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Abstract 

Modern Graphics Processing Units (GPUs) with massive number of threads and many-

core architectural components support both graphics and general purpose computing. 

NVIDIA’s compute unified device architecture (CUDA) takes advantage of parallel 

computing and utilizes the tremendous power of GPUs. The present study demonstrates a 

high performance computing (HPC) framework for a Monte Carlo simulation to determine 

design sea ice loads which is then implemented in both GPU and CPU (central processing 

unit). Results show a speedup of up to 130 times for the 4 Tesla K80 GPUs over an 

optimized CPU OpenMP (Open Multi-Processing)  implementation and a speedup of up to 

8 times for the 4 Tesla K80 over a single Tesla K80 GPU implementation. The elapsed time 

of the different implementations reduced from about 2.5 hours to 0.7 seconds. 
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CHAPTER 1 

 

Introduction 

Initially, high performance computing (HPC) was restricted to governments, militaries 

and university research. Now, a super computer can be created for anyone who needs 

performance analysis, computation and data processing capacity [1]. 

The development of general purpose graphics processing units (GPGPU) has been an 

innovative development for HPC. This method can be applied by using graphics processing 

units (GPUs) to analyze data, perform non-specialized calculations and accelerate 

algorithms that would traditionally be conducted by the central processing unit (CPU) [2]. 

A CPU acts as the brain of the computer system and contains few cores dedicated to the 

sequential serial part of the program, while a GPU is an electronic circuit unit made of 

thousands of cores, which are responsible for handling multiple tasks concurrently [3].  

GPUs have become a commercially attractive technology because these chips have the 

power to run projects that are computationally intensive. The powerful computational 

capabilities of GPUs stem from their vast available parallelism, which results in a 

significant speedup compared to conventional CPUs. In other words, the architecture of 

GPUs is designed such that most of the transistors are devoted to data processing rather 
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than data caching and flow control. A computer can be utilized with GPUs to execute 

massive concurrent computations and to achieve efficient implementation [4].   

  

1.1. Objectives 

When sea ice moves, it may collide with structures and create huge forces. When wind, 

current and kinetic energy are considered, this interaction becomes more complex. 

Therefore, engineers estimate probabilistic distributions of sea ice parameters in order to 

simulate the interaction between sea ice and offshore structures. 

 The present scenario assumes that when sea ice interacts with vertical sided structures in 

its way and creates huge forces, either the ice or structures may fail. While this failure is 

important to consider, the present study focuses on the simulation of the interaction model 

in order to find the maximum force between sea ice and a vertical sided structure. This is 

because, sometimes, there may not always be a chance for interaction such as when there 

is no structure in the path of sea ice. Therefore, a sufficient number of years (e.g. 1,000,000 

years) should be simulated such that convincing results are achieved at the design 

probability levels of interest. 

The Monte Carlo simulation, which is very robust and relatively simple to implement, has 

been used in this study  to evaluate the annual maximum force between sea ice and a vertical 

faced offshore structure when wind, current and kinetic energy are present. In other words, 

it uses probabilistic methods to simulate sea ice-structure interactions, rank the annual 

maximum loads, and plot them in lognormal scales 
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Monte Carlo simulations are a broad class of numerical algorithms for a large and 

complex problem where it is impractical or impossible to obtain analytical solutions, as it 

uses repeated sampling to determine the properties of certain phenomena. Monte Carlo 

simulations are ideally suited to GPU implementation and have been found to offer 

significant speedup over single CPU implementation in various lines of research [5]. 

The present study uses a HPC framework to compare Monte Carlo simulations run on 

CPUs and GPUs to determine which is better suited for evaluating the sea ice loads on a 

vertical structure. For achieving a high level of confidence with this simulation technique, 

this scenario was simulated over 1,000,000 years in the compute unified device architecture 

(CUDA) environment.  

As this experiment involves different probability distributions for its parameters, a 

random number generator (RNG) algorithm is of great importance. Therefore, the Monte 

Carlo simulation, as a probabilistic framework for repeated random sampling, is a good fit 

in this study for generating random numbers. Furthermore, a CUDA programming 

environment provides specific libraries for RNG, which are useful for implementing this 

complex scenario using the Monte Carlo simulation on GPU to achieve HPC. The goal of 

this research was to analyze the performance results between GPUs and CPUs when both 

are processing the same algorithm, and to interpret the speedup of the optimized 

implementations. 

 

 

 



 
 

5 
  
 

 

1.2. Research Questions & Thesis Outline 

The present study aims at comparing GPU- and CPU-based implementation of Monte 

Carlo framework to calculate design sea ice loads on offshore structure with a vertical face 

at the waterline. 

 Therefore, the following research questions will be addressed: 

 What is the simulation process for the sea ice load application? 

 What is a sufficient time period in which the simulation should be run? 

 What type of algorithm is best fitted to this research? 

 If the speedup is non-linear, what are the factors for this? 

To answer these questions, the chapters of this thesis have been arranged as follow: 

 

Chapter 2 describes the necessary background such as GPU Vs CPU, Monte Carlo 

simulation, CUDA programming, and sea ice load which help situate this research. Next, 

Chapter 3 explains the methodology used in this study to evaluate the sea ice load 

applications. Chapter 4 discusses the results and the conclusion of this study. Finally, 

Chapter 5 explores the potential of this research and areas for future study. 
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CHAPTER 2 

 

Background 

2.1. GPU Vs. CPU 

One of the differences between a GPU and a CPU is the way they process tasks. For 

instance, a CPU with fewer cores is responsible for the sequential part of the program, while 

a GPU consists of thousands of cores designed for performing multiple tasks concurrently 

[3]. In order to compare the performance of a GPU and a CPU, one needs to come up with 

a ratio illustrating which implementation is faster. Therefore, measuring the elapsed time 

of the implementation helps to evaluate the performance of an implemented algorithm. For 

example, speedup is a ratio that can be calculated by dividing the elapsed time of a parallel 

algorithm over the sequential algorithm [7]. 

When parallel computing involves large-scale data, having the highest speedup becomes 

increasingly important for scientific computations [11]. Speedup of a parallel computation 

is defined as  
𝑇𝑠

𝑇𝑝
 , where 𝑇𝑠 is the sequential time and 𝑇𝑝 is the parallel time to solve the 

problem using p processors [71]. 
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 For instance, an article related to the GPU accelerated Monte Carlo simulation of 

Brownian motors dynamics with CUDA had a speedup of about 3,000 compared to that of 

a typical CPU. Furthermore, there is no optimization in this study for comparing a GPU 

efficient code against a CPU optimized implementation [13]. 

There are many studies that have been done to accelerate the speedup of GPUs over CPUs. 

