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Abstract

In this thesis, I researched and implemented a number of Schwarz domain decom-

position algorithms with the intent of finding an efficient method to solve the geophys-

ical EM problem. I began by using finite difference and finite element discretizations

to investigate the domain decomposition algorithms for the Poisson problem. I found

that the Schwarz methods were best used as a preconditioner to a Krylov iteration.

The optimized Schwarz (OS) preconditioner outperformed the related restricted ad-

ditive Schwarz (RAS) preconditioner and both of the local and global OS fixed point

iterations. Using finite differences the OS preconditioner performed much better than

the RAS preconditioner, but using finite element in parallel with the FEniCS assembly

library, their performance was similar. The FEniCS library automatically partitions

the global mesh into subdomains and produces irregular partition boundaries. By

creating a serial rectangular subdomain code in FEniCS, I regained the benefit of

the OS preconditioner, suggesting that the irregular partitioning scheme was detri-

mental to the convergence behaviour of the OS preconditioner. Based on my work

for the Poisson problem, I decided to attempt both a RAS and OS preconditioned

GMRES iteration for the electromagnetic problem. Due to the unstructured meshes

and source/receiver refinement used in EM modelling I could not avoid the irregu-

lar mesh partitioning, and the OS preconditioner lagged the RAS preconditioner in

terms of iteration count. On the bright side, the RAS preconditioner worked very

well, and outperformed any of the preconditioners bundled with PETSc in terms of

both iteration count and time to solution.
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Chapter 1

Introduction

1.1 Motivation

Data collection practices in the field of electromagnetic (EM) geophysics have out-

paced data processing technologies. Practitioners of the field would like to use data,

collected using the latest technologies in marine, ground, and airborne equipment, to

recover the earth model that best describes the volume of earth under study. Inversion

algorithms exist today that can model such data, but data collection practices often

pose a challenge for existing algorithms. Marine and airborne survey configurations

energize the earth from many sources while traversing the earth, and recording data

nearly continuously. This combination can very easily create datasets with tens of

millions of data points. The amount of data collected easily becomes prohibitively

large to allow inversion within a reasonable time frame.

The bottleneck for these inversions is obtaining the solution of the forward prob-

lem. The solution of the forward problem consists of computing the fields given a
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particular earth model, and it requires solving a large and often ill-conditioned lin-

ear system of equations. Not only must the iterative inversion algorithm solve the

forward problem at every iteration, but it must do so for all of the source positions

at every iteration. In the following two paragraphs, I will describe a case study each

in both the mining and oil and gas industries to demonstrate the cost of real-world

inversion.

Yang et al. (2014) developed a strategy for reducing the cost of inversion, and

applied it to a dataset collected over the Mt. Milligan porphyry copper deposit. At

Mt. Milligan, the general character of the deposit is already established through geo-

logical tools and previous geophysical studies. However, improvements in algorithmic

design could allow inversions to be carried out using more cells at higher accuracies;

thereby, also improving the understanding of the deposit at finer scales, and at depths

beyond the reach of geological tools. The strategy employed by Yang et al. (2014)

reduced the overall cost of the inversion in two ways. First, they tackled the size of

each forward problem by restricting it to a local mesh based on the ‘footprint’ of each

source. Second, they reduced the number of forward problems by adaptively refining

the number of source positions to reach a target data misfit throughout a series of in-

version iterations in coarse to fine meshes. They began with 14362 soundings of time

domain EM data collected over fourteen 2.5km long lines centered over the known

deposit. Their strategy only used 744 of the total soundings. They used horizontal

and vertical cell sizes of 50 and 20 metres, resulting in a 443520 cell global mesh. The

total time for the inversion process was 4.3hrs using 24 processors to hit a normalized

data misfit of 19, while a previous algorithm took 18hrs for a subset of the same data

using the same number of processors to reach a misfit of 17.
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That is a substantial reduction, but potentially at the expense of model fidelity (a

misfit of 19 is rather high). They cite that it is a well known fact that modelling every

sounding is not necessary, but the point at which downsampling causes a loss in model

accuracy is certainly less well known. Estimating the ‘footprint’ of each transmitter

also carries the potential for modelling inaccuracies. It would be desirable to keep

as many transmitter locations as possible, and limit the forward modelling mesh in

terms of both overall size and resolution as little as possible. For now, this kind of

drastic downsampling is at least partially justified by the fact that the sampling rate

of the receiving coil generates an along-line spacing so much greater than the across-

line spacing as dictated by surveying cost. Future technologies may improve the

economics of surveying at fine scales in all dimensions leading to higher data density

overall, and reducing the disparity between along-line and across-line sampling rates.

If or when this occurs there will likely be much less of an impetus to drastically

downsample the number of soundings in favor of recovering higher resolution models

using more data points. To give a sense of the cost of inverting a large dataset such

as this, I can borrow a result from Yang et al. (2014). In order to demonstrate the

scalability of their algorithm, they produced an equation to estimate the total time to

solution, and plotted the results for a 10000 sounding survey. To give a comparison

in line with the computer power used for their 744 sounding result – they predict that

24 CPUs would take somewhere in the range of 104 to 105s, or roughly 14 hrs. This

cost would be incurred for each Conjugate Gradient (CG) iteration used to solve each

model update. If they require ten CG iterations for each of ten Gauss Newton model

updates, then the total time would be 58 days.

To find an example of an application requiring that level of data density right
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now, I need not look any further than the oil and gas industry. In marine CSEM

applications, a survey boat has the ability to tow an array of receivers, making the

disparity between along line and across-line sampling density much less pronounced.

Additionally, since many receivers at once are sensitive to each transmitter, the mov-

ing ‘footprint’ method may not be applied. To get a sense of the cost of an inversion

in this setting, I can make an estimation from the numbers predicted by Ryhove et al.

(2017), who provide a measure of the complexity of a state of the art forward problem

solver for the marine CSEM problem. Ryhove et al. (2017) compared two of the most

promising forward problem algorithms on the SEAM model – an industry standard

thought to represent a realistic marine CSEM exploration target. They found that a

multigrid preconditioned iterative solver beat a sparse low-rank approximated multi-

frontal direct solver, and accurately solved the forward problem for 3784 transmitter

– receiver pairs in 3141 seconds. I can take that solution time and multiply it by

three to get the total cost for their frequency domain algorithm, and then multiply

again by 10 for the number of Conjugate Gradient iterations, and again by 10 for the

Gauss-Newton iterations, and I get roughly 11 days. Eleven days is a long time to

wait for a solution, particularly when a few trials may be required to refine the inver-

sion parameters and find a satisfactory earth model. Data inversion can be considered

an advanced processing step. As alluded to in the prior two examples, a number of

industries currently rely on EM data. With or without inversion, EM surveying is

being used to help characterize the earth in a variety of settings.

Mineral exploration professionals have quite successfully used the EM method in

their search for economic concentrations of minerals (Nabighian and Macnae, 1991).

In this setting, the EM method often directly indicates the highly conductive ore
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minerals that exploration professionals seek. However, when disseminations of ore

minerals fail to raise the bulk conductivity of the host rock enough to make the deposit

“visible” to the electromagnetic method, electromagnetic data may still prove useful

in searching for mineralization through indicators like conductive alteration halos and

fault zones.

The oil and gas industry has recently adopted the EM method as a complement

to the seismic method for its improved sensitivity to fluids. Electromagnetic data

can be used to search for oil and gas deposits directly, but seismic surveys are often

preferred for their higher resolution. The recent rise in popularity of the EM method

is due to the discovery that the seismic velocity of a reservoir is highly susceptible

to trace amounts of fizz gas in the pore fluid. The anomalous velocities recorded

in regions containing fizz gas can falsely suggest the presence of hydrocarbons. Ma-

rine controlled-source EM (CSEM) has proven to be a useful tool for avoiding such

false detections, since reservoir conductivity, as opposed to seismic velocity, is mostly

unaffected by small amounts of gas (Constable, 2010).

There are also a large number of lesser known applications such as geothermal

exploration (Muñoz, 2014), engineering (Li et al., 2014), environmental monitoring

(Christensen and Halkjær, 2014), and hydrogeology (Sapia et al., 2014). Everett

(2012) reviews advances in some of these, as well as applications in unexploded ord-

nance (UXO) detection, soils and agriculture, archaeology, hazards, and climate. Re-

gardless of the application, EM data will always require some degree of processing to

be useful. The following section highlights several past efforts to improve the forward

modelling of EM data towards the ultimate goal of robust and rapid data inversion.
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1.2 State of the forward modelling problem

The geophysical EM forward problem uses the low frequency, or quasistatic approx-

imation. In theory, the low frequency assumption is used to eliminate one of the

terms in Maxwell’s equations in the second order frequency domain form. In prac-

tise, the low frequency assumption means that the equations produce solutions that

resemble diffusion phenomena moreso than wave phenomena. There are many ways

of approaching the forward problem, all of which seek to find a solution to Maxwell’s

equations in the quasistatic regime by translating the continuous equations into a

discrete set of equations, and each has their own particular set of advantages and

disadvantages. In this section, I will provide a brief overview of the work done on

the geophysical EM modelling problem. For a more complete overview, see Börner

(2010). I will classify the approaches first into two categories: those that use time

integration and those that transform the equations into the frequency domain.

Time integration techniques can be categorized by the choice of time stepping and

spatial discretization methods. Time stepping methods that rely on information from

the current timestep in order to update are known as explicit time integration schemes.

Those that require the solution of a linear system of equations to update are labelled

as implicit. Explicit schemes would appear to have a lower cost in terms of algorithmic

complexity over implicit schemes requiring linear system solves, however analysis has

shown that a small time step must be used in order to solve Maxwell’s equations

using an explicit method (Ascher, 2008). In an attempt to overcome this restriction,

some have used an explicit modified DuFort-Frankel method (Wang and Hohmann,

1993; Commer and Newman, 2004), but the current trend seems to be toward implicit
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methods using backward Euler (Haber et al., 2007; Um et al., 2010; Fu et al., 2015).

Finite Difference (FD), Finite Volume (FV) and Finite Element (FE) may all be

employed to discretize the spatial component within time integration schemes. Finite

Difference Time Domain (FDTD) techniques have long been the standard (Wang

and Hohmann, 1993; Commer and Newman, 2004), but more recently Finite Element

Time Domain (FETD) (Um et al., 2010; Fu et al., 2015) and Finite Volume Time

Domain (FVTD) (Haber et al., 2007) have been investigated. The main advantage

of the FE and FV spatial discretizations is improved meshing of complex structures

through tetrahedral, OcTree, and hexahedral meshes, and the ability to adapt mesh

size in regions with high or low complexity. FD, FV, and FE discretization techniques

can also be applied to solve Maxwell’s equations purely in the spatial dimension using

Fourier transforms.

Purely spatial discretizations, often called time-harmonic, can be used to avoid

time stepping complications described above, but in doing so, they expose other

complications. By taking the Fourier transform of Maxwell’s equations, and assuming

the transformation ∂
∂t

= iω, the extra dimension of time is avoided, in a way. Time

domain data can be recovered later through inverse Fourier transform of a number of

solutions computed at different frequencies. As with the time domain discretizations,

the finite difference method for the time-harmonic problem represents the old guard,

with more effort currently being expended investigating alternative finite volume and

finite element techniques for their improved flexibility. Integral equation methods

(Wannamaker et al., 1984; Lajoie and West, 1977; Newman et al., 1986) are another

class of method used to model time-harmonic EM fields in complex geometries, and

which have a long history. They continue to be improved upon (Avdeev and Knizhnik,
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2009), despite the limitation that they involve solving a dense linear algebra problem.

Traditional time harmonic discretizations result in poorly conditioned matrices,

requiring new measures to ensure a solution in a finite and reasonably short amount

of time. Once transformed into the frequency domain, usually either the E or H field

is eliminated to produce a second order formulation involving an operator of the form

∇×∇×. This operator guarantees a non-trivial nullspace for either of the resulting

second order equations since ∇× (∇Φ) = 0 for any function Φ, however the E field

formulation (Weiss and Newman, 2002; Streich, 2009; Farquharson and Miensopust,

2011; Commer et al., 2011; Um et al., 2013; Haber and Ruthotto, 2014; Chung et al.,

2014; Cai et al., 2015; Grayver, 2015; Yavich and Zhdanov, 2016) is generally ac-

cepted as having better numerical properties (Ren et al., 2014). Many researchers

have opted to transform the equations further, by considering the vector potentials

(Badea et al., 2001; Haber and Ascher, 2001; Aruliah and Ascher, 2002; Weiss, 2013;

Ansari and Farquharson, 2014; Horesh and Haber, 2011; Jahandari and Farquharson,

2015). The vector potential method carries an improved condition number over the

E field formulation, but has a higher complexity due to the extra degrees of freedom

introduced by the potentials, and the need to satisfy a gauge condition. In all cases,

the problem is cast as a large, linear system of equations, requiring linear algebra

techniques to find a solution. There are two main approaches to solving the linear

systems produced from any of the described discretizations: matrix factorization and

substitution (direct methods), or iterative methods.

Direct methods are generally considered the most robust choice, but have histori-

cally been avoided for large problems due to their higher computational cost. Direct

methods are more robust than iterative methods since they are less sensitive to the
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matrix condition number. The higher a condition number, the more susceptible the

solution of the linear system of equations is to small variations in the data. On its

own, a high condition number isn’t a problem, but with a large condition number, the

small errors incurred by finite precision floating point operations and inaccurate data

measurements, can produce large errors in the numerical solution. While a direct

method’s convergence rate is mostly unaffected by condition number, factorization

places a large burden on memory resources and time to solution, and until recently

this proved to be too much for practical problem sizes. This is much less of a concern

now due to the arrival of efficient parallel sparse direct methods such as MUMPS

(Schenk and Gartner, 2004) and PARDISO (Amestoy et al., 2001). Direct methods

have been successfully used to solve EM problems (Streich, 2009; Schwarzbach et al.,

2011; Schwarzbach and Haber, 2013; Chung et al., 2014) for up to six million degrees

of freedom (Cai et al., 2015). In many other cases, problem size and memory limi-

tations preclude the use of a direct method and preference is given to the iterative

method.

Krylov subspace methods (Saad, 1995) make up the bulk of all modern uses of

an iterative method for solving the discrete equations arising from discretizations of

Maxwell’s equations. They are computationally cheaper than direct methods, but

they often require preconditioning techniques to obtain fast convergence. The Krylov

iteration is based on finding an approximation to the solution by retrieving a candi-

date from the Krylov subspace κm(A, r0) = span{r0, Ar0, A2r0, ..., A
m−1r0} such that

the approximation forms a residual b−Axm that is orthogonal to the subspace (Saad,

1995). The Krylov method known as Conjugate Gradient (CG) is hard to beat for

symmetric, positive, and definite systems of equations. In most EM cases, General-
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ized Minimal Residual (GMRES), Biconjugate Gradient Stabilized (BiCGStab), or

Quasi-Minimal Residual (QMR) methods are required since the resulting equations

are symmetric, but indefinite. Krylov methods are used in countless numerical in-

vestigations, and what sets one method apart from the next has more to do with

preconditioning techniques than with the choice of Krylov method. Preconditioning

(Meijerink and van der Vorst, 1977; Saad and van der Vorst, 2000; Saad, 1995) a

linear system of equations of the form Ax = b can be expressed as an equality con-

serving transformation in either of the left, MAx = Mb, or right, AM−1Mx = b,

forms. The point is to find an M which produces a system of equations that is easier

to solve because it has improved spectral properties. It is also important to con-

sider the cost of the application of the preconditioner. The best preconditioners are

cheap to compute and they reduce the condition number of the system substantially.

There are a number of preconditioning techniques that are based on existing linear

algebra solution techniques, such as matrix factorization, matrix splitting, multigrid,

and domain decomposition methods. Before discussing these, I would like to present

a couple of modern approaches to preconditioning that do not fit into any of these

categories.

There were two publications in which the authors made use of a Green’s func-

tion approximation and a matrix splitting, respectively, to successfully accelerate a

Krylov iteration. Yavich and Zhdanov (2016) used a left preconditioning strategy

for the secondary electric field equations based on a Green’s function approximation

of the background fields. The authors estimated the condition number of a simple

Green’s function for the background field and highlighted its sensitivity to conductiv-

ity contrasts. They transformed the simple Green’s function via scaling and shifting to

10



arrive at their contraction operator based preconditioner that has improved behaviour

for highly contrasting conductivity. Using the contraction operator approach the au-

thors solved a realistic marine CSEM model with close to six million unknowns to a

relative tolerance of 10−12 in 32 BiCGStab iterations in 733 CPU seconds. Grayver

and Burg (2014) implemented a block diagonal preconditioner with the real and sym-

metric block C+M where C, M are discretizations of the curl and conductivity terms

∇× (µ−1∇×) and ωσ. They noted that the diagonal block systems can, themselves,

be solved using an auxiliary space preconditioning method, but that direct solvers

were preferred for problems with less that 900000 degrees of freedom. Numerical

results for the COMMEMI 3D-1 model at 10Hz show 18 iterations taking 2571 CPU

seconds for 1.6M degrees of freedom.

From the right preconditioner form AM−1Mx = b, one can observe that the

choice of preconditioner M = A would result in single iteration convergence, since

the application of the preconditioner solves the original solution (M−1Mx⇔ A−1b).

Based on this observation, a good preconditioner might be created which uses M = A

but which approximates the solution process M−1Mx in a way that is hopefully

cheaper than solving the original problem. Two such solution techniques are based

on matrix factorization and splitting.

Preconditioners based on an incomplete factorization (Dongarra et al., 1998) are

among the most robust, and those that are based on matrix splitting are generally

the most inexpensive, and so attract many users. Incomplete factorization precondi-

tioners are based on the same process of factorization used by direct solvers, however

sparsity is preserved during factorization by enforcing limitations on fill-ins resulting

from the factorization process. Incomplete LU methods are particularly widespread in
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the EM modelling community due to the nature of the equations (Haber and Ascher,

2001; Mitsuhata and Uchida, 2004; Farquharson and Miensopust, 2011; Um et al.,

2013; Jahandari and Farquharson, 2015; Ansari and Farquharson, 2014). These pre-

conditioners are effective for a broad range of problems and can be tuned to produce

a better and better condition number, but at the expense of time and memory cost.

On the other end of the spectrum, Jacobi preconditioners are inexpensive to apply,

but can sometimes fail to significantly accelerate the Krylov iteration. Jacobi pre-

conditioners are based on the same matrix splitting into upper, lower and diagonal

parts that is used to define the Jacobi iteration. They have been used in Badea et al.

(2001), Weiss and Newman (2002), Nam et al. (2007), Commer et al. (2011), and

Weiss (2013). Recent advances in iterative solver technology have given rise to two

prominent alternatives to these established methods: multigrid (MG) and domain

decomposition (DD).

Multigrid techniques (Trottenberg et al., 2001) were developed to produce an

efficient error contraction for a broad range of partial differential equations (PDEs)

and are attracting a lot of attention in the EM simulation world as both a stand-

alone solver and a preconditioner. Multigrid methods are known to perform very

well for elliptic problems, and their use is becoming more and more widespread all

the time. They rely on a hierarchy of coarse to fine grids in which relaxation of

the PDE causes an error reduction for different components of the error. This is in

contrast to conventional techniques that stagnate due to their inability to reduce the

error for more than a few error modes. As an iterative solver, multigrid has shown

great potential, but reaching that potential often requires fine tuning the cycle of pre-

smoothing, coarse grid correction, and post-smoothing. For this reason, it is often
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fruitful to use multigrid methods as a preconditioner to the robust Krylov iteration

(Trottenberg et al., 2001). Multigrid has been used in geophysics as both a solver (Li

et al., 2016), and as a preconditioner (Aruliah and Ascher, 2002; Haber and Heldmann,

2007; Horesh and Haber, 2011). Jaysaval et al. (2015) used multigrid preconditioning

with the BiCGStab solver to simulate a marine CSEM model using an exponential

finite difference discretization for a fine grid with 127 million unknowns to a tolerance

of 10−9 in 3656 seconds. Multigrid has been called a divide and conquer strategy since

the workload is spread out among the grid hierarchy. Another important divide and

conquer approach is to tackle the kernel, or null space, of the differential operator.

The Auxiliary Space method is related to multigrid and pioneering work has been

done for the EM problem in Hiptmair and Xu (2007) and Hiptmair and Xu (2008).

Domain decomposition methods are another form of divide and conquer strategy, but

with the workload spread among subdivisions of the problem domain.

Domain decomposition (DD) methods are naturally parallelizable, and have the

potential to produce a good preconditioner for the geophysical EM problem. The

original idea behind domain decomposition was to split a problem into smaller sub-

domains and solve the problem on those subdomains in a way that reproduces the

solution of the original global problem (Schwarz, 1870). The original concept has since

been morphed into a wide range of techniques for solving PDEs in parallel. Domain

decomposition techniques can be classified into two broad categories: substructuring

methods (Toselli and Widlund, 2004, chap. 4), and Schwarz methods (Dolean et al.,

2015c, chap. 1). Substructuring DD methods such as Neumann-Neumann, Finite

Element Tearing and Interconnecting (FETI) and Balancing Domain Decomposition

by Constraints (BDDC), were developed during an effort to create parallel direct
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solvers. These methods can be thought of as hybrid direct/iterative methods since

they combine factorization of the interior degrees of freedom (DOFs) and relaxation

of the interface DOFs. Substructuring methods have abstracted the notion of divid-

ing the physical space into subdomains and are more concerned with splitting the

matrix into subdomains (Dolean et al., 2015c). The Schwarz methods are those that

have branched off from the original Schwarz concept of physical domain splitting.

Today, the DD method is popular because of its ease of parallel implementation. Li-

ons (1988) modified the original Schwarz alternating procedure so that it could be

used for solving PDEs on overlapping subdomains in parallel computers. Subsequent

modifications to the original Schwarz method relaxed the requirement for overlap,

improved error contraction rates, and increased the parallel scalability.

To my knowledge, there are five applications of the DD method to the geophysical

EM problem in the literature with the Schwarz and substructuring methods roughly

equally represented. Rung-Arunwan and Siripunvaraporn (2010) used a modified

hierarchical substructuring domain decomposition to solve smaller systems in serial

with a direct solver in a memory limited computing environment. Bihlo et al. (2016)

applied a stochastic DD method wherein Monte-Carlo simulations were used to find

the stochastic representation of the solution at the interfaces. Subsequently, the

subdomain problems were solved with a radial basis function based finite difference

method. Bakr et al. (2013) used a non-overlapping substructuring domain decom-

position technique that allowed different physics to be used in different subdomains.

They then deployed a cheaper approximation in regions where a two dimensional

(2D) conductivity structure dominated the model. Xiong (1999) separated the air

and earth layers into subdomains to improve the condition number of the modelling
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matrix using a Schwarz variant. Zyserman and Santos (2000) implemented a Schwarz

DD method that used a Robin transmission condition in which the Robin parameter

is chosen heuristically. This would have been very much similar to the method I

use in this thesis, and will be outlined in a later chapter, but the authors recast the

problem in terms of a Lagrange multiplier at the interfaces. Finally, Ren et al. (2014)

is the only paper to have used a DD method to parallelize the solution of a large-

scale EM problem. They chose the well known substructuring FETI-DP method –

a non-overlapping DD method that defines a coarse problem from the intersecting

subdomain interfaces. The solution of the coarse problem acts as a preconditioner to

the interface Lagrange multipliers problem which enforces continuity of the tangential

magnetic and electric fields between subdomains. The successful solution of the in-

terface problem then allows independent solution for the interior degrees of freedom.

They solved a system of equations with 3 million degrees of freedom spread over 32

processors in 2367 CPU seconds with a near linear scaling for trials of 8, 16, and 32

processors. While these papers have demonstrated the usefulness of the DD method

for the geophysical EM problem in a number of non-traditional ways, there seems to

be very little work done exploring the Schwarz methods as solvers or preconditioners.

