c) 0.007 0.0087 0.0097 0.01 0.013 0.089

Table 5.4: Parameter estimation results of Greenland Halibut male fish based on the
SEV VonB G-Normal mixture BI model for different assumed values of ME in age
(σa

u). The results for the estimated values and its corresponding standard errors (SE)
of the parameters based on the male data.

σa
u

Estimators 0 0.05 0.12 0.15

L̂∞ 111.68 114.17 136.88 172.67
SE(L̂∞) 22.13 21.98 39.083 76.56

k̂ 0.068 0.065 0.052 0.039

SE(k̂) 0.018 0.015 0.019 0.021

âo -0.443 -0.446 -0.476 -0.52
SE(âo) 0.13 0.15 0.14 0.15

σ̂c 0.157 0.151 0.127 0.105
SE(σ̂c) 0.01 0.011 0.013 0.016
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Chapter 6

Conclusion

In this thesis, we proposed a flexible SEV VonB G-Normal mixture model when

adjusting for the bias from the estimated regression growth parameters, i.e. L∞, k and

ao. Our goal was to achieve robustness of the estimators under unobserved age model

misspecification, while at the same time retaining the efficiency of the parametric

inferences. By robustness we mean lack of bias in estimators for the parameters,

regardless of the magnitude of the ME.

In Chapter 2, we discussed the SEV VonB model where the unobserved age is

random; however, its distribution is not known in reality. Any distributional assump-

tion on it, may be subject to misspecification. Cope and Punt (2007) [15] suggested

an SEV model with a Gamma distribution for the unobserved true ages, XT , and

their results showed that this approach provided more precise estimates of the growth

parameters compared to the nonlinear least squares method. Our simulation results

show that when ME is low, the large sample bias in estimators of L∞, k and ao are

small. However, as ME in age increases, the bias increases substantially. Therefore,

the SEV VonB Gamma model estimators are not reliable to adjust the bias from the

estimated growth parameters.
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We compared the estimators based on the SEV VonB G-Normal mixture model

and SEV VonB Gamma model in terms of large sample bias in Chapter 3. Exten-

sive simulation studies demonstrate that the proposed SEV VonB G-Normal mixture

model performs well in all the situations considered and outperforms the SEV VonB

Gamma model. We advocate for using the G-Normal mixture distribution as the age

model because of its flexibility in accommodating all possible features (e.g. skewness,

heavy tailedness, and multimodality behaviour) that a true unobserved age distribu-

tion may have. The competing Gamma age model lacks the ability to capture one or

more of these possible features.

Parameter estimation for our proposed SEV VonB G-Normal mixture model is

complicated since the misspecified joint likelihood function involves integration; con-

sequently, no closed-form solution is available. However, TMB reduces the complicity

of integration by assuming Laplace approximation of the likelihood. The user only

needs to specify the joint log-likelihood function; TMB then provides the marginal

likelihood and its gradient function automatically. The analytical gradient greatly im-

proves the speed and accuracy of marginal MLE’s using a gradient-based optimization

method. Therefore, the parameter estimation for our proposed SEV VonB G-normal

mixture model is fairly simple using TMB.

Furthermore, in Chapter 4, we extended the proposed SEV VonB model to take

into account for the BI variation in growth of the fish. We compared the SEV es-

timators of VonB growth parameters under the G-Normal mixture and Gamma age

distributions in terms of finite sample bias. The proposed SEV VonB G-Normal

mixture BI model is found to demonstrate adequate bias reduction performance and

provide very reasonable bias-variance trade-off across different values of ME.

Moreover, we took into account for ME model misspecification along with age

model misspecification. ME model misspecification occurs if there is no replication
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or validation data of age by which to formally estimate the magnitude of the ME σu.

Therefore, σu to be the true but unknown ME variance in age and instead of it we use

σa
u as an assumed ME variance in age. The simulation results indicate that the SEV

VonB estimators based on the proposed flexible G-Normal mixture distribution for

unobserved ages are no longer robust when we wrongly assume the true ME variance

in age. However, the estimates of the VonB growth parameters are fairly close to their

true values if σa
u is close to σu.