Recently, an article reported a speedup of up to 426 times over a MATLAB (matrix 

laboratory) implementation of quadratic discriminant analysis by using CUDA application 

using a GPU. The authors also compared the performance of GPU against the optimized 

CPU and achieved a speedup of up to 23 times [14].  Performance analysis has been done 

on the Finite-Difference Time-Domain (FDTD) method on a GPU, and a speedup of up to 

64 times has been achieved. In this study, theoretical prediction of high performance agreed 

with the experimental result, which suggested a suitable optimization method for the best 

performance. This indicates that GPGPU has potential for improving the processing time 

of highly parallel algorithms [15]. For example, research has been done to demonstrate the 

performance benefit of the GPGPUs for simulating a ship operating in pack ice, and found 

that GPUs have the potential to reduce computational time significantly [16]. Therefore, 

one way to understand the high performance result of a GPU over multicore CPUs is to 

execute a performance analysis and apply optimization techniques for both GPUs and 

CPUs. [17].  

Based on a previous study, the present study will investigate whether there is a significant 

speedup of a standard code for the Monte Carlo simulation of sea ice load on a GPU by 
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using CUDA programming over CPU implementations. The significant speedup that came 

after using different types of GPUs expands on the range of problems solvable by using 

probabilistic simulations [13]. 

 

2.2. Monte Carlo Simulations 

 The Monte Carlo simulations, as a broad class of computational algorithms, are used in 

many different areas [19]. Monte Carlo simulations are used when we have some 

applications with uncertain inputs, and for high dimensional problems with many degrees 

of freedom. The stages used to improve performance in Monte Carlo simulations are fairly 

simple, flexible, and highly scalable, and can reduce complex and large models to a set of 

basic interactions which could be implemented efficiently [20]. A typical Monte Carlo 

simulation consist of four steps: (1) defining a domain of possible inputs; (2) generating 

random number; (3) performing a deterministic computation on the environmental inputs; 

and (4) aggregating the results. For instance, these steps apply for calculating the value of 

π. First, consider a circle inscribed in a unit square. Second, generate uniformly scatter dots 

over the square. Next, count the scatter dots inside the square and the circle. Finally, the 

ratio of number of dots inside the circle and the square is approximately equal to π/4 ( 

𝐴𝑟𝑒𝑎 𝑜𝑓 𝐶𝑖𝑟𝑐𝑙𝑒

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒
=

π r2

4r2
=

π 

4
) and multiply the result by 4 to estimate π [21].  
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 Monte Carlo methods are also helpful for simulating real-life random system and 

deterministic numerical computations [22]. 

 Mathematical optimization is one of the indisputable aspects of Operation Research and 

Industrial Engineering. Monte Carlo techniques have been applied for providing the 

optimal design, scheduling and handling of industrial systems. This method is also helpful 

for the direct simulation of the process of neutron transport in physical processes, and for 

the study of chemical kinetics by means of stochastic simulation [23][24]. 

Monte Carlo methods are also effective in probability theory, statistical physics and 

computer science for studying the properties of random structures such as the Ising model, 

the Potts model and classical models of ferromagnetism [25]. 

 There are many problems in computer science which are considered very difficult or 

defined as NP (nondeterministic polynomial time) problems in the computational 

complexity class [26]. Randomized algorithms, which means the use of a random number 

generator (RNG) in an algorithm, are very important in tackling those difficult 

computational problems through the use of the Monte Carlo method [27].  

As the Monte Carlo method is simple and applicable, it continues to be one of the most 

useful achievements in scientific computing. Maybe the next generation of this method will 

bring important tools for solving more complex optimization problems in statistics, 

mathematics, engineering, and the physical and computer sciences. 

 

 

https://en.wikipedia.org/wiki/Non-deterministic_Turing_machine
https://en.wikipedia.org/wiki/Polynomial_time
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2.3. CUDA Programming 

Compute unified device architecture (CUDA) is a parallel computing platform and 

programming interface that is an appropriate environment for using Monte Carlo 

simulation. The CUDA program have a basic flow such as initializing an array of data in 

the host, copying the array from the host to the CUDA device, operating on the array of 

data by CUDA device, and copying the array back to the host. 

CUDA random number generator (CURAND) and Thrust are C++ template libraries in 

the CUDA toolkit. These libraries include containers (e.g. thrust::host_vector and 

thrust::device_vector), iterators (pointer to array elements) and algorithms (e.g. reduction, 

transformation, sums and sorting) are suitable for conducting Monte Carlo simulation using 

GPU [29]. A common example of the Thrust library in CUDA is to estimate the value of 

the constant π using a Monte Carlo simulation as mentioned in previous section [30].  

A simple example of using CUDA programming is the addition of two vectors and storing 

the result in a third vector. The following code explains the main part of the program for 

adding two vectors in CUDA. Allocating the memory on the GPU by cudaMalloc () for 

three arrays, filling the array ‘x’ and ‘y’ on the CPU, copying the array ‘x’ and ‘y’ to the 



 
 

11 
  
 

 

GPU, copying the array ‘z’ back from the GPU to the CPU by cudaMemcpy (), 

displaying the results, cleaning up the memory allocated on the GPU by cudaFree() are 

the parallel steps required for adding two vectors on CUDA [75]. 

#define N 10 

 int main( void ) { 

 int x[N], y[N], z[N];  

 int *device_x, *device_y, *device_z; 

 HANDLE_ERROR( cudaMalloc( (void**)&device_x, N * sizeof(int) ) );  

 HANDLE_ERROR( cudaMalloc( (void**)&device_y, N * sizeof(int) ) );  

 HANDLE_ERROR( cudaMalloc( (void**)&device_z, N * sizeof(int) ) );  

for (int i=0; i< N;i++){ 

x[i]=-i; y[i]=y*i;} 

 HANDLE_ERROR( cudaMemcpy( device_x, x, N * sizeof(int), 

cudaMemcpyHostToDevice ) ); 

 HANDLE_ERROR( cudaMemcpy( device_y, y, N * sizeof(int), 

cudaMemcpyHostToDevice ) );  

 add<<N,1>>( device_x, device_y, device_z );  

 HANDLE_ERROR( cudaMemcpy( z, device_z, N * sizeof(int), 

cudaMemcpyDeviceToHost ) );  

// display the results  

for (int i=0; i<N;i++){ 

printf( “%d+%d=%d\n”,x[i],y[i],z[i]); } 

 cudaFree( device_x );  

 cudaFree( device_y );  

 cudaFree( device_z );  

return 0;} 
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In another studies, Researchers also took advantage of the computational performance of 

GPUs to simulate rarefied flows involving real gas effects by internal relaxation and 

chemical reactions using the direct simulation Monte Carlo (DSMC). This method achieved 

HPC which partially alleviated the main limitation of long computational run-times [31].  

Another application of GPU-based Monte Carlo simulation in CUDA programming 

evaluated light-skin diffuse reflectance spectra for Multi-Layered Media. The speedup for 

this case was 71.19 times and varied across the wavelengths [32]. 