The Restricted Additive Schwarz (RAS) method and the related Optimized Schw-

arz Method (OSM) have been developed within the last twenty years, and have been

proven to work for a number of PDEs including the EM wave equation. Cai and Sarkis

(1999) introduced their RAS method as a means of reducing communication cost over

traditional methods, but which also happens to reduce the iteration count over other

Schwarz algorithms. The Optimized Schwarz method has been developed by Martin

Gander and collaborators, who have optimized Robin style transmission conditions
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for Laplace’s equation (Gander et al., 2001), the advection-diffusion equation (Daoud

and Gander, 2010), the Helmholtz equation (Gander and Zhang, 2014), and recently

for the EM wave equation (Dolean et al., 2015a). The latter publication showed that

OSMs improved the scalability and convergence rate over ‘classical’ Schwarz methods

while maintaining the cost per iteration. All of this seems to suggest that the OSM

would also be well suited to EM equations under the quasistatic approximation.

In this thesis I will outline the steps I have taken towards constructing and im-

plementing an Optimized Schwarz preconditioner for the quasistatic EM equations.

Along the way, I will develop an RAS preconditioner to use as a benchmark to mea-

sure the success (or lack thereof) of the OSM preconditioner. In this chapter, I have

explained the motivation for the use of an Optimized Schwarz preconditioner for the

EM problem. In the next chapter, I will develop the optimized Schwarz solver and

preconditioner for the Poisson problem. The RAS preconditioner is easily constructed

once the components of the optimized Schwarz preconditioner are in place. I will begin

the chapter by discussing the model Poisson problem (section 2.1), and then provide

an overview of the Schwarz methods from the original concept through to the modern

discrete parallel algorithms using the Poisson problem as a model (section 2.2). Later

in the chapter, I will implement a number of key algorithms presented in section 2.2

using the finite difference discretization technique (section 2.3), followed by the same

treatment while using the finite element technique (section 2.4). In the final chapter,

I will demonstrate my work towards constructing the Optimized Schwarz and RAS

preconditioners for the quasistatic EM problem.
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Chapter 2

Poisson Problem

2.1 Poisson problem as a test case

The Poisson equation for the unknown solution u, load function f , and Dirichlet data

β over the domain Ω:

−∇2u = f in Ω (2.1a)

u = β on ∂Ω (2.1b)

is an elliptic partial differential equation that is used throughout the sciences to model

diffusion, and is a good model equation for developing the OSM. There has been a lot

of work done on the Poisson equation and a number of methods can be used to find

its solution, both numerically and analytically. For this reason, the Poisson equation

makes an ideal candidate for discussing and testing numerical methods. Given an

appropriate source function and boundary conditions, the Poisson equation could be

used to model the geophysical potential field, or DC resistivity experiment. However
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in the work that follows, I will work with a simple sinusoidal source function to avoid

any complications arising from the use of a point source. In the next section, I use

the Poisson equation to illustrate the main ideas behind the domain decomposition

method. I will begin with the earliest domain decomposition method designed for

Laplace’s equation, and I will end by discussing the motivation for the development of

the optimized Schwarz method and for using it, as well as all other Schwarz methods,

as a preconditioner rather than a stand-alone solver. In later sections, I present the

results of my numerical testing of the RAS and optimized Schwarz methods on the

Poisson equation using finite difference and finite element discretization techniques.

2.2 Schwarz Domain Decomposition Methods

2.2.1 Historical Perspective

Ω1 Ω2

Γ2

Γ1

Figure 2.1: Two-subdomain decomposition similar to that used in Schwarz (1870) to

investigate existence and uniqueness of the Laplace equation over arbitrary domains.
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The Schwarz method was originally conceived as a means to investigate the exis-

tence and uniqueness of solutions to PDEs on arbitrary domain shapes, but has been

adopted as a way to solve PDEs in parallel. I begin this section with a bit of an

historical overview since I think it sets up the need for OSMs nicely, and it demon-

strates the use of domain decomposition methods for the Poisson problem. The idea

behind the domain decomposition method is as old as the Schwarz (1870) paper, in

which the author uses alternating solutions within an overlapping circle and square,

like the one shown in Figure 2.1, to prove existence and uniqueness of a solution

for the hybrid shape. The alternating Schwarz procedure for the Poisson problem

generates the (k + 1)th iterate uk+1 by Algorithm 1, with load function f using the

two subdomains Ω1 and Ω2, subdomain solutions uk
1 and uk

2, Dirichlet data g, and

interfaces Γ1 and Γ2. More recently, this algorithm was adapted for use on parallel

computers by Lions (1988). The parallel Algorithm 2 is attained by simply taking

Dirichlet data at all interfaces from the local solutions of the neighboring subdomain

from the previous iteration (uk
3−i). Lion’s parallel adaptation of the original Schwarz

method is the starting point for a wide variety of related parallel iterative methods,

many of which are written in algebraic terms, and iterate on a global solution uk or

residual rk rather than the local solutions (uk
i ) seen here.

2.2.2 Connection to modern Schwarz DD

Most modern domain decomposition literature discusses the iterative method in terms

of the global iterates uk rather than the local iterates uk
i . This is an especially natural

choice when the end goal is to provide a preconditioner to the global Krylov subspace
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Algorithm 1 Original Schwarz alternating procedure

while uk
1 6= uk

2 do

solve:

−∇2uk+1
1 = f in Ω1 (2.2)

uk+1
1 = β on ∂Ω1 \ Γ1 (2.3)

uk+1
1 = uk

2 on Γ1, (2.4)

then solve:

−∇2uk+1
2 = f in Ω2 (2.5)

uk+1
2 = β on ∂Ω2 \ Γ2 (2.6)

uk+1
2 = uk+1

1 on Γ2, (2.7)

end while

Algorithm 2 P.L. Lions parallel Schwarz algorithm

while uk
1 6= uk

2 do

for i = {1, 2} do

solve in parallel:

−∇2uk+1
i = f in Ωi (2.8)

uk+1
i = β on ∂Ωi \ Γi (2.9)

uk+1
i = uk

3−i on Γi, (2.10)

end for

end while
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iteration. The terms ‘local’ and ‘global’ are potentially misleading. They can be used

to distinguish between local and global parts of a parallel data structure, or local and

global parts of the domain. When I use the terms, I will mean the latter. This way,

when I refer to the global iterate uk in the context of a parallel algorithm, I will mean

that the update occurs on a vector defined for the global domain, while the vector

is distributed across an array of processors. As I will demonstrate next, the global

iteration algorithms rely on a series of operations on local entities, requiring a pair of

operators designed to map between local and global domains. In order to begin using

the global iterate, I must introduce the extension and partition of unity operators,

E1,2 and χ1,2, which are designed so that

u = E1(χ1u
∞) + E2(χ2u

∞). (2.11)

That is, χ1,2 is designed so that subdomains contribute an amount that would exactly

reconstruct the global solution once the local solutions reach their fixed point (u∞).

One way to create χ1,2 is to have either χ1 or χ2 be equal to one for the whole overlap

and the other equal to zero so that one local solution contributes its full amount, and

the other contributes nothing (Figure 2.2). Another feasible way is to have both χ1

and χ2 scale the local iterates in the overlap so that they contribute their average. E1,2

maps the functions in Ω1,2 to Ω by extending the functions with a value of zero outside

of Ω1,2. The global counterpart of Algorithm 2 using the extension and partition of

unity operators is provided in Algorithm 3. However, it is even more common to see

a global Schwarz algorithm written as a global residual iteration rather than a global

solution iteration. An example is provided in Algorithm 4.
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x x

y y

1 1

Γ2 Γ1 Γ2 Γ1

χ1 χ2

Ω1 Ω2

x x

y y

1 1

0.50.5

Γ2 Γ1 Γ2 Γ1

χ1 χ2

Ω1 Ω2

Figure 2.2: χ1 and χ2 where χ1 is scaled to permit u1 to contribute its full solution

within the overlap and χ2 correspondingly scaled so that u2 contributes nothing (top)

and where χ1 and χ2 scale u1 and u2 so that they contribute the average of the two

solution in the overlap (bottom).

The global residual iteration is, in fact, equivalent to the original Schwarz alter-

nating method. Dolean et al. (2015c), for example, provides a proof which begins by

asserting that in order for the algorithms to be equivalent, the following must be true

uk = E1(χ1w
k
1) + E2(χ2w

k
2), (2.19)

where the uk is the solution from the global residual Algorithm 4, and wk
1,2 are the
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Algorithm 3 Schwarz global iteration algorithm

while uk+1 6= uk do

for i = {1, 2} do

solve in parallel:

−∇2uk+1
i = f in Ωi (2.12)

uk+1
i = β on ∂Ωi \ Γi (2.13)

uk+1
i = uk

3−i on Γ3−i, (2.14)

update:

uk+1 =
2

∑

i=1

Ei(χiu
k+1
i ) (2.15)

end for

end while

solutions from the original Schwarz algorithm. I can assume that with appropriate

extension and partition of unity operators, the initial solution guesses can be stitched

by

w0 = E1(χ1w
0
1) + E2(χ2w

0
2), (2.20)

and that the same is true for a particular iterate wk

wk = E1(χ1w
k
1) + E2(χ2w

k
2), (2.21)

and I can attempt to complete the proof by induction. From 2.18, I have

uk+1 = uk + E1(χ1v
k
1) + E2(χ2v

k
2). (2.22)
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Algorithm 4 Global residual iteration

while rk > tol do

compute:

rk(x) = f(x) +∇2uk(x). (2.16)

for i = {1, 2} do

ri ← restrict r

solve in parallel:

−∇2vki (x) = rki (x) in Ωi

vki (x) = 0 on ∂Ωi.

(2.17)

update:

uk+1(x) = uk(x) +
∑

i

Ei(χiv
k
i (x)) (2.18)

end for

end while
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If I now let uk = wk and substitute by Equation (2.21), I get

uk+1 = E1(χ1w
k
1) + E2(χ2w

k
2) + E1(χ1v

k
1) + E2(χ2v

k
2), (2.23)

and I can then collect terms for subdomain one and two as

uk+1 = E1(χ1(w
k
1 + vk1)) + E2(χ2(w

k
2 + vk2)). (2.24)

Now all that remains is to show that uk+1
i = wk

i + vki for i = 1, 2. I already know

that uk+1
i satisfies Equation (2.12). If I can show that wk

i + vki also satisfies Equation

(2.12) then the equality must be true. I start by expanding for subdomain one

−∇2(wk
1 + vk1) = −∇2wk

1 −∇2vk1 , (2.25)

and noting that, from Equation (2.17), −∇2vk1 = rk, giving

−∇2(wk
1 + vk1) = −∇2wk

1 + rk. (2.26)

Now, from the definition of the residual

−∇2(wk
1 + vk1) = −∇2wk

1 + (∇2wk
1 + f) = f, (2.27)

giving the first of the boundary value problem (BVP) equations. To satisfy the

second equation, I now assert that wk
1 + vk1 = uk

2 on Γ1 by considering the equation

uk = E1(χ
k
1u

k
1) + E2(χ

k
2u

k
2) at the interface Γ1 where χ1 = 0 and χ2 = 1. With both

equations of the BVP satisfied for wk
1 + vk1 , I can state that wk

1 + vk1 = uk+1
1 and

similarly that wk
2 + vk2 = uk+1

2 . Therefore uk+1 = E1(χ1w
k+1
1 ) + E2(χ2w

k+1
2 ), and I

conclude by induction that the two algorithms are equivalent.
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The Restricted Additive Schwarz (RAS) algorithm is based on a global iteration

credited to Cai and Sarkis (1999), who discovered it by accident while trying to im-

prove communication cost by having a single subdomain contribute its fully weighted

solution in the overlap. The RAS algorithm is a global residual iteration in the form

of Algorithm 4 with the definition of the partition of unity function set so that one

subdomain contributes its solution in the overlap while the other contributes noth-

ing. The algorithm is very popular thanks in part to its algebraic implementation

as a preconditioner in the linear algebra package PETSc. I will demonstrate in the

next section how the discrete RAS method can be thought of as a preconditioner.

This particular use of the RAS method will be important to my work as a benchmark

while attempting to create optimized Schwarz preconditioners for both the Poisson

and EM problems.

The Lions algorithm provided a window to domain decomposition based parallel

solution of PDEs that would take advantage of emerging multi-processor technology.

However, in order to solve a PDE in a computer, the PDE, as well as any methods for

its solution, must first be discretized. In the next section, I will overcome this hurdle

by creating discrete algebraic counterparts of the partition of unity and extension

function for use with finite difference or finite element discretizations of the PDE.

2.2.3 Discrete Schwarz Domain Decomposition

The discrete Schwarz algorithms are formed by combining algebraic operations with

the discrete counterparts of the extension and partition of unity operators. I will

start with the extension operator, but it is common to first define the related discrete
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u0 u1 u2 u3 u4 u5 u6 u7

Ω1
Ω2

Γ2 Γ1

Figure 2.3: A simple decomposition of the 1D mesh into two subdomains

restriction operator. The space Ω and its subspaces Ω1 and Ω2 in the continuous

RAS algorithm can be discretized in one dimensions by taking a finite set of points

in the x dimension. In two dimensions, a discretization may involve either taking

points in both x and y along a rectilinear grid suited to finite difference methods,

or at the nodes of a triangulation suited to the finite element approach. In three

dimensions, the same is done in x, y, and z dimensions in rectilinear fashion for the

finite difference method, or tetrahedral for the finite element method. In each case,

the functions taken from those spaces u ∈ Ω, u1 ∈ Ω1, u2 ∈ Ω2 of the continuous

algorithm are represented by vectors in the discrete version. Naturally, the restriction

operator must take a vector in Ω and transform it into a vector in Ω1 or Ω2. The

simplest algebraic operator that accomplishes this task is the Boolean matrix which

contains rows of the identity matrix designed to pick out elements of the vector that

belong to a particular subdomain (Dolean et al., 2015c). To give a small example,

consider the one dimensional mesh consisting of seven points along the x axis as in

Figure 2.3. To accomplish restriction of a function u ∈ Ω into the function u1 ∈ Ω1, I

construct a matrix with the first five rows of a 7x7 identity matrix. Left multiplication

with such a matrix (R1) yields a u1 ∈ Ω1 as demonstrated below.
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(2.28)

The same can be done to extract the vector u2 ∈ Ω2 by using the last 5 rows of a 7x7

identity matrix:
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. (2.29)

The reason I started with the restriction operator is that I find its action to be

more intuitive, and because the extension operator is obtained by simply taking the

transpose of the restriction operator. The transpose operator
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0 1 0 0 0 0 0
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, (2.30)

can be used to right multiply a vector u1 ∈ Ω1 back into u ∈ Ω
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. (2.31)

The discrete partition of unity is now all that is left in order to write down the discrete

RAS algorithm. Recall that the partition of unity operator is meant to correct the

overlap between two subdomain functions that are being added together. The matrix

for this operation consists of weighted diagonal entries such that only one subdomain

contributes its fully weighted solution, or so that both subdomains contribute half of

their solution (Figure 2.2) (Dolean et al., 2015c). The matrices that would perform

these operations are















1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1















and















0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1















(2.32)

and















1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0.5 0

0 0 0 0 0.5















and















0.5 0 0 0 0

0 0.5 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1















, (2.33)

respectively. By definition, the restriction matrices Ri and partition of unity matrices

Di must obey the following equality
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I =
∑

i

RT
i DiRi (2.34)

where the sum over all subdomains i = 1, ..., N produces the identity matrix. This is

a convenient debugging tool when coding the RAS algorithm, and a quick check with

any linear algebra library will verify that this holds true for the operators described

above.

The partition of unity and restriction/extension operators provided here are for

one dimensional discretizations. To get the two dimensional counterparts, I use a

property of the Kronecker product that I will introduce in a later section and which

I have fully explained in Appendix B. For now, these operators can be thought of

as either one or two dimensional entities with the common symbols R and D with

the assumption that the two dimensional versions require a further step. I will now

construct the discrete RAS algorithm by translating the continuous equations 2.16,

2.17 and 2.18, into discrete matrix operations and then assembling them into a two

part formula. The residual computation 2.16 translates with little alteration except

that the continuous operator ∇2 is now represented by the discretized differential

operator A. This gives the discrete equation for the vectors rk, uk and f :

rk = Auk + f. (2.35)

I will call the ith restriction matrix Ri, so that I can write the local correction step

in equation 2.17 for the global residual rk as

A−1
i Rir

k = vki . (2.36)
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To prepare for summation, the local correction must be scaled by the partition of

unity and mapped into the global space by the extension operator, or the transpose

of the restriction operator. These steps are represented by the matrix multiplications

RT
i Div

k
i . (2.37)

The discrete RAS algorithm can now be fully stated by combining steps 2.36 and 2.37,

by eliminating vki , summing the contributions from each subdomain and updating uk,

as shown in Algorithm 5.

Algorithm 5 Algebraic restricted additive Schwarz algorithm

while rk > tol do

compute:

rk = Auk + f. (2.38)

update in parallel:

uk+1 = uk +
∑

i

RT
i DiA

−1
i Rir

k. (2.39)

end while

The RAS algorithm is based on Dirichlet transmission conditions, meaning that they

use a Dirichlet BC on the interface between subdomains. I have assumed that the

Ai matrices in Algorithm 5 are the discretizations of BVPs with Dirichlet conditions

on the exterior boundaries and interfaces. It turns out that instead of discretizing

the subdomain matrices from scratch, they may be simply restricted out of the global

matrix A that is already constructed for the residual calculation. Dolean et al. (2015c)

31



construct the RAS method using a restriction of the global system matrix to form

the subdomain matrices Ai = RiAR
T
i . Regardless of whether the matrix is restricted,

or discretized from scratch, or whether one choice of partition of unity is preferred

over another, an important observation can be made about the structure of Equation

(2.39) in Algorithm 5. It has the general form of a fixed point iteration, and it may

be more advantageous to use the preconditioner with another kind of iteration, as I’ll

discuss next.

Global Schwarz iterations are equivalent to fixed point iterations preconditioned by

the local solutions of subdomain problems, but theory suggests that the preconditioner

would be better served as an accelerator to a Krylov method (Dolean et al., 2015c).

The fixed point iteration has the form uk+1 = uk+M−1(b−Axk) where M−1 is a pre-

conditioner. Given this definition, I can identify the Schwarz preconditioner in Equa-

tion (2.39) as
∑

i R
T
i DiA

−1
i Ri. Dolean et al. (2015c) demonstrates that the fixed point

iteration produces an approximation to the solution lying in the space defined by pow-

ers of the iteration matrixM−1P : Span{M−1r0, (M−1P )M−1r0, ..., (M−1P )nM−1r0}.

Furthermore, Dolean showed that a Krylov method will generate a better approxi-

mation to the solution in the same space, requiring fewer iterations, while matching

the cost per iteration of the fixed point method. The Schwarz preconditioner is thus

much better utilized when partnered with a Krylov iteration. I can provide this pre-

conditioner to, for example, the GMRES algorithm which constructs the orthogonal

bases

Span{r0,M−1Ar0, ...(M
−1A)m−1r0}, (2.40)
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or

Span{r0, AM−1r0, ..., (AM
−1)m−1r0}, (2.41)

depending on whether left of right preconditioning is preferred. In either case the

Krylov algorithms only need to have a method for applying the preconditioner to

a vector m : v 7→ M−1v. The use of the Schwarz preconditioner to accelerate a

Krylov iteration isn’t the only way to improve upon the original Schwarz method,

however. The RAS algorithm relies on Dirichlet transmission conditions, but new

algorithms have been developed using Neumann and what may be interpreted as gen-

eralized transmission conditions, consisting of a weighted combination of Neumann

and Dirichlet conditions. The weighted combination of Neumann and Dirichlet condi-

tions is known as a Robin condition, and the weighting parameter in this condition has

become the subject of a new field of domain decomposition research: the Optimized

Schwarz Method.

2.2.4 Optimized Schwarz Domain Decomposition

Optimized Schwarz methods (OSMs) use Robin transmission conditions and can im-

prove the convergence properties of the classical RAS algorithm for many problems.

I have already mentioned P.L. Lions as the progenitor of the parallel Schwarz alter-

nating algorithm, but in his concluding paper on the Schwarz method, he introduces

a Schwarz based algorithm that converges without overlap (Lions, 1988). Today this

is known as the Optimized Schwarz method, and it differs from the classical Schwarz

method only by its transmission condition. Lions found that the Poisson problem con-
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verged without overlap when he replaced the Dirichlet transmission condition in the

“classical” Schwarz algorithm with a Robin style transmission condition. Subsequent

to this discovery, researchers have analyzed the new Robin transmission conditions

and discovered many beneficial properties over the classical conditions. Gander (2006)

summarizes the benefits of the OSM as:

“

1. They converge necessarily faster than classical Schwarz methods, at

the same cost per iteration.

2. There are simple optimization procedures to determine the best pa-

rameters to be used in the transmission conditions, sometimes even

closed formulas, depending on the problem solved.

3. Classical Schwarz implementations need only a small change in the

implementation, in the information exchange routine, to benefit from

the additional performance.

4. Optimized Schwarz methods can be used with or without overlap.

”

The OSM can be expressed in terms of both a local and a global iterate, just as in

the RAS method. The two new methods are provided in Algorithms 6 and 7.

For the local iteration algorithm, there is one last modification that is often em-

ployed to avoid discretization of the normal derivative in the Robin condition. The

auxiliary variable method introduces the definition

gki := −∂uk
3−i

∂n3−i

+ αuk
3−i, (2.48)

so that Equation (2.44) becomes

∂uk+1
i

∂ni

+ αuk+1
i = gki . (2.49)
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Algorithm 6 Optimized Schwarz as a local iteration

while uk
1 6= uk

2 do

for i = {1, 2} do

solve in parallel

−∇2uk+1
i = f in Ωi (2.42)

uk+1
i = β on ∂Ωi \ Γi (2.43)

∂uk+1
i

∂ni

+ αuk+1
i =

∂uk
3−i

∂n3−i

+ αuk
3−i on Γi, (2.44)

end for

end while

By adapting Definition (2.48) for a gi at step k+1, I can re-write the update formula

(Equation (2.44)) as

gk+1
i = −∂uk+1

3−i

∂n3−i

+ αuk+1
3−i = −(

∂uk+1
3−i

∂n3−i

+ αuk+1
3−i ) + 2αuk+1

3−i= −gk3−i + 2αuk+1
3−i (2.50)

where the first equality is just an algebraic manipulation, and the third equality

comes from Equation (2.49). The parallel optimized Schwarz algorithm can now

be written in two steps, as demonstrated in Algorithm 8. The global iteration is

written in discrete algebraic form in the same way that was done for the global

RAS iteration, except that the matrix consists of the discretization of a subdomain

problem with Robin transmission conditions, ARobin,i. The resulting preconditioner

∑

i R
T
i DiA

−1

Robin,iRi is known as the Optimized Restricted Additive Schwarz (ORAS)

preconditioner and may be used with the fixed point iteration in Algorithm 9 or with

a Krylov iteration. Just like with the RAS preconditioner, the ORAS preconditioner
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Algorithm 7 Optimized Schwarz as a global iteration

while rk > tol do

compute:

rk(x) = f(x) +∇2uk(x). (2.45)

for i = {1, 2} do

ri ← restrict r

solve in parallel:

−∇2vki (x) = rki (x) in Ωi

vki (x) = 0 on ∂Ωi

∂uk
i

∂n
+ αuk

i = 0 on Γ

(2.46)

end for

update:

uk+1(x) = uk(x) +
∑

i

Ei(χiv
k
i (x)) (2.47)

end while
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is supplied to the Krylov iteration as a routine which applies the preconditioner to

a vector. The Krylov iteration then uses the routine at every iteration to construct

its left or right preconditioned orthogonal basis (Equations (2.40) and (2.41)). In the

next two sections, I will use finite difference and finite elements to discretize the Robin

subdomain problems in a two subdomain configuration and demonstrate the ORAS

preconditioned fixed point and Krylov methods for solving the Poisson problem.

Algorithm 8 Optimized Schwarz as a local iteration using the auxiliary variable

method
while gk1 6= gk2 do

solve:

−∇2uk+1
i = f in Ωi (2.51)

uk+1
i = β on ∂Ωi \ Γi (2.52)

∂uk+1
i

∂n
+ αuk+1

i = gk3−i on Γi, (2.53)

update:

gk+1
i = −gk3−i + 2αuk+1

3−1 (2.54)

end while
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Algorithm 9 Algebraic Optimized Schwarz algorithm

while rk > tol do

compute:

rk = ARobin,iu
k + f (2.55)

update in parallel:

uk+1 = uk +
∑

i

RT
i DiA

−1

Robin,iRir
k, (2.56)

end while

2.3 Finite Difference

2.3.1 One dimensional subdomain problems

The foundation of any domain decomposition method is the correct solution of the

subdomain problems equipped with the appropriate transmission conditions. In or-

der to ensure that the subdomain problems could be solved accurately, I tested the

subdomain solutions using a finite difference discretization of the Laplacian operator

with Robin transmission conditions using a numerical experiment which compares

O(h) and O(h2) approximations to the Robin boundary condition. In this section,

I describe that experiment and present results for the simple one dimensional Robin

subdomain problem. The experiment consisted of the following:

1. Impose a known solution.

2. Derive the first and second derivatives from the known solution in order to

compute the Robin condition and right hand side of a simple model problem.
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3. Solve the PDE equipped with a Robin BC using the Robin condition and right

hand side derived from the known solution.