In Chapter 5, we applied the SEV VonB G-Normal mixture BI model to model the

growth of the Greenland Halibut collected in the NAFO management unit Subarea 2 +

Divisions 3kLMNO. Unfortunately, with this data there is no mechanism by which to

rigorously estimate the nature or magnitude of the ME in age. We consider plausible

values of ME in age σa
u vary from 0 to 0.25, which spans a range from no ME to a

substantial ME in age. The estimated asymptotic length of male fish is smaller than

that of female fish when σa
u = 0. The estimated values of L∞ increases substantially

when the ME in age increases irrespective of sex. Therefore, the estimates of L∞ is

sensitive to the assumed value of σu. However, the estimates of k and ao are insensitive

to the assumed value of σu for the full and female data. The estimate of the variance

of length confounded with BI variation in growth σc decreases when the σa
u increases.

Finally, we hope this analysis will serve as a resource for further modelling of 3kLMNO

Greenland Halibut growth to predict fishery trends; this will help maintain a healthy

and sustainable fish population.

102



Appendix A

Some Details for the SEV VonB

Gamma Model
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Recall that the observed likelihood for the SEV VonB Gamma model (Eqn. 2.3)

defined as

LA(θ | Y,X) =

∫

fY |XT
(y | xT ; θR) fX|XT

(x | xT ; σu) f
A
XT

(xT ; θE) dxT ,

where θ = (θR, θE), θR = (L∞, k, ao), and θE = (α, β). Therefore, θ = (L∞, k, ao, α, β)

be a (5 × 1) vector. Recall that the fY |XT
(y | xT ; θR), fX|XT

(x | xT ; σu), and

fA
XT

(xT ; θE) are defined in Eqns. (2.15)-(2.17).

To estimate the parameters using the estimation method (section 2.2.3) we need

to find the S(θ | Y,X) and I(θ |Y,X).

A.1 Score Vector for θ

The score function for θ under the misspecified model defined as

S(θ | Y,X) =
∂
∂θ
LA(θ | Y,X)

LA(θ | Y,X)
.

where θ = (L∞, k, ao, α, β). The derivatives of L
A(θ | Y,X) with respect to θ are given

below. We use the following formulas

digamma(α) =
∂
∂α
Γ(α)

Γ(α)
;

trigamma(α) =
∂2

∂α2
log(Γ(α)).
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A.2. HESSIAN MATRIX FOR θ 105

A.1.1 Derivation for ∂

∂θ
LA(θ | Y,X)

∂LA(θ | Y,X)

∂L∞

=

∫

fY |XT
(y | xT ; θR) fX|XT

(x | xT ; σu) f
A
XT

(xT ; θE){
log(Y )− log(YT )

YT

}

{1− e−k(XT−ao)

σ2
e

} dxT .

∂LA(θ | Y,X)

∂k
=

∫

fY |XT
(y | xT ; θR) fX|XT

(x | xT ; σu) f
A
XT

(xT ; θE){
log(Y )− log(YT )

YT

}

{L∞ (XT − ao) e
−k(XT−ao)

σ2
e

} dxT .

∂LA(θ | Y,X)

∂ao
= −

∫

fY |XT
(y | xT ; θR) fX|XT

(x | xT ; σu) f
A
XT

(xT ; θE){
log(Y )− log(YT )

YT

}

{L∞ k e−k(XT−ao)

σ2
e

} dxT .

∂LA(θ | Y,X)

∂α
=

∫

fY |XT
(y | xT ; θR) fX|XT

(x | xT ; σu) f
A
XT

(xT ; θE)

[log(XT )− log(β)− digamma(α)] dxT .

∂LA(θ | Y,X)

∂β
=

∫

fY |XT
(y | xT ; θR) fX|XT

(x | xT ; σu) f
A
XT

(xT ; θE)(
XT

β2
− α

β
) dxT .

Using the results of section A.1.1, we can derive the S(θ | Y,X) for θ.

