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Abstract 

 

     This thesis presents an analytical and numerical framework for the unified probabilistic 

assessment of wind reserves with a focus on the applications of wind generation in islanded 

microgrids. A multivariate nonparametric kernel density estimation algorithm is proposed 

to generate probabilistic models of a site’s wind resource, electrical demand and the 

performance of installed wind generation. These models are numerically combined to 

evaluate the capability of wind generation to act as a dynamic reserve by predicting its 

performance when used for demand response, secondary generation and frequency 

regulation in an islanded microgrid. The proposed modeling framework captures 

multivariate cross-correlation, nonstationary environmental and load behavior, as well as 

multimodality in their underlying probability distributions. A case study is conducted using 

field data from Cartwright in order to validate the proposed algorithms. The case study 

results include probabilistic predictions of wind generation effectiveness for varying load 

profiles and generation capacity. PLEXIM simulation software is used to implement a 

model microgrid to demonstrate the integration of wind generation and its regulatory 

capabilities. The proposed algorithm has applications in power system planning and 

operation, and it provides probabilistic data for use in energy management and optimization 

of microgrids. 
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Chapter 1: Introduction 

 

     Wind energy is a significant and increasing component of global electricity generation. 

Continuing concerns regarding climate change, air pollution and the future availability of 

fossil fuels are influencing the global electricity market towards an increased contribution 

from renewable energy. Advances in the electrical and mechanical wind turbine assemblies 

(including larger, more efficient and cheaper designs), research into energy storage 

technology, continued improvements in the design and control of power electronic 

converters as well as steady improvements in electrical machinery are continually 

improving the practical and economic feasibility of wind generation. In general, a wind 

generation installation falls into two major categories – transmission connected (where the 

wind energy output is connected to a large grid through transmission infrastructure) and 

islanded (where the wind energy supplies a local distribution grid). Transmission-

connected systems are generally in the form of large wind farms, operated by industry to 

supply energy to utilities. Islanded wind energy systems are used to provide energy to 

remote communities that are isolated from the transmission system.  

     Transmission-connected wind generation is a relatively mature field, with large wind 

farms being constructed throughout the windier regions of the world. However, a 

considerable fraction of the world population remains isolated from transmission grids 

instead being supplied by islanded microgrids – smaller electricity distribution systems 

which cannot access transmission infrastructure. The installation of wind generation into 
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these islanded microgrids presents a unique set of technical challenges. The lack of 

transmission-level connection requires the microgrid to fully supply the load-side active 

and reactive power demand. Suboptimal design has a magnified effect on the economic 

performance, power quality and reliability of islanded microgrids. Advances in wind 

generation has made it cost and performance-competitive with conventional generation in 

transmission-interconnected systems. The economic benefit of wind energy in islanded 

microgrids is maintained - the high cost of fuel transportation and reduced efficiency of 

smaller, distribution scale generators offsets the technical challenges inherent to the system 

topology.  

     The installation of wind energy into islanded microgrids is defined by its applications 

within the larger system. Power-electronic interconnected wind generation has fast active 

and reactive power ramping capability, leading to applications in microgrid frequency and 

voltage regulation. Islanded microgrids are especially susceptible to contingencies 

requiring this regulatory action due to a lack of the stabilizing influence of the transmission 

grid. In addition, many microgrids have highly variable demand profiles due to intermittent 

commercial and industrial loads, such as mines, processing plants or mills. Therefore, wind 

generation is also well-suited as a dynamic reserve for demand response and peak shaving. 

However, the chaotic and intermittent nature of wind generator output requires 

considerable engineering effort with respect to microgrid integration. Planning the 

integration of wind generation into an islanded microgrid requires algorithms that predict 

power system performance during any reasonable operating condition. The demand profile 

and wind energy availability must be modeled to allow optimization of system 
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configuration. Current research in this field focuses on deterministic and probabilistic 

modeling, where techniques such as machine-learning algorithms and statistical tools are 

applied for demand and wind power forecasting to predict future system behavior [1]-[5]. 

These methods are best suited for short term planning of existing systems as opposed to the 

assessment of long-term reserve capability. Machine learning is computationally expensive 

and unreliable during uncommon conditions that differ from previously extracted features.  

     The drawbacks of deterministic modeling can be addressed by probabilistic approaches. 

Probabilistic power system planning estimates the probability of various system 

contingencies through analysis of the space of possible system behavior. Some preliminary 

research has been conducted in this area, including probabilistic demand forecasting [2] 

and studies on the effects of wind-based demand response on existing transmission systems 

[3], [5]. However, none of the previous studies focused on developing a probabilistic model 

combining demand profile and wind power availability for demand response and frequency 

regulation in islanded microgrids. A unified probabilistic framework for the probabilistic 

assessment of wind reserves for applications within islanded microgrids is needed to 

address these deficiencies. The proposed methodology will be validated using analytical 

and numerical simulations. As a final method of validation, a case study using field data 

from an islanded microgrid is conducted to evaluate the use of wind generation as a 

dynamic reserve, including its probabilistic performance and physical implementation 

within the existing electrical generation and distribution system.   
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1.1 Thesis Objectives  

 

     The continued push towards the implementation of renewable generation in 

combination with advances in microgrid control and operation technology has created a 

need for addition research in the integration of wind reserves into islanded microgrids. This 

thesis seeks to provide improved probabilistic wind reserve assessment algorithms for use 

in islanded microgrids, including advanced multidimensional wind resource models, 

probabilistic wind reserve assessment techniques, studies into microgrid topologies and 

control, as well as a case study which validates the utility of the proposed methodologies. 

The overarching objective is to provide an analysis and modeling framework for the 

probabilistic prediction of the performance of an islanded microgrid when wind generation 

is installed as a dynamic reserve, allowing analysis of the feasibility of wind as well as 

providing a starting point for system optimization.  

1.2 List of Publications 

The following publications are related to work included within this thesis: 

[1] Little, M., Rabbi, S.F, Pope, K. and Quaicoe, J, “A Novel Probabilistic Assessment of 

Wind Reserves for Demand Response and Frequency Regulation in Islanded Microgrids.” 

In IEEE IAS Annual Meeting, Cincinnati Ohio, October 2nd-5th, 2017.  
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[2] Little, M. and Pope, K., "Performance Modeling for Wind Turbines Operating in Harsh 

Conditions", International Journal of Energy Research, Early Access, Published August 

17th, 2016 

[3] Little, M. and Pope, K "Modeling Wind Turbine Performance with Recursive 

Parameter Estimation", in CSME International Congress, Kelowna, BC, June 26th-29th, 

2016. 

[4] Little, M. and Pope, K., "Frequency Domain Analysis for the Statistical Assessment of 

Wind Resources", in CCECE, Vancouver, Canada, May 15th-18th, 2016. 
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1.3 Thesis Organization 

      

     This thesis is organized as a series of Chapters, each covering a separate aspect of wind 

reserve assessment and its application into islanded microgrids. Literature surveys are 

included within each individual Chapter to improve the compartmentalization of the thesis 

and allow a reader to conduct a more focused study into each aspect of the overarching 

theme of wind reserve assessment. Chapter 1 introduces the thesis and includes the thesis 

objectives and organization. The remainder of the thesis is organized as follows: 
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- Chapter 2 presents a novel multidimensional probabilistic wind resource modeling 

framework. Existing wind resource modeling techniques are reviewed, including 

Weibull, nonparametric and multivariable mixture models. Deficiencies in these 

methods are identified and addressed by the development of a time-variant, 

multivariate nonparametric probabilistic model that includes the effects of both 

wind velocity and air density. Both time and frequency-domain analysis techniques 

are used to identify statistically significant nonstationary behavior within the site 

wind regime, allowing probabilistic models to be created that maintain accuracy 

throughout the modeling period.  The developed modeling framework is validated 

using sample data and shown to produce a superior probabilistic fit in comparison 

to existing techniques, providing probabilistic predictions of wind power density, 

wind turbine output and the likelihood of various environmental contingencies.  

- Chapter 3 presents a novel wind reserve assessment algorithm for use in islanded 

microgrids. The modeling methodology presented in Chapter 2 is extended to the 

analysis of electrical demand data. The demand profile is probabilistically 

organized, identifying the base, secondary and peak demand including its 

probabilistic time-variance. The previously developed wind resource model is then 

combined with this demand profile using a novel probabilistic algorithm that 

identifies the time-variant probability of adequate wind reserves for applications 

such as frequency regulation, demand response and peak shaving. The information 

provided by this modeling algorithm is shown to be fundamentally different from 

standard deterministic approaches and has applications in power system planning 

and microgrid operation.  
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- Chapter 4 presents a review of the analytical and numerical modeling of islanded 

microgrids. The nature of distributed generation, microgrid topologies and the 

principle of islanding is reviewed. Subsequently, microgrid operation and control 

techniques including grid forming, grid synchronization and the interconnection of 

distributed generators are investigated and implemented within a PLEXIM 

simulation environment. The use of droop-based microgrid support using power 

inverters is also reviewed with a focus on using wind energy as a dynamic reserve 

for microgrid stabilization. The interconnection topologies for various wind turbine 

designs are overviewed, with the Direct-Drive PMSG wind turbine identified as the 

optimal topology for use in islanded microgrids. The control and grid connection of 

this turbine design is investigated, including back-to-back converter control, LCL 

power filters and DC Link voltage stabilization. The simulation environment 

presented in this Chapter is designed for use in evaluating the performance of 

dynamic wind reserves, allowing site-specific case studies to be conducted.  

- Chapter 5 conducts a case study in probabilistic wind reserve assessment using data 

from Cartwright, a remote community in Labrador. As an islanded microgrid, 

Cartwright’s unique demand and wind resource profiles are modelled using the 

algorithms and methods presented in Chapters 2 and 3 to evaluate the ability of 

wind generation to act as a dynamic reserve for demand response, peak shaving, 

microgrid frequency regulation and/or microgrid voltage regulation. Significant 

time-variance in the probabilistic wind reserve is identified and correlated with 

seasonal and diurnal cycles. The effects of different wind turbine designs and 
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capacity amounts are also investigated, producing a time-variant probabilistic 

power balance model which allows quantification of the resultant wind reserve. 

- Chapter 6 concludes the case study presented in Chapter 5 by implementing a model 

of Cartwright’s microgrid in a PLEXIM simulation environment. Wind energy is 

used to implement demand response, droop-based frequency regulation and voltage 

regulation using the control and simulation topology presented in Chapter 4. In 

addition, the power electronic based control of a direct-drive PMSG wind turbine 

is implemented to demonstrate the required interconnection topology for wind 

energy installation. The simulation environment verifies the wind reserve 

applications presented in the previous Chapters, validating the utility of the 

probabilistic assessment algorithm by demonstrating the design applications when 

implemented in islanded microgrids.  

- Chapter 7 concludes the thesis, reviewing the thesis contributions and presenting 

avenues of future investigation.  
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Chapter 2: Analysis and Probabilistic Modeling of Wind 

Resources 

2.1: Introduction 

 

     Wind energy a significant and increasing component to global renewable generation. 

Concerns of climate change, air pollution and fossil-fuel availability is influencing 

continued wind turbine installation. Additionally, advances in wind turbine design 

(including size and efficiency), energy storage technology and power electronics are 

continually improving the practical and economic feasibility of wind generation. The 

installation of grid-connected wind energy systems (WES) falls into two major categories: 

transmission connected (where the wind energy output is connected to a large grid through 

transmission infrastructure) and islanded (where the wind energy supplies a local 

distribution grid). Transmission-connected systems are generally in the form of large wind 

farms, operated by industry to supply energy to national utilities. Islanded wind energy 

systems are used to provide energy to remote communities that are isolated from the 

transmission system. The economic benefit of islanded wind energy is magnified by the 

high cost of fuel transportation, causing increased financial viability and reducing 

environmental impacts.  

     The development of islanded wind energy systems (IWES) carries a unique set of 

challenges. The lack of transmission-level connection requires the IWES to fully supply 

the load-side active and reactive power demand. Suboptimal design has a magnified effect 
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on the performance of the IWES.  The time-variant, intermittent wind resource must be 

accurately modelled and compared with demand. Probabilistic contingencies must be 

evaluated to ensure reliable system operation and the performance of IWES must be 

predicted throughout the life of the system to allow design and control optimization. At a 

fundamental level, IWES design and optimization requires an accurate, probabilistic model 

of the time-variant site wind resource capable of predicting wind turbine power output 

throughout operation. 

 

2.2: Wind Resource Modeling – Overview 

 

          Wind resource modeling is the process of determining the statistical properties of site 

wind observations and predicting their effects on wind turbine performance. Wind resource 

modeling is conducted using varying methodologies with the intent of optimizing the Wind 

Energy System (WES) design. Pre-feasibility studies [1]-[6] are conducted by simulating 

system profiles (including generation, storage and demand modeling) to determine the 

economic and practical feasibility of wind generation installations. A very wide range of 

potential WES designs exist [7, 8], including both wind-only renewable generation, hybrid 

wind / solar, wind / hydro as well as more esoteric options such as wind / biomass and solar 

/ biomass. Each WES design presents unique challenges with respect to grid connection, 

system configuration and design optimization. The WES design process requires a detailed 

model of system performance.  This is accomplished through component modeling [9] 
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followed by system design, simulation and optimization [10], [11]. Using this method, the 

economic and technical behavior of system components are input into a series of 

optimization equations and performance constraints. Conditions such as renewable 

fraction, unmet load, storage requirements and system capital cost are used to evaluate the 

viability and performance of the WES.  Recently, advanced optimization techniques such 

as genetic algorithms, artificial neural networks and fuzzy logic have been used to obtain 

an optimal system design [11]-[13]. While the performance of these optimization 

algorithms is generally sufficient, a common limitation is the lack of an accurate simulation 

of each hybrid system’s performance over the evaluation interval.  

     At a coarse level, wind energy atlases [15], [16] detail global wind energy potential, 

suggesting regions worthy of further investigation. Probabilistic models such as the 

Weibull Distribution [17]–[20], approximate the long-period wind statistics, with 

parameters selected using either probabilistic (maximum-likelihood [21], percentile 

estimation [22]) or direct (least-squares) estimation algorithms. The model estimates 

annual energy production and the capacity factor of an installed wind turbine. Additional 

techniques such as Fractional Weibull distribution modeling [23] and distribution 

suitability analysis [24, 25] fit site-specific distributions that represent non-Weibull 

behavior. This type of single-distribution wind resource modeling is widely used for initial 

site selection and feasibility analysis. However, additional environmental variables such as 

air density and Reynolds number influence wind turbine performance, inducing significant 

model error. Bivariate wind / density distribution models [26]-[28] correctly assume a 

correlation between wind velocity and air density, producing a more accurate estimate of 



12 

 

wind turbine annual energy production. These models can be used to predict wind turbine 

performance given knowledge of their aerodynamic characteristics.  

 

2.2.1: Wind Turbine Behavior 

 

     Wind turbines are non-linear, multivariate systems with varying performance depending 

on local aerodynamic condition (turbulence, wind shear and wake effects, etc.). The effects 

of these conditions are difficult to measure, exhibiting time-variance and multivariate 

interaction. It is not feasible to construct an operational process model that includes 

parameters representing all operational variables. When modeling a site’s wind resource, 

major effects are attributed to wind velocity, air density, the wind turbine’s mechanical 

rotation speed and the associated mechanical torque. The former two factors influence the 

energy available – the latter define operating regions where this energy can be safely 

extracted. The interaction between these variables must be modeled to allow air density 

performance correction, analysis of wind shear and turbulence effects and eventual 

modeling of wind turbine electrical characteristics based on aerodynamic performance.  
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Rotor dynamics formulation 

 

     The total power available from the wind is calculated by the total kinetic energy passing 

through the turbine within a given time interval. The available power is  

𝑃 =
1

2
𝐶𝑝𝜌𝐴𝑣

3  (1) 

where 𝜌, A, v, and Cp represent the air density, turbine swept area, wind velocity and power 

coefficient, respectively. The wind velocity and air density are assumed to be constant 

across the swept area – shear and turbulence must be modelled numerically using 

computational fluid dynamics (CFD) software. For the purposes of wind resource 

modeling, blade element momentum theory (BEM) [29] is sufficiently accurate. BEM 

theory integrates the aerodynamic force along the turbine blades to predict shaft torque as 

a function of wind velocity, rotational speed and the wind turbine’s airfoil geometry: 

𝑇𝑠ℎ𝑎𝑓𝑡 = ∫
1

2
𝜌𝑐𝑉𝑟𝑒𝑙

2 𝐵𝑟(𝐶𝐿𝑠𝑖𝑛𝜑 − 𝐶𝐷𝑐𝑜𝑠𝜑)𝑑𝑟
𝑅

0

  
(2) 

where c, B, Vrel, 𝜑 represent the chord length, number of blades, relative wind velocity and 

angle of relative wind. The variables CL and CD are the airfoil’s lift and drag coefficients, 

generally obtained from manufacturer test data and/or CFD studies. The integral limits are 

the turbine hub (r = 0) and the blade tip (r = R). The relative velocity can be expressed in 

terms of the wind velocity, radial position and turbine angular rotational velocity: 
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𝑉𝑟𝑒𝑙 = 𝑣(1 −
�̇�𝑟

𝑣
) 

(3) 

where �̇� represents the angular velocity. The angle of relative wind 𝜑 is a function of Vrel 

and r and depends on the physical design of the turbine blade (including blade twist). The 

blade pitch angle, β, affects the angle of relative wind. Furthermore, the lift and drag 

coefficients are functions of the angle of relative wind and v, �̇�, r and β. Completing the 

definite integral in (2) results in the turbine output torque being a function of v, R, �̇� and β, 

in addition to ρ, c and B.  

     The analytical effects of v and �̇� can be combined into a dimensionless parameter - the 

tip-speed ratio (𝜆): 

𝜆 =
�̇�𝑅

𝑣
  

(4) 

This assumption is verified by a numerical study of large wind turbines [30] and simplifies 

analytical analysis of wind turbine performance. The aforementioned shaft torque, 𝑇𝑠ℎ𝑎𝑓𝑡, 

is related to the angular blade acceleration: 

𝑇𝑠ℎ𝑎𝑓𝑡 = 𝐽�̈� (5) 

where J is the turbine’s polar moment of inertia. Using the relation between torque and 

power, the shaft power is related to the angular acceleration and angular velocity: 

𝑃 = 𝐽�̇��̈� (6) 

(6) can be combined with (1) and (4) to relate the dynamic performance of the wind turbine 

to the environmental operating conditions, 
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𝐽�̇��̈� =
𝐶𝑝𝜌𝜋𝑅

5�̇�3

2𝜆3
 

(7) 

     Rearranging, the instantaneous angular acceleration can be expressed as a function of 

the turbine efficiency, radius, air density, rotational speed and tip-speed ratio. Removing 

all variables except angular acceleration from the left-hand side, the following equation can 

predict turbine rotor dynamics [29], 

�̈� =
𝐶𝑝𝜌𝜋𝑅

5�̇�2

2𝐽𝜆3
 

 

(8) 

The relation presented in (8) identifies the dynamic relation between wind turbine 

performance and environmental conditions. This relation bridges the gap between 

environmental conditions and wind turbine performance, allowing the dynamic behavior 

of a wind turbine to be modelled given knowledge of the wind turbine’s environment.  
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2.3: Probabilistic Modeling of Wind Velocity 

 

     The prediction of wind turbine performance requires substantial knowledge of the 

statistical properties of the wind velocity. At a fundamental level, wind is a chaotic process. 

From moment to moment, the measured wind velocity can unpredictably vary due to 

influences from terrain, structures and simple fluid interaction – processes which are 

difficult to observe and even more difficult to model. However, the wind is a physical 

process which obeys a set of governing equations – energy supplied by the solar flux is 

dissipated by kinetic and thermal processes throughout the atmosphere. While deterministic 

prediction is difficult, this underlying dependence leads to the statistical modeling of wind 

velocity as a random variable, defined by a probability distribution and autocorrelation 

function. Probability distributions are functions expressing the likelihood of encountering 

any particular value of a random variable given independent, non-disruptive observations.  

     In general, probability distribution modeling uses parametric distribution functions. 

These probability distributions are defined as closed-form analytical functions involving a 

small number of free parameters. The Weibull, Rayleigh and Lognormal distributions 

(among others) belong to this distribution type. Parametric distributions such as these are 

simple to model, reasonably easy to fit to a dataset and can easily be subjected to analytical 

statistical techniques such as MAE, MAPE or RMSE fit-closeness analysis or various data 

transforms. However, the solution space defined by parametric probability distributions is 

limited by their requirement for closed-form analytical expressions. Multimodal, discrete 

or discontinuous probability density functions are not easily modelled parametrically. 
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Instead, numerical techniques have been developed to produce nonparametric probability 

distributions. The most commonly used such method is Kernel Smoothing.  

     The Kernel smoothing distribution [35] provides a close approximation to an observed 

probability distribution by modeling each data point as an instance of a base Kernel 

function. The kernel function K can be the Gaussian distribution, a triangle, box, or one of 

various other parametric distributions. The Kernel distribution is developed by summation 

of all kernel instances produced by the dataset, developing the following functional form: 

𝑓𝑘(𝑣, ℎ𝑛) =
1

𝑁ℎ𝑛
∑ 𝐾[(𝑣 − 𝑣𝑖
𝑛
𝑖=1 )/ℎ𝑛]                                                                                    (9)      

where N is the number of discrete dataset samples, K is the kernel function and hn is the 

bandwidth smoothing parameter. For further analysis, it is assumed that the standard 

normal (Gaussian distribution is used as the Kernel smoothing function – an appropriate 

selection for datasets which are relatively close to Gaussian in nature: 

𝐾(𝑣 |𝜇, 𝜎2) =
1

𝜎√2𝜋
𝑒
−
(𝑣−𝜇)2

2𝜎2                                                                                                     (10)    

where μ and σ represent the sample mean and standard deviation, respectively. The standard 

deviation of the kernel function is referred to as the bandwidth - it influences the bias and 

variance of the final probability distribution estimate. Proper bandwidth selection is vital 

to avoid over or underfitting the sample data. Assuming that the actual sample distribution 

is Gaussian (or similar) and using the Gaussian kernel function, the optimal bandwidth can 

be approximated as [36]: 

ℎ = (
4�̂�5

3𝑁
)
1

5                                                                                                                                     (11)     
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where �̂� is the dataset’s standard deviation and N is the dataset size. When n is large, 

accurate bandwidth optimization is possible without knowledge of the underlying 

distribution [36]. For non-Gaussian distributions, numerical bandwidth estimators are 

required to ensure an accurate distribution fit.  

     Figure 2.1 displays a nonparametric kernel smoothing distribution fitted to the wind 

velocity dataset. Using a Gaussian Kernel function and a smoothing bandwidth of 0.7408, 

an extremely close fit is observed. Unlike the previously investigated parametric 

probability distributions, the kernel smoothing algorithm successfully matches the location 

and magnitude of the distribution mode. In addition, the slight multimodality evident within 

the dataset is captured, with small secondary peaks evident at wind velocities near 5 and 15 

knots. Finally, the nonparametric distribution accurately models the probabilistic roll-off 

observed at high wind velocities. As this region holds the majority of the available wind 

energy, accuracy here is paramount. Nonparametric distributions are vulnerable to 

bandwidth errors, however they are suitable for wind velocity analysis due to the large 

number of data samples and continuous nature of the underlying probability distribution. 
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2.4: Bivariate Modeling 

 

     The numerical prediction of wind turbine performance involves the calculation of the 

expected output power. Generalizing the wind turbine efficiency [39] and environmental 

variables as time-variant functions, the instantaneous output power can be expressed as: 

𝑝𝑡𝑢𝑟(𝑡) =
1

2
𝐶𝑝(𝑡)𝜌(𝑡)𝐴𝑣(𝑡)

3                                                                                                    (12) 

where Cp(t), ρ(t), and v(t) represent the instantaneous power coefficient, air density, and 

wind velocity, respectively. The variable A represents the turbine’s swept area. This relation 

indicates that the site air density is important for wind resource modeling, having a 

Figure 2.1: A Nonparametric Distribution Wind 

Velocity Model 
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significant effect on both the available wind power, the general wind power density and the 

captured power of an operational wind turbine.  

     The time-variant power coefficient Cp(t) is difficult to analytically predict, varying with 

turbine rotation speed, blade pitch angle, Reynold’s number and wind velocity [40, 41]. 

This issue has been addressed by wind turbine manufacturers. The performance of each 

wind turbine design is experimentally measured, resulting in a performance function known 

as a power curve. The power curve Pc(v(t)) relates the wind turbine’s steady-state power 

output to the wind velocity. The power curve is taken at a standard air density. Including 

the effects of air density and substituting the wind turbine power curve, the wind turbine 

power output expression reduces to: 

𝑝𝑡𝑢𝑟(𝑡) =    ρ(t)𝑃𝑐(v(t))                                                                                                             (13) 

     

where the air density is normalized by the base manufacturer value (normally 1.225 

kg/m3)and both variables expressed as functions of time.  Using the ideal gas law [42] 

approximation, the density of the air can be expressed as: 

𝜌 =   
(𝑝𝑑𝑀𝑑 + 𝑝𝑣𝑀𝑣 )

𝑅𝑔𝑇
                                                                                                               (14) 

 

where ρ is the air density, pd is the partial pressure of dry air, Md is the molecular mass of 

dry air, pv is the vapor pressure of water vapour and Mv is the molecular mass of water. The 

variables Rg and T represent the universal gas constant and temperature, respectively. The 

partial pressure of water vapour is related to the saturation vapor pressure and the relative 

humidity as follows: 
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𝑝𝑣 = 𝑅𝐻𝑝𝑣𝑠𝑎𝑡                                                                                                                                 (15) 

where RH is the relative humidity and pvsat is the saturation water vapor pressure. The 

saturation pressure of water vapor is a function of temperature, and is approximated as [42]: 

𝑝𝑣𝑠𝑎𝑡 = 610.78 ∗ 10
7.5𝑇

𝑇+237.3                                                                                                        (16) 

The partial pressure of dry air (pd) is the remaining pressure when pvsat is subtracted from 

the measured barometric pressure p. If the dew point temperature is available, the vapor 

pressure can be calculated as: 

𝑝𝑣 = 610.78 ∗ 10
7.5𝑇𝑑

𝑇𝑑+237.3                                                                                                           (17) 

Substituting Eqs. (22) to (25) into Eq. (21) the turbine power output can be expressed as: 

𝑝𝑡𝑢𝑟(𝑡) =    
[(𝑝− 𝑝𝑣)𝑀𝑑+ (610.78∗10

[
7.5𝑇𝑑

𝑇𝑑+237.3
]
)𝑀𝑣 𝑃𝑐(v(t))

]

𝑅𝑇
                                                            (18)  

     Equation 26 is used for the time-series prediction of wind turbine performance. It 

includes the effects of multiple environmental variables to improve power output prediction 

accuracy. 
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     The relationship between air density and wind turbine power output requires any 

probabilistic wind resource model to be bivariate in nature, including both wind velocity 

and air density. Air density data is probabilistically modelled to investigate the degree of 

variation and the underlying probability distribution. Figure 2.2 displays both Gaussian and 

Kernel distribution air density models. The air density histogram displays significant 

probability density between values of 1.14 and 1.35 kg/m3 – a significant degree of 

variability. Probabilistically, a Gaussian distribution is the best parametric fit. However, 

the nonparametric Kernel distribution more accurately reflects the true probability 

distribution. The degree of variability evident combined with its probabilistic behavior 

Figure 2.2: A probabilistic model of Air Density 
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indicates that a full, bivariate model must be developed to accurately model a site’s wind 

resource.  

 

2.5: Analysis of Nonstationary Behavior  

 

     Previously, probabilistic analysis has been conducted with the assumption that both 

wind velocity and air density data are stationary signals. A stationary signal has constant 

statistical properties – a stationary random variable can be defined using the same 

probability distribution regardless of the time of observation. This assumption significantly 

simplifies probabilistic analysis, reducing a wind resource model to a single bivariate 

probability distribution. The assumption of stationarity must be investigated to ensure its 

validity – otherwise important information is lost when modeling the wind resource. As the 

model dataset is comprised of environmental measurements, subsets are drawn 

corresponding to measurement periods at diametrically opposite seasonal and diurnal 

phases. Non-stationary behavior is most likely to present itself by comparing these 

extremes.  A nonparametric kernel distribution is fitted to four 244-element wind velocity 

subsets, with the resulting distribution compared to that of the entire 43824-element dataset. 

In addition, the first four empirically determined distribution moments (mean, standard 

deviation, skewness and kurtosis) are compared. Any variation among these parameters 

indicates non-stationary behavior.  



24 

 

     Figure 2.3 displays the Kernel distribution fits of each dataset, calculated using the 

smoothing bandwidth determined in MATLAB’s “ksdensity” function [43]. Significant 

variation is evident between each subset and the primary dataset. Two distinct distribution 

groups are evident – Sets 2 and 3 are probabilistically similar, as well as sets 4 and 5. 

Interestingly, Set 1 (the complete dataset) appears to split the difference between the two. 

Based on the observation times, this suggests a seasonal pattern is present in the 

probabilistic model of wind velocity, superimposed on a weaker diurnal signal. However, 

while these patterns can be surmised based on the distribution fits, a more rigorous 

analysis is required to validate their presence and to detect any additional periodic 

patterns. 

Figure 2.3: Nonparametric modeling of wind velocity 

subsets 



25 

 

     The degree of observed probabilistic variance is displayed in Table 2.1. The mean, 

standard deviation, skewness and kurtosis of each distribution is calculated and compared. 

The mean wind velocity shows significant variation across the datasets, ranging from 10.49 

for set 4 (corresponding to early morning in the summer) to 14.51 in set 3 (corresponding 

to late afternoon during mid-winter). The diurnally opposite equivalents have mean values 

of 12.22 and 13.84, respectively. The entire dataset has a mean value of 12.93. Essentially, 

the mean wind velocity is higher during the winter months. Similar behavior is evident in 

the standard deviations, skewness and kurtosis data, indicating that the shape of the wind 

velocity probability distribution significantly varies over time. The standard deviation 

ranges from 4.79 to 7.34, indicating a large temporal change in wind velocity variance. The 

distribution skewness values are always positive (indicating a left-skewed probability 

distribution with a long right tail) and large enough to indicate significant asymmetry in the 

wind velocity. The distribution Kurtosis varies from 2.62 to 4.54, indicating time-variance 

between platykuritic (kurtosis < 3) and leptokuritic (kurtosis > 3) behavior. The Kurtosis 

values suggest the frequency of outliers, indicating the likelihood of damaging wind events 

or periods of prolonged calm. In all cases, the degree of statistical time-variance indicates 

that further investigation of non-stationary behavior is required. This analysis is conducted 

within the frequency domain.  
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Table 2.1: Distribution Moments of Wind Velocity Subsets 

Observation Set Mean Std. Deviation Skewness Kurtosis 

1 (N = 43824) 12.9274 6.5713 0.7185 3.6046 

2 (N = 244) 13.8648 7.3054 0.4156 2.6218 

3 (N = 244) 14.5082 7.3403 0.6590 3.2654 

4 (N = 244) 10.4877 4.7941 0.3748 3.1735 

5 (N = 244) 12.2213 5.0950 0.6588 4.5378 

 

2.6: Frequency Domain Analysis 

 

     The nonstationary behavior of wind velocity requires augmented time-variant 

probabilistic modeling algorithms. The statistical properties of an environmental data set 

(such as wind velocity and/or air density) are time-varying and chaotic.  To analyze 

nonstationary behavior, environmental data can be modeled as a general discrete 

nonstationary dataset, x(n), comprised of a stationary base dataset, xs(n), with nonstationary 

behavior modeled as superimposed periodic features, xσ1…σn. The nonstationary variance 

periods, σ1…σn which exist within x(n) must be identified to allow probabilistic modeling 

algorithms to accurately reflect nonstationary behavior. Preliminary work in the 

identification of wind velocity variance [44] identified considerable turbine performance 
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variance occurring throughout the course a seasonal cycle. A frequency-domain study [45] 

defined wind turbine power spectra spanning hourly and daily timescales. An analysis 

framework based around wide-band frequency domain study of a large environmental 

dataset is capable of identifying and quantifying any periodic variance contributors, 

allowing more advanced time-variant probabilistic analysis of the nonstationary site wind 

resource. Figure 2.4 presents a flow chart of the frequency domain analysis algorithm 

presented in this section.  

 

 

 



28 

 

 

Figure 2.4: A Flow Chart of the Frequency Domain Analysis Algorithm 
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2.6.1: The Discrete-Time Fourier Transform 

 

          The discrete-time Fourier transform (DTFT) is used to extract the frequency 

spectrum of the nonstationary environmental dataset v(n): 

 

𝑉(𝑘) =  ∑ 𝑣(𝑛)

𝑁−1

𝑛=0

∙ 𝑒−𝑗2𝜋(
𝑘𝑛
𝑁
),       0 ≤ 𝑘𝑓 < 𝑁                                                                       (19) 

where V(k) represents the complex DTFT observation at point kf and n the time-domain 

observation index. The DTFT is best suited for wide-band frequency analysis, providing 

superior frequency resolution at the expense of unnecessary time-series analysis. The 

DTFT frequency resolution is determined by the dataset size N and the sample frequency, 

fs. The Nyquist sampling theorem limits the range of detectable variance periods: 

2

𝑓𝑠
≤ 𝑝𝑣𝑎𝑟 ≤ 𝑁𝑓 𝑠                                                                                                                            (20) 

where pvar is the variance period of interest. The observed variance frequency indices are 

defined as: 

𝐾𝑓 =
𝑛

𝑁𝑓𝑠
       0 ≤ 𝑛 ≤

𝑁

2
                                                                                                          (21) 

The magnitude and phase of the complex function V(k) details the periodic variance 

contribution at the observation frequency.  



30 

 

     Figure 2.5 displays the single-sided DTFT magnitude spectrum (with the DC mean 

removed) of an 8-year wind velocity dataset, comprised of the 5 years from the previous 

section with the addition of the three previous years. The larger dataset is selected to better 

isolate annual or semi-annual trends (if they exist).  The range of variance periods is from 

2 hours (the sample Nyquist period) to 8 years. In general, the frequency spectrum is a 

combination of 1/f noise, white noise and Kolmogorov pink noise  (f-5/3) with superimposed 

random amplitude variance. Four significant variance contributors are visually evident, 

corresponding to periods of 1 year, 1 day, 12 hours and 8 hours. The 1-year variance period 

has the highest amplitude (of roughly 1 knot on the single-sided FFT), indicating a large 

seasonal variance signal. The remaining spectrum peaks are related to diurnal variance – 

Figure 2.5: Single-Sided Magnitude Spectrum of Wind 

Velocity 



31 

 

the presence of harmonics above the fundamental 24-hour signal indicates a more complex, 

non-sinusoidal variance pattern. Statistical analysis of the magnitude spectrum is required 

to quantify and validate these peaks, ensuring that they are not statistical artifacts and 

allowing their use in probabilistic modeling. 

 

2.6.2: Statistical Analysis of Spectral Residuals 

 

     The general frequency-amplitude correlation within the wind velocity spectrum is 

concealed by considerable random noise. The noise is an expected property of relatively 

random and chaotic processes with little auto-regressive behavior or band-limitation – such 

as environmental data. A logarithmic moving average algorithm (Eqs. 30 - 32) is developed 

to remove the random noise, extracting the mean DTFT frequency-magnitude correlation 

function. The width of the averaging window is set to a fixed logarithmic distance, ensuring 

that an equal-ratio bandwidth is used to produce the mean magnitude function regardless 

of the core observation frequency.  

𝐹𝑚𝑒𝑎𝑛(𝑘) =
1

𝑀 − 𝐿
∑𝐹(𝑖)

𝑀

𝑖=𝐿

                                                                                                       (22) 

log(𝐿) = log(𝑘) −
1

2
                                                                                                                    (23) 

log(𝑀) = log(𝑘) +
1

2
                                                                                                                  (24) 
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The removal of magnitude noise allows the presence of statistically significant variance 

frequencies to be evaluated through analysis of the spectral residuals. The set of logarithmic 

distances between each DTFT magnitude observation and its equal-frequency logarithmic 

mean is assumed to be a stationary random variable (due to the loss of time information 

when using the DTFT) that has an associated probability distribution function. The 

assumption of randomness in the magnitude noise is verified through analyzing the 

frequency autocorrelation function. Within the wind velocity magnitude spectrum, 

frequencies with a significant contribution to the overall variance will appear as outliers to 

the associated probability distribution.  