4. Check that the numerical solution of the single domain Robin problem matches

the original imposed solution as the mesh is refined. The rate at which the

error decreases with refinement should also match the theoretical discretization

error. For a mesh size decrease of a factor of two, O(h) discretizations of the

Robin condition should produce an error that decreases by a factor of two and

O(h2) discretizations should produce a factor of four error reduction.

I performed this experiment for the one dimensional Poisson problem (Equation

(2.1)), and demonstrated that the subdomain problems with Robin transmission con-

ditions fulfill the criteria described in the last step of the experiment described above.

I will now describe how I carried out the experiment using finite differences and

provide a table that demonstrates the correct error behaviour.

The success of the experiment relies heavily on the appropriate application of the

Robin transmission condition and uses the ghost point method for the discretization.

In the following, I consider the subdomain problems arising from the non-overlapping

decomposition of the global domain into two equally sized subdomains. In one dimen-

sion, the decomposition consists of a number of nodes along the x axis and partitioned

so that the middle node is shared by both subdomains as demonstrated in Figure 2.4.

The first three steps of the experiment require a solution, and its first and second

derivatives. I began by choosing a solution that is smooth within the domain Ω =

Ω1 ∪ Ω2, and has a non-zero value and derivative on the boundary ∂Ω.
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ΓΩ1 Ω2

Figure 2.4: A simple decomposition of the 1D mesh into two non-overlapping subdo-

mains
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Figure 2.5: Function u and f used in the one dimensional experiments

u = sin(2πx− 3π

4
) + 2. (2.57)

Then, I used the first derivative,

∂u

∂x
= 2π cos(2πx− 3π

4
), (2.58)
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to build the Robin BC, and the second derivative,

∂2u

∂x2
= −4π2sin(2πx− 3π

4
) =: f, (2.59)

to build the right hand side (Figure 2.5). In step three of the experiment, I solved the

subdomain problems with a Robin BC. Before tackling the details of the transmission

boundary discretization, I will demonstrate the finite difference discretization of the

Laplacian operator with Dirichlet conditions on the outer boundary. The second

order centered finite difference stencil for the Laplacian is

ui−1 − 2ui + ui+1

h2
, (2.60)

so I can write the discrete form of the Poisson equation for the interior nodes in a

mesh as

ui−1 − 2ui + ui+1

h2
= fi, (2.61)

or

ui−1 − 2ui + ui+1 = h2fi, for i = {1, ..., n− 1}. (2.62)

In order to apply a Dirichlet boundary condition at, for example i = 0 in Ω, I combined

the two equations

u0 − 2u1 + u2 = h2f1

u0 = β0,

(2.63)

to give
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−2u1 + u2 = h2f1 − β0. (2.64)

I used the same procedure to derive an equation for the boundary at i = n in Ω,

where un = βn, resulting in

un−2 − 2un−1 = h2fn−1 − βn. (2.65)

I formed the finite difference matrix for the global Poisson problem in Ω row by row

by Equations (2.60), (2.64), and (2.65), producing the discrete linear problem to solve

for the global solution vector u:





































−2 1

1 −2 1

1 −2 1

. . . . . . . . .

1 −2 1

1 −2





































·





































u1

u2

u3

...

un−2

un−1





































=





































h2f1 − β0

h2f2

h2f3

...

h2fn−2

h2fn−1 − βn.





































(2.66)

However, to carry out the experiment, I needed to discretize the Robin problem. To

do this, I used a similar discrete linear system in which a Robin BC was imposed at

the interface marked as Γ in Figure 2.4. I did this both for the left and right domains

(Ω1 and Ω2), and considered a scheme with both the Laplacian and the Robin BC

discretized with a centered difference stencil, as well as a scheme that discretized the

Robin BC with a forward difference discretization.

The Robin boundary condition has the form
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∂u

∂n
+ αu = g. (2.67)

I discretized the normal derivative, for the left subdomain, looking outside the mesh

using a ghost point method (see Neumann BC discretization techniques in, for exam-

ple, LeVeque (2007)). I applied the condition by eliminating the ghost point in the

corresponding row of the system matrix, removing the right Dirichlet condition and

adding a row to the matrix in Equation (2.66). The forward difference discretization

of the first derivative is

u(x+ h)− u(x)

h
. (2.68)

Using the ghost point uG, I wrote the discrete Robin condition in Ω1 using forward

differences in the direction of the outward facing normal n1 as

uG − un

h
+ αun = g. (2.69)

from which uG was found to be

uG = hg + (1− hα)un. (2.70)

The right subdomain Ω2 features a left pointing normal vector so that the forward

difference discretization produces a negative normal derivative. The resulting Robin

condition is

−u0 − uG

h
+ αu0 = g, (2.71)

and uG was determined to be
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uG = hg + (1− hα)u0. (2.72)

In each case, I eliminated uG by substituting into the ghost point in the Laplacian

stencil centered at un and u0 for Ω1 and Ω2,

un−1 − 2un + (hg + (1− hα)un)

h2
= fn, (2.73)

and

(hg + (1hα)u0)− 2u0 + u1

h2
= f0. (2.74)

I then re-arranged to produce the equations

un−1 − (hα + 1)un = h2fn − hg, (2.75)

and

−(hα + 1)u0 + u1 = h2f0 − hg. (2.76)

The Robin conditions were applied by removing the Dirichlet conditions in Equa-

tion (2.66) and adding the Robin discretization as a row to the bottom of the matrix

for the left subdomain and the top of the matrix for the right subdomain. The

resulting Robin subdomain matrices for the left and right subdomains were
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, (2.78)

I also discretized the normal derivative in the Robin boundary condition using a

second order centered finite difference stencil

u(x+ h)− u(x− h)

2h
. (2.79)

Following the same procedure as before, I arrived at the following equations for the

left and right subdomains at the interface

2un−1 − 2(hα + 1)un = h2fn − 2hg, (2.80)
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and

−2(hα + 1)u0 + 2u1 = h2f0 − 2hg. (2.81)

The discrete systems that I used for the centered approximation were thus
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(2.82)

and
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. (2.83)

Using Equations (2.77), (2.78), (2.82), and (2.83), I performed the experiment de-

scribed at the beginning of the section for both right and left subdomains, using both

first and second order discretizations of the normal derivative. The errors for these,

and all subsequent experiments, were measured in the infinity norm and calculated

in a relative fashion. That is, they had the form
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‖u1 − u2‖∞
‖u1‖∞

, (2.84)

where u1 is a known solution, and u2 a computed solution. Tables 2.1, 2.2, 2.3, and

2.4 show the behavior of the error as the mesh was successively refined by a factor of

2.

Table 2.1: Robin Boundary Condition Error for forward difference in the left subdo-

main

h error factor

0.1 0.073775 —–

0.05 0.035120 2.100659

0.025 0.017052 2.059623

0.0125 0.008417 2.025860

0.00625 0.004181 2.013007

Table 2.2: Robin Boundary Condition Error for centered difference in the left subdo-

main

h error factor

0.1 0.014815 —–

0.05 0.003639 4.071685

0.025 0.000902 4.034285

0.0125 0.000225 4.000472

0.00625 0.000056 4.000750
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Table 2.3: Robin Boundary Condition Error for forward difference in the right sub-

domain

h error factor

0.1 0.083585 —–

0.05 0.044267 1.888198

0.025 0.022654 1.954096

0.0125 0.011479 1.973454

0.00625 0.005778 1.986821

Table 2.4: Robin Boundary Condition Error for centered difference in the right sub-

domain

h error factor

0.1 0.015097 —–

0.05 0.003831 3.940538

0.025 0.000950 4.033638

0.0125 0.000237 4.004259

0.00625 0.000059 4.001064

Theory suggests that the use of first order accurate forward difference discretiza-

tion of the normal derivative in the Robin condition should reduce the accuracy of

the whole scheme to O(h), despite the second order accurate discretization of the

Laplacian. This would translate into an error that improves by a factor of two for

every doubling of the number of nodes in the discretization. However, the centered
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difference discretization should remain as O(h2) accurate, and the centered schemes

were expected to produce an error that improves by a factor of four under the same

refinement. Both the centered and forward schemes performed as predicted.

The one dimensional local optimized Schwarz iteration has some unique properties.

In one dimension, for two subdomains, the optimal α and the iteration count are both

equal to two. Perhaps more remarkably, the behaviour remains the same for all grid

sizes. When more subdomains are added, the iteration count remains two, but the

optimal α reflects the number of subdomains. In Appendix A, I have provided the

analysis that explains the behaviour of the one dimensional experiments, but I do not

include the details of the experiment here to avoid repetition with the two dimensional

exposition that follows.

2.3.2 Two dimensional subdomain problems

In this section, I simply extend the one dimensional formulations covered in the

previous section to two dimensions (Figure 2.6) and carry out the same experiment. In

two dimensions I used the following solution u to get the first and second derivatives,

u = sin(2πx− 3π

4
) sin(2πy − 3π

4
) + 2. (2.85)

Figure 2.7 demonstrates this solution and load function f that is found by taking

two derivatives of the solution. The extension from one to two dimensional finite

difference modelling is greatly simplified through the use of the Kronecker product.

The following is a known property of the Kronecker product:
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x

y

Ω1 Ω2

Γ

Figure 2.6: Two dimensional non-overlapping mesh partitioning into two subdomains

Ω1 and Ω2 with interface Γ

vec(AXB) = (BT ⊗ A)vec(X). (2.86)

Appendix B provides the details of how this property can be used to extend the one

dimensional finite difference discretizations into two dimensional matrices for use with

a vectorized right hand side. To summarize the conclusions of the appendix: the two

dimensional matrix is created from the one dimensional matrix by the operation

(Ax ⊗ Iy) + (Ix ⊗ Ay), (2.87)

where Ax and Ay are one dimensional discretizations of the PDE like those described

in section 2.3.1. In a similar fashion, I can also form the two dimensional restriction

and partition of unity matrices with the Kronecker product identity. If Rx,i is the

ith restriction matrix for the x dimension, and Ry,i is the ith restriction in the y
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dimension, then the two dimensional restriction is constructed by

Ri = (Rx,i ⊗ Iy) + (Ix ⊗Ry,i), (2.88)

and the same can be done for the ith partition of unity matrix Di. Although these

matrices do not appear in the auxilliary variable algorithm, I rely on these matrices

in my code to stitch together subdomain solutions so that I can compute the error

against the single domain solution.
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Figure 2.7: Function u and f used in the two dimensional experiments
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In two dimensions, I discretized the right hand side for the Poisson problem as a

matrix F , with the rows and columns representing discrete sampling of the domain

in the x and y dimensions. Just like the one dimensional case where the load vector

f was adjusted for the application of the Dirichlet and Robin BCs, I did the same to

the load matrix F . Instead of removing an element from the first and last entry of

the vector f , I removed a full column and two rows from the outside of the matrix F .

Then, I updated the remaining exterior rows and columns, to reflect the deflation of

the system matrix A during the application of the Dirichlet conditions as described for

the one dimensional problem in Equations 2.63 and 2.64. Figure 2.8 shows the nodes

represented by a matrix F for a small example of a left subdomain problem. The

colored nodes indicate what is being updated in the boundary condition application.

Red nodes indicate the nodes that are removed for the Dirichlet condition. Green

nodes represent nodes that have a Dirichlet value subtracted from them. The blue

nodes show coefficients involved in the Robin boundary condition and get updated as

in Equation 2.75 or 2.80 for either a forward or centered difference. Finally, in this

small example the two black nodes are the only interior nodes for which the full finite

difference stencil (Equation (2.60)), applies.

The treatment for the centered difference method is nearly identical to that of the

forward difference method described previously. The only alteration to the previous

method is that the blue nodes in Figure 2.8 now receive an update in the form of

Equation (2.80). I will leave this detail out, and also omit the description of the

right subdomain forward and centered difference methods since they parallel those

just described.

I performed the same experiment described in the last section on the two di-
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Figure 2.8: Coefficients involved in the application of the Dirichlet and Robin bound-

ary equations

mensional discretizations resulting from the Kronecker product trick applied to the

previously verified one dimensional discretizations, and with a right hand side pro-

duced by vectorizing the updated matrix F . Tables 2.5, 2.6, 2.7, and 2.8 summarize

the error behaviour resulting from uniform grid refinement in a two-dimensional sin-

gle domain solution for the left using forward and centered differences, and for the

right using backward and centered differences.

In two dimensions, the error behaved as predicted by theory. The error decreased

like O(h2) for the centered difference Robin condition discretizations, and like O(h)

for the forward difference Robin condition discretizations in both the left and right

subdomain problems.
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Table 2.5: Robin Boundary Condition Error for forward difference in the left subdo-

main

h error factor

0.1 0.100904 —–

0.05 0.048585 2.076876

0.025 0.023496 2.067809

0.0125 0.011583 2.028536

0.00625 0.005745 2.016098

Table 2.6: Robin Boundary Condition Error for centered difference in the left subdo-

main

h error factor

0.1 0.013011 —–

0.05 0.003224 4.035075

0.025 0.000806 3.998773

0.0125 0.000201 4.003159

0.00625 0.000050 3.999835
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Table 2.7: Robin Boundary Condition Error for backward difference in the right

subdomain

h error factor

0.1 0.094586 —–

0.05 0.046506 2.033853

0.025 0.023225 2.002388

0.0125 0.011505 2.018631

0.00625 0.005724 2.010188

Table 2.8: Robin Boundary Condition Error for centered difference in the right sub-

domain

h error factor

0.1 0.006814 —–

0.05 0.001704 3.998420

0.025 0.000430 3.964414

0.0125 0.000108 3.969812

0.00625 0.000027 3.981297
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2.3.3 Two dimensional optimized Schwarz using the auxil-

liary variable method

Numerical experiments show that the optimized Schwarz method can be successfully

applied as a local iteration on the subdomain solutions for the two dimensional Poisson

problem. In the previous section, I constructed the left and right subdomain problems

using finite differences in two dimensions. I also demonstrated that the problems could

be solved with an error that behaves as O(h) and O(h2) when I use a first and second

order discretization of the Robin boundary condition. In this section I will use the

tested second order discretization to carry out the optimized Schwarz method as a

local iteration on the subdomain solutions u1 and u2. In section 2.2, I provided a two-

step optimized Schwarz algorithm (Algorithm 8) that first solves Robin subdomain

problems, then updates the Robin data. I will now present the numerical results of

the two dimensional finite difference OSM as a local iteration using this auxilliary

variable algorithm.

For the local iteration, I performed three separate experiments. The first consisted

of a parameter sweep to find an optimal α for the Robin transmission condition. The

second experiment used the optimal α discovered in the first experiment to find the

optimal iteration count for the chosen grid size. The final experiment exhibited the

grid dependence on the optimal α by sweeping through grid sizes, and α values. For

all experiments, I considered the non-overlapping decomposition of a square mesh

into two equal halves. The first two experiments did so for a 41 × 41 point global

mesh, resulting in two 41 × 21 point meshes. Figure 2.9 shows that the optimal α

is 12 for the 41 × 41 mesh. Figure 2.10 provides the optimal convergence behaviour

57



using α = 12, and indicates that the problem can be solved to a precision of 10−6

in 25 iterations. Figure 2.11 demonstrates the growth of the optimality parameter

under a shrinking grid size (blue curve). Gander (2006) analyzed a related elliptical

PDE and showed that the optimal α could be related to the grid size h through a

function with the form Ch−1/3 where C is a constant scaling factor which depends on

the smallest frequency possible for the given mesh. The numerical grid dependence

provides a close match to the analytical form with C = 3.65 (red curve).
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Figure 2.9: Optimal α search for a 41× 41 point global mesh.
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Figure 2.10: Error contraction with optimal α = 12 with error measured by

‖uglob − uDD‖2/ ‖uglob‖2.
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2.3.4 Two dimensional optimized Schwarz as a preconditioned

global iteration

x

y

Ω1 Ω2

Γ1 Γ2

Figure 2.12: Two dimensional overlapping mesh partitioning into two subdomains Ω1

and Ω2 with interfaces Γ1 and Γ2

The following numerical experiments for the global iterations demonstrate that

the fixed point iteration must only be used with overlapping subdomains, and can be

problematic for poor choices of α, whereas the Krylov iteration produces a good error

contraction when accelerated with the RAS preconditioner and better still with the

Optimized Restricted Additive Schwarz (ORAS) preconditioner. I used an optimized

Schwarz method to precondition both the global fixed point iteration and the global

GMRES iteration using the same preconditioner routine (Equation (2.56) in Algo-

rithm 9). The preconditioned global fixed point iteration resulted in a diverging error

for the non-overlapping partitioning strategy used in previous experiments. Previous
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work by St-Cyr et al. (2007) explains that ORAS preconditioned fixed point itera-

tion produces an inconsistent matrix splitting and cannot be used in non-overlapping

configurations. A consistent splitting implies that AiRiu = Rif+
∑

j 6=iBijRju for re-

striction matrix Ri, subdomain system matrix Ai, and transmission operator Bij . The

local iteration using the auxiliary variable method contains the transmission operator

Bij whose trace is the vector gj containing all the Robin contributions −2hg from,

for example, Equation (2.80). In non-overlapping configurations, the transmission

operator compensates for the fact that the normal derivative stencils built into Ai do

not overlap. In the global ORAS fixed point iteration, the transmission operator is

omitted and the splitting is no longer consistent. The FEniCS finite element assem-

bly library that I use for the EM experiments allows a very limited range of options

for the overlap. In order to make comparisons to the finite element experiments on

the Poisson problem in later sections, I introduced a small overlap by adding a layer

of mesh vertices to each subdomain on either side of the previously non-overlapping

partition Γ. This created two new interfaces for each subdomain, Γ1 and Γ2 as can

be seen in Figure 2.12. The following results are for the domain decomposition of the

same 41 × 41 node global mesh, but which includes this new small overlap. Figure

2.13 compares the various different Schwarz algorithms including the local iteration

from the last section with the error measured by taking the norm of the residual

instead of the solution as in past experiments.

The local iteration using the auxiliary variable method and the global fixed point

iteration for the OSM were found to be equivalent when the local iteration error

was measured as the norm of the residual, just as the theory in Section 2.2 for the

continuous RAS method hinted that they might be. When I converted the auxiliary
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variable code to measure the residual instead of the solution error, I found that I

needed to re-optimize α. The auxilliary variable method was optimized with α = 12,

whereas the global fixed point provided optimal convergence with α = 17. The

preconditioned GMRES iteration also provided a unique optimality condition, α =

3. These examples demonstrate that the global preconditioned fixed point iteration

performs as well as the auxiliary variable method while avoiding a somewhat tricky

discretization of the transmission operator. However, to match the local iteration

performance, a small overlap was required. The examples also demonstrate that

the ORAS preconditioner outperforms the RAS preconditioner when using a finite

difference discretization over a rectilinear mesh. More importantly, the examples

make it clear that using the ORAS preconditioner within a Krylov iteration is the

preferred approach.

The results provided in this section are in general agreement with the findings

in Gander et al. (2001). I did not find any similar papers for the Poisson problem

using a finite element discretization, so these finite difference results will be the only

benchmark for the experiments that follow. In the next section, I will perform the

same tests for a finite element discretization. I will build up to the domain decom-

position experiments by performing the Robin boundary test as I did in this section.

However, I will jump straight to the two dimensional case this time.
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Figure 2.13: Comparison of the Optimized Schwarz method as a local iteration via the

auxilliary variable method (ORASAV), a preconditioner for the global fixed point iter-

ation (ORASPFP), and a preconditioner for the global Krylov iteration (ORASPGM-

RES), as well as the RAS preconditioner for the global Krylov iteration (RASPGM-

RES). The global preconditioned iterations all naturally measure error with the resid-

ual vector, by ‖Ax− b‖2/ ‖b‖2, so the auxiliary variable code was altered to comply

with this error format
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2.4 Finite element method

2.4.1 Two dimensional subdomain problems

The finite element method provides the flexibility to implement unstructured mesh

refinement for the geophysical EM problem. The finite difference method was a good

place to start for its ease of use and efficiency for problems, like the Poisson problem

studied here, that allow for a simple structured discretization. However, in order

to solve the geophysical EM problem efficiently and accurately, the discretization of

the domain will need to be refined around the point-like source and the observation

points. The finite element method is a natural choice for such a scenario, as it

can handle unstructured meshes arising from local mesh refinement. In order to

use finite elements to solve the EM geophysical problem with a Schwarz DD based

preconditioner, I needed to build an understanding of the OSM within a finite element

context. What follows is my description of the same experiments carried out for the

Poisson problem in the last section, but using the finite element method to discretize

both the global and subdomain equations.

The finite element method consists of finding the weak form of the equations,

choosing an approximating subspace, and then selecting the best approximation from

that subspace by way of the Galerkin method (see Gockenback (2006) for introductory

theory and implementation). To use this tool to carry out the DD algorithms, I began

by testing the Robin discretizations. Once again, the subdomain problem I would like

to solve is
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−∇2u = f in Ω (2.89)

∂u

∂n
+ αu = g on Γ (2.90)

u = β on ∂Ω \ Γ. (2.91)

I began the FEM by writing the weak form of the equations. I multiplied equation

2.89 by a test function v and integrated over the domain Ω, to get

∫

Ω

∇2u · v =

∫

Ω

f · v. (2.92)

Using integration by parts, I transformed this into

−
∫

Ω

(∇u) · (∇v) +
∫

∂Ω

∂u

∂n
· v =

∫

Ω

f · v. (2.93)

I applied the Robin BC using the method outlined for the Neumann BC in Gockenback

(2006), but with the extra step of rearranging the Robin BC to isolate the normal

derivative. I began by multiplying equation 2.90 by a test function and integrating

over the surface ∂Ω. Then I split the surface ∂Ω into Dirichlet boundary and interface

components and noted that the test function v vanishes on the Dirichlet boundary.

This allowed me to apply the weak Robin boundary condition through substitution

of

∫

∂Ω

∂u

∂n
· v =

∫

Γ

∂u

∂n
· v =

∫

Γ

g · v −
∫

Γ

αu · v, (2.94)

into equation 2.93 to give,
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−
∫

Ω

(∇u) · (∇v)−
∫

Γ

αu · v =

∫

Ω

f · v −
∫

Γ

g · v. (2.95)

I then wrote this in terms of the bilinear and linear forms, a(u, v) and L(v), as

a(u, v) = L(v). (2.96)

The weak form of the continuous Poisson equation is stated as

find a u ∈ V | a(u, v) = L(v) ∀v ∈ V (2.97)

where

V =
{

v ∈ H1(Ω)
∣

∣ v = 0 on ∂Ω
}

(2.98)

and

H1 =

{

v

∣

∣

∣

∣

∫

Ω

|v|2 dx <∞,

∫

Ω

|∇v|2 dx <∞
}

. (2.99)

To find a discrete solution uh, I triangulated the domain Ω to produce a mesh Th.

Then, I used the Ritz-Galerkin approximation and searched the finite-dimensional

subspace Vh ⊂ V associated with Th for the ‘best’ solution. The discrete weak form

became

find a uh ∈ Vh | a(uh, v) = L(v) ∀v ∈ Vh. (2.100)

I chose Vh to be the space of piece-wise linear functions with nodal basis functions
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φi =



















1, if i = j

0, if i 6= j,

(2.101)

and I assembled and solved the system KU = F where

Kij = a(φi, φj), (2.102)

and

Fj = L(φj). (2.103)

To assemble this system, I looped through triangles in the mesh and accumulated

contributions to the coefficients in the stiffness matrix K and load vector F . The

contributions came from approximating the integrals of equation 2.95 by a Gaus-

sian quadrature rule with an appropriate order for the integrand. In other words, I

approximated the two dimensional integral of a function F over the triangle k by

∫∫

k

F (x, y)dxdy ≈ Ak

N
∑

i=0

wiF (P (ξi, ηi), Q(ξi, ηi)), (2.104)

where I used the transformations P and Q to perform the approximation on the ref-

erence triangle (Figure 2.14). This step allowed me to use Gauss points and weights,

ξi, ηi and wi, that have previously been established for the reference triangle (Gock-

enback, 2006). I computed the area of the triangle by the formula

Ak =
(x1 − x0) · (y2 − y0)− (x2 − x0) · (y1 − y0)

2
. (2.105)
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The same approach was taken for one dimensional boundary integrals by transforming

to the reference interval and computing the length of the interval.