A.2 Hessian Matrix for θ

The Hessian matrix for θ is

I(θ |Y,X) =
∂2log(LA(θ | Y,X))

∂θ ∂θ′
.
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This is a (j×k) matrix; j, k = 1, 2, ..., 5. The (j, k)th element of I(θ |Y,X), Ij,k(θ |Y,X),

is

Ij,k(θ |Y,X) =
LA(θ | Y,X) ∂2

∂θk∂θj
LA(θ | Y,X)− ∂

∂θk
LA(θ | Y,X) ∂

∂θj
LA(θ | Y,X)

[LA(θ | Y,X)]2
.

(A.1)

A.2.1 Derivation for ∂2

∂θ∂θ′
LA(θ | Y,X)

∂2LA(θ | Y,X)

∂L2
∞

=

∫ ∫

fY |XT
(y | xT ; θR) fX|XT

(x | xT ; σu) f
A
XT

(xT ; θE) {
1− e−k(XT−ao)

σe

}2

[{ log(Y )− log(YT )

YT σe

}2 − {1 + log(Y )− log(YT )

Y 2
T

}] dxT .

∂2LA(θ | Y,X)

∂k2
=

∫

fY |XT
(y | xT ; θR) fX|XT

(x | xT ; σu) f
A
XT

(xT ; θE) {
L∞ (XT − ao)

2e−k(XT−ao)

σ2
e

}

(L∞ e−k(XT−ao)[{ log(Y )− log(YT )

YT σe

}2 − {1 + log(Y )− log(YT )

Y 2
T

}]

− { log(Y )− log(YT )

YT

})dxT .

∂2LA(θ | Y,X)

∂a2o
=

∫

fY |XT
(y | xT ; θR) fX|XT

(x | xT ; σu) f
A
XT

(xT ; θE){
L∞ k2 e−k(XT−ao)

σ2
e

}

(L∞ e−k(XT−ao) [{ log(Y )− log(YT )

YT σe

}2 − {1 + log(Y )− log(YT )

Y 2
T

}]

− { log(Y )− log(YT )

YT

}) dxT .

∂LA(θ | Y,X)

∂α2
=

∫

fY |XT
(y | xT ; θR) fX|XT

(x | xT ; σu) f
A
XT

(xT ; θE)

[{log(XT )− log(β)− digamma(α)}2 − trigamma(α)] dxT .
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∂LA(θ | Y,X)

∂β2
=

∫

fY |XT
(y | xT ; θR) fX|XT

(x | xT ; σu) f
A
XT

(xT ; θE)

[(
XT

β2
− α

β
)2 + (

α

β2
− 2XT

β3
)] dxT .

∂2LA(θ | Y,X)

∂L∞ ∂k
=

∫

fY |XT
(y | xT ; θR) fX|XT

(x | xT ; σu) f
A
XT

(xT ; θE) {
(XT − ao) e

−k(XT−ao)

σ2
e

}

([{ log(Y )− log(YT )

YT σe

}2 − {1 + log(Y )− log(YT )

Y 2
T

}] YT + { log(Y )− log(YT )

YT

})dxT .

∂2LA(θ | Y,X)

∂L∞ ∂ao
=

∫

fY |XT
(y | xT ; θR) fX|XT

(x | xT ; σu) f
A
XT

(xT ; θE) {
k e−k(XT−ao) YT

σ2
e

}

([{1 + log(Y )− log(YT )

Y 2
T

} − { log(Y )− log(YT )

YT σe

}2] YT

− { log(Y )− log(YT )

YT

}) dxT .

∂2LA(θ | Y,X)

∂L∞ ∂α
=

∫

fY |XT
(y | xT ; θR) fX|XT

(x | xT ; σu) f
A
XT

(xT ; θE) {
log(Y )− log(YT )

YT

}

{1− e−k(XT−ao)

σ2
e

} [log(XT )− log(β)− digamma(α)] dxT .