     Figure 2.6 displays a histogram of the magnitude residuals (in logarithmic form) 

superimposed with a fitted probability distribution function. The residual distribution 

closely approximates a two-parameter extreme value distribution: 

𝑃𝑟𝑒𝑠(𝑑, µ𝑒 , 𝜎𝑒) =  𝜎𝑒
−1𝑒

𝑑− µ𝑒
𝜎𝑒 𝑒−𝑒

𝑑− µ𝑒 
𝜎𝑒                                                                                       (25) 
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where d is the logarithmic distance from the mean, µe is the distribution location parameter 

and σe is the distribution scale parameter. The fitted extreme value distribution has a 

location parameter of 0.0522 and a scale parameter of 0.2251. This distribution type is 

asymmetrical about the mean and is related to the Weibull distribution through a 

logarithmic transform. It represents the probability of encountering magnitude noise, of any 

particular amplitude, at a specific observation frequency. The occurrence probability of 

each frequency observation is calculated by substituting the residual magnitude, d, into the 

probability density function,𝑃𝑟𝑒𝑠(𝑑, µ𝑒 , 𝜎𝑒). Repeating this process over the entire single-

sided DTFT produces N/2 independent probability observations spanning the frequencies 

defined in Eq. (28).  

Figure 2.6: Probability Distribution Model of Magnitude 

Residuals 
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     The statistical significant of each noise observation calculated to evaluate its statistical 

significance. The p-magnitude is used to quantify this value:  

𝑝𝑣𝑎𝑙(𝑛) = {1 − 𝑃𝑟𝑒𝑠(𝑑(𝑛), µ𝑒 , 𝜎𝑒)}
𝑁/2                                                                                     (26) 

where pval(n) is the observation p-value.  Residuals with a p-value less than 0.05 are 

considered statistically significant – they are significantly less likely than the largest outlier 

expected from a dataset of size N.  The presence of any statistically significant noise 

observations indicating that a periodic trend exists in the underlying time-domain data with 

a period defined by the associated frequency.  

          Identification of any significant variance frequencies suggest the random-process 

assumption of original filtering algorithm was violated. The logarithmic moving average 

DTFT magnitude is disproportionately shifted towards the high-magnitude outliers. An 

iterative process is used where any statistically significant residuals are excluded from the 

filtering algorithm, separating their contribution from the underlying noise behavior. The 

value of Fmean(k) is calculated using the remaining observations. The magnitude of any 

significant variance observation is corrected by subtracting the co-located mean magnitude 

from the original observation. The iterative process continues until a repeated residual 

evaluation fails to identify a previously-unknown magnitude outlier. The final identified 

outlier frequencies represent the wind regime’s statistically significant periodic variation.  

     Figure 2.7 displays the corrected logarithmic mean amplitude spectrum. The original 

magnitude spectrum and the uncorrected logarithmic mean are superimposed. The 

corrected logarithmic mean shows a smooth transition between low-frequency 1/f noise (at 
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periods greater than 4 months), white noise (at periods between 4 months and 4 days), 

Kolmogorov pink noise (periods between 4 days and 6 hours) and high-frequency white 

noise (at periods less than 6 hours). The effect of removing the statistically significant 

variance frequencies is visible, especially that due to the seasonal-cycle variability. The 

frequency/magnitude behavior of the wind velocity data is a measure of the intermittency 

in the wind resource, with the energy contained within each band a measure of the overall 

wind velocity variability expected at different observation frequencies.  

     Table 2.2 displays the statistically significant variance signals, their probability of 

occurrence and the resulting observation p-value. Signals with extremely low probabilities 

of occurrence indicate that a chance observation is unlikely, signaling a greater degree of 

Figure 2.7: Logarithmic Mean of the Wind Velocity 

Magnitude Spectrum 
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statistical significance.  The iterative filtering algorithm identifies statistically significant 

variance at observation periods of 1 year, 1 day, 12 hours and 8 hours, with occurrence 

probabilities of 2.10×10-14,  5.97×10-100 , 2.89×10-109 and 1.51×10-8, respectively. Given the 

sample size (N = 70124), these observations all have P-values significantly less than 0.05, 

indicating statistical significance.  The identified statistically significant variance signal 

corresponds to a nearly sinusoidal seasonal variance signal with a superimposed, more 

complex diurnal signal with harmonic distortion. Some minor non-stochastic variance may 

exist at additional frequencies, however, the original wind data and DTFT algorithm lacks 

the magnitude and frequency resolution to isolate them from the underlying magnitude 

noise.   

Table 2.2: Statistically Significant Magnitude Residuals 

Index Period (h) Probability P-Value 

2923 24 2.89×10-109 0 

5845 12 5.97×10-100 0 

9 8766 2.10×10-14 7.40×10-10 

8775 8 1.51×10-8 0.000530 

8759 8 1.56×10-6 0.0533 

 

     The assumption of random, extreme-value distributed noise superimposed on the log-

mean frequency spectrum is verified by calculating the frequency autocorrelation of both 

the observation magnitudes and phases. Figure 2.8 displays the magnitude autocorrelation 

signal. The maximum non-zero lag autocorrelation is less than 0.2, with no significant 
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outliers in correlation magnitude. Within the limits imposed by a finite random process 

with band-dependant variance, the autocorrelation signal is consistent with the assumption 

that the magnitude residuals are accurately modeled as an extreme-value distributed 

random variable. Therefore, the wind velocity data is modeled (in the frequency domain) 

as this random variable superimposed on the site-specific large bandwidth variance 

function. 

Figure 2.8: Magnitude Residual Frequency 

Autocorrelation 
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      Figure 2.9 displays the identified statistically significant variance signals reconstructed 

into the time domain. The signal amplitude determines the amount of variance – the signal 

phase places this variance within the appropriate (annual or diurnal) time frame. In this 

case, a phase of 0 degrees corresponds to January 1st and 12:00 a.m., respectively. A 

seasonal variability with an amplitude of 2 knots and a phase of roughly -5 degrees is 

present, indicating a significant statistical wind velocity maxima which occurs during 

December. The minima occurs during June, with a mean wind velocity value approximately 

4 knots lower. The diurnal signal is more complex, with significant second and third 

harmonics of variable phase distorting the underlying sinusoidal pattern. The diurnal signal 

has a peak to peak amplitude of roughly 2.5 knots, with a maxima at roughly 12 pm and a 

Figure 2.9: Spectrally Identified Variance Signals 
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minimum between 6 p.m. and 6 a.m. However, these are rough approximations of the true 

nonstationary behavior. To identify the effect the identified variance has on the 

probabilistic nature of the wind resource, a feature extraction algorithm is required.  

 

2.6.3: Nonstationary Feature Identification 

 

The frequency domain analysis algorithm identified statistically significant 

nonstationary variance periods, σ1 and σ2, corresponding to diurnal and seasonal patterns. 

A bivariate environmental dataset (comprised of wind velocity and air density data) must 

be decomposed in such a manner as to isolate the effect of this nonstationary variance.  To 

model the diurnal-cycle variance contributor σ1, the length N bivariate environmental 

dataset,[𝑥1(𝑛)  𝑥2(𝑛)], must span at least one full period, T1. The dataset can be 

reconfigured from a discrete time series into a k × n × 2 matrix, 

[
𝑥σ1(𝑘, 𝑛, 1)

𝑥σ1(𝑘, 𝑛, 2)
] = [

𝑥1(𝑛 + (𝑘 − 1)𝑇1) 

𝑥2(𝑛 + (𝑘 − 1)𝑇1) 
]   0 < 𝑛 ≤ 𝑇1                                                             (27) 

The feature extraction algorithm is applied recursively to capture joint probabilistic 

variance existing at sufficiently spaced periods. Assuming the second variance contributor 

σ2 has a period 𝑇2 ≥ 2𝑇1, the following multidimensional dataset is generated: 

[
𝑥σ1σ2(𝑗, 𝑘, 𝑛, 1)

𝑥σ1σ2(𝑗, 𝑘, 𝑛, 2)
] = [

𝑥σ1(𝑗, 𝑛 + (𝑘 − 1)𝑇2, 1) 

𝑥σ1(𝑗, 𝑛 + (𝑘 − 1)𝑇2, 2)
]                                                                   (28) 
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where xσ1σ2  is a 4-dimensional matrix.  Each plane indexed (j, k) contains n bivariate data 

samples, providing the data organization required for probabilistic modeling. 

2.7: Multidimensional Wind Resource Modeling 

 

     The joint probability distribution of two uncorrelated random variables is calculated 

analytically by multiplying the individual marginal distributions. In the bivariate (wind 

velocity and air density) case, the result is a two-dimensional condition space with an 

associated matrix of probability values. Using marginal distributions calculated by 

applying the unidimensional Kernel smoothing algorithm to each environmental dataset, 

Figure 2.10: Simple Joint Wind/Density Probabilistic 

Model 
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the joint wind velocity/air density distribution is determined. Figure 2.10 displays the 

developed probability distribution. This distribution is strongly unimodal, with a peak at a 

wind velocity of ~12 knots and an air density of ~1.25 kg/m3. The occurrence probability 

monotonically decreases with displacement from these conditions, with the effect of each 

marginal distribution visible within the overall shape of the bivariate distribution. 

Assuming that wind velocity and air density are uncorrelated, this joint distribution 

produces an accurate model of the site wind resource 

     The assumption of variable independence is tested by examining the correlation 

coefficient between each seasonal/diurnal subset of the environmental data. This process 

examines the time-variant correlation between the site wind velocity and air density. Figure 

Figure 2.11: Wind/Density Correlation Distribution 
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2.11 displays the distribution of correlation coefficients and a Gaussian approximation. The 

wind velocity and air density datasets are negatively correlated, with a mean correlation 

coefficient of roughly -0.2. The observed correlation coefficients range from 0 to -0.4, 

indicating a moderate (but significant) negative correlation between environmental 

variables. The distribution does not include zero within 2 standard deviations of the mean, 

strongly suggesting that the result is statistically significant. This correlation exists through 

essentially all of the seasonal/diurnal subsets, indicating that a joint distribution model must 

include variable dependence to accurately reflect the true site environmental conditions and 

accurately estimate the wind resource. This is accomplished through the use of a 

multidimensional, optimized nonparametric probabilistic modeling algorithm.  

 

2.7.1: Multivariate Optimized Nonparametric Probabilistic Modeling 

     

     The kernel smoothing algorithm presented earlier can be generalized to multiple 

dimensions. Treating each data point as a zero-covariance Gaussian distribution, a n-

dimensional multivariate Kernel Density Estimate (KDE) can be expressed as a Gaussian 

mixture model [46], 

𝑓𝐺(𝑥) =  ∑ 𝑥𝑖𝜑𝐻(𝑥 − 𝑥𝑖) 
𝑁
𝑖=1                                                                                                     (29)              

where 

𝜑𝐻(𝑥 − 𝑥𝑐) = (2𝜋)−
𝑛
2|𝐻|−

1
2𝑒(−1 2(𝑥−𝑥𝑐)

𝑇𝐻−1(𝑥−𝑥𝑐)⁄ )                                                             (30) 
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represents the selected Gaussian kernel function centered at the point xc and with a 

covariance matrix H. The Kernel Density Estimate (KDE) is developed by convolving the 

sample distribution fG(x) with a Gaussian kernel that has a covariance matrix Hk (the kernel 

bandwidth) [47]: 

𝑓𝑘(𝑥) =  ∑𝑥𝑖𝜑𝐻+𝐻𝑘(𝑥 − 𝑥𝑐)

𝑁

𝑖=1

                                                                                                 (31) 

The model is a multivariate approximation of the underlying probability density developed 

by the summation of N Gaussian kernels centered at each observation. The accuracy of the 

KDE is dependent on the kernel bandwidth. Appropriate bandwidth selection is vital to the 

development of an optimal probabilistic model.  

     A popular method of evaluating the accuracy of the KDE fk(x) is the asymptotic mean 

integrated square error (AMISE), as presented in [48],    

𝐴𝑀𝐼𝑆𝐸 =  (4𝜋)−
𝑛
2|𝐻|−

1
2𝑁𝛼

−1 + 
1

4
𝑛2∫𝑡𝑟2 {𝐻𝐺𝑝(𝑥)}𝑑𝑥                                                    (32) 

where tr is the trace operator, Gp(x) is the Hessian of the underlying multivariate probability 

distribution and Nα is defined as [47] 

𝑁𝛼 = [∑𝛼𝑖
2

𝑁

𝑖=1

 ]

−1

                                                                                                                         (33) 

The optimal bandwidth of the KDE is determined by minimizing the AMISE. Matej et al. 

[46] present a on-line, computationally efficient method of bandwidth optimization which 

is used to generate the required KDEs. 
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     Figure 2.12 displays the effect of bandwidth selection on the KDE fitting algorithm. The 

true PDF is generated as a summation of three Gaussian distributions with varying mean 

and standard deviation parameters. For each distribution, 500 random points are generated 

and used as input to the univariate version of the KDE algorithm Eqs. (12-14).Three 

bandwidths are selected to demonstrate the effect on fitting accuracy:  0.25, 1 and 4. The 

smallest bandwidth shows clear over-fitting behavior, while the largest bandwidth shows 

significant underfit. The best overall approximation is shown by the KDE with a bandwidth 

of 1. The optimal bandwidth varies based on the quantity of samples and their underlying 

distribution, and will tend to minimize the probability of over or under-fitting the true 

distribution given a random, finite sample set. 

Figure 2.12: Effects of Bandwidth on Kernel Density 

Estimators 
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     Figure 2.13 displays the bivariate kernel distribution generated using the total wind 

velocity and air density datasets. It is observed that the distribution significantly departs 

from the product of the marginal distributions, validating the observed correlation. While 

the distribution shape is similar, the actual joint probability values are substantially 

different, covering a wider range of potential conditions and introducing secondary modes 

to the general distribution. The more complex joint distribution model provides more 

accurate information for use in wind resource assessment and modeling. However, the 

nonstationary behavior revealed in the previous sections must be taken into account. A 

time-variant extension to this multidimensional probabilistic model is required to fully 

define the site wind resource.  

Figure 2.13: A Bivariate Probabilistic Wind/Density Model 
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2.7.2: A Time-Variant Bivariate Wind Resource Model 

 

The bivariate environmental dataset RE(n) is passed through the nonstationary feature 

extraction algorithm. The previously identified periodic variance features, σ1 and σ2, are 

extracted from the following bivariate environmental dataset, 

𝑅Eσ1σ2 = 

[
 
 
 
 [
𝑉(1,1,1:𝑚)
𝜌(1,1,1:𝑚)

] ⋯ [
𝑉(1, 𝑗, 1:𝑚)
𝜌(1, 𝑗, 1:𝑚)

]

⋮ ⋱ ⋮

[
𝑉(𝑘, 1,1:𝑚)
𝜌(𝑘, 1,1:𝑚)

] ⋯ [
𝑉(𝑘, 𝑗, 1: 𝑚)
𝜌(𝑘, 𝑗, 1:𝑚)

]
]
 
 
 
 

                                                                 (35) 

where V(k,j,m) is a vector of wind velocity observations, ρ(k,j,m) is a vector of air density 

observations and the plane (k,j) defines the observation phase with respect to σ1 and σ2 the 

diurnal and annual environmental variance. The bivariate case of (37-41) is applied to each 

planar point to define a KDE corresponding to the environmental conditions expected at 

that time. The resultant 5 dimensional model object is presented in (42): 

𝐹Kσ1σ2 = 

[
 
 
 
 
 
 
 
 
(

𝐹𝐾(1,1, 𝑉1, 𝜌1) ⋯ 𝐹𝐾(1,1, 𝑉𝑛𝑣 , 𝜌1)

⋮ ⋱ ⋮

𝐹𝐾 (1,1, 𝑉1, 𝜌𝑛𝜌) ⋯ 𝐹𝐾 (1,1, 𝑉𝑛𝑣 , 𝜌𝑛𝜌)

) ⋯ (

𝐹𝐾(1, 𝑗, 𝑉1, 𝜌1) ⋯ 𝐹𝐾(1, 𝑗, 𝑉𝑛𝑣 , 𝜌1)

⋮ ⋱ ⋮

𝐹𝐾 (1, 𝑗, 𝑉1, 𝜌𝑛𝜌) ⋯ 𝐹𝐾 (1, 𝑗, 𝑉𝑛𝑣 , 𝜌𝑛𝜌)

)

⋮ ⋱ ⋮

(

𝐹𝐾(𝑘, 1, 𝑉1, 𝜌1) ⋯ 𝐹𝐾(𝑘, 1, 𝑉𝑛𝑣 , 𝜌1)

⋮ ⋱ ⋮

𝐹𝐾 (𝑘, 1, 𝑉1, 𝜌𝑛𝜌) ⋯ 𝐹𝐾 (𝑘, 1, 𝑉𝑛𝑣 , 𝜌𝑛𝜌)

) ⋯ (

𝐹𝐾(𝑘, 𝑗, 𝑉1, 𝜌1) ⋯ 𝐹𝐾(𝑘, 𝑗, 𝑉𝑛𝑣 , 𝜌1)

⋮ ⋱ ⋮

𝐹𝐾 (𝑘, 𝑗, 𝑉1, 𝜌𝑛𝜌) ⋯ 𝐹𝐾 (𝑘, 𝑗, 𝑉𝑛𝑣 , 𝜌𝑛𝜌)

)

]
 
 
 
 
 
 
 
 

(36) 

For each planar point (k,j), a bivariate KDE is generated and evaluated at points (V1:Vm) 

and (ρ1:ρm), with (nv, nρ) being the respective size of the observation space. The model in 

(12) includes the effect of cross-correlation between wind velocity and air density, diurnal 

and seasonal phase, as well as any multimodal or parametric mixture evident in the 

probability distribution.  
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     Due to the use of diurnal and seasonal feature patterns, the resulting probabilistic model 

corresponds to the expected wind velocity / air density regime organized according to the 

date and time of observation. Figure 2.14 displays sample probabilistic models 

corresponding to diametrically opposite annual and diurnal phases. The model data subsets 

are selected to display the extrema in the annual and diurnal phases, displaying the degree 

of time variance within the underlying environmental conditions. As observed, the wind-

density model indicates a substantially greater overall wind resource during February, a 

function of the strong annual signal shifting both the wind velocity and air density 

distributions to higher values. During this period, the diurnal signal is relatively weak, but 

still has a slight effect on the shape and positioning of the joint probability distribution.  

During August, the opposite occurs. The diurnal signal (due to daytime heating) is much 

stronger, substantially shifting the wind/density distribution towards regions of lower air 

density (a function of temperature and barometric pressure) and higher wind velocity. The 

spatial extent of the wind/density models also varies with the annual and diurnal phase. The 

spatial extent of the model is a measure of the intermittency and variability of the wind 

resource. Essentially, during the winter months more wind power is available (due to a shift 

towards higher values of both variables); however, the range of possible conditions is 
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larger. During the summer months (especially at night) the wind resource is less variable, 

(a) (b) 

(c) (d) 

Figure 2.14: The Bivariate Wind Resource Model during (a) February at 5:00 a.m., (b) 

February at 5:00 p.m., (c) August a 5:00 a.m., and (d) August at 5:00 p.m. 
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indicating lower (but more consistent) wind turbine output. The bivariate, time variant 

probabilistic model details this variance in environmental conditions, allowing complete 

seasonal/diurnal analysis of the site’s wind resource. 

     Quantification of the site’s wind resource is conducted by treating the probabilistic 

model as a discrete function. The mean wind power density is calculated at each 

seasonal/diurnal phase by substituting the appropriate probabilistic model into the 

fundamental wind power equation. The weighted summation across the probabilistic model 

allows an accurate determination of the mean wind power density, with normalization and 

unit conversions conducted as appropriate. Figure 2.15 displays the site wind power density 

Figure 2.15: A time-variant model of site wind power density 
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obtained using the proposed time-variant multidimensional model. The mean wind power 

density shows significant variance as both a function of annual and diurnal phase, 

correlating with the observed variability in the underlying environment data. This 

probabilistic model of wind power density allows evaluation of wind system feasibility 

through comparison with the site electrical demand profile. In addition, site selection can 

be conducted with a higher degree of time-frequency resolution through the replacement of 

standard wind energy atlases with site-specific probabilistic wind power density models. 

 

2.7.3: Model Validation 

 

     The performance of the proposed multidimensional modeling algorithm is evaluated 

through comparison with two existing methodologies: the bivariate single distribution 

model presented in [49] and [50], and the time-variate product of marginal distributions 

presented in Figure 2.10. The performance of the various models is evaluated through their 

correlation to the environmental data. For validation purposes, the models will be designed 

using an older 20 year dataset (taken from 1990-2009) and then tested against a more recent 

5 year dataset (2010-2014). The performance of the proposed model is evaluated by 

calculating the correlation coefficient between each time-variant model object 

(corresponding to the annual and diurnal phase) and the empirically determined cumulative 

distribution function of the underlying data. The resulting value (R2) measures the fit 

between the model distribution and the underlying wind/density dataset. The overall 
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accuracy of the model is determined by averaging all time-variant R2 samples to produce 

the mean model correlation. The correlation coefficient is computed in two dimensions, 

comparing the bivariate cumulative distribution function to the dataset empirical 

cumulative distribution [51]: 

𝑅2(𝑗, 𝑘) =  
∑ ∑ [(𝐸𝐶𝐷𝐹(𝑗, 𝑘, 𝑖𝑐 , 𝑖𝑒) − 𝐸𝐶𝐷𝐹(𝑗, 𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )𝑚

𝑖=1
𝑛
𝑗=1 (𝐶𝐷𝐹(𝑗, 𝑘, 𝑖𝑐 , 𝑖𝑒) − 𝐶𝐷𝐹(𝑗, 𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )]

√{∑ ∑ (𝐸𝐶𝐷𝐹(𝑗, 𝑘, 𝑖𝑐 , 𝑖𝑒) − 𝐸𝐶𝐷𝐹(𝑗, 𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )
2
}𝑚

𝑖=1
𝑛
𝑗=1 { ∑ ∑ (𝐶𝐷𝐹(𝑗, 𝑘, 𝑖𝑐 , 𝑖𝑒) − 𝐶𝐷𝐹(𝑗, 𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

2
}𝑚

𝑖=1
𝑛
𝑗=1

             (37) 

where (j, k) is the diurnal and seasonal phase of the cumulative distributions, (ic ,ie) the 

position within the CDF/ECDF and the bar operator symbolizing the two-dimensional 

expected value. Figure 2.16(a) and (b) illustrate the proposed model’s correlation within 

the design dataset and the validation dataset, respectively.  

     Within the design dataset, the proposed model fits the data with very high accuracy, 

with R2 values ranging from 0.997 to 0.999. This is due to the convergence of the bivariate 

kernel smoothing algorithm. The degree of fit is slightly less during periods where the 

empirical distribution covers a small spatial area, with the best fit occurring with a wide 

underlying wind/density distribution.  This behavior is no longer evident when using the 

validation set. The 5 year validation period has a slightly different underlying distribution 

due to the effects of (at this scale) random storm events, climate cycles and the general 

smaller size of the dataset. The correlation coefficient is therefore somewhat lower, ranging 

from 0.988 (during winter periods subject to random storm events disrupting the 

distribution) to 0.9985 for the majority of the remaining interval. The accuracy of the 

proposed model remains high using the validation dataset, verifying that the previously 

observed model performance can be expected when applying a designed model to future 
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observations. The relative performance of the proposed model is evaluated by comparing 

(a) 

(b) 

Figure 2.16: Model Correlations using (a) the 

design datasets and (b) the validation dataset 
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the produced correlation values to equivalents generated using the pre-existing modeling 

methodologies. Figure 2.17 displays the correlation distributions of the three model types 

using the validation dataset. The mean correlation, the standard deviation stemming from 

time-variance and the 95% confidence bounds are tabulated to compare the performance of 

each model. Within both the design and validation datasets, the proposed model exhibits a 

superior correlation to the empirical data. The mean correlation of the proposed model is 

0.9981 (design) and 0.9962 (validation) with the closest comparison the single bivariate 

distribution at 0.9592 (design) and 0.9604 (validation). This effectively corresponds to an 

error 10 times larger than the proposed model. The time-variant univariate distribution lags 

both models due to the lack of modeled wind/density correlation. The proposed model also 

Figure 2.17: Distribution of Correlation Coefficients of 

Probabilistic Models 
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has a lower standard deviation, indicating more consistent time-variant performance. Using 

the validation dataset, the correlation coefficient of the proposed model is never lower than 

0.98 and has a peak occurrence very close to 1. Both comparison models have periods of 

correlation under 0.9, with the univariate model ranging as low as 0.75. Additionally, there 

is no overlap between the respective 95% confidence bounds, indicating that the superior 

performance of the proposed model is not due to chance and represents an improvement in 

model accuracy. Overall, the proposed model is shown to be both valid for prediction of 

future probabilistic wind resource behavior, and superior to previously defined modeling 

methods under all observed conditions. The improvement in wind resource modeling can 

therefore be applied to wind turbine performance estimation, HWES design and the 

optimization of wind turbine design and installation. 

2.8: Conclusions 

 

     A novel hybrid time/frequency analysis and modeling framework is developed to 

identify and model time-variance within a bivariate environmental dataset. Frequency 

domain analysis identifies and quantifies statistically significant time-variance in the 

nonstationary site wind velocity and air density statistics. A feature extraction algorithm is 

formulated to extract the nonstationary components from the environmental dataset. The 

refined dataset is organized to allow an optimized nonparametric kernel smoothing 

algorithm to produce a multi-dimensional probabilistic model that numerically 

characterizes the time-variant wind/density distribution. The modeling methodology 

accounts for bivariate cross- correlation as well as the identified nonstationary behavior. 
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The performance of the probabilistic model is validated by splitting the environmental 

dataset into design and validation segments, using 5 years of additional environmental data 

to validate the probabilistic model. This methodology ensures apriori as well as aposteriori 

model accuracy. The multidimensional, nonparametric probabilistic model provides 

improved time resolution in addition to a more accurate time-variant bivariate probability 

distribution, allowing high resolution probabilistic assessment of a site wind resource. The 

development and implementation of this novel modeling methodology advances the 

evaluation of a site’s wind potential, turbine installation feasibility and allows probabilistic 

assessment of system contingencies, representing an improvement in the area of wind 

resource modeling. 
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Chapter 3: Probabilistic Assessment of Wind Reserves 

 

3.1: Introduction 

 

     In this Chapter, the previously presented wind resource modeling methodology is 

augmented by advanced demand and wind turbine output modeling algorithms. The result 

is the presentation of a unified probabilistic approach for the assessment of wind reserves 

in islanded microgrids. The proposed model includes time-variant probabilistic wind 

resource modeling, probabilistic load modeling and an investigation into power system 

planning applications, including frequency regulation and demand response. Examples are 

provided using sample wind and demand data, with a full site case study left for 

presentation in a subsequent Chapter.  

     Recent advances in microgrid topologies have improved the feasibility of distributed 

generation.  The continuing maturation of primary and secondary microgrid control 

algorithms leads to an emphasis on planning the implementation of distributed generation 

into existing microgrids. The installation of wind-based reserve generation provides 

flexibility to power system planners through its applications including: implementing peak-

load demand response, its ability to provide secondary generation, as well as droop-based 

frequency regulation. Demand response (DR) [1]-[4] involves using fast-ramping 

generation (such as wind, solar or small hydro) to meet dynamic increases in electrical load 

during peaking periods. The energy supplied by DR units augments base-load and 
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secondary generation, reducing the reliance on slower thermal units during peak load 

periods. During periods of high energy availability, wind turbines can also provide 

secondary generation [5]-[6]. In microgrids, secondary generation (along with the base-

load) is provided by the diesel generators – large thermal or nuclear plants are not available, 

especially during islanding periods. In standard power systems, frequency and voltage 

regulation is provided by dynamic stabilization systems embedded within conventional 

generation. Islanded microgrids cannot access these stabilization systems. In this case, wind 

generation can provide the required dynamic stabilization, including the regulation of 

microgrid frequency. The power inverter wind turbine / microgrid interface is sufficiently 

fast and stable to implement several methods of droop control, including P/f and the more 

complex configurations specific to various microgrid topologies [7]. The applications of 

wind generation for islanded microgrids justifies their installation wherever a significant 

amount of wind energy is available. Determining the feasibility of wind generation is a 

topic of ongoing investigation which is vital for the integration and management of 

renewable energy into microgrids [8]-[15].  

     Planning the integration of wind generation into an islanded microgrid requires 

algorithms that predict power system performance during any reasonable operating 

condition. The demand profile and wind energy availability must be modeled to allow 

optimization of system configuration. Current research in this field focuses on deterministic 

and probabilistic modeling, where techniques such as machine-learning algorithms and 

statistical tools are applied for demand and wind power forecasting to predict future system 

behavior [16]-[20]. These methods are best suited for short term planning of existing 
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systems as opposed to the assessment of long-term reserve capability. Machine learning is 

computationally expensive and unreliable during uncommon conditions that differ from 

previously extracted features. The drawbacks of deterministic modeling can be addressed 

by probabilistic approaches. Probabilistic power system planning estimates the probability 

of various system contingencies through analysis of the space of possible system behavior. 

Some preliminary research has been conducted in this area, including probabilistic demand 

forecasting [17] and studies on the effects of wind-based demand response on existing 

transmission systems [26], [20]. However, none of the previous studies focused on 

developing a probabilistic model combining demand profile and wind power availability 

for demand response and frequency regulation in islanded microgrids using wind reserves.  

3.2: Probabilistic Demand Modeling 

 

     The previous Chapter has presented a probabilistic model of the site wind resource – 

allowing probabilistic estimation of wind turbine generation. A similar modeling 

methodology is required to model the electrical demand within a microgrid. During 

islanding conditions, the entirety of this demand must be supplied by local (distributed) 

generation, including any installed wind capacity when it is available. An advanced 

multidimensional probabilistic demand model is presented to form the basis of probabilistic 

wind reserve modeling, allowing probabilistic assessment of microgrid energy balance, 

demand response and the provision of secondary generation to be modelled using a unified 

methodology.  
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3.2.1: Overview of Electrical Demand 

 

     A unique characteristic of islanded microgrids is the reliance on local generation to 

supply electrical demand. Electrical demand is primarily the active power requirements of 

the microgrid, equating to the sum of all distributed loads and various transformer and line 

losses. The nature of electrical demand depends on the idiosyncratic characteristics of the 

microgrid, including the proportion of residential, commercial and industrial loads, the 

industries serviced, the site’s climate and to some degree even the local culture. All of these 

factors influence the measured load profile. Figure 3.1 displays a sample of active power 

Figure 3.1: Sample Demand Data 
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demand, obtained over two years from an isolated microgrid. The load profile displays 

significant short and long term fluctuations, with short-period load minima ranging from 

200 to 500 kW and maxima from 450 to 1000 kW. The mean microgrid demand is roughly 

600 kW. Overall, the load data displays a high degree of variability at multiple timescales 

as well as complex non-sinusoidal periodic variance. The general statistical properties of 

the demand data are analyzed to perform an initial probabilistic assessment of the load 

profile. The load dataset is fitted to several probability distributions – the Gaussian, 

Gamma, Generalized Extreme Value, Lognormal and a nonparametric Kernel distribution. 

The parametric functional forms of the Gaussian, Lognormal and Kernel distributions are 

well known, and have been previously investigated in Chapter 2. The remaining probability 

distributions will be briefly overview before their fit to the load data is investigated.  

The Gamma Distribution 

 

 

     The Gamma distribution is a two-parameter continuous probability distribution. The 

Gamma distribution family includes the exponential and chi-squared distributions – each 

is a special case. The general Gamma distribution has the following function form: 

𝛾(𝑥 | 𝛼, 𝛽) =  
𝛽𝛼

Γ(𝛼)
𝑥𝛼−1𝑒−𝛽𝑥                                                                                                      (1) 

where x is the variable of interest, α and β the positive, real distribution parameters and Γ 

the well-known Gamma function. The Gamma distribution has multiple applications, 

including signal processing, Bayesian statistics and climate modeling.  
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The Generalized Extreme Value Distribution 

 

 

     The Generalized Extreme Value distribution is a three-parameter, continuous 

probability distribution which includes the Gumbel, Frechet and Weibull distribution 

families. This distribution arises from extreme value theorem and has the following 

functional form: 

𝐺(𝑥 | 𝜇, 𝜎, 𝜉) =  

{
 

 1

𝜎
(1 +  𝜉 (

𝑥 − 𝜇

𝜎
))
−1
𝜉 𝑒−(1+ 𝜉(

𝑥−𝜇
𝜎
))
−1
𝜉
         𝜉 ≠  0

1

𝜎
𝑒−(

𝑥−𝜇
𝜎
)𝑒−𝑒

−(
𝑥−𝜇
𝜎

)
                                        𝜉 ≠  0

                                  (2) 

 

where x is the variable of interest, µ the real-values location parameter, σ the positive real 

scale parameter and ξ the real-values shape parameter. The Generalized Extreme Value 

distribution is generally used in financial risk analysis. However, a risk exists when fitting 

this distribution, as the distribution moments (mean, variance, skewness and kurtosis) are 

undefined when the shape parameter is greater than 1, ½, 1/3 or ¼, respectively. Cursory 

statistical analysis using well-known techniques is often difficult when these criterion are 

encountered.  
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3.2.2: Stationary Probabilistic Load Modeling 

 

     Figure 3.2 displays the fitted probability distributions (Gaussian, Gamma, G.E.V, 

Lognormal and Kernel) of the 2-year load dataset. The electrical demand displays a 

reasonable continuous empirical distribution with minor multimodal behavior. Each of the 

parametric probability distributions overestimates the peak probability (occurring between 

400 and 500 kW) while underestimating the probability of lower and higher demand near 

300 and 750 kW. Essentially, the fitted parametric distributions have insufficient Kurtosis, 

however the mean, variance and skewness are reasonably accurate. The nonparametric 

Figure 3.2: Demand Probability Distribution Models 
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Kernel smoothing distribution is more accurate – it successfully captures the multimodal 

nature of the empirical load distribution and exhibits correct tail weights. In addition, the 

nonparametric Kernel distribution captures the quick decline to zero probability at demand 

values under 250 kW or above 950 kW – regions where the parametric distributions still 

show significant probability mass. Overall, the nonparametric Kernel smoothing 

distribution displays the best visual fit to the load dataset.  

     The fitting accuracy of each probability distribution (quantified through the MAE, 

MAPE and RMSE) is displayed in Table 3.1. The visual assumption (that the Kernel 

smoothing distribution exhibits the best fit) is validated through all three prediction 

statistics – the Kernel distribution has a MAE, MAPE and RMSE of 0.000847, 0.1823 and 

0.0011, respectively. For all prediction metrics, these errors are considerably smaller than 

the nearest competitors (values of 0.0062, 0.8074 and 0.0079 from the G.E.V, Lognormal 

and G.E.V distributions, respectively). The overall fitting accuracy of the nonparametric 

Kernel smoothing distribution indicates that it (similar to the wind velocity analysis) is the 

optimal fitting algorithm for probabilistic assessment of electrical demand.  
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Table 3.1: Stationary Probabilistic Load Model Prediction Errors 

Distribution MAE MAPE RMSE 

Gamma 0.0078 2.0068 0.0093 

G.E.V 0.0062 3.1016 0.0079 

Lognormal 0.0117 0.8074 0.0148 

Gaussian 0.0105 6.5891 0.0144 

Kernel 0.000847 0.1823 0.0011 

3.2.3: Nonstationary Behavior of Load Profiles 

 

     The analysis conducted in the previous system assumes that the load dataset is a 

stationary signal. Similar to the wind velocity analysis in the previous Chapter, this 

assumption significantly simplifies the probabilistic analysis, reducing the electrical 

demand model to a single probability distribution. The assumption of stationarity (or 

nonstationarity) must again be investigated to ensure its validity for the new dataset – 

otherwise important information is lost during the probabilistic modeling process. The 

well-known relationship between electrical demand and climate suggests the existence of 

nonstationary behavior. To validate, small subsets are drawn corresponding to 

measurement periods at diametrically opposite seasonal and diurnal phases. The previously 

defined nonparametric kernel distribution is fitted to four 124-element electrical demand 

subsets, with the resulting distribution compared to that of the entire 70179-element 



65 

 

demand dataset. The first four empirically determined distribution moments (mean, 

standard deviation, skewness and kurtosis) are compared across each subset. Any variation 

among these parameters indicates non-stationary behavior. 