Another study implemented the Dose Planning Method (DPM) Monte Carlo calculation 

package in CUDA on a Tesla C1060 GPU, and reached a speedup of up to 6 times against 

a 2.27GHz Xeon CPU processor [33].  

Study of sea ice scenarios has gained more importance lately, and there are many 

researchers working on the simulation of sea ice load. However, while a new chapter of 

knowledge in this field has been opened, there is still much to learn about the 

implementation of sea ice load scenarios especially in an efficient and high speed 

environment, which is needed to achieve HPC. This will be discussed in the  next section. 

 

2.4. Sea Ice Load  

Engineers work with different types of environmental inputs to estimate probabilistic 

distributions of sea ice parameters in order to simulate the interaction between sea ice and 

offshore structures. Monte Carlo simulations have been applied to model the impact forces 



 
 

13 
  
 

 

between sea ice and offshore structures. However, these previous applications did not run 

the Monte Carlo simulation on a GPU [34]. 

Sea ice load scenarios are complex and difficult to simulate because of numerous 

unpredicted situations that happen in an environment.  For instance, the type of ice, 

structures and environmental factors vary over the course of the simulation. Also, finding 

an efficient way to simulate sea ice load scenarios is time consuming with engineering tools 

(e.g. MATLAB). Therefore, it is significant to come up with an idea to implement this 

complex model in a parallel environment such as CUDA application programming 

interface and use a robust Monte Carlo algorithm to achieve HPC. 
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 CHAPTER 3 

 

Problem Statement 

In the present study, the interaction between sea ice and vertically sided structures are 

simulated, with the goal of finding the maximum annual force over 10,000 years while 

considering wind, current and kinetic energy in the calculation. Each force involves 

different random parameters that require a RNG algorithm to calculate their appropriate 

distributions. Therefore, using an efficient algorithm, such as Monte Carlo, helps to 

simulate the complex sea ice load scenario. This experiment was simulated over 1,000,000 

years rather than 10,000 years, in order to find the maximum annual force between sea ice 

and a vertical structure corresponding to a probability of 1 in 10,000. Therefore, a sufficient 

number of years should be simulated such that stable results are achieved at the design 

probability levels of interest. As this experiment is difficult and time consuming, it would 

be effective to use a parallel environment such as, CUDA interface programming on GPU, 

and to calculate the speedup over CPU implementations. 

 

Sea ice is not a uniform sheet of ice, but is a complex surface, and has many characteristics 

that should be considered in each experiment. When ice moves and interacts with a 
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structure, it can create huge forces [35]. Therefore, understanding the characteristics of ice 

is important before the loads can be simulated. 

 

3.1. Sea Ice 

Sea ice, frozen ocean water, forms, grows and melts in the Arctic Ocean. On average, sea 

ice covers about 25 million square kilometers of the earth, or about two-and-a-half times 

the area of Canada, which is shown in Figure 3.1 [36]. In summer, the sea ice will break 

into distinct pieces, or floes that separate from or converge into each other in the ocean as 

shown in Figure 3.2. Therefore, floe diameters range from several meters to a hundred 

kilometers [37].  

Ice progressively melts and continuously deforms as wind and current pushes it south, 

resulting in higher drift speeds. Therefore, ice is critically important in many contexts, such 

as understanding its characteristics at the molecular level, its influences on climate, 

lifespan, and the people who live in the Arctic, and its interactions with natural features or 

man-made structures [38] [39].  

 



 
 

16 
  
 

 

 

Figure 3.1 Sea Ice [Credit: National Snow and Ice Data Center]  

Extent: (A) At the End of summer, and (B) at the End of Winter 

 

 

 

 

 

 

 

 

 

 

 

(A) (B) 

Figure 3.2: Sea Ice. (Photo: Pablo Clemente-Colon/NOAA) 
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3.2. Sea Ice Growth 

 

Sea ice has a complex structure resulting from its formation history and amount of salt. Ice 

loading begins with the formation of small separate crystals. As freezing continues in calm 

water, the fragments freeze together to form a continuous sheet through the winter. When 

weather becomes warmer, the first-year ice begins to melt. In the fall, only the thickest 

classes of first year ice will survive the summer melt period to become second year ice. In 

this condition, ice will remain until the following winter when it grows and is classified as 

multiyear ice [40]. 

There are several different classes of ice thickness which is related to the sea ice geometry 

and will be discussed in next section.  

 

3.3. Properties of Sea Ice Floes 

Researchers are interested in the geometry of sea ice due to a number of practical 

applications, such as transportation in arctic environments and design of offshore structures 

intended to survive in the presence of ice. Therefore, it is important to clarify ideas about 

floe diameters and ice thickness to propose techniques for measuring them [38] [40]. 
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3.3.1. Ice Thickness 

In the old days, the only method which was used to obtain ice thickness was to drill through 

the ice with human-powered auger and use a measuring stick through the hole to get the 

thickness. Recently determination of the ice thickness has assumed considerable 

importance in the view of the transportation into Arctic where the sea is covered with a 

layer of ice permanently. For instance, commercial vessels may be able to break through 

the ice which is accumulated over a period of years. Old sea ice has been found relatively 

hard and brittle and is much easier to break than is ice of recent region [41] [42] [43]. It 

became an interesting issue to be able to quickly and accurately measure the ice thickness 

and determine if the sea ice is relatively recent formation or whether it is a multi-year ice.  

3.3.2. Floe Diameter 

Sea ice floes break continuously into smaller pieces, and in the cold season they are at the 

same time frozen together into larger pieces. Floe size distribution shows statistical 

regularity based on random floe break-up mechanism. The characteristic of floe size can 

be defined from its surface area [38] [44]. 

The question is then how to formulate the breakage probability that would lead to the exact 

form of the statistical distribution. Logarithmic normal and exponential distributions should 

be treated as specific cases, depending on the formulation of breakage probability. 
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Until many more distributions are obtained at different regions and time, there is no point 

in speculating what the most common distribution is or what the range of possibilities might 

be. 

3.3.3. Ice Strength 

In most cases ice strength is problematic. Ice strength is related to a combination of factors 

such as ice thickness, temperature of the ice and the amount of salts in the ice. Ice strength 

on a large scale can be dominated by fracture processes and natural flaws and this creates 

the “size effect”. Based on the target, evaluation of equation for the nominal crushing 

pressure of the sea ice, small scale strengths were the only available input [44].  

The ice pressure equation does have the ‘strength coefficient” CR in it which is given in 

different values for different environments. For a deterministic analysis, CR  could be 

estimated by the approach suggested by ISO 19906 with respect to the region as Table 3.1 

Table 3.1: Ice Strength 

Region 𝑪𝑹 Value 

Arctic 2.8 

Sub-Arctic 2.4 

       

       Temperate 

1.8 

1.9 
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Based on the probabilistic distribution of the sea ice floe and its strength, in this present 

document, CR  will follow uniform distribution with 1.8 and 2.8 MPa as lower and upper 

bounds. 