∂2LA(θ | Y,X)

∂L∞ ∂β
=

∫

fY |XT
(y | xT ; θR) fX|XT

(x | xT ; σu) f
A
XT

(xT ; θE) {
log(Y )− log(YT )

YT

}

{1− e−k(XT−ao)

σ2
e

} (
XT

β2
− α

β
) dxT .

107



A.2. HESSIAN MATRIX FOR θ 108

∂2LA(θ | Y,X)

∂k ∂ao
=

∫

fY |XT
(y | xT ; θR) fX|XT

(x | xT ; σu) f
A
XT

(xT ; θE){
(L∞ − YT )

σ2
e

}

[k(XT − ao){{
log(Y )− log(YT )

YT

}+ (L∞ − YT )[{
1 + log(Y )− log(YT )

Y 2
T

}

− { log(Y )− log(YT )

YT σe

}2]} − { log(Y )− log(YT )

YT

}]dxT .

∂2LA(θ | Y,X)

∂k ∂α
=

∫

fY |XT
(y | xT ; θR) fX|XT

(x | xT ; σu) f
A
XT

(xT ; θE) L∞ (XT − ao) e
−k(XT−ao)

({ log(Y )− log(YT )

YT σe

}2){log(XT )− log(β)− digamma(α)} dxT .

∂2LA(θ | Y,X)

∂k ∂β
=

∫

fY |XT
(y | xT ; θR) fX|XT

(x | xT ; σu) f
A
XT

(xT ; θE) L∞ (XT − ao) e
−k(XT−ao)

({ log(Y )− log(YT )

YT σe

}2)(XT

β2
− α

β
) dxT .

∂2LA(θ | Y,X)

∂ao ∂α
= −

∫

fY |XT
(y | xT ; θR) fX|XT

(x | xT ; σu) f
A
XT

(xT ; θE) k L∞ e−k(XT−ao)

({ log(Y )− log(YT )

YT σe

}2){log(XT )− log(β)− digamma(α)} dxT .

∂2LA(θ | Y,X)

∂ao ∂β
= −

∫

fY |XT
(y | xT ; θR) fX|XT

(x | xT ; σu) f
A
XT

(xT ; θE) k L∞ e−k(XT−ao)

({ log(Y )− log(YT )

YT σe

}2)(XT

β2
− α

β
) dxT .

∂2LA(θ | Y,X)

∂α ∂β
=

∫

fY |XT
(y | xT ; θR) fX|XT

(x | xT ; σu) f
A
XT

(xT ; θE)

[{log(XT )− log(β)− digamma(α)} (
XT

β2
− α

β
) − 1

β
] dxT .

We can obtain the Hessian matrix of θ using the results of sections A.2.1 and A.1.1

in Eqn. (A.1).
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B.1. CONTINUATION RATIO LOGIT 110

B.1 Continuation Ratio Logit

Consider the probabilities p1, p2, ..., pg for groups 1, 2, ..., G with the property that
∑G

g=1 pg = 1, pg ≥ 0 for g = 1, 2, ..., G. Aitchison (2003) [2] argued that for ages and

lengths the multiplicative Logistic transformation is more appropriate.

pg =











exp(λg)∏g
i=1(1+exp(λi))

g = 1, 2, ..., (G− 1)

1∏g
i=1(1+exp(λi))

g = G.
(B.1)

The inverse of this transformation is

λg = log(
pg

1− p1 − p2−, ...,−pg
) = log(

pg

pg+1+, ...,+pG
), g = 1, 2, ..., (G− 1). (B.2)

This was the approach used by Stewart and Field (2011) [44] in diet composition

analyses of seabirds and seals. Eqn. (B.2) is also the continuation-ratio logit as defined

by Agersti (1996) [1] and has been used for modelling length and age distributions

by Kvist et al. (2000) [27], Rindorf and Lewy (2001) [36], Cadigan (2016) [9], DFO

(2011) [16], and possibly others.