The integrals of the bilinear form containing only linear basis functions are approx-

imated exactly with a linear quadrature rule, but I used a second order quadrature

rule for the load function integral due to the non-linear character of the function f .

x

y

(x1, y1)

(x2, y2)

(x3, y3)

(x, y) 7→ (ξ, η)

ξ

η

(0, 1)

(1, 0)(0, 0)

Figure 2.14: Reference triangle transformation

The subdomain problem required function definitions for the load f , Robin data

g, ith basis function φi and gradient of the ith basis function ∇φi. The load and Robin

data function definitions were a straightforward translation of the mathematical func-

tion into Python syntax. I computed basis functions individually using the geometry

of each triangle. I did this by inverting the matrix





1 x1 y1
1 x2 y2
1 x3 y3





−1

=





a1 a2 a3
b1 b2 b3
c1 c2 c3,



 (2.106)
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as was done in Gockenback (2006), to solve for the coefficients ai, bi, ci of the ith

basis function ai + bix + ciy. The basis function gradients were extracted from the

inverted matrix as∇φi = [bi, ci]
T . Once assembly was finished, I applied the boundary

conditions using the strong form. That is, I enforced the condition that u = β by

replacing rows of the assembled matrix with rows of the identity matrix and replacing

the assembled load vector rows with the Dirichlet values β.

I reproduced the results of the FEniCS codes that generated the Robin bound-

ary condition test and the local iteration by auxiliary variable OSM with my own

pure Python assembly routines using the procedure outlined at the beginning of this

chapter. Since one of the goals for my own pure Python code was to investigate

the features in FEniCS that I felt I needed a better understanding of, the code was

essentially left in a state that matches the performance of the FEniCS code. I do

not include results from my own code that match those achieved with FEniCS, but

I do include the results of the Robin boundary test since they deviated slightly from

the FEniCS implementation. The critical finite element assembly routines from my

code are provided in Appendix C for reference. My assembly code established that

the FEniCS library uses a methodology similar enough to that described in Gocken-

back (2006) that I could replicate the main numerical properties of the finite element

discretizations of the Robin test and OSM. The difference between a FEniCS assem-

bly code and a homespun assembly code like mine is that FEniCS is optimized and

generalized as I will discuss next.

The FEniCS library provides a professional implementation of the various compo-

nents of the finite element assembly routines described above. Finite element assembly

libraries provide fast optimized code that avoid the many non-trivial tasks involved
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in assembly from scratch. In the description of my finite element assembly routine,

I avoided discussing details like the creation of the structured mesh, and its associ-

ated data structures which store connectivity between various geometrical entities.

However, this is in fact a significant portion of the work involved in performing the

assembly from scratch. Not only is the book-keeping for the mesh an onerous task,

but so is the book-keeping that allows mapping from the geometrical entities of the

mesh to their associated indices in the matrix (ie, degrees of freedom). The meshing

for even the most basic structured mesh occupied nearly 100 lines of my code. More

importantly, these lines of code consist mostly of unavoidable loops over the mesh

elements. In Python, loops are known to be very slow compared to compiled lan-

guages. This is where a professional finite element assembly package is so beneficial.

In FEniCS, I get highly optimized assembly routines that rely heavily on wrapped,

compiled C++ code. I also get to replace those 100 lines of code with just the one

line: mesh = UnitSquareMesh (nx , nx ) , the result of which is a structured triangula-

tion of the unit square, like the one depicted in Figure 2.15 with nx intervals in each

direction.

I will now demonstrate how I used FEniCS to replicate the components of my

own assembly code, while highlighting some of the advantages in using the library

approach. In my description of the finite element method, I previously stated that

I would choose the space of linear functions with nodal basis functions. This choice

was deeply embedded into my assembly code by providing the functional form of

the basis functions to the Gaussian quadrature routines. In FEniCS, this choice is

made at a very high level of abstraction through the FunctionSpace ( ) object. That

meant that for my Poisson problem, I could create an instance of this object via V =
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Figure 2.15: Finite element triangulation of the unit square

FunctionSpace (mesh , Lagrange , 1) for the space of piece-wise linear functions. To

assemble the system of equations for the subdomain problem, I first defined the test

and trial functions to be used in the declaration of the bilinear and linear forms. Then,

I transcribed the mathematical description of the load and Robin data functions into

C++ syntax. Finally, I declared the forms using test and trial functions along with

the load and Robin data functions, and made a call to assemble ( ) . These steps are

shown in Listing 2.1.

1 u = Tria lFunct ion (V)

2 v = TestFunction (V)

3

4 f = Express ion ( ’ (−8.∗ pi ∗ pi ) ∗ ( s i n ( ( 2 . 0∗ pi ∗x [ 0 ] ) − ( 0 . 75∗ pi ) ) ∗ \

5 s i n ( ( 2 . 0∗ pi ∗x [ 1 ] ) − ( 0 . 75∗ pi ) ) ) ’ , \

6 degree=2)

7
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8 g = Express ion ( ’ ( 2 . 0∗ pi ∗ cos ( 2 . 0∗ pi ∗x [ 0 ] − ( 0 . 75∗ pi ) ) ∗ s i n (2∗ pi ∗x [ 1 ] −

( 0 . 75∗ pi ) ) ) + \

9 alpha ∗ ( ( s i n ( ( 2 . 0∗ pi ∗x [ 0 ] ) − ( 0 . 75∗ pi ) ) ∗ \

10 s i n ( ( 2 . 0∗ pi ∗x [ 1 ] ) − ( 0 . 75∗ pi ) ) ) + 2) ’ , \

11 alpha=alpha , \

12 degree=2)

13

14 e = − i nne r ( grad (u) , grad (v ) ) ∗dx − i nne r ( alpha ∗u , v ) ∗ds (1 )

15 L = inner ( f , v ) ∗dx − i nne r ( g , v ) ∗ds (1 )

16

17 A = assemble ( a )

18 b = assemble (L)

Listing 2.1: Finite element assembly of the subdomain problem in FEniCS.

To assemble the Robin boundary integrals, I relied on an additional FEniCS object

Measure ( ) which was instantiated with a function that marks the appropriate bound-

ary so that the assembler knew to integrate over the interface only. These details were

contained within the form definition as ds (1 ) where the boundary marking function

and Measure ( ) objects were created by the code shown in Listing 2.2

1 c l a s s I n t e r f a c e (SubDomain ) :

2 de f i n s i d e ( s e l f , x , on boundary ) :

3 t o l = 1E−14

4 r e turn abs ( 1 . 0 − x [ 0 ] ) < t o l

5

6 i n t e r f a c e = I n t e r f a c e ( )

7 markers = MeshFunction ( ” s i z e t ” , mesh , 1)

8 i n t e r f a c e . mark (markers , 1)
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9

10 ds = Measure ( ”ds” ) [ markers ]

Listing 2.2: Boundary marking and measure instatiation for the interface integrals.

The last step that I described in my assembly routine was to apply the strong form

of the Dirichlet boundary condition. In FEniCS, I accomplished this by creating a

Dir ichletBC ( ) object, again using the boundary marking function (Listing 2.3).

1 c l a s s Global outer boundary (SubDomain ) :

2 de f i n s i d e ( s e l f , x , on boundary ) :

3 t o l = 1E−14

4 r e turn on boundary and \

5 ( abs ( x [ 0 ] ) < t o l or \

6 abs (x [ 1 ] ) < t o l or \

7 abs ( 1 . 0 − x [ 1 ] ) < t o l )

8

9 g loba l oute r boundary = Global outer boundary ( )

10 g loba l oute r boundary . mark (markers , 2 )

11

12 bc = Dir ichletBC (V, ufunc , markers , 2)

Listing 2.3: Dirichlet boundary setup.

I supplied the function ufunc for the subdomain problem in the same way that f and

g were defined for the bilinear and linear form definitions. Once this was complete, I

applied the strong form Dirichlet boundary condition via bc . apply (A)

I performed the Robin test using the FEniCS code described above and found that

this produced the correct error behaviour. When I solved the resulting subdomain

problem for the same series of meshes as was done for the finite difference discretiza-
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tion and my own assembly code, I also found that the error decreased like O(h2).

The errors and contraction rates of both the FEniCS assembly code and my assembly

code can be seen in Table 2.9. Although the errors and rates did not match, the dif-

ference is explained by how each code evaluated the function g within the Gaussian

quadrature routine, as discussed earlier.

Table 2.9: Robin Boundary Condition Error for finite elements using FEniCS and my

own assembly code

h FEniCS error factor my assembly error factor

0.1 0.012958 —– 0.015056 —–

0.05 0.003295 3.932681 0.003815 3.946615

0.025 0.000828 3.979381 0.000949 4.019510

0.0125 0.000207 3.996521 0.000237 3.996148

0.00625 0.000052 3.998863 0.000059 3.999188

2.4.2 Two dimensional optimized Schwarz using the auxil-

liary variable method

The finite element subdomain solver tested in the last section can be bootstrapped

to carry out the auxilliary variable OSM. In the last section, I demonstrated and

tested a finite element subdomain solver with Robin transmission conditions that is

suitable for an optimized Schwarz domain decomposition algorithm. I will now use

those subdomain solvers within Algorithm 8 to perform the local iteration variant
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of the OSM. Later, I will also demonstrate the global iteration (Algorithm 9), and

preconditioned Krylov methods using FEniCS, but this will require a transition to

parallel computing to take advantage of the parallel data structures created when

any FEniCS code is run in Message Passing Interface (MPI) mode. While these data

structures proved to be useful for programming the OSM algorithms, FEniCS was by

no means designed to implement DD algorithms. FEniCS is a finite element assembly

library foremost. I used FEniCS to assemble both global and local problems, and I

pieced the other components of the algorithms together from FEniCS functions that

happened to be suitable for the DD. For now, I must introduce a few extra steps

needed to carry out the local iteration by the auxilliary variable method so that I can

compare results to those found using the finite difference discretization.

The finite element discretization technique requires that the original local itera-

tion algorithm be modified slightly. To start the bootstrap, I need to supply an initial

guess for the value of the Robin condition. Since g is multiplied by a test function

and integrated in the finite element method, I can assume this to be an initial guess

for the integrated g. This is a reasonable assumption whenever the initial guess is

simply the zeros vector, like in my case. After the subdomain solves, the finite ele-

ment implementation requires an extra step consisting of multiplying the subdomain

solution by a test function and integrating along the interface. Algorithm 10 includes

these new details.

The auxilliary variable OSM using finite elements produced different results for

the same experiments carried out using finite differences. I used the new Algorithm

10 to carry out the same experiments for the finite element method as I did for the

finite difference discretization. In Figure 2.16, the optimal α is 25, whereas for finite
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Algorithm 10 Optimized Schwarz as a local iteration with finite elements

while
∫

Γ
gk1 · v 6=

∫

Γ
gk2 · v do

for i = {1, 2} do

solve in parallel:

−
∫

Ωi

(∇ui) · ∇vi −
∫

Γi

αui|Γi
· vi =

∫

Ωi

fi · vi −
∫

Γi

gi · vi (2.107)

update in parallel:

∫

Γ

gk+1
i · vi = 2α

∫

Γ

uk
3−i|Γ · vi −

∫

Γ

−gk3−i · vi (2.108)

end for

end while

difference, it was 13. This figure also shows that the α curve for the FE discretization

is much flatter than for FD, meaning there are a larger number of α values for which

the convergence would be near optimal. The iteration count for the finite element

implementation, as seen in Figure 2.17, is also twice as high as the finite difference

implementation. This could be related to the fact that, although the discretizations

share the number and orientation of mesh nodes, the finite element mesh bisects the

square cells of the finite difference mesh, effectively cutting the area of the cell in

two. I was surprised to find that I could not locate any discussion of this in the

literature, so it remains an open question how to best compare finite element and

finite difference DD results. Finally, in Figure 2.18, I studied the grid dependence

of the optimal α value. The finite element result differred from that of the finite

difference implementation and I was not able to produce as close of a fit to the

analytical form Ch−1/3 in Gander (2006). The optimal α and the scaling factor for
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the analytical curve C found for the finite element discretization are roughly double

those found with finite differences. Additionally, the curve is less steep between the

first two grid size samples and lags the analytical curve initially, then it steepens to

the point where it finishes at a lower optimal α than the analytical curve. Overall, the

numerical curve is at least comparable to the analytical curve in that it demonstrates

a decaying optimal α with increasing grid size, and the rate of the decay is not too

far off from the analytical curve Ch−1/3 when C = 7.18.
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Figure 2.16: Optimal α search
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Figure 2.17: Convergence rate for optimized Schwarz using FEniCS for assembly with

α = 25
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Figure 2.18: Optimal α grid dependence
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2.4.3 Parallel two dimensional optimized Schwarz as a pre-

conditioned global iteration

The global iteration variants of the OSM are implemented by replicating the action

of the extension and partition of unity operators, which is simplified using FEniCS’s

parallel capabilities. In the last section, I demonstrated the behaviour of the local

iteration using the auxilliary variable method discretized by finite elements. In Sec-

tion 2.2, I presented an algorithm (Algorithm 9) that used algebraic extension and

partition of unity operators to perform a global iteration. I stated then that the

fixed point preconditioner could also be used as a preconditioner to a Krylov itera-

tion. In this section, I break down the algebraic operations in this preconditioner and

demonstrate the equivalent operations I used to precondition the global fixed point

and Krylov iterations. These algebraic actions are most easily performed using par-

allel data structures provided by FEniCS – itself piggy-backing on MPI and PETSc

functions. For this reason, from this point on, all of the algorithms will be carried

out in parallel using FEniCS. FEniCS natively supports parallel programming using

an MPI model that mirrors the back-end linear algebra package PETSc. This means

that all of the assembly code I presented while discussing the subdomain problems

is also valid for a parallel run. I can simply initiate a parallel run at the command

line using mpirun and FEniCS’s assembly routines will produce a distributed PETSc

stiffness matrix and load vector based on a partitioning of the nodes of the mesh pro-

vided by the METIS package. The METIS package uses a parallel multilevel k-way

graph-partitioning algorithm (LaSalle and Karypis, 2013) which performs partition-

ing in a way that seeks to create load balancing meshes for MPI code. The partitions
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created by the METIS library do not necessarily create square or rectangular inter-

faces, even in a structured mesh setting. A typical METIS partitioned mesh might

look something like Figure 2.19.

x

y

Ω1

Ω2

Γ

Figure 2.19: Parallel mesh generation

In order to define a custom preconditioner in FEniCS, I inherited from the

PETScUserPreconditioner ( ) class and overloaded the s o l v e ( ) function that oper-

ates on pre-declared, partitioned PETSc input and output vectors. The pseudocode

in Algorithm 11 outlines the parallel steps involved in setting the output vector from

the input, that forms the new definition for the s o l v e ( ) function, and which repli-

cates the action of the algebraic operations in the optimized Schwarz preconditioner

of Algorithm 9. In line 2, I use the gather ( ) MPI routine to collect DOFs of the

input vector r for subdomains with an arbitrary overlap; the operation is equivalent
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to the algebraic restriction Rir
k. In line 3, I map the gathered DOFs into the local

DOF order required for use with local subdomain matrices Ar. In line 4, I replicate

the subdomain solve operations A−1
ri
Rir

k by solving the subdomain problems with

the local subdomain matrices and gathered/mapped local residual vectors. I repli-

cate the action of the partition of unity matrix DiA
−1
ri
Rir

k in line 5. Finally, in line

6, I map subdomain solutions into global DOF order and accumulate them into the

output vector to complete the action of applying the optimized Schwarz precondi-

tioner on an arbitrary vector; it is equivalent to the prolongation and summation

∑

i R
T
i DiA

−1
ri
Rir

k. Since the new definition for the s o l v e ( ) method is general, I

can use the inherited preconditioner class to either carry out the global fixed point

iteration, or provide an outer Krylov iteration with the preconditioning routine for

constructing either left of right preconditioning as described in Saad (1995). In order

to accomplish any of the steps of the pseudocode in Algorithm 11 using FEniCS, I

had to create local meshes and associated data structures to get around the lack of

FEniCS functionality for solving subproblems within the global mesh data structures.

Algorithm 11 Overloading solve() for input vector r, and output vector Mr

1: function solve(Mr, r)

2: z ← gather subdomain DOFs from r

3: b← map z into local DOF order

4: Solve: x← A−1
r b

5: u← x scaled by partition of unity

6: Mr← Accumulate u in global DOF order

7: end function
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Notice that there was nothing explicitly parallel about the instructions in Algo-

rithm 11. That’s because FEniCS functions are written in such a way that they may

be used in serial or parallel without altering the way they are called. It is assumed

that when a function is called on a vector in parallel, that the instructions provided

by the function are carried out on the local part of the vector when run in parallel.

Furthermore, when I call upon a variable in a parallel code, I need to think about

the program returning only the local part. There is no better example than in the

construction of the subdomain meshes. In order to construct the required subdomain

components of the Schwarz algorithms, I needed to first form separate meshes from

the local and shared portions of the global partitioned mesh. To create these, I ini-

tialized new, empty, local meshes, iterated over the local part of the global mesh and

copied vertices and cells into the new mesh. These actions were performed by the

FEniCS code in Listing 2.4.

1 mesh loca l = Mesh( mpi comm self ( ) )

2 mesh ed i tor = MeshEditor ( )

3 mesh ed i tor . open ( mesh loca l , tdim , tdim )

4 mesh ed i tor . i n i t v e r t i c e s (mesh . num vert i ce s ( ) )

5 mesh ed i tor . i n i t c e l l s (mesh . num ce l l s ( ) )

6

7 ce l l num = 0

8 us ed ve r t s = [ ]

9 f o r c in mesh . c e l l s ( ) :

10 f o r v in c :

11 i f v . index ( ) not in u s ed ve r t s :

12 mesh ed i tor . add ve r t ex g l oba l ( v . index ( ) ,

13 v . g l oba l i nd ex ( ) ,
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14 np . array ( [ v . x (0 ) ,

15 v . x (1 ) ] )

16

17 mesh ed i tor . a dd c e l l ( ce l l num , c [ 0 ] , c [ 1 ] , c [ 2 ] )

18 us ed ve r t s . append ( c [ 0 ] )

19 us ed ve r t s . append ( c [ 1 ] )

20 us ed ve r t s . append ( c [ 2 ] )

21 ce l l num += 1

22

23 mesh ed i tor . c l o s e ( )

Listing 2.4: Copying local parts of the global distributed mesh to create local meshes

I created the new mesh with mpi comm self ( ) so that the linear algebra backend

did not attempt to split the mesh over the processors. I used the global version of

the add vertex ( ) because, as it turned out, this was an important simplification for

the Poisson problem. More importantly, I also found that this step was required for

the EM problem. I discovered the hard way (ie, after several weeks of debugging)

that the numbering of incident mesh entities was only preserved when I used the

global version. When I used a local version, the numbering of the edges in the local

mesh and the orientations of the edges within each cell did not coincide. For the EM

problem, this was totally destructive to the DD formulation since the curl of the basis

functions depends on the cell orientations. For the Poisson problem, using the global

version did not cost anything extra, and it saved me from creating a map between

the local and global edge indices.

Solutions generated in the local meshes will not, in general, have the same ordering

as their global counterparts, so I needed to create a mapping of local to global DOFs.
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Lines 3 and 6 of Algorithm 11 both require a means to map from a local DOF ordered

vector to a global DOF ordered vector. I accomplished this by looping through the

global mesh once and storing a dictionary that had a sorted vertex tuple as a key

and a DOF index as a value. Then, I looped through the local mesh and related a

local DOF index to a global one through the sorted vertex tuple. As a matter of

convenience, I built the partition of unity operator at the same time. Both of these

task were accomplished by the loops in Listing 2.5.

1 p a r t i t i o n o f u n i t y = [ 1 ] ∗ mesh . num edges ( )

2 do f g 2 l = [ 0 ] ∗ mesh . num edges ( )

3 f o r c i in range ( mesh loca l . num ce l l s ( ) ) :

4 cg = Ce l l (mesh , c i )

5 c l = Ce l l ( mesh loca l , c i )

6 c e l l d o f s = [ dofmap . l o c a l t o g l o b a l i n d e x ( i ) f o r i in dofmap .

c e l l d o f s ( c i ) ]

7 c e l l d o f s l o c a l = dofmap loca l . c e l l d o f s ( c i )

8

9 edge data = {}

10 f o r e in edges ( cg ) :

11 vs = [ ]

12 f o r v in v e r t i c e s ( e ) :

13 vs . append (v . index ( ) )

14 vk = tup l e ( so r t ed ( vs ) )

15

16 edge data [ vk ] = [ c e l l d o f s [ cg . index ( e ) ] ,

17 1 . / ( l en ( e . s h a r i n g p r o c e s s e s ( ) ) + 1) ]

18

19 f o r e in edges ( c l ) :
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20 vs = [ ]

21 f o r v in v e r t i c e s ( e ) :

22 vs . append (v . index ( ) )

23 vk = tup l e ( so r t ed ( vs ) )

24

25 do f g 2 l [ c e l l d o f s l o c a l [ c l . index ( e ) ] ] = edge data [ vk ] [ 0 ]

26 p a r t i t i o n o f u n i t y [ c e l l d o f s l o c a l [ c l . index ( e ) ] ] = edge data [ vk

] [ 1 ]

27

28 do f g 2 l I S = PETSc . IS ( ) . c r eateGenera l ( do f g2 l , comm=PETSc .COMMSELF)

Listing 2.5: Global to local DOF map and parition of unity

There is often more than one way to carry out an operation in FEniCS, and care

should be taken to ensure that, whatever method is selected, it acts on the appropriate

DOFs. In FEniCS, a vector is just a view into a vector in the linear algebra back-end

format. Since I use PETSc as my back-end, the vector layout is that of a partitioned

PETSc vector. The layout depends on which ghost mode I choose through parameters

[ ‘ ‘ ghost mode ” ] = ‘ ‘ sha r ed ve r t ex ”. With sha r ed ve r t ex selected, I had access

to a layer of cells and the associated degrees of freedom on the far side of the true

mesh interface, as shown in Figure 2.20. The reason I bring this up is because it

is important to keep in mind what local part is being accessed in many operations.

For example, if I used the usual mesh entity iteration scheme recommended in the

FEniCS documentation (Listing 2.6).

1 f o r c in Ce l l s (mesh ) :

2 f o r e in Edges (mesh ) :

Listing 2.6: FEniCS recommended mesh entity iteration procedure
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in the construction of the global to local DOF map, I would get only the owned

entities. However, if I used the iteration f o r c i in range (mesh . num ce l l s ( ) ) : , I

would also get access to the overlapping cells in the ghost range. This insight was

crucial for constructing submeshes that overlap. For this same reason, I could not

simply ask for the local part of the incoming vector. Instead, I was required to gather

( ) local vectors to gain access to both owned and shared DOFs provided with the

sha r ed ve r t ex option activated.
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Figure 2.20: Shared Vertices

I created the partition of unity function using the s h a r i n g p r o c e s s e s ( ) method

available for the MeshEntity class. The function provides a list of processes that

share the ith edge, whose length indicates the number of sharing processes. To set

the weight for the ith edge, I map the edge index to the corresponding DOF index
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and set that entry of the partition of unity array to 1/n + 1, where n is the length

of the shared processes list. This choice of weighting resulted in an averaging of the

overlapping DOFs when I accumulate local solution vectors. At the end of the code

snippet, I included a step that creates a PETSc index set (IS) from the global to local

DOF map. The index set let me perform all of the preconditioner steps in the PETSc

back-end. The index set was also useful for implementing the RAS method where I

obtained the subdomain matrices by restriction of the global stiffness matrix. Listing

2.7 accomplishes the restriction Ai = RART using the Python wrapper for PETSc

(PETSc4py) function getSubMatr ices ( ) .