Disintegration of the sea ice into floes will influence its large-scale geophysical properties. 

Geometry of sea ice can play an important role the way the ice deforms in response to 

forces applied by wind and currents. Understanding the geometry of floes and how these 

geometries change during the annual cycle has stimulated research into the physical process 

and implementation of ice interactions [38] [40]. 

3.4. Ice Movement  

It is hard to understand that ice moves, given that it is solid, but it can and it does. Sea ice 

can move at speeds and in surge condition is known to move at up to three-hundred 

kilometers per year [76].  

Satellites and marine radars are good to map general ice movement. For floe size and ridge 

length, aerial photography has been used extensively in the past and still gives excellent 

information to find the specific distribution of the floe interaction rate [45][46].  

The user can select one of the two methods to determine floe encounter rate per year or floe 

interaction rates based on an average number of interaction per day as specified by user or 

calculated based on the distribution of concentration, floe diameter and floe velocity.  
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In the second case, it is possible to estimate mean from the number of floes of a given type 

that has interaction with the structure during a period of time. For each year, the number of 

interaction is sampled from a gamma distribution. 

3.5. Simulating Sea Ice Loads 

The present scenario is based on an offshore structure that encounters many ice floes 

during its lifetime, and therefore needs to be designed to withstand the possible ice forces 

[47]. 

Previous simulations of sea ice loads only considered the interaction level between sea 

ice and vertical sided structure [18]. The present study improves upon this previous 

research by additionally considering the forces generated by wind, current, and kinetic 

energy. Therefore, the objective of this work is to develop a complex model for this sea ice 

load application to see how GPUs can be utilized for a large and complex system. 

This section describes the random nature of the environmental forces and how the sea ice 

load is calculated. There exist different types of parameters based on the sea ice 

characteristics, offshore structures and surrounding environment. More than one approach 

is possible to estimate the characteristics of ice loads, and there are arguments in favour of 

all of them. In this experiment, one of the common approaches is used as suggested in ISO 

19906.  

Once the interaction between sea ice and a vertical sided structure starts, the initial kinetic 

energy of the ice floe is decreased by ice failing at the ice-structure interface and driving 
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force is added from surrounding ice and effects from wind and currents. The initial kinetic 

energy may be calculated as follows: 

 

𝑘0 =
1

2
 𝑚𝑣2                                                    (1) 

 

Where m is mass in kg and v in m/s is the impact velocity. The remaining kinetic energy 

after each meter crushed may be calculated by subtracting the dissipated crushing energy 

and adding the floe driving forces.  

Once the kinetic energy is depleted, the floe is no longer crushed. The impacting floe will 

eventually rotate and clear around the structure, either because of the initial eccentricity 

unequally loading across the back or a change in drift direction.  

The maximum load is determined for the part of the floe that is crushed, and likely to 

originate from the thickest or widest part of the floe and ridge. In this study, ridges are 

modeled as triangular shape with top width equal to 5 times the ridge thickness and they 

are perpendicular to the flow direction. Each second floe has still one ridge, but the ridge 

should be placed somewhere in the floe based on the uniform distribution between the floe 

start and end as shown in Figure 3.3. Ridge thicknesses are based on user-defined 

parameter, which means we were not able determine specific distributions for their 

thicknesses. Therefore, one needs to define the level of ridge thickness by picking up a 

random number in each specific interval with considering of ice cumulative distribution 

functions. 
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Table 3.2 shows the fixed and the distributed parameters needed to calculate the 

maximum force between ice and an offshore structure.  

In this scenario, user-defined cumulative distribution functions are used for ice thickness, 

ridge thickness, and impact velocity as shown in Table 3.3, 3.4 and 3.5 respectively.  

Table 3.2: Model parameteres 

Parameter Symbol Unit Unit Value or Distribution Type 

Structure Width Ws m  80 

Level Ice Thickness h M User-Defined 

Ridge Thickness  m User-Defined 

Ridge Length  m Uniform (lower=50 (m), upper=300 (m)) 

Floe Encounter 

Rate 

 floes
/year 

Gamma (mean=50 (m) , Std=30, lower=10 

(m), upper=150 (m)) 

Ocean Surface 

                  Level-Ridge Sea Ice Structure 

Figure 3.3:  Level-Ridge Sea ice Interaction with Vertical Structure 
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Table 3.3: Level Ice 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ridge Encounter 

Rate 

 ridge
/ year 

Every Second Floe 

Floe Diameter D m Exponential (mean=300, Std=100, lower=10, 

upper=inf) 

Ice Strength CR MPa Uniform (lower=1.8, upper=2.8) 

Mass 𝑚 kg  

Impact Velocity v m/s User-Defined 

Wind Velocity u10 m/s Weibull(mean=6, Std=3, a=6.774 (m) , 

b=2.1013 (m)) 

Current Velocity 𝑢𝑤 𝑚/𝑠 3.3 % of Wind Velocity 

Bin (m) Cumulative 

< 3 0.0% 

3 - 5 6.0% 

5 - 6 27.0% 

6 - 8 51.0% 

8 - 9 74.0% 

9 - 12 87.0% 

12 - 15 96.0% 

15 - 18 97.5% 

18 - 21 99.5% 

21 - 24 99.9% 

24 - 27 100.0% 

Bin (m) Cumulative 

 1.5 0.0% 

1.5-2 10.2% 

 2-3 25.0% 

 3-4 56.1% 

 4-5 76.7% 

 5-7 89.1% 

 7-8 93.7% 

 8-9 97.3% 

 9-10 98.5% 

 10-11 99.7% 

11-13 99.9% 

13-14 100.0% 

Table 3.4: Ridge Thickness 
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3.5.1. Load on Structure 

Consideration is given to the ice types likely to be present, as thicker ice features may 

arrive over time. The force due to wind and currents are generally much smaller than 

ridging forces associated with surrounding ice, but may play a role when surrounding ice 

is not present. When considering the wedges of rubble behind the impacting floe, the wind 

and current forces on the rubble field are included with the driving force [48]. Given: 

                            𝐹𝑤𝑖𝑛𝑑 = 𝐴𝑓𝑙𝑜𝑒𝜌𝑎𝐶10𝑢10
2                        (𝟐) 

                  and    𝐹𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝐴𝑓𝑙𝑜𝑒 𝜌𝑤𝐶𝑤𝑢𝑤
2                            (𝟑) 

the load on structure due to the surrounding ice based on ISO 19906 is modeled as: 

 

Speed (m/s) Cumulative 

0 0 

0- 0.1 0.2 

0.1- 0.2 0.6 

0.2- 0.3 0.8 

03- 0.4 0.9 

0.4- 0.5 0.95 

0.5- 0.6 0.975 

0.6- 0.7 0.99 

0.7- 0.8 0.995 

0.8- 0.9 0.999 

0.9- 1.0 0.9995 

1.0- 1.1 0.9999 

   1.1-1.2 1 

Table 3.5: Impact Velocity 
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                              𝐹 = 𝐹𝑤𝑖𝑛𝑑 + 𝐹𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝐹𝑖𝑐𝑒                             (𝟒) 

The distribution of wind speed follows a Weibull distribution and the current velocity is 

assumed 3.3 percent of the wind velocity [6]. 