B.2 C++ Template Code

The C++ template in the file named “fitmix.cpp” for the SEV VonB G-Normal Mix-

ture model is

[1]# include <TMB.hpp >

[2]# include <iostream >

[3]template <class Type >

[4]Type objective function <Type >::operator() ()

{
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[5] DATA VECTOR(age);

[6]DATA VECTOR(length);

[7] DATA VECTOR(log age);

[8]DATA VECTOR(log length);

[9] DATA SCALAR(sig log len me);

[10] DATA SCALAR(sig log age me);

[11] PARAMETER(log Linf);

[12] PARAMETER(log k);

[13] PARAMETER(ao);

[14] PARAMETER VECTOR(lambda);

[15] PARAMETER VECTOR(log true age);

[16] PARAMETER VECTOR(mix mu parm);

[17] PARAMETER VECTOR(log mix sigma);

[18] int n = age.size();

[19] int nmix = lambda.size();

[20] Type zero = 0.0;

[21] Type one = 1.0;

[22] Type half = 0.5;

[23] Type Linf = exp(log Linf);

[24] Type k = exp(log k);

[25] vector <Type >mix sigma = exp(log mix sigma);

[26] vector <Type >true age = exp(log true age);

[27] vector <Type >mu = Linf*(one - exp(-k*(true age-ao)));

[28] vector <Type >log mu = log(mu);

[29] vector <Type >p(nmix+1);

[30] vector <Type >mix mu(nmix+1);
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[31] vector <Type >log p(nmix+1);

[32] Type lterm = zero;

[33] for(int i = 0;i <nmix;++i){

[34] lterm += log(1 + exp(lambda(i)));

[35] log p(i) = lambda(i) - lterm;

}

[36] log p(nmix) = -lterm;

[37] p = exp(log p);

[38] mix mu(0) = mix mu parm(0);

[39] vector<Type>mix norm = p(0)*dnorm(log true age,mix mu(0),mix sigma(0));

[40] for(int i = 1;i <= nmix;++i){

[41] mix mu(i) = mix mu(i-1) + exp(mix mu parm(i));

[42] mix norm += p(i)*dnorm(log true age,mix mu(i),mix sigma(i));

}

[43] Type nll = zero;

[44] vector <Type>len resid std = (log length-log mu)/sig log len me;

[45] nll -= dnorm(log length,log mu,sig log len me,true).sum();

[46] nll -= dnorm(log age,log true age,sig log age me,true).sum();

[47] nll -= log(mix norm).sum();

[48] ADREPORT(Linf)

[49] ADREPORT(k)

[50] ADREPORT(ao)

[51] ADREPORT(lambda)

[52] ADREPORT(mix mu parm)

[53] ADREPORT(mix sigma)

[54] REPORT(true age);

112



B.3. TMB CODE IN R 113

[55] REPORT(mu);

[56] REPORT(len resid std);

[57] REPORT(p);

[58] REPORT(mix mu);

[59] REPORT(mix sigma);

[60] REPORT(mix norm);

[61] REPORT(nll)

[62] return nll;

}

B.3 TMB Code in R

Below is the operations we use in an R session:

[1] library(TMB)

[2] compile(“fitmix.cpp”)

[3] dyn.load(“fitmix”)

[4] tmb.data= list(

[5] age= age obs,

[6] length= len obs,

[7] log age= log(age obs),

[8] log length= log(len obs),

[9] sig log len me= sig log len me,

[10] sig log age me= sig log age me )

[11] g=2 # Determines the Number of Groups, G

[12] mix mu= quantile(log(tmb.data$age),probs=((0:(g+1))/(g+1))[2:(g+1)])

[13] mix mu parm= c(mix mu[1],diff(mix mu))
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[14] parameters= list(

[15] log Linf= log(120),

[16] log k= log(0.2),

[17] ao= -0.1,

[18] lambda= rep(0,g-1),

[19] log true age= log(true.age),

[20] mix mu parm= mix mu parm,

[21] log mix sigma= rep(log(0.5),g)

)

[22] parameters.U= list(

[23] log Linf= log(200),

[24] log k= log(0.5),

[25] ao= 10,

[26] lambda= rep(Inf,g-1),

[27] mix mu parm= rep(Inf,g),

[28] log mix sigma= rep(Inf,g)