1 Amat = as backend type (A) .mat ( )

2 A res t r = Amat . getSubMatr ices ( do f g2 l IS , do f g2 l IS , submats=None ) [ 0 ]

Listing 2.7: Restricting the global matrix for the RAS method

I have now described all of the components required to implement either a RAS

or ORAS preconditioner. Listing 2.8 shows the actual code that I used to overload

s o l v e ( ) function with the action of applying a Schwarz based (in this case ORAS)

preconditioner to the input vector.

1 s o l v e r l o c a l = LUSolver ( A loca l )

2 s o l v e r l o c a l . parameters [ ’ r e u s e f a c t o r i z a t i o n ’ ] = True

3 c l a s s SchwarzPrecondit ioner ( PETScUserPreconditioner ) :

4

5 de f i n i t ( s e l f ) :

6 PETScUserPreconditioner . i n i t ( s e l f )

7 s e l f . d o f g 2 l I S = do f g 2 l I S

8 s e l f . V l o ca l = V loca l

9 s e l f . p a r t i t i o n o f u n i t y = p a r t i t i o n o f u n i t y
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10 s e l f . s o l v e r l o c a l = s o l v e r l o c a l

11

12 de f s o l v e ( s e l f , Minvr , r ) :

13

14 # Equivalent to l i n e s 2 and 3 o f pseudocode

15 z = r . vec ( ) . getSubVector ( s e l f . d o f g 2 l I S )

16

17 # Equivalent to l i n e 4 o f pseudocode

18 u = Function ( s e l f . V l o ca l )

19 s e l f . s o l v e r . s o l v e (u . vec to r ( ) , PETScVector ( z ) )

20

21 # Equivalent to l i n e 5 o f pseudocode

22 ug = s e l f . p a r t i t i o n o f u n i t y ∗ (u . vec to r ( ) . array ( ) )

23

24 # Equivalent to l i n e 6 o f pseudocode

25 Minvr . vec ( ) . s e tVa lues ( s e l f . do f g2 l IS , ug , addv=True )

26 Minvr . vec ( ) . assemblyBegin ( )

27 Minvr . vec ( ) . assemblyEnd ( )

28

29 ORAS = SchwarzPrecondit ioner ( do f g2 l IS , V loca l , p a r t i t i o n o f u n i t y ,

s o l v e r l o c a l ) )

Listing 2.8: User defined OSM preconditioner

All of the steps in Algorithm 11 provided at the beginning of this section are

present in Listing 2.8. I used comments in the code snippet to associate lines of

actual code with lines of the pseudocode for the algebraic operations implied by the

optimized Schwarz preconditioner (Equation (2.56)). It might not be particularly

clear how the proper stitching of subdomain solutions is accomplished within this
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code. The partition of unity is applied to all overlapping DOFs prior to setting the

global vector, and the se tVa lues ( ) function is called with the flag addv=True which

means that DOFs are accumulated into the global outgoing vector and overlapping

entries are added. The combination of this addition and the partition of unity weight-

ing are designed so that the average of the overlapping entries are assigned to the

global vector.

There are many ways to solve the subdomain problems in a DD method, but using

a direct method allowed me to reuse factorizations and reduce the cost per iteration.

I chose to solve the subdomain problems exactly by LU factorization and found that,

by reusing the factorization, I cut the cost of each iteration by a significant amount.

This choice is also motivated by the fact that EM subdomain problems will have

the same ill-conditioning issue that affects their global counterpart. In this case, a

LU factorization of the subdomain problems is a very natural choice. To reuse the

factorization in FEniCS, I set the PETSc LUSolver object and its parameters to reuse

the factorization as can be seen at the top of the preconditioner definition.

In order to use the preconditioner, I needed to manipulate a PETSc ksp ( ) ob-

ject. The code in Listing 2.9 sets up and solves the global problem with the ORAS

preconditioner for a global stiffness matrix A and load vector b.

1 s o l v e r = PETScKrylovSolver ( ”gmres” , ORAS)

2 s o l v e r . s e t op e r a t o r (A)

3

4 u = Function (V)

5 s o l v e r . s o l v e (u . vec to r ( ) , b )

Listing 2.9: Solving the global problem with an ORAS preconditioner
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Figure 2.21 combines the local auxiliary variable iteration with the global fixed

point, the optimized Schwarz preconditioned GMRES iteration, and the RAS pre-

conditioned GMRES iteration for comparison. Since I found significant variation in

the optimal α values for each optimized Schwarz algorithm, I compared each algo-

rithm’s performance when run with their respective optimum. The global fixed point

iteration diverged for a significant number of α values, but when it did converge with

the optimal α = 46, it did so in nearly as few iterations (52) as the local auxiliary

variable iterations (49). The non-converging behaviour is similar to that seen in the

finite difference experiments, but the window of acceptable α values is smaller in

these finite element experiments. The ORAS preconditioner did, however, work well

as a supplement to the GMRES iteration, reducing the iteration count to 12. Inter-

estingly, the RAS preconditioner reduced the error by the same amount in only one

extra iteration; whereas the finite difference discretization of the optimized Schwarz

preconditioner reduced the iteration count by 4 iterations. In order to investigate

this further, I created an experiment to explore the effect of the METIS partitioning

strategy on the iteration count. As I mentioned earlier, the METIS partitioning algo-

rithm produces uneven interfaces between subdomains (see Figure (2.19)). I have yet

to find a paper that discusses this aspect of the OSM, but the results of my simple

experiment demonstrate that the choice of partitioning strategy affects the conver-

gence properties. My experiment consisted of creating a rectangular partitioning of

the same mesh used in the earlier experiments and carrying out the same ORAS

preconditioned Krylov iteration. I found that the rectangular partitioning strategy

reduced the iteration count so that the difference in performance between RAS and

ORAS preconditioners is more in line with my expectations based on the finite differ-
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ence results where the optimized Schwarz preconditioner improved the convergence

over the RAS preconditioner by 40%.
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Figure 2.21: Comparison between the local iteration using the auxiliary variable

methos (ORASAV), global fixed point iteration (ORASFP), global ORAS precondi-

tioned GMRES iteration (ORASPGMRES), and global RAS preconditioned GMRES

iteration (RASPGMRES). Square subdomain results are included to demonstrate the

adverse effect of the METIS partitioning strategy on the iteration count (ORASPGM-

RES square, RASPGMRES square)
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Based on the performance of these experiments, and those of the finite difference

discretization, it is clear that using the ORAS preconditioner with the Krylov iteration

is more profitable in terms of iteration count than any of the other methods. What

is not so clear, is whether the Optimized Schwarz approach is worth the extra work

when the RAS preconditioner performs so well. The decision is even muddier when

a METIS partitioning strategy is used.

This concludes my study of the optimized Schwarz method for the Poisson prob-

lem. I have developed the OSM to solve the Poisson problem using both a finite

difference and finite element discretization in two dimensions for each of the local aux-

illiary variable, global fixed point and preconditioned Krylov iterations. In the next

section, I will build the global optimized Schwarz preconditioner to use in conjunction

with a GMRES iteration for the 3D EM problem. This represents a significant jump

in complexity in regards to the book-keeping of local to global degrees of freedom.

The reason for this is that I must solve the EM problem in a mixed finite element

space to compensate for FEniCS’s lack of support for complex variables. In other

aspects, such as changing the weak form for the new physics, and jumping from two

to three dimensions, the transition to the EM problem is greatly simplified by FEn-

iCS. Based on the results in this chapter, I can expect to find cost/benefit ratio rise

for the ORAS preconditioner in comparison to the RAS preconditioner. I must use

METIS to partition the meshes for the geophysical EM problem where unstructured

meshes are required to accurately and efficiently model the fields under the influence

of a point-like source. Furthermore, the partitions created by METIS are likely to be

even more uneven than for the structured meshes used in this chapter.
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Chapter 3

Electromagnetic Problem

I demonstrated in the last chapter that the OSM could be used to solve the 2D Pois-

son problem using finite elements or finite difference discretizations. I used the two

discretizations to perform the OSM as a local iteration, global fixed point iteration,

and as a preconditioner to the GMRES iteration. I also created an RAS precondi-

tioner to serve as a benchmark to measure the success of the ORAS preconditioner.

In the finite difference experiments, the ORAS preconditioner outperformed the RAS

by a substantial amount, but in the finite element experiments, the margin was much

smaller. By altering the partitioning strategy in the finite element implementation, I

was able to recover the extra benefit of the ORAS preconditioner in terms of iteration

count. However, I will not be able to use such a partitioning strategy for the geophys-

ical EM problem due to the unstructured mesh imposed by refinement in the vicinity

of the source. The Poisson problem results in well conditioned system matrices, and

I could probably find a number of methods that outperform my OSM preconditioned

GMRES iteration. In fact, I chose the GMRES method only because I knew that I
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would be requiring it for the EM problem. For symmetric positive definite systems,

the conjugate gradient (CG) iteration is a much better choice as it carries a fixed cost

per iteration compared to the GMRES iteration whose cost grows with every itera-

tion. In this section, I will attempt to carry out the OSM preconditioning strategy

for the indefinite EM equations, requiring the use of the GMRES method. Compared

to simple preconditioners like Jacobi and SOR, the OSM preconditioner is expensive

due to the requirement to fully solve nearly the same physical problem fully on each

subdomain. However, in this case, the cost of the preconditioner is more easily justi-

fied if it can reduce the number of increasingly expensive GMRES iterations. I will

begin this chapter by describing the formulation of the EM equations specific to the

geophysical setting where the EM fields perturbations interact with a lossy earth.

3.1 Formulation

The geophysical electromagnetic fields are modelled using Maxwell’s equations along

with some constitutive equations involving the physical properties of the earth. Maxwell’s

equations relate the electric ( ~E), magnetic ( ~H), electric displacement ( ~D), magnetic

induction ( ~B), and electric current density ( ~J) vector fields, through Faradays law

∇× ~E = −∂ ~B

∂t
, (3.1)

and Ampère’s law

∇× ~H = ~J +
∂ ~D

∂t
. (3.2)

The constitutive relations are
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~B = µ0
~H, (3.3a)

~D = ǫ0 ~E, (3.3b)

~J = σ(~x) ~E, (3.3c)

where µ0 and ǫ0 are the permeability and permittivity of free space. In the typical

geophysical experiment, conductivity varies throughout the earth and would be rep-

resented by σ(~x) as seen here in Ohm’s law. However, for the work in this thesis,

I treat conductivity as a constant with respect to the spatial variable ~x since my

experiments use a wholespace conductivity model. The constitutive equations are

empirical relationships that are considered valid for earth materials. They can be

used to eliminate the magnetic induction and electric displacement fields from the

equations, leaving

∇× ~E = −µ0

∂ ~H

∂t
(3.4a)

∇× ~H = σ ~E + ǫ0
∂ ~E

∂t
(3.4b)

Ampère’s law can be modified to allow the modelling of an active source by adding an

impressed current density ( ~Jimp). These changes give the usual time domain equations

∇× ~E = −µ0

∂ ~H

∂t
(3.5a)

∇× ~H = σ ~E + ǫ0
∂ ~E

∂t
+ ~Jimp. (3.5b)

These can be expressed in the frequency domain by assuming a time dependence of
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∂

∂t
= iω. (3.6)

Under this transformation, the first order frequency domain equations are

∇× ~E = −iωµ0
~H (3.7a)

∇× ~H = σ ~E + iωǫ0 ~E + ~Jimp, (3.7b)

and I get the second order frequency domain equation by taking the curl of Faraday’s

law and eliminating of the magnetic field by substitution of the ∇× ~H term:

∇×∇× ~E + iωµ0σ ~E + ω2ǫ0 ~E = −iωµ0
~Jimp. (3.8)

Typical earth conductivities and survey frequencies guarantee that ω2ǫ0 ~E <<

|iωµ0σ ~E| (Grant and West, 1965), so it is common to drop the term involving ǫ0 from

the equations. This is known as the quasistatic approximation. Boundary conditions

for Equation (3.8) are typically imposed by considering a large enough domain to

approximate infinity at the boundary so that the tangential component of the electric

field vanishes there:

n̂× ~E = 0. (3.9)

Together, these two equations give the boundary value problem (BVP) for the electric

field:
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∇×∇× ~E + iωµ0σ ~E = −iωµ0
~Jimp in Ω, (3.10a)

n̂× ~E = 0 on ∂Ω. (3.10b)

In the optimized Schwarz method, I will need to solve subdomain problems with a

Robin style boundary condition along subdomain interfaces. The natural combination

of Neumann and Dirichlet conditions for the wavy EM problem is the impedance

boundary condition.

(∇× ~E × n̂) + iα(n̂× ~E × n̂) = g. (3.11)

With proper units for α, the impedance boundary condition may be used to approx-

imate the infinite absorbing boundary condition within a finite domain for EM wave

equations in perfect resistors (Monk, 2003). There is no guarantee that this boundary

condition is the appropriate one for our lossy EM problem, so instead of using the

physically meaningful α = ik with wavenumber k and imaginary unit i, I proposed to

keep α as a dimensionless optimization parameter. I hoped that this would yield an

optimized Schwarz method for the quasistatic EM equations. The associated BVP

for the subdomain problem with the impedance BC is

∇×∇× ~E + iωµ0σ ~E = −iωµ0
~Jimp in Ω (3.12a)

n̂× ~E = 0 on ∂Ω \ Γ (3.12b)

(∇× ~E × n̂) + iα(n̂× ~E × n̂) = g on Γ. (3.12c)
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Dolean et al. (2015a) proposed a second order impedance style BC to improve

the convergence properties over the ‘classical’ impedance BC. The operator for this

method consists of the sum of three terms, the first of which is the original impedance

BC and the remaining two containing the second order operators∇τ∇τ · and∇τ×∇τ×

for the tangential direction τ . Compared to the first order impedance BC which

required the optimization of a single parameter, the second order condition requires

a multi-parameter optimization. I mention the second order formulation because it

is known to have improved convergence properties, but due to the complexity of the

condition, I did not attempt to implement it in this thesis.

3.2 Finite Element method

In the previous section, I derived the second order formulation of Maxwell’s equations

for the electric field. In order to apply the finite element method, I use the method-

ology of Monk (2003) and write the weak form of the equations by multiplying by a

test function and integrating over the problem domain:

∫

Ω

∇×∇× ~E · ~N +

∫

Ω

iωµ0σ ~E · ~N = −
∫

Ω

iωµ0
~Jimp · ~N. (3.13)

Here, I have written the equations with a generic test function ~N , but in fact the

choice of function space and corresponding basis function can have a profound effect

on the resulting performance of the method. Typical Lagrange basis functions were

demonstrated in Farquharson and Miensopust (2011) which required the imposition

of a gauge condition in order to find accurate solutions. The gauge condition was

determined to be required due to the extra condition in EM problems that tangential
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electric fields must be conserved across element boundaries. This issue arises in finite

difference discretization techniques as well. Hyman and Shashkov (2001) developed

a ‘mimetic’ finite difference discretization in which the discrete operators preserve

certain properties of their continuous conterparts such as tangential electric field

conservation. A common way to impose the tangential electric field continuity in

the finite element method is to seek a solution ~E in the space H(curl,Ω) = { ~E ∈

(L2(Ω))3 : ∇ × ~E ∈ (L2(Ω))3} (Jin, 2002). The first order shape function from this

space is a curl conforming vector function of the form ~Ni = λn∇λm − λm∇λn for the

nodal shape functions λk = ak + bkx+ cky on an edge defined by nodes m and n.

With a sufficiently large mesh, I can approximate the condition that the tangential

electric field disappears at infinity by imposing a Dirichlet condition at the boundary

of a mesh. This translates to seeking a solution in the new space H0(curl,Ω) = { ~E ∈

H(curl,Ω) : n × ~E|Γ = 0}. I use integration by parts to reduce the order of the

integrand ∇ × ∇ × ~E so that I can approximate the integral using the first order

shape functions I described earlier. In doing so, I introduce a surface integral over

the boundary ∂Ω:

∫

Ω

(∇× ~E) · (∇× ~N)−
∫

∂Ω

(∇× ~E × n̂) · ~N + iωµ0

∫

Ω

σ ~E · ~N

= −iωµ0

∫

Ω

~Jimp · ~N.

(3.14)

Now that there is a boundary integral, it is possible to impose Dirichlet or Robin

style boundary conditions according to the problem at hand. For the OSM, I will

need to apply both Dirichlet and Robin boundary conditions over different portions

of the boundary. This can easily be accommodated by splitting the boundary integral
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into portions marked for Dirichlet and Robin boundary condition application:

∫

∂Ω

(∇× ~E × n̂) · ~N =

∫

∂Ω/ Γ

(∇× ~E × n̂) · ~N +

∫

Γ

(∇× ~E × n̂) · ~N (3.15)

For the homogeneous Dirichlet boundary condition on ∂Ω, the boundary integral

simply vanishes. The Robin boundary condition is applied by multiplying Equation

(3.11) by a test function and integrating along the interface Γ

∫

Γ

(∇× ~E × n̂) · ~N +

∫

Γ

iα(n̂× ~E × n̂) · ~N =

∫

Γ

g · ~N. (3.16)

I then rearrange and substitute the condition into the Robin boundary integral of

Equation (3.15), which itself is inserted into Equation (3.14) to give a weak form

for the most general problem in which a homogeneous Dirichlet condition has been

imposed on a portion of the domain, and a Robin condition on another

∫

Ω

(∇× ~E) · (∇× ~N) +

∫

Γ

iα(n̂× ~E × n̂) · ~N + iωµ0

∫

Ω

σ ~E · ~N

= −iωµ0

∫

Ω

~Jimp · ~N −
∫

Γ

g · ~N.

(3.17)

Now I have the most general equation required to complete an implementation of

an OSM preconditioner for the quasistatic EM equations. I can use this formulation

directly for the subdomain problems that arise from the domain decomposition, and

I can simply ignore the interface integrals in Equation (3.17) to get the relevant

equation for the global problem. In either case, I can state the problem as: Find

~E ∈ H0(curl,Ω) such that a( ~E, ~N) = L( ~N) where I have collected the integrals

of the left hand side into the sesquilinear form a( ~E, ~N) (the sesquilinear form is a

102



generalization of the more common bilinear form for simple finite element spaces)

and integrals of the right side into the linear form L( ~N). Note that if the goal is to

precondition a Krylov iteration by accumulating subdomain solutions, the last term

of Equation (3.17) need not be discretized since the preconditioner routine only needs

a discretization of the bilinear form for the subdomain problem.

The next step is to apply Galerkin’s method and replace ~E by the linear combi-

nation
∑n

j
~Ej

~Nj and the original test function ~N by ~Ni. Unfortunately, FEniCS was

not designed to handle complex arithmetic, so a little extra work is required to ac-

commodate the fact that the system of equations is complex. A well known strategy

for this situation is to solve, at once, for the real and imaginary components of the

solution. This can be accomplished by solving the block system







A1,1 A1,2

A2,1 A2,2













x1

x2






=







b1

b2






, (3.18)

where x1 are a set of degrees of freedom representing the real components of the

solution, and x2 are another set of degrees of freedom for the imaginary components.

In order to do this, I extended Galerkin’s method for the real and complex components

ER,j and EC,j; ie: I let ~E =
∑n

j (ER,j + iEC,j) ~Nj, and inserting this into 3.17 to give

n
∑

j=1

ER,j

(∫

Ω

(∇× ~Ni) · (∇× ~Nj) + iωµ0

∫

Ω

σ ~Ni · ~Nj − iα

∫

Γ

(n̂× ~Ni × n̂) · ~Nj

)

+ i
n

∑

j=1

EC,j

(∫

Ω

(∇× ~Ni) · (∇× ~Nj) + iωµ0

∫

Ω

σ ~Ni · ~Nj − iα

∫

Γ

(n̂× ~Ni × n̂) · ~Nj

)

= −iωµ0

∫

Ω

~Jimp · ~N.

(3.19)
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I will now introduce a few symbolic abstractions for clarity. Let integrals
∫

Ω
(∇×

~Ni) ·(∇× ~Nj), ωµ0

∫

Ω
σ ~Ni · ~Nj, α

∫

Γ
(n̂× ~Ni× n̂) · ~Nj, and ωµ0

∫

Ω
~Jimp · ~N be represented

by C, Mσ, Mα, and S. In terms of the newly introduced symbols, I get the following

by distributing the imaginary component into the terms of the sum,

n
∑

j=1

ER,j (C + iMσ + iMα) +
n

∑

j=1

EC,j (iC −Mσ −Mα) (3.20)

and I can collect the real and imaginary components into the 2x2 block system







C −(Mσ +Mα)

Mσ +Mα C













ER,j

EC,j






=







0

S






. (3.21)

In the next section, I will demonstrate how I used FEniCS and PETSc to assemble

and solve a mixed function space formulation of the complex system of equations from

the bilinear and linear forms of a subdomain problem. I will then show how I set up

and used my custom preconditioner to accelerate the global Krylov iteration for the

EM problem.

3.3 FEniCS implementation

3.3.1 External mesh generation

Mesh refinement is an important component to geophysical EM modelling, as it allows

computational effort to be directed to areas where the fields are changing the most

rapidly, and where observations are made. In order to accomplish mesh refinement

for my EM experiment, I used the GMESH finite element mesh generator (Geuzaine

and Remacle, 2009). This tool can be run through a graphical user interface (GUI)
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program, or through a command line interface in conjunction with geometry files. I

took the latter approach, and I will refer throughout this section to the geometry

file provided in Appendix D. To accomplish mesh refinement in GMESH, I used the

concept of an attractor field. The attractor field concept takes as input the refinement

location, radius, fine and coarse mesh size parameters. GMESH then incorporates the

attractor field into the overall meshing routine, and creates a mesh that transitions

smoothly from the fine mesh size to the coarse mesh size within the specified radius,

and centered on the refinement location. In Appendix D, I create points for the source

and receiver attractor fields in lines 18-33. The points are then defined as attractors

in lines 51-64.

GMESH can also be used to build earth models, although I have only used it to

create the simplest of earth model: the wholespace. In GMESH, physical properties

are assigned to the various geometrical entities (Points, Lines, Surfaces, and Volumes).

In Appendix D, I create the physical volume representing the wholespace in line 49.

In order to create more complicated earth models, a user could layer more physical

volumes in this way, or through the GUI.

Poor mesh quality is known to affect the conditioning of the EM equations. In

particular, tetrahedra with large radius-edge ratios have been found to limit the

accuracy of solutions (Jahandari and Farquharson, 2015). GMESH has a feature that

optimizes the mesh quality. I have not carefully studied its effect, but I used it for all

the meshes; the optimization step can be seen at the end of the geometry file provided

in D.

In order to assemble the EM equations in FEniCS for a GMESH mesh, I converted

the .msh files created by GMESH using the dolfin-convert scripts provided with every
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FEniCS installation. This generates a collection of xml files that describe the mesh

and physical properties of the defined model. In order to run FEniCS in parallel,

I generated an HDF5 file containing the mesh, physical properties, and parameters

for each trial in serial first. This was carried out as a pre-processing step using a

script HDF5mesh.py (Appendix E). The HDF5mesh.py code also sets up the active

EM source assembly by locating the cell containing the source location, a task that

is necessarily done in serial. Once the HDF5mesh.py code has been run in serial, the

physical properties, source cell, and mesh can all be loaded, in parallel thanks to the

HDF5 technology, into the main EM codes which then assemble the EM equations

over the particular mesh.

3.3.2 Finite element assembly for the EM problem

Many of the steps in the preceding section can be translated easily into the syntax

provided by the finite element assembly library FEniCS. These include the selection

of a function space and associated basis function, definition of the bilinear and linear

forms, stiffness matrix and load vector assembly, and application of Dirichlet bound-

ary conditions. In this section I will demonstrate the FEniCS syntax required to ac-

complish these tasks for a subdomain problem. The following assumes that I already

have a mesh saved to file in HDF5 format along with a mesh function (boundar ies)

that contains markers for the Dirichlet boundary conditions.

To begin with, I imported the library, mesh, and mesh function that contains

the boundary markers. I then created an H(curl,Ω) function space each for the real

and imaginary components, and combined them into a mixed function space. This
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establishes a mapping of the degrees of freedom (DOF) on the mesh so that the N

edges of the mesh have two DOFs, one for the real part and one for the imaginary

(Listing 3.1).