In equation (2) 𝐴𝑓𝑙𝑜𝑒(𝑚2) is floe surface area, 𝜌𝑎 (𝑘𝑔/𝑚3) is air density, C10=0.01 is 

drag coefficient, and 𝑢10 (𝑚/𝑠) is wind velocity. While in equation (3), 𝐴𝑓𝑙𝑜𝑒  (𝑚2) is floe 

surface area, 𝜌 𝑤 (𝑘𝑔/𝑚3)  is sea water density, Cw =0.004, and 𝑢𝑤(𝑚/𝑠) is current 

velocity. In ISO 19906, the ice ridging force on the back of a feature due to surrounding 

ice is approximated as: 

                                            𝐹𝑖𝑐𝑒 = 𝑤𝐷                                               (𝟓) 

where  𝐷 is the ice feature diameter or width and 𝑤 is the ridging force per unit width. 

For a default, the model implemented in ISO 19906 (as suggested by K.Croasdale) is 

recommended: 

                                           𝑤 = 𝑅ℎ1.25𝐷−0.54                                 (𝟔) 

where  𝑅 = 4 (𝑀𝑁/𝑚), h is the ice thickness acting on the thicker ice feature which  

uniformly distributed between 0.5 and 1 (m) and D  is the width of the thicker ice feature 

expressed in meters. 

Following equations 2, 3, 5, and 6 the load on the structure can be calculated (equation 4) 

for a designed model which is shown in Figure 3.4 [48]. 
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Figure 3.4: Driving Force on Thick Floe Due to Surrounding Ice 
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CHAPTER 4 

Methodology 

The interaction model of sea ice and a vertical sided structure was conducted in a parallel 

environment using a GPU-Based Monte Carlo simulation. This chapter introduces the 

techniques used in this scenario and describes how these techniques accelerate the process 

of evaluating sea ice load on structures.  

When running a probabilistic scenario, one needs to: (1) consider each ice type and year; 

(2) determine the number of interactions; (3) update the input distributions appropriate for 

the features interacting with the structure; and (4) apply the appropriate model to determine 

the maximum force during each interaction. These steps may vary somewhat depending on 

the ice type and the model chosen [48]. 

4.1. Probabilistic Environment 

One process for implementing and designing a model of a real system is numerical 

computer simulation [49]. In order to understand the statistical behavior of the system, it is 

possible to conduct numerical experiments on the model. Random values with a specific 

probability distribution can be used for a sampling experiment [50]. For example, Monte 
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Carlo simulations are a broad class of numerical algorithms that can be helpful for solving 

complicated systems and predicting future behavior of the model [22]. 

4.1.1 Monte Carlo Framework  

 A Monte Carlo simulation is a stochastic process for solving complex problems. It requires 

knowledge in a wide range of fields, such as probability to describe the random process, 

statistics to analyze the data, computational science to efficiently implement the algorithms, 

and programming to formulate and solve the problem of interest [22]. 

The present study involves different types of fixed and distributed parameters, as 

mentioned in Table 3.2. These distributed parameters follow specific probability 

distributions and are dependent upon the use of random numbers. The Monte Carlo 

simulation approaches the problem by generating random numbers, evaluating functions 

and aggregating the result based on the simulated data [29]. Generally, a Monte Carlo 

simulation is well suited for modelling sea ice loads as it allows for capturing the random 

nature of the parameters and processes involved. The goal is to find the maximum annual 

force between sea ice and a vertical structure corresponding to a probability of 1 in 10,000. 

Therefore, a sufficient number of years should be simulated such that stable results are 

achieved at the design probability levels of interest (e.g. 1,000,000). 

By using the Monte Carlo technique and breaking the problem into smaller components,  

the implementation of each interaction model is simplified. Based on the number of 

simulated years, one can use individual simulations or a series of iterations. 
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 In each iteration, there are several types of distributions that need to be calculated based 

on the generated random numbers. The overall modeling framework is outlined in Figure 

4.1 and calls for the use of the Monte Carlo technique to determine the extreme loads 

between ice and structure as shown in Figure 4.2. Before specifying the distribution and 

values for the model input parameters, the time periods used to characterize variations in 

ice conditions through the year must be defined. Any number of time periods can be used, 

 

 

Figure 4.1:  Model Framework 
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and the periods can be of fixed or variable durations. It may be appropriate in some analyses 

to ignore periods that do not contribute to the design load level. Once the annual maximum 

loads are determined, they are sorted and ranked so that the design value associated with a 

specified probability of exceedance can be assessed.  

 

 

Figure 4.2: Monte Carlo Simulation Framework 
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Not only is it necessary to have  a probabilistic environment to calculate maximum annual 

force between sea ice and a vertical structure over 1,000,000 years, but using a parallel 

environment also improves the performance result. 

4.2. Parallel Environment 

As parallel computing has gained more importance in programming, engineers recognize 

the future need of new processing architecture. This untapped market would be very 

interested in the powerful processing architecture offered by parallel algorithms. 

 Parallel algorithms are implemented in parallel computing environments, and are 

strongly dependent on the computer architecture for which they are designed [52]. In the 

parallel computing environment, specific problems may be solved using the associated 

software and libraries. Programming tools, performance tools and a debugger are included 

in this software to improve efficiency. The programming tools are used to develop 

algorithm that would exchange data during its execution, and match its underlying 

programming design. Performance tools are helpful for understanding and improving the 

parallel implementations, and also support the synchronization and communication of the 

various components. Finally, the debugger is an effective tool for finding bugs of a program 

[53].  

The parallel computing environment benefits from GPU technology. The next two 

sections explain how the parallel processor GPU is used for implementing a parallel 

algorithm. 
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 4.2.1. GPU Implementation of Parallel Algorithm 

 

In 1999, NVIDIA introduced GeForce 256 as the world’s first GPU with a sophisticated 

single-core design rather than a chip-scale parallel processor. The architecture of the GPU 

not only has a powerful graphics engine, but also has a high number of parallel processors. 

This is increasingly important because these processors can be applied to very large and 

complex problems [54]. Programming thousands of parallel threads in a GPU is difficult 

when the characteristics of the processors are not well understood. It is, however, even 

more challenging to evaluate the performance bottlenecks of a GPU for improving 

application performance. Fortunately, the architecture of the modern GPU has improved in 

a different way than that of the CPU and has become a general purpose architecture for 

scientific computing [55]. 