     Figure 3.3 displays the fitted Kernel distributions of each data subset, along with that of 

the entire dataset. Significant and fundamental differences in the type and location of each 

probability distribution is evident. The modality, mean and variance of each distribution 

leads to a situation where there is little overlap between each subset, with the overall 

distribution reflecting a mixture model created by summation of the individual displaced 

subset distributions. This strongly suggests nonstationary characteristics in the demand 

Figure 3.3: Probability Distributions of Demand Subsets 
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dataset. Table 3.2 displays the distribution moments associated with these subset (and the 

complete) probabilistic models. The mean demand varies from 283.3 kW to 768.9 kW – 

essentially a tripling in demand. The standard deviation varies from 19.1 to 60.4 kW – also 

a 3 to 1 variability. As a ratio of the mean, the standard deviation remains relatively 

constant. However, the distribution skewness also displays significant variance, with two 

datasets showing negative skewness and the remaining positive skewness. In addition, both 

platykuritic and leotpkuritc behavior is evident. Essentially, the shape and location of the 

subset distributions are fundamentally different, lending credibility to the assumption of a 

nonstationary load dataset and invalidating single-distribution probabilistic modeling.  

Table 3.2: Distribution Moments of Load Subsets 

Dataset Mean Std. Deviation Skewness Kurtosis 

Set 1 (N = 70179) 515.7676 130.6324 0.2861 2.5695 

Set 2 (N = 124) 564.2089 49.5666 -0.2486 2.1159 

Set 3 (N = 124) 768.9136 60.3940 -0.4488 3.0874 

Set 4 (N = 124) 283.2813 19.0908 0.7636 3.4951 

Set 5 (N = 124) 441.9026 33.8822 0.7042 3.1981 
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3.2.4: Frequency Domain Analysis 

 

     The identified nonstationary behavior of the electrical demand indicates that the 

augmented time-variant probabilistic modeling algorithms from the previous Chapter are 

also applicable. The demand dataset is modeled as a general discrete nonstationary dataset, 

x(n), comprised of a stationary base dataset, xs(n), with nonstationary behavior modeled as 

superimposed periodic features, xσ1…σn. The nonstationary variance periods, σ1…σn which 

exist within x(n) are identified (in a similar vein to the wind velocity data) to allow 

probabilistic modeling algorithms to accurately reflect this nonstationary behavior. The 

analysis framework detailed in Chapter 2 (based around wide-band frequency domain 

study) is capable of identifying and quantifying any periodic variance contributors within 

the demand data, allowing more advanced time-variant probabilistic analysis of the 

nonstationary microgrid electrical load profile. The highly nonstationary behavior evident 

from the previous section suggests that multiple variance contributors exist – their 

identification is vital to the development of an accurate, time-variant probabilistic demand 

model.  

     The frequency domain analysis algorithm presented in Chapter 2 was applied to the 

electrical demand dataset to isolate any statistically significant variance contributors. 

Figure 3.4 displays the Fourier amplitude spectrum, the logarithmic moving average as well 

as the corrected moving average obtained using the recursive removal of statistically 

significant variance periods. The demand spectrum includes the individual magnitudes of 

the sinusoidal frequency components, indicating the amount of variability expected at a 
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particular frequency. It is more complex than the wind spectrum, with an annual signal 

visible with a 2nd harmonic present, indicating a non-sinusoidal seasonal-cycle load 

variance. The dataset length makes precise identification of seasonal trends difficult, 

however the absolute magnitude of the signal verifies its presence. At timescales of less 

than 3 months, the overall demand variance is modelled as slightly pink (f-1/2) noise, with 

progressively larger load variation observed at longer observation periods. This trend has a 

significant diurnal signal superimposed – this diurnal signal has multiple harmonics and is 

amplitude modulated (due to the presence of near-symmetrical sidebands) indicating a non-

sinusoidal signal which varies over the course of a year. The complexity of this signal 

Figure 3.4: Demand Amplitude Spectrum 
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indicates that a full multidimensional probabilistic model is needed which is capable of not 

only modeling each trend individually, but also their interactions.  

     Figure 3.5 displays the mean seasonal and diurnal demand variance signals extracted 

from the frequency spectrum, with the long period mean also removed for clarity. This 

causes negative values to indicate below-average demand while positive variance values 

reflect above-average demand. The seasonal signal is observed to be somewhat stronger 

then the diurnal signal, with an amplitude of 130 kW in comparison to 105 kW. The 

seasonal signal is sinusoidal with a superimposed second harmonic, with the peak occurring 

during January, the harmonic peak during June and the minimum during September. The 

diurnal signal is more complex, being composed of multiple harmonics of varying 

Figure 3.5: Seasonal and Diurnal Demand Variance 
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amplitude and phases. This signal has a peak of 105 kW shortly before noon, a secondary 

peak of 65 kW near 5:00pm and a single minimum at -135 kW near 3:00 a.m. However, 

the existence of amplitude modulation indicates that this diurnal signal is not constant 

throughout the year – however the general behavior is as described. The presence of these 

significant seasonal and diurnal variance features validates nonstationary load behavior, 

and their identification and quantization allows appropriate time-variant probabilistic 

modeling algorithms to be implemented, generating a more accurate probabilistic demand 

model.  

 

3.2.5: Time-Variant Probabilistic Load Modeling  

 

     The nonstationary demand dataset is modelled using a time-variant, univariate Kernel 

smoothing algorithm (as described in Chapter 2). The development of the load model 

requires feature extraction (to model the identified seasonal and diurnal variance signals), 

bandwidth-optimized Kernel distribution algorithms and a fine numerical mesh covering 

the entire space of potential demand values. The resultant time-variant probabilistic load 

model contains information regarding the general load profile, the relationship between the 

base, secondary and peak load conditions and also provides vital information with respect 

to time-variant behavior, including cross-frequency interactions and their effects on various 

statistical properties.  
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Feature Extraction 

 

     The electrical demand dataset is expressed as a discrete, nonstationary pseudorandom 

variable, L(n), with time-variant probability distribution, pL(x,t). Assuming a sufficient 

dataset of length N to model annual-scale nonstationary behavior of k*n and data 

measurement spacing tight enough to allow detection of diurnal variance of length j*n, the 

annual and diurnal nonstationary variance features are extracted from L(n), 

𝐿σ1σ2 = [(
𝐿(1,1,1:𝑚) ⋯ 𝐿(1, 𝑗, 1:𝑚)

⋮ ⋱ ⋮
𝐿(𝑘, 1,1:𝑚) ⋯ 𝐿(𝑘, 𝑗, 1:𝑚)

)]                                                                        (3) 

where each matrix element (j,k) is a vector of length m consisting of appropriate dataset 

samples. These data vectors contain information including the underlying load PDF for the 

time specified by (j,k). The multiscale time-variant load PDF, pL(j,k,x), is approximated by 

applying the optimized Kernel smoothing algorithm (Chapter 2) to each data vector, 

producing the following multivariate load model: 

𝐹𝐿σ1σ2 = [(
𝐹𝐿(1,1, 𝑝1: 𝑝𝑛) ⋯ 𝐹𝐿(1, 𝑗, 𝑝1: 𝑝𝑛)

⋮ ⋱ ⋮
𝐹𝐿(𝑘, 1, 𝑝1: 𝑝𝑛) ⋯ 𝐹𝐿(𝑘, 𝑗, 𝑝1: 𝑝𝑛)

)]                                                             (4) 

where each vector, FL(j,k), is comprised of a KDE evaluated at points p1:pn. The KDE 

bandwidth is selected to minimize AMISE, ensuring the correct fit to the load profile.  
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The Probabilistic Load Model 

 

     Figures 3.6(a-d) display samples of the resulting time-variant probabilistic load model. 

The displayed distributions correspond to (a) 3 a.m., (b) 9 a.m., (c) August 28th at 3 p.m. 

and (d) 9 p.m. These samples display the seasonal load profile variation at different parts 

of the diurnal cycle. The selection of distribution samples emphasizes the nonstationary 

nature of the probabilistic demand profile. The lowest, least variable probabilistic load 

profile is observed at 3 a.m. This is during the diurnal load minimum – most commercial 

and industrial customers are quiescent along with a significant proportion of residential 

demand. A seasonal cycle is evident, with the most likely demand value ranging from 550 

kW in January to a minimum of 300 kW during August and September. A small secondary 

peak is evident during May and June, where the demand becomes less concentrated and 

increases to roughly 450 kW after previously declining to the 375 kW range. The load 

profile itself is dense, with demand rarely varying by more than 50 kW from the associated 

probabilistic mode.  

     The demand distribution is significant different at 9 a.m., with the probabilistic modes 

increasing to a maximum of 700 kW during January and 450 kW during August and 

September. In addition, the secondary peak during June is more evident, with the most 

likely load increasing from 600 to 750 kW. The demand distribution is also wider 

throughout – the load frequently varies by up to 100 kW on either side of the probabilistic 

peak. Essentially, the load displays a higher mean value with greater variance as 

commercial and industrial customers are coming online. By 3 p.m., the demand profile has 
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become more concentrated. The general range of probabilistic modes remains 450 to 700 

kW with a secondary peak near 750kW. However, the demand variance is less during most 

times of the year, with the distribution width decreasing to roughly 75 kW. At 3 p.m., most 

commercial and industrial customers are in steady-state daytime operation, leading to the 

decreased variability in the load profile. The load profile is similar at 9 p.m. – it is slightly 

more concentrated due to residential loads (the majority of commercial and industrial 

customers are now offline). The secondary peak is weaker, suggesting that it stems from 

commercial or industrial customers. In general, significant variability is observed in the 

load profile due to the diurnal and seasonal cycles. Probabilistic wind reserve modeling 

requires this information to accurately assess the relative performance of wind generation 

when applied to a microgrid.  
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(a) 
(b) 

(c) (d) 

Figure 3.6: Probabilistic Demand Distribution at (a) 3 a.m., (b) 9 a.m., (c) 3 p.m. and (d) 9 

p.m. 
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     The developed time-variant probabilistic electrical load model is evaluated through 

several prediction statistics. The MAE, MAPE and RMSE of each individual probability 

distribution (corresponding to a time and date, respectively) is calculated by comparing the 

model probability distribution to the empirical distribution of the sample data. Table 3.3 

displays general prediction statistics applied to the demand dataset. The MAE, MAPE and 

RMSE have mean values of 0.0045, 0.0415 and 0.0100, respectively. This indicates that 

the probabilistic modeling algorithm is capable of accurately modeling the true demand 

distribution. However, significant variance does exist across the range of probabilistic 

models, with the MAE ranging from 0.000781 to 0.0264, the MAPE from 0.0017 to 0.4184 

(likely an artifact of a near-zero empirical value) and the RMSE ranging from 0.0032 to 

0.0366. Essentially, the nonstationary behavior of the load dataset influences the accuracy 

of the probabilistic model.  

Table 3.3: General Demand Data Probabilistic Prediction Statistics 

Statistic MAE MAPE RMSE 

Minimum 0.000781 0.0017 0.0032 

Mean 0.0045 0.0415 0.0100 

Maximum 0.0264 0.4184 0.0366 

 

     Table 3.4 displays the prediction statistics for the demand subsets modeled when 

identifying nonstationary dataset behavior. The relative accuracy of the probabilistic model 

is seen to be highest during the seasonal load minimum (Set 4 and Set 5), with MAE, MAPE 
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and RMSE values as low as 0.0016, 0.0128 and 0.0067, respectively. The prediction errors 

are highest during the winter load maximum (Set 2 and Set 3) with MAE, MAPS and RMSE 

values as high as 0.0066, 0.0319 and 0.0169, respectively. However, despite the increased 

prediction errors, the overall correlation coefficient between the empirical and model 

distributions remains above 0.999, indicating a strong in-sample fit to the actual demand 

distribution. Figure 3.7 displays the probability distribution of the prediction statistics. The 

MAE and RMSE both resemble an extreme value distribution, with a pronounced mode 

near their mean value and a slightly extended right tail. The MAPE is similar, however it 

is stretched in the x-axis due to the normalization inherent in the MAPE calculation. 

Figure 3.7: Probability Distribution of Prediction Statistics 
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However, in all cases the prediction errors are low, indicating the ability of the probabilistic 

modeling algorithm to match the empirical demand distribution.  

Table 3.4: Demand Subset Probabilistic Prediction Statistics 

Dataset MAE MAPE RMSE Correlation  

Set 1 (N = 70179) 0.0045 0.0415 0.0100 0.9998 

Set 2 (N = 124) 0.0066 0.0319 0.0169 0.9994 

Set 3 (N = 124) 0.0050 0.0233 0.0123 0.9995 

Set 4 (N = 124) 0.0016 0.0128 0.0067 0.9999 

Set 5 (N = 124) 0.0024 0.0161 0.0070 0.9999 

 

3.2.6: Probabilistic Assessment of Load Profiles  

 

     Probabilistic assessment of microgrid load profiles requires knowledge of the 

cumulative probability of demand values. The previously obtained probabilistic load 

profile is integrated to produce multidimensional cumulative distribution function (CDF): 

𝐶𝐿σ1σ2(𝑗, 𝑘, 𝑝𝑛) =  ∫ 𝐹𝐿σ1σ2(𝑗, 𝑘)𝑑𝑝
𝑝𝑛

𝑝=0

                                                                                      (5) 

𝐶𝐿σ1σ2 = [(
𝐶𝐿(1,1, 𝑝1: 𝑝𝑛) ⋯ 𝐶𝐿(1, 𝑗, 𝑝1: 𝑝𝑛)

⋮ ⋱ ⋮
𝐶𝐿(𝑘, 1, 𝑝1: 𝑝𝑛) ⋯ 𝐶𝐿(𝑘, 𝑗, 𝑝1: 𝑝𝑛)

)]                                                            (6) 
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where each matrix element (k,j) contains a CDF model of the corresponding electrical load. 

Figure 3.8 displays a sample CDF, displaying the seasonal demand variance at 5pm. The 

cumulative load distribution displays the minimum and maximum expected demand values. 

The lowest non-zero CDF value ranges from 400 to 600 kW, representing the absolute base 

load which must always be available. The point at which the CDF converges to unity 

represents the greatest possible demand – this value ranges from 650 to 900 kW. This 

amount of generation must be available in reserve to avoid loss of load contingencies. The 

intermediate values reflect the underlying probability distribution, with the median load 

value roughly matching the previously defined probabilistic modes. 

Figure 3.8: An Example Demand CDF 
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     Microgrid load profiles are divided into peak, secondary and base load components. 

Figure 3.9 displays an example of this division. The base load represents the constant 

demand which must always be available. This varies according to the seasonal cycle, and 

is (in large transmission grids) often supplied by slow-ramping coal or nuclear generation. 

The secondary load includes most of the diurnal-cycle variability, and is supplied by faster 

units. The peak load is comprised of the highest load values during diurnal-cycle peaks, in 

addition to any transient load increases due to cold-load pickup or other contingencies. In 

the example system, the base load is roughly 450 kW, the secondary load 700 kW and the 

peak load as high as 950 kW. In a microgrid, a slightly different probabilistic assessment 

of these load criterion is needed. The distributed generating units are grid forming – they 

Figure 3.9: Microgrid Load Profiles 
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can ramp quickly enough to follow hourly load fluctuations. The secondary and peak loads 

can also be supplied by these generators – as the only energy source in the grid, an 

engineering decision must be made to select generators with the ramping capability to 

match the microgrid peaking profile. When intending to use wind generation as reserve 

capacity, probabilistic load profile assessments are more valuable in predicting the system 

state during load variation.  

     The multidimensional, cumulative probabilistic load model is used to determine 

probabilistic estimates of the base load, secondary load and peak load corresponding to the 

seasonal and diurnal phase. The base load represents constant demand which is nearly 

always exceeded and is defined as the 5th percentile of the CDF. The secondary load 

represents the median electrical demand, defined as the 50th percentile of the CDF. Finally, 

the peak load represents demand levels which are present but rarely exceeded (the 95th 

percentile of the CDF). This type of probabilistic assessment moves the application of 

reserve generation into the shorter timescales more appropriate for islanded microgrids. 

The reserve generation requirement can be probabilistically assessed by subtracting the 

base load from the probabilistic load model. Figures 3.10 (a), (b) and (c) display the 

expected base, secondary and peak demand values for each date and time. The base load 

profile shows significant seasonal and diurnal variability, ranging from a minimum of 250 

kW (at 4 a.m. during August) to 700 kW (at 1 p.m. and 7 p.m. during January). In general, 

the seasonal base load variation is unimodal, with a single winter peak and a summer 

minima. A slight secondary peak is evident during the diurnal peak periods, however it is 

small compared to the overall variability present. The secondary load does not follow this 
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unimodal behavior. While the minimum and maximum load values (in this case 300 and 

800 kW, respectively) occur at the same date and time, a pronounced secondary peak is 

evident between 7 a.m. and 9 p.m. during May and June. This is likely due to a single, large 

industrial customer within the microgrid which has a seasonal operation schedule. The load 

during this secondary peak reaches values comparable to the winter maxima, representing 

a significant requirement for reserve generation. The peak load profile is similar to the 

secondary load, ranging from 350 to 950 kW and following the same seasonal and diurnal 

load pattern. The high amplitude variability in the secondary and peak load profiles indicate 

a substantial requirement for reserve generation – the base load often accounts for barely 

half of the total demand.  
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(a) (b) 

(c) (d) 

Figure 3.10: Expected Values of (a) The Base Load, (b) The Secondary Load, (c) The Peak 

Load and (d) the spread between the Base and Peak Demand. 
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     Figure 3.10(d) displays the difference between the expected peak and base demand 

values – indicating the amount of reserve capacity required to meet short-period load 

fluctuations. The effect of the industrial customer is clearly evident – the demand becomes 

much more volatile, with a difference of nearly 500 kW between the base load and peak 

demand. Essentially, this customer only intermittently consumes energy, requiring reserve 

units to be available. The remainder of the time, the previously defined seasonal and diurnal 

variability is evident, with the demand variability peaking during the winter and during 

working hours, with a minimal load spread occurring during summer nights. The variability 

in the peak demand in relation to the base load indicates a time-variant wind reserve 

requirement which must be further investigated using probabilistic modeling.  

     Figures 3.11(a) and 3.11(b) display the seasonal probability distribution (at 3 a.m. and 

5pm) of the electrical demand with the base load subtracted. Essentially, this produces a 

probabilistic model of the secondary generation requirement. While the peak load profile 

displays the 95% percentile of electrical demand, the presented probabilistic model 

provides additional statistical information, including the expected value, variance and other 

statistical properties of the secondary demand. The general pattern of demand variability is 

similar to the previously defined peak and secondary demand variance, with a maximum 

during the winter months and when the industrial customer is active. However, the 

probabilistic model also displays the change in demand distribution which occurs in 

addition to this variability. In this case, the diurnal cycle is dominant. During the diurnal 
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peak, the distribution of secondary demand becomes much wider, indicating greater short-

period variability in electrical demand. The expected secondary demand requirement is 

(a) 

(b) 

Figure 3.11: Probabilistic Demand Models at (a) 3 

a.m. and (b) 5pm 
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near 100 kW for most of the year. However, the industrial customer increases this value to 

300 kW. In addition, the diurnal minimum at night has demand variability as low as 50kW, 

especially during the summer months. The majority of the seasonal cycle is filtered out by 

removal of the base demand – providing the insight that the diurnal cycle dominates load 

variability while the seasonal cycle primarily influences the base load quantity.  

     Figure 3.12 displays the expected value of the probabilistic secondary demand for each 

date and time. It is similar in shape to the peak load profile, however as a formally 

calculated expected value it represents the long period statistical mean reserve requirement. 

Assuming the presence of energy storage or a transmission grid interconnection, the 

Figure 3.12: Expected Value of Secondary Demand 
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expected value can be used to size reserve generation for net-neutral microgrid energy 

balance. For islanded systems, the peak demand profile must be used to size generation 

capacity – the expected value now has applications in reliability, scheduling and economic 

analysis. The expected secondary demand varies from 50 to 250 kW, indicating that any 

secondary generation must be significantly oversized for many seasonal and diurnal phases 

in order to meet the peak demand. The significant and fundamental variability in demand 

profiles indicates that wind reserve assessment requires a joint probabilistic analysis of 

available wind energy and its temporal relation to probabilistic demand variance.  
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3.3: Probabilistic Wind Reserve Assessment 

 

     The wind reserve is the quantity of wind power available to meet reserve applications 

such as demand response or frequency regulation. It is a function of the site’s wind 

resource, load profile and system architecture. The high fluctuation in wind power 

availability and electrical demand suggest that probabilistic (as opposed to deterministic) 

analysis is an optimum method of wind reserve assessment [17]-[18]. The advantages of 

probabilistic models are amplified in islanded microgrids, where fluctuations in any factor 

have a significant effect on system behavior and long-distance energy dispatch is not 

possible. This section presents a probabilistic wind reserve assessment algorithm involving 

probabilistic modeling of wind turbine power output and its combination with the 

previously defined demand model, producing an energy balance model applicable to wind 

reserve applications.  

 

3.3.1: Wind Turbine Power Output Modeling 

 

         The probabilistic wind turbine output is modelled by a complex recursive algorithm 

which combines the wind turbine power curve, 𝑃𝑡(𝑉), (obtained from the manufacturer) 

with each bivariate dataset element. Initially, the space of potential wind turbine outputs is 

produced: 
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𝑃𝑡(𝑉𝑠𝑒𝑡, 𝜌𝑠𝑒𝑡) =  𝑃𝑡(𝑉𝑠𝑒𝑡) × 
𝜌𝑠𝑒𝑡

𝜌𝑏𝑎𝑠𝑒
           (7)   

where Vset and ρset are the discrete vectors of possible environmental conditions contained 

within the bivariate wind resource model 𝐹Kσ1σ2 and ρbase the base air density used to 

calculate the wind turbine power curve. The vector multiplication results in a matrix of 

wind turbine power output values filling the bivariate model space. The resolution of the 

bivariate model is limited by the source data and the available computational resource – in 

this case wind velocity is discretized to 0.5 knot values and air density to 0.003 kg/m3. 

     A probabilistic extension of the wind turbine output matrix is produced by the 

substitution of the time-variant bivariate probabilities: 

𝐹𝑡(𝑘, 𝑗, 𝑉𝑠𝑒𝑡, 𝜌𝑠𝑒𝑡, 1) = 𝑃𝑡(𝑉𝑠𝑒𝑡, 𝜌𝑠𝑒𝑡)                                                                                           (8) 

𝐹𝑡(𝑘, 𝑗, 𝑉𝑠𝑒𝑡, 𝜌𝑠𝑒𝑡, 2) = 𝐹Kσ1σ2(𝑘, 𝑗, 𝑣, 𝜌)                                                                                    (9) 

This model contains every time-variant environmental condition, its probability of 

occurrence and the associated wind turbine output power. A time-variant probabilistic 

model of the wind turbine output power is produced by compressing the model according 

to discrete ranges of wind turbine output: 

𝐹𝑃𝑡(𝑘, 𝑗, 𝑃𝑜) =  ∑∑{
𝐹Kσ1σ2(𝑘, 𝑗, 𝑉𝑚, 𝜌𝑛),      𝑃𝑜 −  𝜖  ≤ 𝑃𝑡(𝑉𝑚, 𝜌𝑛)  <  𝑃𝑜 +  𝜖 
0                                 ,                                                           𝑒𝑙𝑠𝑒

𝑛

𝑖 =1

𝑚

𝑗=1

      (10) 

where Po is the discrete output power and ε a parameter representing the effective “bin 

width” of the wind turbine power output. The result is to remove the dimensions 

corresponding to V and ρ, resulting in a model which contains the total probability of each 
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potential wind turbine power output as a function of the seasonal and diurnal phase – the 

environmental condition probabilities are embedded within this sum probability. The 

nature of this probabilistic model is dependent on both the shape of the wind turbine power 

curve and the bivariate wind resource model, and provides a probabilistic estimate of the 

power output of any particular wind turbine when installed under a known environmental 

regime.  

     Figures 3.13(a) and 3.13(b) display samples of the probabilistic wind turbine output 

model, corresponding to the seasonal cycle at 3 a.m. and 5pm. The power output is 

normalized by the turbine rating – in this case a Northern Power Systems 100C-24 wind 

turbine [21] was selected. Discretization artifacts are visible in the intermediate power 

output ranges – this is due to the sharp slope of the power curve in this area in combination 

with the unavoidable limit to the wind data resolution. A significant seasonal trend is 

evident, especially near the rated output region. At 3 a.m. during the winter months 

(November to April) significant probability mass exists near an output of 1 Per-Unit, 

representing full-capacity operation at variable air densities. However, this operating 

condition does not occur during the summer months – the probability of sufficient wind is 

low enough that it was not observed during the multi-year sample dataset. During this 

period, the probability of quiescent operation (power outputs near 0) is significantly higher, 

indicating an inferior wind resource and a general lack of available energy. Diurnal 

variability is also evident. While at 3 a.m. the summer months see essentially no rated 

operation, at 5pm there is probability mass near full-load. The maximum observed output 

power varies according to the environmental air density – during the winter months, values 
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of up to 1.1 Per-Unit are possible assuming a passive stall-controlled wind turbine. At all 

(a) 

(b) 

Figure 3.13: Normalized Probabilistic Wind 

Turbine Output at (a) 3 a.m. and (b) 5pm 
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times of the year, the diurnal signal places more probability mass near rated power output 

during the early evening. Quiescent operation is also less likely, with at least some wind 

power generally available. This is likely due to daytime heating increasing the local wind 

velocity through various mesoscale airmass circulations. In general, the probabilistic wind 

turbine output model provides vital information regarding wind turbine performance, 

including variability due to time-variant environmental conditions and the precise behavior 

of the installed wind turbine.  

     The expected wind turbine output power can be obtained by integration of the general 

probability distribution: 

𝐸𝑃𝑡(𝑘, 𝑗) =  ∫ 𝑃𝐹𝑃𝑡(𝑘, 𝑗, 𝑃)𝑑𝑃                                                                                           (11)
𝑃𝑚𝑎𝑥

𝑃𝑚𝑖𝑛

 

where the bounds of integration are the minimum and maximum values of the power output 

function. The precise boundaries depend on the wind turbine power curve and the choice 

of discretization – in general they range from just below zero to slightly above the 

manufacturer’s rated power (for smaller turbines) to the maximum rated power (for larger 

pitch or speed controlled wind turbines). The wind turbine capacity factor is calculated by 

normalizing the power output by the turbine rating. Figure 3.14 displays the expected wind 

turbine capacity factor. A significant seasonal and diurnal trend is evident, with the capacity 

factor ranging from 0.25 during summer nights to 0.55 during winter days. The maximum 

capacity factor is observed during February at about 1 p.m., with dual minima evident at 9 

p.m. and 5 a.m. during August. The capacity factor is an expected value which gives a 

general, long-period estimate of wind turbine performance. However, a more detailed 
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probabilistic analysis involving both the wind turbine and electrical demand models is 

needed to assess the effectives of wind turbines in providing dynamic reserve generation.  

 

3.3.2: Probabilistic Load Pickup 

 

     One method for evaluating the effectiveness of supplementary wind generation is 

probabilistically modeling its ability to meet the secondary demand. In this situation, the 

secondary demand is modelled as what remains after subtracting the base load (the 5th  

percentile of probabilistic demand). The result is a set of probability distributions which 

Figure 3.14: Expected Wind Turbine Capacity Factor 
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were detailed in the previous section. The available wind generation is modelled in a similar 

vein, using a wind turbine power curve, a set of environmental data and the defined annual-

diurnal feature extraction and probabilistic modeling algorithms. The probabilistic wind 

turbine power output model is a proxy for available wind generation, and can be 

superimposed on the appropriate (at the same seasonal and diurnal phase) secondary 

demand distribution to begin the process of modeling probabilistic load pickup.  

     Figures 3.15(a-d) display such superimposed distribution, measured at (respectively) 3 

a.m. on January 1st, 5pm on January 1st, 3 a.m. on August 28th and 5pm on August 28th. 

These sample points roughly represent the extrema of the observed seasonal and diurnal 

demand and wind resource variability, providing the most visually evident bases for 

observing time-variance in probabilistic load pickup. In Figure 3.15(a), the wind turbine 

power output distribution displays the dual-peaking pattern expected when the wind regime 

includes periods of high wind velocity. While the majority of probability mass is at or near 

the quiescent state, a secondary peak exists at rated power output – in this case 250kW, 

representing the size of the wind generation exemplar. For easier visual presentation, the 

wind turbine output distribution was smoothed to minimize the effects of the discretized 

environmental data – further calculations use the original datasets to avoid introducing 

fitting error. The probabilistic secondary demand model is naturally smoother, therefore 

visual processing was not required. The demand distribution is bimodal, with dual peaks at 

55 and 130 kW above the base load. The distribution has a high variance – significant 

probability mass exists from 0 kW (representing base load demand) to 200 kW. In this 

situation, the wind turbine power output has probability mass above any particular demand 



94 

 

value, visually suggesting that the wind turbine can meet this demand value at least some 

of the time. Figure 3.15(b) displays a similar wind turbine output profile, with a slightly 

greater probability of rated power output due to the diurnal wind resource cycle. However, 

during this period the demand distribution is substantially different. Due to the diurnal load 

cycle, the distribution is unimodal and shifted to higher values, with the most likely 

secondary demand increasing to 135 kW and raging as high as 300 kW in exceptional 

circumstances. There is substantially less probability mass near the base load. The interplay 

between these probability distributions suggests that at this point of the diurnal cycle, wind 

generation would be less effective at meeting the secondary demand.  

     Figure 3.15(c) displays the substantially different demand and wind turbine output 

distributions observed during the summer load and wind resource minima. The wind 

turbine output is now significantly shifted towards quiescent operation, with less 

probability mass near rated output. This is due to the wind regime shifting towards calmer 

conditions. The demand distribution is also significantly shifted – as this is during the 

seasonal and diurnal minima, the distribution peaks at 25 kW above the base load. Very 

little probability mass exists above 100 kW, indicating the rarity of significant increases in 

demand during this seasonal and diurnal phase. Figure 3.15(d) displays the distributions 

later in the day, during the diurnal wind resource and load maximum. The wind turbine 

output distribution is slightly shifted towards higher power output, with daytime heating 

driving higher wind velocities, leading to a higher probability of rated-power operation. 

However, the demand distribution is also shifted, with the highest probability secondary 

demand increasing to 50 kW above the base load, with significant probability mass existing 
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at up to 150 kW. The dual variance apparent in both the available wind energy (from the 

turbine output distribution) and the demand indicates that modeling probabilistic load 

pickup requires a rigorous mathematical analysis of the probability distributions observed 

at each seasonal and diurnal phase.  
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(a) (b) 

(c) (d) 

Figure 3.15: Probabilistic Comparisons of Demand and Wind Generation on (a) January 

1st at 3 a.m., (b) January 1st at 5pm, (c) August 28th at 3 a.m., and (d) August 28th at 

5pm 



97 

 

     The developed probabilistic wind turbine output and electrical demand models allow a 

determination of the probabilistic energy balance. Essentially, assuming a demand 

distribution and wind turbine installation, the probability of any given power surplus or 

deficit can be expressed. This results in a probabilistic load pickup distribution, allowing 

determination of loss of load probability, secondary regulation requirements and to provide 

a general picture of wind reserve feasibility. The probabilistic power balance model is 

developed by first defining the space of potential power balance conditions: 

𝑃𝑏𝑎𝑙(𝑘) =  𝑃𝑇𝑂(𝑖) − 𝑃𝐿𝑂(𝑗),     𝑘 = (𝑗𝑖) + 𝑗                                                                          (12) 

where PTO is the vector of discrete wind turbine output values and PLO is the discrete 

electrical demand values used in their respective probabilistic models. This defines every 

possible power balance condition allowable under the modeling regime. The likelihood of 

each balance condition is evaluated by multiplying the two marginal (output and demand) 

distributions taken at a single seasonal and diurnal phase: 

𝑃𝑟𝑏𝑎𝑙(𝑛,𝑚, 𝑘) =   𝐹𝑝𝑡(𝑛,𝑚, 𝑖) ∗ 𝐹𝐿σ1σ2(𝑛,𝑚, 𝑗) ,     𝑘 = (𝑗𝑖) + 𝑗                                      (13) 

where Fpt is the appropriate wind turbine output model and FLσ1 σ2 the demand model. The 

resulting probability object contains a matrix (corresponding to the seasonal and diurnal 

phase) for each potential power balance value defined in (12). This model is sorted 

according to the power balance value, with duplicate entries (representing more than one 

way to get to a particular power balance) having their probability values added to represent 

the combined likelihood of encountering that situation. The final model determines the 
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probabilistic energy balance according to the seasonal and diurnal phase, allowing a more 

detailed investigation into wind reserve performance.  

     Figure 3.16 displays four samples of the probabilistic power balance model (16), 

corresponding to 3 a.m. on January 1st, 5pm on January 1st, 3 a.m. on August 28th and 5pm 

on August 28th. These sample times represent the extrema in wind resource and demand 

distributions. In this case, the wind turbine output model was developed using the 

Northwind 100c_24 wind turbine, scaled up to assume 250 kW of generation capacity. The 

probabilistic models are multimodal and time-variant, displaying the complex interplay 

between the wind turbine output and the electrical demand. During January, the probability 

distribution is fairly symmetric about 0. At 3 a.m., the distribution is bimodal in the deficit 

region, with dual peaks at a power shortage of 120 and 50 kW. This is due to the fairly 

dense demand distribution at this time. The surplus region has a similar probability, albeit 

shifted by the rated wind turbine output and slightly diminished due to the somewhat lower 

probability of rated generation as opposed to quiescent wind turbine operation. At 5pm, the 

entire distribution is shifted towards a power deficit, as the demand increases without a 

significant change in the wind turbine output distribution. During August, the probabilistic 

behavior is significantly different. A significant probability peak occurs at a small deficit, 

representing quiescent wind turbine operation combined with near-base load demand. This 

is most significant at 3 a.m., when the demand distribution is clustered at low values. The 

surplus region is essentially a shifted version of the wind turbine output distribution, as 

during this period the secondary demand is usually small compared to the rated capacity of 

the wind generation. At 5pm, the distribution shifts slightly toward an energy deficit and 
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spreads out, representing the change in demand distribution detailed in the previous section. 

Overall, a significant probability of energy surplus exists at all times, detailing the ability 

of wind to act as reserve generation. However, the nature of the probability distribution 

implies that wind alone is not callable of always meeting the energy demand – additional 

action by conventional generation is required.   

     Figure 3.17 displays a similar probabilistic power balance model developed using the 

Northwind 100c_24 wind turbine scaled up to 500 kW of rated generation capacity. The 

increased wind generation significantly influences the probabilistic power balance. With 

more wind energy available, the majority of the probability mass occurs within the energy 

Figure 3.16: Energy Balance Distribution (250 kW Generation) 
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surplus region. However, there is still a significant probability of an energy deficit due to 

quiescent wind turbine operation. The relative probability of quiescent operation shows the 

seasonal variability detailed in the Figure 16, with a greater likelihood of a small energy 

deficit during August, with a more dispersed deficit distribution during January. The 

diurnal cycle also has an effect – the wider demand distribution at 5pm shifts the majority 

of the distribution towards a greater energy deficit while also spreading out the distribution 

peaks. However, the greater wind resource during this time of day is capable of increasing 

the probability of a significant energy surplus (> 200 kW) due to the higher likelihood of 

rated-power wind turbine operation. Overall, the higher wind capacity does lead to a greater 

Figure 3.17: Energy Balance Distribution (500 kW 

Generation) 



101 

 

probability of an energy surplus, however it is still unable to reliably meet secondary 

demand due to the intermittent nature of wind generation.  