1 from do l f i n import ∗

2 mesh = Mesh ( )

3 hdf = HDF5File (mesh .mpi comm() , ” t e s t . h5” , ” r ” )

4 hdf . read (mesh , ”/mesh” , Fa l se ) # read in the mesh

5 hdf . read ( boundaries , ”/ boundar ies ” ) # read in the boundary func t i on

6 hdf . c l o s e ( )

7

8 Vr = FunctionSpace (mesh , ”Nedelec 1 s t kind H( cu r l ) ” , 1)

9 Vc = FunctionSpace (mesh , ”Nedelec 1 s t kind H( cu r l ) ” , 1)

10 V = Vr ∗ Vc

Listing 3.1: Function Spaces

I used the boundar ies mesh function to define the homogeneous Dirichlet bound-

ary condition. Since I have a vector field in three dimensions with real and imaginary

components, the Express ion ( ) that I used to provide the zero Dirichlet condition

had 6 entries of the zero value as seen in Listing 3.2.

1 bc = Dir ichletBC (V, Express ion ( ( ’ 0 . 0 ’ , ’ 0 . 0 ’ , ’ 0 . 0 ’ , ’ 0 . 0 ’ , ’ 0 . 0 ’ , ’

0 . 0 ’ ) ) , boundaries , d i r i c h l e t )

Listing 3.2: Dirichlet Conditions

To set up the Robin boundary condition I needed to use the same boundar ies

mesh function to construct a Measure ( ) that allowed me to assign portions of the

boundary to integrate over (Listing 3.3).
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1 ds = Measure ( ’ ds ’ , domain=mesh , subdomain data=boundar ies )

Listing 3.3: Measure

In order to construct the sesquilinear and linear forms for the problem so that

FEniCS could take care of the assembly, I first needed to create Tria lFunct ion ( )

and TestFunction ( ) objects (Listing 3.4). The mixed function space meant that two

distinct objects were created for each of the trial and test functions. The trial and

test function served as a means to set the various blocks of the matrix Equation (3.21)

in the sesquilinear form:

1 Nri , Nci = Tr ia lFunct ions (V)

2 Nrj , Ncj = TestFunct ions (V)

Listing 3.4: Trial and test functions

The syntax used for creating the sesquilinear form from the test and trial functions

was remarkably close to the mathematical notation of the form (Equation (3.20)).

Listing 3.5 demonstrates the form as well as the two lines needed to then assemble

the form and apply the Dirichlet BC.

1 a rob in = + inner ( cu r l ( N r i l o c a l ) , c u r l ( N r j l o c a l ) ) ∗ dx l o c a l \

2 + inner ( cu r l ( N c i l o c a l ) , c u r l ( N c j l o c a l ) ) ∗ dx l o c a l \

3 − a lpha r ∗ i nne r ( c r o s s ( c r o s s (n , N r i l o c a l ) ,n ) , N r j l o c a l ) ∗ds

(1 ) \

4 + alpha c ∗ i nne r ( c r o s s ( c r o s s (n , N c i l o c a l ) ,n ) , N r j l o c a l ) ∗ds

(1 ) \

5 − a lpha c ∗ i nne r ( c r o s s ( c r o s s (n , N r i l o c a l ) ,n ) , N c j l o c a l ) ∗ds

(1 ) \

6 − a lpha r ∗ i nne r ( c r o s s ( c r o s s (n , N c i l o c a l ) ,n ) , N c j l o c a l ) ∗ds

(1 ) \
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7 + omega∗mu ∗ i nne r ( sigma∗Nr i l o c a l , N c j l o c a l ) ∗ dx l o c a l \

8 − omega∗mu ∗ i nne r ( sigma∗Nc i l o c a l , N r j l o c a l ) ∗ dx l o c a l

9

10 Ar = assemble ( ar )

11 bc . apply (Ar)

Listing 3.5: Bilinear form

I used the various test and trial functions to assemble the different integrals within

the block system (Equation (3.21)). The combination Nri and Nrj assembles the

upper left block, Nci and Ncj the lower right block, Nri and Ncj the lower left, and

Nci and Nrj the upper right.

This concludes the description of the method I used to assemble a subdomain

problem, but it is not in fact possible to perform this operation on a subset of the

global mesh in the latest build of the FEniCS library. To solve a PDE in parallel, I

needed to create individual meshes on each processor, so that I could solve the sub-

domain problem. In the next section I will demonstrate how to create the subdomain

meshes from the global distributed mesh, solve the subdomain problem on the indi-

vidual meshes, and map the solutions back into a DOF ordering that matches that

of the global mesh.

3.3.3 Optimized Schwarz preconditioner

In the last section, I covered how to build the new sesquilinear and linear forms for

the geophysical EM problem. In Section 2.4.3, I presented a method for setting up

an optimized Schwarz preconditioner for Poisson, from which I can borrow several

components for the EM problem. The biggest complication in transitioning to the EM
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problem is the extra book-keeping involved in the local to global degrees of freedom.

In the EM problem, I have a mixed function space for the real and imaginary parts

of the equation, and my degrees of freedom reside on the edges.

The first step in the process of forming a Schwarz preconditioner is, once again, to

copy over local parts of the mesh into separate local meshes using MeshEditor ( ) as

explained in the last chapter for the Poisson problem. These details do not change for

the EM problem and will not be included here. However, the next step is to create a

mapping of the local and global degrees of freedom, and this will certainly be different

for the EM problem since the degrees of freedom now reside on the edges of the mesh.

The following code is very similar to Listing 2.5, but creates a dictionary of edge data

rather than vertex data to correctly map the new edge based DOF (Listing 3.6).

1 p a r t i t i o n o f u n i t y = [ 1 ] ∗ mesh . num edges ( ) ∗2

2 do f g 2 l = [ 0 ] ∗ mesh . num edges ( ) ∗2

3 f o r c i in range ( mesh loca l . num ce l l s ( ) ) :

4

5 cg = Ce l l (mesh , c i )

6 c l = Ce l l ( mesh loca l , c i )

7

8 c e l l d o f s = [ dofmap . l o c a l t o g l o b a l i n d e x ( i ) f o r i in dofmap .

c e l l d o f s ( c i ) ]

9 c e l l d o f s l o c a l = dofmap loca l . c e l l d o f s ( c i )

10

11

12 edge data = {}

13 f o r e in edges ( cg ) :

14 vs = [ ]
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15 f o r v in v e r t i c e s ( e ) :

16 vs . append (v . index ( ) )

17 vk = tup l e ( so r t ed ( vs ) )

18

19 edge data [ vk ] = [ ( c e l l d o f s [ cg . index ( e ) ] , c e l l d o f s [ cg . index ( e )

+6]) ,

20 1 . / ( l en ( e . s h a r i n g p r o c e s s e s ( ) ) + 1) ]

21

22 f o r e in edges ( c l ) :

23 vs = [ ]

24 f o r v in v e r t i c e s ( e ) :

25 vs . append (v . index ( ) )

26 vk = tup l e ( so r t ed ( vs ) )

27

28 do f g 2 l [ c e l l d o f s l o c a l [ c l . index ( e ) ] ] = edge data [ vk ] [ 0 ] [ 0 ]

29 do f g 2 l [ c e l l d o f s l o c a l [ c l . index ( e ) +6] ] = edge data [ vk ] [ 0 ] [ 1 ]

30

31 p a r t i t i o n o f u n i t y [ c e l l d o f s l o c a l [ c l . index ( e ) ] ] = edge data [ vk

] [ 1 ]

32 p a r t i t i o n o f u n i t y [ c e l l d o f s l o c a l [ c l . index ( e ) +6] ] = edge data [

vk ] [ 1 ]

33

34 do f g 2 l I S = PETSc . IS ( ) . c r eateGenera l ( do f g2 l , comm=PETSc .COMMSELF)

Listing 3.6: Local to global edge map

Since I needed to use the edge mapping on vectors that contain a real and imag-

inary DOF entry for each edge, I built this into the mapping by assigning an i and

i+1 map for each edge that I encountered. This is a particularly important point: In
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mixed function spaces, FEniCS stores Vectors and Matrices so that DOFs, for a given

edge, from each function space, are stored consecutively. The global to local DOF

map is based on this structure and is the fundamental link between the subdomain

problems and the global problem, as it is used to gather DOFs from the incoming

vector, and to set DOFs into the outgoing vector. The last line of the code converts

the map into a PETSc index set so that I can perform the gathering and setting with

the PETSc backend. To avoid having to loop through the mesh twice, I built the

partition of unity operator at the same time as the DOF map using the edge data

dictionary. The partition of unity is constructed one DOF at a time in line 19. I used

s h a r i n g p r o c e s s e s ( ) to get the partition of unity weight for the ith edge. Just as

for the Poisson problem, this creates a partition of unity that produces the average

of the overlapping DOFs.

The preconditioner definition in Listing 2.8 remains the same for the EM problem

although it will now be instantiated with a DOF map, subdomain solver and associ-

ated factorized Robin subdomain matrices, and partition of unity that are constructed

for the mixed function space representation of the complex number system. When

an outer Krylov solver calls the preconditioner with a mixed function space vector,

the preconditioner solves a subdomain problem with a mixed function space matrix

assembled from the form in Listing 3.5 and the local part of the incoming vector. The

preconditioner then applies the partition of unity to the resulting real and imaginary

components of the solution. Finally, it sets the result into the outgoing vector’s real

and imaginary DOF entries according to the map created in Listing 3.6.

Before I present the performance of the Schwarz preconditioners for the EM prob-

lem, I will demonstrate the accuracy of the solutions found by both a direct and
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preconditioned iterative approach. In order to verify the numerical solution, I will

use the analytic solutions provided in Ward and Hohmann (1988) which gives the

following equations for the non-zero field components given an x directed magnetic

dipole in a uniform wholespace sampled at z = 0 along the y dimension. Here,

r =
√

x2 + y2 + z2, k = −√iωµσ, I is the electric current, and A is the area of the

dipole:

Hx =
IA

4πr3

[

x2

r2
(

−k2r2 + 3ikr + 3
)

+
(

k2r2 − ikr − 1
)

]

e−ikr (3.22)

and

Ez =
iωµIA

4πr2
(ikr + 1) e−ikr

(−y
r

)

. (3.23)

In order to get the correct components to compare with the analytic solutions, I

needed to split my E field solution into its components and solve a small variational

problem to get the H field. I split the electric field into components by projecting

the solution into a vector function space with the code in Listing 3.7.

1 Vv = VectorFunctionSpace (mesh , ’DG’ , 1)

2 Er , Ec = E. s p l i t ( )

3 Er vec = p ro j e c t (Er , Vv , s o l v e r t yp e=’ cg ’ )

4 Ec vec = pro j e c t (Ec , Vv, s o l v e r t yp e=’ cg ’ )

5 Erx = Er vec . sub (0 )

6 Ecx = Ec vec . sub (0 )

7 Ery = Er vec . sub (1 )

8 Ecy = Ec vec . sub (1 )

9 Erz = Er vec . sub (2 )
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10 Ecz = Ec vec . sub (2 )

Listing 3.7: Projection into the discontinuous Galerkin vector function space

The H and E fields are related through Faraday’s law by

iωµ ~H = −∇× ~E, (3.24)

so I can form a variational problem by multiplying by a test function and integrating

iωµ

∫

Ω

~H · ~v =

∫

Ω

∇× ~E · ~v. (3.25)

I followed the same procedure to form the block system for the real and imaginary

parts as was done for the electric field equation, and translated this into the FEniCS

code in Listing 3.8.

1 Er , Ec = E. s p l i t ( )

2

3 wr , wc = Tr ia lFunct ions (V)

4 vr , vc = TestFunct ions (V)

5

6 a = omega∗mu∗ i nne r (wr , vc ) ∗dx − omega∗mu∗ i nne r (wc , vr ) ∗dx

7

8 L = − i nne r (Er , c u r l ( vr ) ) ∗dx \

9 − i nne r (Ec , c u r l ( vc ) ) ∗dx

10

11 H = Function (V)

12 s o l v e ( a == L , H)

Listing 3.8: Solving a variational problem for the H field given the E field solution
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Finally, by discretizing Equations 3.22 and 3.23, and comparing them to the solu-

tions of both a parallel direct (MUMPS), and preconditioned GMRES solver, I found

that my finite element solutions were a reasonable match to the analytical solutions.

I used a 437610 tetrahedra mesh with a high degree of refinement about the source

and receiver locations to solve the system accurately. In Figures 3.1, 3.2, and 3.3, I

give a series of successively zoomed in images of a two dimensional mesh that was

constructed with the same refinement strategy as the three dimensional meshes used

for the experiment (I used this work-around because I was not able to extract a

reasonable image of a slice through the partitioned three dimensional mesh). The

data for each of the analytical, MUMPS, and RAS preconditioned GMRES solvers

are provided in Figures 3.4, 3.5, 3.6, and 3.7. The analytical solution in blue is very

accurately recovered by the MUMPS solution in red, and the preconditioned GMRES

iteration when it is run to a tolerance of 10−19 (green). The two-norm of the error

between the MUMPS solution and the RAS preconditioned solution was 10−14, sug-

gesting that the true error of the iterative solution is not exactly reflected in the norm

of the residual provided by the PETSc GMRES function. Nevertheless, the solution

seems acceptable, at least by visual standards.
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Figure 3.1: Two dimensional mesh with same refinement and partitioning strategy as

the three dimensional mesh used to compare the RAS and MUMPS solutions.
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Figure 3.2: Same mesh as Figure 3.1 but zoomed in on refinement area.
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Figure 3.3: same mesh as Figure 3.1 but zoomed in to a scale that shows the individual cells in refinement area.
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Figure 3.4: Predicted Re{Hx} data along y dimension for an x directed dipole.
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Figure 3.5: Predicted Im{Hx} data along y dimension for an x directed dipole.
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Figure 3.6: Predicted Re{Ez} data along y dimension for an x directed dipole.

121



−600 −400 −200 0 200 400 600

y(m)

10-10

10-9

10-8

10-7

10-6

10-5

lo
g|I
m
{ E z} |

analytic
MUMPS
RAS

Figure 3.7: Predicted Im{Ez} data along y dimension for an x directed dipole.
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Now that I have confirmed the accuracy of my solution, I can address the perfor-

mance of the two Schwarz preconditioners. FEniCS has a handful of built-in parallel

preconditioners that I can use to compare against my own preconditioners. This

includes an implementation of the RAS algorithm discussed in the last chapter. Fig-

ure 3.8 provides a performance comparison of my optimized Schwarz preconditioner

against my own RAS implementation, a successive over-relaxation (SOR), multigrid

(AMG), and PETSc’s RAS preconditioner for a larger overlap than I used for my

RAS. The reason for the different overlaps is that PETSc defines its overlap starting

with a single layer of cells, whereas the sha r ed ve r t ex option that I used provided

two layers of cells on either side of the partition. I have also provided the unpre-

conditioned iteration for comparison. For the Optimized Schwarz preconditioner, I

performed a trial and error optimization of the parameter α that yielded a range of

values under which the algorithm performed ‘optimally’. The value settled on for the

final run was 109. The only preconditioners that were able to reduce the error beyond

10−8 were the domain decomposition based preconditioners, although I suspect that

a multigrid variant could be constructed that would compete with the DD approach.

However, this would likely require the same level of detailed study that I have put

into my DD preconditioners. To get the most out of the PETSc RAS preconditioner,

I found that I needed to set the subdomain solvers to solve the subdomain problems

exactly with an LU decomposition, and set the ASMType to RESTRICT to implement

the partition of unity particular to the RAS algorithm. Under these conditions, the

PETSc RAS performs better in terms of iteration count than my RAS implementa-

tion when a larger overlap was deployed, and worse for a smaller overlap. Finally, the

most noteworthy result here is that the RAS preconditioners beat my ORAS precon-
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ditioner by a small margin. From the analysis done for the Poisson problem, I suspect

this to be caused by the uneven partitions created by the METIS graph partition-

ing algorithm. If the irregular partition boundaries produce an inconsistent splitting

analogous to the way the non-overlapping ORAS preconditioned fixed point iteration

did for the Poisson problem, then it is possible that the RAS method that restricts

the subdomain matrices out of the global matrix produces a consistent splitting even

in the presence of an uneven interface. However, unlike the fixed point iteration, I

would not expect the Krylov iteration to diverge. Rather, the ORAS preconditioned

Krylov iteration might simply suffer a small performance penalty compared to the

RAS resulting in the observed behaviour. The METIS approach is required for the

geophysical EM problem due to the unstructured meshes imposed by modelling the

discrete dipole source. So it appears that for the geophysical EM problem, the RAS

preconditioner may actually be preferred over the ORAS preconditioner. However,

iteration count does not provide the full story. Time to solution is another arguably

more important metric for the success of an iterative method.

In Figure 3.9 I provide the timing for my ORAS and RAS preconditioner im-

plementations, as well as the PETSc RAS preconditioner and the FEniCS code for

assembly and preconditioner setup. The time to assemble the global matrix and right

hand side decreased subtly between two and twelve processors, and took a negligible

amount of time overall. The setup code that was necessary for both the ORAS and

RAS preconditioner methods took up a little over half of the time to solution and

scaled close to linearly between two and eight processors. The total time to solution

using both ORAS and RAS was very similar despite the fact that the RAS method

avoids assembly of the subdomain matrices by restricting the global matrix. The
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ORAS and RAS preconditioners fell short of linear scaling between two and eight

processors. I used a separate scale for the PETSc timing since it took much longer to

compute than my own preconditioners. Although the PETSc took between one and

two orders of magnitude longer to solve the EM problem using similar parameters,

its scaling was slightly better than linear between two and eight processors. The dif-

ference in performance between my RAS and PETSc’s RAS preconditioner could be

explained by the communication burden imposed by the larger overlap of the PETSc

version. However, if that were true then I would have expected the time gap between

the PETSc and my RAS preconditioner to increase with the number of processors,

not decrease as it does in Figure 3.9.

The last two figures (Figure 3.10 and Figure 3.11) demonstrate the behaviour of

the Schwarz preconditioners for increasing grid size using the full twelve processors

available to me. In terms of iteration count, both Schwarz preconditioners scaled

at least linearly judging by the roughly doubling iteration count for the factor of

five increase in tetrahedra between 100000 and 500000. However, in terms of time

to solution, the Schwarz preconditioners scaled worse than linearly with the time

increasing by a factor of nine for the same range of tetrahedra, suggesting that there

are inefficiencies in the setup portion of the code.

Based on the evidence provided in these experiments, I would have to recommend

the RAS over the ORAS preconditioner for the geophysical EM problem. Due to the

requirement for unstructured mesh refinement about dipole sources in these experi-

ments, the ORAS preconditioner did not seem to meet its expectations. I know of

one improvement that can be made on the current ORAS implementation, and one

other that could benefit both the RAS and ORAS preconditioners, but I will save the
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discussion of these for the next, and concluding, chapter.
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Chapter 4

Conclusions

The geophysical EM problem poses a significant computational challenge. Not only is

the size of the computational problem generated by industrial applications a hurdle,

but the physics underlying the geophysical EM experiment makes matters worse. The

nullspace of the curl operator creates a highly ill-conditioned matrix when the second

order electric field equations are discretized with the FEM. I investigated Schwarz

preconditioners in an attempt to mitigate the ill-conditioning problem. The opti-

mized Schwarz method showed great promise when applied to the Poisson problem,

but the magnetic dipole source in the geophysical EM problem created a need for un-

structured mesh refinement, leading to partitioning strategies that reduced the ORAS

preconditioner performance. Nonetheless, I was able to develop a preconditioner that

outperformed the options available through PETSc, and there may still be ways to

improve upon my Schwarz preconditioners.

Multilevel DD preconditioners are known to outperform single level versions like

those that I implemented. A multilevel DD preconditioner adds a coarse grid correc-
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tion step, and it can be added to either the RAS or ORAS preconditioning routines

to create a composite preconditioner. Migliorati and Quarteroni (2011), for exam-

ple, show that a multilevel additive Schwarz preconditioner improved the convergence

behaviour for the Poisson equation from 155 to 39 iterations by adding a second level.

The ORAS preconditioner can be improved further by considering the second

order optimization of the impedance condition. Second order optimizations seek

to conserve not only the first derivative of the solution at the interface, but the

second derivative. There are several different versions of the second order optimization

which have been shown to reduce the iteration count over the first order optimization

discussed here (Dolean et al., 2015b). The second order optimizations contain more

than one optimization parameter, and so require careful analysis to optimize compared

to the scalar α that can be optimized by trial and error, like in this thesis.

On top of the improvements to the DD methods, there may be other ways to in-

crease the efficiency. The DD method could be extended to either the A/Phi potential

formulation or the time domain formulation of EM equations. Since the condition

number depends on the quality of the underlying mesh, a more careful study of the

meshing and, in particular, the refinement procedure could result in an improved per-

formance. The poor scaling of the time to solution with respect to grid size suggests

that the algorithm contains some inefficiencies in the setup phase since the number of

iterations scaled well as the grid size increased. The portion of the setup which relies

on looping through the mesh elements would be a likely area in need of improvement.

If it were possible to wrap the iterations in C++ code, I think this could improve the

time scaling. Finally, the FEniCS library is in a period of rapid growth, and I am

anticipating two updates that could greatly improve my code: Support for complex
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arithmetic, and the ability to solve problems within a submesh. The former might

only improve code readability, but the latter would remove the need to loop through

mesh elements to create the local to global DOF maps and likely improve the time

scalability issue just mentioned.

As long as the trend in computing technology is towards multicore technologies,

a need for parallel algorithms will exist. The Domain Decomposition strategy used

in this thesis fulfills this niche nicely and I would not be surprised if a DD technique

is used in the first commercial inversion software for the geophyscial EM equations –

a benchmark that cannot be too far away.
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Appendix A

One dimensional finite difference

domain decomposition with equal

subdomains

In order to investigate the curious behavior of the one dimensional finite difference

domain decomposition, I use the error equations. I assume e = u− utrue, so that by

subtracting the true solution from u in Equation (2.1), the problem takes the form:

Solve:

∇2e = 0 in Ω (A.1a)

e = 0 on ∂Ω, (A.1b)

I now choose a small discretization of the one dimensional space between zero and

one. For N = 5, I have two subdomains with three nodes each as shown in Figure
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Γ

Figure A.1: A simple decomposition of the 1D mesh into two subdomains

A.1. The discrete system of equations for the left side with outer boundary conditions

and an interface condition can be written as

−2e0u1 + e0u2 = 0 (A.2a)

e0u1 − (1 + hα)e0u2 = −hg0u. (A.2b)

Since I have two equations and two unknowns, it is straightforward to solve this

system analytically. From Equation (A.2a), I get that

e0u2 = 2e0u1, (A.3)

from which I may substitute e0u2 into Equation (A.2b) to get

e0u1 =
hg0u

1 + 2hα
. (A.4)

Then I use this in conjunction with Equation (A.3) and find

e0u2 =
2hg0u

1 + 2hα
. (A.5)

The solution for the right subdomain follows the same steps and I obtain
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e0u1 =
hg0u

1 + 2hα
, e0u2 =

2hg0u
1 + 2hα

, e0v0 =
2hg0v

1 + 2hα
, e0v1 =

hg0v
1 + 2hα

, .

(A.6)

I now update g0u and g0v through the familiar equations

g1u = −g0v + 2αe0v0, g1v = −g0u + 2αe0u2, (A.7)

and substitute the expressions for e0u1, e
0
u2, e

0
v0, and e0v1 from Equations (A.6). This

gives me

g1u = −g0v +
4hαg0v
1 + 2hα

=

(

4hα

1 + 2hα
− 1

)

g0v =

(

2hα− 1

1 + 2hα

)

g0v , (A.8)

g1v =

(

2hα− 1

1 + 2hα

)

g0u. (A.9)

This is followed by another round of subdomain solves to find the errors at iteration 1,

now in terms of g1u and g1v . Since these will be equivalent to Equations (A.6) but with

the superscript 1, I skip directly to the result from the substitution of the expressions

for g1u and g1v .

e1u1 =

(

h(2hα− 1)

(1 + 2hα)2

)

g0v , e0u2 =

(

2h(2hα− 1)

(1 + 2hα)2

)

g0v , (A.10)

e0v0 =

(

2h(2hα− 1)

(1 + 2hα)2

)

g0u, e0v1 =

(

h(2hα− 1)

(1 + 2hα)2

)

g0u. (A.11)

From my five point discretization, I have that h = 1/4, and since I want to analyze

the result with α = 2 I substitute these values into the expressions for the error and

find that the bracketed term in the numerator vanishes.
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If the same procedure is followed for finer discretizations, the same result will oc-

cur. For example, when I use seven points instead of five I have four point subdomains

and the second round of subdomain solves yields for the left subdomain

e1u1 =
h(3hα− 1)

3hα + 1
, e1u2 = 2e1u1, e1u3 = 3e1u1. (A.12)

With the extra two points added between zero and one, I now have h = 1/6 and

again the bracketed term in the numerator disappears.