The Monte Carlo method has become more interesting as computers have become more 

powerful. As the main concern of this experiment involves random number generation 

(RNG) for a complex sea ice scenario, it is necessary to use an efficient parallel algorithm 

on a GPU to achieve optimal processing time. Importantly, GPUs can increase the speed of 

parallel processes and improve the performance results for different applications. 

Computers send each process to different processors, with each performing a calculation in 

parallel. Upgrading a system to a modern GPU provides additional power in the simulation 

process. A parallel algorithm divides that problem into discrete and smaller components 

that can be solved concurrently in multiple processors [56]. 
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4.3. TESLA GPU Accelerator 

The present study uses the CUDA environment on the NVIDIA Tesla K80 GPU in order 

to accelerate HPC when simulating ice load scenarios. This GPU chip allows large data 

sets to be processed, and accelerates algorithms up to 10 times faster than optimized CPU 

implementations. The NVIDIA Tesla K80 GPU has a dual slot computing module, meaning 

that it has two identical Tesla CK210 GPUs with 2496 processor cores each. This chip is 

designed for servers and has 24 GB (12 GB each) memory as shown in Figure 4.3 [51]. 

However, if the error correcting code (ECC) is turned on, only 22.5 GB are available for 

the user, and the memory is reduced by 6.25 %. The core clock of a GPU is the actual speed 

on a video card. The boost clock is another characteristic specific to Tesla GPUs. When the 

number of GPU cores and memory clock rates increase, and thermal headroom and 

sufficient power are available, application performance improves and ensures maximum 

utilization [57]. In Tesla K80, the GPUs in each block have a base core clock of 560 MHz, 

and the boost clock varies from 562 MHz to 875 MHz. If the boost clock is enabled 

automatically, each GPU works independently, which can be useful for a scenario with 

many headrooms. 
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Figure 4.3: Tesla K80 Block Diagram 

 

To improve performance, the present scenario uses 4 Tesla K80 GPUs which contain dual 

cores, meaning that there are 8 cores in total.  

 

4.5. CUDA  

In November 2006, NVIDIA had an opportunity to bring GPUs into the mainstream by 

introducing a programming interface, which it dubbed CUDA. This was an attempt to make 

the programming environment of GPUs more accessible to programmers. The CUDA 

interface uses standard C language to implement an algorithm on GPU without having any 

knowledge about graphics programming using OpenGL, DirectX, and shading language. 



 
 

36 
  
 

 

CUDA has achieved great progress in the computer software industry by moving from 

serial to parallel programming [14]. This programming environment can take a simple 

model of data parallelism into a programming model without the need for graphic 

primitives. In other words, the CUDA environment makes the GPU look like another 

programmable device [59]. 

4.5.1. Parallel Computing On CUDA Environment 

In order to fully leverage the computational resources of the GPU with minimal effort, 

CUDA must scale hundreds of cores and thousands of threads [60]. CUDA can use both 

CPU and GPU as separate devices to do simultaneous computations without contention 

from memory resources. Serial portions of applications run in the CPU or the host while 

parallel portions of code are executed on the GPU or the device as computational kernels. 

CUDA threads are extremely lightweight in terms of the creation of overhead and switching 

[61]. Thousands of CUDA threads can be created in just a few cycles. As a result, there is 

no creation overhead to be amortized over the execution of a kernel. So the kernel consists 

of just a few lines of code, resulting in performance gains. One of the basic tenants of 

achieving good performance in CUDA is to exploit the nature of the lightweight thread by 

launching kernels with thousands of concurrent threads [62].  

Each thread has an ID and when threads run the code, they transfer different works and 

control decisions. While threads are executing independent works, they can pass their 

elements to a function, and store the result of an output array by reusing thread ID [60]. 

The present scenario assigns one thread to each year. Therefore, there are one million 
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threads responsible for calculating the maximum force between sea ice and a vertical 

structure in parallel. 

The Monte Carlo simulation applies in each thread to generate random numbers and pass 

them to the appropriate function, which is defined in a specific kernel in order to calculate 

the maximum annual force. 

The next section discusses GPU optimized libraries, data structure and algorithms such 

as CURAND and CUDA Thrust, which accelerate the process of this implementation. 

4.5.2. CUDA Libraries 

The CUDA toolkit as a free application contains GPU accelerated libraries such as Fast 

Fourier Transform (CUFFT), Basic Linear Algebra Subroutines (CUBLAS), Sparse Matrix 

Routines (CUSPARSE), Dense and Sparse Direct Solver ( CUSOLVER), Random Number 

Generation (CURAND), Image & Video Processing Primitives (NPP), NVIDIA Graph 

Analytic Library, Template Parallel Algorithm & Data Structure (Thrust) and CUDA Math 

Library [63]. 

The present scenario shows the application of the two most important libraries in CUDA. 

The most important part of many scientific and functional applications is the generation of 

random numbers [64]. The NVIDIA CUDA random number generator library (CURAND) 

focuses on the efficient generation of pseudo-random and quasi-random numbers [65]. It 

has a flexible interface which allows the user to apply random number generator (RNG) 

algorithms either in the CPU or the GPU. Furthermore, CURAND includes two pieces: a 
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device (GPU) header file and a library on the host (CPU). For a device generation of 

random numbers, the actual work occurs on the GPU [66] [67]. The user can copy random 

numbers back to the host for further processing or call on their own kernels to use the 

random numbers. However, for the CPU generation of random numbers, all of the work is 

done on the host, which would be stored in host memory [65].  

The CUDA toolkit includes another library named Thrust that is a C++ template. Thrust 

is a high-level interface that can imulate the basic algorithms on the GPU. It defines two 

vector templates: host vector and device vector. Thrust contains data parallel primitives 

such as sort, scan, and transform so the programmer can freely write just a few lines of code 

and reduce the operations significantly with regards to multi-core CPUs, and create the 

most efficient implementation [68]. 

There are general guideline principles for using a GPU-Based Monte Carlo simulation 

especially in a CUDA environment [29]. Not only is this method of simulation efficient for 

the present scenario, it is also very robust.  
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The following are some of the examples of kernel functions in the CURAND to calculate 

the floe encounter, floe diameter, and wind speed based on the Gamma, Exponential, and 

Weibull distribution respectively.  