3.4: Applications of Wind Reserves 

 

     The previously presented probabilistic electrical demand, wind turbine output and 

power balance models form the basis of wind reserve modelling. The installed wind 

generation is considered for three applications. The first is secondary / peak load demand 

response, where the wind power supplements base load generation to meet the peak 

demand. The second wind generation application is peak-load demand response, where 

wind power is primarily used to smooth peaking periods while the base and secondary loads 

are maintained by conventional power generation. In this case, the secondary load is 

supplied be conventional generation, reducing the amount of wind reserve required.  In 

either situation, the probabilistic wind generation requirement is calculated by 

𝐺𝑅(𝑗, 𝑘) =  𝐶𝐿σ1σ2(𝑗, 𝑘, 0.95) − 𝐶𝐿σ1σ2(𝑗, 𝑘, 𝑃𝑐)                                                                   (14) 

where GR is the generation reserve requirement and Pc is the case-specific baseline 

generation profile (0.05 or 0.5, respectively). The probability of sufficient wind generation 

can be calculated by 

𝑃𝑅(𝑗, 𝑘) =  ∫ 𝐹𝑃𝑡(𝑘, 𝑗, 𝑃)𝑑𝑃                                                                                               (15)
𝑝= ∞

𝑝=𝐺𝑅

 

where PR is the probability of sufficient wind generation, GR forms the lower bound of 

integration and FPT is the wind turbine output probability distribution calculated in (10). 
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The final PR matrix is a probabilistic model to determine the ability of wind power to 

augment conventional generation during peak load.  

     The final application of wind generation is microgrid frequency regulation. Using the 

probabilistic wind turbine output power calculated in (10), the equivalent frequency droop 

coefficient can be substituted to determine the probabilistic frequency regulation capability 

of wind generation: 

𝑃𝐹𝑊(𝑗, 𝑘, 𝐹) =  ∫ 𝐹𝑃𝑡(𝑘, 𝑗, 𝑃)𝑑𝑃
𝑝= ∞

𝑝=𝐹𝐾𝐹

                                                                                      (16) 

where Pfw(j,k,F) is a probabilistic model predicting the likelihood of wind generation being 

capable of providing a specific amount of frequency regulation. This model presents a 

seasonal / diurnal probabilistic analysis of wind’s frequency regulation capability during 

moderate to large dynamic load excursions. The performance of this probabilistic modeling 

methodology will be examined by a case study in Chapters 5 and 6.  
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3.5: Conclusions 

 

     In this Chapter, a detailed methodology has been developed to enable the probabilistic 

modeling of wind reserves. The modeling techniques used have been designed to produce 

strong results with respect to the feasibility, performance and dynamic behavior of islanded 

microgrids using wind power generation to augment base-load conventional sources. The 

proposed time-variant, multivariate probabilistic modeling algorithms successfully 

compensates for nonstationary behavior in the environmental and electrical demand 

datasets, providing an accurate assessment of the wind regime and demand profile, and its 

probabilistic transient variability. In addition, a probabilistic power-balance model is 

developed to evaluate the feasibility and general performance of wind generation when 

acting as a power reserve. The use of advanced multidimensional kernel density estimators 

with optimized bandwidth selection improves the ability of the new model to capture 

multimodal probabilistic behavior, which is an improvement on unimodal parametric 

distributions, providing improved accuracy compared to standard mixture models.  
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Chapter 4: Modeling, Simulation and Control of 

Islanded Microgrids 

 

4.1: Introduction 

 

     The implementation of wind-based reserve generation in islanded microgrids requires 

an analytical and numerical framework which can be used to model, simulate and control 

the dynamic behavior of the system. This Chapter presents an overview of microgrid 

topologies, including techniques for grid forming using conventional generation. Grid 

synchronization of distributed generation is reviewed, with recently developed techniques 

exhibiting the robustness and stability required for use in islanded microgrids. 

Subsequently, microgrid interconnection architectures are reviewed, including a brief study 

of an LCL power filter, droop-based voltage-source inverter control and stationary-frame 

reference generation using the instantaneous power theory. With the successful 

development of control techniques suitable for interfacing distributed generation into a 

microgrid, their application to wind turbines is studied. The main types of wind turbine 

generators are briefly presented, with the direct-drive PMSG design considered for further 

study. The steady-state and dynamic behavior of a PMSG wind turbine is investigated, 

including rotating-frame stator current control, back-to-back power electronic converter 

topologies and DC-link maintenance by current reference synthesis. The overall result is a 

microgrid topology implemented in the PLEXIM simulation environment suitable for use 
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in validating the wind reserve applications investigated and presented in the Chapters 2 and 

3. 

4.2: Microgrid Topology 

 

     A unique characteristic of Microgrids is their reliance on distributed generation and 

demand units. Both sources and sinks of active and reactive power can exist anywhere 

within the microgrid architecture, resulting in complex interactions between grid 

components. The fundamental components of the microgrid topology are distributed 

generation – generators located within distribution infrastructure as opposed to large 

transmission systems, power electronic converters for grid integration and control, and the 

potential for islanding, where the microgrid is isolated from the larger transmission grid. 

Microgrids can also be implemented as either AC or DC, influencing the control and 

distribution technology required for the practical implementation of microgrid generation 

and demand.  

 

4.2.1: Overview of Distributed Generation 

 

     Distributed generation (DG) refers to generation infrastructure connected within a 

microgrid [1, 2], using distribution level (25 kV or below) equipment for the 

implementation of power delivery. It is located at the point of consumption from the 

viewpoint of a large transmission system. Figure 4.1 [3] displays a common distributed 
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generation architecture. An energy source (in this case PV) is connected to local loads 

through power converters. These converters are bidirectional in design, allowing power to 

flow from the distributed generation to the grid as well as from the distribution line to the 

local load. Distributed generation can be implemented using a variety of energy sources 

and power management strategies, including conventional generators, wind turbines, 

photovoltaics and local energy storage, among others [1],[2],[4],[5]. 

     The implementation of distributed generation into microgrids presents additional 

engineering challenges. The inclusion of multiple localized generation units introduces 

stability and power flow problems [6], especially considering traditional supplementary 

generators which exhibit a low degree of controllability from the viewpoint of distribution 

system controllers [6]. These issues are currently addressed by the development of 

improved generation control algorithms as well as the adoption of renewable energy. Model 

microgrids include distributed generation in the form of multiple thermal (typically diesel) 

generators, wind or solar generation interfaced using power electronic converters and 

potentially energy storage [11]. The renewable generation is interfaced using individual, 

Figure 4.1: Distributed Generation [Bernadon, 2014] 
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parallel-connected PWM inverters [6] and implements grid-supporting algorithms such as 

droop control [15]-[16] and demand response (DR) [16]-[19]. Advances in islanding 

operation [6], [12], [21]-[23], grid synchronization [6],[14], [24]-[25], and frequency 

regulation [6], [13]-[15], including DSOGI-FLL based resonant synchronization 

algorithms [6], [24]-[25], in combination with virtual-impedance based droop controllers 

[22]-[23] are now capable of reliably interfacing intermittent distributed generation to weak 

or islanded microgrid systems. With these advances, distributed generation is evolving into 

a viable component of power systems, allowing the continued adoption of renewable 

energy into both transmission networks and microgrids.  

 

4.2.2: Microgrid Implementation – AC and DC 

 

     The physical implementation of microgrids follows several overarching strategies. The 

most common topologies are AC microgrids [6], where distribution generation is interacted 

with a common AC bus (often the distribution network itself), DC microgrids, where DG 

units are connected to a DC bus when is then interfaced with the distribution grid through 

a power electronic converter [7], and hybrid microgrids [8], where both an AC and DC bus 

are present. Each topology has unique characteristics which influence their control, 

operation and performance. Figure 4.2 [9] displays a comparison between AC and DC 

microgrids. The AC microgrid is dominated by DC/AC and AC/AC converters. Storage 

and PV sources generate DC power, which is inverted to AC and interconnected to the AC 
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bus. Wind turbines generate variable-frequency AC (depending on the generator type) and 

therefore require a more complex AC/AC converter topology.  In an AC microgrid, the 

common residential, commercial and industrial AC loads can often be directly connected 

to the AC bus through a standard distribution transformer. Any DC loads are connected 

through a power rectifier and filter. The DC microgrid uses a DC bus to interconnect the 

distributed generation units. In this situation, PV and energy storage are interfaced using 

DC-DC converters – generally of the boost type to maintain a high DC-bus voltage. Wind 

turbines and conventional generation are connected to the DC bus using controlled boost 

rectifiers. A single large power inverter is then used to interface the DC bus with the grid.  

 

 

Figure 4.2: (a) AC and (b) DC Microgrid Topologies [Backhaus, 2013] 
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4.2.3: Islanding 

 

     Microgrids often exist within areas normally covered by transmission infrastructure. 

The microgrid’s AC bus can be connected to the transmission infrastructure. These grid-

connected microgrids can act as a single distributed generator, perform reactive power 

support and assist with transmission grid frequency regulation. The reverse is also true – 

the transmission grid can be used by the microgrid for voltage and frequency regulation 

and for transient demand response [16-19]. The large inertia of the transmission grid acts 

as a stabilizing influence, allowing the microgrid to be robust against disturbances, power 

flow contingencies or generation intermittency. The advantages of grid interconnection are 

significant with respect to microgrid operation and stability. However, the possibility of 

isolation from the transmission grid requires Microgrids to be operable without 

transmission-grid interconnection. This condition is referred to as islanding. Islanded 

microgrids are networks containing distributed generation which are either temporarily or 

permanently isolated from transmission infrastructure.  

     Figure 4.3 [10] displays a diagram of a grid-connected versus an islanded microgrid 

topology. Figure 4.3(a) displays a grid connected microgrid. This type microgrid is easier 

to operate – active and reactive power can be shared with the larger transmission grid, with 

it acting as an infinite bus to stabilize the system against transient disturbances. Assuming 

the distributed generation is small compared to the transmission grid size, the distributed 

generators can be operated for optimal economic performance, maximizing the returns 

from renewable sources such as PV or wind turbines. Figure 4.3(b) displays an islanded 
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microgrid. Whether due to a relay trip at the coupling point or absolute isolation, the 

transmission grid is not accessible. In this situation, the active and reactive power demand 

of all connected loads must be met locally by the distributed generation. Grid forming [6] 

must be accomplished by the largest, highest-inertia generators, with grid support and 

stabilization the province of the remaining distributed generation. Islanded microgrids are 

therefore more difficult to control and less stable, lacking the electrical and mechanical 

inertia of larger systems. Intermittency in renewable supply has a larger effect on grid 

behavior, in addition to load variability, any transient contingencies as well as the presence 

of unbalanced or non-linear demand [23, 26]. Due to the requirement for contingency 

response, microgrids must be capable of operating under islanded conditions. Therefore, 

the focus of this Chapter is mainly on the modelling and control of these islanded 

microgrids. Transmission-grid interconnection, synchronous islanding and economic 

optimization [28] are less significant for isolated microgrids and are beyond the scope of 

this investigation.  

 

Figure 4.3: (a) Grid Connected vs. (b) Islanded Microgrids [Tayab, 2017] 
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4.3: Analysis, Modeling and Control of Microgrids 

 

     The investigation of wind reserves in Islanded microgrids requires an analytical and 

numerical framework for validating microgrid operation. The simulated microgrid must 

include a grid-forming generator, wind generation, multiple loads and the associated unit 

and distribution transformers. The modeling and control methodology must be validated 

using this simulation infrastructure to ensure accurate results when evaluating wind 

reserves. Figure 4.4 displays the microgrid topology developed for wind reserve simulation. 

In islanded microgrids, diesel generators are normally used for grid forming, with 

secondary units operating isochronously (directly coupled) with the primary [29-31]. A 

delta-wye unit transformer connects the diesel generators to the AC distribution grid. The 

grid voltage level is adjustable by changing the transformer model used – common values 

such as 4.16 kV, 12.5 kV and 13.8 kV can be simulated to match client microgrid 

configurations. A point of common coupling connects wind generation, the diesel 

generators and the primary distribution transformer. Voltage and current values are 

measured at this point for the grid synchronization and control of connected inverters. The 

electrical demand is simulated using constant-impedance loads, sized to consume realistic 

amounts of active or reactive power depending on the size of the client microgrid. The 

detailed control configuration of this microgrid will be investigated in this section, 

validating the simulation environment which is used in a subsequent Chapter to perform a 

case study assessing wind reserves in a client microgrid.  
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Figure 4.4: Microgrid Simulation Topology in PLEXIM 

 

4.3.1: Grid Forming in Microgrids 

 

     Grid forming in an islanded microgrid is performed by the largest active diesel 

generator, maximizing microgrid inertia and stability. Diesel generators use an internal 

combustion engine to drive a prime mover connected to a synchronous generator. As diesel 

engines operate at high speeds, a two or four pole machine is often used. Within the 
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simulation environment, the synchronous machine is modelled using the rotor reference 

frame – a rotating frame generated using the well-known Park transformation. A detailed 

analytical model of a synchronous machine is presented in [32], and is used within the 

PLEXIM simulation environment. The behavior of a synchronous machine under non-

saturated operation is well-known, as it the control architecture required for grid forming 

operation. Figure 4.5 displays the simulation topology used to implement the grid-forming 

diesel generator. The synchronous generator model presented in [32] is implemented by 

PLEXIM, with generator parameters selected to match commonly available 100 kW to 1 

MW diesel generators.  The selected generator is a salient-pole design, requiring the more 

complex numerical model with separate direct and quadrature-axis inductance values. The 

field winding of the synchronous generator is excited by an IEEE standard [33] exciter, in 

this case modelled as a first order feedback transfer function. The command excitation 

voltage is supplied by a PI excitation controller. The generator terminal voltage is the 

variable of interest – it is converted into a rotating reference frame using the Park 

transformation and a 3-phase PLL connected to the stator terminals. The control action 

maintains the generator terminal voltage through changes in stator current induced by 

demand variation. The prime mover is controlled by a PI engine governor in series with a 

transfer function implementing a first order time-constant. The engine governor sets the 

grid frequency through controlling the rotor speed of the synchronous generator. Assuming 

that a speed sensor is included within the diesel generator, the controller can directly 

compare with a reference value to implement reliable grid frequency control. If a speed 

sensor is absent, a PLL [34, 35], EPLL [36] or FLL [37] can be used to obtain the grid 
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frequency using the stator terminal voltage, with the rotor speed then obtained and fed to 

the governor.      

     Figure 4.6 displays the detailed controller diagram of the generator excitation system. 

The exciter is modelled as an integrator with feedback. The transfer function of this system 

is as follows: 

𝐸(𝑠) =  
𝐺(𝑠)𝐻(𝑠)

1 + 𝐺(𝑠)𝐻(𝑠)
                                                                                                                  (1) 

where 

𝐺(𝑠) =
𝐾𝐼𝑒
𝑠
                                                                                                                                       (2) 

and H(s) is the exciter feedback gain KE. The value of KIe determines the response speed of 

the exciter. Substituting the selected gain values, the net feedback transfer function is a first 

order time constant: 

Figure 4.5: Grid Forming Diesel Generator 
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𝐸(𝑠) =
50

𝑠⁄

1 + 50 𝑠⁄
                                                                                                                            (3) 

which is simplified to: 

𝐸(𝑠) =
50

𝑠 + 50
                                                                                                                                 (4) 

This produces a fast exciter (with a time constant of 0.02 seconds) – a reasonable 

assumption given that the excitation system is often comprised of a smaller machine 

connected to the prime mover shaft. For simulation purposes, the exciter is assumed to be 

10 times faster than the diesel engine in responding to command changes. 

     The excitation controller implements a standard parallel PI transfer function: 

𝐶(𝑠) = (𝐾𝑝 + 
𝐾𝑖
𝑠⁄ ) (V

∗  −    V)                                                                                                 (5) 

Where V* is the direct-axis terminal reference voltage in the rotating reference frame and 

V the measured direct axis terminal voltage. A saturation block is added to prevent over 

excitation during initial start-up - the generator is non-linear across large rotational speed 

changes and is difficult to control using gains optimized for full-speed operation. Saturation 

addresses this issue and also ensures that practical limits are followed with respect to the 

generator field voltage.  Combining (5) with (4) and assuming non-saturated behavior, the 

controller transfer function is expressed as: 

𝐶𝐸(𝑠) =  (𝐾𝑝 + 
𝐾𝑖
𝑠⁄ ) (50/(𝑠 + 50))                                                                                        (6) 
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     During steady-state operation, the relationship between the excitation voltage and the 

generator terminal voltage can be simply modelled as a first order transfer function [32]: 

𝑇(𝑠) =
𝑇𝑒

𝑠 + 𝑇𝑒
                                                                                                                                  (7) 

where Te is the generator’s electrical time constant, included on most manufacturer 

datasheets. In general, this value should be at least 10 times larger than the exciter to prevent 

controller oscillation. Combining this time constant with the controller model and 

accounting for the voltage feedback, the excitation controller has the following behavior: 

𝑉

𝑉∗
= 

(𝐾𝑝 + 
𝐾𝑖
𝑠⁄ ) (50/(𝑠 + 50)) 

𝑇𝑒
𝑠 + 𝑇𝑒

  

1 + (𝐾𝑝 + 
𝐾𝑖
𝑠⁄ ) (50/(𝑠 + 50)) 

𝑇𝑒
𝑠 + 𝑇𝑒

 
                                                                     (8) 

Simplifying, the excitation system can be modelled as follows: 

𝑉

𝑉∗
= 

50𝐾𝑝𝑇𝑒𝑠 +  50𝐾𝑖𝑇𝑒

𝑠3 + (𝑇𝑒 + 50)𝑠2 + 50𝑇𝑒(1 + 𝐾𝑝)𝑠 +  50𝐾𝑖𝑇𝑒 
                                                          (9) 

The transfer function defined by (9) has uniquely positive coefficients using negative-

feedback control. Using the well-known Routh-Hurwitz criterion, the closed-loop 

controller is stable when the following condition is met: 

(𝑇𝑒 + 50) >  
𝐾𝑖

(1 + 𝐾𝑝) 
                                                                                                               (10) 

Under practical conditions, Ki is less than or equal to Kp, therefore the excitation controller 

(within the bounds of nominal generator operation) will correctly converge to the reference 

terminal voltage.  
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     Figure 4.7 presents the control architecture of the speed governor. The mechanical 

behavior of the diesel engine is modelled as a first-order time constant, in this case set to 

0.2 seconds for small changes in engine torque expected from the controller. The transfer 

function of this controller is similar to the excitation system – the repeated derivation of 

the PI feedback transfer function is therefore left as an exercise. The mechanical behavior 

of the synchronous generator (from the viewpoint of the prime mover) follows an inherently 

stable first-order behavior assuming a constant electrical load and a small deviation in 

operating speed – therefore the governor will also be stable assuming realistic controller 

gains. The response of the governor system approximates a first-order time constant, with 

the response speed proportional to the magnitude of the controller gains. An excessively 

high gain may cause oscillation or torsional vibration. In the proposed simulation 

environment, the controller gains have been tuned to produce a controller response with a 

time constant significantly slower than the generator’s electrical response, reducing the 

probability of generator damage. The slow operation of mechanical governors leads to the 

Figure 4.6: Diesel Generator Excitation Controller 
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use of grid-supporting control and provides the need for wind reserves to maintain grid 

frequency during demand variation or other transient contingencies.  

 

4.3.2: Grid Synchronization and Interconnection of Distributed Generation 

 

Grid Synchronization 

 

     The interconnection of distributed generation with the utility grid requires fast, accurate 

synchronization algorithms. In islanded microgrids, additional issues occur due to the 

relatively weak grid being vulnerable to disturbances created by imperfect interconnection. 

Essentially, to connect a distributed generator (such as a wind turbine or PV array) to a 

microgrid, the synchronization system must be able to match a potentially unbalanced or 

distorted grid in such a way as to minimize switching-induced disturbances. To compensate 

for unbalanced or distorted grids, the synchronization algorithm should be able to quickly 

and accurately identify the positive and negative sequence components of the grid voltage 

Figure 4.7: Diesel Engine Governor 
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[37]. Conventional techniques such as a PLL or SRF-PLL [34] are not capable of this. 

Newer techniques such as DSRF-PLL [35] or EPLL [36] exhibit better performance. The 

latest and most reliable method for grid synchronization is the “Dual Second Order 

Generalized Integrator Frequency Locked Loop” (DSOGI-FLL), presented in [37]. The 

underlying behavior and performance of the DSOGI-FLL will be briefly reviewed and its 

implementation in the simulation environment demonstrated to validate its application in 

the grid synchronization of distributed generation. 

     Figure 4.8 displays the second order generalized integrator. The SOGI has the following 

transfer function [37]: 

𝑆(𝑠) =
𝑠𝜔′

𝑠2 + 𝜔′2
                                                                                                                           (11) 

(11) shows that the SOGI is resonant at the frequency 𝜔′, acting as an infinite-gain 

integrator [37] for any sinusoidal signal at an equivalent frequency. Augmenting the SOGI 

with a quadrature signals generator (QSG), the following tracking behavior emerges [37]: 

𝐷(𝑠) =
𝑘𝜔′𝑠

𝑠2 +  𝑘𝜔′𝑠 + 𝜔′2 
                                                                                                         (12) 

𝑄(𝑠) =
𝑘𝜔′

2

𝑠2 +  𝑘𝜔′𝑠 + 𝜔′2 
                                                                                                         (13) 

The resonance frequency ω’ and damping factor k is set externally. The transfer functions 

presented in (12) and (13) indicate band-pass and low-pass filter behavior, respectively. 

Figure 4.9 displays the SOGI-QSG, where v’ is connected to D and qv’ to Q, representing 
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the direct and quadrature components of the input voltage waveform v. The SOGI gain k is 

tunable to influence the response speed and sensitivity of the SOGI-QSG. 

     The SOGI-QSG is not in itself frequency-adaptive, being restricted to the natural 

resonance frequency ω’ input into the SOGI. A frequency locked loop (FLL) can be 

inserted into the SOGI-QSG as in [37] to augment the system’s frequency adaptability. 

Figure 4.10 presents the FLL configuration in PLEXIM. The FLL uses the error signal from 

the SOGI-QSG as an input, multiplying it with the identified quadrature voltage waveform 

to complete the initial PLL architecture. An integrator controller with an initial guess 

frequency (in this case 377 rad/s) is used to track the frequency of the voltage waveform, 

returning this to the SOGI to ensure that it continuously adapts to changes in grid frequency. 

The gain of the FLL is normalized using an algorithm presented in [24], resulting in the 

Figure 8: SOGI Configuration 

Figure 4.9: The SOGI-QSG 
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FLL response approximating first-order behavior with a tunable time constant. Setting the 

FLL gain to 50 and applying normalization, the DSOGI-FLL has a time constant of ~0.02 

seconds, roughly equivalent to the grid-forming exciter and ensuring a fast response to grid 

frequency deviations.  The result is a robust, stable combination of the SOGI and FLL 

which implements grid synchronization.  

 

 

Figure 4.10: Gain-Normalized FLL Configuration in PLEXIM 
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     To allow the determination of both positive and negative sequence grid components, 

dual SOGI-QSGs are implemented, both using the gain-normalized FLL to perform 

frequency synchronization. This topology is the DSOGI-FLL, as presented in [24-25, 37]. 

Figure 4.11 presents the DSOGI-FLL as implemented. The grid voltage is transformed into 

the stationary frame, with each component then sent separately to one of the two SOGI-

QSGs. The gain-normalized FLL uses the SOGI-QSG error signals to isolate the 

fundamental grid frequency w’, which is then fed back to the SOGIs, adapting them to any 

changes in grid frequency. The SOGI-QSG outputs are the direct and quadrature 

components of the stationary-frame grid voltages, when are then transformed into the 

stationary positive and negative sequence components as follows [24-25, 37]: 

𝑉𝛼+ = 𝑉𝛼 − 𝑞𝑉𝛽                                                                                                                             (14) 

𝑉𝛽+ = 𝑞𝑉𝛼 + 𝑉𝛽                                                                                                                             (15) 

𝑉𝛼− = 𝑉𝛼 + 𝑞𝑉𝛽                                                                                                                              (16) 

𝑉𝛽− = −𝑞𝑉𝛼 + 𝑉𝛽                                                                                                                          (17) 

with the initial gain of ½ applied before the signals reach the DSOGI-FLL. The final result 

is the identification of the stationary-frame positive and negative sequence grid voltages, 

in addition to the instantaneous grid frequency. This information allows the 

synchronization of distributed generation to unbalanced or distorted microgrids, with the 

precise matching of sequence components minimizing disturbances inherent during 

interconnection.  
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Grid Interconnection 

 

     The control of an inverter generally centers around the active and reactive power sent 

into or out of the utility grid [6]. However, the inverter itself is a PWM-switched device 

using either SPWM [38], space vector control [38] or another scheme to control the AC 

terminal voltages. A control algorithm is required which converts active and reactive power 

(P and Q) reference signals into terminal voltage specifications. Two methods are 

commonly used – the voltage source inverter (VSI) topology, where the inverter tracks a 

Figure 4.11: DSOGI-FLL with PNSG in PLEXIM 
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current reference by varying the terminal voltage [38] with a constant supporting DC link 

voltage, and the current source inverter (CSI) topology, where the inverter current is 

constant, with the terminal voltage reference being met by varying either the duty cycle or 

DC link voltage. For hybrid AC/DC and DC microgrids, the DC link voltage is low-

impedance and nearly constant. Therefore, the VSI topology is used. The first step in VSI 

control is developing the current references required to meet the requested P and Q values. 

When the grid conditions are balanced (or nearly so), the extraction of positive and negative 

sequence components allows the calculation of inverter current references through the 

instantaneous power theory [39]: 

[
𝐼𝛼
𝐼𝛽
] =  

1

𝑉𝛼2 + 𝑉𝛽
2 
[
𝑉𝛼 𝑉𝛽
𝑉𝛽 −𝑉𝛼

] [
𝑃
𝑄
]                                                                                               (18) 

Figure 4.12 displays the implementation of instantaneous power theory. The stationary 

frame components isolated from the DSOGI-FLL are applied to the appropriate 

mathematical operations (18), converting the P and Q reference values into stationary-

frame current reference signals. These current references are then used to implement VSI 

control. Figures 4.13 and 4.14 displays the control architecture of the VSI. Each stationary-

frame current reference is fed through a proportional-resonant (PR) controller [6. 40-41]. 

PR controllers exhibit superior performance in tracking sinusoidal signals [40-41] of a 

known frequency. As the DSOGI-FLL identified this frequency, the PR controllers can be 

easily adapted to maintain resonance and therefore tracking performance. The PR controller 

has the following transfer function [40-41]: 
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𝐺𝑃𝑅(𝑠) =  𝐾𝑃 + 
𝐾𝑅𝑠

𝑠2 + 𝜔0
2                                                                                                           (19) 

where KP and KR are the tunable controller gains and ω0 the resonant frequency. The 

resultant VSI control law is as follows: 

𝑉𝛼𝑇
∗ = 𝑉𝛼 + (𝐾𝑃 + 

𝐾𝑅𝑠

𝑠2 + 𝜔0
2)(𝐼𝛼

∗ − 𝐼𝛼)                                                                                 (20) 

𝑉𝛽𝑇
∗ = 𝑉𝛽 + (𝐾𝑃 + 

𝐾𝑅𝑠

𝑠2 + 𝜔0
2)(𝐼𝛽

∗ − 𝐼𝛽)                                                                                 (21) 

where VαT and VβT are the stationary-frame inverter terminal voltage references. Vα and Vβ 

are the stationary-frame grid voltages measured at the point of common coupling (on the 

low side of transformer). Iα and Iβ are the grid interconnection currents, measured again at 

the point of common coupling.  
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Figure 4.12: PLEXIM Implementation of the Instantaneous Power Theory 

Figure 4.13: VSI Controller Architecture 
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     The performance of the PR-VSI controller is dependent on the line impedance, power 

filter behavior as well as inverter dynamics.  Figure 4.15 displays the grid interconnection 

topology used in the PLEXIM simulation environment. A VSI is connected through a 

damped LCL power filter and a unit transformer (required to increase the inverter output 

voltage to match the power system voltage level) to the point of common coupling (PCC). 

For control purposes, the PCC is assumed to be at the primary (low voltage) side of the unit 

transformer – transformer core and copper losses should not be significant (< 5%) under 

reasonable load conditions. Additionally, the inverter dynamics are assumed to be much 

faster than the microgrid dynamics - a 2 or 3-level SVPWM VSI operating at a switching 

frequency of greater than 5 kHz has a response time of less than 1ms. Therefore, the inverter 

terminal voltage is assumed to equal its reference value: 

𝑉𝛼𝛽𝑇
∗ = 𝑉𝛼𝛽𝑇                                                                                                                                (22)  

where Vαβ represents the stationary-frame inverter terminal voltages and Vαβ* the controller 

references. This simplifies the grid interconnection analysis by removing inverter 

dynamics.  

Figure 4.14: VSI Current Controller 
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     The damped LCL power filter’s stationary-frame dynamics are derived by first 

identifying the relation between the LCL node voltage (Vαβ1) and the inverter terminal 

voltage: 

𝑉𝛼𝛽𝑇 = 𝑉𝛼𝛽1 + 𝑠𝐿1𝐼𝛼𝛽𝑇                                                                                                              (23) 

Where L1 is the leftmost inductance and IαβT the stationary-frame inverter terminal current. 

Assuming balanced three-phase resistance and capacitance in the shunt branch, the follow 

relation arises: 

Figure 4.15: Distributed Generation Interconnection Topology 
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𝐼𝛼𝛽𝑠 =
𝑉𝛼𝛽1

(𝑅 + 
1
𝑠𝐶) 

                                                                                                                         (24) 

Where R and C are the resistance and capacitance values, and IαβS the shunt branch current. 

Assuming that the line inductance between the LCL filter and the PCC is included within 

the rightmost inductance L2, and by performing nodal analysis, the following emerges: 

𝑉𝛼𝛽1 = 𝑉𝛼𝛽 + 𝑠𝐿2𝐼𝛼𝛽                                                                                                                  (25) 

𝐼𝛼𝛽𝑇 = 𝐼𝛼𝛽 + 𝐼𝛼𝛽𝑆                                                                                                                       (26) 

In this situation, the derivation seeks to determine the relationship between the stationary 

frame LCL terminal voltages and the resultant PCC output current. Substituting (26) and 

(25) into (23): 

𝑉𝛼𝛽𝑇 = 𝑉𝛼𝛽 + 𝑠𝐿2𝐼𝛼𝛽 +  𝑠𝐿1(𝐼𝛼𝛽 + 𝐼𝛼𝛽𝑆)                                                                             (27) 

the inverter terminal voltage is expressed as a function of the PCC voltage, PCC current 

and the LCL shunt current. Substituting (24) into (27), the shunt current is replaced as 

follows: 

𝑉𝛼𝛽𝑇 = 𝑉𝛼𝛽 + 𝑠𝐿2𝐼𝛼𝛽 +  𝑠𝐿1(𝐼𝛼𝛽 + 
𝑉𝛼𝛽1

(𝑅 + 
1
𝑠𝐶) 

 )                                                                (28) 

By substituting (25) into (28), the node voltage can be removed from the equation: 

𝑉𝛼𝛽𝑇 = 𝑉𝛼𝛽 + 𝑠𝐿2𝐼𝛼𝛽 +  𝑠𝐿1(𝐼𝛼𝛽 + 
𝑉𝛼𝛽 + 𝑠𝐿2𝐼𝛼𝛽

(𝑅 + 
1
𝑠𝐶) 

 )                                                           (29) 
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Collecting terms and simplifying, the inverter terminal voltage is shown to be a function of 

both the PCC voltage and the PCC current: 

𝑉𝛼𝛽𝑇 = 𝑉𝛼𝛽  (1 + 
𝑠𝐿1

𝑅 + 
1
𝑠𝐶

)  +  𝐼𝛼𝛽 (𝑠(𝐿1 + 𝐿2) +  
𝑠2𝐿1𝐿2

(𝑅 + 
1
𝑠𝐶) 

 )                              (30) 

Further simplifying: 

𝑉𝛼𝛽𝑇 = 𝑉𝛼𝛽  (1 + 
𝑠2𝐶𝐿1
𝑠𝑅𝐶 +  1

)  +   𝐼𝛼𝛽 (𝑠(𝐿1 + 𝐿2) +  
𝑠3𝐶𝐿1𝐿2
(𝑠𝑅𝐶 +  1) 

 )                           (31) 

𝑉𝛼𝛽𝑇 = 𝑉𝛼𝛽  (1 + 
𝑠2𝐶𝐿1
𝑠𝑅𝐶 +  1

)  +   𝐼𝛼𝛽 (
𝑠3𝐶𝐿1𝐿2 + 𝑠

2𝑅𝐶(𝐿1 + 𝐿2) + 𝑠(𝐿1 + 𝐿2)

(𝑠𝑅𝐶 +  1) 
) (32) 

The final transfer function developed in (32) displays the dynamic behavior of the PCC 

current in terms of the inverter terminal voltage and the PCC voltage. The feed-forward 

path in the PR controller architecture (Figure 4.12) is clearly justified – it cancels part of 

the disturbance transfer function 𝑉𝛼𝛽𝑇/𝑉𝛼𝛽 and improves the transient behavior of the PR 

controller. The closed loop performance of the PR controller is calculated by neglecting the 

disturbance caused by the PCC voltage, which in either case is attenuated by the feed 

forward. The control laws expressed in (20) and (21) (with the feedforward term removed) 

can be combined with the plant dynamics in (32) to get the open-loop transfer function of 

the controller: 

𝐼𝛼𝛽

𝐼𝛼𝛽𝐸
= (𝐾𝑃 + 

𝐾𝑅𝑠

𝑠2 + 𝜔0
2)(

(𝑠𝑅𝐶 +  1) 

𝑠3𝐶𝐿1𝐿2 + 𝑠2𝑅𝐶(𝐿1 + 𝐿2) + 𝑠(𝐿1 + 𝐿2) 
)                       (33) 
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where IαβE is the reference tracking error. Using the relation described in (1), the closed-

loop transfer function (after simplification and the use of symbolic variables) is: 

𝐼𝛼𝛽

𝐼𝛼𝛽
∗ =

𝛼𝑠3 + 𝛽 + 𝛾𝑠 +  𝛿

𝐴𝑠5 + 𝐵𝑠4 + 𝐷𝑠3 + 𝐸𝑠2 + 𝐹𝑠 +  𝛿
                                                                           (34) 

𝛼 = 𝐾𝑃𝐶𝑅                                                                                                                                      (35) 

𝛽 = (𝐾𝑃 + 𝐾𝑅𝐶𝑅)                                                                                                                         (36) 

𝛾 =  (𝜔0
2𝐾𝑃𝐶𝑅 + 𝐾𝑅)                                                                                                                  (37) 

𝛿 =  𝐾𝑃𝜔0
2                                                                                                                                       (38) 

𝐴 =  𝐶𝐿1𝐿2                                                                                                                                     (39) 

𝐵 =  𝐶𝑅((𝐿1 + 𝐿2)                                                                                                                       (40) 

𝐷 =  (𝐶𝐿1𝐿2𝜔0
2 + 𝐿1 + 𝐿2 + 𝐾𝑃𝐶𝑅)                                                                                        (41) 

𝐸 =  (𝐾𝑃 + 𝐾𝑅𝐶𝑅 + 𝐶𝑅𝜔0
2(𝐿1 + 𝐿2))                                                                                     (42) 

𝐹 = 𝐾𝑅 + 𝜔0
2(𝐿1 + 𝐿2 + 𝐾𝑃𝐶𝑅)                                                                                             (43) 

The closed loop behavior in (34) is shown to be stable under a variety of configurations 

[40-41], with a specific emphasis on stability when the resonant frequency is properly tuned 

to match the observed grid frequency. The tuning of the resonant gains is detailed in [40-

41], and is highly dependent on the microgrid configuration and the design of the converter, 

power filter and the effects of the grid and transformer losses (when significant). A full 

analytical model of the islanded microgrid is a MIMO system with complex non-linear 
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behavior depending on the grid voltage, power flow and generator and DC-link dynamics. 

While the latter will be investigated in a later section, a unified analytical framework is not 

required for the numerical validation of wind reserves and is therefore beyond the scope of 

this thesis.  