)

[29] parameters.L= list(

[30] log Linf= log(50),

[31] log k= log(0.02),

[32] ao= -10,

[33] lambda= rep(-Inf,g-1),

[34] mix mu parm= rep(-Inf,g),

[35] log mix sigma= rep(-Inf,g)

)

[36] lower= unlist(parameters.L);
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[37] upper= unlist(parameters.U);

[38] obj=MakeADFun(tmb.data,parameters,random=c(“log true age”),DLL=“fit-

mix”, random.start = expression(last.par[random]), inner.control=list(maxit=5000,trace=F));

[39] obj$fn(obj$par)

[40] obj$gr(obj$par)

[41] opt= nlminb(obj$par,obj$fn,obj$gr,upper=upper,lower=lower, control = list(trace=10,

eval.max=1e6,iter.max=1000))

[42] obj$gr(opt$par)

[43] rep= obj$report()

[44] sd.rep=sdreport(obj)

[45] summary(sd.rep,“report”)
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C.1 Tables and Figures

Table C.1: Sensitivity to model misspecification: The true unobserved age distribution
is Lognormal with µ = 1.275 and σ = 0.4723, which is misspecified as the two-Normal
mixture and the Gamma distributions. Results for average estimated values, and root
mean squared errors(RMSE) of L∞, k, ao and σc were based on repeated Sampling.

σu = 0.05 σu = 0.1 σu = 0.2 σu = 0.25

Sample Size Estimators Mixture Gamma Mixture Gamma Mixture Gamma Mixture Gamma

L̂∞ 120.07 121.58 120.4 123.9 122.17 132.9 123.53 139.45

RMSE(L̂∞) 7.1 7.5 8.1 9.48 12.85 19.6 16.7 27.6

k̂ 0.2 0.197 0.201 0.192 0.202 0.175 0.202 0.167

200 RMSE(k̂) 0.023 0.0232 0.027 0.028 0.04 0.042 0.043 0.05

âo -0.1 -0.11 -0.1 -0.15 -0.1 -0.26 -0.103 -0.31
RMSE(âo) 0.116 0.117 0.132 0.142 0.21 0.24 0.23 .288

σ̂c 0.1 0.1 0.099 0.098 0.098 0.096 0.097 0.092
RMSE(σ̂c) 0.005 0.0054 0.007 0.0072 0.013 0.0134 0.0235 .0243

L̂∞ 120.01 121.22 120.03 123.18 120.93 130.98 122.5 136.6

RMSE(L̂∞) 4.8 5.14 5.76 6.8 9 14.62 11.67 20.9

k̂ 0.2 0.198 0.201 0.192 0.201 0.176 0.201 0.168

400 RMSE(k̂) 0.016 0.016 0.019 0.02 0.02 0.033 0.03 0.041

âo -0.1 -0.115 -0.1 -0.15 -0.103 -0.256 -0.11 -0.3
RMSE(âo) 0.078 0.08 0.104 0.105 0.13 0.199 0.13 .24

σ̂c 0.1 0.1 0.1 0.099 0.1 0.099 0.099 0.096
RMSE(σ̂c) 0.0034 0.0038 0.005 0.0049 0.0054 0.0065 0.011 .0127
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Table C.2: Sensitivity to model misspecification: The true unobserved age distribution
is a mixture of three Gamma distributions, which is misspecified as the two-Normal
mixture and the Gamma distributions. Results for average estimated values, and root
mean squared errors(RMSE) of L∞, k, ao and σc were based on repeated Sampling.