 

 

//Floe Encounter Rate/Year  
__device__ user_data_t ran_gamma (curandStateMRG32k3a_t 
*localState, const user_data_t a, const user_data_t b){ 
 
 int n = ceil(a); 
 user_data_t sum = 0; 
 for (int i = 0; i < n; i++) 
 { 
  user_data_t r = ran_exp(localState, b); 
  sum += r; 
 } 
 return sum; 
} 
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// Floe Diameter 
 
_device__ user_data_t ran_exp(curandStateMRG32k3a_t 
*localState, const user_data_t mean) 
{ 
 
 user_data_t r = curand_uniform(localState); 
 
 return (-log(r)*mean);  
} 

// Wind Speed 

__device__user_data_t ran_weibul(curandStateMRG32k3a_t*localState, 

const user_data_t a,const user_data_t b) 

{ 

user_data_t r = curand_uniform(localState); 

return a * pow(-log(r), (1 / b)); 

} 
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 As mentioned earlier, level ice thickness, ridge thickness, and impact velocity are user-

defined parameters that could be implemented by the CURAND library. The following is 

the implementation of level ice thickness on CUDA: 

 
// Calculate Level Ice Thickness 
__device__ user_data_t 
UserDefineLevelIceThickness(curandStateMRG32k3a_t 
*localState){ 
 
 user_data_t r = curand_uniform(localState); 
 user_data_t res = 0.0; 
 
 if (r >= 0.0&&r <= 0.102) 
  res = RandomBetween(localState, 1.5, 2); 
 else if (r > 0.102&&r <= 0.25) 
  res = RandomBetween(localState, 2, 3); 
 else if (r > 0.25&&r <= 0.561) 
  res = RandomBetween(localState, 3, 4); 
 else if (r > 0.561&&r <= 0.767) 
  res = RandomBetween(localState, 4, 5); 
 else if (r > 0.767&&r <= 0.891) 
  res = RandomBetween(localState, 5, 7); 
 else if (r > 0.891&&r <= 0.937) 
  res = RandomBetween(localState, 7, 8); 
 else if (r > 0.937&&r <= 0.973) 
  res = RandomBetween(localState, 8, 9); 
 else if (r > 0.973&&r <= 0.985) 
  res = RandomBetween(localState, 9, 10); 
 else if (r > 0.985&&r <= 0.997) 
  res = RandomBetween(localState, 10, 11); 
 else if (r > 0.997&&r <= 0.999) 
  res = RandomBetween(localState, 11, 13); 
 else if (r > 0.999&&r <= 1) 
  res = RandomBetween(localState, 13, 14); 
 
 return res; 
} 
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The UserDefineLevelIceThickness function picks random numbers from specific 

intervals based on Table 3.2, which is defined for ice thickness. The following 

RandomBetween function is responsible for generating random numbers in specific 

intervals, using the CURAND library to accelerate the process of this simulation. 

 

 

 

 

 

 

 

// Random Between 
 
__device__ user_data_t RandomBetween(curandStateMRG32k3a_t 
*localState, user_data_t smallNumber, user_data_t bigNumber) 
 
{ 
 
 user_data_t diff = bigNumber - smallNumber; 
 user_data_t u = curand_uniform(localState); 
 
 return (u* diff) + smallNumber; 
} 
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The following code shows how maximum annual force is calculated using the Monte 

Carlo simulation using the CUDA Thrust library on a single GPU. Random numbers are 

generated in parallel and data is stored on the GPU directly. Function evaluations and 

aggregation are done on the GPU using parallel constructs and highly GPU-optimized 

algorithms. 

 

 

 

 

 

int main() 

{ 

size_t N = 1,000,000;  //Number of years 

thrust::device_vector<yearResult> maxAnnualForce(N);  

 

thrust::counting_iterator<unsigned int> index(0); 

  

thrust::transform(index,index+N,maxAnnualForce.begin(),MaxForce

s())  

thrust::host_vector<yearResult> m = maxAnnualForce; 

} 
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4.5.3. CUDA advantages 

  One of the advantages of CUDA over a legacy GPGPU is that generic operations are 

mapped onto the graphics pipeline in CUDA memory access which makes CUDA more 

flexible. The low learning curve of CUDA makes life easier for those programmers who 

are familiar with standard programming languages such as C. Furthermore, it is not required 

to have knowledge about graphics API. CUDA does not hide the graphics API from the 

programmer’s view, but it has been designed in both software and hardware to perform a 

different route to the computational resources. In CUDA, threads can access any memory 

location, while cooperating within each block. The threads also load data into shared 

memory. This operation results in significant bandwidth reduction and avoidance of 

performance penalty [69]. In summary, there are several key abstractions in CUDA which 

allow a programmer to easily and efficiently harness the computational power of the GPU 

for non-graphics applications. The first abstraction is that CUDA makes the programmer 

serve many lightweight threads, since over a trillion threads can be launched in the CUDA 

kernel simultaneously. For instance, the present scenario uses one thread for each year, 

which means one million threads are working in parallel to calculate the maximum annual 

force between sea ice and a vertical structure. 

  The negligible overhead associated with thread creation and switching permits the 

granularity parallelism to be very small without impacting performance. This results in a 

very simple data decomposition model and unique thread ID, which is used to access array 

elements and to perform computations on these elements. CUDA has a simple two-level 
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hierarchy of concurrent threads. Threads are batched together in blocks, such that the 

independence of thread, blocks gives the hardware great flexibility in scheduling threads, 

which results in excellent scaling using this simple execution model [70]. 

 

4.6. Experiment Procedures 

The present study focuses on the calculation of the maximum annual force between sea 

ice and a vertical sided structure using Monte Carlo simulation on the GPU. Monte Carlo 

simulations are ideally suited to GPU implementation and have been found to offer 

significant speedup over single CPU implementation in various lines of research [5]. For 

achieving a high level of confidence with this simulation technique, this scenario was 

simulated over 1,000,000 years in the CUDA environment.  Large and parallelizable 

environment of this scenario call for the use of a GPU, with thousands of cores, in order to 

perform many calculations simultaneously. 

This method examined the sea ice load in 5 cases starting from 10,000, 50,000, 100,000, 

500,000, and 1,000,000 years, and assigned one CUDA thread for each year. Therefore, 

1,000,000 threads are working to calculate the maximum annual force between sea ice and 

a vertical sided structure over 1,000,000 years. 

The present study has certain variables in the model with certain probability distributions. 

After performing sampling experiment upon the model, it is required to create a stochastic 

simulation of the system behavior which is called Monte Carlo simulation. Therefore, RNG 

algorithm could be used to generate random number for the specific probability distribution 
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of the parameter. RandomBetween is one of the example of using CURAND device 

application programming interface (API) to generate pseudo random numbers using 

MRG32k3a, which is one of the high quality random number generator.  

 After defining the number of years, the thrust library in CUDA uses its 

device_vector to call maxAnnualForce(N), and then floe encounter, floe diameter, 

wind speed, level ice thickness, ridge thickness, and impact velocity are calculated using 

the CURAND library as discussed in section 4.5.2. Thrust uses its counting_iterator 

to define the index of a thread and to transform the result of each thread’s calculation 

from device memory (device_vector) to the host memory (host_vector). Therefore the 

threads will be emptied after transforming each result to the host memory, and the Monte 

Carlo framework will be updated in each year to generate random numbers based on the 

ice characteristics. 