 

4.3.4: Microgrid Support using Distributed Generation 

 

     In standard power systems, frequency and voltage regulation is provided by dynamic 

stabilization systems embedded within conventional generation. Islanded microgrids 

cannot access these stabilization systems. In this case, wind generation can provide the 

required dynamic stabilization, including the regulation of microgrid frequency. The power 

inverter wind turbine / microgrid interface is sufficiently fast and stable to implement 

several methods of droop control. Droop control implements inverter control algorithms to 

simulate the functionality of a synchronous generator [6, 42]. The basic functionality is 

described by P/f and Q/V droop control [6, 42]: 

𝑃𝐼𝑛𝑣 = 𝑘𝐷𝑃(𝑓 − 𝑓
∗)                                                                                                                      (44)  

𝑄𝐼𝑛𝑣 = 𝑘𝐷𝑄(𝑉 − 𝑉
∗)                                                                                                                    (45)  

Where Pinv and Qinv are the resulting inverter reference active and reactive commands and 

Kdp and Kdq the droop coefficients. The droop coefficients are related to the microgrid 

system, including the feeder line impedance and generator inertia. The relations in (44) and 

(45) assume a grid which is primarily inductive. In situations where resistive behavior is 
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expected, Q/f and P/V droops are more appropriate [6, 42-43]. Most microgrids fall between 

these two extremes, leading to more advanced droop control techniques such as virtual 

impedance [6, 44-45], virtual admittance [46], adaptive droop coefficients [43] or nonlinear 

droop control [47]. 

     Within the simulation environment, conventional droop control is sufficient to 

investigate the behavior of wind reserves. Figure 4.16 displays the developed droop control 

architecture. The conventional linear droop control is augmented with an integral frequency 

restoration term, allowing the VSI to act as a virtual governor. This assists the grid-forming 

generator in frequency restoration by instituting permanent power sharing during demand 

increases. The droop coefficients are adjustable depending on the size of the simulated 

microgrid – generally they are set to between 0.01 and 0.04 per-unit reflecting the behavior 

of synchronous generator governors during load changes. The voltage regulation loop 

implements linear Q/V droop control. The grid-forming generator’s excitation controller is 

fast enough to quickly restore the grid voltage during sags. Therefore, the primary purpose 

of the voltage droop controller is to share the reactive power requirement among the 

distributed generation. In both frequency and voltage droop regulation, the ratio of the 

droop coefficients determines the power sharing between inverters and generators. Scaling 

these coefficients based on the inverter (and distributed generator) ratings ensures fast and 

robust uptake of active and reactive power demand.  
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     In addition to frequency and voltage regulation, distributed generation can also be 

dispatched by supervisory control to feed active and reactive power into the grid. This grid-

feeding operation allows wind farms or PV arrays to supply all available energy to the 

microgrid, with the conventional generators shifting to a reserve role. Grid feeding inverter 

operation is accomplished by directly supplying the P and Q references to the primarily 

controller, with the resultant inverter terminal voltage acting as a source for the microgrid. 

The determination of these references is accomplished by higher level control algorithms 

or direct dispatch by grid operators. In islanded microgrids, the rate of reference change is 

limited to that of the grid-forming synchronous generator’s power output, otherwise voltage 

and frequency disturbances would result. Finally, distributed generation can be used to 

Figure 4.16: Voltage and Frequency Droop Regulation in PLEXIM  
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directly form the grid. Grid forming control replaces the inverter P and Q references with 

voltage and frequency references [6]. This control technique is not as common for 

intermittent sources in islanded microgrids, however during periods of high wind energy a 

wind reserve can be used in this manner when the amount of injected power becomes the 

majority of the microgrid demand. The inverter creates virtual inertia by the controller 

action – very little voltage or frequency regulation is required during load changes as long 

as the DC link voltage behind the inverter can be maintained by the wind turbine, PV array 

or other energy source.  
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4.4: Integration of Wind Generation into Islanded Microgrids 

      

     Wind generation is a constantly growing source of renewable energy. Advances in wind 

turbine materials, power electronics, generators and control techniques are continuously 

decreasing the capital and maintenance costs of wind generation. The improved 

performance of wind generation has made it increasingly viable for installation in isolated 

microgrids. Many islanded and isolated microgrids exist in Nordic or coastal areas where 

the average solar insolation is low and the cost of transporting fuel is high – these locations 

are ideal for wind generation. The specific requirements of islanded microgrids (as 

described in the previous sections) require advanced control and grid interconnection 

equipment to interface wind turbines with the microgrid. The precise equipment required 

depends on the type of wind turbine, with each having advantages and disadvantages with 

respect to performance within a microgrid.  

 

4.4.1: Overview of Wind Turbine Generators 

 

     Wind turbines are generally constructed in one of four types (Type A, B, C or D). [48] 

presents a comprehensive review of the types of wind turbines and their behavior. Figure 

4.17 [48] displays the general architecture of each wind turbine type. Type A wind turbines 

use squirrel-cage induction generators, connected to the grid through a soft-starter. A 

capacitor bank is included to provide excitation to the generator, improving the power 
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factor and start-up performance. Using this configuration, the wind turbine must operate at 

a near-fixed speed very slightly above synchronous speed, with the power generated by the 

induction generator a function of the resulting slip value [49]. Advantages of this design 

include its simplicity and cost. However, it is not appropriate for weaker grids, as any output 

power fluctuations are directly transmitted to the grid without the possibility of attenuation 

through control action. Therefore, type A wind turbines are not appropriate for islanded 

microgrids. Type B wind turbines use wound-rotor induction generators (WRIG) [50].  The 

WRIG allows slight speed variation (up to 10%) [48] by varying the rotor resistance, 

changing the slip/power curve and allowing some control of the output power. This design 

also requires a soft starter (as induction generators draw very high current upon starting) 

[50] as well as a capacitor bank for reactive power compensation. The Type B wind turbine 

is also directly connected to the grid – therefore it is also inappropriate for use in islanded 

microgrids. Wind turbines must be at least partially isolated from the microgrid to allow 
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for control of active and reactive power transfer – otherwise microgrid stability is 

threatened during wind velocity changes.  

Figure 4.17: Wind Turbine Types [Ackermann, 2012] 
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     Type C wind turbines are common in very large installations [51]. This type uses a 

doubly-fed induction generator (DFIG) [52, 53] in combination with a partially-scaled 

AC/AC frequency converter. The converter controls the rotor currents, allowing the stator 

currents to be modified to provide some control over active and reactive power. The DFIG 

wind turbine can vary by up to ~30% from synchronous speed [52, 53], allowing the use of 

speed-control MPPT to increase wind turbine efficiency. However, DFIGs have poor fault 

ride-through capability – a grid disturbance will affect their excitation in addition to their 

stator-grid connection. In addition, the DFIG requires two connections to the grid (the direct 

stator-grid connection and the rotor-grid using the converter) which must each have 

protection and control sensors. The poor fault tolerance, complexity and limited 

controllability of DFIG wind turbines makes them less suitable for use in islanded 

microgrids. Type D wind turbines are replacing Type C in progressively larger installations. 

Type D wind turbines most often use a permanent-magnet synchronous generator (PMSG) 

[54] connected through a full-scale AC/AC converter. The PMSG output frequency is 

directly proportional to the rotor speed and the number of pole pairs. It is possible to directly 

connect the wind turbine shaft to the PMSG without requiring a gearbox, using a multipole 

PMSG design to produce a sufficiently high-frequency stator voltage. The Type D PMSG 

wind turbine is best suited for islanded microgrids. The AC/AC converter insulated the 

PMSG from the grid, allowing disturbances on either side to be damped by control action 

and preventing grid faults or mechanical disturbances from propagating. In addition, the 

PMSG has constant internal excitation – the generator power factor can be completely 

controlled using the AC/AC converter. The disadvantages of the PMSG are primarily cost 

and controller based – active power converter controllers are required to ensure correct 
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PMSG operation, in addition to the costs of the full scale frequency converter and the 

magnets (often rare-earth) within the PMSG. However, these disadvantages are mitigated 

by the degree of controllability provided, in addition to continual decreases in cost. 

Therefore, it will be assumed (for investigation and analysis) that a Type D direct-drive 

PMSG wind turbine will be used for implementation of wind reserves in an islanded 

microgrid. 

 

4.4.2: Modeling and Control of Direct-Drive PMSG Wind Turbines 

 

     The modeling and control of a permanent-magnet synchronous generator is vital to the 

successful integration of a PMSG wind turbine into an islanded microgrid. Figure 4.18 

displays the general control architecture of a direct-drive PMSG wind turbine implemented 

in the PLEXIM simulation environment. The PMSG stator terminals are connected to a 

controlled rectifier, allowing the terminal voltages to be adjusted as required to implement 

the stator current references. The stator currents are controlled using the power converter 

voltage references – these are generated using a decoupled D-Q PI controller. The stator 

current references are generated depending on the overarching control law. In this case, 

zero-direct-axis current control is implemented to ensure the PMSG operated at unity 

power factor. The quadrature-axis current references is generated by a DC-link controller 

which balances the power flow across the power converter. This controller can also be 

replaced by a power reference synthesizer [54] or a PMSG speed controller, depending on 
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the application. The aerodynamic behavior of the wind turbine is simulated in real-time to 

provide the prime-move torque of the PMSG, allowing the interconnected mechanical and 

electrical systems to be modelled and controlled. The core of this simulation environment 

is the PMSG model, implemented as voltage-behind reactance in a rotating reference frame 

[55]-[57]. 

     The PMSG is a constant-excitation generator which produces a variable-frequency 

output proportional to the rotor speed. The PMSG is most commonly modelled in the D-Q 

frame (the Park transformation) [55]. Further transformed into the s-domain, this results in 

the following stator relations [54]: 

𝑣𝑠𝑑 = 𝐿𝑠𝑞𝑖𝑠𝑞𝜔𝑒 − 𝑠𝐿𝑠𝑑𝑖𝑠𝑑 − 𝑅𝑠𝑖𝑠𝑑                                                                                           (46) 

𝑣𝑠𝑞 = (𝜑𝑚 − 𝐿𝑠𝑑𝑖𝑠𝑑)𝜔𝑒 − 𝑠𝐿𝑠𝑞𝑖𝑠𝑞 − 𝑅𝑠𝑖𝑠𝑞                                                                            (47) 

Figure 4.18: PMSG Control and Modeling Topology in PLEXIM 
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where vsd and vsq are the d and q-axis stator  terminal voltages, Lsd and Lsq the stator 

inductances, we the electrical angular velocity, Rs the stator winding resistance, isd and isq 

the d-q axis stator currents and φm the flux supplied by the permanent magnets. In the 

rotating reference frame, cross coupling is observed between the direct and quadrature axes. 

These axes can be decoupled by substitution of an alternate set of control variables [54]: 

𝑦𝑠𝑑 = 𝑣𝑠𝑑 − 𝐿𝑠𝑞𝑖𝑠𝑞𝜔𝑒                                                                                                                (48) 

𝑦𝑠𝑞 = 𝑣𝑠𝑞 − (𝜑𝑚 − 𝐿𝑠𝑑𝑖𝑠𝑑)𝜔𝑒                                                                                                 (49) 

This decoupling improves the transient response of a current controller by removing the 

disturbances created by the inherent cross-coupling. The decoupling term should also 

include any line inductance present between the PMSG stator terminals and the converter 

terminals. Figure 4.19 displays the q-axis control architecture implemented in the PLEXIM 

simulation environment. A standard PI controller is used, with the decoupling terms added 

as feed-forward compensation. The result is the q-axis voltage reference supplied to the 

PMSG-side power converter. A similar process is used to produce the d-axis voltage 

reference. However, the d-axis current reference is usually set to zero [54], resulting in 

unity power factor PMSG operation. In this situation, only the q-axis current reference is 

used to control the PMSG output power.  
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     The PMSG controller presented above has been shown [54] to reliably implement direct 

and quadrature-axis current references by controlling the power converter terminal voltage 

reference. The generation of the current references is dependent on the control strategy of 

the PMSG wind turbine. Fundamentally, the interaction between the PMSG and the wind 

turbine is modelled by equating the PMSG electromagnetic torque with the wind turbine’s 

mechanical and aerodynamic behavior. The PMSG electromagnetic torque (in the D-Q 

reference frame) is expressed as follows [54]:  

𝑇𝑒 = 
3

2
𝑝(𝜑𝑚𝑖𝑠𝑞 − (𝐿𝑠𝑑 − 𝐿𝑠𝑞)𝑖𝑠𝑑𝑖𝑠𝑞                                                                                       (50) 

where p is the number of pole pairs in the PMSG rotor. For surface-mount PMSG designs, 

Lsd can equal Lsq [55], resulting in the secondary term disappearing from (50). This 

linearizes the electromagnetic torque relation and makes control easier. This behavior also 

appears when the d-axis current is zero (or nearly so) during unity power factor operation. 

Figure 4.19: Q-axis stator current controller in PLEXIM 



144 

 

Otherwise, (50) is non-linear, introducing additional control difficulties. The use of this 

zero-d-axis current control method is assumed for simplicity of future analysis. 

     The s-domain mechanical behavior of the directly coupled PMSG-wind turbine system 

is modelled as follows [53]: 

𝐽𝑠𝜔𝑚 = 𝑇𝑡𝑢𝑟 − 𝑇𝑒 − 𝑇𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛                                                                                                  (51) 

where Ttur is the wind turbine mechanical torque produced by the blades, Te the PMSG 

electromagnetic torque and Tfriction the torque losses due to friction within the lumped 

mechanical system. J is the lumped moment of inertia, and ωm the mechanical speed of the 

rotating system. The electrical angular speed we can be obtained simply by multiplying ωm 

by the number of pole pairs in the PMSG. The aerodynamic torque of the wind turbine is 

expressed as follows [53]: 

𝑇𝑡𝑢𝑟 = 
1

2
𝜌𝜋𝑟3𝑉𝑤𝑖𝑛𝑑

2 𝐶𝑡(𝜆, 𝛽)                                                                                                      (52) 

Where p is the air density, r the blade radius, Vwind the free-stream wind velocity and Ct the 

wind turbine’s torque coefficient [53, 58]. The torque coefficient is a non-linear function 

of the blade pitch angle β and tip-speed ratio λ. It is related to the power coefficient Cp 

through division by the mechanical angular velocity. The power coefficient has a 

commonly-used exponential approximation [59]: 

𝐶𝑝(𝜆, 𝛽) =  0.5176 (
116

κ
−  0.4𝛽 −  5) 𝑒−

21
κ + 0.0068𝜆                                                   (53) 

where the intermediate value κ is used to simplify the final equation based on β and λ.  
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κ =  
1

1
𝜆 + 0.08𝛽

−
0.035
𝜆3 + 1

                                                                                                           (54) 

Figure 4.20 presents the PLEXIM implementation of this wind turbine model where 

equations (53) and (54) are implemented within an aerodynamic model subsystem. In this 

case, the blade pitch is assumed to be zero, wind turbines of the size used for islanded 

microgrids generally use passive stall or speed control. The wind velocity and mechanical 

rotational velocity are inputs to the system, with the resulting tip-speed ratio and 

mechanical torque calculated mathematically. The mechanical torque is then output to the 

prime mover of the PMSG, which closes the loop by changing speed based on the dynamic 

balance between the mechanical and electromagnetic torques. The non-linear behavior of 

the wind turbine requires algorithms such as MPPT or gain scheduling to optimize 

performance. However, the high inertia of the wind turbine leads to the mechanical time 

constant of the system being substantially slower than the PMSG’s electrical time constant, 

allowing supervisory control to prevent mechanical instabilities using the PMSG control 

references.  
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4.4.3: Grid Interconnection using Back to Back Power Converters 

 

     The grid interconnection of a PMSG wind turbine requires an AC/AC frequency 

converter [60]. The variable speed of the wind turbine rotor results in the PMSG’s electrical 

output frequency varying across a wide range – direct grid interconnection is not possible 

due to this forced frequency mismatch. The most commonly used grid interconnection 

topology for a PMSG wind turbine is the back-to-back AC/AC converter topology [60]. 

Figure 4.21 presents the PLEXIM implementation of this converter. The PMSG terminal 

voltages are fed into a 6-pulse, 2 level Insulated Gate Bipolar Transistor (IGBT) converter 

Figure 4.20: Dynamic Wind Turbine Model in PLEXIM 
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which operates as a controlled rectifier [60]. The IGBT converter uses Space Vector Pulse-

Width Modulation [38] (SVPWM) to convert the variable-frequency AC input into a DC 

voltage across the DC-link capacitor. The DC-link capacitor filters out the PWM 

commutation, producing a steady DC voltage for use in either DC interconnections or (in 

this case) to isolate the AC PMSG terminals from the distribution grid. The DC-link voltage 

is then supplied to a SVPWM inverter, again a 6-pulse, 2 level IGBT converter [38]. The 

inverter supplies the AC terminal voltages requested by the grid synchronization and 

interconnection controllers described in the previous section.  

     The control topology described in the PLEXIM simulation environment does not have 

grid-side control of the DC-link voltage. To maintain DC-link stability, the PMSG control 

architecture must set the terminal voltage references to match the PMSG electrical output 

power to the inverter demand across the DC-link. The DC-link dynamics are as follows: 

𝑉𝑑𝑐 = 
𝐼𝑟𝑒𝑐𝑡 − 𝐼𝑖𝑛𝑣
𝑠𝐶𝐿𝑖𝑛𝑘

                                                                                                                       (55) 

Figure 4.21: Back-to-Back Converter Architecture in PLEXIM 
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Where Vdc is the DC-link voltage, Irect the current supplied by the rectifier, Iinv the current 

drawn by the inverter and CLink the DC-link capacitance. Inverter dynamics are neglected 

due to their fast time constants relative to the overarching controller behavior. The 

relationship between the DC-link current and the PMSG terminals is derived by equating 

power flow across the IGBT rectifier. The terminal power supplied by the PMSG can be 

expressed in the rotating frame as follows: 

𝑃𝐺 = 
3

2
(𝑣𝑠𝑑𝑖𝑠𝑑 + 𝑣𝑠𝑞𝑖𝑠𝑞)                                                                                                          (56) 

The rectifier output power is simply: 

𝑃𝑅 =  𝑉𝑑𝑐𝐼𝑟𝑒𝑐𝑡                                                                                                                                (57) 

Substituting (55) into (57), the relationship between the DC-link current and rectifier power 

is obtained: 

𝑃𝑅 =  
𝐼𝑟𝑒𝑐𝑡 − 𝐼𝑖𝑛𝑣

𝑠𝐶
𝐼𝑟𝑒𝑐𝑡                                                                                                                (58) 

Equating (56) and (58), simplifying, and assuming zero d-axis PMSG stator current, the 

following emerges: 

𝐼𝑟𝑒𝑐𝑡
2 − 𝐼𝑖𝑛𝑣𝐼𝑟𝑒𝑐𝑡
𝑠𝐶

=  
3

2
(𝑣𝑠𝑞𝑖𝑠𝑞)                                                                                                  (59) 

The relationship in (59) indicates that the q-axis current reference required for power 

balance is as follows: 

2

3
(
𝐼𝑟𝑒𝑐𝑡

2 − 𝐼𝑖𝑛𝑣𝐼𝑟𝑒𝑐𝑡
𝑠𝐶𝑣𝑠𝑞

) =  𝑖𝑠𝑞                                                                                                      (60) 
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Returning to (56) and (57), the rectifier current is expressed as a function of the q-axis stator 

current: 

𝐼𝑟𝑒𝑐𝑡 =
3𝑣𝑠𝑞

2𝑉𝑑𝑐
𝑖𝑠𝑞                                                                                                                             (61)  

Substituting (61) into (60) and simplifying, the current reference requirement emerges: 

3

2
(
𝑣𝑠𝑞𝑖𝑠𝑞

2

𝑠𝐶𝑉𝑑𝑐
2  −   

𝐼𝑖𝑛𝑣𝑖𝑠𝑞

𝑠𝐶𝑉𝑑𝑐
)   =  𝑖𝑠𝑞                                                                                                  (62) 

This equation is non-linear with respect to the DC-link voltage. However, assuming control 

action to maintain a steady DC-link voltage value, (62) can be linearized and used to tune 

a controller. The complete derivation of controller behavior and the resultant PMSG and 

DC link dynamics is beyond the scope of this thesis - further analysis in this area can be 

found in [53].  

     Figure 4.22 displays the DC-link controller. A conventional PI controller format is used, 

with a feed-forward of the inverter current demand. As seen in (62), this compensates for 

the effect of changing inverter current on the DC-link dynamics, improving the transient 

performance of the controller. The DC-link controller provides the Q-axis current reference 

to the PMSG controller. This control format is best suited for standard zero d-axis current 

control methodology. The results of the presented control approach is best suited for grid-

forming and grid-supporting interconnection topologies, where the power transfer between 

the grid and DC-link is regulated by grid-side controller action. Grid-feeding operation 

would result in the power references being produced by a wind turbine controller, with 

these references then implemented using the existing PMSG control architecture. Grid-
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feeding operation is unlikely in islanded microgrids with significant wind penetration, as 

variations in wind speed would result in microgrid instability due to the lack of electrical 

inertia. The use of wind generation as a reserve for microgrid support and regulation (as 

presented in Chapter 3) required the control architecture presented in this Chapter, 

optimized for grid-supporting operation.  

 

 

 

 

 

 

 

Figure 4.22: DC-Link Voltage Controller in PLEXIM 
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4.5: Conclusions 

 

     In this chapter, an overview of various aspects of analysis, modeling and control of 

islanded microgrids was presented. An analytical and numerical framework for the 

implementation of wind-based reserve generation in islanded microgrids was developed 

within the PLEXIM simulation environment. The PLEXIM environment allows for case-

study analysis of wind reserve applications based on field data and microgrid topologies. 

Aspects of microgrid operation and modeling were reviewed, including grid forming 

techniques, grid synchronization of distributed generation and various droop-based grid 

interconnection schemes. These control techniques are applicable to wind turbine 

installation. Wind turbine generators were briefly reviewed, with direct-drive PMSG 

designed explored in greater detail. Their steady-state and dynamic behavior was reviewed, 

with decoupled rotating-frame control topologies implemented and analytically modeled to 

allow for interconnection with islanded microgrids. The grid interconnection topology was 

also reviewed, with the behavior of a back-to-back power converter modeled with respect 

to DC-link voltage regulation.  
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Chapter 5: Cartwright – A Case Study: Resource 

Modeling 

 

5.1: Introduction 

 

     This Chapter presents a case study, conducted to validate the wind resource modeling, 

probabilistic demand analysis and wind reserve assessment algorithms. A remote 

community is selected where future integration of wind generation is planned. The amount 

of required wind generation, the performance of the created wind reserve and the general 

behavior of the augmented distribution grid is investigated, producing a probabilistic 

assessment of dynamic electricity reserves created by the installation of wind generation. 

Multiple wind turbine types and generation amounts are investigates, allowing engineering 

decisions to be made based on the information provided by the previously presented 

probabilistic wind reserve assessment algorithm. Due to the availability of generation and 

environmental data, the community of Cartwright, Newfoundland and Labrador is selected 

as the subject community of the subsequent case study.  

     Cartwright is a small community on the eastern coast of Labrador, Canada. The local 

electrical infrastructure forms an islanded microgrid - Cartwright is isolated from the 

transmission grid and relies entirely on local generation resources. Figure 5.1 illustrates 

Cartwright’s microgrid architecture. It is an islanded microgrid relying on four diesel 
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generators (rated 800, 600, 500 and 400 kW respectively) to provide electricity to 

residential, commercial and industrial customers. The residential and commercial 

customers have a peak demand of roughly 800 kW, with a large industrial load (a shrimp 

processing plant) consuming up to an additional 400 kW during periods of operation. The 

reliance on diesel generation and isolated nature of Cartwright’s microgrid leads to its 

suitability for the inclusion of wind power generation. The performance of wind generation 

at Cartwright is investigated using the wind probabilistic wind reserve assessment 

algorithm detailed in the previous two Chapters.  

     The case study is conducted using five years (2010-2014) of hourly wind and other 

environmental data, obtained from Environment Canada. This data is used to generate the 

site wind resource model by utilizing the multidimensional probabilistic modeling 

algorithm detailed in Chapter 2.  Electrical demand data is available for the years 2015 and 

2016 with 15-minute resolution.  The probabilistic electrical demand profile is modelled 

using the algorithm detailed in Chapter 3.  The combined probabilistic wind resource and 

demand models will be used for wind reserve assessment, investigating the performance of 

potential wind installations and the probabilistic viability of implementing a dynamic wind 

reserve.  
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5.2: The Wind Resource Model 

 

     The evaluation of Cartwright’s wind resource is conducted using the bivariate, 

multidimensional modeling algorithm presented in Chapter 2. Five years of hourly wind 

velocity data (2010-2014) was obtained from Environment Canada. At the same sample 

times, the air temperature, barometric pressure and relative humidity were also acquired. 

Using the ideal gas law, hourly samples of air density data were generated. The two data 

sample vectors were combined to create a bivariate environmental dataset for use in wind 

resource modeling. As the two environmental variables are not completely independent, 

the bivariate Kernel smoothing algorithm is required to accurately model the joint 

distribution of the two environmental variables. The environmental dataset is also 

Figure 5.1: Cartwright Microgrid Architecture 
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nonstationary – seasonal and diurnal variance contributors were previously identified to 

exist within the sample observations. To account for all these factors, the bivariate, 

multidimensional wind resource model was created by fitting the optimized two-

dimensional Kernel distribution algorithm to appropriate phase-organized subsets of 

environmental data.  

     Figure 5.2 (a-d) presents the resulting wind/density probability distributions, sampled at 

3 a.m. and 5pm on January 1st and August 28th. These sample times represent the extrema 

in the identified seasonal and diurnal wind/density variance, displaying the nonstationary 

character of the environmental dataset. Figure 5.2(a) presents the wind/density distribution 

at 3 a.m. on January 1st. The distribution is bimodal, with a primary peak probability at a 

wind velocity of 12 knots and an air density of 1.36 kg/m3. A secondary peak exists at an 

air density of 1.33 kg/m3 with calm winds. In general, the distribution is fairly continuous, 

smoothly varying across the environmental condition space. A slight correlation exists 

between wind velocity and air density – higher wind speeds are associated with lower mean 

air density. Overall, wind velocity values of greater than 20 knots are uncommon, with the 

air density rarely exceeding the range bounded by 1.25 and 1.42 kg/m3. Figure 5.2(b) 

presents the wind/density distribution at 5pm on January 1st. The distribution remains 

bimodal – the peak wind velocity is at 13 knots with the peak air density near 1.36 kg/m3. 

The secondary peak is more amplified, representing calm conditions with an air density 

between 1.28 and 1.36 kg/m3. The highest wind velocity values again tend to occur at lower 

air densities, representing a slight negative correlation between the environmental 

variables. The overall distribution is smooth, with the probability mass concentrated 
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between wind velocities of 0 and 30 knots and the air density ranging between 1.25 and 

1.42 kg/m3. The diurnal cycle is not that strong during January – the weak solar heating 

and prevailing synoptic pattern at Cartwright is dominated by the seasonal variability in 

climate conditions.  

     The diurnal cycle has a substantially stronger effect on the observed wind/density 

regime. Figure 5.2(c) presents the probability distribution at 3 a.m. on August 28th. At this 

time, calm conditions dominate, with the majority of probability mass concentrated at low 

wind speeds (under 5 knots) with an air density of near 1.25 kg/m3. Periods of higher wind 

velocity do exist, however no significant probability exists supporting a velocity above 20 

knots. During this period, the air density varies between 1.20 and 1.30 kg/m3, tightly 

clustered around the most likely value of 1.25 kg/m3. The wind resource is very poor at this 

seasonal and diurnal phase – a wind turbine is unlikely to produce significant energy when 

the wind velocity distribution is heavily biased towards calm conditions. Figure 5.2(d) 

displays the wind/density distribution at 5 p.m. on August 28th. At this time of year, diurnal 

cycles are significant. Mesoscale climate phenomena driven by daytime heating has shifted 

the most likely wind velocity to 8 knots, with the associated air density at approximately 

1.22 kg/m3. During this period, calm conditions still exist. However, they are now 

dominated by the probability mass at a higher wind speed. Overall, the wind velocity 

distribution has significant probability at wind velocities ranging from calm to 20 knots, 

with the air density varying between 1.17 and 1.27 kg/m3.  

     The generated wind resource model indicates significant seasonal and diurnal variability 

in the underlying statistical behavior of the environmental variables. The wind/density 
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probability distribution is substantially more favorable during the winter months, with more 

probability mass at higher values of both wind velocity and air density. In additional, a 

diurnal cycle is observed, where the late afternoon consistently has a wind regime shifted 

towards higher velocities. This effect is strongest during the summer months. The air 

density regime shifts lower due to this cycle, however the net benefit is greater wind power 

availability due to the larger relative effect wind velocity has on the power contained within 

the wind. 8756 additional wind/density distributions exist within the generated model, 

allowing an assessment to be made for any time of day or day of the year. In most cases, 

the distributions smoothly transition between the extrema presented previously – some 

exceptions exist due to the relatively small dataset size and the chaotic behavior of 

environmental conditions. For further wind resource analysis, studies of the available wind 

power density and theoretical wind turbine power output are conducted and presented.  
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(a) (c) 

(c) (c) 

Figure 5.2: Probabilistic Wind Resource Model for Cartwright during (a) January at 3:00 a.m., 

(b) January at 5:00 p.m., (c) August at 3:00 a.m., and (d) August at 5:00 p.m. 
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     The wind power density is calculated by a weighted sum of the wind velocity and air 

density values encountered within the multidimensional model. For each time and date, the 

wind power equation (Chapter 2) is used to calculate the wind power density inherent at 

each point of the bivariate distribution space. These values are then weighted by their 

probability of occurrence and summed to produce a single value – the expected wind power 

density. The result is a 24·365 matrix of wind power density predictions representing the 

seasonal and diurnal variability observed in the wind velocity and air density regimes. 

Figure 5.3 presents the calculated wind power density values. The wind power density at 

Cartwright varies from 50 to 500 w/m2, with a minimum during August between 9 p.m. 

and 3 a.m. The maximum wind power density is during January between 9 a.m. and 3 p.m. 

In general, wind energy is only consistently available from November to March, with 

October and April also having a significant wind resource during the diurnal peak. The 

degree of variation due to annual and diurnal cycles is much larger than at a site such as St. 

John’s (Investigated in Chapter 2) – there is essentially an order of magnitude variation in 

the available wind energy. Any wind installation must expect quiescent operation during 

much of the year, with the majority of energy being produced over a shorter period during 

the winter months. The overall wind reserve feasibility and availability will depend on the 

interaction of this variability with the demand profile and wind turbine design.  



160 

 

 

     The generation of an accurate probabilistic wind/density model allows the prediction of 

the performance of a wind turbine installation. Two wind turbine designs are selected – the 

Northern Power Systems 100c-21 and Northern Power Systems 100c-24. The NPS 100C-

21 is a 100 kW rated wind turbine optimized for higher wind speed operation. It has a cut-

in wind speed of 3 m/s, a rated wind speed of 15 m/s and cuts out at a wind velocity of 25 

m/s. The NPS 100c-24 is a similar wind turbine, also with a 100 kW rated output. It has a 

cut-in wind velocity of 3 m/s, a rated wind velocity of 12 m/s and a cut-out wind speed of 

25 m/s. The NPS 100c-24 is designed for lower-velocity wind regimes. Both wind turbines 

Figure 5.3: Cartwright’s Wind Power Density 
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are direct-drive, permanent magnet generator designs that use a power electronic converter 

system to interconnect with the grid. The power curve of each wind turbine is available 

from the manufacturer. It is interpolated to match the discrete wind velocity values within 

the probabilistic model, then expanded to accommodate for the variations in air density. 

The result is a matrix of potential power outputs defining the behavior of each wind turbine 

within the model design space. Using the methodology described in Chapter 3, the 

probabilistic power output of the wind turbine is developed using the appropriate wind 

resource model. This process is repeated for each wind turbine, allowing a comparison of 

the probabilistic output of each design. Given the manufacturer power curve and limiting 

criterion, any wind turbine design can be investigated in this manner. To more easily 

account for the use of multiple turbines, the power output was normalized by the turbine 

rating (100 kW for each case) and is therefore displayed in per-unit values. The probability 

of quiescent operation (wind speeds below the cut-in value) is removed from the 

distribution for ease of visual analysis and displayed separately.  

     Figures 5.4(a-d) display the probabilistic power output of the NPS 100c-21 when 

installed in Cartwright. Figure 5.4(a) displays the output distribution at 3 a.m., varying 

across the seasonal cycle. Throughout the year, the majority of probability mass exists at 

less than 10% of the rated output, representing near quiescent operation during wind speeds 

in the range of 3 to 7 m/s. The probability of rated power output is expressed by integrating 

the probability mass near 1.00 per-unit – a spread distribution is formed here due to the 

variation in air density affecting the actual captured power. At this time, rated operation is 

only observed to occur between November and April, however with a low probability. 
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During the remainder of the year, the wind velocity and air density distributions do not 

permit full-load operation, indicating that it would be an extremely rare occurrence. Figure 

5.4(b) displays the power output distribution at 9 a.m. At this time, similar behavior is 

observed. However, the change in wind regime due to the diurnal cycle has shifted more 

probability mass towards rated power output (during the winter months). During the 

remainder of the year, operation is primarily near quiescence (under 0.1 per-unit) with a 

slight secondary peak at roughly 20% of the rated power output, likely driven by the 

beginning of daytime heating. Note that Cartwright is a fairly high-latitude site, therefore 

9 a.m. is well after sunrise from May to August where this effect is most evident.  

     Figure 5.4(c) displays the wind turbine behavior at 3 p.m. At this point, the wind 

resource is near its overall maximum due to the diurnal cycle. The probability of rated 

operation is at its highest, with some probability mass existing during all periods except for 

July and August. There is also a reduced probability of quiescent operation, with significant 

output in the range of 0.2 per-unit evident from April to October. However, the seasonal 

cycle still dominates the variability in wind turbine power output. Figure 5.4(d) displays 

the power output distribution at 9 p.m. As in Figure 5.4(a), quiescent operation is now more 

common, with little probability mass above 0.1 per-unit except for during the winter 

months. Rated operation is still observed during the winter, however it is less common due 

to the diurnal cycle partially suppressing the wind velocity regime.  Essentially, the NPS 

100c-21 will not be active at rated power a significant proportion of the time when installed 

in Cartwright’s wind regime.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 
Figure 5.4: Probabilistic Power Output of the NPS-100c-21 in Cartwright at (a) 3:00 a.m., (b) 9:00 a.m., 

(c) 3:00 p.m. and (d) 9:00 p.m. 
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     Figure 5.5 presents the probability of quiescent operation (no power output) for the NPS-

100c-21 wind turbine, observed at 3 a.m., 9 a.m., 3 p.m. and 9 p.m. throughout the seasonal 

cycle. Due to the design of the wind turbine in combination with Cartwright’s wind regime, 

this probability can be as high as 63% at 9:00 p.m. during August. From 9 p.m. to 9 am, a 

significant seasonal cycle is evident in the probability of quiescence, with a winter 

minimum (near 15%) observed during January for all 3 observation times. The overall 

probability of quiescent operation is highest at 9:00 p.m. during most of the year, except 

for near the summer solstice (May and June) where 3:00 a.m. exhibits a greater likelihood. 

Sunset is later than 9:00pm at Cartwright during this period due to the latitude of the site, 

explaining this variability. At 3:00 p.m., quiescent behavior is relatively unlikely 

throughout the year, peaking at 25% in August and reaching a minimum value of 15% 

during April. In general, the NPS-100c-21 wind turbine will only produce power between 

35 and 85% of the time, with the most reliable operation during the afternoon and during 

the winter months.  
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     Figure 5.6(a-d) displays the probabilistic power output of the NPS 100c-24 wind turbine, 

again observed 3 a.m., 9 a.m., 3 p.m. and 9 p.m., respectively. Figure 5.6(a) displays the 

wind turbine behavior at 3:00 a.m., throughout the seasonal cycle.  Compared to the NPS 

100c-21, significantly more probability mass exists at higher per-unit power outputs. Rated 

operation is more common, and is observed throughout the year (albeit with the same 

emphasis towards the winter months). In addition, probability mass is observed at outputs 

between 0.2 and 0.35 per-unit throughout the year, indicating a more reliable energy supply. 