σu = 0.05 σu = 0.1 σu = 0.2 σu = 0.25

Sample Size Estimators Mixture Gamma Mixture Gamma Mixture Gamma Mixture Gamma

L̂∞ 119.98 121.26 119.84 123.7 120.88 133.14 121.46 139.34

RMSE(L̂∞) 4.145 7.38 5.01 9.56 7.07 20.16 9.41 27.8

k̂ 0.2 0.1985 0.201 0.192 0.202 0.174 0.205 0.166

200 RMSE(k̂) 0.019 0.023 0.022 0.026 0.03 0.033 0.036 0.037

âo -0.1 -0.125 -0.099 -0.16 -0.11 -0.28 -0.115 -0.33
RMSE(âo) 0.124 0.128 0.14 0.148 0.205 0.26 0.208 0.28

σ̂c 0.1 0.099 0.1 0.098 0.1 0.097 0.099 0.093
RMSE(σ̂c) 0.0052 0.0054 0.0062 0.007 0.0084 0.014 0.01 .0198

L̂∞ 120.03 121.05 120.15 123.17 120.21 131.4 120.85 137.27

RMSE(L̂∞) 3.08 5.12 3.78 6.75 4.5 15.065 5.36 21.61

k̂ 0.201 0.198 0.2 0.192 0.202 0.175 0.202 0.166

400 RMSE(k̂) 0.014 0.016 0.019 0.021 0.027 0.035 0.0267 0.042

âo -0.1 -0.11 -0.1 -0.15 -0.109 -0.26 -0.09 -0.31
RMSE(âo) 0.086 0.09 0.092 0.103 0.134 0.202 0.171 0.25

σ̂c 0.1 0.099 0.1 0.099 0.1 0.098 0.098 0.095
RMSE(σ̂c) 0.0034 0.004 0.005 0.005 0.007 0.009 0.0085 0.0126
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Figure C.1: Frequency distribution of L̂∞(σu), k̂(σu), âo(σu) & σ̂c(σu) based on the
SEV VonB two-Normal mixture BI model. The true unobserved age distribution is a
Lognormal with µ = 1.275 and σ = 0.4723 which is misspecified as the two-Normal
mixture distribution. We consider the sample size 200.

Figure C.2: Frequency distribution of L̂∞(σu), k̂(σu), âo(σu) & σ̂c(σu) based on the
SEV VonB Gamma BI model. The true unobserved age distribution is a Lognormal
with µ = 1.275 and σ = 0.4723 which is misspecified as the Gamma distribution. We
consider the sample size 200.
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Figure C.3: Frequency distribution of the estimates L̂∞(σu), k̂(σu), âo(σu) & σ̂c(σu)
based on the SEV VonB two-Normal mixture BI model. The true unobserved age
distribution is a Lognormal with µ = 1.275 and σ = 0.4723 which is misspecified as
the two-Normal mixture distribution. We consider the sample size 400.

Figure C.4: Frequency distribution of the estimates L̂∞(σu), k̂(σu), âo(σu) & σ̂c(σu)
based on the SEV VonB Gamma BI model. The true unobserved age distribution
is a Lognormal with µ = 1.275 and σ = 0.4723 which is misspecified as the Gamma
distribution. We consider the sample size 400.
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Figure C.5: Frequency distribution of the estimates L̂∞(σu), k̂(σu), âo(σu) & σ̂c(σu)
based on the SEV VonB two-Normal mixture BI model. The true unobserved age
distribution is a mixture of three Gamma distributions which is misspecified as the
two-Normal mixture distribution. We consider the sample size 200.

Figure C.6: Frequency distribution of the estimates L̂∞(σu), k̂(σu), âo(σu) & σ̂c(σu)
based on the SEV VonB Gamma BI model. The true unobserved age distribution is
a mixture of three Gamma distributions which is misspecified as the Gamma distri-
bution. We consider the sample size 200.
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Figure C.7: Frequency distribution of the estimates L̂∞(σu), k̂(σu), âo(σu) & σ̂c(σu)
based on the SEV VonB two-Normal mixture BI model. The true unobserved age
distribution is a mixture of three Gamma distributions which is misspecified as the
two-Normal mixture distribution. We consider the sample size 400.

Figure C.8: Frequency distribution of the estimates L̂∞(σu), k̂(σu), âo(σu) & σ̂c(σu)
based on the SEV VonB Gamma BI model. The true unobserved age distribution is
a mixture of three Gamma distributions which is misspecified as the Gamma distri-
bution. We consider the sample size 400.
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