The simulation has been done by the GPU, multi-GPU, serial CPU, and parallel CPU (Open 

MP) implementations.  The types of available GPU, multi-GPU, and CPU used in this study 

are Tesla K80, 4 Tesla K80s, and Intel Xeon R E5-2630 respectively. The reason for 

choosing this GPU was that, the GPU Tesla K80 allows large data sets to be processed, and 

accelerates algorithms up to 10 times faster than optimized CPU implementations. If the 

boost clock is enabled automatically, each GPU works independently, which can be useful 

for this scenario with many headrooms in the workload. 

The goal of this study is not only to find the maximum annual force for the sea ice on an 

offshore structure, but to interpret the behavior of the GPU and the multi-GPU against the 

optimized CPU implementations, which will be explained in the next chapter. 
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CHAPTER 5 

Results & Discussion 

5.1. Performance Results 

The present study used large scale data, a probabilistic framework and parallel computing 

environment to achieve a high speedup. There are three types of speedups: sub-linear, linear 

and super-linear as shown in Figure 5.1 [74].  

 

 

Figure 5.1: Speedup Diagram 
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There are some factors which might change the speedup of the implementation in this study. 

First, it is noteworthy that different GPUs need to communicate to transfer data between 

cores, and if the communication cost of the problem is large, achieving even linear speedup 

would be impossible [71]. However, using different ways of memory utilization causes a 

reduction in performance, because multiple GPUs distribute the application’s data on 

among their processors. Finally, by having heterogeneous devices with different 

capabilities, one should not expect to have a linear speedup, meaning the speedup is equal 

to the number of processors. 

A comparison happens when there are optimized versions of both implementations on 

GPUs and CPU. Therefore, speedups are given for those optimized versions of 

implementations on both GPUs and CPU. Figure 5.2 shows a speedup of up to 8 when 

comparing an optimized implementation of 4 GPU Tesla K80 against a single GPU Tesla 

K80. It also demonstrates a speedup of up to 130 for 4 Tesla K80 GPUs against an 

optimized CPU Open MP implementation.  

Figure 5.3 shows that the elapsed time of different implementations is reduced from about 

2.5 hours to 0.7 seconds. These implementations include 4 Tesla K80 GPUs, a single Tesla 

K80 GPU, serial CPUs, and a parallel CPU (Open MP). The computational time for 4 GPUs 

is approximately the same as 1 GPU for 10,000 years, because the number of threads is less 

than the total number of CUDA cores. Therefore, as expected, the present study did not use 

the full efficiency of the cores on the GPUs. However, when considering 50, 000 years and 
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more, the computation time for 4 GPUs was less than for a single GPU because it did not 

use the full efficiency of the cores on the GPUs. 

 

 

Figure 5.2: Speed Up Of Multi GPU over CPU Open MP and Single GPU 
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5.2. Conclusion 

In this report, the implementation of a model for determining the maximum annual force 

between sea ice and a vertical structure within a probabilistic framework is discussed. A 

Specific scenario with fixed and distributed parameters was selected for demonstrative 

purpose. Based on our assumption for ice parameters, significant differences in load 

calculation can result and these factors are not necessarily straightforward. In general, the 

Figure 5.3: Elapsed Time for Different Implementations 
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use of a probabilistic method such as the Monte-Carlo simulation, allows the engineering 

designer to understand these factors better [60] [70]. 

Load calculation between sea ice and an offshore structure is a major concern for marine 

engineers which needs further development and validation for other types of scenarios such 

as considering different types of sea ice types and structures. In some cases, there is 

considerable scatter, based on limited test data and the model’s fit to environmental inputs.  

 Actual structures and sea ice in nature tend to have irregular and complex shapes and an 

assumption of their shape may not be sufficient and accurate. It would be very difficult but 

helpful to find full-scale information and investigate possible factors, such as impact of 

different types of sea ice on structures or the development of methods for ice load 

calculation. 

However, a computer engineer focuses on available data and tries to find an appropriate 

simulation for each scenario. Therefore, finding efficient algorithms and numerical 

processes which are compatible with such large data like the Monte-Carlo simulation help 

to get more accurate result. 
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CHAPTER 6 

Future Research 

The present study demonstrates a significant computational speedup for complex 

simulation of the sea ice load. The question now becomes how to achieve even better 

speedup and performance results. First, it is known that running a Monte Carlo simulation 

requires a long execution time, but using powerful computers with recent GPUs decreases 

the computation time of the optimized implementation. Next, understanding the basic idea 

of performance in a parallel environment is required. For instance, it is possible to improve 

throughput of the program by running the computation many times in many available 

processors. Although it takes a lot of work for the programmer to run an efficient code on 

multi-processors, it is worthwhile to get a substantial speedup for individual jobs. 

Therefore, it is possible to run the computation faster than before and measure the speedup 

and efficiency at the end. Finally, one can achieve a massive size up for a computation and 

run the computation on larger problems. One needs to measure the efficiency of 

computation and use a weak scaling test to see how large a problem one can efficiently run. 

For instance, the present scenario runs the program from 10,000 to 1,000,000 years. It 

should be clear that one can use any combination of methods to run the project faster in a 

parallel environment [71]. 
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The present study only focused on one complex scenario which was the interaction 

between ridge-level sea ice and a vertical offshore structure when wind, currents, and 

kinetic energy are involved. There will be other factors that cause this interaction to be 

different than before. It is helpful to be familiar with the different characteristics of sea ice 

and explore efficient ways such as the Monte Carlo simulation to implement different 

scenarios. With the help of the performance analysis explained in the result section, one 

can improve an implementation by running the computation on a large scale, or with many 

processors. This can be helpful in making an efficient implementation and reaching a 

significant speedup. Also, finding a way to predict the efficiency of future scenarios by this 

implementation would help to save more time and energy. For example, when estimating 

the speedup of 4 GPUs based on the simulation’s behavior, it is possible to predict what 

happens if there are more GPUs. Throughput is one of the key elements in performance 

analysis. If we consider n number of computations in a problem, how much faster can one 

run the project? This can be calculated by dividing the number of computation to unit times. 

If a programmer designs a problem by independent computations, throughput can be 

increased by running them alongside each other simultaneously, which is limited only by 

the number of processors [72]. The present scenario contains a huge number of 

computations making it difficult to estimate the throughput of the code. Therefore, it is 

possible that this research can be continued in the future. The other method in performance 

analysis is to calculate the efficiency of the implementation with many processors that can 

be obtained by 𝐸 =
𝑆 

𝑃
 , where𝑆 is speedup and 𝑃 is the number of available processors [72]. 
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If 𝑃 = 1, it means we have 100 % efficiency. Therefore, improving the computational 

efficiency on the GPU, increases the throughput and speedup. Estimating the efficiency of 

the code will present opportunities for future research. With the help of this research and 

performance analysis, future studies related to parallel algorithms on GPUs will become 

much easier to work with and can usher in a new chapter of high performance computing 

in this era. 
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