This is due to the NPS-100c-24 being optimized for performance at lower wind speeds, 

Figure 5.5: Probability of Quiescent Operation – NPS-100c-

21 at Cartwright 
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which better matches Cartwright’s wind regime at this time. Figure 5.6(b) displays the wind 

turbine’s probabilistic output at 9 a.m. The effect of daytime heating has increased the 

probability of non-quiescent behavior during April to October, with probability mass now 

Figure 5.6(a) – Probabilistic Power Output of the NPS-100c-24 in 

Cartwright at 3:00 a.m. 
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existing near 0.30 per-unit during these periods. In addition, rated power operation 

continues to become more common during November to March, with full-load operation 

now representing a significant proportion of the total probability distribution. The overall 

proportion of non-quiescent behavior remains significantly larger than that exhibited by the 

NPS 100c-21, reflecting the wind turbine design’s suitability for Cartwright’s wind regime.  

     The diurnal trend towards increased wind energy production continues through 3 p.m. 

Figure 5.6(c) displays the probabilistic wind turbine power output at this time, varying 

across the seasonal cycle. The effect of the diurnal cycle is to shift a significant amount of 

Figure 5.6(b) – Probabilistic Power Output of the NPS-100c-24 

in Cartwright at 9:00 a.m. 
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probability mass from quiescent operation to partial-load (0.1 to 0.4 per-unit) output, with 

this effect most evident during May to October. During the remainder of the year, the 

diurnal cycle shifts probability to rated-output operation, reflecting the increased 

probability of higher wind velocities observed in Figure 5.2(b) and Figure 5.2(c). The 

overall effect is more reliable and consistent wind turbine operation due to a diurnally-

enhanced wind regime. Figure 5.6(d) displays the NPS-100c-24’s probabilistic power 

output at 9 p.m. The loss of diurnal enhancement has shifted probability mass towards 

quiescent operation, producing a distribution similar to that in Figure 5.6(a). However, in 

Figure 6(c) – Probabilistic Power Output of the NPS-100c-24 in 

Cartwright at 3:00 p.m. 
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comparison to the NPS 100c-21 (Figures 5.4(a) and 5.4(d)) significantly superior 

performance is observed, with a greater proportion of rated output operation and a generally 

greater probability of power outputs equal to or greater than 0.1 per-unit. Overall, a visual 

comparison of the probabilistic wind turbine output suggests that the NPS 100c-24 is a 

superior choice for Cartwright.  

     Figure 5.7 presents the probability of quiescent operation (no power output at all) for 

the NPS-100c-24 wind turbine. Similar to Figure 5.5, the probability is observed at 3 a.m., 

9 a.m., 3 p.m. and 9 p.m. throughout the seasonal cycle. The plot is essentially identical to 

that of the NPS-100c-21 (Figure 5.5) – each turbine has very similar low wind-speed 

Figure 5.6(d) – Probabilistic Power Output of the NPS-100c-24 in 

Cartwright at 9:00 p.m. 
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performance, cutting in a 3 m/s. The design of the NPS-100c-24 wind turbine in 

combination with Cartwright’s wind regime results in a probability of Quiescence as high 

as 62% at 9:00 p.m. during August. A significant seasonal cycle is evident between 9:00 

p.m. and 9:00 a.m., with a winter minimum (near 15%) observed during January for all 3 

observation times within this range. The overall probability of quiescent operation is 

highest at 9:00 p.m. from July to April, During May and June (near the Summer Solstice) 

the highest probability of quiescence shifts to 3:00 a.m. Sunset is later than 9:00pm at 

Cartwright during this period due to the high latitude of the Cartwright, explaining this 

variability. At 3:00 p.m., quiescent behavior is relatively unlikely throughout the year, 

peaking at 25% in August and reaching a minimum value of 15% during April. In general, 

the NPS-100c-24 wind turbine (similarly to the NPS-100c-21) will only produce power 

between 35 and 85% of the time, with the most reliable operation during the afternoon and 

during the winter months. However, the analysis conducted previously indicates that it 

exhibits superior performance during non-quiescent operation.  
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     Visual inspection of the probabilistic wind turbine output plots grants valuable 

information regarding the absolute and relative performance of each turbine design. 

However, the quantitative performance of the wind turbines is better estimated by 

integrating under each distribution to produce the predicted wind turbine capacity factor. 

Using the algorithms presented in Chapter 3, the expected value of the wind turbine output 

is calculated, then normalized by the rated power value (100 kW for both turbine designs). 

The seasonal and diurnal variability in the wind turbine capacity factor is revealed by this 

analysis, allowing for the continuation of the investigation into the wind reserves generated 

by their installation. Figure 5.8(a) displays the expected capacity factor of the NPS-100c-

21 wind turbine when installed at Cartwright. The seasonal and diurnal-cycle variability is 

Figure 5.7: Probability of Quiescent Operation – NPS-100c-

24 at Cartwright 



172 

 

easily observed, supporting the assertions made when examining the probabilistic wind 

turbine power output. The expected capacity factor reaches a maximum of 0.38 between 

10:00 a.m. and 4:00 p.m. during January. A capacity factor value in excess of 0.3 is 

observed throughout the day during December, January and early February, with the 

diurnal cycle extending this behavior into March and November during the 10:00 a.m. to 

4:00 p.m. peak wind velocity period. During these periods, Cartwright’s wind regime is 

sufficient for wind turbine operation at an acceptably high capacity factor. However, the 

minimum expected capacity factor is only 0.04, and occurs during August at approximately 

11:00 p.m. Low capacity factors of less than 0.10 are observed during July, August and 

September between 8:00 p.m. and 9:00 a.m. The diurnal cycle increases the minimum 

Figure 5.8(a): Expected Capacity Factor of the NPS-100c-21 at 

Cartwright 
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expected capacity factor to as high as 0.15 during the diurnal peak period, however it 

remains low enough to indicate a poor wind resource. In general, the NPS 100c-21 wind 

turbine is not optimized for Cartwright’s wind regime and therefore exhibits poor 

performance.  

     Figure 5.8(b) displays the expected capacity factor of the NPS-100c-24 wind turbine. 

The general behavior due to the seasonal and diurnal cycle matches that of the NPS-100c-

21, with the minima, maxima and seasonal-diurnal interrelation having a similar effect on 

wind turbine performance. However, the observed capacity factors are substantially higher. 

The peak capacity factor reaches 0.5 during January, with values in excess of 0.4 occurring 

from November to February throughout the day. The minimum capacity factor is roughly 

0.08 during August, with the diurnal cycle increasing this value to 0.20 between 2:00 and 

5:00 p.m. The NPS-100c-24 has a peak-period capacity factor of 0.15 per-unit higher than 

the NPS-100c-21, indicating an expected power output 15 kW higher (assuming a single 

100 kW wind turbine). During the nadir, the NPS-100c-24 exhibits a capacity factor 

roughly 0.05 greater, reflecting a 5 kW increase in average power output. In general, the 

NPS-100c-24 is shown to probabilistically produce approximately one-third more energy 

than the NPS-100c-21. However, in each case the seasonal and diurnal cycle results in 

periods of relative quiescence (capacity factors less than 0.1) indicating that during these 
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periods wind generation would seldom be available. This demonstrates the large-scale 

intermittency of wind generation due to the influence of the seasonal and diurnal cycles.  

 

 

 

 

Figure 5.8(b): Expected Capacity Factor of the NPS-100c-24 at 

Cartwright 
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5.3: Wind Reserve Assessment 

      

     The wind reserve is the quantity of wind power available to meet secondary or peak 

electrical demand. It is a function of the site’s wind resource, load profile and system 

architecture. Using environmental data, the wind resource of Cartwright has been modelled 

and the performance of two different wind turbine designs probabilistically investigated. 

Utilizing the wind resource, the amount, reliability and effect of the wind reserve can be 

quantified through a probabilistic comparison of wind generation, electrical demand their 

effects on microgrid operation. Continuing the case study, the electrical load profile of 

Cartwright is investigated to produce a probabilistic model of microgrid energy demand.  

 

5.3.1: The Load Profile 

 

     The load profile of Cartwright was probabilistically modelled using 2 years of 15-minute 

data obtained from Nalcor. The univariate Kernel Density Estimation algorithm produced 

a time-variant probability distribution reflecting the observed electrical demand. Figures 

5.9(a-d) present the probabilistic load profile, sampled at 3:00 a.m., 9:00 a.m., 3:00 p.m. 

and 9:00 p.m. and displaying the full seasonal cycle. Figure 5.9(a) displays the demand 

distribution at 3:00 a.m. The load profile is observed to have significant seasonal 

variability, with the most likely demand value varying from a peak of 600 kW during 

January to a minimum of 325 kW during September. A small secondary peak exists during 
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June, correlating to the demand from shrimp plant during its season of operation. The 

distribution of demand values also exhibits variability, with higher demand variance during 

the winter months (likely due to variable heating requirements) and a tighter demand 

distribution near the late-summer load minimum.  Figure 5.9(b) displays the load profile at 

9 a.m. Due to the diurnal cycle, the demand values are consistently shifted upwards 

throughout the year. The most likely demand increases to 750 kW during January and 475 

kW during September. In addition, the demand distributions are wider, indicating a greater 

degree of demand variability. The secondary peak during June is amplified, resulting in 

demand values reaching a range comparable to the winter maximum due to the increased 

industrial demand.  

Figure 5.9(a): Cartwright Demand Distribution at 3:00 a.m. 
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     Figure 5.9(c) displays the demand distribution at 3 p.m. The demand values are close to 

that observed at 9 a.m., with similar seasonal variability between 400 and 725 kW. 

However, the secondary peak is at its maximum amplitude – the shrimp plant is at this point 

likely responsible for nearly half of Cartwright’s electrical demand when operating at 

capacity. In general, the degree of demand variability has decreased slightly, resulting in 

an overall narrower demand distribution. A notable exception is during shrimp plant 

operation, where its more intermittent energy requirement has resulted in a very wide 

demand distribution ranging from 400 to 900 kW. Figure 5.9(d) displays the demand 

distribution at 9 p.m. At this point, the shrimp plant is less active, resulting in the secondary 

peak being shifted back towards the remainder of the demand distribution. At this time, 

Figure 5.9(b): Cartwright Demand Distribution at 9:00 a.m. 
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residential loads remain active, causing Cartwright’s electrical demand to maintain a 400 

to 750 kW seasonal cycle – similar to the values observed at 9 a.m. and 3 p.m. The width 

of the distribution (indicating demand variability) is similar to that observed at 3 p.m., 

narrower than 9 a.m. and wider than 3 a.m. Essentially, a seasonal and diurnal cycle exists 

which effects both the mean electrical demand and the shape of the observed probability 

distribution. The shrimp plant is superimposed on this signal, and is more difficult to predict 

as its operation is defined more so by regulation of the shrimp season and economic factors 

such as prices and demand. Overall, the probabilistic model of Cartwright’s demand 

Figure 5.9(c): Cartwright Demand Distribution at 3:00 p.m. 
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provides the initial information required to begin further investigation into the effects of 

wind reserves on system operation.  

     The further investigation of Cartwright’s load profile requires the identification of the 

base, secondary and peak demand values, including their seasonal and diurnal variability. 

This is accomplished by analysis of the demand cumulative distribution function (CDF), 

calculated by integrating the probability distribution model described previously. Points 

within the CDF corresponding to specific cumulative probability values emerge, providing 

the information required to identify the base, secondary and peak demand. The CDFs 

themselves are clearly related to the corresponding load PDF, with the greatest CDF slope 

Figure 5.9(d): Cartwright Demand Distribution at 9:00 p.m. 
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occurring at the probabilistic peak demand value. The relative effects of the diurnal and 

seasonal cycle are clearly visible through their effects on the CDF. However, visual 

inspection of the CDF provides little information which has not previously been discussed 

with respect to the probability distribution model. Instead, the base, secondary and peak 

demand profiles are extracted from the CDF in order to display the information required 

for further assessment of wind reserves.  

     Figures 5.10 (a-d) display the base load, secondary load and peak load profiles 

(including their seasonal variability) sampled at 3:00 a.m., 9:00 a.m., 3:00 p.m. and 9:00 

p.m. As discussed in Chapter 3, the base load corresponds to the 5th percentile of cumulative 

demand probability, the secondary load the 50th percentile and the peak load the 95th 

percentile. Figure 5.10(a) displays the demand profile at 3:00 a.m. The profile is winter-

peaking, with the base load varying from 450 kW during January to 250 kW during August. 

The base load profile is nearly sinusoidal, with the annual-cycle dominating demand 

variation. The secondary demand follows a similar pattern, except it is shifted upwards by 

between 50 (during August) to 100 (during January) kW due to the presence of 

intermittently active customers. A slight secondary peak is evident during June due to 

Shrimp plant operation – the secondary load increases from 360 kW to 410 kW due to 

night-time plant operation. This increase is also evident (although more prominent) when 

examining the peak demand profile – the peak load increases from 410 to 500 kW before 

again declining towards an August minimum of 310 kW. The peak load reaches a maximum 

value of 650 kW during January, reinforcing the winter-peaking nature of Cartwright’s 

demand profile. In addition, the separation between the peak, secondary and base load 
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profiles is highest during the winter load maximum, indicating the greatest degree of 

absolute variability in the expected electrical demand.  

     Figure 5.10(b) displays the demand profiles at 9:00 a.m. The standard winter-peaking 

pattern is evident, agreeing with the previously examined probabilistic load model. The 

base load varies from a peak of 600 kW during January to a minimum of 350 kW during 

August. There is no real secondary peak in the base load profile, indicating that the shrimp 

plant operates less than 95% of the time and therefore is counted as a secondary or peaking 

Figure 5.10(a): Base, Secondary and Peak Demand in 

Cartwright at 3:00 a.m. 
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customer. The secondary demand does show the secondary peaking behavior, increasing 

from 575 to 700 kW during the June operating period. The remainder of the year 

demonstrates similar behavior to the base load, with the secondary demand varying from a 

peak of 700 kW during January to a minimum of 450 kW during August. The secondary 

demand varies from approximately 100 kW above the base demand during January to 50 

kW during July, indicating the seasonal-cycle changes in demand variability. The exception 

is during shrimp plant operation, where the secondary demand exceeds the base load by as 

much as 250 kW, indicating a highly variable and interment demand profile.  The peak 

demand profile mirrors the behavior of the secondary demand profile, except for an even 

stronger secondary peak which actually exceeds the winter load maximum – the shrimp 

Figure 5.10(b): Base, Secondary and Peak Demand in 

Cartwright at 9:00 a.m. 
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plant operation period therefore exhibits the annual maximum peak demand of 

approximately 975 kW. The remainder of the year exhibits similar behavior to the 

secondary demand and the peak pattern from 3:00 a.m., being essentially a shifted 

secondary demand profile with the value varying from 850 kW during January to 500 kW 

during August.   

     Figure 5.10c displays Cartwright’s base, secondary and peak demand profiles at 3:00 

p.m. The general behavior is similar to that previously described, albeit the demand profiles 

are slightly lower. The base load varies from a peak of 575 kW during January to a 

minimum of 340 kW during August and September. The secondary demand follows a 

similar profile, varying from 700 kW to 390 kW. The seasonal cycle in demand variability 

is also intact. However, the secondary peak due to the shrimp plant operation is highly 

amplified – the secondary demand increases from 480 kW to 700 kW during the operating 

season. The peak demand profile also exhibits the amplified peak, increasing from 550 kW 

to 880 kW. Similar to at 9:00 a.m., the absolute peak demand is observed during plant 

operation as opposed to during the winter base load maximum. Figure 5.10(d) displays the 

load profiles at 9:00 p.m. The base load has not significantly changed, varying from a peak 

of 650 kW to a minimum of 375 kW. The secondary and peak load profiles also exhibit 

similar behavior. The secondary demand varies from 740 kW to 430 kW, with the 

secondary peak now having a lower amplitude, resulting in an increase from 525 kW to 

610 kW. The peak load profile also displays this behavior – the secondary peak of 770 kW 

is slightly less than the winter peak of 810 kW, indicating a lesser degree of shrimp plant 

operation. The peak demand at this time is slightly higher than at 3:00 p.m. – this is most 
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likely due to greater activity in residential loads. However, the general seasonal and diurnal 

variability in load profiles is preserved, providing valuable information regarding the nature 

of electrical demand at Cartwright.  

 

 

Figure 5.10(c): Base, Secondary and Peak Demand in 

Cartwright at 3:00 p.m. 
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     The identification of the base, secondary and peak demand profiles allow modifications 

to the previously defined probabilistic load model. The base load can be removed from the 

load distribution, representing the effect of conventional base generation acting as a grid-

forming system. The remaining demand represents that serviceable by wind generation – 

referred to as the secondary demand. Figure 5.11(a-d) displays the time-variant probability 

distribution of Cartwright’s secondary demand, sampled at 3:00 a.m., 9:00 a.m., 3:00 p.m. 

and 9:00 p.m. The characteristics of this probabilistic model provides information which 

can be utilized to predict the ability of wind turbines to supplement the conventional base 

Figure 5.10(d): Base, Secondary and Peak Demand in 

Cartwright at 9:00 p.m. 
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load generators. Figure 5.11(a) displays the secondary demand distribution at 3:00 a.m. A 

seasonal cycle is evident, with the demand distribution being wider during the winter 

months – the January secondary demand varies from 50 to 200 kW above the concurrent 

base load.  During August and September, this distribution is more concentrated – the 

secondary demand varies between 10 and 100 kW and has a higher peak probability at 

approximately 30 kW. A secondary peak exists during June due to the shrimp plant – the 

secondary demand distribution shifts upwards and widens, now ranging between 50 and 

250 kW as opposed to 10 and 100 kW. Figure 5.11(b) displays the secondary demand 

Figure 5.11(a): Secondary Demand Distribution in Cartwright 

at 3:00 a.m. 
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distribution at 9:00 am. A seasonal cycle still exists, however it is less significant, indicating 

that at this time the seasonal cycle is primarily manifested in shifting the base load as 

opposed to the secondary demand distribution. In general, the distribution of secondary 

demand has substantially higher variance, with values commonly ranging from 0 to 300 

kW above the concurrent base load. The shrimp plant has a more significant effect on the 

secondary demand distribution, resulting in values between 150 and 350 kW becoming the 

most common secondary demand values, with isolated instances of up to 500 kW observed. 

This reflects the intermittent nature of this industrial customer, shifting the general demand 

distribution without significantly effecting the base load profile.  

Figure 5.11(b): Secondary Demand Distribution in Cartwright 

at 9:00 a.m. 



188 

 

     Figure 5.11(c) displays the secondary demand distribution at 3:00 p.m. In general, it is 

similar to that observed at 9:00 a.m. The seasonal cycle only weakly effects the probability 

distribution, indicating its primary effect remaining on the base load profile as investigated 

previously. The shrimp plant has by far the largest effect on the demand distribution, 

resulting in the secondary demand shifting from 0-200 kW to 200 to 450 kW, with isolated 

observations as high as 600 kW above the concurrent base load. Any installed wind 

generation must therefore be significantly oversized to meet this demand profile in 

comparison to that observed during the remainder of the year. Figure 5.11(d) displays the 

secondary demand distribution at 9:00 p.m. At this time, the shrimp plant is less active, 

Figure 5.11(c): Secondary Demand Distribution in Cartwright 

at 3:00 p.m. 
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resulting in a smaller (albeit still significant) shift in the demand profile. In general, the 

secondary demand varies between 0 and 200 kW above the base load for most of the year, 

with slight probabilities of 300 kW values seen during December and especially when the 

shrimp plant is active – at this point isolated observation of up to 500 kW can be expected. 

Overall, the secondary demand profile displays significant diurnal variability, slight 

seasonal variability and clearly shows the effect a large industrial customer can have on a 

probabilistic load profile. To further refine this investigation, the peak demand profiles will 

also be examined to provide the information needed to evaluate the ability of wind turbines 

to provide demand response services by acting as a short-term peaking unit.  

Figure 5.11(d): Secondary Demand Distribution in Cartwright 

at 9:00 p.m. 
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     The peak demand is calculated by subtracting the appropriate seasonal and diurnal 

secondary (50% cumulative probability) demand from the load observations, keeping only 

positive values. This results in a dataset containing all load observations where a peaking 

unit would be used to provide demand response. The probabilistic load modeling algorithm 

presented in Chapter 3 is applied to this dataset, resulting in a time-variant distribution 

model of Cartwright’s peak demand. Figure 5.12(a-d) displays the peak demand probability 

distribution spanning the seasonal cycle, observed at 3:00 a.m., 9:00 a.m., 3:00 p.m. and 

9:00 p.m. Figure 5.12(a) presents the peak demand distribution at 3:00 a.m. In general, the 

peak demand ranges from 0 to 100 kW above the appropriate secondary demand value. 

Figure 5.12(a): Peak Demand Distribution in Cartwright at 3:00 

a.m. 
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Some seasonal-cycle variability is evident within the demand profile, with the winter 

months (December to March) exhibiting a higher degree of peak-demand variance (from 0 

to 125 kW) while the months of May, July, August, September and October have the peak 

demand probability concentrated at values under 50 kW. The shrimp plant operates during 

June, and has the effect of interrupting the seasonal cycle with the return winter-type peak 

demand profile. However, as the shrimp plant is relatively inactive at 3 a.m., the overall 

effect is not as large as that observed later in the day. Figure 5.12(b) displays the peak 

demand profile at 9:00 a.m. The increase in residential and commercial demand results in 

a higher variance within the peak demand profile, with significant probability mass existing 

at values of up to 200 kW during the winter months and 150 kW during May-October. The 

Figure 5.12(b): Peak Demand Distribution in Cartwright at 9:00 a.m. 
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shrimp plant now has a more significant effect on the demand profile, with the peak 

distribution shifting from the 0-150 kW distribution seen during May to 0-300 kW during 

early June, immediately afterwards. Essentially, peaking units must probabilistically supply 

more energy (when needed) during plant operation in comparison to the remainder of the 

year.  

     Figure 5.12(c) displays the peak demand distribution at 3:00 p.m. At this time, the peak 

demand distribution is somewhat more concentrated for the majority of the year, varying 

between 0 and 100 kW above the secondary load. The shrimp plant has the largest effect, 

being fully active. During June, the peak load distribution increases to as much as 400 kW 

Figure 5.12(c): Peak Demand Distribution in Cartwright at 3:00 

p.m. 
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above the secondary load value. In addition, a bimodal peak is revealed corresponding to 

early and late June, indicating that the shrimp plant is most active near the beginning and 

end of its operation season. Figure 5.12(d) displays the peak demand distribution at 9:00 

p.m. At this time, the shrimp plant is mainly quiescent, only slightly shifting the peak 

demand distribution. The seasonal cycle is still observable, with a more concentrated 

demand profile during the May and July to October. During November to April, the demand 

distribution has higher variance, with values in excess of 100 kW more common. Overall, 

the peak demand distribution acts as a probabilistic load model for wind reserves 

implemented as peaking units. As the base load and secondary demand is supplied by 

Figure 5.12(d): Peak Demand Distribution in Cartwright at 9:00 

p.m. 
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conventional generation, the probability distribution of the peak demand allows the 

probabilistic evaluation of wind generation’s ability to provide demand response, acting as 

an active reserve within Cartwright’s islanded microgrid.    

 

5.3.2: Probabilistic Reserve Modeling 

 

     The previously developed probabilistic wind turbine output model is combined with the 

secondary demand models to produce a probabilistic model of the instantaneous power 

balance. The power balance is the difference between the wind generation and the reserve 

requirement – either the secondary or peak demand profile. Positive values indicate 

sufficient wind reserve, with negative values indicating a shortfall which must be provided 

by conventional generation units to prevent loss of load. The properties of the power 

balance probability distribution therefore define the condition space of the operational 

microgrid and allows the optimization of wind turbine installation. Figure 5.13(a-d) 

displays the probabilistic power balance model assuming 250 kW of wind generation using 

the NPS-100c-21 power curve. In this case, the wind generation is used to meet the 

secondary demand, with conventional generators supplying only the base load. This will 

occur in situations when sufficient wind available for EMS systems to allocate wind 

generation to the microgrid, however when diesel generator operating requirements or a 

high degree of intermittency make wind incapable of meeting some of the base load 

requirements.  The distribution model includes both seasonal and diurnal dimensions, with 
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Figure 5.13 displaying the full seasonal cycle at 3:00 a.m., 9:00 a.m., 3:00 p.m. and 9:00 

p.m. respectively. The majority of the probability mass exists as a mirrored demand 

distribution, reflecting quiescent wind turbine operation. In this situation, no reserve 

generation is available. This situation is most common at 3:00 a.m., when the wind resource 

is suppressed. However, the largest negative power balance observations occur at 3:00 p.m., 

when the shrimp plant is active. At this time, the wind generation is capable of providing 

an active reserve some of the time, with probability mass existing at positive power balance 

values. The precise probability of wind reserve availability as well as the expected energy 

balance can be calculated using this distribution. In general, the power balance distribution 

follows the seasonal and diurnal-cycle variability discussed in the previous section, 

reflecting the observed changes in the wind resource and demand profile.  
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(a) 

 

(c) 

 

(b) 

 

(d) 

 

Figure 5.13: Power Balance Distribution in Cartwright at (a) 3:00 a.m., (b) 9:00 a.m., (c) 3:00 

p.m. and (d) 9:00 p.m. using the NPS-100c-21 
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     Figure 5.14 (a-d) presents the probabilistic power balance distribution assuming 250 kW 

of wind generation using the NPS-100c-24 wind turbine. Compared to the NPS-100c-21, a 

significantly greater positive-value probability mass is observed, especially at 9:00 a.m. 

and 3:00 p.m. (Figures 5.14(b) and 5.14(c)). During these times, the wind turbine is 

operating at rated power a significant fraction of the time, especially during the winter 

months. The 250 kW rated output is greater than the majority of secondary demand 

observations, resulting in a higher probability of a positive wind reserve. This behavior is 

less common during the summer months (due to the seasonal-cycle wind resource 

variation) and during shrimp plant operation, where the resultant increase in demand is not 

compensated by additional wind availability.  Making the assumption that the aggregate 

positive probability is the measure of wind availability, the seasonal cycle dominates the 

resultant metric. However, the NPS-100c-24 is consistently more likely to provide a wind 

reserve due to its design better suiting the wind resource at Cartwright.  
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(a) 

 

(c) 

 

(b) 

 

(d) 

 

Figure 5.14: Power Balance Distribution in Cartwright at (a) 3:00 a.m., (b) 9:00 a.m., (c) 3:00 

p.m. and (d) 9:00 p.m. using the NPS-100c-24 
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     The effect of increased wind generation capacity on the probabilistic power balance is 

investigated by repeating the previous analysis assuming 500 kW of wind generation, - the 

equivalent of 5 operational wind turbines. Figure 5.15(a-d) presents the resulting 

probabilistic power balance when using the NPS-100c-21 wind turbine, observed at 3:00 

a.m., 9:00 a.m., 3:00 p.m. and 9:00 p.m. to capture the diurnal wind reserve variability. In 

general, the probability distribution is not significantly changed, as the NPS-100c-21 is 

quiescent the majority of the time. However, the additional probability mass which is 

shifted to positive values is now spread over a larger area, with the potential for as much 

as 500 kW of excess wind energy during the winter months. At 9:00 a.m. and 3:00 p.m. 

(Figures 5.15(b) and 5.15(c)) the greater wind capacity does result in a greater probability 

of a positive wind reserve. However, the effect is fairly small except for during the seasonal 

wind maximum in December to February. Overall, the increase in wind capacity does result 

in a greater probability of a sufficient wind reserve. However, further analysis is needed to 

fully define its effect on Cartwright’s microgrid.  

     Figure 5.16(a-d) presents the resulting probabilistic power balance when using the NPS-

100c-24 wind turbine, again observed at 3:00 a.m., 9:00 a.m., 3:00 p.m. and 9:00 p.m. to 

capture the diurnal wind reserve variability. At 3:00 a.m., the distribution is not greatly 

changed, as the diurnal wind resource minimum results in a high probability of quiescent 

operation. However, the effect of both the design change (to the NPS-100c-24) and the 

increased capacity is clearly evident at 9:00 a.m. and 3:00 p.m., when the diurnal wind 

maximum increases the wind turbine output. Significant probability mass is shifted to 
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positive power balances, with the potential for 500 kW of excess energy as well as a 

(a) 

 

(c) 

 

(b) 

 

(d) 

 

Figure 5.15: Power Balance Distribution in Cartwright at (a) 3:00 a.m., (b) 9:00 a.m., (c) 3:00 p.m. and 

(d) 9:00 p.m. using 500 kW of generation from the NPS-100c-21 
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significant probability for the small positive values which represent partial-load operation 

still meeting the reserve requirement. In general, the NPS-100c-24 has a higher likelihood 

of providing a wind reserve for secondary generation in comparison to the NPS-100c-21. 

In addition, the greater probability of rated output allows even the shrimp plant period to 

have some positive probability mass, indicating a wind reserve contributing to shaving this 

peak from Cartwright’s load profile.  The increased wind capacity does not have a linear 

effect on the wind reserve availability – the complex probabilistic interplay between the 

wind resource and the demand profile results in a non-linear relationship between wind 

capacity, probabilistic wind reserves and the resulting power balance.  
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(a) 

 

(c) 

 

(b) 

 

(d) 

 

Figure 5.16: Power Balance Distribution in Cartwright at (a) 3:00 a.m., (b) 9:00 a.m., (c) 3:00 

p.m. and (d) 9:00 p.m. using 500 kW of generation from the NPS-100c-24 
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     The probability of sufficient wind generation being available to meet the secondary 

demand is calculated by integrating the positive portion of the probabilistic power balance 

model. Excess energy is assumed to be dumped (or not generated) – the inclusion of storage 

is a subject of future investigations. The resulting wind reserve probability is a single value 

evaluated at each seasonal and diurnal phase, providing a time-variant wind reserve 

estimation which has applications in power system planning and wind turbine selection. 

Figure 5.17 (a-d) presents four of these probabilistic wind reserve models, evaluated 

assuming 250 kW of generation using the NPS-100c-21 (Figure 5.17(a)), the NPS-100c-24 

(Figure 5.17(b)), 500 kW of generation using the NPS-100c-21(Figure 5.17(c)) and the 

NPS-100c-24 (Figure 5.17(d)). The observed probability values clearly display the effects 

of wind turbine design, capacity, and the interplay between the demand profile and wind 

turbine output distribution during the course of seasonal and diurnal cycles. In the case of 

250 kW capacity (Figures 5.17(a) and 5.17(b)), the NPS-100c-21 is shown to have a slightly 

lower probability of reserve, ranging from 0.03 (during June near 12:00 noon and June-

August near 10:00 p.m.) to 0.36 during November at 3:00 p.m. During these periods, the 

NPS-100c-24 has probability values of 0.04 and 0.41, respectively – approximately 15% 

higher (in relative terms). The same pattern is evident when installing 500 kW of capacity 

(Figures 5.17(c) and 5.17(d)). The NPS-100c-21 exhibits reserve probabilities ranging from 

0.09 to 0.57 – the seasonal diurnal pattern is unchanged. The NPS-100c-24 ranges from 

0.11 to 0.64, slightly more than 10% higher. In general, the increase in capacity had a larger 

effect than the change in wind turbine design – at least 500 kW of capacity is required to 

provide a reliable wind reserve. However, this effect is asymptotic – a very large wind 

capacity would be required to meet reserve requirements during the summer wind resource 
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minimum or during shrimp plant operation, as the wind turbines are quiescent the majority 

(a) 

 

(c) 

 

(b) 

(d) 

 Figure 5.17: Probability of Meeting Secondary Reserve Requirements in Cartwright using (a) 250 

kW of NPS-100c-21, (b) 250 kW of NPS-100c-24, (c) 500 kW of NPS-100c-21 and (d) 500 kW of NPS-

100c-24 



205 

 

of the time, negating any rated capacity increase.  

     A further comparison of the effects of the seasonal and diurnal cycles as well as the 

wind turbine design and capacity on the wind reserve probability is presented by 

superimposing the resulting reserve probabilities which correspond to a single diurnal 

phase. Figure 5.18(a-d) presents the reserve probabilities of each wind turbine 

design/capacity combination, sampled at 3:00 a.m., 9:00 a.m., 3:00 p.m. and 9:00 p.m. 

respectively. In all cases, the seasonal cycle has the largest influence on the reserve 

probabilities. At 3:00 a.m. and 9:00 p.m. (Figures 5.18(a) and 5.18(d)) the reserve 

probabilities are generally sinusoidal, varying from a February peak of 0.3, 0.35, 0.5 and 

0.6 for the listed design/capacity combinations. At 9:00 p.m. the peak reserve probability 

occurs slightly earlier, during January. However, the probability profiles are similar. The 

minimum reserve probability occurs during June and July, with values of 0.05, 0.08, 0.15 

and 0.18 observed, respectively. These values are slightly lower at 9:00 p.m. due to the 

slightly higher demand profile at this time. The reserve probability profiles follow a 

different pattern at 9:00 a.m. and 3:00 p.m. (Figures 5.18(b) and 5.18(c)), with the shrimp 

plant operation visibly affecting the probability of wind reserve. At 9:00 a.m., the reserve 

probabilities peak at 0.25, 0.3, 0.45 and 0.52 during February and November. The minimum 

reserve probabilities occur in June, with a precipitous drop occurring as the shrimp plant 

operation begins. During this period, the reserve probabilities are as low as 0.04, 0.06, 0.12 

and 0.18, respectively. Similar behavior is observed at 3:00 p.m., however the probability 

values are slightly higher during the winter peak (0.35, 0.4, 0.58 and 0.62, respectively) 

due to the diurnal wind resource maximum described previously. The effect of the shrimp 
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plant is at its most pronounced, with the reserve probabilities dropping to less than one third 

of their peak values during the June reserve minimum. At this time, the reserve probabilities 

are as low as 0.04, 0.06, 0.12 and 0.19 – nearly identical to the values at 9:00 a.m. Overall, 

Figures 5.17 and 5.18 have presented the significant annual and diurnal cycles in wind 

reserve probability where wind generation is used to meet Cartwright’s secondary demand. 

The effect of wind installation capacity and wind turbine design is observed. Note that 

during the peak periods, a doubling in capacity does not double the reserve probability – 

the behavior is asymptotic due to the fairly high probability of quiescent operation. 