It looks like for every choice of discretization, the solution to the error equations

after two rounds of the optimized Schwarz procedure will give a term in the form

( n−1

N−1
α−1) where n is the number of subdomain nodes and N is the global number of

nodes. The choice of α = 2 can now be seen to produce 2-iteration convergence since

n is always smaller than N by a factor of two for non-overlapping methods where the

domain is split in two equal halves.
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Appendix B

Using a property of the Kronecker

product to extend one dimensional

discretizations into two dimensions

The action of the Kronecker product is to create a block matrix in the following

manner

A⊗ B =















a11B a12B . . .

a21B a22B . . .

...
...

. . . .















(B.1)

Note also that the operator denoted by vec() can refer to an unraveling of the matrix

represented by Figure B.1 in row, or column major ordering, giving
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. (B.2)
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Figure B.1: The elements of the mesh that form the matrix U

The Kronecker product property (Equation (2.86)) holds for any combination of ma-

trices A, X and B, but I would like to apply the property in order to ease the assembly

of a two dimensional system of equations of the form A2Du = f , where A2D is a finite

difference discretization of the two dimensional Laplacian operator,

∂2

∂x2
+

∂2

∂y2
, (B.3)

and f is a load vector in row or column major order. I define the matrix A =
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A1D as the one dimensional system matrix arising from the discretization of the

Laplacian, X = U as the matrix representing the solution of the Poisson problem in

two dimensions, and B = I as the Identity matrix (a convenient choice that fulfills

Equation (2.86) without affecting the PDE that I want to apply the property to), and

I write the multiple right hand sides linear algebra problem A1DU = F with a matrix

F that discretizes the load function in two dimensions. The solution U would be

the matrix formed by columns of one dimensional solutions of the form A1Dui = fi.

To apply the Kronecker product property, I transform the matrix equation by right

multiplying the left side by the innocuous identity matrix and vectorizing both sides

vec(A1DUI) = vec(F ), (B.4)

and then applying the property

(IT ⊗ A1D)vec(U) = vec(F ). (B.5)

With this choice for the matrix B, the kronecker product IT ⊗ A1D simply gives

IT ⊗ A1D =





















A1D 0 0 . . .

0 A1D 0 . . .

0 0 A1D . . .

...
...

...
. . .





















, (B.6)

where the matrix A1D is repeated in a block diagonal fashion as many times as there

are rows in the identity matrix. The structure of this large sparse matrix is exactly

the form needed to build one of the components of the matrix A2D. The matrix in

Equation (B.6) can be either the x or y component of the Laplacian depending on
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whether I choose to vectorize F in row or column major order. If I choose to vectorize

F with row major ordering as in the left vector in Equation (B.2), then A1D must

have the correct dimensions to difference along the x axis, and IT = I must have as

many rows as there are mesh points along the y axis.

By choosing the order of vec(F ), I fix the action of the matrix in Equation (B.6)

to work in a particular dimension and in order to define a similar matrix for the

other dimension, I need to use the Kronecker product in a new fashion. Keeping with

the choice of row major ordering, I propose that the following use of the Kronecker

product property yields a two dimensional finite difference matrix that discretizes the

y component of the Laplacian

IUAT
1D = (Ay ⊗ Ix)vec(U), (B.7)

where Ay is sized for the y dimension, and Ix for the x dimension. The Kronecker

product resulting from this transformation has the block form

A1D ⊗ I =





















a11Ix a12Ix a13Ix . . .

a21Ix a22Ix a23Ix . . .

a31Ix a32Ix a33Ix . . .

...
...

...
. . .





















, (B.8)

where the differencing occurs along the y component since the coefficients of the

one dimensional discrete Laplacian have been multiplied by the identity matrix with

as many rows as there are mesh points in the x dimension. This has the effect of

spreading out the finite difference coefficients so that they pick out element of vec(U)

to re-create the stencil down the columns of U . Since the two dimensional Laplacian
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can be constructed by adding the two components as in Equation (B.3), I can find

the two dimensional solution of Poisson’s equation by forming and solving the matrix

equation

((Ax ⊗ Iy) + (Ix ⊗ Ay))u = vec(F ). (B.9)

Notice that I can now solve the two dimensional problem using only one dimensional

discretizations for the extra cost of computing a Kronecker product and vectorizing

the right hand side. I find this method especially useful when dealing with boundary

conditions since these are much more easily implemented in one dimension. The

matrices Ax and Ay are exactly those that I used in the one-dimensional experiments,

so the only task left is to update the two-dimensional F for the boundary conditions,

vectorize it and then solve Equation (B.9). For a more mathematical treatment of

this method, see Meyer (2000).
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Appendix C

Finite element assembly routines

1

2 ## gauss ian quadrature 2d ##

3

4 de f gaus s i an quadrature 2d ( funcs , order , x , y ) :

5

6 N0 = lambda chi , e ta : 1 − ch i − eta

7 N1 = lambda ch i : ch i

8 N2= lambda eta : eta

9 P = lambda chi , e ta : x [ 0 ] ∗ ( 1 − ch i − eta ) + x [ 1 ] ∗ ch i + x [ 2 ] ∗ eta

10 Q = lambda chi , e ta : y [ 0 ] ∗ ( 1 − ch i − eta ) + y [ 1 ] ∗ ch i + y [ 2 ] ∗ eta

11

12 i f o rder == 1 :

13 w = [ 1 . ]

14 ch i = [ 1 / 3 . ]

15 eta = [ 1 / 3 . ]

16

17 i f o rder == 2 :
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18 w = [ 1 / 3 . , 1/3 . , 1 / 3 . ]

19 ch i = [ 1 / 6 . , 2/3 . , 1 / 6 . ]

20 eta = [ 1 / 6 . , 1/6 . , 2 / 3 . ]

21

22 Area = abs ( ( ( x [ 1 ] − x [ 0 ] ) ∗( y [ 2 ] − y [ 0 ] ) ) − ( ( x [ 2 ] − x [ 0 ] ) ∗( y [ 1 ] − y

[ 0 ] ) ) ) /2

23

24 f i n t = 0

25

26 f o r i in range ( l en (w) ) :

27 f = 1

28 f o r j in range ( l en ( funcs ) ) :

29 f ∗= funcs [ j ] (P( ch i [ i ] , e ta [ i ] ) , Q( ch i [ i ] , e ta [ i ] ) )

30 f i n t += Area ∗ w[ i ] ∗ f

31

32 r e turn f i n t

33

34 ## gauss ian quadrature 1d ##

35

36 de f gaus s i an quadrature 1d ( funcs , order , y ) :

37

38 i f o rder == 1 :

39 w = [ 2 . ]

40 ch i = [ 0 . ]

41

42 i f o rder == 2 :

43 w = [ 1 . , 1 . ]

44 ch i = [−1/np . s q r t (3 ) , 1/np . s q r t (3 ) ]
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45

46 i f o rder == 3 :

47 w = [ 5 / 9 . , 8/9 . , 5 / 9 . ]

48 ch i = [−np . s q r t ( 3 / 5 . ) , 0 , np . s q r t ( 3 / 5 . ) ]

49

50 f i n t = 0

51

52 f o r i in range ( l en (w) ) :

53 f = 1

54 f o r j in range ( l en ( funcs ) ) :

55 #pr in t funcs [ j ] , ( y [ 1 ] + ( ( ( y [ 0 ] − y [ 1 ] ) / 2 . ) ∗ (1 + ch i [ i ] ) )

) , funcs [ j ] ( y [ 1 ] + ( ( ( y [ 0 ] − y [ 1 ] ) / 2 . ) ∗ (1 + ch i [ i ] ) ) )

56 f ∗= funcs [ j ] ( y [ 1 ] + ( ( ( y [ 0 ] − y [ 1 ] ) / 2 . ) ∗ (1 + ch i [ i ] ) ) )

57 f i n t += ( ( y [ 1 ] − y [ 0 ] ) / 2 . ) ∗ w[ i ] ∗ f

58

59 r e turn f i n t

60

61 ## get nodes ##

62

63 de f ge t nodes (nx , ny , X, Y, d i r i c h l e t v a l u e s , r ob i n va l u e s ) :

64

65 nodes = {}

66

67 f o r i in range (nx∗ny ) :

68

69 nodes [ i ] = { ’ coords ’ : [X. reshape (nx∗ny ) [ i ] , Y. reshape (nx∗ny ) [ i

] ] }

70
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71 i f not np . i snan ( d i r i c h l e t v a l u e s . reshape (nx∗ny ) [ i ] ) :

72 nodes [ i ] [ ’ d i r i ’ ] = d i r i c h l e t v a l u e s . reshape (nx∗ny ) [ i ]

73

74 i f not np . i snan ( r ob i n va l u e s . reshape (nx∗ny ) [ i ] ) :

75 nodes [ i ] [ ’ rob in ’ ] = rob i n va l u e s . reshape (nx∗ny ) [ i ]

76

77 r e turn nodes

78

79 ## g e t t r i a n g l e s ##

80

81 de f g e t t r i a n g l e s (nx , ny , nodes ) :

82

83 t r i a n g l e s = {}

84 e = 0

85 n = 0

86

87 f o r r in range (ny−1) :

88 f o r s in range (nx−1) :

89

90 t r i a n g l e s [ e ] = { ’ v0 ’ : r ∗nx + s ,

91 ’ v1 ’ : r ∗nx + s+1,

92 ’ v2 ’ : r ∗nx + s+nx}

93

94 rob in nodes = [ ]

95 d i r i c h l e t n o d e s= [ ]

96

97 f o r v in [ ’ v0 ’ , ’ v1 ’ , ’ v2 ’ ] :

98
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99 i f ’ rob in ’ in nodes [ t r i a n g l e s [ e ] [ v ] ] . keys ( ) :

100 rob in nodes . append ( t r i a n g l e s [ e ] [ v ] )

101

102 i f ’ d i r i ’ in nodes [ t r i a n g l e s [ e ] [ v ] ] . keys ( ) :

103 d i r i c h l e t n o d e s . append ( t r i a n g l e s [ e ] [ v ] )

104

105 e l s e :

106

107 i f ’ f r e e ’ not in nodes [ t r i a n g l e s [ e ] [ v ] ] . keys ( ) :

108 nodes [ t r i a n g l e s [ e ] [ v ] ] [ ’ f r e e ’ ] = n

109 n+=1

110

111 i f l en ( rob in nodes ) == 2 :

112

113 t r i a n g l e s [ e ] [ ’R ’ ] = rob in nodes

114

115 i f True :

116

117 t r i a n g l e s [ e ] [ ’D ’ ] = d i r i c h l e t n o d e s

118

119 e+=1

120

121 t r i a n g l e s [ e ] = { ’ v0 ’ : r ∗nx + s+1,

122 ’ v1 ’ : r ∗nx + s+1+nx ,

123 ’ v2 ’ : r ∗nx + s+nx}

124

125 rob in nodes = [ ]

126 d i r i c h l e t n o d e s= [ ]
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127

128 f o r v in [ ’ v0 ’ , ’ v1 ’ , ’ v2 ’ ] :

129

130 i f ’ rob in ’ in nodes [ t r i a n g l e s [ e ] [ v ] ] . keys ( ) :

131 rob in nodes . append ( t r i a n g l e s [ e ] [ v ] )

132

133 i f ’ d i r i ’ in nodes [ t r i a n g l e s [ e ] [ v ] ] . keys ( ) :

134 d i r i c h l e t n o d e s . append ( t r i a n g l e s [ e ] [ v ] )

135

136 e l s e :

137

138 i f ’ f r e e ’ not in nodes [ t r i a n g l e s [ e ] [ v ] ] . keys ( ) :

139 nodes [ t r i a n g l e s [ e ] [ v ] ] [ ’ f r e e ’ ] = n

140 n+=1

141

142 i f l en ( rob in nodes ) == 2 :

143

144 t r i a n g l e s [ e ] [ ’R ’ ] = rob in nodes

145

146 i f l en ( d i r i c h l e t n o d e s ) > 0 :

147

148 t r i a n g l e s [ e ] [ ’D ’ ] = d i r i c h l e t n o d e s

149

150 e+=1

151

152 r e turn t r i a n g l e s

153

154
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155 ## as s emb l e i n t e r f a c e v e c t o r ##

156

157 de f a s s emb l e i n t e r f a c e v e c t o r ( nodes , t r i a n g l e s , f , qord ) :

158

159 vec to r = np . z e r o s ( l en ( nodes . keys ( ) ) )

160 l o c a l v e r t i c e s = [ ’ v0 ’ , ’ v1 ’ , ’ v2 ’ ]

161

162 f o r k in t r i a n g l e s . keys ( ) :

163 M = [ ]

164 i f ’R ’ in t r i a n g l e s [ k ] . keys ( ) :

165

166 f o r v in l o c a l v e r t i c e s :

167 M. append ( [ nodes [ t r i a n g l e s [ k ] [ v ] ] [ ’ coords ’ ] [ 0 ] , \

168 nodes [ t r i a n g l e s [ k ] [ v ] ] [ ’ coords ’ ] [ 1 ] ] )

169

170 M = np . hstack ( [ np . ones ( ( 3 , 1 ) ) , np . array (M) ] )

171

172 Minv = np . l i n a l g . inv (np . array (M) )

173 y i n t e r v a l = [ nodes [ t r i a n g l e s [ k ] [ ’R ’ ] [ 0 ] ] [ ’ coords ’ ] [ 1 ] , \

174 nodes [ t r i a n g l e s [ k ] [ ’R ’ ] [ 1 ] ] [ ’ coords ’ ] [ 1 ] ]

175

176 f o r v in l o c a l v e r t i c e s :

177 i nve r s e ve r t ex map = { t r i a n g l e s [ k ] [ v ] : i n t ( v [−1]) \

178 f o r v in l o c a l v e r t i c e s }

179

180

181 de f f i n t e r p (y ) :

182
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183 phi0 = Minv [ 0 , inve r s e ve r t ex map [ t r i a n g l e s [ k ] [ ’R ’ ] [ 0 ] ] ]

+ \

184 Minv [ 1 , inve r s e ve r t ex map [ t r i a n g l e s [ k ] [ ’R ’ ] [ 0 ] ] ]

∗ \

185 nodes [ t r i a n g l e s [ k ] [ ’R ’ ] [ 0 ] ] [ ’ coords ’ ] [ 0 ] + \

186 Minv [ 2 , inve r s e ve r t ex map [ t r i a n g l e s [ k ] [ ’R ’ ] [ 0 ] ] ]

∗ y

187

188 phi1 = Minv [ 0 , inve r s e ve r t ex map [ t r i a n g l e s [ k ] [ ’R ’ ] [ 1 ] ] ]

+ \

189 Minv [ 1 , inve r s e ve r t ex map [ t r i a n g l e s [ k ] [ ’R ’ ] [ 1 ] ] ]

∗ \

190 nodes [ t r i a n g l e s [ k ] [ ’R ’ ] [ 1 ] ] [ ’ coords ’ ] [ 0 ] + \

191 Minv [ 2 , inve r s e ve r t ex map [ t r i a n g l e s [ k ] [ ’R ’ ] [ 1 ] ] ]

∗ y

192

193 r e turn ( phi0 ∗ f [ t r i a n g l e s [ k ] [ ’R ’ ] [ 0 ] ] ) + ( phi1 ∗ f [

t r i a n g l e s [ k ] [ ’R ’ ] [ 1 ] ] )

194

195 f o r r in range (2 ) :

196 vr = t r i a n g l e s [ k ] [ ’R ’ ] [ r ]

197 ph i e va l = lambda y : Minv [ 0 , inve r s e ve r t ex map [ vr ] ] + \

198 Minv [ 1 , inve r s e ve r t ex map [ vr ] ] ∗ \

199 nodes [ t r i a n g l e s [ k ] [ ’R ’ ] [ 0 ] ] [ ’ coords

’ ] [ 0 ] + \

200 Minv [ 2 , inve r s e ve r t ex map [ vr ] ] ∗ y

201 I = gauss ian quadrature 1d ( [ f i n t e r p , ph i e va l ] , qord ,

y i n t e r v a l )
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202 vec to r [ t r i a n g l e s [ k ] [ ’R ’ ] [ r ] ] += I

203

204 r e turn vec to r

205

206

207 ## assemble system ##

208

209 de f assemble system ( nodes , t r i a n g l e s , alpha , f e v a l , order ) :

210

211 # I n i t i a l i z e s t o rage

212 K = ssp . l i l m a t r i x ( ( l en ( nodes . keys ( ) ) , l en ( nodes . keys ( ) ) ) )

213 Kr = ssp . l i l m a t r i x ( ( l en ( nodes . keys ( ) ) , l en ( nodes . keys ( ) ) ) )

214 Ktest = ssp . l i l m a t r i x ( ( l en ( nodes . keys ( ) ) , l en ( nodes . keys ( ) ) ) )

215 F = np . z e r o s ( l en ( nodes . keys ( ) ) )

216

217 #fo r k in t r i a n g l e s . keys ( ) :

218 # i f ’ rob in ’ in t r i a n g e s [ k ] . keys ( ) :

219

220 f o r k in t r i a n g l e s . keys ( ) :

221

222 # Form M from coo rd ina t e s o f v e r t i c e s and i nv e r t to r e cove r the

hat

223 # func t i on parameters f o r the cur rent t r i a n g l e

224

225 M = [ ]

226 l o c a l v e r t i c e s = [ ’ v0 ’ , ’ v1 ’ , ’ v2 ’ ]

227

228 f o r v in l o c a l v e r t i c e s :
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229 M. append ( nodes [ t r i a n g l e s [ k ] [ v ] ] [ ’ coords ’ ] )

230

231 M = np . hstack ( [ np . ones ( ( 3 , 1 ) ) , np . array (M) ] )

232 Minv = np . l i n a l g . inv (np . array (M) )

233

234 # Area o f the kth t r i a n g l e

235 Area = abs ( (M[ 1 , 1 ] − M[ 0 , 1 ] ) ∗ (M[ 2 , 2 ] − M[ 0 , 2 ] ) −

236 (M[ 2 , 1 ] − M[ 0 , 1 ] ) ∗ (M[ 1 , 2 ] − M[ 0 , 2 ] ) ) /2

237

238 # Compute the c en t r o i d

239 c = [ np . sum(M[ : , 1 ] ) / 3 . , np . sum(M[ : , 2 ] ) / 3 . ]

240

241 # Accumulate c on t r i bu t i on s to the s t i f f n e s s matrix

242

243 f o r r in range (3 ) :

244 f o r s in range ( r , 3 ) :

245

246 i = min ( [ t r i a n g l e s [ k ] [ l o c a l v e r t i c e s [ r ] ] ,

247 t r i a n g l e s [ k ] [ l o c a l v e r t i c e s [ s ] ] ] )

248 j = max ( [ t r i a n g l e s [ k ] [ l o c a l v e r t i c e s [ r ] ] ,

249 t r i a n g l e s [ k ] [ l o c a l v e r t i c e s [ s ] ] ] )

250

251 K[ i , j ] −= Area ∗ np . dot (Minv [ 1 : , r ] , Minv [ 1 : , s ] )

252

253 # Accumulate c on t r i bu t i on s to the load vec to r

254

255 #I = Area ∗ f e v a l ( c [ 0 ] , c [ 1 ] ) / 3 .

256
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257

258 f o r r in range (3 ) :

259

260 ph i e va l = lambda x , y : Minv [ 0 , r ] + Minv [ 1 , r ]∗ x + Minv [ 2 , r ]∗

y

261 funcs = [ f e v a l , ph i e va l ]

262 I = gauss ian quadrature 2d ( funcs , order , M[ : , 1 ] , M[ : , 2 ] )

263

264 i = t r i a n g l e s [ k ] [ l o c a l v e r t i c e s [ r ] ]

265 F[ i ] += I

266

267 # Accumulate c on t r i bu t i on s to Robin Mass Matrix

268

269 i f ’R ’ in t r i a n g l e s [ k ] . keys ( ) :

270

271 y i n t e r v a l = [ nodes [ t r i a n g l e s [ k ] [ ’R ’ ] [ 0 ] ] [ ’ coords ’ ] [ 1 ] , \

272 nodes [ t r i a n g l e s [ k ] [ ’R ’ ] [ 1 ] ] [ ’ coords ’ ] [ 1 ] ]

273

274 f o r v in l o c a l v e r t i c e s :

275 i nve r s e ve r t ex map = { t r i a n g l e s [ k ] [ v ] : i n t ( v [−1]) \

276 f o r v in l o c a l v e r t i c e s }

277 f o r r in range (2 ) :

278 f o r s in range ( r , 2 ) :

279 vr = t r i a n g l e s [ k ] [ ’R ’ ] [ r ]

280 vs = t r i a n g l e s [ k ] [ ’R ’ ] [ s ]

281 ph i eva l 1 = lambda y : Minv [ 0 , inve r s e ve r t ex map [ vr ] ]

+ \

282 Minv [ 1 , inve r s e ve r t ex map [ vr ] ]
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∗ \

283 nodes [ t r i a n g l e s [ k ] [ ’R ’ ] [ 0 ] ] [ ’

coords ’ ] [ 0 ] + \

284 Minv [ 2 , inve r s e ve r t ex map [ vr ] ]

∗ y

285

286 ph i eva l 2 = lambda y : Minv [ 0 , inve r s e ve r t ex map [ vs ] ]

+ \

287 Minv [ 1 , inve r s e ve r t ex map [ vs ] ]

∗ \

288 nodes [ t r i a n g l e s [ k ] [ ’R ’ ] [ 0 ] ] [ ’

coords ’ ] [ 0 ] + \

289 Minv [ 2 , inve r s e ve r t ex map [ vs ] ]

∗ y

290

291 I = alpha ∗ gauss ian quadrature 1d ( [ ph i eva l1 ,

ph i eva l 2 ] , order , y i n t e r v a l )

292 K[ t r i a n g l e s [ k ] [ ’R ’ ] [ r ] , t r i a n g l e s [ k ] [ ’R ’ ] [ s ] ] −= I

293 Ktest [ t r i a n g l e s [ k ] [ ’R ’ ] [ r ] , t r i a n g l e s [ k ] [ ’R ’ ] [ s ] ] −=

I

294

295

296 K += ssp . t r i u (K, 1 ) .T

297 r e turn K,F

298

299

300 ## assemble G ##

301
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302 de f assemble G ( nodes , t r i a n g l e s , g eva l ) :

303

304 G = np . z e r o s ( l en ( nodes . keys ( ) ) )

305

306 f o r k in t r i a n g l e s . keys ( ) :

307

308 i f ’R ’ in t r i a n g l e s [ k ] . keys ( ) :

309

310 i f nodes [ t r i a n g l e s [ k ] [ ’R ’ ] [ 0 ] ] [ ’ coords ’ ] [ 0 ] − \

311 nodes [ t r i a n g l e s [ k ] [ ’R ’ ] [ 1 ] ] [ ’ coords ’ ] [ 0 ] < \

312 1e−6:

313

314 L = abs ( nodes [ t r i a n g l e s [ k ] [ ’R ’ ] [ 0 ] ] [ ’ coords ’ ] [ 1 ] −

315 nodes [ t r i a n g l e s [ k ] [ ’R ’ ] [ 1 ] ] [ ’ coords ’ ] [ 1 ] )

316

317 c =(nodes [ t r i a n g l e s [ k ] [ ’R ’ ] [ 0 ] ] [ ’ coords ’ ] [ 1 ] +

318 nodes [ t r i a n g l e s [ k ] [ ’R ’ ] [ 1 ] ] [ ’ coords ’ ] [ 1 ] ) /2 .