Installation of more than 500 kW of wind generation would require additional microgrid 

reinforcement due to the high renewable penetration – these investigations are a subject of 

future research.  
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(a) 

 

(c) 

 

(b) 

(d) 

 Figure 5.18: Probability of Meeting Secondary Reserve Requirements in Cartwright at (a) 3:00 a.m., (b) 

9:00 a.m., (c) 3:00 p.m. and (d) 9:00 p.m. 
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    Wind generation in an islanded microgrid can also be applied as a demand-response unit, 

performing “peak shaving” during periods of high demand. As opposed to the entire 

secondary demand, peaking units are only activated during peak-load periods, transferring 

the remaining generation requirement to the base-load or other secondary generators. In a 

microgrid, the conventional grid forming generators are fast enough to supply the 

secondary demand. However, they may have difficulty meeting the peak demand profile – 

operating at maximum capacity can reduce efficiency and reliability, especially when these 

conditions occur frequently. Wind generation is fast ramping and is capable of acting as a 

spinning reserve for peak-load demand response. Static reserves such as battery storage can 

also be used to meet transient load changes, however the limited capacity of such systems 

makes spinning reserves necessary in all but the smallest microgrids.  Probabilistic 

evaluation of peak-load wind reserves is accomplished by repeating the use of probabilistic 

power balance algorithm from Chapter 3, with the secondary demand profile replaced by 

the peak demand profile developed in the previous section. The result is a probabilistic 

power balance model expressing the probability of any particular power surplus or shortfall 

value when wind generation is applied as a peak-shaving unit. Figure 5.19 (a-d) presents 

the probabilistic power balance model assuming 250 kW of rated capacity using the NPS-

100c-21 wind turbine, evaluated at 3:00 a.m., 9:00 a.m., 3:00 p.m. and 9:00 p.m. 

respectively. In general, the observed behavior is similar to that from the secondary 

generation application. The wind turbine is quiescent the majority of the time, resulting in 

a reflected demand profile comprising the majority of probability mass. This trend is 

evident throughout the day. However, at 9:00 a.m. and 3:00 p.m. (Figures 5.19(b) and 

5.19(c)), the diurnal wind resource cycle results in a more active wind turbine, placing more 
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probability mass at positive values. The effect of the seasonal wind resource cycle is 

evident, as well as the shrimp plant operation. There is also a slight seasonal trend in the 

peak demand profile, as described in the previous section.  
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(a) 

 

(c) 

 

(b) 

(d) 

 Figure 5.19: Peak Demand Power Balance Distribution in Cartwright at (a) 3:00 a.m., (b) 9:00 a.m., (c) 

3:00 p.m. and (d) 9:00 p.m. using 250 kW of generation from the NPS-100c-21 
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     Figure 5.20(a-d) displays the probabilistic power balance when using the NPS-100c-24 

wind turbine, again scaled to 250 kW of rated capacity. Overall, the NPS-100c-24 exhibits 

a slightly better power balance in comparison to the NPS-100c-21 – the higher likelihood 

of rated-output operation is clearly visible, especially at 3:00 p.m. (Figure 5.20c) during the 

diurnal wind resource maximum. There is consistently a greater proportion of probability 

mass at positive values, indicating the availability of wind reserves to meet the peak-

shaving energy requirements. During the remainder of the day, the performance of the NPS-

100c-24 is similar to the NPS-100c-21. While there is a slightly higher probability of rated 

power operation due to the wind turbine’s optimization for lower wind speeds, the base 

likelihood of this operating condition is low enough to damp the effect on the resultant 

wind reserve. The effects of the seasonal and diurnal cycles are similar across both turbine 

designs, and have been discussed in the previous sections. Regardless of the wind turbine 

design, the large proportion of negative value probability mass indicates that there is not 

enough wind capacity or a reliable enough wind resource to produce a consistently 

available wind reserve – the probability of wind turbine quiescence is too high.  
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(a) 

 

(c) 

 

(b) 

(d) 

 Figure 5.20: Peak Demand Power Balance Distribution in Cartwright at (a) 3:00 a.m., (b) 9:00 a.m., (c) 

3:00 p.m. and (d) 9:00 p.m. using 250 kW of generation from the NPS-100c-24 

 



213 

 

     Figure 5.21 (a-d) displays the probabilistic power balance (when used for peak shaving) 

of a NPS-100c-21 wind turbine with 500 kW of rated capacity. As in previous figures, data 

is presented for 3:00 a.m., 9:00 a.m., 3:00 p.m. and 9:00 p.m. to display the diurnal-cycle 

effects on the resulting power balance probability distribution. The increased wind capacity 

results in a greater proportion of positive power balance values, however the majority of 

the probability mass is still a negative reflection of the load profile at 3:00 a.m. and 9:00 

p.m. (Figures 5.21(a) and 5.21(d)). At 9:00 a.m. and 3:00 p.m. (Figures 5.21(b) and 5.21(c)) 

the increased capacity results in a higher probability of wind reserve, with the probability 

mass shifting to positive values. However, this is only valid during the winter wind resource 

maximum – during shrimp plant operation as well as the summer wind minimum, the wind 

reserve is not expected to be available the majority of the time due to wind turbine 

quiescence. It must be noted that the increased wind generation capacity produces a 

significant number of large positive values, indicating rated operation with little demand. 

During these situations, the produced energy would be wasted unless the base load units 

can be efficiently throttled down to take advantage of the wind energy. In addition, 

microgrid stability and power quality concerns appear with a high proportion of injected 

wind energy, further complicating the effects of increased wind generation capacity.  
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(a) 

 

(c) 

 

(b) 

(d) 

 Figure 5.21: Peak Demand Power Balance Distribution in Cartwright at (a) 3:00 a.m., (b) 9:00 a.m., (c) 

3:00 p.m. and (d) 9:00 p.m. using 500 kW of generation from the NPS-100c-21 
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     Figure 5.22(a-d) displays the probabilistic power balance (for peak-shaving) when using 

the NPS-100c-24 wind turbine, this time scaled to 500 kW of capacity. As in the previous 

capacity application, the NPS-100c-24 exhibits a better power balance in comparison to the 

NPS-100c-21 due to the higher likelihood of rated-output operation. This effect is most 

prominent at 3:00 p.m. (Figure 5.22(c)) during the diurnal wind resource maximum. 

However, at all times of day a consistently greater proportion of probability mass is seen 

to exist at positive values. Therefore, the NPS-100c-24 wind turbine has a higher likelihood 

of providing a wind reserve adequate for peak-shaving applications. The effects of the 

seasonal and diurnal cycles are similar across both turbine designs, albeit the change in 

rated-operation probability is greater using the NPS-100c-24 due to the lower optimal wind 

speed being more common in general. Based on these probabilistic models (Figures 5.19-

5.22) the NPS-100c-24 is more suitable for peak-shaving applications due to the higher 

probability of providing a wind reserve. However, a more quantitative analysis will also be 

conducted by determining the true probability of wind reserve availability for each design 

and capacity, as well as selecting samples of these resulting distribution models for direct 

comparison.  
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(a) 

 

(c) 

 

(b) 

(d) 

 Figure 5.22: Peak Demand Power Balance Distribution in Cartwright at (a) 3:00 a.m., (b) 9:00 a.m., (c) 

3:00 p.m. and (d) 9:00 p.m. using 500 kW of generation from the NPS-100c-24 
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     Figure 5.23 (a-d) presents the probability of sufficient wind energy being available to 

meet the peak-shaving reserve requirements, calculated assuming 250 kW (Figures 5.23(a) 

and 5.23(b)) and 500 kW (Figures 5.23(c) and 5.23(d)) of capacity in the form of the NPS-

100c-21 (Figures 5.23(a) and 5.23(c)) or NPS-100c-24 (Figures 5.23(b) and 5.23(d)) wind 

turbine designs. The overall pattern of the reserve probabilities matches that observes when 

secondary generation was considered for application – the decrease in energy requirement 

for peak shaving and the slightly different demand distributions is not large enough to 

overcome the general effects of the seasonal and diurnally-driven wind resource variability. 

Regardless of the wind turbine design or capacity, the minimum reserve probability occurs 

during August at about 10:00 p.m., and is under 20%. When 250 kW of capacity is 

considered, both wind turbines exhibit a reserve probability under 10%. In each case, the 

NPS-100c-24 produces a slightly higher reserve probability, indicating stronger 

performance in Cartwright’s wind regime during these seasonal and diurnal periods. For 

each design combination, the maximum reserve probability occurs during January at 

9:00pm. The pattern from previous investigations holds – the NPS-100c-24 has a higher 

reserve probability, although the difference between wind turbine designs is overshadowed 

by the effect of the doubling in generation capacity. In all cases, the maximum reserve 

probability is beneath 75%, being as low as 55% when using 250 kW of NPS-100c-21 

based generation. Overall, the effect of the seasonal and diurnal cycles on wind reserve 

availability is clearly evident, with the effects of shrimp plant operation as well as wind 

resource variability clearly evident. Subsets of these plots will be examined to more 

quantitatively define the wind reserve probabilities.  
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(a) 

 

(c) 

 

(b) 

(d) 

 Figure 5.23: Probability of Meeting Peak Shaving Reserve Requirements in Cartwright at (a) 250 kW of 

NPS-100c-21,(b) 250 kW of NPS-100c-24, (c) 500 kW of NPS-100c-21 and (d) 500 kW of NPS-100c-24 
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     Similar to the previous application, a quantitative comparison of the effects of the 

seasonal and diurnal cycles as well as the wind turbine design and capacity on the wind 

reserve probability is presented by superimposing reserve probability samples as to display 

the seasonal cycle at a single diurnal phase. Figure 5.24(a-d) presents the peak-shaving 

reserve probabilities of each wind turbine design/capacity combination, sampled at 3:00 

a.m., 9:00 a.m., 3:00 p.m. and 9:00 p.m. respectively. In all cases, the seasonal cycle has 

the largest influence on the reserve probabilities. At 3:00 a.m. and 9:00 p.m. (Figures 

5.24(a) and 5.24(d)) the peak-shaving reserve probabilities remain sinusoidal. At 3:00 a.m., 

the reserve probabilities vary from a January peak of 0.48, 0.5, 0.65 and 0.7 for the listed 

design/capacity combinations to July minimum values of 0.09, 0.11, 0.18 and 0.22, 

respectively. These probabilities are somewhat higher than that of the secondary generation 

reserve application, due to the lower energy requirements for peak-shaving. At 9:00 p.m. 

the peak reserve probability profiles are similar, with the minimum reserve probability 

occurring during July, with values of 0.07, 0.08, 0.15 and 0.18 observed, respectively. The 

maximum reserve probabilities again occur during January, with respective values of 0.55, 

0.57, 0.7 and 0.72.  The range of values is slightly higher at 9:00 p.m. due to Cartwright’s 

demand and wind regime.  

     The peak-shaving reserve probability profiles follow a significantly different pattern at 

9:00 a.m. and 3:00 p.m. (Figures 5.24(b) and 5.24(c)) - the shrimp plant operation affects 

the probability of wind reserve by shifting the peak-demand distribution. At 9:00 a.m., the 

reserve probabilities peak at 0.4, 0.44, 0.58 and 0.62 during February and December. The 

minimum reserve probabilities again are observed in June, with a precipitous drop 
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occurring as the shrimp plant operation begins. With the shrimp plant active, the reserve 

probabilities are as low as 0.11, 0.15, 0.28 and 0.33, respectively. These values recover by 

about 10% after the initial drop, then again decline to a July minimum of 0.08, 0.1, 0.19 

and 0.25. This pattern is also evident at 3:00 p.m. The peak-shaving reserve probability 

values are slightly higher during the winter peak (0.5, 0.52, 0.66 and 0.7, respectively) 

due to the diurnal wind resource maximum increasing the wind turbine output. The effect 

of the shrimp plant very large - reserve probabilities drop to less than one third of their 

peak values. In this case, the absolute reserve minimum occurs during shrimp plant 

operation, with values declining to 0.12, 0.17, 0.28 and 0.37. In all cases, the NPS-100c-

24 maintains reserve probability values between 0.05 and 0.10 higher than the NPS-100c-

21, with the difference being carried through the capacity increase. As this profile holds 

for both peak-shaving (Figures 5.23 and 5.24) and secondary generation (Figures 5.17 

and 5.18) applications, the NPS-100c-24 is verified to be a superior wind turbine design 

given Cartwright’s wind resource. Further increases in capacity can be expected to 

increase the reserve probability. However, it is impractical to have wind generation larger 

than the grid-forming units, as wind turbine pickup will then have significant detrimental 

effects on microgrid stability. Further investigation in this area is a subject of future 

research, with a final goal of optimizing wind capacity from the viewpoint of wind 

reserve applications.  
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(a) 

 

(c) 

 

(b) 

(d) 

 Figure 5.24: Probability of Meeting Peak Shaving Reserve Requirements in Cartwright at (a) 3:00 a.m., 

(b) 9:00 a.m., (c) 3:00 p.m. and (d) 9:00 p.m. 
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5.4: Conclusions  

 

     In this Chapter, field data from Cartwright has been used to probabilistically assess the 

ability of wind generation to act as an active reserve for microgrid regulation. The time-

variant, multivariate probabilistic modeling algorithms proposed in previous Chapters 

successfully compensate for nonstationary behavior in the environmental and electrical 

demand datasets, providing an accurate assessment of the wind regime and demand profile, 

and its probabilistic transient variability. The results produced within the case study and 

provide valuable planning information with respect to wind generation’s ability to meet 

demand response, secondary generation and frequency regulation in an islanded microgrid, 

with the seasonal, diurnal and generation-based variability in the probabilistic wind reserve 

being identified and quantified. The probabilistic microgrid power balance was developed 

for multiple wind installation topologies, including two wind turbine types and two 

generation capacities. The NPS-100c-24 wind turbine was shown to produce a superior 

wind reserve distribution compared to the NPS-100c-21, demonstrating the capacity of the 

proposed algorithm to compare the performance of different wind turbine designs. In 

addition, the effect of doubling generation capacity was fully defined probabilistically, 

allowing optimization to occur with respect to generation capacity in future cost-function 

based analysis.  
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Chapter 6: Cartwright – A Case Study: PLEXIM 

Implementation 

 

6.1: Introduction 

 

     This Chapter continues the case study into implementing wind generation at Cartwright. 

Analysis in the previous Chapter has indicated that sufficient probabilistic wind reserves 

exist to justify further investigation – a reasonable amount (250-500 kW) of wind capacity 

can provide up to 70% of the reserve requirements for peak shaving and secondary demand 

response. The application of these wind reserves requires grid interconnection technology 

capable of interfacing wind generation with an islanded microgrid. To validate this wind 

interconnection topology (presented in Chapter 4) as well as the reserve applications 

investigated in Chapter 5, PLEXIM simulations are conducted which implement demand 

response, frequency regulation and voltage regulation of an islanded microgrid matching 

the general topology of Cartwright’s system. Essentially, a simulation framework in 

PLEXIM allows the study of wind reserve performance from a grid stability and control 

perspective. Topics of investigation include diesel generator control, grid synchronization 

of a power inverter, grid-supporting using wind reserves and the control of a PMSG wind 

turbine using an AC/DC/AC bidirectional back-to-back converter.  
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6.2: Implementation of Demand Response in a Microgrid 

 

     The implementation of demand response is tested by producing a variable demand 

profile within the islanded microgrid. Figure 6.1 presents the electrical demand used to 

validate the wind reserve topology. After a short grid-forming interval (neglected from 

future figures), a steady demand of 650 kW and 500 kVar is created, representing a base 

demand. After 3 seconds, a 200 kW and 150 kVar step signal is introduced, simulating an 

increase to peak demand values due to either the energization of a disconnected distribution 

feeder or the inrush period of a large rotating machine. Half of this load is then removed 

after 4 additional seconds, representing a decrease from peak demand after a large industrial 

or commercial load reaches steady state, or distribution transformers leave their inrush 

period. The microgrid is designed to operate at a 0.80 power factor, explaining the reactive 

power values and representing the design condition of the grid-forming diesel generator. 

The demand profile is suited for investigating demand response and frequency regulation, 

producing situations where both positive and negative frequency deviations are expected 

as well as intervals of insufficient demand due to the limited diesel generator response 

speed. In addition, the reactive power variability will introduce microgrid voltage changes 

which will verify the performance of droop and exciter control algorithms.  

     The demand profile in Figure 6.1 is used to run a dynamic simulation of the microgrid. 

The diesel generators form the grid upon initial start-up. The active and reactive power 
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output of the diesel generators is regulated by the grid forming controller, in this case 

governor and excitation control. Figure 6.2 displays the active and reactive power output 

during the dynamic simulation, including both the generator terminal outputs and the power 

reaching the grid, accounting for line and unit transformer losses. The generator is initially 

in steady state, with the inverter connection at 2 seconds not significantly affecting the 

output. The demand increase at 3 seconds produces a transient drop in generator speed, 

increasing the power angle and therefore increasing the active power delivered to the 

microgrid. The initial spike in output power is quickly damped due to both the effects of 

the inverter droop regulation and the generator governor and exciter, which act to reach a 

steady state. This occurs quickly, with the slight change in output during the peak demand 

Figure 6.1:  Microgrid Demand Profile   
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interval resulting from the slower governor action as well as changes in the inverter droop 

output. Similar behavior is observed when the load is reduced at 7 seconds, with the initial 

departure being damped by fast droop and excitation controllers followed by a slower 

governor-based return to steady-state operations. Overall, the grid-forming generator 

remains stable during load variance, with no extreme active or reactive power departures 

and therefore reasonable stress on the generator assembly.  

     Figure 6.3 presents the microgrid frequency during the dynamic simulation. Initially, 

the microgrid is just converging to steady state after generator start-up. The inverter 

interconnection at 2 seconds causes a brief frequency rise due to the slight mismatch in 

Figure 6.2: Synchronous Generator Power Output 
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synchronization which is unavoidable when the grids are not directly connected. However, 

the DSOGI-FLL-based inverter synchronization and control algorithms quickly damp this 

frequency departure, resulting in steady-state operation resuming within 0.25 seconds. At 

3 seconds, the load increase produces a frequency droop to just above 59.8 Hz. At this time, 

the inverter droop regulator begins to act to restore the grid frequency. The microgrid 

recovers to 59.9 Hz after less than 0.5 seconds, and reaches 59.95 Hz after 1 second. At 

this point, the frequency restoration controllers (the integral droop regulator and the 

generator governor) slowly restore the grid frequency back to 60 Hz over the next 3 

seconds. Similar behavior (with opposite sign and roughly half the amplitude) occurs when 

the load is reduced – the microgrid frequency increases to 60.1 Hz before being near-

exponentially reduced with a “half-life” of roughly 0.5 seconds. Essentially, the generator 

and inverter-based frequency regulation maintains microgrid stability and frequency even 

during significant step-changes in active and reactive demand, indicating the viability of 

using inverter-interconnected wind reserves for frequency regulation in an islanded 

microgrid.  

     Figure 6.4 displays the active power contributed by the inverter for the purpose of 

frequency regulation. Both the actual inverter output and the droop reference are included 

for comparison. The droop reference briefly becomes negative upon initial interconnection, 

however supervisory action prevents the actual inverter output from becoming negative. 

Instead, the slight frequency increase is handled by the synchronous governor. The inverter 

quickly settles into steady stage, essentially floating on the grid. Once the load increases at 
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3 seconds, the droop controller instructs the inverter to inject 125 kW of real power into 

the microgrid. The injected power then varies according to the grid frequency, initially 

decreasing as the frequency is restored. However, after 1 second the injected power 

stabilizes at 75 kW due to the integral action of the droop regulator – the inverter is now 

supplying some of the demand by default, reducing the load uptake of the grid-forming 

generator. This is demand-response behavior, superimposed on the initial droop response. 

Similar behavior occurs after 7 seconds, when the load is reduced. The injected power 

decreases due to the droop action, serving to reduce the grid frequency from the peak 

observed in Figure 6.3(a). As the frequency is restored, the combination of proportional 

and integral droop regulation creates a new steady-state where the inverter is supplying 40 

Figure 6.3:  Grid Frequency   
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kW of active power to the grid, with the remainder being provided by the diesel generator. 

The magnitude of the droop excursions varies according to the droop gains – these must be 

set based on the inverter rating and microgrid operation standard required by the system 

operator. During the transient inverter output variations, the DC-link capacitor supplied the 

necessary energy until the PMSG stator current controller compensates for the increased 

demand. In these simulations, the system dynamics are accelerated to reduce the 

computational demand – insufficient memory and processing power is available for longer-

period simulations.  

Figure 6.4 –Active Power from Droop Regulator 
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     Figure 6.5 displays the effect of the droop regulation on the microgrid frequency by 

comparing the observed performance with that of the generator governor alone (under 

identical grid conditions). With just the synchronous governor, the load change at 3 seconds 

causes a frequency drop to 59.6 Hz – essentially double the droop magnitude relative to the 

60 Hz reference frequency. The droop regulator stops the frequency decline twice as fast 

after the load change, and quickly restores the grid frequency to within 0.1 Hz of the 

reference value. The smaller integral droop error does slightly increase the time to final 

frequency restoration – the governor control action is reduced while the inverter is limited 

in the amount of real power it can realistically inject. However, the microgrid frequency is 

within 0.1 Hz of the reference value during this period, essentially within the range of 

normal frequency variation. Similar behavior is evident when the load is decreased at 7 

seconds – the magnitude of the microgrid frequency deviation is halved by the inverter 

action, at the cost of slight convergence delays. The large variations possible during 
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governor-only action are more likely to exceed the microgrid power quality standard with 

respect to frequency, justifying the use of droop-controlled inverters.  The observed 

benefits of wind-reserve based frequency regulation using droop-controlled inverters are 

expected to be even greater when slower governors are present, either due to larger 

generators or isochronous generator groups regulated by slower supervisory control loops. 

Therefore, the application of wind reserves for frequency regulation is validated in the 

PLEXIM simulation environment.  

     The wind-reserve inverters also have the capacity to regulate microgrid voltage through 

injection of reactive power. This is accomplished through proportional Q/V droop 

Figure 6.5: Performance Comparison of Microgrid 

Frequency Regulation 
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regulation on the wind reserve interconnection inverter. Power inverters are easily capable 

of injecting reactive power to the grid – power factor limitations are generally well beyond 

what is needed for droop regulation assuming a properly-tuned droop controller. The 

injected reactive power acts to compensate for voltage sag which primarily occurs during 

the activation of inductive loads. Figure 6.6 displays the generator terminal voltage error, 

measured on the low-voltage side of the unit transformer. Initially, the voltage is 

converging to the reference value after the start-up interval of the microgrid. Note that in 

this case, a positive error implies a lower than expected microgrid voltage. After 2 seconds, 

the increase in reactive demand (caused by the switching on of a large load at a power 

factor of 0.8 lagging) causes a voltage sag of approximately 2 volts – slightly more than 

0.5% per-unit. The combination of excitation and droop control acts to exponentially 

restore the microgrid voltage – apart from the initial overshoot, the grid voltage is restored 

with a time constant of approximately 1 second. Similar behavior occurs when the load is 

reduced at 7 seconds, except the reduction in reactive demand causes an increase in 

microgrid voltage which is then restored by control action.  
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     Figure 6.7 displays the reactive power injected by the power inverter, including both the 

actual power fed to the grid and the droop-control reference. Initially, both these values are 

zero, as the inverter is not connected. At 2 seconds, the inverter connects to the microgrid, 

and injects a small amount of reactive power due to the grid voltage being slightly under 

the reference value. At 3 seconds, the inductive load switches on, with the corresponding 

voltage sag resulting in the inverter injecting 40 kVar into the microgrid. The amount of 

injected power oscillates somewhat, following the slightly underdamped grid voltage in the 

face of the transient load change. However, within 0.5 seconds, the reactive power injection 

Figure 6.6:  Microgrid Voltage Error   
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converges to the exponential decay corresponding to the voltage restoration in Figure 

6.4(a). Similar behavior is evident at 7 seconds, when a decrease in reactive demand causes 

a voltage rise which is then damped by the inverter consuming reactive power. In all cases, 

the actual injected reactive power very closely matches the droop reference. Some high-

frequency oscillation is present due to the slight harmonic distortion inherent to any switch-

mode inverter – the power filter does not perfectly remove these space harmonics. Any 

mismatch in inverter terminal frequency or angle would cause an offset and oscillation in 

the reactive power output which is not observed to any significant degree, indicating that 

the inverter is successfully synchronized to the microgrid even during these transient 

disturbances.  

Figure 6.7: Reactive Power from Droop Regulator   
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     The effect the inverter droop regulation has on the microgrid voltage is displayed in 

Figure 6.8. A comparison is made with the microgrid voltage observed during identical 

demand variations, except with the inverter disconnected and the synchronous exciter alone 

responsible for voltage regulation. The utility of the droop regulation is clearly visible. 

During exciter-only operation, the increase in reactive demand at 3 seconds results in a 

voltage sag of approximately 0.75% (per-unit). This sag then exponentially decays due to 

the exciter control action, with a decay determined by the electrical time constant of the 

synchronous generator. With droop regulation enabled, the sag magnitude is reduced by 

50%, to approximately 0.5% per-unit. The subsequent decay is slightly slower (due to less 

integral action in the exciter), however, the microgrid voltage is within 0.1% per-unit before 

the exciter-only controller catches up. The reduced exciter action therefore does not affect 

microgrid voltage regulation to a significant degree, and exhibits less strain on the generator 

assembly by reducing the possibility of over or under-excitation due to large control 

actions. Similar behavior is apparent at 7 seconds when the reactive demand is decreased – 

the inverter droop regulation reduces the magnitude of the voltage sag while only minimally 

affecting the longer-term convergence to the microgrid reference voltage. Overall, the 

performance of the droop-regulated inverter validates the voltage regulation application of 

wind reserves. Whenever sufficient wind power is available, the wind turbine 
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interconnection can provide both frequency and voltage regulation, improving the transient 

stability of the islanded microgrid during demand variation.  

     The successful operation of droop-controlled power inverters is reliant on fast, accurate 

synchronization with the surrounding microgrid. The synchronization system must be 

capable of maintaining synchronism during the frequency and voltage variability during 

load variations and other contingencies. Figure 6.9 displays the synchronization 

performance of the DSOGI-FLL based grid synchronizer implemented as the basis for the 

instantaneous power theory control of the voltage-source wind interconnection inverter. 

Initially, there is a slight disruption in grid synchronization when the inverter is first 

Figure 6.8: Performance Comparison of Microgrid 

Voltage Regulation   
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connected to the microgrid. However, this is damped within 0.2 seconds, and never exceeds 

a magnitude of 0.1 Hz. At 3 seconds, the grid frequency decreases due to the activation of 

the additional demand. The grid frequency estimate from the DSOGI-FLL slightly lags this 

droop, slightly underestimating the frequency decrease initially then lagging the frequency 

restoration curve by approximately 0.1 seconds. However, the frequency estimation error 

remains at less than 0.05 Hz, falling to 0.01 Hz after the initial transient disturbance. Similar 

behavior is exhibited during the load decrease at 7 seconds – the DSOGI-FLL slightly lags 

and underestimates the droop, but overall maintains a high degree of accuracy in grid 

frequency estimation. The ability of the DSOGI-FLL to track these transient frequency 

changes ensures the accuracy of the inverter droop regulation, preventing a frequency or 

Figure 6.9: Grid Synchronization Performance  
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phase mismatch from occurring and therefore improving the stability and performance of 

the implemented frequency and voltage regulation.  

     The wind turbine interconnection inverter is configured using the VSI topology – the 

terminal voltage is adjusted to produce a desired output current while assuming a constant 

back-emf from the DC link. Therefore, during inverter operation the current flowing out of 

the terminals is the reference and control variable, determining the active and reactive 

power provided to (or received from) the islanded microgrid. Figure 6.10 displays the 

inverter current during the simulation interval, with a focus on the magnitude of the 

reference and measured currents as opposed to the waveforms. Prior to the grid 

interconnection at 2 seconds, a small current flows out of the inverter through the shunt 

branch of the LCL power filter as well as the primary side of the grid-interconnection 

transformer. During this period, the reference current is zero, and the inverter is instead 

programmed to match the grid voltage as closely as possible before interconnection and 

synchronization. Upon interconnection at 2 seconds, the inverter current decreases. The 

successful synchronization with the microgrid reduces the current flow out of the inverter, 

allowing it to essentially float on the grid. At 3 seconds, the current drastically increases to 

a maximum of 60 amperes (measured on the low voltage side of the transformer), providing 

the active and reactive power required by the droop controllers through references obtained 

using the instantaneous power theory. The inverter current stabilizes at 40 amps until the 

load decreases – then the reference current is also reduced by the droop regulators before 

stabilizing again at about 20 amps. Overall, the reference current very closely matches the 
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actual inverter current, with them being visually indistinguishable during steady-state 

operation.  

     Figure 6.11(a-d) displays the transient performance of the VSI current controller during 

the grid synchronization interval. The current is controlled in the stationary frame – Figures 

6.11(a) and 6.11(c) display the alpha-axis current waveform while Figures 6.11(b) and 

6.11(d) display the beta axis current. The general synchronization behavior is displayed in 

Figures 6.11(a) and 6.11(b), with 6.11(c) and 6.11(d) focusing on the immediate 

interconnection interval. Overall, the proportional-resonant current controller displays 

extremely fast and stable convergence to the reference current value. The PR controller is 

Figure 6.10: Inverter Terminal Current (Stationary 

Frame)  
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switched don at 2 seconds. Within 2 cycles of the current waveform, the inverter current in 

both axes has converged to within 5% of the reference value, with only a very slight error 

remaining due to the disturbances from the transformer and power filter losses. While some 

current distortion is evident during the immediate interconnection, this is quickly damped. 

Within 0.05 seconds of the initial synchronization, the inverter output current is essentially 

identical to the reference waveform, and maintains this behavior until a steady state is 

reached roughly 0.5 seconds after the initial interconnection. Based on the amplitude 

variability within the reference waveform, the resonant current controller is significantly 

faster than the instantaneous power theory based droop regulator, ensuring that the inverter 

controller dynamics can be safely neglected when evaluating the behavior of the droop 

controller during wind reserve applications.  
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(a) 

 

(c) 

 

(b) 

(d) 

 Figure 6.11: (a) Alpha-Axis Inverter Current (b) Beta Axis Inverter Current (c) Alpha Axis Transient 

Inverter Current and (d) Beta-Axis Transient Inverter Current during Grid Interconnection 
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     The stability and robustness of the current controller is displayed in Figure 6.12(a)-(d). 

The current reference drastically increases due to the load variability discussed previously, 

with the droop regulators requesting a significant amount of active and reactive power be 

injected into the microgrid in order to reduce the voltage sag and frequency reduction 

inherent to the activation of an inductive load. Figures 6.12(a) and 6.12(b) display an 

overview of the alpha and beta-axis current waveforms during the timescale of the droop 

regulator dynamics, with Figure 6.12(c) and 6.12(d) displaying the same waveforms 

focusing on the immediate transient reference change interval to display the effects of the 

faster inverter dynamics. In each case, no significant variation between the measured and 

reference currents are visible. The current reference magnitude varies from 1 to 15 amperes 

within a single cycle without disrupting the convergence of the resonant controller. This 

occurs despite the frequency change displacing the resonance frequency from that of the 

microgrid, reducing the effective integral gain of the current controllers.  This further 

validates the robust behavior of the selected control topology. Similar behavior is displayed 

during the load decrease at 7 seconds - Figures 6.13(a)-(d) display the measured current 

and reference waveforms during the transient reference change and the steady-state 

convergence of the droop regulator. The PR controller maintains full reference tracking 

during the entire convergence interval. The strong performance of the inverter controller 

allows the integration of wind reserves with islanded microgrids, maintaining grid stability 

during reference changes and implementing any control action required from the 

supervisory level in order to implement demand response, droop regulation, or if desired 

grid-forming. 
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(a) 

 

(c) 

 

(b) 

(d) 

 Figure 6.12: (a) Alpha-Axis Inverter Current (b) Beta Axis Inverter Current (c) Alpha Axis Transient 

Inverter Current and (d) Beta-Axis Transient Inverter Current during Demand Increase 
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(a) 

 

(c) 

 

(b) 

(d) 

 Figure 6.13: (a) Alpha-Axis Inverter Current (b) Beta Axis Inverter Current (c) Alpha Axis Transient 

Inverter Current and (d) Beta-Axis Transient Inverter Current during Demand Decrease 
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6.3: Wind Turbine Interconnection in PLEXIM 

 

     The wind turbine interconnection is computationally expensive to model in its entirety. 

Therefore, the interconnection topology has been split in order to isolate the microgrid 

performance simulations from the wind turbine and DC-Link dynamics. To validate the 

control topology of the PMSG-Direct-Drive wind turbine and DC-Link controllers, a DC 

load is used with a profile similar to that of the demand response simulations conducted 

previously. A PMSG-wind turbine (as described in Chapter 4) is connected to the DC-Link 

through an IGBT switch-mode controlled rectifier. The control topology is designed to 

maintain the DC-link voltage at a set value against the perturbations caused by demand 

variability. Figure 6.14 displays the DC-Link demand current. Initially (after the simulation 

starting transient) the DC-Link requires 2 amperes of current. After 4 seconds, the load is 

doubled to 4 amps, representing an increase in microgrid demand translated through a 

droop regulator or supervisory controller. After 7 seconds, the DC-link voltage set-point is 

reduced with the same load impedance, resulting in a decrease in demand to 3.6 amperes. 

The load is modelled as a variable resistor in series with a small inductance (to prevent 

transient singularities in the current derivatives), allowing for control over the DC-link 

demand without changing the system topology.  A 1000 microfarad capacitor stabilizes the 

DC-Link and removes switching harmonics from the IGBT rectifier.  
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     Figures 6.15 and 6.16 display the DC Link voltage during the two demand variation 

periods – the first (Figure 15) due to an impedance change and the second (Figure 6.16) 

due to a DC-Link reference change. The DC link reference is set to 1000 volts, a value 

which allows the grid-side converter to operate at a modulation index near 0.5. However, 

a detailed investigation into DC link dynamics is required to determine the optimal DC 

link voltage value, requiring generator and grid data as well as advanced computational 

simulations. At 4 seconds, the DC link voltage decreases from 1000 to 998 volts. It 

quickly recovers to 999 volts due to energy being released from line inductances on the 

Figure 6.14: DC Link Current   
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PMSG side of the rectifier, before slowly returning to the reference value (1000 volts) 

with an exponential time constant dictated by the dynamic behavior of the PMSG 

controller. The time constant of this behavior is approximately 1 second, limited by the 

electrical time constant of the wind turbine PMSG and practical limits on the maximum 

and minimum PMSG stator current references. Figure 6.16 displays the reference-

tracking behavior of the DC-Link controller. At 7 seconds, the reference voltage is 

decreased from 1000 volts to 900 volts. This simulates a worse-case scenario occurring 

during energization contingencies where the demand at the inverter can change extremely 

quickly. The DC link quickly responds, dropping to ~895 volts in less than 50 

milliseconds as the DC Link capacitor is discharged. There is a slight overshoot beyond 

the reference value, which decays exponentially as the PMSG controller stabilizes the 

rectifier modulation index and therefore the PMSG stator currents. It must be noted that 

the DC link dynamics are non-linear (see Chapter 4), therefore standard first or second-

order response forms are not observed. In either case, the DC Link controller successfully 

tracks the reference value in the face of load variation or set-point changes, indicating its 

ability to maintain DC Link stability during droop regulation. In addition, the control 

topology can accommodate a change in the PMSG back-emf requiring a lower (or higher) 

DC Link voltage to maintain a realistic rectifier modulation index.  
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     The DC Link controller acts by changing the Q-axis current reference being fed to the 

PMSG controller. This acts in combination with zero D-axis current control to ensure unity 

power factor operation of the PMSG with a controlled, stable DC-Link voltage. The 

behavior of the DC Link is therefore limited by the performance of the PMSG controller. 

Figures 6.17-6.19 displays the PMSG stator currents and their reference values during the 

simulation period. Figure 6.17 displays an overview of the PMSG current magnitudes. 

Figure 6.15: DC Link Voltage during Load Variation   
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After an initial simulation starting transient, the PMSG currents converge to their reference 

values of 0 (D-axis) and ~5 (Q-axis) amperes, respectively. The D-axis current reference 

remains zero throughout, with slight deviations in the observed D-axis current visible due 

to the cross-coupling with the Q-axis through the line and stator inductance. The Q-axis 

current increases to 10.5 amperes at 4 seconds due to the increase in DC Link current 

demand. While some controller transients are visible, no major deviations from the 

reference values occur. Similar behavior is evident at 7 seconds when the DC Link voltage 

set-point is changed. The large set-point change results in a 0 Q-axis current reference – 

the PMSG is essentially floating on the rectifier as the DC Link capacitor discharges 

through the load resistance. After a brief interval, the DC-Link reaches the new reference 

Figure 6.16: DC Link Voltage during Reference Change   
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value and the PMSG again delivers the current required by the load. Figure 6.18 displays 

the transient PMSG stator currents during the initial load increase. The D-axis current is 

not significantly affected, with the measured value remaining close to zero matching the 

reference value. The Q-axis current reference increases in a manner similar to a slightly 

underdamped step response, representing the behavior of the DC Link controller (PI with 

Feed Forward). The observed PMSG Q-Axis current slightly lags the reference value, 

however it never exhibits a significant tracking error and converges within 50 milliseconds 

to the reference value. Figure 6.19 displays the transient PMSG stator currents during the 

DC Link reference change. The D-axis current shows slight variations due to the large 

change in the Q-Axis current. However, the decoupling terms within the D-axis current 

Figure 6.17:  PMSG Stator Currents   
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controller prevents significant deviations from the reference value. The Q-axis current 

reference instantaneously decreases to zero due to the set-point step change. A realistic 

supervisory controller would not forward such a sharp command, however the step signal 

is useful for evaluating the stability of the current controller. The observed Q-axis current 

decays exponentially to zero, with the error converging to less than 1% of the step 

magnitude within 25 milliseconds. Once the DC Link capacitor discharges by 100 volts 

(after ~25 milliseconds) the Q-axis current reference increases, showing a slightly 

underdamped step change to its new stable value. The observed current displays a slight 

lag and undershoot initially, however it converges within 20 milliseconds, preventing a 

Figure 6.18: PMSG Stator Currents during Load 

Variation  
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significant error in the DC Link voltage. Overall, the PMSG current controllers are shown 

to successfully track the reference values provided by the DC Link regulator, displaying 

the ability of the PMSG wind turbine to supply variable loads through the chosen converter 

topology.  

     The PMSG current controllers act by varying the terminal voltage reference of the IGBT 

rectifier. Figures 6.20-6.22 display the measured D and Q axis inverter terminal voltages 

along with their reference values. The measured voltages are filtered through a short-period 

moving average to remove the switching commutation inherent to the IGBT converter. As 

the converter switching frequency is 10 kHz, no significant delay is introduced to the 

Figure 6.19: PMSG Stator Currents during DC Link 

Reference Change  
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signals. Figure 6.20 displays an overview of the PMSG voltages. After an initial starting 

transient, the inverter terminal voltages converge to a Q axis voltage of 275 volts and a D-

axis voltage of ~5 volts. A slight offset is evident in the D-axis terminal voltage – this is 

due to the inability to perfectly remove the effects of cross-coupling - the D-axis voltage 

increases across the line inductance due to the Q-axis current. In general, no significant 

transient or steady state deviations from the voltage references are evident apart from the 

aforementioned cross-coupling compensation. Figure 6.21 displays the transient behavior 

of the converter terminal voltage during the load increase at 4 seconds. The increased 

current reference requires a decrease in the Q axis voltage reference from ~275 to ~250 

volts, with a corresponding D-axis reference increase from ~5 to ~10 volts. The observed 

Figure 6.20: Converter Terminal Voltages   
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terminal voltages very closely follow this value, with a slight lag caused by the line and 

PMSG stator inductance. However, the overall converge is fast enough to provide the 

robust and stable dynamic behavior exhibited by the current waveform, demonstrating the 

effectiveness of the converter in tracking the PMSG stator current references by varying 

the terminal voltage. Figure 6.22 displays the transient terminal voltage behavior during 

the DC Link reference change at 7 seconds. The Q-axis voltage reference initially spikes to 

stop the current flow through the converter – the actual Q-axis voltage lags somewhat due 

to the inductance in the system. Similar behavior is evident when the reference voltage 

decreases again – it is impossible to instantaneously change the converter terminal voltage. 

However, both the Q and D-axis voltage waveforms closely match the reference value and 

Figure 6.21: Converter Terminal Voltages during Load 

Variation 
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converge within 25 milliseconds. Only small changes in the converter reference are 

required to significantly affect the current flowing through the converter due to the low 

output impedance of larger PMSG systems. In any case, the time constant of the electrical 

control system is on the order of fractions of a second to seconds, significantly faster than 

the mechanical behavior of a large wind turbine and indicating the ability to control grid 

interconnection directly through manipulation of power electronic converters as opposed 

to the mechanical behavior of the wind turbine.  

 

 

Figure 6.22: Converter Terminal Voltages during DC 

Link Reference Change 
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6.4: Conclusions 

 

     In this Chapter, PLEXIM simulations were conducted to validate the control and 

interconnection topology required to integrate wind reserved into an islanded microgrid. 

The performance of a power inverter in providing frequency and voltage regulation was 

invested using a load profile matching common application of peak shaving or demand 

response in Cartwright. The performance of droop-based frequency regulation was 

compared to synchronous governor action and shown to improve the frequency stability of 

the microgrid by reducing the magnitude of frequency dips during demand increases. In 

addition, the ability of the power inverter to inject reactive power into the microgrid was 

used to perform voltage regulation through a Q/V droop algorithm, demonstrating a 

reduction in the magnitude of voltage sags during the activation of inductive loads 

compared to the performance of the synchronous exciter alone. The overall reference 

tracking ability of the PR VSI control algorithm was validated, with minimal THD and the 

ability to match fast droop reference changes. In addition, the DSOGI-FLL synchronization 

algorithm was shown to maintain an accurate estimate of the microgrid frequency during 

all frequency excursions, demonstrating the ability of wind reserves to provide demand 

response, frequency regulation and voltage regulation despite the lower inertia (and 

therefore greater frequency and voltage variability) of Cartwright’s islanded microgrid. To 

conclude, the interconnection of a PMSG Direct-Drive wind turbine to a DC Link was 

investigated. The DC Link voltage control algorithm was shown to maintain a stable DC 

Link voltage despite significant demand variation and changes to the reference voltage. In 
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addition, the PMSG decoupled D-Q current controller was shown to exhibit robust and 

stable reference tracking, implementing unity power factor operation through zero D-Axis 

current control while also tracking the Q-axis current reference provided by the DC Link 

voltage regulator. Finally, the ability of the IGBT converter to implement current reference 

changes through terminal voltage variability was validated, demonstrating that power 

electronic converter control is capable of fully regulating the active and reactive power 

output of a wind turbine on a time scale significantly faster than the associated mechanical 

dynamics. The combination of PLEXIM simulations validates the previously discussed 

applications of wind reserves and demonstrates the ability of wind energy to improve the 

transient and dynamic stability of an islanded microgrid.  
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Chapter 7: Conclusions 
 

     This thesis provided improved probabilistic wind reserve assessment algorithms for use 

in islanded microgrids, including advanced multidimensional wind resource models, 

probabilistic wind reserve assessment techniques, studies into microgrid topologies and 

control as well as a case study which validated the utility of the proposed methodologies. 

An analysis and modeling framework was introduced for the probabilistic prediction of the 

performance of an islanded microgrid with wind generation installed as a dynamic reserve, 

allowing analysis of the feasibility of wind as well as providing a starting point for system 

optimization.  

     Chapter 2 presented a novel hybrid time/frequency analysis and modeling framework 

designed to identify and model time-variance within a bivariate environmental dataset. 

Frequency domain analysis identified and quantified statistically significant time-variance 

in the nonstationary site wind velocity and air density statistics. A feature extraction 

algorithm was formulated to extract these nonstationary components from the 

environmental dataset. The refined dataset was organized to allow an optimized 

nonparametric kernel smoothing algorithm, producing a multi-dimensional probabilistic 

model that numerically characterized the time-variant wind/density probability 

distribution. The proposed modeling methodology accounted for bivariate cross- 

correlation in addition to the inherent nonstationary behavior of the sample dataset. The 

performance of the probabilistic model was validated by splitting the environmental dataset 

into design and validation segments, with 5 years of additional environmental data used to 
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validate the probabilistic model. The multidimensional, nonparametric probabilistic model 

provides improved time resolution in addition to a more accurate time-variant bivariate 

probability distribution, allowing high resolution probabilistic assessment of a site wind 

resource. The development and implementation of this novel modeling methodology 

advanced the evaluation of a site’s wind potential, turbine installation feasibility and allows 

probabilistic assessment of system contingencies, representing an improvement in the area 

of wind resource modeling. 

     Chapter 3 developed and presented a detailed methodology to enable the probabilistic 

modeling of wind reserves in an islanded microgrid. The modeling techniques were 

designed to produce strong results with respect to the feasibility, performance and dynamic 

behavior of islanded microgrids using wind power generation to augment base-load 

conventional sources. The proposed time-variant, multivariate probabilistic modeling 

algorithms successfully compensate for nonstationary behavior in the environmental and 

electrical demand datasets, providing an accurate assessment of the wind regime and 

demand profile in addition to its probabilistic transient variability. In addition, a 

probabilistic power-balance model was developed to evaluate the feasibility and general 

performance of wind generation when acting as a dynamic generation reserve. The use of 

advanced multidimensional kernel density estimators with optimized bandwidth selection 

improved the ability of the new model to capture multimodal probabilistic behavior in 

comparison to existing unimodal parametric distributions.  The proposed modeling 

algorithm also provides improved accuracy compared to standard mixture models. The 

wind reserve assessment algorithm allows the provision of valuable planning information 
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with respect to wind generation’s ability to meet demand response, secondary generation 

and frequency regulation in an islanded microgrid.  

     Chapter 4 presented an overview of various aspects of analysis, modeling and control 

of islanded Microgrids. An analytical and numerical framework for the implementation of 

wind-based reserve generation in islanded microgrids was developed within the PLEXIM 

simulation environment. The PLEXIM environment provides a framework for case-study 

analysis of wind reserve applications based on field data and microgrid topologies. Aspects 

of microgrid operation and modeling were reviewed, including grid forming techniques, 

grid synchronization of distributed generation and various droop-based grid 

interconnection schemes. These control techniques were applied to wind turbine 

installation and microgrid interconnection. Wind turbine generators were briefly reviewed, 

with direct-drive PMSG designed explored in greater detail. Their steady-state and dynamic 

behavior was reviewed, with decoupled rotating-frame control topologies implemented and 

analytically modeled to allow for interconnection with islanded microgrids. The grid 

interconnection topology was also reviewed, with the behavior of a back-to-back power 

converter modeled with respect to DC-link voltage regulation. The microgrid topology and 

PLEXIM implementation simulation environment was presented in a manner allowing 

future researchers to implement state-of-the-art microgrid models.  

     Chapter 5 presented a case study on wind reserve assessment for an islanded microgrid.  

Field data from Cartwright was used to probabilistically assess the ability of wind 

generation to act as an active reserve for microgrid frequency and voltage regulation. The 

time-variant, multivariate probabilistic modeling algorithms proposed in the previous 
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Chapters were used successfully compensate for nonstationary behavior in the 

environmental and electrical demand datasets, providing an accurate assessment of the 

wind regime and demand profile and its probabilistic transient variability. The results 

produced within the case study provided valuable planning information with respect to 

wind generation’s ability to meet demand response, secondary generation and frequency 

regulation in an islanded microgrid, with the seasonal, diurnal and generation-based 

variability in the probabilistic wind reserve being identified and quantified. The 

probabilistic microgrid power balance was developed for multiple wind installation 

topologies, including two wind turbine types and two generation capacities. The NPS-100c-

24 wind turbine was conclusively shown to produce a superior wind reserve distribution 

compared to the NPS-100c-21, demonstrating the capacity of the proposed algorithm to 

compare the performance of different wind turbine designs. In addition, the effect of a 

doubling in generation capacity was fully defined probabilistically, allowing optimization 

to occur with respect to generation capacity in future cost-function based analysis.  

     Chapter 6 presented PLEXIM simulations, conducted to validate the control and 

interconnection topology required to integrate wind reserved into an islanded microgrid. 

The performance of a power inverter in providing frequency and voltage regulation was 

investigated using a load profile matching a common application of peak shaving or 

demand response in Cartwright. The performance of droop-based frequency regulation was 

compared to synchronous governor action and shown to improve the frequency stability of 

the microgrid by reducing the magnitude of frequency dips during demand increases. In 

addition, the ability of the power inverter to inject reactive power into the microgrid was 
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used to perform voltage regulation through a Q/V droop algorithm, demonstrating a 

reduction in the magnitude of voltage sags during the activation of inductive loads 

compared to the performance of the synchronous exciter alone. The overall reference 

tracking ability of the PR VSI control algorithm was validated, with minimal THD and the 

ability to match fast droop reference changes. In addition, the DSOGI-FLL synchronization 

algorithm was shown to maintain an accurate estimate of the microgrid frequency during 

all frequency excursions, demonstrating the ability of wind reserves to provide demand 

response, frequency regulation and voltage regulation despite the lower inertia (and 

therefore greater frequency and voltage variability) of Cartwright’s islanded microgrid. To 

conclude, the interconnection of a PMSG Direct-Drive wind turbine to a DC Link was 

investigated. The DC Link voltage control algorithm was shown to maintain a stable DC 

Link voltage despite significant demand variation and changes to the reference voltage. In 

addition, the PMSG decoupled D-Q current controller was shown to exhibit robust and 

stable reference tracking, implementing unity power factor operation through zero D-Axis 

current control while also tracking the Q-axis current reference provided by the DC Link 

voltage regulator. Finally, the ability of the IGBT converter to implement current reference 

changes through terminal voltage variability was validated, demonstrating that power 

electronic converter control is capable of fully regulating the active and reactive power 

output of a wind turbine on a time scale significantly faster than the associated mechanical 

dynamics. The combination of PLEXIM simulations validates the previously discussed 

applications of wind reserves and demonstrates the ability of wind energy to improve the 

transient and dynamic stability of an islanded microgrid.  
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7.1 Thesis Contribution 

 

     This thesis provided improved probabilistic wind reserve assessment algorithms for use 

in islanded microgrids. An advanced, time-variant multidimensional and multivariate wind 

resource modelling algorithm was developed to investigate wind turbine performance 

under nonstationary environmental conditions. This modeling algorithm was combined 

with electrical demand data to generate probabilistic wind reserve assessment techniques. 

An investigation into state-of-the-art microgrid topologies and control algorithms was also 

conducted to provide a framework for the analytical and numerical implementation of the 

probabilistically identified wind reserved.  A case study was then conducted which 

validated the utility of the proposed methodologies, demonstrating the applications of wind 

reserves in an islanded microgrid. The overarching objective was to provide an analysis 

and modeling framework for the probabilistic prediction of the performance of an islanded 

microgrid when wind generation is installed as a dynamic reserve, allowing analysis of the 

feasibility of wind as well as providing a starting point for system optimization.  
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7.2: Future Work 

 

     The research presented in this thesis forms a framework for the assessment of wind 

reserves in islanded microgrid. Future work in this area is planned as follows: 

- Conducting additional case studies for sites with fundamentally different climate 

regimes to investigate the results space produced by the assessment algorithm 

- Implementing several existing deterministic wind reserve assessment algorithms 

with the objective of modifying them to produce results comparable to the proposed 

probabilistic model 

- Investigating additional applications of wind energy in islanded microgrids, 

including unbalance compensation, power quality and system protection, including 

sensorless and non-linear control and operation algorithms  

- Implementing supervisory and tertiary control layers which incorporate information 

developed from the probabilistic wind reserve assessment algorithm, with the goal 

of developing an Autonomous Intelligent Management System (AIMS) for islanded 

microgrids. 

- Expanding and generalizing AIMS to work in both islanded and transmission-

interconnected microgrids , optimizing microgrid stability and performance during 

transition intervals due to transmission contingencies or generation intermittency 

 

 



265 

 

References 

Chapter 1 

[1] X. Xu, D. Niu, Q. Wang, P. Wang and D. Wu, "Intelligent Forecasting Model for Regional Power Grid 

With Distributed Generation", IEEE Syst. J, to be published. 

[2] P. McSharry, S. Bouwman and G. Bloemhof, "Probabilistic Forecasts of the Magnitude and Timing of 

Peak Electricity Demand", IEEE Trans. Power Syst., vol. 20, no. 2, pp. 1166-1172, May 2005. 

[3] H. Holttinen, et. al., “Methodologies to determine operating reserves due to increases wind power”, IEEE 

Trans. Sust. Energy, vol. 3, no. 4, pp. 713-723, Oct. 2012. 

[4] Ye Wang, et. al., “Methods for assessing available wind primary reserve reserve”, IEEE Trans. Sust. 

Energy, vol. 6, no. 1, pp. 272-280, Jan. 2015. 

[5] X. Xu, Z. Yan and S. Xu, "Estimating wind speed probability distribution by diffusion-based kernel 

density method", Electric Pow. Syst. Res., vol. 121, pp. 28-37, April 2015. 

Chapter 2 

[1] A. Vega Remesal, A. Ramos Millan, E. Conde Lazaro and P. Reina Peral, "Pre-feasibility study of hybrid 

wind power-H2 system connected to electrical grid", IEEE Latin America Transactions, vol. 9, no. 5, pp. 

800-807, 2011. 

[2] D. Koussa and M. Koussa, "A feasibility and cost benefit prospection of grid connected hybrid power 

system (wind–photovoltaic) – Case study: An Algerian coastal site", Renewable and Sustainable Energy 

Reviews, vol. 50, pp. 628-642, 2015. 

[3] T. Iqbal, "Pre-Feasibility Study of a Wind-Diesel System for St. Brendan's, Newfoundland", Wind 

Engineering, vol. 27, no. 1, pp. 39-51, 2003. 

[4] E. Cheng, "Feasibility Study of a Wind-Powered Pumped-Storage Hydroelectric System", Wind 

Engineering, vol. 24, no. 2, pp. 111-117, 2000. 

[5] D. Saheb-Koussa, M. Koussa and N. Said, "Prospects of Wind-Diesel Generator-Battery Hybrid Power 

System: A Feasibility Study in Algeria", Journal of Wind Energy, vol. 2013, pp. 1-8, 2013. 

[6] M. Khan and M. Iqbal, "Pre-feasibility study of stand-alone hybrid energy systems for applications in 

Newfoundland", Renewable Energy, vol. 30, no. 6, pp. 835-854, 2005. 

[7] M. Nehrir, C. Wang, K. Strunz, H. Aki, R. Ramakumar, J. Bing, Z. Miao and Z. Salameh, "A Review of 

Hybrid Renewable/Alternative Energy Systems for Electric Power Generation: Configurations, Control, and 

Applications", IEEE Trans. Sustain. Energy, vol. 2, no. 4, pp. 392-403, 2011. 

[8] S.  Upadhyay and M.  Sharma, "A review on configurations, control and sizing methodologies of hybrid 

energy systems", Renewable and Sustainable Energy Reviews, vol. 38, pp. 47-63, 2014. 

[9] J. Bernal-Agustín and R. Dufo-López, "Simulation and optimization of stand-alone hybrid renewable 

energy systems", Renewable and Sustainable Energy Reviews, vol. 13, no. 8, pp. 2111-2118, 2009. 

[10] M. Deshmukh and S. Deshmukh, "Modeling of hybrid renewable energy systems", Renewable and 

Sustainable Energy Reviews, vol. 12, no. 1, pp. 235-249, 2008. 

[11] M. Fadaee and M. Radzi, "Multi-objective optimization of a stand-alone hybrid renewable energy system 

by using evolutionary algorithms: A review", Renewable and Sustainable Energy Reviews, vol. 16, no. 5, pp. 

3364-3369, 2012. 

[12] B. DuPont and J. Cagan, "A hybrid extended pattern search/genetic algorithm for multi-stage wind farm 

optimization", Optimization and Engineering, vol. 17, no. 1, pp. 77-103, 2016. 

[13]L. Li and Z. Tan, "Optimization Design of Wind/Photovoltaic Hybrid Power Systems Based on Genetic 

Algorithms", AMM, vol. 278-280, pp. 1692-1695, 2013. 

[15] "Wind Energy | Canada's Wind TRM | Natural Resources Canada", Nrcan.gc.ca, 2015. [Online]. 

Available: http://www.nrcan.gc.ca/energy/renewable-electricity/wind/7323. Accessed: August 2016 

[16] Irena.masdar.ac.ae, 2016. [Online]. Available: http://irena.masdar.ac.ae/. Accessed: August 2016 



266 

 

[17] R. Harris and N. Cook, 'The parent wind speed distribution: Why Weibull?', Journal of Wind Engineering 

and Industrial Aerodynamics, vol. 131, pp. 72-87, 2014.  

[18] J. III, J. Wiener and M. Smith, 'The Weibull Distribution: A New Method of Summarizing Survivorship 

Data', Ecology, vol. 59, no. 1, p. 175, 1978.  

[19] A. Watkins, 'On maximum likelihood estimation for the two parameter Weibull distribution’, 

Microelectronics Reliability, vol. 36, no. 5, pp. 595-603, 1996.  

[20] F. Wang and J. Keats, 'Improved percentile estimation for the two- parameter Weibull distribution’, 

Microelectronics Reliability, vol. 35, no. 6, pp. 883-892, 1995.  

[21] A. Watkins, 'On maximum likelihood estimation for the two parameter Weibull distribution’, 

Microelectronics Reliability, vol. 36, no. 5, pp. 595-603, 1996.  

[22] F. Wang and J. Keats, 'Improved percentile estimation for the two- parameter Weibull distribution’, 

Microelectronics Reliability, vol. 35, no. 6, pp. 883-892, 1995.  

[23] Y. Zewei and A. Tuzuner, 'Fractional Weibull Wind Speed Modeling For Wind Power Production 

Estimation', Power and Energy Society General Meeting, pp. 1-7, 2009.  

[24] A.  Celik, "Assessing the suitability of wind speed probability distribution functions based on wind 

power density", Renewable Energy, vol. 28, no. 10, pp. 1563-1574, 2003. 

[25] J. Wang, J. Hu and K. Ma, "Wind speed probability distribution estimation and wind energy assessment", 

Renewable and Sustainable Energy Reviews, vol. 60, pp. 881-899, 2016. 

[26] X. Qu and J. Shi, "Bivariate Modeling of Wind Speed and Air Density Distribution for Long-Term Wind 

Energy Estimation", International Journal of Green Energy, vol. 7, no. 1, pp. 21-37, 2010. 

[27] J. Zhang, S. Chowdhury, A. Messac and L. Castillo, "A Multivariate and Multimodal Wind Distribution 

model", Renewable Energy, vol. 51, pp. 436-447, 2013. 

[28] J. Carta and D. Mentado, "A continuous bivariate model for wind power density and wind turbine energy 

output estimations", Energy Conversion and Management, vol. 48, no. 2, pp. 420-432, 2007. 

[29] K. Pope, R. Milman and G. Naterer, “Rotor dynamics correlation for maximum power and transient 

control of wind turbines”, International Journal of Energy Research, 2009. 

[30] B. Malinga, J. Sneckenberger and A. Feliachi, "Modeling and Control of a Wind Turbine as a Distributed 

Resource", in The 35th Annual Southeastern Symposium on System Theory, West Virginia University, 2003, 

pp. 108-112. 

[31]H. Rinne, The Weibull distribution. Boca Raton: CRC Press, 2009. 

[32]J. III, J. Wiener and M. Smith, 'The Weibull Distribution: A New Method of Summarizing Survivorship 

Data', Ecology, vol. 59, no. 1, p. 175, 1978. 

[33]R. Harris and N. Cook, 'The parent wind speed distribution: Why Weibull?', Journal of Wind Engineering 

and Industrial Aerodynamics, vol. 131, pp. 72-87, 2014. 

[34]E. Kavak Akpinar and S. Akpinar, 'A statistical analysis of wind speed data used in installation of wind 

energy conversion systems', Energy Conversion and Management, vol. 46, no. 4, pp. 515-532, 2005. 

[35] X. Xu, Z. Yan and S. Xu, "Estimating wind speed probability distribution by diffusion-based kernel 

density method", Electric Power Systems Research, vol. 121, pp. 28-37, 2015. 

[36] B. Silverman, Density estimation for statistics and data analysis. London: Chapman and Hall, 1986. 

[37] M. Loève, Probability Theory I, New York: Springer-Verlag, 1977. 

[38] Howard G.Tucker, "A Generalization of the Glivenko-Cantelli Theorem". The Annals of Mathematical 

Statistics, vol. 30, pp. 828–830, 1959. 

[39] T. Burton, N. Jenkins, D. Sharpe and E. Bossanyi, Wind Energy Handbook, 2nd ed. Wiley, 2011. 

[40]K. Van Treuren, "Small-Scale Wind Turbine Testing in Wind Tunnels Under Low Reynolds Number 

Conditions", J. Energy Resour. Technol, vol. 137, no. 5, p. 051208, 2015. 

[41] M. Moran and H. Shapiro, Principles of engineering thermodynamics. [Singapore]: Wiley, 2012. 

[42] W. Haynes, CRC handbook of chemistry and physics. Boca Raton, FL.: CRC Press, 2011. 

[43] MATLAB r2016(a), Mathworks, 2016 

[44] M.L. Little and K. Pope, ‘Modeling Seasonal Wind Resource Variation in a Maritime-Influenced Humid 

Continental Climate,’ presented at the  Newfoundland Electrical and Computer Engineering Conference , St. 

John’s, NL, Nov. 5, 2015. 

[45] J. Apt, 'The spectrum of power from wind turbines', Journal of Power Sources, vol. 169, no. 2, pp. 369-

374, 2007.  

https://en.wikipedia.org/wiki/Law_of_large_numbers#CITEREFLo.C3.A8ve1977
http://www.jstor.org/discover/10.2307/2237422?uid=3738256&uid=2&uid=4&sid=21102589085583


267 

 

[46] Kristan Matej, Leonardis Ales and Skocaj Danijel, "Multivariate Online Kernel Density Estimation with 

Gaussian Kernels", Pattern Recognition, vol. 44. no. 10, Oct. 2011. 

[47] M.P. Wand, M.C. Jones, Kernel Smoothing, Chapman & Hall/CRC (1995) 

[48] Ye Wang, et. al., “Methods for assessing available wind primary reserve reserve”, IEEE Trans. Sust. 

Energy, vol. 6, no. 1, pp. 272-280, Jan. 2015. 

[49] X. Qu and J. Shi, "Bivariate Modeling of Wind Speed and Air Density Distribution for Long-Term Wind 

Energy Estimation", International Journal of Green Energy, vol. 7, no. 1, pp. 21-37, 2010. 

[50] J. Wang, J. Hu and K. Ma, "Wind speed probability distribution estimation and wind energy assessment", 

Renewable and Sustainable Energy Reviews, vol. 60, pp. 881-899, 2016. 

[51] Joseph Lee Rodgers and W. Alan Nicewander, “Thirteen Ways to Look at the Correlation Coefficient”, 

The American Statistician, vol. 42 , no. 1, 1988 

Chapter 3 

[1] M. Bayat, K. Sheshyekani, M. Hamzeh and A. Rezazadeh, "Coordination of Distributed Energy Resources 

and Demand Response for Voltage and Frequency Support of MV Microgrids", IEEE Trans. Power Syst., 

vol. 31, no. 2, pp. 1506-1516, March 2016. 

[2] C. De Jonghe, B. Hobbs and R. Belmans, "Optimal Generation Mix With Short-Term Demand Response 

and Wind Penetration", IEEE Trans. Power Syst., vol. 27, no. 2, pp. 830-839, May 2012. 

[3] N. Mendis, K. M. Muttaqi and S. Perera, “Management of low- and high-frequency power components 

in demand-generation fluctuations of a DFIG-based wind-dominated RAPS system using hybrid energy 

storage”, IEEE Trans. Ind. Appl., vol. 50, no.3, pp. 2258-2268, May 2014. 

[4] N. Mendis, K. M. Muttaqi, S. Perera and S. Kamalasadan, “An effective power management Strategy for 

a wind–diesel–hydrogen-based remote area power supply system to meet fluctuating demands under 

generation uncertainty”, IEEE Trans. Ind. Appl., vol. 51, no.2, pp. 1228-1238, March 2015. 

[5] J. Cardell and C. Anderson, "A Flexible Dispatch Margin for Wind Integration", IEEE Trans. Power Syst., 

vol. 30, no. 3, pp. 1501-1510, May 2015. 

[6] A. Yousefi, H. Iu, T. Fernando and H. Trinh, "An Approach for Wind Power Integration Using Demand 

Side Resources", IEEE Trans. Sust. Energy, vol. 4, no. 4, pp. 917-924, October 2013. 

[7] J. Rocabert, A. Luna, F. Blaabjerg and P. Rodríguez, "Control of Power Converters in AC Microgrids", 

IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4734-4749, Nov. 2012. 

[8] Z. Ding and W. J. Lee, “A stochastic microgrid operation scheme to balance between system reliability 

and greenhouse gas emission, IEEE Trans. Ind. Appl., vol. 52, no.2, pp. 1157-1166, March 2016. 

[9] J. Mitra, M. R. Vallem and C. Singh, “Optimal deployment of distributed generation using a reliability 

criterion”, IEEE Trans. Ind. Appl., vol. 52, no.3, pp. 1989-1997, May 2016. 

[10] T. Caldognetto, P. Tenti, A. Costabeber and P. Mattavelli, “Improving Microgrid Performance by 

Cooperative Control of Distributed Energy Sources”, IEEE Trans. Ind. Appl., vol. 50, no.6, pp. 3921-3930, 

Nov. 2014. 

[11] C. A. H. Aramburo, T. C. Green and N. Mugniot, “Fuel consumption minimization of a microgrid”, 

IEEE Trans. Ind. Appl., vol. 41, no.3, pp. 673-681, May 2015. 

[12] F. Katiraei and M. Iravani, "Power Management Strategies for a Microgrid With Multiple Distributed 

Generation Units", IEEE Trans. Power Syst., vol. 21, no. 4, pp. 1821-1831, Nov. 2006. 

[13] M. Abdullah, K. Muttaqi, A. Agalgaonkar and D. Sutanto, "A Noniterative Method to Estimate Load 

Carrying Capability of Generating Units in a Renewable Energy Rich Power Grid", IEEE Trans.on Sust. 

Energy, vol. 5, no. 3, pp. 854-865, July 2014. 

[14] F. Adinolfi, G. Burt, P. Crolla, F. D'Agostino, M. Saviozzi and F. Silvestro, "Distributed Energy 

Resources Management in a Low-Voltage Test Facility", IEEE Trans. Ind. Electron., vol. 62, no. 4, pp. 2593-

2603, April 2015. 

[15] E. R. Hamilton, J. Undrill, P. S. Hamer and S. Manson, “Considerations for generation in an islanded 

operation”, IEEE Trans. Ind. Appl., vol. 46, no.6, pp. 2289-2298, Nov. 2010. 

[16] X. Xu, D. Niu, Q. Wang, P. Wang and D. Wu, "Intelligent Forecasting Model for Regional Power Grid 

With Distributed Generation", IEEE Syst. J, to be published. 

http://www.tandfonline.com/doi/abs/10.1080/00031305.1988.10475524
http://www.tandfonline.com/toc/utas20/42/1


268 

 

[17] P. McSharry, S. Bouwman and G. Bloemhof, "Probabilistic Forecasts of the Magnitude and Timing of 

Peak Electricity Demand", IEEE Trans. Power Syst., vol. 20, no. 2, pp. 1166-1172, May 2005. 

[18] H. Holttinen, et. al., “Methodologies to determine operating reserves due to increases wind power”, IEEE 

Trans. Sust. Energy, vol. 3, no. 4, pp. 713-723, Oct. 2012. 

[19] Ye Wang, et. al., “Methods for assessing available wind primary reserve reserve”, IEEE Trans. Sust. 

Energy, vol. 6, no. 1, pp. 272-280, Jan. 2015. 

[20] X. Xu, Z. Yan and S. Xu, "Estimating wind speed probability distribution by diffusion-based kernel 

density method", Electric Pow. Syst. Res., vol. 121, pp. 28-37, April 2015. 

[21] Available: http://northernpower.com/uk/wind-solutions/nps-10 

Chapter 4 

[1] F. Blaabjerg, R. Teodorescu, M. Liserre and A. Timbus, "Overview of Control and Grid Synchronization 

for Distributed Power Generation Systems", IEEE Transactions on Industrial Electronics, vol. 53, no. 5, pp. 

1398-1409, 2006. 

[2] J. Mitra, M. Vallem and C. Singh, "Optimal Deployment of Distributed Generation Using a Reliability 

Criterion", IEEE Transactions on Industry Applications, vol. 52, no. 3, pp. 1989-1997, 2016.  

[3] D. Bernardon, A. Mello, L. Pfitscher, L. Canha, A. Abaide and A. Ferreira, "Real-time reconfiguration of 

distribution network with distributed generation", Electric Power Systems Research, vol. 107, pp. 59-67, 

2014. 

[4] N. Mendis, K. M. Muttaqi, S. Perera, and S. Kamalasadan, “An Effective Power Management Strategy 

for a Wind–Diesel–Hydrogen-Based Remote Area Power Supply System to Meet Fluctuating Demands 

Under Generation Uncertainty,” IEEE Transactions on Industry Applications, vol. 51, no. 2, pp. 1228–1238, 

2015. 

[5] F. Katiraei and M. Iravani, "Power Management Strategies for a Microgrid With Multiple Distributed 

Generation Units", IEEE Transactions on Power Systems, vol. 21, no. 4, pp. 1821-1831, 2006.  

[6] J. Rocabert, A. Luna, F. Blaabjerg and P. Rodríguez, "Control of Power Converters in AC 

Microgrids", IEEE Transactions on Power Electronics, vol. 27, no. 11, pp. 4734-4749, 2012. 

[7] S. Backhaus et. al, "DC Microgrids Scoping Study—Estimate of Technical and Economic Benefits", Los 

Alamos National Laboratory, 2015. 

[8] F. Nejabatkhah and Y. W. Li, “Overview of Power Management Strategies of Hybrid AC/DC 

Microgrid,” IEEE Transactions on Power Electronics, vol. 30, no. 12, pp. 7072–7089, 2015. 

[9] M. Ahmed, Y. Kang, and Y.-C. Kim, “Communication Network Architectures for Smart-House with 

Renewable Energy Resources,” Energies, vol. 8, no. 8, pp. 8716–8735, 2015. 

[10] U. B. Tayab, M. A. B. Roslan, L. J. Hwai, and M. Kashif, “A review of droop control techniques for 

microgrid,” Renewable and Sustainable Energy Reviews, vol. 76, pp. 717–727, 2017. 

[11] IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems, IEEE Standard 

1547, Sept. 2008. 

[12] H. Han, X. Hou, J. Yang, J. Wu, M. Su and J. Guerrero, "Review of Power Sharing Control Strategies 

for Islanding Operation of AC Microgrids", IEEE Trans. Smart Grid, vol. 7, no. 1, pp. 200-215, Jan. 2016. 

[13] X. Wang, J. M. Guerrero, F. Blaabjerg and Z. Chen “A review of power electronics based microgrids” 

J. of Power Electron., vol. 12, pp. 181-192, Jan. 2012. 

[14] S. M. Manson, A. Upreti and M. J. Thompson, “Case study: smart automatic synchronization in islanded 

power systems”, IEEE Trans. Ind. Appl., vol. 52, no.2, pp. 1241-1249, March 2016. 

[15] A. A. Renjit, A. Mondal, M. S. Illindala and A. S. Khalsa, “Analytical methods for characterizing 

frequency dynamics in islanded microgrids with gensets and energy storage, IEEE Trans. Ind. Appl., to be 

published. 

[16] M. Bayat, K. Sheshyekani, M. Hamzeh and A. Rezazadeh, "Coordination of Distributed Energy 

Resources and Demand Response for Voltage and Frequency Support of MV Microgrids", IEEE Trans. 

Power Syst., vol. 31, no. 2, pp. 1506-1516, March 2016. 

[17] C. De Jonghe, B. Hobbs and R. Belmans, "Optimal Generation Mix With Short-Term Demand Response 

and Wind Penetration", IEEE Trans. Power Syst., vol. 27, no. 2, pp. 830-839, May 2012. 



269 

 

[18] N. Mendis, K. M. Muttaqi and S. Perera, “Management of low- and high-frequency power components 

in demand-generation fluctuations of a DFIG-based wind-dominated RAPS system using hybrid energy 

storage”, IEEE Trans. Ind. Appl., vol. 50, no.3, pp. 2258-2268, May 2014. 

[19] N. Mendis, K. M. Muttaqi, S. Perera and S. Kamalasadan, “An effective power management Strategy 

for a wind–diesel–hydrogen-based remote area power supply system to meet fluctuating demands under 

generation uncertainty”, IEEE Trans. Ind. Appl., vol. 51, no.2, pp. 1228-1238, March 2015. 

[20] S. Backhaus et. al, "DC Microgrids Scoping Study—Estimate of Technical and Economic Benefits", Los 

Alamos National Labratory, 2015. 

[21] M. Babazadeh and H. Karimi, "A Robust Two-Degree-of-Freedom Control Strategy for an Islanded 

Microgrid", IEEE Trans. Power Del., vol. 28, no. 3, pp. 1339-1347, July 2013. 

[22] J. He, Y. Li, J. Guerrero, F. Blaabjerg and J. Vasquez, "An Islanding Microgrid Power Sharing Approach 

Using Enhanced Virtual Impedance Control Scheme", IEEE Trans. Power Electron., vol. 28, no. 11, pp. 

5272-5282, Nov. 2013. 

[23] J. He and Y. W. Li, “Analysis, design, and implementation of virtual impedance for power electronics 

interfaced distributed generation”, IEEE Trans. Ind. Appl., vol. 47, no.6, pp. 2525-2538, Nov. 2016. 
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