319

320 e l s e :

321

322 L = abs ( nodes [ t r i a n g l e s [ k ] [ ’R ’ ] [ 0 ] ] [ ’ coords ’ ] [ 0 ] −

323 nodes [ t r i a n g l e s [ k ] [ ’R ’ ] [ 1 ] ] [ ’ coords ’ ] [ 0 ] )

324

325 c = ( nodes [ t r i a n g l e s [ k ] [ ’R ’ ] [ 0 ] ] [ ’ coords ’ ] [ 0 ] +

326 nodes [ t r i a n g l e s [ k ] [ ’R ’ ] [ 1 ] ] [ ’ coords ’ ] [ 0 ] ) /2 .

327

328 I = L∗ g eva l ( c ) /2 .

329 f o r r in range (2 ) :
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330 G[ t r i a n g l e s [ k ] [ ’R ’ ] [ r ] ] += I

331

332 r e turn G

333

334

335 ## apply boundary cond i t i on s ##

336

337 de f apply BCs ( nodes , K, F) :

338

339 f o r i in nodes . keys ( ) :

340

341 i f ’ d i r i ’ in nodes [ i ] . keys ( ) :

342 K[ i , : ] = 0

343 K[ i , i ] = 1 .

344 F[ i ] = nodes [ i ] [ ’ d i r i ’ ]

345

346 r e turn K, F

347

348

349 de f as semble g loba l weak form ( d i r i c h l e t v a l u e s , nodes , t r i a n g l e s , Area ,

f e v a l ) :

350

351

352 # I n i t i a l i z e s t o rage

353 nf = np . sum(np . i snan ( d i r i c h l e t v a l u e s ) )

354 K = ssp . l i l m a t r i x ( ( nf , n f ) )

355 A = ssp . l i l m a t r i x ( ( nf , n f ) )

356 F = np . z e r o s ( nf )
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357 G = np . z e r o s ( nf )

358 DK = np . z e r o s ( nf )

359 DA = np . z e r o s ( nf )

360

361 f o r k in t r i a n g l e s . keys ( ) :

362

363

364 # Form M from coo rd ina t e s o f v e r t i c e s and i nv e r t to r e cove r the

hat

365 # func t i on parameters f o r the cur rent t r i a n g l e

366

367 M = [ ]

368 l o c a l v e r t i c e s = [ ’ v0 ’ , ’ v1 ’ , ’ v2 ’ ]

369

370 f o r v in l o c a l v e r t i c e s :

371 M. append ( nodes [ t r i a n g l e s [ k ] [ v ] ] [ ’ coords ’ ] )

372

373 M = np . hstack ( [ np . ones ( ( 3 , 1 ) ) , np . array (M) ] )

374 Minv = np . l i n a l g . inv (np . array (M) )

375

376 # Compute the c en t r o i d

377 c = [ np . sum(M[ : , 1 ] ) / 3 . , np . sum(M[ : , 2 ] ) / 3 . ]

378

379

380 # Accumulate c on t r i bu t i on s to the s t i f f n e s s matrix

381

382 f o r r in range (3 ) :

383 f o r s in range ( r , 3 ) :
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384

385 i f ( ’ f r e e ’ in nodes [ t r i a n g l e s [ k ] [ l o c a l v e r t i c e s [ r ] ] ] .

keys ( ) and \

386 ’ f r e e ’ in nodes [ t r i a n g l e s [ k ] [ l o c a l v e r t i c e s [ s ] ] ] .

keys ( ) ) :

387

388 i = min ( nodes [ t r i a n g l e s [ k ] [ l o c a l v e r t i c e s [ r ] ] ] [ ’ f r e e

’ ] ,

389 nodes [ t r i a n g l e s [ k ] [ l o c a l v e r t i c e s [ s ] ] ] [ ’

f r e e ’ ] )

390 j = max( nodes [ t r i a n g l e s [ k ] [ l o c a l v e r t i c e s [ r ] ] ] [ ’ f r e e

’ ] ,

391 nodes [ t r i a n g l e s [ k ] [ l o c a l v e r t i c e s [ s ] ] ] [ ’

f r e e ’ ] )

392

393 K[ i , j ] −= Area ∗ np . dot (Minv [ 1 : , r ] , Minv [ 1 : , s ] )

394

395 # Accumulate c on t r i bu t i on s to the load vec to r

396

397 I = Area ∗ f e v a l ( c [ 0 ] , c [ 1 ] ) / 3 .

398 f o r r in range (3 ) :

399 i f ’ f r e e ’ in nodes [ t r i a n g l e s [ k ] [ l o c a l v e r t i c e s [ r ] ] ] . keys ( ) :

400 i = nodes [ t r i a n g l e s [ k ] [ l o c a l v e r t i c e s [ r ] ] ] [ ’ f r e e ’ ]

401 F[ i ] += I

402

403 # Apply the D i r i c h l e t cond i t i on through the weak form

404

405 # Fi r s t bu i ld up the func t i on D = sum( d i ∗ Grad Ph i i )
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406 i f ’D ’ in t r i a n g l e s [ k ] . keys ( ) :

407 gradD = np . z e r o s (2 )

408 f o r r in range (3 ) :

409 i f t r i a n g l e s [ k ] [ l o c a l v e r t i c e s [ r ] ] in t r i a n g l e s [ k ] [ ’D ’ ] :

410 gradD += nodes [ t r i a n g l e s [ k ] [ l o c a l v e r t i c e s [ r ] ] ] [ ’

d i r i ’ ] ∗ \

411 Minv [ 1 : , r ]

412

413 # Then accumulate in to DK

414 f o r r in range (3 ) :

415 i f ’ f r e e ’ in nodes [ t r i a n g l e s [ k ] [ l o c a l v e r t i c e s [ r ] ] ] . keys

( ) :

416 i = nodes [ t r i a n g l e s [ k ] [ l o c a l v e r t i c e s [ r ] ] ] [ ’ f r e e ’ ]

417 DK[ i ] += Area ∗ gradD . dot (Minv [ 1 : , r ] )

418

419 K += ssp . t r i u (K, 1 ) .T

420

421 r e turn K, F , DK

Listing C.1: Custom module containing function definitions for the FE assembly of

the 2D Poisson problem

1 from do l f i n import ∗

2

3 import numpy as np

4 import matp lo t l i b . pyplot as p l t

5 from mp l t o o l k i t s . mplot3d import Axes3D

6 import s c ipy . spar s e as ssp

7 import s c ipy . spar s e . l i n a l g as s s l
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8

9 import l ogg ing

10 l o gg ing . getLogger (”FFC”) . s e tLeve l ( l ogg ing .ERROR) # holds back f e n i c s

messages

11

12 nx = 21 # number o f nodes along x dimension

13 ny = 41

14 qord = 2

15 alpha = 25

16 i n t e r p d eg r e e = 6

17 x = np . l i n s p a c e (0 , 1 , ny )

18 y = np . l i n s p a c e (0 , 1 , ny )

19 X,Y = np . meshgrid (x , y )

20

21 utrue = (np . s i n ( 2 .∗ np . p i ∗X − ( 0 . 75∗np . p i ) ) ∗ \

22 np . s i n ( 2 .∗ np . p i ∗Y− 0 .75∗np . p i ) + 2) . reshape (ny∗ny )

23

24 ufunc = Express ion ( ’ ( s i n ( ( 2 . 0∗ pi ∗x [ 0 ] ) − ( 0 . 75∗ pi ) ) ∗ \

25 s i n ( ( 2 . 0∗ pi ∗x [ 1 ] ) − ( 0 . 75∗ pi ) ) ) + 2 ’ , degree=

in t e r p d eg r e e )

26

27 f = Express ion ( ’(−8.∗ pi ∗ pi ) ∗ ( s i n ( ( 2 . 0∗ pi ∗x [ 0 ] ) − ( 0 . 75∗ pi ) ) ∗ \

28 s i n ( ( 2 . 0∗ pi ∗x [ 1 ] ) − ( 0 . 75∗ pi ) ) ) ’ , degree=in t e r p d eg r e e

)

29

30 mesh1 = UnitSquareMesh (nx−1, ny−1, ’ l e f t ’ )

31 mesh2 = UnitSquareMesh (nx−1, ny−1, ’ l e f t ’ )

32 meshG = UnitSquareMesh (ny−1, ny−1, ’ l e f t ’ )
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33

34 mesh1 . coo rd ina t e s ( ) [ : , 0 ] = mesh1 . coo rd ina t e s ( ) [ : , 0 ] / 2

35 mesh2 . coo rd ina t e s ( ) [ : , 0 ] = (mesh2 . c oo rd ina t e s ( ) [ : , 0 ] / 2 ) + 0 .5

36

37 V1 = FunctionSpace (mesh1 , ’ Lagrange ’ , 1)

38 V2 = FunctionSpace (mesh2 , ’ Lagrange ’ , 1)

39 VG = FunctionSpace (meshG , ’ Lagrange ’ , 1)

40

41 d2v1 = dof to ver tex map (V1)

42 d2v2 = dof to ver tex map (V2)

43 d2vG = dof to ver tex map (VG)

44

45 v2d1 = ver tex to do f map (V1)

46 v2d2 = ver tex to do f map (V2)

47 v2dG = vertex to do f map (VG)

48

49 c l a s s I n t e r f a c e (SubDomain ) :

50 de f i n s i d e ( s e l f , x , on boundary ) :

51 t o l = 1E−14 # to l e r an c e f o r coord inate comparisons

52 r e turn abs ( 0 . 5 − x [ 0 ] ) < t o l

53

54 c l a s s outer boundary (SubDomain ) :

55 de f i n s i d e ( s e l f , x , on boundary ) :

56 t o l = 1E−14

57 r e turn on boundary and \

58 ( abs ( x [ 0 ] ) < t o l or abs ( 1 . 0 − x [ 0 ] ) < t o l or abs ( x [ 1 ] ) < t o l

or abs ( 1 . 0 − x [ 1 ] ) < t o l )

59
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60 de f g loba l oute r boundary (x , on boundary ) :

61 t o l = 1E−14

62 r e turn on boundary and \

63 ( abs ( x [ 0 ] ) < t o l or abs ( 1 . 0 − x [ 0 ] ) < t o l or abs ( x [ 1 ] ) < t o l or

abs ( 1 . 0 − x [ 1 ] ) < t o l )

64

65 bcG = Dir ichletBC (VG, ufunc , g l oba l oute r boundary )

66

67 sub domains1 = MeshFunction (” s i z e t ” , mesh1 , mesh1 . topology ( ) . dim ( ) − 1)

68 sub domains2 = MeshFunction (” s i z e t ” , mesh2 , mesh2 . topology ( ) . dim ( ) − 1)

69 sub domains1 . s e t a l l ( 5 )

70 sub domains2 . s e t a l l ( 5 )

71

72 i n t e r i o r s 1 = MeshFunction (” s i z e t ” , mesh1 , mesh1 . topology ( ) . dim ( ) )

73 i n t e r i o r s 2 = MeshFunction (” s i z e t ” , mesh2 , mesh1 . topology ( ) . dim ( ) )

74 i n t e r i o r sG = MeshFunction (” s i z e t ” , meshG , mesh1 . topology ( ) . dim ( ) )

75 i n t e r i o r s 1 . s e t a l l ( 0 )

76 i n t e r i o r s 2 . s e t a l l ( 0 )

77 i n t e r i o r sG . s e t a l l ( 0 )

78

79 i n t e r f a c e 1 = In t e r f a c e ( )

80 i n t e r f a c e 2 = In t e r f a c e ( )

81 outer = outer boundary ( )

82

83 i n t e r f a c e 1 . mark ( sub domains1 , 2)

84 i n t e r f a c e 2 . mark ( sub domains2 , 1)

85

86 outer . mark ( sub domains1 , 3)
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87 outer . mark ( sub domains2 , 3)

88

89 bc1 = Dir ichletBC (V1 , ufunc , sub domains1 , 3)

90 bc2 = Dir ichletBC (V2 , ufunc , sub domains2 , 3)

91

92 uG = Tria lFunct ion (VG)

93 vG = TestFunction (VG)

94 dxG = Measure (”dx”) [ i n t e r i o r sG ]

95 aG = − i nne r ( grad (uG) , grad (vG) ) ∗dxG(0 , metadata={ ’ quadrature degree ’ :

qord })

96 LG = inner ( f ,vG) ∗dxG(0 , metadata={ ’ quadrature degree ’ : qord })

97

98 b = assemble (LG)

99 A = assemble (aG)

100 bcG . apply (b)

101 bcG . apply (A)

102

103 uG = Function (VG) # Compute s o l u t i o n − de f au l t i s LU

104 s o l v e (A, uG. vec to r ( ) , b , ’ lu ’ )

105

106

107 uL = Tria lFunct ion (V1)

108 uR = Tria lFunct ion (V2)

109

110 vL = TestFunction (V1)

111 vR = TestFunction (V2)

112

113 B1 = np . z e r o s ( nx )
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114 B1[−1] = 1

115 B1 = ssp . kron ( ssp . eye (ny ) , B1) . todense ( )

116 B2 = np . z e r o s ( nx )

117 B2 [ 0 ] = 1

118 B2 = ssp . kron ( ssp . eye (ny ) , B2) . todense ( )

119

120 # Def ine Forms

121 ds1 = Measure (” ds ”) [ sub domains1 ]

122 ds2 = Measure (” ds ”) [ sub domains2 ]

123 dx1 = Measure (”dx”) [ i n t e r i o r s 1 ]

124 dx2 = Measure (”dx”) [ i n t e r i o r s 2 ]

125

126 a1 = − i nne r ( grad (uL) , grad (vL) ) ∗dx1 (0 , metadata={ ’ quadrature degree ’ :

qord }) − i nne r ( alpha ∗uL , vL) ∗ds1 (2 , metadata={ ’ quadrature degree ’ :

qord })

127 a2 = − i nne r ( grad (uR) , grad (vR) ) ∗dx2 (0 , metadata={ ’ quadrature degree ’ :

qord }) − i nne r ( alpha ∗uR,vR) ∗ds2 (1 , metadata={ ’ quadrature degree ’ :

qord })

128

129 A1 = assemble ( a1 ) ; bc1 . apply (A1) ;

130 A2 = assemble ( a2 ) ; bc2 . apply (A2)

131

132 g1 = Constant (0 )

133 g2 = Constant (0 )

134

135 G1 = assemble ( inner ( g1 , vL) ∗dx1 (2 , metadata={ ’ quadrature degree ’ : qord })

)

136 G2 = assemble ( inner ( g2 , vR) ∗dx2 (1 , metadata={ ’ quadrature degree ’ : qord })
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)

137

138 L1 = assemble ( inner ( f , vL) ∗dx1 (0 , metadata={ ’ quadrature degree ’ : qord }) )

139 L2 = assemble ( inner ( f , vR) ∗dx2 (0 , metadata={ ’ quadrature degree ’ : qord }) )

140

141 maxiter = 100

142 n i t e r = 0

143 t o l = 1e−6

144 e r r o r s = [ ]

145 e r r = 1

146

147 # I t e r a t e

148

149 whi le e r r > t o l and n i t e r < maxiter :

150

151 b1 = L1 − G1

152 b2 = L2 − G2

153

154 bc1 . apply ( b1 )

155 bc2 . apply ( b2 )

156

157 u1 = Function (V1)

158 s o l v e (A1 , u1 . vec to r ( ) , b1 , ’ lu ’ )

159 u2 = Function (V2)

160 s o l v e (A2 , u2 . vec to r ( ) , b2 , ’ lu ’ )

161

162 u1np = u1 . vec to r ( ) . array ( ) [ v2d1 ] . reshape (ny , nx )

163 u2np = u2 . vec to r ( ) . array ( ) [ v2d2 ] . reshape (ny , nx )
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164

165 uGnp = np . z e r o s ( ( ny , ny ) )

166 uGnp [ : , 0 : nx−1] = u1np [ : , 0 : −1 ]

167 uGnp [ : , nx : ] = u2np [ : , 1 : ]

168 uGnp [ : , nx−1] = 0 . 5∗ ( u1np [ : , −1 ] + u2np [ : , 0 ] )

169 uDD = Function (VG)

170 uDD. vec to r ( ) [ : ] = uGnp . reshape (ny∗ny ) [ d2vG ]

171

172 e r r = norm(uG. vec to r ( ) − uDD. vec to r ( ) , ’ l i n f ’ ) /norm(uG. vec to r ( ) , ’

l i n f ’ )

173 e r r o r s . append ( [ n i t e r , e r r ] )

174

175 U1 = assemble ( inner (u1 , vL) ∗ds1 (2 , metadata={ ’ quadrature degree ’ :

qord }) )

176 U2 = assemble ( inner (u2 , vR) ∗ds2 (1 , metadata={ ’ quadrature degree ’ :

qord }) )

177

178 G1 old = G1 [ v2d1 ] . copy ( )

179 G1. s e t l o c a l (np . dot (B1 .T, ( 2 . 0∗ alpha ∗np . dot (B2 , U2 [ v2d2 ] ) − np . dot (

B2 , G2 [ v2d2 ] ) ) .T) [ d2v1 ] )

180 G2. s e t l o c a l (np . dot (B2 .T, ( 2 . 0∗ alpha ∗np . dot (B1 , U1 . array ( ) [ v2d1 ] ) −

np . dot (B1 , G1 old ) ) .T) [ d2v2 ] )

181

182 n i t e r +=1

183

184 e r r o r s = np . array ( e r r o r s )

Listing C.2: Main code for solving the 2D Poisson problem using the auxiliary variable

optimized Schwarz method with my custom finite element assembly routines
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Appendix D

Unstructured mesh creation

through GMESH geometry files

1

2 // Def ine s i z e s and volume l im i t s

3 c o a r s e s i z e= 1000 ;

4 f i n e s i z e = 10 ;

5 x l = −2500;

6 xu = 2500 ;

7 y l = −2500;

8 yu = 2500 ;

9 z l = −2500;

10 zu = 2500 ;

11

12 // Points f o r base o f volume

13 Point (1 ) = {xl , yl , z l , c o a r s e s i z e } ;

14 Point (2 ) = {xu , yl , z l , c o a r s e s i z e } ;

15 Point (3 ) = {xu , yu , z l , c o a r s e s i z e } ;
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16 Point (4 ) = {xl , yu , z l , c o a r s e s i z e } ;

17

18 // Source re f inement

19 Point (5 ) = {0 ,0 ,0 , f i n e s i z e } ;

20

21 // Rece iver re f inement

22 point num = 6 ;

23 r e cv spac i ng = 10 ;

24 obsy = 0 ; // y o f f s e t f o r l i n e o f ob s e rva t i on s in x d i r e c t i o n

25 n re cv s = 201 ; // odd f o r symmetry

26 For i In {1 : n r e cv s }

27

28 Point ( point num ) = {0 , r e cv spac i ng ∗ i − r e cv spac i ng ∗( n r e cv s + 1) /2 ,

0 , f i n e s i z e } ;

29 // Pr i n t f (” po int number i s : %g , ” , newp) ;

30 // Phys i ca l Point (” Rece iver ”) = newp ;

31 point num += 1 ;

32

33 EndFor

34 // Lines f o r base o f volume

35 Line (1 ) = {1 ,2} ;

36 Line (2 ) = {2 ,3} ;

37 Line (3 ) = {3 ,4} ;

38 Line (4 ) = {4 ,1} ;

39

40 // Volume ex t ru s i on

41 Line Loop (5 ) = {4 , 1 , 2 , 3} ;

42 Plane Sur face (6 ) = {5} ;
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43 Extrude {0 , 0 , 2∗ zu} {

44 Sur face {6} ;

45 }

46

47 // Create boundary cond i t i on phy s i c a l s

48 Phys i ca l Sur face (” D i r i c h l e t ”) = {19 , 15 , 27 , 6 , 23 , 28} ;

49 Phys i ca l Volume(” wholespace ”) = {1} ; // without t h i s I get a 2D mesh

when I save ??

50

51 // Build re f inement around source and r e c e i v e r po in t s

52 Fie ld [ 1 ] = Attractor ;

53 Fie ld [ 1 ] . NodesList = {5:6+ n recvs −1};

54 Fie ld [ 2 ] = Threshold ;

55 Fie ld [ 2 ] . IF i e l d = 1 ;

56 Fie ld [ 2 ] . LcMin = f i n e s i z e ;

57 Fie ld [ 2 ] . LcMax = c o a r s e s i z e ;

58 Fie ld [ 2 ] . DistMin = 0 .00001 ;

59 Fie ld [ 2 ] . DistMax = 2000 ;

60

61 // Use minimum of a l l the f i e l d s as the background f i e l d

62 Fie ld [ 3 ] = Min ;

63 Fie ld [ 3 ] . F i e l d sL i s t = {2} ;

64 Background F ie ld = 3 ;

65

66 // Optimize meshing

67 Mesh . Optimize = 1 ;

Listing D.1: gmesh geometry file specifying the wholespace model with refinement

around the source and receiver locations
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Appendix E

Preprocessing script HDF5.py

1

2 import numpy as np

3 from do l f i n import ∗

4 import p i c k l e

5 import os

6

7 # Set the parameters f o r the problem

8 p = { ’ f i l ename ’ : ”wholespace mesh 437610e ” ,

9 ’ omega ’ : 2∗ pi ∗300 .0 ,

10 ’mu ’ : ( 4 .∗ pi ) ∗ 1e−07,

11 ’ sigma ’ : 0 . 01 ,

12 ’ I ’ : 1 . ,

13 ’ S ’ : 1 . ,

14 ’ xs ’ : [ 0 . , 0 . , 0 . ] ,

15 ’ yobs ’ : 100}

16

17 os . system ( ’ do l f i n−convert ’ + p [ ’ f i l ename ’ ] + ’ .msh ’ + p [ ’ f i l ename ’ ] +
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’ . xml ’ )

18 # Read in the mesh , phy s i c a l p r ope r t i e s , and boundary data

19 mesh = Mesh(p [ ’ f i l ename ’ ] + ” . xml” )

20 boundar ies = MeshFunction ( ” s i z e t ” , mesh , p [ ’ f i l ename ’ ] + ” f a c e t r e g i o n

. xml” )

21 earth = MeshFunction ( ” s i z e t ” , mesh , p [ ’ f i l ename ’ ] + ” phy s i c a l r e g i o n .

xml” )

22

23 # Set up the po int source

24

25 # Locate the source c e l l

26 s ou r c e p t = Point (0 , 0 , 0 )

27 bbt = BoundingBoxTree ( )

28 bbt . bu i ld (mesh )

29 s o u r c e c e l l = bbt . c ompu t e e n t i t y c o l l i s i o n s ( s ou r c e p t ) [ 0 ]

30

31 # Create source func t i on

32 s ou r c e func = MeshFunction ( ” s i z e t ” , mesh , 3)

33 s ou r c e func . s e t a l l ( 0 )

34 s ou r c e func . array ( ) [ s o u r c e c e l l ] = 1

35

36 # Add a sou r c e c e l l v o l ume to the parameter d i c t i ona ry

37 p [ ’ s ou r c e c e l l v o l ume ’ ] = Ce l l (mesh , s o u r c e c e l l ) . volume ( )

38

39 # Find the l im i t s o f the mesh

40 p [ ’ xl im ’ ] = (min (mesh . coo rd ina t e s ( ) [ : , 0 ] ) , max(mesh . coo rd ina t e s ( ) [ : , 0 ] ) )

41 p [ ’ yl im ’ ] = (min (mesh . coo rd ina t e s ( ) [ : , 1 ] ) , max(mesh . coo rd ina t e s ( ) [ : , 1 ] ) )

42 p [ ’ z l im ’ ] = (min (mesh . coo rd ina t e s ( ) [ : , 2 ] ) , max(mesh . coo rd ina t e s ( ) [ : , 2 ] ) )
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43

44 # Pick l e the parameters and save

45 p i c k l e . dump( p , open ( ” save . p” , ”wb” ) )

46

47 # Write the mesh and mesh func t i on s to an hdf5 f i l e f o r p a r a l l e l import

48 hdf = HDF5File (mesh .mpi comm() , p [ ’ f i l ename ’ ] + ” . h5” , ”w” )

49 hdf . wr i t e (mesh , ”/mesh” )

50 hdf . wr i t e ( earth , ”/ subdomains” )

51 hdf . wr i t e ( boundaries , ”/ boundar ies ” )

52 hdf . wr i t e ( source func , ”/ source ” )

53 hdf . c l o s e ( )

Listing E.1: Serial preprocessing script for subsequent parallel modeling code
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